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ABSTRACT

The recent abundance of video data, automatic video classification tools have become im-
portant components in multiple video machine learning tasks. Given the rich multimodal
qualities of video, it offers a variety of information sources that can be utilized to further aid
classification. In this study we examine research questions adhering to the effect of the
visual, audio and temporal video modalities on video classification. To process the visual
and audio modalities, we extract frame and audio spectrogram sequences from random
video segments. We adopt a shared deep representation approach for the visual and
audio data, using deep features extracted from a fully-connected layer of Alexnet-based
DCNN. Regarding multimodal fusion, we examine a variety of early direct-fusion meth-
ods, i.e. approaches that aggregate information from the visual and audio modality into
a single, multimodal representation. Specifically, we use averaging, concatenation and
max pooling. In addition, we attempt to apply sequence bias methods borrowed from im-
age description, which we call input-bias and state-bias fusion. Finally, we perform a late
fusion of video-level classification scores, examining linear combination and max pooling
of the marginal predictions. Regarding the temporal information present in video data,
we examine its contribution by comparing the fully-connected, feed-forward softmax clas-
sification layer – which processes input sequence in an aggregation-based manner – to
the sequence-aware LSTM model that is sensitive to and able to model temporal input
inter-dependencies. We apply these approaches (named FC and LSTM workflows, re-
spectively) both in separate visual and audio modality data and in the multimodal fusion
schemes. A set of experimental evaluations are performed on multiple video classifica-
tion datasets to examine the performance of each research question. The experimental
results indicate that the LSTM workflow performs better on visual data, with the FC ap-
proach faring better on the audio modality. The relationship between the visual and audio
modalities relies on the underlying dataset and annotation, as reflected by the superior-
ity of the audio modality in the audio-inclined Audioset, and its inferior results, compared
to the visual modality, in the other datasets in the multimodal experiments. Regarding
multimodal fusion approaches, results show that simple late late-video linear combination
fusion works best, despite its practical disadvantages with the maximum pooling variant
performing close to single-modality baselines. Excluding that, averaging or concatenation
of modality encodings works best for the FC and LSTM workflows respectively, while the
sequence-bias approaches do not perform as well as in the image description task. We
verify the complementarity of the visual and audio modalities, with multimodal techniques
outperforming single-modality baselines per dataset, extract guidelines towards achieving
it and establish a multimodal DNN baseline per dataset and workflow.

SUBJECT AREA: Machine Learning

KEYWORDS: Machine Learning, Neural Networks, Multimodal, Classification, Deep Learn-
ing





ΠΕΡΙΛΗΨΗ

Ηπρόσφατη ραγδαία αύξηση και αφθονία των πολυμεσικών δεδομένων καθιστά αναγκαία
τη χρήση αυτόματων εργαλείων κατηγοριοποίησης σε σχετικές εφαρμογές μηχανικής μάθη-
σης. H πλούσια πολυτροπικότητα (multimodality) των τελευταίων παρέχει πλήθος πηγών
πληροφορίας προς χρήση και υποβοήθηση της διαδικασίας κατηγοριοποίησης. Στην πα-
ρούσα μελέτη εξετάζουμε ερευνητικά ερωτήματα σχετικά με την επιρροή της οπτικής,
ακουστικής και χρονικής πληροφορίας ενός βίντεο, στην κατηγοριοποίησή του. Εξάγουμε
καρέ και φασματογράμματα, υιοθετώντας μία βαθιά αναπαράσταση βασισμένη στο συνελικτικό
νευρωνικό δίκτυο Alexnet και αξιολογούμε πολυτροπικές προσεγγίσεις early fusion μεθόδων,
που συγχωνεύουν το οπτικό και το ακουστικό κανάλι σε μία πολυτροπική αναπαράσταση.
Επιπλέον, εξετάζονται μέθοδοι προδιάθεσης (bias) οπτικών δεδομένων με τη συγχωνευμένη
ακουστική πληροφορία, εμπνευσμένες από τεχνικές περιγραφή εικόνας. Τέλος, εφαρμόζουμε
συγχώνευση των σκορ κατηγοριοποίησης σε επίπεδο βίντεο, μέσω γραμμικού συνδυασμού
και συγχώνευσης μεγίστου. Για τη χρονική πληροφορία, συγκρίνουμε τη συγχώνευση
πληροφορίας (αρχιτεκτονική FC βασισμένη στο νεuρωνικό ταξινομητή πλήρους σύνδεσης
και της συγχώνευσης softmax) από το επίπεδο των καρέ σε αυτό ολόκληρης της αλληλουχίας,
και της αρχιτεκτονικής LSTM, που ενσωματώνει απευθείας χρονικές αλληλοεξαρτήσεις
της εισόδου. Εφαρμόζουμε τα δύο μοντέλα σε οπτική και ακουστική πληροφορία, καθώς
και στις τεχνικές πολυτροπικής κατηγοριοποίησης. Στη συνέχεια εκτελούμε πειραματική
αξιολόγηση σε πολλαπλά σύνολα δεδομένων για να αξιολογήσουμε τις παραπάνωμεθόδους
και τα ερευνητικά ερωτήματα. Τα αποτελέσματα δείχνουν πως η LSTM τεχνική υπερτερεί
της FC σε οπτικά δεδομένα, ενώ το αντίθετο ισχύει σε δεδομένα φασματογραμμάτων ήχου.
Η επιλογή χρήσης της οπτικής ή της ακουστικής πληροφορίας εξαρτάται από το σύνολο
δεδομένων και τον τύπο των κλάσεων, όπωςφαίνεται από την συγκριτικά καλύτερη απόδοση
του ήχου στο Audioset, και την υποδεέστερη απόδοση στα υπόλοιπα σύνολα δεδομένων,
στα πολυτροπικά πειράματα. Σχετικά με τις πολυτροπικές τεχνικές, η απλή συγχώνευση
σε επίπεδο βίντεο μέσω γραμμικού συνδυασμού δίνει βέλτιστα αποτελέσματα παρά τα
πρακτικά μειονεκτήματά της, ενώ η συγχώνευση μεγίστου δίνει έχει απόδοση πολύ κοντά
στις μη πολυτροπικές προσεγγίσεις. Η απλή συγχώνευση μέσου όρου και επιθέματος
των οπτικοακουστικών δεδομένων δίνει βέλτιστα αποτελέσματα στην FC και LSTM τεχνική
αντίστοιχα. Αντίθετα, οι τεχνικές προδιάθεσης αλληλουχιών δεν φαίνεται να εφαρμόζονται
με την ίδια επιτυχία που έχουν στην περιγραφή εικόνας. Επιβεβαιώνουμε τη συμπληρωμα-
τικότητα τού οπτικού και ακουστικού καναλιού, με τις πολυτροπικές τεχνικές να υπερτερούν
των προσεγγίσεων με μία πηγή πληροφορίας, εξάγουμε βασικές κατευθύσεις για επίτευξή
αυτής της βελτίωσης, και προσφέρουμε ένα baseline για την απόδοσηπολυτροπική τεχνικών,
ανά σύνολο δεδομένων που εξετάζουμε.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Μάθηση

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: ΜηχανικήΜάθηση, Νευρωνικά Δίκτυα, Πολυτροπικότητα, Κατηγοριοποίηση,
Βαθιά Μάθηση
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PREFACE

This document is an investigation of artificial intelligence methods, that attempt to effi-
ciently tackle the video classification task, i.e. assigning meaningful labels to video clips
with respect to their content. For example, a video of a music concert could include labels
such as “crowd”, “music”, or, obviously, “concert”. The purpose of an automatic video
classification system is to be able to correctly produce such output, given a video as in-
put, with no human intervention after its construction. In this study, a set of approaches
are investigated that build such systems by taking advantage of three main components
commonly found in videos: the visual content, the audio content, and the temporal inter-
dependencies of their parts. For example, video frames of a basketball trajectory are not
independent of each other – an airborne ball must have originated in a player’s hands.
Likewise, the sound of the crowd cheering in a basketball game is likely to succeed a
three-pointer “swish”. Lastly, both of the two preceding audiovisual events in a video are
strong evidence of the label “basketball game”. The aim of the study is to examine the
effect and contribution of each of the above components or “modalities”, on video classi-
fication. Specifically, two avenues of considering the temporal dependencies are inves-
tigated, and are applied in visual, audio and “multimodal” (that is, a combination of both
audio and visual content) video inputs, along with a consideration of various parameters
and architectural technical details of the underlying models. All of these approaches con-
stitute machine learning models, in the sense that the underlying mechanisms required
to produce correct classification results are learned automatically from supplied labelled
data via a processed called “supervised learning”. To examine if these trained models
can manage video classification efficiently, they are applied on new, unseen videos. Us-
ing available datasets compiled for video classification benchmarking, we evaluate the
above procedures, with the resulting experimental outputs giving rise to conclusions that
address the underlying research questions.

This work builds on previous studies on multimodal video classification. It verifies existing
findings, examines established research questions under new scenarios and investigates
new approaches for modality fusion for the task, all via a large experimental evaluation
process and subsequent extraction of interesting, usable results. The thesis was com-
piled towards the fulfillment of the graduation requirements for the Signal and Informa-
tion Processing and Learning postgraduate program of the Department of Informatics and
Telecommunications, of the National and Kapodistrian University of Athens in Greece.
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1. INTRODUCTION

In the first chapter we introduce the multimodal video classification problem, which is the
object of study in this thesis. In section 1.1, we explain the motivation behind addressing
the video classification in an automated fashion, using advances and acquired knowledge
from artificial intelligence and machine learning. We move on to provide a reasoning for
adopting a multimodal approach for processing video data with the aforementioned ap-
proach, in section 1.1.2. Furthermore, we provide a more precise formulation of the video
classification problem in section 1.2, which is the setting by which we will tackle the prob-
lem in later chapters in this document. Finally, we close this chapter by first establishing
specific research goals which this study will attempt to address, and a description of the
structure the thesis document will adhere to.

1.1 Motivation

This chapter provides evidence on the motivation of the problem at hand, namely the
purpose and applications of video classification. In addition, we report the two important
component of the task. First, its implementation in an automated manner and secondly,
its utilization of multiple data modalities.

1.1.1 The need for automatic video classification

A number of fairly recent factors have brought about a tremendous increase in the avail-
ability and consumption of multimedia content. The surge of popularity of the Internet,
the proliferation of camera-equipped smartphones, IoT and embedded camera systems
have contributed to videos participating in this trend [16]. The resulting amount of videos
prevents their efficient handling and processing by humans alone. This problem has led
to the necessity of developing automated tools in order to aid organization, handling and
accessing of the available video content. One way such a system can contribute to the
aforementioned operations is to annotate videos with predefined meaningful labels, cat-
egories and semantic indexes, corresponding to video content or metadata. These an-
notations can subsequently be utilized for a variety of tasks such as video retrieval and
indexing. These automated systems will thus act as classification machines, performing
the task of automatic video classification.

A key factor towards the development of such tools has been the application of artificial
intelligence research to the video and multimedia domains. Specifically, the utilization of
machine learning practices [4, 64], coinciding with the aforementioned wealth of available
data, has enabled the construction of data-driven classification models. While traditional
artificial intelligence methods would rely on explicit rules designed by experts, machine
learning approaches construct models that learn the characteristics and the building blocks
of the desired categorization directly from annotated data. The latter approach can reduce
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human intervention and required fine-tuning by a considerable degree.

1.1.2 Video multimodality

In the field of semiotics, a mode or modality is refers to an information channel and/or
encoding scheme utilized to conveymeaning in communication [65]. For example, spoken
language, a photograph or a sequence of symbols are all modes of communication that
can be used to construct a message. A video is a multimodal message, i.e. it is an
information package that contains multiple modalities. These are, for example, the visual
component of the video consisting of the visual stimuli transmitted to the viewer during
playback, the audio track (e.g. music, dialogue, ambient effects), as well as metadata that
might accompany the file, such as the video title, subtitles, transcript and others. Apart
from these straight-forward information sources, one can apply more refined extraction on
the video content, arriving at higher level separable information sources in a video. For
example, extracting, separating and tracking dialogue and ambient noise could aid audio
classification tasks, or differentiating between visual background from objects of interest
in a scene would be a helpful approach in object detection.

Unless all modalities contain identical information content, it follows that an intelligent sys-
tem seeking to reach an informed decision with respect to that video would want to utilize
all available information sources, therefore applying an information extraction process to
every modality. Combining this information should yield results useful for the task at hand,
and if said combination is performed effectively, these results should be qualitatively su-
perior to corresponding outputs when only a single video modality is exploited. Given this
intuition, in this study we seek to take advantage of the inherent multimodal nature of video
data towards aiding classification, as explained in the following section.

1.2 Problem definition

In this thesis, we examine the video classification problem, considering the aforemen-
tioned multimodal nature of video data. Given a set of predefined video labels or classes
C = {c1, c2, . . . , cc} and an input video vi that belongs to some ci ∈ C, the goal is to dis-
cover ci, given vi. We approach the problem as a machine learning task. This entails the
construction of a classification model which, learning from available training data consist-
ing of video / label ground truth pairs, will be able to output a label ci for a input video.
The output label is a product of a decision, reached by exploiting prior knowledge ac-
quired during the training process. The model architecture we will use is a deep artificial
neural network, a popular learning model in the classification literature [108] as well as
various other machine learning tasks. Given that a video is a multimodal object, we ex-
ploit a number of useful modalities in the following ways. The contribution of the temporal
modality is investigating by examining two classification architectures: first, we apply a
simple, fully-connected, feed-forward neural layer, followed by a softmax operator to en-
force probabilistic results (see section 3.2 for an explanation). This model is followed by
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simple aggregation mechanisms, applying simple fusion from sequence-level scores into
video-level predictions. On the other hand, we apply a deep neural architecture that ac-
commodates the temporal input dimension (e.g. the video duration, in our case) in a more
refined manner, capturing possible sequence inter-dependencies that may exist directly.
The intuition to these two approaches is that in cases where the temporal component of
the input is important to classification (i.e. dependencies between sequence members
exist and are useful), the sequence-based model is expected to produce good results.
We will examine all of the above in more detail in section 4.2.

