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PerÐlhyh

Sthn diplwmatik  aut  ja asqolhjoÔme me thn melèth thc exÐswshc Cahn-Hilliard.
Pio sugkekrimèna, ja kataskeu�soume periodikèc kai mh fragmènec lÔseic thc.

H exÐswsh Cahn-Hilliard an kei se mia t�xh exeliktik¸n exis¸sewn tÔpou antÐdrashc-
di�qushc.

Apo fusik c pleur�c, èqoume na k�noume me ena prìblhma allag c f�shc, kat� to
opoÐo dhmiourgoÔntai (di)epif�neiec. Epiplèon, h exÐswsh Cahn-Hilliard eÐnai h aploÔ-
sterh exÐswsh h opoÐa diathreÐ thn m�za kai mei¸nei to sunarthsiakì thc enèrgeiac.

Apo gewmetrik c pleur�c, h Cahn-Hilliard diat rei ton ìgko pou perikleÐetai apo tic
parap�nw epif�neiec kai mei¸nei par�llhla thn perÐmetro.

'Oson afor� thn kataskeu  twn lÔsewn, endiaferìmaste gia thn kataskeÔh tètoiwn
¸ste oi epif�neiec pou touc antistoiqoÔn na mhn eÐnai aplèc sfaÐrec, all� na eÐnai mh
fragmènec epif�neiec stajer c mèshc kampulìthtac. H mèjodoc kataskeu c touc eÐnai h
ex c:

Xekin�me me mia pr¸th prosèggish thc lÔshc, h opoÐa eÐnai h monodi�stath eterokli-
n c.

'Epeita, suneqÐzoume me mia deÔterh prosèggish thc lÔshc, stic dÔo diast�seic. PaÐ-
rnoume thn epèktash thc prohgoÔmenhc proseggistik c lÔshc kont� se mia epif�neia
stajer c mèshc kampulìhtac. Se autì to skèloc qrhsimopoioÔme jewrÐa sun jwn dia-
forik¸n exis¸sewn kai an�lush pedÐou f�shc.

Tèloc, epekteÐnoume thn proseggistik  aut  mac lÔsh se ìlo ton q¸ro. 'Wc ek'
toÔtou, ja qreiastoÔme jewrÐa telest¸n, qr sh thc mejìdou Lyapounov-Schmidt kai
qr sh epiqeirhm�twn stajeroÔ shmeÐou.
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1 Abstract

This thesis is devoted to the Cahn-Hilliard (CH) equation. Cahn-Hilliard, belongs in a class
of evolution equations of reaction-diffusion type.

• From a physical point of view: We deal with a phase change problem where interfaces
are created.

• CH equation conserves mass and reduces the Energy functional.

• At geometric level: Cahn-Hilliard conserves the volume enclosed and the reduces the
perimeter.

We are interested in constructing a class of solutions which are not simple, sphere-like
but instead are periodic, unbounded Constant Mean Curvature surface-like.

Method:

• First Approximation: The 1-d heteroclinic solution

• Second Approximation: Expansion of 1-d solution near a CMC surface (Key Pieces:
ODE’s theory, Phase plane analysis)

• Expansion to the whole space (Key Pieces: Definition of a non-linear operator through
CH, the linearisation of this operator, Lyapounov-Schmidt reduction, fixed point ar-
gument)
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2 The Cahn-Hilliard Equation

This section is devoted to the Cahn-Hilliard equation.
ut = −∆(ε2∆u−Wu(u)) in Ω
∂u
∂ν

= 0 on ∂Ω

∂
∂ν

(ε2∆u−Wu(u)) = 0 on ∂Ω

(1)

where W is a double-well potential and in this thesis we will take W (u) = 1
4
(u2 − 1)2. This

equation, is a model that describes the process of phase separation of two components of a
binary alloy. Here, Ω ⊂ Rd where d > 1, is a bounded domain representing the place where
the isolation of the components takes place, ν as usual, denotes the outer normal on ∂Ω and
the function u stands for the concentration of one of the components. Finally, ε is the range
of intermolecular forces.

2.1 Physical Considerations

Let us consider a binary alloy (A-B). An alloy is a specific solid combination of A-B. For
example, 30% A molecules - 70% B molecules = Phase I. 60% A molecules - 40% B molecules
= Phase II. The state of this alloy depends not only on the temperature but also on the
mean concentration of each component A,B. For a fixed mean concentration, the experiment
consists in abrupt drop of temperature and then wait for equilibrium.

Figure 1: Phase Diagram

Explanation of the diagram
- Over the thick parabola: The coexistence of the two phases A and B.
- The stripped area: Nucleation, this is a metastable state, when the two phases separate

each other and nuclei appear.
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- The dotted area: Spinodal Decomposition, this is a stable state where large areas of a
unique component A or B appear. The interface between phases A and B evolves. The Cahn-
Hilliard equation contains big amount of information about the geometry of this interface
and its evolution.

Figure 2: Nucleation and Spinodal Decomposition

We denote u the concentration of one component of the alloy, and rescaling it: u(x) ∈
[−1, 1].

We denote by u* the mean concentration:

u∗ =
1

|Ω|

∫
Ω

u(x, t)dx

Remark 1. The mean concentration u* is constant, but the local concentration evolves, and
depends both in time and the location in Ω. For example, in Figure 2, the black areas, are
areas where u = 1, and the white, areas with u = −1.

2.2 Notation for the Problem

The potential in its general form is shown below

Figure 3: General Potential

Without loss of generality and thanks to conservation, it can be transformed and written
in the form of W as follows.
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Figure 4: W (u) = 1
4
(1− u2)2

The area between the minima and the inflection points on the curve(Wuu > 0), corre-
sponds to nucleation. Between -1 and 1, the area where Wuu < 0 corresponds to the spinodal
decomposition. In this thesis, we consider the double well potential W(u)=1

4
(1− u2)2.

The function u(x, t) represents the concentration of each component of the alloy at x ∈ Ω
at time t. We will denote it by u(x) or u(t) depending on whether we consider space or time
evolution.

2.2.1 Energy Functional

We define the free energy functional as follows

Jε(u) =

∫
Ω

ε2

2
|∇u|2 +W (u)dx

This represents the free energy of the system. Thus we will try to find u which minimizes
it.

The term W is a potential term, it tends to approach a system where u takes ±1 : It is
a separation term.

The gradient term is a uniformity term which will minimize the number of changes
between the values ±1 of u : It penalizes interface area and singles out a solution.

2.2.2 The Gradient Flow

Proposition 1. Equation (1) can be derived from the gradient flow of the energy functional
in H−1(Ω) subject to c* being constant.

Proof. Let H be a Hilbert space. We define the function J’(u) by:

∀ u,v ∈ H, lim
t→0

J(u+tν)−J(u)
t

:= 〈J ′(u), ν〉H

Thus, it is natural to consider the evolution of u such that:

∂u

∂t
= −J ′(u)
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Hence
∂

∂t
J(u) =

〈
J ′(u),

∂u

∂t

〉
H

= −
∣∣∣∣∣∣∣∣∂u∂t

∣∣∣∣∣∣∣∣2
H

Therefore, the evolution of u with time tends to decrease J(u).
The desired equation depends on the selection of the space. Here, we will choose H such

that we get the Cahn-Hilliard equation.
Without loss of generality we can assume the total concentration to be zero. Thus, we

get the space

H = {∆Φ/Φ ∈ H1
0 (Ω),

∫
Ω

Φ = 0, ∂nΦ = 0}

Remark 2. We have H ∈ H−1(Ω). But, for smooth functions u ∈ H the conservation of
mass holds.

Let Φ be such that ∆Φ = u∫
Ω

u =

∫
Ω

∆Φ =

∫
∂Ω

∂nΦ = 0

Thus, this set is relevant according to our considerations.

