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Chapter 1

Introduction

1.1 Queueing models

In general we do not like to wait. But reduction of waiting time usually requires
extra investments. To decide whether or not to invest, it is important to know
the effect of the investment on the waiting time, so we need models to analyze
such situations.

For example, consider a telephone system whose function is to provide com-
munication paths between pairs of telephone sets (customers) on demand. The
provision of a permanent communication path between each pair of telephone
sets would be astronomically expensive, to say the least and perhaps impossible.
In response to this problem, the facilities needed to establish, and maintain a
talking path between a pair of telephone sets provided in a common pool, to be
used by a call when required and returned to the pool when no longer needed.
This introduces the possibility that a system may be unable to set up a call on
demand because of lack of available resources (e.g. telephone lines) at that time.
Thus the question immediately arises: how much equipment must be provided so
that the proportion of calls experiencing delays to be below a specified acceptable
level?

Questions similar to that just posed arise in the design of many systems quite
different from a telephone system. For example how many teletype writer stations
can a time-shared computer serve?

All these questions share a common characteristic: in each case the times at
which requests for service will occur and the lengths of time that these requests
will occupy facilities cannot be predicted except in a statistical sense. The math-
ematical theory that studies the problem of design and analysis of such systems
is known as Queueing Theory.

Every queue can be defined in terms of three characteristics: the input process,
the service mechanism and the queue discipline. The input process describes the
sequence of requests for service. For example, the input process is often specified
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in terms of the distribution of the lengths of time between consecutive customer
arrival instants. For example, for a general distribution the letter G is used,
M for the Exponential distribution (i.e. for a Poisson arrival process) and D
for deterministic times. The service mechanism includes such characteristics as
the number of servers and the lengths of time that the customers occupy the
servers. The most common service times are, the exponentially distributed

(
M
)

(i.e. for a Poisson arrival process, the deterministic times
(
D
)
, and the generally

distributed times
(
G
)
.

The queue discipline specifies the way the blocked customers (customers who
find all servers busy) are chosen later for service. A short hand notation to
characterize a range of queueing models is the three-part code A/B/c. The first
letter specifies the inter-arrival time distribution and the second one the service
time distribution. The third term specifies the number of servers, while the
notation can be extended with extra terms to cover more complicate queueing
models.

1.2 Performance measures

Relevant performance measures in the analysis of a queueing model are:

• Qq(t): the number of waiting customers at time t.

• Qs(t): the number of customers in service at time t.

• Q(t): the number of customers in the system (queue length) at time t.

• Wn: the waiting time of a customer.

• Xn: the service time of a customer.

• Sn: the sojourn time of a customer, which is equal to the waiting time plus
the service time.

In particular, we are interested in mean performance measures, such as the
mean waiting time and the mean sojourn time. Now, consider any queue with a
state process that is regenerative, i.e, there are points that constitute a renewal
process, where the state process of the system starts anew. Let the random
variable Q(t) denote the number of customers in the system at time t and let
Sn denote the sojourn time of the n-th customer in the system. Under the
assumption that the regenerative points of the system constitute a renewal process
with (almost surely) finite aperiodic inter-renewal times, it can be shown that
these random variables have limiting distributions as t→∞ and n→∞. These
distributions are independent of the initial state of the system.
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Let the random variables Q and S have the limiting distributions of Q(t) and
Sn respectively. We define

pn = P (Q = n) = lim
t→∞

P (Q(t) = n),

Fs(x) = P (S ≤ x) = lim
n→∞

P (Sn ≤ x).

The probability pn can be interpreted as the fraction of time that n customers are
in the system and Fs(x) gives the probability that the sojourn time of an arbitrary
customer entering the system in not greater than x units of time. When Q

(
t
)

is
a regenerative process, which is the case in most applications, we have that:

lim
t→∞

1

t

∫ t

0

Q(x)dx = E(Q) and lim
n→∞

1

n

n∑
k=1

Sk = E(S)with probability 1.

So the long-run average number of customers in the system and the long-run
average sojourn time are equal to E(Q) and E(S), respectively.

1.3 Utilization rate

If we denote by λ the arrival rate in a queueing system, and µ the maximum
service capacity, then the utilization rate is essentially the ratio λ

µ
, i.e., it is

the ratio of the rate at which ‘work’ enters the system over the maximum rate
at which system can process this work. The work of an incoming customer is
defined as the time of service he requires. In a single-server system G/G/1 with
arrival rate λ and mean service time 1

µ
, the amount of work arriving per unit time

equals λ
µ
. To avoid that the queue length eventually grows to infinity, we have to

require that λ
µ
< 1. It is common to use the notation ρ = λ

µ
. If ρ < 1, then ρ is

called the occupation rate or server utilization, because it is the fraction of time
the server is working.

1.4 Little’s law

Little’s law gives a very important relation between E(Q), E(S) and the arrival
rate λ. Little’s law states that E(Q) = λE(S) or intuitively the long-run average
number of customers in a stable system is equal to the long-run average effective
arrival rate multiplied by the average time a customer spends in the system.
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1.5 PASTA property

For queueing systems with Poisson arrivals, the very special property holds, that
an arriving customer finds on average the same situation at the queueing system
as an outside observer looking at the system at an arbitrary point in time. More
precisely, the fraction of customers finding on arrival the system in some state
A is exactly the same as the fraction of time the system is in the state A. This
property is generally true only for Poisson arrivals. For this reason, it is known
as Poisson Arrivals See Time Averages (PASTA) property.

1.6 The M/M/1 queue

In this chapter, we will analyze the model with a Poisson(λ) arrival process,
exponential service times with mean 1/µ and a single server. The queue discipline
is First Come First Served (FCFS). We also require that the utilization rate
ρ = λ/µ < 1.

The exponential distribution allows for a very simple description of the state
of the system at time t, namely the number of customers in the system. Neither
do we have to remember when the last customer arrived, nor we have to register
when the last customer entered service. Since, the exponential distribution is
memoryless, this information does not yield a better prediction of the future. Let
X ∼ Exp(µ), then by the memoryless property, we get for all x ≥ 0 and t ≥ 0,

P (X > x+ t|X > t) = P (X > x) = e−µx.

We often use the memoryless property in the form

P (X < t+ ∆t|X > t) = 1− e−µ∆t = µ∆t+ o(∆t), (∆t→ 0).

Based on the above property we get, for ∆t→ 0,

p0(t+ ∆t) = (1− λ∆t)p0(t) + µ∆tp1(t) + o(∆t),

pn(t+ ∆t) = λ∆tpn−1(t) + (1− (λ+ µ)∆t)pn(t) + µ∆tpn+1(t) + o(∆t)

n ≥ 1.

Hence, by letting ∆t → 0, we obtain the following infinite set of differential
equations for the probabilities pn(t).

p
′

0(t) = −λp0(t) + µp1(t),

(1.1)

p
′

n(t) = λpn−1(t)− (λ+ µ)pn(t) + µpn+1(t), n ≥ 1
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Under the stability condition ρ < 1, we have that p
′
n(t)→ 0 and pn(t)→ pn, as

t→∞. Hence from (1.1), it follows that the limiting or equilibrium probabilities
pn satisfy the equations:

0 = −λp0 + µp1,

(1.2)

0 = λpn−1 − (λ+ µ)pn + µpn+1, n ≥ 1.

In addition, the equilibrium probabilities pn satisfy
∞∑
n=0

pn = 1

The transition rate diagram of the M/M/1 queue is:

0 1

µ

λ

. . .

µ

λ

n− 1

µ

λ

n

µ

λ

. . .

µ

λ

The generic equation (1.2) is a second order recurrence relation with constant
coefficients. Its general solution is of the form

pn = c1x
n
1 + c2x

n
2 , n ≥ 0

where x1 and x2 are the roots of the quadratic equation

λ− (λ+ µ)x+ µ2 = 0.

Solving the above equation yields x = 1 and

x =
λ

µ
= ρ.

So, the generic solution is

pn = c1 + c2ρ
n, n ≥ 0.

By the normalization equation

∞∑
n=0

pn = 1

we conclude that c1 must be 0, so again by the normalization equation we get
that

c2 = 1− ρ.
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So we conclude that
pn = (1− ρ)ρn, n ≥ 0

Alternatively, the limiting probabilities of the M/M/1 queue can be deter-
mined by applying the global balance principle, stating that for each set of states
A, the flow out of set A is equal to the flow into that set. In fact, the equilibrium
equations follow by applying this principle to a single state. So, if we apply the
global balance principle to the set A = {0, 1, 2..., n− 1} we get the very simple
relation

λpn−1 = µpn, n ≥ 1.

Repeated application of this relation yields

pn = ρnp0, n ≥ 1

so that, after the normalization, the solution

pn = (1− ρ)ρn

, n ≥ 0, follows.
From the equilibrium probabilities we can derive expressions for the mean

number of customers in the system and the mean sojourn time in the system.
For the first one we get

E(Q) =
∞∑
n=0

nP (Q = n) =
∞∑
n=0

npn =
ρ

1− ρ

and by applying the Little’s law, we get that:

E(S) =
E(Q)

λ
=

ρ

λ
(
1− ρ

) =
1

µ
· 1

1− ρ
.

By the expressions of E(Q) and E(S) we observe that both quantities grow to
infinity as ρ→ 1. This limiting behavior is caused by the variation in the arrival
and service process. In fact, E(Q) and E(S) can also be determined directly by
using Little’s law and the PASTA property. Based on PASTA we know that the
average number of customers in the system seen by an arriving customer equals
E(Q) and each of them has a service time with mean 1/µ. We mention that
this is also true for the one in service, due to the memoryless property of the
exponential distribution. So we get that the mean residual service time is 1/µ.
Furthermore, a tagged customer has to wait for its own service time. Hence, we
get the relation

E(S) = E(Q)
1

µ
+

1

µ

and combing it with Little’s law

E(Q) = λE(S)
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we find that

E(S) =
1/µ

1− ρ
.

The mean number of customers in the queue, denoted by E(Qq) can be ob-
tained from E(Q) by subtracting the mean number of customers in service, so

E(Qq) = E(Q)− λ/µ = E(Q)− ρ =
ρ

1− ρ
− ρ =

ρ2

1− ρ
.

The mean waiting time, E(W ), follows from E(S) by subtracting the mean service
time. This yields

E(W ) = E(S)− 1

µ
=

ρ/µ

1− ρ
.

Denote by Qa the number of customers in the system just before the arrival of
a tagged customer and let Bk be the service time of the k-th customer. Also, the
customer in service has a residual service time instead of an ordinary service time
but these are identically distributed, since the exponential service time distribu-
tion is memoryless. So the r.vs Bk are independent and exponentially distributed
with mean 1/µ. Then, we have that

S =

Qa+1∑
k=1

Bk. (1.3)

By conditioning on Qa and using that Qa and Bk are independent it follows
that

P (S > t) = P
(Qa+1∑

k=1

Bk > t
)

=
∞∑
n=0

P
( n+1∑
k=1

Bk > t
)
P (Qa = n). (1.4)

So, we need to find the probability that an arriving customer finds n customers
in the system. The PASTA property states that the fraction of customers finding
on arrival n customers in the system is equal to the fraction of time there are n
customers in the system, so P (Qa = n) = pn = (1− ρ)ρn. Using that

n+1∑
k=1

Bk

is Erlang − (n+1, µ) distributed, yields
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P (S > t) =
∞∑
n=0

n∑
k=0

(µt)k

k!
e−µt(1− ρ)ρn

=
∞∑
k=0

∞∑
n=k

(µt)k

k!
e−µt(1− ρ)ρn

=
∞∑
k=0

(µρt)k

k!
e−µt = e−µ(1−ρ)t, t ≥ 0.

Hence, S is exponentially distributed with parameter µ(1 − ρ). This result
can also be obtained via the use of transforms. Using that,

S =

Qa+1∑
k=1

Bk,

and conditioning on Qa yields:

F ∗S(s) = E(e−sS) =
∞∑
n=0

P (Qa = n)E(e−s(B1+···+Bn+1))

=
∞∑
n=0

(1− ρ)ρnE(e−sB1) · · ·E(e−sBn+1)

Since Bk is exponentially distributed with parameter µ, we have:

E(e−sBk) =
µ

µ+ s
, so we get that

FS(s) =
∞∑
n=0

(1− ρ)ρn
( µ

µ+ s

)n+1

=
µ(1− ρ)

µ(1− ρ) + s

from which we can conclude that S is an exponential random variable with pa-
rameter µ(1 − ρ). To find the distribution of the waiting time W , note that
S = W + B, where the random variable B is the service time. Since W and B
are independent, it follows that:

FS(s) = FW (s) · FB(s) = FW (s) · µ

µ+ s
and thus,

FW (s) =
(1− ρ)(µ+ s)

µ(1− ρ) + s
= (1− ρ) + ρ

µ(1− ρ)

µ(1− ρ) + s
.

From the transform of W we conclude that W is equal to 0 with probability
(1 − ρ), and with probability ρ is equal to an exponential random variable with
parameter µ(1− ρ). Hence,

P (W > t) = ρe−µ(1−ρ)t, t ≥ 0.
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Note that

P (W > t|W > 0) =
P (W > t)

P (W > 0)
= e−µ(1−ρ)t

so the conditional waiting time (W |W > 0) is exponentially distributed with
parameter µ(1− ρ).
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1.7 Queueing Games

The economic analysis of queueing systems with strategic customers is an emerg-
ing tendency in the recent literature complementing the earlier studies in queueing
theory, which concerned the performance evaluation of systems with passive (i.e.
non-deciding) customers. In such a study, a certain reward cost structure is im-
posed on a queueing system that quantifies the customers’ desire for service and
their aversion to waiting. The customers are allowed to make decisions such as
whether to join or balk, stay or renege, buy priority or not etc. and the questions
we would typically like to answer are how do the customers behave in the system
and what we can do to induce a desirable behavior. The collective behavior of
the customers is analyzed as a game among the potential customers and we want
to determine first the best response of a customer against a given strategy of
the others and second the equilibrium strategies. Thus, Game theory plays a
central role in this thesis. Therefore, we now overview the necessary background
material.

In a strategic game, the players determine their action simultaneously and
independently. In other words, a player chooses an action, he does not know the
actions of the other players. Let N =

{
1, . . . , n

}
be a finite set of players and let

Ai denote a set of actions available to player i ∈ N . A pure strategy for a player
i is an action from Ai. A mixed strategy corresponds to a probability function
which prescribes a randomized rule for selecting an action from Ai. We denote by
Si the set of strategies available to player i. A strategy profile s = (s1, s2, · · · , sn)
assigns a strategy si ∈ Si to each player i ∈ N . Each player is associated with a
real payoff function Fi(s). This function specifies the payoff received by player i,
given that the strategy profile s is adopted by the players. We denote by s−i a
profile for the set of players N \

{
i
}

. The function Fi(s) = Fi(si, s−i) is assumed
to be linear in si. This means that if si is a mixture with probabilities p and 1−p
between strategies s1

i and s2
i , then Fi(si, s−i) = pFi(s

1
i , s−i) + (1 − p)Fi(s2

i , s−i)
for any s−i.

Definition (1.1). Strategy s∗i is said to be a best response for player i against

the profile s−i if s∗i ∈ argmaxsi∈SiFi(si, s−i)

According to the definition mentioned above, we observe that in a non-
cooperative game the player’s payoff depends on the other customers’ strategies.
If the best response of a player does not depend on the other customers’ strategies,
then we have the following definition.

Definition (1.2). Strategy s1
i is said to weakly dominate strategy s2

i , if for any

s−i, Fi(s
1
i , s−i) ≥ Fi(s

2
i , s−i) and for at least one si the inequality is strict. A

strategysi is weakly dominant if, regardless of what the other players do, the

strategy ensures a player a payoff at least as high as any other strategy, and, the
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strategy earns a strictly higher payoff for some profile of other players’ strategies.

Hence, a strategy is weakly dominant if it is always at least as good as any other

strategy, for any profile of other players’ actions, and is strictly better for some

profile of others’ strategies. If a player has a weakly dominant strategy, then all

other strategies are weakly dominated. If a strategy is always strictly better than

all others for all profiles of other players’ strategies, then it is strictly dominant.

In most cases there are no dominant strategies, so we are interested in finding
a weaker form of solution, i.e., symmetric equilibrium strategies. Therefore, we
give the following definition.

Definition (1.3). A symmetric equilibrium strategy is a strategy se ∈ S such

that se ∈ argmaxs∈SF (s, se). In other words, se is a symmetric equilibrium if it

is a best response against itself.

As aforementioned, the theory of strategic customers in queueing system deals
with customers that make decisions in order to maximize their individual prof-
its. The number of players is infinite and in the simplest case we suppose that
they are homogeneous, i.e. all customers receive the same reward

(
R
)

for having
completed the service, they have the same cost

(
C
)

per unit time in the system,
and all customers have identical distributions of residual service times. There-
fore, in considering the best response of a tagged customer, we assume that all
the other customers follow the same strategy. According to this assumption, we
are interested in finding only symmetric best responses. More specifically, in this
framework we have the following definitions.

