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ABSTRACT

Structured matrix estimation belongs to the family of learning tasks whose main goal is
to reveal low-dimensional embeddings of high-dimensional data. Nowadays, this task
appears in various forms in a plethora of signal processing and machine learning applica-
tions. In the present thesis, novel mathematical formulations for three different instances
of structured matrix estimation are proposed. Concretely, the problems of a) simultane-
ously sparse, low-rank and nonnegative matrix estimation, b) low-rank matrix factorization
and c) online low-rank subspace learning and matrix completion, are addressed and ana-
lyzed. In all cases, it is assumed that data are generated by a linear process, i.e., we deal
with linear measurements. A suite of novel and efficient optimization algorithms amenable
to handling large-scale data are presented. A key common feature of all the introduced
schemes is nonconvexity. It should be noted that albeit nonconvexity complicates the
derivation of theoretical guarantees (contrary to convex relevant approaches, which - in
most cases - can be theoretically analyzed relatively easily), significant gains in terms of
the estimation performance of the emerging algorithms have been recently witnessed in
several real practical situations.

Let us first focus on simultaneously sparse, low-rank and nonnegative matrix estimation
from linear measurements. In the thesis this problem is resolved by three different op-
timization algorithms, which address two different and novel formulations of the relevant
task. All the proposed schemes are suitably devised for minimizing a cost function consist-
ing of a least-squares data fitting term and two regularization terms. The latter are utilized
for promoting sparsity and low-rankness. The novelty of the first formulation lies in the
use, for the first time in the literature, of the sum of the reweighted ℓ1 and the reweighted
nuclear norms. The merits of reweighted ℓ1 and nuclear norms have been exposed in
numerous sparse and low-rank matrix recovery problems. As is known, albeit these two
norms induce nonconvexity in the resulting optimization problems, they provide a better
approximation of the ℓ0 norm and the rank function, respectively, as compared to rele-
vant convex regularizers. Herein, we aspire to benefit from the use of the combination
of these two norms. The first algorithm is an incremental proximal minimization scheme,
while the second one is an ADMM solver. The third algorithm’s main goal is to further
reduce the computational complexity. Towards this end, it deviates from the other two in
the use of a matrix factorization based approach for modelling low-rankness. Since the
rank of the sought matrix is generally unknown, a low-rank imposing term, i.e., the varia-
tional form of the nuclear norm, which is a function of the matrix factors, is utilized. In this
case, the optimization process takes place via a block coordinate descent type scheme.
The proposed formulations are utilized for modelling in a pioneering way a very important
problem in hyperspectral image processing, that of hyperspectral image unmixing. It is
shown that both sparsity and low-rank offer meaningful interpretations of inherent natural
characteristics of hyperspectral images. More specifically, both sparsity and low-rankness
are reasonable hypotheses that can be made for the so-called abundancematrix, i.e., the
nonnegative matrix containing the fractions of presence of the different materials, called
endmembers, at the region depicted by each pixel. The merits of the proposed algorithms
over other state-of-the-art hyperspectral unmixing algorithms are corroborated in a wealth



of simulated and real hyperspectral imaging data experiments.

In the framework of low-rankmatrix factorization (LRMF) four novel optimization algorithms
are presented, each modelling a different instance of it. All the proposed schemes share
a common thread: they impose low-rank on both matrix factors and the sought matrix by
a newly introduced regularization term. This term can be considered as a generalized
weighted version of the variational form of the nuclear norm. Notably, by appropriately se-
lecting the weight matrix, low-rank enforcement amounts to imposing joint column sparsity
on both matrix factors. This property is actually proven to be quite important in applications
dealing with large-scale data, since it leads to a significant decrease of the induced compu-
tational complexity. Along these lines, three well-known machine learning tasks, namely,
denoising, matrix completion and low-rank nonnegative matrix factorization (NMF), are re-
defined according to the new low-rank regularization approach. Then, following the block
successive upper bound minimization framework, alternating iteratively reweighted least-
squares, Newton-type algorithms are devised accounting for the particular characteristics
of the problem that each time is addressed. Lastly, an additional low-rank and sparse NMF
algorithm is proposed, which hinges upon the same low-rank promoting idea mentioned
above, while also accounting for sparsity on one of the matrix factors. All the derived al-
gorithms are tested on extensive simulated data experiments and real large-scale data
applications such as hyperspectral image denoising, matrix completion for recommender
systems, music signal decomposition and unsupervised hyperspectral image unmixing
with unknown number of endmembers.

The last problem that this thesis touches upon is online low-rank subspace learning and
matrix completion. This task follows a different learning model, i.e., online learning, which
offers a valuable processing framework when one deals with large-scale streaming data
possibly under time-varying conditions. In the thesis, two different online algorithms are
put forth. The first one stems from a newly developed online variational Bayes scheme.
This is applied for performing approximate inference based on a carefully designed novel
multi-hierarchical Bayesian model. Notably, the adopted model encompasses similar low-
rank promoting ideas to those mentioned for LRMF. That is, low-rank is imposed via pro-
moting jointly column sparsity on the columns of the matrix factors. However, following the
Bayesian rationale, this now takes place by assigning Laplace-type marginal priors on the
matrix factors. Going one step further, additional sparsity is independently modelled on
the subspace matrix thus imposing multiple structures on the same matrix. The resulting
algorithm is fully automated, i.e., it does not demand fine-tuning of any parameters. The
second algorithm follows a cost function minimization based strategy. Again, the same
low-rank promoting idea introduced for LRMF is incorporated in this problem via the use of
a - modified to the online processing scenario - low-rank regularization term. Interestingly,
the resulting optimization scheme can be considered as the deterministic analogue of the
Bayesian one. Both the proposed algorithms present a favorable feature, i.e., they are
competent to learn subspaces without requiring the a priori knowledge of their true rank.
Their effectiveness is showcased in extensive simulated data experiments and in online
hyperspectral image completion and eigenface learning using real data.
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ΠΕΡΙΛΗΨΗ

Το πρόβλημα της εκτίμησης δομημένου πίνακα ανήκει στην κατηγορία των προβλημά-
των εύρεσης αναπαραστάσεων χαμηλής διάστασης (low-dimensional embeddings) σε
δεδομένα υψηλής διάστασης. Στις μέρες μας συναντάται σε μια πληθώρα εφαρμογών
που σχετίζονται με τις ερευνητικές περιοχές της επεξεργασίας σήματος και της μηχανικής
μάθησης. Στην παρούσα διατριβή προτείνονται νέοι μαθηματικοί φορμαλισμοί σε τρία
διαφορετικά προβλήματα εκτίμησης δομημένωνπινάκων από δεδομένα μεγάλης κλίμακας.
Πιο συγκεκριμένα, μελετώνται τα ερευνητικά προβλήματα α) της εκτίμησης πίνακα που
είναι ταυτόχρονα αραιός, χαμηλού βαθμού και μη-αρνητικός, β) της παραγοντοποίησης
πίνακα χαμηλού βαθμού, και γ) της ακολουθιακής (online) εκτίμησης πίνακα υποχώρου
(subspace matrix) χαμηλού βαθμού από ελλιπή δεδομένα. Για όλα τα προβλήματα αυτά
προτείνονται καινoτόμοι και αποδοτικοί αλγόριθμοι βελτιστοποίησης (optimization algo-
rithms). Βασική υπόθεση που υιοθετείται σε κάθε περίπτωση είναι πως τα δεδομένα έχουν
παραχθεί με βάση ένα γραμμικό μοντέλο. Το σύνολο των προσεγγίσεων που ακολουθού-
νται χαρακτηρίζονται από μη-κυρτότητα. Όπως γίνεται φανερό στην παρούσα διατριβή, η
ιδιότητα αυτή, παρά τις δυσκολίες που εισάγει στην θεωρητική τεκμηρίωση των προτεινό-
μενων μεθόδων (σε αντίθεση με τις κυρτές προσεγγίσεις στις οποίες η θεωρητική ανάλυση
είναι σχετικά ευκολότερη), οδηγεί σε σημαντικά οφέλη όσον αφορά την απόδοσή τους σε
πλήθος πραγματικών εφαρμογών.
Για την εκτίμηση πίνακα που είναι ταυτόχρονα αραιός, χαμηλού βαθμού και μη-αρνητικός,
προτείνονται στην παρούσα διατριβή τρεις νέοι αλγόριθμοι, από τους οποίους οι δύο
πρώτοι ελαχιστοποιούν μια κοινή συνάρτηση κόστους και ο τρίτος μια ελαφρώς διαφορε-
τική συνάρτηση κόστους. Κοινό χαρακτηριστικό και των δύο αυτών συναρτήσεων είναι
ότι κατά βάση αποτελούνται από έναν όρο προσαρμογής στα δεδομένα και δύο όρους
κανονικοποίησης, οι οποίοι χρησιμοποιούνται για την επιβολή αραιότητας και χαμηλού
βαθμού, αντίστοιχα. Στην πρώτη περίπτωση αυτό επιτυγχάνεται με την αξιοποίηση του
αθροίσματος της επανασταθμισμένης ℓ1 νόρμας (reweighted ℓ1 norm) και της επαναστα-
θμισμένης πυρηνικής νόρμας (reweighted nuclear norm), οι οποίες ευθύνονται για το μη-
κυρτό χαρακτήρα της προκύπτουσας συνάρτησης κόστους. Από τους δύο προτεινόμε-
νους αλγορίθμους που ελαχιστοποιούν τη συνάρτηση αυτή, ο ένας ακολουθεί τη μέθοδο
καθόδου σταδιακής εγγύτητας και ο άλλος βασίζεται στην πιο απαιτητική υπολογιστικά
μέθοδο ADMM. Η δεύτερη συνάρτηση κόστους διαφοροποιείται σε σχέση με την πρώτη
καθώς χρησιμοποιεί μια προσέγγιση παραγοντοποίησης για τη μοντελοποίηση του χαμη-
λού βαθμού του δομημένου πίνακα. Επιπλέον, λόγω της μη εκ των προτέρων γνώσης του
πραγματικού βαθμού, ενσωματώνει έναν όρο επιβολής χαμηλού βαθμού, μέσω της μη-
κυρτής έκφρασης που έχει προταθεί ως ένα άνω αυστηρό φράγμα της (κυρτής) πυρηνικής
νόρμας (σ.σ. στο εξής θα αναφέρεται ως εναλλακτική μορφή της πυρηνικής νόρμας). Και
στην περίπτωση αυτή, το πρόβλημαπουπροκύπτει είναι μη-κυρτό λόγω του φορμαλισμού
του μέσω της παραγοντοποίησης πίνακα, ενώ η βελτιστοποίηση πραγματοποιείται εφα-
ρμόζοντας μια υπολογιστικά αποδοτική μέθοδο καθόδου συνιστωσών ανά μπλοκ (block
coordinate descent). Tο σύνολο των προτεινόμενων σχημάτων χρησιμοποιείται για τη
μοντελοποίηση, με καινοτόμο τρόπο, του προβλήματος φασματικού διαχωρισμού υπερ-
φασματικών εικόνων (ΥΦΕ). Όπως εξηγείται αναλυτικά, τόσο η αραιότητα όσο και ο χα-
μηλός βαθμός παρέχουν πολύτιμες ερμηνείες ορισμένων φυσικών χαρακτηριστικών των



ΥΦΕ, όπως π.χ. η χωρική συσχέτιση. Πιο συγκεκριμένα, η αραιότητα και ο χαμηλός
βαθμός μπορούν να υιοθετηθούν ως δομές στον πίνακα αφθονίας (abundance matrix - ο
πίνακας που περιέχει τα ποσοστά παρουσίας των υλικών στην περιοχή που απεικονίζει
κάθε εικονοστοιχείο). Τα σημαντικά πλεονεκτήματα που προσφέρουν οι προτεινόμενες
τεχνικές, σε σχέση με ανταγωνιστικούς αλγορίθμους, αναδεικνύονται σε ένα πλήθος δια-
φορετικών πειραμάτων που πραγματοποιούνται τόσο σε συνθετικά όσο και σε αληθινά
υπερφασματικά δεδομένα.
Στο πλαίσιο της παραγοντοποίησης πίνακα χαμηλού βαθμού (low-rank matrix factoriza-
tion) περιγράφονται στη διατριβή τέσσερις νέοι αλγόριθμοι, ο καθένας εκ των οποίων
έχει σχεδιαστεί για μια διαφορετική έκφανση του συγκεκριμένου προβλήματος. Όλα τα
προτεινόμενα σχήματα έχουν ένα κοινό χαρακτηριστικό: επιβάλλουν χαμηλό βαθμό στους
πίνακες-παράγοντες καθώς και στο γινόμενό τους με την εισαγωγή ενός νέου όρου κανο-
νικοποίησης. Ο όρος αυτός προκύπτει ως μια γενίκευση της εναλλακτικής έκφρασης της
πυρηνικής νόρμας με τη μετατροπή της σε σταθμισμένη μορφή. Αξίζει να επισημανθεί
πως με κατάλληλη επιλογή των πινάκων στάθμισης καταλήγουμε σε μια ειδική έκφραση
της συγκεκριμένης νόρμας η οποία ανάγει την διαδικασία επιβολής χαμηλού βαθμού σε
αυτή της από κοινού επιβολής αραιότητας στις στήλες των δύο πινάκων. Όπως αναδεικνύ-
εται αναλυτικά, η ιδιότητα αυτή είναι πολύ χρήσιμη ιδιαιτέρως σε εφαρμογές διαχείρισης
δεδομένων μεγάλης κλίμακας. Στα πλαίσια αυτά μελετώνται τρία πολύ σημαντικά προβλή-
ματα στο πεδίο της μηχανικής μάθησης και συγκεκριμένα αυτά της αποθορυβοποίησης
σήματος (denoising), πλήρωσης πίνακα (matrix completion) και παραγοντοποίησης μη-
αρνητικού πίνακα (nonnegative matrix factorization). Χρησιμοποιώντας τη μέθοδο ελα-
χιστοποίησης άνω φραγμάτων συναρτήσεων διαδοχικών μπλοκ (block successive upper
bound minimization) αναπτύσσονται τρεις νέοι επαναληπτικά σταθμισμένοι αλγόριθμοι τύ-
που Newton, οι οποίοι σχεδιάζονται κατάλληλα, λαμβάνοντας υπόψη τα ιδιαίτερα χαρα-
κτηριστικά του εκάστοτε προβλήματος. Τέλος, παρουσιάζεται αλγόριθμος παραγοντοποί-
ησης πίνακα ο οποίος έχει σχεδιαστεί πάνω στην προαναφερθείσα ιδέα επιβολής χαμηλού
βαθμού, υποθέτοντας παράλληλα αραιότητα στον ένα πίνακα-παράγοντα. Η επαλήθευση
της αποδοτικότητας όλων των αλγορίθμων που εισάγονται γίνεται με την εφαρμογή τους
σε εκτεταμένα συνθετικά πειράματα, όπως επίσης και σε εφαρμογές πραγματικών δεδομέ-
νων μεγάλης κλίμακας π.χ. αποθορυβοποίηση ΥΦΕ, πλήρωση πινάκων από συστήματα
συστάσεων (recommender systems) ταινιών, διαχωρισμός μουσικού σήματος και τέλος
μη-επιβλεπόμενος φασματικός διαχωρισμός.

Το τελευταίο πρόβλημα το οποίο διαπραγματεύεται η παρούσα διατριβή είναι αυτό της
ακολουθιακής εκμάθησης υποχώρου χαμηλού βαθμού και της πλήρωσης πίνακα. Το
πρόβλημα αυτό εδράζεται σε ένα διαφορετικό πλαίσιο μάθησης, την επονομαζόμενη ακο-
λουθιακή μάθηση, η οποία αποτελεί μια πολύτιμη προσέγγιση σε εφαρμογές δεδομένων
μεγάλης κλίμακας, αλλά και σε εφαρμογές που λαμβάνουν χώρα σε χρονικά μεταβαλλό-
μενα περιβάλλοντα. Στην παρούσα διατριβή προτείνονται δύο διαφορετικοί αλγόριθμοι,
ένας μπεϋζιανός και ένας ντετερμινιστικός. Ο πρώτος αλγόριθμος προκύπτει από την
εφαρμογή μιας καινοτόμου ακολουθιακής μεθόδου συμπερασμού βασισμένου σε μεταβο-
λές. Αυτή η μέθοδος χρησιμοποιείται για την πραγματοποίηση προσεγγιστικού συμπερα-
σμού στο προτεινόμενο ιεραρχικό μπεϋζιανό μοντέλο. Αξίζει να σημειωθεί πως το μοντέλο
αυτό έχει σχεδιαστεί με κατάλληλο τρόπο έτσι ώστε να ενσωματώνει, σε πιθανοτικό πλαί-



σιο, την ίδια ιδέα επιβολής χαμηλού βαθμού που προτείνεται για το πρόβλημα παραγο-
ντοποίησης πίνακα χαμηλού βαθμού, δηλαδή επιβάλλοντας από-κοινού αραιότητα στους
πίνακες-παράγοντες. Ωστόσο, ακολουθώντας την πιθανοτική προσέγγιση, αυτό πρα-
γματοποιείται επιβάλλοντας πολύ-επίπεδες a priori κατανομές Laplace στις στήλες τους.
Ο αλγόριθμος που προκύπτει είναι πλήρως αυτοματοποιημένος, μιας και δεν απαιτεί
τη ρύθμιση κάποιας παραμέτρου κανονικοποίησης. Ο δεύτερος αλγόριθμος προκύπτει
από την ελαχιστοποίηση μιας κατάλληλα διαμορφωμένης συνάρτησης κόστους. Και στην
περίπτωση αυτή, χρησιμοποιείται η προαναφερθείσα ιδέα επιβολής χαμηλού βαθμού (κα-
τάλληλα τροποποιημένη έτσι ώστε να μπορεί να εφαρμοστεί στο ακολουθιακό πλαίσιο
μάθησης). Ενδιαφέρον παρουσιάζει το γεγονός πως ο τελευταίος αλγόριθμος μπορεί να
θεωρηθεί ως μια ντετερμινιστική εκδοχή του προαναφερθέντος πιθανοτικού αλγορίθμου.
Τέλος, σημαντικό χαρακτηριστικό και των δύο αλγορίθμων είναι ότι δεν είναι απαραίτη-
τη η εκ των προτέρων γνώση του βαθμού του πίνακα υποχώρου. Τα πλεονεκτήματα
των προτεινόμενων προσεγγίσεων παρουσιάζονται σε ένα μεγάλο εύρος πειραμάτων που
πραγματοποιήθηκαν σε συνθετικά δεδομένα, στο πρόβλημα της ακολουθιακής πλήρωσης
ΥΦΕ και στην εκμάθηση ιδιο-προσώπων κάνοντας χρήση πραγματικών δεδομένων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Σήματος, Μηχανική Μάθηση

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: εκτίμηση δομημένου πίνακα, μη-κυρτή βελτιστοποίηση, δεδομένα μεγάλης
κλίμακας, ακολουθιακή επεξεργασία
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Nonconvex Optimization Algorithms for Structured Matrix Estimation in Large-Scale Data Applications

1. INTRODUCTION

Nowadays, there exists a flood of information generated by different sources such as web
services, sensor networks, remote sensing applications, communication networks, bio-
logical systems, etc., [69]. The generated data may be big and high-dimensional thus
rendering the respective processing and estimation tasks quite intriguing and challenging.
Modern learning tools shall efficiently handle intrinsic barriers and benefit out of using a
certain amount of prior knowledge that may be available. In that vein, parsimonious mod-
els and representations of data have been shown up lately. Structured matrix estimation
is at the heart of various applications of that kind, that are commonly addressed in sig-
nal processing and machine learning literature. Put simply, structured matrix estimation
refers to the task of recovering a matrix (or more than one matrices) that is character-
ized by specific structure(s) such as sparsity, group-sparsity, low-rankness, by suitably
processing the data at hand. In this introductory chapter, we present the main structured
matrix estimation tasks that are addressed in this thesis. In this regard, the original formu-
lations of supervised problems, concerning the estimation of sparse or low-rank matrices
from linear measurements, are provided first. Next, the more challenging simultaneously
sparse, low-rank and nonnegative matrix estimation task is defined. Finally, the matrix
factorization problem is discussed and insight is provided on the disparate variants of this
approach (e.g., dictionary learning, sparse PCA, etc.), which arise when additional struc-
tures on the matrix factors are imposed. After formulating the problems of interest, the
most relevant methods reported in the literature are overviewed. The chapter concludes
with the presentation of the contribution of the thesis and a brief description of the content
of each chapter.

1.1 Structured matrix estimation: an overview

The task of estimating structured matrices encapsulates a diversity of machine learning
problems such as sparse matrix regression, reduced-rank regression, low-rank matrix fac-
torization, to name just a few. In all cases, the successful accomplishment of this task calls
for the adoption of specific hypotheses. The most important one concerns the “mecha-
nism” which conveys information as to the underlying phenomena that determine the data
generation process. In this thesis, the main hypothesis that embraces all the algorithms
to be presented next is that data are generated following a linear model. In mathematical
terms, this can be stated as follows,

Y = AX. (1.1)

where Y denotes a l × n matrix which contains the data, X is an m × n matrix that we
seek to estimate and A is a l × m matrix which linearly maps X to Y. Eq. (1.1) gives
rise to two large classes of a) supervised and b) unsupervised problems. The distinction
between these two classes can be roughly described as follows: if bothA and Y are known
the problem is called supervised, whereas if one knows only the data matrix Y, then the
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Figure 1: The geometry of a) an overdetermined and b) an underdetermined linear system. a) An
overdetermined system in a 2d-space corresponding to three lines. Obviously, there is no exact
solution since there is no common intersection point of the three lines. In that case, an approximate
solution may be obtained based on a certain criterion (e.g. least-squares). b) The intersection of the
two 2d-hyperplanes in a 3d-space is depicted by the black line segment. All points belonging to this
line are candidate solutions of this underdetermined linear system.

problem is unsupervised. The former problem calls for finding an efficient way to estimate
matrix X given Y and A, while the latter requires the estimation of both matrices A and X
given Y. However, albeit the linearity assumption may enhance mathematical tractability,
there do exist inherent obstacles in the estimation process that one must get around.

Let us first focus on the easiest case, i.e., the supervised scenario. By (1.1) it appears that
we shall deal with a system of linear equations. A crucial point that hence arises is that of
the relation between the dimensions l andm of matrix A. Concretely, the system of equa-
tions may be either overdetermined if l > m (see Fig. 1a for an intuitive geometrical view
of an overdetermined1 system of linear equations) or underdetermined if l < m (see Fig
1b). Both aforementioned cases give rise to ill-posed problems, that is, to problems that
do not have either any solution at all (in case of inconsistent overdetermined systems) or a
unique solution (underdetermined systems). The situation, in terms of the ill-posed nature
of the problem, is even harsher in the unsupervised scenario, i.e., the matrix factorization
problem. This is so, since there exist infinitely many pairs of matrices A,X that produce
Y, i.e., for any Ā = AW and X̄ = W−1X we have ĀX̄ = AWW−1X = AX (assuming any in-
vertible square matrixW), which is known as change of basis ambiguity. That being said,
we are confronted with problems which, in most cases, necessitate the inclusion of prior
knowledge in an effort to find “decent” approximate solutions. Τhe rationale behind this
strategy is the following: since there is no either exact or unique solution when it comes
to the matrix that we wish to estimate by solving the system of linear equations defined in
(1.1), either find an approximate solution or restrict the solution set, based on the a priori
knowledge we have regarding the structure of the sought matrix2. The word “structure”

1Note that for a linear system to be overdetermined, it is not sufficient to have l > m. In fact, this property
depends on the relation between the ranks of the coefficient and the augmented matrices, i.e., A and [A | Y],
respectively.

2The linear model assumption is also a sort of prior knowledge that has been used for modelling the data
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Figure 2: Examples of structured matrices. A sparse, a low-rank, a column-sparse and a simultane-
ously sparse and low-rank matrix (seen from left to right). White cells correspond to zero values.

refers to particular characteristics that a matrix may convey, subject to the physics of the
problem that is addressed each time. For instance, a matrix may be sparse, that is, it con-
sists of a number of zero entries. Matrices might also have a specific sparsity pattern, e.g.,
column/row sparsity. Alternatively, the matrix columns/rows may be highly correlated. In
such case, a low-rank matrix structure can be assumed. Furthermore, a matrix may be
simultaneously sparse and low-rank. Examples of such matrix structures are shown in
Fig. 2. Finally, there exist many applications in which the matrix elements are bounded to
a specific range of values, e.g., the set of nonnegative reals. That said, we next describe
the problems of a) sparse, low-rank or nonnegative matrix estimation, b) simultaneously
sparse, low-rank and nonnegative matrix estimation and c) sparse and low-rank matrix
factorization, that revolve around this thesis.

1.1.1 Sparse and low-rank matrix estimation

The problem of matrix estimation/regression imposing either a sparsity or low-rank or non-
negativity constraint belongs to the general class of supervised problems. Next, we focus
on the linear measurements’ case, i.e., data are assumed to be generated following a
linear process (as given in (1.1)), and formally define these problems.

Let us begin with a formal statement of sparse matrix estimation. Given Y and A, the
sparse matrix X is recovered by solving the following minimization problem,

min
X∈Rm×n

card{supp(X)} subject to Y = AX, (1.2)

where supp(X) is the support set3 of matrix X and card{·} returns the cardinality of a set4.
It can be readily shown that card{supp(X)} is identical to the ℓ0 quasinorm. The problem
in (1.2), as a direct generalization from vectors to matrices of the well-studied problem of

generation process.
3The set that contains the indexes of the elements of X corresponding to nonzero values.
4The number of elements in the set.
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sparse regression, shares the same issues with the latter in terms of the computational
complexity and the recovery guarantees. Concretely ℓ0 quasinorm minimization is NP-
hard and uniqueness of the solution does not generally hold, [53]. For the latter, it has
been shown that if certain conditions are satisfied by the measurements matrixA based on
its mutual coherence, spark, etc., [48], theoretical recovery guarantees can be provided.
In such cases, based on various relaxations, e.g., the ℓ1 norm (that will be elaborated in
Section 1.2), polynomial time algorithms have been developed for making the problem
tractable.

Departing from sparsity, we next move onto affine rank minimization (ARM), i.e., the task
of recovering low-rank matrices from linear measurements, [121]. ARM is analogous to
the sparse matrix estimation problem (1.2) and is mathematically formulated as,

min
X∈Rm×n

rank(X) subject to Y = AX. (1.3)

This analogy can be illustrated by considering the singular value decomposition (SVD) of
matrix X (assuming m ≤ n),

X =
m∑
i=1

σiuivTi , (1.4)

where σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 are the singular values of X and ui ∈ Rm, vi ∈ Rn are the
left and right singular vectors, respectively. Matrix X is of rank d if and only if the vector of
singular values, σ(X) = [σ1, σ2, . . . , σm]

T , is d-sparse, i.e., card{supp(σ(X))} ≡ ∥σ(X)∥0 =
d, where ∥ · ∥0 denotes the ℓ0 quasinorm. Problem (1.3) is tantamount to solving the ℓ0
minimization problem on the singular values of X and is also NP-hard. To this end various
relaxation schemes have come to the scene in literature in an effort to render the problem
tractable. In that spirit the so-called nuclear norm, which is actually the ℓ1 norm of the
vector of singular values, as well as a wealth of other approaches have been extensively
utilized in the literature, [51], and will be detailed in the next section.

Interestingly, even by solving the convex relaxations of ℓ0 quasinorm and rank function
minimization problems, using the ℓ1 and the nuclear norm, respectively, exact or approxi-
mate recovery of low-rank matrices can be obtained. In particular, exact recovery is the-
oretically guaranteed if specific conditions are satisfied by the measurements matrix A,
such as the restricted isometry property and the nullspace property, [53].

1.1.2 Simultaneously sparse, low-rank and nonnegative matrix estimation

Having described the sparse and low-rank matrix estimation tasks, we now stick to the
more challenging case of estimating multiple structured matrices out of linear measure-
ments. Concretely, we focus on the intriguing task of recovering matrices that are at the
same time sparse, low-rank and nonnegative. It is worth noticing that while sparse matrix
estimation and low-rank matrix estimation are two distinct problems that have been exten-
sively studied in the literature during the last two decades, this is not the case when both
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sparsity and low-rank constraints are simultaneously imposed on the matrix estimation
problem. In addition, this task has become essential to many applications lately.

Focusing on a specific set of these applications, we restrict our attention to those that con-
cern nonnegative data values. All in all, the problems that we address can be formulated
as follows,

min
X∈Rm×n

+

λcard{supp(X)}+ γrank(X) subject to Y = AX, (1.5)

where Rm×n
+ denotes the m × n dimensional nonnegative orthant of real numbers and

λ ≥ 0 and γ ≥ 0 are parameters that are used for controlling the contribution of each
one of the two terms in the sum. Again, Problem (1.5) is intractable since it derives from
the combination of problems (1.2) and (1.3), which are both NP-hard, [51]. To this end,
both convex (e.g., ℓ1 and nuclear norm) and tractable nonconvex approaches (e.g., ℓp and
Schatten-p -with 0 < p < 1- quasinorms), have come to the scene that will be elucidated
in the sequel.

1.1.3 Sparse, low-rank and nonnegative matrix factorization

Matrix factorization (MF) has long been at the core of numerous machine learning prob-
lems that have been studied in the literature. Among other applications, matrix factoriza-
tion has been utilized as an efficient reformulation of thematrix rankminimization problems
offering scalability with respect to the data size (see Fig. 3) and, thus, giving rise to efficient
low computational complexity solvers. Since it is an inherently ill-posed problem owing to
the invariances it presents, a number of constraints have been used for transforming it to
a computationally tractable one. Along these lines, constraints such as sparsity and low-
rankness have been included in a slew of optimization problems. These involve either
one or both the unknown matrix factors. Interestingly, each constraint models a specific
problem. In the following, it is assumed that matrix A is the m ×m identity matrix Im and
matrix X is factorized as X = UVT , where U ∈ Rm×d and V ∈ Rn×d. To provide an insight
on this we next list some of the cases that have gained extreme popularity over the last
few years.

Dictionary learning (DL). DL refers to an omnipresent task in machine learning whose
goal is to find a linear subspace called dictionary in which training data admit a sparse
representation. DL has been used in a variety of problems ranging from compressed
sensing to blind source separation. In mathematical terms, let us assume that the data at
hand are contaminated by additive zero-mean Gaussian i.i.d. noise E, that is, they may be
modelled as Y = X+ E ≡ UVT + E, where the columns of U define the dictionary. Then,
DL is formulated as the following optimization problem

min
U∈Rm×d,V∈Rn×d

∥Y− UVT∥2F subject to card{supp(V)} ≤ κ, ∥ui∥2 ≤ 1 ∀i = 1, 2, . . . , d

(1.6)

where ∥ · ∥F and ∥ · ∥2 denote the Frobenius and the ℓ2 norm of a matrix and a vector,
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Figure 3: A m × n matrix X of rank d ≤ (m,n) can be factorized using two smaller matrices, i.e., an
m× d matrix U and an n× d matrix V, thus offering significant computational merits.

respectively, and κ is a cardinal number, while ui is the ith column vector of matrix U.
Note that the constraint ∥ui∥2 ≤ 1 is utilized for resolving scaling ambiguities.
Sparse principal component analysis (sPCA). sPCA is an extension of the principal
component analysis (PCA) method, which is mostly used in the framework of dimension-
ality reduction, where the aim is to identify a low-dimensional orthogonal subspace for
representing high-dimensional data. PCA identifies the space where the first axis retains
the maximum possible variance of the data, the next axis, which is perpendicular to the
previous retains the maximum possible of the remained variance of the data, etc. These
axes are defined by the eigenvectors resulting from the solution of a suitably defined
eigenvalue/eigenvector problem. Dimensionality reduction is achieved by retaining the
(few) axes that capture the maximum variance of the data, [86]. sPCA differs from PCA
by accounting also for sparsity on this subspace. In other words, sPCA seeks sparse
eigenvectors. By following the so-called synthesis approach, [85], sPCA can be cast as
a constrained matrix factorization problem. This way, the problem becomes nonconvex5.
Moreover the orthogonality constraint is often dropped and the resulting optimization prob-
lem is expressed as,

min
U∈Rm×d,V∈Rn×d

∥Y− UVT∥2F subject to card{supp(U)} ≤ κ. (1.7)

As it has been shown, [170], this approach is of particular interest in cases where the
number of unknown parameters is comparable or even exceeds the number of the data
samples.
Matrix completion (MC). Matrix completion refers to the task of recovering a data ma-
trix from a sample of its entries. Clearly, this is impossible unless certain conditions are
satisfied. Along these lines, a necessary condition is that there exists a certain degree of
correlation in the matrix that we wish to recover. More specifically, the degrees of free-
dom6 of the data matrix must be much less than the total number of its available elements.

5Convex formulations of sPCA have been also proposed based on the so called analysis formulation of
the problem, e.g., max

ui

uT
i XTXui subject to ∥ui∥2 = 1, ∥ui∥1 = κ, [40].

6Degrees of freedom refer to the number of free parameters that are needed in order to specify the matrix,
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Moreover, the positions of these elements must be uniformly distributed. Matrix comple-
tion has been widely formulated as a rank minimization problem, i.e,

min
X∈Rm×n

rank(X) subject to [Y]ij = [X]ij for i, j ∈ Ω (1.8)

where Ω is the set of indexes of matrix Y where information is present. Since the rank
minimization problem defined above is NP-hard, various convex and nonconvex relax-
ation approaches have been proposed in the literature, in order to derive algorithms with
polynomial time complexity. Amongst the latter, matrix factorization (MF) formulations
have gained popularity lately. These are based on the so-called Burer-Monteiro heuristic,
i.e., the fact that any rank-r matrix can be written in a factorized form X = UVT where
U ∈ Rm×r and V ∈ Rn×r. As explained later, albeit nonconvex problems are generally
more difficult to be solved, MF based matrix completion methods present substantial mer-
its as compared to other approaches especially in large volume and/or dimension data
(big data), since they significantly decrease the size of the arising optimization problem.
Nonnegative matrix factorization (NMF). NMF is a matrix decomposition technique,
which possesses a prominent position in various fields of machine learning and signal
processing, where nonnegative data, such as image and video, are involved. This is
so, since similarly to sPCA, it offers meaningful interpretable decompositions while at the
same time it is a perfect choice for decomposing nonnegative data. Similarly to the DL
and sPCA problems, NMF takes the form of a matrix factorization setting. However, it
deviates from the others since the matrix factors are now constrained to have only non-
negative values. NMF can be defined as a constrained optimization problem, as is shown
below

min
U∈Rm×d

+ ,V∈Rn×d
+

∥Y− UVT∥2F . (1.9)

NMF has sparked a lot of research focusing on the investigation of conditions for the
uniqueness (up to positive scaling and permutation) of the derived decompositions. This
is an important aspect in many applications such as blind source separation.

1.2 Related work

The problems described so far have attracted a great deal of interest in the literature
during the past few years. Especially, during the last decade, structured matrix estimation
has been at the heart of the research endeavors, which can be classified into two main
classes, that is, a) those which focus on theoretical underpinnings of these problems (e.g.,
recovery guarantees, sample complexity, algorithmic aspects of the problems, etc.) and b)
those which focus on the development and application of relevant techniques on various
fields such as image and video processing, collaborative filtering, etc. This thesis can be
considered as a middle-of-the-road approach. For this reason, the literature review of the
related work in the field of interest will selectively refer to both popular theoretical works

[162].
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and others that concern diverse aspects emanating from the application of minimization
solvers in appropriately formulated practical problems.

1.2.1 Sparse and low-rank matrix estimation

Sparse matrix estimation, as a natural extension of the sparse vector recovery problem,
has been at the core of the research endeavors in machine learning and signal processing
field during the recent years. This is so, because sparse recovery constitutes the back-
bone of the field of compressed sensing, which has been lately emerged and has a great
impact in many groundbreaking and paradigm-shifting applications in the areas of image
processing, sampling theory, etc.

As mentioned in Section 1.1.1, the originally formulated problem in (1.2) is NP-hard, [53].
This fact has motivated the proposition of various alternative formulations of the prob-
lem7, which aim at achieving exact or approximate recovery of sparse matrices requiring
the minimum possible amount of measurements. ℓ1 norm minimization was the first ef-
fort made towards this direction. ℓ1 norm is proven to be the convex envelope of the ℓ0
quasinorm, [48]. Thus, by incorporating this into the optimization problem, the originally
NP-hard problem is now relaxed to a tractable convex program called basis pursuit, which
is formulated as

min
X∈Rm×n

∥X∥1 subject to Y = AX. (1.10)

This optimization problem can be efficiently solved via various off-the-shelf tools, e.g.,
interior point methods. In an attempt to increase the computational efficiency and gen-
erate fast algorithms, algorithmic tools specialized on ℓ1 minimization subject to linear
measurements, have been put forward. In that respect, the homotopy method, the least
angle regression (LARS, which resembles a modified version of the greedy type orthogo-
nal matching pursuit (OMP) method), [47], and the primal-dual approaches (see Section
2.1.3) such as the Champolle-Pock’s algorithm, [32], have been widely applied.

Sparse vector/matrix recovery has been also seen through an iterative reweighted least
squares (IRLSp, with p ≥ 0 a user defined parameter) approach, [41], i.e.,

min
X∈Rm×n

∥X∥2F,Dk
subject to Y = AX, (1.11)

where

∥X∥2F,Dk
=

m∑
i=1

n∑
j=1

x2ijdij,k, (1.12)

is the weighted Frobenius norm and matrix Dk ∈ Rm×n, which is updated at each iteration

7Besides the optimization based methods, greedy and thresholding based approaches have also been
proposed. However, these methods are out of the scope of this thesis. Interested readers may refer to [53]
for a detailed review of these methods.
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k, contains the reweighting coefficients dij,k’s defined as

dij,k = (xij,k + η2k)
p
2
−1, (1.13)

which are updated at each iteration k. For ηk ̸= 0, IRLSp, contrary to ℓ1 minimization,
offers a smooth formulation of the sparse vector/matrix recovery problem. As shown in
[41], for p = 1 and under similar to the ℓ1 minimization problem conditions that must be
satisfied by the measurements’ matrix A (nullspace property), the minimizer obtained by
IRLS1 coincides with that of (1.10).

Beyond the ℓ1 norm, and in an effort to further enhance the recovery performance, non-
convex approaches have been proposed. Along these lines, the ℓp norm for 0 < p < 1
has been utilized giving rise to optimization problems in the form,

min
X∈Rm×n

∥X∥pp subject to Y = AX. (1.14)

As shown in Fig. 4, the ℓp quasinorm approximates the ℓ0 quasinorm as p → 0 and
hence is a better surrogate thereof. However, (1.14) is nonconvex and intractable since
it belongs to the class of NP-hard problems when it comes to finding a globally optimal
solution, [56]. On the other hand, locally optimal solutions can be obtained by polynomial
time algorithms, resulting from relaxed versions of the original problem, where ℓp norms
are adopted. Interestingly, in many practical situations, ℓp norm minimization (with 0 <
p < 1) has showcased superior recovery performance of sparse vectors/matrices over the
convex ℓ1 minimization, [33, 124]. In the same nonconvex setting, other approaches have
been also proposed such as the weighted ℓ1 norm minimization defined as

min
X∈Rm×n

∥X∥1,D subject to Y = AX, (1.15)

where,

∥X∥1,D =
m∑
i=1

n∑
j=1

dij|xij|, (1.16)

and dij ≥ 0 are the weighting coefficients, which if wisely set ensure a better approxima-
tion of the ℓ0 norm (as compared to plain ℓ1 minimization). For instance, in the so-called
reweighted ℓ1 norm method proposed in [30], the weighting coefficients are updated at
iteration k+1 based on the value of the respective xij,k obtained at iteration k and are set
as

dij,k+1 =
1

|xij,k|+ η2
(1.17)

where η ̸= 0 ensures that the denominator does not vanish. Note that the reweighted
ℓ1 scheme is related to a majorization-minimization approach (see Section 2.1.4.2) which
arises by subsuming a first-order Taylor expansion of the concave log(·) function on X.
Interestingly, reweighted ℓ1 can be also viewed as a special instance of the reweighted
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Figure 4: ℓp norm unit balls for different values of p in a 2-dimensional space (A unit ball B1 of an ℓp
norm centered at 0 in the n-dimensional Euclidean spaceRn, is defined as B1 = {x ∈ Rn : ∥x∥p ≤ 1}),
[1].

Frobenius norm defined in (1.12), which arises for p = 0 in the weighting coefficients
given in (1.13), [34].

As explained in Section 1.1.1, the low-rank matrix estimation problem draws strong paral-
lels with the sparse vector/matrix recovery problem. Hence, it is obvious that the different
formulations of the affine rank minimization problem proposed in the literature, are based
on similar premises, all aiming at finding tractable alternatives to the rank minimization
problem. In that respect, the nuclear norm, which is the convex envelope of the rank, [51],
has been utilized as a proxy of the NP-hard rank minimization task. In an effort to better
approximate the rank, the Schatten-p quasinorm defined as

∥X∥Sp = ∥σ(X)∥p, (1.18)

with 0 < p ≤ 1, has been proposed. For p = 1, the Schatten-p quasinorm reduces to the
nuclear norm ∥X∥∗. Schatten-p quasinorms have played a significant role in numerous
cases, [111], involving relaxation of the rank minimization problem of (1.3) expressed as
follows

min
X∈Rm×n

∥X∥pSp
subject to AX = Y. (1.19)

Nowadays, Schatten-p quasinorm basedminimization has been seen via a more intriguing
perspective, i.e., using an iterative reweighting approach. In this vein, inspired by the
previously mentioned IRLSpmethod for imposing sparsity, in [107, 52] the authors propose
to minimize a reweighted version of the Frobenius norm. The equivalence of the Schatten-
p quasinorm and those minimized in [107, 52] is mathematically expressed as follows,

∥X∥pSp
= tr{

(
XTX

)p/2} = tr{
(
XTX

) (
XTX

)p/2−1}

= tr{
(
XTX

)
W} = ∥XW 1

2∥2F , (1.20)

whereW is the symmetric weight matrix

W =
(
XTX

)p/2−1
. (1.21)

It should be noted that, as in the case of IRLSp method described above, the weight
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matrix W is computed from the estimate of X obtained in the previous iteration. Such
schemes have been shown to offer significant merits in terms of computational complexity,
estimation performance and rate of convergence.

