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ABSTRACT

The knowledge of the shape, structure, and interactions of macromolecules, defines bi-
ology at the molecular level in atomic detail. Although knowing the architecture is an im-
portant step before reaching the knowledge of the function, it still is a challenging task.
Current structure resolution techniques (X-ray Crystallography, cryo-EM, etc.), although
quite successful, they fail to generalize well across different types of structures, since
each one of these methods is designed for specific kinds of components. A way to
combine experimental and computational data regardless of their resolution, is through
Integrative Modeling (IM), which provides a comprehensive structural characterization of
biomolecules. It gets as input (a) high resolution structures of the individual components
composing the supramolecular complex, and (b) low-resolution envelopes of native as-
semblies, resulting in biologically relevant supramolecular assemblies consistent with
the available set of experimental data. However, IM has limitations when it comes to
heteromultimeric complexes, especially in the case of non-symmetric ones, where the
heterogeneity increases the computational complexity. Most importantly, the individual
components may adopt different conformations whether they are isolated or within their
assembly. Very few methods exist to tackle this problem, and even fewer actually suc-
ceed; thus, a different way for characterizing and locating these components within their
assembly, regardless of their different conformational states, is mandatory. In this work,
we exploit the different aspects provided by the field of computer vision, and treat our
biological problem as if it was a problem of object recognition. Specifically, we adopt the
concept of localizing objects in a scene, and make use of local descriptors and the main
steps of SIFT algorithm, for extracting distinctive features (local extrema) from images.
Translated to our biological problem, we detect informative features (keypoints) in the
atomic structures’ density maps, so as to localize them within their macromolecular as-
sembly. Our goal is to diminish the huge number of these extracted features, by specifi-
cally searching for corners, as these points remain stable regardless any rotation or
change. We adopt the principles of Harris corner detector and expand them by using
three-dimensional structure tensor analysis (STA). The significance lies in the fact that
the eigenvalues and the corresponding eigenvectors of the structure tensor, describe
the principal curvatures of the neighborhood around the local extrema. Based on the
statistics of the eigenvalues’ ratios, we apply multiple types of thresholding under differ-
ent configurations, and benchmark the STA set of parameters on 54 different structures.
For the evaluation of the parameters, we compare the extracted keypoints with a set
that is known — from the already existing software — to lead to correct assembly predic-
tion. Experimental results show the existence of parameter sets that remove almost all
of the unstable keypoints (false positives), others that retain almost all of the stable
ones (true positives), while others provide solutions that can balance the trade-off be-
tween these two. Finally, we verify that there are specific complexes (1Z5S, 2GC7)
without a trustworthy density profile, since no solutions can be obtained for every reso-
lution. The proposed method considerably speeds up the existing software by reducing
the computational complexity — a key issue for heteromultimers, and is a general and
accurate way for extracting localized features for correct assembly prediction, which can
serve as a baseline for studying the dynamics of these keypoints under conformational
changes.

SUBJECT AREA: Structural Biology, Biomolecular Modeling, Computer Vision

KEYWORDS: macromolecular structure, protein subunit localization, keypoint detection,
Harris corner detection, extrema extraction



NMEPIAHWH

H yvwon Tou oXAPaTog, TNG OOUNG, Kal TWV AAANAETTIOPACEWY TWV PHAKPOPOPIWV, opilEl
TN BloAoyia o€ popIako eTTiTTedo o€ AeTrTouéPEIa atOuwy. MNMapdAo TTou n yvwon Tng ap-
XITEKTOVIKNG €ival €va onuavTiko BrAua TTpIv TNV Katavonon Tng Asimroupyiag, eEakoAouBei
va gival pia dUokoAn diadikaoia. O1 Tpéxouoeg TEXVIKEG avaAuong doung (X-ray Crystal-
lography, cryo-EM, etc.), av kol apkeTd €TMITUXEIG, aduvaTouV VA YEVIKEUOOUV KOAG O€
OIAQOPETIKOUG TUTTOUG DOMWY, KaBWG KABE pia atmd auTég TIg ueBOdOUG cival oxedIaouE-
VN Y1 OUYKEKPIPNEVOUG TUTTOUG BOUIKWYV OTOIXEIWV. 'Evag TpOTTOC yia va OUVOUACOUE Ta
TTEIPAMOTIKA JE T UTTOAOYIOTIKG dedopéva, avegdpTnTa atro Tnv avAAucor Toug, gival pe-
ow Tou Integrative Modeling (IM), KaBwg TTapéxel évav TTEPIEKTIKO XAPOKTNEIOUO TNG
OOUNAG TWV PBlopopiwy. ATTaiTel wg €icodo (a) TIS uYPnANG avaAuong dOUES TwV ETTINEPOUG
MovAdwY TTOU CUVBETOUV TO UTTEPHOPIAKO CUUTTAEYMA, Kal (B) TOug XaunAng avaAuong
QAKEAOUG QUTWYV TWV OCUUTTAEYMATWY, Kol POG TTAPEXEl PBIOAOYIKA OCUOXETICOPEVEG
UTTEPUOPIAKEG CUCTOIXIEG, OUVETTEIC PE TO OIOBECINO OUVOAO TWV TTEIPANATIKWY OEDOUE-
vwv. QoTtooo, 10 IM gpgavicel kaTToleG aduvapieg 6oov apopd OTa ETEPOTTOAUPEPIKA
OUPTTAOKQ, €IBIKA OTNV TTEPITITWON TWV KN CUPUETPIKWY, OTTOU N ETEPOYEVEID AUEAVEI
TNV UTTOAOYIOTIKF] TTOAUTTAOKOTNTA. TO TTI0 ONUAavTIKO gival OTi o1 ETTINEPOUG HOVADES TWV
OUPTTAOKWY WPTTOPEI va UIOBETOUV BIAQOPETIKEG DIOUOPPWOEIS avaAoya PE TO av Eival
QTTOUOVWHEVEG A PEOO OTN CUCTOIXiO TOUG. ZUVETTWG, €ival avaykaia n eUpeon €vog
OIAQOPETIKOU TPOTTIOU YIA TOV XAPOKTNPIOUO KAl TOV EVTOTTIONO AUTWV TWV ETTINEPOUG
MOVAdWY EVTOG TWV CUCTOIXIWV TOUG. ZTNV £PYOCia AUTH, EKUETOAAEUOPAOTE TITUXEG TOU
Tediou TNG PNXAVIKAG 6paong, Kal XEIPICOpaoTe TO BIOAOYIKO pag TTPOBANPa cav va
ATav TTPOBANKA avayvwpiong AVTIKEIMEVWY. ZUYKEKPIMEVA UIOBETOUPE TNV €vvola TOu
EVTOTTIOMOU QVTIKEIUEVWYV O€ MIO OKnvh, Kal Xpnolgotroloupe local descriptors kai Ta
Baoikad Pripata Tou aAyopiBuou SIFT yia v €€aywyr dIOKPITWY XOPAKTNPIOTIKWYV
(ToTKG akpdTaTa) aTrd €IKOVES. MNa 1O BloAoyikd pag TTPORANUA, avixveEUOUNE Ta onuEia-
KA€101G4 (keypoints) Twv ATOPIKWY oUWV, WOTE VA TIG EVTOTTIOOUUE HECA OTN HAKPOMOPI-
OKI TOUG ouoToIxia. ZTOX0G MAG Eival va PEIWOOUUE TOV TEPACTIO APIOUS QUTWV TWV
keypoints, avalnTwvTtag TIC Ywvieg, KABwWG autd Ta onueia TTapapévouv otabepd
aveEdpTnTa atrd oTToINdATTOTE TTEPIOTPOPN A aAAayr]. YI00eTOUUE TIG apXEG TG MEBGDOU
aviXVeuong ywviwv Harris, kal TIG €TTEKTEIVOUPE XpnoIdoTTolwvTag pia 3-D avaAuon
OOMIKWV TavuoTwy. H otmoudaidtnTd TnG £YKEITAl OTO Yeyovog OTI Ol I0IOTIUEG KAl T
avTioToixa 1810810vUCHaTa TG OOUAG TOU TAVUCTH TTEPIYPAPOUV TN BACIKN KAUTTUAGTATO
NG OouNg. Baoi{duevol OTIC OTOTIOTIKEG TwWV Adywv Twv I10I0TINWY, €@apudlouue
TTOAQTTAOUG TUTTOUG KATW@AIWONG yIa OIAQOPETIKEG TTAPAUETPOUG, Kal OOKINAZoUUE
QUTEG TIG TTOPAPETPOUG 0€ 54 dIaQopPETIKEG OOMES. [Na TRV AgIoAOYNoN TWV TTAPAPETPWY,
OuyKpivoupe Ta uttohoyioBévta keypoints pe €va oUvoAo yia To OTToi0 yvwpifouue OTI
ETTITUYXAVEI OWOTA TTPOPRAEWn cuoToIXIWV. Ta TTEIPAPATIKA aTToTEAETPATA dEiXvouv ThV
UtTapén TTaPAUETPWY TTOU agaipouv oxeddv OAa Ta acTtabr keypoints (false positives),
TTOPANETPWY TTOU dlaTNPOUV oxedOV OAa Ta oTaBepd (true positives), kal TTapaAPETPWY
TToU divouv AUoeIg e€looppoTTwvTag To trade-off petagu Twv TTponyouuevwy duo. TEAOG,
ETTAANBeUoUpE OTI UTTAPXOUV CUUTTAOKQO HUE AVALIOTTIOTO TTPOPIA TTUKVOTNTOG, KOBWGS dE
BpiokovTal AUOEIG yia OAeG TIG avaAuoelg Toug. H péBodog TTou TTpoTeivouue gival évag
YEVIKOG, YPAYOPOS Kal aKPIBAG TPOTTOG I TNV €Eaywyr] TOTTIKWYVY XAPOKTNEIOTIKWY VIO
OWOTA TTPOBAEYN CUCTOIXIAG, KAl PTTOPEI va XPNOIYEUOEl wS BACIKA ypauun yia Tn
MEAETN TwV OUVAPIKWY auTwv Twv keypoints oTtav uttékeivtal o€ SIAPOPPWTIKES
aAAayEG.

