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IMepiAndn

Yy Simhopoatixd auth Yo aoyoindolye ye tnv pehétn g eéiowong Cahn-Hilliard.
IIio ouyxexpéva, Vo xATAGKEVACOUPE TEPLOOXES XU Un PporyUéves AboES TNS.

H eiowon Cahn-Hilliard avrixetl oe wa 141 e&ehxtincdy e€lo®oewy TOmou avtidpaonc-
Ly uong.

Arno Quowhc TAEUPAS, €YOUPE VO XAVOUPE UE VAL TEOBANUO dAAXYHS QACTS, xoTd TO
omnofo dnwovpyolvtar (Si)empdveies. Emnhéov, 1 e€iowon Cahn-Hilliard etvon 1 amhoi-
otepn e&lowom 1 onola diatneel TNV Pdla X0 YEUDBVEL TO GUVAPTAOLOXG TNG EVERYELOC.

Aro yewpetpixrc thevpds, 1 Cahn-Hilliard diatripet tov 6yxo nou nepixheletal ano Ti¢
TPV EMUPAVEIES XAl UEIWVEL TOUPIAATAL TNV TERIUETEO.

‘Ocov agopd TNV xATAoXELT) TV AMICEWY, EVOLAPEPOLICTE VI TNV XATUOKEDT, TETOLWDY
OOTE 0L EMQAVEIEC TOU TOUS AVTIOTOL(OUY Vo uny eivar amhéc ogaipes, oAl va elvar un
ppayuéveg empdveleg otadepnc uéomng xaumuhétntoc. H yédodog xataoxeunc toug etvar 1)
e

ZEXVAUE PE Mol TpTY TeoaéYYion Tg Abong, 1 onola efval 1) LOVOBLIC TUTY) ETEROXAL-
VAC.

‘Eneita, ouveyiCoupe pe wa debtepn npooéyyion tng Aorng, otig 800 diaotdoetg. Tai-
OVOLUE TNV EMEXTAOY TNG TEONYOVUEVNS TEOCEYYIoTIXAG ADONG XOVTA OE Uil ETLPAVELDL
otadepric uéong xoumulontac. e autd To oxéhog yenotponototue Yewpla cuvidwy da-
POPUAY EELCWOEWY XAl avdAuoT) Tediou @dome.

Téhog, enexteivovpe Ty mpooeYyYloTxh) auty pog Aion o€ 6ho tov yopo. Q¢ ex’
T00UTOU, Vo YpetaoTolue Vewpla TEAEGTOY, Yenon tng ueddédou Lyapounov-Schmidt xo
xenon enyelpnudtwy atadepol anueiou.
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1 Abstract

This thesis is devoted to the Cahn-Hilliard (CH) equation. Cahn-Hilliard, belongs in a class
of evolution equations of reaction-diffusion type.

e From a physical point of view: We deal with a phase change problem where interfaces
are created.

e CH equation conserves mass and reduces the Energy functional.

e At geometric level: Cahn-Hilliard conserves the volume enclosed and the reduces the
perimeter.

We are interested in constructing a class of solutions which are not simple, sphere-like
but instead are periodic, unbounded Constant Mean Curvature surface-like.

Method:
e First Approximation: The 1-d heteroclinic solution

e Second Approximation: Expansion of 1-d solution near a CMC surface (Key Pieces:
ODE'’s theory, Phase plane analysis)

e Expansion to the whole space (Key Pieces: Definition of a non-linear operator through
CH, the linearisation of this operator, Lyapounov-Schmidt reduction, fixed point ar-
gument)



2 The Cahn-Hilliard Equation

This section is devoted to the Cahn-Hilliard equation.

u = —A(?Au — W, (u)) in Q
=0 on 012 (1)

ou
v
2 (e2Au— W, (u)) =0 on 9

where W is a double-well potential and in this thesis we will take W (u) = {(u® — 1)%. This
equation, is a model that describes the process of phase separation of two components of a
binary alloy. Here, 2 C R? where d > 1, is a bounded domain representing the place where
the isolation of the components takes place, v as usual, denotes the outer normal on 02 and
the function u stands for the concentration of one of the components. Finally, € is the range

of intermolecular forces.

2.1 Physical Considerations

Let us consider a binary alloy (A-B). An alloy is a specific solid combination of A-B. For
example, 30% A molecules - 70% B molecules = Phase 1. 60% A molecules - 40% B molecules
= Phase II. The state of this alloy depends not only on the temperature but also on the
mean concentration of each component A B. For a fixed mean concentration, the experiment
consists in abrupt drop of temperature and then wait for equilibrium.

Temperature

T

Tz_

Mean Concentrat

Figure 1: Phase Diagram

Explanation of the diagram

- Over the thick parabola: The coexistence of the two phases A and B.

- The stripped area: Nucleation, this is a metastable state, when the two phases separate
each other and nuclei appear.



- The dotted area: Spinodal Decomposition, this is a stable state where large areas of a
unique component A or B appear. The interface between phases A and B evolves. The Cahn-
Hilliard equation contains big amount of information about the geometry of this interface
and its evolution.

Figure 2: Nucleation and Spinodal Decomposition

We denote u the concentration of one component of the alloy, and rescaling it: u(x) €
[—1,1].
We denote by u* the mean concentration:

7
u' = — [ u(x, t)de
i Jo Y

Remark 1. The mean concentration u* is constant, but the local concentration evolves, and
depends both in time and the location in §2. For example, in Figure 2, the black areas, are
areas where u = 1, and the white, areas with u = —1.

2.2 Notation for the Problem

The potential in its general form is shown below

-/

Figure 3: General Potential

Without loss of generality and thanks to conservation, it can be transformed and written
in the form of W as follows.



Figure 4: W(u) = 1(1 — u?)?
The area between the minima and the inflection points on the curve(W,, > 0), corre-
sponds to nucleation. Between -1 and 1, the area where W,,,, < 0 corresponds to the spinodal
1 2)2,

decomposition. In this thesis, we consider the double well potential W(u)=73(1 — u

The function u(z, t) represents the concentration of each component of the alloy at x €
at time t. We will denote it by u(z) or u(t) depending on whether we consider space or time
evolution.

2.2.1 Energy Functional

We define the free energy functional as follows
2
Je(u) = / —|Vul|? + W (u)dx
q 2
This represents the free energy of the system. Thus we will try to find u which minimizes
it.
The term W is a potential term, it tends to approach a system where u takes £1 : It is
a separation term.

The gradient term is a uniformity term which will minimize the number of changes
between the values 1 of u : It penalizes interface area and singles out a solution.