Lastly, inspired by the weighted version of the ℓ1 norm mentioned above, a weighted ver-
sion of the nuclear norm was recently proposed in [74], defined as

∥X∥∗,w =
m∑
i=1

wiσi(X). (1.22)

By appropriately selecting the weighting coefficients wi’s, as in the weighted ℓ1 norm, this
approach addresses the inherent drawback of the nuclear norm, i.e., the equal penaliza-
tion of the singular values irrespective of their values. In [96], a reweighted version was
put forward by setting

wi =
1

σi(X) + η2
. (1.23)

Notably, despite the nonconvexity of the reweighted scheme, algorithms that converge
to stationary points of the cost function were derived, which in many cases outperform
nuclear norm minimization approaches in terms of estimation performance, [96].

1.2.2 Simultaneously sparse and low-rank matrix estimation

The estimation of matrices that are either sparse or low-rank has attracted the attention
of several studies in the literature during the last decade, since it is met in diverse modern
applications. As mentioned previously, these two problems have been tackled by fol-
lowing various approaches such as convex and nonconvex optimization based methods,
greedy techniques, etc., assuming solely one structure for the sought matrix, i.e., either
sparsity or low-rankness. Beyond these traditional approaches, the concept of additive
decompositions of data Y as the sum of a sparse (S) and a low-rank L component, i.e.,
Y = L+ S, came into the scene, [28]. This problem, named after Robust PCA, is useful
for applications such as background subtraction in video, graph clustering, [23], etc., and
is beyond the scope of the present thesis.

A more recent problem is that of estimating matrices which are simultaneously sparse and
low-rank. This problem was initially formulated as a convex optimization problem in [126],
using a mixed penalty consisting of the combination of the sparsity inducing ℓ1 and the
nuclear norm. The respective optimization problem is expressed as

min
X∈Rm×n

l(Y,X) + λ∥X∥1 + γ∥X∥∗, (1.24)

where l(Y,X) serves as the loss function which measures the fitting between data Y and
the sought matrix X. Moreover, ∥ · ∥1 denotes the ℓ1 norm, ∥ · ∥∗ is the nuclear norm and
λ, γ are the corresponding regularization parameters. Taking into account the application
each time at hand, the fitting term is appropriately set. Focusing on linear measurements
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Table 1: Sample complexity for the recovery of sparse vectors, low-rank and simultaneously sparse
and low-rank matrices from linear measurements. For the simultaneously sparse and low-rank ma-
trix (last row) it is assumed that all elements of the rank-r matrix outside a k1×k2 submatrix are zero
(for details see [113]).

.
Model Degrees of freedom Nonconvex recovery Convex recovery

Sparse vector k O(k) O(klogn
k
)

Low-rank matrix r(2n− r) O(rn) O(rn)
Low-rank & sparse matrix O(r(k1 + k2)) O(r(k1 + k2)logn) Ω(rn)

corrupted by i.i.d. Gaussian noise (which is of our interest in this thesis), l(Y,X) reduces
to the squared Frobenius norm.

Theoretical aspects related to the sample complexity (i.e., the minimum number of mea-
surements required for successful recovery of the sought matrix) of simultaneously sparse
and low-rank matrix estimation were studied in [113]. Therein, it was shown that in the
compressed sensing scenario, assuming linear measurements and no presence of noise,
convex formulations such as the one proposed in [126] can offer no better results (in terms
of sample complexity) than incorporating into the optimization problem only one of the two
constraints. Interestingly, the case is quite different in the nonconvex setting. Concretely,
in [113] it was shown that only a few measurements (in the order of the degrees of free-
dom!) are needed for the recovery of the simultaneously structured models when noncon-
vex regularizers are used (assuming that global minima can be found). This sample com-
plexity gap as to the performance of convex methods and their nonconvex counterparts
is illustrated in Table 1. In [126], the merits of simultaneous sparse and low-rank matrix
estimation were experimentally shown in three different settings (each corresponding to a
different loss function). Specifically, the simultaneously sparse and low-rank approaches
provided enhanced estimation performance as compared to traditional only sparse and
only low-rank imposing algorithms. Around the same period of time, a similar sparse and
low-rank formulation was proposed in the context of multitask learning in [104]. A similar
setting has also been used for addressing the problems of subspace clustering in [155].
Recently, a novel approach for imposing simultaneously sparse and low-rank structures
on the sought matrix was proposed in [114], whose main idea is the use of a nonconvex
regularization function for imposing both sparsity and low-rankness in place of the convex
ℓ1 and nuclear norms, respectively. The ultimate goal of that approach is to benefit from
the merits of nonconvex formulations over their convex relevant, while retaining the favor-
able properties of the latter, i.e., guaranteed convergence to global minimum. To this end,
novel nonconvex regularizers for the imposition of sparsity and low-rank were introduced.
These were then appropriately parameterized in order for their combination to provide a
convex cost function.

1.2.3 Sparse, low-rank and nonnegative matrix factorization

Matrix factorization (MF) based methods have flourished in recent years. The reason for
this is that MF based problems appear in a wide range of applications. A glimpse on these
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applications was given in Section 1.1.3 by listing four ubiquitous problems where MF is
applied, i.e., dictionary learning, sparse PCA, matrix completion and nonnegative matrix
factorization (NMF). In this section, a literature review of the different approaches that have
been proposed is provided. Interestingly, all the above-mentioned problems can be put
under a common umbrella, i.e., they can be expressed as constrained matrix factorization
problems. In the framework of this thesis, we restrict our attention to the constraints of
sparsity, low-rank and nonnegativity.

1.2.3.1 Sparse matrix factorization

Let us first focus on the sparsity constraint. Sparsity may be imposed on both the matrix
factors, i.e., the coefficients’ matrix and the dictionary, which are denoted as V and U,
respectively. The former case, known as dictionary learning (DL) for sparse coding, [149],
has attracted great interest since it constitutes one of the backbone methods in the areas
of image processing and compressed sensing. The main scope of DL is to learn an over-
complete dictionary8, which leads to a sparse representations of data. This problem is
actually addressed following a two-step alternating procedure: a) estimate the dictionary
U and b) find a sparse representation (i.e., matrix V) of the data on the basis spanned by
the columns of the dictionary U9. The most popular DL algorithm is the so-called KSVD,
[4], which is based on a generalization of the ubiquitous K-means clustering algorithm for
learning the dictionary and a greedy OMP-based approach for solving the sparse coding
step. Overall, KSVD solves the following minimization problem

min
U∈Rm×d,V∈Rn×d

∥Y− UVT∥2F , subject to ∥V∥0 ≤ κ, ∥ui∥2 ≤ 1, ∀i = 1, 2, . . . , d, (1.25)

where ∥V∥0 is the ℓ0 norm of V and κ is a cardinal number. Since the greedy scheme
(OMP) used in the sparse coding step of KSVD is computationally prohibitive for large-
scale tasks, alternative formulations of DL have been introduced. In that respect, the
convex surrogate of the ℓ0 norm, i.e., the ℓ1 norm has been utilized for imposing sparsity
on the coefficients’ matrix, [101, 84], formulating DL as follows,

min
U∈Rm×d,V∈Rn×d

∥Y− UVT∥2F + λ∥V∥1, ∥ui∥2 ≤ 1, ∀i = 1, 2, . . . , d. (1.26)

It should be noted, that the use of the ℓ1 norm in place of the ℓ0 pseudo-norm now makes
the sparse coding step a convex one, which can be solved by a variety of computationally
efficient schemes such as the ones mentioned in Section 1.2.1 for the case of the sparse
matrix estimation problem.

Another class of problems that, among other approaches, has also been viewed through
the lens of the sparse MF framework in the frame of the so-called synthesis approach,

8An overcomplete dictionary actually gives rise to an underdetermined system of linear equations, see
Section 1.1.

9Note that, in contrast to the traditional approaches whereby the dictionary is selected to be a known
basis, e.g., a wavelet transform basis, in DL schemes the dictionary is learned from the training data.
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[85], is that of sparse PCA. The key difference of sparse PCA from the plain PCA is the
following: in PCA, each principal component (PC) is defined as a linear combination of all
them original variables (which correspond to them dimensions of them×1 data samples).
Moreover, the PCs are selected so as to retain the maximum variance of the data. How-
ever, a major shortcoming of PCA is the PCs that define the transformed space are not
physically meaningful. Sparse PCA circumvents this impediment by favoring PCs which
arise by the linear combination of a subset of the original variables. This way, the resulting
PCs are better connected to the initial physically interpretable variables. Nevertheless, the
price to be paid for that is the loss of orthogonality among PCs and, as a consequence,
the fact that the sparse PCs do not capture the dimensions of maximum variance.

Based on the above description, it becomes evident that sparse PCA can be formulated as
a MF problem with the additional imposition of sparsity on the subspace matrix U (called
dictionary in the context of DL). Similarly to the DL problem stated above, among other
convex approaches corresponding to the analysis framework, sparse PCA has been also
viewed as a matrix factorization problem. Along these lines, in [170] sparse PCA was
formulated as the following optimization problem,

min
U∈Rm×d,V∈Rn×d

∥Y− UVT∥2F + λ∥V∥1, ∥ui∥22 + ∥ui∥1 ≤ 1, ∀i = 1, 2, . . . , d, (1.27)

where vi is the ith column of matrix V. It should be noted that when it comes to the sub-
space matrix U (which represents the coefficients - also called loadings - that correspond
to each principal component in the sPCA framework), sparsity is imposed along with the
ℓ2 regularization on its columns according to the so-called elastic net approach, [169].
Similar formulations have been also used in [100], yet in an online learning setting.

1.2.3.2 Low-rank matrix factorization

Broadly speaking, in the literature low-rank matrix factorization (LRMF) refers to the bi-
linear representation of a low-rank matrix (e.g., rank-d with d ≪ min(m,n)) X ∈ Rm×n

as X = UVT (with U,V defined as above). This approach has been utilized for solving
various problems involving low-rank matrix identification, leading to optimization schemes
that scale well with the size of the data. In this sense, LRMF has been the cornerstone
of one of the most popular problems in statistical signal processing and machine learn-
ing, that of matrix completion (MC). Departing from the usual convex formulation of matrix
completion through the minimization of the nuclear norm, the authors in [83] provided an
alternating minimization algorithm for recovering the missing entries. Interestingly, the
size of the optimization problem (i.e., the number of involved parameters to be estimated)
has been significantly reduced (O(2d× (m+ n))) and hence the complexity of the emerg-
ing algorithms is much lower than that of their convex relevant. The reason why this
happens is related to the fact that alternating minimization schemes avert the need for
- computationally heavy in high-dimensional and large-scale data applications - singular
value decomposition (SVD) of the data matrix. That said, matrix completion via LRMF can
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be stated as,

min
U∈Rm×d,V∈Rn×d

∥PΩ(UVT )− Y∥2F , X = UVT . (1.28)

Efficient algorithms which guarantee convergence to the global minimum of (1.28) under
certain conditions on the linear sampling operator PΩ(·) w.r.t. the set of indexes Ω and
the assumption that the rank of X is known, were provided in [83]. It should also be noted
that despite the nonconvexity of the arising optimization problems, recent studies have
advocated the absence of spurious local minima in MF based schemes, [57, 167, 18].

Since the hypothesis that the rank of matrix X is known beforehand (which is a necessary
condition for the algorithms in [83] to converge to a globally optimal solution) is rather
strong, low-rank decomposition norms (i.e., norms that apply on the matrix factors U and
V with the aim to penalize the rank of X) have been recently proposed in the literature, [8].
In view of this, a common practice is to initialize the rank of X with an overestimate of it,
and then utilize an appropriate regularization (rank-penalization) term10 that will gradually
reduce the initial estimate of the rank (hopefully) towards the true one. The most popular
low-rank promoting term is the so-called variational form of the nuclear norm, i.e.,

argmin
X=UVT ,U∈Rm×d,V∈Rn×d

1

2

(
∥U∥2F + ∥V∥2F

)
, (1.29)

which is actually an upper bound of the nuclear norm of X, i.e., ∥X∥∗. Eq. (1.29) came up
in literature as a low-rank regularizer in [134]. In [122] it was theoretically shown that the
minimization of (1.29) is equivalent to minimizing the nuclear norm. In addition, the factor-
ized formulation gives rise to algorithms that do not involve the computationally demanding
SVD step any longer, which makes them serious candidates for many challenging settings
involving large-scale data. Moreover, state-of-the-art research has shown that despite the
nonconvex nature of the problems that include the variational form of the nuclear norm as
a low-rank regularizer, convergence to the global minimum can still be established, [94].

1.2.3.3 Nonnegative matrix factorization

The last MF based problem which is addressed in the framework of this thesis is nonneg-
ative matrix factorization (NMF). NMF has gained popularity in recent years mainly due to
the interpretability it offers which is of crucial importance in various applications. The main
premise of NMF differs from that of plain matrix factorization, since it restricts the solution
set to that containing only nonnegative matrix factors (that is, matrices with nonnegative
entries). This is the reason why NMF has been at the core of several applications dealing
with nonnegative data, such as images processing, [156]. Indeed, in a variety of signal
processing and machine learning tasks, such as blind source separation, the main objec-
tive is to decompose a given data matrix X into two nonnegative factors U and V up to
scaling and permutation indeterminacy.

10This class of problems is closely related to the model selection schemes, [129].
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As shown in [154], NMF is NP-hard, and the nonnegative matrix factors cannot be uniquely
recovered in general. However, uniqueness (up to permutation) arises under certain con-
ditions related to the generative model of the original data, e.g., if data have been gener-
ated by sufficiently sparse and nonnegative factors U and V, [70].
NMF was first put forth by the seminal work in [91] that proposed a first-order algorithm
for solving the suitably formulated optimization problem. Since then, a large variety of
algorithms have been presented differing both in the formulation of the NMF problem as
well as in the proposed algorithmic aspects. Based on the latter, NMF can be categorized
into four different classes, as proposed in [156], i.e., a) simple NMF, b) constrained NMF,
c) structured NMF and d) generalized NMF. In this thesis, we focus on the constrained
NMF (CNMF) class which refers to NMF which is equipped with constraints. That said,
CNMF has been formulated by simultaneously incorporating sparsity constraints on both
matrix factors in [80]. In a similar vein, ℓ0 norm constraints were used in the NMF algorithm
of [117].

1.3 Contribution

This thesis addresses the various structured matrix estimation tasks mentioned above
innovating by proposing novel nonconvex formulations of the respective problems and
new efficient algorithmic tools for solving them. Next, the contribution of the thesis is
outlined with regard to each problem that is addressed.

• Simultaneously sparse, low-rank and nonnegative matrix estimation: As men-
tioned in Section 1.2.2, simultaneously multiple structured models offer no added
value in terms of sample complexity and recovery performance when convex ap-
proaches, such as the one based on (1.24), are utilized, [113]. Capitalizing on this
shortcoming of convex approaches, we go one step beyond the state-of-the-art by
proposing a formulation that combines the reweighted versions of the ℓ1 and nu-
clear norms for recovering matrices that are simultaneously sparse, low-rank and
nonnegative, [67, 66]. The proposed nonconvex formulation leads to two iterative
algorithms based on a) the incremental proximal and b) the alternating direction
method of multipliers philosophy (outlined in Section 2.1), that efficiently solve the
related optimization problem. Moreover, in an attempt to reduce the computational
complexity and thus produce an algorithm amenable to handling large volumes of
data, an innovative alternative formulation of simultaneously sparse low-rank and
nonnegative matrix estimation is proposed, [63, 68]. This is based on the so-called
Burer-Monteiro heuristic and the utilization of a matrix factorization representation
of a low-rank matrix. Since the rank of the sought matrix is not a priori known, an
overestimate of it is assumed and the variational form of the nuclear norm is utilized
for penalizing the rank. Then, based on this formulation, a computationally efficient
alternating minimization algorithm is derived. The proposed simultaneously sparse,
low-rank and nonnegative matrix estimation framework is utilized for formulating hy-
perspectral image unmixing (to be discussed in Section 2.2.2) in a pioneering way.
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As is shown in extensive simulated and real data experiments, the derived algo-
rithms outperform their state-of-the-art counterparts showing the effectiveness of
the proposed framework over other existing approaches.

• Sparse, low-rank and nonnegative matrix factorization: In the framework of
this thesis a novel mathematical formulation of low-rank matrix factorization is in-
troduced. This innovative scheme is sparked by the need to further improve existing
low-rank MF approaches by providing scalable algorithms amenable to dealing with
large-scale data. The proposed formulation is based on ideas stemming from the
iterative reweighted least squares (IRLS) framework. In this regard, a novel alter-
nating reweighted scheme for low-rank promotion in MF problems, is derived. As
is shown, the recent low-rank MF schemes, such as the variational form of the nu-
clear norm, can be cast as special occasions of the proposed formulation by suitably
selecting the reweighting matrices applied on the matrix factors. Going one step fur-
ther, we propose the selection of a common reweighting matrix that couples the
matrix factors and leads to a joint column sparsity promoting regularization term,
[59, 61]. In doing so, low-rank promotion now reduces to the task of jointly annihilat-
ing columns of the matrix factors. In an effort to address inherent obstacles related to
the nonseparability and nonsmoothness of the introduced low-rank promoting terms,
we resort to the block successive upper bound minimization framework (see Sec-
tion 2.1.4). In this regard, novel iteratively reweighted least squares (IRLS) type
denoising, matrix completion and NMF algorithms are devised that rely exclusively
on computationally efficient matrixwise updates. In addition, to further reduce com-
plexity, a column pruning procedure is incorporated that removes the matrix factor
columns whose power has become negligible, thus gradually reducing the size of
the optimization problems towards that of the actual rank of the sought matrix. The
connection of the proposed schemes with previously reported IRLS algorithms is
also established. Analysis regarding the convergence of the algorithms to station-
ary points and their rates of convergence is also provided. The proposed low-rank
promoting term is further extended to the problem of low-rank and sparse NMF, [60].
The merits of the proposed algorithms in terms of estimation performance and com-
putational complexity, compared to relevant state-of-art algorithms, are illustrated on
simulated and real data experiments. In order to test the effectiveness of the algo-
rithms on real applications involving large-scale data, the problems of hyperspectral
image denoising, matrix completion in movies recommender systems, music sig-
nal decomposition and unsupervised hyperspectral unmixing with unknown number
endmembers, are employed.

• Online low-rank subspace learning and matrix completion: Capitalizing on pre-
vious work on online (group) sparse linear regression [142], [143] and leveraging the
low-rank promotion idea mentioned above for the problem of sparse and low-rank
MF, we devise two new online low-rank subspace learning and matrix completion al-
gorithms, [64, 65, 58]. The first approach sticks to the Bayesian philosophy, while the
second one can be viewed as its deterministic analogue. Concerning the Bayesian
approach, a novel Bayesian model is first defined. It is worth emphasizing that the
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proposed Bayesian model incorporates exponentially weighted data and parameter
priors, which facilitate online inference in a time-varying environment. Moreover,
both column-sparsity and sparsity are enforced on the subspace matrix, i.e. multi-
ple constraints are imposed simultaneously on the same data structure. This is a
strategy in its very infancy in the Bayesian literature that, among others, makes the
algorithm capable of addressing the sparse dictionary learning problem. Regarding
the inference procedure, a novel online variational Bayes approximation scheme
is developed, which induces complexity similar to that of state-of-the-art first-order
stochastic approximation based schemes, [103]. The second online deterministic al-
gorithm is based on the minimization of an exponentially weighted regularized cost
function. Assuming the same column-sparsity promoting ideas with the Bayesian
scheme, we are led to an efficient alternating minimization based algorithm for on-
line matrix completion and low-rank subspace learning. It should be noted that in
order to avoid matrix inversions (a desirable property that is of crucial importance in
online applications) a Gauss-Seidel approach is adopted. As demonstrated on sim-
ulated and real data experiments, both the proposed algorithms present superior
estimation performance than other state-of-the-art relevant algorithms. To validate
this, the hyperspectral image denoising and the eigenface learning problems are ex-
amined, corroborating the effectiveness and higher reconstruction performance of
the proposed algorithms on real data.

1.4 Outline of the thesis

In Chapter 1, the structured matrix estimation problem from linear measurements was
introduced and the basic topics that are addressed in the thesis were presented. More
specifically, first we described the original formulations of these estimation tasks and next,
we provided a brief, yet comprehensive, review of the various solutions that have recently
come to the scene in the literature.

In the first part of Chapter 2, we present the basic algorithmic tools that are employed
in the thesis. These tools range from traditional convex optimization algorithms, such
as proximal minimization methods and the alternating direction method of multipliers, to
cutting-edge tools belonging to the block successive upper boundminimization framework.
Beyond the optimization schemes, the basic principles of the variational Bayes inference
method are presented. Finally, we outline the basic premise of online learning in particular
within the online variational Bayes framework. The second part of Chapter 2, describes
the main large-scale data applications with which we are concerned in the thesis, i.e.,
hyperspectral image unmixing and denoising.

Chapter 3 presents two different nonconvex formulations for addressing the simultane-
ously sparse, low-rank and nonnegativematrix regression problem, namely, a) a reweighted
ℓ1 and nuclear norm minimization one and b) a matrix factorization based approach. An
incremental proximal minimization algorithm and an alternating direction method of mul-
tipliers algorithm are then derived for solving the first minimization problem associated
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with the first formulation. In addition, an alternating minimization scheme is presented
for tackling the matrix factorization based problem. Next, the task of hyperspectral im-
age unmixing is formulated as a simultaneously sparse, low-rank and nonnegative matrix
estimation problem which can be dealt with the derived algorithms. The merits of this
approach are next showcased in both simulated and real hyperspectral imaging data.

In Chapter 4, a new low-rank matrix factorization based formulation of matrix comple-
tion, denoising, low-rank nonnegative matrix factorization and sparse and low-rank non-
negative matrix factorization is presented. Next, novel alternatingly iterative reweighted
least squares algorithms springing from the block successive upper bound minimization
framework are derived, in order to solve this problem. A convergence analysis of these
algorithms is also provided. Finally, the problems of hyperspectral image denoising, ma-
trix completion in recommender systems, music signal decomposition and unsupervised
unmixing of hyperspectral data are utilized for verifying the effectiveness of the proposed
algorithms in real data applications.

Chapter 5 presents a) a variational Bayes algorithm and b) a cost function minimization
one, for online low-rank subspace learning from incomplete data. As far as a) is con-
cerned, first a multi-hierarchical Bayesian model is defined. Based on this model, a batch
variational Bayes scheme is derived which constitutes the basis of the subsequently pre-
sented online variational Bayes algorithm. In the frame of b), a deterministic relevant
scheme is presented. The performance of both algorithms is subsequently analyzed in a
variety of simulated and real data experiments.

Finally, concluding remarks and directions for future research are provided in Chapter 6,
the last chapter of the thesis.
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2. OPTIMIZATION TOOLS AND APPLICATIONS

This chapter consists of two parts. In the first part a review is provided of the optimiza-
tion and Bayesian inference methods that have been used in the frame of this thesis for
addressing the various structured matrix estimation problems presented in Chapter 1. In
the second part, a detailed description is given of the main practical applications that were
studied, i.e., hyperspectral image unmixing and hyperspectral image denoising.

2.1 Optimization algorithms

A certain amount of contribution of this thesis lies in the derivation of novel efficient esti-
mation algorithms. Herein, the basic methodologies upon which the introduced algorithms
have been built are presented. First, proximal operators, which are at the core of two of
the proposed algorithms, are presented.

2.1.1 Proximal operators and proximal based algorithms

Next, a formal definition of the proximal operator is given, [115].

Definition 2.1. Let Γ0 denote the class of closed1, convex and proper2 (hence lower-
semicontinuous) functions from RN to ]−∞,+∞]. The proximal operator of x ∈ RN with
respect to an f ∈ Γ0, is defined as

proxf (x) = argmin
y∈RN

f(y) + 1

2
∥x− y∥22. (2.1)

and is unique.

The proximal operator reduces to the projection operator when f(x) ≡ IC(x) where IC(x)
is the indicator function of a set C. Thus, it can be considered as a generalized version of
the latter. Next an interesting interpretation of the proximal operator is presented. In this
regard, let us first define the infimal convolution of the closed proper convex functions f
and g on RN , denoted by f2g, as,

(f2g)(x) = inf
y
(f(y) + g(x− y)) , (2.2)

where the domain of the resulting function f2g is the union of the domains of f and g. By
setting g(·) = 1

2λ
∥ · ∥22 we get the so-called Moreau envelope of f with parameter λ > 0

1A function f : RN 7→ R is closed if for each α ∈ R, the sublevel set {x ∈ dom f : f(x) ≤ a} (where
dom f denotes the domain of f ) is a closed set.

2A convex function is proper if its effective domain set is nonempty and it never attains -∞.
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denoted asMλf (also known as Moreau-Yosida regularization), defined as

Mλf (x) = inf
y
(f(y) + 1

2λ
∥y− x∥22). (2.3)

The Moreau envelope Mλf provides a smoothed approximation of f , that is, it is contin-
uously differentiable even if f is not. Moreover it holds some other favorable properties,
i.e., it is strictly convex and hence it has a unique minimum. Based on the above, a prox-
imal operator can be viewed as the point that attains the infimum of the Moreau envelope
of a convex function f . This in turn implies that the proximal operation corresponds to a
gradient step of the Moreau envelope of f at x, [115], i.e.,

proxλf (x) = x− λ∇Mλf (x). (2.4)

Proximal operators present favorable properties such as the firm nonexpansive property,
i.e.,

∥proxf (x)− proxf (y)∥22 ≤ (x− y)T (proxf (x)− proxf (y)) (2.5)

∀x,y ∈ RN . Moreover, it can be easily shown that the fixed points of the proximal operator
coincide with the minimizers of the function f , [115]. By virtue of these two key features,
various proximal algorithms have been devised whose goal is to find the minimizers of a
cost function via pursuing the fixed points of the respective proximal operators.

In that respect the proximal point algorithm (also known as proximal minimization algo-
rithm) emerges by repeatedly applying the proximal operator starting with an initial point
x0. The resulting algorithm thus consists of iterations of the form

xk+1 = proxλf (xk). (2.6)

where k denotes the iteration number. If the set of minimizers of f is nonempty, xk con-
verges to a member of it, [115].

The proximal operator lies at the heart of another ubiquitous algorithm in the signal pro-
cessing field that is the proximal gradient algorithm, [39]. Let us assume that f : RN → R
and g : RN → R are closed, convex and proper functions, with f being also differentiable.
The proximal gradient algorithm can be utilized for solving minimization problems in the
form

min
x∈RN

f(x) + g(x) (2.7)

by applying the following iteration scheme

xk+1 = proxλkg(xk − λk∇f(xk)) (2.8)

where λk > 0 is the step size at iteration k. The proximal gradient algorithm is also referred
in the literature as the forward-backward splitting algorithm since it can be considered as
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a combination of a gradient (forward) step with a proximal (backward) step3.

2.1.2 Incremental proximal minimization

Now that the proximal operator and the most popular proximal operator based algorithms
have been introduced, we proceed by presenting the family of incremental proximal min-
imization algorithms, [17], focusing on a specific member of it, employed in Chapter 3 of
this thesis.

In general, incremental algorithms have been devised for addressing minimization prob-
lems that include several constraints thus giving rise to cost functions consisting of multiple
additive components. The arising minimization problem is mathematically formulated as

min
x∈C

ρ∑
i=1

fi(x). (2.9)

The main idea of incremental minimization is to deal with a single component fi(x) at each
iteration instead of considering the whole cost function. Actually, this scheme leads to a
remarkable decrease of the induced computational complexity, especially in cases where
the number ρ of components fi(x) is large.
The first incremental type algorithms that came into the scene were the incremental gra-
dient algorithms, which are based on the assumption that all fi’s are differentiable, [17].
Specifically, incremental gradient algorithms consist of iterations in the form

xk+1 = PC(xk − λk∇fik(xk)), (2.10)

where PC(·) is the projection operator on the set C and the subscript ik is the index of
the component of the cost function that is iterated on. The stepsize parameter λk can be
defined in various ways, each leading to a different scheme. The order of the components
of the cost function may also be random as is the case in the randomized versions of the
algorithms. However, the computational merits of incremental gradient methods come
at a price, that is, a slow (sublinear) asymptotic rate of convergence. This is not only
because they are first-order methods, but also due to the need for adopting diminishing
step-sizes (λk → 0, as k → ∞) in order to avoid oscillations that otherwise occur in the
case of constant step-sizes (actually diminishing step sizes are required also for the other
incremental schemes that are mentioned next), [16]. It should be though noted that in most
cases the initial convergence rate of incremental methods is quite fast thus making them
an efficient tool when it comes to large-scale data processing, whereby the accuracy of
the estimations is less important than the need for lower algorithmic demands concerning
the computational resources.

Along similar lines, incremental subgradient methods were introduced as simple exten-
sions of the gradient counterparts for the case of nondifferentiable cost functions. In that

3The notions of forward and backward are coming from the gradient flow interpretation of the proximal
operators by applying the Euler discretization, [115].
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case, an arbitrary subgradient ∇̃fik(x) (the subgradient ∇̃fik(x) is selected by the subdif-
ferential set (i.e., the set of the subgradients) of f at x denoted as ∂fik(x)) is used in place
of the gradient hence the iterations of the arising algorithm are defined as

xk+1 = PC(xk − λk∇̃fik(xk)). (2.11)

Similarly to the incremental gradient algorithms, incremental subgradient methods require
a decreasing stepsize λk in order to ensure convergence. However, in this case this
property is not a shortcoming of the incremental rationale, since the same rule is required
also for the case of the non-incremental subgradient algorithms.

Now that the incremental gradient and subgradient methods have been described, we
move onto themore recently introduced incremental proximal methods. As implied by their
name, the same incremental philosophy utilized in the previously described incremental
gradient and subgradient methods is now adapted for proximal minimization. That said,
incremental proximal methods perform the following iterations

xk+1 = argmin
x∈C

{fik(x) +
1

2λk
∥x− xk∥22}. (2.12)

Obviously, the righthand side of (2.12) equals to the proximal operator of fik at xk, i.e.,
proxλkfik (xk). The motivation behind the use of incremental proximal methods lies in the
easily obtained closed form expressions for the proximal operators for a wide range of
functions fik(x) along with the fact that proximal iterations are considered more stable
compared to their gradient and subgradient counterparts. This favorable stability property
can be conjectured by the fact that, in the non-incremental setting, proximal algorithms
contrary to gradient methods, converge for any choice of λk. That said, it can be easily
understood that in many cases such as ill-conditioned problems, the use of proximal type
methods instead of either gradient or subgradient ones may be preferred.

Recently, incremental gradient, subgradient and proximal methods have been considered
under a unified framework, [16]. This generalized view of the incremental optimization
strategy is of significant importance in cases where the components fi’s differ in their
form, i.e., for some of the fi’s their respective proximal operators may be expressed in
closed form whereas for others this may not be the case. In the latter cases, the use of
either gradient or subgradient steps may clearly be a better choice. Let us now define the
following optimization problem

min
x∈C

ρ∑
i=1

Fi(x), (2.13)

where Fi(x) = fi(x)+ hi(x), fi : RN 7→ R and hi : RN 7→ R are convex functions, and C is
a nonempty closed convex set. Assuming that the proximal operators of fi’s can be easily
obtained whereas hi’s suit better to subgradient steps, the unified incremental framework
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gives rise to algorithms consisting of iterations in the form

zk = argmin
x∈C

{fik(x) +
1

2λk
∥x− xk∥22}, (2.14)

xk+1 = PC(zk − λk∇̃hik(zk)), (2.15)

where ∇̃hik(zk) denotes an arbitrary subgradient of the nonempty subdifferential set ∂hi
estimated at zk.
Convergence analysis of the incremental algorithms described above is provided in [16].
It should be noted that convergence behavior depends on the update rule (cyclic or ran-
domized order) that is followed regarding the minimization of the components fi’s and hi’s.

2.1.3 Primal-dual optimization and the alternating direction methods of multipliers

Before presenting the main principles and philosophy of the alternating direction method
of multipliers (ADMM) that is utilized in Chapter 3, the general concepts of the primal -
dual optimization strategy, which is at the core of ADMM, are briefly described.

An optimization problem is described in its primal form (also called as standard form) as
follows:

minf0(x) subject to fi(x) ≤ 0, i = 1, 2, . . . ,m, hj(x) = 0, j = 1, 2, . . . , n (2.16)

with x ∈ RN . The inequalities fi(x) ≤ 0 are called the inequality constraints and the equal-
ities hj(x) = 0 are the so-called equality constraints. The domain D of the optimization
problem is defined as

D =
m∩
i=0

domfi ∩
n∩
j=1

domhj, (2.17)

where dom denotes the domain set of a function. The feasibility set is defined as the
subset of D, which contains points x that satisfy all the constraints, i.e., fi(x) ≤ 0 and
hj(x) = 0. Assuming that the feasibility set is nonempty, the optimal value of the problem
denoted as p⋆ is attained as the infimum of the objective function f0(x) on the feasibility
set, i.e.,

p⋆ = inf{f0(x) | fi(x) ≤ 0, i = 1, 2, . . . ,m, hj(x) = 0, j = 1, 2, . . . , n}. (2.18)

Note that by convention, p⋆ = +∞ when the feasibility set is empty, and p⋆ = −∞ when
there exist a sequence of points xk with f0(xk) → −∞ as k → +∞, that is, the objective
function is unbounded below.

The Lagrangian L : RN ×Rm ×Rn → R of the problem (2.16) is defined as

L(x,λ,ν) = f0(x) +
m∑
i=1

λifi(x) +
n∑
j=1

νjhj(x), (2.19)
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where λ = [λ1, λ2, . . . , λm]
T , ν = [ν1, ν2, . . . , νn]

T . Parameters λi’s and νj ’s related to fi’s
and hj ’s, respectively, are called Lagrange multipliers or dual variables of the optimization
problem.

The dual function (also called Lagrangian dual function) g : Rm × Rn → R of the dual
variables (λ, ν) with λ ≥ 0, is defined as

g(λ, ν) = inf
x∈D

(L(x,λ, ν)) . (2.20)

It can be easily shown that for any pair (λ, ν) the dual function yields a lower bound of the
optimal value p⋆ of the primal optimization problem, [25]. Since there is no meaning in the
cases that the dual function takes the value of −∞, attention is given in the so-called dual
feasible pairs (λ, ν), i.e., the pairs (λ, ν) ∈ domg.
The lower-bound property of the dual function and the fact that it is a concave function
irrespective of the convex (or nonconvex) nature of fi’s4 has given way to the formulation
of the dual optimization problem of (2.16) defined as

max
λ,ν

g(λ, ν) subject to λ ≥ 0. (2.21)

Let us denote by d⋆ the optimal value of the problem (2.21). In case that the optimal
values of the primal and the dual problems coincide, i.e., d⋆ = p⋆, then the so-called
strong duality holds, [25]. Strong duality implies zero optimal duality gap (d⋆− p⋆ = 0) and
usually (but not always) holds when the respective primal optimization problem is convex.
Various conditions that establish strong duality, known as constraint qualifications, have
been proposed in the literature. Among them, the Slater’s theorem states that strong
duality holds if the problem is convex and there exists an x ∈ relintD, where relint stands
for the relative interior of a set, [25], such that the inequality constraints hold in a strict
sense, i.e., fi(x) < 0, i = 1, 2, . . . ,m.

In the sequel, we clarify further the notions of strong duality and optimal duality gap. To
this end, it is not difficult to verify that the optimal value p⋆ of the primal problem can be
expressed in terms of the Lagrangian function as,

p⋆ = inf
x

sup
λ≥0,ν

L(x,λ, ν) (2.22)

while, taking into account (2.20) and (2.21), the optimal value of the respective dual func-
tion d⋆ is given by

d⋆ = sup
λ≥0,ν

inf
x
L(x,λ, ν). (2.23)

By (2.22) and (2.23) it becomes clear that strong duality allows us to switch the order of
the optimization w.r.t. x and (λ, ν) without affecting the result. This property is known as

4This is a consequence of the fact that the dual function is by construction the infimum of an affine function
of (λ, ν).
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strong max-min property or saddle property. The latter name actually stems from the fact
that the primal optimum x⋆ and the dual optimum pair (λ⋆,ν⋆) actually correspond to a
saddle point of the Lagrangian function, i.e.,

L(x⋆,λ, ν) ≤ L(x⋆,λ⋆,ν⋆) ≤ L(x,λ⋆,ν⋆). (2.24)

Having said that we may proceed by briefly describing two basic precursors of ADMM, the
dual ascent method and the method of multipliers.

2.1.3.1 The dual ascent method

Next, for ease of understanding, the general forms of the primal and dual optimization
problems are simplified by keeping only the equality constraints and dropping the inequal-
ity ones (the simplified analysis can be easily generalized). In this case, the resulting
optimization problem reduces to

min
x
f(x) subject to Ax− b = 0, (2.25)

where A ∈ Rn×N and b ∈ Rn. Assuming that strong duality holds and L(x,ν) is uniquely
minimized w.r.t. x (i.e., it is strictly convex), optimal points x⋆ and ν⋆ of the primal and the
dual problems, respectively, can be recovered as

x⋆ = argmin
x

L(x,ν⋆) (2.26)

and

ν⋆ = argmax
ν

g(ν) (≡ argmax
ν

L(x⋆,ν)). (2.27)

where

g(ν) ≡ L(x⋆,ν) = f(x⋆) + νT (Ax⋆ − b). (2.28)

Since the dual function g(ν) is differentiable and due to its concavity, the update of the
dual variable ν can be accomplished via a gradient ascent step5. For the dual function
given in (2.28) the gradient is ∇g(ν) = Ax+ − b, where x+ = argminL(x,ν), hence the
dual ascent algorithm is composed of iterations for x and ν in the following form

xk+1 = argmin
x

L(x,νk)

νk+1 = νk + αk(Axk+1 − b). (2.29)

Under certain assumptions, it can be shown that the generated sequences of xk and νk
converge to the optimal points x⋆ and ν⋆.
A key feature of the dual ascent method is its decomposability. More specifically, by as-

5In nondifferentiable occasions, a subgradient is used in place of the gradient.
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suming x = [xT1 ,xT2 , . . . , xTρ ]T and a separable objective function

f(x) =
ρ∑
i=1

fi(xi), (2.30)

theminimization step of the Lagrangian can be split into ρ steps, which offers the possibility
of applying distributed optimization schemes, [24].

2.1.3.2 The method of multipliers

In an effort to relax the assumptions needed for the dual ascent method to converge to the
optimal x⋆ and ν⋆ such as strict convexity, and thus address inherent weaknesses of the
dual ascent method, the method of multipliers has been proposed. To this end, a variant
version of the Lagrangian function, termed augmented Lagrangian, has been utilized. The
augmented Lagrangian of the problem in (2.25) is defined as

La(x,ν) = f(x) + νT (Ax− b) + µ

2
∥Ax− b∥22, (2.31)

where µ is a penalty parameter. The minimization of the Lagrangian (2.31), can be easily
reformulated as the following optimization problem

min
x

f(x) + µ

2
∥Ax− b∥22 subject to Ax− b = 0. (2.32)

From (2.31), it is obvious that, for any feasible point x which satisfies the equality con-
straint, the resulting primal optimization problem (2.32) is tantamount to (2.25) since the
added regularization term becomes zero. Interestingly, the regularization induced by
following the approach of the method of multipliers makes the dual function ga(ν) =
inf
x

(La(x,ν)) differentiable under rather mild conditions. All in all, the method of multi-
pliers results by applying the dual ascent method on the modified problem (2.32), and
consists of iterations of the form

xk+1 = argmin
x

La(x,νk)

νk+1 = νk + µ(Axk+1 − b). (2.33)

Note that the regularization parameter µ has been used in place of the stepsize parameter
ak of (2.29)6. Interestingly, the method of multipliers is characterized by some favorable
features as compared to the dual ascent method including that a) the objective function
f0(x) in not required to be strictly convex in order to guarantee uniqueness of the minimizer
and b) it converges even if the objective function takes on the value +∞, [24]. It should
be though noted that the aforementioned favorable properties of the method of multipliers
come at a price: the minimization of the modified Lagrangian is no longer decomposable
even if the objective function is separable.

6By using µ as the step size in the dual update, the iterate νk+1 is dual feasible, [24].
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2.1.3.3 The alternating direction method of multipliers

The main objective of the alternating direction method of multipliers is to blend the benefits
of the dual ascent method, i.e., decomposability, and the robust convergence properties of
the method of multipliers. To put it in mathematical terms, ADMM is applied to optimization
problems that have the form

argmin
x,z

f(x) + g(z) subject to Ax+ Bz = c, (2.34)

where x ∈ RN , z ∈ RM ,A ∈ Rn×N , B ∈ Rn×M and c ∈ Rn. The augmented Lagrangian
of the optimization problem in (2.34) is given as

La(x, z,ν) = f(x) + g(z) + νT (Ax+ Bz− c) + µ

2
∥Ax+ Bz− c∥22. (2.35)

The iterations of ADMM are expressed as follows

xk+1 = argmin
x

La(x, zk,νk)

zk+1 = argmin
z

La(xk+1, z,νk)

νk+1 = νk + µ (Axk+1 + Bzk+1 − c) . (2.36)

It becomes clear from (2.35) that ADMM iterations differ from those of the method of
multipliers in the following sense: the method of multipliers updates (x, z) jointly (i.e.,
(x, z) = argmin

(x,z)
L(x, z,ν) ). On the other hand, ADMM alternatingly updates x and z

hence the name alternating direction. That said, ADMM resembles a single-pass Gauss-
Seidel version of the method of multipliers.