The remaining modalities we exploit are the audio and visual modalities, which are com-
mon channels utilized in the video classification literature [116]. The first consists of the
video frames, while the second contains the audio portion of the video. Given these two
modality-specific views of a video object, we will look into modality fusion schemes that
combines this partial information channels to produce a single label prediction for the
video. We investigate the multimodal part of this study in section 4.3.

1.3 Thesis Goals

Given the twomain components of the study, we arrive at two closely related goals we wish
to tackle in this thesis: First, we seek to investigate the capability of sequential neural mod-
els versus simple aggregation-based approaches, to handle temporal context for the video
classification task, with the former modelling temporal inter-dependencies into its internal
representations, while the latter applying simple aggregation mechanisms. Secondly, we
explore the contribution of the audio and visual modalities in the video classification task.
Specifically, we compare the classification performance achievable with each modality
alone, subsequently moving on to test a number of multimodal fusion strategies that com-
bine these two modalities in a variety of ways. We perform both of these comparisons for
both types of deep neural models.

We run a set of experiments in order to address the above goals, on multiple, diverse
datasets both in respect of content, class set, specific classification domain, content / an-
notation noise, and many more. These are covered in detail in chapter 5 for more details.
By these generic evaluation benchmarks, we strive to establish a general performance
baseline one can expect to reach by using multimodal features with the proposed classi-
fication models, rather than producing the highest possible performance tuned for each
dataset.

1.4 Thesis Structure

This study is structured as follows. In chapter 2 we present related approaches and recent
work on video classification. We include methods that enforce a multimodal consideration
of the video input, using visual, audio, temporal or multimodal approaches to the learning
process.
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A description of the proposed method to address our stated goals follows in chapter 4.
There, we begin with a introduction to classification, neural networks and deep learning
before moving on to the presentation of our proposed workflows, namely the feed-forward
and sequential deep neural models in section 4.2, and the multimodal fusion approaches
in section 4.3.

What follows is the experimental evaluation. We present this in chapter 5, describing the
datasets and implementation details in section 5.1.1 and a set of preliminary experiments
in section 5.2. The main experimental setting, results and discussion with respect to the
state goals of the study can be found in sections 5.3 and 5.4.

We will conclude by a summary of the contributions of this thesis in chapter 6, along with
potential future work that could complement and extend the investigation of this project.
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2. RELATED WORK

There has been significant work in video classification, exploiting visual, temporal, audio or
textual information, as well as metadata, to arrive at a class prediction. In this section we
outline related work in the following categories. First, we outline preprocessing methods
applied on video data, as a preliminary step prior to feeding them into a learning model.
We move on to examine related work related to each modality relevant to this study, be-
ginning by examining approaches that exploit the visual component of a video, laying out
hand-crafted and learned feature extraction methods separately. We continue by con-
sidering approaches that exploit audio, followed by an examination of works that apply
multimodal fusion methods. We close this section by regarding miscellaneous modalities
and approaches for the video classification task. The reader is encouraged to refer to sur-
veys (e.g. [14, 91, 135]) for a more detailed recounting of multimodal video classification.

2.1 Video preprocessing methods

Since video files have duration which can extend to several minutes, partitioning a video
to smaller manageable chunks is a common practice.

Shot segmentation [63] is a process that partitions a video into shots. A video shot is a
contiguous uninterrupted sequence of frames, usually semantically concise, often taken
from a single camera. Shots can vary from abrupt cuts to gradual transitions (e.g. fade in,
fade out, dissolve, wipe and others). After clip extraction, the resulting clips can be subse-
quently processed by aggregation of individual frame information, or processed sequential
approaches. Alternatively, keyframe sampling [19] extracts a single or a few frames as
representative frames (i.e. keyframes) of the video shot.

2.2 Visual-based approaches

Visual-based approaches to video classification analyze the frames of the video for struc-
ture and information that is expected aid discrimination. In this sense, they exploit ad-
vances in image classification and content-based image retrieval. In the following sections
we outline related work on visual features extraction methods.

2.2.1 Handcrafted Feature approaches

Multiple hand-crafted features are devised to generate efficient features for image clas-
sification. Global image features take the entirety of the image into account, producing
responses related to the overall texture (e.g. Local Binary Pattern [92] and histogram of
oriented gradients [20]), the color distribution in the image ([96]) and others.
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On the other hand, local features describe local image patches, usually residing around a
point of interest (i.e. a “keypoint”) in the image. Keypoints are usually corners in an image,
discovered by detectors such as FAST [102], SURF [8], Harris [40], multi-scale difference
of Gaussians [81], and others [110, 86]. After keypoint detection, the surrounding area can
be represented with a feature vector by a keypoint descriptor such as SIFT [81], SURF
[8], KAZE [2], BRIEF [15] and ORB [103]. Other strategies apply the description in color
channels in the image [83], local and global features are combined in an aggregation
scheme [78, 76], or apply a scale invariance mechanism via a pyramidal multi-resolution
scheme [35].

The local feature extraction process is followed by an aggregation scheme, which com-
bines all local features into a feature vector for the entire image. In [114], the image
retrieval task is modeled in a bag-of-words scheme, where “visual words” are formed by
clustering local features. In [95] the authors use the Fisher Kernel [94] with various normal-
ization functions over SIFT features fed to linear SVMs, while in [6, 21] a local descriptor
aggregation scheme is used which seems to increase performance by alleviating noise
from the previous approach.

Global color features have been extensively used [100, 99, 28, 127] for video classification,
due to their relatively low computational cost, usually combined with features from other
modalities.

Local features have been used in machine learning tasks. Due to their increased compu-
tational costs, shot segmentation sampling is a common procedure (e.g. selecting a few
frames as the clip representative) for concept detection [49].

2.2.2 DNN-feature approaches

While hand-crafted features have been the state of the art until recently, the re-emergence
of neural networks, sparked by advances in hardware [108], led to the construction, train-
ing and successful application of deep neural models. These networks are capable of
achieving an impressive performance boost compared to hand-crafted features in multi-
ple machine learning tasks, as well as producing layer responses that act as deep and
rich features [10, 11]. The latter can be used as input for meta-learning stages further
improving performance (e.g. fed to logistic regression or SVM classifiers [97]), thus im-
buing DNN models with additional value in the machine learning community. There has
been therefore an extensive use of DNNs for visual classification lately, incorporating the
success of deep convolutional networks in image recognition [66, 113, 124, 41]. In the
context of video classification and visual features, these networks are applied in video
frames along with an aggregation mechanism so as to pool information from the frame
level to the video level. Another approach is to use recurrent networks to capture informa-
tion regarding the temporal component inherent in video content directly [121, 140, 23].
For a comprehensive review, see [135].

In [121] the authors use an LSTM network as an unsupervised sequence encoder, com-
pressing video frames or DCNN-produced frame representations to a single vector repre-
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sentation. The authors report modest improvements, when applying the model to super-
vised classification on the UCF-51 and HMBD51 datasets.

In [54], the authors modify DCNNs, extending the convolution kernel to the temporal
dimension. Their model extracts spatiotemporal features by applying convolution, sub-
sampling and pooling operations to separate channels, i.e. temporally neighbouring con-
tiguous video frames. A final representation is constructed by feature combination of re-
sponses from all channels. Experimental results on video action recognition on TRECVID
[115] and KTH [109] datasets show that the proposed approach outperforms the state of
the art only on the former dataset.

In [58], the authors experiment with different ways to introduce temporal information to
DCNNs, namely a single-frame model, a late fusion of frames with a fixed temporal dis-
tance and two variants of early frame fusion (namely early and slow fusion, with the latter
propagating marginal frame information in a slower manner). Experiments on UCF-101
and Sports-1M datasets show that the the approach is “not particularly sensitive to archi-
tectural details of the connectivity in time”, and the slow early fusion variant consistently
outperforms its competition. They note that the single-frame baseline showcases a very
strong performance, which hints to either local motion information not being exceptionally
important for classification of these datasets, or a more detailed handling is required.

Donahue et al. [23] apply DCNNs for feature vector generation, feeding collections of
frame vectors to an LSTM for video classification. Compared to a single-frame softmax
classification with voting aggregation, the experimental results on the UCF-101 dataset
show of the sequential LSTM approach faring better in terms of accuracy.

In [140], Ng et al. examine DCNNs with a variety of spatial and temporal pooling ap-
proaches, as well as an DCNN - LSTM combination. Their work focuses on processing
long video clips (reporting processing up to 120-frame sequences). Experiments on UCF-
101 show considerable (approximately 10%) improvement to previous approaches that do
not utilize motion information. However, they stress the latter is necessary for benchmarks
like the UCF-101 dataset for achieving state of the art results.

2.3 Audio-based approaches

Audio-based approaches isolate the audio content of the video, followed by the extraction
of useful audio features for classification. Many studies incorporate handcrafted features
on the audio content or its segments. In [80, 79], the authors use a variety of low-level sta-
tistical global audio features to distinguish 5 generic television program categories, using
HMM classification and ISODATA clustering. In [100, 99], the authors use MFCC features
with a GMM for video genre classification. Audio statistics are employed in various works
[28, 38], usually alongside additional visual and metadata features. Other approaches
study the audio content in the frequency domain, primarily via application of Fourier anal-
ysis on the audio signal [3], or use the mpeg-7 feature suite [59] for audio analysis. A
number of approaches utilize frequency-based audio information in the format of audio
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spectrogram images [5, 29].

In [75], Lee et al. use a variety of representation methods (PLSA, Gaussian standard
and mixture models) on top of MFCC features, classified with SVMs with various distance
functions. They report better than chance performance, with respect to average precision.

The authors in [74] use convolutional deep belief networks to learn deep features which
they demonstrate have some correspondence to phonemes. They apply their represen-
tation to genre and artist classification, reporting similar classification accuracy to MFCC
features.

In [43], the authors tackle multiple instance learning by generating deep features from a
three-layered NN with 500 hidden units per layer. The features are fed to multiple neu-
ral classification models and experiments on the Audioset dataset [32] show that DNNs
softmax-based attention works best in terms of mAP, AUC and d-prime scores, compared
to DNN and RNN pooling approaches.

2.4 Multimodal fusion approaches

Given the rich multimodal nature of videos, several approaches utilize multiple modalities,
followed by a fusion / aggregation scheme to combine all information into a single video
prediction. Multimodal approaches can be seen as a special case of multi-view learning
[122, 136], where each modality composes a distinct view of the multi-modal object.

In [99] the authors combine low-level visual motion with MFCC feature responses, applied
for TV program genre classification. They report optimal results with a weighted average
combination (assigning a 0.7 bias to the audio) with respect to ROC performance. In [28],
global color features, audio statistics and motion information of segmented objects and
the camera are combined for video genre classification. A similar approach is examined
in [127] for visual and temporal modalities. Snoek et al. [117] investigates fusion schemes
for visual, audio and textual modalities in the video concept detection task. Specifically,
early and late fusion strategies are investigated, aggregating information in the feature
level and semantic (prediction) level, respectively. Using SVM classifiers, they report late
fusion giving improved average precision scores, at the cost of additional learning effort.

In [112] the authors apply a two-stream DCNN architecture to separately process visual
and temporal context (captured buy optical flow images [130]), mimicking the human visual
ventral and dorsal optical pathways [33]. Experiments on UCF-101 [118] and HMDB-51
[67] datasets show the temporal network (using optical flow) outperforming the spatila
network, in terms of accuracy by a 10% absolute score. However, there significant com-
plementarity between the spatial and the temporal networks, best achieved by a meta-
learning process of SVM fusion on softmax scores.

In [138], the authors also use a two-stream spatiotemporal approach like in [112]. They use
two DCNN architectures for deep feature generation (CNN_M [112] and VGG_19 [113])
over two fully-connected layers. Additionally, they examine NN softmax classifications
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versus a meta-learning phase with linear SVM classifiers. Experiments on the UCF-101
and CCV [56] datasets in terms of mAP show that the deeper VGG_19 network performs
better, if large amounts of training data are available. Model (average) fusion (different
architectures on the visual stream) performs poorly when fusing networks with different
performance, and spatio-temporal linear combination fusion (same architecture, different
modality / stream) works well for both datasets, with the spatial part having the larger
contribution. In addition, the authors conclude that softmax fares better than SVM meta-
learning.

Wu et al. [134, 133, 55] utilize video frames, optical flow images and audio spectrograms,
each modal stream fed first to deep convolutional networks and then to an LSTM network.
Modality predictions are fused with a set of methods, within which an adaptive approach
is proposed which uses class relationships as a regularization mechanism. Experiments
on UCF-101 and CCV datasets verify multimodal and CNN / LSTM complementarity and
show the proposed fusion outperforming other aggregation techniques. Compared to mul-
tiple recent studies, the authors surpass the state of the art in terms of classification ac-
curacy. In [85], the authors compare a variety of learnable temporal pooling approaches
along with a two-stream audiovisual DNN Model, proposing a context gating aggrega-
tion approach that outperforms competition in the recent Youtube-8M Large-Scale Video
Understanding challenge [1].

