NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES

MASTER THESIS

Big Data Visual Analytics Architecture

Panayiotis I. Vlantis

Supervisor: Alex Delis, Professor

ATHENS

JULY 2018



EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAENIKOINQNIQN

NMPOrPAMMA METAMNTYXIAKQN ZINMOYAQN

AINAQMATIKH EPTAZIA

ApxitekTovikn OTrTikAG AvaAuong YynAng KAipakag o€
Y1roAoyioTiKO NéE@og

MNavayiwtng I. BAavTAg

EMIBAENQN: AAéEng AeARg, Kabnyntnig

AOHNA

IOYAIOZ 2018



MASTER THESIS

Big Data Visual Analytics Architecture

Panayiotis I. Vlantis
R.N.: M1387

Supervisor: Alex Delis, Professor

THESIS COMMITEE: Alex Delis, Professor
Maria Roussou, Assistant Professor

July 2018



AINAQMATIKH EPTAZIA

Big Data Visual Analytics Architecture

Mavayiwtng I. BAavTAg
A.M.: M1387

ENIBAENQN: AAéEnc Aehfic, KaBnyntic

EZETAXTIKH ENITPOMNH: AA£&Eng AeAng, KabnyntAg
Mapia PoUuooou, Ettikoupn KaBnyniTpia

louAiog 2018



ABSTRACT

Analyses with data mining and knowledge discovery techniques are not always success-
ful as they occasionally yield no actionable results. This is especially true in the Big Data
context where we routinely deal with complex, heterogeneous, diverse and rapidly chang-
ing data. In this context, visual analytics play a key role in helping both experts and users
to readily comprehend and better manage analyses carried on data stored in Infrastruc-
tures as a Service (laaS). To this end, humans should play a critical role in continually
ascertaining the value of the processed information and are invariably deemed to be the
instigators of actionable tasks. The latter is facilitated with the assistance of sophisticated
tools that let humans interface with the data through vision and interaction. When work-
ing with Big Data problems, both scale and nature of data undoubtly present a barrier in
implementing responsive applications. In this thesis, we propose a software architecture
that seeks to empower Big Data analysts with visual analytics tools atop large-scale data
stored in and processed by /aaS infrastructures. Our key goal is to not only yield on-line
analytic processing but also provide the facilities for the users to effectively interact with
the underlying /laaS machinery. Although we focus on hierarchical and spatio-temporal
datasets here, our proposed architecture is general and can be used to a wide number
of application domains. The core design principles of our approach are: a) On-line pro-
cessing on cloud with Apache Spark. b) Integration of interactive programming following
the notebook paradigm through Apache Zeppelin. ¢) Offering robust operation when data
and/or schema change on the fly. Through experimentation with a prototype of our sug-
gested architecture, we demonstrate not only the viability of our approach but also we
show its value in a use-case involving publicly-available crime data from the United King-
dom.

SUBJECT AREA: Big Data

KEYWORDS: big data, visual analytics, spatio-temporal data, cloud
infrastructure, apache spark, interactive programming



NEPIAHYH

H avaAuon 0edopEVWV HE TEXVIKEG EE0PUENG DEDOUEVWV KAl YVWONG, OEV TTAPAYEl TTAVTOTE
armroteAéopaTa aglotromoiya otn Aqyn atmo@doswyv. AuTto eival 1IdlaiTepa ouvnBeg oTnv
meploxn emegepyaoiag dedopévwy YWnAig KAipakag 6trou ta utmtd avaAuon dedopéva
MTTOPEl Va xapakTtnpifovral atrd uwnAd Babuod TTOAUTTAOKATNTOG, ETEPOYEVEIQ KAl UWNAO
puBUOG peTaBANTOTNTOG. 2 éva TEToIo TTEPIBAAAOV, epyaAcia OTTiIkAg AvdAuong (Vi-
sual Analytics) ptmopei va emTpéWouv o€ €IOIKOUG TTEPIOXAG EVOIAPEPOVTOS KAl AVAAUTEG
dedopévwy YWnAng KAipakag va KaTavorjoouv Kal va €§Ayouv CUUTIEPACUATA ATTO
OUVOAa OedOUEVWV O UTTODOUEG UTTOAOYIOTIKOU VEQOUG.  2€ QUTA T TTEPITITWON Ol
AvBpwTTol aTTOKTOUV avaBabuiouévo poAo agou yivovTal JETOXOI Kal 0TV avdaAuon Twv
dedopEVWYV EKTOG aTTd TNV agloAdynon Kal agloTroinon Toug Katd Tn Ayn ammopdocwy. H
OTmikr) AvAAuan, ETTITUYXAVETAI PE TN XPON CUVOETWY EPYAAEIWV Ta OTTOIO TTPOCPEPOUV
OTOUG avBpwTroug pia JIETTAPr) a1Td Kal TTPog Ta Oedouéva dlauéoou TG Opaong
Kal TNG aAAnAemTidpaong avTtioToixa. 2Tnv avdamTug¢n ocuotnudtwyv YynAng KAipgokag,
N KAigoka Kal n @uon Twv OedouéVWwY avap@iBoAa eyeipouv gutmodia oTnV ETTITEUEN
IKQVOTTOINTIKAG ATTOKPIONG TWV CUCTAPATWY AUTWYV. € QUTH TNV £pyaacia, TTapoucIAgeTal
MIO  OPXITEKTOVIKY) AOYIOMIKOU N OTIoia ETTIXEIPEI VA ETTITPEWEI OTOUG QAVAAUTEG va
XPNOIMOTTOINO0UV EpYaAEia OTTTIKAG avAAUONG DIOCUVOEDENEVA UE TO UTTOAOYIOTIKO VEQOG
yla avaAuon dedopévwy YynAng KAipakag. ‘Exel yivel eotiaon oe dedouéva pe Xwpo-
XPOVIKA yvwpiopata Kal 1EpaPXIK Oopn, aAAd N OPXITEKTOVIKA €ival €TTEKTACIUN O€
AAAeG TTEPIOXEG €VOIAPEPOVTOGS.  OI KEVTPIKEG OXEOIOOTIKEG APXEC TNG APXITEKTOVIKAG
givar: a) Alaouvdeon o€ UTTOAOYIOTIKO VEQOG yia eTTegepyacia dedopévwyv y€ow Apache
Spark. b) Ymrootipign d1adpacTiKoU TTPOYPANUATIONOU HECW EVOWUATWONG Apache Zep-
pelin. ¢) EUpuBun Acitoupyia ouoTAuatog avegaptntn atmmd HPETABOAEG oTn Oopr Kal
TO TTEPIEXOPEVO TWV UTTO eTTeCepyaoia Oedopévwy. TEAOG, PEOW €VOG TTpOoXWpPNUEVOU
TTPWTOTUTTOU, £CETACETAI Eva TTAPAdEIYUA UE dnuooIa dedouéva aTrd To Hvwuévo BaaiAeio
Kal TTapouaiadetal n BIwoIudTNTA KAl TO TTAEOVEKTAMATA TNG TTPOTEIVOUEVNG APXITEKTOVIKAG.