Definition (1.4). A strategy of a customer is the set of all the rules that specify

the decisions of the customer according to the circumstances of the game.

Definition (1.5). A strategy a′ is a best response of a tagged customer against

a strategy a of the other customers in the system if F (a′, a) ≥ F (b, a) for all

available strategies b of the tagged-customer.

Definition (1.6). A strategy a1 weakly dominates strategy a2 if F (a1, a) ≥
F (a2, a) for all available strategies a, and for at least one a the inequality is

strict. A strategy a∗ is said to be weakly dominant if it weakly dominates all the

other strategies.

Definition (1.7). A mixed strategy ae is a symmetric equilibrium strategy if it

is a best response against itself, i.e., F (ae, ae) ≥ F (a, ae), for each strategy a.
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In the following models we classify queues depending on whether or not their
length can be observed. If an arriving customer in a system knows the number
of customers in it, then the queue is called observable. In case that an arriv-
ing customer does not know the number of customers in the system, then the
queue is called unobservable. Customers in both queueing models have to decide
whether to join the system or not. So we consider the stochastic system as a
non-cooperative game. Specifically, we assume the following:(
1
)

: When evaluating an individual’s expected payoff, which is associated with

a strategy q
′

as a response against all others using strategy q, we assume that
steady-state conditions (based on all using strategy q) have been reached. In the
following models there is an underlying Markov process, whose transition prob-
abilities are induced by the common strategy selected by all customers. Hence,
steady-state has the standard meaning of limiting probabilities and an individual
assumes that this is the distribution over the states.(
2
)

: We compute the utility function of an incoming customer who decides

to enter the system according to a strategy q
′

while all the others follow strategy
q.(
3
)

: In case that a customer balks, then his utility function is zero.(
4
)

: We find the best response of the customer against the strategy q, by maxi-
mizing his utility function.(
5
)

: We find the equilibrium strategies of the customers if any.
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1.8 Threshold Strategies

Suppose that an arriving customer has to choose between two actions, after ob-
serving the state of the system. A pure threshold with threshold n prescribes one
of the actions, say A1, for every state in 0, 1, . . . , n− 1 and the other action, say
A2 otherwise.

Definition[1.8] A threshold strategy with threshold x = n+ p, n ∈ N , p ∈ [0, 1)
prescribes mixing between the two pure threshold strategies n and n + 1 with
weights 1− p and p respectively. The resulting behavior is that all select a given
action, say, A1, when the state is 0 ≤ i ≤ n− 1; select randomly between A1 and
A2 when i = n, assigning probability p to A1 and probability 1− p to A2; select
A2 when i > n. If x is an integer the strategy is pure, otherwise is mixed.
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2 Strategic customer behavior in

observable and unobservable

queues

2.1 Naor’s model - The observable case

In this chapter we will study the case in which the customers (players) observe
the queue length and then they decide whether to join or not. We will also
present various techniques for optimizing the customer’s individual profit, the
social welfare, and the system administrator’s profit.

Historically, the strategic queueing theory began in 1964 when W.A Leeeman
criticized the earlier studies in queueing theory. Specifically, Leeman claimed that
the classical approach of queueing theory was intended for a planned economy
and not for a capitalistic system as it should be. Therefore, he suggested the
pricing of a queue for three main reasons:

• The optimization of the allocation of existing resources,

• The decentralization of administrative decisions,

• The planning of long-term investment decisions.

P. Naor added another main reason, which was the regulation of the demand. In
1969, Naor published the first paper in this area. The subject of the paper was
the control of an FCFS M |M |1 queueing system. The assumptions of the Naor’s
paper are the following:

• The model is an M/M/1 queue with FCFS service discipline, with arrival
and service rates λ and µ respectively.

• A customer earns a profit R from service completion, pays an entrance fee
that is imposed by the system’s manager and accumulates a cost C per unit
of time staying in the system.
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• Customers are risk neutral, that is they maximize the expected value of
their utility.

• Rµ ≥ C.

• The decision to join is irrevocable, i.e, reneging is not allowed.

• When a customer arrives he observes the queue length and then decides
whether to join the queue or not.

• Information: Each customer at his instant arrival knows exactly the pa-
rameters and the number of the customers in the system.

• A customer who balks cannot return later.

• Utility functions of individual customers are identical and additive from the
public (social) point of view.

2.1.1 Individual’s optimization

According to the assumptions of the model, the stochastic system can be viewed
as a game in which customers are considered as players. We assume that all cus-
tomers follow a specific strategy ~q = (q0, q1, . . . , qn, . . . ), qn ∈

{
0, 1
}

, where, qn
is the joining probability when there are n customers in the system. Therefore,
the system is a M/M/1 queue with service rate µ and variable arrival rate λqn
provided that there are n customers in the system, n ≥ 0. If Πn(~q), n ∈ N is
the stationary distribution of the system, then we get that the real ( effective )
entrance rate in the system is λ∗ =

∑∞
n=0 λqn · Πn(~q). The mean waiting time

of a customer depends on strategy ~q and according to Little’s law and PASTA
property is E(Q)+1

µ
. However, provided that a customer finds n customers in the

system ( an information that is available because we are in the observable case),
then E(Q) = n. What is more, by applying the memoryless property and pro-
vided that queueing discipline is FCFS, the mean waiting time of the customer
is n+1

µ
, a function that is independent of the strategy ~q.

Let p be a specific admission fee. We consider that the customers in the sys-

tem follow strategy ~q. If an incoming customer follows ~q′ strategy and observes
n customers in the system, then independently of the other customers’ strategy,
his utility function will be

U(~q′ , ~q;n) = (1− q′n) · 0 + q
′

n(R− p− Cn+ 1

µ
).

We observe that U(~q′ , ~q;n) is a linear function of q
′
n. We also know that the best
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response of the n-tagged customer when the other customers follow ~q strategy is

the solution of the maximizing problem maxq′nU(~q′ , ~q;n). Therefore we have the
following cases:

BR(q) =


0 when R− p− C n+1

µ
< 0

[0, 1] when R− p− C n+1
µ

= 0

1 when R− p− C n+1
µ
> 0

(1.5)

or, equivalently,

BR(q) =


0 when µ(R−p)

C
− 1 < n

[0, 1] when µ(R−p)
C
− 1 = n

1 when µ(R−p)
C
− 1 > n

(1.6)

Thus, a customer will join the queue if and only if, his net benefit is not neg-
ative. Equivalently, (1.6) proves that the customer who observes n−1 customers
in front of him will join the system if

n <
(R− p)µ

C

Therefore, the highest number of customers that an incoming customer should

observe in order to enter the system is
⌊

(R−p)µ
C

⌋
. If we set ne =

⌊
(R−p)µ

C

⌋
, then

the best response of an incoming customer is to join the queue if he finds at
most ne − 1 customers, and to balk if he finds more than ne − 1 customers. We
mention that in bibliography ne is called Naor’s threshold. More concretely, an
equilibrium strategy has the form

~q = (1, 1, . . . , 1[(ne − 1)− th position], 0, 0, . . .)

where 1 denotes that a customer joins the queue and 0 that a customer balks.
Indeed, ~q is equilibrium strategy because independently of the other customers’
strategies, a customer who follows the specific strategy has no incentive to change
it. As a result, it can be concluded that the equilibrium strategy is a threshold
strategy. Thus, the queue length could not be above the threshold ne.

At this point we should mention that the role of the Nash-equilibrium strat-
egy is not so important in Naor’s model, because the decision of a customer
that observes n customers in the system depends on his positive net benefit(
U(~q′ , ~q;n) = (1− q′n) · 0 + q

′
n(R − p− C n+1

µ

)
which is independent of the other

customer’s strategy ~q. As a result, we get that the equilibrium strategy in the
Naor’s model is a dominant strategy.
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2.1.2 Social benefit optimization

In this subsection, the goal is to find the optimal strategy that maximizes the
mean social welfare. As social welfare we define the mean social reward per
time unit minus the mean social cost per time unit. Intuitively, it is possi-
ble a customer’s individual strategy to impose negative externalities on the to-
tal mean benefit of the customers in the system. Naor noticed in his paper
‘The regulation of queue size by levying tolls’ that the individual optimal thresh-
old of a customer deviates from the socially optimal threshold.

An intuitive interpretation of this fact is that the decision of a customer to
join induces longer delays for the future customers. On the other hand, these
negative externalities are not taken into account in the case of individual opti-
mization. Therefore, an individual may join the queue even if his own expected
welfare is smaller than the expected reduction in welfare to future customers,
which is not socially preferred.
Generally, in order to achieve social optimality we suppose that there is an admin-
istrative manager who accepts or forbids the entrance of customers in the system.
Alternatively, the customers may be free to decide whether to enter or not, but
the administrator may regulate the system using a pricing systems, i.e. by impos-
ing an admission fee p that customers should pay in order to enter the system. We
interpret this admission fee as server’s profit. As the customers are aware of this
entrance fee, then each one adopts the threshold strategy which maximizes his net
benefit

(
as it is described in the individual profit maximization

)
. Suppose

that the administrator follows a specific strategy

q̃ =
(
q0, q1, . . .

)
where qn is the probability of accepting a customer, given that there are n cus-
tomers in the system. Under this policy the system behaves as a M/M/1 queue
with entrance rate λn = λqn, n ≥ 0 and service rate µ. If Πn(~q) denotes the
steady state distribution of the system then

Πn(~q) = Bρnqoq1 · · · qn−1,

n ∈ N, and B =
(∑∞

n=0 ρ
nqoq1 · · · qn−1

)−1

with ρ = λ
µ
. If λ∗ is the real entrance

rate, then λ∗ =
∑∞

n=0 λqnΠn(~q). We denote E(Q) the mean number of cus-
tomers in the system, thus, E(Q) =

∑∞
n=0 nΠn(~q). We notice that the additional

payments need not be considered part of the social welfare, because transac-
tions between the members of the society do not influence the social welfare.
Therefore, the mean social welfare per time unit is

S(~q) = λ∗(R− p)− CE(Q) + λ∗p = λ∗R− CE(Q)
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We want to determine the optimal strategy ~q in order to maximize the social
welfare. So, we need to solve the problem

Soptimalsoc = max
~q
S(~q).

Because we are in the observable case, the decision framework is that of
Dynamic programming (Markov decision processes) with perfect information.
Therefore, the optimal policies are deterministic. So, we will limit our search of
optimal policies within the class of pure policies. Specifically, under the assump-
tion that n ≥ 0, is the number of customers in the system, then qn = 1 if he
accepts the entrance of an incoming customer whereas qn = 0 if he denies it. Let
~q = (q0, q1, q2, . . . ), qi ∈

{
0, 1
}

be a specific pure strategy of the administrator.
Thus, we suppose that he will observe the number of customers in the system
and will accept the entrance only for the customers that induce positive welfare.
As the number of customers in the system increases, then the total waiting time
of all customers increases too. So the positive effect of the entrance of a tagged-
customer on the social welfare decreases. The first time that an entrance of an
incoming customer implies a net decrease on the overall social welfare the ad-
ministrator will deny his entrance, because of the convexity of the mean waiting
time at the arrival rate. We observe that if we find that n, which determines the
turning point from qn−1 = 1 to qn = 0, then simultaneously the strategy of the
administrator is precisely determined. Specifically, we set

n∗ = n∗
(
~q
)

= min
{
n : qn = 0

}
.

We have that n∗(~q) =∞ in case that qn = 1 ∀n ∈ N, so the system behaves as a
M/M/1 queue, and n∗(~q) <∞ in case that exists at least one n such that qn = 0
so the system behaves as a M/M/1/n∗.

However, under a specific value of p and for any strategy ~q the socially opti-
mum threshold n∗ should satisfy

n∗ ≤ (R− p)µ
C

.

Indeed, if n∗ > (R−p)µ
C

⇐⇒ R− p− n∗C
µ
< 0, then there are customers ( at least

the last one) who enter the system and brings about negative welfare which is
not socially preferred. Thus, under a specific value of p the maximum possible
socially optimal threshold is smaller than the individual optimal Naor threshold⌊
µ(R−p)

C

⌋
.

Then, the queueing system behaves as a M/M/1/n∗ model. The stationary dis-
tribution under the assumption that ρ 6= 1, is
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pk =
(1− ρ)ρk

1− ρn∗+1
, 0 ≤ k ≤ n∗.

Thus, the real entrance rate is

λ∗ =
n∗−1∑
k=0

λpk = λ(1− pn∗) = λ
1− ρn∗

1− ρn∗+1

and the expected queue length is

E(Q) =
n∗∑
k=0

kpk =
ρ

1− ρ
− (n∗ + 1)ρn

∗+1

1− ρn∗+1
.

Let S(n∗) be the social benefit per time unit if n∗ is the entrance threshold.
Then,

S(n∗) = Rλ∗ − CE(Q) = Rλ
1− ρn∗

1− ρn∗+1
− C

[ ρ

1− ρ
− (n∗ + 1)ρn

∗+1

1− ρn∗+1

]
. (1.7)

Our objective is to find the socially optimal social threshold n∗. Based on
(1.7) we compute the difference

S(n∗)− S(n∗ − 1).

Under the assumption that ρ < 1, and by doing some algebra we get that

S(n∗)− S(n∗ − 1) =
λR(1− ρ)2ρn

∗−1

(1− ρn∗+1)(1− ρn∗)
+
C
(

(n∗ + 1)ρ− ρn∗+1 − n∗
)
ρn
∗

(1− ρn∗+1)(1− ρn∗)

We will prove that S(n) is a concave function of n ∈ N.

S(n∗)− S(n∗ − 1) = λR
1− ρn∗

1− ρn∗+1
− λR1− ρn∗+1

1− ρn∗
+ C

(n∗ + 1)ρn
∗+1

1− ρn∗+1
− C nρn

∗

1− ρn∗

= λR
1− 2ρn

∗
+ ρ2n∗ − 1 + ρn

∗−1 + ρn
∗+1 − ρ2n∗

(1− ρn∗+1)(1− ρn∗)

+ C
(n∗ + 1)ρn

∗+1 − (n∗ + 1)ρ2n∗+1 − nρn∗ − n∗ρ2n∗+1

(1− ρn∗+1)(1− ρn∗)

=
λR(1− ρ)2ρn

∗−1

(1− ρn∗+1)(1− ρn∗)
+
C
(

(n∗ + 1)ρ− ρn∗+1 − n∗
)
pn

(1− ρn∗+1)(1− ρn∗)
. (1.8)
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We have,

S(n∗)− S(n∗ − 1) ≥ 0

⇔ λR(1− ρ)2 ≥ Cρ(n∗ + ρn
∗+1 − (n∗ + 1))

⇔ρ=λ/µ µR(1− ρ)2 ≥ C(n∗ + ρn
∗+1 − (n∗ + 1)ρ)

⇔ Rµ

C
≥ n∗ + ρn

∗+1 − (n∗ + 1)ρ

(1− ρ2)
(1.9)

We consider the function

g(n∗) =
n∗ + ρn

∗+1 − (n∗ + 1)ρ

(1− ρ)2

By using algebra we get that

g(n∗) =
1

1− ρ

n∗∑
k=1

(1− ρk).

Obviously, g(n∗) is an increasing function of n∗. So there exist a point n∗0 ∈ N
such that

g(n∗) ≤ Rµ

C
∀n∗ ≤ n∗0

and

g(n∗) >
Rµ

C
∀ n∗ > n∗0.

We determine the social threshold to be that point, nsoc = n∗0. Therefore, for

n∗ ≤ nsoc, S(n∗)− S(n∗ − 1) ≥ 0

and for
n∗ > nsoc, S(n∗)− S(n∗ − 1) ≤ 0.

By the previous property, we find that

nsoc = max

{
n∗ : g(n∗) ≤ Rµ

C

}
, (1.10)

is the unique maximum of S(n∗) .
Thus, as the nsoc is known and given by (1.10) the system’s administrator can

derive it by imposing an appropriate admission fee psoc so that
⌊
µ(R−psoc)

C

⌋
= nsoc

or equivalently the social optimization can be achieved

∀psoc ∈
[
R− C(nsoc − 1)

µ
,R− Cnsoc

µ

]
.
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Lemma 2.1: The social optimal threshold nsoc is smaller than the individual
optimal threshold.

Proof. We consider the function

h : N→ R+with h(n) = g(n)− n.

The function h is positive. Indeed,

h(n) ≥ 0

⇔ g(n)− n ≥ 0

⇔ 1

1− p

n∑
k=1

(1− pk)− 1

1− p
n(1− p) ≥ 0

⇔ 1

1− p

n∑
k=1

(1− pk − 1 + p) ≥ 0

⇔ p

1− p

n∑
k=1

(1− pk−1) ≥ 0 which holds∀n ∈ N.