2.2.2 The Gradient Flow

Proposition 1. Equation (1) can be derived from the gradient flow of the energy functional
in H=1(Q) subject to c* being constant.

Proof. Let H be a Hilbert space. We define the function J'(u) by:

VuveH, %1_{% w:: (J'(u),v)y

Thus, it is natural to consider the evolution of u such that:

du ,



Hence

) . Ou oul|”
W= <J() 8t> ot
Therefore, the evolution of w with time tends to decrease J(u).
The desired equation depends on the selection of the space. Here, we will choose H such
that we get the Cahn-Hilliard equation.

Without loss of generality we can assume the total concentration to be zero. Thus, we
get the space

H = {AD/D e H&(Q),/ B — 0,0, — 0}

Q

Remark 2. We have H € H~'(Q). But, for smooth functions u € H the conservation of
mass holds.
Let @ be such that A® = u

/u:/Aéz/ 0,2 =0
Q Q 80

Thus, this set is relevant according to our considerations.

Proposition 2. For u € H there is a unique ® € H} () such that:

AP = u on I
0,0 =0

qu):

Definition 1. For ®; and ®5 as above, we define a scalar product on H as:
(U1, ug)y = (VO1, V)2
Proposition 3. For u € H, if 0,(W,(u) — €2Au) =0 on 9N then:
J(u) = =AW, (u) — Au)

Proof of Proposition 3. We define ® as above for a smooth v.

- Jg(u—i—ti/t) — J.(u) _/ Wo(n) — EAulAD
/V Wy (u) — € Au]Vd
= W, (u) — €Au], V)2
= (—A[Wu(U) — ¢ Aul,v)y
O
With Proposition 3, the Proof of Proposition 1 is complete. O

7



2.3 Results About the Cahn-Hilliard Equation

The goal in this section is to present and explain some results about (1) in order to better
understand its meaning and to have a general idea of what the solution will look like.
We recall the definition of the energy functional:

2
Lw:/iWW+W@M
Q 2
We will compute J(u) for different u, to have an overview of what the minimizers can
be.
2.3.1 For u=u : constant

Obviously,  is a solution of (1) and we have:

Je(u) = W(a)|Q|

where [Q] = [, dz. We will study the stability of such a solution.
The linearization of (1) at u:

O,h = 0,Ah = 0 on 02
Joh=0
Assuming that h is in the form h(t,z) = e’*v(z) and replacing it in the above equation
we get:

{g%AWAhW@WW]

—Av = v

o = —e® — Wi (@)

Since the eigenvalues p are positive and € is small, the condition for ¢ roughly leads to
the following dichotomy:

Wyu(a) >0 =0 <0
Wu(t) <0=020

We write = k* and when W, (1) < 0, the graph of o(k) is the following



Figure 5: Dissipation o (k)

- Thus, the case where W, (u) < 0 leads to stability for big values of k.
Below we have a graph of W,,:

Metastable | Spinodal | Metastable
w" > 0 1 W'k o0 W' > o

Figure 6: Graph of W’

- If Wyu(a) > 0 then w = @ is a metastable minimizer. The term ”"metastable” stands for
the long time evolution to bubbles. This evolution is due to heteroclinic which is equal to
+1 (stable values) at £o0. So, the ends of the curve influence the motion of the bubble and
thus the state is not stable in the usual sense.

2.3.2 1« is not a global minimizer

In the definition of J. there were two influences on the system. Uniformity (the gradient
term) and separation (the potential term) at +1. Therefore, areas will appear where u is
constant and equal to 41, and so there will be an interface between these two areas where
u will change its value from -1 to 1. The gradient term is trying to reduce the interface.

In particular, let us consider E € () for which JF is smooth. We also consider I, a
neighbourhood of OF of width 2e. We choose u to be of the form:

u(x) — d(va\Ie) - d(SB, (Q \ E) \ Ie)
dx, E\ I.) +d(z,(Q\ E)\ L)

9



so that:

w==+1in E\ I,

{—1§u§11n[E
u==x1in (Q\ E)\ L

This is shown in the graph below:

Figure 7: The I. neighbourhood of OF
Proposition 4. Because of this selection of u, we have that:
Jo(u) = CL(OFE)e
where C is a constant and L(OE) is the length of OF.
Proof. We denote with ¥, the normal section of length 2¢ to OF at y € OF

Awwmmz W@M%/

M<E[WM”Mﬁ@§L@@MDamW§L@m§

Ie

Computation of the gradient term:
In I, we can write

where f(z) = 23 and 6(z) = oty
Thus, the differential of u is:
Vu = f'(6)Vé

Proposition 5. Close enough to a set A, the differential at x of the distance to A is the
normal to A at the projection of z on A, and |Vd| =1

10



Figure 8: Notation for Computation of the Gradient Term

From Proposition 5 and because ¢ is sufficiently small (see figure) we have that:

d(z, (Q\ E)\ [)V,[d(z, E\ I)] — d(z, E\ 1)V,]d(z, (2\ E) \ I)]
d(z,Q\ E)\ I)?
[2¢ —d(x, E\ I.)]|(-=N) —d(x, E\ I.)N
(2¢ —d(xz, E\ 1,))?

V0 =

For the sake of brevity we set d = d(z, E'\ I) and thus we have

2¢  2(e —d)?
(e — d)? €

Finally, from the above computation of the potential and gradient terms we get:

[Vu| =

J(u) ~ eL(OF).
[

This proof shows that minimizing the length of the interface will provide us with a better
minimization of J. and since it is of order of ¢, then u cannot be a global minimizer.

It has been shown in [1] that on a path connecting the maps @ and global minimizer u,,
the functional J. has a local maximum which has to be passed in order to reach the global
minimizer u,,. This local maximum corresponds to a phenomenon called nucleation (u,)
which is the appearance of small regions in 2 where u=+1. As time passes, these shapes
grow and merge with each other, so they become a connected area where only one component
of the alloy exists. So it is natural to study the geometry of the boundary of this area: The
interface. This will describe the solution of (1).

11



Je(u)

a Up Um Maps u

Figure 9: Nucleation and shape of the functional J,

2.3.3 Curvature of the Interface

Let’s consider a minimizer of J. with a volume constraint. We will show that the interface
has constant mean curvature. In order to minimize the interface with the volume constraint,

we will have to introduce Lagrange multipliers.

Let X be the surface parametrized by

X:D — R3
(u,v) — X(u,v)

Let X! be the surface parametrized by

Xt: D> R3
(u,v) — ¢(u, v, t)

where ¢(u, v, t) = X (u,v) + th(u,v)N(u,v), N is the normal at X and h: X — R.