Proposition 2. For u ∈ H there is a unique Φ ∈ H1
0 (Ω) such that:

∆Φ = u on ∂Ω

∂nΦ = 0∫
Ω

Φ = 0

Definition 1. For Φ1 and Φ2 as above, we define a scalar product on H as:

〈u1, u2〉H = 〈∇Φ1,∇Φ2〉L2

Proposition 3. For u ∈ H, if ∂n(Wu(u)− ε2∆u) = 0 on ∂Ω then:

J ′ε(u) = −∆(Wu(u)− ε2∆u)

Proof of Proposition 3. We define Φ as above for a smooth ν.

lim
t→0

Jε(u+ tν)− Jε(u)

t
=

∫
Ω

[Wu(u)− ε2∆u]∆Φ

= −
∫

Ω

∇[Wu(u)− ε2∆u]∇Φ

= 〈−∇[Wu(u)− ε2∆u],∇Φ〉L2

= 〈−∆[Wu(u)− ε2∆u], ν〉H

With Proposition 3, the Proof of Proposition 1 is complete.
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2.3 Results About the Cahn-Hilliard Equation

The goal in this section is to present and explain some results about (1) in order to better
understand its meaning and to have a general idea of what the solution will look like.

We recall the definition of the energy functional:

Jε(u) =

∫
Ω

ε2

2
|∇u|2 +W (u)dx

We will compute Jε(u) for different u, to have an overview of what the minimizers can
be.

2.3.1 For u = ū : constant

Obviously, ū is a solution of (1) and we have:

Jε(u) = W (ū)|Ω|

where |Ω| =
∫

Ω
dx. We will study the stability of such a solution.

The linearization of (1) at ū:{ ∂h
∂t

= −∆[ε2∆h−Wuu(ū)h]
∂nh = ∂n∆h = 0 on ∂Ω∫

Ω
h = 0

Assuming that h is in the form h(t, x) = eσtν(x) and replacing it in the above equation
we get:

−∆ν = µν

σ = −εµ2 −Wuu(ū)µ

Since the eigenvalues µ are positive and ε is small, the condition for σ roughly leads to
the following dichotomy: {

Wuu(ū) >0⇒ σ < 0
Wuu(ū) <0⇒ σ & 0

We write µ = k2 and when Wuu(ū) < 0, the graph of σ(k) is the following
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Figure 5: Dissipation σ(k)

- Thus, the case where Wuu(ū) < 0 leads to stability for big values of k.
Below we have a graph of Wu:

Figure 6: Graph of W ′

- If Wuu(ū) > 0 then u = ū is a metastable minimizer. The term ”metastable” stands for
the long time evolution to bubbles. This evolution is due to heteroclinic which is equal to
±1 (stable values) at ±∞. So, the ends of the curve influence the motion of the bubble and
thus the state is not stable in the usual sense.

2.3.2 ū is not a global minimizer

In the definition of Jε there were two influences on the system. Uniformity (the gradient
term) and separation (the potential term) at ±1. Therefore, areas will appear where u is
constant and equal to ±1, and so there will be an interface between these two areas where
u will change its value from -1 to 1. The gradient term is trying to reduce the interface.

In particular, let us consider E ∈ Ω for which ∂E is smooth. We also consider Iε a
neighbourhood of ∂E of width 2ε. We choose u to be of the form:

u(x) =
d(x,E \ Iε)− d(x, (Ω \ E) \ Iε)
d(x,E \ Iε) + d(x, (Ω \ E) \ Iε)

9



so that: { −1 ≤ u ≤ 1 in Iε
u = ±1 in E \ Iε
u = ±1 in (Ω \ E) \ Iε

This is shown in the graph below:

Figure 7: The Iε neighbourhood of ∂E

Proposition 4. Because of this selection of u, we have that:

Jε(u) ≈ CL(∂E)ε

where C is a constant and L(∂E) is the length of ∂E.

Proof. We denote with Σy the normal section of length 2ε to ∂E at y ∈ ∂E

∫
Ω

W (u(x))dx =

∫
Iε

W (u)dx ≈
∫
∂E

(∫
Σy

W (u(x))dx
)
dy ≤ L(∂E)L(Σ) supW ≤ L(∂E)

ε

2

Computation of the gradient term:
In Iε we can write

u(x) = f(δ(x))

where f(x) = x−1
x+1

and δ(x) = d(x,E\Iε)
d(x,(Ω\E)\Iε)

Thus, the differential of u is:

∇u = f ′(δ)∇δ

Proposition 5. Close enough to a set A, the differential at x of the distance to A is the
normal to A at the projection of x on A, and |∇d| = 1
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Figure 8: Notation for Computation of the Gradient Term

From Proposition 5 and because ε is sufficiently small (see figure) we have that:

∇xδ =
d(x, (Ω \ E) \ Iε)∇x[d(x,E \ Iε)]− d(x,E \ Iε)∇x[d(x, (Ω \ E) \ Iε)]

d(x,Ω \ E) \ Iε)2

=
[2ε− d(x,E \ Iε)](−N)− d(x,E \ Iε)N

(2ε− d(x,E \ Iε))2

For the sake of brevity we set d = d(x,E \ Iε) and thus we have

|∇u| = 2ε

(ε− d)2

2(ε− d)2

ε

Finally, from the above computation of the potential and gradient terms we get:

Jε(u) ≈ εL(∂E).

This proof shows that minimizing the length of the interface will provide us with a better
minimization of Jε and since it is of order of ε, then ū cannot be a global minimizer.

It has been shown in [1] that on a path connecting the maps ū and global minimizer um
the functional Jε has a local maximum which has to be passed in order to reach the global
minimizer um. This local maximum corresponds to a phenomenon called nucleation (un)
which is the appearance of small regions in Ω where u=±1. As time passes, these shapes
grow and merge with each other, so they become a connected area where only one component
of the alloy exists. So it is natural to study the geometry of the boundary of this area: The
interface. This will describe the solution of (1).
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Figure 9: Nucleation and shape of the functional Jε

2.3.3 Curvature of the Interface

Let’s consider a minimizer of Jε with a volume constraint. We will show that the interface
has constant mean curvature. In order to minimize the interface with the volume constraint,
we will have to introduce Lagrange multipliers.

Let X be the surface parametrized by

X: D → R3

(u, ν) 7−→ X(u, ν)

Let X t be the surface parametrized by

X t: D → R3

(u, ν) 7−→ φ(u, ν, t)

where φ(u, ν, t) = X(u, ν) + th(u, ν)N(u, ν), N is the normal at X and h: X → R.
Let S(X) be an area of X, E, F, G be the coefficients of the first fundamental form, and

e, f, g be the coefficients of the second fundamental form.

S(X t) =

∫
D

√
EtGt − F 2

t dudν

=

∫
D

√
EG− F 2 + th(u, ν)(Eg +Ge− 2Ff) +O(t2)

= S(X) + t

∫
D

1

2

1√
EG− F 2

h[Eg +Ge− 2Ff ]

= S(X) + t

∫
X

hHdS

where H is the mean curvature of the surface.
For the gradient we have:

12



〈S ′, h〉 =

∫
X

hHdS

Concerning the volume V we have:

〈V ′, h〉 =

∫
X

hdS

Thus, minimizing the functional S with a volume constraint leads to the existence of a
Lagrange multiplier Λ:

〈S ′, h〉+ Λ〈V ′, h〉 = 0⇒ H = −Λ

Therefore, the system will evolve into a system of constant mean curvature.
Summary of the possible evolution of the solution to the Cahn-Hilliard equation:

Figure 10: Evolution of a solution to Cahn-Hilliard equation-Nucleation

As we see in the figure above, we start with a uniform mixture of the two phases. As
time passes by, we see nuclei appearing (phase separation), where, e.g., black correspond to
u=-1 and white to u=1. Then, nuclei merge to a circle because the distribution tends to get
a CMC interface with the smallest length. Subsequently, in order to minimize the length it
will slowly move to ∂Ω. Then it moves to the region of ∂Ω with the greatest curvature and
stays there.
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Figure 11: Evolution of a solution to Cahn-Hilliard equation-Spinodal Decomposition

As an alternative evolution of the solution, there is the spinodal decomposition. It
depends on which area of the 1st figure we are in. The process is illustrated in the above
figure. After the final image, the process is called “coarsening” and it has the same evolution
as the one after nucleation.