OEMATIKH NMEPIOXH: AouikA BioAoyia, Biopopiakry MovTteAotroinon, Mnxaviki Opaon



AEZEIZ KAEIAIA: pakpouopliokry Oopr, €EVIOTIONOG TIPWTEIVIKWY  UTTOPOVAdWY,
avixveuon onueiwv-kKAEIBIWY, avixveuon ywviwv Harris, egaywyn
aKPOTATWV



CONTENTS

PREFAQCE....... oottt ss s s s s s s s s s s e e s s s s s s s s s e s e e e e e e e e s s nmnnnsssssssssssssnsennennnnnnnns 13
1. INTRODUCGTION.....coeeiciiiiiisier e s sssssssssssssssssssssssssss s e s s s s s s sssnnsssssssssssssssssssssesnnnnnnns 14
1.1  Importance of the StruCtUre ...........ooo i ——————— 14
1.2 Structure resolution teChnNiquUEes.........cccocimimiiii e ——— 14
1.3  Integrative Modeling .......cccccueiiimiiiiiiiierr 14
1.4 Asymmetric heteromultimeric assemblies............cccciiiimiiin e ——— 15
1.5 Cryo-Electron MIiCrOSCOPY ......citirriiiiiiiiiiiinsenrrnne s ss s s a s mnn s n e e e e e e s nas 16
T © 1V {1 o U 17
2. COMPUTER VISION......ccoiiiiiiieeeeeemnsnnssssss s s s s s s s s s ssssssnssssssssssssssssssseessessssnnnnnnnnnnssnns 19
21 The SIFT algorithm ... s s annnn e 19
2.2 Applying SIFT's principals to macromolecular assemblies — hetAP ..........ccccccieiiiiiicciiiinnennns 21
2.3  Motivation — Keypoint redUCtion ... s 22
3. CORNERS AS KEYPOINTS — HARRIS CORNER DETECTION ......cccevreeemmnnnnnnes 23
3.1 Harris Corner DeteCtion .........cccciemiimiiii i 23
3.2 Corner detection using 3D Structure tENSOFr ........ccccceiiiiiiiiiiiiemrr e ——————— 25

.21 3-D SHUCIUIE TENSOI ...ttt e e e e e e e e e e e e e e e e e e e annaes 25
4. IMPLEMENTATION .....ccooioiiieeeeeeeisssss s s e s s s s s s s s s s e s nns s s s s s s s s s e e e s e e e e e e nnnnnnnnnnssnnn 27
4.1 Extension to 3D Structure teNSOr ... ——————— 27
4.2 3D structure tensor analysis: the individual eigenvalues case............cccccviviiiieernnnnns 28
4.3 3D structure tensor analysis: the normalized distributions case.............ccocceeiviemrinnccaes 29
4.4 Threshold SeleCtion ... 31

4.4.1  CovarianCe Error EIPSES .....couii i 31

4.4.2 Combining the reSOIULIONS ....ccoiiiiiiii e e e 32
5. EXPERIMENTAL RESULTS .....oooiiiiiiieeeeeeenssiissssssss s s s s s sssssssnssssssssssssssssssnsssssnsnnnnns 36
L 0t = - 1 o 36
5.2 RESUILS ...t R E e nrrre 38

B5.2.1  POSE-PrOCESSING ...ttt ettt ettt e e e e e e ot e e e e e e e e r e e e e e e ae e 38

5.2.2  GENEIAI @NAIYSIS ...ttt e e e e e e 38

5.2.3 Parameter-specifiCc @nalySiS........cc.uuuiiiiiiiiiii e 40

5.2.4 Parameter comparison and SEIECHON ..........oooiiiiiiiiiiiii e 43

5.2.5  Structural SPECIICITY ... ..eeiiiiiiiiiii e 44

5.2.6 Computational COMPIEXILY ......oiiiiiiiiiiei e e e e e 44



6. CONCLUSIONS AND FUTURE WORK

ABBREVIATIONS — ACRONYMS. ...............