Let S(X) be an area of X, E, F, G be the coefficients of the first fundamental form, and
e, f, g be the coefficients of the second fundamental form.

S(Xt) = / vV Eth — Fth’LLdV
D

_ / VEG = F2 + th(u, 1) (Eg + Ge — 2Ff) + O(t2)

1 1
=95(X +t/——h
& p2VEG — F?

:S(X)+t/ hHdS
X

[Eg + Ge — 2F f]

where H is the mean curvature of the surface.
For the gradient we have:

12



(S, h) = / hHdS
X

Concerning the volume V we have:

(V' h) = /X hdS

Thus, minimizing the functional S with a volume constraint leads to the existence of a
Lagrange multiplier A:

(S'h) + AV By =0= H=—A

Therefore, the system will evolve into a system of constant mean curvature.
Summary of the possible evolution of the solution to the Cahn-Hilliard equation:

o
Al3

Figure 10: Evolution of a solution to Cahn-Hilliard equation-Nucleation

As we see in the figure above, we start with a uniform mixture of the two phases. As
time passes by, we see nuclei appearing (phase separation), where, e.g., black correspond to
u=-1 and white to u=1. Then, nuclei merge to a circle because the distribution tends to get
a CMC interface with the smallest length. Subsequently, in order to minimize the length it
will slowly move to 0€2. Then it moves to the region of 02 with the greatest curvature and
stays there.



\ \
(h) ¢ 1073 x 107 ) t=2762x 107

Figure 11: Evolution of a solution to Cahn-Hilliard equation-Spinodal Decomposition

As an alternative evolution of the solution, there is the spinodal decomposition. It
depends on which area of the 1st figure we are in. The process is illustrated in the above
figure. After the final image, the process is called “coarsening” and it has the same evolution
as the one after nucleation.

3 Preliminaries

3.1 Delaunay Surfaces

Definition 2. Delaunay surfaces are surfaces of revolution with constant mean curvature

(CMC).

Remark 3. Delaunay surfaces can be classified into two different types:

(i) Embedded Delaunay surfaces: The unduloids, D,: They interpolate between the
cylinder and an infinite string of spheres arranged along a common axis. They are constructed
as follows:

We take an ellipse and let it roll in a straight line. As it rolls the one focus creates a
curve. We then rotate this curve around the horizontal axis. This surface of revolution is
the unduloid.

(ii)Immersed Delaunay surfaces: The nodoids.

Here, we will deal only with the first type.

14



Figure 12: Delaunay Unduloid

3.1.1 Embedded Delaunay Surfaces: The Unduloids.

As we mentioned above, unduloids are surfaces of revolution, so we will use cylindrical

coordinates. They are given by the parametrization:

x(t,0) = (p(t) cos b, p(t)sin b, t)

where t is a linear coordinate along the axis of rotation, 6 is the angular variable around

it, and p(t) solves

1 3
2

Ptt—;(1+P?>+(1+P?) =0

Proposition 6. H = 1 where H is the mean curvature = equation (2).
Proof. The unit normal N of D, at x(t,0) is:

8t><89

N9 = o< a,]

We have that

at(x> X 89<$> = p(_ COS 07 - Sinea Pt)
and
10 % 0 [I= pv/1 + pf
Thus, we replace in (3) and we get that the unit normal N is the following:

N(t,0) = (—cosf, —sinb, p;)

1
V140

Then the first fundamental form (in the notation of the metric tensor) is:

g = Edt* + 2Fdtdd + Gdb?

15
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where

E=X,X,=plcos’0+ p’sin®0+1=p>+1
F=X,Xyp=0
G = XgXp = p?sin®0 + p?cos? 0 + 0 = p°.

Therefore, g = (1 + p?)dt* + p*df?
The second fundamental form is:

B = Ldt? + 2Mdtdf + Nd6?

where
L=0yN = L(— cos? 0, —sin® 6, 0)
V1+p?
M - 8t9N - 0
N = OgyN = L(COSQ 0,sin?6,0)
V140
Thus,

B=__ Pt g2y P g

V140 V1+pi

So the mean curvature is

L+ N _3 _ 1
== =—pull+p) 2 +p (1 +p))

Thus, the condition H =1 yields

H

3
2

1
Ptt—;(1+P?)+(1+P?) =0

which is the desired equation (2). O

However, here we will mostly use a new parametrization which simplifies the study of
the solution of (2):

X.(5,0) = (1e”® cos 6, 7e°®) sin 0, k(5s))

Proposition 7. The functions o and k respectively satisfy:

o2 + 7%cosh’o =1

7_2

ks 5

(14 e*)

16



3.1.2 Jacobi Fields

Definition 3. The Jacobi operator, L is the linearization of N, where N is the nonlinear
mean curvature operator. It is given by

L=Ap +]|A, 2

where Ap._ is the Laplace-Beltrami operator on D, and |A.|? is the square of the norm of
the second fundamental form of D, .

Proposition 8. For the Delaunay unduloid D, the Jacobi operator is given by the following
expression (in the (s,0) isothermal coordinate system that we introduced earlier):

1

7—2620

L, = (02 + 03 + 72 cosh(20)) (4)

Proof. We know that the following are true:

1
Ap = — v/ det
D~ \/Mat( € gga@)

|A]? = K7 + K

where K, Ky are the principle curvatures.
But K? =2H?* — K +2HvH? — K and K2 =2H? - K —2HVH? - K.

Thus, |A, > = K} + K = 4H? — 2K.
From the computations in Section 2.1.1, we get the following expression for the Jacobi
operator:

1 p 1 popy + (1 +p})?
L, = 0 o | + =05 + 5
p\/ 1+ p? t<\/1+p? t) P>’ p*(L+ p})? )

The above equation becomes much simpler in the (s, ) coordinate system.
A brief calculation shows that

L+pf = ——;

1 -0

and
O-SS

Te?(1 — 02)?

Combining these two with Proposition 7, and replacing in (5) we get equation (4). O

Pit =

After removing the factor (72¢%?)~1, it will be sufficient to study the operator

Lyw = 0?w + Jqw + 72 cosh(20)w

where w is a function on D,.

17



Liw=0&
02w + O5w + 7% cosh(20)w = 0.
Separation of variables: We set w = S(s)©(f) and substitute to the above equation.

