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ABSTRACT

We show how entity recognition in Greek legislation texts can be achieved by utilizing a
named entity recognizer (NER). Our work is the first of its kind for the Greek language in
such an extended form and one of the few that examines legal text. We apply grid search
on multiple neural network architectures and combination of hyper-parameters to maxi-
mize the efficiency of our approach. We show that, utilizing a big legal corpus we built
word/token-shape embeddings using Word2Vec, and finally achieve 86% accuracy on av-
erage in recognition of organizations, legal references, geographical landmarks, persons,
geo-political entities (GPEs) and public documents. The evaluation of our methodology is
based on the metrics of precision, recall, f;-score per entity type for each neural network.
Finally, we measure the ratio of correctly guessed links for the interlinking of RDF datasets
produced by our approach with well-known public datasets and how new knowledge can
be inferred indirectly by our approach from DBpedia, ELI (Europeal Legislation Identifier)
and GAG (Greek administrative geography) of Kallikratis.

SUBJECT AREA: Natural Language Processing, Semantic Web, Atrtificial Intelligence

KEYWORDS: Named Entity Recognition and Linking, Legislative Knowledge Represen-
tation, Entity Reference Representation, Linked Open Data, Deep Learning, Entity Gen-
eration






NEPIAHWH

Agixvoupe TTWG N avayvwpion ovioTHTwWV o€ Keipeva EAANVIKNAG vopoBeoiag ptropei va
eMTEUXOEI e TNV Xprion evog avayvwpioT oVOPOoPEéVWY ovToTHTWY (named entity rec-
ognizer, NER). H douA&ia pag ival n TpwTn Tou €id0ug TNG TToU aoXOAEiTal ue TNV €AAN-
VIKA) YAWOoOoa o€ T000 BAB0G Kal pia atrd eAAXIOTEG TTOU JEAETOUV VOMIKO Keiuevo. E@ap-
pMoloupue avalnTnon OIKTUou (grid search) og TTOAQTTAEG APXITEKTOVIKEG VEUPWVIKWYVY Ol-
KTUWV Kal ouvOuaopoug utrep-TrapapéTpwy (hyper-parameters) yia va YeyIOTOTTOINCOUNE
TNV QTTOTE- AEOUATIKOTNTA TNG TIPOCEYYIOAG HOG. AEiXVOUUE OTI, XPNOIMOTTOIWVTOG £Va [E-
YOAO VOUIKO AEEIKO XTiIOOUE EVOWPATWHEVEG/OUMPBOAIKES AéCelg (word/token-shaped em-
beddings) xpn- OIMOTTOILVTAG TO Word2Vec Kal TEAIKA TTETUXAIVOUPE KATA péco 6po 86%
QKPIBEI0 0€ ava- yVWPIOT OPYAVIOUWY, VOUIKWY ava@OpwY, YEWYPAPIKWY TOTTOBECIWY,
avlpwTtTwy, YeEW-TTONITIKWVY ovToTTwV (GPES) kai dnuociwv eyypdpwv. H agioAdynon
NG peBodoAoyiag pag BaciCeTal oTIG PETPIKES TNG akpIBEiag (precision), TNG avakAnong
(recall) ka1 TNG f1 METPIKAG (f1-score) avda TUTTo ovTOTNTAG YIa KABE veupwvikd dikTuo. TE-
AOG, METPAUE TNV avaAoyia Twv cwaoTd TTPORAETTOUEVWY CUVOECHWY Yia TNV diacuvdeon
RDF ocuvoAwv dedouévwy (datasets) Tou TTapdyovTal atrd TNV TTPOCEYYIOT Jag uE GAAQ
YVWOTA OUVOAQ DEQOUEVWV TTOU €XOUV €KDOBEI dNUOCIA KAl TTWG PTTOPOUNE va EEAYOUNE
véa yvwon EUUEca Pe TNV Tpoogyyion pag ato Tnv DBpedia, 1o ELI (Europeal Legislation
Identifier) kai To GAG (Greek administrative geography, EAANVIKR S10IKNTIKR yYewypa@ia)
ToU KaAAIkparn.

OEMATIKH MEPIOXH: Eme¢epyaaia Quoikng MNwooag, ZnuacioAoyikdg lo1ég, Texvnh
Nonuoouvn

AEZEIZ KAEIAIA: Avayvwpion Ovoupacpévwy OvToThATWY Kal 20vdean, AvatrapdoTacn
Nouikng Nvwong, Avarrapdotaon Avagopwyv OvToThTwy, AvoiXTd Zuvoedepéva Aegdo-
Méva, BaBid Mabnon, MNapaywyr OvioTATwy
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2YNONTIKH NMAPOYZIAZH THZ AINAQMATIKHZ EPTAZIAZ

Mpdoata, UTTApXE! EVTOVO eVRIAQEPOV OTNV EVOWNATWON TEXVOAoyIwY Texvntrig Nonuo-
oulvng oTnV TTEPIOXT TNG VOouoBeaiag 6oov agopd Tnv eTTeEEpyaaia KEINEVOU, TNV AvaTTapd-
OTOON YVWONG Kal Tov ouuTtrePacuod. H ere¢epyacia vouikou Kelpévou [1] atroTeAei pia ava-
TITUOOOUEVN EPEUVNTIKN TTEPIOXN, ATTOTEAOUUEVN ATTO EPYATIEC OTTWG VOMIKEG EPWTATTAV-
TAOEIG [2], €Caywyr VOUIKWY OVTOTATWY [3, 4] Kal TTapaywyr VOuIKoU Kelpgévou [5]. To idio
IoXUEI KAl OTNV TTEPIOXH avaTTapAoTAONG VOUIKAG YVWoNG, OTTOU VEEG VOPUEG £XOUV ava-
TITUXO€i Kal apxi¢ouv va UIOBeTOUVTAI BACIOPEVEG OE TEXVOAOYIEG ONUACIOAOYIKOU 10TOU.
2XETIKEG ouveloPopéG eival To European Legislation Identifier (ELI) [6, 7, 8] yia vouoBeaia,
10 European case Law Indentifier (ECLI) [9, 10] yia uttoB£0¢€1G diIkaoTnpiwy, KABWG £TTioNg
ka1 To Legal Knowledge Interchange Format (LKIF) [11, 12] ka1 To LegalRule ML [13, 14]
Y10 KWOIKOTTOINON TIPOXWPENUEVWY VOUIKWY AVAQOpPwWY, OTTWE KAVOVEG Kal vVOpuES. H aka-
ONUAiKA KoIVOTNTA OKOTTEUEI VA AVATITUEEI EPYOAEIa KAl EQaPUOYEG yia va BonBnoel eTTay-
YEAUATIEG VOUIKOUG (TT.X., BIKAOTEG, OIKNyOpoug KTA.) KaBwg eTTiong Kal TToAiTeg. Me Bdon
QUTEG TIG TIPAKTIKEG, N opada pag dnuioupynoe 1o Nomothesi@' [15], pia TAat@dpua TTou
Tpoo@Epel oTov |oTd TNV EAANVIKA vopoBeaia wg ouvdedepéva dedopéva yia va Bondnoel
oTnv uttoBoAr ouvBeTwy epwTrioewv SPARQL Kal 0TV QvATITUEN OXETIKWYV EQAPUOYWV.

Mnyaivovtag éva BAPA TTOPATTEPA KAl TIPOKEINEVOU VA ONPIOUPYROOUKE YIa OUVOEDT], WG
OnNMEIO avaQopdg, ETALU QUTWY TWV OXETIKWY EPEUVNTIKWV TTEPIOXWYV TNG ETTIOTHKNG TWV
0edopEVWYV (TNG ETTECEPYQTIAC PUOIKNG YAWOOOG Kal TOU GNPACIOAOYIKOU I0TOU), avaTITu-
¢aue évav Named Entity Recognizer (NER) kai Linker (NEL) yia Tnv EAAnvIK vouoBe-
oia. [Na 1o TpwTOo £pyo, Ba ouykpivouue Kal atroTiufjoouue state-of-the-art apxITekTovIKEG
veupwvikwv dIKTUwV (RNNSs) yia va avayvwpiooupue Toug TTAPAKATW TUTTOUG OVTOTATWV:
ATOMA, OPYAVIOHOUG, YEWTTONITIKEG OVTOTNTEG, VOUIKEG AVAPOPES, YEWYPAPIKA TOTTWVUUIA
KOl ava@OopES eYypAa®wy Tou dnpoaiou atrd EAANVIKA vopoBeaia. XpnoiuoTroloUpe TOV Ka-
AUTepoO entity recognizer oto dataset Tng EAANVIKAG vopoBeaiag [15] kal TTapdyoupue véa
yvwaorn yia oviotnTeg kwdikoTroinuévng o€ RDF xpnoipgotroiwvtag éva Kavouplo AECIKO.
Aedopévv auTWV TwV TPITTAETWY, Xpnoiyotrolouue hand-crafted kavoveg kal 1o entity
linking epyaAeio Silk [16, 17] Tpokeiyévou va kdvouue normalize Kal va OUVOEOOUE TIG
AVOQOPEG TOU KEIPEVOU TTOU £¢AyoupE e ovTOTNTEG aTTd dnudoia avolxTd datasets (Greek
administrative units and Greek politicians). ETriong, dnuoaoiotroiotue éva véo RDF dataset
yia EAAnVIKG yewypa@ikd TOTTwVUMIA, T OTToIa ouvhBwe eugavifovral o€ vouobeaia oxe-
TIKA YE AOTIKO, AyPOTIKO Kal TTEPIBAAAOVTIKG OXeDIAOUO. O BaCIKEG CUVEICPOPES TTAPABE-
TOVTAIl TTAPOAKATW:

* MeAeToUpEe TO €pyo TNG €EQYWYAG OVOROOPEVWY OVTOTATWY OTnv EAANVIKA Nopo-
Beoia epapuolovTag kal aglohoywvTag state-of-the-art apxITEKTOVIKEG VEUPWVIKWV
OIKTUWV [4], eVL) JEAETAUE KAl PIO KATTWG OUVOETATEPN, TTOU TTNYAiVEI KOAUTEPA ATTO
TIG UTTOAOITTEG £0TW Kal yia Aiyo.

'http://legislation.di.uoa.gr
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* MNapouoidloupe éva karvouplio RDF Ae€iké yia Tnv avatmapdoTaon Kal cuvOeon ava-
QOpPWV Kelgévou oe ovtoTnTeG EAANVIKNAG vouoBeoiag. Ocwpoupe 10 RDF wg éva
MOVO POVTEAO BEBOUEVWYV YIA THV AVATTAPACTACT) JETA-OEDOUEVWV EVOG VOUIKOU KEI-
MEVOU Kal yVWOoNG TTOU KWOIKOTTOIEITAI OTO KEIPEVO.

» Xpnoipotroioupe 10 Nomothesi@ NER, Baciouévo oto kaAutepo povtéAo BILSTM-
BILSTM-LR oTo dataset tng EAANvIkrG vouoBeaiag kai Trapdyouue véa dedouéva
yId QVOQOPEG OVTOTHTWY, TIG OTTOIEG TTEPIYPAPOUNE XpnolpoTrolwvTag 1o véo RDF
AEEIKO.

* 2UVOEOUE TIG avaopés e Ta datasets xpnOIUOTTOIWVTOG TEXVIKEG BACICNEVES O€
Kavoveg Kal To epyaleio Silk.

* [Mpooépoupe dnudoia Eva véo benchmark dataset 276 onueElWPEVWY VOUIKWY KEI-
MEVWYV, TA OTTOIO UTTOPOUV VA ETTAVAXPNCIYOTTOINBOUV YIa va eKTTAIOEUCOUUE Kal VO
doKIuaooupE dIOPOPETIKOUG aAyopiBuoug TTou oxeTiCovtal e named entity recogni-
tion kai linking. Ettiong rpoo@épovtal Trpo-ektraideupéva word embeddings €10IKeU-
péva o€ EAANVIKS VOUIKO KEiuEVO.

* MNapdayouue €va véo dataset EANVIKWY YEWYPAQPIKWY TOTTWVUMIWY Baciouévol oTa
amroteAéopata Tou Nomothesi@ NER e@apudlovrag eupioTikoUg Kavoveg. 2e éva
gPEUVNTIKG project TTou gekivnoe n oudda pag, autd 1o dataset Ba emaugnOei ue
ETMITTAEOV YEWYPAWIKN TTANpo@opia (TT.X., XWPIKEG OXECEIG KAl YEWUETPIES) TWV TO-
TTWVUMIWV TTPOKEINEVOU VA UTTOOTNPIEOUUE JIa UTTNPETIA TTOU Ba TTANPOQOPE TTaY-
YEAUATIEG, OTTWG TOTTOYPAPOUUG MNXAVIKOUG, KABWG Kal ATTAOUG TTONITEG, OXETIKA E
VOPO0BEeTia TTou ava@épeTal o€ €IOIKEG YEWYPAPIKES TTEPIOXES TNG EANGDOG.

» Baoiopévol oTig TrTapatravw dladikaacieg, eTauédvoupe Tn Bdaon yvwong Kai Tig du-
vaToTNTEG TNG TTAATPOPHAS Nomothesi@ pe duo onuavTIKoUg TPOTTOUG: EVTOTTIONOG
VOMIKWV citation dIKTUWV Kal avadrTnon XPenoIYOTIoIWVTAG KPITHPIa Baciopéva o€
ovTOTNTEG.

AuTR n doUuAgId gival n TTpwWTN Tou €idouUg TNGS yIa TNV EAANVIKA YAWOOQ 0€ TOOO EKTETAUEVN
Hop®N Kal pia atrd Aiyeg TTOU avOAUEl VOUIKO KEIMEVO TTARPWGS TOOO YIa TV avayvwpIoT
000 Kal yIa TNV OUVOEDN OVTOTATWV.

Orav eToipaloupe datasets yia NLP extraideuon, xpeldleTal va TTapEXOUUE TTapadeiyuaTa
AECEWV Kal TV TUTTWV TOUG, £€TOI WOTE VA TPOPOOOTACOUNE AUTA TNV TTANPOYOPIa OTO VEU-
PWVIKO OiKTUO. Na va emmITEUXBEI AQUTO, N KOIVOTNTA £XEl AVATITUEEI JEPIKA EPYAAEIa aple-
pwuéva O0TO £€pyo Tou annotation. INa Toug OKOTTOUG Pag, Ba oTidoouue OTO brat (brat
rapid annotation tool) [18]. ApxIkd, €ixe dnuioupynBei wg eTTEKTAON TOU Visualizer annota-
tions keiyévou stav?, éva epyaleio visualization annotations TTou avamTuxBnke amoé Toug
Pontus Stenetorp, Goran Topi¢, Sampo Pyysalo kar Tomoko Ohta (161 tav péAn Tou
epyaoTnpiou Tsujii Tou MavetmioTnuiou Tou Tokyo).

2https://github.com/TsujiiLaboratory/stav
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To brat déxeTal wg €i00d0 £va oUVOAO txt apxeiwv, OTITIKOTTOIWVTAG O€ £va apTio web client.
‘ETTEITA, YTTOPOUUE VA OPICOUHE KAATEIG OVTOTHTWYV Kal TTIBAVWY CUCXETICEWV PJETALU TOUG
WG MOAVEG eTIKETEG eTTIONUEIWONG. INa va TTpogToiydooupe Ta datasets, xpeidleTal povo va
kKdvouue annotate Ta tokens TTou €1MIOUPOUNE VO OWOOUNE PIa OUYKEKPIYEVN ETIKETA. OAn
auTr N TTANPOYOPIa YPAPETAI O€ .ann APXEIa T OTTOIA TTEPIEXOUV YPAUMEG UE TTANPOQOpPIa
OTTWG 0 KWAIKOG Tou annotation, 10 id10 TO Keipevo, TNV KAAON Kai TIG BE€0€EIG apXG-TEAOUG

OTO KEIMEVO.
o brat X
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Ta benchmark datasets yia Ta Teipdpatd pog mepiéxouv 276 GEK atod 1a teuyxn A kar A
Tou EBvikou Tutroypageiou yia Ta £€1n 2000-2017. K&Be Teuxog mTepIExel TTOAATTAG OEK.
To Te0x0¢ A agopd TTPpwWTAPXIKN vouoBeaia TTou dnuoaieletal ammd tnv EAANvIKA KuBép-
vnon (T7.X., VOUOoI, TTpoedpIKA dIaTAYUATA, UTTOUPYIKEG ATTOPACEIG, EYKUKAIOL, KTA.). To TEU-



T6 PERSON 13807 13832 XTAMATHZ KAPMANTZHZ
T7 LOCATION-UNK 75 126 Béon «ouaTtada 2B» Tou ZuvididokTnTou Adooug MAartdavng

T11 GPE 667 691 ANMOKENTPQOMENHZ AIOIKHEHZ
T12 GPE 693 712 MAKEAONIAY - OPAKHZ
T14 LEG-REFS 804 815 v. 998/1979

xnua 3: Napddeiypa evog .ann apxeiou Trou TrapdyeTal amoé To brat.

X0G A a@opd atTOPACEIG OXETIKEG ME AOTIKO, aypoTikd Kal TTEPIBAAAovVTIKSG planning (TT.X.
avadaowOoelG,aTTaAAAOTPIWOEIG, KTA.).

Moipdoape opoiduopga Ta PEK ot training (184, 60%), validation (45, 20%) kai test (47,
20%) datasets wg TTPOG TO TEUXOG Kal £€T0G Xpovidg. ‘ETol, n mlavoTnTa overfitting Adyw
€I0IKWV YAWOOOAOYIKWY 18100UYKPACIWY OTNV YAWOOQ PIag KUBEpvnong f Adyw €I8IKWV
OVTOTHTWYV KAl TTPAKTIKWY eAaxioToTrolgiTal. Kavaue annotate OAa Ta TrTapatmdvw £yypaga
yIO TOUG 6 TUTTOUG OVTOTATWYV TTOU £EETACOUNE, XPNOIUOTTOIWVTAG TO brat.

O Baoikég Aoyog tmou Ta (BI)LSTM (tTou cival pia 1o egeAiypévn poper) RNN SIkTUwv)
xpnoigotrolouvTtal yia NLP €ival n Ikavotntd Toug va xelpifovTal TTANpo@opia TTou aTral-
1€l ammopvnuéveuon kai dopr. NMANBWpPa TTapadsiyudtwy OTTwe Tou Andrej Karpathy® dei-
XVOUV TTOAAEG TETOIEG EQAPMOYES. MepIika TTapadeiyuaTta TTepIAAUBAvOUV EKuAbnon evog
RNN woTte va paBel ayyAiKEG AEEEIC Kal va ypdgel atmd uévo Tou Tunuata Shakespeare,
OouVvTaKTIKEG dopEG atrd Tn Wikipedia, va ypdger IATEX KwOIKA TTOU HETAYAWTTICETAI 1) OKOUO
Kal va ypd@el Kwdika Linux.

EmmAéov, o1 douAciég [3, 4] €xouv deitel TTwg Ta BILSTM povtéAa putropouv va €Qapo-
oToUv o€ cupBoAaia yia TNV e€aywyr XPAoINNG TTAnpogopiag. NMpoocapuolovTag Kal eEe-
NiOOOVTAG QUTEG TIG TEXVIKEG, ATTOOKOTTOUWE VA ETTITUXOUME £CAyWYr TTANPOQOPIAG Kal Ov-
TOTATWYV ATTO £yypapa EAANVIKAG vOouoBeaiag, avauévovTag avtioToixn emruyia Tng d1adi-
Kaoiag. Epeig otnv TTapouca dITTAWPATIKA Ba eEeTAooUUE TIG apXITEKTOVIKEG BILSTM-LR,
BILSTM-LSTM-LR, BILSTM-BILSTM-LR, BILSTM-CRF.