REFERENCES ...



LIST OF IMAGES

Figure 1: (a) A visual example of a heteromultimeric complex, (b) Integrative modeling
strategies. The figure was originally published in [7]. ........iiiiiiiiiiieeen 15

Figure 2: The challenge between (a) symmetric homomultimers - such a construct is
aerolysin pore toxin [30], (b) asymmetric heteromultimers - such a construct is the
crystal structure of Arp2/3 complex with bound ATP and calcium with pdb name: 1tyq 16

Figure 3: The overall single-particle cryo-EM workflow, from protein sample to 3D
model. The figure and its title were originally published in [16]..........ccccooviiiiiiiiiiiniinnnn, 17

Figure 4. The 6 steps of the SIFT algorithm: (a) Scale space, (b) Difference of
Gaussians, (c) Local Extrema extraction, (d) Low contrast features’ removal, (e)
Orientation assignment, (f) Descriptor generation ...........ccccccceoiiiiiiiiiiiiiccceeeee 20

Figure 5: Main steps of the hetAP software. (a) input of the software: atomic structures
of the individual components and cryo-EM map of their assembly, (b) density maps of
the individual components (Situs package), (c) LoG filtering, (d) local extrema
extraction, (e) descriptor generation around each local extremum, (d) matching of each
component’s descriptor with its corresponding descriptor from the assembly............... 22

Figure 6: Left (flat): the gradient is zero among every direction. Center (edge): the
gradient is constant only across the direction of the edge. Right (corner): the gradient
changes among every dir€CHON. ..........uuuuuiie e 23

Figure 7: Classification regions and the corresponding ellipses.........ccccccccvviiiieennnnnn. 25

Figure 8: Different classification regions of voxels. The basic figure (2D histogram plot)
was originally publiShed iN [27] .....uuuuueiieiieee e 26

Figure 9: Visualization of a 3x3x3 neighborhood on the structure. The central keypoint
x,y,Z (in light blue) and its 26 direct neighboring voxels x,,yp,Zp (in light green) scaled by
their density value. The red arrows show the direction of the gradient vectors, thus they
correspond to each one of the three eigenvalues of the structure tensor. This is a case
of an edge voxel as it has two directions of large gradient, and one direction of small

Lo =T 1= o | SO PP PUPPPRR 28
Figure 10: Distribution of the extracted keypoints' eigenvalues...........ccccccccciviinnnnnnnnn. 29
Figure 11: Density of the eigenvalue's ratios for ML / SL (1tyg_chainA, resolution=7, on
a 3x3x3 nNeighborhood, and G=2)........couiiiiiiiiiii e 30
Figure 12: Density of the eigenvalue's ratios for SM / SL (1tyq_chainA, Resolution=7, on
a 3x3x3 nNeighborhood, and O=2) ... 30
Figure 13: An example of error ellipses and the corresponding confidence intervals. The
image is taken from [28].........u it e e e 31

Figure 14: Different types of ellipses and threshold points in the direction of the KDE’s
covariance matrix’s eigenvectors, that we chose for our method ..............ccoevviinnnnnnnn. 32

Figure 15: Applying on each individual resolution the threshold points that were
obtained by combining all resolutions. The different threshold points are adjusted to the
specified confidence intervals. The ellipses that are shown come from the ratios of the
eigenvalues of the extracted keypoints after combining all resolutions. ........................ 35

Figure 16: The protein assemblies we use to benchmark our method: (a)1cs4, (b)1e6v,
(c)1gte, (d)1tyq, (e)1urz, (f)1z5s, (g)2b09, (h)2gc7, (i)7cat.........cooveiiiiiieeeeee 36



Figure 17: Minima, median and maxima values of every parameter combination, for the

LIS ) TSP PPPRRRR 39
Figure 18: Minima, median and maxima values of every parameter combination, for the
L= =T RSOPPPRRRR 39
Figure 19: Minima, median and maxima values of every parameter combination, for the
L= ROPPPRRRR 40
Figure 20: Minima, median and maxima values for the percentage of the discarded
keypoints, under fixed parameter combinations ..............ccoovviiiiiiiiiiicic e 41

Figure 21: Minima, median and maxima values for the percentage of the discarded false
positives, under fixed parameter combinations..............c.ccoooiiiiiiiiii e, 42

Figure 22: Minima, median and maxima values for the percentage of the discarded true
positives, under fixed parameter combinations..............cccooooiiiiiiiii e, 43

Figure 23: Secondary structures of the three aforementioned proteins: (a)2gc7 [B,F],
(o) 2T 1 PSP OP PP 44



LIST OF TABLES

Table 1: The parameters and their corresponding values



PREFACE

The current Master Thesis was pursued from November 2017 until September 2018 in
Lausanne, as a collaboration between the National and Kapodistrian university of Ath-
ens (NKUA) and Ecole Polytechnique Fédérale de Lausanne (EPFL). It is a mandatory
requirement for the graduation from the interdisciplinary postgraduate program Infor-

mation Technologies in Medicine and Biology, of the Department of Informatics and
Telecommunications of NKUA.



Structure tensor analysis on proteins: efficient feature extraction for heteromultimeric assembly prediction

1. INTRODUCTION

1.1 Importance of the structure

The biological universe consists of two types of cells: prokaryotic and eukaryotic. In the-
se cells, a whole different universe of macromolecules lies, defining with their structure
and function, the function of the cell itself. Therefore, the architecture of biological mac-
romolecules is critical for our understanding of their biological function. Knowledge of
the shape, structure and interactions of these macromolecules defines biology at the
molecular level, in atomic detail.

On a more practical note, protein 3D-structures are the basis for structure-based drug
design [1]. One example of such drug is Imatinib - or Gleevec [2]. Imatinib is a medica-
tion used to treat cancer, designed specifically to target two types of Leukemia. Its ad-
vantage above all previous drugs for cancer is that it can differentiate between cancer
cells and other tissues, without harming the latter. This was only succeeded by knowing
and determining its structure.

1.2 Structure resolution techniques

Although knowing the architecture is an important step before reaching the knowledge
of the function, it still is a challenging task. Current resolution techniques used to deter-
mine the structure, although quite successful, they fail to generalize well across different
types of structures, since each one of these methods is designed for specific kinds of
components. Resolution, in terms of protein structure determination, is a measure of the
quality of the data that has been collected on the crystal containing the protein [3]. In
other words, it is the distance that corresponds to the smallest observable feature in the
diffraction pattern resulted after the X-rays have penetrated the protein crystal. Thus,
the smallest this distance (computed in Angstrom) is, the higher the resolution will be.