Then,
S"O + SO" + 7% cosh(20(5))SO = 0

We devide by S©

S// (_)// 9

< + ° + 7% cosh(20(s)) =0 <
S// 9 @// )
2 h(20(s)) = —— = 42,
5 + 7% cosh(20(s)) 5 j

Therefore,
0% 4+ 72 cosh(20(s)) — j* = L. ;,7 € Z.

Definition 4. A Jacobi field is a normal vector field of the form ¢N, where ¢ is a smooth
map defined on the surface, and N s the unit normal such that:

Lé=0

Proposition 9. The Jacobi fields on D, , which are elements of the kernel of L., are of three
types: (1) Jacobi fields arising from infinitesimal translations.

ol = ol (5,0),5 =1,...,d.

(i) Jacobi fields arising from infinitesimal rotations.
There are d—1 Jacobi fields arising from from infinitesimal rotations of the axis od D,. We
will denote them by

dRe j=1,..,d—1.

(iii) Jacobi field associated with the variation of the Delaunay parameter.
dP = —0,X,N,.

Remark 4. We know that these are all Jacobi fields with at most linear growth from [14],
where all the Jacobi fields of the Delaunay surface have been computed.

3.2 Fermi Coordinates

Let ¥ be an embedded CMC surface in R? and let Hy, denote its mean curvature. By N we
will denote its unit normal. We will assume that there exists a tubular neighbourhood N of
Y. of width 26 in which we can introduce a local system of coordinates (Fermi coordinates)

Definition 5. Fermi Coordinates (y, z)

18



Y:N =X x(=4,0)
x> (y,2) withx =y + zN(y).

Y is a diffeomorphism whenever § is taken sufficiently small.

Remark 5. In the sequel we will use the inverse of Y:

Y13 x (=4,0) = N;
(y,2) ==

Definition 6. Pullback of a function in Fermi coordinates
Given a function w : Ny — R® we define its pullback Y*w to ¥ x (=§,0) as:

Y*w(y,z) =wo Y_l(y, 2)

Definition 7. Shifted Fermi coordinates (y,t)
Let h: ¥ — R be a given smooth function such that the map Y, be a diffeomorphism.

Vi i N5 — X x (=6,0)
x> (y,t) withz =y+ (t+ h(y))N(y).

Definition 8. Pullback of a function in shifted Fermi coordinates.
Given a function w : N5y — R® we define its pullback Y;'w as:

Y w(y,t) =wo Yh_l(y, t)

Definition 9. Stretched shifted Fermi coordinates (t,7).
Let h : ¥ — R be a given smooth function such that the map Y. be a diffeomorphism.

Yon : Ng =2 x (=2,2)
x> (t,7) where t = ¢

Definition 10. Pullback of a function in stretched shifted Fermi coordinates.
Given a function w : N5 — R? we define its pullback Y, as:

Y:hw(gv {) =wo }/;;Ll (gv E)

Proposition 10. Ezpressions for the Laplacian in Fermi, shifted Fermi and stretched shifted
Fermi coordinates:
(i) Laplacian in Fermi coordinates.

A = AE + 83 — (HE + Z’AEP)@Z -+ ZBz],z + Z2QE7Z

where Y, = X+ zN = the original CMC' surface shifted in the direction of the normal by z,
2By, . = Ay, — Ay, the operator By, . is a second order differential operator and

d—1 d—1
Qx(y,2) = zQZK?jLzSZK?—i-...
=1 j=1

19



K, denote the principal curvatures of 3.

(ii) Laplacian in shifted Fermi coordinates.
A =Ax+ (1+|Vsh)8; — (Hs + Ash+ (t + h)|As*)0; + (t + h)Bsin + (£ + h)*Quin

where |Ax|? is the square of the norm of the second fundamental form of 3.

(#i) Laplacian in stretched shifted Fermi coordinates.

A = As+e ?(1+|Vh|?) 02— (Ho+Ash+(et+h)| A )0+ (et +h) By cr o+ (eE+R)* Qs ctn

20



4 A Periodic Solution

We considered the problem (1) on an open set 2, and we saw that is interesting to find
stationary solutions (which are minimizers for .J.) to this equation. We have found that
these solutions are constant and equal to £1 in subsets of (2.

Stationary solutions of (1) satisfy the Euler-Lagrange equation
e Au — Wy (u) = 6 in Q
Ju =0 on 0N (6)

|ﬁl|f9udrfvzmon o0

where ¢, is a Lagrange multiplier.

Scaling variables x — 7 and letting € tend to 0 leads us to the following problem:

Au — Wy (u) = (7)

Since € is assumed to be a small parameter, we can consider this problem on the whole space
R?. Thus, from now on, we will consider the problems on R

Dilating of the independent variable by a large factor ¢! >0
T el

we obtain an equivalent form of (7):

1
eAu — —W,(u) = I, (8)
€
where, [, = ‘5—;.

Remark 6. We do this rescaling having in mind the I'-convergence. In particular, the Modica-
Mortola theorem asserts that:

%Je = [ \/WP@TQ(A) as € — 0.

Moreover, with this convergence, for a sequence of minimizers of %Je, the limit is a
minimizer of the limit operator and thus we have a solution to our problem.

Theorem 1. For each CMC surface D, and for sufficiently small € the equation (8)
1
eAu— —W,(u) = I,
€

has a solution u. in R3, which is rotationally symmetric and periodic in the direction of the
axis of D;.
As € = 0 we have:

le=C+0O(e)

where C'is a constant, and also, u. satisfies uniformly over compacts
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ue — 1 as e — 0 in QF
ue — —1 ase— 0 Q7

where QF are the two disjoint components in which the D, divides the space.

4.1 The Solution in One Dimension

The homogeneous equation (7) in one dimension is:
u" — Wy (u) =0 (9)

Proposition 11. The equation (9) has a unique odd increasing solution © such that:

This solution s called the heteroclinic solution.