OEMATIKH MEPIOXH:  Asdopéva YwnAric KAipakag

AEZEIZ KAEIAIA: dedouéva uwnAng KAipakag, OTITIKOTTOINON,
XWPOXPOVIKG  dedopuéva, UTTOAOYIOTIKO  VEQOG,
O100PACTIKOG TTPOYPAUMATIONOG
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Big Data Visual Analytics Architecture

1. INTRODUCTION

Datasets used by Big Data systems and applications are characterized by their complexity,
heterogeneity, instant growth, and frequently, noise. These characteristics do affect the
quality of automatic analyses performed in a negative way and occasionally, render analy-
sis results to be of either limited or no value at all [1]. By providing appropriate tools, visual
analytics can help users manually interact with data sets, proceed in an highly exploratory
manner and shift the focus of the analyses as the occasion calls along the way [2—4]. How-
ever, the traditional use of visualization techniques on large scale datasets does become
prohibitive as the volume of the underlying data grows [5]. To address this challenge, we
have to adopt contemporary cloud-based computing environments that can accommodate
voluminous data by incrementally enlarging the computing cluster (i.e., horizontal scaling).

Apache Spark of the Hadoop ecosystem offers a plausible choice as it can scale up when it
comes to non-transactional data [6]. However, the use of Spark as the underlying process-
ing engine of applications calling for high responsiveness is not an obvious choice. Spark
introduces inherent latencies that cannot be avoided, only mitigated. Clearly, a number
of compensating mechanisms have to be introduced to address this issue. Moreover,
to further enhance the user experience, we advocate the integration of interactive pro-
gramming in such Big Data environments. This choice may greatly assist the work of
scientist(s) as it offers versatility in handling data and timely decision making during the
early exploratory phase of working with datasets. It is worth mentioning however, that
by introducing the interactive programming paradigm in this Big Data context, we cannot
exploit pre-computation techniques; there are no guaranties as far as the stability of the
data is concerned and the data schema remains highly volatile.

In this thesis, we propose a software architecture that helps users effectively interact
with underlying /aaS stored data, manipulate information using Spark and last but not
least, enable on-line analytic processing via interactive programming. We mitigate Spark-
emanating overheads through the introduction of 1) visualization-chunks, variable-size
granules containing elements shipped over the network and ultimately rendered and pre-
sented to users, 2) schema convergence techniques enabling the seamless transition
among different data schemas used across multiple iterations in run-time, and 3) deploy-
ment and intensive use of caching at all levels of our software architecture. The aforemen-
tioned features can work in tandem and take advantage of hierarchical datasets that we
have worked with [7]. Figure 1 depicts the salient features of our proposed architecture.
It is decoupled in two key parts: a cloud-based /aaS as well as a client-side component.
At the server side, the Apache Sparkis used as the Big Data processing engine accepting
requests from Zeppelin and Visual Analytics Server (VA-Server). The Spark-server(s) un-
dertake the actual computation and/or management of the stored datasets. Zeppelin is the
interactive programming “notebook platform” essentially offering a Web-interface acces-
sible to users through a browser. This notebook-style facility allows users to execute task
in a way reminiscent to that of shell scripting and is the prime tool for direct interaction
with the Spark engine and subsequently, for manipulating its laaS-stored data. The Visual
Analytics Server undertakes the central role of coordinating operations among all cloud
components and maintains bi-directional WebSocket channels with the client side.

P. Vlantis 1
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Cloud

Infrastructure
Visual Visual
Apache Analytics Analytics Q
Spark Server Network Client
Cluster Apache Zeppelin Apache Zeppelin
Server Client

Figure 1: Argus-Panoptes Architecture for On-line Big Data Visual Analytics.

The client-side is a JavaScript Web application that runs on the user’s browser and carries
out the functionality of the Visual Analytics Client. The latter renders all server-emanating
visualization chunks and accepts user-instigated requests through mouse interaction. All
parts of the JavaScript web application are React components. Subsequently, they have
to be adapted on a per-case basis however, the use of React places strong emphasis on
the reusability of components already developed. The Apache Zeppelin window found at the
client-side allows for the on-line interactive shell environment receiving explicit requests
from users and displaying the outcome of its Zeppelin-server counterpart.