Ag TTapaBéooupue ouvoTtTIKA To workflow Tng TTpoc€yyiong pag yia to Named Entity Recog-
nition TuARua:

1. Maipvoupe Eva ouvolo atro keipeva eEAANVIKAG vouoBeaiag oe PDF format, Ta yeto-
Tpé€TToupe o€ text kal eToiuddoupe Ta OEDOMUEVA ETOI WOTE KABE YPANMN VA TTEPIEXEI
Mia pévo TTpoTaon.

2. Kdavoupe tokenize 1o keipevo €101 woTe KABE token va gival pia Aén. Znueia oTi¢ng
gival etriong tokens (ue TNV €€aipeon TNG OTiENG TTOU XPNOIUOTTOIEITAI O€ CUVTUNOEIG).

3. Kdavoupe ektraideuon Word2Vec ri/kal FastText yia va TTépoupe Ta word embeddings
TTOU €ival aTrapaiTNTa YIa va SIECAYOUE TTEIPAUATA VEUPWVIKWVY OIKTUWV.

4. Kdavoupe xelpokivnta annotate £yypaga eAANVIKNG vouoBeaia Tou EBvikou Tutroypa-
@eiou xpnoiyoTrolwvTag 1o brat* [18] Trpokeiuévou va apxioouus supervised ekTai-

3Acite http://karpathy.github.io/2015/05/21/rmn-effectiveness/
4http://brat.niplab.org/
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deuon.

5. Tpogodotoupe Ta word embeddings padi ue Ta shapes kdbe token yia kabéva atmmoé Ta
4 mrpotevopeva JovTéAa pag kal die¢dyoupe grid search €101 WOTE va ATTOQACICOUE
TNV BEATIOTN TIUA TWV TTAPAUETPWV.

6. ACloAoyoupe TNV €TTIGO0N TWV VEUPWVIKWYV BIKTUWV YIa OAEG TIG TTAPAUETPOUG TTOU
puBuifoupe oTo grid search.

A@ou xpeldletal va dwooupe Ta tokens oTo veupwvikd IKTUO Kal yia TAV EKTTAIOEUON
Word2Vec/FastText, TTPETTElI va KAVOUE tokenize To Keipevo TTou TTaipvouue atrd 10 ap-
XIKO PDF format. Eival TToAU mBavé va ouvaviAocoupe oTign OTTwg BaupaoTikd, TEAEIES,
KOUMOTA KTA., TTOU TTPETTEI XEIPOKIVNTA va dlaxwpIoTouv aTrd TIG AéEEIg TTou BpiokovTal di-
TTAa TouG. lNa va 1o TTETUXOUNE auTO, XTioaue éva ouaTaTikO Tokenizer Tou BaacileTal 010
NLTK®. QoT1600, ETTPETTE VO XEIPIOTOUME XEIPOKIVNTA EIDIKES TIEPITITWOEIG OTTWG Ol TTaPaA-
TTAvVW KaBwg To parsing dEVTPo TTou TTapEXETAl aTTd TN PIBAIOBAKN KAVEI EAAPPWIG dlago-
PETIKO XEIPIOPO TNG OTiENG. ETTITTAéOV, peTaTpémoupe OAA Ta Wyn@ia TTou cuvavTouue o€ “d”,
MIQ JETATPOTTR TTOU €ival ATTAPAITATN YIA EKTTAIOEUON Word2Vec. TEAOG, €ival atrapaitnTo
va Kavoupe normalize kai capitalize 6Aou Tou Keluévou, avTioTolXiCovtag OAEG TIG AYYAIKEG
AEEeic oTnv povadikn AéEn TTou KwdlkoTrolgitTal wg “ENGLISH_WORD?.

E@apudloupe 1o Word2Vec (skip-gram model) [19, 20] o€ évav unlabeled oUvoAo kelpyévwy,
TTOU TTEPIEXEL:

* 150,000 ®EK 1ou EBvikoU Tutroypageiou yia Ta xpovia 1990-2017.

* OAa Ta TPARUOTA vopoBeoiag atd tnv idpuon Tou EAAnvikou ‘EBvoug amd 1o 1821
MEXP!I TO 1990, aBpoifdueva oe trepitrou 50,000.

1,500 dIKAOTIKEG UTTOBETEIG TTOU €XOUV dnpoaoieuTel atrd EAANVIKG AikaoThpia.

* TIG TTEPIOOOTEPEG ZUVONAKEG TNG E.E., EykukAioug kal ATTOQAOCEIG, TTOU €XOUV JETO-
@paoTei ota EAANVIKG Kai dnpooieutei oto EUR-Lex.

* 70 EAANVIKO TpRpa Twv MpakTiKwy Tou EupwTtraikou KoivoBouiou.

Mapayoupe word embeddings 100 diaoTacewy yia £va AegIkO 428,963 AéCewv (TUTTWV),
Baoiouévo o€ 615 ekaToupupia tokens (AéEeig), TTou TrepihauBdavovtal oto unlabelled ou-
VOAO KEIPEVWYV. XpNOIPOTIOINCANE TNV UAOTTOINGN Word2Vec Tou Gensim®, amraitvTag Tou-
Aaxiotov 10 gp@avioeig avd AéEn, ektTaideuon yia 20 €TTOXEG KAl TIPOETTIAEYUEVEG TIG UTTO-
Aoitreg TTapap€Tpoug. AEEEIC eKTOG Ae€IKOU avTioToixnBnkav o€ éva povadikd embedding,
10 “UNK”.

H ekmraidsuon Tou Word2Vec povTéAou éyive og uttohoyioTr pe évav Intel® Xeon® E5-4603
v2, Jia CPU ouyvoértntag of 2.20GHz, pia 10.24 MB L3 cache, pia pvAun RAM cuvoAIKig
pMvAung 128 GB DDR3 1600 MHz kai o€ Asitoupyiko Linux Debian 8.6 (Jessie) x86 64.

Shitp://www.nltk.org
Shttp://radimrehurek.com/gensim/
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ETriong, TreipapatioTAkape ge dnudoia diabEaiya yeVIKEUPEVA Kal TTPO-eKTTAIdEUPEVA word
embeddings 200 diaoTdoswy, Ta otroia éxouv TTapayOei ue To FastText [21]7, éxovTag wg
Baon £va TTOAU PeyaAUTEPO OUVOAO KeIévwyY pe EAANVIKA apBpa Wikipedia. Otrwg Ba dei-
EOUE, TA TTEIPAMPATIKA ATTOTEAECUATA NTAV XEIPOTEPA OE EIBIKEUPEVOUG TUTTOUG OVTOTHTWV
TTOU €¢AyoUUE JE Ta VEUPWVIKA pag OikTua, JAAAoV e€autiag TnNG EAAEIYNG EKTTPOCWTTWY
VOUIKWYV EKPPACEWV O€ YEVIKO KEIPEVO (TT.X., ApBpa wikipedia i vEwv).

XpnoiyoTtroloupe token shape embeddings [4, 22] TTou TTapioTAvouv Ta akOAouBa 7 shapes
Twv tokens:

* token TTOU aTTOTEAEITAI ATTO AAPARNTIKOUG KEQAAQIOUG XAPOAKTHPEGS, TTIOAVWG CUUTTE-

pIAaUBavoNEVWY Kal TEAEIWV ] aTTOOTPOPWV/KABETWY (11.X., “MPOEAPOY”, “M.A.7,
“MA/TO")

* token tToU armroTeAgiTal atTd aAQABRNTIKOUG TTECOUG XOPOAKTAPES, TTOAVWG CUNTTEPI-

AauBavouévwy Kal TEAEIWV | atTooTPOPWV/KABETWYV (TT.X., “VvOuOS”, “v.”, “UTTEp-QOp-
Twon”)

* token pe TOUAGXIOTOV 2 XOPAKTAPEG, TTOU ATTOTEAEITAI ATTO aAQABNTIKA AéEN TTOU &¢-
KIVA JE KepaAaio kal akoAouBeital atrd meoUs XapaKTHPES TOavWs ocuuTTEpIAGUBa-

VOPEVWV Kal TEAEIWV 1 ATTOOTPOPWV/KABETWY (TT.X., “Afpog”, “AvartrA.”)

+ token 1TOU aTTOTEAEiITOI OTTO WNYia TIOAVWSG CUUTTEPIAAUBAVOUEVWY KAl TEAEIWV N
ATTOOTPOPWV/KABETWY (TT.X., “2009”, “12,000”, “1.17)

* aAAayEQ ypaupng

* OTT0100NTTOTE AAAO token TToU TTEPIEXEI HOVO PN aAQAPIOUNTIKOUG XOPAKTAPES (TT.X.,
“.”, “€”)

+ otrolodrroTte AAAo token (1T.x., “10”, “OIK/88/4522", “EU”)

evikd, TO shape (pop@r)) Tou token e¢apTdrtal Ao TNV UTTAPEN KAl OXETIKY B€on aA@a-
BNTIKWYV XapaKTHpwy, yneiwv Kal oTiEéng. AliocbnTikd, auth n TAnpogopia 6a Bondnoel
TO VEUPWVIKO Va BIECAYEI avayvwpIon OVTOTATWY TTIO ATTOTEAEOUATIKA agou divouue word
embedding kal shape yia kdb¢ token.

MeipapaTn{éuevol, KataANEaPe OTO VA PNV EVNUEPWYVOUE Ta TTPO-eKTTAIOEUMEVA word em-
beddings kartd mn @aon g extraideuong, evw Ta shape embeddings Twv tokens d¢gv givai
TTpo-ekTTaIdeupéva. Ta avrioToixa diavuouata shape pabBaivovtal oTn @Aon TNG EKTTAI-
deuong. Xpnoiyotroifoape Glorot apxikotroinon [23], binary cross-entropy atmmwA&Id, Kai
Tov Adam optimizer [24] yia va eKTTAIOEUCOUNE TOUG recognizers, XpNOoIUOTToIWVTaG early
stopping e€etalovTag 10 validation loss. O1 uttep-TrTapaueTpol pubuioTnkav KévovTtag grid-
search ota akOAouBa cUVOAQ TTAPAPETPWY, ETTIAEYOVTAG TIG TINEG PE TO KAAUTEPO Vvalidation
loss: hidden units {100, 150}, batch size {16, 24, 32}, dropout rate {0.4, 0.5}.

https://fasttext.cc
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‘Eva veupwvikd, €I0IKA av €xel TTOAATTAG layers, atroteAcital amd ekatouuupia Tapa-
METPOUG Kal N BeATioTOTTOiNON AWV €ival TTPAKTIKA aduvarrn. EoTIGloupe OTO TTOOOOTO
dropout (dropout gival n agaipeon evog TTOOOCTOU TWV HOVAdWY TOU VEUPWVIKOU Kal ETTA-
VEKTTAIOEUOT] TOUG £TO1 WOTE OAOI Ol VEUPWVEG VA €ival EVEPYOI KAl VA PNV €ival TTPOKATEI-
Anpuévol) kal oto batch size (apiBudg deiypaTwy TToU dIadidETAI OTO VEUPWVIKO, HEYAAES
TIMEG UTTOBNAWVOUV YpNyopdTEPN EKTTAIOEUON OAAG HIKPOTEPN aKpiBEla ouvhBwg). Ta veu-
pwvIKa ektTaideuTnkav yia 30 eToxéc. H extraideuon €yive o€ uttoAoyioTd ye The neural
networks are trained for 30 epochs. Intel® Core™ i5-7600, ye CPU ouxvérnrag 3.50GHz,
6.144 MB L3 cache, ouvoAikfj uvrjun RAM 32 GB DDR4 2400 MHz, uia AORUS GeForce®
GTX 1080 Ti pe 11264 MB pvAun, 3584 CUDA cores kai Asitoupyiké Linux Ubuntu Gnome
16.04.3 LTS (Xenial Xerus) x86 64. Ta Word2Vec embeddings €ival diavuoparta 100 dia-
oTdoswv. To VEUPWVIKO pag xpnaoipotroisi Tnv BIBAI0BrkN TNg Python Keras 2.1.3%, e 10
tensorflow-gpu 1.4.1° wg backend.

MNa kaBeuid atod T 4 peBddoug PeTpcape TNV €1TidOON TNG aKpIBEiag, TNG avakAnong
Kal Tou F; score petpnuéva avd Aégn. Omwg mrpoteivetal oto [3], yia agloAdynon avd
OTOIXEi0, EVVOWVTAG ava OVTOTNTA, MTTOPEI VO TTAPEXEI MIA TTEPICCOTEPO AKPIPN EKTIUNON
TNG €1TiId00NG TNG KABE peBOdOoU. QOTOO0, N CUVOETN CUVTALN TOU VOUIKOU KEIMEVOU KAl El-
OIKA N ohadoTToINCN TTOAAATTAWY OVTOTATWY O€ HEYAAEG PPATEIS (TT.X., “O1 drijpol ABnvwy,
Adevnc-Yuntou kail Bapng-BouAag-BouAiayuévng 6a opyavwoouy [...]7) dev TTapExEl hia
€ekGBapn dlaxwpIon PETALU TwV £MUEPOUS ovToTATWY O (T1.X., Afuog ABNVWY, AfuOg
Adevnc-Yuntou, Afpog Bapng-BouAag-BouAiaypévng), €101 WOTE va PTTOpOoUE va Baaci-
oToupE o€ pia T600 uYnAng Tagng agioAoynorn. O TTapakdTwy Trivakag deEiXVel T ATTOTE-
Aéopata auTthg TNG oudadag TTEIpapdTwy (o1 apiBuoi TTpoEpyovTal gival yéool 6pol atrd 5
EKTENEOEIG TWV TTEIPAPATWV):

MNivakag 1: AkpiBeia (P), AvakAnon (R), kai F| score, yerpnuévwy avd Aéén. O1 KaAUTepeg TIPEG F
yia Ka0g 1010 ovTOTNTAG QaivovTal pe bold.

Entity BILSTM-LR BILSTM-LSTM-LR BILSTM-CRF BILSTM-BILSTM-LR
Type P R F1 P R F1 P R F1 P R F1
Person 089 | 090 | 089 | 089 | 094 | 091 | 088 | 092 | 090 | 0.89 | 093 | 0.91
Organization 077 | 073 | 075 | 077 | 078 | 077 | 072 | 074 | 073 | 078 | 0.77 | 0.78

GPE 0.80 0.87 0.84 0.83 0.89 0.86 0.81 0.86 0.83 0.84 0.90 0.87

GeolLandmark 0.67 0.82 0.73 0.72 0.86 0.78 0.64 0.83 0.72 0.70 0.86 0.77

Legislation Ref. 0.85 0.81 0.83 0.87 0.85 0.86 0.80 0.79 0.80 0.88 0.85 0.86

Public Document 0.81 0.75 0.78 0.85 0.81 0.82 0.72 0.75 0.74 0.84 0.81 0.83

Macro AVG 0.82 0.84 0.83 0.84 0.87 0.86 0.79 0.84 0.81 0.85 0.87 0.86

Ta ammroteAéopaTa gival TTOAU avTaywVvIOTIKA yia OAEG TIG JEBOBOUG TTOU OUuyKpivouue. Ta
KaAUTEpPa atroTeAéouaTta Bacifovral oTa macro-averaged F; TTOU TTPOEPXOVTAl OTTO TO
BILSTM-LSTM-LR kai To BILSTM-BILSTM-LR (0.86), ka1 110U &€ixvel OTI 0 TpooBnikn
emtAéov LSTM chains 1mou BaBaivouv 10 povTéAo, eTTaudvouy TNV aTTOTEAECUATIKOTATA
€0Tw Kal Aiyo, o€ oxéon pe 1a BILSTM-LR (0.83) kai BILSTM-CRF (0.81). H avatrore-
AeopatikoTnTa TnG state-of-the-art NER peB6dou BILSTM-CRF, n otroia doKIUAOTNKE HE

8https://keras.io/

Shttps://www.tensorflow.org/

10AUTS To TTPGRANUA 10X Vel Kai yia Ta |0 kai BIO annotation schemes, Ta oTroia £X0UV £QAPUOCTEN EUPEWG
og sequence labelling £épya.
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OAouG Toug duvaToug CUVOUAOHOUG UTTEP-TTAPANEPTWY, €ival EVTUTTWOIOKK. MoTelouue
0Bevapd o1l autd TO BEPa gival AUECT CUOXETIOUEVO PE TNV TTOAUTTAOKOTNTA TWV QVOQPO-
PWV TWV YEWYPOPIKWY TOTTWVUHIWY, TWV VOUIKWY avVAQOPWY KAl TWV aVOaPOpwY o€ £y-
yPa®a Tou dnuoaciou, €I0IKA O€ TTEPITITWOEIG UE OPADOTTIOINTEIS AVAPOPWY OE OVTOTNTEG.

Mivakag 2: Akpifeia, AvdkAnon kai F; score yia 1o FastText, uerpnuévwyv ava Aéén pe 1o
BILSTM-BILSTM-LR.

Entity Type Precision | Recall | Fi-score
Person 0.89 0.88 0.88
Organization 0.75 0.70 0.72
GPE 0.85 0.78 0.81

GeolLandmark 0.64 0.76 0.70
Legislation Ref. 0.82 0.82 0.82
Public Document 0.77 0.74 0.76
Macro AVG 0.81 0.81 0.81

ATI6 auto 1o onueio, Ba BacioTouue otov BILSTM-BILSTM-LR recognizer yiaTi givail 1o
atrodoTIKOG atrd Tov BILSTM-LSTM-LR katd 1% otnv F; yia opyaviououg (0.78 vs 0.77),
rewTtoAITIkéEG OvToTnTES (0.87 Vs 0.86) kai éyypaga Tou dnuoaciou (0.83 vs 0.82), evw eival
MOVO 1% Xe1pdTEPOG 0€ YeWYPaPIKA TotTwviopia (0.77 vs 0.78). Av AdBoupe uttdyiv pag Ta
YEVIKEUPEVA KAl TTPO-EKTTAIOEUNEVA FastText embeddings avrTi yia Ta €10IKA OTOXEUUEVA O€
VOMIKO KEiPEVO TTOU TTapAyouue, AapBdavoupe €va macro-averaged F; score pe Tipn 0.81
yla TNV KaAuTepn pag puéBodo BILSTM-BILSTM-LR, €181k oTIG TeAeuTaieg 4 KATNYOPIES
OVTOTATWYV, OTTOU N YVWOTIKN TTEPIOXN €XEI TN MEYAAUTEPN onpacia (T1.X., YEWYPOAPIKES
TTANPOPOPIES Kal KWOIKOTTOINON EYYPAPWYV).

Ac¢ TTapaBéooupe ouvoTrTika To workflow Tng TTpooéyyiong pag yia To Named Entity Linking
THAHO:

1. E@apudloupe TeXVIKEG peTa-eTTEEEPYATiag ue hand-written Kavoveg Kal KAVOVIKEG €K-
PPAOCEIG yIa va KAVOUNE normalize Kal va ETTECEPYAOTOUE TIG EEAYOUEVEG OVTOTNTEG
ME OKOTTO TNV TTapaywyn euttapouciacTwy labels.