3 Preliminaries

3.1 Delaunay Surfaces

Definition 2. Delaunay surfaces are surfaces of revolution with constant mean curvature
(CMC).

Remark 3. Delaunay surfaces can be classified into two different types:
(i) Embedded Delaunay surfaces: The unduloids, Dτ : They interpolate between the

cylinder and an infinite string of spheres arranged along a common axis. They are constructed
as follows:

We take an ellipse and let it roll in a straight line. As it rolls the one focus creates a
curve. We then rotate this curve around the horizontal axis. This surface of revolution is
the unduloid.

(ii)Immersed Delaunay surfaces: The nodoids.
Here, we will deal only with the first type.

14



Figure 12: Delaunay Unduloid

3.1.1 Embedded Delaunay Surfaces: The Unduloids.

As we mentioned above, unduloids are surfaces of revolution, so we will use cylindrical
coordinates. They are given by the parametrization:

x(t, θ) = (ρ(t) cos θ, ρ(t) sin θ, t)

where t is a linear coordinate along the axis of rotation, θ is the angular variable around
it, and ρ(t) solves

ρtt −
1

ρ
(1 + ρ2

t ) + (1 + ρ2
t )

3
2 = 0 (2)

Proposition 6. H ≡ 1 where H is the mean curvature ⇒ equation (2).

Proof. The unit normal N of Dτ at x(t, θ) is:

N(t, θ) =
∂t × ∂θ
‖ ∂t × ∂θ ‖

(3)

We have that

∂t(x)× ∂θ(x) = ρ(− cos θ,− sin θ, ρt)

and
‖ ∂t × ∂θ ‖= ρ

√
1 + ρ2

t

Thus, we replace in (3) and we get that the unit normal N is the following:

N(t, θ) =
1√

1 + ρ2
t

(− cos θ,− sin θ, ρt)

Then the first fundamental form (in the notation of the metric tensor) is:

g = Edt2 + 2Fdtdθ +Gdθ2

15



where

E = XtXt = ρ2
t cos2 θ + ρ2

t sin2 θ + 1 = ρ2
t + 1

F = XtXθ = 0

G = XθXθ = ρ2 sin2 θ + ρ2 cos2 θ + 0 = ρ2.

Therefore, g = (1 + ρ2
t )dt

2 + ρ2dθ2

The second fundamental form is:

B = Ldt2 + 2Mdtdθ +Ndθ2

where

L = ∂ttN =
ρtt√
1 + ρ2

t

(− cos2 θ,− sin2 θ, 0)

M = ∂tθN = 0

N = ∂θθN =
ρ√

1 + ρ2
t

(cos2 θ, sin2 θ, 0)

Thus,

B = − ρtt√
1 + ρ2

t

dt2 +
ρ√

1 + ρ2
t

dθ2

So the mean curvature is

H =
L+N

E
= −ρtt(1 + ρ2

t )
− 3

2 + ρ−1(1 + ρ2
t )
− 1

2

Thus, the condition H ≡ 1 yields

ρtt −
1

ρ
(1 + ρ2

t ) + (1 + ρ2
t )

3
2 = 0

which is the desired equation (2).

However, here we will mostly use a new parametrization which simplifies the study of
the solution of (2):

Xτ (s, θ) = (τeσ(s) cos θ, τeσ(s) sin θ, k(s))

Proposition 7. The functions σ and k respectively satisfy:

σ2
s + τ 2cosh2σ = 1

ks =
τ 2

2
(1 + e2σ)

16



3.1.2 Jacobi Fields

Definition 3. The Jacobi operator, L is the linearization of N , where N is the nonlinear
mean curvature operator. It is given by

L = ∆Dτ + |Aτ |2.

where ∆Dτ is the Laplace-Beltrami operator on Dτ and |Aτ |2 is the square of the norm of
the second fundamental form of Dτ .

Proposition 8. For the Delaunay unduloid Dτ , the Jacobi operator is given by the following
expression (in the (s, θ) isothermal coordinate system that we introduced earlier):

Lτ =
1

τ 2e2σ
(∂2
s + ∂2

θ + τ 2 cosh(2σ)) (4)

Proof. We know that the following are true:

∆Dτ = − 1√
detg

∂t(
√
detgg∂θ)

|Aτ |2 = K2
1 +K2

2

where K1, K2 are the principle curvatures.

But K2
1 = 2H2 −K + 2H

√
H2 −K and K2

2 = 2H2 −K − 2H
√
H2 −K.

Thus, |Aτ |2 = K2
1 +K2

2 = 4H2 − 2K.
From the computations in Section 2.1.1, we get the following expression for the Jacobi

operator:

Lτ =
1

ρ
√

1 + ρ2
t

∂t

(
ρ√

1 + ρ2
t

∂t

)
+

1

ρ2
∂2
θ +

ρ2ρ2
tt + (1 + ρ2

t )
2

ρ2(1 + ρ2
t )

3
(5)

The above equation becomes much simpler in the (s, θ) coordinate system.
A brief calculation shows that

1 + ρ2
t =

1

1− σ2
s

and
ρtt =

σss
τeσ(1− σ2

s)
2

Combining these two with Proposition 7, and replacing in (5) we get equation (4).

After removing the factor (τ 2e2σ)−1, it will be sufficient to study the operator

Lτw = ∂2
sw + ∂2

θw + τ 2 cosh(2σ)w

where w is a function on Dτ .
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Lτw = 0⇔
∂2
sw + ∂2

θw + τ 2 cosh(2σ)w = 0.

Separation of variables: We set w = S(s)Θ(θ) and substitute to the above equation.
Then,

S ′′Θ + SΘ′′ + τ 2 cosh(2σ(s))SΘ = 0

We devide by SΘ
S ′′

S
+

Θ′′

Θ
+ τ 2 cosh(2σ(s)) = 0⇔

S ′′

S
+ τ 2 cosh(2σ(s)) = −Θ′′

Θ
= j2.

Therefore,
∂2
s + τ 2 cosh(2σ(s))− j2 = Lτ,j, j ∈ Z.

Definition 4. A Jacobi field is a normal vector field of the form φN , where φ is a smooth
map defined on the surface, and N is the unit normal such that:

Lφ = 0

Proposition 9. The Jacobi fields on Dτ , which are elements of the kernel of Lτ , are of three
types: (i) Jacobi fields arising from infinitesimal translations.

ΦT,ej
τ = ΦT,ej

τ (s, θ), j = 1, ..., d.

(ii) Jacobi fields arising from infinitesimal rotations.
There are d− 1 Jacobi fields arising from from infinitesimal rotations of the axis od Dτ . We
will denote them by

ΦR,ej
τ , j = 1, ..., d− 1.

(iii) Jacobi field associated with the variation of the Delaunay parameter.

ΦD
τ = −∂τXτNτ .

Remark 4. We know that these are all Jacobi fields with at most linear growth from [14],
where all the Jacobi fields of the Delaunay surface have been computed.

3.2 Fermi Coordinates

Let Σ be an embedded CMC surface in Rd and let HΣ denote its mean curvature. By N we
will denote its unit normal. We will assume that there exists a tubular neighbourhood Nδ of
Σ of width 2δ in which we can introduce a local system of coordinates (Fermi coordinates)

Definition 5. Fermi Coordinates (y, z)
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Y : N → Σ× (−δ, δ)
x 7→ (y, z) with x = y + zN(y).

Y is a diffeomorphism whenever δ is taken sufficiently small.

Remark 5. In the sequel we will use the inverse of Y :

Y −1 : Σ× (−δ, δ)→ Nδ
(y, z) 7→ x

Definition 6. Pullback of a function in Fermi coordinates
Given a function w : Nδ → Rd we define its pullback Y ∗w to Σ× (−δ, δ) as:

Y ∗w(y, z) = w ◦ Y −1(y, z)

Definition 7. Shifted Fermi coordinates (y, t)
Let h : Σ→ R be a given smooth function such that the map Yh be a diffeomorphism.

Yh : Nδ → Σ× (−δ, δ)
x 7→ (y, t) with x = y + (t+ h(y))N(y).