In realizing our proposed architecture, our core design principles have been: a) our vi-
sual analytics application to carry out its processing on-line on a Spark-cluster; hence, our
application is independent of the volume of data utilized. b) dataset filtering, joining with
others, and transformations are carried out through interactive programming and inde-
pendently occur from all VA aspects. In this regard, users can simultaneously manipulate
data through an Apache Zeppelin browser-window while at the same time the VA Client in-
terface remains fully operational. We argue that this two-pronged approach can effectively
overcome the challenges of pursuing visual analytics on Big Data while at the same time,
it yields the basis for overcoming the occasional sluggish response times. Our approach
seeks to empower the work of domain experts working along with Big Data counterparts to
gain insights and a better understanding through visualization in sophisticated hierarchical
datasets.

We have produced a fully-functional prototype that has served as the means to explore a
number of Big Data use-cases. In this report, we discuss the effectiveness of our proto-
type using a real-world Big Data dataset pertinent to crime incidents curated and published
from UK Home Office [7]. The dataset in question maintains geo-spatial and time-stamped
records of incidents since late 2015. The rest of the report is organized as follows: Sec-
tion 2 introduces some important background aspects of visual analytics and section 3 dis-
cusses related work whereas the rest sections are more focused on our work. Section 4
presents the rationale for the design of our architecture. Section 5 outlines the architec-
tural components and their interaction whereas the intended audience for our platform
and its skills are presented in Section 6. Section 7 briefly discusses our use-case and
Section 8 provides concluding remarks.

P. Vlantis 12
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2. VISUAL ANALYTICS BACKGROUND

Concept of Feedback Loop in Visual Analytics: Visual Analytics can be described as
a process, a sense-making loop were insights that user gains in the current iteration, will
be used to modify the whole system and proceed to the next iteration repeating the loop.
This way, in every iteration the analysis could be driven towards a slightly different direc-
tion advancing the analysis further and leading to the discovery of new insights. To be able
to modify a Visual Analytics application in such a fashion, the application itself must be
designed to allow this kind of incremental development process. This kind of application
development, is supported by the paradigms of Continuous Development and Continu-
ous Delivery and all components included in the proposed architecture and implemented
prototype are capable of being developed under such fashion.

Visual Data- Exploration

/ / KnoW'edge

Data I\/I|n|ng

Feedback loop

Figure 2: The Feedback Loop in Visual Analytics by D. Keim et al on ”"Visual Analytics: Definition,
Process and Challenges” [8]

Visual Analytics Evolution: Brian R. Gaines created a model of the development of the
information sciences in "Modeling and Forecasting the Information Sciences” [9]. Accord-
ing to it, there are six stages in an information technology field’s evolution: Breakthrough,
Replication, Empiricism, Theory, Automation and Maturity. A short explanation of each
stage can be seen in figure 3. Visual analytics, is in the Replication stage (2nd) [5, p. 87].
in the proposed architecture we compensate for the lack of VA specific technologies by
leveraging technologies from much more mature fields of information sciences. Namely
Big-Data, Web technologies and Visualization to compensate for the lack of Visual Ana-
lytics specific technologies. An indirect objective of our work in this thesis, is to present a
novel way of working with Visual Analytics in the Big Data context and make a small con-
tribution towards the advancement of Visual Analytics field in the next evolution phase.

P. Vlantis 13
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Figure 3: The six phases of BRETAM model by Brian Gaines on ”"Modeling and forecasting the
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3. RELATED WORK

There has been a flurry of research activity recently in the areas of visualization for
Big Data, visual analytics, and visualization recommendation systems [10-15]. Apache
Zeppelin [16], Cloudera Hue [10] and Jupyter [17] are open-source initiatives that offer built-
in visualization functionalities, commonly used in Big Data exploration. All systems allow
their users to “send in” either high-level source code such as Python and Scala modules
or dispatch SQL-queries for execution to Spark. They visualize pertinent results with the
help of built-in visualization libraries [18]. The main difference between our platform and
the aforementioned projects is that we strive to offer user a more immersive experience
in visual exploration without calling for continual editing of source code or SQL statements
in order to bring about changes in rendered visualizations. In contrast, we let users di-
rectly interact with the visualizations produced and the respective interface (i.e., VA Client).
Moreover, we do not strip the ability to directly manipulate data through high-level source
code as our platform does also integrate Zeppelin in its components.

In the area of visual analysis of high-dimensional datasets, Visualization Recommendation
(VisRec) systems offer a novel approach as they suggest feasible visualizations without
major user involvement. These systems, automatically designate and interactively sug-
gest visualization choices for specific tasks at hand. In this regard, such recommenda-
tions are particularly useful during the initial phase(s) of exploratory analyses through the
creation of a series of alternative visualizations. VisRec systems operate by performing
pre-computations to analyze the dataset during the offline phase and examine the large
space of possible visualization combinations during the on-line phase [13]. While these
systems are primed for high-dimensional datasets, their computational intensive on-line
phase may make them unsuitable for large scale data without extensive sub-sampling.