2.5 Other approaches

2.5.1 Temporal features

Apart from audiovisual features, temporal qualities exploit the changes occurring within a
video clip. Such shifts can occur either by motion of objects of interest in a scene (e.g. a
car drives by, a face moves) or by more drastic changes occuring by camera movement
or shot change (e.g. a news graphic appears in a news segment, or a cut occurs in a
film). In [61] the authors devise a descriptor to capture spatiotemporal information using
on 3-dimensional gradients in the video visual stream. In [111], video “tomographs”, e.g.
one-dimensional cross-cuts in the temporal dimension, are extracted, to be used as vi-
sual input that spans the temporal duration of the video. Optical flow or image velocity
[47, 7] is an estimate of temporal changes in a sequence of frames, approximating the
two-dimensional motion field from pattern trajectories in the frames by examining relative
positions of pixel intensities. Optical flow has been widely used and achieved state of
the art results, with respect to temporal features. In [126], the authors utilize a Hidden
Markov Model (HMM) [50] on short video segments in order to model the underlying tem-
poral structure. They evaluate their approach on the event detection task on Trecvid MED
data, reporting significant average precision gains over the related work. In [130], the
authors use SURF descriptors and dense optical flow trajectories [129] for video action
recognition in multiple datasets, while in [53] adopts a decomposition strategy, partition-
ing motion to dominant and residual parts. In [131] optical flow is used in conjunction with
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DCNNs on UCF-101 and HMDB51 datasets, fusing DNN and trajectory responses via a
spatiotemporal aggregation and pooling schemes.

Yamato et al. [137] use temporal information in human action recognition in frame se-
quences, by computing mesh features on thresholded visual data and training a HMM
for each class. In [52], the authors compute motion features and project them to a one-
dimensional signal which is used to train HMMs. They report in binary TV program genre
classification. The authors in [28, 127] exploit motion features of the camera (e.g. panning,
zooming and cuts), as well as segmented object motion for TV program categorization.
A similar approach is investigated in [99], where flow features are computed by tracking
pixel-wise frame difference.

2.5.2 Text-based approaches

Text-based approaches use a variety of text metadata that often accompany a video. For
example, dialogue transcripts, subtitles, or hearing-impaired captions that contain a doc-
umentation of sound effects in the video. In addition, semantic information like tags and
partial categories may be available. This textual information can be subsequently used
with a text representation model (e.g. bag-of-words vectors [107]) as discriminatory fea-
tures for classification. Textual information can be extracted if not available in metadata
– for example, Dimitrova et al. use an OCR-based text box detection and understanding
[22], where text elements in video frames are mined via an image processing approach.

2.5.3 Domain-specific approaches

Other approaches incorporate existing domain-specific knowledge to aid discrimination.
In [89], expert knowledge in sound energy dynamics in film is exploited in horror film binary
classification. In addition, face detection and tracking is a popular high level feature. Dim-
itrova et al. [22] apply a face detection and tracking procedure along with OCR-extracted
text, using a HMM model for TV program categorization. Face recognition features are
used for news videos classification along with text and multimodal features in [132], using
SVMs and GMM learning models.
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3. BACKGROUND

i

In this chapter, we take the time to introduce some basic concepts related to this thesis.
Specifically, section 3.1 will present the artificial neural network model, its composition,
operation and functioning mechanisms. We will move on to describe the classification
task in section 3.2, adopting a supervised machine learning perspective, which is the
approach followed in the rest of the thesis. We conclude the chapter with a discussion on
deep learning and popular models for deep learning approaches, in section 3.3.

3.1 Neural networks

Here we provide an overview of the basic concepts around neural networks. For a more
in-depth examination, the interested reader is encouraged to see related surveys and
studies [119, 26].

3.1.1 Definition

An artificial neural network is a biologically-inspired learning model. It consists of a num-
ber of simple interconnected computational units called neurons, designed similar to their
biological counterparts from the human nervous system. Each neuron produces an out-
put as a function of three quantities: the first is the input stimulus the neuron receives, the
second is the neuron’s sensitivity to each component of the input (i.e. the corresponding
weights) and the third is an activation threshold (i.e. the bias term). The neural output is
filtered via a special activation function. This output can affect its environment by caus-
ing a reaction by other neurons in the network, thereby enabling a distributed chained
computation.

The fundamental logic behind the artificial neuron is found in the linear threshold unit,
conceived by the work of Mculloch and Pitts on threshold-based computational models
[84]. It can be defined by:

y = sgn

(
d∑

j=1

(wjxj + w0)

)
= sgn

(
wTx

)
(3.1)

There, binary neurons are excited (i.e. they “fire”, producing an output value of fy = 1) or
are inhibited (produce an output of y = −1) as a function of their d-dimensional augmented
input vector x = [x1, x2, . . . , xd, 1], a weight-bias augmented vectorw = [w1, w2, . . . , wd, w0]
and an activation sign function sgn(·). The activation function sgn(·) acts as a non-linearity-
inducing operator, with other common candidates being the logistic function (yielding
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Figure 1: An artificial neuron acting on an input n-dimensional vector x. Each input
component is scaled with a quantity wi and contributes along with the bias term to the
linear combination as described in equation 3.1. The final output y is obtained after

scaling with an activation function f(·).

Figure 2: An artificial neural network model, consisting of D layers acting on an input x
and producing an output y.

f(x) = 1/(1 + e−x), the tanh(·) function or the unit step operator. A visualization of a
neuron is shown in figure 1.

3.1.2 The neural network

Neurons processing a single input vector at the same step in the computation chain are
said to form a neural layer. The organization of amultitude of layers in a sequential fashion,
i.e. connecting the output of the neurons in layer l to the input of neurons in layer l+1, forms
a computational graph which we call a neural network. See figure 2 for a visualization.
Layers between the input and the output layer are called “hidden”, in the sense that they
are neither visible from the input nor from the output end of the network. The hidden layers
are the ones providing the computational capabilities to the learning model. In fact, a
single hidden layer in a neural network can approximate under some simple assumptions
[48]. This sequential connection of simple, linear components is what necessitates the
inclusion of the non-linearity element mentioned above: non-linearity prevents the neural
chains from degenerating into one long linear operation, while simultaneously enabling
non-linear, complex functions to be estimated by the network.

3.2 Neural networks for supervised classification

In this work, we examine neural networks as supervised classification models. In the
following paragraphs we will define the classification problem, as well as describe the
necessary components to train a deep neural model aimed for this task.
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3.2.1 The classification problem

Let X = {x1,x2, . . . ,xN} a dataset of N elements and C = {c1, c2, . . . cM} a set of prede-
fined M classes (we will use the terms class, label and category interchangeably in this
document). A classification or categorization is the task of mapping each pair (xi, ci) to a
boolean value {T, F}, where . A pair (xi, ci)mapped to the value T indicates that the data
object xi belongs to or is an instance of the category ci. Assuming that the true mapping
is computed by a function f : X×C → {T, F}, the goal of the classification task is to find a
function f̂ that is as close an approximation of f as possible. If exactly one ci is set to T for
any given xi ∈ X, as in this study, we speak of single-label classification, as opposed to
multi-label classification when the number of categories assigned to an instance exceeds
unity.

If we consider X as a data generation source, the latter can be modelled as a conditional
distribution P (xi|cj), i ∈ {1, . . . N}, j ∈ {1, . . .M}. Then, the single label classification
problem becomes finding a function f̂ where for (xi, ci) ∈ X, f̂(xi, ci) → 1 and f̂(xi, cj) →
0, j ̸= i. In other words, f̂ represents a probability distribution of the input over the target
classes.

3.2.2 Probabilistic neural networks

This is the model adopted by a multilayer probabilistic neural network: let the last layer of
the network containM neurons, thus producing anM -dimensional vector z, one for each
of the desired classes. Since wewant this output to represent a probability distribution over
the available classes, we can impose the desired properties of a probability distribution
(i.e. each probability value zi ∈ [0, 1] and

∑M
i=1 zi = 1, for i ∈ [1, . . . ,M ]. To enforce this

structure on the network, the output activations z of the last layer are fed to a softmax
layer. The latter applies softmax normalization [123] on the input values.

yi =
ezi∑

j∈layer e
zj

(3.2)

As seen in equation 3.2, the softmax function squashes the incoming values to the desired
[0, 1] range, and ensures that they sum up to unity.

3.2.3 Training a neural network

In the neural network, learning corresponds to modifying the weights and biases such that
given an input x, the resulting output y matches a desired value t as close as possible.
The perceptron algorithm [101] was a first an implementation of such a process, where
given a sets of desired input-output examples (x, t), a single-layer neural network is able
to modify its parameters such that each output y progressively approaches the desired
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values t for each training example, thus reducing its prediction error. This process of
training a model with such a set of given labelled examples is called supervised learning.

In order to apply supervised training on a neural network, we define an objective function
to optimize its performance. In cases where the function represents a cost (e.g. the error
/ misclassification rate), it is called a loss function. The loss function L(·) is an numeric
estimate of the categorization performance of the network, with respect to a set of training
examples pairs (x, t). In single-label classification networks equipped with the softmax
layer, the cross-entropy cost function is commonly used. It quantifies the loss as the
negative log-probability of the correct class and is depicted in equation 3.3.

L = −
M∑
j=1

tjlog(yj) (3.3)

where y is the network prediction vector and t is a one-hot representation of the desired
class (i.e. ti = 1, tj = 0 for j ̸= i). The farther yj is from unity, the network is increas-
ingly penalized. Cross entropy has the desirable property of having a large gradient when
the correct class is 1 and the network prediction is very close to zero. With a loss function
available, we can evaluate the average performance of the network on a set of training ex-
amples. Given a current weight configuration, we can deduce how to change the weights
on the last hidden layer in order to shift results towards the ground truth pairs (x, t) by de-
riving a gradient vector ∇L =

[
∂L
∂w1

, . . . , ∂L
∂wM

]
. However, since we want to train the entire

network, when the latter is composed of multiple layers weight inter-dependencies be-
tween layers in the computational graph need to be considered. For example, the weights
in the i-th layer depend on the weights of all previous layers, since the data fed into it is pro-
duced by the chain of computations that consists of the layers in positions 0, 1, . . . , i − 1.
Given ∇L, the backpropagation method [77] can efficiently compute a global gradient
∇LG vector via the chain rule. ∇LG contains loss gradients with respect to all neural
weights and bias in the network [73], by considering the backwards propagation of errors
from the last layer to the first. The acquired gradient vector −∇LG indicates a direction
in the network parameter space, towards which a maximal error reduction is achievable.
Shifting the network configuration effectively towards such a point is the subject of global
optimization research. For neural networks, variants of gradient descent are usually used
[104].

The training process is repeated, balancing two evaluation criteria; the first is the afore-
mentioned training loss, L(·), which reflects how well the network has learned the training
data. To avoid over-training, i.e. to prevent the learned function f̂ from fitting noise and too
coarse elements of the manifold that represents the probability distribution of the training
dataset, we additionally measure performance on test data. Test data are instances not
seen during the training phase, but assumed to originate from the same data source, X.
Obtaining a model that, having been trained on one dataset, performs well on another,
unseen dataset, is called generalization, and it is the overall goal in machine learning.
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3.3 Deep learning

While training a network with a large number of hidden layers is not a simple task (e.g.,
since large networks mean costly backpropagation operations), such architectures come
with strong advantages. In a multilayer network, the n-th hidden layer can be considered
to be a representation of the input on an additional level of abstraction with respect to
the n − 1-th layer, as well as a learned representation of the previous layer itself. This
stacked architecture enables the discovery of intricate structures in the data, leading to
a paradigm shift: from expert-led feature engineering to automatic methods for pattern
recognition and representation learning [11]. This leads to the emergence of ever larger
networks and, the number of layers in a neural network being referred to as its “depth”,
the sub-field of Deep Learning [108]. There, it is common practice to build deep networks
to tackle difficult, large-scale learning problems. While this practice is computationally
expensive, recent hardware advances in GPU technology [9] have kick-started a number
of successes in multiple machine learning fields.

3.3.1 Convolutional neural networks

Convolutional neural networks (CNNs) are deep neural models, commonly applied in com-
puter vision tasks. They were inspired by biological studies on the visual cortex of cats,
where neural cells with specific properties were observed [51], while also bearing resem-
blance to the visual mechanism of primate species [27]. One group of cells responded
to certain visual primitives such as orientation of edges, while others exhibited a larger
degree of spatial invariance responding to certain stimuli within a spatial region of the vi-
sual input, named the receptive field. This paradigm was first implemented in an artificial
neural network in the Neocognitron model [30], which like modern variants used convolu-
tional and pooling operators. Backpropagation based training was applied for handwritten
zip-code character recognition in [71] and handwritten check recognition in [72]. Deep
convolutional neural networks (DCNNs) have become extremely popular recently, being
used successfully in numerous pattern recognition contests and commercial applications
[125, 66, 18, 39].

The main component of a CNN is the convolution layer. For discrete signals x and w,
convolution is defined as:

y[n] =
∞∑

k=−∞

(x[n− k]w[k]) (3.4)

where the extension to two-dimensional signals like images is straightforward.

y[m,n] =
∞∑

k=−∞

∞∑
l=−∞

(x[m− k, n− l]w[k, l])

In practice, the convolution summation limits are restricted with respect to the dimensions
of the convolution operands. As a result, each neuron in a convolutional layer is associated
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Figure 3: Operation of a convolutional layer. An input image (left) is scanned by
convolution kernels (red circles), producing output feature maps (right). The input
convolution windows of two adjacent steps are illustrated (red and blue translucent
rectangles in the image), which produce corresponding output vales (red and blue

squares in the feature map output), for the first convolution kernel.

with weights that form a convolution kernel: a n×n window, n = 2k+1, k ∈ N, the weights
of which the network optimizes. A fixed stride size and padding configuration is also preset
for each layer, parameters which also determine the dimensionality of the output. For a
visual example of the operation of the convolutional layer on an image, see figure 3.