Definition 8. Pullback of a function in shifted Fermi coordinates.
Given a function w : Nδ → Rd we define its pullback Y ∗hw as:

Y ∗hw(y, t) = w ◦ Y −1
h (y, t)

Definition 9. Stretched shifted Fermi coordinates (t̄, ȳ).
Let h : Σ→ R be a given smooth function such that the map Yε,h be a diffeomorphism.

Yε,h : Nδ → Σ× (− δ
ε
, δ
ε
)

x 7→ (t̄, ȳ) where t̄ = t
ε

and ȳ = y.

Definition 10. Pullback of a function in stretched shifted Fermi coordinates.
Given a function w : Nδ → Rd we define its pullback Y ∗ε,h as:

Y ∗ε,hw(ȳ, t̄) = w ◦ Y −1
ε,h (ȳ, t̄)

Proposition 10. Expressions for the Laplacian in Fermi, shifted Fermi and stretched shifted
Fermi coordinates:

(i) Laplacian in Fermi coordinates.

∆ = ∆Σ + ∂2
z − (HΣ + z|AΣ|2)∂z + zBΣ,z + z2QΣ,z

where Σz = Σ + zN = the original CMC surface shifted in the direction of the normal by z,
zBΣ,z = ∆Σz −∆Σ, the operator BΣ,z is a second order differential operator and

QΣ(y, z) = z2

d−1∑
j=1

K3
j + z3

d−1∑
j=1

K4
j + . . .
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Kj denote the principal curvatures of Σ.

(ii) Laplacian in shifted Fermi coordinates.

∆ = ∆Σ + (1 + |∇Σh|2)∂2
t − (HΣ + ∆Σh+ (t+ h)|AΣ|2)∂t + (t+ h)BΣ,t+h + (t+ h)2QΣ,t+h

where |AΣ|2 is the square of the norm of the second fundamental form of Σ.

(iii) Laplacian in stretched shifted Fermi coordinates.

∆ = ∆Σ+ε−2(1+|∇Σh|2)∂2
t̄−ε−1(HΣ+∆Σh+(εt̄+h)|AΣ|2)∂t̄+(εt̄+h)BΣ,εt̄+h+(εt̄+h)2QΣ,εt̄+h
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4 A Periodic Solution

We considered the problem (1) on an open set Ω, and we saw that is interesting to find
stationary solutions (which are minimizers for Jε) to this equation. We have found that
these solutions are constant and equal to ±1 in subsets of Ω.

Stationary solutions of (1) satisfy the Euler-Lagrange equation
ε2∆u−Wu(u) = δε in Ω
∂u
∂ν

= 0 on ∂Ω

1
|Ω|

∫
Ω
udx = m on ∂Ω

(6)

where δε is a Lagrange multiplier.

Scaling variables x 7→ x
ε

and letting ε tend to 0 leads us to the following problem:

∆u−Wu(u) = δε (7)

Since ε is assumed to be a small parameter, we can consider this problem on the whole space
Rd. Thus, from now on, we will consider the problems on Rd.

Dilating of the independent variable by a large factor ε−1 >0

x 7→ ε−1x

we obtain an equivalent form of (7):

ε∆u− 1

ε
Wu(u) = lε (8)

where, lε = δε
ε

.

Remark 6. We do this rescaling having in mind the Γ-convergence. In particular, the Modica-
Mortola theorem asserts that:

1
ε
Jε →

∫ √
W (u)PerΩ(A) as ε→ 0.

Moreover, with this convergence, for a sequence of minimizers of 1
ε
Jε, the limit is a

minimizer of the limit operator and thus we have a solution to our problem.

Theorem 1. For each CMC surface Dτ and for sufficiently small ε the equation (8)

ε∆u− 1

ε
Wu(u) = lε

has a solution uε in R3, which is rotationally symmetric and periodic in the direction of the
axis of Dτ .
As ε→ 0 we have:

lε = C +O(ε)

where C is a constant, and also, uε satisfies uniformly over compacts
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uε → 1 as ε→ 0 in Ω+
τ

uε → −1 as ε→ 0 in Ω−τ

where Ω±τ are the two disjoint components in which the Dτ divides the space.

4.1 The Solution in One Dimension

The homogeneous equation (7) in one dimension is:

u′′ −Wu(u) = 0 (9)

Proposition 11. The equation (9) has a unique odd increasing solution Θ such that:

lim
t→+∞

Θ(t) = 1

lim
t→−∞

Θ(t) = −1

This solution is called the heteroclinic solution.

Proof. We rewrite our equation in the form of a system:{
u′1 = u2

u′2 = Wu(u1)

By definition, we have that the level curves are E(u1, u2) = 1
2
u2

2 −W (u1)
In order to draw the phase portrait we think of a ball starting on the left maximum of

the curve −W . The ball will reach the maximum on the right and then it will return back
from where it starded. So we get the following:
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Figure 13: The curve −W and the phase plane for the heteroclinic solution

4.2 The Solution Near Dτ

In this subsection we will focus on solving equation (8). Having in mind subsection 2.2 we
will express the solution of (8),w, in stretched and shifted Fermi coordinates (y, t̄) in the
following way

Y ∗ε,hw(y, t̄) = U(t̄) + ε2ψ0(y, t̄) (10)

for some functions U and ψ0 which will be determined. Moreover, we assume that h : Dτ → R
is

h = ε2h0

where h0 is a constant and we will choose it later.
Now, the error in equation (8) in the tubular neighbourhood Nδ of Dτ is of the form:

Nε(w)− lε = ε∆w +
1

ε
(1− w2)w − lε

where, Nε(w) := ε∆w − 1
ε
W ′(w)
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Thus,

ε∆w +
1

ε
(1− w2)w − lε = ε−1∂ttU −HDτ∂tU − ε−1WU(U)− lε (11)

+ε∂ttψ0 − ε2HDτ∂tψ0 − εWUU(U)ψ0 − ε(t+ εh0)|ADτ |2∂tU (12)

−1

ε
Ww(w) +

1

ε
WU(U) + εWUU(U)ψ0

+ε3∆Dτψ0 − ε3(t+ εh0)|ADτ |2∂tψ0 + ε(εt+ h)BDτ ,εt+h(w) + ε(εt+ h)2QDτ ,εt+h(w)

We will simplify this equation. We will consider separately the different orders in ε.
We first have the equation (11):

U ′′ − εHDτU
′ −WU(U) = εlε (13)

Then we have the equation (12):

∂t̄t̄ψ0 − εHDτ∂t̄ψ0 + (1− 3U2)ψ0 = (t̄+ εh0)|ADτ |2∂t̄U (14)

Remark 7. The other terms in the error are of order ε3. In order to see this we have to notice
that the 3rd line has a Taylor expansion form, and the for the last line B(U) = 0 since U
only depends on t.

Then, finding solutions to (13) and (14) will give us a w for which the error in equation
(8) is of order ε3.

We have to determine U and ψ0 in order to find w. Also we need to choose h0 and to
find a suitable lagrange multiplier lε.

4.2.1 Construction of a solution U for equation (13)

U ′′ − cU ′ −WU(U) + λ = 0, (15)

where W (U) = 1
4
(U2 − 1)2 and WU(U) = U3 − U .

We rewrite our equation as it follows


U ′′λ − (WU(Uλ)− λ) = cU ′λ

lim
η→∞

U(η) = αλ, lim
η→∞

U(η) = βλ

(16)

where, U = αλ > −1, U = βλ > 1 and WU(αλ) = WU(βλ) = λ.
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Figure 14: Diagrams(W,Wu,Wu − λ,Wu − λu,−Wu + λu)-Phase portrait for c = 0

Theorem 2. For 0 < λ < λ0:=
1√
3

(
2

3

)
, ∃c = c(λ), U = Uλ(η) that is a solution of (15).