It has been shown in [25] that by assuming that a) both f(x) and g(z) are closed, proper
and convex and b) strong duality holds, the following ADMM convergence results hold:

• Axk+Bzk−c → 0 as k → +∞, i.e., the sequence xk, zk convergences to a feasible
point

• f(x) + g(z) → p⋆, which implies convergence of the primal objective to the primal
optimal value

• νk → ν⋆ that is, the dual variable converges to the dual optimal point.

2.1.4 Block successive upper bound minimization

Block successive upper bound minimization (BSUM) has been recently appeared in the
literature as an invaluable optimization tool for large-scale data applications. BSUM actu-
ally serves as a generalization of block coordinate descent (BCD) schemes, [159]. That is,
similarly to BCD, BSUM is based on the following premise: solve an optimization problem
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which involves a possibly huge number of variables by solving a sequence of “smaller” -
easier to handle - problems, each one focusing on a subset (block) of the variables.

Next, a concise description of the BCD philosophy, which is at the core of BSUM, is pro-
vided. Let us consider the following optimization problem

minf(x1,x2, . . . , xn) xi ∈ Ci, i = 1, 2, . . . , n, (2.37)

where f is a continuous objective function and each Ci ⊂ Rmi is a closed convex set. The
(k + 1)th iteration of BCD entails an update of the following form

xi,k+1 ∈ argmin
xi

f(x1,k,x2,k, . . . , xi−1,k,xi,xi+1,k, . . . , xn,k), (2.38)

that is f is minimized w.r.t. xi, i = 1, 2, . . . , n considering all the remaining blocks of vari-
ables fixed to their most recent estimates. It becomes evident that BCD is quite appealing
and very simple to implement. For this reason, BCD has been extensively used in several
signal processing and machine learning applications where one should deal with optimiza-
tion problems which are characterized by increased computational complexity. Recently,
BCD has been applied to additive cost functions consisting of sums of smooth and nons-
mooth terms, which are widelymet in numerous applications such as compressed sensing,
image processing, etc. Moreover, theoretical analysis of BCD guarantees convergence
to optimal points under certain conditions, [151].

Capitalizing on the favorable computational merits of the BCD strategy, BSUM offers a
generalized optimization framework which encloses a great many algorithms that are com-
monly met in the literature, [79]. The crux of BSUM is the following: instead of the exact
updates defined in (2.38), at each iteration minimize a local tight upper bound of the cost
function (see Fig. 5). That is, while BCD hinges on the blockwise minimization of the ex-
act cost function, BSUM follows a different approach by proposing the use of approximate
versions of the cost function at each step of the algorithm. This approach is of particular
importance in numerous occasions where the objective functions may be nonconvex and
exact minimization required by BCD can not be accomplished. Moreover, BSUM provides
milder conditions for convergence as compared to BCD.

For ease of notation we define x¬i,k = [xT1,k,xT2,k, . . . , xTi−1,k,xTi+1,k, . . . , xTn,k]T and denote
f(x1,k,x2,k, . . . , xi−1,k,xi,xi+1,k, . . . , xn,k) as f(xi,x¬i,k). For each f(xi,x¬i,k), approximate
functions li(xi,xk) : Ci → R are defined where xk = [xT1,k,xT2,k, . . . , xTn,k]T 7. BSUM performs
updates of the form

xi,k+1 ∈ argmin
xi

li(xi,xk),∀i = 1, 2, . . . , n. (2.39)

Obviously, at each iteration k the ith block is updated given the latest known estimates. It
should be noted though that, in slight deviation from BCD, the update of the ith block of
BSUM now possibly utilizes the most recent estimate of the same block that is updated.

7It should be highlighted that xi denotes the ith block whereas, as defined, xk is a vector containing all
the n blocks (i = 1, 2, . . . , n) as they are known at iteration k.
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Figure 5: Graphical illustration of the block successive upper bound minimization philosophy.

The selection of the blocks per iteration can be determined by disparate rules such as the
cyclic rule with i = (k mod n)+1, which is the classical one and is followed in this thesis,
the Gauss-Southwell rule, the Maximum Block Improvement (MBI), [79], etc.

2.1.4.1 Characteristics of upper bound functions and convergence behavior

As mentioned above, approximate functions li(xi,xk) are local tight upper bounds of the
original cost function. Since the ultimate goal of BSUM is to guarantee the descent of
the original cost function at each update, any candidate approximate function must satisfy
some additional conditions listed below:

• li(xi, z) = f(z), ∀z ∈ C, ∀i

• li(xi, z) ≥ f(xi, z¬i) ∀xi ∈ Ci, ∀z ∈ C, ∀i

• l′i(xi, z;di) |xi=zi= f
′
(z;d) ∀d = [0T , . . . ,dTi , . . . , 0T ]T s.t. zi + di ∈ Ci,∀i

• li(xi, z) is continuous on (xi, z) ∀i

The first two conditions actually declare the global upper bound property of the approxi-
mate functions li’s, while the third one states that the first-order variations of the original
cost function and those of the upper bounds should be the same at the point of approxi-
mation. This actually certifies the desirable descent direction of the original cost function
which is attained from the updates obtained by minimizing its approximate functions.

Similarly to all algorithms that follow the coordinate-wise optimization rationale, conver-
gence of BSUM methods necessitate what is called regularity condition of the objective
function at the coordinate-wise minima, [151]. Regularity is formally defined as follows,
Definition 2.2. Let z ∈ domf denote a coordinate-wise minimum point of the cost func-
tion f , i.e., f(z + [0T , . . . ,dTi , . . . , 0T ]T ) ≥ f(z) for all z + [0T , . . . ,dTi , . . . , 0T ]T ∈ C, ∀i =
1, 2, . . . , n. z is a regular point of f iff

f ′(z;d) ≥ 0, ∀d = [dT1 , . . . ,dTn ]T , such that z+ d ∈ C. (2.40)

According to this definition regularity implies that coordinate-wise minima are stationary
points of the cost functions. This property is inherently valid for smooth functions, however
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it does not in general hold for nonsmooth and nonseparable ones, [120]. Assuming that
a) the regularity conditions hold for all the points of the sequence generated by BSUM, b)
the adopted approximate functions satisfy the four conditions given above and are quasi-
convex and c) the solution of each subproblem is unique, then as stated in [79] (Theorem
1), any limit point of the generated sequence is a stationary point of the original cost func-
tion. Moreover, assuming that the level sets X 0 = {x|f(x) ≤ f(x0)} of the cost function f
are compact, then the sequence {xk} generated by BSUM under the cyclic rule updating
scheme converges to the set of stationary points of f , i.e., lim

k→∞
d(xk,X ⋆) = 0, where

d(x,X ⋆) ≜ min
x⋆∈X⋆

∥x− x⋆∥2 and X ⋆ is the set of the stationary points.

2.1.4.2 Majorization-minimization and the proximal point algorithms

In an effort to show the pervasive nature of the BSUM framework in the optimization field
we next give a glance at some well-established methods that can be seen as special
instances of the BSUM framework.

Majorization-Minimization (MM) can be considered as a single block case of BSUM. That
is, assuming a single-block function f(x), MM is an iterative method that generates a
sequence xk which successively minimizes at each iteration an upper bound l(x,xk) of
f(x) for which it holds

l(x,xk) ≥ f(x), l(xk,xk) = f(xk). (2.41)

One of the most popular MM techniques is the Expectation-Maximization (EM) algorithm.
Let us denote as y the observed variable, which models the data at hand. In a statistical
framework, the Maximum Likelihood (ML) estimate of the vector of unknown parameters
x given y is defined as

xk,ML = argmax
x

ln p(y|x) ≡ argmin
x

[−lnp(y | x)]. (2.42)

Assuming now that there exists a hidden/unobserved variable z, the EM algorithm consists
of two-step iterations of the following forms: a) E-step: estimate l(x,xk) = −⟨ln p(y, z|x)⟩z|y,xk
(where ⟨·⟩z|y,xk denotes the expectation operator w.r.t. the posterior distribution p(z | y,xk))
and b) M-step: xk+1 = argminx l(x,xk). By using the Jensen’s inequality it can be eas-
ily shown that l(x,xk) majorizes (locally around xk) the negative log-likelihood function
−lnp(y | x) and hence EM can be considered as a MM algorithm.

Finally, proximal point algorithms described by the iterative equation, xk+1 = proxλf (xk)
(where f(x) is assumed to be a convex function) can also be viewed as MM schemes.
Recall that the proximal operator of the cost function f is the minimizer of the infimal
convolution of f with the function 1

2
∥x − xk∥22 and as a result, for λ ≥ 0, it is an upper

bound of f . Hence, the proximal point algorithm is, likewise MM, a BSUM approach and
the particular approximate function is called as proximal upper bound, [79].
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2.1.5 Variational Bayes approximation

Next, the variational Bayes approximation method is outlined. Before delving into the core
of variational Bayes approximation, a brief outline of the main principles of the Bayesian
inference philosophy is given.

2.1.5.1 Bayesian Inference

So far, the various optimization methods that have been presented share a common
thread: they return single point estimates for the unknown parameters of interest, which
are obtained from the available observations (data). No doubt, data in all occasions are
uncertain and noisy. Under a statistical perspective, data may be considered as samples
(in most cases i.i.d.) of a random variable.

In Bayesian statistics, the unknown model parameters that govern the probability distri-
bution of the data are considered as random variables8. These random variables are
unobserved and hence are called latent or hidden. That said, instead of retrieving sin-
gle point estimates of the model parameters based on the data at hand, the goal now is
to infer the distribution of latent variables (i.e., to perform Bayesian inference) by condi-
tioning them on data using their prior distribution and the likelihood, which encapsulates
the underlying mechanism that relates the observed and the latent variables. To put it in
mathematical terms, let us denote as y = [y1, y2, .., yn]

T the random vector of observations
and x = [x1, x2, . . . , xm]

T them-dimensional vector of latent variables. The joint probability
distribution of y and x equals

p(y,x) = p(y|x)p(x), (2.43)

where p(y|x) and p(x) denote the likelihood function and the prior distributions respectively.
Bayesian inference utilizes the Bayes rule for computing the posterior distribution p(x|y)
as follows

p(x|y) = p(y|x)p(x)
p(y) . (2.44)

However, in complex Bayesian models that are usually met in machine learning and signal
processing applications, the exact computation of the posterior distribution can not be
computed exactly. This is due to the intractability of the marginal likelihood p(y) also
called evidence which amounts to the computation of the integral

p(y) =
∫
p(y,x)dx. (2.45)

In many practical situations, the evidence integral either can not be computed in poly-
nomial time or is not available in closed form. Thus, one has to resort to approximation
schemes.

8This random nature of the parameters reflects the uncertainty we have regarding their true values.
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2.1.5.2 Approximate inference and the evidence lower bound

The first approximate inference method that came into the scene several decades ago
is the ubiquitous Markov Chain Monte Carlo (MCMC) method. MCMC lies at the heart
of many landmark algorithms such as the Gibbs sampler and Metropolis Hasting, [146].
MCMC algorithms provide guarantees as to the production of exact samples from the
target distribution asymptotically. However, despite this favorable characteristic, MCMC
algorithms are not the best choice when one should deal with large-scale datasets or
highly complex models. In such occasions, the need for computationally efficient approx-
imate inference algorithms becomes imperative, even at the expense of the absence of
theoretical guarantees.

An alternative to MCMC that departs from the sampling approach and follows an opti-
mization viewpoint instead, is the Variational Bayes (VB) approach, [21, 152]. The crux
of VB is to approximate the exact posterior distribution of the latent variables, by suitably
formulating a constrained optimization problem. As it will be further explained later, VB
does not enjoy theoretical guarantees as is the case with MCMC algorithms. However, it
is much faster than MCMC and thus suits better to large-scale datasets.

More specifically, all candidate approximate posterior distributions, denoted as q(x), are
assumed to originate from a specific family of distributions L. In VB approximation, the
optimal posterior distribution q⋆(x) is the one that minimizes the Kullback Leibler (KL) di-
vergence criterion with respect to the exact posterior distribution, i.e.,

q⋆(x) = argmin
q(x)∈L

KL(q(x) ∥ p(x|y)). (2.46)

KL divergence (also called relative entropy function) is defined as

KL(q(x) ∥ p(x|y)) = ⟨ln q(x)⟩ − ⟨ln p(x|y)⟩ (2.47)

where expectations (denoted by ⟨·⟩) are taken w.r.t. q(x). Expanding the exact posterior
of Eq. (2.47) we get

KL(q(x) ∥ p(x|y)) = ⟨ln q(x)⟩ − ⟨ln p(y,x)⟩+ ln p(y). (2.48)

The above equation shows that KL minimization involves again the evidence p(y) and
thus it can not be computed. To this end, a lower bound of the logarithm of the evidence
is maximized in place of the KL divergence. This lower bound is called Evidence Lower
Bound (ELBO) and equals the negative KL plus log p(y), i.e.,

ELBO(q(x)) = ⟨lnp(y,x)⟩ − ⟨lnq(x)⟩. (2.49)

2.1.5.3 Variational Bayes inference using the mean field approximation

As mentioned above, the approximate inference procedure which is adopted by VB, leads
to the maximization of the ELBO subject to q(x) ∈ L, i.e., the approximate posterior is
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restricted to belong to a family of distributions denoted as L. In fact, the VB scheme
assumes that this family is the so-called mean-field variational family of distributions. As-
suming x = [xT1 ,xT2 , . . . , xTm]T , q(x) can be written in the form

q(x) =
m∏
i=1

qi(xi), (2.50)

i.e., the coordinates of the vector x are assumed to be statistically independent random
vectors. A visualization of the mean-field approximation can be seen in Fig. 6 for the case
of Gaussian distributions.

By adhering to the mean-field approximation, it now becomes much easier to maximize
the ELBO. This is actually achieved by following a BCD strategy, i.e., a single latent vector-
variable xi is updated at each iteration (see the BCD algorithm of Section 2.1.4). More
specifically, by exploiting the statistical independence assumption of the mean-field ap-
proximation we may rewrite the ELBO given in (2.49) as a function of the ith coordinate
qi(xi) as follows

ELBO(qi(xi)) = ⟨⟨ln p(y,xi,x¬i)⟩¬i⟩i − ⟨lnqi(xi)⟩i + const (2.51)

where the constant term (const) absorbs all the remaining terms that are independent of
the ith coordinate. Note that ⟨·⟩¬i denotes expectation w.r.t. the approximate posterior of
x¬i. The expression in (2.51) equals the negative KL divergence up to an added constant.
It can be shown that the optimal q⋆i (xi) can be obtained in closed-form and is proportional to
the exponentiated expected (w.r.t. to q¬i(x¬i)) logarithm of the joint probability distribution,
i.e.,

q⋆i (xi) ∝ exp{⟨ln p(y,xi,x¬i)⟩¬i}. (2.52)

Variational Bayes inference is then performed in an iterative fashion, where each iteration
involves m steps. At each one of them, a posterior distribution qi(xi) is estimated via
(2.52), based on the most recent estimates of the others. Thus, at the completion of each
iteration, a new estimate of q(x) is obtained. Due to the nonconvexity of the KL divergence
measure which is maximized, the sequence of the VB updates converges to a local optimal
point of it.

2.1.5.4 Relation to the EM algorithm and the BSUM framework

It can be seen from Eq. (2.49) that the first term of ELBO is the expected joint loglikelihood
w.r.t. the approximate posterior q(x). Taking into account the E-step of the EM9 algorithm
described in the previous section, it can be easily derived that EM is a special case of
the ELBO maximization framework which is followed in the VB approximation schemes.
More specifically, EM arises for the case that the approximate posterior q(x) equals to the

9x is now used for denoting the latent variable, instead of z, which is utilized for the EM algorithm in
Section 2.1.4.2. Moreover variable y is now assumed to contain both y and x of the EM algorithm.
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(a) (b)

Figure 6: An example of the mean field approximation as illustrated in a 2d-space for the case of a
Gaussian distribution. (a) True posterior pdf and (b) approximate posterior pdf.

exact posterior p(x|y), which in the EM algorithm is considered to be known10. Moreover,
similarly to the EM algorithm, variational Bayes is related to the MM algorithms and as a
result to the BSUM framework which was the subject of Section 2.1.4. This is so, since
each update of VB arises by amaximization step of a lower-bound of the evidence function,
which is equivalent to minimizing an upper bound function.

2.1.6 Online learning, stochastic approximation and empirical risk minimization

All structured matrix estimation problems presented in Chapter 1 are implicitly assumed
to be ill-posed since, in general, unknown matrices can not be uniquely estimated. This
fact may be ascribed either to the models that have been adopted (for instance the matrix
factorization problem is ill-posed by definition) or to the insufficient information conveyed
by the available data11. An additional underlying assumption that has been made is that
available data are i.i.d. samples of a random variable whose probability distribution is
unknown. Hence, it is obvious that data that we use for estimating the unknown matrices
are merely snapshots of the real world. Our aim is to exploit as much as we can these
empirical observations (which play the role of the training samples) so as to get reliable
estimates of the unknown parameters (vectors/matrices).

Let us denote as y the random variable that models the data and Y = [y1,y2, . . . , yn] the
set of available data. For ease of notation we focus on a vector of unknown parameters
x, which can be obtained by minimizing an objective function f(x). This function can be
considered as a measure of the deviation between the reconstructed model, based on the

10Note that the M-step analogue of the EM algorithm is usually obsolete in variational Bayes schemes
since all parameters are treated as latent variables.

11For instance, in the supervised scenario outlined in Chapter 1, this insufficiency may come from the
presence of noise or from the fact that the number of measurements is less than the number of the unknown
parameters.
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estimate x̂ of x, and the true model, represented here by y. That said, f(x) can be defined
as the expectation of a certain loss function l(y,x) w.r.t. the unknown probability density
function of y, i.e.,

f(x) def= ⟨l(y,x)⟩. (2.53)

An estimate of x is thus obtained by minimizing f(x), i.e.,

x̂ = argmin
x

f(x). (2.54)

However, since the distribution of y is unknown the expected risk (cost) function (2.53) can-
not be exactly obtained and hence (2.54) is insolvable. To deal with this issue, a surrogate
of (2.54) may be used, called empirical risk, [130], and defined as f(x) ≈

∑n
t=1 l(yt,x).

This gives rise to the following empirical risk minimization problem

min
x

1

n

n∑
t=1

l(yt,x). (2.55)

General theorems provided in [153] have shown that empirical risk minimization provides
a good estimate of the minimum of the expected risk for sufficiently large size n of the
training set.

Empirical risk minimization may take place by applying a batch gradient descent algo-
rithm12, which gives rise to updates of x in the following form

xk+1 = xk − λk∇x

(
1

n

n∑
t=1

l(yt,xk)
)

≡ xk − λk
1

n

n∑
t=1

∇xl(yt,xk), (2.56)

which converge to a local minimum of the empirical risk for small enough step sizes λk,
[15]. It can be seen from (2.56) that the updates of the batch gradient descent algorithm
involve the task of calculating the average of the gradients of the cost function over the
entire training set, which becomes computationally cumbersome especially in the case
where data are of large-scale and/or high-dimensional, since this fact necessitates the
availability of huge computational and memory resources.

Departing from the aforementioned batch type of processing, online learning schemes
were introduced in the early 1950’s in both engineering (in the form of recursive adaptive
algorithms) and the field of learning systems, [22]. The whole mathematical framework
that online learning is built upon is named after stochastic approximation. In the case of
the gradient descent algorithm, by applying stochastic approximation we are led to the so-
called online (also known as stochastic) gradient descent algorithm, which deviates from
the batch one in the following sense: x is updated by using each time just one yt and the

12Differentiability of l(yt,x) is next assumed for simplicity reasons.
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expected risk f(x) is approximated at each iteration t by l(yt,x)13, i.e.,

f(x) = ⟨l(y,x)⟩ ≈ l(yt,x). (2.57)

Hence gradient iterations are modified as follows,

xt+1 = xt − λt∇xl(yt,xt). (2.58)

Note that iterations now become sample dependent (this is notationally shown by replacing
the iteration index k with t) and the averaging operation of the gradient of the empirical
risk is now dropped.

Apart from its advantages in dealing with large-scale and/or high-dimensionality problems,
this online learning scheme is of critical importance when one is dealing with cases evolv-
ing in nonstationary environments where the statistics of data change over time. For this
reason, this stochastic approximation based formulation has been at the core of adaptive
algorithms whose premise is to a) simultaneously process an observation and b) learn to
perform better, by embedding the knowledge carried by the previously processed obser-
vation. Clearly, computations are now much simpler hence the derived algorithms are of
much lower computational complexity while at the same time memory requirements are
eliminated. Finally, it is noted that convergence analysis of online algorithms has been
analytically studied in [22].

2.1.6.1 Stochastic variational inference

Stochastic approximation ideas described above have been applied in the variational
Bayes approximation scheme presented in Section 2.1.5 with the goal to devise algo-
rithms amenable to processing massive amounts of data. The derived scheme arises
by first viewing the coordinate ascent updates of variational Bayes approximation (which
leads to expressions (2.52)) as natural gradient steps14, [5] with appropriately selected
step size, [125]. Then, the natural gradient of the ELBO defined in (2.51) is relaxed by
using stochastic approximation. The derived scheme belongs to the online learning frame-
work inheriting all the merits described above with provable convergence guarantees, [78].

2.2 Application to hyperspectral image processing

So far the main problems that are addressed in this thesis have been presented in Chapter
1, while in the first part of the present chapter the utilized optimization tools were described.
Herein, we outline the applications that we will focus on, which give birth to a part of the
afore-said problems, i.e., hyperspectral image unmixing and denoising.

13Obviously, l(yt,x) is an unbiased estimate of f(x).
14Natural gradient steps are iterates in the form xk+1 = xk − λkG−1(xk)∇f(xk), where G is a Rieman-

nian metric. In the VB case G corresponds to the Fisher information matrix of the approximate posterior
distribution q(x), [21]. The term G−1(xk)∇f(xk) is called the natural gradient, [5].
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Figure 7: A hyperspectral image (left) and the pixel’s spectral signature (right), [11].

2.2.1 Hyperspectral images

A hyperspectral image (HSI) is a collection of multiple grayscale images captured at many
contiguous spectral bands (channels) with wavelengths ranging from the visible to the
infrared spectrum (0.4–2.5 µm), thus forming a so-called spectral cube (Fig. 7). As a
result of this, each pixel in a HSI is represented by a vector of size equal to the number
of spectral bands called spectral signature of the pixel. The entries of this vector are the
(nonnegative) radiance or reflectance values of the spatial area corresponding to the pixel
in all spectral channels. Obviously, HSIs provide much more detailed information about
the depicted scene as compared to conventional RGB images, which capture only three
spectral channels (red, green, blue) and multispectral images that comprise a few (usually
less than ten) spectral channels.

The rich spectral information of HSIs can be proved valuable in numerous tasks such as
material identification, object detection, etc. These tasks are at the core of many appli-
cation fields, such as earth observation and remote sensing, mineral detection, medical
image processing, food quality assessment, etc., [99]. This is the reason why HSIs have
gained extreme popularity over the past few decades.

The refined spectral information, which is provided by HSIs, usually comes at a price.
Specifically, HSIs are high-dimensional and large-scale data (the number of the pixels is
usually in the order of tens to hundreds of thousands and the number of the spectral bands
is in the order of hundreds to thousands for modern hyperspectral sensors) requiring high
computational cost for processing and extraction of information. Moreover, in many HSI
applications such as remote sensing, the high spectral resolution is overshadowed by low
spatial resolution. These two caveats are at the core of several hyperspectral imaging
problems that are addressed by various algorithmic procedures. Along these lines, the
problems of hyperspectral unmixing and hyperspectral denoising are next described.

2.2.2 Hyperspectral image unmixing

Hyperspectral unmixing (HU) has attracted considerable attention in recent years both in
research and applications. HU is based on the assumption that each pixel in the image
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stems from the mixing of a set of some basic spectral signatures corresponding to pure
materials (endmembers) (see Fig. 8). It generally involves the following two process-
ing stages a) identification of the spectral signatures of the pure materials (endmembers)
whose mixing generates themixed pixels of HSI (endmembers’ extraction stage - EE) and
b) estimation of their corresponding fractions (abundances) in the formation of each HSI
pixel (abundance estimation stage - AE), [99]. The latter constitutes the so-called abun-
dance vector of the pixel (the matrix that contains the collection of abundance vectors
corresponding to the pixels of the HSI is called abundance matrix). This two step proce-
dure has given rise to a plethora of methods tackling either one or both of these two tasks.
Diverse statistical and geometrical approaches have been lately put forward in literature
addressing the first step, i.e., endmembers’ extraction -EE (e.g. [110, 93]). On the other
hand, there have been many research works that assume that the spectral signatures of
the endmembers are available and focus on the abundance estimation task. The latter
case is known as supervised scenario, in contrast to the general form of the HU problem
given above, which corresponds to the unsupervised scenario.

Algorithms that fall into this class need to make a fundamental assumption concerning the
inherent mixing process that generates the spectral signatures of the HSI pixels. In view
of the latter, the linear mixing model (LMM) can be defined as

Y = AX+ E, (2.59)

where Y contains the l-dimensional spectral signatures of the n HSI’s pixels, A is the
l×m endmembers’ matrix (consisting ofm endmembers’ spectral signatures) and X is the
m×n abundance matrix which contains the set of the abundance vectors xi corresponding
to the n pixels of the HSI. Moreover, matrix E stands for the i.i.d. zero-mean Gaussian
noise matrix. LMM holds a dominant position being widely adopted in numerous state-
of-the-art unmixing algorithms (see e.g., [99] and the references therein). Abundance
estimation is henceforth treated as a linear regression problem. The LMM has prevailed
over other models, due to its conceptual simplicity and mathematical tractability. Physical
considerations that naturally arise impose various constraints on the unmixing problem.
In this context, the so-called abundance nonnegativity and the abundance sum-to-one
constraints are usually adopted. That said, unmixing can be viewed as a constrained
linear regression problem which is mathematically formulated as

min
X

∥Y− AX∥2F subject to X ≥ 0, ∥xi∥2 = 1,∀i = 1, 2, . . . , n. (2.60)

In an attempt to achieve better abundance estimation results, recent novel ideas promote
the incorporation of further prior knowledge in the unmixing problem. In light of this, sev-
eral methods bring into play the sparsity assumption on the abundance vector (or matrix),
[141, 19, 81, 145]. Its adoption is justified by the fact that only a few of the available end-
members participate in the formation of a given mixed pixel, especially in the case of large
size endmembers’ dictionaries. Put it in other terms, it is envisaged that pixels’ spectral
signatures accept sparse representations with respect to a given endmembers’ dictionary.
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Figure 8: A visual illustration of hyperspectral unmixing, [2].

Furthermore, one could also say that the abundance vectors corresponding to the pixels
of HSIs are deemed having only a few nonzero values. Practically speaking, sparsity is
imposed on abundances by means of ℓ1 norm regularization, [141, 19, 81] when a de-
terministic approach is followed. On the other hand, in Bayesian schemes appropriate
sparsity inducing priors are adopted for the abundance vectors, [145, 123]. Spatial corre-
lation is another constraint that has recently been incorporated in the unmixing process,
offering stimulating results, [45, 119, 82]. In that vein, the redundant information that exists
in homogeneous regions of HSIs is subject to exploitation. Actually, in such regions, there
is a high degree of correlation among the spectral signatures of neighboring pixels. It is
hence anticipated that there should also be correlation among the abundance vectors cor-
responding to these pixels. This has led to the development of novel unmixing schemes,
whereby the information provided by the neighboring pixels is taken into account in the
abundance estimation of each single pixel.

In case that the endmembers’ dictionary is considered also unknown, linear unmixing be-
comes much more challenging since it now becomes an unsupervised estimation task. In
this case, there are two main routes to follow. According to the first one, the EE and AE
processes are performed one after the other independently. Considering the EE stage, a
large number of works have come into the scene in the literature for addressing this prob-
lem. These can be classified into two main categories: a) geometrical and b) statistical
methods. The former exploit geometrical features of the mixtures by assuming that under
the LMM, the spectral signatures of the mixed pixels form a simplex whose vertices cor-
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respond to the endmembers’ signatures, [110, 158]. Simplex based methods are based
on the assumption that there exist pure pixels in the scene (known as PPI - pure pixel as-
sumption), which is rather strong in several cases in practice. After the completion of the
EE stage, that is, after estimating matrix A, the AE stage is performed in order to estimate
the abundances of each pixel, based on A. According to the second route, EE and AE are
treated simultaneously. In other words, HU is viewed as a blind source separation (BSS)
problem. In that framework, HU has been formulated as an independent component anal-
ysis scheme which assumes statistical independence for both the abundance matrix and
the endmembers’ dictionary, [12, 109]. Taking into account the nonnegativity of HSI data,
HU can be formulated as a nonnegative matrix factorization (NMF) problem, i.e.,

min
A,X

∥Y− AX∥2F , subject to A ≥ 0, X ≥ 0, ∥xi∥2 = 1,∀i = 1, 2, . . . , n. (2.61)

NMF HU problems suffer from inherent obstacles related to the non-uniqueness of the
factorization AX. To overcome these, several constrained versions of the NMF have been
put forth in the literature specialized on the hyperspectral unmixing problem. In that frame-
work, sparsity, [98], structured sparsity, [118], and volume constraints, [105], have been
incorporated in the unsupervised HU problem thus transforming it to a multiple constrained
NMF problem.

2.2.3 Hyperspectral image denoising

Hyperspectral image denoising is a preprocessing step in most of the HSI applications.
Depending on the application, the noise that corrupts a HSI may have different charac-
teristics. These partly determine the data generation process, giving rise to the adoption
of diverse models. The most common assumptions that are made in practice are a) the
noise is of additive Gaussian i.i.d. type and b) HSIs are grossly corrupted by spikes of
noise which occur at random spectral and spatial positions, [163]. In mathematical terms
the two different sorts of noise can be modelled as follows,

Y = PΩ(X) + E, (2.62)

where the set Ω contains the indexes of Y that are assumed to contain uncorrupted by
spikes of noise information. It is quite clear that Eq. (2.62) implies that HSI denoising
can be modelled as a generalized version of the matrix completion problem (see Section
1.2.3.2).

Denoising is in general an ill-posed problem and hence necessitates the exploitation of
prior knowledge that we may have, [166]. Fortunately, HSIs are intrinsically characterized
by high coherence in both the spectral and the spatial domain. That said, the low-rank
structure can be effectively leveraged in HSI denoising. These properties actually render
HSIs highly compressible, i.e., HSIs can be represented in a given, e.g., wavelet or learned
dictionary in a parsimonious way. HSI denoising can thus be formulated as a structured
matrix estimation problem.
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3. SIMULTANEOUSLY SPARSE, LOW-RANK AND NONNEGATIVE
MATRIX ESTIMATION

In this chapter, we address the problem of simultaneously sparse, low-rank and nonneg-
ative matrix estimation. Two novel formulations of the problem are proposed. The first
one introduces a mixed penalty term, which consists of the sum of the weighted ℓ1 and
the weighted nuclear norm of the sought matrix. This penalty term is then used to regu-
larize a conventional quadratic cost function and impose simultaneously sparsity and low-
rankness on the sought matrix, [67]. The second approach follows a different paradigm
when it comes to low-rank imposition. That is, low-rank is now enforced via assuming
a matrix factorization (MF) representation of the matrix to be estimated. Since the inner
dimension of the factorization -which is related to the rank of the factorized matrix- is in
general unknown, the variational form of the nuclear norm is utilized for penalizing the rank
thereof, [67]. Both approaches are utilized for formulating in a pioneering way the problem
of hyperspectral unmixing (HU) (described in Section 2.2.2). It is shown that both spar-
sity and low-rankness may be incorporated in HU accounting for physical considerations
of this problem such as spatial correlation. Then, three different optimization algorithms
are introduced. Specifically, the regularized cost function arising by the first formulation is
minimized by a) an incremental proximal sparse and low-rank unmixing algorithm and b)
an algorithm based on the alternating direction method of multipliers (ADMM). Moreover,
a block coordinate descent type algorithm is used for minimizing the emerging nonconvex
MF based cost function of the second approach. The main premise of this approach is that
the induced computational complexity is further reduced by virtue of the MF formulation
which significantly decreases the “size” of the optimization problem. The effectiveness of
the proposed algorithms is illustrated in experiments conducted on a wealth of simulated
and real HSI data experiments.

3.1 Problem formulations

In the following, it is assumed that nonnegative data are generated by a linear model and
contaminated by additive Gaussian i.i.d. noise, i.e.,

Y = AX+ E, (3.1)

where Y ∈ Rl×n
+ is the data matrix, A ∈ Rl×m

+ is a known matrix which corresponds to
a given dictionary, X ∈ Rm×n

+ is the coefficients matrix and E ∈ Rl×n is a Gaussian i.i.d.
noise matrix. As it was clearly explained in Chapter 1, the problem of estimating matrix
X given Y and A is, in general, ill-posed for l ̸= m and E = 0 (noiseless case), let alone
in the noisy case of (3.1). This fact urges us to exploit any prior knowledge we may have
regarding X so as to find “good” approximate solutions for it.

Along these lines, we next focus on the estimation of a matrix X that is assumed to be
simultaneously sparse, low-rank and nonnegative (see Fig. 9). The task of simultane-
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Figure 9: Sparse and low-rank matrix estimation under the linear model (white cells correspond to
zero values).

ously sparse and low-rank matrix estimation and the proposed in the literature formula-
tions thereof have been presented in sections 1.1.2 and 1.2.2, respectively. As it was
described, convex combinations of the low-rank imposing nuclear norm and the sparsity
promoting ℓ1 norm have been reported in the literature for providing polynomial time algo-
rithms that approximately solve the originally NP-hard optimization problem that involved
the sum of the ℓ0 quasinorm and the rank functions (see Section 1.2.2).

3.1.1 A weighted ℓ1 and weighted nuclear norm minimization approach

Next we aim at exploiting the recently shown benefits arising by the use of weighted ver-
sions of the ℓ1 and nuclear norms as compared to their nonweighted counterparts, when
it comes to sparse and low-rank imposition respectively, [168, 30, 95, 88]. To this end, we
propose to use a combination of the weighted ℓ1 and nuclear norms, defined in Section
1.2.1, for efficiently addressing the problem of simultaneously sparse and low-rank matrix
estimation. Since weighted versions of ℓ1 and nuclear norm (if the weights are suitably
selected) approximate better the ℓ0 quasinorm and the rank, [30, 95], such an approach is
expected to further enhance the sparsity on both the elements of X, xij, and the singular
values σi(X).
We hence come up with the following novel formulation of simultaneously sparse low-rank
and nonnegative matrix estimation,

(P1) : X̂ = argmin
X∈Rm×n

+

{1
2
∥Y− AX∥2F + γ∥X∥1,D + τ∥X∥∗,w

}
. (3.2)

where γ, τ ≥ 0 are parameters that control the trade-off between the sparsity and rank
regularization terms and the data fidelity term. Being parametrized, (P1) becomes flexi-
ble enough to impose either one of the two structures on X. For example, by setting γ = 0,
(P1) results in searching for a low-rank matrix. Accordingly, setting τ = 0 is tantamount to
searching for a sparse matrix. The flexibility of the proposed model provides certainly an
advantage over either low-rank or sparse estimation methods, as it will also be demon-
strated later in the experimental results section of this chapter.
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Assumption 3.1. For the weighting coefficientswi of the nuclear norm it holds thatwi = w,
i = 1, 2, . . . ,min(m,n).
Remark 3.1. Under Assumption 3.1, the weighted nuclear norm is convex [74, 95], while
the weighted ℓ1 norm is always convex for nonnegative D. Thus, the overall cost function
of (P1) is convex.
Note that (P1) is a nontrivial problem to solve, due to the nondifferentiable form of the ℓ1
and nuclear norm regularizers, [7]. In Section 3.3, we suitably explore two optimization
tools (presented in Chapter 2) to tackle this problem; an incremental proximal minimization
method and an ADMM based technique. Note that both algorithms are derived in a con-
vex setting under the Assumption 3.1. Alternative options for the selection of parameters
D and w, such as reweighting schemes, that render the problem nonconvex, yet offering
enhanced estimation performance, are discussed in Section 3.3.3.

3.1.2 A matrix factorization (MF) based approach

Next, an alternative formulation of simultaneously sparse, low-rank and nonnegative ma-
trix estimation problem is presented. The motivation behind the new approach is to pro-
vide a formulation which gives rise to an optimization algorithm of reduced computational
complexity. It should be emphasized that the minimization of the nuclear norm (and its
weighted version) requires a singular value decomposition (SVD) step, whose complexity
when applied on a matrix of size m× n (assuming m ≤ n) is O(m2n+m3). This fact can
be a serious impediment for high-dimensional and large-scale data applications, such as
hyperspectral unmixing, which will be the subject of the next section.

Capitalizing on this, we propose a different way for minimizing the rank of X by utilizing
the variational form of the nuclear norm described in Section 1.2.3.2. Recall that this form
is based on a bilinear representation of X, i.e., Xmay now be written as the product of two
matrices U ∈ Rm×d and V ∈ Rn×d, i.e., X = UVT , where d is an overestimate of the rank
of X. As mentioned in Section 1.2.3.2, the variational form of the nuclear norm is a tight
upper bound of it, i.e.,

∥X∥∗ = min
U∈Rm×d,V∈Rn×d,X=UVT

1

2

(
∥U∥2F + ∥V∥2F

)
. (3.3)

The minimization of the righthand side of (3.3) (in place of the nuclear norm), gives rise
the following optimization problem,

(P2) :
{
Û, V̂, X̂

}
= argmin

U,V,X≥0
L(U,V,X), (3.4)

where,

L(U,V,X) =
{1
2
∥Y− AUVT∥2F +

τ

2

(
∥U∥2F + ∥V∥2F

)
+ γ∥X∥1,D +

µ

2
∥X− UVT∥2F

}
. (3.5)

It should be noted that the term ∥X−UVT∥2F that appears in (3.5) is associated with the con-
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straint X = UVT , with µ being the corresponding Lagrange multiplier parameter. Problem
(P2) is nonconvex with respect to matrices X,U and V. Moreover, the presence of the ℓ1
norm induces the objective function a nonsmooth behavior that must be suitably handled.
In Section 3.3.4, a novel block coordinate descent (BCD) algorithm, [15], is presented that
solves (P2) for abundance matrix estimation in hyperspectral unmixing.

3.2 HU as a sparse, low-rank and nonnegative matrix estimation problem

Before we proceed with the presentation of the algorithms that solve the above problems,
we will show the potential of the above formulation in the framework of a real world appli-
cation, namely, the abundance matrix estimation task. That is, we will show how the latter
problem can be written in terms of the previously defined formulation. It is noted that the
abundance matrix estimation task is, for the first time in the literature, viewed as a simul-
taneously sparse, low-rank and nonnegative matrix estimation problem. In our analysis
we will adhere to the linear mixing model (LMM) presented in Section 2.2.2.

Note that due to physical considerations, matrix X, which now contains the abundance
coefficients, should satisfy two constraints, namely, the abundance nonnegativity and the
abundance sum-to-one constraints, [87], i.e.,

X ≥ 0, and 1TX = 1T . (3.6)

Nevertheless, in the following we relax the sum-to-one constraint based on the reasoning
presented in [81]. That said, the general problem that is dealt with can be described as:
“given the spectral measurements Y and the endmember matrix A, estimate the abun-
dance matrix X subject to the nonnegativity constraint”. This is a typical inverse problem,
which has been addressed via many methods in the signal processing literature. How-
ever, the efficacy of the proposed approach lies on the exploitation of intrinsic structural
characteristics of X, namely, sparsity and low-rankness, as it will be explained next. Be-
fore we proceed with the proposed HU formulation, in the next subsection we pass briefly
over the related work.

3.2.1 Related work

In an attempt to achieve better abundance estimation results, recent novel ideas promote
the incorporation of further prior knowledge in the unmixing problem. In light of this, sev-
eral methods bring into play the sparsity assumption, [141, 19, 81, 145]. Its adoption is
justified by the fact that (in practice) only a few of the available endmembers participate
in the formation of a given pixel, especially in the case of large size endmembers’ dictio-
naries. Put it in other terms, it is envisaged that pixels’ spectral signatures accept sparse
representations with respect to a given endmembers’ dictionary; that is, the corresponding
abundance vectors are deemed to have only a few nonzero values. Practically, sparsity
is imposed on abundances via the ℓ1 norm regularization term, [141, 19, 81], when a de-
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terministic approach is followed. On the other hand, in Bayesian schemes appropriate
sparsity inducing priors are adopted for the abundance vectors, [145, 123].

Spatial correlation is another constraint that has recently been incorporated in the unmix-
ing process, offering stimulating results, [45, 119, 82]. In that vein, the additional informa-
tion that exists in homogeneous regions of HSIs is subject to exploitation. Actually, in such
regions, there is a high degree of correlation among the spectral signatures of neighboring
pixels. It is hence anticipated that there should also be correlation among the abundance
vectors corresponding to these pixels. This has led to the development of novel unmixing
schemes, whereby the information related to the neighboring pixels of each single pixel is
taken into account in the abundance estimation of the latter.