Common architectures include series of convolutional layers, acting both as learnable
feature detectors and dimensionality reduction operators. Further reduction is achieved by
pooling layers, which replace their receptive field with a single computed or selected value,
according to a specified criterion (e.g. select the pixel with the maximum intensity in max
pooling layers, compute the average of the image patch in average pooling layers, and so
on). Not surprisingly, an area where DCNNs are widely used is computer vision. The input
image is read by the input layer as an array of numeric values on which the convolutional
layers learn to recognize ever more abstract visual features. For example, convolution
kernels in the first layer may learn to distinguish primitive visual artifacts like oriented
edges, simple textures or blobs. The second layer can learn more complex shapes, a
function of the activations of the first layer, and so on. We describe a DCNN model is
described in section 4.2.1.

3.3.2 Recurrent neural networks

Convolutional networks discussed so far operate in a feed-forward manner; computation
flows from the input layer towards the output layer and once the network prediction is
computed, the process stops. In contrast, a recurrent neural network (RNN) [24] retains
a memory-like internal state which is updated via a feedback mechanism on subsequent
time steps of an input sequence. This enables the network to store information pertaining
to the temporal inter-dependencies of the input, rather than considering the content of
each input separately at the present time step.
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Given a sequence of inputs {xi, . . . ,xn} and an initial state h0, the RNN computes outputs
y and updated state ht as in equation 3.5:

ht = f
(
Wxhxt +Whhht−1 + b1

)
(3.5)

yt = g
(
Whyht + b2

)
where Wxh,Whh,Why are the connection weights between inputs and state, recurrent
state and between state and outputs respectively and bi are corresponding bias terms.
Figure 4 depicts the model in the recursive and unrolled conceptualizations, as well as the
multilayer architecture.

In RNN training, the phenomena of vanishing and exploding gradients [45] arise. As
names imply, again, these phenomena relate to the behaviour of the gradient magnitude
when propagated through the network graph [12]. Specifically, it refers to cases when
said magnitude takes extreme values due to the gradient computation procedure being
based on the chain rule: on long chains of computation (i.e. long paths in the network
graph), gradient values tend to shrink or explode as a result of repeated multiplications
of small or large gradient quantities, respectively. These phenomena often occur during
RNN training, since unrolled RNN networks include long computational paths which are
necessary to capture temporal inter-dependencies of the input sequences.

With respect to gradient explosion, clipping excessive values with respect to a predefined
norm threshold [34] is a simple solution that mitigates the problem. Vanishing gradients
can be rectified by the use of the LSTM network, which involves an additional memory
component, the cell memory state, propagated via a separate channel than the RNN state
h. This component stores information regarding the process by which the state changes
as a function of step, input data and current state. Specifically, a series of operators are
applied on the input and state variables via suppression and scaling functions, namely the
sigmoid and tanh(·). These are depicted depicted in equations 3.6.

ft = σ (Wfzt + bf ) (3.6)
it = σ (Wizt + bi)

c∗t = tanh (Wczt + bc)

(3.7)

where zt is the concatenation of x and ht−1,W and b terms represent weights and biases,
and the ⊙ symbols represent element-wise vector multiplication. Specifically, the ft term
scales which parts of the old cell state ct−1 to forget, it selects which values to use in order
to update the cell state, using the new candidate values in c∗t . The new hidden state ht is
produced by a similar process. Parts of the new cell state are concealed via ot, which are
scaled and set as the ht.

As a result of their sequence-oriented architecture, RNNs have been widely used for ap-
plications where data are composed of inter-dependent units, e.g. natural language and
speech processing [106, 87, 36, 17], image description and generation [37, 23, 128] and
others. We describe a RNN variant (the LSTM model) in section 4.2.3, as one of our
proposed workflows.
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Figure 4: The RNN model. The recursive depiction (top) illustrates the feedback of the
internal state h into subsequent timesteps. The unrolled illustration (bottom) shows an

equivalent feed-forward model.

Figure 5: The multilayer RNN model, depicted in an unrolled illustration. X denote the
network input sequence, Y the output sequence and H the multi-layer state.
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4. PROPOSED METHOD

In this chapter we describe our method for tackling the stated goals. To recall, this study
aims to answer the following research questions, with respect to the video classification
task:

1. How do sequential neural models fare versus simple, aggregation-based approaches
that do not take temporal inter-dependencies of the input into account?

2. What is the effect of the visual and audio video modalities, for each of the above
model types (e.g. aggregation-based and sequential)? How can video modalities
be combined to aid classification performance?

In the next sections we detail the proposed method, starting with the preprocessing phase,
which prepares video data to be fed to the neural models. This consists of video sampling
and frame encoding stages, presented in sections 4.1) and 4.2.1 respectively. For the first
stage, we adopt a randomized clip and frame sequence extraction approach, producing
image sequences that capture modality-specific information. We tackle frame encoding
by adopting a DCNN representation extraction scheme, using the Alexnet model to map
video frames to numeric feature vectors that can be processed by a computer algorithm.

To address the research questions stated in the beginning of this chapter, we deploy two
classification models, namely the fc and LSTM classifiers. These models are used to
produce prediction scores for input video parts, which are subsequently combined to cor-
respond to predictions pertaining to the entire video. This is achieved by a variety ag-
gregation methods which we examine, for each classifier. The two classifiers give rise
to the homonymous FC and LSTM video classification workflows, each composed of the
aforementioned frame encoding and corresponding classification phases.

In section 4.3, we describe the approach adopted to examine the second research ques-
tion, i.e. the utilization of multiple video modalities to aid video classification. There, we
investigate a series of multimodal fusion methods to combine visual and audio data in an
end-to-end fashion. In addition, we extend the investigation of the first research question
in the multimodal setting, applying the FC and LSTM workflows in each fusion method
examined here.

4.1 Data preprocessing

In this section we outline the preprocessing steps undertaken to prepare video data to
be fed to our classification pipeline. Firstly, we describe the preprocessing stage for the
visual content of the video, followed by the spectrogram extraction approach on the audio
content.
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Figure 6: The visual content preprocessing pipeline. The underlying frame sequence is
extracted from the video from which random clips – i.e. contiguous frame sequences of
constant length – are selected. In the example, red rectangles denote the clip boundaries,

which are composed of the 3 enclosed frames.

4.1.1 Visual content processing

The video classification pipeline we use begins with extracting usable data from a video
file, in a machine-recognizable format. We extract visual video information with the follow-
ing process. Given a video file v, we extract the video frames at a reduced rate, namely
one frame per second. This serves to both arriving at a temporal resolution adequate for
classification and reducing the amount of superfluous frame data for each video, keeping
the dataset sizes manageable. At the end of this process, each video is represented by
an ordered series of N frames. Given v, we extract K video clips {c1, c2, . . . cK}, each
composed of N frames: ci = {f1, f2, . . . fN}. A visualization of the clip extraction process
for the visual modality is depicted in figure 6. We note that the frame extraction order
respects the temporal order of each frame in the video.

For each video, we extract 4 clips, each consisting of 8 frames, amounting to 32 frames
per video. Clip boundaries are non overlapping and randomly selected. For videos where
the available frames are not enough to incorporate the selected clips per video and frames
per clip, we duplicate the first frame of the video to reach the quota mentioned above. If
the number of clips itself is insufficient, we randomly duplicate clips from those that were
managed to be extracted.
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Figure 7: The audio content preprocessing pipeline. The audio track is extracted from the
video and is partitioned into 1-second segments. Each such segment is mapped into a
spectrogram image, via a further 20ms temporal partitioning, followed by application of
short-time FFT and low-pass filtering. After the spectrogram sequence is produced, clip
extraction is performed in the same way as in the visual content, showcased in figure 6.
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Figure 8: Examples of spectrogram images.

4.1.2 Audio processing

Regarding the audio component, we extract the accompanying audio file from each video
and proceed to a spectrogram extraction process. Specifically, we partition the audio to a
sequence 1-second audio clips. For each such clip, we apply short-time Fourier transform
on 20ms windows with a 10ms overlapping stride. This segmentation procedure produces
99 spectral responses for the 1000 ms clip. After applying a low-pass filtering operation,
keeping only the first 100 low-frequency coefficients of each response, we end up with a
99×100 coefficient matrix. The matrices are stored in image format, resulting in a pictorial
representation for the audio modality. Clip extraction is applied in a similar manner as in
the visual content described in the previous section (4.1.1). A visualization of the audio
processing pipeline is available in figure 7, whereas an example of spectrogram images
used in this study is illustrated in figure 8.

4.2 Single-modality workflows

In this section, we outline the components we use for the single-modality classification
approaches. In section 4.2.1, we describe the frame encoding process, by which input
image data are represented by a feature vector. This is accomplished by obtaining the
response of an appropriate DCNN layer, specifically the Alexnet architecture.

In the sections that follow we describe the architectures that apply different parsing strate-
gies with respect to the temporal information content of the encoded frame sequence.
Specifically, in section 4.2.2 we describe the FC workflow, which classifies the encoded
frames via a combination of fully-connected and softmax layers, followed by simple, straight-
forward temporal aggregation schemes. What follows is section 4.2.3, where the LSTM
workflow, utilizing an LSTM recurrent neural model, is applied to process the encoded
input frame sequence. This method is designed to effectively keep track of temporal inter-
dependencies in the input, utilizing them for producing “temporally-aware” classification
predictions. Finally, we present a set of fusion strategies applied to the aforementioned
workflows, by which predictions are aggregated from frame-level predictions (i.e. classi-
fication scores with respect to a single frame) to sequence-level ones (e.g. regarding the
input video or clip).
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Figure 9: The architecture of the Alexnet DCNN. The letters C, P, N and F stand for
convolutional, pooling, normalization and fully-connected layers, respectively.

4.2.1 Frame encoding

In order for our model to process video content, the preprocessing steps described in sec-
tion 4.1 are applied. This transforms video content to a series of images, representing
the former in the selected input format (i.e. video frames for visual content or audio spec-
trograms for audio content). In order to process these images, we use a popular DCNN
model widely used in image classification tasks, namely the Alexnet architecture [66]. The
Alexnet model receives 224 × 224 images with three color channels in RGB format and
feeding them through a series of successive processing layers. It contains five instances
of convolutional layers and three fully-connected layers, where after each convolutional
layer a ReLU operation is applied, introducing additional non-linearity to the computation.
Max-pooling operators are applied on the output of the first, second and last convolutional
layers for dimensionality reduction and translation invariance of convolutional responses.
Local response normalization operations follow the first two convolutional layers, applying
a “brightness normalization” transformation on the layer responses which was found by
the authors to aid discrimination [66]. While training from scratch initializes the network
with randomweights, we take advantage of transfer learning approaches [93] and initialize
the encoding with pretrained weights on visual data of the ILSVRC 2012 challenge [105].
See figure 9 and table 1 for the detailed architecture and model components.

The Alexnet model is used as a frame encoding operation by mapping input frames to
encoded feature vectors. To achieve this, we truncate the network, discarding all compo-
nents past a selected layer, obtaining the output of the latter as the representation of the
network input. Specifically, we experiment with selecting the last, fully-connected layers in
the network, i.e. the fc6, fc7 and fc8 layers. The first two layers produce 4096-dimensional
feature vectors, since their response consists of the output of 4096 neurons. The final fc8
layer acts the classifier component, when the network is used as an end-to-end classifi-
cation model, rather than a feature generation process, as is the case here. In the former
scenario, fc8 produces 1000-dimensional vectors, since the pretrained model was fitted
to the 1000 classes in the ILSVRC competition [105].

4.2.2 The FC workflow

With the vector representation of an input frame in hand, we can move on and produce a
classification score for it (and at the same time, the video clip it represents) via feeding it
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Table 1: The Alexnet network architecture. “conv”, “lrn”, “pool” and “fc” stand for
convolutional, local response normalization, pooling and fully-connected layers,

respectively. C = {c1, c2, . . . , c|C|} is the label set for the classification task.

name type dimensions neurons
conv-1 c 11 × 11 × 3 96
pool-1 p 2 × 2 -
lrn-1 p 2 × 2 -
conv-2 c 5 × 5 × 96 256
pool-2 p 2 × 2 -
lrn-2 P 2 × 2 -
conv-3 c 5 × 5 × 256 384
conv-4 c 5 × 5 × 256 384
conv-5 c 5 × 5 × 256 384
lrn-5 p 2 × 2 -
fc-6 fc 9216 × 1 × 1 4096
fc-7 fc 4096 × 1 × 1 4096
fc-8 fc 4096 × 1 × 1 |C|

Figure 10: DCNN frame encoding, illustrated for the FC workflow.
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Figure 11: The frame encoding process: a collection of frames (left) is fed through a DCNN
model (middle). The responses of a selected fc layer are gathered as frame encodings

(right). In this image, there is a single video consisting of 4 clips (color-coded in red, blue,
green and yellow), each consisting of 4 frames.

to a classification model. In the FC workflow, we use an fc classifier, i.e. a fully-connected
layer neural layer, followed by a softmax operator as explained in section 3.2. To recall,
the number of neurons in the fc layer is set to the number of classes in the classifica-
tion task, producing raw prediction scores per class. Attaching a softmax operator to the
aforementioned output squashes the results to a [0, 1] range and enforces all predictions
summing to unity, thus producing an output that can be interpreted as a probability density
over the classes. In the pretrained network, we discard the last pretrained fully-connected
layer (i.e. fc8 in Alexnet) and reinitialize it with random weights, learning the classifier of
interest from scratch.