Moreover,

(i) c(λ)→0 as λ→ 0+

(ii) c′(0) 6= 0

Proof. We write equation (16) in system form:
x′ = y

y′ = cy +WU(x)− λ
(17)

As we see, for the equilibrium points we have that y=0 and WU(x) = λ.They also are
independent of c. So let x = αλ, βλ and γλ be the values such as WU(αλ) = WU(βλ) =
WU(γλ) = λ.
So now we take the linearization of the system (17) at the equilibrium point (αλ, 0):
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x′ = y

y′ = cy +WUU(αλ)x

(18)

The corresponding eigenvalues are:

µ2 − µc−WUU(αλ) = 0⇒ µ± =
c±

√
c2 + 4WUU(αλ)

2

So the points (αλ, 0) and (βλ, 0) are both saddles.
The corresponding eigenvectors are:

r± =

(
1
µ±

)
The existence of the stable and unstable manifolds of the equilibrium point is obtained

by the following proposition.

Proposition 12. Let the system (17) with µ−< 0 < µ+. Then there exists δ > 0 such that
in the region V= {(x, y)/|x|, |y| <δ } the W s,W u are non-empty sets.

Combining the above information, eigenvectors are tangent to the manifolds at the equi-
librium points.
Therefore, each manifold has the same slope as the corresponding eigenvector.

Step 1: Existence of the desired solution

We begin with a shooting argument. We fix λ ∈ (0, λ0) and a parameter c.

Case (i): 0 < c� 1.

Let U(η;λ, c) a solution of (16).
The level curves are given from the expression:

Eλ(x, y) =
1

2
y2 − (W (x)− λ) = µ

where µ is a constant
We take

d

dη
Eλ(U,U

′) = U ′U ′′ − (WU(U)− λ)U ′ = U ′[U ′′ − (WU(U)− λ)] = cU ′2 > 0

So the solution moves through increasing values of the level curves.
Because of continuous dependence on the parameter c, the solution for c << 1 will nearly

follow the trajectory of the homoclinic solution. In particular, we get that there exists T >0
such that
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(U,U’) hit the U-axis at a point (ξ(c), 0) with ξ(c) <1 <βλ.

Case (ii): c� 1.

Lemma 1. For c� 1 the solution (U(η;λ, c), U ′(η;λ, c)) with (U(0;λ, c), U ′(0;λ, c)) on the
unstable manifold of (16) at (αλ, 0) intersects the unstable manifold of the corresponding
system for c=0, from the (βλ, 0).

Proof of Lemma 1. We take

dy

dx
=
cy +WU(x)− λ

y
= c+

WU(x)− λ
y

> c, 0 6 x 6 γλ.

The term WU(x)− λ > 0 as we see in Figure 14.
Therefore, ∫ γλ

0

dy

dx
> cγλ ⇒

y(γλ)− y(0) > cγλ, y(0) > 0.

Consequently, y(γλ) > cγλ

So, for c � 1, our solution intersects the desired unstable manifold before x = γλ.

Remark 8.
Since d

dη
Eλ(U,U

′) >0, the solution (U(η;λ, c), U ′(η;λ, c)) cannot hit the unstable manifold
of the system for c=0 again.
Also, x′ = y >0. So, the solution for c � 1 does not intersect the x-axis at the interval
[0, βλ].

Figure 15: Phase Portrait for c << 1 and c >> 1 in comparison with the one for c = 0

Now, let Σ = {c>0 / The solution of (16) intersects the x-axis in finite time at the
interval (κ, βλ)}, where k is the point where the homoclinic orbit intersects x-axis.
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Proposition 13.

1. Σ 6= ∅

2. Σ: Bounded

3. c*/∈ Σ

Proof of Proposition 13.
1. True because of case (a).

2. True because of case (b) and the remark. Therefore, there exists c*:= sup Σ.

3. Let c∗ ∈ Σ.
Hence, ∃ (x,y) solution of (16) such that for finite time τ

(x(τ), y(τ)) = (ξ, 0)

and
y′(τ) = WU(x(τ))− λ < 0

where k<x<βλ.
Consequently it intersects transversally the x-axis and due to continuous dependence on the
parameter c, ∃ε >0 such that c*+ε ∈ Σ. This is a contradiction, since c* is the supremum
of the set Σ.
Therefore, the proof is complete.

Now, for n ∈ N we define a sequence cn ∈ Σ such that cn → c* as n→ +∞.
Also, we define the sequence of times in which the solution intersects the x-axis, {Tn},
n→ +∞.

Proposition 14.

1. Tn → +∞

2. (x(Tn; c∗), y(Tn; c∗))→ (βλ, 0) as Tn → +∞.

Proof of Proposition 14.
1. Let Tn → τ , as n→ +∞. Hence, (Tn, cn)→ (τ, c∗) and due to continuity of the solution
we get: x(Tn, cn)→ x(τ, c∗) and y(Tn, cn)→ y(τ, c∗).
Since τ is a finite time of the intersection of the solution with x-axis we have that: x(τ ,c*)
<βλ and y(τ ,c*)=0.

But this means that c* ∈ Σ, and that is a contradiction.
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2. From the Poincaré - Bendixson Theorem, we know that in infinite time, in the closed and
bounded domain R, where R is the domain that consists of the x > 0 and y > 0 axis and
the level curve 1

2
y2 + W (x) = W (βλ), then our trajectory will either be a limit cycle, or it

will approach a limit cycle spirally, or it will end up on an equilibrium point.
But due to the direction of the vector field the two first options are rejected. So as

Tn → +∞ our solution goes to the only equilibrium point in the first quadrant, (βλ, 0).

Step 2: Proof of properties (i) and (ii) of the Theorem 2.

(i) We multiply equation (16) with U ′λ and we get

Uλ”U
′
λ −WU(Uλ)U

′
λ = c(U ′λ)

2 − λU ′λ.

We now take the derivative of the energy functional and integrate on R:

∫ +∞

−∞

d

dη
(
1

2
(U ′λ)

2 −WU(Uλ))dη = c

∫ +∞

−∞
(U ′λ)

2dη − λ(βλ − αλ)⇒

W (βλ)−W (αλ) = λ(βλ − αλ)− c
∫ +∞

−∞
(U ′λ)

2dη ⇒

W (βλ)− λβλ = −c(λ)

∫ +∞

−∞
(U ′λ)

2dη (19)

For λ→ 0+ we have that

W (βλ) = W (β0) = 0

λ(βλ) = 0∫ +∞

−∞
(U ′λ)

2dη →
∫ +∞

−∞
(U ′0)2dη 6= 0

Hence, from (19) we get that c(λ)→ 0.

(ii) From (19) we have c(0) = 0. We take the derivative of (19)

WU(βλ)
dβλ
dλ
−
(
βλ + λ

dβλ
dλ

)
= −c′(λ)

∫ +∞

−∞
(U ′λ)

2dη − c(λ)
d

dλ

∫ +∞

−∞
(U ′λ)

2dη (20)

We substitute with λ = 0 in the equation (20):

c′(0) =
1∫ +∞

−∞ (U ′0)2dη
6= 0⇔

lim
λ→0

c(λ)

λ
6= 0.
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Remark 9. The terms ε, εlε of the equation from [9] can be replaced by the terms c, λ respec-
tively.

Proof. We write c(λ) for λ = εlε as follows

c(λ) =
c(λ)

λ
λ =

c(εlε)

εlε
=
(c(εlε)lε

εlε

)
ε

We will prove that c(εlεlε)
εlε

= 1

For lε we know that lε → l0. So it is in our own convenience how it will be defined.

Thus we set
1

lε
=
c(εlε)

εlε

lim
λ→0

1

lε
=

1

l0
= c′(0) 6= 0

Hence our choice is correct and therefore we proved that c(λ) = 1ε = ε.

4.2.2 Construction of a solution ψ0 for equation (14)

Let us write, for convenience, the equation (14) as follows:

φ′′ − εHΣφ
′ + (1− 3U2)φ = g(y, t̄) (21)

We have that φ1 = U ′ is a solution of the homogeneous equation of (21). We can easily
confirm that, by multiplying equation (13) with U ′ and then substitute U ′ in the equation.