X-ray Crystallography can determine structures of proteins that form diffractable crys-
tals, but encounters difficulties when it comes to larger or more flexible proteins. Nuclear
magnetic resonance (NMR) spectroscopy provides information on proteins in solution,
rather than being restricted by a crystal (as in X-ray crystallography), and thus, can ac-
tually study the atomic structures of more flexible proteins. As a result, these two meth-
ods are complementary, as the characteristics of one fill the gaps of the other [4], and
both result in high resolution structural models. On the other hand, cryo-electron mi-
croscopy (cryo-EM), cryo-electron tomography (cryoET) and small-angle X-ray scatter-
ing (SAXS) yield structures in lower resolution (>10 A), but they can handle larger pro-
teins. We will discuss cryo-EM in more detail in 1.5, as it is a method of significant inter-
est for this work.

We can easily conclude then, that we cannot rely on a single technique to get atomic
resolution. We would like to have a method that combines these techniques and all the
knowledge we have at our disposal, in order to efficiently extract structural information
from macromolecules.

1.3 Integrative Modeling

A way to combine experimental and computational data in order to obtain higher resolu-
tion information, is through Integrative Modeling (IM) [5], which provides a comprehen-
sive structural characterization of biomolecules, by building models. It requires as input
(a) high resolution structures of the individual components composing the supramolecu-
M. Rapti 14
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lar complex (i.e. structures resulted by X-ray Crystallography), (b) low-resolution enve-
lopes of native assemblies (i.e. cryo-EM maps), (c) other information, such as stoichi-
ometry from protein quantification, restraints from cross-linking, distance between the
amino acids. After collecting data, IM chooses how to represent and evaluate the mod-
els, finds models with high score and analyzes them. It repeats this procedure until to
converge to an ensemble of models that fit all the current information and is found to be
satisfactory, according to the criteria that have been set [6]. On the output, IM results in
biologically relevant supramolecular assemblies consistent with the available set of ex-
perimental data. The general features and procedures of IM are shown in Figure 1.

individual subunits
5 + X-ray crystallography
" *NMR

« cryo-EM

+ homology models Optimization
framework
o &N *genetic algorithms
5+ K 6 «DOMINO
Gl . power

volumetric maps Q
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+3/4/5C, H-C

Figure 1: (a) A visual example of a heteromultimeric complex, (b) Integrative modeling strategies.
The figure was originally published in [7].

1.4 Asymmetric heteromultimeric assemblies

Although Integrative Modeling seems to be the key to unlock the structural information
of biological macromolecules, it has limitations when it comes to heteromultimeric com-
plexes.

Heteromultimeric complexes can either be symmetric or non-symmetric, depending on
the arrangement of their component(s). While current softwares exhibit success in the
models’ prediction for symmetric heteromultimeric complexes ([8] — [11]), non-
symmetric cases are way more challenging. Symmetric assemblies are made of the
repetition of a single subunit by sampling a four-dimensional search space of the three
Eulerian angles q, B, y - defining the protein orientation - and the radius of the symmet-
ric assembly [12]. By contrast, the absence of any symmetry and geometry, leads to an
increase in terms of computational cost, as the search space increases as well. In other
words, one has to consider not only one, but all of the individual components of the
asymmetric construct, along with their dimensions and constraints. Moreover, the highly
dynamic nature of these structures coupled with their complexity, generates a significant
heterogeneity. Most importantly, the individual components may adopt different confor-

M. Rapti 15
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mations whether they are isolated or within their assembly. An example of a symmetric
and a non-symmetric construct is depicted in Figure 2.

Figure 2: The challenge between (a) symmetric homomultimers - such a construct is aerolysin
pore toxin [30], (b) asymmetric heteromultimers - such a construct is the crystal structure of
Arp2/3 complex with bound ATP and calcium with pdb name: 1tyq

1.5 Cryo-Electron Microscopy

Cryo-electron microscopy has established itself as a mainstream technique to capture
the structure of large macromolecular assemblies. The steps that are involved in deter-
mining molecular structures are: sample treatment, EM grid preparation, image acquisi-
tion, image processing [13], and they are also depicted in Figure 3. Cryo-EM results in
three-dimensional grids — or density maps - consisting of voxels, each one having a nu-
cleic density value. Current improvement at each one of these steps led cryo-EM to be
able to reach higher resolution cryo-EM maps [14], [15] and to be considered as a po-
tential important tool for drug discovery.

In more details, a cryo-EM experiment begins with a purified protein sample. Then the
sample solution is deposited on the sample grid, and vitrification follows, in which the
protein solution is cooled so rapidly that water molecules do not have time to crystallize;
in this way, the sample is being protected from radiation damage as well. The sample is
then screened for particle concentration — by particles we mean the 2D projections of
the sample molecules —, distribution and orientation, with the use of a transmission elec-
tron microscope. Next, a series of images is acquired and two-dimensional classes —
particle images representing the same view — are computationally extracted. Finally, the
data is processed by reconstruction software yielding detailed 3D models of biological
structures.

However, cryo-EM captures the native states of the molecules so that different confor-
mational states are captured and can be found in the same data set, too. This leads to
very heterogeneous data sets, and the corresponding need for 3D classification algo-
rithms, able to differentiate between different states of the same molecule and different
molecules.
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Figure 3: The overall single-particle cryo-EM workflow, from protein sample to 3D model. The fig-
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Going back to Integrative Modeling concept, cryo-EM now offers a guide to localize the
subunits within their assembly, individually rather than simultaneously, as it reduces the
search space by fitting the atomic models into the density/cryo-EM maps. The fact
though that we are dealing with highly dynamic structures, is still considered a problem
that should be faced. A different way for characterizing and locating these components
within their assembly, regardless of their different conformational states and their dy-
namics, is mandatory.

1.6 Outline

Considering the importance of the biological macromolecules’ structure, as well as the
limitations that Integrative Modeling faces when it comes to extract structural infor-
mation from asymmetric heteromultimeric complexes, we use the method being pro-
posed by the current software of the lab [17], for characterizing and localizing the as-
semblies’ individual components. Heteromultimeric Assembly Prediction (hetAP) soft-
ware exploits the field of computer vision and treats the aforementioned biological prob-
lem as if it was a problem of object recognition. Particularly, it uses the concept of local-
izing objects in a scene; if someone had to localize a specific car in a scene of a traffic
road, then the analogy would be to localize an atomic structure within its assembly. In
other words, it adopts the existing theory for 2D images, in the 3D space of protein
structures. It is based on local descriptors and the main steps of SIFT algorithm, and
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extracts density keypoints (local extrema) from the density maps of both the complex
and its components. Roughly quoted, it does not consider the bigger conformational is-
sue, but it rather focuses on local information. We will refer with more details to hetAP
software in 2.2.

In this work, we will diminish the huge number of these extracted features, by specifical-
ly searching for corners, as these points should remain stable regardless of any rotation
or change. To do so, we will adopt the principles of Harris corner detector and expand
them by using three-dimensional structure tensor analysis, in order to define the princi-
pal curvatures of the neighborhood around the local extrema. The proposed method is a
general, fast, and accurate way for extracting localized features for correct assembly
prediction, which can serve as a baseline for studying the dynamics of these keypoints
under conformational changes.