Recall the way a video is handled in the preprocessing pipeline (see section 4.1), sam-
pling a number of clips from the video, each consisting of N frames. Given a video clip,
its frames are thus encoded into feature vectors {e1, e2, . . . , eN}, as shown in figure 11.
Given this collection of frame encodings, the FC workflow maps each ei into a prediction
vector p ∈ R|C|, with pj denoting the confidence of the model that the i-th frame belongs
to the j-th class. Since the task of interest is video classification however, we need a way
of aggregating frame-wise predictions into clip-wise and, further, video-wise confidence
scores. To produce these levels of prediction, we adopt score fusion approaches. Re-
garding aggregation to clip-wise predictions, we examine two methods in conjunction with
taking the average of marginal scores into an aggregate. Firstly, early fusion computes
the arithmetic mean of frame representations, aggregating all encodings to a single clip
encoding vector. The clip vector thus represents the entire clip and can be fed to the FC
classifier to obtain a prediction score for it. Conversely, late fusion produces prediction
scores for each frame encoding separately, fusing the marginal classification outputs into
one aggregate clip prediction. The early and late fusion methods are depicted in figure
12.

Early and late fusion deals with aggregation from frames to clips. For video-level aggre-
gation, we simply compute the average predictions across clips.
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Figure 12: Early (top) and late (bottom) frame fusion approaches. Early fusion acts on
encoded frame vectors, fusing frame encodings into a single clip encoding vector, which
is subsequently classified by the fc layer. The late fusion approach classifies each frame
encoding individually, fusing frame predictions into a single clip prediction. Color-coding

follows the conventions in figure 11.

4.2.3 The LSTM workflow

The LSTM workflow utilizes, as the name implies, a Long Short-Term Memory (LSTM)
model [46] for video classification. As discussed in chapter 3, an LSTM is a deep recur-
rent neural model that augments recurrent neural networks (RNNs) [24], with components
that attempt to remedy some fundamental problems encountered during training. As dis-
cussed in section 3.3.2 RNNs are deep neural networks equipped with a feedbackmemory
parameter h, called the RNN state.

Given anN -frame video clip encoded into vector representations {e1, e2, . . . , eN}, we feed
the latter of frames through the LSTM network. After N computation steps, the network
has produced outputs Y = {y1,y2 . . . ,yN} and a final hidden output state hN . Each yi is a
vector inRL, with yi(j) representing the confidence of themodel that the i-th frame belongs
to the j-th class, given the input xi and all preceding hidden states {h0,h1, . . . ,hi−2,hi−1}.
We note that since both the output yi and state ht are computed as a function of hi−1

and ei, it follows that the order of inputs in a sequence is crucial; earlier frames having a
cumulative contribution on the network, affecting all subsequent hidden states and outputs.
The workflow is illustrated in figure 13.

Given the multiple outputs of the LSTM model, we examine multiple ways of extracting
a single prediction for the input frame sequence. Firstly, we select the prediction at the
last time step (last strategy). This is the built-in mechanism of temporal aggregation in the
LSTM, since useful prior information should be encoded in the hidden state, and should
thus adequately influence the last network output. Additionally, we consider taking the av-
erage of all predictions (avg strategy). Furthermore, we examine treating the hidden state
as the prediction vector (state strategy); this approach treats the LSTM as a prediction
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Figure 13: The LSTM workflow. DCNN-encoded input frames xi are fed to the LSTM, which
produces outputs yi. H0 and Hn denote the initial and final state vectors.

encoder, representing the input sequence as a model vector in its internal state. This is
accomplished by setting the number of state neurons to the number of desired classes
and considering the final state vector hN as the classification response for the input frame
sequence, ignoring the network output y. Finally, video-level fusion is performed in the
same way as the FC workflow, i.e. by computing the arithmetic mean of clip predictions.

4.3 Multimodal workflows

In this section we describe the workflows used to examine the performance of the mul-
timodal setting for video classification, i.e. the utilization of more than one modalities to
reach a video prediction. In this work, we use the visual and audio modalities from video
data, both are extracted in the form of images as described in section 4.1. We examine
two categories of multimodal fusion, with each candidate method per category applied
to both the FC and LSTM workflows described in section 4.2. Firstly, “direct” fusion ap-
proaches are examined in section 4.3.1, with straightforward techniques of combining data
from different modalities being explored. Secondly, in section 4.3.2 we test fusion meth-
ods inspired from image description approaches, where modality-specific information is
presented as a bias in the input sequence.

4.3.1 Direct data fusion

In this section, we outline straightforward modality fusion approaches, bearing resem-
blance to the work of [138] but applied on audio-visual content rather than spatial and
temporal streams. We examine two methods for data combination, given the visual and
audio data sources that provide frames, as discussed in section 4.1. It should be noted
that, although beneficial, the visual and audio frame / spectrogram sequence need not be
aligned, i.e. the two sequences need not correspond to the same temporal window in the
source video. First, avg fusion combines modality data by computing the arithmetic mean
at the frame encoding level, i.e. after images have beenmapped to a vector representation
(see section 4.2.1). Specifically, given visual and audio input clips cv = {ev1, ev2, . . . , evN},
ca = {ea1, ea2, . . . , eaN}, avg fusion produces the multimodal clip cm = {em1, em2, . . . , emN},
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Figure 14: The process of avg and max multimodal fusion. Given the vector
representations of two collections of images corresponding to different modalities of the
same object, avg fusion combines the two modalities by averaging the encoding values,
while max produces coordinate-wise maxima. Either way, the resulting vector has the

same dimension as the input visual / audio vectors. Color coding follows the conventions
as in figure 12.

where emi =
evi+eai

2
. This process implies that both modalities have the same number of

clips for a video, and said clips are composed of the same number of frames. Similar to
avg,max fusion computes coordinate-wisemaxima from two clips, i.e. emi = max(evi, eai).
The process for avg or max multimodal fusion is illustrated in figure 14. Furthermore,
concat fusion concatenates the vectors representations from each modality, i.e. produces
clip with vectors emi = [eT

vi, e
T
ai]

T , where xT is the transpose of x. This fusion approach is
shown in figure 15.

After direct data fusion, the fused clip cm can be treated as if it originates from a single
modality. It can thus be processed by either of the single-modality workflows outlined in
section 4.2.

4.3.2 Sequence bias fusion

In this section, we investigate fusion methods inspired from neural sequence models in
the image description task, where given an input image, the goal is to produce a caption
that best describes the visual content. Given the sequential attributes of an image caption
and the importance of word order in it, the use of recurrent deep neural models (see
section 4.2.3) is a common established approach that yields good results for the task
[23, 128, 57, 82].

We construct the first fusion method borrowing from the image description approach in
[128]. There, images are encoded into vectors in a similar manner as explained in section
4.2.1 while caption words are also mapped to vectors via learned word embeddings [88].
The authors provide the visual content vector as the input at the first time step, by which to
impose a conditioning mechanism on the network, i.e. a preliminary step that introduces
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Figure 15: The process of concat multimodal fusion. Given the vector representations of
two collections of images corresponding to different modalities of the same object, concat

fusion combines the two modalities by concatenating the encoding vectors, with the
visual modality leading. Color coding follows the conventions as in figure 12.

Figure 16: Example of handling an image description task with a recurrent model. Given
the input image (top), information pertaining to it is supplied in the first input position in
the recurrent model (bottom). It is followed by caption information tokenized to words. The
<start> item is a special token that denotes the beginning of the caption word sequence.
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Figure 17: The input-bias method for introducing audio context in the visual frame
sequence of an RNN. Aggregated audio information (the “auxiliary” channel) is supplied
as the first input element, followed by the visual encoded frames of the “main” modality.

a bias. Given the significant effect of the first frame in the sequence (see section 4.2.3)
information extracted by the first input can carry on via the hidden state, biasing the model
to interpret the word sequence that follows. The mechanism is depicted in figure 16.

In a similar manner, we apply the same logic for the visual and audiomodalities in this work,
with the input-bias multimodal fusion method. We label main and auxiliary information
modalities in the multimodal data. The auxiliary modality information is aggregated and
introduced as the input bias, like the image vector in image description. Likewise, the
main modality is analogous to the caption words in the image description analogue, the
contents of which define the sequence fed to the recurrent model after the bias. We
select the visual and audio component as the main and auxiliary channels respectively.
Given the auxiliary audio sequence of a video, we apply average fusion to the encoded
frame vectors, producing a single vector for the entire clip. The audio clip vector is then
introduced as the input bias in the LSTM, followed by the visual sequence. See figure 17
for a depiction of the procedure. This process can be alternatively viewed as imbuing the
frame sequence with an additional, special frame at the start. It is apparent that the audio
and visual frame encodings need to be mapped to the same vector space for this type of
fusion to work, i.e. the marginal modality vectors have to be of the same dimensionality.
The input-bias method is depicted in figure 18.

The second fusion method also introduces the auxiliary modality as a bias to the main data
sequence, with a few important differences. Firstly, instead of inserting the bias vector at
the first input position in the sequence, we feed it as the initial state for an LSTMmodel, i.e.
a state-bias. This initialization aims to condition the internal state of the network directly,
rather than providing an introductory input bias and letting the network produce a good first
state (after the consumption of the bias, i.e. h1) on its own. This approach assumes that
the encoded bias information will hold patterns that the network will be able to interpret as
a meaningful initial hidden state seed. Secondly, this method is applicable only to RNN-
like models which is why we apply it only in the LSTM workflow. A visualization is depicted
in figure 19.
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Figure 18: The input-bias multimodal fusion method. Frame vector data from the auxiliary
modality (top diagram) are fused into clip vectors and inserted as the first vector in the

corresponding main modality sequence.

Figure 19: The state-bias multimodal fusion method. In the left, the input sequences are
fed to the LSTM input and the state vectors are set as the initial LSTM state. In the image
to the right, the same process is shown at a per-clip basis. Encoding vector colors denote

which clips the vectors belong to.
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Figure 20: Multimodal late fusion.

4.3.3 Late video-level fusion

Finally, we examine late fusion of prediction scores from entire video items. While the pre-
vious multimodal fusion methods combine frame encodings from different modalities and
subsequently apply a classification process with workflows from sections 4.2.2 and 4.2.3,
video-level late fusion directly aggregates classification results, working on video-level
rather than clip-level scores. The aggregation is examined in two aggregation schemes.
First, we compute a linear combination of the marginal modality scores, setting comple-
mentary visual and audio modality weights, i.e. w ∈ [0, 1] and 1 − w, respectively. We
experiment by varying w in its range with a step of 0.1. See figure 20 for a visualization
of this fusion method. Secondly, we examine max pooling aggregation, in the same way
as the max multimodal fusion method on the frame encoding level as described in sec-
tion 4.3. For the remainder of this study, We will refer to this fusion process as late-video
fusion.

In this study, the marginal visual and audio modalities selected to be combined with late−
video fusion, are the best-performing single-modality workflow for each modality. This
scheme is simple but its practical application has some disadvantages. First, picking the
best performing workflow imposes an implied prior selection procedure. While we include
such a process as a part of our single-modality investigation, its execution in a generic
multimodal classification setting is at best impractical and cumbersome. Secondly, the
late, video-level combination of predictions of two different models requires two different
and separate training runs to produce the distinct visual and audio models, rather than
handling multimodal content in an end-to-end multimodal classification model.
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5. EXPERIMENTS

This chapter describes the experimental evaluation of our proposed method for the task
of multimodal video classification. It is structured as follows. First, we outline the datasets
we use in the experiments in section 5.1.1. Secondly, in section 5.2 we run a series of
preliminary experiments in order to determine model meta-parameters for the classifica-
tion architectures described in section 4.2, namely the FC and LSTM workflows. Wemove
on and apply the preliminary findings on the models of each workflow, and evaluate the
latter on the single-modality setting 5.3 and the multimodal one 5.4. Finally, we discuss
the obtained results in section 5.3.2.

5.1 Datasets and implementation

5.1.1 Datasets

We use a number of datasets to evaluate our methods, presented below.

1. The UCF-101 [118] human action recognition dataset consists of 13320 YouTube 1

videos spanning 101 categories. These categories can be grouped in 5 broad super-
sets, namely Human-Object Interaction, Body-Motion Only, Human-Human Interac-
tion, Playing Musical Instruments and Sports. Video quality varies, both in terms
of visual and audio content quality. We divide the videos into the train / test sets
using the respective partitions used in [23], resulting in 9537 and 3783 videos for
training and testing, respectively. Since our multimodal workflows utilize the visual
and audio components of videos, we discard a number of the 101 classes for which
no videos with audio content exist. After this filtering we end up with 51 classes for
which 6837 videos with audio content exist, corresponding to 4839 and 1944 train
/ test videos. We call this modified dataset UCF-51. We apply a further refinement
process from UCF-51, restricting the dataset to 10 classes with the least samples,
arriving at UCF-10 consisting of 1097 videos, split to 783 and 314 train / test videos.
We apply UCF-10 for a set of preliminary experiments to determine workflow model
parameters, described in 5.2.

2. The KTH dataset [109] is a human actions dataset, consisting of 6 classes. It con-
sists of 599 videos, split to 389 and 210 train / test videos. In KTH, videos are
simple, with no occlusion and with the actor centered in simple scenes. In addition,
the videos lack both color and audio, so we use this dataset only for the first stated
goal of this study (i.e. handling of the temporal content) and not for the audiovisual
multimodal workflows.