In this spirit, a collaborative deterministic scheme, termed CLSUnSAL, was recently pro-
posed in [82], which uses a wealth of information stemming from all the pixels of the
examined HSI. CLSUnSAL adopts dictionaries consisting of a large number of endmem-
bers. Then it assumes that spatial correlation translates into abundance vectors sharing
the same support set, i.e., presenting a similar sparsity pattern. Thus, the corresponding
abundance matrix should meaningfully be of a joint-sparse structure. To impose joint-
sparsity, CLSUnSAL applies a ℓ1,2 norm on the sought abundance matrix X, which is then
used to penalize a suitably defined quadratic cost function. Minimization of the resulting
regularized cost function is performed by an alternating direction method of multipliers
(ADMM), [24]. A similar perspective is followed in [119], however in a “localized” fashion.
Specifically, [119] proposes the use of a 3 × 3 square window that slides in the spatial
dimensions of the image. The abundance vector of the central pixel is then inferred by
taking into account the spectral signatures of the adjacent pixels contained in the window.
Based on this idea, two algorithms are derived. First the MMV-ADMM, which in a similar
to CLSUnSAL fashion, seeks joint-sparse abundance matrices utilizing the ℓ1,2 norm, and
second the LRR algorithm that promotes a low-rank structure on the abundance matrix.
Actually, the LRR algorithm presents an alternative way of modelling the spatial correlation
among neighboring pixels. That is, it assumes that the correlation among pixels’ spectral
signatures is reflected as linear dependence among their corresponding abundance vec-
tors. Apparently, the matrix formed by these abundance vectors should be of low rank.
That said, a nuclear norm is imposed on the abundance matrix, and a properly adapted
augmented Lagrangian cost function is minimized in an alternating minimization fashion.

3.2.2 Proposed HU formulation

Herein, we impose concurrently two naturally justified structural constraints on the abun-
dance matrix X, that promote low-rankness and sparsity.

It is worth mentioning that the sparsity of X does by no means invalidate its low-rankness.
On the contrary, both structural hypotheses are assumed to hold simultaneously on X,
although low-rankness implicitly imposes some kind of “regular” structure on sparsity1. So

1That is, there exist subsets of columns of X, Xi, with the following property: The columns of a certain Xi

exhibit zero values at certain places (mainly due to the low-rank constraint). However, some of them may

79 P. Giampouras



Nonconvex Optimization Algorithms for Structured Matrix Estimation in Large-Scale Data Applications

far, reports in the spectral unmixing literature explore either the sparsity, e.g., [145, 140],
or the low-rankness property of X, e.g., [119]. To the best of our knowledge this is the
first time that spectral unmixing is formulated as a simultaneously sparse and low-rank
matrix estimation problem. That is, we seek a matrix X ≥ 0 that, apart from fitting the data
well in the least squares sense, it has minimum rank and the minimum number of positive
elements.

3.3 Proposed algorithms

After the short parenthesis of Section 3.2, where it has been shown how the HU application
can be written in terms of the proposed problem formulation (Section 3.1), we proceed with
the next issue that naturally arises, namely, the algorithms that solve the above problem.
More specifically, in this section we present three algorithms to address the nonsmooth,
constrained, optimization problems described in Section 3.1, developed within the context
of hyperspectral unmixing. When it comes to the weighted norms based formulation, two
algorithms are proposed: the first one comes from the family of incremental proximal
algorithms, presented in Section 2.1.2, and makes use of the proximal operators of all the
terms appearing in (P1) (3.2), while the second exploits the splitting strategy of the ADMM
philosophy described in Section 2.1.3.3. Moreover, a BCD algorithm (see Section 2.1.4)
is devised for solving the MF based formulation of the simultaneously sparse, low-rank
and nonnegative matrix estimation problem (P2) defined through (3.4) and (3.5).

3.3.1 Incremental proximal sparse and low-rank unmixing algorithm

Let us first recall from (2.1) that the proximal operator of a function f(·) is defined as,

proxλf(·)(X) = argmin
W

(
f(W) +

1

2λ
∥W− X∥2F

)
, (3.7)

where X ∈ Rm×n and W ∈ domf . As detailed in Section 2.1.2, incremental proximal
algorithms suit perfectly to minimization problems in the form

min
X∈C

ρ∑
i=1

fi(X) (3.8)

where fi(X), i = 1, 2, . . . , ρ are convex functions and C ⊆ Rm×n is a closed convex set.
Recall also that proximal operators of all fi’s are first derived and then a sequential scheme
is defined, in which the proximal operator of fi(X) is evaluated at the point provided by its
predecessor (the proximal operator of fi−1(X)), for i = 2, 3, . . . , ρ.

As we may observe, (P1) in (3.2) with w = w1 has exactly the same form with the min-
imization problem in (3.8), with respect to X. Embedding the nonnegativity to the cost

exhibit zero values at some additional places (attributed exclusively to the sparsity constraint).
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function in (3.2) we obtain the following regularized quadratic loss function,

L1(X) =
1

2
∥Y− AX∥2F + γ∥X∥1,D + τ∥X∥∗,w + IR+(X), (3.9)

where the nonnegativity constraint is now replaced by the indicator function IR+(X), which
is zero when all xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and +∞ if at least one xij is
negative. Typically, we wish to minimize L1(X) with respect to X. Notice that L1(X) is
the sum of four convex functions and the incremental proximal algorithm of [17] can be
applied directly in our problem. Next, the proximal operators of all four convex functions
are obtained. Starting with the least squares fitting term, we readily get

proxλ 1
2
∥Y−A·∥2F

(X) = (ATA+ λ−1Im)−1(ATY+ λ−1X). (3.10)

In contrast to the fitting term, the remaining three terms are nondifferentiable. Thus, the
standard optimization tools for differentiable functions cannot be applied for them. The
minimization of these terms involves the notion of the soft-thresholding operator. Specifi-
cally, the soft-thresholding operator on matrix X = [x]ij is defined as

SHRΨ(X) = sign(X) max(0, |X| −Ψ), (3.11)

where Ψ = [ψ]ij is the matrix that contains thresholding parameters. Note that the soft-
thresholding in (3.11) is performed in an elementwise manner, i.e., SHRψij

(xij) =
sign(xij) max(0, |xij| − ψij). Notably, when we apply the soft-thresholding operator on
a diagonal matrix, we shrink only the elements belonging to its diagonal. These elements
are assumed to be shrinked by thresholding parameters contained in a vector. In the
above spirit, we define the singular value thresholding operation by

SVTψ(X) = UX SHRψ(ΣX)VTX

where X = UXΣXVTX is the singular value decomposition (SVD) of X, and ψ is the vector
whose entries are the thresholding parameters that reduce the corresponding diagonal
elements of matrixΣX. Finally, we define the projection operator on the set of nonnegative
real numbers,

PR+(v) = argmin
x∈R+

|x− v| =
{

0, v < 0
v, v ≥ 0

, (3.12)

which is naturally extended to matrices in an elementwise manner.

Utilizing the above definitions, we can compute the proximal operators for all regulariz-
ing convex functions in (3.9). Specifically, proxγ∥·∥1,D(X) is computed by soft-thresholding
matrix X with γD as follows,

proxγ∥·∥1,D(X) = SHRγD(X). (3.13)

Similarly, the proximal operator of the nuclear norm can be expressed via a soft thresh-
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olding operation on the singular values of X, i.e.,

proxτ∥·∥∗,w(X) = SVTτw(X). (3.14)

Moreover, the computation of proxIR+
(·)(X) reduces to a projection operation, i.e.,

proxIR+
(·)(X) = PR+(X). (3.15)

The proposed incremental proximal sparse, low-rank unmixing (IPSpLRU) algorithm iter-
ates among the proximal operators (3.10), (3.13), (3.14) and (3.15) in a cyclic order until
convergence, [17]. IPSpLRU is summarized in Algorithm 3.1.

The incremental proximal approach employed above for deriving IPSpLRU is closely re-
lated to the incremental subgradient method, [17] and the parameters λ, γ and τ can be
seen as the step sizes of the corresponding subgradient steps. By invoking Proposition
3.2 of [17], it arises that for fixed values of these parameters the incremental proximal al-
gorithm converges to a neighborhood of the optimum, which shrinks to zero as their values
are closer to zero. On the other hand, exact convergence to the optimal solution of the
cost function is achieved when the values of these step sizes diminish over iterations, while
they additionally satisfy certain conditions described in [17]. Herein, the parameters λ, γ
and τ are selected to be fixed to positive constants during the execution of the algorithm.
In doing so, we sacrifice the accuracy of the estimations in favor of faster convergence.

Algorithm 3.1: The proposed IPSpLRU algorithm
Inputs Y, A
Select parameters D,w, λ, τ, γ
Set R = (ATA+ λ−1Im)−1, P = ATY, Q = RP
Initialize X0 and set k = 0
repeat
Xk+1 = Q+ λ−1RXk
Xk+1 = proxγ∥·∥1,D(Xk+1) (3.13)
Xk+1 = proxτ∥·∥∗,w(Xk+1) (3.14)
Xk+1 = proxIR+

(·)(Xk+1) (3.15)
until convergence
Output : Estimated matrix X̂ = Xk+1

Concerning the computational complexity of IPSpLRU, the most complex step is the SVD
of the abundance matrix Xk+1, which takes place at each iteration and is of the order of
O(nm2 + m3), [72]. Note that matrices R = (ATA + λ−1Im)−1, P = ATY and Q = RP
are computed only once at the initialization stage and thus the first step in the repeat-until
loop of the algorithm just requires a fast matrix-by-matrix multiplication. The algorithm
converges rapidly and terminates when either the following stopping criterion is satisfied,

||Xk+1 − Xk||2F
||Xk||2F

< ϵ (3.16)
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where ϵ is a predefined threshold value, or a preset maximum number of iterations is
reached. In the following section we present an alternative approach to solve the same
problem by employing a primal-dual ADMM type technique.

3.3.2 Alternating directionmethod of multipliers for sparse and low-rank unmixing

In this section, we develop an instance of the alternating direction method of multipliers
that solves the abundance matrix estimation problem (P1) defined in (3.2). To proceed,
we utilize the auxiliary matrix variables Ω1,Ω2,Ω3 and Ω4 of proper dimensions (similar to
[82, 140]), and reformulate the original problem (P1) into its equivalent ADMM form, [24],

(P3) : min
Ω1,Ω2,Ω3,Ω4

{1
2
∥Ω1 − Y∥2F + γ∥Ω2∥1,D + τ∥Ω3∥∗,w + IR+(Ω4)

}
(3.17)

subject to Ω1 − AX = 0, Ω2 − X = 0, Ω3 − X = 0,Ω4 − X = 0

Based on (P3), the following augmented Lagrangian function is optimized w.r.t. X,Ω1,Ω2,
Ω3 and Ω4,

L2(X,Ω1,Ω2,Ω3,Ω4) =
1

2
∥Ω1 − Y∥2F + γ∥Ω2∥1,D + τ∥Ω3∥∗,w + IR+(Ω4)

+ tr
[
∆T

1 (Ω1 − AX)
]
+ tr

[
∆T

2 (Ω2 − X)
]
+ tr

[
∆T

3 (Ω3 − X)
]
+ tr

[
∆T

4 (Ω4 − X)
]

+
µ

2

(
∥AX−Ω1∥2F + ∥X−Ω2∥2F + ∥X−Ω3∥2F + ∥X−Ω4∥2F

)
(3.18)

where the l×nmatrix∆1, and them×nmatrices∆2,∆3,∆4 are the Lagrange multipliers
and µ > 0 is a positive penalty parameter. Note that again the nonnegative weights D and
w are considered to be constant and Assumption 3.1 for w also holds here. Defining

Ω =


Ω1

Ω2

Ω3

Ω4

 , G =


A
Im
Im
Im

 and B =


−Il 0 0 0
0 −Im 0 0
0 0 −Im 0
0 0 0 −Im

 , (3.19)

(3.18) can be written in the following equivalent more compact form as

L3(X,Ω,Λ) =
1

2
∥Ω1 − Y∥2F + γ∥Ω2∥1,D + τ∥Ω3∥∗,w + IR+(Ω4) +

µ

2
∥GX+ BΩ−Λ∥2F ,

(3.20)

where Λ =
[
ΛT

1 ΛT
2 ΛT

3 ΛT
4

]T
,Λi = (1/µ)∆i, i = 1, . . . , 4, contains the scaled Lagrange

multipliers. Having expressed the augmented Lagrangian function as in (3.20), the ADMM
proceeds by minimizing L3(X,Ω,Λ) sequentially, each time with respect to a single matrix
variable, keeping the remaining variables fixed at their latest values. The dual variables
(Lagrange multipliers) are also updated via a gradient ascent step at the end of each
alternating minimization cycle.

To elaborate further on the updating steps of the ADMM, the optimization of L3(X,Ω,Λ)

83 P. Giampouras



Nonconvex Optimization Algorithms for Structured Matrix Estimation in Large-Scale Data Applications

with respect to X gives

Xk+1 = argmin
X

L3(X,Ωk,Λk)

=
(
ATA+ 3Im

)−1
[AT (Ω1,k +Λ1,k) +Ω2,k +Λ2,k +Ω3,k +Λ3,k +Ω4,k +Λ4,k].

(3.21)

Next, the optimization with respect to Ω1 is performed as

Ω1,k+1 = argmin
Ω1

L3(Xk+1,Ω,Λk) =
1

1 + µ
(Y+ µ (AXk+1 −Λ1,k)) . (3.22)

The remaining auxiliary variables Ω2,Ω3, and Ω4 are involved in nondifferentiable norms,
namely, the weighted ℓ1 norm, the weighted nuclear norm, and the indicator function,
respectively. In this regard, the minimization task with respect to these variables resolves
to computing some of the proximity operators that we introduced in the previous section.
Minimizing (3.20) with respect to Ω2 yields

Ω2,k+1 = argmin
Ω2

L3(Xk+1,Ω,Λk) = SHRγD(Xk+1 −Λ2,k). (3.23)

In the same vein, Ω3 is computed by a shrinkage operation,

Ω3,k+1 = argmin
Ω3

L3(Xk+1,Ω,Λk) = SVTτw(Xk+1 −Λ3,k). (3.24)

Next, for the auxiliary variable Ω4, a projection onto the nonnegative orthant is required,

Ω4,k+1 = argmin
Ω4

L3(Xk+1,Ω,Λk) = PR+(Xk+1 −Λ4,k). (3.25)

After the updating of the variables X,Ω1, . . . ,Ω4, at a given updating cycle, the scaled
Lagrange multipliers in Λ are also updated by performing gradient ascent on the dual
problem [24], as follows,

Λ1,k+1 = Λ1,k − AXk+1 +Ω1,k+1

Λi,k+1 = Λi,k − Xk+1 +Ωi,k+1, i = 2, 3, 4 (3.26)

The proposed algorithm, termed as Alternating Direction Sparse and Low-Rank Unmixing
(ADSpLRU) algorithm, is summarized in Algorithm 3.2. An iteration of ADSpLRU consists
of the update steps given in (3.21), (3.22), (3.23), (3.24), (3.25), and (3.26). Its compu-
tational complexity per iteration is O(lmn + nm2) per iteration, slightly higher than that of
IPSpLRU, since it usually holds l > m. However, as verified by the simulations of the next
section, ADSpLRU requires fewer iterations than IPSpLRU to converge2, while its con-
vergence is also guaranteed as explained in [46]. Moreover, it achieves a slightly lower
steady-state error as compared to IPSpLRU. Recall that under Assumption 3.1 the ob-

2The reason for this may be that ADSpLRU manipulates the whole cost function at each step, while
IPSpLRU splits the cost function and treats each term individually at every step of the algorithm.
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Algorithm 3.2: The proposed ADSpLRU algorithm
Inputs Y, A
Select parameters D,w, µ, τ, γ
Set R =

(
ATA+ 3Im

)−1

Initialize Ω0 = [Ω1,0,Ω2,0,Ω3,0,Ω4,0], Λ0 = [Λ1,0,Λ2,0,Λ3,0,Λ4,0] and set k = 0
repeat
Xk+1 = R[AT (Ω1,k +Λ1,k) +Ω2,k +Λ2,k +Ω3,k +Λ3,k +Ω4,k +Λ4,k]
Ω1,k+1 = 1/(1 + µ) (Y+ µ (AXk+1 −Λ1,k))
Ω2,k+1 = SHRγD(Xk+1 −Λ2,k)
Ω3,k+1 = SVTτw(Xk+1 −Λ3,k)
Ω4,k+1 = PR+(Xk+1 −Λ4,k)
Λ1,k+1 = Λ1,k − AXk+1 +Ω1,k+1

Λi,k+1 = Λi,k − Xk+1 +Ωi,k+1, i = 2, 3, 4
until convergence
Output : Estimated matrix X̂ = Xk+1

jective function L1(X) in (3.9) is convex. In that case, and since matrix G has full column
rank, the convergence conditions defined in [46] are met and if an optimal solution exists,
ADSpLRU converges to the global optimum, for any µ > 0. This in turn implies that for
the primal and dual residuals rk, dk given by

rk = GXk + BΩk,

dk = µGTB (Ωk −Ωk−1)

it holds that, rk → 0 and dk → 0, respectively, as k → ∞. In this work, ADSpLRU
terminates when either the following termination criterion

∥rk∥2 ≤ ζ and ∥dk∥2 ≤ ζ (3.27)

is satisfied for the primal and dual residuals, where ζ =
√

(3m+ l)nζrel, [24] (the relative
tolerance ζrel > 0 takes its value depending on the application, and in our experimental
study has been empirically determined to 10−4), or the maximum number of iterations is
reached.

3.3.3 Selection ofweighting coefficients and regularization parameters for IPSpLRU
and ADSpLRU

As mentioned previously, in both IPSpLRU and ADSpLRU the weighting coefficients D
and w are predetermined, they remain constant during the execution of the algorithms
and satisfy certain constraints. As is widely known, [168, 30, 74], a proper selection of
these parameters is quite crucial as for the accuracy of the estimations. In view of this,
two potential choices are

85 P. Giampouras



Nonconvex Optimization Algorithms for Structured Matrix Estimation in Large-Scale Data Applications

a) to select the weighting coefficients based on the least squares estimate3 XLS of X as
follows,

dij =

(
1

xLSij + η2

)
and wi =

(
1

σi(XLS) + η2

)
, (3.28)

where η2 = 10−16 is a small constant added to avoid singularities or

b) to allow the adaptation of the weighting coefficients from iteration to iteration based on
the current estimate of X as defined in Section 1.2.1, i.e.,

dk+1
ij =

(
1

xk+1
ij + η2

)
and wk+1

i =

(
1

σi(Xk+1) + η2

)
, (3.29)

Note that by adopting the latter option we end up with the so-called reweighting norm
minimization versions of the problem (P1). It should be noted that both these two op-
tions render the minimization problem (P1) nonconvex, since the weighted nuclear norm
is known to be convex only if the weights wi, i = 1, 2, . . . ,min(m,n) are nonnegative and in
a nonascending order, [74, 43]. Additionally, the reweighting norm minimization version of
the problem is known to be inherently nonconvex, [30], while its theoretical convergence
analysis for these cases is difficult to be established4. Nevertheless, numerous research
works advocate the positive impact of these nonconvex weighted norms on the perfor-
mance of general constrained estimation tasks [43, 30, 74, 95] as well as in hyperspectral
unmixing, [35, 55]. Along this line of thought, the algorithms presented in the previous
section are modified by adopting the reweighting scheme given by (3.29). As verified in
our empirical study presented in the next section, such an option enhances to a large de-
gree the effectiveness of the proposed algorithms, while no numerical issues have been
encountered in our experiments.

As far as the remaining parameters λ and µ are concerned, which control the convergence
behavior of IPSpLRU and ADSpLRU, respectively, they take positive values, with µ close
to zero and λ on the order of 1. In all our experiments we fixed µ = 0.01 and λ = 0.5. On the
other hand, the low-rank and sparsity promoting parameters τ and γ are chosen via fine-
tuning, as is commonly done in relevant deterministic schemes. This is so because the
optimal set of these parameters depends on the unknown in advance particular structure
of the sought abundance matrix, an issue which is further explained in Section 3.4.

3.3.4 A BCD algorithm for matrix factorization based simultaneously sparse, low-
rank and nonnegative matrix estimation

In the present section we focus on the minimization problem (P2) defined in (3.4) and (3.5),
whereX is assumed to accept amatrix factorization representation andwe derive a relative

3The XLS estimate is the solution of the problem min
X

1
2 ||AX− Y||2F .

4It should be noted that the convergence results for the incremental proximal algorithms provided in [17],
do not hold for nonconvex fi’s.
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algorithm to solve this problem. Due to the separability of the nonconvex and nonsmooth
minimization problem (P2) we are permitted to split it into three distinct subproblems, which
can be expressed as follows,

(P2a) : Û = argmin
U

L(U,V,X),

(P2b) : V̂ = argmin
V

L(U,V,X),

(P2c) : X̂ = argmin
X

L(U,V,X).

Each subproblem is convex and can be solved independently, in the frame of a block
coordinate descent strategy. As is shown below, the solutions of the above-described
problems are interrelated, thus paving the way for an iterative scheme, which converges
to a local minimum of the cost function defined in Eq. (3.5).

Solution of (P2a). Since L(U,V,X) is differentiable with respect to U, U can be obtained
as the solution of the following equation

Û :
∂L(U,V,X)

∂U = 0. (3.30)

Calculating the derivative in (3.30) yields(
ATA+ µIm

)
UVTV+ τU =

(
ATY+ µX

)
V. (3.31)

Next, by setting P = ATA+µIm,Q = VTV andC =
(
ATY+ µX

)
V, (3.31) can be compactly

written as

PUQ+ τU = C. (3.32)

Eq. (3.32) belongs to the class of the so-called Stein matrix equations that, among others,
have been widely used in the field of control, [3]. To solve the Stein equation (3.32), we
adopt the robust algorithm proposed in [71]. In this algorithm, matrix P is reduced to its
Hessenberg form H = OPOT and matrixQ is suitably replaced by its Schur representation
S = TQTT , where O and T are orthogonal matrices. Favorably, the symmetry of both O
and T, renders H and S to be tri-diagonal and diagonal matrices (as it can be shown by
simple algebraic manipulations), respectively. By multiplying both sides of (3.32) from the
left and the right by OT and T respectively, and definingW = OUTT , (3.32) is rewritten as:

HWS+ τW = F, (3.33)

where F = OTCT. Let us denote bywi, fi the ith columns ofW,F and by sii the ith diagonal
element of S. Then, we get from (3.33) the following system of equations

(siiH+ τ Im)wi = fi, i = 1, ..., d (3.34)

which can be solved for wi with only O(m) operations, [42], due to the tri-diagonal form of
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H. After estimatingW, column by column, matrix U is obtained by the inverse transform

Û = OTWT. (3.35)

Solution of (P2b). Similarly to (P2a), the minimization problem (P2b) can be solved as

V̂ :
∂L(U,V,X)

∂V = 0. (3.36)

Utilizing P,C defined above, (3.36) results to the closed form expression

V̂ = CTU
(
UTPU+ τ Id

)−1 (3.37)

that requires the computation of a small sized (d× d) matrix inversion.

Solution of (P2c). The optimization problem (P2c) is employed in order to estimate matrix
X. Considering U and V as constants, minimization of L(U,V,X) with respect to X leads
to

X̂ = argmin
X

{
∥X∥1,D +

µ

2γ
∥X− UVT∥2F

}
(3.38)

which is the proximal operator of the weighted ℓ1 norm on UVT . Writing (3.38) as

X̂ = argmin
X

m∑
i=1

n∑
j=1

(
dij|xij|+

µ

2γ

(
xij − uTi vj

))
, (3.39)

where uTi denotes the ith row of matrix U and vTj the jth row of V, X̂ can be determined
via elementwise soft-thresholding, [115]. Thus, we have that

x̂ij = SHRdijγ/µ(uTi vj). (3.40)

In this case we stick to the reweighted version of the ℓ1 norm thus again elements dij ’s of D
are selected as defined in (3.29). The solution of (3.38) can be written in a more compact
form as

X̂ = SHRD(γ/µ)(UVT ) (3.41)

The concluding scheme dubbed ALternating Minimization Sparse Low-Rank Unmixing
(ALMSpLRU) algorithm is summarized in Algorithm 3.3, below. It should be noted that the
aforementioned nonnegativity constraint is imposed by projecting the estimate of X pro-
duced after performing the steps associated with the minimization of the previous three
sub-problems, onto the nonnegative orthant ofRm×n, i.e.,Rm×n

+ . Note that the most com-
putationally demanding step is the calculation of matrix C requiring O(mnd) operations
per iteration. Finally, as verified by extensive simulations presented in the next Section,
the proposed algorithm is robust, and converges after a small number of iterations.
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Algorithm 3.3: The proposed ALMSpLRU algorithm
Inputs Y, A
Select parameters D, γ, τ, µ
Set P = ATA+ µIm
Set [O,H] = hess(P) ▷ Hessenberg form of P
Set B = ATY
Initialize U0,V0,X0 = U0VT0 and set k = 0
repeat
Qk+1 = VTkVk,
[Tk+1,Sk+1] = schur(Qk+1), ▷ Schur form of Q
Ck+1 = (B+ µXk)Vk,
Fk+1 = OTCk+1Tk+1,
(sii,k+1H+ τ Im)wi,k = fi,k+1, ▷ i = 1, 2, . . . , d
Wk+1 = OUkTTk+1

Uk+1 = OTWk+1Tk+1

Vk+1 = CTk+1Uk+1

(
UTk+1PUk+1 + τ Id

)−1,
Xk+1 = SHRD(γ/µ)(UVT ),
Xk+1 = PR+(Xk+1)

until convergence
Output : Estimated matrix X̂ = Xk+1

3.4 Experimental results

This section unravels the performance characteristics of the proposed IPSpLRU, AD-
SpLRU and ALMSpLRU algorithms via experiments conducted both on simulated and
real data. As mentioned above, we focus on hyperspectral image unmixing applications.
Thus we compare the proposed algorithms with three well-known state-of-the-art unmix-
ing algorithms, namely, the nonnegative constraint sparse unmixing by variable splitting
and augmented Lagrangian algorithm (CSUnSAL), [19], the recently reported nonnega-
tive constraint joint-sparse method (MMV-ADMM), [119], and, finally, the (fast) Bayesian
inference iterative conditional expectations (BiICE) unmixing algorithm, [123]. The com-
putational complexity (in terms of the number of multiplications) of all tested algorithms
is given in Table 2. As shown in the table, the SVD operation, which is required by the
proposed IPSpLRU, ADSpLRU algorithms, leads to a higher complexity thereofs as com-
pared to CSUnSAL and BiICE. This actually shows that the exploitation of spatial correla-
tion comes at a certain cost. Moreover, it is noticed that between IPSpLRU and ADSpLRU,
the former has lower computational complexity than the latter per iteration, resulting from
its more simplistic incremental approach. Notably, ALMSpLRU presents the lowest com-
putational complexity among the proposed algorithms, which is attributed to the matrix
factorization formulation that has been adopted.

In what follows, we first refer to the parameters’ setting established for all the involved
algorithms, and the performance evaluation metrics that are utilized in the experimental
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Table 2: Computational complexity of n pixels per iteration.

Algorithm IPSpLRU ADSpLRU ALMSpLRU CSUnSAl [19] MMV-ADMM [119] BiICE [123]
Comput. complex. O(nm2 +m3) O(nm2 + nlm) O(nmd) O(nm2) O(nm2 + nlm) O(nm2)

Table 3: Parameters setting.

Algorithm τ (rank regularization parameter) γ (sparsity regularization parameter) µ λ

IPSpLRU {0, 10−10, 10−9, . . . , 10−1} {0, 10−10, 10−9, . . . , 10−1} Not applicable 0.5

ADSpLRU {0, 10−10, 10−9, . . . , 10−1} {0, 10−10, 10−9, . . . , 10−1} 10−2 Not applicable
ALMSpLRU {0, 10−10, 10−9, . . . , 10−1} {0, 10−10, 10−9, . . . , 10−1} 10−1 Not applicable
CSUnSAL Not applicable {0, 10−10, 10−9, . . . , 10−1} 10−2 Not applicable
MMV-ADMM Not applicable {0, 10−10, 10−9, . . . , 10−1} 10−2 Not applicable

procedure. To corroborate the effectiveness and robustness of the proposed algorithms
we execute different types of synthetic data experiments whose detailed description is
given below. Finally, we empirically compare the abundance maps as revealed by all
examined algorithms, when applied on real hyperspectral images5.

3.4.1 Setting of parameters and performance evaluation criteria

For simplicity reasons, we use γ for the sparsity imposing parameter in all tested algo-
rithms (except BiICE which has no regularization parameters, [145]), µ for the Lagrange
multiplier regularization parameter of the ADMM-type techniques and λ for the (relevant to
µ) regularization parameter of IPSpLRU. Additionally, the low-rank promoting parameter
of the proposed algorithms is denoted by τ . Parameters τ and γ are fine tuned with 10
different values, as shown in Table 3. On the other hand, the Lagrange multiplier regu-
larization parameter µ and the regularization parameter λ of IPSpLRU, which influence
to a less extend the efficiency of the corresponding algorithms, are set to a fixed value.
In order to assess the performance of the proposed algorithms and the competing ones,
we consider two metrics for the experiments conducted on synthetic data. First, the root
mean square error (RMSE),

RMSE =

√√√√ 1

mn

n∑
i=1

∥x̂i − xi∥22, (3.42)

where x̂i and xi represent the estimated and actual abundance vectors of the ith pixel
respectively, n is the total number of the pixels in the image under study, and m, as men-
tioned in Section 3.2, stands for the number of endmembers. The second metric, is the
signal-to-reconstruction error (SRE),[81], which is defined as the ratio between the power

5The MATLAB code of the proposed algorithms is provided at http://members.noa.gr/parisg/demo_
splr_unmixing.zip
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of the signal and the power of the estimation error, and is given by the following formula

SRE = 10log10
( 1

n

∑n
i=1 ∥x̂i∥22

1
n

∑n
i=1 ∥x̂i − xi∥22

)
. (3.43)

3.4.2 Experiments on simulated datacubes

In the sequel, m endmembers are randomly selected from the USGS library Z ∈ R224×498
+ ,

[38], so as to form our endmembers’ dictionary A. Their reflectance values correspond to
l = 224 spectral bands, uniformly distributed in the interval 0.4 − 2.5µm. The LMM (see
Eq. (3.1)) is then utilized for generating spectral signatures subject to given, different in
each experiment, abundance matrices X’s.

3.4.2.1 Reweighting coefficients efficiency and convergence behavior of IPSpLRU
and ADSpLRU

Herein, we aspire to demonstrate the merits emerging from the utilization of reweighting
of D andw from (3.29), on the estimation performance of the proposed algorithms. In light
of this, we consider an abundance matrix of rank 3 and sparsity level 10% (i.e., 10% of its
entries are nonzero) corresponding to m = 50 endmembers, n = 9 pixels. Then, n = 9
spectral signatures are generated according to the LMM and contaminated by Gaussian
noise such that SNR = 30dB.

For a = 100 realizations, Fig. 10 depicts the normalized mean squared estimation error
(NMSE) (defined as NMSE(k) = 1

a

∑a
i=1

∥X̂i,k−Xi∥2F
∥Xi∥2F

, where Xi is the true matrix of the ith
realization and X̂i,k its estimate at the kth iteration) as k evolves over 2000 iterations. Three
different cases are investigated, corresponding to: a) updating weighting coefficients from
(3.29), b) keeping fixed the weighting coefficients based on (3.28) and c) no weighting
coefficients, i.e., the weighted norms degenerate to their nonweighted versions by setting
w = 1 and D = [1,1, . . . 1]. As it is clearly evident in Fig. 10, both IPSpLRU and ADSpLRU
achieve remarkably higher estimation accuracy in terms of NMSE, when using reweighting
as compared to the case that fixed or no weights are employed. It is thus empirically
verified that the enhanced efficiency of the reweighted ℓ1 and nuclear norms, emphatically
advocated in [168, 95, 30], is retained when using the sum of these two norms. The price
to be paid is that such an option might increase the possibility of numerical instabilities,
since the problem is rendered nonconvex and (yet) no theoretical convergence analysis
has been established. Nevertheless, it is worthy to mention that, despite the fact that
convergence is not theoretically guaranteed, in all our experiments both IPSpLRU and
ADSpLRU exhibited a very robust convergence behavior.

It is also noticed that ADSpLRU needs less iterations to converge as compared to IP-
SpLRU and it converges to a slightly lower NMSE. This results from the inherent nature of
the two proposed algorithms, as explained in Section 3.3.2. Interestingly, the faster con-
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Figure 10: Convergence curves of IPSpLRU and ADSpLRU for a) updating weighting coefficients b)
fixed weighting coefficients and c) no weighting coefficients.

vergence rate of ADSpLRU with reweighting comes at the price of its higher per iteration
computational complexity as compared to that of IPSpLRU.

3.4.2.2 Two toy examples

In the following experiments our goal is to highlight the significance of the approach fol-
lowed in this work, i.e., the simultaneous incorporation of sparsity and low-rankness on
the abundance estimation problem. To this end, we initially derive the single prior coun-
terparts of IPSpLRU and ADSpLRU. We first focus on the low-rankness assumption, thus
the sparsity imposing norm is ignored (γ = 0). IPSpLRU and ADSpLRU are then reduced
to their modified versions, namely, IPLRU and ADLRU respectively. As implied by their
names, the aforementioned methods rely exclusively on the low-rank assumption. Simi-
larly, IPSpU and ADSpU are formed by accounting solely for sparsity. That said, IPSpU
and ADSpU emerge after dropping the low-rank prior constraint (τ = 0). Next, we gener-
ate a m × n (where m = 50 and n = 9) simultaneously sparse and low-rank abundance
matrix X of rank 2 with sparsity level 20%, which is graphically illustrated in Fig. 11a. Us-
ing this X we generate the l×n observations matrix Y via the LMM in Eq. (3.1), where the
noise matrix E is Gaussian i.i.d. with SNR=35dB.

Fig. 11 shows the merits of the proposed IPSpLRU and ADSpLRU algorithms. Specif-
ically, it appears that the concurrent exploitation of sparsity and low-rankness leads to
significantly more accurate abundance matrix estimates, as compared to their single con-
straint counterparts, namely, IPLRU, IPSpU and ADLRU, ADSpU respectively. This is
clearly seen in terms of the RMSE, as well as from a careful visual inspection of both the
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recovered abundance matrices and their residuals with the true abundance matrix (i.e.
|X̂− X|), depicted in pair from Fig. 11b - Fig. 11d.

Next, we study the performance of the proposed ALMSpLRU algorithm as compared to
the state-of-the-art unmixing algorithms mentioned above. To this end, we randomly se-
lect m = 60 endmembers from the USGS spectral library and then we generate an m× n
abundance matrix of rank 12 and with n = 1000 pixels. The sparsity level is now 10%.
Again, the spectral signatures are produced via the LMM and noise of SNR=35dB con-
taminates the data. The superior performance of ALMSpLRU is illustrated in Fig. 12.
As is clearly shown both in terms of RMSE and visually from the recovered abundance
matrices and the residual errors (defined as above), ALMSpLRU is proven more efficient
than its rivals in estimating the sought abundance matrix. This is so, since ALMSpLRU
accounts for both sparsity and low-rankness contrary to the rest sparsity-aware unmixing
algorithms.

3.4.2.3 The key role of the parameters γ, τ

As explained earlier, parameters γ and τ control the imposition of sparsity and low-rankness,
respectively, on the abundance matrix X. Herein, we unveil the dependency of the optimal
(with respect to RMSE minimization) set of these parameters on the inherent structure of
the sought abundance matrix. In this vein, five different types of abundance matrices are
generated, each reflecting a specific combination of rank and sparsity level. Next, n = 9
linearly mixed pixels are produced, corrupted with Gaussian i.i.d. noise and SNR=35dB.
A number of 100 independent realizations is run for each of the five experiments, and
the average RMSE of IPSpLRU and ADSpLRU is demonstrated as a function of τ and γ.
As shown in Fig. 13, in the first case (Figs. 13a and 13e), which corresponds to solely
low-rank abundance matrices (without any presence of sparsity), the sparsity promoting
parameter γ does not affect the estimation accuracy. In a similar manner, in the fourth
experiment (Figs. 13d and 13h), where the abundance matrix is considered full-rank and
sparse, the low-rank promoting parameter has no impact on the estimation performance.
Notably, in the other two cases (columns 2 and 3) where both sparse and low-rank abun-
dance matrices are considered, RMSE is minimized for nonzero values of both τ and γ.
Such a result is consistent with the fundamental premise of our algorithms, which is the im-
provement in the abundance matrix estimation by simultaneously exploiting sparsity and
low-rankness.

Moreover, the above results indicate that the optimal choice of τ, γ depends on the partic-
ular structure (sparse and/or low-rank) of the abundance matrix. Thus, a proper selection
of these parameters shall involve fine-tuning schemes, which are commonplace when it
comes to algorithms dealing with regularized inverse problems.

3.4.2.4 Performance in the presence of noise

In this experiment we aim at exhibiting the performance of the proposed algorithms in
the presence of white and correlated noise corruption. To this end, we first stick with a
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Figure 11: Comparison of the results of the proposed sparse and low-rank algorithms versus their
sparse only and low-rank only counterparts.
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Figure 12: Performance comparison of ALMSpLRU and CSUnSAl+, MMV-ADMM and
BiICE in estimating simultaneously sparse and low-rank abundance matrices.
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Figure 13: RMSE as a function of the low-rankness and the sparsity regularization parameters τ and
γ, respectively.
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Table 4: RMSE and SRE vs SNR comparison between ALMSpLRU and the competing schemes.

Algorithm SNR = 15dB SNR = 20dB SNR = 25dB SNR = 30dB SNR = 35dB
RMSE SRE RMSE SRE RMSE SRE RMSE SRE RMSE SRE

ALMSpLRU 0.141 2.30 0.116 3.80 0.096 5.45 0.064 8.90 0.058 9.84
CSunSAL 0.174 0.467 0.148 1.73 0.134 2.61 0.093 5.63 0.068 8.37

MMV-ADMM 0.146 1.95 0.1246 3.25 0.122 3.40 0.093 5.60 0.074 7.71
BiICE 0.221 -1.78 0.165 0.26 0.134 2.50 0.089 5.78 0.087 6.36

specific simultaneously sparse and low-rank abundance matrix X of sparsity level 20%
and rank 3. Based on this X, n = 9 linearly mixed pixels are generated, in the same way
as described in Section 3.4.2. Then, depending on the case, white or colored Gaussian
noise contaminates the data. Sixteen SNR values are considered ranging from 10 to 40
dB, while 100 realizations are run for each SNR value, and the mean of the RMSE and
SRE metrics is calculated.

White Gaussian Noise: Fig. 14 shows the RMSE and SRE curves obtained for the
proposed IPSpLRU, ADSpLRU and the three competing algorithms, namely, CSUnSAL,
MMV-ADMM and BiICE. It is easily seen that both IPSpLRU and ADSpLRU attain remark-
ably better results comparing to CSUnSAL, MMV-ADMM and BiICE in all the examined
SNR values. Additionally, we note that ADSpLRU performs slightly better as compared
to IPSpLRU, especially for SNR values greater than 32dB. The price to be paid is that
the computational complexity per iteration of ADSpLRU is higher than that of IPSpLRU. It
is hence shown that sparse and low-rank methods are robust to different levels of white
noise. At the same time, IPSpLRU and ADSpLRU outperform the sparse only CSUn-
SAL and BiICE algorithms as well as the joint-sparse MMV-ADMM algorithm, provided
that the abundance matrix exhibits both sparsity and low-rankness. Next we focus on the
robustness of the proposed ALMSpLRU algorithm to noise corruption. Towards this, the
same process detailed above is followed for generating n = 60 linearly mixed pixels, out
of m = 60 randomly selected from the USGS library endmembers, utilizing m×n simulta-
neously sparse and low-rank abundance matrices of rank 4 and sparsity level 10%. The
experiment is executed 10 times for SNR values 15,20,25,30 and 35. In Table 4, the aver-
age RMSE and SRE values corresponding to each SNR is given. As it is easily observed,
ALMSpLRU is proven again competent in estimating more accurately the simultaneously
sparse and low-rank abundancematrix than the other state-of-the-art unmixing algorithms,
in all tested cases corresponding to corruption of data by disparate noise levels.

Colored Gaussian Noise: Actually, in real hyperspectral images the noise that corrupts the
data is rather structured than white. Thus, to assess the behavior of the proposedmethods
in such realistic conditions, we simulate correlated Gaussian noise that adds up to the
linearly mixed pixels. Fig. 15 illustrates the effectiveness of the tested algorithms in terms
of RMSE and SRE, for different SNR values. Therein as well, we can see that IPSpLRU
and ADSpLRU achieve better results than their competing algorithms in the whole range
of the examined SNRs. Furthermore, ADSpLRU performs better for high SNR values
(> 32dB), as compared to IPSpLRU. As a result, the robustness of our proposed methods
is also corroborated in the presence of correlated noise with different magnitude.

P. Giampouras 96



Nonconvex Optimization Algorithms for Structured Matrix Estimation in Large-Scale Data Applications

10 15 20 25 30 35 40

10
0

10
1

SRE vs SNR

SNR

S
R

E

ADSpLRU

IPSpLRU

CSunSal+

MMV−ADMM

BiICE

10 15 20 25 30 35 40

10
−2

10
−1

RMSE vs SNR

SNR

R
M

S
E

ADSpLRU

IPSpLRU

CSunSal+

MMV−ADMM

BiICE

Figure 14: Performance in the presence of white noise (SRE & RMSE).