Proposition 15. The fundamental set of the ODE (21) is spanned by the functions

U ′ = O((cosht̄)η
±

) and V (t̄) = O((cosht̄)ν
±

)

where

η± = 1
2

(
εHΣ −

√
−4k(±∞) + ε2H2

Σ

)
, ν± = 1

2

(
εHΣ +

√
−4k(±∞) + ε2H2

Σ

)
Proof. We write equation (21) in the form of a system{

φ′1 = φ2

φ′2 = −(1− 3U2)φ1 + εHΣφ2

The characteristic polynomial is

η2 − εHΣη + (1− 3U2) = 0⇔

η, ν =
1

2

(
εHΣ ±

√
ε2H2

Σ − 4(1− 3U2)
)

where 1− 3U2 = k and k(±∞) = 1− 3(±1 + σ±ε )2 since U(±∞) = ±1 + σ±ε .
As t → ±∞ we have a homogeneous ODE with constant coefficients, so we find two

linearly independent solutions:
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φ1 = c1e
η±t = c1(et)η

±

φ2 = c2e
ν±t = c2(et)ν

±

But, because t→ ±∞ we substitute et with cosht for brevity.

By Liouville’s formula we have that the Wronskian is:

W (t) = W (0)

∫ t

0

trAds

where A is the matrix of the system of the equation (21).
Thus, if we assume that W (0) = 1

W (t) = eεHΣt

But it is known that:
φ = G(g)

where

G(ν)(t, y) = −U ′(t)
∫ t

0

V (s)e−εHΣsν(s, y)ds+ V (t)

∫ t

−∞
U ′(s)e−εHΣsν(s, y)ds

If g(y, t) satisfies the orthogonality condition∫
R
g(t, y)U ′(t)e−εHΣtdt = 0

the function G(g) is exponentially decaying whenever g is exponentially decaying.
Lets assume for instance that

|g(y, t)|(cosh t)µ 6 C

where µ ∈ (η + εHΣ,−η] and η = maxη+, η− < 0
Then we have

|φ(y, t)|(cosh t)µ 6 C

Now we will determine h0 in order to determine next the function ψ0. To do this, we will
choose h0 such that it satisfies the orthogonally condition mentioned above:∫

R
(t+ εh0)(U ′(t))2e−εHΣtdt = 0

Hence,

h0 =

∫
R t(U

′(t))2e−εHΣtdt

ε
∫
R(U ′(t))2e−εHΣtdt

With this choice we define

ψ0(y, t) = G((t+ εh0)U ′)|AΣ|2.
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4.3 The Solution in the Whole Space

In the previous subsection we built a special solution near the Delaunay unduloid. Here, we
will expand this solution in Rd for d > 3.

4.3.1 The Lyapunov-Schmidt Reduction Method

This method is a way to solve equations of the form

Ax = N(x)

where A is a linear operator and N a nonlinear. They are both continuous.
In particular, A : X → Z, N : X → Z where, X,Z are Banach spaces.

Lemma 2. Let πKerA and πImAbe the continuous projections on the corresponding subspaces.
Then there is a continuous linear operator

K : ImA→ Im(I − πKerA)

such that {
KA = I − πKerA on X

AK = I on ImA

Proposition 16. The equation Ax = N(x) is equivalent to the following system
x = y + z where y ∈ KerA and z ∈ Im(I − πKerA)

z −KπImAN(y + z) = 0

(I − πImAN(y + z) = 0

The idea of the Lyapunov-Schmidt reduction is to manage to invert the linear operator
A, then solve the first equation for a given y using a fixed point argument (this gives a
certain z∗(y)), and finally solve the following

(I − πImA)N(y + z∗(y)) = 0

Now, let us recall the definition of the nonlinear operator Nε in section 4.2 by:

Nε = ε∆u− 1

ε
W ′(u)

Equation (8) now takes the form:

Nε(u) = lε (22)

Remark 10. Since we are interested in finding a solution periodic in the direction of the xd
axis with the minimal period equal to that of Dτ we define the manifold D̊τ by identifying
the set Dτ ∩ {xd = 0} with the set Dτ ∩ {xd = 2Tτ}.
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We want to linearise Nε around the local solution w = U + ε2ψ0. For that, we will first
extend w to the whole space and define the map H:

Definition 11.

H =

{
1 + σε if x ∈ D̊+

τ

−1 + σε if x ∈ D̊−τ
where D̊+

τ and D̊−τ denote the interior and the exterior of D̊τ respectively.

We will also need a cutoff function χ such that:

χ(s) =

{
1 if |s| 6 1

2

0 if |s| > 1

Definition 12. Let χ∗ the cutoff function supported in the tubular neighbourhood of D̊τ such
that

Y ∗ε,hχ
∗(t) = χ

(εt
δ

)
We can now define a global approximate solution w∗ by:

w∗(x) = w(x)χ∗(x) + H(x)(1− χ(x)) (23)

Now, we linearise Nε near w∗ and the solution we are searching for has the form:

u = w∗ + φ

where φ is a small, in a way to be specified, function. That is why it seems natural to
linearise Nε.

4.3.2 The Linear Operator Lε

In this section we will study the linear operator since we will have to invert it according to
Lyapunov-Schmidt reduction.

Definition 13. The linearisation of Nε near w∗ is:

Lεφ := ε∆φ− 1

ε
W ′′(w∗)φ

Now, we can rewrite equation (8), with u = w∗ + φ:

Lεφ = −Nε(w
∗)−Qε(φ) + lε (24)

where, Lεφ = DNε(w
∗)φ and Qε(φ) = N(w∗ + φ)−Nε(w

∗)− Lεφ.

33



Definition 14. The expression of Lε in Fermi coordinates is:

Lε := ε∆D̊τ
− (HD̊τ

+ ε(t̄+ εh0)χ
(εt̄
δ

)
|AD̊τ |

2)∂t̄ + ε−1∂t̄
2 − ε−1W ′′(w∗)

Remark 11.

Y ∗ε,hLε ≈ Lε

Proof of Remark 11. The expression for the Laplacian is:

∆ = ∆D̊τ
+ ε−2∂tt − ε−1(HD̊τ

+ (εt+ h)|AD̊τ |
2)∂t + (εt+ h)BD̊τ ,εt+h + (εt+ h)2QD̊τ ,εt+h

Thus,

Lε − Y ∗ε,hLε = ε(t+ εh0)|AD̊τ |
2
[
1− χ

(εt
δ

)]
∂t + ε2(t+ εh0)B + ε3(t+ εh0)Q

From Remark 7 at page 23, we get the desired result.

Now, we will focus on solving the following linear equation:

Lεφ = g(x)⇒ , in Rd−1 × S2Tτ (25)

ε∆φ− 1

ε
W ′′(w∗)φ = g(x)

We want to find a solution with a reasonably bounded norm. That happens only if the
right hand side of (25) satisfies some extra condition, or equivalently, we need to introduce
Lagrange multipliers. Thus, we will solve the following:

ε∆φ− 1

ε
W ′′(w∗)φ = g(x) + χ∗

d∑
j=1

cjZ
T,ej
τ,ε (26)

where,
cj are the Lagrange multipliers,

Y ∗ε,hχ
∗(t̄) = χ

(
εt̄
δ

)
,

Y ∗ε,hZ
T,ej
τ,ε (y, t̄) = V (y, t̄)Φ

T,ej
τ (y)

V = ∂t̄w = ∂t̄(U + ε2ψ0) and
ej = the coordinate axis.

The idea is to solve (26) by gluing a solution defined near D̊τ and another one defined away
from it. To describe this construction we need some preparation.
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First, the solution we are searching for, has the form:

φ = χ∗φ̄ ◦ Yε,h + ψ

where φ̄ describes the solution near D̊τ and ψ far from it. To avoid complicated notions we
will omit the composition with Yε,h.

We also, introduce the function q(x) as follows:

q(x) =

{
−W ′′(1 + σ+

ε ) if dist(x, D̊τ ) >δ/2

−W ′′(−1 + σ−ε ) if dist(x, D̊τ ) <−δ/2.