The use of an RNN neural-network is advocated in [12] as the means to help novice
users start with visualization. The RNN network “examines” a corpus of human-created
visualization configurations known so far and along with the schema of the used data it
automatically generates a j son-based visualization configuration. The latter is ultimately
consumed by JavaScript libraries to display the expected output. In [11], the ZQL-
language is proposed as the vehicle to help users designate visual patterns. Such patterns
have been extracted from diverse disciplines including biology, engineering, meteorology
and commerce. Although this is certainly a novel approach, the number of ZQL-produced
possible visualizations remains very high, yielding a somewhat questionable route when
it comes to dealing with Big Data. Evidently, the overall ZQL process presents overheads
that would be hard to overcome when on-line processing is sought.

The imMens project seeks to provide interactive visualization for Big Data in real-time [15].
Similarly to our approach, data binning plays an important role as it is the key technique
to attain dimensionality reduction. However, imMens overall operations is founded on
the concept of pre-computation of all data-tiles. This pre-computation occurs in a off-
line phase and the respective results are made available at run time to help user fulfill
her/his visual analytics tasks. In contrast, our approach performs the respective data tiling
by incrementally and dynamically producing j son chunks that can be created on-the-fly

P. Vlantis 15
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empowering so the on-line mode of operation.

In a recently published work, common patterns that people use to sequence static visual-
izations for the purpose of storytelling through visualization is studied to determine if there
is a natural cognitive tendency towards specific sequencing strategies [19]. In their find-
ings they determine that there is clear preference over hierarchical structuring strategies
for presenting and receiving a story consisting of a limited number of static visualization
images. The types of hierarhies that were utilized include spatio-temporal dimensions,
use-case relevant measures and different levels of aggregation. In our platform, the hier-
archical nature of data is exploited in two ways. Segmenting datasets according to their
inherent hierarchical structure to allow incremental data exploration on Big Data and al-
low users to actively manipulate the hierarchical structures to better facilitate the reasoning
process. Further research in this area will be of great importance for platforms such as
ours as it could provide many opportunities for performance optimizations residing from
the fact that we could anticipate the users’ next steps as they visualy explore the data.

P. Vlantis 16
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4. ARGUS-PANOPTES DESIGN PRINCIPLES

We intend on furnishing a software architecture that best serves the merged operations
of visual analytics and Big Data analysis. In doing so, Argus-Panoptes should not be
restricted by the scale of data while at the same time, the architecture should incorpo-
rate core visual analytics principles and should display satisfactory responsiveness. Our
design leans towards accommodating the experienced user-base as we would like to cre-
ate a highly-versatile and efficient architecture. In this context, Argus-Panoptes main-
tains an open aggregation and exposes internal components/subsystems to the user. Our
design addresses the misgivings of contemporary systems that offer visual analytics on
Big Data today. We aspire to address the following 6 design principles while designing
Argus-Panoptes:

4.1 On-line Big Data Processing

Weaving a platform such as Spark for data processing along with the visual analytics appli-
cation atop is not a straightforward effort. This is due to the fact that it might take several
seconds for the Spark-cluster to respond to even a single look-up operation. In contrast, a
typical response in a visual interface is expected to be within the 200msecs range. Should
we be able to bridge the above performance gap, we are to successfully address the
design principle in question. Instead of downsizing data through sampling, we advocate
elasticity of Spark-workers requested by the Argus -Panoptes user. We take advantage
of the fact that larger datasets call for horizontal scaling of the cluster as applicable op-
erations (i.e., filtering, aggregations etc.) are highly-parallelizable. By delegating all data
operations to the Spark-cluster, Argus-Panoptes reaps the following benefits: 1) the
VA application (both client and server components) becomes yet another component in
the Hadoop ecosystem. consequently, a large number of tools can be readily integrated
into our processing pipeline. 2) users do not have to code in order to export datasets to
specific formats required by the VA application. The VA application has direct access to
DataFrames in memory as it functions along with Spark. Hence, data pre-processing,
cleaning, and VA transformations can all be instigated through the Spark programming
API using Scala, R, Python, or Java.

4.2 Interactive Programming

For the user to enjoy the maximum benefit while interacting with our architecture, we in-
troduce interactive notebook systems. Such systems include Zeppelin [16], Jupyter [17]
and the proprietary Databricks. In general, they all offer a Web-interface in which a user
may write code split into paragraphs or blocks each pertaining to a specific job or set of
jobs. Paragraphs can be executed either sequentially or individually. Individual execution
means that if the notebook crashes in the k" paragraph for example, after it has performed
some expensive computations, the user can edit the code on the k" paragraph and con-

P. Vlantis 17
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tinue execution from that point on. This paradigm of code writing and execution is very
much desired in our architecture for it facilitates the work of the analyst.

4.3 Robust Data/Schema Manipulations

To attain flexibility, the VA application has to operate under uncertainty as far as the cur-
rent data and its schema is concerned. Robustness of this type is particularly desired as
Argus-Panoptes deploys interactive programming. In a normal operational work-flow,
a user simply manipulates a dataset by either adding or removing features (columns). In
erroneous circumstances, issues that may ensue include: 7) The VA Client does not show
any data for a user has simply committed a mistake; here, the respective piece of code has
to be revised and the query cycle to to be repeated. 2) The VA Client becomes unable to
cope with a voluminous visualization chunk consisting in the order of more than 1M rows;
the user has to reload the tab and start over. In all above cases, we should stress that the
VA Client functionality is desired to remain strictly stateless.