3. Audioset [32] consists of videos from YouTube, forming a hierarchical ontology of
audio-centered events of 632 classes. The dataset was manually downloaded via

1https://www.youtube.com
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the provided video URLs, with the following two filtering preprocessing steps. First,
since we deal with single-label classification, we restricted the video classes to leaf
classes in the ontology tree, restricting classes to non-abstract, specific events. Sec-
ondly, we keep classes that are annotated with a high quality, with respect to the
provided class-wise annotation quality index 2. Specifically, we kept a quality value
of 1.0, resulting in 43 retained classes. We downloaded the respective videos from
YouTube via the provided urls with the youtube-dl tool 3, where we discovered that
not all videos were available via the listed urls. Downloading resulted in 2602 train
and 2618 test videos, with notable imbalance among the class samples.

4. The Columbia Consumer Video (CCV) dataset [56] consists of user videos from
YouTube, which weremanually downloaded from provided video URLs. It consists of
20 diverse classes (e.g. human activities, scenes, objects) and provides pretrained
hand-crafted audiovisual features (SIFT, STIP, MFCC features). As with Audioset,
the videos are provided via a list of YouTube video identifiers, which we downloaded
with the youtube-dl tool and from which multiple videos were either missing or not
accessible. In the end, we managed tot obtain 2708 train and 2759 test videos.

The datasets and their description are summarized in table 2, along with information about
the minimum and maximum available samples per class, as a result of the download and
filtering steps above. In summary, we collect a variety of diverse datasets in terms of
video classification task (e.g. action, event, scene, object recognition), number of classes,
video quality (e.g. image / sound artifacts and noise, audio relevance to the ground truth
class), classification difficulty (e.g. per-class variability in, e.g., video angle, pose, actors,
environment and background), completeness (e.g. manually and partially downloaded
data versus complete list of provided data).

5.1.2 Implementation

We used python3 and tensorflow 1.4 4 [25] to construct a complete video classification
suite, including dataset preprocessing, serialization, classification, large-scale experiment
execution and monitoring tools. The code is available on GitHub 5. We used the “Caffe
reference” implementation 6 for the DCNN Alexnet model. We used tensorflow’s TFRecord
format for data serialization and the ffmpeg utility to extract visual frames and mp3 audio
files from a given video. Regarding spectrogram extraction, we used the pyAudioAnalysis
7 library. Experiments ran on an Ubuntu 16.04 system, with a Tesla K40 GPU.

2https://research.google.com/audioset/dataset/index.html
3https://rg3.github.io/youtube-dl/
4https://www.tensorflow.org
5https://github.com/npit/video-learning-tf
6http://caffe.berkeleyvision.org/model_zoo.html
7https://github.com/tyiannak/pyAudioAnalysis
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Table 2: The datasets used in the experimental evaluation.

dataset classes video instances min / max samples per class notestrain test train test

UCF-51 [118] 51 4893 1944 76 / 120 28 / 48 human activity classes
poor / irrelevant audio

UCF-10 [118] 10 783 314 76 / 83 28 / 34 human activity classes
poor / irrelevant audio

KTH [109] 6 389 210 64 / 65 35 / 35 human activity classes
no color or audio

Audioset [32] 43 2602 2618 8 / 226 19 / 170 audio-centric classes
imbalanced

CCV [56] 20 2708 2759 41 / 287 43 / 295 diverse classes

5.2 Preliminary experiments

Prior to our main experimental evaluation, we perform a set of preliminary experiments to
determine network parameters for each workflow. We use the visual data of the UCF-10
dataset for this task, training with cross-entropy loss and mini-batch stochastic gradient
descent [13]. We empirically tuned the training meta-parameters to the following values.
We use a mini-batch size of 5 videos (i.e. 160 frames) and a learning rate of 0.1, expo-
nentially decreasing 100 times on the course of training. We train with an early stopping
criterion where the model with the best test performance is retained within an overall train-
ing process up to 10 epochs. We evaluate classification with the accuracy measure. For
the UCF-10 dataset, the majority and chance accuracy baselines are 10.8% and 10.0%,
respectively.

5.2.1 FC workflow

First, we select meta-parameters for the FC workflow. To this end, we execute video
classification runs with early and late fusion. In addition, we vary the frame encoding layer
to one of the fully-connected layers of the encoder DCNN (i.e. the Alexnet network) to
either the fc6 or the fc7 layer. Given the identical layer types for frame encoding and
classifier in the FC workflow (i.e. a fully-connected layer), we omit the fc8 layer from
candidate frame encoding layers. We obtain the results displayed in table3. We observe
that we get a better performance with late fusion rather than to early fusion, regardless of
the encoding layer by which we produce frame vector embeddings. In addition, selecting
the fc7 layer for the encodings outperforms the fc6 choice by a large margin, in both early
and late fusion. In light of these results, we select the fc7 encoding layer and late frame
fusion for the FC workflow, for the main experiments in sections 5.3 and 5.4.
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Table 3: Results of the preliminary experiments for the FC workflow, in terms of
classification accuracy (higher is better), varying the frame encoding layer and the frame

fusion strategy. Bold values denote row-wise maxima.

fusion strategy late early
encoding layer fc6 fc7 fc6 fc7
accuracy 0.76115 0.79618 0.652866 0.79299

5.2.2 LSTM workflow

For the LSTM workflow, we need to avoid full grid search due to the large number of
parameters and possible values. Instead, we set a baseline configuration with sensible
values from related literature on training LSTM networks. To find optimal values, we vary
one parameter at a time, run a set of experiments for each possible values and select
the best performers for the final setting. The baseline configuration consists of avg LSTM
output fusion, the fc7 Alexnet layer for frame encoding and a 3-layer LSTM network with a
hidden state of 200 neurons. To prevent overfitting, we apply a dropout mechanism [120]
at the LSTM output set to a 0.5 probability threshold.

Given this baseline configuration, we vary subsets of parameters and examine perfor-
mance across different settings, keeping the rest at their baseline values. In table 4, we
investigate the effect of the number of LSTM layers and the fusion method (i.e. avg, last
or state LSTM fusion), with respect to classification accuracy.

Table 4: Fusion results of the preliminary experiments for the LSTM workflow, in terms of
classification accuracy (higher is better), varying the number of LSTM layers and the

output fusion strategy. Bold values indicate row-wise maxima.

number of layers 1 2 3
avg fusion

accuracy 0.09554 0.84076 0.76752
last fusion

accuracy 0.09554 0.8121 0.78025
state fusion

accuracy 0.09554 0.76115 0.7707

We can observe the following from the results:

• A single hidden layer completely fails to train the network, resulting in an accuracy
score close to to random chance (i.e. 1 in |C| = 10, where C the number of labels
for UCF-10). Given the improved scores of the 2-layer and 3-layer LSTMs for all
fusion methods, the most likely scenario is that a single layer LSTM is incapable of
capturing discriminating factors in the sequence in this experimental setting, thereby
severely underfitting the model.

• A 2-layer model outperforms a 3-layer setup for avg and last fusion approaches,
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possibly due to introduced overfit by the additional layer. This, however, is not the
case with state fusion, where the 3-layer model performs better.

• Comparison between the fusion methods is not clear, with avg fusion outperform-
ing last with a 2-layer LSTM, and vice versa for a 3-layer model. It is noteworthy
that averaging the LSTM outputs outperforms simply taking the last output of the
network, which indicates that temporal inter-dependencies of the preceding inputs
were not fully and / or correctly captured in the hidden state representation. This
thus leads to improved performance when explicitly taking into account past steps,
than trusting the network to encode them into the last output prediction vector. state
fusion outperforms avg for a 3-layer LSTM, while for a 2-layer model it is surpassed
by the other fusion methods.

• The best performance is obtained with avg fusion with a 2-layer network, with an
accuracy of 84%. This is thus the fusion method and number of network layers we
will select for the main experimental evaluations.

Moving on, in table 5 we investigate the effect of the LSTM hidden layer size, e.g. the num-
ber of memory neurons in the network. We vary the size to values in {200, 500, 1000, 2000},
observing optimal accuracy results for a hidden layer with 500 neurons. Doubling the size
to 1000 reduces performance by approximately 2%, while dropping it to 200 neurons in-
curs a deterioration of almost 7%. For a 2000-sized hidden layer the training process fails
to converge, degenerating to chance-level classification performance.

Table 5: Hidden layer size results of the preliminary experiments for the LSTM workflow, in
terms of classification accuracy (higher is better). Bold values indicate row-wise maxima.

hidden layer size 200 500 1000 2000
accuracy 0.75796 0.82166 0.80255 0.09554

Regarding frame encoding for the LSTM, we vary the selected DCNN layer to all available
fully-connected components, namely fc6, fc7 and fc8. In contrast to the FC workflow,
we choose to include the pretrained fc8 classification layer in the encoding candidates,
since the LSTM network applies a classification process qualitatively different than fully-
connected classification in the FC workflow. Results in table 6 illustrate that the fc6 layer
fares best with respect to classification accuracy by a significant margin. The fc7 performs
worst, while the vastly shorter (10-dimensional, since the class set for UCF-10 is 10) fc8
layer performs at about 10% reduced performance than fc6.

Table 6: Encoding layer results of the preliminary experiments for the LSTM workflow, in
terms of classification accuracy (higher is better). Bold values indicate row-wise maxima.

encoding layer fc6 fc7 fc8
accuracy 0.82484 0.69745 0.72611
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In light of the above findings, we set the LSTM network in the LSTM workflow to the
following configuration: fc6 as the DCNN encoding layer, avg LSTM output fusion and 2
hidden layers with 500 neurons.

5.2.3 Summary

With the completion of the preliminary experiments, we have arrived on a configuration
for both the FC and LSTM workflow. We present the parameter values in table 7.

Table 7: Tuned parameters for the FC (top) and the LSTM (bottom) workflow, arrived at by
the preliminary experiments set.

FC workflow
encoding layer fc7
frame fusion late

LSTM workflow
encoding layer fc6
lstm fusion avg
lstm layers 2

hidden state size 500

We use architectures with these parameters for all instances of the two deep neural work-
flows realized in the main experiments of the sections that follow, for all modalities and
multimodal configurations. It is thus important to emphasize that the limitations imposed
and assumptions undertaken during this preliminary phase heavily affects the succeeding
evaluations. Specifically, the search was incomplete for the LSTM workflow due to the in-
tractability of full grid search for its parameters. In addition, we used the visual modality of
the UCF-10 dataset to fit the classifiers, but the models will use the resulting configuration
to handle not only visual data, but audio and multimodal input as well. This may hinder
the performance of the LSTM workflow for audio data, as observed in the subsequent
experiments and in section 5.3.2, specifically.

5.3 Single-modality experiments

In this section we describe the experiments with which we evaluate our proposed work-
flows on a single-modality setting, in an attempt to address the first goal of this study, as
described in section 1.3. To recall, we seek to evaluate sequential and aggregation-based
feedforward neural models, on their ability to utilize the temporal component in a video and
the extent to which this contribution has an effect on video classification. In this study, the
goal is tackled by comparing the LSTM and FC workflows, which represent the two afore-
mentioned model categories, in the video classification task. We outline the experimental
setup and the obtained results in section 5.3, followed by a discussion of the findings in
section 5.3.1.
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5.3.1 Results

In order to evaluate each proposed workflow, we setup video classification experiments
for the datasets outlined in 5.1.1. We extract the visual and audio modality data and apply
the FC and LSTM workflow on each one. Each model is trained with the same parameters
for training, clip and frame extraction as in the preliminary experiments, which, under an
empirical evaluation, were found adequate for the experiments in this section as well. To
accommodate the larger datasets, we increase the mini-batch size to 20 videos, result-
ing in batches consisting of 640 frames with the frame extraction technique described in
section 4.2.1. For each dataset examined, we compute the chance and majority classi-
fier baselines. The first selects on of the available classes at random, while the second
selects the majority class in the dataset samples.

5.3.1.1 KTH

In figure 21 we illustrate classification results for the KTH dataset, evaluating only visual
video content, since the videos in the dataset do not contain audio. The green and pur-
ple bar stroke (edge) color denotes FC and LSTM workflow runs, respectively, for this
figure and subsequent ones. In addition, dashed and dotted grey horizontal lines denote
chance and majority classification performance baselines. We see that for KTH classifi-
cation, despite ignoring frame inter-dependencies in the video sequence, the FC workflow
outperforms the LSTM one by a relative 8.2% increase. This may due to the visual content
in KTH videos being simple and lacking variation, as stated in 5.1.1, rendering the content
simple enough for the fully-connected classifier to handle, and at the same time, for the
LSTM classifier to overfit. Finally, the worst-performing proposed method introduces a
four-fold increase on the highest baseline accuracy.

5.3.1.2 UCF-51

In figure 22, results for single-modality runs on the UCF-51 dataset are presented. Red
and blue bars show visual and audio content respectively, a convention retained for the
rest of this document. We can make a number of observations regarding the results:

• Visual content runs outperform audio content runs for both workflows, by more than
double accuracy scores.

• The FC workflow outperforms the LSTM workflow by 5.2% with respect to audio
content.

• The LSTM workflow outperforms the FC workflow with respect to visual content by
a factor of 12%.

• Theworst-performing proposedmethod achieves an approximately ten-fold increase
on the naive classification baselines.
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Figure 21: Single-modality results for the KTH dataset. Bars with a green edge color
denote FC workflow runs, where purple bar edge colors denote LSTM workflow runs.

5.3.1.3 Audioset

Audioset results for our single-modality experiments are illustrated in figure 23, where we
can make the following remarks:

• The FC workflow on audio data emerges as the best performer in the dataset, with
an accuracy score of 34.1%, a 27.7% better score than the second best performer,
i.e. the the LSTM applied on visual video content with 31%. We thus get no definitive
results for this dataset, with no modality and workflow being consistently better than
their competition.