The rest of the dissertation is organized as follows; in Chapter 2, the principles of Local
Descriptors and SIFT’s algorithm, as applied in the field of Computer Vision, are pre-
sented. The Harris corner detection algorithm and its extension to 3D structure tensor
analysis is provided in Chapter 3. In Chapter 4 we present the implementation of the
proposed method for extracting localized features for heteromultimeric assembly predic-
tion. Finally, Chapter 5 shows and analyzes our implementation’s results, while the con-
clusions and future work are discussed in Chapter 6.
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2. COMPUTER VISION

2.1 The SIFT algorithm

In the blink of an eye, SIFT [18] introduces two major stages of computation
1.Feature Extraction — Accurate Keypoint Detection and Localization
2.Descriptor Generation

We focus on the first step, which is about detecting the keypoints on the image (i.e. lo-
calized, distinctive points of interest) and evaluating their stability (i.e. their robustness
against rotation, translation, or other image modifications). In short, the algorithm de-
tects the local extrema (local maxima, local minima) of an image, and discards the "un-
stable" keypoints that usually lie on the edges and low contrast regions.

In more details, the algorithm executes the following 6 steps, with steps 1-5 belonging to
the feature extraction stage, while the last step is the generation of the descriptor:

1.First, it creates a scale space with the corresponding octaves. Each octave starts
with an image of specific scale; i.e. the first octave contains an image of double
the size of the original, the second contains an image of the same size as the orig-
inal, the third half of the original, the fourth quarter of the original etc. Each image
in the octave is then progressively blurred by convolving it with a Gaussian kernel
(Gaussian blurring); it blurs the first image, then blurs the result of the first blurring,
then the result of the second blurring etc.

2.Then, from the scale space it generates another set of images using the Laplacian
of Gaussians (LoG). However, it requires the second order derivatives, which is
computationally expensive, and thus it approximates the LoG through the Differ-
ence of Gaussians (DoG); that is, the difference between two consecutive scales
(blurring levels). Apart from the computational complexity, another advantage of
the DoG images is that their detected extrema are scale invariant.

3.The next step is to coarsely locate the maxima and minima. This is done iteratively
through each pixel, by checking its 3x3 neighbors. The check is done within the
current image, and also the one above and below it (different scales/blurring lev-
els). This way, a total 26 checks are made, and a point is marked as an approxi-
mated keypoint if it's the maximum or the minimum of all 26 neighbors. To obtain
the true local maxima/minima, one has to obtain the subpixel values; they are
generated by finding the extrema of the Taylor expansion of the image around the
approximated keypoint. These subpixel values increase both the chances of
matching and the stability of the algorithm.

4.The procedure described in step 3 results in a big number of obtained keypoints.
However, some of them might lie along an edge, might don't have enough con-
trast. In both cases, they are not "useful" as features. To get rid of them, the algo-
rithm follows an approach that is similar to the one used in the Harris detector [19]
for removing edge features; remove low contrast features by simply checking their
intensities. It computes a 2x2 Hessian matrix, H, at the location and scale of the
keypoint, and uses its two eigenvalues’ ratio — actually the ratio of the trace of H to
the determinant of H — rather than their individual values. If a is the larger eigen-
value and B is the smaller eigenvalue of H, then the aforementioned ratio will be

a=rp
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And then,

Tr(H)? _ (@+B)? _ (B+p)? _ (r+1)?
Det(H) — af rp%2 r

A more detailed description of the Harris corner detector is analyzed in Chapter 3.

5.After step 4, the algorithm has detected stable, scale invariant keypoints. The next
thing is to assign an orientation to each keypoint, so that it becomes also rotation
invariant. The idea is to collect gradient directions and magnitudes around each
keypoint, to figure out the most prominent orientation(s) in that region, and finally
to assign the orientation(s) to the keypoint. For more details about this step, we re-
fer the reader to read the official description of the algorithm in [18].

6.Finally, the algorithm generates a feature vector for every keypoint, which de-
scribes the keypoint in a unique way. For more details, we encourage the reader
again to read the official description of the algorithm in [18].

An overview of the aforementioned 6 steps of SIFT algorithm is depicted in Figure 4
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Figure 4: The 6 steps of the SIFT algorithm: (a) Scale space, (b) Difference of Gaussians, (c) Local
Extrema extraction, (d) Low contrast features’ removal, (e) Orientation assignment, (f) Descriptor
generation
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2.2 Applying SIFT's principals to macromolecular assemblies — hetAP

As we have already mentioned, SIFT algorithm is applied in the case of 2D images, in
order to extract distinctive features that can be identified even under different views of
an object or scene. Thus, it is designed for two-dimensional problems. HetAP expands
these principals in 3D space, so as to deal with the three-dimensional data. Recall that
the goal of the software is to localize the individual components (subunits) within their
native heteromultimeric assembly (complex), in order to surpass the challenges that IM
faces, when it comes to assemble all these highly dynamic subunits into their complex.

In more details, the software operates as follows:

1.1t gets as input (a) the cryo-EM maps (point clouds) of the assemblies, and (b) the
atomic structures of their components, resulted from experiments like X-ray crys-
tallography, NMR etc.

2.Then, in order to be able to compare the complex and its subunits, it uses the
pdb2vol tool from Situs package [20], which projects an atomic structure on a 3D
grid (point cloud). In this way, now the density maps of the subunits can easily be
compared with the cryo-EM maps of their complex. This tool also allows one to
lower the resolution of an atomic structure to a user-specified value. HetAP speci-
fies the values of resolution to be: 7, 10, 15, 20

3.As a next step, it applies (if needed — only for resolution 10, 15, 20) a Laplacian of
Gaussian filtering to the complex and its subunits, in order to enhance the sharp-
ness and the contrast of the edges.

4.Then, for both the complex and its subunits, the software extracts the local extre-
ma on a 3x3x3 box around each candidate voxel, and thus finds their keypoints.

5.0nce the keypoints are obtained, it assigns them the proper orientation, following
the paradigm of SIFT algorithm, but in a very different way as now we do not have
two but three dimensions and this make the problem more complex, and gener-
ates the local descriptors of the complex and its subunits.

6.Finally, for the localization of a subunit within its complex, hetAP takes every sub-
unit iteratively and tries to "match" its descriptors with the descriptors of the com-
plex in a greedy way (compare every local descriptor of each subunit, with every
local descriptor of the complex). Through this matching procedure, the software is
able to predict the assembly.

The basic steps of hetAP software are shown in Figure 5. HetAP is a complete soft-
ware, which means that after implementing all these steps, it has solutions — keypoints
that actually lead to correct assembly prediction. We will use this knowledge in order to
make sure that our method, that will be introduced properly in Chapter 4, diminishes the
number of keypoints being extracted and, in the same time, keep most of these solu-
tions found by hetAP.
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Figure 5: Main steps of the hetAP software. (a) input of the software: atomic structures of the indi-
vidual components and cryo-EM map of their assembly, (b) density maps of the individual com-
ponents (Situs package), (c) LoG filtering, (d) local extrema extraction, (e) descriptor generation

around each local extremum, (d) matching of each component’s descriptor with its corresponding

descriptor from the assembly.