3.4.2.5 Synthetic Image

This experiment highlights the effectiveness of the proposed IPSpLRU and ADSpLRU
methods in estimating sparse, low-rank or both sparse and low-rank abundance matrices.
Focused on this purpose we form a simulated hyperspectral image using the LMM Eq.
(3.1) and the same above-mentioned endmembers’ dictionary A. As shown in Fig. 16a,
the simulated hyperspectral image consists of 4 rows each consisting of 4 10× 10 blocks
of pixels. Each of the “block rows” is generated by abundance matrices of a distinct struc-
ture. To be more specific, the first row is generated by joint-sparse X’s, the second by
solely low-rank X’s, while rows 3 and 4 are produced by simultaneously sparse and low-
rank abundance matrices. The pixels in each block correspond to abundance matrices
of a particular combination of sparsity level and rank. The detailed description of these
structures is depicted in the table of Fig. 16b. The linearly mixed pixels are corrupted by
white Gaussian i.i.d. noise such that SNR = 30dB. The table in Fig. 16c contains the ob-
tained RMSE and SRE for all algorithms tested. It is worth pointing out that our proposed
IPSpLRU and ADSpLRU algorithms outperform their rivals, not only in the “both sparse
and low-rank” rows 3 and 4, but also in rows 1 and 2 that correspond to either sparse only
or low-rank only X’s.
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Figure 15: Performance in the presence of colored noise (SRE & RMSE).
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(a) Synthetic image consisting of 16
blocks of size 10× 10 pixels each.

row column
1st 2nd 3rd 4th

joint sparse - 1st (4, 1) (8, 2) (12, 3) (16, 4)
low-rank - 2nd (100, 1) (100, 2) (100, 3) (100, 4)

sparse & low-rank - 3rd (4, 2) (8, 2) (12, 2) (16, 2)
sparse & low-rank - 4th (4, 3) (8, 3) (12, 3) (16, 3)

(b) Explanation of the structure of X in each block
of the synthetic image. Each cell contains the pair
(sparsity-level%, rank(X).)

Algorithm 1st row 2nd row 3rd row 4th row
RMSE SRE RMSE SRE RMSE SRE RMSE SRE

ADSpLRU 0.009 28.96 0.078 16.62 0.032 18.71 0.029 19.62
IPSpLRU 0.008 28.39 0.081 16.41 0.026 21.01 0.030 19.81
CSunSAL 0.026 19.81 0.117 12.39 0.052 13.88 0.047 14.99

MMV-ADMM 0.030 18.00 0.105 12.99 0.061 12.32 0.056 13.16
BiICE 0.028 21.71 0.263 6.72 0.043 17.83 0.060 15.81

(c) RMSE and SRE (dB) results on synthetic image
for each block row.

Figure 16: Structure of the synthetic image and results.
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3.4.3 Experiments on real data

This section illustrates the performance of the proposed algorithms when applied on var-
ious real hyperspectral images. Specifically, Salinas Valley HSI captured by AVIRIS hy-
perspectral sensor and three HSIs each depicting a different region of the surface of Mars
as obtained by Omega instrument, are studied.

3.4.3.1 Salinas Valley HSI

The hyperspectral scene under study is a portion of the widely used Salinas vegetation
scene acquired by AVIRIS sensor over Salinas Valley in California. This scene contains
eight different vegetation species, namely grapes, broccoli_A, broccoli_B, lettuce_a, let-
tuce_b, lettuce_c, lettuce_d, corn, as shown in Fig. 17b. Salinas hyperspectral image
consists of l = 204 spectral bands (after excluding 20 noisy bands) and its spatial reso-
lution is 3.7 meters. Taking the principal components (PCs) of the image, it can be seen
that most of the information of the image is retained in the first six PCs. Focusing on
them, we can see that the first PCs give more rough information about the formation of
the vegetation, while less significant PCs give more refined information about the vegeta-
tion formation, [147]. Fig. 17a shows the 5th PC of the scene under study, where most of
the various vegetation species are differentiated from each other. To make things more
interesting, the endmembers dictionary A is composed of 37 pure spectral signatures, 17
of them manually selected from the image, as in [108], and 20 randomly chosen from the
USGS library, [38]. As depicted in Fig. 17c, the 20 USGS’s endmembers (blue dashed
curves) differ significantly from the other 17 pure pixel spectral signatures selected from
the image. This is so, since those signatures correspond to materials (minerals, organic
and volatile compounds, etc.) nonexisting in the region under study, while the rest 17
endmembers correspond to the various vegetation types existing in the scene. However,
USGS’s endmembers were purposely included in the dictionary for investigating the com-
petence of the proposed algorithms in distinguishing the present endmembers over the
nonpresent ones, by exploiting sparsity in the abundance matrices.

Fig. 18 shows abundance maps corresponding to the region of interest, as obtained by
the proposed IPSpLRU, ADSpLRU, ALMSpLRU and the three state-of-the-art competing
algorithms namely CSUnSAL and MMV-ADMM and BiICE for γ = 10−3, τ = 10−4, λ = 0.5
and µ = 10−2. Specifically, four different abundance maps are depicted for each algo-
rithm, corresponding to four vegetation species, namely: grapes, broccoli_a, broccoli_b
and corn. It is worth pointing out that since detailed ground truth information is not avail-
able, the evaluation is carried out in qualitative terms. From a careful visual inspection of
the generated maps, we can see that the abundances obtained by IPSpLRU, ADSpLRU
and ALMSpLRU present patterns which are closer to those revealed by the first five prin-
cipal components of the hyperspectral image provided in [108]. This is particularly clear
for the maps corresponding to broccoli_a and broccoli_b. More specifically, it is shown
that the presence of these two species, which is mainly located in two distinct regions, is
better emphasized by the proposed algorithms. Remarkably, the erroneous detection of
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(a) 5th PC of the Salinas Valley
scene.

(b) Rough ground truth information for
a part of the Salinas valley scene under
study.
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(c) Spectral signatures of the 37 endmembers, 17 of them manually selected
from the scene as pure pixels and 20 (dashed curves) randomly chosen from
the USGS library, [38].

Figure 17: Salinas valley image and endmembers’ dictionary.
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(c) ALMSpLRU
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(f) BiICE

Figure 18: Abundance maps of Salinas hyperspectral image.
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these vegetation types is eliminated more effectively by IPSpLRU, ADSpLRU and ALM-
SpLRU, as also verified by comparing Figs 17a and 18. Hence, it is corroborated that the
exploitation of both sparsity and the inherent spatial correlation existing in hyperspectral
images, can lead us to qualitatively better results, thus verifying the significance of our
approach.

3.4.3.2 OMEGA Mars data

In this section we apply HU to three different hyperspectral images corresponding to re-
gions of the Mars’ surface, as estimated by IPSpLRU, ADSpLRU and ALMSpLRU algo-
rithms. All the hyperspectral images were captured by the OMEGA instrument, a spec-
trometer on-board OMEGA’s Mars Express satellite. The OMEGA instrument provides
hyperspectral images with spatial resolution from 300m to 4km. To this end, it utilizes 96
wavelength channels in the visible band and 256 wavelength channels in the near infrared.
Three detectors are used, with spectral resolutions about 7.5nm in the 0.35-1.05 µm and
an average of 21 nm from 2.65 to 5.2 µm, respectively.

The first hyperspectral image under study is the observation ORB422_4 of Syrtis Major
scene; the second one is a datacube obtained by the South Polar Cap of Mars and, finally,
the third one is the observation labeled as ORB898_1.

ORB422_4 (Syrtis Major). ORB422_4 is a single hyperspectral datacube depicting the
Syrtis Major region (Fig. 19). Syrtis Major is known to contain well identified areas with a
significant presence of mafic minerals (pyroxenes, olivines) and phylosilicates, [128]. The
spatial dimensions of the image are 183 × 63 pixels and the spectral bands are l = 110.
The data cube has been radiometrically calibrated and the atmospheric gas transmission
has been empirically corrected using the volcano scan method, [50, 90]. The endmem-
bers’ dictionary used, consists of 32 spectra of minerals that are known to be present in
the surface of Mars and the Moon (Fig. 20). Fig. 21 illustrates the results obtained by
the ADSpLRU algorithm. It should be noted that the abundance maps of Hypersthene,
Diopside, Olivine, Phyll, Oxide, Maghemite and Phyll are in good agreement with those
obtained from other state-of-the-art algorithms, [144, 128]. Hence, the particular assump-
tions upon which ADSpLRU is based, (i.e., sparsity and spatial correlation) are proven to
be meaningful in this real case scenario.

South Polar Cap. This hyperspectral image depicts the South Polar Cap of Mars in the
local summer (January 2004) (Fig. 22). The spatial size of the data cube is 871×128pixels.
The spectral signatures of these pixels are made up of two channels: 128 spectral planes
from 0.93 to 2:73 mm with a resolution of 14 nm and 128 spectral planes from 2.55 to
5:11 mm with a resolution of 21 nm. Noisy bands were excluded, and 156 out of the 250
initial bands were finally utilized in the region from 0.93 to 2:98 mm to avoid the thermal
emission spectral range. Fig. 23 shows the spectral signatures of the 3 endmembers
contained in the used dictionary, namely a) CO2 ice b) H2O and c) dust. These endmem-
bers have been detected by the the Wavanglet method presented in [127]. In Fig. 24, the
abundance maps obtained by ALMSpLRU are illustrated. It is notes that results are in full
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Figure 19: Syrtis Major (shadowed region).
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Figure 20: The 32 spectral signatures of minerals (ice and atmospheric gas included in the endmem-
bers’ dictionary).
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Figure 21: Abundance maps of ADSpLRU for Syrtis Major region of Mars.

P. Giampouras 104



Nonconvex Optimization Algorithms for Structured Matrix Estimation in Large-Scale Data Applications

Figure 22: The South Polar cap scene of Mars.
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Figure 23: Reference spectra of the South Polar Cap hyperspectral datacube. The available end-
members are: (a) OMEGA typical dust materials with atmosphere absorption, (b) synthetic CO2 ice
with grain size of 100 mm, (c) synthetic H2O ice with grain size of 100 mm.

agreement for both the tested algorithms. In addition, there is a differentiation concern-
ing the H2O’s abundance estimates of ALMSpLRU, comparing to the maps presented in
[144]. In particular, it seems that ALMSpLRU detects H2O mostly in a specific region of
the image, in sharp contrast to the maps of [144], where H2O is diffused in a wide part of
the datacube.

ORB898_1. ORB898_1 points to a relatively unexplored region of the surface of MARS
(Fig. 25). The hyperspectral image captured by OMEGA instrument, consists of 257×112
pixels and L = 110 bands. In this case, we employed a dictionary composed of the
32 endmembers’ spectral signatures that were used for the case of Syrtis Major (Fig.
20) and 12 additional spectra proposed in [128], in an attempt to enhance estimation
accuracy. Figs 26 and 27 exhibit the abundance maps as retrieved by ADSpLRU and
ALMSpLRU for 9 different endmembers, namely H2O grain 1µm, H2O grain 100µm,H2O
grain 1000µm, Epsomite, Sulfate Gypsum, CO2 grain 100µm, Ferrihydrite and CO2 grain
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Figure 24: Abundance maps of South Polar Cap as estimated by ALMSpLRU.
 

 

 

Figure 25: ORB898_1 (shadowed region).

10000µm. Abundance maps reveal a high degree of accordance in the estimates of the
two tested algorithms for themajority of the endmembers. Nevertheless, it should be noted
that there is remarkable discrepancy between the maps of ADSpLRU and ALMSpLRU
corresponding to H2O grain 1µm, CO2 grain 100µm and CO2 grain 1000µm. Additionally,
it is derived, that there exists a significant presence of specific endmembers, e.g., H2O
grain 100µm in the examined scene, that form patterns of characteristic shapes.
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Figure 26: Abundance maps of ADSpLRU for ORB898_1.
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Figure 27: Abundance maps of ALMSpLRU for ORB898_1.
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4. ALTERNATING ITERATIVELY REWEIGHTED LEAST SQUARES
MINIMIZATION FOR LOW-RANK MATRIX FACTORIZATION

In this chapter, a novel formulation for low-rank matrix factorization (LRMF) is proposed,
that is suitable for denoising, matrix completion and nonnegativematrix factorization (NMF).
Inspired by the merits of iterative reweighted schemes for sparse recovery and rank min-
imization, we come up with a generic low-rank promoting regularization scheme. Then,
focusing on a specific instance of it, we propose a regularizer that imposes column-sparsity
jointly on the two matrix factors that result from MF, thus promoting low-rankness on the
optimization problem. The problems of denoising and matrix completion are redefined
according to the new LRMF formulation and solved via efficient alternating iteratively
reweighted least squares type algorithms. Theoretical analysis of these algorithms re-
garding the convergence and the rates of convergence to stationary points is provided.
The proposed LRMF formulation is further extended by incorporating nonnegativity and
sparsity constraints giving thus rise to a low-rank NMF scheme and to a low-rank and
sparse NMF algorithm. The effectiveness of the proposed algorithms is verified on di-
verse simulated and real data experiments. More specifically, the derived algorithms are
applied to the problems of hyperspectral image denoising and unsupervised unmixing,
collaborative filtering for recommender systems and music signal decomposition showing
their favorable properties over other relevant state-of-the-art algorithms.

4.1 MF based low-rank matrix estimation

Recently, low-rank matrix estimation has been effectively tackled using a matrix factor-
ization approach. As also stated in Chapter 1, the crux of the MF based methods is that
a low-rank matrix can be well represented by a product of two matrices U ∈ Rm×r and
V ∈ Rn×r, i.e., X = UVT , with the inner dimension r of the involved matrices being quite
smaller than the outer dimensions, i.e., r ≪ min(m,n). Recall that those ideas offer sig-
nificant advantages when it comes to the processing of large-scale and high-dimensional
datasets (where bothm and n are huge) by reducing the size of the involved variables, thus
decreasing both the storage space required from O(mn) to O ((m+ n)r) as well as the
computational complexity of the algorithms used to solve the problem. However, a down-
side of this approach is that an additional variable is brought up, i.e., the inner dimension
r of the factorization. The task of finding the actual r (which coincides with the rank of
matrix X) is relevant to the rank minimization problem and is referred in the literature also
as dimensionality reduction, model order selection, etc.

The latter has given rise to methods that select r based on the minimization of various
criteria, such as the Akaike information criterion (AIC), the Bayesian information criterion
(BIC), the minimum distance length (MDL), [133], etc. However, these methods can be
computationally expensive especially in large-scale datasets, since they require multiple
runs using different values for r. Modern approaches that tackle this problem, termed low-
rank matrix factorization (LRMF) techniques, [76], hinge on the following philosophy: a)
overstate the rank r of the product with d ≥ r and then b) impose low-rankness thereof by
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utilizing appropriate norms. This rationale has given rise to LRMF techniques that solve
the following,

min rank(UVT ) subject to A(UVT ) = b. (4.1)

Problem (4.1) is NP-hard in general and thus different relaxation schemes have been put
in the literature for addressing it. Among other approaches, the variational forms of the
nuclear norm (Section 1.2.3.2), which induce tight upper bounds of the nuclear norm, i.e.,

∥X∥∗ = min
U∈Rm×d,V∈Rn×d,X=UVT

∥U∥F∥V∥F

= min
U∈Rm×d,V∈Rn×d,X=UVT

1

2

(
∥U∥2F + ∥V∥2F

)
(4.2)

are the most popular, [135]. In fact, minimization of either of the upper bounds defined
in (4.2) favors low-rankness on U and V by inducing “smoothness” on these matrices.
Moreover, in [131, 132], the authors generalize the above result by deriving tight upper
bounds for all Schatten-p quasinorms1 with 0 < p ≤ 1, (Theorem 1, [132]), i.e.,

∥X∥pSp
= min

U∈Rm×d,V∈Rn×d,X=UVT
∥U∥pS2p

∥V∥pS2p

= min
U∈Rm×d,V∈Rn×d,X=UVT

1

2

(
∥U∥2pS2p

+ ∥V∥2pS2p

)
. (4.3)

4.2 The proposed LRMF formulation

In this thesis, we aspire to apply ideas stemming from iterative reweighting methods for
low-rankmatrix recovery, to this challenging low-rankmatrix factorization scenario. There-
fore, generalizing the above-described low-rank promoting norm upper bounds, we pro-
pose to minimize the sum of reweighted (as in (1.20)) Frobenius norms of the individual
factors U and V. Hence, the newly introduced low-rank inducing function is defined as
follows,

h(U,V) = 1

2

(
∥UW

1
2

U∥
2
F + ∥VW

1
2

V∥
2
F

)
, (4.4)

where the weight matricesWU andWV are appropriately selected. The proposed low-rank
promoting function defined in (4.4) is generic as it includes the previously mentioned MF
based low-rank promoting terms as special cases. Indeed, according to (1.20), (1.21) and
by setting WU = (UTU)p−1 and WV = (VTV)p−1 in (4.4), we get the upper bound of the
Schatten-p quasinorm given in (4.3)2, while for p = 1, i.e., WU = WV = Id, we get the
variational form of the nuclear norm defined in (4.2).

Clearly, various choices ofWU andWV give rise to different upper bounds for the Schatten-

1Recall Eq. 1.19.
2Recall here Eqs. (1.20) and (1.21).
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p norms. In the rest of this chapter, we adhere to a specific instance of (4.4) which arises
by settingWU = WV = W with

W = diag
( (

∥u1∥22 + ∥v1∥22
)p/2−1

,
(
∥u2∥22 + ∥v2∥22

)p/2−1
, . . . ,

(
∥ud∥22 + ∥vd∥22

)p/2−1
)
, (4.5)

where 0 < p ≤ 1 and ui and vi are the ith columns ofU and V, respectively3. The selection
of the common weight matrix of the factors as in (4.5) is not arbitrary. As we will see
in Sections 4.3 and 4.4, this matrix leads to iteratively reweighted least squares (IRLS)
schemes (see Section 1.2.1) for low-rank matrix factorization, generalizing the IRLS-p
family of algorithms developed in [41] for sparse vector recovery. In addition by selecting
a common W for U and V, matrices U and V are implicitly coupled w.r.t. their columns. If
we now substitute (4.5) in (4.4) yields

h(U,V) = 1

2

d∑
i=1

(∥ui∥22 + ∥vi∥22)p/2. (4.6)

Surprisingly, the resulting expression coincides with the (scaled by 1/2) group sparsity
inducing ℓpp,2 norm (0 < p ≤ 1) of the concatenated matrix [ UV ], which for p = 1 reduces
to the commonly used ℓ1,2 matrix norm. Intuitively, the low-rank inducing properties of the
proposed in (4.6) joint column sparsity promoting term can be easily explained as follows.
Let us consider the rank one decomposition of the matrix product UVT ,

UVT =
d∑
i=1

uiv
T
i . (4.7)

Clearly, due to the subadditivity property of the rank, eliminating rank one terms of the
summation on the right side of (4.7) results to a relevant decrease of the rank of the product
UVT . Hence capitalizing on (4.6), we are led to LRMF optimization problems having the
form,

min
U∈Rm×d,V∈Rn×d

d∑
i=1

(∥ui∥22 + ∥vi∥22)p/2 subject to A(UVT ) = b. (4.8)

It should be noted that the idea of imposing jointly column sparsity first appeared in [138],
albeit in a Bayesian framework tailored to the NMF problem. In [139], the emerging via
the maximum a posteriori probability (MAP) approach optimization problem boils down to
the minimization of the column sparsity promoting concave logarithm function.

Next, the generic problem given in (4.8) is reformulated and solved for four important
learning tasks namely a) denoising, b) matrix completion, c) low-rank NMF and d) low-
rank and sparse NMF.

3If U,V had orthogonal columns, W in (4.5) would be equal to (UTU + VTV)p/2−1, whose resemblance
to (1.21) is evident.
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4.3 Denoising and matrix completion via the proposed LRMF approach

Next the problems of denoising and matrix completion are viewed through the lens of the
proposed LRMF approach. The resulting problems are then addressed by novel alter-
nating IRLS-type optimization algorithms which spring from the BSUM framework (see
Section 2.1.4).

4.3.1 Denoising

By assuming that a) the linear operator A reduces to a diagonal matrix and b) our mea-
surementsY ∈ Rm×n are corrupted by i.i.d. Gaussian noise, we come up with the following
optimization problem,

min
U,V

d∑
i=1

(∥ui∥22 + ∥vi∥22)p/2 subject to ∥Y− UVT∥2F ≤ ϵ. (4.9)

where ϵ is a small positive constant. By the Lagrange theorem we know that (4.9) can be
equivalently written in the following form,

{Û, V̂} = argmin
U,V

1

2
∥Y− UVT∥2F + λ

d∑
i=1

(∥ui∥22 + ∥vi∥22)p/2 (4.10)

where λ denotes the Lagrange multiplier.

4.3.2 Matrix completion

Another popular problem that follows the general model described by (4.8) is matrix com-
pletion, as it is widely addressed via low-rank minimization. As mentioned in Chapter
1, the main premise here lies in recovering missing entries of a matrix Y assuming high
degree of correlation among its rows/columns, which gives rise to a low-rank structured
matrix X. Utilizing the proposed framework, the problem can be stated as,

min
U,V

d∑
i=1

(∥ui∥22 + ∥vi∥22)p/2 subject to PΩ(Y) = PΩ(UVT ). (4.11)

wherePΩ denotes the sampling operator on the setΩ of indexes of matrixYwhere informa-
tion is present. In the matrix factorization setting, the incomplete matrix Y is approximated
by a matrix X expressed as X = UVT . As mentioned above, the rank r of the reconstructed
matrix X is generally unknown and hence it is overstated with d ≥ r.

Considering further the existence of additive i.i.d. Gaussian noise in Y we get,

min
U,V

d∑
i=1

(∥ui∥22 + ∥vi∥22)p/2 subject to ∥PΩ(Y)− PΩ(UVT )∥2F . (4.12)
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Utilizing the Lagrange theorem we end up with the following optimization problem

{Û, V̂} =argmin
U,V

1

2
∥PΩ(Y)− PΩ(UVT )∥2F + λ

d∑
i=1

(∥ui∥22 + ∥vi∥22)p/2. (4.13)

As it is shown later, the simplicity and tractability of the proposed regularizer facilitates
the derivation of new and efficient in terms of computational complexity optimization al-
gorithms, while the adoption of the minimization framework presented in the next section
paves the way for the theoretical analysis of their convergence behavior.

4.3.3 Denoising and matrix completion algorithms

Having expressed the denoising and matrix completion problems utilizing the proposed
framework, we present now two new efficient block coordinate minimization (BCM) algo-
rithms for solving them. The alternating minimization, w.r.t. the ‘blocks’ U and V, of the
proposed low-rank promoting function defined in (4.6) lies at the heart of those algorithms.

Remark 4.1. The proposed low-rank promoting regularizer is a) nonsmooth and b) non-
separable w.r.t. U and V.
Both the above-mentioned properties, i.e., nonsmoothness and nonseparability induce
severe difficulties in the optimization task that call for appropriate handling. More specifi-
cally, as it has been shown in [151], in BCM schemes the respective algorithms may lead
to irregular points, i.e., coordinate-wise minima that are not necessarily stationary points
of the minimized objective function (see Definition 2.2, Section 2.1.4.1). In light of this
we follow a simple smoothing approach by including a small positive constant η2 in the
proposed regularizer, which now becomes,

ĥ(U,V) =
d∑
i=1

(∥ui∥22 + ∥vi∥22 + η2)p/2. (4.14)

This way we alleviate singular points, i.e., points where the gradient is not continuous,
and the resulting optimization problems become smooth. On the other hand, nonsepa-
rability poses obstacles in getting closed-form expressions for the optimization variables
U and V. For this reason, each of the associative optimization problems is reformulated
using appropriate relaxation schemes. By working in an alternating fashion, each of these
schemes results in closed form expressions. Next, the proposed algorithms that solve the
denoising and matrix completion problems are analytically described.

4.3.3.1 Alternating IRLS denoising algorithm

In this section, we present a new algorithm designed for solving the denoising problem
given in (4.10). To this end, let us first rewrite the respective objective function , including
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the term η2 as,

f(U,V) = 1

2
∥Y− UVT∥2F + λ

d∑
i=1

(∥ui∥22 + ∥vi∥22 + η2)p/2. (4.15)

It is obvious that minimizing (4.15) alternatingly w.r.t. U and V is infeasible, since exact
analytical expressions can not be obtained as a result of the nonseparable nature of the
regularizing term. To this end, we tackle the problem in an iterative fashion. Specifically,
at the k + 1 iteration we solve two distinct subproblems, i.e. a) given the latest available
update Vk of V, we minimize an approximate cost function w.r.t. U to get Uk+1 and b) we
use Uk+1 in order to minimize another approximate cost function w.r.t. V. Following the
block successive upper bound minimization (BSUM) approach that was briefly described
in Section 2.1.4, we minimize at each iteration local tight upper bounds of the respective
objective functions. That said, U is updated by minimizing an approximate second-order
Taylor expansion of f(U,Vk) around the point (Uk,Vk). Likewise, an approximate second-
order Taylor expansion of f(Uk+1,V) around (Uk+1,Vk) is utilized for obtaining Vk+1. To be
more specific Uk+1 is computed by

Uk+1 = argmin
U

l(U|Uk,Vk), (4.16)

where,

l(U|Uk,Vk) = f(Uk,Vk) + tr{(U− Uk)T∇Uf(Uk,Vk)}

+
1

2
vec(U− Uk)T H̄Uk

vec(U− Uk) (4.17)

and vec(·) denotes the row vectorization operator4. It is highlighted that H̄Uk
is not the true

Hessian of f(U,Vk) at Uk, denoted as HUk
, but rather an approximation of it. Specifically,

H̄Uk
is defined as an md×md positive-definite block diagonal matrix, expressed as

H̄Uk
= Im ⊗ H̃Uk

, (4.18)

where ⊗ denotes the Kronecker product operation. For reasons that will be explained
later, the d× d diagonal block H̃Uk

is defined as

H̃Uk
= VTkVk + λD(Uk,Vk) (4.19)

with

D(U,V) = pdiag
(
(∥u1∥22 + ∥v1∥22 + η2)p/2−1, (∥u2∥22 + ∥v2∥22 + η2)p/2−1,

. . . , (∥ud∥22 + ∥vd∥22 + η2)p/2−1
)
. (4.20)

4Vectorization operation transforms an m× n matrix to a mn× 1 vector.
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As it is shown next (Lemma 4.1, Section 4.3.5), due to the form of H̄Uk
from (4.18) and

(4.19) and its relation to the exact HessianHUk
of f(U,Vk) atUk, it turns out that l(U|Uk,Vk)

bounds f(U,Vk) from above and the conditions set by the BSUM framework are satisfied.
Actually, the approximation of the exact Hessian by using (4.18) leads to a closed-from
expression for updating U and a dramatic decrease of the required computational com-
plexity, as it will be further explained below.

Following a similar path as above we come up with appropriate upper bound functions for
updating V i.e,

Vk+1 = argmin
V

g(V|Uk+1,Vk) (4.21)

with

g(V|Uk+1,Vk) = f(Uk+1,Vk) + tr{(V− Vk)T∇Vf(Uk+1,Vk)}

+
1

2
vec(V− Vk)T H̄Vk

vec(V− Vk) (4.22)

and H̄Vk
being a block diagonal md × md matrix5 (similar to H̄Uk

) whose d × d diagonal
blocks H̃Vk

are defined as

H̃Vk
= UTk+1Uk+1 + λD(Uk+1,Vk). (4.23)

By solving (4.16) and (4.21) we obtain analytical expressions for Uk+1 and Vk+1 that con-
stitute the main steps of the proposed denoising algorithm given in Algorithm 4.1. As
explained in Section 4.3.4, Algorithm 4.1 is an alternating IRLS (AIRLS) algorithm for low-
rank matrix factorization applied to data denoising.

Algorithm 4.1: AIRLS denoising algorithm
Input: Y, λ > 0
Initialize: k = 0,V0,U0,D(U0,V0)

repeat
Uk+1 = YVk

(
VTkVk + λD(Uk,Vk)

)−1

Vk+1 = YTUk+1

(
UTk+1Uk+1 + λD(Uk+1,Vk)

)−1

k = k + 1
until convergence
Output: Û = Uk+1, V̂ = Vk+1

5Note that H̄Vk
is also an approximation of the exact Hessian HVk

of f(Uk+1,V) at Vk.
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4.3.3.2 Alternating iteratively reweighed least squaresmatrix completion algorithm

Next the matrix completion problem, under the matrix factorization setting stated in (4.13),
is addressed. As mentioned earlier, matrix factorization offers scalability making the de-
rived algorithms amenable to processing big and high dimensional data. It should be
emphasized that in the proposed formulation of the problem (4.13), the impediments aris-
ing by the low-rank promoting term (Remark 4.1) are now complemented by the difficulty
to get computationally efficient matrix-wise updates for U and V, due to the presence of
the sampling operator PΩ in the data fitting term. That said, the objective function is now
modified as

f(U,V) = 1

2
∥PΩ

(
Y− UVT

)
∥2F + λ

d∑
i=1

(∥ui∥22 + ∥vi∥22 + η2)p/2. (4.24)

As in the denoising problem, we minimize quadratic upper bound functions based on ap-
proximate second-order Taylor expansions. In this respect, in order to get closed-form
analytical expressions for Uk+1 and Vk+1 that involve exclusively matrix operations, we
select again the upper bound functions l(U|Uk,Vk) and g(V|Uk+1,Vk) defined in (4.17) and
(4.22), with H̄Uk

and H̄Vk
as given before, with the difference that now f(U,V) is defined

as in (4.24). The resulting efficient matrix-wise update formulas are shown in Algorithm
4.2, where the new AIRLS matrix completion algorithm (AIRLS-MC) is presented.

Having presented the above two algorithms we give next some important remarks that
apply for both of them and stem mainly from the fact that both of the lie in the BSUM
framework.

Remark 4.2. For λ > 0, approximation matrices H̄Uk
and H̄Vk

are always positive definite
and hence invertible. As a consequence, both l(U|Uk,Vk) and g(V|Uk+1,Vk) are strictly
convex and hence they have unique minimizers. In addition, since approximations of the
exact Hessians are used in the two block problems, we end up with quasi-Newton type
update formulas for U and V.
Remark 4.3. The gain of using matrices H̄Uk

and H̄Vk
in the approximation of the exact

Hessians of f(U,V) (given either by (4.15) or (4.24)) w.r.t. U and V is twofold. Not only (as
proven Section 4.3.5) we remain in the BSUM framework, which offers favorable theoret-
ical properties, but also we are able to update U and V at a very low computational cost.
As it can be noticed in Algorithms 4.1 and 4.2, the inversions of H̄Uk

and H̄Vk
involved in

the updates of U and V reduce to the inversions of the d × d matrices H̃Uk
and H̃Vk

thus
inducing complexity in the order of O(d3). Contrary, utilization of the exact Hessians w.r.t.
U and V would have given rise to inversions with much higher computational complexity,
i.e., O(max(m,n)× d3).

4.3.4 Relation to prior art

Both AIRLS and AIRLS-MC algorithms presented above belong to the family of iteratively
reweighted least squares minimization algorithms, which date back to the 1930’s [13].
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Algorithm 4.2: AIRLS matrix completion (AIRLS-MC) algorithm
Input: Y, λ > 0
Initialize: k = 0,U0,V0,D(U0,V0)

repeat
Uk+1 = Uk −

(
PΩ

(
UkVTk − Y

)
Vk + λUkD(Uk,Vk)

) (
VTkVk + λD(Uk,Vk)

)−1

Vk+1 = Vk −
(
PΩ

(
VkUTk+1 − YT

)
Uk+1 + λVkD(Uk+1,Vk)

)
×
(
UTk+1Uk+1 + λD(Uk+1,Vk)

)−1

k = k + 1
until convergence
Output: Û = Uk+1, V̂ = Vk+1

Recently, the IRLS method has been adopted for sparse vector recovery in [41], leading
to an iterative algorithm that solves the following minimization problem at the (k + 1)th
iteration

xk+1 = argmin
x

m∑
i=1

wki x
2
i s.t. A(x) = b, (4.25)

where x = [x1, x2, . . . , xm]
T ∈ Rm×1 is the sparse vector to be recovered and wki = (|xki |2+

η2)p/2−1. Theoretical guarantees for sparse signal recovery have been provided in [41]
for p = 1. Generalizing, the minimization problem in (4.25) can be extended to promote
structured (group) sparsity as follows

xk+1 = argmin
x

d∑
i=1

wki ||xi||22 s.t. A(x) = b, (4.26)

where now them-dimensional vector x is structured in d groups, i.e., x = [xT1 ,xT2 , . . . , xTd ]T
and wki = (||xki ||22 + η2)p/2−1.

More recently, the same idea has been applied for low-rank matrix recovery in [107]. In
this vein the minimization problem is properly adjusted as,

Xk+1 = argmin
X

tr(WkXTX) subject to A(X) = b, (4.27)

andWk = (XTkXk+η2In)p/2−1. As explained in Section 1.2.1 and Eq. (1.20), this problem is
equivalent tominimizing the Schatten-p quasinorm ofX, thus promoting low-rank solutions.
To place our method in the above described framework, we rewrite our generic optimiza-
tion problem, given in (4.8), as follows,

min
U,V

d∑
i=1

(∥ui∥22 + ∥vi∥22)p/2−1(∥ui∥22 + ∥vi∥22) subject to A(UVT ) = b. (4.28)
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Then, from (4.28) we can define the following IRLS minimization scheme

{Uk+1,Vk+1} = argmin
U,V

d∑
i=1

wki (∥ui∥22 + ∥vi∥22) subject to A(UVT ) = b, (4.29)

where wki = (∥uki ∥22 + ∥vki ∥22 + η2)p/2−1. This optimization task can be solved alternatingly
with respect to U and V as follows,

Uk+1 = argmin
U

d∑
i=1

wk,ki ∥ui∥22 subject to A(UVTk ) = b, (4.30)

Vk+1 = argmin
V

d∑
i=1

wk+1,k
i ∥vi∥22 subject to A(Uk+1VT ) = b, (4.31)

where wk,ki = (∥uki ∥22 + ∥vki ∥22 + η2)p/2−1 and wk+1,k
i = (∥vki ∥22 + ∥uk+1

i ∥22 + η2)p/2−1. It can
be shown that if we consider a LS data fitting term in our objective function, the solution
of the IRLS schemes (4.30) and (4.31) leads to the same exact expressions for Uk+1 and
Vk+1 as those obtained for AIRLS in the previous section. Note that (4.30) and (4.31) hold
close resemblance with the minimization problem (4.26) via the correspondence of the
block vectors xi with the column vectors ui and vi respectively. Hence, as (4.26) imposes
group sparsity on a vector quantity, (4.30) and (4.31) are expected to induce column spar-
sity on the matrix [ UV ] thus promoting low-rankness in a matrix factorization framework.
This key feature of the proposed algorithms allows us to incorporate a pruning procedure
which removes the columns that become zero as the algorithms evolve. By doing so,
the per iteration computational complexity of the algorithms is gradually reduced, and this
reduction may contribute significantly to the reduction of the total computational time re-
quired for convergence, as is also highlighted in Section 4.5, where empirical numerical
results are presented.

4.3.5 Convergence analysis

In this subsection we analyze the convergence behavior of AIRLS and AIRLS-MC as pre-
sented above and without considering the above mentioned pruning procedure, which is
basically an algorithmic mechanism to reduce complexity. The analysis is common for
the two algorithms, since, as mentioned above, both minimize upper bound surrogate
functions of the same form. We begin by first proving the following Lemma.

Lemma 4.1. The surrogate functions l(U|Uk,Vk) and g(V|Uk+1,Vk) minimized at each
iteration of AIRLS and AIRLS-MC are tight upper bounds of f(U,Vk) and f(Uk+1,V), with
f(U,V) being defined in (4.15) and (4.24) for the two algorithms, respectively.
Proof: The surrogate functions l(U|Uk,Vk) and g(V|Uk+1,Vk) given in (4.17) and (4.22),
are twice continuously differentiable and constitute approximations of the second-order
Taylor expansions of the initial cost functions around (Uk,Vk) and (Uk+1,Vk) respectively.
In (4.17), the true Hessian HUk

of f(U,Vk) at Uk has been approximated by the md×md
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positive-definite block diagonal matrix H̄Uk
defined in (4.18). H̄Vk

is similarly defined. Our
analysis is next focused on l(U|Uk,Vk). It can be easily shown that similar derivations can
be made for g(V|Uk+1,Vk). As it can be seen by Eq.. (4.17), l(U|Uk,Vk) equals f(U,Vk) at
(Uk,Vk). In order to show that it majorizes f(U,Vk) for all other points closeby, it suffices
to show that matrix A = H̄Uk

− HUk
is positive semidefinite [120]. Next we prove that for

each of the two problems examined, the above-mentioned property holds for A.
In denoising it is H̃Uk

= VTkVk+λD(Uk,Vk), where D(Uk,Vk) is defined in Eq. (4.20). Moreover,
it can be shown that for the exact Hessian HUk

at Uk we get

HUk
= Im ⊗ (VTkVk) + λK, (4.32)

where K = [Kij], i, j = 1, 2, . . . ,m consists of d× d blocks Kij defined as follows.

Kij =


pdiag

(
∥uk

1∥22+∥vk1∥22−(2−p)(uki1)2+η2

(∥uk
1∥22+∥vk1∥22+η2)

2−p/2 , · · · , ∥u
k
d∥

2
2+∥vkd∥22−(2−p)(ukid)

2+η2

(∥uk
d∥

2
2+∥vkd∥22+η2)

2−p/2

)
, if i = j

p(2− p)diag
(

−uki1ukj1
(∥uk

1∥22+∥vk1∥22+η2)
2−p/2 , · · · ,

−ukidu
k
jd

(∥uk
d∥

2
2+∥vkd∥22+η2)

2−p/2

)
, if i ̸= j

(4.33)

Hence, after some algebraic manipulations, the matrix A = [Aij] is expressed as

A = Im ⊗ D(Uk,Vk) − λK. (4.34)

Elaborating on A we get from (4.34), (4.33) and (4.20),

Aij = λp(2− p)diag
( uki1u

k
j1(

∥uk1∥22 + ∥vk1∥22 + η2
)2−p/2 , · · · , ukidu

k
jd(

∥ukd∥22 + ∥vkd∥22 + η2
)2−p/2). (4.35)

Notice that for

Bi =
√
λp(2− p)diag

( uki1(
∥uk1∥22 + ∥vk1∥22 + η2

)1−p/4 , . . . , ukid(
∥ukd∥22 + ∥vkd∥22 + η2

)1−p/4) (4.36)

Aij = BTi Bj. So by defining B = [B1, . . . ,Bm], it is straightforward that A = BTB, that is A
is positive semidefinite.

In matrix completion, the approximate Hessian H̄Uk
is exactly the same with that in the

denoising case, while the exact Hessian HUk
differs from its denoising counterpart given

in (4.32) in the diagonal blocks only. More specifically, the ith diagonal block of HUk
takes

now the form VTΩiV+Kii, whereΩi is a n×n diagonal matrix containing ones on indexes
included in the set Ω and related to the ith row of Y and zeros elsewhere. Since VTV −
(VTΩiV) ⪰ 0, we can use the same arguments as above for proving the semidefiniteness
of the respective matrix A. ■
Having shown that the proposed surrogate objective functions are upper bounds of the
actual ones, in Proposition 4.1 given below the monotonic decrease of the initial objective
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functions defined in (4.15) and (4.24) of the respective algorithms is established.
Proposition 4.1. The sequences of {Uk,Vk} generated by AIRLS and AIRLS-MC de-
crease monotonically the respective objective functions, i.e.,

f(Uk+1,Vk+1) ≤ f(Uk+1,Vk) ≤ f(Uk,Vk). (4.37)

Proof: Since Uk+1 = argmin
U

l(U|Uk,Vk) we get

l(Uk+1|Uk,Vk) ≤ l(Uk|Uk,Vk) ≡ f(Uk,Vk). (4.38)

From Lemma 4.1 we have,

f(U,Vk) ≤ l(U|Uk,Vk) (4.39)

and, as a consequence,

f(Uk+1,Vk) ≤ l(Uk+1|Uk,Vk), (4.40)

which leads to

f(Uk+1,Vk) ≤ f(Uk,Vk). (4.41)

Following the same reasoning, and since Vk+1 = argmin
V

g(V|Uk+1,Vk) we get

f(Uk+1,Vk+1) ≤ g(Vk+1|Uk+1,Vk) ≤ g(Vk|Uk+1,Vk) ≡ f(Uk+1,Vk) (4.42)

Combining (4.41) and (4.42) we get (4.37). ■
Corollary 4.1. The sequence f(Uk,Vk) converges to f∞ ≥ 0, as k → ∞, for both AIRLS
and AIRLS-MC.
Proof: Since the objective functions for both algorithms are monotonically decreasing
(Proposition 4.1) and bounded below by 0, the claim follows immediately. ■

4.3.5.1 Convergence to stationary points and rate of convergence

Having shown that the sequences (Uk,Vk)|+∞
k=1 generated by AIRLS and AIRLS-MCmono-

tonically decrease the corresponding objective functions, we herein prove the conver-
gence of the algorithms to the stationary points of their associated cost functions and de-
rive the rates of convergence of the algorithms to these stationary points. The subsequent
analysis is along the lines of the one presented in [77].