• Regarding audio content, the FC workflow outperforms the LSTM workflow by a
significant relative factor of 23.1%.

• For the visual modality the LSTM workflow fares better than the FC workflow by
16.1%.

• The worst-performing method increases the baseline performance by a factor of
three.
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Figure 22: Single-modality results for the UCF-51 dataset. Red and blue bars represent
visual and audio modality runs, respectively.

63 N. Pittaras



Multimodal video classification with deep neural networks

Figure 23: Single-modality results for the Audioset dataset.
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Table 8: Single-modality collective results for all datasets. Bold values indicate
dataset-wise maxima, while underlines indicate modality-wise maxima.

dataset visual audio baseline
FC LSTM FC LSTM chance majority

KTH 0.814 0.7523 N/A N/A 0.1667 0.1667
UCF-51 0.5889 0.6604 0.2788 0.2654 0.0196 0.025
Audioset 0.267 0.309 0.340 0.276 0.023 0.064
CCV 0.653 0.657 0.367 0.342 0.05 0.106

Table 9: Hand-crafted single-modality results for the CCV dataset. Since the features
provided correspond to a single video, only the FC workflow is applicable for

classification.

visual audio baseline
FC-SIFT FC-STIP FC-MFCC chance majority
0.491 0.390 0.304 0.05 0.106

5.3.1.4 CCV

Finally, we present the results for the CCV dataset in figure 24. Here, we additionally in-
clude performance of pretrained audiovisual features which were providedwith the dataset.
These features are handcrafted visual descriptors (SIFT [81], STIP [69]) and the MFCC
descriptor [31] for audio. From the experimental results we can arrive at the following
observations:

• Regarding hand-crafted features, the established SIFT descriptor outperforms STIP
features by a factor of 25.5%. The proposed workflows outperform the handcrafted
features, by a significant margin (with respective min / max relative improvements
of 12.5% and 68%).

• The visual modality outperforms the audio modality, for all workflows and hand-
crafted features. For the proposed workflows, the relative performance difference is
77.7% and 92.1%, for the FC and LSTM workflows, respectively.

• The visual LSTM is the best performer, very closely followed by the visual FC with a
0.6% relative performance difference.

• Regarding audio, the FC workflow outperforms LSTM by a factor of about 7.6%.

• The worst performing proposed approaches introduces amore than double improve-
ment on baseline classification.
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Figure 24: Single-modality results for the CCV dataset.
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5.3.2 Discussion

Here we attempt to summarize the findings of the single-modality experiments and connect
them to the goals of this study. The experimental results of the proposed methods are
collectively illustrated in tables 8, with table 9 containing the results of the handcrafted
features for the CCV dataset. Additionally, we illustrate relative comparison charts per
modality and workflow (figure 26 and 25). Applied on the proposed methods of the thesis,
the experiments described in this section can provide evidence on the suitability of the
feedforward FC workflow versus the recurrent LSTM workflow that considers input inter-
dependencies. In addition, the aforementioned suitability is investigated in a multimodal
setting, i.e. for the visual and audio modalities, all with respect to the video classification
task. Thus, in light of the experimental results for each dataset, we can arrive at the
following conclusions:

1. The visual modality outperforms the audio modality everywhere but Audioset. This
can be explained by the ontology and content of the latter, where both the videos and
event classes are audio-related. In addition, the dataset was filtered to high-quality
samples, limiting the occurrence of videos with unrelated audio (e.g. music, narra-
tion, overlain audio effects, as explained in section 5.1.1 which further enhances the
significance of audio and reduces its potential to introduce harmful noise. It should
be noted, however, that the performance difference between modalities in these
cases is nowhere near similar. In figure 26, we depict the performance relationship
of the two modalities for each dataset in our experiments, with respect of average
and maximum achieved scores per dataset. For the cases where the visual modality
outperforms the audio one, it does so with a mean relative accuracy difference of
approximately 136% and 78%, for max modality performances in UCF-51 and CCV,
respectively. However, the audio modality outperforms the visual one by approx-
imately 10%, for Audioset. Similar workflow relationships can be observed when
considering average modality performance per dataset, rather than the maximum.
This hints at the visual modality being an important discriminatory information chan-
nel in video classification, as well as verifying the primacy of the visual modality in
human perception, categorization and semantic segmentation.

2. The pretrained weights of the frame encoding Alexnet DCNN manage to provide a
good initialization point not only for the visual modality, but for spectrogram image
encoding as well. The latter can be illustrated by performance in Audioset, where
the audio modality runs outperform the visual one. Had the representation been in-
adequate to capture spectrogram information, the audio modality runs would behave
consistently poorly in all datasets.

3. In figure 25 we present the relationship of the examined workflows, both per utilized
modality and dataset. We can see that the LSTMworkflow outperforms the FC work-
flow on visual content for all datasets we examined, except in KTH. As expressed in
the previous section, this may be attributable to the wealth of motion-related informa-
tion in the visual modality, which can be effectively captured by the LSTM model –
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the simplicity of KTH data causing the LSTM model to overfit on irrelevant video fea-
tures. However, the FC workflow in turn outperforms the LSTM workflow on audio
content, for all datasets examined. A possible explanation for this is that tempo-
ral input dependencies in audio spectrogram images are qualitatively different from
visual motion cues, and they cannot be efficiently captured by the LSTM classifier
with the current configuration. Another possible culprit could be the Alexnet vector
encoding being inadequate for capturing spectrogram temporal inter-dependencies.
Since the encoding approach yields good results with the FC workflow however, a
more probable avenue for the efficient application of the LSTM workflow could be a
modification of the training parameters or, as emphasized in the preliminary experi-
ments summary (see section 5.2.3) the classifier’s architecture itself, so as to bring
about a better fit of the model on the encoded spectrogram input sequences.

4. The handcrafted features examined are outperformed by the proposed FC and LSTM
workflows in both modalities. This verifies the superior expressive capabilities of
DNN-based deep distributed features. This observation concerns the CCV dataset,
which is the only dataset among the ones examined that provided handcrafted au-
diovisual features.

5.4 Multimodal experiments

In this section we tackle the second goal of this thesis (see 1.3), i.e. an examination of
various multimodal approaches for the video classification task. While in the previous
section we examined the proposed workflows for each modality separately, here we apply
the proposed audiovisual fusion methods described in section 4.3. As in the previous
section, we use data from the datasets described in section 5.1.1. We exclude the KTH
dataset due to its lack of have audio content. In section 5.4.1 we describe the experimental
setting and results per dataset, followed by a summary of the results in section 5.4.2.

5.4.1 Results

In the sections below we present the results of the multimodal experiments.

5.4.1.1 UCF-51

In figure 27, we present late-video fusion results for the UCF-51 dataset, combining the
best-performing single-modality runs for the same dataset, outlined in the previous sec-
tion. We adopt the following conventions regarding late-video fusion figures: We depict
single-modality run performance baselines in dotted red and blue lines, for the visual and
audio modalities respectively. The continuous light blue curve is the linear combination
result, with the horizontal axis showing the visual modality weight w (the audio modality
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Figure 25: Relative performance comparison of the FC workflow to the LSTM workflow for
the visual and audio modalities, per dataset. Values represent percentages, and higher
values indicate the FC workflow outperforming LSTM workflow by a larger margin.
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Figure 26: Relative performance comparison of the visual to the audio modality, per
dataset. The comparison is performed via average and maximum modality scores per
dataset, and values represent percentages. Higher values indicate the visual modality

outperforming the audio modality by a larger margin.
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always has a corresponding weight 1 − w and is omitted – see section 4.3.3 for details)
at a 0.1 increment step. The best combination performance is shown with a vertical gray
line to the visual weight value and the actual accuracy score overlaid on the performance
curve. Finally, the continuous light green line represents the maximum late-video fusion
result.

In addition, in figure 28 we present the multimodal fusion results, with the following illus-
tration conventions: The multimodal FC and LSTM workflow fusion methods performance
are shown in bars, following the bar and baseline classifier color conventions as in the
single-modality figures (i.e. purple and green bar stroke color for FC and LSTM work-
flows, dashed and dotted grey horizontal lines for the chance and majority classification
baselines, respectively). In addition, we note the performance of the best performing vi-
sual and audio single-modality runs for the dataset in red and blue horizontal dashed lines,
respectively. Finally, we mark the performance of the best late-video fusion performance
in a horizontal yellow dashed line.

We can make the following observations out of these two sets of results.

• In the multimodal fusion workflows, LSTM outperforms FC in all shared fusion meth-
ods (i.e. agv, ibias, max and concat).

• All LSTM fusion methods manage to outperform single-modality baselines, except
sbias fusion. On the other hand, FC fusion can not exceed the best single-modality
visual run (with a relative 3.78% lower accuracy). All multimodal fusion methods
outperform the best audio single-modality run.

• For FC fusion, the avg method performs best, followed by concat, ibias and max,
with each method having relative neighbouring performance differences of 2.75%,
1.95% and 2.71% respectively.

• Regarding LSTM fusion, the concat method appears to fare best, followed by avg,
max, ibias and sbias aggregation. Their relative performance difference is 0.84%,
1.43%, 3.72% and 3.22%, in the aforementioned order, respectively.

• For late-video fusion, we acquire a best linear combination performance of 0.72119
with visual weight 0.8, while maximum fusion performs significantly worse. The large
visual weight in the combination is not surprising, given the performance different of
the visual modality over the audio modality noted for UCF-51 in section 5.3.

• late-video fusion outperforms FC fusion, LSTM fusion and single-modality runs,
achieving relative increase of 13.5% and 1.12% over the next best approaches in
FC and LSTM fusion.

5.4.1.2 Audioset

For Audioset, late-video and multimodal-fusion results are illustrated in figures 29 and 30,
respectively. Reviewing the classification results, we can arrive on the following remarks.
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Figure 27: late-video multimodal fusion results for the UCF-51 dataset. The dotted red and
blue lines depict the marginal visual and audio single-modality runs respectively, while the

continuous light blue curve illustrates their linear combination. The vertical grey line
marks the maximum performance visual weight of the combination (0.8, in this case).
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Figure 28: Multimodal fusion results for the UCF-51 dataset. The shorthands “avg”,
“ibias”, “concat” and “sbias” refer to average, input-bias, concatenation and state-bias

fusion, respectively.
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• With respect to multimodal fusion workflows, the FC workflow outperforms LSTM in
all shared fusion methods.

• All FC fusion methods outperform single-modality baselines, while LSTM fusion ex-
ceeds best single-modality performance only with the input− bias fusion method.

• For FC fusion, the avg method performs best, followed by ibias, concat and at a very
low accuracy, max. Relative neighbouring performance differences of the methods
lie at 1.04%, 1.58% and 96.8% respectively.

• Regarding LSTM fusion, the best method is ibias, followed by the concat, sbias, avg
and max methods. Relative performance differences are 31.07%, 8.52%, 4.03% and
10.2%, in the aforementioned order, respectively.

• Regarding late-video fusion, an optimal combination performance of 0.46409 is ob-
tained with a visual weight 0.6. It is noteworthy that despite the audiomodality outper-
forming the visual modality for Audioset, the best combination results are obtained
with a larger weight for the visual component. Maximum late-video fusion performs
close above the single-modality scores, at an accuracy of 0.351.

• late-video fusion outperforms FC fusion, LSTM fusion and single-modality runs. The
performance increase over the best proposedmultimodal fusion runs are 19.58%and
26.34%, respectively.

5.4.1.3 CCV

Finally, we study results for the CCV dataset. Examining figures 31 and 32, we can arrive
at the following observations:

• With respect to multimodal fusion workflows, the FC workflow outperforms LSTM in
all shared fusion methods.

• All LSTM fusionmethods outperform the single-modality visual baseline, except from
sbias aggregation. No FC fusion method manages the previous, however. Both
workflows exceed the best audio single-modality run with all aggregation methods.

• LSTM fusion outperforms the FC approach for all shared fusion methods.

• For FC fusion, the avg method performs best, followed by ibias, concat and max.
The relative performance difference between the aggregation methods is 0.62% for
the first two pairs, and 0.1% for the last.

• Regarding LSTM fusion, the best methods are ibias and concat, followed by the avg,
max and sbias aggregation. The relative performance differences are 0.89%, 0.44%
and 4.85%.
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Figure 29: late-video multimodal fusion results for Audioset.

75 N. Pittaras



Multimodal video classification with deep neural networks

Figure 30: Multimodal fusion results for Audioset.
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Figure 31: late-video multimodal fusion results for the CCV dataset.

• late-video fusion produces a best result of 0.693 at a linear combination with a visual
weight of 0.6, while maximum fusion performs very close to the visual baseline, at
0.655 accuracy.

• late-video fusion outperforms FC fusion, LSTM fusion and single-modality runs,
achieving 7.77% and 2.06% relative accuracy increases over the best proposed mul-
timodal fusion runs, respectively.

5.4.2 Discussion

At this point we summarize the findings of the multimodal experiments, extending the
investigation of the single-modality experiments to modality aggregation approaches for
video classification and (multimodal classification in general). With respect to the the-
sis goals, we condense the experimental conclusions in order to address the two stated
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Figure 32: Multimodal fusion results for the CCV dataset.