Finally, we need another cutoff function χ̄ such that:

χ̄χ∗ = χ∗

We can now split our equation into:{ Lεφ̄ = χ̄
(
g + χ∗

∑d
j=1 cjZ

T,ej
τ,ε + (Lε − Lε)φ̄− [χ∗, Lε]φ̄+ ε−1(q +W ′′(w∗))ψ

)
ε∆ψ + ε−1[−(1− χ∗)W ′′(w∗) + χ∗q]ψ = (1− χ∗)

(
g + χ∗

∑d
j=1 cjZ

T,ej
τ,ε − [χ∗, Lε]φ̄

)
(27)

A solution to (27) is a solution of (26). Indeed, multiplying the first equation by χ∗ , adding
the two equations and using the fact that χ̄χ∗ = χ∗ gives us the solution to our problem.
We also notice that the first equation is written in Fermi coordinates on D̊τ × R and the
second one is defined on Rd−1 × S2Tτ .

We have to invert these linear operators and find estimates of the solution in order to apply
a fixed pointed argument later.

Let us introduce a functional space.

Definition 15.

X :=
{
φ ∈ L2(D̊τ × R)/

∫
R
φ(y, t̄)V (y, t̄)dt̄ = 0

}
We decompose:

φ = φ|| + φ⊥

where {
Y ∗ε,hφ

|| ∈ X

Y ∗ε,hφ
⊥ ∈ X⊥

are the orthogonal projections.
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Remark 12. Some explanations about space X :
First, we define:

K :=
{
Z ∈ L2|∃φ, Y ∗ε,hZ = φ(y)V (y, t̄)

}
Thus,

K⊥ =
{
φ ∈ L2|∀ϕ,

∫ ∫
D̊τ×R

ϕ(y)V (y, t̄)φ(y, t̄)dydt̄
}

=
{
φ ∈ L2|∀ϕ,

∫
D̊τ

ϕ
[ ∫

R
V (y, t̄)φ(y, t̄)

]
dy
}

= X

Thus, every function which is orthogonal to X can be written as ϕV .
Next, we define:

Y :=
{
φ(y, t̄) = V (y, t̄)Z(y)|∀j,

∫
D̊τ

Z(y)ΦT,ej
τ (y)dy = 0

}
Using the expression of the Laplacian in Fermi coordinates and the fact that we constructed
a good approximation of the solution, we can easily compute:

Y ∗ε,h(LεZ) = O(ε)

From the above, it follows that:

X⊥ ∩ (kerLε)
⊥ ⊂ Y

Definition 16 (Weighted Holder Spaces). The weighted Holder norms on D̊τ × R:

‖u‖C0,α
µ (D̊τ×R) = sup

t̄∈R
(cosht̄)µ‖u‖C0,α(D̊τ×(t̄−1,t̄+1))

‖u‖C1,α
µ (D̊τ×R) = ‖u‖C0,α

µ (D̊τ×R) + ‖∇D̊τ×Ru‖C0,α
µ (D̊τ×R) (28)

‖u‖C2,α
µ (D̊τ×R) = ‖u‖C0,α

µ (D̊τ×R) + ‖∇D̊τ×Ru‖C0,α
µ (D̊τ×R) + ‖∇2

D̊τ×R
u‖C0,α

µ (D̊τ×R)

where, ∇D̊τ×R
and ∇2

D̊τ×R
denote the gradient and the Hessian on the manifold D̊τ×R respec-

tively.
We also define the norm:

‖u‖El,αµ (D̊τ×R) =
∑

06k+m6l

εm‖∂kt̄Dm
D̊τ
u‖C0,α

µ

Remark 13. With this definition we have for l = 0:

‖u‖E0,α
µ (D̊τ×R) = ‖u‖C0,α

µ (D̊τ×R)

Thus, spaces C, E are basically the same for l = 0.
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Lemma 3. Let us consider the following equation:

Lεφ = g(y, t̄)

With the above notation for the projections on X and its orthogonal complement, we have
the following estimates for φ:{

‖φ||‖El,αµ 6 Cε1−α(‖g||
E0,α
µ

+ ε2‖g⊥‖E0,α
µ

)

‖φ⊥‖Cl,αµ 6 Cε−1‖g⊥‖C0,α
µ

(29)

Lemma 4 (a priori estimate for (27b)).

‖ψ‖Cl,α(Rd−1×S2Tτ ) 6 Cε1−l−α‖(1− χ∗)g‖C0,α(Rd−1×S2Tτ ) + e−cε
−1/4

(
d∑
j=1

|cj|+ ‖φ̄‖C1,α
µ (D̊τ×R))

Lemma 5 (a priori estimate for (27a)). If we set

g = χ̄
{
g + χ∗

d∑
j=1

cjZ
T,ej
τ,ε + (Lε − Lε)φ̄− [χ∗, Lε]φ̄+ ε−1[q +W ′′(w∗)]ψ

}
then using Lemma 3 (29a) we have:

‖φ̄||‖El,αµ (D̊τ×R) 6 Cε1−α(‖g||‖E0,α
µ (D̊τ×R) + ε2‖g⊥‖C0,α

µ (D̊τ×R))

Now, using Lemma 3 (29b) we get:

‖φ̄⊥‖Cl,αµ (D̊τ×R) 6 Cε−1‖g⊥‖C0,α
µ (D̊τ×R)

These two Lemmas lead us in solving the system (27) and therefore the equation (26). This
is summed up in the following proposition:

Proposition 17. For each sufficiently small ε there is a solution φ to equation (26) of the
form φ = χ∗φ̄ ◦ Yε,h + ψ
where

(φ̄||, φ̄⊥, ψ) ∈ E2,α
µ (D̊τ × R)× C2,α

µ (D̊τ × R)× C2,α(Rd−1 × S2Tτ )

such that the following estimates hold:
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‖φ̄||‖E2,α

µ (D̊τ×R) 6 Cε1−α
{
‖(χ̄g)||‖E0,α

µ (D̊τ×R) + ε−1δ(ε)‖(χ̄g)⊥‖C0,α
µ (D̊τ×R) + ε−3−αδ(ε)‖(1− χ∗)g‖C0,α(Rd−1×S2Tτ )

}
‖φ̄⊥‖C2,α

µ (D̊τ×R) 6 Cε−1
{
‖(χ̄g)⊥‖C0,α

µ (D̊τ×R) + ε1−α‖(χ̄g)||‖E0,α
µ (D̊τ×R) + ε−2−α‖(1− χ∗)g‖C0,α(Rd−1×S2Tτ )

}
‖ψ‖C2,α(Rd−1×S2Tτ ) 6 Cε−1−α‖(1− χ∗)g‖C0,α(Rd−1×S2Tτ ) +O(e−cε

−1/8
)‖χ̄g‖C0,α

µ (D̊τ×R)

(30)

Lemma 6. Proposition 17 is a result of the following:
Using a priori estimates (30) we can solve the system (27) by a standard fixed point argument.

To do this we replace the functions φ̄||, φ̄⊥, ψ on the right hand of the system by known
functions Φ̄||, Φ̄⊥, Ψ which satisfy estimates of the same type as (30) but with constants
bigger than those appearing in (30).

Then we have a map

(Φ̄||, Φ̄⊥,Ψ) 7−→ (φ̄||, φ̄⊥, ψ)

from a certain ball in the space E2,α
µ (D̊τ × R)×C2,α

µ (D̊τ × R)×C2,α(Rd−1 × S2Tτ ) into itself.
This and the Lipschitz character of this map (from the way we derived a priori estimates),

allows for an application of the Banach fixed point theorem.

4.3.3 Proof of Theorem 1

Now we can finish solving the nonlinear problem (24):

Lεφ = lε −Nε(w
∗)−Qε(φ)

As we saw above, we need to modify this equation by introducing Lagrange multipliers.
Thus we will consider:

Lεφ = lε −Nε(w
∗)−Qε(φ) + χ∗

d∑
j=1

cjZ
T,ej
τ,ε . (31)

Proposition 18. There is a solution to the nonlinear equation (31), where for a certain
constant K and suitable ᾱ, m we have:

φ̄|| ∈ X ∩ E2,α
µ (D̊τ × R) and ‖φ̄||‖E2,α

µ
6 Kε4−ᾱ

φ̄⊥ ∈ Y ∩ C2,α
µ (D̊τ × R) and ‖φ̄⊥‖C2,α

µ
6 Kε2

ψ ∈ C2,α(Rd−1 × S2Tτ ) and ‖ψ‖C2,α 6 Ke−mε
−1
.
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Proof. Let us consider functions φ̃, ψ̃ such that the inequalities in the proposition hold.