2.3 Motivation — Keypoint reduction

Although hetAP software is a very good tool for predicting the heteromultimeric assem-
bly using localized information, it still has some limitations. These limitations relate to
the fact that hetAP does not apply any filtering to the produced keypoints, which as a
result lead to a large amount of extracted keypoints, many of which can give dubious,
and even wrong, solutions. By consequence, the computational cost for the descriptor
matching will be very high, as it is trying to match each keypoint descriptor of the subu-
nit to each keypoint descriptor of the assembly.

Motivated by this main difficulty of hetAP, we focus on the 4" step of SIFT algorithm and
aim to integrate into the software a filtering step, in order to reduce the amount of ex-
tracted keypoints, by removing the false positives and resulting in this way to significant
speedup efficiency.
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3. CORNERS AS KEYPOINTS - HARRIS CORNER DETECTION

As already mentioned in the previous chapter, our goal is to detect the most stable key-
points, and discard as many false positives — keypoints that in practice are not of inter-
est — as possible. Recalling that a point-of-interest in two dimensions is a point that has
a well-defined position, is ideally fast to compute, and can be robustly detected under
conditions of different lighting, translation, rotation and other transforms. Several inter-
est point detectors there exist, commonly using maxima and minima points, such as
gradient peaks or corners. Most of them also apply a Gaussian filter first, in order to re-
duce the noise and detail of an image.

Moravec [21] is an early corner detection algorithm that tests each pixel of an image to
see if a corner is present, by correlating the patch/window centered on the pixel with the
surrounding — overlapping — patches of the neighboring pixels. The problems that Mora-
vec algorithm faces are the noisy response because of a binary window function that it
is using, and the fact that it considers only the smallest Sum of Squared Differences
(SSD), where the SSD function calculates the correlation difference between two over-
lapping patches. The Harris and Stephens corner detector [19] provides significant im-
provements over the aforementioned method, that we will discuss in detail in 3.1. Other
worth mentioning algorithms are Shi-Tomasi [22] corner detector, an optimization on the
Harris method using only the minimum eigenvalues for discrimination, the SUSAN
method [23], [24] that is dependent on segmenting image features based on local areas
of similar brightness. Moreover, the Trajkovic and Hedley corner detector [25] and FAST
detector [26], both based on SUSAN; for more details, we encourage the reader to read
the corresponding bibliography.

We focus and base our method on the Harris & Stephens detector, since it can be ex-
tended to the three-dimensional space, and its principles are also applied in the 4™ step
of SIFT algorithm.

3.1 Harris Corner Detection

In general, whenever an object exists on an image, then the image should contain some
edges, some corners, and some other regions that are mostly flat (i.e. background, sur-
face of object etc.). In order to detect which points of the image correspond to one of
these three regions, Harris detector algorithm captures the variations of the image. It
considers a neighborhood P around a point, obtained by shifting a subregion in which
the intensity of the gradient is studied to determine if the region around the reference
point contains a corner. Based on that, corners can be defined as the regions within the
image in which there are large variations in the intensity of the gradient in all directions,
as depicted in Figure 6.

|

Figure 6: Left (flat): the gradient is zero among every direction. Center (edge): the gradient is con-
stant only across the direction of the edge. Right (corner): the gradient changes among every di-
rection.
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To better understand the algorithm, let / be a 2D grayscale image. Consider taking an
image patch over the area of a point (u, v) and shifting it by (x, y). Then, the weighted
Sum of Squared Differences (SSD) between these two patches, denoted by S(x, y), is
given by

S(xy) = Z z w(w, [ +x, v+ ) — 1w, v)]2

Using a Taylor expansion, then
Iu+x,v+y)=Iv)+ Lwv)x+1,Wwv)y
where I,, I, are the partial derivatives of the image /.

This produces the approximation
2
S(x,y) = z z w (u, )L, (u, v)x + 1, (u,v)y]
u v

which can be written in a matrix form
S(x,y) = (x Y)A (;)

where A is the structure tensor

L.(u,v)? L (u,v),(u,
A:ZZW(%V)[& x(w,v) (w,v)1,(u, v)

(u, V)1, (w,v) L,(u, v)*

and w(u, v) denotes the type of window that slides over the image. If a gaussian window
is used, then the response will be isotropic.

The next step of the algorithm is to define a score function for determining if a point be-
longs to a corner or not. The eigenvalues of the structure tensor can help determine the
suitability of the window. This is done through the corner response calculation

R = det(4) — k(trace(A))” = 1,4, — k(A + 1,)?
where k € [0.04,0.06].

All windows that have a score R greater than a certain value are corners. Observe that
R depends only on the eigenvalues of A. Thus, the final step of the algorithm is to clas-
sify the points of the window using the obtained eigenvalues.

Since A is symmetric, we can visualize it as an ellipse with axis lengths determined by
the eigenvalues, and orientation determined by R. In short, a big circle should corre-
spond to a corner point, a smaller circle to a point of a flat region, and an ellipse to an
edge point. The classification regions with respect to the eigenvalues and the shape of
the ellipse are depicted in Figure 7.
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Figure 7: Classification regions and the corresponding ellipses

3.2 Corner detection using 3D structure tensor

However, in order to apply the 2D Harris corner detector to our problem, it has to be ex-
tended to the three-dimensional space. The authors in [27] extend the structure tensor
to the 3D space, and do the corresponding analysis for extracting edge voxels from
three-dimensional volumetric maps. Their motivation is the fact that they want a descrip-
tive mechanism, able to represent the surroundings of mobile robots, as captured by
their sensors. To do so, they apply a structure tensor operation to the voxel map, fol-
lowed by a classification of the obtained eigenvalues, in order to remove voxels that are
part of flat regions. This classification is done by thresholding both the magnitudes of
the eigenvalues, as well as the ratios of the middle-to-largest and smallest-to-largest
eigenvalues.

3.2.1 3-D Structure Tensor

Following the same notion as before, but with the difference that the pixels become
voxels, the structure tensor becomes:

I; L, Ll,

A= Z w(x,y,z) |1yl 132, L,

(x.y.,2) LL 11, I
Furthermore, in [27] they exploit the fact that the eigenvalues and their corresponding
eigenvectors that result from this analysis, summarizes the distribution of the gradient

within a neighborhood of a voxel p, defined by a Gaussian window w. In other words,
the eigenvalues and the eigenvectors describe the curvature of a structure.

Thus, the classification of the voxels is now done based on the relative magnitude of the
structure tensor eigenvalues as follows:

* A planar voxel will have one direction with a large gradient (normal to the plane),
and two directions with small gradients. Thus, it will have one large and two small
eigenvalues.

* Aline or edge will be characterized by two directions of large gradient, and one di-
rection of small gradient. Thus, it will have two large and one small eigenvalue.
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* An isolated region in space (corner) will have large gradients in every direction.
Thus, it will have three large eigenvalues.