Proof. We rewrite our equation in the form of a system:

uy] = U
uh = W (uq)
1,2

By definition, we have that the level curves are E(ui,uz) = su; — W(uy)
In order to draw the phase portrait we think of a ball starting on the left maximum of
the curve —W. The ball will reach the maximum on the right and then it will return back

from where it starded. So we get the following:
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Figure 13: The curve —W and the phase plane for the heteroclinic solution

4.2 The Solution Near D,

In this subsection we will focus on solving equation (8). Having in mind subsection 2.2 we
will express the solution of (8),w, in stretched and shifted Fermi coordinates (y,t) in the
following way

Yaw(y,t) = U(f) + ¢oly,T) (10)

for some functions U and 1)y which will be determined. Moreover, we assume that h : D, — R
is

h = e%hy

where hg is a constant and we will choose it later.
Now, the error in equation (8) in the tubular neighbourhood Nj of D, is of the form:

1
N (w) —l. = eAw + Z(l —ww — I,

where, N (w) := eAw — 1W'(w)



Thus,

eAw + %(1 ) — 1, = DU — Hp 0U — e WyU) — 1. (1)
+e0utby — €€ Hp_Opbg — Wy (U)g — e(t + eho)|Ap. [P0.U  (12)
W)+ SWe(U) + W (U)o
+Ap by — (t + €ho)|Ap. |20 + (et + h)Bp, cyn(w) + e(et + h)*Qp, cyn(w)

We will simplify this equation. We will consider separately the different orders in e.
We first have the equation (11):

U" — eHp, U — Wy (U) = el (13)
Then we have the equation (12):
Optbo — eHp, Otho + (1 = 3U?)ho = (t + eho) | Ap, |*0:U (14)

Remark 7. The other terms in the error are of order €. In order to see this we have to notice
that the 3rd line has a Taylor expansion form, and the for the last line B(U) = 0 since U
only depends on ¢.

Then, finding solutions to (13) and (14) will give us a w for which the error in equation
(8) is of order €.

We have to determine U and g in order to find w. Also we need to choose hy and to
find a suitable lagrange multiplier /..

4.2.1 Construction of a solution U for equation (13)
U'—cU —Wy(U) + X =0, (15)
where W (U) = 3(U* — 1)? and Wy (U) = U? - U.

We rewrite our equation as it follows

Uy — (Wu(Uy) = A) = cUj
(16)
lim U(n) = Oémnh_{ﬁlo U(n) = Bx

n—oQ

where, U = ay > —1, U = 8, > 1 and Wy(ay) = Wy (By) = A
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Figure 14: Diagrams(W,W,,,W, — A\, W,, — Au,—W, + Au)-Phase portrait for ¢ = 0

1 /2
Theorem 2. For 0 < A < A\g:= 7 (5) , de=c(\), U = Ux(n) that is a solution of (15).

Moreover,
(i) ¢(A\)—=0 as X — 0t
(1i) ¢(0) # 0

Proof. We write equation (16) in system form:

=y
(17)

"=cy+Wy(z) — A
As we see, for the equilibrium points we have that y=0 and Wy (xz) = A\.They also are
independent of ¢. So let x = «y, By and v, be the values such as Wy (ay) = Wy(By) =
Wy () = A

So now we take the linearization of the system (17) at the equilibrium point (ay,0):
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r =1

Yy =cy+ Wypl(an)z

The corresponding eigenvalues are:

ct \/02 + 4WUU(OJ)\)
2

1* = e — Wyp(ay) = 0= p* =

So the points («y,0) and (8, 0) are both saddles.
The corresponding eigenvectors are:
1
+
T =
(ui)

The existence of the stable and unstable manifolds of the equilibrium point is obtained
by the following proposition.

Proposition 12. Let the system (17) with u=< 0 < u*. Then there exists 6 > 0 such that
in the region V= {(z,y)/|z|,|y| <6 } the W* W™ are non-empty sets.

Combining the above information, eigenvectors are tangent to the manifolds at the equi-
librium points.
Therefore, each manifold has the same slope as the corresponding eigenvector.

Step 1: Existence of the desired solution

We begin with a shooting argument. We fix A € (0, \g) and a parameter c.
Case (i): 0 < ex 1.

Let U(n; A, ¢) a solution of (16).

The level curves are given from the expression:

1
By(r,y) = 59 — (W(2) = \) =
where p is a constant
We take
d
d—E,\(U, U)=UU"—(Wy(U) -\ =U'[U"— (Wy(U) = N)] =cU?>0
Ui
So the solution moves through increasing values of the level curves.
Because of continuous dependence on the parameter ¢, the solution for ¢ << 1 will nearly
follow the trajectory of the homoclinic solution. In particular, we get that there exists T >0
such that
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(U,U’) hit the U-axis at a point (£(c),0) with £(c) <1 <f,.

Case (ii): ¢> 1.

Lemma 1. For ¢>> 1 the solution (U(n; A, ¢),U'(n; A, ¢)) with (U(0; A, ¢),U'(0; A, ¢)) on the
unstable manifold of (16) at (ay,0) intersects the unstable manifold of the corresponding
system for ¢=0, from the (Sy,0).
Proof of Lemma 1. We take

ey Wol@) =AWl =A o ocrcn,

dz Y Y

The term Wy (x) — A > 0 as we see in Figure 14.
Therefore,

y(7a) — y(0) = ey, y(0) > 0.

Consequently, y(7x) 2 ¢

So, for ¢ > 1, our solution intersects the desired unstable manifold before x = ~,. O

Remark 8.

Since %E,\(U, U’) >0, the solution (U(n; A, ¢),U’(n; A\, ¢)) cannot hit the unstable manifold
of the system for c=0 again.

Also, ' = y >0. So, the solution for ¢ > 1 does not intersect the x-axis at the interval

[07 B)\]

Nomochinic
(c=0)

Figure 15: Phase Portrait for ¢ << 1 and ¢ >> 1 in comparison with the one for ¢ =0

Now, let ¥ = {¢>0 / The solution of (16) intersects the x-axis in finite time at the
interval (k, 5))}, where k is the point where the homoclinic orbit intersects x-axis.
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Proposition 13.

1. 240
2. Y: Bounded
3. c*¢ %
Proof of Proposition 135.
1. True because of case (a).

2. True because of case (b) and the remark. Therefore, there exists ¢*:= sup X.

3. Let ¢ € X.
Hence, 3 (x,y) solution of (16) such that for finite time 7

(x(7),y(1)) = (£,0)

and
y'(r) =Wy(z(r)) —A <0

where k<x<f,.

Consequently it intersects transversally the x-axis and due to continuous dependence on the
parameter ¢, J¢ >0 such that ¢*+e € X. This is a contradiction, since ¢* is the supremum
of the set X.

Therefore, the proof is complete. O

Now, for n € N we define a sequence ¢, € ¥ such that ¢, — ¢* as n — +oo.
Also, we define the sequence of times in which the solution intersects the x-axis, {T,},
n — +00.

Proposition 14.

1. T, — 40
2. (x(Ty;ex), y(Th; cx)) — (Ba,0) as T,, — +o0.

Proof of Proposition 14.
1. Let T,, — 7, as n — +o0. Hence, (T},,¢,) — (7, cx) and due to continuity of the solution
we get: x(T,, ¢,) — x(7,cx) and y(T,,, ¢,,) — y(T, cx).
Since 7 is a finite time of the intersection of the solution with x-axis we have that: x(7,c*)
<By and y(7,c*)=0.