Therefore, we have that g(nsoc) ≥ nsoc. By (1.10) we obtain that

g(nsoc) ≤
Rµ

C
and nsoc ≤

Rµ

C
⇔ nsoc ≤ ne

Remark We proved that for the socially optimal threshold n∗ and the corre-
sponding price p(n∗), we have that R− p(n∗)− C(n+1)

µ
> 0 for n ≤ n∗. Therefore,

all the incoming customers have a positive welfare, thus there is not a unique p
so that the administrative manager earns all the customer’s profit. The reason
is that each customer knows exactly the number of customers in the system so
his net benefit differs from the other customers’. We will see in the Unobservable
case that an administrative manager can achieve to earn all the positive welfare
of the customers by imposing a single admission fee p.

Remark Instead of imposing an admission fee in order to motivate customers
to adopt the social threshold, we could regulate the queue by imposing a toll on
waiting, i.e by increasing the cost per time unit in the system by a positive num-

ber t ∈ R+. Such a toll t, induces the optimal threshold n∗ if, n∗ =
⌊
Rµ
C+t

⌋
, t ≥ 0.

The social optimality can be also achieved without imposing any admission fees,
or additional tolls. Specifically, R.Hassin suggested in his paper ”Consumer in-
formation in markets with random products quality: The case of queues and
balking,” that LCFS-PR leads to a socially optimal behavior by the customers.
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2.1.3 Manager’s profit optimization

In this section we will study the Naor’s problem under the view of the administra-
tive manager. Specifically, we would like to find a way to maximize the manager’s
profit per time unit.

We assume that an entrance fee p is imposed, which customers should pay in
order to enter the system. This fee is is considered to be manager’s profit. Since
the customers know the value of p, then as in the case of ’Individual’s profit
maximization’ case, they follow the threshold strategy

ne(p) =
⌊(R− p)µ

C

⌋
. (1.11)

Thus the system will be a M/M/1/ne(p) queue with entrance rate λ and
service rate µ. The stationary distribution under the assumption that ρ 6= 1, is

pk =
(1− ρ)ρk

1− ρne(p)+1
, 0 ≤ k ≤ ne(p)

and the real entrance rate is

λ∗ =

ne(p)−1∑
k=0

λpk = λ(1− pne(p)) = λ
1− ρne(p)

1− ρne(p)+1
.

The manager’s profit depends only in the real entrance rate, thus under a specific
strategy ne we have that the manager’s profit per time unit is:

Z = λ
1− ρne(p)

1− ρne(p)+1
p (1.12)

The goal is to find the p, which not only will give incentive to the customers to
enter the queue, but also will be the highest possible one (under the interpretation
of manager’s profit). Under a specific individual threshold ne, according to (1.11)
we get that

R− (ne + 1)C

µ
< p ≤ R− neC

µ
. (1.13)

As the administrative manager wants to impose the maximum possible price
under strategy ne, then he sets

p(ne) = R− neC

µ
. (1.14)

Therefore, instead of finding the optimal price p, we can find threshold nm
which maximizes the manager’s profit., thus (1.14) yields that p = R− nC

µ
.
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From (1.12) and (1.14) under a specific threshold n we have that the manager’s
profit per time unit is

Z(n) = λ · 1− ρn

1− ρn+1

(
R− Cn

µ

)
= λ · 1− ρn

1− ρn+1
R
(

1− Cn

R · µ

)
(1.15)

= λ ·R 1− ρn

1− ρn+1

(Ve − n
Ve

)
where Ve =

Rµ

C

Theorem (2.1). The manager’s threshold nm, is derived by the integer part of

the solution of the equation g(x) = 0 where g : [0,+∞)⇒ R and

g(x) = x+
(1− ρx+1)2

ρx(1− ρ)2
− Rµ

C
, ρ ∈ (0, 1)

.

Proof.

In order to find nm we must solve the maximizing problem maxn Z(n). If Z
(
n
)
≥

Z
(
n− 1

)
then we have that:

λR
1− ρn

1− ρn+1
[
Ve − n
Ve

] ≥ λR
1− ρn−1

1− ρn
[
Ve − (n− 1)

Ve
] ⇐⇒

(
Ve − n+ 1

)( 1− ρn

1− ρn+1
− 1− ρn−1

1− ρn

)
≥ 1− ρn

1− ρn+1
⇐⇒

(
Ve − n+ 1

)(1− ρn)2 −
(
1− ρn−1

)(
1− ρn+1

)(
1− ρn

)(
1− ρn+1

) ≥ 1− ρn

1− ρn+1
⇐⇒

(
Ve − n+ 1

) ρn−1
(
1− ρ

)2(
1− ρn

)(
1− ρn+1

) ≥ 1− ρn

1− ρn+1
⇐⇒

(
Ve − n+ 1

)
≥

(
1− ρn

)2

ρn−1
(
1− ρ

)2 . (1.16)

If Z(n) > Z(n+ 1) then
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λR
1− ρn

1− ρn+1
[
Ve − n
Ve

] > λR
1− ρn+1

1− ρn+2
[
Ve −

(
n+ 1

)
Ve

] ⇐⇒

(
Ve − n

)( 1− ρn

1− ρn+1
− 1− ρn+1

1− ρn+2

)
> −1− ρn+1

1− ρn+2
⇐⇒

(
Ve − n

) −ρn
(
1− ρ

)2(
1− ρn+1

)(
1− ρn+2

) > −1− ρn+1

1− ρn+2
⇐⇒

(
Ve − n

) ρn
(
1− ρ

)2(
1− ρn+1

)(
1− ρn+2

) <
1− ρn+1

1− ρn+2
⇐⇒ (0 < ρ < 1)

(
Ve − n

)
<

(
1− ρn+1

)2

ρn
(
1− ρ

)2 . (1.17)

As Ve = Rµ
C

then we get that

n− 1 +

(
1− ρn

)2

ρn−1
(
1− ρ

)2 ≤
Rµ

C
< n+

(
1− ρn+1

)2

ρn
(
1− ρ

)2 . (1.18)

We consider the function

g
(
x
)

= x− 1 +

(
1− ρx

)2

ρx−1
(
1− ρ

)2 , x ∈ [0,∞), 0 < ρ < 1.

Then:(
i
)
: g
(
0
)

= −1

(
ii
)
: g ∈ C∞

(
iii
)
: g
(
x
)

= x− 1 + ρx+1−2ρ+ρ−x−1(
1−ρ
)2

(
iv
)
: g′
(
x
)

= 1 + 1(
1−ρ
)2 lnρ

(
ρx+1 − ρ−x+1

)
= 1 + 1(

1−ρ
)2 lnρρ

2x−1
ρx−1 > 0

as 0 < ρ < 1, we get that lnρ < 0, ρ2x < 1. Afterwards, we consider the

function

f
(
x
)

= g
(
x
)
− Rµ

C
.

We observe that

• f is continuous in [0,∞),
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• f ′
(
x
)
> 0 ∀x ∈ R+

0 since g
′
(x) > 0 and

f
(
0
)

= g
(
0
)
− Rµ

C
= −1− Rµ

C
≤ 0,

• limx→∞ f(x) =∞, and limx→∞ ρ
x = 0. Therefore, there is a unique root,

such that

f
(
x0

)
= 0 ⇐⇒ g

(
x0

)
=
Rµ

C
.

By denoting the manager’s threshold

nm = bx0c

we get that nm ≤ x0 < nm+1 thus as g is increasing in n this immediately

yields

g
(
n0

)
≤ g
(
x0

)
=
Rµ

C
< g
(
nm+1

)
so, the threshold nm satisfy the double inequality

(
1.18

)
.

Theorem (2.2). If ne is the individual threshold, nsoc is the social threshold and

nm the threshold in manager’s profit, then

nm ≤ nsoc ≤ ne.

2.2 Edelson’s and Hildebrand’s model - Unob-

servable case

The properties of the basic unobservable single server queue were discovered by
Edelson and Hildebrand.The assumptions of the model are:(
1
)

: Customers arrive according to a Poisson
(
λ
)

distribution.(
2
)

: The service times are exponentially distributed.(
3
)

: There is one server in the system.(
4
)

: The service discipline is FCFS.
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(
5
)

: There is a reward R that each customer earns from his service comple-
tion.(
6
)

: There is a cost C per unit time a customer stays in the system.
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(
7
)

: There is an entrance fee p that is imposed by the administrative man-
ager which the customers have to pay in order to enter the system

(
0 ≤ p < R

)
.(

8
)

: Each customer decides whether to join the system or balk, with proba-
bility q ∈ [0, 1](
9
)

: If a customer balks, then his utility is zero.

2.2.1 Individual’s optimization

In the unobservable case, we suppose that there is an admission fee p, of which
the customers are aware. Under this information, all customers adopt the same
mixed strategy that can be described by a number q, 0 ≤ q ≤ 1, which is the
probability of joining the system. Thus, the system behaves as an M/M/1 queue
with service rate µ and arrival rate λq. Also, under the stability condition λq < µ,
the mean waiting time of a customer in the system is C

µ−λq . Thus, the net benefit

of a tagged customer who joins the queue with probability q
′
, while the others

follow q strategy is,

U
(
q
′
, q
)

= (1− q′) · 0 + q
′
(
R− p− C

µ− λq

)
.

In order to determine the best response of a customer we need to solve the max-
imizing problem maxq′ U(q

′
, q) under the restriction q ∈ [0, qmax], with

qmax = min(1, µ
λ
). We observe that the utility function of a customer is a linear

function of q
′

therefore we have the following cases:

BR(q) =


0 when R− p− C 1

µ−λq < 0

[0, qmax] when R− p− C 1
µ−λq = 0

qmax when R− p− C 1
µ−λq > 0.

(1.19)

Or equivalently,

BR(q) =


0 when q > 1

λ
(µ− C

R−p)

[0, qmax] when q = 1
λ
(µ− C

R−p)

qmax when q < 1
λ
(µ− C

R−p).

(1.20)

Theorem (2.3). In the unobservable M/M/1 queue with FCFS discipline, an

equilibrium strategy always exists and it is unique. Then, we have the following

cases:

Case I: If R− p− C
µ
≤ 0, then the qe = 0 is the only equilibrium strategy.
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Case II: If R− p− C
µ−λqmax ≥ 0, then qe = qmax is the only equilibrium strategy.

Case III: If R−p− C
µ−λ·0 < 0 < R−p− C

µ−λqmax then, there is a unique equilibrium

strategy qe = 1
λ
(µ− C

R−p), which is the solution of the equation R− p− C
µ−λq = 0.

Proof. :

Case I: If R − p − C
µ
< 0, i.e. even if the system is empty, a customer that

decides to enter the system, has a negative mean net benefit. Therefore, his best

response is to balk (q
′

= 0)which is a best response against itself and so, an

equilibrium strategy. In case that R− p− c
µ

= 0 then the customer is indifferent

about joining the system or balking, thus every q
′ ∈ [0, qmax] is best response.

But only q
′

= 0 is the best response against itself and thereafter qe = 0 is the

only equilibrium strategy.

Case III : In case that R − p − C
µ−λqmax ≥ 0, or equivalently, even if all po-

tential customers join the queue, a customer who decides to join the system has

a non-negative benefit. Therefore, the best response of a customer is q
′

= qmax,

thus qe = qmax is the unique equilibrium strategy.

Case II :

R− p− C

µ− λqmax
< 0 < R− p− C

µ

(
∗
)
.

As R − p − C
µ−λqmax < 0 then q

′
= qmax is not the best response. Moreover,

as R − p − C
µ
> 0 then a customer who balks will loose a positive net benefit,

therefore q
′
= 0 is not the best response.

We know that

W
(
q
)

=
C

µ− λq
is an increasing function of q, therefore, R − p − C

µ−λq is decreasing in q. Also,

R − p − C
µ−λq is a continuous function of q. Then by

(
∗
)
, exists a unique root

qe, such that R − p = C
µ−λq ⇐⇒ qe = 1

λ
(µ − C

R−p). As R − p − C
µ−λq is a

decreasing function of q, then ∀q ∈ [0, qe] is R − p − C
µ−λq > 0, and the best

response of an incoming customer is q
′

= qmax. For each q > qe we have that
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R−p− C
µ−λq < 0, therefore, the best response for an incoming customer is q

′
= 0.

As R− p− C
µ−λqe = 0 then the incoming customer is indifferent about joining the

system or balking thus his best response is q
′ ∈ [0, qmax]. However, the unique

equilibrium strategy is q
′
= qe.

2.2.2 Social Optimization

As a customer who joins the queue imposes negative externalities on the others,
individual’s optimization leads to excessive congestion. We suppose that there is
an administrative manager ( e.g. the government) that wants to find a way in
order to socially regulate the queueing system without observing the system. We
consider that the administrative manager accepts the entrance of the customers
with probability q ( it is the same for all the customers because we are in the
unobservable case). We denote by S

(
q
)

the sum of customer’s welfare and the
welfare of the service system. Therefore,

S
(
q
)

= λq
(
R− p− C

µ− λq
)

+ λqp = λq
(
R− C

µ− λq
)
.

The goal is to find the socially optimal joining rate λqsoc in order to maximize
the social welfare. Under the stable condition λq < µ, in order to find qsoc we
need to solve the maximizing problem

max
0≤q≤1

S
(
q
)

= S
(
qsoc
)
,

q ∈ [0, qmax = min
{

1,
µ

λ

}
].

We have that,

∂S
(
q
)

∂q
= λ

(
R− C

µ− λq

)
− λ2q

c(
µ− λq

)2

and,

∂2S
(
q
)

∂q2
= − 2cµλ2(

µ−λq
)3 . (1.21)

Therefore, we observe that S
(
q
)

is a concave function of q, q ∈ [0, qmax] so, every
local maximum of S is a global maximum. We will prove that,

qsoc =


0 when S ′

(
0
)
≤ 0

qmax when S ′
(
qmax

)
≥ 0

1
λ

(
µ−

√
Cµ
R

)
when S ′

(
qmax

)
< 0 < S ′

(
0
) (1.22)
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Indeed, as S
(
q
)

is concave and differentiable in q its derivative is decreasing
in q. Thus,

• If S ′
(
0
)
≤ 0 then S ′

(
q
)
≤ 0 ∀q ∈ [0, 1] , so S

(
q
)

is a decreasing function in
q, therefore S(0) is maximum. Thus, the optimal social strategy is qsoc = 0

• If S ′
(
qmax

)
≥ 0 then S ′

(
q
)
≥ 0 so S

(
q
)

is increasing in q, therefore for
q = qmax, S(q) is maximized. Thus, qsoc = qmax.

• If S ′
(
qmax

)
< 0 < S ′

(
0
)

then by the continuity and monotonicity of S in q,
there exists a unique root q∗ such that S ′

(
q∗
)

= 0. Thus, S(q∗) is a global

maximum of S. Therefore, qsoc = q∗ = 1
λ

(
µ−

√
Cµ
R

)
.

We observe that that if p = 0 we get that qe(0) ≥ qsoc, i.e., in the unobserv-
able case the number of customers in the system under social optimization
is always smaller than the number of customers in the system under indi-
vidual maximization when there is not any admission fee.

A question that may arise here is to determine the value of p that qsoc =
qe(p) holds. This idea will be analyzed in the case of profit maximization.

2.2.3 Profit maximization

In this case we consider a monopolistic server that sets an admission fee p, the
goal of which is to maximize his profit. Having evaluating his utility function, a
customer determines his best response and his equilibrium strategies. Thus, as
in the case of individual optimization, we get that the equilibrium strategy is

qe(p) =


0 when R− p ≤ C

µ
1
λ

(
µ− C

R−p

)
when C

µ
< R− p < C

µ−λ

qmax when R− p ≥ C
µ−λ

(1.23)

Equivalently, if we solve the above inequalities in p, we get that

qe(p) =


0 when p ≥ R− C

µ
1
λ

(
µ− C

R−p

)
when R− C

µ−λ < p < R− C
µ

qmax when p ≤ R− C
µ−λ

(1.24)

The idea is that in order to find the appropriate p which maximizes the manager’s
profit, the manager can urge the customers to adopt that strategy which achieves
his profit optimization, as it can be shown by (1.24) and (1.25). Thus, manager’s
profit per time unit is Sm = p · λqe(p).
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Note that the equilibrium probability qe(p) is a decreasing function of p. If
we set p1 = R− C

µ
and p2 = R− C

µ−λ then we have the following cases:

• If p < p2 then qe(p) = qmax and Sm = λqmaxp < λqmaxp1 therefore, the
values of p ∈ (0, p1) are not optimal.

• If p > p1 then qe(p) = 0, so Sm = 0.

Therefore, we consider that p ∈ [p1, p2] or equivalently c
µ
< R − p < c

µ−λ .When

p ∈ [p1, p2], we proved that the individual’s equilibrium strategy is the unique
solution of the equation U(qe(p)) = 0. Therefore, qe(p) = 1

λ

(
µ− C

R−p

)
⇐⇒

pe(q) = R− C 1

µ− λq
.