» Similarly, for homogeneous regions, the gradient will be small in every direction.
Thus, they will have three small eigenvalues.

In order to simplify the aforementioned classification rules, instead of focusing on the
values of the eigenvalues independently, they choose to study the distribution of the

middle and smallest eigenvalues, normalized by the largest. Following this approach,

the rule for classifying the voxels into "edges", "planar", and "corners", can be easily ob-

tained on the space generated by the distribution of the ratios, as shown in Figure 8.
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Figure 8: Different classification regions of voxels. The basic figure (2D histogram plot) was origi-
nally published in [27].

Motivated by the authors' approach, we adopt the 3D structure tensor analysis, and in-
tegrate it in hetAP, in order to detect the isolated regions of the 3D space (corners).
Once the analysis is adopted, the next step that needs to be considered is the proper
values of the corresponding thresholds for deciding if a given keypoint can be classified

as a corner.
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4. IMPLEMENTATION

In this Chapter we will analyze the proposed method, implemented in the hetAP soft-
ware. Recall that our goal is to define a unique, global set of parameters for detecting
the most stable keypoints and discard as much false positives as possible, which will
increase the speedup of hetAP. First, we will show how we extend the structure tensor
to the 3D domain, based on the approach described in [27]. Then, we will analyze the
results obtained from the 3D structure tensor analysis, which, finally, will lead us to
search for stable keypoints based on the statistics of the eigenvalues' ratios distribution.

4.1 Extension to 3D structure tensor

3D structure tensor, same as in the 2D case, is derived from the weighted sum of
squared differences between shifted volume patches. In order to extend the tensor
structure on the 3D space, we focus on the 4™ step of hetAP, where the local extrema of
the voxels are extracted. For a given complex and its subunits, we operate as follows:

1. We iterate on the data of the complex and the subunits.

2. For every voxel, we define a 3x3x3 neighborhood around it, and hetAP extracts
the local maxima and the local minima of every neighborhood. The extracted ex-
trema are considered as the keypoints of the given structure (complex, subunit).

3. Up to this point, we have the keypoints for a given protein structure. Then, for
every one of these keypoints (x,y,z) we define again a NxNxN neighborhood
around it. Each one of these neighborhoods that corresponds to different key-
points, is a subvolume of the original volume of the structure.

4. For every voxel Xp,Yp, 2, in each subvolume (including the keypoint x,y,z itself),
we compute the gradient structure and generate a matrix of the three partial de-
rivatives of the function / of each voxel

L LI, Ll
LI 7 Ll
LI LI, I}

5. Then, again on every voxel x,,Yp,Zp in the subvolume, we apply a 3D Gaussian

weighting function

w(x,y,z) = exp [—(

(x — xp)z + (v - y’p)z + (z— Z’p)2>l

207

6. Finally, the 3D structure tensor A is obtained by summing over the product of the
gradient matrices with the Gaussian weighting functions

17 I, L,

A= Z w(x,y,z) |1yl 132, L,
(x.y.,2) LL 11, I

Now that we have successfully generated the 3D structure tensor, we can proceed to
the structure tensor analysis.
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In Figure 9, we visualize how it actually looks like each aforementioned subvolume on
the structure, consisting of the central voxel, the neighboring voxels and the direction of
the gradient vectors.

Figure 9: Visualization of a 3x3x3 neighborhood on the structure. The central keypoint x,y,z (in
light blue) and its 26 direct neighboring voxels x,,¥p,2, (in light green) scaled by their density val-
ue. The red arrows show the direction of the gradient vectors, thus they correspond to each one
of the three eigenvalues of the structure tensor. This is a case of an edge voxel as it has two di-

rections of large gradient, and one direction of small gradient

4.2 3D structure tensor analysis: the individual eigenvalues case

Proceeding to the structure tensor analysis, what the study does first is to sort the three
eigenvalues of each structure tensor, that corresponds to each keypoint, in order to
characterize them as small, middle, and large. Then, we take the sorted eigenvalues
and plot their distribution depending on the class they belong to. Recall that for a voxel
to lie on an isolated region in space (corner), all three eigenvalues should be large.

The distribution of each eigenvalue class is depicted in Figure 10. The x-axis corre-
sponds to the eigenvalues, while the y-axis to the value of the distribution, as computed
by fitting a Normal distribution to the data using a Kernel Density Estimation — KDE.
With black lines we denote the obtained eigenvalues, while with red we superimpose
the eigenvalues of the keypoints that are known to lead to correct assembly prediction.

Since our goal is to select those keypoints that have large eigenvalues in all three direc-
tions, we are looking for a unique, global threshold that will keep only those keypoints
that have eigenvalues above that threshold. However, we observe that from the distribu-
tions of Figure 10, it is not quite obvious where this threshold point should be placed.
For this reason, we choose to study the distribution of the relative ratios of the eigenval-
ues, hoping that this will be more informative.
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Figure 10: Distribution of the extracted keypoints' eigenvalues

4.3 3D structure tensor analysis: the normalized distributions case

Thus, instead of studying the distribution of each eigenvalue class individually, we now
focus on the relative ratios of the eigenvalues. The idea is to count on the interactions
between the three eigenvalues.

For our analysis, we define the following two types of ratios:

1.Middle-to-Large / Small-to-Large; that is the middle eigenvalue normalized by
the large one, related to the small eigenvalue normalized by the large one. In
other words, we look for cases were both middle and small eigenvalues are close
to large ones, translated to three relatively large eigenvalues. From now on, we
refer to this ratio as ML / SL.

2.Small-to-Middle / Small-to-Large; that is the small eigenvalue normalized by the
middle one, related to the small eigenvalue normalized by the large on. In other
words, we look for cases where the small eigenvalues are close to the middle
ones, and at the same time the small to be close to the large ones. Thus, also
the middle to be relatively close to large ones, resulting to three relatively high
eigenvalues. From now on, we refer to this ratio as SM / SL.

We compute the aforementioned ratios of the eigenvalues, and again we apply a KDE
on our data, in order to estimate their density. An example of the resulting plots for the
two ratio types is depicted in Figure 11 and Figure 12 respectively. The green area cor-
responds to the KDE over the corresponding ratios. It is reasonable to say that, for both
cases, we expect that the desired keypoints should present values that tend to be to-
wards the upper-right corner of the plots, since both of the ratios should be close to 1.
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Figure 11: Density of the eigenvalue's ratios for ML / SL (1tyq_chainA, resolution=7, on a 3x3x3
neighborhood, and 0=2)
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Figure 12: Density of the eigenvalue's ratios for SM / SL (1tyq_chainA, Resolution=7, on a 3x3x3
neighborhood, and 0=2)

Compared to the individual distribution case described in the previous section, we have
a clearer image on how the three eigenvalues are related. Unfortunately, the problem of
identifying the proper threshold point for keeping the desired keypoints still remains,
since the position of the solutions (desired keypoints — known to lead to solution) is
again mixed with many false positives.