Table 10: Multimodal fusion collective results for all datasets. Regarding the multimodal
workflow-based runs (i.e. FC or LSTM runs, excluding late-video fusion), bold values

indicate dataset-wise maxima, while underlined ones represent workflow-wise maximum
values, for the given dataset. For late-video runs, LC denotes linear combination

late-video fusion runs, with the optimal weight included in parentheses. In addition, max
stands for maximum late-video fusion and we highlight late-video maximum values with

italics.

dataset FC LSTM late-video
avg concat ibias max avg concat ibias max sbias LC (w) max

UCF-51 0.635 0.618 0.606 0.590 0.707 0.713 0.672 0.697 0.65 0.721 (0.8) 0.376
Audioset 0.388 0.378 0.384 0.192 0.248 0.28 0.367 0.225 0.258 0.464 (0.6) 0.351
CCV 0.643 0.635 0.639 0.634 0.673 0.679 0.679 0.67 0.639 0.693 (0.6) 0.655
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Table 11: Multimodal fusion method average ranks, with respect to each dataset, the
multimodal fusion workflow and overall. Bold values indicate row-wise minima (with

respect to the rank reference), while underlined values indicate group and column-wise
minima (with respect to the both fusion method and the reference type)

rank reference fusion methods
datasets avg concat ibias max sbias
UCF51 3.0 3.0 5.0 5.0 4.0
CCV 3.0 3.5 3.5 5.5 5.0

Audioset 3.0 3.0 2.0 7.5 5.0
total 3.0 3.167 3.5 6.0 4.667

workflows avg concat ibias max sbias
LSTM 3.0 1.333 2.333 4.0 4.667
FC 3.0 5.0 4.667 8.0 N/A
total 3.0 3.15 3.5 6.0 4.667

questions of the former: first, the comparison of feedforward (i.e. the FC workflow) and
recurrent (i.e. the LSTM workflow) deep neural models, with respect to their ability to
capture the temporal video components, and secondly, the investigation of the effect of
multimodal approaches, for the video classification task.

We make the following observations, given the collected results of the multimodal exper-
iments displayed in table 10, the extracted average rank information of the multimodal
fusion methods used, in table 11 and a chart of the relative performance of the multimodal
fusion methods per proposed workflow in figure 33.

• The FC fails to surpass single-modality baselines for all datasets except Audioset,
which is the only dataset where it outperforms the LSTM workflow. This can be
explained by the affinity of the FC workflow for the audio modality and the audio-
oriented data of Audioset, as explained in section 5.3.2.

• Regarding fusion methods for the FC workflow, the avg aggregation method is the
top performer on average, followed by ibias and concat. max fusion performs worst,
for all datasets.

• The LSTM workflow outperforms the FC workflow, for all datasets but Audioset, as
explained above.

• The LSTM workflow surpasses the single-modality best performing runs in every
dataset with some aggregation method. However, no aggregation method can be
chosen does so consistently.

• The LSTM workflow performs best, on average, when paired with the concat fusion
method, which is top performer in 2 out of 3 datasets examined. The rest of the
methods in order of performance are ibias, avg, max and finally the sbias method.
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• A comparison of fusion method performance across workflows in figure 33 indicates
that the LSTM workflow outperforms the FC workflow for every fusion method, in
every dataset except Audioset. This reinforces the findings of the single-modality
experiments, over the LSTM classifier’s ability to capture temporal context in the
input that contributes to video classification. This conclusion does not hold for Au-
dioset, a possible reason being the characteristics of the dataset, as explained in
5.3.2.

• In total, simple frame averaging via avg fusion emerges as the best method on av-
erage, outperforming concatenation via concat fusion. The large feature vector di-
mensionality of the latter possibly requires a more complex model and / or additional
training, the former of which is reflected by the improved performance on the much
more expressive LSTM model, when compared to the fc classification of the FC
workflow. The sequence bias introduction approach via ibias does not seem to pro-
vide a better fusion approach, although performing better on the sequence-oriented
LSTM workflow. max fusion does not produce good results, indicating that marginal
modality information should be combined, rather than discarded. Finally, the sbias
method is the worst performing fusion approach. This can probability be explained
by the low dimensionality of the state vector (i.e. set to a number of neurons the
number of desired classes), which, although it enabled the formation of model vec-
tor representation, it seemed to prevent the LSTM from retaining sequence-related
information effectively.

• Regarding late-video fusion, the linear combination approach consistently outper-
forms the FC and LSTM multimodal workflows. We can identify a preference for an
increased bias towards the visual modality (even for Audioset) with all optimal visual
weights exceeding 0.5. However, no unique optimal weight pair can be deduced
that works best across all datasets. A naive result can be obtained by averaging the
accuracy scores across datasets and collecting the weights of the best aggregate
accuracy. Doing this, we acquire a visual / audio weight pair of (0.7, 0.3).

5.5 Comparison to the state of the art

In this section we present a brief comparison to related work on video classification, for the
selected datasets. This comparison is not entirely valid and straightforward, since we use
reduced class sets for some of these datasets for the reasons outlined in section 5.1.1. In
addition, our experiments focus on answering the questions stated in 1.3, rather than aim-
ing to surpassing the state of the art for each of the examined datasets and corresponding
specific classification task. This results in an overall reduced performance per dataset.
Despite these observations, we include the comparative results below, for completeness.

In classification experiments on the KTH dataset, the authors in [70] achieve a perfor-
mance close to 90% using HoG features in a bagging configuration. More recent ap-
proaches adopt CNN features, such as the work in [98], where DCNN spatiotemporal
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Figure 33: Relative performance comparison of the FC workflow to the LSTM workflow for
each of the multimodal fusion methods, per dataset. Values represent percentages, and
higher values indicate the FC workflow outperforming LSTM workflow by a larger margin.
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features in a pyramidal hierarchy manage to push the state of the art closer to 95%. For
the UCF-101 dataset, a significant performance increase is achievable via the inclusion of
temporal features in the multimodal setting and by using deep models for feature gener-
ation. Specifically, accuracy scores above 87% can be approached, while multiple model
fusion techniques result in a performances around 92% [134, 55]. Very recent approaches
approach an accuracy of 95% [133].

For CCV, we already reported the superiority of the deep learned features on visual and
audio content, when compared to the provided visual and audio handcrafted features.
Recent optimal results using SIFT features are obtainable by Fisher vector aggregation,
which is the approach adopted [90], producing results with an accuracy of 71.7%. Given
deep approaches, the same trends of using temporal features (e.g. image flow and motion
trajectories) as well as deeper convolutional models than Alexnet are popular in recent
works. For example, a classification performance of 84% can be achieved with audio,
video and temporal features, using a regularized context-analysis scheme in [55].

Regarding Audioset, the deep audio features provided with the dataset (extracted with a
VGG model in the same way as in [42] and pretrained on YouTube-8M dataset [1]) reach
an accuracy of 46% when evaluated with the FC workflow and a mAP 0.31 as reported in
[42]. Other approaches use deep DCNNs with multi-label training, taking advantage of the
class ontology hierarchy of the dataset [68], reaching a mAP of 0.21 or using an attention
mechanism in [62, 139], reporting a mAP of 0.327 and 0.36, respectively.

Possible extensions to the work of this study are outlined in the following section (6.3)
and provide a number of ways and generic guidelines of approaching the aforementioned
performance improvements.
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6. CONCLUSIONS AND FUTURE WORK

This section concludes the thesis by offering a summary of the goals, the proposedmodels
and the conclusions that can be drawn from the experimental results. In section 6.1, we
provide the aforementioned summary, providing a brief description of the problem tackled
in the thesis, the stated goals and the proposed approaches to reach them. In section
6.2, we layout the main findings extracted from the experimental evaluation of the pro-
posed methods. In section 6.3 we present a number of ways to extend the investigation
performed in this work in various directions, in light of the technical details, method as-
sumptions and acquired results.

6.1 Summary

In this study, we examined themultimodal video classification task, entailing the automated
prediction of video labels relevant to the content present in the video. Given the inherent
multimodal nature of the latter, this prediction process was designed to take into account
different modalities, namely the visual, audio and temporal video data streams. We handle
the audio and visual data directly, by extracting spectrogram and video frame sequences
respectively, feeding them to a deep neural classifier. On the other hand, we consider the
temporal context indirectly, by examining classification models with varying sensitivity to
the temporal inter-dependencies of the input sequence items. Given these aspects of our
classification pipeline, we set the following research goals for this study, with respect to
video classification:

1. How do feedforward, aggregation-based models perform, compared to sequence-
based models that consider temporal inter-dependencies? How does this relation-
ship change for the visual and audio modalities?

2. What is the performance of the aforementioned models in the multimodal, audiovi-
sual setting? How can modality data be combined to improve video classification
score?

The first goal was examined by instantiating two video classification workflows represen-
tative of the described approaches: the feedforward FC and the sequence-aware LSTM
workflow. Each approach was applied on multiple, diverse datasets after a set of prelim-
inary experiments with which architecture meta-parameters were fine-tuned. Regarding
the second goal, we applied these workflows with three general strategies of modality
fusion. These combined the visual and audio data representation directly (“direct” data
fusion), introduced a audio bias on the visual information sequence (sequence-bias tech-
niques) or applied a late fusion on video-level prediction scores (late-video fusion). Both of
these goals can be condensed into a formulation of a mutlimodal video classification base-
line configuration, illustrating generic estimated of expected performance on each dataset,
with a deep multimodal classification pipeline applicable to any video classification task.
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6.2 Conclusions

Given the experimental evaluation results, we arrived at a number of conclusions per
stated goal. For the comparative performance of the feedforward FC workflow and the
recurrent LSTM, the latter approach is the more suitable choice for visual data in general,
albeit the model can overfit very simple datasets. On the other hand, the FC workflow
performs consistently better on audio content when represented by spectrogram images.
Furthermore, while the relative significance of the visual and audio modalities for video
classification depends on the underlying dataset and corresponding annotation, we found
the visual modality to be the significant information channel, significantly outperforming
the audio modality in virtually all datasets examined. The exception to this is the audio-
inclined Audioset, where the tables are turned but with a far lesser performance difference.
Finally, we verified the superiority of DNN-based learned representations with respect to
handcrafted features, for the CCV dataset, where handcrafted features were provided.

Furthermore, we examined audiovisual fusion approaches for multimodal video classifi-
cation, each examined with the aforementioned network architectures. Despite practical
disadvantages, the late-video linear combination fusion approach produced the best mul-
timodal fusion results, while, conversely, the max-pooled variant performs much worse,
close to single-modality baselines. With respect to the other approaches, we identified the
suitability of the avg and concat fusion methods for the FC and LSTM workflows respec-
tively and in general, amongst all fusion methods on average. Max-pooling modality fusion
performed poorly here as well as in the late-video case. In addition, we concluded that
the sequence-bias fusion methods examined – i.e. ibias and sbias – are not as effectively
applicable in audiovisual video classification, as in the image description task. In addition,
we verified the complementary relationship between the visual and audio modality, with
the majority of multimodal approaches outperforming the best single-modality runs.

For a detailed discussion on the conclusions above, see sections 5.3.2 and 5.4.2. In
general, the acquired results can be interpreted as a baseline performance, achievable
by the utilization of the audio and visual modalities with each the proposed classification
models presented here. Specialization to more complexmodels, more persistent, dataset-
wise fine-tuning and approaches pertaining to each specific video classification task (e.g.
human action recognition, event detection, e.t.c.) can improve these accuracy scores
further. Possible avenues towards this are presented in the next section.

6.3 Future work

There is a number of ways this work can be extended. In the future we would like to utilize
additional video modalities – such as directly utilizing temporal content, video text meta-
data or detected high-level objects in the video (e.g. faces or segmentation information)
– and investigate their combination in the proposed workflows. This entails an extension
of the dual-modality settings operated in this work (i.e. the sequence-bias approaches,
which assume a “main” and “auxiliary” modality), towards incorporating multiple informa-
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tion channels in the video. The “main” and “auxiliary” channels on audiovisual classifica-
tion could be swapped, with the audio content considered the primary modality. This could
be applied in datasets where the audio modality is the dominant one, such as Audioset.
Furthermore, the best-performing late-video LC fusion could be modified in order to ad-
dress its disadvantages. Namely, instead of training two separate models, the marginal
modality models could be combined into a two-stream model with the streams combined
via a learnable weight w. Regarding the clip extraction process, instead of random selec-
tion of frame sequences the clip extraction could be implemented in a sequential moving
window in the video. In this scenario, temporal inter-dependencies could be exploited
on the clip level – in addition to the frame level – with temporal fusion strategies being
examined on this level as well. Regarding the frame encoding layer, the performance of
model vector representations (like fc8 layer of the Alexnet DCNN) could be explored. As
observed in the preliminary experiments in this study, these features could provide a good
balance between classification performance and computational cost, since they produce
low-dimensional but rich vectors. Furthermore, additional sequence fusion schemes could
be investigated (e.g. RNN-based encoder fusion [44]), as well as alternative sequential
deep neural models such as GRU [17]. Finally, deeper neural models could be used to
encode image data, borrowing from the state of the art and recent advances in image
recognition (e.g. state of the art approaches such as in [124, 41]), as well as more so-
phisticated optimization approaches than mini-batch Stochastic Gradient Descent, such
as the Adam [60] or Adadelta [141] optimizers.
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ABBREVIATIONS - ACRONYMS

NN Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

DCNN Deep Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

FC Fully Connected

GRU Gated Recurrent Unit

SGD Stochastic Gradient Descent

87 N. Pittaras



Multimodal video classification with deep neural networks

N. Pittaras 88



Multimodal video classification with deep neural networks

TERMINOLOGY TRANSLATION

Neural Network Νευρωνικό δίκτυο

Convolution Συνέλιξη

Recurrence Αναδρομή

Multimodal Πολυτροπικός

Classification Κατηγοριοποίηση

Gradient Κλίση (συνάρτησης)

Aggregation Συγχώνευση / συνδυασμός

Sequence Σειρά / αλληλουχία
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