We note that under equilibrium strategy, if we set p = pe(q) then the percentage
of customers that enter the system is q. As a result, we get that

Sm = λpe(q)q = λq(R− C 1

µ− λq
).

Based on the last equation we mention some observations:

• We can see that manager’s utility function coincides with the social welfare.
Thus, we can derive the optimal q with the same procedure as in the social
optimization case.

• The reasons why the manager’s profit and the social welfare coincides are
the homogeneity of the customers and the fact that they cannot observe
the queue length.

• The manager leaves zero surplus to the customers, thus, the whole social
welfare becomes his personal profit.

• The optimal admission fee pm = R − C
µ−λqsoc , is a decreasing function of

λ. This means that an increase in the demand induces an increase in
the customers’ waiting time. Due to the increase in their waiting time,
customers perceive their service as a lower quality product, something that
pushes the manager to decrease the admission fee.
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3 Bridging the observable and

the unobservable cases: Overview

3.1 Introduction

Hassin in his paper ”Consumer information in markets with random products
quality: The case of queues and balking” compares social welfare and profit
maximization in the observable and unobservable models. Let Susoc, S

o
soc denote

the social welfare under a social welfare-maximizing policy in the unobservable
and observable models, respectively. Similarly, Sum, S

o
m denote the profit under a

profit-maximizing admission fee. We have proved that

Susoc = Sum.

Let So
′
soc denote the social welfare in the observable model when a profit maxi-

mizing admission fee is charged. We have mentioned that profit-maximizing fee
in the unobservable case is the same as the optimal social fee. In case that the
queue is controlled by a social welfare maximizing fee, an observable queue will
have higher welfare than the corresponding unobservable queue. In the observ-
able case, a customer will enter only when it is socially desirable, whereas in the
unobservable case only the joining probability is controlled and it is still possible
for customers to enter when the queue is too long or to balk when it is too short.
Hence, we get that Susoc < Sosoc. Hassin proved the following results:(
1
)
: If Rµ ≤ 2C then Sum < Som ∀λ > 0. This can be verified by

comparing

Sum =


(√

Rµ−
√
C
)2

when λ ≥ µ−
√

Cµ
R

λ
(
R− C

µ−λ

)
when λ ≤ µ−

√
Cµ
R

(1.25)

.
with

Som = λR
1− ρnm

1− ρnm+1

(
1− nmC

µ

)
.

Hence, the profit maximizer prefers to reveal the queue length to the customers
if this can be done without cost.
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(
2
)
: If Rµ > 2C then a unique potential arrival λ∗ exists so that

Sum > Som for λ < λ∗

, and
Sum ≤ Som for λ > λ ∗ .

Thus, when λ < λ∗ the profit maximizer prefers to conceal the queue length,
whereas in the other case it prefers to disclose this information.(
3
)
: The same properties apply to So

′
soc and Susoc as well for a different threshold

λ∗∗. This can be verified by comparing

Sum =


(√

Rµ−
√
C
)2

when λ ≥ µ−
√

Cµ
R

λ
(
R− C

µ−λ

)
when λ ≤ µ−

√
Cµ
R

(1.26)

with

So
′

soc = λR

(
1− ρnm

1− ρnm+1
− 1

Ve

( 1

1− ρ
−
(
nm + 1

)
ρnm

1− ρnm+1

)
.

Thus, when λ < λ∗∗ it is socially preferred that the profit maximizer does not
reveal the queue length to the customers, whereas when λ > λ∗∗ an observable
queue gives under profit maximization a higher value of social welfare than the
observable queue.(
4
)
: For arrival rates

λ∗∗ < λ < λ∗,

the profit maximizer prefers to conceal the queue length. On the other hand,
the social welfare would increase if the server could be induced to disclose this
information.(
5
)
: It is never socially worthwhile to induce the profit maximizer to conceal

the queue length
(
when he does not voluntarily do so

)
.

3.2 Models with delayed information structure

The effect of the information available to the customers on their strategic behavior
and its economic considerations is a recurring theme in the thread of the queue-
ing literature. This theory connects the observable and the unobservable cases.

36



In the models with delayed observation we suppose that there is a queueing sys-
tem, where each customer makes his own decision without observing the system.
These decisions may be ‘joinor balk’, ‘stay or renege’, ‘to buy priority or not’ etc.
However, the customers later get informed about the number of customers in the
queue. In the following chapter, we will present R. Hassin and Roet-Green’s pa-
per and Burnetas, Economou and Vasiliadis’s paper discussing the influence of
delayed information on the strategic customer’s behavior.

3.2.1 The armchair decision: to depart towards the queue

or not

Nowadays, technology offers more information to the public than ever. This af-
fects the way service systems are modeled, since online information about conges-
tion becomes more accessible to the customers, who can use it in their decisions.
For example, hospitals in the USA publish their emergency rooms (ER) aver-
age waiting time on their websites (e.g. JFK medical center at jfkmc.com/our-
services/er-wait-time.dot and Reston hospital center at www.restonhospital.com),
International airports post online their security average waiting time information
(e.g., Atlanta international airport in Georgia at www.atlanta-airport.com/
passenger /waittimes /default.aspx). In R.Hassin and Roet-Green’s paper enti-
tled ‘The armchair decision: to depart towards the queue or not’ is presented a
model that allows the queue to evolve while the customer is on his way. Consider
for instance a customer who wishes to go to a bank that offers the option to view
its queue length online. The customer decides based on his inspection, whether
to go to the bank or not, even though the queue length is likely to change during
the customer’s travel time. The expected changes are that the customers in the
queue may be served or that others may arrive and join it. Yet, customers use
the queue length information as an important variable that affects their decision
on whether to depart or not. R.Hassin and Roet-Green refer to it as the arm-
chair decision. Two main questions arise from this description. Firstly, how do
customers take into consideration the changes in queue length during their travel
time? Secondly, how will these changes affect customers’ equilibrium strategy
towards joining the queue? R.Hassin and Roet-Green presented in this paper
various techniques in order to answer these questions. Specifically, they assumed
that there is a system in which customers arrive according to a Poisson distribu-
tion with a parameter λ. The arriving customers can observe the current number
of customers in the queue that they wish to join, but they do not know the num-
ber of customers that are on their way towards the queue. If a customer decides
to depart and travel to the queue, the time he spends on his way is exponentially
distributed with a parameter η. Moreover, they suppose that when a customer
is in his way, he is not informed about any changes in the queue. The service is
provided by a single server with exponentially service distribution with a param-
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eter µ. A reward-cost structure in the system is also assumed. Specifically, each
customer earns a reward R from his service completion and has a cost Cw per
time unit he stays in the system. At the arrival moment, a customer observes
the queue length and calculates his expected sojourn time depending on it. Con-
sequently, according to the individual optimization in the observable case, each
customer adopts a threshold strategy with Naor’s threshold ne = bRµ

Cw
c. There-

fore, he will depart if his net benefit is not negative. The customers are assumed
homogeneous. Each customer decides to depart towards the queue according to
a strategy ~PD = (PD(1), PD(2), . . . , PD(i), . . . ), where PD(i) is the probability to
depart towards the queue if he observes i customers in it .
Furthermore, the assumption that

R > Cw
( 1

µ
+

1

η

)
is being made, i.e. if an incoming customer believes that the system will be found
empty, then his total reward R must be higher than his total cost Cw( 1

µ
+ 1

η
).

Otherwise, the decision to balk will be a dominant strategy.

The queue state of the model is defined by the ordered pair
(
i, j
)
, where i is

the number of customers in the queue and j is the number of customers that had
already depart and are on their way to the system.

According to the model, the possible changes in the state space
(
i, j
)

are the
following:

(
i, j
)

=


(
i, j + 1

)
if another customer departs, at rate λPD

(
i
)(

i− 1, j
)

if a service completion occurs, at rate µ(
i+ 1, j − 1

)
if a customer that was on his way joins the queue, at rate jη .

However, in case that i = ne then the queue state shifts from state
(
ne, j

)
to state(

ne, j−1
)

if a customer that was on his way arrives in the system. The following
balance equations describe the evolution of the corresponding continuous-time
Markov chain, of this model, for i = 0, 1, . . . , ne and j = 0, 1, 2, . . . :

(
λpD

(
i
)

+ µδoi + ηj
)
πi,j = λpD

(
i
)
δojπi,j−1

+ µδnei πi+1,j + η
(
j + 1

)(
δoi πi−1,j+1

+
(
1− δnei

)
πi,j+1

)
,

where:

δoi =

{
1 when i > 0

0 when i = 0
(1.27)
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δnei =

{
1 when i < ne

0 when i = ne
(1.28)

Let E(i, j) be the expected sojourn time for a tagged customer that departs if he
could observe that the state is (i, j). Then

E
(
i, j
)

=
1

λPD(i) + µδoi +
(
j + 1

)
η

+
ηδnei

λPD
(
i
)

+ µδoi +
(
j + 1

)
η
· i+ 1

µ

+
jη

λPD(i) + µδoi +
(
j + 1)η

·
[
E
(
i+ 1, j − 1

)
δnei + E(i, j − 1) · (1− δnei

]
+

λPD(i)

λPD(i) + µδoi + (j + 1)η
E
(
i, j + 1

)
+

µδoi
λPD(i) + µδoi + (j + 1)η

· E
(
i− 1, j

)
The first term in the right part of the equation refers to the expected time until
one of the following events happens first: a customer decides to depart towards
the queue, a customer that was on his way arrived and a service completion
occurs. The second term is the remaining expected sojourn time in the system
for the tagged customer in case he is going to be the next to arrive and join the
queue. The third term is the expected sojourn time for the tagged customer if
one of the other j customers that are on their way arrives and joins the queue, or
arrives and finds that the queue reached the threshold and therefore leaves the
system. The fourth term is the expected sojourn time of the tagged customer if
another customer departs towards the queue and the last term is the expected
sojourn time if a service completion occurs.
The expected net benefit of a customer who observes i customers in the queue
and decides to depart towards the queue is,

U
(
i
)

= R− CwE
(
i
)

= Rp− Cw
∞∑
j=0

E
(
i, j
)
Pr
(
j|i
)

= R− Cw
∞∑
j=0

E
(
i, j
)πi,j
πi
,

πi =
∞∑
j=0

πijandpistheprobabilitythei− taggedcustomertoreceivehisrewardR.

Thus, according to individual optimization, a customer will depart if U
(
i
)
> 0

thus, PD(i) = 1 is best response, and balk if U
(
i
)
< 0 thus PD(i) = 0 is best response.
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In case that U
(
i
)

= 0, then the customer is indifferent between balking and de-
parting towards the queue, so any PD

(
i
)
∈ [0, 1] is best response. The system is

characterized by three normalized parameters, namely w = η
µ
, which is the trav-

eling parameter, ρ = λ
µ
, which is the congestion parameter, and v = Rµ

Cw
, which is

the normalized reward parameter. R.Hassin and Roet-Green have proved that for
each set of normalized parameters ρ, w, v there is a symmetric Nash equilibrium
strategy of this model. Specifically, they have proved the following result:

Theorem (3.1). For each set of normalized parameters ρ, w, v there exists a

symmetric Nash equilibrium strategy of this model.

Proof. : A strategy in this game consists of a vector

PD
(
x
)

= [PD
(
0
)
, PD

(
1
)
, . . . , PD

(
ne
)
],

where PD
(
i
)

is the probability to depart towards the queue after observing i

customers in it. If X is the space of mixed strategy vectors then, X is the ne-

dimensional cube, X = [0, 1]ne . Let F : X → X be the function that generates

best response strategies:

F
(
x
)

=
{
y ∈ X : y = PD

(
x
)}
, wherePD

(
x
)
∈
(
0, 1
)
.

F is a convex set of for each x. Indeed,

if y1, y2 ∈ F (x), then ∀w ∈
(
0, 1
)
, y3 = wy1 +

(
1− w

)
y2 ∈ F (x).

In case that y1 = y2 then y3 = y2 ∈ F (x). In case that y1 = y2 then we get

that y3 = y2 ∈ F (x). In case that y1 6= y2 then at least one i exists so that

y1

(
i
)
6= y2

(
i
)
. Then, for every component i for which y1

(
i
)
6= y2

(
i
)

the customer

is indifferent between departing and balking so y3 is best response, therefore

y3 ∈ F (x).Thus, F(x) is convex. Moreover, F is continuous as the composition of

the steady-state probabilities and as the function which assigns the best response.

Therefore, the graph of F is a closed set. According to Kakutani’s fixed point

theorem, F has a fixed point denoted by P e
D. This strategy is best response of

a player when all the other players use P e
D strategy, which defines a symmetric

Nash equilibrium strategy.

R.Hassin and Roet -Green use an algorithm in order to compute the equilib-
rium strategy. Initially, they supposed that j ≤ N

(
N >> ne

)
and given the
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expect sojourn time and the linear balance equations the algorithm is:
1. Choose an arbitrary strategy vector [PD], and define a tolerance parameter ε.

2.Compute the steady-state probabilities matrix
(
πi,j

)
3.Compute the expected sojourn time matrix E

(
i, j
)

using the
(
πi,j
)

matrix.

4. Compute the utility vector U by using
(
Πi,j

)
and E

(
i, j
)

. Then for each
0 < i < ne:

a
)

If U
(
i
)
> ε , set P ∗D

(
i
)

= 1

b
)

If U
(
i
)
< −ε, set P ∗D

(
i
)

= 0

c
)

If |U
(
i
)
| < ε, set P ∗D

(
i
)

= PD
(
i
)

5. While
ne∑
i=0

|P ∗D
(
i
)
− PD

(
i
)
| ≥ ε,

define the new strategy[P new
D ] as a convex combination of the old strategy [PD]

and its best response [P ∗D], using a random number γ ∈
(
0, 1
)

as a weight. Con-
tinue from step 2.

6. If
∑ne

i=0 |P ∗D − PD| < ε, then declare the equilibrium strategy as P e
D = P ∗D.

If ε = 0, 0005 then the numerical results show that the algorithm always con-
verges to an equilibrium strategy.
In the final chapter of their paper, Hassin and Roet-Green present some numerical
results. According to the numerical study, the equilibrium seems to be sensitive
to the initial strategy vector i.e. depending on the initial vector the type of the
equilibrium differs. This results in multiple equilibrium strategies for many sets
of normalized parameters, for example the equilibrium strategy may be a pure
threshold strategy or a mixed threshold strategy i.e. a customer to depart if the
number of customers is below the threshold, to balk if the number of customers
in the queue is higher than the threshold and to waver between departing and
balking when the queue length is equal to the threshold. Moreover, the equilib-
rium strategy may be a double threshold strategy, i.e. to depart when the queue
length is below the first threshold, to balk if the queue length is between the
first and the second threshold and to depart when the queue length is over the
second threshold. Furthermore, according to numerical results the equilibrium
strategy may not be a threshold strategy, i.e. the customers depart when the
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queue length is below a specific number and waver between departing and balk-
ing when is over or equal to this specific number. However, under a specific set
of parameters ρ, w and v the type of the equilibrium strategy is unique (equilib-

rium mixed threshold, double threshold, etc.) for any initial strategy ~PD. What
is more, if Eu =

∑ne
i=0 πi max (U(i), 0) is the expected utility of the customers

and Pne is the probability to reach its maximum length, then according to the
numerical results for each set of parameters ρ, w, and v, the objectives Eu and
Πne are received within a small range for all equilibrium strategies.

3.2.2 Strategic M/M/1 queueing model with synchronized

delayed observations

Burnetas, Economou and Vasiliadis in their paper ‘Strategic customer behavior in a queueing system with delayed observations’
considered that the customers arrive according to a Poisson process at rate λ at
a service facility with infinite waiting space. There is a single server and the
service time are exponentially distributed at rate µ. The queueing discipline is
FCFS. Upon arrival, a customer decides whether to join or balk without observ-
ing the queue length. However,the administrator of the system announces to all
customers their positions in the system, at the points of a Poisson process at
rate θ. Each customer, at his epochs

(
arrival instant, announcement instant

)
is supposed to know the operating parameters of the system, i.e. λ, µ, and θ.
In addition, every customer anticipates a reward R from his service completion,
whereas he accumulates waiting cost C per unit time for which he stays in the
system.
The arrival, service and announcement processes are said to be independent.
Moreover, retrials of balking customers are not permitted. When a customer
arrives, the system is unobservable to him but at the epoch of the first announce-
ment following his entrance the system becomes observable to him. Because of
the exponential assumptions, the customers may renege only at announcements
instants. Additionally, because of the FCFS queue discipline and the full obser-
vation structure a customer has a possible incentive to renege only at the first
announcement. The strategic behavior of a customer regarding joinning/balking
is specified by a joining probability q∗. A customer stays after the first announce-
ment, if his position n at the system is such that his net benefit (R − C n

µ
) is

positive. Thus, each customer has a reneging threshold n∗, which determines if
a customer will remain in the system or not, at the time of the first announce-
ment after their arrival. Thus, the strategy of an incoming customer is

(
n∗, q

)
.