Given any pair (U,V) we define matrices U∗,V∗ resulting by the following minimization
problems

U∗ = argmin
U+

l(U+|U,V) V∗ = argmin
V+

g(V+|U∗,V).
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Let us now denote as∆((U,V), (U∗,V∗)) the followingmeasure of proximity between (U,V)
and (U∗,V∗),

∆((U,V), (U∗,V∗)) =
1

2

(
∥V (U− U∗)

T ∥2F + ∥U∗ (V− V∗)
T ∥2F

)
+
λ

2

(
∥D

1
2

(U,V) (U− U∗)
T ∥2F + ∥D

1
2

(U∗,V) (V− V∗)
T ∥2F

)
. (4.43)

Lemma 4.2. Successive differences in the values of cost functions f(U,V) corresponding
to AIRLS and AIRLS-MC are bounded below as follows,

f(Uk,Vk)− f(Uk+1,Vk+1) ≥ ∆((Uk,Vk), (Uk+1,Vk+1)). (4.44)

Proof: Using Eqs. (4.38), (4.40) and (4.42), we have,

f(Uk,Vk)− f(Uk+1,Vk) ≥ l(Uk|Uk,Vk)− l(Uk+1|Uk,Vk) and (4.45)
f(Uk+1,Vk)− f(Uk+1,Vk+1) ≥ g(Vk|Uk+1,Vk)− g(Vk+1|Uk+1,Vk) (4.46)

Adding (4.45) and (4.46) we reach to the following inequality

f(Uk,Vk)− f(Uk+1,Vk+1) ≥l(Uk|Uk,Vk)− l(Uk+1|Uk,Vk)
+ g(Vk|Uk+1,Vk)− g(Vk+1|Uk+1,Vk) (4.47)

Since Uk+1 and Vk+1 are stationary points of l(U|Uk,Vk) and g(V|Uk+1,Vk) respectively
(∇Ul(Uk+1|Uk,Vk) = 0 and ∇Vg(Vk+1|Uk+1,Vk) = 0) and by their second-order Taylor
expansions around (Uk+1,Vk) and (Uk+1,Vk+1) we have

l(Uk|Uk,Vk)− l(Uk+1|Uk,Vk) =
1

2
tr{(Uk − Uk+1)

(
VTkVk + λD(Uk,Vk)

)
(Uk − Uk+1)

T}

=
1

2
∥Vk (Uk − Uk+1)

T ∥2F +
λ

2
∥D

1
2

(Uk,Vk)
(Uk − Uk+1)

T ∥2F
(4.48)

and

g(Vk|Uk+1,Vk)− g(Vk+1|Uk+1,Vk) =
1

2
tr{(Vk − Vk+1)

(
UTk+1Uk+1

+λD(Uk+1,Vk)

)
(Vk+1 − Vk)T}

=
1

2
∥Uk+1 (Vk − Vk+1)

T ∥2F +
λ

2
∥D

1
2

(Uk+1,Vk)
(Vk − Vk+1)

T ∥2F (4.49)

Combining (4.48), (4.49) and (4.47) we get inequality (4.44). ■
Lemma 4.3. ∆((U,V), (U∗,V∗)) = 0 if and only if (U,V) generated by AIRLS (AIRLS-MC)
algorithm is a fixed point of AIRLS (AIRLS-MC).
Proof: If (U,V) is a fixed point, i.e. U = U∗ and V = V∗, then it is easily shown that
∆((U,V), (U∗,V∗)) = 0. Conversely, using (4.48) and (4.49) and since all the summands
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of ∆((U,V), (U∗,V∗)) are nonnegative, we have that if ∆((U,V), (U∗,V∗)) = 0 then

l(U|U,V)− l(U∗|U,V) = 0 (4.50)
and g(V|U∗,V)− g(V∗|U∗,V) = 0. (4.51)

Since both l(U|U,V) and g(V|U∗,V) are strictly convex functions, U∗ and V∗ are unique.
Hence the above equalities hold only if (U,V) = (U∗,V∗), that is (U,V) is a fixed point of
AIRLS (AIRLS-MC). ■
As stated above, ∆((Uk,Vk), (Uk+1,Vk+1)) is actually used for quantifying the distance
between (Uk,Vk) and (Uk+1,Vk+1) generated at successive iterations of the proposed al-
gorithms. Thus, it is obvious that this measure will become equal to zero if a fixed point
has been reached. For ease of notation, we will next denote this quantity as δk. That said,
the main result of this section is summarized in the following proposition.

Proposition 4.2. a) Any limit point of the sequences (Uk,Vk) generated by AIRLS and
AIRLS-MC is a stationary point of the respective objective function f(U,V), for λ > 0. b)
AIRLS and AIRLS-MC converge sublinearly to stationary points with their rates of conver-
gence expressed as

min
1≤k≤K

δk ≤
f(U1,V1)− f∞

K
. (4.52)

Proof: a) We say that (U∗,V∗) is a first-order stationary point of f(U,V) (given either in
(4.15) or (4.24)) if the following holds

∇Uf(U∗,V∗) = 0, ∇Vf(U∗,V∗) = 0. (4.53)

Due to the adopted upper bound minimization approach, it is easily shown that (4.53) can
be equivalently restated as [77],

U∗ = argmin
U
l(U|U∗,V∗), V∗ = argmin

V
g(V|U∗,V∗), (4.54)

i.e., (U∗,V∗), being a stationary point of f(U,V), is also a fixed-point of the algorithm
(AIRLS or AIRLS-MC) and vice-versa.

In the light of the above, it suffices to show that any limit point of the sequence gener-
ated by the algorithms is also a fixed point of them. To this end, for λ > 0, the sequence
(Uk,Vk)∞k=1 generated by AIRLS (AIRLS-MC) remains bounded and thus contains conver-
gent subsequences. Let (U∗,V∗) be a limit point of AIRLS (AIRLS-MC). That said, there
will be a subsequence {Uk,Vk} that converges to (U∗,V∗) hence∆((Uk,Vk), (U∗,V∗)) → 0.
From Lemma 4.3, we know that ∆((Uk,Vk), (U∗,V∗)) = 0 iff (U∗,V∗) is a fixed point of the
algorithms. Hence, due to the equivalence of (4.53) and (4.54), it can be easily conjec-
tured that (U∗,V∗) will also be a stationary point of the cost function.

b) Recall that δk = ∆((Uk,Vk), (Uk+1,Vk+1)). Then from (4.44) by adding K successive
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terms we get,

K∑
k=1

δk ≤ f(U1,V1)− f(UK ,VK) ≤ f(U1,V1)− f∞ <∞. (4.55)

Note that all the terms of the sequence δk take nonnegative values. Let us now assume
that there exists a (infinite) subsequence of δk that converges to a positive number. In
such a case the sum

∑K
k=1 δk would not be bounded as K → ∞, which contradicts (4.55).

Therefore, all subsequences of δk converge to zero, i.e. the sequence δk also converges
to zero. From Lemma 4.3, the zero limit point of δk corresponds in fact to a fixed point of
AIRLS (AIRLS-MC) which as said above, is a stationary point of the respective objective
function f(U,V).
By substituting the first part of inequality (4.55) by K min

1≤k≤K
δk ≤

∑K
k=1 δk and solving for

min
1≤k≤K

δk we get (4.52), which establishes a sublinear convergence rate for the proposed
algorithms [77]. ■
Assumption 4.1. The eigenvalues of UTkUk and VTkVk for k ≥ 1 are uniformly bounded
below and above by lL and lU respectively, i.e.,

lLId ⪯ UTkUk ⪯ lU Id and lLId ⪯ VTkVk ⪯ lU Id. (4.56)

Using Assumption 4.1 we can provide more refined information with regard to the rates of
convergence, bringing into play the curvature characteristics of the cost functions as well
as the regularization parameter λ.

Corollary 4.2. Under Assumption 4.1, we can derive the following convergence rate for
Algorithms 4.1 and 4.2:

min
1≤k≤K

{∥Uk+1 − Uk∥2F + ∥Vk+1 − Vk∥2F} ≤ 4τ

2lLτ + λ

f(U1,V1)− f∞

K
, (4.57)

where τ = max
1≤i≤d

(∥ui∥22, ∥vi∥22).
Proof: It can be easily proved by suitably modifying δk using the inequalities lL∥Uk −
Uk+1∥2F ≤ ∥Vk (Uk − Uk+1) ∥2F ≤ lU∥Uk − Uk+1∥2F and lL∥Vk − Vk+1∥2F ≤
∥Uk+1 (Vk − Vk+1) ∥2F ≤ lU∥Vk − Vk+1∥2F . ■

4.4 Low-rank NMF and low-rank and sparse NMF

Herein, the LRMF presented earlier is extended so as to account for problems that involve
nonnegative data. In this framework, two novel algorithms are presented, i.e., a) a low-
rank NMF and b) a low-rank and sparse NMF algorithm.
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4.4.1 Low-rank NMF

Low-rank NMF differs from the classical NMF in the inclusion of the low-rank constraint
on the factors U and V, accounting thus for the unawareness of the true rank. As is
shown in Section 4.5 this is very crucial in a class of applications such as music signal
decomposition, blind source separation, etc. The emerging optimization problem is given
below,

{Û, V̂} = argmin
U≥0,V≥0

1

2
∥Y− UVT∥2F + λ

d∑
i=1

(
∥ui∥22 + ∥vi∥22 + η2

) p
2 (4.58)

where U ≥ 0 and V ≥ 0 stand for elementwise nonnegativity of U and V, respectively.
Problem (4.58) deviates from the denoising one of (4.10) in the incorporation of an addi-
tional constraint, i.e., the nonnegativity of U,V.
In what follows, we present a projected Newton-type method for efficiently addressing
the problem defined in (4.58). It deserves to notice that we are now dealing with a con-
strained optimization problem since the solution set of the matrices U and V contains only
elementwise nonnegative matrices. Following the same path presented above we aim at
exploiting the curvature information of the formed cost function. However the constrained
nature of the NMF problem induces some subtleties needed to be properly handled.

More specifically, the proposed alternating minimization algorithm shall now update ma-
trices U and V so that they a) always belong to the feasibility set and b) guarantee the
descent direction of the cost function at each iteration. The proposed scheme is along
the lines of the NMF algorithm proposed in [73]. Each update of the factors takes place
by making use of the projected Newton method introduced in [14]. Next, the minimization
subproblems for updating the factors U and V are detailed.

As in the previous algorithms, surrogate quadratic functions of f(U,Vk) and f(Uk+1,V)
are required for updating matrices U and V with f(U,V) being the same as in Eq. (4.15),
but now the entries of U and V belong to the set of nonnegative reals. Let us now consider
the so-called set of active constraints defined w.r.t. each row ui of U at iteration k as

Ikui = {j|0 ≤ ukij ≤ ϵk, [∇Uf(Uk,Vk)]ij > 0}, (4.59)

where ϵk = min(ε, ∥Uk−∇Uf(Uk,Vk)∥2F ) (with ε a small positive constant) and uijs are the
elements of matrix U. A similar set Ikvi is defined based on the rows vi of matrix V (the
elements of V are denoted as vijs), i.e.,

Ikvi = {j|0 ≤ vkij ≤ ϵk, [∇Vf(Uk+1,Vk)]ij > 0}. (4.60)

As is analytically explained in [73], these sets contain the coordinates of the row elements
of matrices U and V that belong to the boundaries of the constrained sets, and at the
same time are stationary at iteration k. To derive a projected Newton NMF algorithm, we
replace the exact Hessian of each subproblem, with a positive definite matrix that has
been partially diagonalized at each iteration w.r.t. the sets of active constraints defined
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above. The positive definite matrices utilized in this case, denoted as H̄IU
U and H̄IV

V , in
analogy to H̄U and H̄V used in the cases of denoising and matrix completion, are block
diagonal, but consist of m and n, respectively, d × d distinct diagonal blocks. That is to
say, the ith diagonal blocks of these matrices at iteration k, namely H̃Ik

ui
U and H̃Ik

vi
V , are

partially diagonalized versions of the d × d matrices H̃Uk
and H̃Vk

defined in (4.19) and
(4.23). More specifically,

[H̃Ik
ui

U ]pl =

{
0, if p ̸= l, and either p ∈ Ikui or l ∈ Ikui
[H̃Uk

]pl otherwise

and H̃Ik
vi

V is defined similarly.

Based on the above, the quadratic surrogate functions l(U|Uk,Vk) and g(V|Uk+1,Vk) are
now expressed as,

l(U|Uk,Vk) = f(Uk,Vk) + tr{(U− Uk)T ∇Uf(Uk,Vk)}

+
1

2αkU
vec (U− Uk)T H̄

Ik
U

U vec (U− Uk) (4.61)

and

g(V|Uk+1,Vk) = f(Uk+1,Vk) + tr{(V− Vk)T ∇Vf(Uk+1,Vk)}+
1

2αkV
vec (V− Vk)T H̄

Ik
V

V vec (V− Vk) , (4.62)

where αkU and αkV denote step size parameters. Hence, U and V are updated by solving
the following constrained minimization problems,

Uk+1 = argmin
U≥0

l(U|Uk,Vk) (4.63)

Vk+1 = argmin
V≥0

g(V|Uk+1,Vk) (4.64)

giving rise to feasible updates in the form

vec(Uk+1(α
k
U)) = [vec(Uk)− αkU

(
H̄Ik

U
U

)−1

vec(∇Uf(Uk,Vk))]+ (4.65)

vec(Vk+1(α
k
V)) = [vec(Vk)− αkV

(
H̄Ik

V
V

)−1

vec(∇Vf(Uk+1,Vk))]+, (4.66)

where [x]+ = max(x, 0). The step size parameters αkU and αkV are calculated based on the
Armijo rule on the projection arc, [15], with the goal of achieving sufficient decrease of the
initial cost function per iteration. Concretely, αkU is set to αkU = βmk

U with βU ∈ (0, 1) and mk
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is the first nonnegative integer such that

f(Uk)− f(Uk+1(α
k
U)) ≥ σ

{
αkU

∑
i/∈{Ik

u1∪I
k
u2∪···∪I

k
um}

∂f(Uk,Vk)
∂vec(U)i

×

((
H̄Ik

U
U

)−1

vec(∇Uf(Uk,Vk))
)
i

+
∑

i∈{Ik
u1∪I

k
u2∪···∪I

k
um}

∂f(Uk,Vk)
∂vec(U)i

× vec(Uk − Uk(αkU))i

}
.

(4.67)

where σ is a constant scalar. The same process described above for selecting αkU and
hence updating U is subsequently adopted for αkV and V. The resulting alternating pro-
jected Newton-type algorithm for low-rank NMF is given in Algorithm 4.3.

Remark 4.4. The adopted Armijo-rule on the projection arc provides us guarantees re-
garding the monotonic decrease of the initial cost function per iteration. It should be noted
that, contrary to the projected Newton NMF method of [73], in our case the diagonal ma-
trices adopted are always positive definite and hence invertible offering stability to the
derived algorithm. Finally, since the approximate Hessian matrices used are partially di-
agonal, efficient implementations can be adopted for reducing the computational cost.

Algorithm 4.3: AIRLS nonnegative matrix factorization (AIRLS-NMF) algorithm
Input: Y, λ, βU, βV, σ
Initialize: k = 0,U0,V0,D(U0,V0)

repeat
Estimate the set of active constraints IkU
mk = 0, αkU = 1
while (4.67) is not satisfied do
mk = mk + 1, αkU = βmk

U
end
vec(Uk+1) = [vec(Uk)− αkU

(
H̄Ik

U
U

)−1

vec(∇Uf(Uk,Vk))]+
Estimate the set of active constraints IkV
mk = 0, αkV = 1
while (4.67) is not satisfied do
mk = mk + 1, αkV = βmk

V
end
vec(Vk+1) = [vec(V̂k)− αkV

(
H̄Ik

V
V

)−1

vec(∇Vf(Uk+1,Vk))]+
k = k + 1

until convergence
Output: Û = Uk+1, V̂ = Vk+1
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4.4.2 Low-rank and sparse NMF

Low-rank and sparse NMF under the proposed LRMF framework presented above, arises
by a simple extension of the low-rank NMF formulation given above, i.e.,

min
U≥0,V≥0

∥Y− UVT∥2F + λ
d∑
i=1

(
∥ui∥22 + ∥vi∥22 + η2

) p
2 + λ1∥V∥1. (4.68)

where the ℓ1 norm of the coefficient’s matrix V has been included in the optimization prob-
lem. Note that although (4.68) seems to be a plain extension of the NMF problem (4.58),
things are becoming much more trickier now. This is due to the non-smoothness of the ℓ1
norm, which necessitates a different optimization strategy as detailed below.

More specifically, the proposed minimization algorithm utilizes the same smooth approx-
imation of the low-rank promoting term of the cost function (4.68) incorporating an addi-
tional term g(V) = λ1∥V∥1 which is the nonsmooth and separable part of the minimized
cost function. Considering again the matrices U and V as blocks in our problem, each one
of them may be updated as follows:

Uk+1 =argmin
U≥0

tr{(U− Uk)∇Uf(Uk,Vk)}+
1

2αk
vec (U− Uk)T H̄Uk

vec (U− Uk) (4.69)

and

Vk+1 =argmin
V≥0

tr{(V− Vk)T ∇Vf(Uk+1,Vk)}+
1

2αk
vec (V− Vk)T H̄Vk

vec (V− Vk)

+ g(V) (4.70)

where H̄kU is a block diagonal matrix as defined in (4.18). Note that the cost functions
involved in (4.69) and (4.70) are second-order approximations of f(U,Vk) and f(Uk+1, ]V),
around (Uk,Vk) and (Uk+1,Vk), respectively. The minimization of (4.70) as such gives rise
to a scaled proximal operator, [92], in the form

Vk+1 = proxH̄Vk
∥·∥1

(
Vk − (H̄Vk

)−1∇Vf(Uk,Vk)
)
. (4.71)

The computation of (4.71) has given way to disparate approximate or iterative schemes
(proximal Newton methods), [92], since there exists no closed form solution for non di-
agonal6 H̄Vk

as in our case. Herein, we propose to apply an incremental strategy, [17],
for approximately solving (4.70). More specifically, a gradient step is first applied on the
smooth part of (4.70). The outcome of the gradient step is then provided as input to the
proximal operator of the nonsmooth term, i.e., the ℓ1 norm, whose output is finally pro-
jected to the feasible set. Regarding the update of U, it is a much simpler task due to the
absence of nonsmooth terms. In general, for the parameter αk in Eqs. (4.70), (4.69) it

6Note that for H̄Vk
diagonal, the scaled proximal operator reduces to the known proximity operator of the

ℓ1 norm, i.e., the soft-thresholding operator.
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holds αk ∈ (0, 1]. Overall, U and V are computed by using the following expressions7,

Uk+1 = PRm×d
+

((
V̂Tk V̂k + D(Ûk,V̂k)

)−1

V̂kY
)

(4.72)

Vk+1 = PRn×d
+

(
SHRλ1

((
ÛTkUk + D(Ûk+1,V̂k)

)−1

Ûk+1Y
))

(4.73)

where SHRλ1(X) is the soft-thresholding operator defined in (3.11)8. Since the difference
matrix of H̄Vk

and H̄Uk
from their respective true Hessians is positive semidefinite, as shown

above, the quadratic approximate functions are upper bounds of the original cost function.
That said, the above-described scheme also resembles the block successive upper bound
minimization framework of [79]. As stated earlier, and since we are dealing with a con-
strained minimization problem, the updates for U and V are projected to the feasible set
thus accounting for the nonnegativity constraint. In addition, problem (4.70) is solved in-
exactly by the incremental strategy described earlier. In view of these, for ensuring that
the cost function decreases at each step, an extrapolation step is next followed and the
final estimates of U and V at the kth iteration are obtained as

Ûk+1 = Ûk + βUk

(
Uk+1 − Ûk

)
, (4.74)

V̂k+1 = V̂k + βVk

(
Vk+1 − V̂k

)
. (4.75)

Note that βVk
and βUk

are adjusted dynamically so that the cost function’s sufficient de-
crease is guaranteed at each step. Along this line, numerous schemes, known as line
search methods have come into play, e.g., backtracking, [15]. Those schemes affect the
convergence and rate of convergence of the algorithms to stationary points. The resulting
algorithm is given in Algorithm 4.4.

Remark 4.5. The proposed AIRLS, AIRLS-MC, AIRLS-NMF and SpAIRLS-NMF algo-
rithms annihilate jointly columns of the matrices U and V, as a result of the column sparsity
imposing nature of the introduced low-rank promoting term. This key feature of the pro-
posed algorithms allows us to incorporate a mechanism which prunes the columns that
become zero as the algorithms evolve, thus reducing the (column) dimension of the matri-
ces. By doing so, the per iteration computational complexity of the algorithms is gradually
reduced, and this reduction affects the total computational time required by the algorithms
to converge, as is also highlighted in Section 4.5.

4.4.2.1 Unsupervised HU as a low-rank and sparse NMF problem

In great many real cases, a first critical and indispensable step towards performing unmix-
ing is to uncover the true number of endmembers that exist in a given hyperspectral scene.
This challenging task (also known as rank estimation or model order selection), can be

7Û and V̂ used in these expressions are subsequently defined in (4.74) and (4.75) respectively.
8Note that in this case, the used notation implies that all elements of X are equally thresholded by λ1.
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Algorithm 4.4: Sparse AIRLS-NMF (SpAIRLS-NMF) algorithm
Input Y, λ > 0, λ1 > 0

Initialize k = 0, V̂0, Û0, βU0 , βV0

repeat

Uk+1 = PRm×d
+

((
ÛTk Ûk + D̂(Ûk,V̂k)

)−1

V̂kY
)

Ûk+1 = Ûk + βUk

(
Uk+1 − Ûk

)
Vk+1 = PRn×d

+

(
SHRλ1

((
ÛTk+1Ûk+1 + D(Ûk+1,V̂k)

)−1

Ûk+1Y
))

V̂k+1 = V̂k + βVk

(
Vk+1 − V̂k

)
Update βkV, βkU

until convergence
Output: Û = Ûk+1, V̂ = V̂k+1

quite daunting in terms of the required computational burden. Several works have come
into play in HU literature for attacking this problem which can be classified into two main
categories: a) information theoretic criteria based approaches and b) eigenvalue thresh-
olding methods. As far as the first class is concerned, various approaches have been
proposed differing in the criterion used for penalizing an initially overestimated number
of endmembers, e.g., Akaike’s Information Criterion (AIC), Minimum Description Length
(MDL), Bayesian Information Criterion (BIC), [54]. On the other hand, methods that be-
long to the second class include PCA based methods, Neyman-Peyrson detection theory
based methods etc., [20].

The estimate of the number of endmembers by the above-mentioned algorithms is pro-
vided - at a second phase - as input to unsupervised unmixing algorithms, whose goal is
to extract the endmembers’ spectral signatures along with the abundance fractions of the
pixels. A vast amount of works have been published in the literature dealing with unsu-
pervised hyperspectral unmixing. As is the case with the vast majority of HU methods,
most of the unsupervised HU methods hinge on the linear mixing model (LMM), which
has been proven to be a reliable approximation, although it neglects nonlinear effects met
in real situations. In the framework of the LMM, there exist both geometrical, [110], and
statistical, [97], matrix factorization based approaches for performing unsupervised un-
mixing. Among the latter, nonnegative matrix factorization (NMF) based techniques have
exhibited a robust behavior offering promising results.

Along these lines, the proposed low-rank and sparse NMF framework presented above
can be utilized so as to simultaneously a) determine the number of endmembers, b) extract
the endmembers’ spectral signatures and c) estimate the abundance values of the pixels.
The sophisticated low-rank promoting term penalizes both endmembers’ and abundance
matrices, i.e., U and V respectively, by enforcing joint sparsity on their columns. This way,
we go one step beyond just revealing the rank, since we further encourage estimation of
the true bases of the column spaces of these matrices. At the same time, sparsity is fa-
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vored on the abundance matrices V, as it is physically meaningful. All in all, endmembers’
number estimation and unmixing is yielded jointly by the introduced low-rank and sparse
NMF approach. To the best of our knowledge, this is the first work that encapsulates those
two problems simultaneously in a single task.

4.5 Experiments

In this section, simulated and real data experiments are provided for illustrating the key
features of the proposed AIRLS, AIRLS-MC, AIRLS-NMF and SpAIRLS-NMF algorithms9.
For comparison purposes, an alternating regularized least squares (noted here as ALS) al-
gorithm corresponding to the full-observation version of the matrix completion softImpute-
ALS algorithm proposed in [77] is utilized in the denoising type problems. In matrix com-
pletion experiments the softImpute-ALS algorithm, [77], and the iterative reweighted nu-
clear norm (IRNN) algorithm of [95] are employed. It should be noted that IRNN goes
beyond the traditional nuclear norm minimization by adopting various sparsity imposing
priors for the vector of singular values. This scheme gives rise to weighted nonconvex
analogues of the traditional nuclear norm. In the sequel, we restrict our attention to IRNN
which arises by applying the ℓ1,2 quasinorm on the vector of singular values. Note that
IRNN, unlike AIRLS and softImpute-ALS, is not an MF based approach and thus involves
computationally demanding SVD operations at each iteration. Moreover, the ARD-NMF
algorithm, [139], which is based on the same philosophy to the one of our approach, yet
through the lens of a Bayesian framework, is incorporated in the NMF type experiments.
SpAIRLS-NMF is herein focused on the novel formulation of the unsupervised HU problem
described in Section 4.4.2.1 and thus the vertex component analysis (VCA) endmembers’
extraction algorithm, [110] is utilized for comparison purposes. It should be noted that for
all the proposed algorithms the column pruning mechanism is applied. As a result, the per
iteration complexity reduces during the execution of the algorithms. All experiments were
conducted on an Intel Core i7-4790 CPU 3.60GHz x 8 CPU with 16GB RAM.

4.5.1 Simulated data experiments

Herein we endeavor to highlight the benefits of the proposed algorithms on simulated data.
To this end, the algorithms are tested on two different experiments, i.e., a) for checking the
performance of AIRLS and AIRLS-NMF in the presence of noise and b) for assessing the
capacity of AIRLS-MC in dealing with different percentages of missing data. Moreover,
SpAIRLS-NMF’s performance is tested on a simulated hyperspectral dataset focusing on
the unsupervised unmixing task, as well as in the competence of the algorithm in recov-
ering the true number of endmembers.

9In all experiments provided next the norm parameter p is set to 1.
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Table 5: Results obtained by ALS and AIRLS on the simulated denoising experiment.

SNR 10 20
rank 5 10 5 10

Algorithm # Iter time(s) NRE # Iter time(s) NRE # Iter time(s) NRE # Iter time(s) NRE
ALS 15 0,2774 0,1079 15 0,2853 0,1152 40,31 0,7739 0,0235 40,38 0,7666 0,0294
AIRLS 43,37 0,3949 0,0448 24,37 0,2426 0,0635 15,41 0,1571 0,0142 35,68 0,3421 0,02

Table 6: Results obtained by ALS and AIRLS on the simulated denoising experiment.

4.5.1.1 Performance of AIRLS and AIRLS-NMF in the presence of noise

In order to validate the performance of AIRLS and AIRLS-NMF in the presence of noise
two different experimental settings are used. In both settings, a matrix X0 ∈ Rm×n with
m = 500, n = 500 and varying rank r ∈ {5, 10} is randomly generated. Concretely, matrix
X0 is produced by the product of two matrices, i.e., U0 ∈ Rm×r and V0 ∈ Rn×r with either
a) zero-mean Gaussian entries of σ = 1 or b) uniformly distributed nonnegative values
in the range 0 to 1. The latter is used for testing the NMF algorithms. In both cases ad-
ditive Gaussian i.i.d. noise of different SNR ∈ {10, 20} corrupts X0, thus resulting to the
data matrix Y which is then provided as input to the tested algorithms. For the case of
a), AIRLS is compared to the MMMF algorithm while in b), the ARD-NMF algorithm takes
also part in the respective experiments. As a quantitative metric we utilize the normalized
reconstruction error defined as NRE = ∥X0−ÛV̂T ∥F

∥X0∥F
. Since we emphasize in the recovery

performance of the algorithms, the low-rank promoting parameter λ of the algorithms is
selected from a set of values {0.1,1,5,10,50,80,100,200} via fine tuning in terms of the
lowest achieved NRE. The algorithms stop when either the relative decrease of the re-
constructed data between two successive iterations, i.e., ∥ÛkV̂T

k −Ûk+1V̂T
k+1∥F

∥ÛkV̂T
k ∥F

becomes less
than 10−4 or 500 iterations are executed. The algorithms run for 100 instances of each
experiment and the mean values of the various quantities (elapsed time, NRE, iterations
executed and estimated rank) are provided in Tables 6 and 7.

In Table 6, the results of AIRLS and ALS are given. Therein, it is shown that AIRLS offers
better estimation performance than ALS in all experiments. Interestingly, in most cases,
this happens in less time than that spent by ALS, although AIRLS in some instances re-
quired more iterations. This favorable characteristic of AIRLS is due to its column pruning
capability, which reduces significantly the average time per iteration. In the case of the
NMF problem, it can be observed by Table 7 that the AIRLS-NMF achieved lower NRE
that of ARD-NMF for the different levels of noise and rank of the sought matrices. Notably,
AIRLS-NMF exhibited robustness in recovering the true rank in both cases examined, i.e.,
r ∈ {5, 10}, contrary to ARD-NMF which failed to estimate the true rank especially for
r = 10.
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Table 7: Results obtained by ARD-NMF and AIRLS on the simulated NMF experiment.

SNR 10 20
rank 5 10 5 10

Algorithm est. rank NRE est. rank NRE est. rank NRE est. rank NRE
ARD-NMF 4,36 0,0778 100 0,1023 4,66 0,0825 100 0,1008
AIRLS-NMF 5,14 0,048 10,25 0,0706 6,52 0,0181 10,23 0,0291

Table 8: Results of AIRLS-MC, softImpute-ALS and IRNN on the simulated matrix completion exper-
iment.

FR 0.4 0.6
Algorithm # Iter time(s) NRE # Iter time(s) NRE

softImpute-ALS 244 59.5 0,1886 204 37.8 0,543
AIRLS-MC 349 42.6 0,069 457 27 0,277
IRNN 314 113.3 0,059 580 216.9 0,161

4.5.1.2 Performance of AIRLS-MC for different percentages of missing data

To evaluate the performance of AIRLS-MC in different scenarios, we classify the experi-
mental settings of this subsection according to the degrees of freedom ratio (FR), [107],
defined as FR = r(2n− r)/card(Ω), where r is the rank of X. Recovery becomes harsher
as FR is close to 1, whereas easier problems arise when it takes values close to 0. AIRLS-
MC is compared to softImpute-ALS and IRNN for FR equal to 0.4 and 0.6. In both cases
a low-rank matrix X0 ∈ Rm×n with m = 1000, n = 1000 and rank r = 20 is generated
following the same setting as in the case of the denoising experiment described above.
The NRE is used as the performance metric. For all algorithms, the parameter λ which
is related to low-rank imposition, is fine tuned and the initial rank of the MF based meth-
ods is set to 100. The algorithms run for 20 instances of each experiment and the mean
values of iterations, NRE and time to converge are given in Table 8. Moreover, the same
stopping criteria mentioned previously are utilized. As is shown in Table 8, AIRLS-MC
offers significantly higher accuracy than softImpute-ALS in less time in both experiments.
On the other hand, IRNN outperforms both MF based methods in terms of NRE, at the
cost of a much higher runtime. This shortcoming of IRNN is due to the computationally
demanding SVDs executed at each iteration. Interestingly, AIRLS-MC converges in less
time than softImpute-ALS, although it requires more iterations to converge. Actually, this
happens due to the fact that AIRLS-MC estimates the true rank of the matrix after a few
iterations. That is, the column pruning mechanism mentioned above reduces gradually its
computational complexity.

4.5.1.3 Performance of SpAIRLS-NMF on simulated hyperspectral data

In this experiment we aim at corroborating the competence of SpAIRLS-NMF in uncover-
ing the true number of endmembers along with estimating the spectral signatures of the
endmembers. To this end, we generate a 500× 4 abundance matrix whose elements fol-
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Figure 28: Endmembers’ spectral signatures obtained by SpAIRLS-NMF on the simulated data ex-
periment.
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low a uniform distribution in the interval [0,1]. This matrix is then sparsified by randomly
keeping only 30% of its elements. From the USGS spectral library, we select randomly 4
endmembers’ spectral signatures measured atm = 224 distinct spectral bands. Then, we
linearly produce n = 500 simulated pixels’ spectral signatures under the LMM framework.
The pixel spectral signatures are then contaminated with additive i.i.d. Gaussian noise
with standard deviation σ = 10−3.

Since the main premise of our approach is the development of a blind unmixing method
that exhibits robustness in the absence of knowledge of the true number of endmembers,
we initialize the proposed algorithm with an overestimate d = 10 of the actual number
of endmembers. Both endmembers’ and abundance matrices are randomly initialized
according to the uniform distribution. Interestingly, the proposed algorithm converges to
abundance and endmembers’ matrices consisting of 4 nonzero columns, which is the
same as the actual number of endmembers that produced the data. Moreover, it can be
easily observed from Fig. 28, that the estimated endmembers’ spectral signatures present
high degree of similarity to the real ones. Hence, we can conclude that the proposed al-
gorithm is, in principle, capable of carrying out the challenging task of simultaneously esti-
mating the number of endmembers and performing unsupervised hyperspectral unmixing
in a linear mixing setting.

4.5.2 Real data experiments

Next, the effectiveness of all the proposed algorithms is corroborated in four different real
data applications. More specifically, AIRLS is applied on a real HSI denoising application,
AIRLS-MC is tested on two different recommender systems’ (movie-lens 100K and 1M)
datasets, while the performance of AIRLS-NMF is assessed through a music signal de-
composition experiment. Lastly, SpAIRLS-NMF is evaluated on a real HSI unsupervised
spectral unmixing experiment.

4.5.2.1 Hyperspectral image denoising

In this experiment we utilize the Washington DC Mall AVIRIS HSI captured at m = 210
contiguous spectral bands in the 0.4 to 2.4 µm region of the visible and infrared spectrum.
The HSI consists of n = 22500 (150× 150) pixels. As is widely known, [67], hyperspectral
data are highly coherent both in the spectral and the spatial domains. Therefore, by or-
ganizing the tested image in a matrix, whereby each column corresponds to the spectral
bands and each row to the pixels, it turns out that this matrix can be well approximated by
a low-rank one. This fact motivates us to exploit the low-rank structure of the HSI under
study for efficiently denoising a highly corrupted version thereof by Gaussian i.i.d. noise
of SNR = 6dB.

In Fig. 29, false RGB images of the recovered HSIs by the proposed AIRLS algorithm and
ALS are provided. In both algorithms, the number of columns of the initial factors U0 and
V0 is overstated to d = 100 and the algorithms terminate when the relative decrease of
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the reconstructed HSI between two successive iterations reaches a value less than 10−4.
Moreover, their low-rank promoting parameter λ is selected so as to lead to solution ma-
trices Û and V̂ of the same rank r = 4. As it can be noticed in Fig. 29, AIRLS reconstructs
the HSI in a significantly improved accuracy as compared to ALS. This can be easily veri-
fied both by visually inspecting Figs. 29a-29d and quantitatively in terms of the estimated
NRE (Fig. 29e). Notably, AIRLS converges in less iterations than those required by ALS
(Fig. 29e), while at the same time less time per iteration is consumed, on average. The
latter is achieved by virtue of the column pruning mechanism of AIRLS, which gradually
reduces the size of matrix factors U and V from m× 100 and n× 100 to m× 4 and n× 4,
respectively. This way, after only a few initial iterations, when the rank starts to decrease,
the per iteration time complexity of AIRLS becomes much smaller than that required in its
early iterations, as well as the one of ALS.

4.5.2.2 MC on Movielens 100K and 1M datasets

Herein, we focus on testing the performance of AIRLS-MC algorithm on a popular col-
laborative filtering application, i.e. a movie recommender system. To this end, we utilize
two well-studied in literature large datasets: the Movielens 100K and the Movielens 1M
datasets. Both datasets contain ratings by users collected over various periods of time,
with integer values ranging from 1-5. Since most of the entries are missing, matrix com-
pletion algorithms can be utilized for predicting them. By assuming that there exists a
high degree of correlation amongst the rating of different users, a low-rank structure is a
rational choice for these datasets. For the case of the 100K dataset the “ub.base”10 file
which contains ≈ 90% of the total ratings was splitted into two disjoint sets, i.e., a training
set (consisting of ≈ 65% of the total per user ratings) and a validation set (≈ 25%). The
“ub.test” file which contains ≈ 10% of the ratings was utilized as the test set. For the case
of the 1M Movielens dataset, the “ratings.dat” file was splitted into 3 disjoint sets, that is,
a training set consisting of ≈ 50% of the total ratings per user, a validation set ≈ 25%
and a test set (≈ 25%). Note that the 100K dataset contains 100000 ratings of 943 users
on 1682 movies with each user having rated at least 20 movies. That said, we need to
address a quite challenging matrix completion problem, since 93% of the elements are
missing. The situation is even harsher for the 1M dataset, which includes 1 million rat-
ings from 6040 users on 3900 movies and 96% missing data. Finally, the normalized
mean absolute value error (NMAE) defined as NMAE =

∑
(i,j)∈Ω |[UVT ]ij−[Y]ij |

4card(Ω)
is used as a

performance metric.

First, we aim at illustrating the behavior of the proposed AIRLS-MC algorithm when it
comes to the estimation performance and the speed of convergence. In this regard, for
the case of the 100K dataset, the state-of-the-art IRNN and softImpute-ALS algorithms
are utilized for comparison purposes. The low-rank promoting parameter λ of all com-
peting algorithms is selected according to two different scenarios: A) we choose λ that
achieves the minimum NMAE on the validation set after convergence and B) we select λ

10Movielens 100K and 1M datasets can be downloaded from https://grouplens.org/datasets/movielens/.
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Figure 29: Evaluation of AIRLS and ALS on the Washington DC AVIRIS dataset.
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Table 9: Results obtained by AIRLS-MC and softImpute-ALS on Movielens 100K dataset.

# Iter msec/iter total time (sec) NMAE
sc
en
ar
io A

softImpute-ALS 247 300,2 74,3 0,2362
IRNN 500 598,5 299,2 0,2036

AIRLS-MC 591 21,7 12,82 0,2005

B
softImpute-ALS 156 197,6 30.8 0,2968

IRNN 500 740 370,18 0,2029
AIRLS-MC 969 28,5 27,6 0,2010

so that the estimated matrices by both the tested algorithms are of the same rank, equal to
10. It should be noted that the same stopping criterion used in the previous experiment is
adopted also here. As it can be seen in Fig. 30 and Table 9, the softImpute-ALS algorithm
requires in general less iterations to converge than both AIRLS-MC and IRNN. However,
the average per-iteration time complexity of AIRLS-MC is significantly less compared to
its rivals. As is mentioned above, this is attributed to the column pruning scheme which
decreases to a large degree the computational burden of the algorithm. This favorable
property, results to a faster convergence of AIRLS-MC in both scenarios A and B as com-
pared to both softImpute-ALS and IRNN, in terms of time. Among the three algorithms
tested, IRNN is clearly the most demanding one in terms of average per-iteration time
complexity as it can be observed from Fig. 30. As mentioned above, this is ascribed to
the fact that IRNN entails “expensive” SVD operations, in contrast to the other two MF
based algorithms. It should be noted that in scenario A, the estimated by AIRLS-MC and
IRNN matrices Û and V̂ have rank equal to 6. On the other hand, in softImpute-ALS the
solution matrices have rank equal to the one used at the initialization stage, i.e., 100.

When it comes to the generalization performance of the proposed algorithm, from Table
9 it can be observed that, in both scenarios A and B, AIRLS-MC achieved lower NMAE
on the unseen test set than its MF counterpart softImpute-ALS and slightly lower NMAE
than IRNN. This actually shows that the reduced computational complexity of AIRLS-MC
does not come at a price of inferior performance in terms of the accuracy of the estimated
matrices. Lastly, from Fig. 30 it can be noticed that the relative objective of AIRLS-MC
presents abrupt increases at some iterations. It was experimentally verified that those
changes (which imply large decreases of the successive values of the objective function)
take place at iterations that coincide with zeroings of the columns of the matrix factors.
This fact advocates that larger gains are obtained at iterations where the rank is reduced,
as we are approaching at the low-rank solution matrices.

Fig. 31 and Table 10 show the performance of AIRLS-MC and softImpute-ALS on the 1M
Movielens dataset11. The parameter λ of AIRLS-MC and softImpute-ALS is fined tuned,
in the same way as in the 100K experiment, based on the best NMAE attained by the
algorithms on the validation set. The rank is again initialized to d = 100 for both algo-
rithms. Interestingly, AIRLS-MC reaches a more accurate solution in terms of the NMAE

11IRNN has not been included in this experiment owing to its higher computational requirements as com-
pared to both the MF based algorithms.
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Figure 30: NMAE and relative objective vs time evolution (up to 100secs) of AIRLS-MC, softImpute-
ALS and IRNN on the Movielens 100K validation dataset.
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Table 10: Results obtained by AIRLS-MC and softImpute-ALS on Movielens 1M dataset.

# Iter msec/iter total time (sec) NMAE
softImpute-ALS 433 720 311.2 0.1862
AIRLS-MC 903 153 138.9 0.1760
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Figure 31: Evaluation of AIRLS-MC and softImpute-ALS on 1M Movielens dataset.

(as evaluated on the test set) in almost 40% of the time required by softImpute-ALS. Again,
AIRLS-MC requires more iterations to converge as compared to its competitor. Neverthe-
less, as it can be also seen in Fig. 31, the column pruning mechanism which is activated
in the initial iterations of AIRLS-MC results to a significant reduction of the average time
spent per iteration.