2. Madi pe Ta labels, TTapdyoupe RDF dedouéva TTou a@opouV TIG OVOUOAOUEVEG OV-
TOTNTEG. XPNOIUES 1810TNTEG TTEPIAAPBAVOUV TO TUNPO TOU apxEiou TTou BpEBnke n
avaopd, Tnv B€on oTo Keiyevo (yia annotation 1I0T00€AidAC) KTA.

3. Alaouvoéoupe MeWTTOAITIKES ovToTNTES, ATOPA KAl VOUIKEG avapopEg Ye Ta datasets
Kallikratis (GAG), Dbpedia persons kai ELI, avtioToixa, XpnoIJOTTOILVTAG TO £PYa-
Agio Silk. ETitTAéov, TTapdyeTal Eva evoidueoo dataset ammoteAOUPEVO aTTO owl : sameAs
TPITTAETEG.

4. Mapayoupe xeipokivnTa éva dataset ToTmwvudiwy TTou cuvHBWG avagEPOVTal O€ VO-
MOBeTia OXETIKA YE AOTIKO, aypoTIKO Kal TTEPIBAAAOVTIKG planning kal, Baci{Ouevol
O€ €UPIOTIKOUG KAVOVEG KAl OXETIKH) B€0N TWV OVTOTHTWY PECA OTO KEIPEVO, Ta Ola-
ouvdéoupe pe oxéoelg belongs_to oTig avTioToIXEG [TEWTTONITIKEG OVTOTNTEG.



To TpwTo BrPa yia TNV ocuvdeon avagopwv (atro Tov Named Entity Recognizer) o€ ov-
TOTNTEG TTOU €CAYOUUE PE TIG OVTOTNTEG TTOU TTEPIYPAPOVTAI OTA dNUOCIa avolkTd datasets
gival va avatrapacTiiOoOUE auTéG TIG ava@opés XpnolpotroiwvTag To RDF specification.
To vouIKO Keiuevo evOg yypAa@ou TTEPIEXEI UTTOBIAIPETEIG (THNHATA ETTIMEPOUG VOUWY) TTOU
opifoupe wg LegalResourceSubdivisions pe Bdaon tnv ovroAoyia Tng EAANVIKAG vouoBe-
oiag. AQou KATToIEG UTTODIAIPETEIG TTEPIEXOUV KEIPEVO, €ival €TTIONG TTIBAVO va TTEPIEXOUV
(has_reference to) pia Avagopd o€ pia oviotnta (11.X., £va TUANA VOUOU TTOU avo@EpETal
o€ TpoTToTroinon vopou). Auti n avagopd ugioTartal o€ éva dIAoTNUA XapaKTApwyv. Me
AAANa AOYIa, EeKIVa Kal TEAEIWVEI OE 1A CUYKEKPIYEVN aKOAoUBia XapaKkTipwy YEoa OTO
Keipevo Tng utrodiaipeong. Autrh n Avagopd moavwg ava@épetal (1 We GAAa Adyia gival
relevant _for) o€ pia ovidTNTA, N OTT0ia HAAAOV TTEPIYPAPETAI O€ aVOoIKTG dnuooia datasets.
2UVETTWG, éva LegalResourceSubdivision TTePIEXEI AVOPOPEG O€ ATOUA, OIOIKNTIKEG HOVA-
OEG KAl VOUIKOUG TTOPOUG (TT.X., VOUOUG, ATTOPACEIG KTA.).

xsd:int nomothesia: Reference - comothesia:
— e e _ starts/ends Y has_reference
I AdministrativeUnit | 3
——————————— CD
= LegalResourceSubdivision
=
LegalResource I~
o
T — — — ' _
I Person ]——D Thing
I_ — = R "
ia: i dbpedia: | " gag:
nomothesia: eli: o p - I gag

ZxAua 4: RDF A£§IKO VOUIKWYV aVO@QOPWV O€ KEIPEVO.

2UVOECANE VOUIKEG AQVAPOPEG PE VOUIKA Eyypaga TTou TTapéxovtal atro 1o dataset EAAnvi-
K¢ vopoBeoiag''. BaoioTrkaye o€ EUPIOTIKOUG KAVOVEG YIa VO EPUNVEUCOUUE ATTEUBEIG
T0 OXETIKO URI gvToTTiovTag Tov TUTTO, £TOG dNUOCicuong Kal TOV OEIPIAKO aplBuo.

2UuvOEoaue ava@opég o€ TTPOoWTTA e 'EAANVES TTONITIKOUG TTou £¢dyoupe atro 1o dataset
¢ EAAnvikri¢ DBpedia’ kai ava@opég o€ yeWTTONITIKEG OVTOTNTEG WE TIC EAANVIKEG BIOIKN-
TIKEG HOVADEG, OTTWG TTEPIYpAgovTal oTo dataset Greek Administrative Geography (GAG).
AlaouvdEoupe Kal TOUG dUO TUTTOUG OVTOTHTWY UE Ta avTioTolixa datasets XpnoiyoTTolwv-
TaG 10 epyaAeio Silk. MNeipapaTiIoTAKAPE PE DUO BIAPOPETIKEG UETPIKEG OUVOEONG KEIUEVOU:
Tnv atréoTtacn Levenshtein kal Tnv améotacn Substring [25] €1Ti Twv TINWV rdfs:label
oT0 ekdoToTe dataset. ZXETIKA Pe TNV TTEPITITWON TwV EAANVIKWY AloiknTikwv Movadwy,
Oivoupe €1TionNg TOV TUTTO TWV JIOIKNTIKWY PJOVAdWV (TT.X., TOTTIKA KolvoTnTd, OrUOg, TTE-

" Anuooisupévo oTo http://legislation.di.uoa.gr/legislation.n3.
2http://el.dbpedia.org/
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pIPEPEIN, KTA.) Baoiopévol OTIG OUPPBAOEIS OVOUATWY TTOU TTpocdlopicape oTo validation
TMARua Tou labeled dataset.

MNa k&dBe péBodo dilaouvdeong TTou OOKINACAUE, EETACOUNE TNV ATTOBOTIKOTATA TG dla-
ouvdeong og Opoug akpifeiag, avakAnong Kai Tou Fy score uerpnuévou yia KGO feuyapl
ovrornTwv oTo test TuRua Tou labeled dataset. E&w, Ta true positives (TP) gival avago-
PEG TTOU €XOUV avTIOTOIXNOEI CWOTA PE Pia ovToTnTa aTTd KABE oUVOAO, Ta false positives
(FP) eivalr ava@opég TTou £Xouv avTioTolXnBei AdBog pe ovidTnTEG, KaI Ta false negatives
(FN) gival avagopég TTou AavBaopéva dev avTIoToIXHONKAV PE KATTOIA OXETIKY OvTOTNTA.
PuBpiocape 10 atT0deKTO QPAYHA AVOXNS Kal yia TIG U0 TTpooeyyioelg ouvdeong oTo val-
idation TpuAua Twv datasets, evw Ta {euydpia OVTOTATWY TTOU TTAPOUCIAOVTAI Eival auTd
TTOU UTTApXOouV OTO test TuAua.

Ferson’ EE E
Vrdfs:label Urdfsdabel
Path (Source) [Person substring EE] Fath (Saurce) GPE Substring EE)

Required Required
Threshold 0.2 Threshold 0.2

=
3
B —g e |
weightt ] weight [1
|
|

granularity 3

granularity 3

I

Substring (Compare) |

SubString (Compare)

Wrdfs:label
Jrdfs:label

Path (Target)

Path (Targat)

Zyxnua 5: H diadikacia diaocuvdeong oTo Silk yia dropa kai GPEs.

H ouvdeon atopwyv fTav yeydAn TpdkAnon yia 10 cUCTAPA PAG, KUPIWG YIOTi Ol VOUIKOI
Kal To EBvikG Tutroypageio Teivel va ava@EpeTal o€ TTPOOWTTA JE AKPWVUMPIO OTO MIKPO
ovopa ( 1.X., A. ToitTrpag), eTouévwg éva PEYAAO GUVOAO ava@opwy 0€ ATOUA £XEI YiVEl
misclassified (akpiBeia: 0.71) yia GTOPA PE TO iBI0 ETTWVUMO. ZUVOECAUE ETTITUXWG YEWTTO-
NITIKEG OvTOTNTEG HE EAANVIKES BIOIKNTIKEG HOVAdeS (F1: 0.92). ZuvavTioape PIKpd BEuarta
OXETIKA PE TOV DIAXWPIOUO MOCEPEVWV ava@opwV TTOANATTAWY BIoIKNTIKWVY Jovadwy. Ta
QATTOTEAEOUATA TWV VOUIKWYV avagopwy gival aplota (£7: 0.98), evw £va TTOAU pIkpd oUvoAo
EYYPAQWYV ouvdEONKav AaBog AGyw Tou OTI UTTOUPYIKEG ATTOPACEIG OEV £XOUV HIa KaBo-
AIKA KwdikoTtroinon (oUTe KATTOI0 TTPOTUTTO ava@opdg), oTToTE dIAPEPOUV OTTO UTTOUPYEIO
o€ UTTOoUpYEio.

Mivakag 3: Akpifeia (P), AvakAnon (R), kai /) score, perpnuévwy avd {guydpl ovroTHTwy.

metrics linking technique
Entity rules levenshtein Substring
Type P R F1 P R F1 P R F1
Person - - - 0.99 | 0.55]0.71 | 0.90 | 0.68 | 0.77
GPE - - - 0.99 | 0.79 | 0.88 | 0.95 | 0.92 | 0.94
Legislation Ref | 0.99 | 0.97 | 0.98 - - - - - -

Ta EAANVIKG yewypa@IKA TOTTWVUMIA gival éva JeYAAO aTOU TOU VOUIKOU recognizer agou
oxeTiCovTal e planning Kal apxXITEKTOVIKG cup@épovTa. QoTO00, dev UTTAPXEI TETOIO dataset



OnNUOOIa yIa va OIACUVOECOUE TIG AVAPOPES TOU KEIMEVOU PE TTPAYUATIKEG OVTOTNTES. ETTO-
MéVwg, TTapdyoupue éva véo dataset epappolovTag YAWOGOAOYIKEG EUPIOTIKEG YIa va On-
MIOUPYNOOUNE éva OUVOAO HOVASIKWY TOTTWVUHIWY, TTapAdyovTag TRV OVTOAoyia TTou @ai-
VETQI TTAPAKATW:

L rdfs:label -
Local District Landmark xsd:string

Beach ag:belongs to F "= T "= = =.
9ag 95 P Administrative Unit I
Lo s o ot ot o e o

Farm Area

Local Road Road Turn
—_—— . — . "
landmarks: | | 92g:

ZyxAua 6: RDF Ae§iko6 Mewypagikwyv ToTrwvupiwy.

‘Etreima, dlacuvdioupue To véo dataset pe TIg EAANVIKEG BIOIKNTIKEG JOVADEG O€ TTEPITITWON
TTOU UTTApXEl oxéon peTagu Toug (belongs to) TTou TTPOKUTITOUV OTO KEipevo (1T.X., “H TTO-
paAia KaBoupi atov Afpo Bdapng-BouAag-Bouhiayuévng.”).

EmmimtAéov duvatoTnTa TTOU TTOPEXEI TO EPYOAAEIO TTOU avaTITULaPE €ival n duvaTtoTnTa va
MTTOPEI évag eTTayyeEAPATIOG VOUIKOG va €¢ayel citation dikTua XTiIopéva yUpw atrod éva vo-
MIKO €yypa@o TO OTToi0 TTIOAVWG TTEPIAANPBAVEI avaPOoPES 0€ AAAA VOUIKA £yypaga:

LAW
1989/1850

P.D.
2009/189

LAW
2010/3852

....... —>

PD. S
2012/85

dites —mm . LAW PD.
1985/1558 1980/601
has reference —

IxAua 7: Aiktuo citations Baoiopévo og citations kai ava@opég yopw atmréd 1o MNpoedpikd Aidrayua
2013/5.



TéNoG, TTapéxoupe TN duvaToTNTA UTTOROAAGS EpWTACEWY oToVv RDF ypd@®o TToU TTPOKUTITEL.
Mapakdtwyv BAETTOUPE DUO EVOEIKTIKEG EPWTACEIG 0€ PUOIKN YAwooa kal oe SPARQL:

Mivakag 4: EpwtAO£IG BACICHEVEG € OVTOTNTEG.

Q1: Eméorpewe TPAEEEIS VOUIKWY EYYPAPWY TTOU aQVAPEPOVTAI OE TOTTIKES KOIVOTNTEG,
TTOU QVHKOUV OTNV TTEPIQPEPEIAKN evoTnTa AGpioodag.

ActID Local District
SELECT DISTINCT —_— —_
?act_id ?local_district_name Dec. 2015/1882 “RIGEOU”
WHERE { Dec. 2015/1827/109821 “ROUMANI"
?act eli:local_id ?act_id.
?act legthas_reference 2reference. Dec. 2015/1629/99573 LIKOVOUNI ST. CHARALAMPOU
?reference eli:relevant_for ?local_district. Dec. 2013/1002/65288 “KLARAKI”
?local_district rdfs:label ?local_distri .
ocal_district rdfs:label ?local_district_name. | 0 o15/1154/74937 “PALIOMANDRIA ST. CHARALAMPOU"

?local_district a landmark:LocalDistrict.
?local_district leg:belongs_to ?regional_unit.
?regional_unit rdfs:label

"REGIONAL UNIT OF LARISSA"@en.

} LIMIT 5

Q2: Eméotpewe mMPAEEIS VOUIKWY EYYPAPWY TTOU TTEPIEXOUV avaPOpPES OE AToUd
mou yevvribnkav otnv Abnva.

ActID Local District
SELECT DISTINCT Dec. 2014/16591/943 “KIRIAKOS K. MITSOTAKIS”
?act_id 7person_name P.D. 2002/73 “KONSTANTINOS STEFANOPOULOS”
v,_\,/:j’:“E:,ica, id 2act id. Dec. 2011/23564 “LOUKAS PAPADIMOS"
?act leg:has_reference ?reference. Dec. 2015/Y58 “ALEXIS TSIPRAS”
Preference elirelevant_for Zperson. Dec. 2009/1059423 “GIANNIS PAPATHANASIOU”

?person rdfs:label ?person_name.
?person dbpedia:birthplace ?birthplace.
?birthplace rdfs:label "Athens”@en.

} LIMIT 5

2UVOAIKA, avatrTugape, dokiydoaue Kal agloAoyioaue éva ouoTaTtiko yia Named Entity
Recognition kai éva yia Named Entity Linking, epapuoopéva otnv eAAnvikr vouoBeaia.
H EAAnvIKA yYAwooa atroteAei TTpokAnon yia NLP epyaacieg, evw o emTpooBeTog 86puiog
a1ro €EWTEPIKES TTNYES (APOU TO apXIKO GUVOAO KEINEVWYV TwV eyypa@wy gival diaBéaiyo
povo oge PDF format) pag édwoe pia evdlagépouaa TTPOKANCN YIa VO AVTIMETWTTIOOUE.

Ooov agopd 1o NER cuoTarikd, aglohoyfoape OAeg Ti¢ TrTapatrdvw LSTM pebddoucg ato
¢pyo Tou Named Entity Recognition o€ éva dataset EAANVIKG vouoBeaiag, To otroio dnuo-
OIEUOAE YIa TTEPAITEPW akadnuaikr €peuva. H diadikaoia gixe peyadAn didpkeia Kai ATav
OUOKOAN, KaBwg EtTpeTte va petaTpéwouue Ta PDF apyeia oe TXT format, va ta emme€ep-
YOOTOUME WOTE va gival 0€ JOoPpPR KATAAANAN yia eKTTAIOEUON, VO KAVOUME XEIpoKivnTa
annotate €va UTTOOUVOAO TwWV eyypd@wy yia va TTapdyoupe Ta test, train kal validation
TMARUOTA Tou dataset pag, TpoToU PTTOPECOUNE va dIECAYOUE Ta TTEIpAUATd pag. OTTwg
AVOQEPAME KOl TTAPATTAVW, TA TTEIPAPATA PAG €DEIEAV PEPIKA EVOIAQEPOVTA KAl OKOPA KAl
ammpOouEVa EUPrUATA.

Ooov agopd 1o NEL cuoTaTtikd, agloAoyAoape TRV oUVOEC OVTOTATWY HETALU aAVOPOPWYV
KEIMEVOU Kal OVTOTATWY a1t avoixta datasets atrd tpitous. H ammoktnon ocuvoéopwy gival
ONMAVTIKI KABWG UTTOPOUNE £TCI VO CUUTTANPUWOOUNE TTANPOPOPIEC OVTOTATWYV TTOU £EA-
YOUE OTTO TO KEIPMEVO HE TIG AVTIOTOIXEG OVTOTNTEG TTOU TaAIPIAJOUV OTA YVWOTA datasets.



TENOG, TTAPOUCIACANE KOl EQAPUOCAUE £VA KAIVOUPIO AEEIKO yIa TNV avaTTapdoTacn ava-
PopwWV KelHEvou Kal TTapdyoupe €va véo dataset yia EAANVIKG yewypa@ikd TOTTwVUUIA.
OT11Ww¢ €€nynoape Kal TTapatmavw, aypoTIKAR/apXITEKTOVIKR TTAnpo@opia autou Tou €idoug
Oev £xel e¢axOei ToTE o€ KATTOI0 dataset, eTTouévwGg gival JIa GNPAVTIKI CUVEICQOPA aPoU
MOG TTpoOo@EPEl APOovVES dUVATOTNTEG.

Ta peAAovTIKG pag oxedia TrepIAauBavouy TTepaITEPw TTEIPAUATIOUOS €TTi TwvV LSTM pebo-
dwv xpnoiyotroiwvTtag word embeddings TTou £xouv ekTTaIdeUBEi e Tov aAyopiBuo Fast-
Text, To otr0i0 AauBavel UTTOWIV Tou TTANpoopia sub-words. MioTevoupe 611 Ba RTAV WEPE-
Ao pe Baon 10 yeyovog o1 n EAANVIKA YAwooa TTepI€xel TTOAAEG KAIOEIG O€ €VIKO Kal
TTANBUVTIKO, TTTWOEIG (OVOUAOTIKY, UTTOTAKTIKA, YEVIKN, TTPOOTAKTIKA), Kal yévn. INa Toug
idloug Adyoug, OKOTTEUOUE ETTIONG VO QVTIKATOOTACOUME Ta shapes Twv embeddings pe
éva duvapikd RNN r; CNN eTTITTédou XapakTipwy, yid va EVOWUATWOOUUE TTANpopopia
OXETIKA PE Ta shapes Twv tokens, TTPoBEuaTa, KATAAAEEIG, OTTWG TTEPIYPAPETAI ATTO TOUG
Ma ka1 Hovy [26]. Etriong, éva RNN ; CNN povTéAo eTITTéDoU XapaKThipa Ba eEETAOTEN WG
eVOAQKTIKN PEBOBOG (Biadikaoia) yia Tn oUvOECT OVTOTATWV.