Under such a strategy the number of customers in the system is represented by
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a continuous time Markov chain N(t) with transition rates

qi,j =



λq∗ when i ≥ 0, j = i+ 1,

µ when i ≥ 1, i 6= n∗ + 1, j = i− 1,

θ when i ≥ n∗ + 2, j = n∗,

µ+ θ when i = n∗ + 1, j = n∗,

0 otherwise

(1.29)
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The stationary distribution of
{
N(t)

}
and its mean are given in the following

proposition.

Proposition 3.1 The stationary distribution of the number of customers in
the system N(t) when the customers follow an (n∗, q∗) strategy, with n∗, q∗ > 0
and λq∗ 6= µ is given by

π
(
n∗, q

)
=


B∗ρ

n
∗1 when 0 ≤ n ≤ n∗ − 1

B∗ρ
n∗
∗1ρ

n−n∗
∗2 when n ≥ n∗

(1.30)

where,

ρ∗1 = λq∗
µ
, ρ∗2 =

λq∗+µ+θ−
√

(λq∗+µ+θ)2−4λq∗µ

2µ

and,

B∗ = (1−ρ∗1)(1−ρ∗2)

1−ρ∗2−ρn∗+1
∗1 +ρn∗∗1 ρ∗2

.

The corresponding mean stationary number of customers in the system is

E(n∗,q∗)(N) =
(1− ρ∗2)[(n∗ − 1)ρn∗+1

∗1 − n∗ρn∗∗1
+ρ∗1

(1− ρ∗1)[1− ρ∗2 − ρn∗+1
∗1 + ρn∗∗1ρ∗2]

+
(1− ρ∗)[n∗ρ∗1 − (n∗ − 1)ρn∗∗1ρ∗2]

(1− ρ∗2)[1− ρ∗2 − ρn∗+1
∗1 + ρn∗∗1ρ∗2]

In the next proposition the expected net benefit of a customer that arrives
when there are n customers in the system ( excluding himself) and decides to
join is represented.

Proposition 3.2 Consider the M/M/1 queue with delayed observations,
where the customers follow an (n∗, q∗) strategy. Then, the conditional expected
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net benefit of a customer that arrives when there are n in the system and decides
to join and uses the same reneging threshold n∗ as the other customers is given
by

U(n|n∗) =

{
R− C n+1

µ
when 0 ≤ n ≤ n∗ − 1

(R− Cn∗
µ

+ C
θ

)( µ
µ+θ

)n−n∗+1 − C
θ

when n ≥ n∗
(1.31)

Moreover, the expected net benefit of a customer that decides to join is,

U(n∗, q∗) = B∗

(
R− C

µ

)1− ρn∗∗1
1− ρ∗1

−B∗
C

µ

(n∗ − 1)ρn∗+1
∗1 − n∗ρn∗∗1 + ρ∗1
(1− ρ∗1)2

+ B∗(R−
Cn∗
µ

+
C

θ
)

µρn∗∗1
µ+ θ − µρ∗2

−B∗
C

θ

ρn∗∗1
1− ρ∗2

Proof Consider a tagged customer that arrives and decides to join, when the
system has n other customers.
Case I: n ≥ n∗ − 1. In this case the customer will receive his reward R, since
he has no incentive to renege. Additionally, his mean waiting time in the system
provided that there are n − 1 customers in the system is n+1

µ
. Thus, we get the

first branch of the equation (1.32).
Case II: n > n∗. In the second case the net benefit of the tagged customer Un
has the representation

Un = (R− C(Yn + Z))1{
X≥Yn

} − CX1{
X<Yn

},
whereX, Yn and Z are independent random variables. X is an Exp(θ) distributed
random variable, which represents the time till the first announcement after the
arrival of the tagged customer, Yn is an Erlang(n − n∗ + 1, µ) random variable
and represents the time till the tagged customer has no incentive to renege and
Z is an Erlang(n∗, µ) random variable, which represents the time after Yn till
the departure of the tagged customer ( if he does not renege). In case that
the first announcement after the arrival of the tagged customer happens before
the time till the tagged customer has no incentive to renege then his sojourn
time is X. Otherwise, the customer will stay in the system for Yn + Z time
units and will receive the reward for service. Therefore, taking expected values
U(n|n∗) = (R−CE(Z))P [X ≥ Yn]−CE[min(X, Yn] . By computing P [X ≥ Y ]
and E[min(X, Yn)] we get the computation of the expected net benefit. Moreover,
by evaluating the geometric sums we can determine the expected net benefit by
the formula U(n∗, q∗) =

∑∞
n=0 πn(n∗, q∗)U(n|n∗).
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Burnetas, Economou and Vasiliadis reported several monotonicity results that
concern the process N(t) that records the numbers of customers in the system,
the throughput of the system, the conditional expected net benefit U(n|n∗) and
the expected net benefit U(n∗, q∗). Specifically, the following monotonicity results
are valid:

• By using sample path arguments they proved that N(t) is:

– Stochastically increasing in the joining rate λq∗ when the other pa-
rameters are kept fixed,

– Stochastically decreasing in the service rate µ when the other param-
eters are kept fixed,

– Stochastically decreasing in the announcement rate θ when the other
parameters are kept fixed,

– Stochastically increasing in the reneging threshold n∗ when the other
parameters are kept fixed.

• The throughput of the system is a decreasing function of θ, for any fixed
strategy (n∗, q∗) of the customers and the other parameters

(
λ, µ,R, and C

)
fixed.

• The conditional expected net benefit U(n|n∗) is a strictly decreasing func-
tion of n, for any fixed strategy
n∗ ≤ Rµ

C
+ µ

θ
,

• When the customers follow an (n∗, q∗) strategy then the expected net benefit
U(n∗, q∗) is a strictly decreasing function of q∗ for any fixed n∗ ≤ Rµ

C
+ µ

θ

By using the monotonicity and continuity of U(n∗, q∗), in q∗, the fact that
the best strategy of a tagged customer is to stay if his position n at the first
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announcement is such that n ≤ ne, with ne = bµR
C
c, and that ne ≤ Rµ

C
+ µ

θ
,

Burnetas, Economou and Vasiliadis proved that in the M/M/1 with delayed
observations an equilibrium strategy always exists and it is unique. Specifically,
we have the following theorem.

Theorem (3.2). In the M/M/1 queue with synchronized delayed observations an

equilibrium strategy always exists and is unique. If ne is Naor’s threshold then:

Case I: U(ne, 0) ≤ 0. Then, (ne, 0) is the unique equilibrium strategy.

Case II: U(ne, 1) < 0 < U(ne, 0). Then, the equation U(ne, q∗) = 0 has ex-

actly one root with respect to q∗ in (0, 1) and (ne, qe) is the unique equilibrium

strategy.

Case III: U(ne, 1) ≥ 0. Then, (ne, 1) is the unique equilibrium strategy.

In this paper the effects of the announcement rate θ on the equilibrium join
probability qe, the equilibrium throughput and the equilibrium social welfare,
when all other λ, µ, R and C are kept fixed are also analyzed.

By using that the expected net benefit U(ne, q∗) is a strictly increasing func-
tion of θ, for fixed other parameters λ, µ, R, C, q∗ 6= 0 and ne = bµR

C
c, it is

proved that the equilibrium join probability is an increasing function of θ. More
concretely, they proved the following theorem:
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Theorem (3.3). In the M/M/1 queue with delayed observations, the unique equi-

librium join probability qe(θ) is an increasing function of the announcement rate

θ, when all other parameters of the model λ, µ, R and C are kept fixed. In par-

ticular, when λ < µ, we have the following cases as R varies in (0,∞).

Case I: R ≤ C
µ

. Then, qe(θ) = 0, for θ ∈ (0,∞).

Case II: C
µ
< R < C

µ−λ . Then,

lim
θ→ 0

qe(θ) =
1

λ
(µ− C

R
∈ (0, 1)

and qe(θ) is increasing for θ ∈ (0,∞). Moreover, there exists a θ0 > 0 such that

qe(θ) < 1 for θ ∈ (0, θ0), while qe(θ) = 1 for θ ∈ [θ0,∞).

Case III: R ≥ C
µ−λ . Then, qe(θ) = 1, for θ ∈ (0,∞).

When λ ≥ µ, Case I is still valid as above, but Case II corresponds to R > C
µ

,

while Case III does not exist.

48



The previous Theorem implies the following proposition for the equilibrium
throughput:

Proposition 3.3 The equilibrium throughput, πe0 is a constant zero function
of θ when R ≤ C

µ
, while it is a decreasing function of θ in case that R ≥ C

µ−λ .

Proof For R ≤ C
µ

, according to the previous theorem we have that qe(θ) = 0,

thus, π0 = 0 ∀θ ∈ (0,∞). Moreover, for R ≥ C
µ−λ we get that qe(θ) = 1

∂πe0
∂θ

= ∂π0
∂θ

+ ∂π0
∂qe

∂qe
∂θ

= ∂π0
∂θ

< 0, because we have mentioned that the throughput
of the system is a decreasing function of θ. Thus, the equilibrium throughput is
a decreasing function of θ as well.

Remark The aforementioned monotonicity of the equilibrium throughput is still
valid when C

µ
< R < C

µ−λ when θ ≥ θ0, i.e, the throughout is decreasing in θ.

There is also extensive numerical evidence that for C
µ
< R < C

µ−λ the equilibrium
throughput is a unimodal function of θ and the mode occurs in θ0.

Let, Se = λqeU(ne, qe) be the equilibrium social welfare. We consider Se as
a function of the announcement rate θ. We have showed that the U(ne, qe) = 0
∀qe ∈ (0, 1) thus, Se = 0 ∀qe ∈ [0, 1). On the other hand, the equilibrium join
probability qe(θ) is an increasing function of θ when the other parameters are kept
fixed and U(ne, 1) is an increasing function of θ. Therefore, when qe(θ) reaches 1
the social welfare function becomes a strictly increasing function of θ. Therefore,
we conclude that Se is a non-decreasing function of θ, which is 0 for θ < θ0.

In the case of social optimization the corresponding function is too compli-
cated to be maximized so that the optimal join probability and the optimal
threshold cannot be determined in closed-form expressions. Of course, an incom-
ing customer brings a burden to the other customers by increasing the overall
delay, so nsoc ≤ ne. However, the order of qsoc and qe is less clear. Specifically,
an increase on the join probability has two opposite effects on the social welfare:
On the one hand, it may increase the expected reward from service completions,
but on the other hand incurs greater waiting costs. In case that the reneging
threshold is low and the announcement rate is high then the expected waiting
cost can be kept low, even if the administrator uses a higher join probability.
Thus, qsoc > qe may be valid in contrast to the results in the unobservable model.
Moreover, numerical results also verify that the social administrator may some-
times prefer to accept more customers than those who would be wiling to enter
following an individual equilibrium strategy. This shows that the system with the
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delayed announcements gives extra flexibility regarding the maximization of the
social welfare. Numerical results also show that the system throughput is always
lower under the socially optimal strategy than under the equilibrium strategy.
In the paper it is also analyzed whether a socially optimal strategy can be induced
by imposing appropriate fees. They refer to this property as coordination. Specif-
ically, by imposing an entrance fee fe that is paid upon joining in the system,
the administrator of the system has the possibility to influence the customers.
Then,the equilibrium reneging threshold is still ne and the expected net benefit
of a customer who decides to join when the others join with probability q is

Ue
(
q, fe

)
= U

(
ne, q

)
− fe.

On the other hand, if the administrator of the system sets a service fee fs that is
paid only if a customer gets served, then the equilibrium threshold becomes

ne
(
fs
)

=

⌊
µ
(
R− fs

)
C

⌋

and the the expected net benefit of a customer is given by

Us
(
q, , fs

)
= U

(
ne
(
fs
)
, q, R− fs

)
.

It also possible that the administrator imposes both entrance fees and service
fees. Thereafter, Ues(q; fe, fs) = U(ne(fs), q, R − fs) − fe. Furthermore, in case
that coordination is not possible, it would be important to find the discrepancy
between the socially optimal strategy and the best achievable strategy by impos-
ing either entrance fee or service fee or both of them. The most significant robust
insights obtained by numerical results are the following:

• The use of the entrance fee only rarely leads to the coordination of the
system and the achievable fraction of the optimal social benefit varies.

• Imposing only the service fee in most cases is sufficient for the coordination
or the achievement of a high fraction of the optimal social benefit.
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4 An M/M/1 model with

independent delayed observations

Model description
In this chapter we would like to study the influence of the information available to
the customers, on their strategic behavior. Specifically, we will present a queueing
model which has the same assumptions as the

(M/M/1queueing model with delayed observations)

which is presented in Burnetas, Economou and Vasiliadis’s paper, but in this
case the difference is that the administrator later announces to each customer,
independently, his current position instead of announcing to all the customers
simultaneously their current positions.
Consider for example a bank that offers the option to view its queue length on-
line. A customer who applies in order to get a service in the bank after a specific
time period receives an e-mail about the number of his application. As a result,
he knows the number of customers that are in front of him in the queue by obser
ving the queue length online. Our goal is to determine in what way this delayed
information can influence a customer’s behavior. We are attempting to answer
this question in the following project.
More concretely, we assume an M/M/1 queueing system in which customers ar-
rive according to a Poisson process at a rate λ and the service times are exponen-
tially distributed at rate µ. Moreover, we assume that there is an administrative
manager that announces to each customer independently an exponentially dis-
tributed time with parameter θ after his arrival. Each customer earns a known
reward R from his service completion, whereas he has a waiting cost at a known
rate C as long as he stays in the system. After the announcement of his position
a customer reevaluates his expected welfare of staying in the system and he will
renege if the expected benefit is negative. The arrival, service and announcement
processes are assumed to be independent and we assume that retrials of balking
customers are not permitted. We are interested in the study of the strategic
behavior of the customers, regarding their joining/balking and staying/reneging
dilemmas, in this system.
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We assume that the customers are homogeneous. Therefore the service comple-
tion reward and the cost per time unit staying in the system are the same for all
customers. Therefore, we suppose that all the players follow the same strategy.
According to this assumption we are interested in finding only symmetric best
responses.
We consider that each customer’s strategy is a vector

(
q, n∗

)
that belongs in the

product space [0, 1] × N. The first component of the vector, (q), represents the
join probability of a customer under the assumption that he is not able to observe
the queueing length and the second component of the vector, (n∗), represents the
reneging threshold at the epoch the system becomes observable to a customer.
Below, we will study the behavior of the customers in the system, when they all
use the strategy

(
q, n∗

)
.

Let N(t) be the stochastic process that represents the number of customers
in the system at time t. Then the transitions of this Markov chain are.

qij =


λq∗ when i ≥ 0, j = i+ 1

µ when 1 ≤ i ≤ n∗ , j = i− 1

µ+
(
i− n∗

)
θ when i ≥ n∗ + 1 , j = i− 1

0 otherwise

(1.32)

The transition rate diagram of N(t) is given in figure 1.
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0 1 2 n∗ − 1 n∗ n∗ + 1 n∗ + k n∗ + k + 1

λ · q∗ λ · q∗ λ · q∗ λ · q∗ λ · q∗

µ+ (k + 1) · θµ+ θµµµ

Figure1: Transition rate diagram of N(t)

Proposition 4.1: The stationary distribution of the number of customers in the
queueing system under the strategy

(
n∗, q

)
and under the utilization restriction(

λq∗
)
< µ is given by the following formula,

π
(
n∗, q

)
=



ki1π0 when i ≤ n∗

ki−n∗3 Γ
(
k2

)
Γ
(
k2+i−n∗

)kn∗1 π0 when i ≥ n∗ + 1

(1.33)

where

k1 =
λq∗
µ
, k2 =

µ

θ
, k3 =

λq∗
θ
,

π0 =
1

A
,
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A =
1− kn∗+1

1

1− k1

+ kn∗1 Γ
(
k2

)(
E1,k2

(
k3

)
− 1

Γ
(
k2

))
and

E1,k2

(
k3

)
=
∞∑
n=0

kn3
Γ
(
n+ k2

)
the Mittag-Leffler function.

Proof. : As the stochastic model is a birth-and-death process we conclude that

the process is reversible. Therefore if S is the state space, we get that for every

i, j ∈ S,

πiqij = πjqji.