But this means that ¢* € X, and that is a contradiction.
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2. From the Poincaré - Bendixson Theorem, we know that in infinite time, in the closed and
bounded domain R, where R is the domain that consists of the x > 0 and y > 0 axis and
the level curve 342 + W(z) = W (), then our trajectory will either be a limit cycle, or it

will approach a limit cycle spirally, or it will end up on an equilibrium point.

But due to the direction of the vector field the two first options are rejected. So as

T,, — 400 our solution goes to the only equilibrium point in the first quadrant, (/,,0).

Step 2: Proof of properties (i) and (ii) of the Theorem 2.

(i) We multiply equation (16) with U} and we get

U\ UL — Wiy (U Uy = c(Uy)? — AUS.

We now take the derivative of the energy functional and integrate on R:

[ G - wewadn=c [ whn - Ao - ax) =

o AN 2 e
W(ﬂ)\) — W(Oé)\) = )\(ﬁ)\ — Oé,\) — C/ oo(U;\)2d77 =
oo .
W(5) =35 =~ [ (U3

For A\ — 0" we have that

W(ﬁx) = W(ﬁo) =0

A(Br) =0
+o0o +o0
[ @ [ a2

Hence, from (19) we get that ¢(\) — 0.
(i) From (19) we have ¢(0) = 0. We take the derivative of (19)
Wt~ (3 2%2) = e [ - [ wtran
d\ d\ A dx J A
We substitute with A = 0 in the equation (20):

1
J2ZWg)2dn
m @ # 0.

/1\1—>0 A

d(0) = #0&
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Remark 9. The terms ¢, €l of the equation from [9] can be replaced by the terms ¢, A respec-
tively.

Proof. We write ¢(\) for A = €l as follows

c(\) = (/\)\)/\ _ (5 ) _ <0(6€l;€)l6)6

We will prove that C(el l) — q
For [, we know that l6 — lp. So it is in our own convenience how it will be defined.

Thus we set
1 c(ely)

l, el,

lim — = d(0) #0

A—0 [, lo
Hence our choice is correct and therefore we proved that ¢(\) = le =e.

4.2.2 Construction of a solution v for equation (14)

Let us write, for convenience, the equation (14) as follows:
¢ — eHy¢/ + (1= 3U%)¢ = g(v, 1) (21)

We have that ¢; = U’ is a solution of the homogeneous equation of (21). We can easily
confirm that, by multiplying equation (13) with U’ and then substitute U’ in the equation.

Proposition 15. The fundamental set of the ODE (21) is spanned by the functions
U' = O((cosht)™) and V (£) = O((coshi)”*)

where

= %(eHE — /—4k(£00) + eQH%>, JE = %(6}[2 +/—4k(Eo0) + eQH%>

Proof. We write equation (21) in the form of a system

P = ¢2
Py = —(1 — 3U?)¢; + eHxdo

The characteristic polynomial is

0’ —eHgn+ (1 -3U%) =0 <

1
v = 5(eHE £\ HE - 4(1 - 3U2)>

where 1 — 3U?% = k and k(£oo) = 1 — 3(£1 + 0F)? since U(do0) = +1 + 0.
As t — 400 we have a homogeneous ODE with constant coefficients, so we find two
linearly independent solutions:
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G = cremt = ¢y ()
Gy = cre” ! = ey(e)”

But, because t — +oo we substitute e’ with cosht for brevity.

By Liouville’s formula we have that the Wronskian is:
t
Wi(t) = W(O)/ trAds
0

where A is the matrix of the system of the equation (21).
Thus, if we assume that W (0) = 1
W (t) = et
But it is known that:
¢ =G(g)

where
t

Gv)(t,y) = —U'(t)/o V(S)C_EHZSV(S,y)dS—i—V(t)/ U'(s)eH=*p(s,y)ds

—00

If g(y,t) satisfies the orthogonality condition

[ sttnrme ot =o
R

the function G(g) is exponentially decaying whenever g is exponentially decaying.
Lets assume for instance that

19y, 1) (cosh )" < C

where p € (n+ eHs, —n] and 7 = mazn™,n~ <0
Then we have

|6(y, t)|(cosh 1) < C

Now we will determine hg in order to determine next the function 9. To do this, we will
choose hg such that it satisfies the orthogonally condition mentioned above:

/(t + eho) (U’ (t))?e~=tqt = 0
R

Hence,

_ pt(U' () ?em St

ho =
O e [L(U(t))2ectstdt

With this choice we define
Yoy, t) = G((t + eho)U")|As .
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4.3 The Solution in the Whole Space

In the previous subsection we built a special solution near the Delaunay unduloid. Here, we
will expand this solution in R? for d > 3.

4.3.1 The Lyapunov-Schmidt Reduction Method
This method is a way to solve equations of the form
Az = N(x)

where A is a linear operator and N a nonlinear. They are both continuous.
In particular, A: X — Z, N : X — Z where, X, Z are Banach spaces.

Lemma 2. Let mgera and wp,abe the continuous projections on the corresponding subspaces.
Then there is a continuous linear operator

K:ImA — [m([—ﬂ'KeTA)

such that
{KA =1 —Tgersa on X

AK =1 on ImA

Proposition 16. The equation Az = N(z) is equivalent to the following system

r=y+z wherey € KerA and z € Im(I — nKerA)
2 — KnpmalN(y+2) =0
(I = mmaN(@y+2)=0

The idea of the Lyapunov-Schmidt reduction is to manage to invert the linear operator
A, then solve the first equation for a given y using a fixed point argument (this gives a
certain z*(y)), and finally solve the following

(I = mrma)N(y + 2*(y)) = 0
Now, let us recall the definition of the nonlinear operator NV, in section 4.2 by:
N, = eAu — %W’(u)
Equation (8) now takes the form:

N(u) = (22)

Remark 10. Since we are interested in finding a solution periodic in the direction of the x4
axis with the minimal period equal to that of D, we define the manifold D, by identifying
the set D, N {xy = 0} with the set D, N {z4 = 27, }.
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We want to linearise N, around the local solution w = U + €%¢y. For that, we will first
extend w to the whole space and define the map H:

Definition 11. .
- { l+o. ifzeDf

~1+o0, ifzeD:
where Djf and DOT— denote the interior and the exterior of D. respectively.