Mia GAANn evdla@épouca TOavr KateuBuvon PEANOVTIKAG Epeuvag gival N papuoyr evog
TEPICTOTEPO TTEPITTAOKOU annotation format pe TTAouaidTepa auvoAa atro labels, Bacioué-
vou OTIG apxéG Twv BIO tags, pokeiyévou va AUocoupe 1o TTPOBANUA TNG oUVBETOTNTAG
TOU VOUIKOU Kelpévou. ETTiong, €mBOUPOUE va eEAYOUNE (AVaYVWPIOOUWE) TTEPIOCCOTEPN
YEWXWPIKA TTANpo@opia OTTwG CUVTETAYUEVEG, TTOU TTapoucidlovTal o€ TTiVAKES, 1 €€a-
YWY CUOXETIOEWV PETAEW TOTTWVUMIWV TTPOKEINEVOU VO ETTAUEACOUUE TNV TTANPO®opia
TToU £XoupuE O0TO VEO dataset TTou TTOPAYOUE.






LIST OF PUBLICATIONS

[1] P. Liakos, I. Angelidis, and A. Delis, “Cooperative routing and scheduling of an electric vehi-
cle fleet managing dynamic customer requests,” in On the Move to Meaningful Internet Sys-
tems: OTM 2016 Conferences - Confederated International Conferences: CooplS, C&TC, and
ODBASE 2016, Rhodes, Greece, October 24-28, 2016, Proceedings (C. Debruyne, H. Panetto,
R. Meersman, T. S. Dillon, eva Kihn, D. O’Sullivan, and C. A. Ardagna, eds.), vol. 10033 of
Lecture Notes in Computer Science, pp. 118-135, 2016.






CONTENTS

Preface . . . . . . . . . e 41
. INTRODUCTION . . . . . . . . e e 43
. BACKGROUND AND RELATEDWORK . . . . .. ... ... ... ....... 45

2.1 Machine Learning and Neural Networks . . . . . . . . ... ... ... .. 45

211 Historyofneuralnetworks . . . . . ... ... ... L. 45
2.1.1.1 Local Search and Perceptron . . . . . .. ... ... .... 45
2.1.1.2 The Boltzmann machine and Al Winter . . . . . ... ... 45
2.1.1.3 The XOR problem and multi-layer neural networks . . . . . 46
2.1.1.4 Stochastic GradientDescent . . . . ... ... ... .... 47
2.1.1.5 The Backpropagation algorithrm . . . . . . ... ... ... 48
2.1.1.6 Convolutional Neural Networks . . . . .. ... ... .... 48
21.1.7 Unsupervised Learning . . . .. ... .. .. ... ..... 49
2.1.1.8 Time-Delay Neural Networks . . . . ... ... ....... 50
21.1.9 Recurrent Neural Networks . . . . .. .. .. ... ..... 50
2.1.1.10 Long Short-Term Memory Neural Networks . . . . . . . .. 52
21111 BILSTM . . . . . 54
2.1.1.12 Second Al Winter and Support Vector Machines . . . . . . 54
2.1.1.13 The comeback of Deep Learning . . . . . .. .. ... ... 55
2.1.1.14 Activation functions and Dropout . . . . . .. .. ... ... 57

21.2 LinearClassifiers . . . . . . .. . .. .. . ... .. 58
2.1.2.1 LogisticRegression . . . ... ... ... .......... 58
2.1.2.2 Conditional Random Fields . . . . ... ... ... ..... 59

2.1.3 Feature representation forNLPtasks . . . ... ... ... ..... 59
21.3.1 One-hotvectors . ... ... ... ... .. ......... 59
2132 TExIDF . . . . . . 60

2.1.3.3 Pointwise mutual information . . . . . . ... ... ... .. 60



2134 WordEmbeddings . . . ... .. ... ... ... .. ..., 60

21341 Word2Vec . .. .. ... .. ... ... 60

2.1.3.4.1.1 Continuous bag of words and Skip-gram . 62

21342 FastText . .. .. ... ... ... .. ....... 63

21343 GloVe. . . ... ... . ... 64

2.2 Semantic Web and LinkedData. . . . . . ... ............... 64
221 The RDFmodelandOWL . .. .. ... ... .. ... .. ...... 64
222 LinkedData. ... .. ... ... .. ... ... 65
2.2.3 Linkingrelatedwork . . . .. ... ... ... .. ... ... .. ... 66

2.3 Evaluationmetrics . . . .. ... ... ... 67
. TASKDEFINITION . . . . . . . . . . e, 69
3.1 Entity extractioninlegaltext . . . . ... ... ... ... .. ....... 69
311 Classes . . . . . . . . . .. 70
3.1.2 Annotationanddatasets. . . . . ... ... ... ... ... ... 71

3.2 Public open datasetstolink . . . . . .. ... .. ... ........... 73
3.21 GAG -Kallikratis . . ... ... ... ... .. ... ........ 73
3.2.2 DBpediaPersons . . . .. ... ... ... ... .. ... ..., 73
3.2.3 ELI-Nomothesi@ .. ... ... ... ... ... ... ....... 73

. NER EXPERIMENTS . . . .. .. . . . . . . e 75
41 NER state-of-the-art . . ... ... ... ... ... ... ... 75
42 Workflow . . . . . . . .. e 75
4.2.1 Extracting entities from a document (workflow example) . . . . . . . 76

4.3 Word Embeddings . . . ... ... ... ... ... ... .. 78
431 Word2Vec Training . . . . . . . . . . . . e 78
4.3.2 FastText experimentation . . .. ... .. ... ... ......... 79

44 Token Shape Embeddings . . . . . . . ... ... ... ... ........ 80
45 POStagembeddings . . . . . .. ... ... ... .. ... ... ..., 80
4.6 BILSTM-based architectures . . . . . ... ... ... ... ........ 80
46.1 BILSTM-LR . . . . . . . . e 81

46.2 BILSTM-LSTM-LR . . . . . . . .. 82



46.3 BILSTM-BILSTM-LR . . . . . . . . ... 82

46.4 BILSTM-CRF . . . . . . . .. . 83

4.7 Hyper-parametertuning . . . . . . . ... ... Lo 85

4.8 Evaluation . .. ... ... ... ... 85

5. LINKING EXPERIMENTS . . . . . . . . . . .. ... . .. . . . . ... 87

51 Workflow . . . . . . . . . 87

5.1.1 Extracting entities from a document (workflow example) . . . . . .. 87

5.2 Textual entity referencesvocabulary . . . ... ... ... ... ..... 88

5.3 Using Silk and heuristics to generate owl:sameAs links . . . . . . . .. 89

5.4 Evaluation . . .. ... ... ... 90

5.5 Greek geographical landmarks dataset generation . . . . . .. .. ... 91

6. DEMONSTRATING THE NER/NEL’S FUNCTIONALITY . . ... ... ..... 93
6.1 Querying the augmented Greek legislation and Greek geographical

landmarks datasets . . . . . . ... .. ... 93

6.1.1 Legislation citation networks . . . . .. . ... 0oL 93

6.1.2 Entity-basedsearch . . .. ... ... ... ... ... ... 93

7. CONCLUSION AND FUTUREWORK . . . . . . . ... ... . ... ... .... 95

ABBREVIATIONS - ACRONYMS . . . . . . . . .. . . . . .. 97

REFERENCES . . . . . . . . . 105






Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:

Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24
Figure 25:

Figure 26:

LIST OF FIGURES

Ommkotroinonotobrat. . . . . . . . ... oo o 19
ToworkflowToubrat. . . ... ... ... ... ... ... 19
Mapadeypa evog .ann apxeiou TTou Trapdyetalamo o brat. . . . . 20
RDF Ae€IKO VOUIKWY QVAQOPWY O€ KEIMEVO. . . . . . . . . . . . .. 25
H diadikacia diacuvdeong oTo Silk yia dtopa kat GPEs. . . . . . . 26
RDF Ae€IkoO MNewypa@ikwyv TOTTWVUMIWY. . . . . . . .. ... .. .. 27
AikTuo citations Baoiopévo og citations kal ava@opés yupw atrod

10 Mpoedpikd AldTayua 2013/5. . . . . . . . . . .. ... ... ... 27
The limitations of Perceptrons. . . . . . ... ... ... ...... 46
Stochastic GradientDescent. . . . . . . ... ... ... ...... 47
An autoencoder neuralnet. . . . . .. .. ... ... L. 49
A time delay neural network (TDNN). . . . . ... ... ... ... 51
Backpropagation throughtime. . . . . . . .. ... ... ... ... 52
Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. “On the

difficulty of training recurrent neural networks.” . . . . . . ... .. 53
A Long Short-Term Memorycell. . . . . ... ... ... ... ... 53
LSTM and BILSTM chains comparison. . . . . .. ... ... ... 54
SVM maximum-margin hyper-plane and margins. . . . .. .. .. 55
SVM optimization. . . . . .. .. ... 56
Layerwise pre-trainingfor RBM. . . . .. .. ... ... ...... 57
Activation functions. . . . . . ... Lo 58
TExIDF example. . . . . . . . . . ... 61
Generic Word2Vec architecture. . . . . . .. ... ... ... ... 62
Vector representationsofwords. . . . .. ... .. ... ... ... 63
CBOW vs Skip-gram. . . . . .. ... ... ... . 64
Agraphof RDFdata. . .. ... ... ... ............. 65
Precision and Recall visually. . . . . .. ... .. ... .. ..... 68
Parsing tree of an english sentence. . . . . . ... ... ... ... 70



Figure 27:
Figure 28:
Figure 29:

Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:

Figure 37:
Figure 38:
Figure 39:
Figure 40:

Figure 41:

Visualizationinbrat. . . . . .. ... .. ... ... ... ... 71
brattsworkflow. . . . . .. .. 72
A .ann file example produced by brat. . . . .. ... ... ... .. 72
NERworkflow. . . . . .. . ... .. ... .. 76
PDF to TXT conversion. . . . . . . . . . . .. ... .. ....... 77
Annotating a documentwithbrat. . . . . . .. ... ... ... .. 77
ABILSTM-LRmodel. . . ... ... ... ... ... ... ..... 81
ABILSTM-LSTM-LR model. . . . . .. ... .. ... .. ..... 82
ABILSTM-BILSTM-LR model. . . . .. .. .. .. ... ...... 83
ABILSTM-CRFmodel. . ... ... ... ... . .......... 84
Linkingworkflow. . . . . . . ... ... 88
Textual Reference RDF Vocabulary. . . . . . ... ... ... ... 89
The interlinking process in Silk for persons and GPEs. . . . . . .. 90
Geographical Landmark RDF vocabulary. . . . . .. ... ... .. 91
Citationnetwork. . . . . . . . . . . ... 93



LIST OF TABLES

Table 1: AkpiBeia (P), AvakAnon (R), kal F; score, uetpnuévwy ava Aéén. . . 23
Table 2: AkpiBela, AvakAnon kai F; score yia 1o FastText, ueronuévwy ava

Aéén pye 10 BILSTM-BILSTM-LR. . . . . . . ... .. ... .. .... 24
Table 3: AkpiBeia (P), AvakAnon (R), kai £} score, uerpnuévwy ava {euyapl

OVIOTATWV. . .« v i i i e e e e e e e e e e e e e e e e s e 26
Table 4: EpwTACEIC BAOCIOUEVEG OE OVTOTATEG. . . . . o v v v o v e e e e e 28
Table 5: Precision (P), Recall (R), and F} score, measured per token. . . . . 86
Table 6: Precision, Recall, and F; score for FastText, measured per token

with BILSTM-BILSTM-LR. . . . . . . .. .. ... ... ... .... 86
Table 7: Precision (P), Recall (R), and F} score, measured per entity pair. . 90

Table 8: Entity-based queries. . . . . . .. ... o L oL oL 94






PREFACE

The present thesis is part of the requirements for the acquisition of a Master’s degree in
the Department of Informatics and Telecommunications of the National and Kapodistrian
University of Athens. The main goal is to provide a way to extract (semi-)automatically
entities from Greek legislation, encode using the RDF specification and then linking them
to well-known datasets which contain additional information about these entities. For in-
stance, we can link the extracted entity “Municipality of Athens” found in a passage of a
legal document containing a presidential decree with the “Municipality of Athens” found in
the GAG (Greek administrative geography) dataset'®, gaining additional information such
as the coordinates of its geometry, population status etc.

Extracting entities from legal documents and linking them is particularly useful, since this
augments the potential of information extraction in Greek legal documents. Since our en-
tire approach is based on neural networks which are oblivious to their input specifics, it can
be generalized to any language and type of document with the expectancy of obtaining
similar results.

Working on this subject was a most interesting experience as | managed to gain a wealth
of knowledge about things | had never heard about, while also expanding my knowledge
on various scientific topics. Neural networks are often misunderstood in the sense that it
is hard (if not outright impossible) to properly pinpoint the success and failures of different
models deployed to tackle specific problems, but on the same token this is what makes
this field so interesting. That being said, | will do my best to interpret the behavior and
results of the experiments conducted, aiming to be as thorough as possible.

Tackling a problem this challenging motivated me to try and design a component that can
be incorporated seamlessly into Nomothesi@'*. Nomothesi@ is a broader initiative of the
University of Athens and platform which makes Greek legislation available on the Web
as linked data to aid its sophisticated querying using SPARQL and the development of
relevant applications.

3http://linkedopendata.gr/dataset
4http://legislation.di.uoa.gr
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Named Entity Recognition and Linking in Greek Legislation

1. INTRODUCTION

Recently, there has been an increased interest in the adaptation of Artificial Intelligence
technologies to the legal domain including text processing, knowledge representation and
reasoning. Legal text processing [1] is a growing research area, comprising of tasks such
as legal question answering [2], legal entity extraction [3, 4] and legal text generation [5].
The same applies to the area of legal knowledge representation, where new standards
have been developed and started to be adopted based on semantic web technologies.
Relevant contributions here are the European Legislation Identifier (ELI) [6, 7, 8] for leg-
islation, the European Case Law ldentifier (ECLI) [9, 10] for case law, as well as Legal
Knowledge Interchange Format (LKIF) [11, 12] and LegalRule ML [13, 14] for the codi-
fication of advanced legal concepts, such as rules and norms. The research community
aims to develop tools and applications to help legal professionals (e.g., judges, lawyers,
etc.) as well as ordinary citizens. Based on these principles our group created Nomoth-
esi@' [15], a platform which makes Greek legislation available on the Web as linked data
to aid its sophisticated querying using SPARQL and the development of relevant applica-
tions.

Deepening this effort in order to build a bridge, as a point of reference, between those rel-
ative research fields of data science (natural language processing and semantic web), we
developed a Named Entity Recognizer (NER) and Linker (NEL) for Greek legislation. For
the first task, we will compare and evaluate state-of-the-art neural architectures (RNNs)
to recognise the following types of entities: persons, organizations, geopolitical entities,
legal references, geographical landmarks and public document references from Greek
legislation. We deploy our best entity recognizer on the Greek legislation dataset [15] and
produce new entity knowledge encoded in RDF using a novel vocabulary. Given those
triples, we use hand-crafted rules and the entity linking framework Silk [16, 17] in order to
normalize and link the extracted textual references with entities in public open datasets
(Greek administrative units and Greek politicians). We also publish a new RDF dataset for
Greek geographical landmarks, that can usually be noted in legislation related to urban,
rural and environmental planning. The main contributions are listed below:

» We study the task of named entity extraction in Greek Legislation by applying and
evaluating state-of-the-art neural architectures [4], while we also examine a some-
what more complicated one, which outperforms the rest of them even by a short
margin.

» We introduce a novel RDF vocabulary for the representation and linking of textual
references to entities in Greek legislation. We consider RDF as a single data model
for representing both metadata of a legislative document and knowledge that is en-
coded in the text.

* We deploy Nomothesi@ NER, based on the best model BILSTM-BILSTM-LR in the

'http://legislation.di.uoa.gr
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Greek legislation dataset and produce new data for entity references, that we de-
scribe using the new RDF vocabulary.

» We link the references with datasets using rule-based techniques and the Silk frame-
work.

* We make publicly available a new benchmark dataset of 276 annotated legal docu-
ments, which can be reused to train and test different algorithms related to named
entity recognition and linking. Pre-trained word embeddings specialized in Greek
legal text are also provided.

* We generate a new dataset of Greek geographical landmarks based on the results
of Nomothesi@ NER by applying heuristic rules. In a research project that our group
has started this dataset will be enhanced further with additional geographical infor-
mation (e.g., spatial relations and geometries) of the landmarks in order to support
a service informing professionals, such as landscape engineers, as well as ordinary
citizens about legislation that refers to specific geographical areas of Greece.

» Based on the above procedures, we augment the knowledge base and the querying
capabilities of the Nomothesi@ platform in two significant ways: tracing legislation
citation networks and searching using entity-based criteria.

This work is the first of its kind for the Greek language in such an extended form and one of
the few that examines legal text in a full spectrum for both recognizing and linking entities.

In chapter 2, we provide background information about the problem at hand, related work
and the main building blocks that compose our approach.

In chapter 3, we describe the challenge this thesis tackles in more detail.

In chapter 4, we train neural networks and conduct training, testing and interlinking exper-
iments.

In chapter 5, we conduct interlinking experiments and show the potential of indirect infer-
encing of entity relations by using rule-based techniques.

In chapter 6, we showcase real-life use cases as examples, indicating the value of the
component developed in this thesis.

In chapter 7, we summarize what was contributed and the potential future work may yield.
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2. BACKGROUND AND RELATED WORK

In this chapter we provide a historical background on neural networks, their origins and
their evolution. Further on, we provide the building blocks that we require for our experi-
ments and explain the usage of each component. Additionally, we provide in-depth theory
about their functionality.

2.1 Machine Learning and Neural Networks

2.1.1 History of neural networks
2111 Local Search and Perceptron

In order to tackle difficult machine learning/classification tasks, numerous algorithms (both
approximate and exact ones) have been developed. One of the first and most frequently
used for NP-hard problems such as Mobile Facility Location, Bin Packing and Prize-
Collecting Steiner Tree is Local Search. Local Search is being used so much as it pro-
vides a good measurement to compare with other approaches and it is based on human
intuition so it is natural and relatively easy to implement. Also, since it is not fine-tuned to
a specific problem (with the exception of mixing it with heuristics and meta-heuristics), it
remains generic enough to be useful for virtually any algorithmic problem.

Around 1957, Frank Rosenblatt invented the Perceptron algorithm at the Cornell Aeronau-
tical Laboratory. The project was funded by the United States Office of Naval Research
and the goal was to develop a generic algorithm for supervised learning’ of binary classi-
fiers 2. This is considered to be one of the first neural networks.

2.1.1.2 The Boltzmann machine and Al Winter

While the idea was promising and much of the academia’s focus was on neural networks,
ameliorating Local Search more and more in the process, the first limitations of neural
networks began to become public. In 1969, Marvin Minsky, founder of the MIT Al Lab,
and Seymour Papert, director of the lab at the time, published a book [27] where they
expressed their skepticism about the potential limitations of Perceptron. Their focus was
on the XOR classification problem. Around the same time, a few papers that speculated
about the theoretical construct of the Boltzmann machine ® were published. Further on, due

'In plain terms, supervised learning is the process of mapping an input to an output based on example
input-output pairs. In human and animal psychology, it is often referred to as concept learning.

2A binary classifier is a system that maps inputs to their correct class among two. The concept can be
obviously generalized for classifiers of many classes.