Specifically, if i = 1, 2, . . . , n∗ − 1 we get that,

λq∗πi = µπi+1 ⇐⇒

πi =
(λq∗
µ

)i
π0 ∀i ≤ n∗. (1.34)

If i ≥ n∗ then we get the following equation

πiλq∗ =
(
µ+

(
i+ 1− n∗

)
θ
)
πi+1 ⇐⇒

πi+1 =
λq∗(

µ+
(
i+ 1− n∗

)
θ
)πi. (1.35)

Equations
(
1.35

)
and

(
1.36

)
yield

πn∗+1 =
λq∗
µ+ θ

πn∗ ⇐⇒

πn∗+1 =
λq∗
µ+ θ

(λq∗
µ

)n∗
π0. (1.36)

Equations
(
1.36

)
and

(
1.37

)
yield

πi =

(
λq∗

)i−n∗
∏i−n∗

j=1

(
µ+ jθ

)(λq∗
µ

)n∗
π0 ∀i ≥ n∗.

By using the normalizing equation we get that
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∞∑
i=0

πi = 1 ⇐⇒

n∗∑
i=0

(λq∗
µ

)i
π0 +

∞∑
i=n∗+1

(
λq∗

)i−n∗
∏i−n∗

j=1

(
µ+ jθ

)(λq∗
µ

)n∗
π0 = 1. (1.37)

We will try to give an analytical formula for the sum

∞∑
i=n∗+1

(
λq∗
)i−n∗∏i−n∗

j=1

(
µ+ jθ

) .

If we denote k = i− n∗, then

∞∑
k=1

(
λq∗
)k(

µ+ θ
)(
µ+ 2θ

)
· · ·
(
µ+ kθ

) =
∞∑
k=1

(
λq∗
)k

θk
(
µ
θ

+ 1
)(

µ
θ

+ 2
)
· · ·
(
µ
θ

+ k
) . (1.38)

If we use the equation
Γ
(
a
)

Γ
(
a− 1

) = a− 1

and the Pochhammer symbol

Γ
(
µ
θ

+ n
)

Γ
(
µ
θ

) =
(µ
θ

)
k
,

according to
(
1.39

)
we get that

∞∑
k=1

(λq∗
θ

)k 1(
µ
θ

)
k

=
∞∑
k=1

Γ
(
µ
θ

)
Γ
(
µ
θ

+ k
)(λq∗

θ

)k
= Γ

(µ
θ

)(
E1,µ

θ

(λq∗
θ

)
− 1

Γ
(
µ
θ

)). (1.39)
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Thus, we proved that
∑∞

i=n∗+1

(
λq∗

)i−n∗
∏i−n∗
j=1

(
µ+jθ

) = Γ
(
µ
θ

)(
E1,µ

θ

(
λq∗
θ

)
− 1

Γ
(
µ
θ

)). If we

denote

k1 =
λq∗
µ
, k2 =

µ

θ
, k3 =

λq∗
θ

and if we use the equation

n∗∑
i=0

ki1 =
1− kn∗+1

1

1− k1

then equation
(
1.38

)
yields

π0

(1− kn∗+1
1

1− k1

+ kn∗1 Γ
(
k2

)(
E1,k2

(
k3

)
− 1

Γ
(
k2

))) = 1.

Thus,

π0 =
1(

1−kn∗+1
1

1−k1 + kn∗1 Γ
(
k2

)(
E1,k2

(
k3

)
− 1

Γ
(
k2

))) .
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Proposition 4.2: The mean stationary number of customers in the system
E(

n∗,q
)(N) under a specific strategy (n∗, q) is given by the formula

E(
n∗,q
)(N) = π0

[−(n∗ + 1
)
kn∗+1

1

(
1− k1

)
+
(
1− k1

)n∗+1
k1(

1− k1

)2

+ kn∗1 Γ
(
k2

)(
n∗

(
E1,k2

(
k3

))
− 1

Γ
(
k2

))

+ Ψ2,2

[ (
1, 1
)(

1, 1
)(

1, 0
)
,
(
1, k2

) ; k3

]
− 1

Γ
(
k2

)]

where k1 =
λq∗
µ
, k2 =

µ

θ
, k3 =

λq∗
θ

and

Ψ2,2

[ (
1, 1
)(

1, 1
)(

1, 0
)
,
(
1, k2

) ; k3

]
=

∞∑
k=0

Γ
(
k + 1

)
Γ
(
k + 1

)
Γ
(
k
)
Γ
(
k + 2

) kk3
k!

the Fox-Wright function.
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Proof.

E(
n∗,q
)(N) =

∞∑
i=0

iπi =
n∗∑
i=0

iki1π0 +
∞∑

i=n∗+1

i

(
k3

)i−n∗
Γ
(
k2

)
Γ
(
k2 + i− n∗

)kn∗1 π0

= π0

(
k1

∂
(∑n∗

i=0 k
i
1

)
∂k1

+ kn∗1 Γ
(
k2

) ∞∑
k=1

(
k + n∗

) kk3
Γ
(
k + k2

))

= π0

(
k1

(−(n∗ + 1
)
kn∗1

(
1− k1

)
+
(
1− k1

)n∗+1(
1− k1

)2

)

+ kn∗1 Γ
(
k2

)(
n∗

∞∑
k=1

(
k3

)k
Γ
(
k + k2

) +
∞∑
k=1

Γ
(
k + 1

)
Γ
(
k + 1

)
Γ
(
k
)
Γ
(
k + k2

) (
k3

)k
k!

))

= π0

[
k1

(−(n∗ + 1
)
kn∗1

(
1− k1

)
+
(
1− k1

)n∗+1(
1− k1

)2

)

+ kn∗1 Γ
(
k2

)(
n∗

(
E1,k2

(
k3

)
− 1

Γ
(
k2

))+ Ψ2,2

[ (
1, 1
)(

1, 1)
)(

1, 0
)
,
(
1, k2

) ; k3

]
− 1

Γ
(
k2

))].
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Proposition 4.3: If all customers follow the
(
n∗, q

)
strategy, then the condi-

tional expected net benefit for a tagged customer, who arrives when there are n−1
customers in the system, decides to join and uses the same reneging threshold n∗
is given by the formula

U
(
n|n∗

)
=

R− C
n
µ

when 1 ≤ n ≤ n∗

R µ

µ+
(
n−n∗

)
θ
− C n

µ+
(
n−n∗

)
θ

when n ≥ n∗ + 1 (1.40)

.

Proof. : We consider a tagged customer that arrives when there are n − 1 cus-

tomers and decides to join the system. We consider two cases according to

whether n ≥ n∗ or not

CASE I: If 1 ≤ n ≤ n∗. Then the customer will receive the reward almost

surely since he is not going to renege at the announcement of his position. Fur-

thermore, when the position of a customer is n, then his sojourn time is an Erlang-

distributed random variable with mean n
µ
. According to the Markovian property

we conclude that the remaining time of the customer in service is Exp(µ). There-

fore, the expected total waiting cost of the tagged customer is

C · n
µ

and the first branch of the equation follows.

CASE II: n ≥ n∗ + 1.

In order to find U
(
n|n∗

)
, we need to find the mean sojourn time of the tagged

customer in the system. However, in the second case there is a positive proba-

bility the customer to renege without completing his service. Therefore, in order

to find his conditional expected net benefit, we have also to determine the prob-

ability of getting his reward.

We note that the probability of the customer getting the reward is the same with

the probability the customer to arrive at position n∗, before the announcement

of his position. We use the first step analysis. We will find the probability of

the position of the tagged customer becoming the
(
n∗ − 1

)
-position before the

announcement of his position. As the position of the customer is n, then there
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are n − n∗ − 1 customers in front of him who are waiting in the queue, until

the threshold n∗. Therefore, there are n − n∗ possible events that can change

the position of the n-tagged customer from n to n − 1. Equivalently, there are

n− n∗ exponentially distributed random variables which represent the moments

that each of these events happens. Specifically, we suppose that Y1 stands for the

time until a service completion which is Exp
(
µ
)

distributed and Xj represents the

time until the j-th customer learns his position, or equivalently the announcement

of his position occurs, j ∈
(
n∗ + 1, n∗ + 2, · · · , n

)
which is Exp

(
θ
)

distributed.

We mention that if

W1, · · · ,Wn v Exp
(
λn
)

then

P
(
Wi = min

(
W1, · · · ,Wn

))
=

λi∑n
i=1 λi

. (1.41)

The equation (1.41) immediately yields that

P
(
Y1 = min

(
Y1, Xn∗ , Xn∗+1, · · · , Xn

))
=

µ

µ+
(
n− n∗

)
θ

,

P
(
Xj = min

(
Xn∗ , Xn∗+1, · · · , Xn

))
=

θ

µ+
(
n− n∗

)
θ
.

In case that the minimum of the exponential times occurs in some Xn, then the

tagged customer will learn his position, which is above his reneging threshold n∗

and as a result he will abandon the system without receiving his reward, so the

probability of getting his reward is 0. So we get that

P
(
the tagged customer receive his reward

)
=

(µ+
(
n− n∗ − 1

)
θ(

n− n∗
)
θ
) )

P
(

the
(
n-1
)
-tagged customer receive his reward

)
. (1.42)
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For n = n∗ + 1 we get that

P
((
n∗ + 1

)
-tagged customer receive his reward

)
=

µ

µ+ θ
P
(

the n∗ customer get his reward
)

=

µ

µ+ θ
· 1 =

µ

µ+ θ
(1.43)

The probability that
(
n∗ + 2

)
-player gets his reward is:

P
((
n∗ + 2

)
-player get the reward

)
=

P
(

the
(
n∗ + 2

)
-player becomes the

(
n∗ + 1

)
-player

)
·

·P
(

the
(
n∗ + 1

)
-player get his reward

)
=

µ+ θ

µ+ 2θ

µ

µ+ θ
=

µ

µ+ 2θ
.

We suppose that the equation
(
1.42

)
holds for

n = n∗ + k

and we will show that is also true for

n = n∗ + k + 1.

Indeed,
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P
(

the
(
n∗ + k + 1

)
-customer get the reward

)
=

P
(

the
(
n∗ + k + 1

)
-customer becomes the

(
n∗ + k

)
-customer

)
·

·P
(

the
(
n∗ + k

)
-customer get the reward

)
=

µ+ kθ

µ+
(
k + 1

)
θ
.

Therefore by using induction on n we find the probability of a customer getting

his reward. In order to prove that the mean sojourn time of the n-th customer

in the system is
n

µ+
(
n− n∗

)
θ

we will use again the first step analysis and by induction in n we will get the

result. The n = n∗ + 1 -customer will stay in the system until the first event of

either a service completion or his position announcement happens or equivalently
1

µ+θ
. Additionally, he will stay the mean sojourn time of the n∗ − thcustomer if

a service completion happens before his position announcement and in case that

he learns his position before a service completion happens then he will leave the

system immediately. We notice that the sojourn time of the n∗ customer is a

Γ
(
n∗, µ

)
distributed random variable, therefore, the mean sojourn time of the
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n∗-customer in n∗
µ

. Thus, we have that

E
(

sojourn time of the n∗- customer
)

=

1

µ+ θ
+

µ

µ+ θ
· 0 +

µ

µ+ θ
E
(

sojourn time of n∗-customer
)

=

1

µ+ θ
+

µ

µ+ θ

n∗
µ

=

n∗ + 1

µ+ θ
.

We suppose that

E
(
sojourn time of n∗+k -customer

)
=
n∗ + k

µ+ kθ
.

Then, E
(
sojourn time of n∗ + k + 1-customer

)
=

1

µ+
(
k + 1

)
θ
) +

µ+ kθ

µ+
(
k + 1

)
θ
E
(
sojourn time of n∗ + k-customer

)
=

1

µ+
(
k + 1

)
θ

+
µ+ kθ

µ+
(
k + 1

)
θ
· n∗ + k

µ+ kθ
=

n∗ + k + 1

µ+
(
k + 1

)
θ
.

Remark: In case that we interpret the n-tagged customer as the customer
who finds n-customers except of him in the system then the conditional expected
net benefit is

U
(
n|n∗

)
=

R− C
n+1
µ

when n ≤ n∗ − 1

R µ

µ+
(
n+1−n∗

)
θ
− C n+1

µ+
(
n+1−n∗

)
θ

when n ≥ n∗
(1.7)

63



. By using equation
(
1.36

)
we will find the expected net benefit of a customer.

Proposition 4.4: The expected net benefit of a customer that decides to
join the system when the other customers follow an

(
n∗.q

)
strategy and λq∗ < µ

is given by the formula

U
(
n∗, q

)
= π0R

1− kn∗1

1− k1

− π0C

µ
(
1− k1

)2

(
n∗k

n∗+1
1 −

(
1 + n∗

)
kn1 ∗+1

)

+ RµΓ
(
k2

)
kn∗1 π0Ψ2,2

[ (
1, 1
)
,
(
θ, µ+ θ)

)(
1, k2

)
,
(
θ, µ+ θ + 1

)
; k3

]

− Γ
(
k2

)
kn∗1 π0C

(
Ψ3,3

[ (
1, 1
)
,
(
1, 1
)
,
(
θ, µ+ θ

)(
1, 0
)
,
(
1, k2

)
,
(
θ, µ+ θ + 1

) ; k3

]

+
(
n∗ + 1

)
Ψ2,2

[ (
1, 1
)
,
(
θ, µ+ θ

)(
1, k2

)
,
(
θ, µ+ θ + 1

) ; k3

])

(1.8)
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Proof. :

U
(
n∗, q

)
=

∞∑
n=0

π
(
n∗, q

)
U
(
n|n∗

)

=
n∗−1∑
n=0

π
(
n∗, q

)
U
(
n|n∗

)
+

∞∑
n=n∗

π
(
n∗, q

)
U
(
n|n∗

)

=
n∗−1∑
n=0

kn1π0

(
R− cn+ 1

µ

)
+

∞∑
n=n∗

(
k3

)n−n∗
Γ
(
k2

)
Γ
(
k2 + n− n∗

)kn∗1 π0

(
R

µ

µ+
(
n+ 1− n∗

)
θ
− C n+ 1

µ+
(
n+ 1− n∗

)
θ

)

=
n∗−1∑
n=0

kn1π0R−
n∗−1∑
n=0

kn1π0c
n+ 1

µ

+
∞∑

n=n∗

(
k3

)n−n∗
Γ
(
k2

)
Γ
(
k2 + n− n∗

)kn∗1 π0R
µ

µ+
(
n+ 1− n∗

)
θ

−
∞∑

n=n∗

(
k3

)n−n∗
Γ
(
k2

)
Γ
(
k2 + n− n∗

)kn∗1 π0c
n+ 1

µ+
(
n+ 1− n∗

)
θ
.

(1.9)

We compute the four series separately.
(
1
)
:

n∗−1∑
n=0

kn1π0R = π0R
1− kn∗1

1− k1
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(
2
)
:

n∗−1∑
n=0

kn1π0C ·
n+ 1

µ
=

n∗−1∑
n=0

kn1π0C ·
n

µ
+

n∗−1∑
n=0

kn1π0 ·
C

µ

=
π0Ck1

µ
·

(
d

1−kn∗1
1−k1

)
dk1

π0C

µ
· 1− kn∗1

1− k1

=
π0Ck1

µ
−n∗kn∗−1

1

(
1− k1) + 1− kn∗1 1− k2

1 +
π0C

µ
· 1− kn∗1

1− k1

=

π0C
(
− n∗kn∗1 + n∗k

n∗+1
1 + k1 − kn∗+1

1 +
(
1− k1

)(
1− kn∗1

))
µ
(
1− k1

)2

=
π0C

µ
(
1− k1

)2

(
n∗k

n∗+1
1 −

(
1 + n∗

)
kn∗1 + 1

)
.
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(
3
)
:

∞∑
n=n∗

(
k3

)n−n∗
Γ
(
k2

)
kn∗1 π0

Γ
(
k2 + n− n∗

) Rµ

µ+
(
n+ 1− n∗

)
θ

=

= RµΓ
(
k2

)
kn∗1 π0

∞∑
k=0

(
k3

)k
Γ
(
k + k2

)
+
(
θk + µ+ θ

)

= RµΓ
(
k2

)
kn∗1 π0

∞∑
k=0

Γ
(
k + 1

)
Γ
(
θk + µ+ θ

)
Γ
(
k + k2

)
Γ
(
θk + µ+ θ + 1

) (k3

)k
k!

= RµΓ
(
k2

)
kn∗1 π0Ψ2,2

[ (
1, 1
)(
θ, µ+ θ

)(
1, k2

)
,
(
θ, µ+ θ + 1

) ; k3

]

(1.10)
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(
4
)
:

∞∑
n=n∗

(
k3

)n−n∗
Γ
(
k2

)
kn∗1 π0

Γ
(
k2 + n− n∗

) C
(
n+ 1

)
µ+

(
n+ 1− n∗

)
θ

=
(

Γ
(
k2

)
kn∗1 π0c

) ∞∑
k=0

kk3
Γ
(
k + k2

) (k + n∗ + 1
)

µ+
(
k + 1

)
θ

=
(

Γ
(
k2

)
kn∗1 π0c

)( ∞∑
k=0

kk3k

Γ
(
k + k2

)(
µ+

(
k + 1

)
θ
) +

(
n∗ + 1

) ∞∑
k=0

kk3
Γ
(
k + k2

))

=
(

Γ
(
k2

)
kn∗1 π0c

)( ∞∑
k=0

Γ
(
k + 1

)
Γ
(
k + 1

)
Γ
(
θk + µ+ θ

)
Γ
(
k
)
Γ
(
k + k2

)
Γ
(
θk + µ+ θ + 1

) kk3
k!