4.4 Eliminate Unnecessary Re-computations via Caching

It often takes Spark several seconds to compute a visualization chunk. This overhead can
be reduced but can not be avoided if identical chucks are requested time and again. Thus,
Spark re-computations should and are avoided in our architecture through the adoption of
3 levels of caching: 1) Apache Spark: when a task is dispatched by the VA Server, Spark
can avoid execution should it maintain a pool of executed so far jobs. If a json file is
identified as existing in this pool, its re-computation is bypassed. 2) the VA Server tracks
with the help of an SQL database all chunks produced so far and in this manner, contact
with Spark is successfully prevented. This caching layer is possible to return stale data
due to this reason, a cache invalidation has to be provisioned. 3) the VA Client maintains
in-memory a limited number of chunks ' and the request for fetching the chunk in question
from the VA Server can be eliminated.

4.5 Expose System Internals to User

As Argus-Panoptes operation is intended for the experienced user, the system should
make available both internal control mechanisms and system information. A fundamental
such control mechanism is the invalidation of caches at either Spark or VA Server com-
ponents. By adopting such a design choice, we avoid error-prone implementation issues
that bear little if any significance to the visual analytics domain. Moreover, we argue that
making available Spark/VA server real-time status information is helpful to the experience
user.

Taround 200MBytes in total.

P. Vlantis 18
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4.6 Promote Visualization Component Reusability with React

Creating a new VA application calls for a substantial amount of work most of which is
geared towards the development of visualization elements of the interface. This is due to
the fact that the effectiveness of a VA platform highly depends on tailor-made visualization
components. The React-framework [20] promotes and provides reuse of JavaScript-
components in order to built interfaces across multiple VA applications. As we strive for
Argus-Panoptes to not be a one-size-fits-all solution, we resort to the accumulated set
of React reusable components to rapidly create and/or adapt VA customized interfaces.

P. Vlantis 19
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5. THE ARGUS-PANOPTES SYSTEM

Argus-Panoptes follows the interactive work-flow of operations that filter, aggregate,
summarize and help visually explore diverse aspects of datasets under examination. Fig 4
depicts the interface that the VA Client of the system realizes. The Ul panel consists of two
portions: the first is the Zeppelin window that serves as the means to interact with Argus -
Panoptes when it comes to launching of work-flow tasks. On the right side of Fig 4, the
VA Client browser window displays chart-based outcomes and generated map-related el-
ements. The latter depict generated graphs that help demonstrate trends and assist users
gain insight with regards to investigated datasets. The functionality of Argus-Panoptes

@ Zeppelin = I = Visual Analytics App o =

sssssss

> 33K 33K 16M

st
printin(spark.version) TOTALROWS FILTERED ROWS Sum

FINISHED D>

nedFunction = UsernehnedFun((ml\L<func()onlI

h k.sqL.expressions. UserDefinedFunction = UserDef inedFunction(

uts. parquet”)
drop(*location") .drop("1soa_code"

nown")) .
L 4)).

sample view SHED D> N
sqU

select + fron view linit 5 o e
@ W ¢ a e & v setlingsw
reported by falls_within ~ crime_type_level 2~ last outcome_catego = & [0kt

Avon and Somerset... Avon and Somerset... Public order Unable to prosecu... [

Avon and Somerset... Avon and Somerset... Violence and sexu. Status update una.

Avon and Somerset... Avon and Somerset... = Shoplifting Court result unav...
[ ||
Apache Zeppelin browser window Visual Analytics Client browser window

Figure 4: VA Client Ul.

is built around three concepts that make the architecture feasible that are discussed next:
Schema Convergence, Data Binning and Visualization Chunks.

5.1 Internal System Architecture Concepts

5.1.1 Schema Convergence

Schema Convergence allows the architecture to be be fault-tolerant when the schema of
the examined dataset is being actively manipulated. The mechanism is utilized when the
VA Server ships code to Spark for execution on one side and on the other to VA Client.
When Spark engine receives a VA Client request, it compares the requested with the ex-
isting schema of data. Should discrepancies be identified, Spark deals with convergence
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so that every element on the stack of the system “perceives” a consistent view. In this
process, Spark imposes no restrictions as user requests are offer guidance of what is
deemed consistent at any point in time. The data requests of the VA Client are predom-
inantly based on what the user has seen last. For instance, if there are new columns in
the dataset, they will be included in the converged schema; the same is true when certain
columns get dropped. This schema convergence mechanism disengages the architec-
ture from having to deal with state information in its request-response cycle. Evidently,
the user can replace the entire dataset through the Ul and the virtual analytics platform will
continue to operate trouble-free. In this last case, users should also explicitly invalidate
caches with the help of the VA Client.

5.1.2 Data Binning

Data Binning is heavily used in work-flow processing carried out by our platform. It is
a critical mechanism to attain graceful dimensionality reduction for discretizing continu-
ous features; oftentimes, data gets summed before sent for visualization to the VA Client.
Moreover, binning significantly affects the formation of information hierarchies (or datasets
organized in tree-like fashion) that may influence the user’s analytical and reasoning pro-
cess. Although spatio-temporal data are by and large inherently hierarchical datasets,
this is not the case for many others. Binning can effectively assist in the generation (or re-
regeneration) of datasets initially featuring no explicit or simply flat structure. We should
point out that in our case (re-)generating hierarchies from flat datasets is as vital as feature-
engineering is in machine learning [21].

5.1.3 Visualization Chunks

Visualization Chunks are used as the internal unit of information exchanged between the
different Argus-Panoptes components. A chunk is a json file containing the aggre-
gated data for a given dataset hierarchy and the respective dataset schema. Over time,
the schema may apparently change. To this end, the VA Client receives a visualization
chunk once a request has been launched. The outcome of the Spark is a chunk and its
main characteristics may either help improve or adversely affect the performance of the
system. Visualization chunks are tracked by the VA Server and in this respect, their inval-
idation if needed has to be a explicit user action.