3Boltzmann machines are a type of stochastic recurrent neural network. They can be seen as the stochas-
tic, generative counterpart of Hopfield nets. They were one of the first neural networks capable of learning
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to the neural networks’ dependency on the dataset they are applied on and the difficulty
of classification, they can be seen as a different way of doing Local Search and therefore
they are also subject to the limitations of Local Search, as a result.

When the theoretic construct of the Boltzmann machine was proven to have limitations, it
had a profound effect in the direction of research, since a major part of academia began
to doubt the neural networks’ potential. This is known the be the first of the “Al Winter”
periods of history, where all initial enthusiasm about the capabilities of neural networks
diminishes and academia focuses on other topics.
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Figure 8: The limitations of Perceptrons. Finding a linear function on the inputs X, Y (resp., a
hyper-plane) to correctly classify is equivalent to drawing a line (resp., a hyper-surface) on the
graph separating the classes. It is impossible to separate the classes in XOR’s case with a single
linear function.

2.1.1.3 The XOR problem and multi-layer neural networks

Despite that first “Al Winter” period, the problem of XOR classification also provided in-
valuable clues that would shape how we view neural networks today. Minsky and Papert’s
analysis also indicated that it was simply the way Perceptron was learning that prevented
it from conducting XOR classification. Put simply, Perceptron learns to compute some
function with the following steps:

1. A set of Perceptrons, equal to the number of the function’s outputs, start off with
small initial weights.

2. For the inputs of a sample in the training set, compute the Perceptrons’ output.

3. For each Perceptron unit, if the output does not match the sample’s output, adjust
the weights accordingly.

internal representations, and are able to represent and (given sufficient time) solve difficult combinatoric
problems.
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4. Go to the next sample in the training set and repeat steps 2-4 until the Perceptrons
no longer make mistakes.

Since the great interest in neural networks lies in combining components in multiple lay-
ers to compute something complex, we need to understand why “Perceptron™s learning
process will not work in a multi-layer setting. The samples only specify the correct output
for the final output layer, so how can we know how to adjust the weights of Perceptrons
in layers before that? This very question troubled academics for a long time, until math
provided the solution, the chain rule.

2.1.1.4 Stochastic Gradient Descent

Stochastic gradient descent (SGD), also known as incremental gradient descent, is a
stochastic approximation of the gradient descent optimization and iterative method for
minimizing an objective function that is written as a sum of differentiable functions. Simply
put, it tries to find minima or maxima iteratively. When combined with the backpropaga-
tion algorithm, it is the de facto standard algorithm for training artificial neural networks.
Stochastic gradient descent has been used since at least 1960 for training linear regres-
sion models, originally under the name Adaline [28].

Figure 9: Stochastic Gradient Descent.
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2.1.1.5 The Backpropagation algorithm

If we have neurons that do not behave as Perceptrons, but are made to compute the
output with an activation function that is still non-linear but also differentiable (as with
Adaline [28]), not only can the derivative be used to adjust the weight to minimize error,
but the chain rule can also be used to compute the derivative for all the neurons in a
prior layer and thus the way to adjust the weights is also known. In summary: we can use
calculus to assign some of the blame for any training set mistakes in the output layer to
each neuron in the previous hidden layer, and then we can further split and cascade blame
if there is another hidden layer, and so on; we backpropagate the error. As a result, we
can find how much the error changes if we change any weight in the neural net, including
those in the hidden layers, and use an optimization technique (for a long time, that would
be stochastic gradient descent) to find the optimal weights to minimize the error.

The above methodology is the Backpropagation algorithm [29, 30]. The interesting fact,
however, is that while it was derived by multiple researchers in the early 60’s and im-
plemented to run on computers (pretty much as it is today) as early as 1970 by Seppo
Linnainmaa [31], Paul Werbos proposed its application on neural networks after a thor-
ough analysis in his PhD thesis [32] in 1982. The reason it took so many years to do so
was, predictably, the effects of the “Al Winter”. Further publications from David Rumelhart
et al. [29] state the ideas of backpropagation so clearly that even modern textbooks on
machine learning are virtually identical to their description and further on, they address
Perceptron’s problems by explaining how multilayer neural nets could be trained to tackle
complex learning problems.

2.1.1.6 Convolutional Neural Networks

Academia found value in multilayer neural nets, especially after having mathematically
proved [33] that multiple layers allow them to theoretically implement both linear and non-
linear functions (XOR as well). This gave rise to numerous applications for Backpropaga-
tion, such as handwritten zip code recognition by Yann LeCun et al. [34] in 19809.

Such applications began to showcase the need of something more than backpropagation
in neural nets. With the input being images, the first hidden layer of the neural net was
convolutional. This means that, instead of having a different weight for each pixel of the
image, only a small set of weights (and therefore a significantly less number of neurons
are needed) are being applied to small subsets of the image. The reason this is more
promising than a plain neural network is that “local features” found in previous layers rather
than pixels are being forwarded and as a result the network sees progressively larger and
more complete parts of the image.

In addition, since neurons focus on learning specific local features instead of learning
everything over and over (e.g., degree lines in images, small shapes etc) for each pixel,
they gain a considerable speedup. Also, since the focus now is entire subsets of the image
and not pixels, keeping all values can be redundant and therefore it is possible to gain
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even more in speedup if subsampling takes place. Layers that do that are called pooling
layers and together with the convolutional layers they distinguish plain neural nets from
Convolutional Neural Networks (CNNSs).

2.1.1.7 Unsupervised Learning

When more and more applications that showcased the value of neural networks appeared,
it only made sense to find ways to design networks that can train without supervision. So
far we have discussed how supervised learning works: we provide a network with the input-
output pairs and expect the network to approximate the function that maps the inputs to
the outputs. Unsupervised learning can be achieved by providing a small hidden layer that
outputs the input, in essense forcing the neural network to learn on its own.

Unsupervised learning is particularly important for certain tasks. For example, learned
compression can outperform stock compression techniques by finding specific features
in the data. One method for learning compression is the utilization of a network called
autoencoder, which encodes input to a compressed format and then back to itself. Ideally,
the final output should match the initial input as much as possible but in this case we
achieve that only by using the encoded input of the intermediate layer.

Output: 00000001 00000010 00000100

N outputs

log,(n)
hidden units

N outputs

Input: 00000001 00000010 00000100

Figure 10: An autoencoder neural net.
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Since we are trying to encode the information of the input data into a compressed form, we
can exploit the fact in order to conduct clustering tasks (as we merely keep the “essence”
of the data instead of that and noise). Apart from that, unsupervised learning has the
advantage of requiring just the input samples, not the outputs. One should always be
careful, however, as encoding input in a compressed form can cause a network’s efficiency
to fall dramatically if the data is complex/random enough.

2.1.1.8 Time-Delay Neural Networks

Despite the great interest of research in proposing applications of neural networks utilizing
backpropagation, another challenge arose for neural nets: speech recognition. Due to the
nature of speech and possible combinations one can derive a given context or how a word
is spoken, the task is quite challenging indeed. Additionally, having to deal with long input
sequences does not make things any easier. To make matters worse, since the input is
voice samples, lots of noise is added on top of the already long input sequences. Even if
we try to separate characters to reduce the input size in a similar fashion to what is done
when separating specific characters from text for OCR (Optical Character Recognition), it
will be intuitivelly harder to understand context when we split the input.

Another major challenge in speech recognition is being able to recognize when a certain
input can effect another following after it. So far, no neurons understand the concept of
memory. This means that, in order to adequately tackle the problem of speech recognition,
it is imperative to somehow adapt the design of neurons so that they can process input in
stream form instead of batch.

To that end, Alexander Waibel et. al [35] introduced a new type of neural network, Time-
Delay Neural Networks (TDNNs). While they share many similarities with conventional
neutal networks, they differ in the fact that each neuron only processes a subset of the
input while also containing a set of weights for different delays of the input. Since the
input is a sequence of audio and the network accepts only part of it at any given time, we
can imagine a “rolling window” moving towards the future as the actual input. Due to the
window rolling forward,the same bits of the audio are being processed by each neuron but
with different sets of weights depending on their relevant position within the window.

So, since TDNNs seem to be handling parts of the input at any given time, a careful reader
might wonder, how are they different from CNNs then? The main difference lies in the fact
that CNNs do not have the concept of time at all and that, while the rolling window of input
is always moved across the entire input image to compute a result in CNNs, in TDNNs the
input and output of data is sequential.

2.1.1.9 Recurrent Neural Networks

As academia experimented more with TDNNs, a new model managed to surpass it, the
Recurrent Neural Networks (RNNs). So far we have seen feedforward networks, which
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Figure 11: A time delay neural network (TDNN).

means that outputs act as inputs only in forward layers. The innovation of RNNs lies in the
fact that we remove that restriction; it is acceptable to have outputs used as inputs to both
previous layers as well as to the neurons they came from (looped inputs). Interestingly
enough, this also solves the problem of maintaining memory in neural networks based on
past inputs.

Despite solving two problems with one major innovation, there is now a problem in our
math. Since we now allow loops and outputs of later layers being inputs of previous ones,
how can backpropagation and the chain rule function when it's possible to have infinite
loops? The error would be cascaded infinitely throughout the network via loops like that.
That issue is also resolved by backpropagating through time [36]. This means that we
unravel the loops and treat the result as a normal network, but we do the unravelling a
limited number of times.
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Figure 12: Backpropagation through time.

21110 Long Short-Term Memory Neural Networks

Having solved all issues of RNNs, all that is left is to see them in action. Unfortunately,
papers from major figures such as Yoshua Bengio et al. [37, 38] in 1993 revealed the
new challenge for neural networks. Training RNNs seems to be particularly tough be-
cause their parameters settle in a suboptimal solution which takes into account short term
dependencies but not long term ones.

The true problem lies in backpropagation which initially solved so many issues in neural
nets and the reason is backpropagation splits the blame of the error for previous layers.
Taking into account the fact that we now have loops and outputs used as inputs in previous
layers, we can observe that backpropagation will yield either tiny or huge numbers. This is
called the vanishing or exploding gradient problem as explained by Jurgen Schmidhuber.

Predictably, the solution came once more in the form of a new kind of neural network; the
Long Short-Term Memory (LSTM) network [39]. The main idea is to have some units called
Constant Error Carousels (CECs) which have the identity function as an ativator with a
weight of 1.0. This trick ensures that errors backpropagated through CECs will not vanish
or explode (with the exception of flowing out of a CEC component into other, adaptive
parts of the network). CECs are then connected to non-linear adaptive units (multiplicative
activation functions), a necessary inclusion for learning non-linear behavior. Error signals
backpropagated in time through CECs enhance the weight changes of these units. As a
result, LSTM networks are now capable of memorizing and discovering the importance
events that happened a long time in the past.

Each LSTM unit consists of a self-connected memory cell and three multiplication units.
These are the input, output and forget gates that represent writing, reading and resetting
operations taking place in each cell for each timestep (word/token).
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Figure 13: Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training
recurrent neural networks.”
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Figure 14: A Long Short-Term Memory cell.
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21111 BILSTM

When it is necessary to consider both the previous and next timesteps (words/tokens) in
each single step (word/token), bidirectional LSTM chains can be used instead of unidirec-
tional ones. Although more computationally expensive, taking into consideration both the
past and the future can help capture more complex meanings in sequences.
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Figure 15: LSTM and BILSTM chains comparison.

2.1.1.12 Second Al Winter and Support Vector Machines

Despite managing to overcome all these difficulties, the trend around the mid 90’s dictated
that neural networks required too much computational power to be useful, or they took too
long to produce results. As a result, another Al Winter era began.

Furthermore, a major hit came in the form of a method called Support Vector Machines
(SVMs). Simply put, it is a mathematically optimal way to train a two-layer neural network.
This simplicity and the frustration of the inflexibility of sophisticated neural network models
encouraged the use of SVMs. LeCun et al. [40] explain how SVMs are highly competitive
against neural nets. In addition, even more competitive methods with strong mathematical
ideas as their background began to appear such as Random Forests.
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Figure 16: Maximum-margin hyper-plane and margins for an SVM trained with samples from two
classes. Samples on the margin are called the support vectors.

2.1.1.13 The comeback of Deep Learning

For a few years, research on neural networks took a major hit, until Hinton et al. pub-
lished a paper [41] that proposes yet another novel idea; if weights of the neural networks
are cleverly initialized instead of randomly, they can be trained well. Clever initialization
is possible if we separate the layers, train them independently using unsupervised learn-
ing and then conducting one round of supervised learning. These separate layers (when
they do not have connections between hidden and visible units) are called Random Boltz-
mann Machines (RBMs) and methods like this that combine supervised and unsupervised
learning are classified as semi-supervised learning methods.
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Figure 17: SVM optimization. H1 does not separate the classes. H2 does, but only with a small
margin. H3 separates them with the maximum margin.

It was shown by Hinton [42] that this form of Boltzmann Machine can be efficiently trained.
The reason for this is that maximization focuses on something other than the probability
of the units generating the training data and therefore we get an approximation that works
rather well in practice.

Further research attempts which focused on improving neural networks were rather im-
pressive but the computational power required to achieve better results still made people
skeptical. This trend began to shift when works like the one by Hinton et al. [43] indicated
that neural networks are now ready to tackle very challenging Al tasks such as speech
recognition and even doing that while breaking performance records that took decades to
surpass. Further on, Raina et al. [44] and others show that with the introduction of massive
parallelization via the utilization of GPU power can achieve a speedup of at least 70 times
for neural networks training.
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Figure 18: Layerwise pre-training for RBM.

2.1.1.14 Activation functions and Dropout

At this point, researchers began to wonder why the old approaches did not work while the
new ones achieved significant results. Xavier Glorot and Yoshua Bengio [23] discuss two
major findings regarding that:

* The non-linear activation function chosen for the neurons of a neural net is very
important for performance.

» The vanishing gradient problem occurs because backpropagation involves a se-
ries of multiplications which result in smaller derivatives for earlier layers. So, while
choosing random weights in general might not be very problematic, choosing ran-
dom weights without taking into consideration the layer the weights are for, is.

LeCun et al. [45], Hinton et al. [46] and Bengio et al. [47] separately tried to compare dif-
ferent activation functions to find which one is the best one and all three groups came to
the same, surprising, conclusion. The non-differentiable and very simple function f(z) =
max(0,x), which is also called Rectified Linear Unit (ReLU), tends to be the best. While
a non-differentiable function being the best in a task that requires differentiazation is sur-
prising in itself, the greatest question is why such a simple function can work so well. The
mathematical probability of having to deal with values at zero is negligible so in practice the
former is not that problematic. However, the latter is not precisely answered, but academia
has a few well-established ideas:

» The simplicity of the function and its derivatives make it computationally cheap and
therefore essential in order to scale neural networks for Big Data.

* Andrew Ng et al. [48] have provided an analysis where it is explained that ReLU’s
form can actually help to tackle the issue of gradient vanishing, while also providing
distributed representations, avoiding localization.

* RelLU produces sparse representations, meaning that few neurons will output some-
thing other than zero. This means that information representation is robust, but we
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gain the additional advantage of being able to gain significant computational speed
(since most outputs are zero they can just be ignored and other computations can
take their place).

With Deep Learning being popular again, more research focused on improving neural nets
and tackling potential problems that take place during training. A very significant one is
overfitting. Overfitting occurs when a neural network learns a bit “too well” the training
dataset so it is fine-tuned to that. This is bad as it means that when we try to use the
trained network on anything else, the results will leave much to be desired. Kingma et
al. [49] proposed an idea to tackle this problem, Dropout. The idea is to simply pretend at
random that some neurons are not present during training. This means that we utilize a
more powerful form of learning, since we learn things about the training data in different
ways each time, without focusing too much on specific features.

2.1.2 Linear Classifiers
2.1.21 Logistic Regression

Logistic regression (LR) is a statistical method for analyzing a dataset in which there are
one or more independent variables that determine an outcome. The outcome is measured
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with a binary variable (meaning there can only exist two possible outcomes).

The goal of logistic regression is to find the best fitting but biologically reasonable model
to describe the relationship between the binary characteristic of interest (dependent vari-
able = response or outcome variable) and a set of independent (predictor or explanatory)
variables. Logistic regression generates the coefficients, its standard errors as well as
the significance levels of a formula to predict a logit transformation® of the probability of
presence of the characteristic of interest:

lOth(p) = bo —+ lel + b2X2 -+ ngg + ...+ kak

2.1.2.2 Conditional Random Fields

Conditional Random Fields (CRFs) are a type of discriminative undirected probabilistic
graphical model. They are used to encode known relationships between observations
and construct consistent interpretations. CRFs [50] have been widely used in traditional
NLP sequence labeling tasks (e.g., pos tagging, named entity recognition). They have also
shown promising results if applied on top of LSTM, BILSTM in sequence labeling [51, 52,
53, 54, 26] and parsing [55]. In our case, the CRF layer jointly selects the assignment of
positive or negative labels to the entire token sequence, which allows taking into account
the predicttions of neighboring tokens. For example, if both the previous and the next
token of the current token are classified as parts of a legislation reference, this may be an
indication that the current token is also part of the same legislation reference.

2.1.3 Feature representation for NLP tasks

A major task to perform in Information Representation (IR) and NLP is to find a way to
properly represent words/tokens in such a way that we capture as much information as
possible. To this end, shallow neural networks which are pre-trained using unsupervized
algorithms [19, 20, 21] on large corpora are usually employed. In the past, sparse feature
representations were employed but they proved ineffective. Here, will explain the funda-
mentals of how they work and the intuition behind their success.

2.1.3.1 One-hot vectors

One of the first representations for tokens is a one-hot vector. A one-hot vectorisa 1 x N
matrix (vector) used to distinguish each word in a vocabulary from every other word in the
vocabulary. The vector consists of zeros in all cells with the exception of a single 1 in a cell

4 The logit function is the inverse of the sigmoidal “logistic” function or logistic transform used in mathe-
matics, especially in statistics. When the function’s variable represents a probability p, the logit function

gives the logarithm of the odds as in (1%1))
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used uniquely to identify the word. It is intuitively easy to see why this is very problematic;
having a vocabulary of a million words would mean we would need a million dimensions
to map each word. Even worse, not only are we using so much memory to utilize this kind
of representation, but we also fail to get any useful context information about the actual
words’ relations to each other, potential semantic similarities etc. Finally, exactly because
each word vector has a 1 on the dimension it differs from all other words in the vocabulary,
the cosine similarity®> would always be zero.

2.1.3.2 TFxIDF

Term Frequency times Inverse Document Frequency (TFxIDF), is a numerical statistic
that is intended to reflect how important a word is to a document in a collection or corpus.
It is often used as a weighting factor in searches of information retrieval, text mining, and
user modeling. The TFxIDF value increases proportionally to the number of times a word
appears in the document and is offset by the frequency of the word in the corpus, which
helps to adjust for the fact that some words appear more frequently in general.

2.1.3.3 Pointwise mutual information

Pointwise mutual information (PMI) [56], or point mutual information, is a measure of as-
sociation used in information theory and statistics. Given two discrete random variables X
and Y and assuming independence of the variables, PMI quantifies the discrepancy be-
tween the probability of their coincidence given their joint distribution and their individual
distributions for a pair of outcomes = and y belonging to X and Y, respectively. Mathe-
matically, it can be seen as:

p(y|x)
p(y)

= log

2.1.3.4 Word Embeddings

The more modern approaches try to address the issues of all these cases by training
shallow neural networks carefully in order to properly map words into meaningful vectors
that will be fast, efficient, requiring litle memory and capturing essential context between
words. Here, we will discuss Word2Vec, FastText and GloVe.