4.5.2.3 Music signal decomposition

Herein, we test the competence of AIRLS-NMF algorithm in decomposing a real music
signal. For this reason, AIRLS-NMF is compared to the most relevant state-of-the-art
algorithm, i.e., ARD-NMF. In order to make as much fairer as possible the comparison
between those two algorithms, the beta function of ARD-NMF algorithm of [139] was re-
duced to the square Frobenius norm, by appropriately setting the respective parameter.
This way, ARD-NMF, likewise the proposed AIRLS-NMF, is based on Gaussian i.i.d noise
assumptions. The music signal analyzed is a short piano sequence, i.e., a monophonic
15 seconds-long signal recorded in real conditions. As it can be noticed in Fig. 32, it is
composed of four piano notes that overlap in all the duration thereof. Following the same
process as in [139], the original signal is transformed into the frequency domain via the
short-time Fourier transform (STFT). To this end, a Hamming window of size L = 1024 is
utilized. By appropriately setting up the overlapping between the adjacent frames we are
led to a spectrogram whereby the signal is represented by 673 frames in 513 frequency
bins. The power of this spectrogram is then provided as input to the tested algorithms.
The initial rank is set to 20 and the same stopping criterion as in the previous experiments
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Figure 32: Music score (top) and original audio signal (bottom).

is utilized, with the threshold in this case set to 10−4. Finally, the same process described
in [139] was followed for reconstructing the music components, i.e., rank one terms of the
product ÛV̂T in the time domain.
In Fig. 33, the first 8 components obtained by the two algorithms are ordered in decreasing
values of the standard deviations of the time domain waveforms. As it can be noticed,
AIRLS-NMF estimated the correct number of components, that is 6. Notably, the first four
components of AIRLS-NMF correspond to the four notes while the rest two ones come
from the sound of a hammer hitting the strings and the sound produced by the sustain
pedal when it is released. On the contrary, ARD-NMF estimated 20 components, meaning
that no rank minimization took place thus implying a data overfitting behavior. It should
be emphasized that the favorable performance of AIRLS-NMF occurs though the noise
is implicitly modelled as Gaussian i.i.d. Interestingly, as it can be seen in [139], AIRLS-
NMF performed similarly to ARD IS-NMF, i.e., the version of ARD-NMF which makes more
appropriate assumptions as to the noise statistics, by utilizing Itakura-Saito divergence.

4.5.3 Unsupervised hyperspectral unmixing

Herein our goal is to test and validate the SpAILRS-NMF algorithm on a real hyperspectral
dataset. To this end we utilized the South Polar Cap HSI (see Section 3.4.3.2).

To evaluate the performance of SpAILRS-NMF on this real hyperspectral dataset, we suit-
ably initialized the endmembers’ matrix with the outcome of the VCA algorithm, [110],
which was run with an overestimate d = 8 of endmembers. As is shown in Fig. 35(a),
the resulting by VCA endmembers’ matrix contains correlated spectra, which is expected
from our prior knowledge i.e, that there exist 3 (instead of 8) pure endmembers in this
specific image. Since there exist no reference spectra of the actual endmembers’ spec-
tral signatures, for comparison purposes, we use the ones returned by VCA which, this
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Figure 33: Music components obtained by AIRS-NMF (a) and ARD-NMF (b) on the short piano se-
quence.
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Figure 34: Abundance maps of South Polar Cap obtained by SpAIRLS-NMF algorithm.

time, was run for the correct number of endmembers. Notably, the proposed algorithm is
proven to be capable of estimating the actual number of the endmembers. Moreover, the
estimated endmembers’ signatures (Fig. 35(b)-35(d)) for CO2 and dust are quite close to
those resulting by VCA, while the opposite holds for the respective spectral signature of
the H2O. This is probably due to the small abundance values of H2O, as shown in Fig.
34a. Additionally, it is noted that the resulting abundance maps depicted in Fig. 34, are
quite close to those that have been published in literature, [144].
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Figure 35: (a) Eight endmembers’ signatures obtained by VCA on South Polar Cap, (b)-(d) endmem-
bers’ signatures estimated by SpAIRLS-NMF (blue lines) and VCA (red lines).
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5. ONLINE LOW-RANK SUBSPACE LEARNING FROM INCOMPLETE
MEASUREMENTS

A common characteristic of the algorithms presented in the previous chapters is that all
of them are batch-type algorithms, that is, each parameter updating takes into account all
the available data. In the present chapter we turn to online algorithms, that is, algorithms
where the parameter updating is based on a single data sample. The proposed algorithms
have been developed to tackle the problem of low-rank subspace learning from incomplete
measures, which is very closely related with the matrix factorization and matrix completion
problems. An additional point of differentiation from the previous chapters is that one of the
proposed algorithms stems from the variational Bayes framework. More specifically, two
novel algorithms are introduced, namely, a) an online variational Bayes and b) an online
deterministic cost function minimization based one. The main premise of both schemes is
to leverage the low-rank promotion idea presented in Chapter 4 and adapt it to the online
processing scenario. Since, the first algorithm hinges upon the Bayesian philosophy, an
appropriate Bayesian model for the subspace learning problem is initially defined. Then,
sticking to batch type processing, the variational Bayes method is utilized so as to ap-
proximately perform the posterior inference task. Finally, with a suitable extension and
modification of the batch algorithm, an online algorithm is derived. Going one step fur-
ther, sparsity constraints are imposed on the subspace matrix via appropriate Gaussian
scale mixture priors, in order for the proposed scheme to be capable of addressing the
sparse dictionary learning problem, [100], [161]. For the second - deterministic - algo-
rithm, a novel low-rank regularized cost function is first introduced. Then, an alternating
minimization process is followed for iteratively updating the subspace and the coefficients’
matrix. Notably, the nonseparability of the adopted low-rank promoting term renders the
cost function minimization and the subsequent derivation of the online deterministic algo-
rithm a rather intriguing task. Extensive simulated and real data experiments corroborate
the efficiency of the proposed schemes over other relevant state-of-the-art approaches.

5.1 Online subspace learning - A literature review

Detecting the underlying low-dimensional space (subspace) where high-dimensional data
reside is at the heart of several signal processing and machine learning tasks, such as
network anomalies detection,[102], image denoising, [49], [146], direction of arrival (DOA)
estimation, [36], etc. Batch methods such as the celebrated PCA, which indubitably holds
a prominent position in the family of this kind of algorithms, face considerable difficulties
since a) their computational complexity scales with the size of the available measurement
data and b) they require the storage of the whole bunch of data in memory. Therefore, its
application is becoming practically prohibitive in the big data scenario under study.

In light of this, online subspace estimation (tracking) algorithms, that first came into the
scene in the 1970s, [112, 26], have nowadays regain their popularity, [9, 36, 100]. These
tools build upon the hypothesis that datums are sequentially arriving and thus the unknown
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subspace is adaptively estimated each time a new data sample becomes available. Inter-
estingly, this premise, besides reducing the computational complexity, leads to schemes
that do not require storage of the data in memory. Moreover, in a variety of applications
dealing with large-scale datasets, the data to be processed are partially observed, i.e.,
a fraction of them might be missing. Depending on the case, incomplete datasets may
result either from applying compressed sensing ideas in an effort to facilitate or account
for failures in the data acquisition process, [29], [37] or from the inherent nature of sig-
nals met in disparate applications, e.g., collaborative filtering, [136], image reconstruction
[75], etc. Consequently, algorithms that perform subspace tracking from (possibly highly)
incomplete data have flourished notably in the last few years.

Focusing on the deterministic framework, the GROUSE algorithm, which brings forth an
approach based on stochastic gradient descent on the Grassmanian manifold of sub-
spaces, has been presented in [9]. Since stochastic approximation is at the core of
GROUSE, its computational complexity classifies it to the low-complexity subspace track-
ing algorithms, [44]. Local and global convergence of GROUSE to the global minimum has
been recently proved theoretically in [10] and [164], respectively. In [36], a second-order
subspace tracking algorithm, of similar computational complexity to GROUSE, dubbed
PETRELS, has been presented. PETRELS is an unconstrained alternating minimization
recursive least squares (RLS)-type algorithm, building upon the seminal PASTd subspace
tracking algorithm, [160], and extending it for handling missing data. A common charac-
teristic of both the aforementioned algorithms is the rather strong assumption that the true
rank of the sought subspace is known in advance. This shortcoming, which makes PE-
TRELS exhibit an unstable behavior in case the assumption does not hold, is addressed
in [103], where two different algorithms are described. Therein, the variational form of the
nuclear norm is favorably employed for imposing low-rankness on the unknown subspace
matrix, thus robustifying the algorithms in the challenging yet realistic scenario of lacking
the knowledge of the subspace rank. In that vein, Algorithm 1 of [103] is introduced, de-
riving from an alternating minimization strategy on an exponentially weighted regularized
cost function. In addition, a more efficient in terms of computational complexity Algorithm
2 is presented, based on a stochastic gradient descent approach.

In a Bayesian framework, low-rank subspace estimation from incomplete data has been
recently dealt within [6]. Through an elegant joint column sparsity promoting mechanism,
originally proposed in [138] in the context of nonnegative matrix factorization, the initially
selected subspace rank is progressively reduced, tending to the true rank of the unknown
subspace. In [6], group sparsity promoting Student-t type priors are employed and the vari-
ational Bayes method [152] is used for inference. In a similar vein, in [116], a Bayesian
approach based on generalized approximate message passing for addressing the bilinear
inference problem was presented. However, the subspace estimation algorithms devel-
oped in [6] and [116] are of a batch type and thus are not good candidates for processing
high volumes of incomplete streaming data.
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5.2 Problem formulation

In the online rationale, the concept of time is employed to describe the successive arrival
of the data samples. To this end, let n be now the time-index and y(n) a sequence of high-
dimensional m × 1 vectors of observations that lie in a linear low-dimensional subspace
of rank r(n) with r(n) ≪ m. Both the linear subspace and its rank may be time-varying.
Accordingly, the observations at time n can be expressed as,

y(n) = U(n)c(n), (5.1)

where U(n) is a m× r(n) matrix whose columns span the underlying data subspace and
vector c(n) contains the coefficients describing y(n) in this subspace. Since, in general,
the true rank r(n) of U(n) is unknown and in order to account for noisy observations, we
may assume that our data are produced based on the following linear regression model

y(n) = U(n)v(n) + e(n), (5.2)

where U(n) is am×d subspace matrix withm≫ d ≥ r(n) and span(U(n)) ⊆ span(U(n)).
Moreover, in (5.2), the d×1 vector v(n) is the low-dimensional representation of y(n) in the
subspace spanned by the columns of U(n) and e(n) is additive Gaussian noise. In other
words, besides the noise, a reasonable overestimate of the true rank of the unknown data
subspace is considered in our data generation model.

To generalize our model, we may further assume that a) the unknown subspace matrix
U(n) may be sparse, a condition appearing in several applications1 and b) part of the
entries of y(n) are missing. The latter means that what we actually have is not y(n), but
a sampled version of it, i.e., PΩn(y(n)) (where Ωn is a set containing the indexes of y(n)
where information is present), next denoted also as z(n),

z(n) = PΩn(y(n)) ≡ ω(n)⊙ y(n) = Ωny(n). (5.3)

In (5.3), ω(n) is a {0, 1}-binary m × 1 vector having 0’s at the positions where y(n) has
missing entries and 1’s elsewhere and Ωn = diag(ω(n)). If we now stack together all the
observation vectors (with possible missing elements) up to time n, as columns in a m× n
matrix Z(n), yields

Z(n) = Ω(n)⊙ Y(n) = Ω(n)⊙
(
U(n)VT (n) + E(n)

)
, (5.4)

where

Z(n) = [z(1), z(2), . . . , z(n)] = [z1(n), z2(n), . . . , zm(n)]T , (5.5)
Y(n) = [y(1),y(2), . . . , y(n)] = [y1(n),y2(n), . . . , ym(n)]T , (5.6)

Ω(n) = [ω(1),ω(2), . . . ,ω(n)] = [ϖ1(n),ϖ2(n), . . . ,ϖm(n)]
T , (5.7)

V(n) = [v(1),v(2), . . . , v(n)]T = [v1(n),v2(n), . . . , vd(n)] (5.8)

1This assumption is adopted only for the online variational Bayes algorithm.
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and E(n) = [e(1),e(2), . . . , e(n)]. In addition, we define the subspace matrix U(n) row and
columnwise as2

U(n) = [u1(n),u2(n), . . . ,um(n)]T = [u1(n),u2(n), . . . ,ud(n)] . (5.9)

It can be noticed from Eqs. (5.5)-(5.9) that the column size of matrices Z(n),Y(n),Ω(n)
and VT (n) increases with time, while U(n) is a fixed size m× d matrix.

The goals here are a) the estimation and tracking of the underlying low-dimensional sub-
space where measurement data reside, b) the estimation of the low-rank representation
of data in this subspace in time and, as a by-product, c) the recovery of the complete mea-
surement data matrix Y(n) via online matrix completion. In this context, given the batch of
incomplete data Z(n), we aim at estimating the unknown low-rank subspace matrix U(n)
and the latent matrix of projections V(n) in this subspace. However, in case of streamingly
received data, the use of a batch iterative solver entails the processing of the whole bunch
of data that are available up to every time instant, rendering the whole procedure com-
putationally prohibitive and thus practically infeasible. A way to alleviate this impediment
is by employing online data handling, whereby incomplete observation vectors z(n) are
acquired and processed sequentially to learn and track U(n) and provide estimates of the
vectors of coefficients v(n).

5.3 Online variational Bayes algorithm

In this section, we tackle the aforementioned problem using a Bayesian approach. First,
an appropriate Bayesian model is defined that effectively promotes the low-rankness of
the sought subspace through column sparsity inducing Laplace priors. As it will become
clear below, the adopted modeling aims at revealing the true data subspace (spanned by
the columns of U(n)) and its true rank r(n), starting from an overestimate d of it. Based
on the proposed Bayesian model, an iterative batch variational Bayes subspace estima-
tion algorithm is developed, which after suitable adjustments, leads to an efficient online
subspace learning scheme.

5.3.1 Proposed Bayesian model

To develop a Bayesian inference method, first a Bayesian model must be defined, whose
basic structuring elements are a) the likelihood function of the data and b) suitable priors
assigned to the parameters of the model. The likelihood function of the observed data
depends on the statistical properties of the additive noise, which is commonly taken to
be uncorrelated Gaussian with zero mean and constant variance. In this work, in order
to place more importance on recent data and downgrade older measurements which is
meaningful under time-varying conditions, we employ a so-called forgetting factor δ with

2Note that in (5.5)-(5.9), small boldface calligraphic letters have been used to denote columns of matrices
and regular boldface letters to denote rows.
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0 ≪ δ < 1 and define the noise distribution as3,

E(n) =
n∏
t=1

N (e(t)|0, β−1δt−nIm), (5.10)

where β is the noise precision parameter4. In the following, whenever not necessary, the
time index n is omitted to simplify derivations. The time index is reestablished in Section
5.3.3, where the new online subspace estimation algorithm is presented. In this context,
based on (5.4) and the noise distribution given in (5.10), the likelihood function of the
measurement data is expressed as

p(Z | V,U, β) =
n∏
t=1

p(z(t) | v(t),U, β) =
n∏
t=1

∏
j∈Ωt

N (zj(t) | uTj v(t), β−1δt−n), (5.11)

where Ωt is the set of indices for which the corresponding entries of ω(t) are 1 5.

Now that the likelihood function has been defined, we proceed by presenting the prior
distributions imposed on the subspace matrix U and the coefficients matrix V. These
priors aim at simultaneously decreasing the rank and imposing sparsity on the unknown
subspace matrixU by acting in the same way as the low-rank promoting term introduced in
Chapter 4. In the Bayesian literature, a relevant scheme was proposed in [6] for reducing
the rank by imposing column sparsity jointly on U and V. Herein, as in [6], this sparsity
constraint is integrated in the modeling of the prior distributions of ui and vi, as explained
below. At the same time, as stated earlier, in several applications (e.g. [27, 165]) the
subspace matrix U is required to be sparse. That said, joint sparsity on ui and vi and the
sparse structure on subspace matrix U are simultaneously incorporated in the modeling
process of the corresponding prior distributions.

In light of this, three-level hierarchical priors6 are assigned to the columns of U and V. At
the first level of hierarchy the following Gaussian priors are defined,

p(U | s,Γ, β) =
d∏
i=1

N (ui | 0, β−1s−1
i Γ−1

i ) (5.12)

p(V | s, β) =
d∏
i=1

N (vi | 0, β−1s−1
i ∆−1), (5.13)

where s = [s1, s2, . . . , sd]
T , Γ = [γ1,γ2, . . . ,γd], γi = [γ1i, γ2i, . . . , γmi]

T , Γi = diag(γi) for
i = 1, 2, . . . , d and ∆(n) = diag([δn−1, δn−2, . . . , δ, 1]T ). It can be observed from (5.12) and
(5.13) that the ith columns of U and V share the same joint sparsity promoting parameters

3From (5.10), it is evident that the role of δ is to increase the variance of the older measures, making
them less reliable than the more recent measures.

4β is the inverse of the noise variance.
5The latter equality is due to (5.4), since, for given U and V, the distribution of Z is also Gaussian.
6Hierarchical priors are required in order to ensure conjugacy with respect to the likelihood as well as

among them, which is a prerequisite for deriving a tractable posterior inference procedure, [146, 142].
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si’s. In particular, some of the si’s take large values when Bayesian inference is performed
and as a result, both the ith columns of U and V are driven to zero. At the same time, the
diagonal matrix Γi which appears in the prior distribution of U is responsible for indepen-
dently imposing sparsity on the entries of the ith column of the subspace matrix7. Notably,
in cases where a parameter si does not enforce joint sparsity, the jth element of the ith
column of U, uji, may be independently led to zero by the corresponding subspace spar-
sity promoting parameter γji of Γi. It should be also noted that the exponentially weighting
matrix ∆ appears in the prior of V, but not in that of U. This is so because in a streaming
data environment the size of V is time-increasing while the fixed-size subspace matrix U
is estimated based not only on the most recent row v(n), but also on the previous rows of
U with appropriate weighting. On the other hand, in such an online scenario, the current
projection coefficients vector v(n) shall be estimated only from the more recent estimate
of U, which, being fixed-size, does not have to be exponentially weighted.
The prior distribution of V in (5.13) can be written in an equivalent form with respect to the
rows of V as follows

p(V | s, β) =
n∏
t=1

N (v(t) | 0, β−1δt−nS−1), (5.14)

where S = diag(s). Note that it is the form of the prior in (5.14) that is mainly used in
the analysis of the next sections, although (5.13) serves in this section to show how the
rank is reduced by the proposed model. At the second level of the hierarchy we define
the following conjugate8 inverse Gamma distributions for s and Γ,

p(s | λ) =
d∏
i=1

IG(si |
m+ n+ 1

2
,
λi
2
), (5.15)

p(Γ | P) =
m∏
j=1

d∏
i=1

IG(γji | 1,
ρji
2
). (5.16)

where λ = [λ1, λ2, . . . , λd]
T and P is the m× d matrix whose entries are the ρji’s. Finally,

at the third level of the hierarchy, conjugate Gamma distributions are defined for the scale
parameters λi’s and ρji’s, i.e.

p(λi) = G(λi;µ, ν) (5.17)

p(ρji) = G(ρji;ψ, ξ), (5.18)

By integrating out s from (5.13) and (5.12) using (5.15) with Γ kept fixed, we are led to
7In case U is not sparse, we set Γi = Im in (5.12) and no prior applies to Γ, i.e. Eqs (5.16) and (5.18)

below are needless.
8A prior and a posterior are called conjugate distributions if they belong to the same family of distributions

for a given likelihood.
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Figure 36: Directed acyclic graph of the proposed Bayesian model.

a heavy-tailed multiparameter Laplace-type distribution for the joint prior of U and V that
promotes joint column sparsity, as is shown in Section 5.6. Similarly, by fixing s, from
(5.12) and (5.16) we get a multiparameter Laplace prior that imposes sparsity on U.
The proposed Bayesian model is concluded by assigning a conjugate to the likelihood
Gamma prior to model the precision of the noise β as follows,

p(β) = G(β;κ, θ). (5.19)

It should be noted that the proposed Bayesian model, which is built upon the likelihood
(5.11) and the priors (5.13)-(5.19), differs considerably and improves over the relevant
model reported in [6]. The novelty of the new model comes from a) the promotion of spar-
sity on U aside from low-rank through the use of the parameter matrix Γ, b) the (necessary
for online processing) exponential weighting of the data by incorporating a forgetting factor
in the likelihood and the prior of V and c) the adoption of Laplace-type marginal priors for U
and V, instead of Student-t used in [6], in order to promote sparsity and low-rankness. In
the next section, based on the multi-hierarchical model introduced before and presented
graphically in Fig. 36, an approximate Bayesian inference scheme is derived for low-rank
sparse subspace learning from partial observations.

5.3.2 Batch variational Bayes inference

Inferring the joint posterior distribution of multiple variables given the data boils down to an
intractable problemwhen it comes to composite Bayesianmodels, such as those springing
from hierarchical dependences of the involved variables, which are modeled by suitable
priors. This is also the case for the Bayesian model described in the previous section. Fol-
lowing the Bayes’ theorem, the exact joint posterior of our variables given the observations
is obtained by

p(U,V,s,Γ,λ,P , β | Z) = p(Z,U,V,s,Γ,λ,P , β)∫
p(Z,U,V,s,Γ,λ,P , β)dUdVdsdΓdλdPdβ . (5.20)
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Apparently, getting a closed form expression for the posterior given in (5.20) involves the
daunting task of estimating the integral at the denominator. To obviate obstacles of this
type, many approximate inference schemes have come to light in literature, [106, 31].
Herein, the ubiquitous variational Bayes inference approach is adopted, [152]. As also
described in Section 2.1.5, the basic premise of this approach -inspired from the field of
statistical physics- is the assumption that the posterior distribution can be approximately
expressed in a factorized form. Based on this particular hypothesis, the exact joint poste-
rior p(U,V,s,Γ,λ,P , β | Z) is approximated by q(U,V,s,Γ,λ,P , β), defined as

q(U,V,s,Γ,λ,P , β) =q(β)
n∏
t=1

q(v(t))
m∏
j=1

d∏
i=1

q(uji)
d∏
i=1

q(si)
d∏
i=1

q(λi)
m∏
j=1

d∏
i=1

q(γji)q(ρji).

(5.21)

From (5.21) it is easily noticed that there has been considered full statistical a posteriori
independence among the rows of V, as well as among all the elements of the subspace
matrix U. As far as v(t)’s are concerned, being statistical independent is something that
is naturally brought up due to the presumed independence among the corresponding ob-
servation vectors z(t)’s. On the other hand and in contrast to previous related works (e.g.,
[6]), posterior independence is imposed on the entries of U in (5.21). This gives rise to
coordinate descent recursions for retrieving uji’s, which, as shown later, reduces signifi-
cantly the computational complexity of the online subspace estimation task. Notably, as
implied by (5.21), those explicit assumptions on the independence among the rows of U
and the elements of V dictate relevant statistical independence on the variables of our
model belonging to the second and the third level of hierarchy, namely s,λ,Γ and P .

In an attempt to bring to light the particular way that the posterior distributions q(·)’s of all
variables in (5.21) are recovered according to the variational Bayes scheme, we define
the cell array θ = {v(1), . . . , v(n), u11, . . . , umd, s1, . . . , sd, γ11, . . . , γmd, λ1, . . . , λd,
p11, . . . , pmd}9. The posterior distribution q(θi) of each component θi is then obtained by
maximizing the evidence lower bound (ELBO)10 (see Eq. 2.51). As detailed in Section
2.1.5.3, this minimization process leads to closed-form expressions, i.e.,

q(θi) ∝ exp{⟨lnp(θi|θ¬i,Z)⟩¬i}. (5.22)

In the last equation ⟨·⟩¬i denotes expectation taken with respect to q(θ¬i) (see Section
2.1.5). As explained in Section 2.1.5, by maximizing the evidence lower bound (ELBO) we
resort to a coordinate ascent scheme whereby the parameters of each q(θi) are computed
based on the most recent estimates of the parameters of the rest q(θj)’s. This procedure
is applied for our three-level hierarchical Bayesian model and the whole derivation is next
provided.

9Note that for notational convenience, the entries of θ, i.e., the θi’s may represent either vectors or
scalars.

10Recall that ELBO is a lower bound of the Kullback-Leibler divergence criterion between the the approx-
imate posterior q(θ) and the true one, i.e., p(θ | Z).
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Due to the conjugacy of the respective prior distributions (5.13), (5.12) and the likelihood
(5.11), the posterior distribution q(v(t)) of the tth coefficient vector does turn out to be
Gaussian, i.e.,

q(v(t)) = N
(
v(t) | ⟨v(t)⟩,Σv(t)

)
, (5.23)

with mean ⟨v(t)⟩ and covariance matrix Σv(t) given by,

⟨v(t)⟩ = ⟨β⟩Σv(t)⟨U⟩Tz(t), (5.24)

Σv(t) = ⟨β⟩−1
(
⟨UTΩtU⟩+ ⟨S⟩

)−1
, (5.25)

where we recall that Ωt = diag(ω(t)). The expectation term ⟨UTΩtU⟩ is expressed as,

⟨UTΩtU⟩ = ⟨U⟩TΩt⟨U⟩+
m∑
j=1

ωjtΣuj (5.26)

where Σuj = diag([σ2
uj1
, σ2

uj2
, . . . , σ2

ujd
]T ) by virtue of the statistical independence assumed

for the elements of U. Note that σ2
uji

is the variance of uji whose posterior turns out also
to be Gaussian, i.e.,

q(uji) = N (uji | ⟨uji⟩, σ2
uji

), (5.27)

with

⟨uji⟩ = ⟨β⟩σ2
uji

(
⟨vi⟩T∆zj − ⟨vTi ∆ΩtV¬i⟩⟨uj¬i⟩

)
, (5.28)

σ2
uji

= ⟨β⟩−1
(
⟨vTi ∆Ωtvi⟩+ ⟨γji⟩⟨si⟩

)−1
. (5.29)

V¬i and uj¬i in (5.28) are the quantities arising after removing the ith column and the
ith element of V and uj, respectively and Ωt = diag(ϖt). As for the expectation terms
appearing in (5.28) and (5.29), it holds,

⟨vTi ∆ΩtV¬i⟩ = ⟨vi⟩T∆Ωt⟨V¬i⟩+
n∑
t=1

∆n−tωjtσ
T
v(t)¬i, (5.30)

⟨vTi ∆Ωtvi⟩ = ⟨vi⟩T∆Ωt⟨vi⟩+
n∑
t=1

δn−tωjtσvti , (5.31)

with σv(t)¬i standing for the ith column of Σv(t) after removing its ith element σvti.

Next, the posterior distributions of the variables si’s and γji’s belonging to the second
hierarchical level are unfolded. From (5.22) it can be shown that the column sparsity pro-
moting parameters si’s are a posteriori distributed according to the following generalized
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inverse Gaussian distribution,

q(si) = GIG
(
si | −

1

2
, ⟨β⟩

(
⟨uTi Γiui⟩+ ⟨vTi ∆vi⟩

)
, ⟨λi⟩

)
. (5.32)

For the mean ⟨si⟩ of the GIG distribution it holds,

⟨si⟩ =

√
⟨λi⟩

⟨β⟩ (⟨uTi Γiui⟩+ ⟨vTi ∆vi⟩)
. (5.33)

Likewise, the posterior distribution of γji’s that promote independently sparsity on the el-
ements of the subspace matrix U is the generalized inverse Gaussian

q(γji) = GIG
(
γji | −

1

2
, ⟨β⟩⟨si⟩⟨u2ji⟩, ⟨ρji⟩

)
, (5.34)

with ⟨u2ji⟩ = ⟨uji⟩2 + σ2
uji
. Hence,

⟨γji⟩ =
√

⟨ρji⟩
⟨β⟩⟨si⟩(⟨uji⟩2 + σ2

uji
)
. (5.35)

As far as the posteriors of hyperparameters λi and ρji, associated with si and γji, respec-
tively, are concerned, both are Gamma distributions, i.e.,

q(λi) = G (λi | µ̄, ν̄i) , (5.36)

with µ̄ = µ+ n+m+1
2

and ν̄i = ν + 1
2
⟨ 1
si
⟩, and

q(ρji) = G
(
ρji | ψ̄, ξ̄ji

)
, (5.37)

with ψ̄ = ψ + 1 and ξ̄ij = ξ + 1
2
⟨ 1
γij

⟩. For the expected values of λi and ρji, that is ⟨λi⟩ and
⟨ρji⟩ we have,

⟨λi⟩ =
µ+ n+m+1

2

ν + 1
2
⟨ 1
si
⟩
, (5.38)

⟨ρji⟩ =
ψ + 1

ξ + 1
2
⟨ 1
γji

⟩
. (5.39)

Using the form of the distributions in (5.32) and (5.34), the expectation terms ⟨ 1
si
⟩ and ⟨ 1

γji
⟩
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arising in (5.38) and (5.39) can be obtained as,⟨
1

si

⟩
=

1

⟨si⟩
+

1

⟨λi⟩
, (5.40)⟨

1

γji

⟩
=

1

⟨γji⟩
+

1

⟨ρji⟩
. (5.41)

Concluding the posterior distributions of all the involved variables in our hierarchical model,
it can be shown that the noise precision β is Gamma distributed as follows,

q(β) = G
(
β | κ̄, θ̄

)
, (5.42)

where κ̄ = κ+ n(m+d)+md
2

and

θ̄ = θ +
m∑
j=1

(
⟨∥∆

1
2 (zj −ΩjVuj) ∥22⟩+ ⟨uTj SΓ juj⟩

)
+

d∑
i=1

⟨si⟩⟨vTi ∆vi⟩. (5.43)

The expectation of β is given by ⟨β⟩ = κ̄
θ̄
. As for the expectation terms arising in (5.43), it

holds,

⟨∥∆
1
2 (zj −ΩjVuj) ∥22⟩ = ∥∆

1
2 (zj −Ωj⟨V⟩⟨uj⟩) ∥22 + Tr

(
⟨V⟩T∆Ωj⟨V⟩Σuj

)
+⟨uj⟩T

n∑
t=1

ωjtδ
n−tΣv(t)⟨uj⟩+ Tr

(
Σuj

n∑
t=1

ωjtδ
n−iΣv(t)

)
(5.44)

⟨uTj SΓiuj⟩ = ⟨uj⟩T ⟨S⟩⟨Γi⟩⟨uj⟩+
d∑
i=1

⟨si⟩⟨γji⟩σ2
uji

(5.45)

Note that due to the novelty of the proposed Bayesian model and the assumed posterior
independence of the entries of U, (5.27)-(5.45) are new. The mutual dependence among
the moments of all the model parameters, that can be easily observed in the respective
expressions, paves the way for an iterative scheme over the involved quantities. It should
be emphasized though that since we aim at handling a massive amount of streaming data,
the utilization of those expressions ends up to be a prohibitive task. More specifically,
as the number n of the observations increases, calculations that involve quantities such
as Z,V, become increasingly demanding in terms of both the memory storage and the
computational effort. In light of this, an online scheme is presented in the next section, that
favorably adjusts the above defined expressions to the streaming processing scenario.

5.3.3 Online variational Bayes subspace estimation

In this section we derive a new online variational Bayes algorithm for sparse and low-rank
subspace estimation from incomplete data. As shown below, moving from the batch to
the online scenario is not a trivial task. It requires a) the definition of appropriate fixed-size
quantities that can be recursively updated and b) their combination with other formulas
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coming from the batch algorithm in a cohesive scheme. According to the online scenario,
incomplete high dimensional datums z(n)’s are streamingly received as n evolves. Then,
the proposed algorithm proceeds by a) computing an estimate v̂(n) of the coefficients
vector of the observations on the subspace acquired in the previous iteration (i.e. Û(n−1))
and next b) updating elementwisely the subspace matrix Û(n− 1) to Û(n). In the sequel,
for notational convenience, we disregard the expectation operator ⟨·⟩. Then, with a slight
but straightforward abuse of notation and by handling the time index appropriately, we get
from (5.24), (5.25) and (5.26),

v̂(n) = β(n− 1)Σv̂(n)ÛT (n− 1)z(n), (5.46)

Σv̂(n) = β−1(n− 1)

(
ÛT (n− 1)ΩnÛ(n− 1) +

m∑
j=1

ωj(n)Σûj(n− 1) + S(n− 1)

)−1

.

(5.47)

Next, we define the following fixed-size with respect to time quantities,

A(n) = V̂T (n)∆(n)ZT (n), (5.48)

Q(n) = V̂T (n)∆(n)V̂(n) +
n∑
t=1

δn−tΣv̂(t), (5.49)

and for j = 1, 2, . . . ,m,

Pj(n) = V̂T (n)∆(n)Ωj(n)V̂(n) +
n∑
t=1

δn−tωj(t)Σv̂(t), (5.50)

where Ωj(n) = diag(ϖj(n)), and

dj(n) = zTj (n)∆(n)zj(n). (5.51)

The basic idea in any online scheme is the formulation of the various quantities that carry
the past knowledge of the relevant process in a time-recursive manner. Interestingly, Eqs.
(5.48)-(5.51) can easily be written in time-recursive forms, i.e.,

A(n) = δA(n− 1) + v̂(n)zT (n), (5.52)

Q(n) = δQ(n− 1) +Σv̂(n) + v̂(n)v̂T (n), (5.53)

Pj(n) = δPj(n− 1) + ωj(n)
(
Σv̂(n) + v̂(n)v̂T (n)

)
, (5.54)
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dj(n) = δdj(n− 1) + z2j (n). (5.55)

Moreover, for j = 1, 2, . . . ,m, we define the following matrices that stem from Pj(n)’s with
the addition of appropriate diagonal terms,

Rj(n) = Pj(n) + Γ j(n− 1)S(n− 1). (5.56)

where Γ j = diag([γj1, γj2, . . . , γjd]T ). Having aptly obtained the above computationally
efficient formulas, we can now head for online processing. Towards this, the equations
derived for the batch case are suitably modified by incorporating the previously defined
recursively computed quantities. More specifically, by substituting (5.30), (5.31) in (5.28),
(5.29) respectively and using (5.48), (5.50) and (5.56) we get the following time update
expressions for the entries of the subspace matrix estimate Û at time n,

ûji(n) = β(n− 1)σ2
ûji

(n− 1)
(
aij(n)− rTj¬i(n)ûj¬i(n)

)
, (5.57)

σ2
ûji

(n) = β−1(n− 1)r−1
j,ii(n), (5.58)

where aij(n) is the ijth entry of the d × m matrix A(n), rTj¬i(n) is the ith row of d × d
autocorrelation matrix Rj(n) after neglecting its ith element, i.e., rj,ii and finally

ûj¬i(n) = [ûj1(n), ûj2(n), . . . , ûji−1(n), ûji+1(n− 1), . . . , ûjd(n− 1)]T . (5.59)

From (5.57) and (5.83) it is readily seen that each element of the jth row of U is updated
at each time instance n, taking into account the most recent estimates of the remaining
entries of the jth row in a cyclic manner. It is worthy to mention that this emerging iterative
scheme, resulting from the espoused statistical independence among the elements of U,
can be viewed as a relevant to the cyclic coordinate descent strategy [15]. Following the
same premise for the column sparsity promoting parameters we get from (5.33),

si(n) =

√
β−1(n− 1)λi(n)

ûTi (n)Γi(n)ûi(n) +
∑m

j=1 γji(n)σ
2
ûji

(n) + qii(n)
, (5.60)

where qii(n) is the ith diagonal element of Q(n). As for the hyperparameters δi’s of the
si’s we have from (5.38), (5.40) the following recursive equation

λi(n) =
2µ+ (1− δ)−1 +m+ 1

2ν + s−1
i (n− 1) + λ−1

i (n− 1)
. (5.61)

Note that in (5.61) the size of the effective time window, i.e., (1− δ)−1, is used in place of
n, as in [142]. For γji’s that independently favor sparsity on the entries of the subspace
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matrix U, in an online scheme (5.35) takes the form,

γji(n) =

√√√√ ρji(n)

β(n− 1)si(n− 1)
(
û2ji(n) + σ2

ûji
(n)
) (5.62)

and for the hyperparameters ρji’s, (5.39) and (5.41) yield

ρji(n) =
2(ψ + 1)

2ξ + γ−1
ji (n− 1) + ρ−1

ji (n− 1)
. (5.63)

Finally, from (5.42)-(5.45) and applying some straightforward algebraic manipulations as
in [142], we end up with the following efficient formula for computing the noise precision
β, at each time iteration

β(n) =
2κ+ 1

1−δ (m+ d) +md(
2θ +

∑m
j=1

(
dj(n)− ûTj (n)ak(n) + σTûj(n)rj(n)

)
+
∑d

i=1 si(n)qii(n)
) (5.64)

where ûTj (n) is the jth row of Û(n), aj(n) is the jth column of A(n), σûj(n) = diag(Σûj(n))
and rj(n) = diag(Rj(n)).
As it can be seen, most of the above defined quantities resolve to efficient time-updating
formulas. In doing so, the need for taking into consideration the whole bunch of data,
which is computationally prohibitive in applications dealing with big data, is eliminated. By
collecting and putting in a proper order the previously derived expressions, we are led
to the new online variational Bayes sparse subspace learning (OVBSL) algorithm, which
is summarized in Algorithm 5.1. The algorithm provides at each time iteration not only
the sought estimates v̂(n) and Û(n), but also estimates for all parameters of the model
described in Section 5.3.1. Note also that all these parameters are directly linked to spe-
cific distributions through the posterior inference analysis of Section 5.3.1. By carefully
inspecting OVBSL in Algorithm 5.1, it can be shown that its computational complexity is
O(|ω(n)|d2 + md), where |ω(n)| is the number of observed entries at time n. It should
be emphasized that a significant reduction in the computational complexity has been
achieved (which would be otherwise O(|ω(n)|d3)) by adopting the element-by-element
estimation of Û via a coordinate descent type procedure. As shown in Algorithm 5.1,
all hyperparameters of OVBSL are set and fixed to very small values at the initialization
stage of the algorithm, as is the custom in sparse Bayesian learning schemes [148]. This
way, prior distributions become noninformative; in line with the fact that no information for
the respective parameters is a priori available11. Hence parameter fine tuning or cross-
validation is entirely avoided and all parameters of the model are inferred from the data,
rendering the proposed algorithm ideally accustomed for use in a real-time setting. In
the next section the proposed algorithm is set in a unified framework with other related
state-of-the-art techniques and its advantages in terms of performance and complexity

11Actually, since those parameters are placed in the third and the fourth level of hierarchy, their values
have no crucial role on the estimation of parameters of our interest, i.e., the first level ones.
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are highlighted.

5.3.4 Relation with state-of-the-art

In this section we investigate and highlight the connection of the new Bayesian algorithm
with two other closely related techniques that have recently appeared in the literature,
namely the PETRELS algorithm presented in [36] and Algorithm 1 of [103]. All three al-
gorithms under study are second-order online subspace learning schemes that deal with
(possibly highly) incomplete data. Out of the three schemes, only the proposed algorithm
has the provision to impose sparsity to the unknown subspace matrix. Hence, to make
comparisons more clear, we relax this constraint, that is we set Γi = Im for i = 1, 2, . . . , d
in our Bayesian model described in Section 5.3.1. As we shall see below, this Bayesian
model can be considered as a unified framework from which all three schemes may orig-
inate. To be more specific, let us first recall the likelihood function of the model given in
(5.11), which can be expressed as

p(Z | U,V, β) ∝ exp
(
−β
2

∥∥∥(Z−Ω⊙ (UVT ))∆ 1
2

∥∥∥2
F

)
. (5.65)

Based on (5.65), the maximum likelihood (ML) estimator is obtained by minimizing w.r.t.
U and V the negative log-likelihood, resulting in the following minimization problem12

(P1) min
U,V

β

2

∥∥∥(PΩ(Y)− PΩ(UVT ))∆
1
2

∥∥∥2
F
. (5.66)

The so-termed PETRELS algorithm presented in [36] solves (P1) through an online alter-
nating (betweenU and V) least squares (LS) technique, which provides both the estimates
of the subspace matrix U(n) and the new vector of projection coefficients v(n) at each time
iteration. However, by solving (P1) PETRELS does not take any special care for revealing
the true rank of the sought subspace. The algorithm starts with an overestimate d of the
rank (number of columns of U) and the estimates returned by the algorithm are related to
a subspace of rank d, which may be far from the true rank.