We should point out that the process of of (re-)generating features hierarchies in datasets
is linearly correlated to both number and size of the produced visualization chunks. In this
respect, we have established that in our experimentation discussed in this paper, the size
of the largest size chunk generated is 142MBytes and features 670K of data-rows. This
chunk maintains the highest possible resolution and visualizes all features of the dataset.

P. Vlantis 21



Big Data Visual Analytics Architecture

5.2 The Architecture

Fig. 5 outlines the architecture of our laaS—based system: the server side is hosted on
virtual computing systems as the upper half of the figure shows, while the VA Client func-
tionalities are shown to the bottom side. At the core of the server layout, the Spark-engine
is referenced as a single entity that may consist of a cloud cluster. It may also involve ser-
vices from the Hadoop ecosystem. In a minimal configuration, computing cloud consists of
an Apache Spark Master service deployed in stand-alone mode. A common configuration
might involve a Spark Master, an number of workers that all use a distributed file system
for storing and retrieving data such as HDFS. A more sophisticated configuration may in-
volve the Apache Zookeeper for attaining high-availability as well as YARN or Mesos for
for cluster resource management.

As Spark is not designed to offer a REST API, its connectivity with both Zeppelin and
VA Server presents a point mismatched interface. Natively, Spark may only receive . jar,
.py or .r jobs for Big Data processing over the network. Here, our main concern is to
maintain a single SparkSession at all times so that multiple clients dispatching jobs to the
same visibility scope can be accommodated. Thus, continuity and on-line fashion pro-
cessing for the client can be warranted. Apache Livy addresses the above issue as it can
both provide a SparkSession and receive network-requests on behalf on the engine via
its REST API. In this way, code submitted to Livy can be executed in the same visibility
scope. For instance, if a user launches the code |val a="hello" | with the help of a
Zeppelin server connected to a Livy session, she can subsequently performa HTTP POST
request to Livy via the curl command-line tool and obtain the value of variable a. In our ar-
chitecture, both VA Server and Apache Zeppelin are connected to Livy accessing the same
SparkSession.

The Apache Zeppelin helps us realize the notion of interactive programming in the context
of Argus-Panoptes. Itis a platform that through its paragraphs allows for channeling
tasks. On the left side of Fig. 4, we show the paragraphs as well as the controls of Zeppelin.
This dialog-based portion of the Zeppelin-Ul panel is the main interface facility for users to
access the system.

Found in front of Livy, the VA Server carries a number of tasks and plays a central role
for the coordinated operation of Argus-Panoptes. More specifically, the VA Server:
1) serves the VA Client with the JavaScript Web application. 2) dispatches code-
segments for execution to Spark. 3) receives visualization chunks from the Apache Spark.
The latter are the outcome of Big Data jobs executed at the engine. 4) maintains two-way
communication channels with the VA Client with the help of WebSockets. 5) monitors the
status of the laaS computing resources and sends pertinent information update snippets to
VA Client over time. 6) tracks visualization chunks produced so far and if requested explic-
itly by the user, it does carry out cache invalidation. 7) manages chunk-related information
and offers an interface for profiling purposes. Developed with Ruby-on-Rails, the VA
Server remains at all times “agnostic” in terms of specific characteristics of datasets under
examination.

NginX is a reverse-proxy placed between our cloud-based components and our VA client
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(Fig. 5). The proxy is an additional layer for control and abstraction of resources/services
and warrants smoother traffic flow between the interconnected servers and clients. In this
manner, NginX has an invisible but crucial role as it effectively minimizes network traffic
and consequently, enhances the perceived responsiveness of our platform. The main role
of NginX is to forward VA Client chunk-requests to our server and let the client receive
corresponding j son files through HTTP. NginX transparently intercepts all outgoing json
files and dispatches their gzip—ped versions.

One performance improvement that is not obvious is that the decompression of json files
is handled invincibly by a browser thread different from the one that executes JavaScript
application code. The VA Client JavaScript application could perform the decompres-
sion itself using a library. However in this case, the execution should take place in a JS
Web Worker so as the Ul does not get halted during processing.

5.3 The VA Client Functionality

Our VA Client is a JavaScript Web application that produces the entire visualization
output interface. In this context, the React/Redux frameworks have been heavily used
as they both promote failure resistance and component reusability. Fig. 6 shows the output
window of the Ul after two operations have been requested: a drill-down for displaying
crime in the London region and enhancement of the date dimension to from quarterly to
monthly.

The VA Client uses Redux as the mechanism to manage the local state. Redux helps
the application become independent from prior states. Similarly to functional paradigm,
the interface we build given a specific state, is always the same. As the schema of the
data to be visualized next cannot be predicted, the interface cannot be constructed using
information from the current state. We predominantly use the React framework for com-
ponentization. In a visual analytics application that caters for sophisticated users, the Ul
is an essential part of the architecture and invariably calls for much customization so that
a application is both useful and timely. Hence, the one-fits-all solution approach is infea-
sible here. By offering components that can be readily reconfigured and reused, React
plays a vital role in helping us put together effective Uls. In Fig. 6, every depicted visual
element is to a React component. Among others, there are components that deal with
server connectivity, initiate cache invalidation, and refresh visualizations. There are also
React Chart components that help synthesize complex chart dashboards. The portion of
Ul to the right of Fig. 6 depicts map-based information and is constructed using a third-
party React Map component [22]. Figure 7 depicts a series of visualization chunk related
operations that occur throughout the software stack, as a result of a user’s interaction with
the interface.
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6. SKILLS TO OPERATE, ADAPT OR EXTEND Argus-Panoptes

The proposed architecture and Argus -Panoptes, the implemented prototype, are com-
prised of several pieces of software components, coordinated by the VA server application.
Different components require different skill-sets to be operated, adapted to accommodate
new use-cases or extended to support new functionality. A comprehensive table of user
procedures and a description of their respective prerequisite skills, is listed in Table 1.