21.3.41 Word2Vec A popular algorithm by Google [19], named Word2Vec, was in-
vented. Is utilizes a shallow two-layer architecture (an input layer and a hidden layer)

" A
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Document 1 Document 2
Term Term Term Term
Count Count

this 1 this 1

is 1 is 1

a 2 another 2

sample 1 example 3

TF("example", d1)=0/5=0
TF("example", d2)=3/7=0.429
IDF("example", D)=Ilog(2/1)=0.301
TFEXIDF("example", d1)=TF("example", d1)xIDF("example", D)=0x0.301=0

TFEXIDF("example", d2)=TF("example", d2)xIDF("example", D)=0.429x0.301=0.13

Figure 20: TFxIDF example.

to produce word embeddings. It is an efficient way to produce a vector space, typically of
several hundred dimensions, with each unique word in the corpus being assigned a corre-
sponding vector in the space. Numerous implementations of the algorithm exist currently,
most notably gensim’s implementation in Python ©.

When representing tokens, it is important to map them into vectors of many dimensions.
Ideally, we would want as many dimensions as all possible features that distinguish them,
but that is obviously impossible due to hardware constraints. The best we can do is ran-
domly select a representative number of dimensions and hope for the best. So, in order to
minimize the chance of choosing all the less useful dimensions, we need a way to prop-
erly and generally capture the context and “distance” of words, especially since we can ob-
serve that, frequently, similar words tend to co-occur in similar contexts (phrases). Properly
mapped vectors, for instance, would encode ||“man” — “woman”|| = ||“king” — “queen”||.

Since Word2Vec is based on a shallow two-layer model, there are a few options available,
the most well-known of which being CBOW and Skip-gram.

6See https://radimrehurek.com/gensim/models/word2vec.html.
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Figure 21: Generic Word2Vec architecture.

21.3.41.1 Continuous bag of words and Skip-gram In order to achieve this, we can
use two shallow two-layer neural network models: the Continuous Bag of Words (CBOW)
and the Skip-gram:

« CBOW. The input to the model could be w;—5, w;-1, w; 11, w;, 2, the preceding and fol-
lowing words of the current word we are at. The output of the neural network will be
w;. Hence you can think of the task as “predicting the word given its context”.

Example: “The cat ate . (food).

» Skip-gram. The input to the model is w; , and the output could be w;-1, w;-o, w; 1, w; 2.
So the task here is “predicting the context given a word”. In addition, more distant
words are given less weight by randomly sampling them.

Example:“ ~ food.” (the cat ate).

Therefore, word embeddings capture both semantic and syntactic information as well as
correlations between words in both models.

At this point, a careful reader might wonder, which of the two models could yield better
results or run faster? In general, it is not easy to answer that, however it is believed that
CBOW is faster while skip-gram is slower but does a better job for infrequent words. Know-
ing we are dealing with the greek language and an incosistent input, in this thesis we focus
on skip-gram.
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Figure 22: Vector representations of words.

2.1.3.4.2 FastText Another attemptto achieve the same result came from FastText, a
library for learning of word embeddings and sentence classification created by Facebook’s
Al Research (FAIR) lab [21, 57]. The model is an unsupervised learning algorithm for
obtaining vector representations for words. Facebook makes available pretrained models
for 294 languages, including greek. The intuition behind the success of FastText is that it
is based on a huge corpora of training data and also from multiple languages. As we have
already established, the more training data a neural network is given, the more chances
it has to be highly accurate.

FastText is considered superior to Word2Vec, because it solves a few majorissues Word2Vec
has. For instance, Word2Vec can only map words into vectors for words that are known to
it. New/unknown words cannot be represented so that we can extract useful information
(such as how close an unknown word is to the existing ones vector-wise). FastText is
structured in such a way that it captures sub-word information by analyzing n-grams re-
lations. As a result, it can even produce a sensible word embedding even for unknown
words based on proximity to the existing vocabulary.

63 I. Angelidis



Named Entity Recognition and Linking in Greek Legislation

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)

_\SUM L
4>|:| w(t) w(t)
w(t+1) w(t+1)
w(t+2) w(t+2)
CBOW Skip-gram

Figure 23: CBOW vs Skip-gram.

21.3.4.3 GloVe Yetanother competitive attempt, originating from Stanford University,
is the Global Vectors (GloVe) [58] algorithm. Again, we obtain vector representations for
words, but this time training is performed on aggregated global word-word co-occurrence
statistics from a corpus, and the resulting representations showcase interesting linear sub-
structures of the word vector space, aiming to capture deeper meanings and contexts, if
possible.

2.2 Semantic Web and Linked Data

The Semantic Web is an extension of the World Wide Web through standards by the World
Wide Web Consortium (W3C). The term was coined by Tim Berners-Lee for a web of data
that can be processed in a machine-readable format. It has the main goal of providing
a common ground in production of data so that they can be shared and reused across
contributors with minimal changes, therefore providing the opportunity to easily enhance
and enrich large knowledge bases with even more data.

2.21 The RDF model and OWL

The Resource Description Framework (RDF) is a family of W3C specifications originally
designed as a metadata data model. It has come to be used as a general method for
conceptual description or modeling of information that is implemented in web resources,
using a variety of syntax notations and data serialization formats. The main idea is that all
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Semantic Web data are being described in < s, p, 0 > triples’, where s stands for subject,
p stands for predicate and o stands for object. Having a set of triples we can describe an
entire dataset of entities in a way that s and o are all nodes in a graph and they are being
linked by edges with p properties, assembling a big Semantic Web graph.
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Figure 24: A graph of RDF data from a single source. Dashed edges and nodes show external
resources linked to the original.

The Web Ontology Language (OWL) is a family of knowledge representation languages
for authoring ontologies. Ontologies are a formal way to describe taxonomies and clas-
sification networks, essentially defining the structure of knowledge for various domains.
It is necessary to accompany a dataset with its corresponding ontology because this en-
ables us to derive relations and axioms among properties and even enhance its querying
potential by adding a semantic reasoner®. For example, assuming we have a dataset rep-
resenting the bloodline of the royal family of England and having sibling0Of relations that
are defined as transitive in the ontology, we can infer that if person A has a sibling B and
sibling B has a sibling C, then person A also has a sibling C although it was not stated in
the set of triples of the dataset. Respectively, if sibling0f was also symmetric, knowing
that person A has a sibling B would also mean that person B has a sibling A.

2.2.2 Linked Data

The Semantic Web is closely tied to Internet of Things (IoT). IoT is the network of physical
devices, vehicles, home appliances and other items embedded with electronics, software,
sensors, actuators, and connectivity which enables these objects to connect and exchange
data. Each thing is uniquely identifiable through its embedded computing system but is

In recent suggested extensions of the specification quadruples have also been introduced, the fourth part
representing temporal information.
8A semantic reasoner is a piece of software able to infer logical consequences from a set of asserted facts

or axioms.
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able to inter-operate within the existing Internet infrastructure. The Semantic Web defines
each entity with an Internationalized Resource Identifier (IRI). The IRl was defined by the
Internet Engineering Task Force (IETF) in 2005 as a new internet standard to extend upon
the existing URI® scheme.

2.2.3 Linking related work

Ensuring that each entity in each dataset has a unique identifier, it means we can easily
distinguish them from one another. However, this also means that when we wish to enrich
knowledge bases, we need to make sure that entities of dataset A match with the cor-
responding ones of dataset B so that each “real entity” can become enriched with all its
relevant information derived from both datasets and nothing more.

When producing RDF data, it is always useful to have a way to link it with correspond-
ing entities of other existing datasets. The reason is simple. Properties of one dataset
can complement the properties of another’s for the same entity, therefore enriching the
knowledge we can infer about an entity.

In order to interlink datasets, we need to:

+ define the relevant entity types from both datasets. For example dataset A might
contain singers and actors while dataset B might contain actors and authors, so
linking the authors means we need to restrict the entity type to author to reduce noise.
Naturally, if both sides got exactly the entity types needed, this is not necessary.

« utilize a property of both datasets that distinguishes entitites from each other and also
is likely to match across datasets. It is important to note that it is not necessary to use
the same property on both sides, though we usually do. Further on, the most frequent
property used for this is the label of the entity. Of crucial importance is the similarity
metric and threshold used as it can greatly effect the quality of the discovered links.

» produce links that relate an entity from one side with one of the other. Most frequently,
it will be owl: sameAs links.

However, this is no easy task, in no small part due to the freedom and flexibility of the
RDF specifications. Throughout the years, numerous tools developed by academics have
been introduced to tackle this problem. Silk '° is a well-known workbench with numer-
ous capabilities, all geared towards handling rdf datasets and making interlinking easier.
It provides the Link Specification Language (LSL) so that a user can specify the exact
properties, types and relation types they wish to include in a linking task. Additionally, it
provides many functions that can manipulate input (tokenizers, regexes, capitalizers, etc.),
encodings (utf-8, ISO, etc.) or measure distances (Levenshtein, Jaro-Wrinkler, Substring,

%In information technology, a Uniform Resource Identifier (URI) is a string of characters used to identify a
resource.
Ohttp://silkframework.org
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etc.). Since it is open source, the user can even extend Silk’s functionality by adding cus-
tom plugins.

2.3 Evaluation metrics

Apart from the methodology followed and the implementation of the code, it is particularly
important to properly and fairly evaluate our networks’ performance. So, before we delve
into the proposed models, we need to showcase the necessary metrics which compose a
proper, unbiased, evaluation.

The first metric we need to utilize is Precision, also known as PPV (Positive Predicted
Value). It is the fraction of relevant instances among the retrieved instances:

TP TP

PPV =~ =
V= =Thr N

Intuitively, precision shows the ratio between correctly identified predictions and wrong
identified predictions.

Secondly, we need to complement precision with Recall, also known as sensitivity and
TPR (True Positive Rate). It is the fraction of relevant instances retrieved over the total
amount of relevant instances:

TP

TPR= ————
R=7p1Fp

Recall shows the ratio between correct identified predictions and correct unidentified pre-
dictions.

A careful reader might wonder, why do we need both of these metrics and not just one?
The answer is that they complement each other and better showcase the true capabilities
of a neural network. Regarding precision, finding many true positives and very few false
positives is useless if the neural network does not find many true positives compared to all
positives (the complement of true positives for the positives set are the false negatives).
Respectively, regarding recall, finding many true positives and leaving out very few false
negatives is useless if the neural network also finds too many false positives. Therefore,
both metrics are required to avoid biased results and conclusions.

However, even the two metrics together might yield biased results. The reason is that
there might be biased within the datasets themselves and therefore, they are also subject
to a different metric that evaluates the accuracy of the test itself: F; — score (also known as
F-measure). It takes into consideration both precision and recall, while this score’s value
is in [0, 1]. In most cases, we use F; — score, but in general we can use Fj; — score, where
[ is a parameter that indicates a different balancing of importance between Precision and
Recall among the F-family. F; — score sets = 1:
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relevant elements
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selected elements

Figure 25: Precision and Recall visually. The circle square region shows the entire dataset, the
circle is the neural network’s classified data. Precision, Recall and True/False Positives/Negatives
are shown with intuitive colors.

preciston - recall

Fy=(1+ %) (in precision — recall terms)
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Finally, in order to provide a general score for all entity types recognized, we average the
precision, recall and F} — score individually, obtaining 3 values. These averages can be
produced either by micro-averaging or macro-averaging. Both of these are necessary for
a proper evaluation because while the former aggregates the contributions of all classes to
compute the average metric, the latter computes the metric independently for each class
and then takes the average with the intention of treating all classes equally.
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3. TASK DEFINITION

In this chapter we will describe the challenge this thesis tackles in more detail.

3.1 Entity extraction in legal text

As explained in the introduction, we want to find a way to extract named entitites from
greek legal text. Traditionally, there are two main approaches one can take to tackle the
problem:

» use gazetteers and heuristics, possibly hand-written rules and regular expressions
(regexes) in order to extract the desired information. When applicable, it is often the
desired approach due to the relative simplicity and time required to implement.

* use machine learning and some sort of neural network specialized in natural lan-
guage processing (NLP) so that we can train an architecture well-enough that it can
learn to distinguish and successfully extract named entities. Despite being a more
generalized effort, it will only be considered as a “last resort”, mostly due to the re-
quirement of providing large training datasets; sometimes no such datasets exist
and need to be manually generated which in turn could mean that, due to human
errors, the training datasets themselves contain mistakes that the network will itself
learn, as a result.

Based on all that, it seems that gazetteers and heuristics would be much simpler to use.
So, why did we choose to tackle the problem with neural networks? In essense, there are
multiple reasons behind this decision:

» greek legal documents rarely follow a strict template which means that even if we
decided to utilize heuristics, we would just need to employ too many and also making
sure they would not interfere with each other.

» since, among other types of entities, we also want to extract organizations and le-
gal references, we do not have a finite set of vocabulary so that a gazetteer could
be utilized. Taking into consideration the multiple ways the same phrase can be ex-
pressed in the greek language as well as possible abbreviations, it becomes obvious
that a more general method is required.

 greek legal documents, especially older ones (before 1990) are available in PDF
format only which means that in order to get the actual text, OCR techniques need
to be employed, adding even more noise to the input data. In this setting, gazetteers
will be much less accurate to find matches. Furthermore, due to the text existing in
a double-column format, lines are being continued after line breaks and it is also
challenging to be able to distinguish the text between two columns.
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* The English language has a very wide range of resources (neural networks included)
and tools that can efficiently process most types of Natural Language input. From a
linguistic point of view, english is very structured and has good properties (essentially
english can be structured as a tree that expands on the bottom right continuously,
most of the time), which means that we are already expecting good results. Greek
is considered one of the most difficult languages worldwide and therefore achieving
a good accuracy here is one of the ultimate tests a neural network can tackle.

Clause

Subject Head Predicate
Noun VP

Predicator
Verb Group

| NP Pronoun

Comp
Noun Clause

They | |wi|| have eaten| | dinner | | by | | the | | time | | (that) | arrive. |

Figure 26: Parsing tree of an english sentence.

3.1.1 Classes

For our experiments, we focus on extracting 6 entity types, when present:

» Person. Any formal name of a person mentioned in the text. There are most probably
Greek government members.

* Geopolitical Entity. Any reference to a geopolitical entity (e.g., country, city, Greek
administrative unit, etc.)

» Organization. Any reference to a public or private organization, such as: interna-
tional organizations (e.g., European Union, United Nations, etc.), Greek public orga-
nizations (e.g., Social Insurance Institution) or private organiza- tions (e.g., compa-
nies, NGOs, etc.).
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* Geographical Landmark. References to geographical entities such as local dis-
tricts, roads, farms, beaches, which are mainly included in legislation related to to-
pographical procedures and urban planning.

» Legislation Reference. Any reference to Greek or European legislation (e.g., Pres-
idential Decrees, Laws, Decisions, EU Regulations and Directives etc.)

* Public Document Reference. Any reference to documents or decisions that have
been published by a public institution (organization) that are not considered primary
source of legislation (e.g., local decisions, announcements, memorandums, direc-
tives).

3.1.2 Annotation and datasets

When preparing datasets for NLP training, we need to provide examples of tokens and
their labels so that we can feed this information into a neural network to properly train. To
this end, the community has developed some tools dedicated to the task of annotation. For
our purposes, we focus on brat (brat rapid annotation tool) [18]. Initially, it was created as
an extension of the stav text annotation visualizer', an annotation visualization tool created
by Pontus Stenetorp, Goran Topi¢, Sampo Pyysalo and Tomoko Ohta (then members of
the Tsuijii laboratory of the University of Tokyo).

Simply put, brat accepts as input a set of txt files, visualizing in a robust web client. Then,
we can define classes of entities and any relations linking them as possible annotation
labels. To prepare the datasets, all we need to do is annotate the tokens that we wish to
give a label to; all this information is being written in .ann files which contain lines with
information such as the annotation id, the actual text , the class and the offsets (start and
end).

a7 brat
=] (A [O 127.0.0.1/~brat/#/ACE-2005/example ?focus=E1 *] a
i
Reciplent
Beneficlary
o M e
. . ) ) — — —

1 Cha-s-e Manha-&an and its merger partner J.P .Morgan and Citibank, which was involved in movﬁj about $200 million for

Reciplent

— Baneficlary !
31 - Family —, origin '||

Raul Salinas de Gortari, brother of a former Mexican president, to banks in Switzerland, are also expected to sign on.

Figure 27: Visualization in brat.

'https://github.com/TsujiiLaboratory/stav
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brat config files

txt file ann file
Figure 28: brat’s workflow.
T6 PERSON 13807 13832 2TAMATHZ KAPMANTZHZ
T7 LOCATION-UNK 75 126 Béon «ouaTada 2B» Tou ZuvididkTnTou Adooug MNMAatavng
T11 GPE 667 691 AMOKENTPQMENHZ AIOIKHZHZ
T12 GPE 693 712 MAKEAONIAZ - OPAKHZ
T14 LEG-REFS 804 815 v. 998/1979

Figure 29: A .ann file example produced by brat.

Generally speaking, when annotating entities in text for training, we use BIO tags. BIO
stands for beginning, inside and outside and it is necessary when an entity consists of
multiple tokens. If, for instance, we had the text “Municipality of Athens belongs to”, “Mu-
nicipality” would be B, “of” and “Athens” would be | and “belongs” and “to” would be O.

The benchmark datasets for our experiments contain 276 daily issues for class A and D of
the Greek Government Gazette over the period 2000-2017. Every issue contains multiple
legal texts. Class A issues concern primary legislation published by the Greek government
(e.g., laws, presidential decrees, ministerial decisions, regulations, etc.). Class D issues
concern decisions related to urban, rural and environmental planning (e.g., reforestations,
declassifications, expropriations, etc.).

We uniformly splitted the issues across training (184, 60%), validation (45, 20%), and test
(47, 20%) in terms of publication year and class. Thus the possibility of overfitting due to
specific linguistic idiosyncrasies in the language of a government or due to specific entities
and policies is minimal. We annotated all of the above documents for the 6 entity types
that we examine, using brat.
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3.2 Public open datasets to link

In this section we briefly discuss third-party datasets that we will try to interlinking our
extracted entities with.

3.21 GAG - Kallikratis

Our group has made publicly available the dataset of Kallikratis?, which contains RDF
data about the geographical boundaries of all administrative divisions of Greece, as well
as other useful information such as estimations of population number for each division.
Since it is a complete dataset with relevant information to our work, we can utilize this
dataset to interlink extracted GPEs from greek legislation and, as a result, obtain all the
information Kallikratis contains about them.

3.2.2 DBpedia Persons

DBpediais a project aiming to extract structured content from the information created in the
Wikipedia project. This structured information is made available on the World Wide Web.
DBpedia allows users to semantically query relationships and properties of Wikipedia re-
sources, including links to other related datasets. It is considered by Tim Berners-Lee and
others as one of the most famous parts of the decentralized Linked Data effort. DBpedia
integrates many large datasets such as Yago®, Wikidata*, Wordnet®, schema.org® etc. As
a result, it contains a wealth of information about entities. Of interest to us are the entities
of greek politicians and some of their properties (such as their birthplace, the political party
they belong to etc.). Therefore, we extract this small subset of DBpedia for our purposes.