Let us now consider the likelihood function given in (5.65) and the first level (Gaussian)
priors of U and V in our model given by (5.13) and (5.12) for si = s, i = 1, 2, . . . , d, where
s is a constant parameter and not a random variable that can be determined from data.
Then (5.13) and (5.12) are rewritten as,

p(U | s, β) ∝ exp
(
−β
2
s ∥U∥2F

)
, (5.67)

p(V | s, β) ∝ exp
(
−β
2
s
∥∥∥∆ 1

2V
∥∥∥2
F

)
. (5.68)

From the likelihood (5.65) and the priors (5.67) and (5.68) the maximum a-posteriori prob-
12In order to retain notational consistency with Chapter 4, the incomplete data matrix Z is next denoted

as PΩ(Y) in the minimization problems.
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Algorithm 5.1: The OVBSL algorithm
Initialize: Û(0),S(0), β(0),Γj(0),Σûj(0), j = 1, 2, . . . ,m
Set A(0) = 0,Pj(0) = 0, dj(0) = 0, j = 1, 2, . . . ,m
Set µ = 10−6, ν = 10−6, ψ = 10−6, ξ = 10−6, κ = 10−6, θ = 10−6

Set Q(0) = 0, δ
for n = 1, 2, . . .
Get z(n),ω(n)
Σv̂(n) = β−1(n− 1)

(
ÛT (n− 1)ΩnÛ(n− 1) +

∑m
j=1 ωj(n)Σûj(n− 1) + S(n− 1)

)−1

v̂(n) = β(n− 1)Σv̂(n)ÛT (n− 1)z(n)
Σ(n) = Σv̂(n) + v̂T (n)v̂(n)
Q(n) = δQ(n− 1) +Σ(n)
A(n) = δA(n− 1) + v̂(n)zT (n)
for j = 1, 2, . . . ,m,
Pj(n) = δPj(n− 1) + ωj(n)Σ(n)
Rj(n) = Pj(n) + Γ j(n− 1)S(n− 1)
dj(n) = δdj(n− 1) + z2j (n)
for i = 1, 2, . . . , d,
ûji(n) = β(n− 1)σûji(n− 1)

(
aij(n)− rTj¬i(n)ûj¬i(n)

)
σ2
ûji

(n) = β−1(n− 1)r−1
j,ii(n)

ρji(n) =
2(ψ+1)

2ξ+γ−1
ji (n−1)+ρ−1

ji (n−1)

γji(n) =
√

ρji(n)

β(n−1)si(n−1)
(
û2ji(n)+σ

2
ûji

(n)
)

end
Set Σûj(n) = diag

(
[σ2
ûj1

(n), σ2
ûj2

(n), . . . , σ2
ûjd

(n)]T
)

end
for i = 1, 2, . . . , d,

λi(n) =
2µ+(1−δ)−1+m+1

2ν+s−1
i (n−1)+λ−1

i (n−1)

si(n) =
√

β−1(n−1)λi(n)

ûT
i (n)Γi(n)ûi(n)+

∑m
j=1 γji(n)σ

2
ûji

(n)+qii(n)

end
Set S(n) = diag([s1(n), s2(n), . . . , sd(n)]T )
β(n) =

2κ+ 1
1−δ

(m+d)+md(
2θ+

∑d
j=1

(
dj(n)−ûTj (n)aj(n)+σT

ûj
(n)rj(n)

)
+
∑d

i=1 si(n)qii(n)

)
end
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ability (MAP) estimator of U and V defined by solving the following minimization problem,

min
U,V

{−lnp(U,V | Z)} ≡ min
U,V

{−ln [p(Z | U,V, β)p(U | s, β)p(V | s, β)]} , (5.69)

is expressed as,

(P2) min
U,V

β

2

[∥∥∥(PΩ(Y)− PΩ(UVT ))∆
1
2

∥∥∥2
F
+ s ∥U∥2F + s

∥∥∥∆ 1
2V
∥∥∥2
F

]
.

The minimization problem (P2) is at the heart of the analysis in [103]. Algorithm 1 of [103]
is a second-order alternating ridge regression type scheme that solves (P2) sequentially
and provides estimates of U(n) and v(n) at each time iteration. In [103], to promote the
low-rank data representation, the minimization problem is originally formulated as

(P2′) min
X
β

[
1

2

∥∥∥(PΩ(Y)− PΩ(X))∆
1
2

∥∥∥2
F
+ s

∥∥∥X∆ 1
2

∥∥∥
∗

]
.

Then, in search for a nuclearhis-norm surrogate that would be amenable to online process-
ing, the nuclear norm ||X∆ 1

2 ||∗ in (P2′) is replaced by its upper bound (||∆
1
2V||2F+||U||2F )/2,

with X = UVT , thus leading to (P2). Even though, compared to PETRELS, a more direct
promotion of the low-rankness of the underlying subspace is employed in [103], again an
overestimate d of the true rank is used and Algorithm 1 of [103] lacks a specific mecha-
nism for imposing low-rankness explicitly by reducing the initial rank to the true rank as
the algorithm evolves. In addition, special care should be taken for the parameter s that
must be properly selected and updated in the framework of an online scheme.

Let us, finally, employ the complete Bayesian model of Section 5.3.1 (with the exception
of the subspace matrix sparsity promoting parameters γji’s which are set to 1). In such a
case, as shown in Section 5.6, the joint prior of U and V can be expressed as

p(U,V | δ, β) ∝ exp

(
−β

1
2

d∑
i=1

λ
1
2
i

(
∥ui∥22 + ∥vi∥22,∆

) 1
2

)
. (5.70)

From (5.65) and (5.70) the MAP estimator for U and V is now obtained from the solution
of the following minimization problem,

(P3) min
U,V

[
β

2

∥∥∥(PΩ(Y)− PΩ(UVT )
)
∆

1
2

∥∥∥2
F
+ β

1
2

d∑
i=1

λ
1
2
i

(
∥ui∥22 + ∥vi∥22,∆

) 1
2

]
. (5.71)

Note that the regularizing summation term in (P3) corresponds to the weighted ℓ1,2 norm
of the matrix [UT (∆

1
2V)T ]T [89], which is known to impose column sparsity [89] and thus

explicitly reducing the rank of U, leading to more consistent estimates. Interestingly, this
term is actually a generalized version of the low-rank imposing term introduced in Chapter
4. More specifically, assuming β 1

2λ
1
2
i = λ,∀ i = 1, 2, . . . , d, and∆ = In (5.71) boils down to

(4.24) with p = 1.
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Derived from the Bayesianmodel of Section 5.3.1, theminimization problem (P3) is closely
related to the analysis and the OVBSL algorithm presented above. It should be empha-
sized though that OVBSL is not a recursive alternating MAP estimation scheme, but a
variational Bayes type technique that can be deemed as a generalization of the MAP ap-
proach. While a MAP procedure would provide the point estimates of the parameters of
interest U and V, the proposed algorithm returns in addition the approximate distributions
of all parameters involved in the model, including the weighting parameters λi’s, which
are now estimated directly from the data. Summarizing and compared to [36] and [103]
the proposed algorithm a) is equipped with an inherent mechanism for inducing column
sparsity and thus reducing the rank of the latent subspace matrix dynamically and b) is
fully automatic as all parameters of the model are estimated from the data and thus any
need for preselection (using heuristics) or fine tuning is entirely avoided.

5.4 Cost function minimization based algorithm

Departing from the Bayesian approach, a deterministic algorithm is next presented for
addressing the low-rank subspace learning problem. The developed algorithm actually
solves a simplified version of the minimization problem (P3) stated in (5.71).

More specifically, the proposed minimization problem consists of two terms: a) an expo-
nentially weighted LS term which accounts for the fitting between the data and the model
and b) a smoothed special instance of the weighted ℓ1,2 norm described above, arising by
setting β 1

2λ
1
2
i = λ,∀ i = 1, 2, . . . , d, in the second term of the cost function in Eq. (5.71),

i.e.,

{v̂(n), Û(n)} = min
v(n),U(n)

n∑
t=1

δn−t∥PΩt(y(t))− PΩt (U(n)v(t)) ∥22

+ λ

d∑
i=1

√
vTi (n)∆(n)vi(n) + ∥ui(n)∥22 + η2. (5.72)

Hence in (5.72) λ is a low-rank regularization parameter and η2 is small positive constant
which is used for smoothing purposes (see Section 4.3.3). It can be easily observed that
(5.72) is actually an online version of the cost function (4.13) proposed in Chapter 4 for
the batch matrix completion problem for p = 1.

It is worthy to underline that albeit the first term of (5.72) decouples over both the rows
and the columns of U(n) and V(n), this is not the case with the second low-rank promot-
ing term. Hence, getting closed form expressions for estimating v(n) and U(n) at time
n is rendered infeasible, while also the lack of such a decoupling seems to hinder the
derivation of an online scheme. However, as we show below by adopting an alternat-
ing minimization strategy that combines a regularized LS step for the updating of v(n)
followed by cyclic coordinate descent type steps for the (columns of) U(n), an efficient
online subspace learning algorithm can be obtained.
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Defining the d× d diagonal matrix D(n) with diagonal entries

di(n) =
λ√

v̂Ti (n)∆(n)v̂i(n) + ∥ûi(n)∥22 + η2
, (5.73)

we first minimize (5.72) w.r.t. v(n) and get an approximate closed-form solution13 for v̂(n),
i.e.,

v̂(n) =
(
ÛT (n− 1)ΩnÛ(n− 1) + D(n− 1)

)−1

Û(n− 1)TPΩn(y(n)). (5.74)

Next we adopt a block coordinate descent (BCD) type minimization of (5.72) w.r.t. the
columns of U(n), [15], which results to the following expression for the estimate of its jith
element14,

ûji(n) =

(
n∑
t=1

δn−tωj(t)v̂
2
i (t) + di(n− 1)

)−1 n∑
t=1

δn−tv̂i(t)×ωj(t)yj(t)− ωj(t)

∑
t′<t

v̂i′ (t)ûji′ (n) +
∑
t′>t

v̂i′ (t)ûji′ (n− 1)

 . (5.75)

In (5.74), (5.75) there is a subtle point that should be accentuated: both v̂(n) and Û(n)
aside from their inherent interrelation shown in (5.74) and (5.75), involve thematrixD(n−1)
which in turn includes quantities depending on v̂i(n − 1) and ûi(n − 1). Hence, it arises
that v̂(n), estimated at time n, is also influenced by the projection coefficient vectors esti-
mated in the previous time instants. A similar situation arises for the estimate Û(n) of the
subspace matrix, which due to the presence of D(n−1) in (5.75) also relies on its estimate
obtained in the previous time instant. It should be noted that this particular characteris-
tic of our method is a consequence of the aforementioned nondecoupling nature of the
low-rank regularizing term utilized.

Turning now to the online route, we need to express the previous updating equations, in
terms of quantities whose size remains fixed as n increases. To this end, we observe that
Eq. (5.75) can be written more compactly and avoid time-increasing summation terms by
incorporating appropriate time-updating formulas in the same vein to the ones presented
in Section 5.3.3. Specifically, we define the following fixed size w.r.t. time quantities

A(n) = V̂T (n)∆(n)ZT (n), (5.76)
Pj(n) =V̂T (n)∆(n)Ωj(n)V̂(n), j = 1, 2, . . .m, (5.77)

qi(n) = v̂Ti (n)∆(n)v̂i(n). i = 1, 2, . . . d, (5.78)

13The exact (yet not closed-form) expression for v̂(n) contains D(n) in place of D(n− 1) in Eq. (5.74).
14Note that in (5.75) we consider a single iteration of the BCD procedure and map BCD iterations to time

iterations.
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It is easy to verify that A(n), Pj(n) and qi(n) in (5.76), (5.77), (5.78), respectively, can be
easily expressed time-recursively as

A(n) = δA(n− 1) + v̂(n)zT (n), (5.79)
Pj(n) =δPj(n− 1) + ωj(n)v̂(n)v̂T (n), (5.80)

qi(n) = δqi(n− 1) + v̂2i (n). (5.81)

The term v̂Ti (n)∆(n)v̂i(n) which appears in the expression of di(n) (5.73), coincides with
qi(n) and thus it is efficiently computed via (5.81). Following the same path, (5.75) is
rewritten by integrating the above-defined quantities yielding

ûji(n) =
aij(n)− pTj¬i(n)ûj¬i(n)
pj,ii(n) + di(n− 1)

, (5.82)

where aij(n) denotes the ijth entry of the d ×m matrix A(n), pTj¬i(n) is the ith row of the
d× d autocorrelation matrix Pj(n) after ignoring its ith entry pj,ii(n), and finally

ûj¬i(n) =[ûj1(n), ûj2(n), . . . , ûji−1(n), ûji+1(n− 1), . . . , ûjd(n− 1)]T . (5.83)

The proposed online column sparsity promoting subspace learning algorithm (OCSpSL)
from incomplete data is summarized in Algorithm 5.2.

Algorithm 5.2: The OCSpSL algorithm
Initialize U(0), D(0)

Set A(0) = 0, q(0) = 0, δ
for n = 1, 2, . . .

v̂(n) =
(
ÛT (n− 1)ΩnÛ(n− 1) + D(n− 1)

)−1

Û(n− 1)TPΩn(y(n))
Update q(n),D(n) from (5.81) and (5.73)
Update A(n) from (5.79)
for j = 1, 2, . . . ,m
Update Pj(n) from (5.80)
for i = 1, 2, . . . , d

Compute ûji(n) =
aij(n)−pTj¬i(n)ûj¬i(n)

pj,ii(n)+di(n−1)

end
end
end

In Table 11, OVBSL and OCSpSL are compared in terms of computational complexity
and memory storage requirements with other related state-of-the-art algorithms. Besides
PETRELS and Algorithm 1 of [103] mentioned above, two other algorithms are included,
namely GROUSE reported in [9] and Algorithm 2 of [103], which is a first-order stochastic
approximation type scheme. We see from Table 11 that the proposed algorithms require
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Table 11: Computational complexity and memory storage requirements of online subspace learning
algorithms.

Algorithm GROUSE [9] PETRELS [36] Alg. 1 of [103] Alg. 2 of [103] OVBSL OCSpSL
Comp. complexity O(|ω(n)|d2 +md) O(|ω(n)|d2) O(|ω(n)|d3) O(|ω(n)|d2 +md) O(|ω(n)|d2 +md) O(|ω(n)|d2)

Memory requirements O(md) O(md2) O(md2) O(md) O(md2) O(md2)

less computations per iteration than Algorithm 1 of [103], while they have similar complex-
ity with the remaining three algorithms. Note though that, as it will be also shown in the next
section, PETRELS and GROUSE perform well under the condition that the true subspace
rank r(n) is known, while Algorithm 2 of [103], being a first-order algorithm is expected to
have a much slower convergence rate compared to the remaining second-order schemes
included in Table 11. With regard to memory requirements, both OVBSL and OCSpSL
demand more storage space compared to the rest state-of-the art algorithms, yet at the
same order of magnitude with PETRELS and Algorithm 1 of [103]. As expected, lower
memory storage is required by the first-order methods namely GROUSE and Algorithm 2
of [103].

5.5 Experimental Results

In this section, the effectiveness of the proposed OVBSL and OCSpSL algorithms is eval-
uated in a variety of experiments carried out on synthetic and real data.

5.5.1 Synthetic data experiments

In the following, two different experiments are presented. Our first goal is to illustrate the
efficiency of OVBSL and OCSpSL in tackling matrix completion. It should be noted that
the sparsity imposition on the subspace matrix from OVBSL is purposely relaxed in this
experiment, that is we set Γi = Im,∀i = 1, 2, . . . , d. The performance of OVBSL in the
challenging sparse subspace estimation problem is explored in the second experiment of
this subsection. Therein, the aforementioned favorable characteristic of OVBSL algorithm,
i.e., its potential to impose sparsity on the subspace matrix, is thoroughly investigated. To
this end, the parameters γkl’s are then considered “active”, normally taking their values
according to the full Bayesian model analytically described in Section 5.3.3.

5.5.1.1 Online matrix completion

In order to assess the performance of OVBSL algorithm in recovering missing data, we
simulate a low dimensional subspace U ∈ Rm×r with m = 500 and r = 5 and Gaussian
i.i.d. entries uji ∼ N (0, 1

m
). Next, 20000 r × 1 projection coefficient vectors c(n) are pro-

duced according to a Gaussian distribution ci(n) ∼ N (0, 1). The signal y(n) at time n is
then generated by the product Uc(n), it is normalized so that its power is equal to 1, and
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then contaminated by i.i.d. Gaussian noise e(n) ∼ N (0, β−1Im). To model the missing
entries, we randomly select a fraction π of the entries from each datum y(n), which are
assumed to be known, whereas the rest (1−π)× 100% of the elements are considered to
be missing. To show the merits of the proposed OVBSL algorithm, we compare it to three
state-of-the-art techniques, namely GROUSE with greedy step-size, [164], PETRELS [36]
and Algorithm 1 of [103]. It is worthy to mention that, as also previously mentioned, both
GROUSE and PETRELS hinge on the assumption that the rank of the underlying sub-
space is known. Contrary, Algorithm 1 of [103] utilizes ℓ2 norm regularization as described
in the previous section, that robustifies the algorithm in the absence of this knowledge. Fi-
nally, the true standard deviation of the noise is provided as input for adaptively estimating
the step-size of GROUSE while the low-rank regularization parameter of Algorithm 1 of
[103] is set to 0.1 as is proposed in the relevant paper.

Moreover, to make things more interesting, we adhere to the challenging but realistic sce-
nario whereby the true rank of the underlying subspace is unknown. Along this line, the
rank of the subspace matrix is accordingly initialized in all tested algorithms to an over-
estimate of the true rank, namely d = 10. Our initial objective is to demonstrate the ef-
fectiveness of the proposed OVBSL algorithm when certain amounts of data are missing.
To this end, we carry out two experiments corresponding to different fractions of the ob-
served entries, i.e., π = {0.25, 0.75}, keeping the noise precision β fixed to 103. Since
the competence of the subspace learning algorithms in tracking possible changes of the
sought subspace is of crucial importance in many applications, an abrupt change of the
subspace is induced at n = 10000 for π = 0.25. The performance of the tested algorithms
is evaluated in terms of the normalized running average estimation error (NRAEE) defined
as: NRAEE(n) = 1

100

∑n
t=n−99

∥ŷ(t)−y(t)∥2
∥y(t)∥2 where ŷ(t) = Û(t)v̂(t). The average NRAEE of

10 independent runs of the experiment is shown in Fig. 37a. It is clear that the proposed
OVBSL algorithm outperforms its rivals for both values of the fraction of the observed data
π. At the same time, OVBSL is proven to be competent in tracking sudden changes of the
latent subspace, since the transient deterioration of its performance caused by the deliber-
ate change induced at n = 10000 is swiftly rectified in the subsequent iterations. Notably,
in the lack of knowledge of the true rank of the subspace, PETRELS becomes unstable.
Contrary, Algorithm 1 of [103] and GROUSE with the greedy step-size scheme present a
robust behavior (note that GROUSE is given the true standard deviation of the noise for
updating its step-size), though with clearly less reconstruction accuracy compared to the
proposed OVBSL algorithm.

Based on the same experimental setting, OCSpSL is next compared with PETRELS [36]
and Algorithm 1 of [103]. The low-rank regularization parameter of OCSpSL is set to 0.1.
The algorithms are now tested for two different percentages of missing (at random) data,
i.e., π = {0.5, 0.8} and the initial rank of the subspace matrices is now set to d = 20. As
is shown in Fig. 38, OCSpSL exhibits a robust behavior, outperforming its rivals in terms
of NRAEE for both values of π, while PETRELS diverges after a number of iterations.
Interestingly, OCSpSL besides its robustness and improved estimation performance, it is
also able to retrieve the real subspace rank. After convergence most of the columns of
Û(n) are zero and its rank is 5. On the contrary, Algorithm 1 of [103] ends up without
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(a) (b)

Figure 37: Performance comparison among OVBSL, Algorithm 1 of [103], PETRELS and GROUSE,
[164], for the matrix completion problem. (a) Robustness to different fractions of the observed en-
tries (π) (b) Sensitivity to different levels of noise corruption.

decreasing the initially set rank value.

Next, we examine the robustness of OVBSL to noise corruption. To do so, we keep the
fraction of the observed entries fixed to π = 0.4, focusing on the behavior of OVBSL
and the competing schemes for three different values of the noise precision, i.e., β =
{105, 103, 102}. Fig. 37b depicts the average NRAEE of 10 executions of the experiment
obtained by the tested algorithms in the three different cases examined. It is easily noticed
that herein as well, OVBSL achieves higher reconstruction accuracy than the competing
schemes for all different β’s, thus corroborating its robustness to various levels of noise
corruption.

5.5.1.2 Online sparse subspace estimation

In the following, the compelling feature of OVBSL to favor sparse subspace estimates is
thoroughly explored. To clearly demonstrate the merits of this key aspect of the algorithm,
a sparse subspace matrix U of rank r = 5 is modeled. Then, the same above-described
process is adopted for producing 20000 projection coefficient vectors c(n), that give rise
to the corresponding signals Uc(n). Finally, Gaussian i.i.d. noise of precision β = 103 is
assumed to contaminate the data. For now, focusing on the subspace matrix estimation
problem, we depart from the matrix completion problem considering that data are fully ob-
served (hence the fraction of the observed entries π equals to 1) and we test two versions
of OVBSL, that is, when sparsity of the subspace a) is taken into account and b) is disre-
garded in the same way explained earlier and the greedy step-size version of GROUSE,
[164]. The estimates of the subspace are assessed as time evolves by means of the nor-
malized subspace reconstruction error (NSRE) defined as NSRE(n) =

∥PÛ⊥(n)
U∥F

∥U∥F
15. The

15PÛ⊥(n)U denotes the projection of the true subspace matrix U to the orthogonal complement of the
subspace spanned by the columns of the estimated subspace matrix Û⊥(n).
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Figure 38: NRAEE obtained by OCSpSL, PETRELS and Algorithm 1 of [103] on the simulated matrix
completion problem.

benefits emerging from taking into account the sparsity existing in the unknown subspace
matrix, come to light by exploring OVBSL’s performance for different levels of sparsity im-
posed on it, namely 0.7 and 0.9. In both cases, the subspace matrices are initialized to an
overestimate of the rank, i.e., d = 10. Fig. 39a depicts the mean NSRE of 10 runs of the
experiment obtained for the two versions of OVBSL and GROUSE as time evolves. As it
can be readily seen, OVBSL achieves subspace estimates of higher accuracy compared
to both its so to speak non-sparse version and GROUSE which, likewise, does not favor
sparsity on the subspace matrix. It should be noted that the gains obtained by the sparse
OVBSL are becoming abundantly clear as the sparsity level increases.

Next, OVBSL and GROUSE are probed in the challenging problem of sparse subspace
estimation from partially observed data. Towards this, the same experimental setting de-
scribed above is followed and two cases corresponding to two different combinations of
sparsity level and fraction of observed entries are examined, namely a) sparsity-level=0.7
and π = 0.75 and b) sparsity-level=0.9 and π = 0.5. OVBSL is again evaluated for the two
cases corresponding to its sparse and non-sparse version and GROUSE is also tested,
initializing the rank d of subspace matrices to 5 and using NSRE as the performance
metric. From Fig. 39b, it is verified that albeit data are incomplete, sparse OVBSL outper-
forms both its nonsparse version and GROUSE thus corroborating that taking advantage
of the sparsity of the subspace matrix is still meaningful when the assumption of sparse
subspace is valid.

5.5.2 Real data experiments

In this section we focus on the efficiency of OVBSL algorithm on real data experiments.
More concretely, we conduct two different experiments corresponding a) to hyperspec-
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Figure 39: Performance comparison between sparse and nonsparse versions of OVBSL and
GROUSE, [164]. (a) Robustness to different sparsity levels of the subspace matrix and π = 1 (b)
Robustness to different percentages of missing entries and subspace sparsity levels.

tral image reconstruction out of partially observed measurements and b) to the eigenface
learning problem. In both experiments OVBSL is compared with the state-of-the-art Al-
gorithm 1 of [103] whose low-rank regularization parameter takes its value according to
the heuristic rule that was also followed on the real data experiments considered in [103].

5.5.2.1 Pixel-by-pixel hyperspectral image recovery

As mentioned in Section 2.2 a key characteristic of HSIs is the high degree of correlation
they present, both in the spectral and the spatial domains, [67]. Given a HSI, let us form a
matrix with its columns corresponding to the pixels of the HSI, and its rows to the spectral
bands. In doing so, it can be easily seen that the underlying high coherence appearing
both in columns and rows leads to a matrix that may be of very low rank, as compared
to its dimensions. Actually, this fact gives us good grounds for exploiting the low-rank
structure in favor of recovering HSIs, in cases that data either are partly missing or have
suffered by severe noise corruption. In the following, we test the performance of OVBSL
and Algorithm 1 of [103] in recovering the Salinas Valley HSI, [67], out of a fraction π = 0.2
of its entries. Since both algorithms process data in an online fashion, we assume that
the aforementioned time instances, hereafter, correspond to a sequence of all the pixels
taken in a random order from the image. Put differently, the algorithms process the pixel
spectral signatures (which are the columns of the formed matrix) one-by-one, as if they
were becoming available in a streaming fashion. Notably, this type of processing aside
from reducing the computational complexity, it alleviates the need for memory storage,
thus paving the way for on-board processing. The rank of the subspace matrix is initialized
to d = 10. To quantitatively assess the performance of the tested algorithms, we estimate
the NRAEE (Fig. 40a), as the number of the processed pixels increases, and the structural
similarity (SSIM) index values, [157], between the true and the reconstructed band images
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(a) (b)

Figure 40: Performance comparison between OVBSL and Algorithm 1 of [103] in terms of NRAEE
and SSIM. (a) NRAEE as the number of processed pixel increases (b) SSIM index per reconstructed
band.

(Fig. 40b). It is clearly shown in Fig. 40a that OVBSL achieves higher reconstruction
accuracy on average as compared to its rival in terms of NRAEE. Focusing on Fig. 40b, it
can be noticed that OVBSL presents higher SSIMs in the majority of the spectral bands,
with only few exceptions of bands, where the SSIM indexes obtained by OVBSL and
Algorithm 1 of [103], either take close values or the latter gets slightly greater values,
e.g., at band 31. In order to give further insight at the reconstructed bands, we provide in
Figs. 41a, 41e, the true bands 31 and 37, respectively, accompanied by their incomplete
versions (Figs. 41b, 41f) that were provided as inputs to the tested algorithms. From Figs
41c and 41d, it can be easily observed that, in good agreement with the SSIMs of the two
algorithms at this band, OVBSL reconstructs the 37th band of Salinas HSI in remarkably
higher accuracy than Algorithm 1 of [103]. As regards band 31 where the SSIM index of
Algorithm 1 of [103] is slightly higher that that of OVBSL, Figs. 41g 41h show that the
reconstructed images are quite similar for both algorithms. That said, OVBSL is favorably
proven to be competent in processing this real HSI dataset, outperforming the state-of-
the-art Algorithm 1 of [103].

5.5.2.2 Online eigenface learning

In this section, we qualitatively evaluate the performance of sparse OVBSL as compared
to the nonsparse Algorithm 1 of [103] on another real dataset. Towards this, we use the
MIT-CBCL face dataset [137], which contains n = 2429 face images of size 19× 19 pixels.
The tested algorithms process the images asm-dimensional vectors withm = 361(= 192),
in an online fashion. The subspace matrix estimated by both algorithms can be deemed
as a learned dictionary of faces. In doing so, each image can be reconstructed by a linear
combination of the atoms (eigenfaces) contained in the subspace matrix. The rank of the
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Figure 41: Reconstruction of Salinas Valley HSI by OVBSL and Algorithm 1 of [103], for π = 0.2.
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(a) Algorithm 1 of [103]

(b) sparse OVBSL

Figure 42: Eigenfaces obtained by Algorithm 1 of [103] and OVBSL on MIT-CBCL dataset.

subspace is initialized for both algorithms to 50. Fig. 42 shows the 21 more characteristic
eigenfaces. Dark pixels correspond to negative values, while positive values are denoted
with light colors. As it can be noticed, sparsity imposition from the sparse OVBSL leads to
eigenfaces that present more localized features, contrary to those obtained by Algorithm
1 of [103], where features are spread out over the image. It should be also noted that
OVBSL converged to a subspace matrix of low-rank. This fact resulted from the inherent
advantageous characteristic of OVBSL to eliminate components presenting low variance,
hence offering negligible information.

5.6 Appendix - MAP estimator of the proposed Bayesian model

The joint prior of U and V is expressed as

p(U,V | λ, β,Γ) =
d∏
i=1

p(vi,ui | λi, β,Γi) (5.84)

where

p(vi,ui | λi, β,Γi) =
∫ ∞

0

p(vi | si, β)p(ui | si, β,Γi)p(si | λi)dsi (5.85)

Using (5.13), (5.12) and (5.15) in (5.85) yields

p(vi,ui | λi, β,Γi) =
∫ ∞

0

(2π)−
n+m

2 β
n+m

2 |∆Γi|
1
2 s

− 3
2

i exp
(
−βsi

2
(∥ui∥22,Γi

+ ∥vi∥22,∆)− λi
2si

)
dsi,

(5.86)
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where ∥vi∥22,∆ = vTi ∆vi and ∥ui∥22,Γi
= uTi Γiui. Using in (5.86) the expression of the GIG

distribution for si with parameters β(∥ui∥22,Γi
+ ∥vi∥22,∆), λi and −1/2, we easily get

p(vi,ui | λi, β,Γi) =(2π)−
n+m

2 β
n+m

2 |∆Γi|
1
22K− 1

2

(
β

1
2λ

1
2
i (∥ui∥

2
2,Γi

+ ∥vi∥22,∆)
1
2

)
×

(
β(∥ui∥22,Γi

+ ∥vi∥22,∆)

λi

) 1
4

(5.87)

where K− 1
2
(·) denotes the modified Bessel function of second kind with p degrees of free-

dom. By employing the identity,

K− 1
2
(x) =

( π
2x

) 1
2 exp(−x)

in (5.87) and after some straightforward calculations, we end up with the following expres-
sion for the joint distribution of ui and vi,

p(vi,ui | λi, β,Γi) = (2π)−
n+m−1

2 β
n+m

2 |∆Γi|
1
2λ

− 1
2

i exp
(
−β

1
2λ

1
2
i (∥ui∥

2
2,Γi

+ ∥vi∥22,∆)
1
2

)
.

(5.88)

Then, from (5.84)

p(U,V | λ, β,Γ) =(2π)−
(n+m−1)L

2 β
(n+m)d

2 |∆|
d
2

(
d∏
i=1

λ
1
2
i |Γi|

1
2

)

× exp

(
−β

1
2

d∑
i=1

λ
1
2
i (∥ui∥

2
2,Γi

+ ∥vi∥22,∆)
1
2

)
(5.89)

which is a multi-parameter (with respect to the λi’s) Laplace-type distribution defined on
the columns of the matrix [(Γ⊙ U)T (∆1/2V)T ]T . Such a distribution is known to impose
column sparsity and thus, due to the form of the matrix, joint column sparsity on U and V.
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6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In the present thesis we addressed three different, omnipresent in the literature structured
matrix estimation problems. Common denominator of all the proposed techniques is the
nonconvex nature of the formulated estimation tasks. No doubt, nonconvex methods,
in contrast to convex ones, deprive theoretical guarantees as to their performance and
convergence to global minima. However, empirical evidence has shown that they exhibit
very promising results in many practical situations involving large-scale datasets. In the
sequel, we summarize the concluding remarks of the thesis. First we recapitulate the
contribution of the thesis for each of the three problems addressed by highlighting not only
the specific characteristics of the introduced formulations but also the efficient algorithms
that have been devised. Then, directions for further research relevant to the content of
the present thesis are provided.

6.1 Summary

This thesis touched upon structuredmatrix estimation as ismet in three different ubiquitous
signal processing andmachine learning tasks, i.e., a) simultaneously sparse, low-rank and
nonnegative matrix estimation, b) sparse, low-rank and nonnegative matrix factorization
and c) online low-rank subspace learning and matrix completion. The contribution of the
thesis lies in both the novel mathematical formulation of these three problems that were
introduced, as well as in the derivation of pioneering optimization and Bayesian inference
algorithms for solving them. It should be noted that a certain degree of innovation also
exists in expressing ubiquitous estimation tasks such as hyperspectral unmixing and de-
noising in terms of the aforementioned structured matrix representations.

Let us first focus on simultaneously sparse, low-rank and nonnegative matrix estimation.
Broadly speaking, multiple structured estimation tasks are in their very infancy, yet. In
the literature, the associated originally NP-hard problem has been seen via a convex re-
laxation perspective. However, theoretical studies have highlighted the existing gap in
terms of sample complexity and recovery performance between convex and nonconvex
approaches. Inspired by that, in the present thesis we introduced two different nonconvex
formulations of the problem. First, capitalizing on the merits of a) the reweighted ℓ1 norm
when it comes to sparse recovery and b) the reweighted nuclear norm in low-rank matrix
estimation, we proposed to combine these two norms and devise a new constrained opti-
mization problem that promotes both sparsity and low-rankness. In addition, the nonnega-
tivity constraint was also incorporated in the problem. The second approach, instead of the
reweighted nuclear norm, it uses the variational form of the nuclear norm for imposing low-
rankness. This way, the SVD operations required in the case of reweighted nuclear norm
minimization are avoided, thus relieving us from a heavy computational load, especially
in large-scale data. The resulting optimization problems were attacked by three different
optimization solvers: a) an incremental proximal minimization algorithm, b) an alternating
direction method of multipliers based algorithm and c) a block coordinate descent type
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algorithm. The proposed formulations and algorithms were then utilized for hyperspectral
image unmixing. It is noted that the constraints of sparsity, low-rankness and nonnegativ-
ity can be all adopted as structures of the abundance matrices in hyperspectral images,
which are characterized by high degree of spatial and spectral correlation. Extended sim-
ulated data experiments have shown the superior performance of the proposed algorithms
as compared to solely sparse and solely low-rank approaches, as well as to a convex si-
multaneously sparse, low-rank and nonnegative matrix estimation scheme. Moreover, the
algorithms have been applied on real hyperspectral imaging data in the framework of the
hyperspectral unmixing problem. The relative experiments have exposed the favorable
performance of the new algorithms over other state-of-the-art methods, thus verifying the
effectiveness of the proposed approaches in dealing with large-scale data applications.

The second technical contribution of the thesis is related to low-rank matrix factorization
(LRMF). LRMF has attracted considerable attention in recent years as it appears in several
machine learning tasks such as low-rank matrix estimation, matrix completion, dictionary
learning, etc. LRMF is an inherently nonconvex problem suffering from an intrinsic flaw:
in most real data applications the dimension (rank) of the matrix factors is unknown. In
the thesis we followed a commonly used practice to circumvent this shortcoming, i.e., we
assumed an overestimate of the inner dimension of the factorization and then penalized
the rank of the matrix factors. In this regard, we innovated by proposing a new low-rank
promoting regularizer, which can be viewed as a weighted version of the variational form
of the nuclear norm. Interestingly, all existing relevant approaches can be considered as
special instances of the proposed low-rank promoting function, upon suitably selecting
the weighting coefficients. Going one step further, we suggested the use of a common
reweighting diagonal matrix on both matrix factors. In doing so, low-rankness is imposed
by promoting jointly column-sparsity on both matrix factors. To show the broad utility of
the proposed low-rank promoting penalty, we incorporated it to four different problems,
i.e., denoising, matrix completion, nonnegative matrix factorization and sparse dictionary
learning. The resulting optimization problems were addressed borrowing ideas from the
block successive upper bound minimization framework that led us to quasi-Newton type
algorithmic schemes. Interestingly, the adopted upper bounds result to matrixwise up-
dates even in the matrix completion problem, thus offering significant computational sav-
ings. The derived alternating iteratively reweighted least squares-type algorithms can be
viewed as extensions of the popular iteratively reweighted schemes (proposed for sparse
recovery) to the low-rank minimization framework. An analysis showing the convergence
of these algorithms to stationary points of the functions associated with the denoising and
matrix completion formulations was also provided. The new algorithms were tested in a
wealth of simulated experiments, as well as in disparate real data applications such as hy-
perspectral image denoising, matrix completion on recommender systems, music signal
decomposition and unsupervised hyperspectral unmixing. Therein, it was shown that the
proposed algorithms exhibit favorable results concerning both the estimation performance
and the required runtime.

In the third part of the thesis we addressed an estimation problem which follows a differ-
ent learning model, i.e., online low-rank subspace learning and matrix completion. Online
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learning has revived nowadays since it constitutes an indispensable tool in large-scale
data processing. In this thesis, we presented two approaches to tackle this problem, one
Bayesian and one deterministic. As far as the first is concerned, we proposed a novel
Bayesian formulation of sparse and low-rank subspace learning, while also accounting
for missing data. More specifically, three-level hierarchical prior distributions were as-
signed on the columns of both the subspace matrix and the coefficients matrix. The multi-
hierarchical priors were suitably parameterized so as to promote jointly column-sparsity on
the two matrices and independently promote sparsity on the subspace matrix. This way,
problems such as online sparse PCA could be, for the first time in literature, addressed
following a Bayesian perspective. In order to carry out the inference, the variational Bayes
scheme was employed based on the mean-field approximation. In addition, by assuming
statistical independence among all the elements of the subspace matrix, matrix inver-
sions were avoided in the updates of the subspace matrix, thus leading to a significant
decrease of computational complexity. Next, time-update formulas were defined and uti-
lized for transforming the batch type updates to online ones giving thus rise to a new online
variational Bayes subspace learning algorithm. Similar ideas described for the Bayesian
algorithm were also utilized in the derivation of the deterministic cost function minimization
based scheme. Concretely, joint-column sparsity in that case was promoted by suitably
modifying the low-rank promoting term utilized for the low-rank MF problem to the online
scenario. Again, elementwise updates were derived for the subspace matrix following a
Gauss-Seidel approach. Both algorithms were tested on extensive simulated data ex-
periments showing significant merits, as compared to relevant state-of-the-art competing
algorithms, in terms of the estimation performance. Moreover, the application of the new
online algorithms on hyperspectral image denoising and eigenface learning verified their
competence in dealing with real and large-scale data.

6.2 Future research directions

By now the low-rank matrix factorization ideas presented in Chapter 4 have already been
extended and applied for tensor completion, [150], and robust PCA, [62]. In both those
cases, it was shown that the low-rank penalty introduced (in the frame of the thesis) offers
significant gains in other cutting-edge machine learning problems. Next we provide an
insight on other possible future directions of the research conducted in the thesis. These
directions span all the three problems that have been studied, namely, simultaneously
sparse, low-rank and nonnegative matrix estimation, low-rank matrix factorization and on-
line low-rank subspace learning and matrix completion.

Concerning the problem of simultaneously sparse, low-rank and nonnegative matrix es-
timation, it is of high interest to further explore some theoretical aspects of the newly
introduced reweighted ℓ1 and nuclear norms as well the variational nuclear norm based
formulation. As is shown, in both cases estimation performance is improved over convex
approaches in regression type problems. However, the theoretical sample complexity of
the introduced scheme under a specific deterministic linear mapping (i.e., the known end-
members’ matrix which was used in hyperspectral unmixing), has not been established
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yet. Moreover, it deserves to investigate, both theoretically and experimentally, the gains
in using the proposed nonconvex formulation in cases that either random mappings (e.g.,
subgaussian) or other deterministic ones (e.g., discrete wavelet transforms - DWT) are
utilized. Finally, a rigorous convergence analysis of the derived algorithms would be very
important, yet quite challenging since we deal with nonconvex problems.

The second direction concerns the generalized version of the variational form of the nu-
clear norm that was introduced for low-rank matrix factorization. A theoretical understand-
ing of this low-rank promoting mechanism is of high priority in our future research. In
particular, it would be very interesting to explore how this regularization term is related
to either the Schatten-p norm or the weighted nuclear norm. Moreover, as analytically
described in the thesis, low-rank matrix factorization has attracted great attention lately.
Interestingly, a large part of the reported research concerns the theoretical characteris-
tics of the problem. Focusing on the variational form of the nuclear norm, recent studies,
[167, 18], have shown that despite nonconvexity of the problem, global convergence can
be attained since there are no spurious local minima. It is thus quite intriguing to explore
if similar premises hold for the low-rank promoting term proposed in the thesis. Finally,
gains obtained by using this regularizer in terms of sample complexity and error bounds
under various experimental settings shall also be studied in a future work.

Finally, a third future direction is related to the online variational Bayes low-rank subspace
learning and matrix completion algorithm presented in Chapter 5. A very appealing topic
of research is to generalize the introduced online variational Bayes scheme, by finding
connections with the relevant online scheme of [125]. Following the natural gradient-type
formulation of the latter, a second-order quasi-Newton and stochastic variational Bayes
framework may be derived. In doing so, the online variational Bayes scheme introduced
in the thesis, may be further extended to generic large-scale machine learning problems
such as topic modelling, offering an efficient alternative to the existing first-order type
scheme. Lastly, convergence of the online cost function minimization based algorithm
might be established by leveraging ideas followed in [101].
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ABBREVIATIONS

Abbreviation Meaning
SVD Singular Value Decomposition
LRMF Low-Rank Matrix Factorization
BCD Block Coordinate Descent
BSUM Block Successive Upper Bound Minimization
MAP Maximum A Posteriori
EM Expectation Maximization
ELBO Evidence Lower Bound
VB Variational Bayes
IPSpLRU Incremental Proximal Sparse and Low-Rank Unmixing
ADSpLRU Alternating Direction Sparse and Low-Rank Unmixing
ALMSpLRU ALternating Minimization Sparse and Low-Rank Unmixing
AIRLS Alternating Iteratively Reweighted Least-Squares
NMF Nonnegative Matrix Factorization
MC Matrix Completion
OVBSL Online VB Subspace Learning
OCSpSL Online Column Sparse Subspace Learning
Bi-ICE Bayesian Inference Iterative Conditional Expectations
HSI HyperSpectral Image
HU Hyperspectral Unmixing
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NOTATION

Symbol Meaning

x Scalar
|x| Absolute value of a scalar
x Vector
0 Zero vector/matrix
1 All ones vector/matrix
X Matrix
XT Transpose of matrix X
Il l × l identity matrix
∥x∥p ℓp norm of vector x
∥X∥p ℓp norm of matrix X
∥X∥Sp Schatten-p norm of matrix X
supp(X) Support set of matrix X
N (µ,Σ) Gaussian distribution with mean µ

and covariance matrix Σ

GIG(x; p, a, b) Generalized inverse Gaussian distribution
defined for x > 0, with parameters a > 0, b > 0

and p a real number
R Field of real numbers
Rm×n m× n-dimensional space of real numbers
≈ Approximately equal
⊙ Elementwise multiplication
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