Table 1: Required Skills to operate, adapt or extend Argus -Panoptes. The required skills level field
indicates if the level of expertise for a skill is very basic, basic, average or advanced.

Required

User Procedure Skills Level

Required Skills Description

Data exploration requires no significant
Data Exploration 0o0o0 computer skills, it can be performed
through intuitive interaction with the Ul.

Basic programming and data-science

Data Exploration with si- skills are required. Basic Scala, Python,

multaneous data manip- @00 R or Java programming skills are needed

ulation. to make use of the Apache Spark Pro-
gramming API.

Basic data-science skills are needed
to preprocess the dataset and basic
Big Data engineering skills to import the
dataset in a Big Data store.

Import a new dataset @00

Adapt - Reconfigure Re-
act Components to sup-
port the VA Feedback
Loop process

Average JavaScript web development
ee0 skills and working knowledge of the Re-
act framework is needed.

Extend the platform with Advanced JavaScript web development
new Visual Ul compo- eooe skills and good knowledge of the React
nents framework is needed.

One objective that we wanted to achieve with this Visual Analytics architecture design,
is to allow domain experts to be able to use it without possessing advanced computer
skills. Obviously their lack of data-science skills should be compensated by working (even
remotely) with another team member that has acquired such skills. Nevertheless this
design allows an organization or team to utilize or search for domain experts in a broader
pool of available talent.
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Apart from data science skills, a fundamental notion in Visual Analytics is the Feedback
Loop process described in section 2. This is an iterative process (loop) where each it-
eration leads to adapting the platform to enable the revelation of more insights in the
next iteration. Obviously basic data-science skills are not sufficient to adapt the platform.
Adapting the Visual components of VA Client requires knowledge of JavaScript and work-
ing knowledge of the React framework. However, creating new Ul React components
and extending the visualization and interaction capabilities of VA Client requires advanced
JavaScript development skills and advanced knowledge of the React framework.

Last but not least, the architecture requires advanced Big Data engineering skills to be fully
operational. However, those skills are a requirement for any kind of Big Data analysis and
not specific to our architecture. On the contrary, due to our design choice of integrating
the platform with Apache Spark we allow Big Data practitioners to readily import datasets
to our platform conveniently with a minimal amount of work.
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7. ASSESSMENT WITH A GOVERNMENT ASB DATASET

Salient Argus-Panoptes features evolved during the prototype development. Experi-
mentation with different real-world data-sets from various disciplines also contributed to
the realization of the system. In general, dataset features entail: 1) sized textual data,
2) raw tuple-based data for each incident that has received no aggregation, 3) Geo-spatial
features, 4) timing information, and 5) other continuous or discrete features. In this sec-
tion, we briefly present our experience with a publicly available dataset about crime. We
use Argus-Panoptes as a spatial decision support analysis tool. Below, we discuss
the pre-processing, the (re-)generation of feature hierarchies and our profiling of Argus -
Panoptes.

The utilized dataset is curated and published by UK Home Office [7]. It maintains individual
crime and anti-social behavior (ASB) incidents including street-level location information
and is published in CSV format. All features in the dataset, are textual with longitude and
latitude being numeric. Table 2 shows all features among with the number of distinct and
null values for each feature.

Table 2: UK ASB Dataset Key Characteristics

Name Distinct Null | Description

crime_id 12665725 | 5510538 | Incident identifier string
longitude 737765 301155 | Longitude

latitude 731070 301155 | Latitude

location 280694 0 | Human-readable approximate location
Isoa_code 35921 778773 | UK-designated area code
Isoa_name 35065 778773 | UK-designated area name
reported_by 46 0 | Reporting department
falls_within 46 0 | Department with jurisdiction
month 35 0 | Date string formatted as %Y -%m
last_outcome_category 26 | 5806479 | Last outcome category
crime_type 14 0 | Category of crime

context 0 | 18268085 | Deprecated field

In our pre-processing phase, we transform and store the dataset in a format suitable for
our analyses. In particular, both Spark Master and Spark Worker nodes should be able to
import the format in question correctly. For the dataset of Table 2, we carry out the following
preprocessing steps: 1) transform date found in the month field to Date datatype, 2) drop
the deprecated field context as well as the crime_id. 3) drop fields Isoa_code, Isoa_name
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Figure 9: Distinct counts for every feature resulting from geo-joining and data binning.

and /ocation deemed as redundant information, 4) save the DataFrame in an efficient
columnar data representation like Apache Parquet.

We also transform the UK dataset by joining it with the NUTS classification scheme of
Eurostat [23]. This enhancement offers varying granularity in regional information that has
the following 4 levels: country (NUTS_0), major socio-economic region (NUTS_1), basic
region (NUTS_2), and small region (NUTS_3). We use the Magellan [24] Spark—library to
perform the geo-join between the coordinates of each point and the area polygon of each
region of the NUTS scheme. The geo-join helps us obtain the NUTS dimension having
only 178 distinct values, whereas the distinct values of the prior coordinate features were
760K. (Fig.9) This geo-join operation is CPU-intensive but it occurs only once and so, we
make the data persistent for further Argus -Panoptes processing.