Lemma 7. We can solve the equation for φ̃, ψ̃ using the previous section about the linear
operator, and get a solution φ, ψ such that the inequalities hold again with a smaller constant
K̃.

Thus we have a nonlinear map

(φ̃||, φ̃⊥, ψ̃) 7→ (φ̄||, φ̄⊥, ψ)

between small balls in the corresponding spaces.
This map is a contraction, and it is straightforward using the quadratic nature of the

nonlinear function Q(φ).
We can now use a Banach fixed point argument to conclude.

Proof of Lemma 7. Let us write:

φ̂ := χ∗φ̃ ◦ Yε,h + ψ̃.

We also define: {
A1 := χ∗[lε −Nε(w

∗)]

A2 := N(w∗)− χ∗N(w)− (1− χ∗)N(H)

Thus, we have:

lε −Nε(w
∗) = χ∗[lε −Nε(w

∗)] +N(w∗)− χ∗N(w)− (1− χ∗)N(H) = A1 + A2

The above holds because of the definition of w∗ and Nε and the expression of Laplace operator
in stretched shifted Fermi coordinates.

Next, it is easy to obtain the following estimates for A1 and A2:

‖Y ∗ε,hχ̄A2‖C0,α
µ

6 C0e
−cµε−1/3

‖(1− χ∗)A2‖C0,α 6 C0e
−θε−1

‖(Y ∗ε,hχ̄A1)||‖E0,α
µ

6 C0ε
3

‖Y ∗ε,hχ̄A1)⊥‖C0,α
µ

6 C0ε
3

‖(1− χ∗)A1‖C0,α 6 C0e
−θε−1

where C0, cµ, θ are positive constants.
In this way we estimated the size of the error of the approximation lε −Nε(w

∗).
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Using these five inequalities and Proposition 17 we get the desired results. Indeed, lets prove
that for the first inequality of Proposition 18:

‖φ̄||‖E2,α
µ (D̊τ×R) 6 Cε1−α

{
‖(χ̄g)||‖E0,α

µ
+ ε−1δ(ε)‖(χ̄g)⊥‖C0,α

µ
+ ε−3−αδ(ε)‖(1− χ∗)g‖C0,α

}
6 Cε1−α

{
‖(χ̄A1)||‖+ ‖(χ̄A2)||‖+ ‖χ̄Qε(φ̂)||‖

+ ε−1δ(ε)‖(χ̄A1)||‖+ ε−1δ(ε)‖χ̄A1)⊥‖+ ε−1δ(ε)‖χ̄Qε(φ̂)||‖

+ ε−3−αδ(ε)
[
‖(1− χ∗)A1‖+ ‖(1− χ∗)A2‖+ ‖(1− χ∗)Qε(φ̂)‖

]}
6 Cε1−α

[
C0ε

3 + C0e
−cµε−1/3

+ ‖χ̄Qε(φ̂)||‖+ ε−1δ(ε)C0ε
3 + ε−1δ(ε)C0e

−cµε−1/3

+ ε−1δ(ε)‖χ̄Qε(φ̂)||‖+ 2ε−3−αδ(ε)C0e
−θε−1

+ ε−3−αδ(ε)‖(1− χ∗)Qε(φ̂)‖
]

6 C̃[ε4−α̃ +Qε]

In the last inequality we have used the definition of δ and α. Indeed, the lowest orders
in ε are:

- The first term in ε4−α thus we choose α̃ >α.
- The fourth term in fifth row in δ(ε)ε3−α thus we choose α̃ >α + 1/3.

Qε is composed of terms in Qε(φ̂):

Qε := ε1−α
(
‖χ̄Qε(φ̂)||‖+ ε−1δ(ε)‖χ̄Qε(φ̂)||‖+ ε−3−αδ(ε)‖(1− χ∗)Qε(φ̂)‖

)
and thus for a certain λ:

Qε 6 λ‖φ̂‖2(ε1−α + ε−αδ(ε) + ε−2−2αδ(ε)) := λε‖φ̂‖2

Then, using the hypothesis for φ̂ we have:

‖φ̄||‖E2,α
µ

6 C̃(1 + λεK
2ε4−α̃)ε4−α̃

Thus, we fix K = 4C̃ and for a sufficiently small ε we get:

‖φ̄||‖E2,α
µ

6 2C̃ε4−α̃ := K̃ε4−α̃ < Kε4−α̃

Finally, we have a solution of the equation

ε∆u− 1

ε
Wu(u) = lε + χ∗

d∑
j=1

cjZ
T,ej
τ,ε (32)

which is satisfying the assertions of the Theorem 1 by construction:

u = w∗ + φ

= w∗ + χ∗φ̄ ◦ Yε,h + ψ

= wχ∗ + H(1− χ∗) + φ
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and we recall that:
Y ∗ε,hw(y, t̄) = Θ(y, t̄) + εϕ+ ε2ψ0

The convergences of Theorem 1 are obvious with the above equality and the requirement
for lε has been proven before.

The last step is to show that in fact cj = 0. For that, we will need the following Lemma:

Lemma 8 (Balancing formula). Let X =
∑
αj∂xj be the infinitesimal generator of transla-

tions or rotations in Rd. For any C2(Rd) function, it holds:

div
[( ε

2
|∇u|2 − 1

ε
W (u)

)
X(u)− εX(u)∇u

]
= −[ε∆u+

1

ε
W ′(u)]X(u) (33)

Proposition 19. cj = 0

Proof. We will take Xj = ∂xj for some 1 6 j 6 d and integrate formula (33) over the cylinder
CR = BR × S2Tτ . Using (32) and Green’s Theorem we get:∫

∂CR

( ε
2
|∇u|2 − 1

ε
W (u) + lεu

)
njdS −

∫
∂CR

∂xju∂nudS = −
∫
CR

( d∑
j′=1

χ∗cj′Z
T,ej′
τ,ε

)
∂xju.

The first integral is 0 on the top and the bottom of the cylinder CR and on the other hand,
using the asymptotic behaviour of the solution we get finally:

lim
R→∞

IR = 0

where IR, IIR, IIIR denote the first, second and third term respectively.
For the second integral, we have that the integrals on the top and the bottom of CR are
cancelled because u is periodic. Then, from exponential decay of the derivatives of u we get:

lim
R→∞

IIR = 0

Finally, we note that
∂xju ≈ ZT,ej

τ,ε

hence,

IIIR = cj

∫
D̊τ×R

|ZT,ej
τ,ε |2 + ◦(1)

d∑
j′=1

cj′

from which we get immediately that cj = 0, j = 1, ..., d.

This Proposition ends the construction of our solution as stated in Theorem 1.

41



References

[1] N. Alikakos, G. Fusco, Lecture Notes on the Cahn-Hilliard equation. (Unpublished)

[2] N. Alikakos, G. Kalogeropoulos, Ordinary Differential Equations, Sygkhroni Ekdotiki,
2003. (in Greek)

[3] T. H. Colding, W. P. Minicozzi II, A Course in Minimal Surfaces, Graduate Studies in
Mathematics vol. 121, American Mathematical Society, 2011.

[4] J. Eells, The surfaces of Delaunay, in: R. Wilson, J. Grey, Mathematical Conversations,
Springer, 2001, 159–165.

[5] L. C. Evans, Partial Differential Equations, 2nd ed., Graduate Studies in Mathematics
vol. 19, American Mathematical Society, 2010.

[6] P. C. Fife, Pattern formation in gradient systems, in: Handbook of Dynamical Systems,
vol. 2 (Ed. B. Fiedler), North-Holland, 2002, 677–722.
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