+
(
n∗ + 1

) ∞∑
k=0

Γ
(
k + 1

)
Γ
(
θk + µ+ θ

)
Γ
(
k + k2

)
Γ
(
θk + µ+ θ + 1

) kk3
k!

)

= Γ
(
k2

)
kn∗1 π0c

(
Ψ3,3

[ (
1, 1
)
,
(
1, 1
)
,
(
θ, µ+ θ

)(
1, 0
)
,
(
1, k2

)
,
(
θ, µ+ θ + 1

)
; k3

]

+
(
n∗ + 1

)
Ψ2,2

[ (
1, 1
)
,
(
θ, µ+ θ

)(
1, k2

)
,
(
θ, µ+ θ + 1

) ; k3

])
.

(1.11)

By
(
1
)
,
(
2
)
,
(
3
)
,
(
4
)

the result immediately yields.
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In the following Lemma we will prove a monotonicity property for the ex-
pected net benefit.

Lemma 4.1 The conditional expected net benefit U
(
n|n∗

)
is a strictly de-

creasing function of n, for any fixed n∗ ≤ Rµ
C

+ µ
θ
.

Proof. : When n ≤ n∗, U
(
n|n∗

)
= R− Cn

µ
, which is a decreasing function of n.

When n ≥ n∗ + 1 then

U
(
n|n∗

)
=
(
Rµ− Cn

) 1

µ+
(
n− n∗

)
θ
.

∂U
(
n|n∗

)
∂n

= − Rµθ(
µ+

(
n− n∗

)
θ
)2 −

(
C
(
µ+

(
n− n∗

)
θ
)
− Cnθ

)
(
µ+

(
n− n∗

)
θ
)2

=
−Rµθ − cµ+ Cn∗θ(
µ+

(
n− n∗

)
θ
)2 .

So, we get that

∂U
(
n|n∗

)
∂n

≤ 0 ⇐⇒

Cn∗θ ≤ Rµθ + Cµ ⇐⇒

n∗ ≤
Rµ

C
+
µ

θ
.

(1.12)

If n ≥
(
n∗ + 1

)
, then U

(
n|n∗

)
is a decreasing function if and only if

n∗ ≤
(Rµ
C

+
µ

θ

)
.
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It remains to show that the function remains decreasing at the turning point from

the first branch to the second, i.e., that(
R− Cn∗

µ

)
≥

(Rµ− C(n∗ + 1
)

µ+ θ

)
⇐⇒

((
µ+ θ

)(
R− Cn∗

µ

))
≥

(
Rµ− C

(
n∗ + 1

))
⇐⇒

(
µR− Cn∗ + θR− Cn∗θ

µ

)
≥

(
Rµ−

(
Cn∗ + C

))
⇐⇒

(Cn∗θ
µ

)
≤

(
θR− C

)
⇐⇒

n∗ ≤
(µR
C

+
θ

µ

)
.

Proposition 4.5: The continuous time Markov chain
{
N
(
t
)}

of the num-
ber of customers in the queueing system, when the customers follow an

(
n∗, q∗

)
strategy is(
i
)

Stochastically increasing in the effective arrival rate λq∗(
ii
)

Stochastically decreasing in the service rate µ(
iii
)

Stochastically decreasing in the announcement rate θ(
iv
)

Stochastically increasing in the reneging threshold n∗

when the others parameters are kept fixed in each case
(
i
)
-
(
iv
)
.

Proof. : We will use a sample path approach.
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(
i
)
: We consider two stochastic processes{

N
(
t
)
, λq∗, µ, θ, n∗

}
and {

N
(
t
)′
,
(
λq∗
)′
, µ′, θ′, n′∗

}
.

We assume that µ′ = µ, θ′ = θ,
(
n∗
)′

= n∗ and
(
λq∗
)′ ≥ λq∗. We construct a

coupling

({
N1

(
t
)}
,
{
N2

(
t
)})

of the corresponding processes
{
N
(
t
)}

,
{
N
(
t
)}′

that record the number of customers in the system as following. The service

completions are generated by the same Poisson process with rate µ′. Similarly,

the announcement times are identical in the two systems and are generated by

the same Poisson process with rate θ′. The arrivals at both systems are generated

by a Poisson process with rate
(
λq∗
)′

. However, in the first system the arrivals

occur with probability

(
λq∗

)′
λq∗

in order to ensure that the arrivals in the stochastic

process
{
N
(
t
)}

are generated by a Poisson process with rate λq∗, whereas in

the second system the arrival occurs almost surely. We will prove that N 4 N
′
.

Equivalently we will show that if there is a time t0 so that N
(
t0
)

= n,N ′
(
t0
)

= n′

with n ≤ n′, then N
(
t
)
≤ N ′

(
t
)
∀t ≥ to. More concretely, we analyze all the

possible cases:

1
)

If N2

(
t
)

= 0 and N1

(
t
)

= 0 then at the epoch t
′

of a Poisson arrival at

rate λ we get that

N2

(
t′
)

= 1

and

N1

(
t′
)

=


0 with probability 1− λq∗(

λq∗

)′
1 with probability λq∗(

λq∗

)′ (1.13)

.

2
)

We suppose that N2

(
t
)

= n′, N1

(
t
)

= n, n ≤ n′ and n′, n ≥ 0. Then we

have the following sub-options:

a
)
If n, n′ ≤ n∗ then at the epoch of a service completion the processesN1

(
t
)
, N2

(
t
)

move to n-1 and n
′
-1, respectively. At the epoch of the position announcement

the number of customers remains the same in both of the systems. What is more,
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at the epoch a Poisson arrival t
′′

then, N2

(
t′′
)

= n′ + 1 and

N1

(
t′′
)

=


n with probability 1− λq∗(

λq∗

)′
n+ 1 with probability λq∗(

λq∗

)′ (1.14)

(
b
)

If n, n′ ≥ n∗ then at the epoch of arrival or service completion the results are

the same as in the case (a). On the other hand, when an announcement occurs at

time t
′
then N1

(
t′
)

= n−1 and N2

(
t′
)

= n′−1. Therefore, in each case N2 ≥ N1.

c
)

If n ≤ n∗ and n′ ≥ n∗ then at the epoch of service completion or arrival,

the results are the same as in the two cases above. At the time of the position

announcement, in the stochastic process
{
N1

(
t
)}

the number of customers will

remain the same, but in the
{
N2

(
t
)}

will be n
′ − 1. Therefor, N1 ≤ N2. In

case that N1

(
t
)

= n∗ and N2

(
t
)

= n∗ + 1 then in the next announcement N1, N2

will be equal. Furthermore, their position will be equal to n∗ so the result yields

immediately from the case 2-a.

(
iii
)

We consider two stochastic processes{
N
(
t
)
, λq∗, µ, θ, n∗

}
and {

N
′(
t
)
,
(
λq∗
)
, µ′, θ′, n′∗

}
.

We assume that µ′ = µ,
(
n∗
)′

= n∗,
(
λq∗
)′

= λq∗. We consider that the announce-

ment rate in the stochastic process N ′ is higher than N , i.e. θ ≤ θ′ and we will

show that N 4 N
′
. We consider a coupling

(
N1

(
t
)
, N2

(
t
))

of the process
{
N(t)

}
and

{
N ′(t)

}
with performance measures (λq∗)

′, µ′, θ′ and reneging threshold n′∗.

In order to make the position announcement rate of the initial stochastic process

be exponentially distributed at rate θ, we assume that in N1

(
t
)

the inter-arrival

times between the announcement of the position are exponentially distributed

random variables at rate θ′ but a customer will learn his position with probabil-

ity θ
θ′

. We assume that N2

(
t
)

= n′ ≤ n = N1

(
t
) (

1
)

and we will show that the

stochastic ordering in
(
1
)

is true for every t ∈ R+.
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We have the following cases:

(
a
)
: We consider that N1

(
t
)

= n′ < n = N1

(
t
)

and n∗ < n′ < n. We consider

the exponentially distributed times Z1 ∼ exp
((
n′ − n∗

)
θ
)

, which represent the

time till the first customer among the n
′ − n∗ learns his position and Z2 ∼

exp
((
n− n′

)
θ
)

the time till the first among the n− n′ customers learns that his

position is over n
′
. We have two extra sub-options. If Z1 < Z2 then N2 will be

reduced by one almost surely and N1 will be reduced by 1 with probability θ
θ′

and with probability 1− θ
θ′

will remain the same. Therefore N2 < N1.

If Z2 < Z1 then N2 will not change, as there is no announcement in this stochastic

process. Whereas, N1 will be reduced by one with probability θ
θ′

or it will remain

the same with probability 1- θ
θ′

. Based on the previous description we observe

that in the stochastic process N2

(
t
)

the announcements will happen only if Z1 <

Z2, while in the stochastic process N1

(
t
)

the position announcements will be in

the minimum time between Z1 and Z2. Therefore, the announcement rate in the

stochastic process is
(
n−n∗

)
θ′. The assumption that the customer finally learns

his position with probability θ
θ′

ensures that the announcement rate in the initial

stochastic process
{
N(t)

}
is
(
n− n∗

)
θ.(

b
)
:

If N2

(
t
)

= n′ ≤ n∗ < n = N1

(
t
)
, then at the epoch of the position announcement

the stochastic process N2 will not change, due to the assumption that n′ ≤ n∗.

On the other hand, N1 will be reduced by 1 with probability θ
θ′

or it will not

change with probability 1- θ
θ′

. In any case we observe that N2

(
t
)
≤ N1

(
t
)
. In case

of an arrival or a service completion, the desired stochastic ordering is true due

to the hypothesis that the parameters λ and µ are equal.

Remark: An equivalent interpretation of the service rate µ, is the number of
service completions per time unit given that the server is continuously busy.

Corollary 4.1: The rate of service completions is a decreasing function of the
announcement rate θ, for any strategy

(
n∗, q

)
of the customers and for any other

fixed parameters λq, µ, R and C.

Proof. : The mean rater of service completion is µ
(
1 − π0

(
n∗, q

))
. Using the

proposition above we get that the number of customers in the system is a de-
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creasing function of θ. Therefore, the stationary probability of the system being

empty is an increasing function of θ. Therefore, the probability 1− π0

(
n∗, q

)
is a

decreasing function of θ, and the result follows.

Lemma 4.2: The expected net benefit U
(
n∗, q

)
is a strictly decreasing func-

tion of q∗, for any fixed n∗ ≤ Rµ
C

+ µ
θ

and for any fixed other parameters λq, µ, θ,
R and C.

Proof. : As the number of customers in the system is an increasing function of

q, then, by supposing that q1 < q2 we get Nq1 < Nq2

(
∗
)
. Additionally, U

(
n|n∗

)
is a decreasing function of n when n∗ ≤ Rµ

C
+ µ

θ
. Thus, by the inequality

(
∗
)

yields that,

U
(
Nq1|n∗

)
> U

(
Nq2|n∗

)
.
(
∗ ∗
)

We observe that

U
(
n|n∗

)
=



R− C n
µ

when n ≤ n∗, n ≥ 1

R µ

µ+
(
n−n∗

)
θ
− C n

µ+
(
n−n∗

)
θ

when n ≥ n∗ + 1

(1.15)

depends on q only via the number of the customers in the system. Therefore if

Nq is the number of the customers in the system and n∗ is fixed then

U
(
n|n∗

)
= U

(
Nq

)
.

But E
(
U
(
Nq

))
=
∑∞

n=0 π
(
Nq = n

)
U
(
n|n∗

) (
∗ ∗ ∗

)
. By the equality

(
∗ ∗ ∗

)
we

get that

E
(
U
(
Nq

))
= U

(
n∗, q

)
.

The inequality
(
∗ ∗
)

immediately yields that

E
(
U
(
Nq1|n∗

))
> E

(
U
(
Nq2|n∗

))
⇐⇒

U
(
n∗, q1

)
> U

(
n∗, q2

)
.
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We can now establish the existence and uniqueness of the equilibrium of the
customers.

Theorem (4.1). : An equilibrium strategy always exists and is unique. We have

the following cases:

Case I: U
(
ne, 0) ≤ 0. Then,

(
ne, 0

)
is the unique equilibrium strategy.

Case II: U
(
ne, 1

)
< 0 < U

(
ne, 0

)
.Then the equation U

(
ne, q

)
= 0 has ex-

actly one root qe with respect to q in
(
0, 1
)
, and

(
ne, qe

)
is the unique equilibrium

strategy.

Case III: U
(
ne, 1

)
≥ 0. Then

(
ne, 1

)
is the unique equilibrium strategy.

Proof. At the epoch of his position announcement a n-tagged customer will stay

in the system in case that his net benefit is not negative. Therefore, he will leave

the system if R − C n
µ
< 0 ⇐⇒ n > Rµ

C
⇐⇒ n >

⌊
Rµ
C

⌋
. As a result, the best

strategy of a tagged customer against any strategy of the others is to use the

reneging threshold ne =
⌊
Rµ
C

⌋
. As the equilibrium strategies are best responses

against themselves, so necessarily any equilibrium strategy
(
n∗, q

)
should have

n∗ = ne.

Case I: We have already seen that the function U
(
ne, q

)
is a decreasing function

of q. Therefore, if max
0≤q≤1

U
(
ne, q

)
≤ 0 ⇐⇒ U

(
ne, 0

)
≤ 0 an individual’s profit

who decides to enter the system will be negative even if he finds the system

empty. Thus, if U(ne, 0) < 0 then the best response is to leave the system, so

q = 0 the only best response against itself. Additionally if U
(
ne, 0

)
= 0 then

the n-tagged customer is indifferent about joining the queue or balk thus, every

q ∈ [0, 1] is a best response. But, because all the other customers follow the

strategy
(
ne, 0

)
, only

(
ne, 0

)
is best response against itself, consequently it is the

unique equilibrium strategy.

Case III: If min
0≤q≤1

U
(
ne, q

)
≥ 0 ⇐⇒ U

(
ne, 1

)
≥ 0, then a customer that decides

to enter the system will leave positive net benefit even if all the customers in front

of him entered the system. Therefore, the net benefit of an individual that will
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enter the system will be positive for any q ∈ [0, 1]. But the only best response

against itself is the strategy
(
ne, 1

)
.

Case II: If min
0≤q≤1

U(ne, q) < 0 < max
0≤q≤1

U(ne, q) ⇐⇒ U
(
ne, 1

)
< 0 < U

(
ne, 0

)
.

Then
(
ne, 1

)
is not best response since, in case all the customers in the system

follow
(
ne, 1

)
strategy, then the net benefit of a customer who decides to enter the

system w.h.p
(
q=1

)
is negative. On the other hand, under the strategy

(
ne, 0

)
the benefit of an incoming customer is positive, therefore his join probability will

be positive
(
q > 0

)
, so

(
ne, 0

)
is not an equilibrium strategy. Since the function

U
(
ne, q

)
is continuous and decreasing in q then by Bolzano’s theorem a unique

root qe exists such that U
(
ne, qe

)
= 0. As U

(
ne, q

)
is a decreasing function of

q then, U
(
ne, q

)
> 0 ∀q ∈ [0, qe), so the best response of a tagged customer is(

ne, 1
)
. If q ∈ (qe,∞

)
then U

(
ne, q

)
< 0, therefore the customer will not enter

the system and
(
ne, 0

)
is the best strategy. As U

(
ne, qe

)
= 0 therefore his best

response is
(
ne, q

)
for every q ∈ [0, 1]. But, the only strategy that is best response

against itself is
(
ne, qe

)
.
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In the following section we will explore the effect of the announcement rate
θ on the equilibrium join probability qe and the equilibrium social welfare. As a
first step, we are studying the effect of θ on the expected net benefit of a tagged
customer U(ne, q∗) when the other parameters of the system are kept fixed and
the customers follow a fixed strategy (ne, q∗). The result is established formally
in the following Lemma.

Lemma 4.3 The expected net benefit U(ne, q∗) is a strictly increasing func-
tion of θ, for other fixed parameters λ, µ, R, C, q∗ 6= 0 and ne = bµR

C
c.

Proof
We use a coupling approach, so we consider an arriving tagged customer and

his evolution in two systems
{
N(t), λ, µ, θ1, n∗, q∗

}
and

{
N
′
(t), λ

′
, µ, θ2, n

′
∗, q

′
∗
}

.