3.2.3 ELI - Nomothesi@

As explained in the introduction, our group created Nomothesia following initiatives such
as Holland’s Metalex” and UK’s legislation & in order to provide an enriched ontology capa-
ble of properly capturing the semantics of greek legislation documents. With the addition of
our NER/NEL component, we will have recognized legislation references inside passages
which will be then encoded into RDF.

2http://linkedopendata.gr/dataset/greek-administrative-geography

3https://www.mpi-inf. mpg.de/departments/databases-and-information-systems/research/yago-
nagal/yago/

4https://www.wikidata.org/wiki/Wikidata:Main_Page

Shttps://wordnet.princeton.edu/

Shttp://schema.org/

"http://doc.metalex.eu/

8http://www.legislation.gov.uk/
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4. NER EXPERIMENTS

In this chapter we focus on describing the workflow of the named entity recognition. We
provide the experimental evaluation specifications, as well as outline the neural networks
we conducted experiments on.

4.1 NER state-of-the-art

Having established the reasons to employ a neural network for the task of named en-
tity recognition, we are ready to consider our options among the available architectures.
For starters, since the task at hand belongs to the field of natural language processing,
it makes sense to consider good NLP networks. Recurrent models have been shown to
produce state-of-the-art results for language modeling [59], as well as for sequence tag-
ging [54, 26], machine translation [60, 61], dependency parsing [55] and sentiment anal-
ysis [62].

The main reason (BI)LSTMs (which are a more advanced form of RNN networks) are used
for NLP is their ability to deal with information memorization and structure. Numerous
examples such as Andrej Karpathy’s' show many such applications. Examples involve
teaching an RNN to learn english words and write Shakespeare parts on its own, syntactic
structures from Wikipedia, writing IATeXcode that compiles or even writing Linux code.

Furthermore, the work of Chalkidis et al. [3, 4] has shown how BILSTM models can be ap-
plied on contracts to extract useful information. Adapting and evolving these techniques,
we endeavor to achieve information and entity extraction from greek legislation docu-
ments, expecting similar success in the process.

4.2 Workflow

Let’s begin by showcasing the summarized workflow of our approach, since that will make
the following sections easier to comprehend (each step will be analyzed further):

1. We begin by taking a set of greek legislation documents in PDF format, convert them
into text and prepare the data so that each line contains a single sentence.

2. We tokenize the text so that each token is a single word. Punctuation are also tokens
(with the exception of punctuation used in abbreviations).

3. We conduct Word2Vec and/or FastText training to obtain the word embeddings nec-
essary to run neural network experiments.

See http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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4. We manually annotate greek legislation documents of the National Printing House
using brat? [18] so that we can begin supervised training.

5. We feed the word embeddings in addition to embeddings shapes for each token into
each of the four proposed models and do grid search so that we can determine the
optimal set of parameters.

6. We evaluate the performance of the neural networks for all parameters calibrated
during grid search.

PDF converter TXT|

- ["This", "is", "some",
‘ This 'Svft%ngsk(s:?eﬁf) text Tokenizer “(", "sample”, ")", "text",
- "with", "tokens", "etc.", "."]

This is some (sample) text brat N AN
with tokens etc..

w2av

Neural
network

o o o o wav [[0.34, 0.89, 0.32],

B

SHAPE

Figure 30: NER workflow.

4.2.1 Extracting entities from a document (workflow example)

Here, we will describe what happens in each step of the workflow in a small example (the
numbers correspond to the processing steps of Figure 30):

1. We download 10 documents from the National Printing House of Greece, which are
in PDF format and we convert them into TXT. The text obtained originates from a two-
column document, therefore some words might break into new lines. The resulting
text files are being processed so that the columns are positioned one under the
other (so that the text has the intended flow) and word breaks are being corrected.
Further on, the files are structured in such a way that each line of the final document
will contain a single sentence. This is needed to enhance the performance of the

2http://brat.nlplab.org/
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neural networks during training, as we wish to provide an entire sentence as input

per sample.
KApLEN w¢ avadaowTtéag ektdoews 3.557,00 T.u. & KApLEN WG avadaowTtéag EKTAOEWG
otn 8éon «ovoTdda 2B» ToL ZLVIBLOKTNTOL Ad- < 3.557,00 T.u. otn 6€0n «ovoTtdda 2B»
ooug MAatdvng,tov Afuov Edeooag, Tng ME MEA- & TOL ZuvdléKTNTOL Adooug MAaTdvng,
AOG. ToLv Afjuov Edeooag, Tng ME NEANQG.

Figure 31: PDF to TXT conversion. On the left we can see how the original text is found in a PDF
file and on the right we can see the processed text in the TXT file. Notice the newline characters
present on the left side and the word breaks (the right side text is in a single line).

2. The text obtained will now be tokenized, meaning we are going to generate lists of
tokens for each token found in the text, alongside their offsets in the text. Punctuation
is also considered as separate tokens with a few exceptions such as it being present
in abbreviations (“11.8.”).

3. The entire tokenized corpus from all relevant documents will be fed into Word2Vec
and Fasttext for training.

4. The corpus will be annotated using brat to obtain labels for supervised training. As
explained before, when annotating, we select the tokens that represent a specific
entity and then we pick its type from a list of relevant types (Person, Organization,
GPE, Geographical Landmark, Legislation Reference, Public Document). That set
of tokens is then provided with a label (class type), the offsets found and the actual
string as shown in the text (all this information is written in the corresponding .ann
file by brat).

H anégaon aut va dnpooieubei oty Egnpepida e KuBepvrioewg.

(Xpa, M6k, Motefa, Ao, Mepigépeia, I i Evérnra)
©e0o0Aovikn, 8 NoepPpiov 2016 O AGKQV KaBrKovTa Fevikoh I paupaTEN ATIOKEVIPWHEVNG

Awiknong NIKHTAS ®PAMKIZKAKHE 25 lavouapiov 2017 TEYXOS TETAPTO Ap.
®OANOU 3 17 EOHMEPIAA THE KYBEPNHEZEQS 18 Tel)og A’ 3/25.01.2017 E®PHMEPIAA THE KYBEPNHZEQXS 19 Telyog A’
3/25.01.2017 ApiBp. 213 (2) KNpuén, w¢ avadaowtéac, kX epowbeioag k ai kataAngBeioac, dnuoaiag, dacikol XapaKTipa, €KTaonG,

Xwpdgt, Eneio, Zrpor, ©¢on | Xdpa, MéAn, NMoAneia, Afpiog, Mepipépeia, I i Evérnia
suBadol 4.145,50 .., 0T  BE0N «ZTPAYKOUTOO», TOU Anpou Applavay, g M.E.

[Xdpa, oA, Moieia, Afpog, Mepipépeia, I fi Evérnia)

Podomng.
OTENIK OZ 'P AMM A TEAS ANIOKENTPQMENHE AIOIKHEHZ ‘Ex 0 v T ag uroyn:
i,

Tig SlaTageIg Tou Gpdpou 117 Tap. 3 Tou Zoviayparog me XQpag. 2. Tig SITAEEI Ty GpOpwv 69 Kat 71 Tou

suog, Antégaon, Eykirhio 51105, ATidg
v.0. 86/1969, OTWC IoXvouy. 3. Tic dl0TAEEIC TOU V. 3861/2010 (PEK A'/112), «Evioxuan tng SI0@AVEIag UE TNV

Figure 32: Annotating a document with brat.

5. We split the documents into one of three categories: test, train, validation. We pick
60% for training (6 documents), 20% for validation (2 documents) and 20% for testing
(2 documents). We utilize Word2Vec to convert all tokens of the original text (of the
training dataset) into vectors, providing their labels obtained from the previous step.
Further on, we provide shape embeddings depending on the form of the tokens
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themselves, feeding all this information into our neural networks. After training is
completed, we use the trained models to predict the labels of the validation dataset
(this is possible since we also got the correct labels from the annotation phase) for
evaluation of the training process. Finally, we predict the labels of the test dataset
as well to measure the performance of the models.

4.3 Word Embeddings

The first step towards our goal is text tokenization. Since we need to feed tokens into the
neural network as well as for Word2Vec/FastText training, we need to tokenize the text ob-
tained from the original PDF format. It is highly likely that we encounter certain punctuation
like quotation marks, full stops, commas etc, all of which need to be artificially separated
from any token/word they are next to. To achieve this, we have built a Tokenizer module
that is based on NLTK®. However, we had to manually handle special cases like the above
since the parsing tree provided by the library handles punctuation slightly differently. Fur-
thermore, we convert all digits encountered in the text into “d”, a necessary mapping for
Word2Vec training. Lastly, it is necessary to normalize and capitalize the entire text (see
subsection 4.3.1) and map all English words to a single word named “ENGLISH_WORD”.

4.3.1 Word2Vec Training

Having obtained the tokenized text, we can begin Word2Vec training. As explained before,
a Word2Vec model will map each word/token into a proper word embedding/vector that
captures its meaning and places it in a hyper-space in such a position that it can be related
to words with similar meanings. However, during tokenization, it is important to map all
digits into “d” in order to better train our model.

The reason for this mapping is simple: throughout the text we are guaranteed to encounter
multiple law ids, dates and numerals in general. Since each different token is mapped
into a different vector, strings such as “13/12/2005”, “26/10/2014” would be mapped into
different vectors. This would mean that Word2Vec training would be biased in its effort
to accomodate these mappings, sacrificing more efficient mappings for all other kinds of
tokens. By converting the digits into “d”, the above would be “dd/dd/dddd”, meaning they
would have just one vector as a representation.

Another necessary transformation is the normalization and capitalization of all tokens.
Since many words can be encountered in all-capitals, first capital and all-lowercased in
some parts of the text, we again encounter a similar problem as with the digits cases;
multiple vectors are generated for the same token. This becomes even more problematic
if we consider the fact that the greek language also includes accents. So, we can address
these issues by capitalizing and normalizing all tokens. The reason for capitalizing against

3http://www.nltk.org
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lowercasing is so that we eliminate all accents and also because while the greek language
has 25 lower-case letters (because of 0/¢), it has 24 upper-case ones.

Lastly, since the text might have some english words/references, we also need to map all
these into a single word named “ENGLISH_WORD?”. This is necessary because we are
not interested in english text in our experiments. Therefore we bias the Word2Vec training
to map all english words into a single vector representation so that it focuses on greek.

In our work, we applied Word2Vec (skip-gram model) [19, 20] to an unlabelled corpus,
which contains:

150,000 issues of Greek Government Gazette in the period of 1990-2017.

+ all pieces of legislation from the foundation of the Greek Nation in 1821 until 1990,
which sum up to 50,000.

* 1,500 case laws published online by Greek Courts.

» most EU Treaties, Regulations and Decisions, that have been translated in Greek
and published in EUR-Lex.

+ the Greek part of the European Parliament Proceedings Parallel Corpus.

We produced 100-dimensional word embeddings for a vocabulary of 428,963 words (types),
based on 615 millions of tokens (words), included in the unlabelled corpus. We used Gen-
sim’s implementation of Word2vec (http://radimrehurek.com/gensim/), with 10 minimum
occurrences per word, 20 epochs and default values for other parameters. Out of vocab-
ulary words were mapped to a single “UNK” embedding.

The Word2Vec model training was carried out on a computer with an Intel® Xeon® E5-4603
v2, with a CPU frequency of 2.20GHz, a 10.24 MB L3 cache, a total of 128 GB DDR3
1600 MHz RAM and the Linux Debian 8.6 (Jessie) x86 64 OS.

4.3.2 FastText experimentation

We also experimented with publicly available generic pre-trained 200-dimensional word
embeddings, which have been built with FastText [21] (https://fasttext.cc), based on a
much larger corpus with Greek Wikipedia articles. As we will show, the experimental re-
sults were worse in specific entity types extracted by our neural networks, possibly be-
cause legal expressions are under-represented (or do not exist) in generic corpora (e.g.,
wikipedia or news articles).

One of the key features of FastText word representation is its ability to produce vectors
for any words, even made-up ones which differentiates it from Word2vec (since it only
maps existing words into vectors). Indeed, FastText word vectors are built from vectors
of substrings of characters contained in it. This allows to build vectors even for misspelled
words or concatenation of words.
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4.4 Token Shape Embeddings

We use token shape embeddings [4, 22] that represent the following seven possible
shapes of tokens:

« token consisting of alphabetic upper-case characters, possibly including periods and
hyphens (e.g., “NNPOEAPO”, “T1.A.”, “TIA/TOX")

+ token consisting of alphabetic lower-case characters, possibly including periods and

hyphens (e.g., “vopog”, “v.”, “uttep-@épTwon”)

+ token with at least two characters, consisting of an alphabetic upper-case first char-
acter, followed by alphabetic lower-case characters, possibly including periods and
hyphens (e.g., “AfRuog”, “AvatrA.”)

» token consisting of digits, possibly including periods and commas (e.g., “2009”, “12,0007,
“1 . 1 ”)

* line break
+ any token containing only non-alphanumeric characters (e.g., “.”, “€”)

 any other token (e.g., “10”, “OIK/88/4522”, “EU”)

In general, the shape (form) of its token relies on the existence and relative position of
alphabetic characters, digits and punctuation. Intuitively, this information is going to help
the neural network conduct entity recognition more efficiently since we provide word em-
beddings and also shapes for each token.

4.5 POS tag embeddings

A promising component that could perhaps improve the quality of our results is a Part Of
Speech (POS) tagger. Despite our wishes to try incorporating such a component due to
potential performance increase, we were unable to embed the part-of-speech tag of each
token due to the fact that so far there is no currently available POS tagger for the Greek
language that can cover all aspects of the present research. We verified this by experi-
menting with the NLTK (http://www.nltk.org) POS tagger and, as also the one provided by
CLTK (http://cltk.org), but both of them had a vast amount of wrong predictions, a fact that
is even more profound in legal text.

4.6 BILSTM-based architectures

Here, we will showcase the models we experimented on. The architectures are considered
state-of-the-art and necessary for the task of Named Entity Recognition so that we can
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extract the desired entities. We will also explain how we conducted grid search to fine-tune

their hyper-parameters. Finally, we provide a thorough evaluation report on our results and
speculate about possibly unexpected findings.

4.6.1 BILSTM-LR

The first LSTM-based method that we have used, called BILSTM-LR (Figure 33) uses a
bidirectional LSTM (BILSTM) chain, to convert the concatenated word and token shape
embeddings of each token in each sentence to context-aware token embeddings, which
better describe the semantics of each token given the specific task. Each context-aware
token embedding is then passed on to the logistic regression layer (including the softmax
activation) to estimate the probability that the corresponding token belongs to each of the
examined categories (e.g., person, organization, etc.).

DENSE DENSE DENSE
A A A
DROP-OUT-—-————— ===
MERGE [« MERGE [« MERGE [«
) ) )
<«—— LSTM |« LSTM |« LSTM [«
41 41 41
> LSTM > LSTM > LSTM —mmm>
A A A
DROP-OUT--—-===——— = e e e e e
MERGE MERGE MERGE
[7p] [7p] [7p]
O O O
Z Z Z
[m) [m) [m)
o [m) [m)
@ @ @
3 3 3
(«, SP) (Strag., F.-UP.) (», SP)

Figure 33: A BILSTM-LR model.
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4.6.2 BILSTM-LSTM-LR

The second LSTM-based method, called BILSTM-LSTM-LR, is the same as the previous
one, except that it has an additional LSTM chain between the context-aware token em-
beddings of the lower BILSTM chain and the final logistic regression layer. Stacking LSTM
(or BILSTM) chains has been reported to improve efficiency in several natural language
processing tasks [63, 60] at the expense of a shortly increased computational cost.

DENSE DENSE DENSE
X X K
DROP-OUT-——————==—f————————————————————————————————————-
—> LSTM > LSTM » LSTM ——>
X X K
BILSTM --—————————f
MERGE [« MERGE [« MERGE [«
1 1 1
«— LSTM [« LSTM |« LSTM [«
4[ 4[ 4[
> LSTM > LSTM » LSTM —>
X X K
DROP-OUT-—————===f——————f————————————f————————————————-
MERGE MERGE MERGE
0 0 0
@] Q Q
= = =
a a a
a a a
© @ @
: : :
(«, SP) (Strag., F.-UP.) (», SP)

Figure 34: A BILSTM-LSTM-LR model.

4.6.3 BILSTM-BILSTM-LR

The third LSTM-based method, called BILSTM-BILSTM-LR has a BILSTM chain, instead
of the single direction LSTM chain of the previous method, between the context-aware
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token embeddings of the lower BILSTM chain, and the logistic regression layer.
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Figure 35: A BILSTM-BILSTM-LR model.

4.6.4 BILSTM-CRF

In the fourth LSTM-based method, called BILSTM-CRF, we replace the upper LSTM
chains and the logistic regression layer of the stacked-LSTM method with a linear-chain
Conditional Random Field (CRF). In our case, the CRF layer jointly selects the assign-
ment of positive or negative labels to the entire token sequence of each sentence, which
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allows taking into account the predicted labels of neighboring tokens . The previous three
LSTM-based recognizers still take into account the surrounding tokens (by considering
their features from the pre-trained and context-aware embeddings), but they do that in
a greedy fashion per token. Given the token sequence of a sentence, the BILSTM-CRF
recognizer computes the joint conditional probability for each possible label assignment
of the token sequence. As in conventional CRFs, decoding (searching for the optimum
label assignment) can be performed via dynamic programming or beam search [52, 55].
Training combines dynamic programming or beam search decoding with backpropagation
to maximize the joint conditional log-likelihood °.
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Figure 36: A BILSTM-CRF model.

While all models share some similarities, they also have a few differences. All of them
are classified as deep learning architectures and share some of their components, but
each one is based on a different intuition to provide good results. BILSTM-CRF and

4This is particularly useful for capturing tokens that are apart but part of the same label, e.g., “To UTT’ apIBPGV
15 (PEK A’ 123) 11.8. Tou 2013”. This is why we explore this model’s potential for the task at hand.

SWe use the CRF layer implementation of keras-contrib (https://github.com/farizrahman4u/keras-
contrib/blob/master/keras_contrib/layers/crf.py), with joint conditional log-likelihood optimization and
Viterbi best path prediction (decoding).
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BILSTM-BILSTM are the most computationally expensive architectures, while BILSTM
and BILSTM-LSTM are the cheapest. We need to test less complex architectures such
as BILSTM and BILSTM-LSTM so that we can verify how much we lose in performance
compared to reducing the computational power and time needed to get the results. An-
other interesting perspective is the possibility of getting better results with less complex
architectures. Such a phenomenon would be very rare and surprising, therefore worth
mentioning.

4.7 Hyper-parameter tuning

Based on experimentation, the pre-trained word embeddings are not updated during train-
ing on the labeled dataset, while in contrast token shape embeddings are not pre-trained.
The corresponding shape vectors are being learned during the actual training. We used
Glorot initialization [23], binary cross-entropy loss, and the Adam optimizer [24] to train
the recognizers with early stopping by examining the validation loss. Hyper-parameters
were tuned by grid-searching the following sets, and selecting the values with the best
validation loss: hidden units {100, 150}, batch size {16, 24, 32}, dropout rate {0.4, 0.5}.