We also tinker with two more dimensions: crime_type and date. Through binning, we
create 3 distinct types of crime: theft-related, anti-social behavior, and others. Then, we
map the original 14 crime types to populate the 3 new bins. Similarly, we bin the time
attribute of the dataset to populate quarterly and yearly levels. Fig. 9 reveals distinct
counts for all features of the dataset after introducing hierarchies. In contrast to the geo-
joining, binning is an inexpensive operation and can be carried out on-line without affecting
the system responsiveness. The latter affords the user to experiment with the introduced
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Figure 10: Visualization chunk computation times in relation to the row count of the aggregated
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of amount of data returned.

hierarchies on-line and if needed, realign them.

The aforementioned generation of hierarchical dimensions results to a maximum of 24
distinct chunks. Fig. 10 shows the computation time required for each of these chunks in
conjunction with the number of visualization tuples each one contains. It takes anywhere
between 7.10 and 16.80 seconds for chunks to be computed. The above range repre-
sents an acceptable delay as the computation of each chunk occurs only once. Through
caching, subsequent accesses to already computed chunks is only dependent to the vol-
ume of the data ultimately transported over the network to the client.

Fig. 11 depicts the json and the corresponding compressed file sizes for all 24 different
types of chunks. If json files were transported uncompressed, their size would range
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Figure 11: Chunk file size with row count of data they contain. The json gzip-ped files are trans-
fered from the cloud to the browser.
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from 1.56MBytes upto 140.90MBytes. In actuality, all such files are transfered gzip-ped
and their sizes ranges between 0.08 MBytes and 8.70MBytes with average chunk size being
less than 2.00MBytes. Such sizes facilitate both the sought on-line type of operation and
accomplish responsiveness for our prototype. Last but not least, we should indicate that a
large number of visual interface interactions can be immediately served by already cached
content in VA Client.
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8. CONCLUDING REMARKS

In this thesis, we propose Argus-Panoptes, a visual analytics system that incorporates
cloud-based Big Data processing in its core. Our key objective has been to combine
Big Data processing with visual analytics so as to further empower both domain experts
and data analysts. Our proposed architecture offers a number of novel mechanisms that
entail interactive programming for direct manipulation of both datasets and operations,
on-line processing through the use of Spark-clusters, robust operations through dataset
schema convergence and use of highly reconfigurable Ul components. Our system design
involves both home-grown virtual analytics server and client components as well as state-
of-the-art systems such as Zeppelin, Livy, Spark and NginX. We have evaluated Argus -
Panoptes using an enhanced spatio-temporal crime dataset from the U.K. Home Office
and have ascertained the effectiveness of our prototype through profiling of its operations.
Finally, there are certain extensions to the application that could greatly improve its func-
tionality and responsiveness. One obvious improvement is to make existing Ul React
components more responsive to the data they visualize as well as enrich the collection of
existing components. Another important improvement is related to the current implemen-
tation of the Visualization Chunk mechanism. Since there is no restriction on the amount
of data a Visualization Chunk can contain, browser crashes are expected when attempt-
ing to visualize a large Visualization Chunk. By giving the user a configurable option to
restrict the visualization of a Chunk with more rows than an arbitary value, we make User
Experience much smoother. This improvement is data-agnostic so it is beneficial to all
use-cases.
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APPENDIX A.LIBRARIES

A.1 Scala Libraries

P. Vlantis

organization artifact version
org.apache.spark | spark-core 2.2.1
org.apache.spark | spark-sql 2.2.1
org.apache.spark | spark-mllib 2.2.1
joda-time joda-time 2.9.7
org.json4s jsonds-jackson | 3.2.11
org.scalatest scalatest 3.0.5
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A.2 JavaScript Libraries

P. Vlantis

package name

semantic version

actioncable 75.1.5
babel-preset-react 76.24 1
colorbrewer MA1.0
d3 A3

dc https://github.com/dc-js/dc.js.qit#d06bd9
deck.gl 75.1.1
lodash NAT.5
node-forge 70.7.5
prop-types 7M5.6.0
react 7M6.2.0
react-dom 7M6.2.0
react-map-gl 73.2.4
react-redux 75.0.7
react-split-pane rA.TT
react-vis NM.94
redux 73.7.2
redux-actions 72.2.1
redux-thunk 7£2.2.0
semantic-ui-css 72.3.0
semantic-ui-react 70.78.3
babel-eslint £8.2.2
babel-jest n22.4.1
eslint N .18.1
eslint-plugin-jest A"21.12.2
eslint-plugin-prettier | #2.6.0
eslint-plugin-react AT.7.0
jest N22.4.2
prettier 7.10.2
react-test-renderer | #16.2.0
redux-mock-store 7AM.5.1
webpack-dev-server | #2.11.1
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A.3 Ruby libraries

P. Vlantis

gem name semantic version
rails ~>5.2.0
sqlite3

puma ~>3.11
sass-rails ~>5.0
uglifier >=1.3.0
webpacker

coffee-rails ~>4.2
turbolinks ~>5
jbuilder ~>25
redis ~>4.0
berypt ~> 3.1
bootsnap >=1.1.0
haml-rails ~>1.0
pandoc-ruby

forgery

awesome_print

colorize

devise

byebug

factory_bot_rails

rspec-rails ~>3.7
listen >=3.05&<3.2
web-console >=3.3.0
spring

spring-commands-rspec
spring-watcher-listen ~>2.0.0
guard

guard-ctags-bundler
guard-livereload

guard-rspec

guard-shell

rack-livereload

rubocop

capybara ~>3.0

selenium-webdriver

chromedriver-helper

tzinfo-data
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