We assume that µ = µ
′
, λq∗ = λq

′
∗ and n∗ = n

′
∗ while θ1 < θ2. We construct

a coupling of the corresponding processes
{
N(t)

}
and

{
N
′
(t)
}

that record the
number of customers in the two system as following: We consider a two dimen-

sional stochastic process
{
N1(t) × N2(t), λq∗, µ, θ2, n∗

}
, i.e. the service comple-

tions are identical in the two systems and are generated by the same Poisson
process with rate µ. Similarly, the arrivals are identical in the two systems and
are generated by the same Poisson process with rate λq∗. On the other hand,
for system 1, we assume that an announcement occurs by a Poisson process with
rate

{
θ2

}
. Whereas, for system 2, we assume that an announcement occurs at

an event of the Poisson process at rate
{
θ2

}
with probability θ1

θ2
. This ensures

that the arrivals at system
{
N1(t), λ, µ, θ2, n∗, q∗

}
are identical with the process{

N(t), λ, µ, θ1, n∗, q∗
}
. In particular, we generate the numbers of customers in

the system at the instant arrival of the tagged customer in the two systems,
which we denote as N1(t0)and N2(t0) for system 1 and 2, respectively, so that
N2(t0) ≤ N1(t0). This is possible as we have proved that the number of cus-
tomers in the queue is stochastically decreasing function in the announcement
rate θ. Moreover, we couple the service times in the two systems after the arrival
of the tagged customer. Therefore, the tagged customer’s potential service com-
pletion time (if he does not renege) will be longer in system 1 than in system 2.
Consider, now, the first announcement epochs after the tagged customer’s ar-
rival. According to the assumptions of the model, the interarrival time between
a tagged customer’s arrival and his position announcement after his arrival, is
exponential(θ2) distributed in both systems, but we assume that in system 1 the
announcement happens with probability θ1

θ2
. We denote by t2 and t1 the first

announcement epoch after the tagged customer’s arrival in systems 2 and 1, re-
spectively. Because of the coupling construction, we have that t2 ≤ t1 . If the
tagged customer has been served in the system 2 by t2, then it is clear that he is
better off in system 2. If he is still in the system 2 at time t2, then we consider
two cases: t1 = t2 (case 1) and t1 > t2 (case 2).

77



Case 1: t1 = t2 with probability θ1
θ2

, i.e. the first announcement occurs at the

same time in both systems, let Y 1(t) and Y 2(t) be the number of customers in
front of the tagged customer at time t, for systems 1 and 2. Because of the
coupling of the service times in the two systems and the fact N2(0) ≤ N1(0),
we have that Y 2(t) ≤ Y 1(t). If ne < Y 2(t), the tagged customer will renege
from the first system almost surely while he will renege from system the second
system if the announcement occurs ( with probability θ1

θ2
) thus the the cost of

the customer at system 1 will be at least as low as the cost in system 2. If
Y 2(t) ≤ ne < Y 1(t) the tagged customer will renege from system 1 but not from
system 2, so his expected net benefit will be better in system 2 (by the definition
of ne). If Y 2(t) ≤ Y 1(t) ≤ ne, then the tagged customer will stay in both systems
but he is better off in system 2 since he will suffer less waiting cost in it. If t1 > t2,
i.e. the first announcement after his arrival at system 2 occurs before the one in
system 1, then for all subcases similar arguments show that the tagged customer
will again be better off in system 2. Therefore, we conclude that the expected
net benefit of the tagged customer in system 2 is greater that the corresponding
expected net benefit in system 1.

We are now in position to prove that the equilibrium join probability is an in-
creasing function of the announcement rate.

Theorem (4.2). : In the M/M/1 queue with independent delayed observations,

the unique equilibrium join probability qe(θ) is a non-decreasing function of the

announcement rate θ. In particular when λ < µ, we have the following cases as

R varies in (0,∞).

Case I: R ≤ C
µ

. Then qe(θ) = 0 for θ ∈ (0,∞).

Case II: C
µ
< R < C

µ−λ . Then,

lim
θ→ 0

(qe(θ)) =
1

λ

(
µ− C

R

)
∈ (0, 1)

and qe(θ) is increasing for θ ∈ (0,∞). Moreover, there exists a θo > 0 such that

qe(θ) < 1 for θ ∈ (0, θo) while qe(θ) = 1 for θ ∈ (0,∞).

Case III: R ≥ c
µ−λ . Then qe(θ) = 1, for θ ∈ (0,∞).

When λ ≥ µ we still have case I as above, but case II corresponds to R > c
µ

,
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while case III does not exist.

Proof. Case I: If the join probability in the system is q∗ = 0 then the utility

function of tagged arriving customer will be

U(ne, 0; θ) =

U(0, 0; θ) when ne = 0

U(ne, 0; θ) when ne > 0
(1.16)

If ne = 0 then as q∗ = 0 the customer will find the system empty but he will

complete his service only if his service completion happens before the announce-

ment of his position. Therefore, U(0, 0; θ) = Rµ
µ+θ
− C

µ+θ
≥ 0 because R ≥ C

µ
.

In case that ne > 0 then Rµ ≥ C. On the other hand, according to hy-

pothesis Rµ ≤ C, so we conclude that ne = 1 ⇐⇒ Rµ = C. Therefore,

U(ne, 0; θ) = U(1, 0; θ) = R − C
µ

= 0. In any case U(ne, 0; θ) ≤ 0 ∀ne ∈ N.

Therefore, in case that U(ne, 0, θ) < 0 then qe = 0 is the unique equilibrium

strategy. If U(ne, 0; θ) = 0 then every q ∈ [0, 1] is best response for the n-tagged

customer but only qe = 0 is an equilibrium strategy. Thus, for every θ ∈ (0,∞),

qe = 0 is the unique equilibrium strategy.

Case III: Let’s suppose that the customers enter the system with probability

q∗ = 1. We know that as θ → 0 the M/M/1 with independent delayed observa-

tions agrees with the model of Edelson and Hildebrand. Therefore,

lim
θ→ 0

U(ne, q∗; θ) = R− C

µ− λq∗
.

Thus, for q∗ = 1

lim
θ→ 0

U(ne, 1; θ) = R− C

µ− λ
≥ 0.

By the previous Lemma we know that U(ne, 1; θ) is an increasing function of θ,

so U(ne, 1; θ) ≥ 0 ∀θ > 0. Therefore, qe = 1 is a symmetric best response for the

n-tagged customer and hence the unique equilibrium strategy.

Case II: As R − C
µ
> 0 then ne > 0. If the join probability is q∗ = 0, then the

n-tagged customer will definitely receive his reward so U(ne, 0; θ) = R − c
µ
> 0

∀θ ∈ (0,∞). Thus, his best response is qe(θ) = 1 which is not an equilibrium

strategy. Regarding the behavior of U for q = 1 we have that

lim
θ→ 0

U(ne, 1; θ) = R− C

µ− λ
< 0.
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On the other hand

lim
θ→ ∞

U(ne, 1; θ)

is the utility function of a customer that joins the system in Naor’s model, there-

fore it is positive. We know that U(ne, 1; θ) is a continuous function of θ. Thus,

there exists θ0 ∈ (0,∞) such that U(ne, 1, θ0) = 0. As U(ne, 1, θ) is an increasing

function of θ, thus we get U(ne, 1, θ) ≥ 0 ∀θ ≥ θ0 and U(ne, 1, θ) < 0 ∀θ < θ0.

For θ > θ0, qe(θ) = 1 is a equilibrium strategy for the n-tagged customer. On the

other hand for θ ∈ (0, θo), U(ne, 1, θ) < 0. Also, U(ne, 0; θ) > 0∀θ ∈ (0, θ0). As

U(ne, q, θ) is continuous in θ there exists a unique root qo such that U(ne, qo; θ) =

0∀θ ∈ (0, θo). As U is decreasing in q and increasing in θ then we get that qo(θ)

is increasing in θ. Therefore, in this case the function qe(θ) is increasing in θ,

starting from limθ→ 0 qe(θ) = 1
λ
µ− C

R
∈ (0, 1) (unobservable model) and reaching

qe(θ) = 1 for θ = θ0 and ∀q > qe is 1.

Proposition 4.6 When the system is centrally controlled and a strategy
(n∗, q) is somehow imposed, the social mean net benefit per time unit is given by

S(n∗, q∗) = λq∗U(n∗, q)
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where

U
(
n∗, q

)
= π0R

1− kn∗1

1− k1

− π0C

µ
(
1− k1

)2

(
n∗k

n∗+1
1 −

(
1 + n∗

)
kn1 ∗+1

)

+ RµΓ
(
k2

)
kn∗1 π0Ψ2,2

[ (
1, 1
)
,
(
θ, µ+ θ)

)(
1, k2

)
,
(
θ, µ+ θ + 1

)
; k3

]

− Γ
(
k2

)
kn∗1 π0C

(
Ψ3,3

[ (
1, 1
)
,
(
1, 1
)
,
(
θ, µ+ θ

)(
1, 0
)
,
(
1, k2

)
,
(
θ, µ+ θ + 1

) ; k3

]

+
(
n∗ + 1

)
Ψ2,2

[ (
1, 1
)
,
(
θ, µ+ θ

)(
1, k2

)
,
(
θ, µ+ θ + 1

) ; k3

])

(1.17)

81



Appendix Mittag-Leffler function

The one-parametric Mittag-Leffler function

Definition. The one-parametric Mittag-Leffler function is defined by the power

series

Ea
(
z
)

=
∞∑
k=0

zk

Γ
(
ak + 1

) , a ∈ C

Theorem.
(
Cauchy-Hadamard theorem for one complex variable z

)
Consider the formal power series in one complex variable z of the form

f(z) =
∞∑
n=0

cn(z − a)n, a, cn ∈ C.

Then the radius of f at the point a is given by

R =
1

lim sup
n→∞

(|cn|
1
n )

or,

R =
1

lim sup
n→∞

(
|Cn|
Cn+1

)

)

Theorem.
(
Cauchy-Hadamard theorem for several complex variables

)
Let a be a multi-index with |a| = a1 + · · ·+ an, then f(x) converges with radius of

convergence ρ (which is also multi-index) if and only if lim|a|→∞

(
|Ca|ρa

) 1
|a|

= 1

to the multidimensional power series∑
a1≥0,a2≥0,...,an≥0

Ca1,...,an
(
z1 − a1

)a1 . . . (zn − an)an
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By using the asymptotic expansion of the book ”Transcendental function”,
page 73 1.18

(
5
)

we get that

Γ(z + α)

Γ(z + β)
= zα−β

[
1 +

z−1(α− β)(α + β − 1)

2
+O(z−2)

]
, thus, according to Cauchy - Hadamard formula for the radius of convergence,
where Ck = 1

Γ(αk+1)

lim sup
n→∞

( |Cn|
|Cn+1|

)
= lim sup

n→∞
(aa+1−1
n )[1+

(a+ 1− 1)(a+ 1− 1− 1)

2an
+O(

1

a2n2
)] ⇐⇒

lim sup
n→∞

( |Cn|
|Cn + 1|

)
= lim sup

n→∞
((an)a)[1 +

(a− 1)

2n
+O(

1

a2n2
)](∗).

In case that Re(a) > 0 then

(∗) = lim sup
n→∞

((an)a)[1 +
(a− 1)

2n
+O(

1

a2n2
)] =∞.

In case that Re(a) < 0 then

(∗) = lim sup
n→∞

((an)a)[1 +
(a− 1)

2n
+O(

1

a2n2
)] = 0.

If Re(a) = 0 it can be proved that the radius of convergence is, e
π|Ima|

2 .

Definition. In complex analysis, an entire function, also called an integral func-

tion, is a complex-valued function that is holomorphic at all finite points over the

whole complex plane.
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Therefore, in case that Re(a) > 0 the Mittag-Leffler function is an entire
function.

For specific values of a, the Mittag-Leffler function is equal to some special func-
tions. For example:

• E0(±z) =
∑∞

k=0(±1)kzk.

• E1(±z) =
∑∞

k=0
±1)kzk

Γ(k+1)
= e±z.

• E2(−z2) =
∑∞

k=0
(−1)kz2k

Γ(2k+1)
= cosz

• E2(z2) =
∑
k = 0∞ z2k

Γ(2k+1)
= coshz

Proposition A more general formula for the function with half-integer pa-
rameter is valid,

Ep/2(z) = F0,p−1

(
1/p, 2/p, ...,

p− 1

p
;
z2

pp

)
+

2
p+1
2 z

p!
√
π
F1,2p−1

(
p+ 2

2p
,
p+ 3

2p
, ...,

3p

2p
;
z2

pp

)
,

where

Fp,q(z) = Fp,q(a1, a2, a3, ..., ap; b1, b2, ..., b1, b2, ..., bq; z) =
∞∑
k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bq)k

zk

k!

the (p,q)-hypergeometric function.

Proposition

The Mittag-Leffler function satisfies the following differential relations :( d
dz

)p
Ep
(
zp
)

= Ep
(
zp
)

∂p

∂zp
Ep/q(z

p/q) = Ep/q(z
p/q) +

∑
k=1 q − 1 z

−kp
q

Γ(1− kp
q

)
, q = 2, 3, ...
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Many important properties of the Mittag-Leffler function follow from its integral
representations. By denoting γ

(
ε, α
)
,
(
ε > 0, 0 < α ≥ π

)
a contour oriented by

non-decreasing argz consisting of the following parts: the ray argz = −a, |z| ≤ ε,
the arc − a ≤ argz ≤ a, |z| = ε, and the ray argz = a, |z| ≥ ε. If 0 < a < π,
then the contour γ(ε; a) divides the complex z-plane into two unbounded parts,
namely G(−)(ε, α) to the left of γ(ε, α) by orientation, and G(+)(ε, α) to the right
of it. In case that, a = π, then the contour consists of the circle |z| = ε and the
twice passable ray −∞ < z ≤ −ε. In both cases the contour γ(ε; a) is called the
Hankel path.
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Proposition Let 0 < a < 2 and πa
2
< β ≤ min

{
π, πa

}
.

Then the Mittag-Leffler function can be represented in the form

Ea(u) =
1

2πai

∫
γ(ε,β)

ez
1
a

z − u
du , u ∈ G−(ε, β)

Ea(u) =
1

a
ez

1
a +

1

2πai

∫
γ(ε,β)

ez
1
a

z − u
du , u ∈ G+(ε, β)

Based on the integral representation of the function there is a relation between the
Mittag-Leffler function and the Fox-Wright function, known as the Euler trans-
form of the Mittag- Leffler function. Let α, ρ, σ ∈ C, γ > 0 and Reα > 0,
Reσ > 0, then the following representation holds:∫ 1

0

xρ−1(1− x)σ−1Ea(tx
γ) dx = Γ(σ)Ψ2,2

[ (
ρ, γ
)
,
(
1, α
)(

1, α
)
,
(
σ + ρ, γ

) ; t

]
,

where Ψ2,2 is a special case of the Fox-Wright function Ψp,q :

Ψ2,2

[ (
ρ, γ
)
,
(
1, α
)(

1, α
)
,
(
σ + ρ, γ

) ;x

]
=
∑∞

k=0
Γ(ρ+γk)Γ(1+k)

Γ(1+αk)Γ(σ+ρ+γk)
xk

k!

The two-parametric Mittag-Leffler function

Definition. The two-parametric Mittag-Leffler function is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
(α, β ∈ C)

and is an entire function for Re(α) > 0

Using the above definition we obtain a number of formulas relating the two-
parametric Mittag-Leffler function to elementary functions:

E1,2(z) =
ez − 1

z

E2,1(z) = cosh
√
z
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E2,2(z) =
sinh
√
z√

z
.

The two parametric Mittag-Leffler function is an entire function and satisfies
the the following differential formulas, The Mittag-Leffler function satisfy the
follownig defferential relations :( d

dz

)p
[zβ−1Ep,β

(
λzp] = zβ−p−1Ep,β−p

(
λzp
)
, (n ∈ N, λ ∈ C)and

( d
dz

)p
[zp−βEp,β

( λ
zp

] =
(−1)pλ

zn+β
Ep,β(

λ

zp
), (z 6= 0;n ∈ N;λ ∈ C)

The integral representation of the two-parametric Mittag-Leffler function is:

Eα,β(u) =
1

2πiα

∫
γ(ε,δ)

ez
1
α z

(1−β)
α

z − u
dz , u ∈ G−(ε, δ)

Eα,β(u) =
1

α
z

(1−β)
α ez

1
α +

1

2πiα

∫
γ(ε,δ)

ez
1
α z

(1−β)
α

z − u
dz , u ∈ G+(ε, δ)

under the condition 0 < α < 2, πα
2
< δ < min(π, πα). The contour γ(ε, δ) consists

of two rays S−δ(argz = −δ, |z| ≥ ε) and Sδ(argz = δ, |z| ≥ ε) and a circular arc
Cδ(0, ε)(|z| = ε,−δ ≤ argz ≤ δ). On its left side there is a region G−(ε, δ) and on
its right side a region G+(ε, δ).
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