We will also need a cutoff function y such that:

Definition 12. Let x* the cutoff function supported in the tubular neighbourhood of D, such

that
€t

Yo' =x(5)
We can now define a global approximate solution w* by:
w*(x) = w(x)x*(z) + H(z)(1 - x(z)) (23)
Now, we linearise N, near w* and the solution we are searching for has the form:
u=w"+¢

where ¢ is a small, in a way to be specified, function. That is why it seems natural to
linearise N,.

4.3.2 The Linear Operator L.

In this section we will study the linear operator since we will have to invert it according to
Lyapunov-Schmidt reduction.

Definition 13. The linearisation of N, near w* is:
1 4 *
L = eAg — =W (w*)g
€
Now, we can rewrite equation (8), with u = w* + ¢:

Le¢ = —Ne(w*) — Qc(8) + L (24)
where, L.p = DN .(w*)¢ and Q.(¢) = N(w* + ¢) — N(w*) — L.

33



Definition 14. The expression of L. in Fermi coordinates is:
Le:=eApy — (Hp +e(t+ eho)x(t%_) |AD°J2)85 + 102 — W (w*)
Remark 11.
Y:hLe ~ L
Proof of Remark 11. The expression for the Laplacian is:
A=Ap +e?0y—e ' (Hp + (et +h)|Ap )0 + (et + W)Bp_ o + (et +h)’Qp

Thus,
* €l 2 3
Lo — Y Le = et + eho)| A5 2 [ (5)}@“ (t + eho)B + €(t + eho)Q

From Remark 7 at page 23, we get the desired result. O

Now, we will focus on solving the following linear equation:
Lep = g(x) =, in R x Sop. (25)
1
eAp — —W"(w")¢ = g(x)
€

We want to find a solution with a reasonably bounded norm. That happens only if the
right hand side of (25) satisfies some extra condition, or equivalently, we need to introduce
Lagrange multipliers. Thus, we will solve the following:

1 " T,e;
eAg — —W"(w")o = g(z) + x ZCJZ (26)

where,
c; are the Lagrange multipliers,

e*hX*(E) =X <E—E>

* Tej T,e;
Y221 (y,t) = V(y, )@ (y)
V= 8tw = (U + €%¢) and
e; = the coordinate axis.

The idea is to solve (26) by gluing a solution defined near D, and another one defined away
from it. To describe this construction we need some preparation.
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First, the solution we are searching for, has the form:
¢ = X*Q_s O Xen + w

where ¢ describes the solution near D, and Y far from it. To avoid complicated notions we
will omit the composition with Y.
We also, introduce the function g(x) as follows:

—W"(1+0ot) if dist(z, D;) >6/2
q(z) =

—W"(=1+07) if dist(z,D,) <—0/2.

Finally, we need another cutoff function y such that:

We can now split our equation into:

T,e;

{ Led = X9+ X" Xy ¢iZ07 + (Le— Lo — [\, L6 + Mg + W' (w))o)

A+ (L= W (") +xal = (1= x) (9" iy 20 = [, Ld9)
(27)
A solution to (27) is a solution of (26). Indeed, multiplying the first equation by x* , adding
the two equations and using the fact that yx* = x* gives us the solution to our problem.
We also notice that the first equation is written in Fermi coordinates on D, x R and the
second one is defined on R4~ x Sy .

We have to invert these linear operators and find estimates of the solution in order to apply
a fixed pointed argument later.

Let us introduce a functional space.
Definition 15.
¥ ={oe 0, x )/ [ o(y.0V (w0t =0}
R
We decompose:
o=ol + ot

where

Vol € X
Y:hﬁbL e Xt

are the orthogonal projections.
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Remark 12. Some explanations about space X
First, we define:

K ={7 € 136,727 = o(y)V (v 1)}
Thus,

KL — {qb € L2|vs0,//o " go(y)V(y,f)qs(y@dydg}
- {¢e L2|W>,/ﬁ w[/RV(y,f)qa(y@]dy}

=X

Thus, every function which is orthogonal to X can be written as V.
Next, we define:

Vi= {60 = V02N, [ 2)855 @y = o}

Using the expression of the Laplacian in Fermi coordinates and the fact that we constructed
a good approximation of the solution, we can easily compute:

Y (LeZ) = O(e)

€

From the above, it follows that:

X+ N (kerL)* Cc Y
Definition 16 (Weighted Holder Spaces). The weighted Holder norms on D, x R:

HUHCE;Q(D“TX]R) = S;EJHE(COS}LDMHUHCOva(DOTX(ffl,EJrl))
Hu’|cba(D°T><R) = HuHcﬂ""(DDTXR) + HVDDTXRUHCB’Q(DGTXR) (28)
2

[ullezo s, xmy) = lullcoe s, xry T IV b, xrtillcoo s, xr) + 1V gttllcro s, <r)

where, Vp_ - and V% . denote the gradient and the Hessian on the manifold ZODTX]R respec-
tively.
We also define the norm:

||| 1. B xR) = 6m||6ng || 0.0
13 ( ) T 122

0<k+m<l

Remark 13. With this definition we have for [ = 0:

”ngg’a(pﬂxug) = HUHC&Q(DlxR)

Thus, spaces C, £ are basically the same for [ = 0.
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Lemma 3. Let us consider the following equation:

Le¢ = g(ya E)

With the above notation for the projections on X and its orthogonal complement, we have
the following estimates for ¢:

@]t < Ce=(|lglo 0 + €[l g™ || 00)
{ K & " (29)

[+ e < Ce g™ epe
Lemma 4 (a priori estimate for (27b)).
d
—l—a * —ce—1/4 n
||¢||cl«a(Rd—1xszTT) < Ce'! ||(1 - X )9||CO»Q(Rd—1xSQTT) +e (Z |Cj| + ||¢||c;»a(f)Tx]R))
j=1

Lemma 5 (a priori estimate for (27a)). If we set

9=x{y+\ ZcJZ“f + (Lo = LY = [, Ldé + g + W' (w"))o |

then using Lemma 3 (29a) we have:

19ty < O 18 oty + 18 g )

Now, using Lemma 3 (29b) we get:

HQEJ_Hcfﬁ(D“TxR) < Ce! HngCB’a(DQTxR)

These two Lemmas lead us in solving the system (27) and therefore the equation (26). This
is summed up in the following proposition:

Proposition 17. For each sufficiently small € there is a solution ¢ to equation (26) of the

form ¢ = x*¢po Yo, + 9
where

(8,6+,) € E2°(D, x R) x C2(Dy x R) x €2 (R x Sor,)

such that the following estimates hold:
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10"z 5y < O LN g 15,y + € SN KO et cmy T € FEN(T = Xgllenn g1