A neural network, especially one with multiple layers, consists of millions of parameters
and optimizing all of them is nearly impossible. We focus on the dropout percentage
(dropout is the act of dropping a percentage of the network’s units and retrain them so
that all neurons remain active and not biased) and batch size (humber of samples propa-
gated through the network, large value indicates faster training but less accuracy usually).
The neural networks are trained for 30 epochs. The training was carried out on a computer
with an Intel® Core™ i5-7600, with a CPU frequency of 3.50GHz, 6.144 MB L3 cache, a
total of 32 GB DDR4 2400 MHz RAM, an AORUS GeForce® GTX 1080 Ti with 11264 MB
of memory, 3584 CUDA cores and the Linux Ubuntu Gnome 16.04.3 LTS (Xenial Xerus)
x86 64 OS. The Word2Vec embeddings are vectors of 100 dimensions. Our neural network
utilizes Python’s library of Keras 2.1.3°, with tensorflow-gpu 1.4.17 as its backend.

4.8 Evaluation

For each of the four methods we measured the performance on precision, recall, and F}
scores measured per token. As suggested in [3], an evaluation per element, meaning
per entity, can provide a more delicate estimation of each method’s performance. Re-
gardless, the complex syntax of the legislation text and more specifically groupings of
multiple entities in long phrases (e.g., “The municipalities of Athens, Dafnis-Imittou and
Varis-Voulas-Vouliagmenis will organize [...]") does not provide a clear segmentation be-

Shttps://keras.io/
"https://www.tensorflow.org/
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tween the individual entities® (e.g., Municipality of Athens, Municipality of Dafni-Imittos,
Municipality of Varis-Voulas-Vouliagmenis), so that we may rely on for such a high-order
evaluation. Table 5 lists the results of this group of experiments (the numbers are averaged
over 5 runs of experiments).

Table 5: Precision (P), Recall (R), and F; score, measured per token. Best F; per entity type shown

in bold font.
Entity BILSTM-LR BILSTM-LSTM-LR BILSTM-CRF BILSTM-BILSTM-LR
Type P R F1 P R F1 P R F1 P R F1
Person 0.89 0.90 0.89 0.89 0.94 0.91 0.88 0.92 0.90 0.89 0.93 0.91
Organization 0.77 0.73 0.75 0.77 0.78 0.77 0.72 0.74 0.73 0.78 0.77 0.78
GPE 0.80 0.87 0.84 0.83 0.89 0.86 0.81 0.86 0.83 0.84 0.90 0.87

GeolLandmark 0.67 0.82 0.73 0.72 0.86 0.78 0.64 0.83 0.72 0.70 0.86 0.77

Legislation Ref. 0.85 0.81 0.83 0.87 0.85 0.86 0.80 0.79 0.80 0.88 0.85 0.86

Public Document 0.81 0.75 0.78 0.85 0.81 0.82 0.72 0.75 0.74 0.84 0.81 0.83

Macro AVG 0.82 0.84 0.83 0.84 0.87 0.86 0.79 0.84 0.81 0.85 0.87 0.86

The results are highly competitive for all the examined methods. The best results based on
the macro-averaged F; are coming from both BILSTM-LSTM-LR and BILSTM-BILSTM-LR
(0.86), which indicates that the extra LSTM chains, which deepen the model, expand its
capacity even by a short margin, compared to BILSTM-LR (0.83) and BILSTM-CRF (0.81).
The deficiency of the current NER state-of-the-art method BILSTM-CRF, which has been
validated across all possible hyper-parameter sets, is quite impressive. We strongly be-
lieve that this issue is strongly correlated with the complicated references of geographical
landmarks, legislation references and public documents references, especially in cases
with entity reference groupings under a single keyword as demonstrated above.

Table 6: Precision, Recall, and F; score for FastText, measured per token with BILSTM-BILSTM-LR.

Entity Type Precision | Recall | Fi-score
Person 0.89 0.88 0.88
Organization 0.75 0.70 0.72
GPE 0.85 0.78 0.81

GeolLandmark 0.64 0.76 0.70
Legislation Ref. 0.82 0.82 0.82
Public Document 0.77 0.74 0.76
Macro AVG 0.81 0.81 0.81

Further on, we are going to rely on the BILSTM-BILSTM-LR recognizer based on the fact
that it outperforms the BILSTM-LSTM-LR by 1% in F; in Organizations (0.78 vs 0.77),
Geopolitical Entities (0.87 vs 0.86) and Public Documents (0.83 vs 0.82), while it is only
1% worse in Geographical Landmarks (0.77 vs 0.78). Considering the generic FastText
pre-trained embeddings instead of our domain-specific ones, leads to a macro-averaged
F; of 0.81 for the best reported method BILSTM-BILSTM-LR (Table 6), especially in the
latter four categories, in which domain knowledge matters the most (e.g., geographical
aspects and codification of documents).

8This shortcoming is true for both 10 and BIO annotation schemes, which have been widely applied in
sequence labelling tasks.
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5. LINKING EXPERIMENTS

In this chapter we describe the workflow necessary to conduct interlinking with other
datasets after manipulating the extracted entities from the NER component. In addition,
the experimental evaluation specifications and a discussion on the results obtained are
provided.

5.1 Workflow

Let’s begin by showcasing the summarized workflow of our approach, since that will make
the following sections easier to comprehend (each step will be analyzed further):

1. We apply post-processing techniques with hand-written rules and regexes to nor-
malize and process the extracted entities into presentable labels.

2. Alongside the labels, we generate RDF data regarding the named entities. Useful
properties include the passage in which they were found, their position in the text
(for a web-page annotation).

3. We interlink geo-political entities (GPEs), persons and legislation references with
Kallikratis (GAG), Dbpedia persons and ELI, respectively with the Silk framework.
An intermediate dataset consisting of owl : sameAs is generated, as a result.

4. We manually generate a dataset of landmarks which are usually noted in legislation
related to urban, rural and environmental planning and, based on heuristic rules and
relative position within passages, interlink them with belongs_to relations to corre-
sponding GPEs.

5.1.1 Extracting entities from a document (workflow example)

Here, we will describe what happens in each step of the workflow in a small example (the
numbers correspond to the processing steps of Figure 37):

1. Let's assume that a document/law contains the GPE entity “Ammokevipwuévn Aloi-
knon M-@” (Decentralized Administration of Macedonia-Thrace). The text needs to
be post-processed with hand-written rules so that it is normalized. The previous
string will become “ANTOKENTPQMENH AIOIKHEZH MAKEAONIAZ-OPAKHY".

2. Having obtained the processed labels originating from the text of the documents, we
proceed to use information such as the offsets of the actual entity within the text, the
law/document in which it was found etc., in order to produce RDF data.
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Figure 37: Linking workflow.

3. Asitis a GPE entity, it is a candidate for interlinking with Silk. The kallikratis dataset
contains an entity with the label “ANTOKENTPQMENH AIOIKHZH MAKEAONIAX
OPAKHYX" (notice the difference), therefore, the substring similarity score between
those two entities will be high. An owl : sameAs link/triplet will be produced.

4. To complete our example, let’'s assume that within the same passage the geograph-
ical landmark “Aypoktnua MaupouixdAn” was also present (next to the GPE entity).
The landmark would also undergo processing like the GPE of the example. Further-
more, since the offsets of the labels found in the original text are “close” (up to 5
characters apart), we can deduce that this landmark belongs to the corresponding
GPE entity. Other RDF data will be produced like with all other categories of entities.

5.2 Textual entity references vocabulary

The first step towards linking entity references extracted (by the Named Entity Recognizer)
with the entities described in public open datasets is to represent those references using
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the RDF specification. The legal text of a document contains subdivisions (passages of
individual laws) that we define as LegalResourceSubdivisions based on the Greek legisla-
tion ontology. Since some of those contain text, it is also possible to contain (has_reference
to) a Reference to an entity (e.g., a law passage referring to a specific law that it modifies).
This reference is realized in an interval of characters. In other words, it begins and ends
on specific sequential characters inside the text of the subdivision. This Reference most
likely refers to (or in another sense is relevant_for ) an Entity, which is probably described
in open public datasets. Therefore, a LegalResourceSubdivision contains references to
persons, administrative units and legal resources (e.g., laws, decisions etc.). The former
description is depicted in Figure 38.

xsd:int nomothesia: Reference ¢ nomothesia:

i e . Starts/ends ® has_reference
| AdministrativeUnit : 3
----------- g LegalResourceSubdivision

LegalResource |§:
————— ' _
I Person 15 Thing
_____ J

nomothesia: eli: E_ . _|1 dbpedia: !_ _____ -: gag:

Figure 38: Textual Reference RDF Vocabulary.

5.3 Using Silk and heuristics to generate owl:sameAs links

We linked legal references with legal documents provided by the Greek legislation dataset’.
We based on heuristic rules to directly interpret the relevant URI by capturing the type,
year of publication and the serial number.

We linked person references with Greek politicians retrieved from the Greek DBpedia?
dataset and geopolitical entity references with the Greek administrative units as they are
described in the Greek Administrative Geography (GAG) dataset. For both entity types,
we proceed in interlinking the corresponding datasets using the Silk framework. We ex-
perimented with two different textual linking operators: Levenshtein and Substring dis-
tance [25] over the rdfs: 1abel values provided by each dataset. For the case of the Greek
Administrative Units, we also provided the type of the administrative units (e.g., local com-
munity, municipality, region, etc.) based on the naming conventions that we identified in

"Published in http://legislation.di.uoa.gr/legislation.n3.
2http://el.dbpedia.org/
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the validation part of the labeled dataset.

For each interlinking method that we tried, we examine the performance of the interlinking
in terms of precision, recall, and F;, score measured per entity pair on the test part of our
labeled dataset. Here, true positives (TP) are references correctly paired with an entity
of each set, false positives (FP) are references incorrectly paired with entities, and false
negatives (FN) are references incorrectly not paired with the relative entities of the exam-
ined sets. The acceptance threshold for both linking operators was tuned on the validation
part of our datasets, while the entity pairs provided are those presented in the test part.
Table 7 lists the results for this group of experiments.

[Persan EIE) £
[Person Substring Ej Path (Source) rc,PE Substring| Eﬁ
Required Required
= Thresl-wld 0.2 5 e Threshold 0.2
Weight fi | weghtlt |
granularity 3 L granularity 3
i SubString (Compare) |- SubString (Compare]

Vrdfs:label

Path (Target)

Figure 39: The interlinking process in Silk for persons and GPEs.

5.4 Evaluation

Linking persons was a great challenge for our system, mainly because legislators and the
publication office tend to refer to a person’s first name by its initials (e.g., A. Tsipras), thus
a fair amount of person references have been misclassified (precision: 0.71) for persons
with the same surname. We successfully linked the geopolitical entities with the Greek
administrative units (£7: 0.92). Minor issues are related to the segmentation of compound
references of multiple administrative units. The results for legislation references are ex-
cellent (F;: 0.98), while a short margin of documents are mis-linked due to the fact that
ministerial decisions do not have a standard codification (neither standard reference pat-
tern), which vary from one ministry to another.

Table 7: Precision (P), Recall (R), and F;, score, measured per entity pair.

metrics linking technique
Entity rules levenshtein Substring
Type P R F1 P R F1 P R F1
Person - - - 0.99 | 0.55 | 0.71 | 0.90 | 0.68 | 0.77
GPE - - - 0.99 | 0.79 | 0.88 | 0.95 | 0.92 | 0.94
Legislation Ref | 0.99 | 0.97 | 0.98 - - - - - -
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5.5 Greek geographical landmarks dataset generation

Greek geographical landmarks are a major asset for our legal recognizer since they are
related to planning and architectural interests. However, there is no such public dataset to
interlink between the references and the actual entities. We proceed in generating a new
dataset by applying linguistic heuristics to create a set of unique landmarks, classified in
5 different main categories (classes):

Local District. Rural districts such as villages and small local communities (e.qg.,
Koukkari Settlement).

» Area. Geographical areas, mainly sub-classified in agricultural, forest, coastal and
marine areas (e.g., Area Peristeria).

Road. Roads sub-classified in highway, local, bypass roads or hairpin turns (e.g.,
Kastelia Road).

» Beach. Areas that are designated for swimming (e.g., Kavouri Beach).

Islet. Small islands that most possibly are not inhabited (e.g., Poliaegos Islet).

Further on, we interlink the new dataset with the Greek administrative units in case there
is a connection between them (belongs_to) indicated in terms of text (e.g., “Beach Kavouri
at Municipality of Varis-Voulas-Vouliagmenis”). In Figure 40, we depict the mini-ontology
of Greek Landmarks dataset.

rdfs:label .
Local District Landmark xsd:string
Beach agibelongs to £ T T =TT e
939 95 P Administrative Unit I
Lo tom s ot o s om0 s
Farm Area
Local Road Road Turn
—_— . — -
landmarks: | | gag:

Figure 40: Geographical Landmark RDF vocabulary.
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6. DEMONSTRATING THE NER/NEL’S FUNCTIONALITY

In this chapter, we demonstrate new forms of querying the augmented Greek legislation
and Greek geographical landmarks datasets.

6.1 Querying the augmented Greek legislation and Greek geographical landmarks
datasets

6.1.1 Legislation citation networks

A legal professional may retrieve citation networks built around a legal document, which
most likely include legal documents in the same context (see Figure 41).

LAW

PD. 1989/1850
2009/189
g LAW
''''''' ™ 2010/3852
PD. «-— " -
2012/85
ctes  ——m . LAW PD.
1985/1558 1980/601

has reference —

Figure 41: Citation network based on citations and references around Presidential Decree 2013/5.

6.1.2 Entity-based search

Based on the above, we have the ability to pose queries against the resulting RDF graph.
Two sample queries are given in natural language together with their expression in SPARQL
in Table 8.
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Table 8: Entity-based queries.

Q1: Retrieve any acts of legal documents that refer to local districts,
which belong to the regional unit of Larissa.

SELECT DISTINCT

?act_id ?local_district_name

WHERE {

?act elizlocal_id ?act_id.

?act leg:has_reference ?reference.
?reference eli:relevant_for ?local_district.
?local_district rdfs:label ?local_district_name.
?local_district a landmark:LocalDistrict.
?local_district leg:belongs_to ?regional_unit.
?regional_unit rdfs:label
"REGIONAL UNIT OF LARISSA"@en.
}LIMIT 5

ActID
Dec. 2015/1882
Dec. 2015/1827/109821
Dec. 2015/1629/99573
Dec. 2013/1002/65288
Dec. 2013/1154/74937

Local District
“RIGEOU”
“ROUMANI"
“LIKOVOUNI ST. CHARALAMPOU”
“KLARAKI”
“PALIOMANDRIA ST. CHARALAMPOU”

Q2: Retrieve any acts of lega

| documents that

contain references to persons

that have been born in Athens.

SELECT DISTINCT

?act_id ?person_name

WHERE {

?act eli:local_id ?act_id.

?act leg:has_reference ?reference.
?reference eli:relevant_for ?person.
?person rdfs:label ?person_name.
?person dbpedia:birthplace ?birthplace.
?birthplace rdfs:label "Athens”@en.
}LIMIT 5

Act ID
Dec. 2014/16591/943
P.D. 2002/73
Dec. 2011/23564
Dec. 2015/Y58
Dec. 2009/1059423

Local District
“KIRIAKOS K. MITSOTAKIS”
“KONSTANTINOS STEFANOPOULOS”
“LOUKAS PAPADIMOS”
“ALEXIS TSIPRAS”
“GIANNIS PAPATHANASIOU”
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7. CONCLUSION AND FUTURE WORK

All'in all, we developed, tested and evaluated a Named Entity Recognition and a Named
Entity Linking component, applied on greek legislation. Greek is a challenging language
for NLP tasks, while the additional noise from external sources (since the original corpus
of documents is only available in PDF format) provided an interesting challenge to tackle.

Regarding the NER component, we evaluated all of the above LSTM-based methods in the
task of Named Entity Recognition in a Greek legislation dataset, which we made publicly
available for further academic research. The process was challenging and lengthy, as we
had to convert PDF files into TXT format, process them so that they are suitable for training,
manually annotate a subset of the documents to generate the test, train and validation
parts of the datasets, before being able to conduct our experiments. As reported above,
our experiments yielded some interesting and even unexpected findings.

Regarding the NEL component, we evaluated entity-linking between textual references
and entities from open third-party datasets. Obtaining links is important as we can comple-
ment the information of the entities extracted from the text with their corresponding/dedicated
matches on popular datasets.

Finally, we introduced and applied a novel vocabulary for the representation of textual
references and we generated a new dataset for Greek geographical landmarks. As ex-
plained before, rural/architectural information of this kind has never been extracted into a
dataset of any kind, therefore it is a significant contribution as it provides us with numerous
capabilities.

Our future plans include further experimentation on the LSTM-based methods using word
embeddings trained with the FastText algorithm, which considers sub-words information.
We consider that it would be beneficial based on the fact that the Greek language includes
multiple declensions in the indication of numbers, cases (nominative, subjective, genitive,
possessive), and genders. For the same reasons, we are also planning to replace the
shape embeddings with a dynamic character-level RNN or CNN model, to embed infor-
mation relevant to token shapes, prefixes, suffixes, as described by Ma and Hovy [26].

A character-level RNN or CNN model will also be examined as an alternative method
(operation) for entity linking.

Another interesting potential direction is the introduction of a more complicated annotation
format with richer sets of labels, based on the principles of BIO tags, in order to address
the complexity of the legal text. We also endeavour to extract (recognize) more geospa-
tial information such as coordinates, presented in tables, or extracting relations between
landmarks to augment the information in the newly generated dataset.
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ABBREVIATIONS - ACRONYMS

Al Artificial Intelligence

BILSTM Bidirectional Long Short-Term Memory
BIO Beginning-Inside-Outside

BPTT Back Propagation Through Time
CBOW Continuous Bag of Words

CEC Constant Error Carousel

CLTK Classical Language Toolkit

CNN Convolutional Neural Network

CPU Central Processing Unit

CRF Conditional Random Fields

ECLI European Case Law ldentifier

ELI European Legislation Identifier

EU European Union

FAIR Facebook Al (Artificial Intelligence) Research
FN False Negatives

FP False Positives

GAG Greek Administrative Geography

GPE Geo-Political Entity

GPU Graphics Processing Unit

GloVe Global Vectors

IETF Internet Engineering Task Force

10 Inside-Outside

IR Information Representation

loT Internet of Things

IRI Internationalized Resource ldentifier
ISO International Organization for Standardization
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LKIF Legal Knowledge Interchange Format
LR Linear Regression

LSL Link Specification Language

LSTM Long Short-Term memory

NEL Named Entity Linker

NER Named Entity Recognition

NGO Non-governmental Organization

NLP Natural Language Processing

NLTK Natural Language Toolkit

OCR Optical Character Recognition

OWL Web Ontology Language

PDF Portable Document Format

POS Part Of Speech

PPV Positive Predicted Value

PhD Philosopher’s Doctorate

RBM Random Boltzmann Machine

RDF Resource Description Framework
RNN Recurrent Neural Network

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent
SPARQL SPARQL Protocol and RDF Query Language
SVM Support Vector Machine

TDNN Time-Delay Neural Network

TFxIDF Term Frequency times Inverse Document Frequency
TN True Negatives

TP True Positives

TPR True Positive Rate

TXT text
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UK United Kingdom

URI Uniform Resource Identifier
UTF Unicode Transformation Format
Ww2v Word2Vec

W3C World Wide Web Consortium
XOR Exclusive OR

brat brat rapid annotation tool
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