Hélucﬁv”(ixn{) < CG_l{H(Xg)LHCB’O‘(DDTXR) + 51_a’|(>€9)“|’53’a(ﬁ7xﬂ{) +e (1~ X*)g|’C0’a(Rd*1XSQTT)}

—l-a * —ce1/8 Y,
[lleze@i-txsir,) < Ce (1 = XM glleon@i-1xsar,) + O™ )XYl (5, xm)
(30)

Lemma 6. Proposition 17 is a result of the following:
Using a priori estimates (30) we can solve the system (27) by a standard fized point argument.
To do this we replace the functions !, ¢, 1 on the right hand of the system by known
functions ®!, &+ W which satisfy estimates of the same type as (30) but with constants
bigger than those appearing in (30).
Then we have a map

(@, @+, 0) — (gl 6", )

from a certain ball in the space Ei’o‘(li X R) x Cﬁ’a(li x R) x C3*(R4 x Syr.) into itself.
This and the Lipschitz character of this map (from the way we derived a priori estimates),
allows for an application of the Banach fixed point theorem.

4.3.3 Proof of Theorem 1

Now we can finish solving the nonlinear problem (24):

Le(b =l — Ne<w*) - Q€(¢>

As we saw above, we need to modify this equation by introducing Lagrange multipliers.
Thus we will consider:

d
Lep =l — N(w*) = Qu(¢) + X" Y _ ;255 (31)
j=1

Proposition 18. There is a solution to the nonlinear equation (31), where for a certain
constant K and suitable &, m we have:

ol e xNEX (D, xR)  and [|gl]|gze < K0
¢t e YNC2(D, xR)  and [|¢H||gze < Ke?
@Z) € C2’Q(Rd71 X SQTT) and ||¢||c2,a < Keime_l‘
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Proof. Let us consider functions ¢, such that the inequalities in the proposition hold.

Lemma 7. We can solve the equation for ¢, ¥ using the previous section about the linear
operator, and get a solution ¢, ¥ such that the inequalities hold again with a smaller constant
K.

Thus we have a nonlinear map
(0, 0", 9) = (ol o™, )
between small balls in the corresponding spaces.
This map is a contraction, and it is straightforward using the quadratic nature of the

nonlinear function Q(¢).
We can now use a Banach fixed point argument to conclude. O

Proof of Lemma 7. Let us write:

~

¢ = X*Q; o €,h + 1;
We also define:
Ay = x*[le = Ne(w™)]
Ay = N(w*) = x"N(w) — (1 = x*)N(H)

Thus, we have:
le = Ne(w*) = X"[le = Ne(w™)] + N(w") = Xx"N(w) — (1 = x")N(H) = A; + Ay

The above holds because of the definition of w* and N, and the expression of Laplace operator
in stretched shifted Fermi coordinates.
Next, it is easy to obtain the following estimates for A; and As:

(1Y% Asl| g0 < Coene”
(1 = x")Aslcoe < Cpe
1z %AD | gpe <
||Y:h>_(A1)J_||Cg,a < Cped
(L= x*)Arlleoa < Coe™

where Cy, ¢, 0 are positive constants.
In this way we estimated the size of the error of the approximation I, — N (w*).

1/3

1
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Using these five inequalities and Proposition 17 we get the desired results. Indeed, lets prove
that for the first inequality of Proposition 18:

16 ez0 5, 0y < CE {1 0) s + €0 (X9) e + € 0(€) (1 = X" glleve }

< ce e+ (A2 + 1%Qe(6)]|

+ eSO (A + e 5(0)leA) | + eSO

+ eI [0 = x )AL + (1= x) A + 1= x)QB)] |

< Ce e Co + Coe™ ™ 1 [RQU) | + () Coe® + € () Coe
+ (1= xR

1/3

+€713(6)|[XQe()] + 2637 3(€) Coe ™™
6[64_& + Qe]

N

In the last inequality we have used the definition of ¢ and a. Indeed, the lowest orders
in € are:

- The first term in ¢*~® thus we choose & >a.

- The fourth term in fifth row in 6(¢)e3~ thus we choose & >a + 1/3.
Q. is composed of terms in QE(QAS)

Q. = (IXQe(D)]| + e 5(e)IXQe(D) ]| + €731 — X")Qe(D)]])
and thus for a certain \:
Qe < AIBIP( 7 + € 73(e) + €76 (€)) == Acl||I?
Then, using the hypothesis for ¢ we have:
19120 < C(1+ AKZet%)et 4

Thus, we fix K = 4C and for a sufficiently small ¢ we get:
||¢_>”||55,a <200 = Ket™% < K2

Finally, we have a solution of the equation
eAu—— )=1l+x" ZCJZTef (32)

which is satisfying the assertions of the Theorem 1 by construction:

u=w"+¢
:QU*‘FX*QEO e,h+¢
=wx"+H(l —x")+¢
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and we recall that:
Y:hw(y> E) = @(yv {) + €Y + esz

The convergences of Theorem 1 are obvious with the above equality and the requirement
for [, has been proven before.

The last step is to show that in fact ¢; = 0. For that, we will need the following Lemma:

Lemma 8 (Balancing formula). Let X = ) a;0,; be the infinitesimal generator of transla-
tions or rotations in RY. For any C*(RY) function, it holds:

din| (§19uP? - %W(u))X(u) — X (w)Vu] = —[eAu+ %W’(u)]X(u) (33)

Proposition 19. ¢; =0

Proof. We will take X; = 0,, for some 1 < j < d and integrate formula (33) over the cylinder
Cr = Br X Sor.. Using (32) and Green’s Theorem we get:

1 d €.r
/(%R <§|Vu|2 — EW(U) + l5u>njd5 - . Op,u0qudS = — /CR (Zx*cjerT,éj )amju'

=1
The first integral is 0 on the top and the bottom of the cylinder Cgz and on the other hand,

using the asymptotic behaviour of the solution we get finally:

R—o0

where Ig, I[1g, I11g denote the first, second and third term respectively.
For the second integral, we have that the integrals on the top and the bottom of Cgp are
cancelled because u is periodic. Then, from exponential decay of the derivatives of u we get:

i, Tn =0

Finally, we note that
Op,u ~ ZZ: e

hence,
d
]I]R:Cj/ 1ZL9)7 +0(1) ) ey
E-,—XR ’ ]/:1
from which we get immediately that ¢; =0, 7 =1,...,d. O

This Proposition ends the construction of our solution as stated in Theorem 1.
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