M. Rapti 30



Structure tensor analysis on proteins: efficient feature extraction for heteromultimeric assembly prediction

4.4 Threshold selection

Thus, the next and most important step, is to choose a global threshold point based on
the ratios of the eigenvalues we described before. It is not obvious how to select this
point, since it highly depends on the protein's structure, the ratio type, and of course the
parameters we use. For this reason, we should base the choice of the threshold on the
statistics of the eigenvalue ratios. Since we fit a KDE on our data, we can exploit the
statistics it provides, and specifically, we can make use of the covariance error ellipses.

4.4.1 Covariance Error Ellipses

A covariance error ellipse represents an iso-contour of the Gaussian distribution, and
visualizes a confidence interval on a 2D space. The confidence interval refers to a re-
gion that contains a specific percentage of all samples drawn from a Gaussian distribu-
tion; if a set of measurements were repeated many times and a confidence interval cal-
culated in the same way on each set of measurements, then a certain percentage of the
time this interval would include the point representing the "true" values of the set of var-
iables being estimated. The construction of an ellipse is based on the eigenvectors and
the eigenvalues of the covariance matrix of a multivariate Gaussian distribution. For the
case of two variables, the first principal component of the covariance matrix explains the
"most variance", while the second one fits the errors produced by the first. Thus, for a
given confidence interval, the scale s of the ellipse is given using the Chi-Square proba-
bility table, and the half major/minor axes lengths are obtained as

Jsh
A/ sS4,

An example of the error ellipses under different confidence intervals is shown in Figure
13.

—90%% "
I

Figure 13: An example of error ellipses and the corresponding confidence intervals. The image is
taken from [28].

In our implementation, we compute the covariance matrix of the KDE over the ratios,
and extract the corresponding eigenvalues and eigenvectors. In general, 4 types of er-
ror ellipses can occur, depending on the directions of the eigenvectors. Based on each
case, the threshold point is defined either by (a) the maximum value of the KDE or (b)
the mean value of the eigenvalues’ ratios. Then, we move this point along the direction
of the eigenvector, in such a way to retain the values that tend to grow towards the up-
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per right corner of the ratio plot — either in the direction of the major or the minor axis,
dependent on the orientation of the ellipse. Obviously, since how far you can go along
the axes of the ellipse depends on the specified confidence interval, the threshold point
must be adjusted appropriately. In other words, two more parameters that we should
consider for the computation of the threshold is whether we choose (a) or (b), and the
confidence interval. The 4 different types of error ellipses, with the corresponding confi-
dence intervals and the threshold points are depicted in Figure 14.

@

(b)

(a)

(c) (d)

Figure 14: Different types of ellipses and threshold points in the direction of the KDE’s covariance
matrix’s eigenvectors, that we chose for our method

Q

4.4.2 Combining the resolutions

One important thing to note again here, is the resolution, which in structure determina-
tions, is the distance corresponding to the smallest observable feature; if two objects
are closer than this distance, they appear as one combined blob rather than two sepa-
rate objects. In other words, higher numeric values of resolution mean poorer level of
detail, and thus fewer local extrema.

Since the aforementioned error ellipses are based on the covariance matrix of the rati-
os, and thus on the ratio data themselves, which in turn are related to the extracted
keypoints, then for lower resolutions we will not have enough points to fit the KDE. As a
consequence, in some structures we don’t have enough points to justify doing KDE on
them.

To avoid this situation, we choose to reverse the procedure of our approach and deter-
mine the appropriate threshold points as follows:
M. Rapti 32



Structure tensor analysis on proteins: efficient feature extraction for heteromultimeric assembly prediction

1.For every structure individually, for every parameter combination (LoG, neighbor-
hood size, sigma, eigenvalue ratio type, ellipse center) we extract the keypoints for
each resolution independently, and we combine them to one big set of keypoints
that were extracted. In this way, we manage to have the full picture of a structure
under any resolution.

The idea that we were based on to proceed in this way, apart from the keypoints’
deficiency in some cases as mentioned before, is the fact that cryo-EM maps are
usually ‘composite’ in terms of resolution. This means that in a single cryo-EM
map, there are regions with higher and regions with lower resolution, depending
on the quality of the map in these regions.

2.For these keypoints we fit the KDE on the ratios of their eigenvalues, and compute
the corresponding ellipses for the different confidence intervals.

3.Based on the type of the ellipses and their center, we specify the threshold points
(that correspond to specific confidence intervals and specific ellipse center), in or-
der to re-apply them on each resolution independently.

An example of how the obtained threshold points (under every resolution) are applied to
each individual resolution is depicted in Figure 15.

The aforementioned procedure, for a specific structure, and for a specific parameter
combination, will result in specific threshold points. As a next step, we will set up a big
experiment, where for every structure, for every parameter combination, we will apply
these threshold points to each resolution independently, so that eventually we can se-
lect the parameter configuration that detects the most stable keypoints that lead to a
more accurate prediction.
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Figure 15: Applying on each individual resolution the threshold points that were obtained by
combining all resolutions. The different threshold points are adjusted to the specified confidence
intervals. The ellipses that are shown come from the ratios of the eigenvalues of the extracted
keypoints after combining all resolutions.
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5. EXPERIMENTAL RESULTS

5.1 Setup

We benchmark the proposed method for the complexes with pdb names {1CS4, 1E6V,
1GTE, 1TYQ, 1URZ, 1Z5S, 2B09, 2GC7, 7CAT} and their corresponding subunits, as
shown in Figure 16. Regarding the parameters, their type and their values are shown in
Table 1. As for the experiment, first, for each structure and for each parameter combina-
tion, we extract the keypoints for each resolution, we combine these keypoints together,
and we compute the threshold points on this combined set. Then, we repeat the same
experiment, but now on each individual resolution, and we do not determine any new
threshold points, but we apply the already obtained ones. In other words, we define the
threshold points over all resolutions, and we apply them to individual resolutions after-
wards.

Figure 16: The protein assemblies we use to benchmark our method: (a)1cs4, (b)1e6v, (c)1gte,
(d)1tyq, (e)1urz, (f)1z5s, (g)2bo9, (h)2gc7, (i)7cat
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Table 1: The parameters and their corresponding values

Parameter Parameter Value
Neighborhood * 3x3x3
size * 5x5x5
*1.0
Gaussian * 1.5
sigma (window) 20
e 25
_ _ * M/L-to-S/L
Eigenvalues' ratio
* S/M-to-S/L
* [5, 50]: direction of the eigenvector of the KDE’s covariance
matrix

\(;;nﬁdence Inter- * 0: threshold point at the center of the ellipse
* [-15, 5]: opposite direction of the eigenvector of the KDE’s co-

variance matrix

_ * Maximum value of Kernel
Ellipse center ) -
* Mean value of the eigenvalues’ ratios

Let the following be:
* N: the total number of local extrema.
* FP: the total number of local extrema that are false positives.
* TP: the total number of local extrema that are true positives.
* FP1: the number of false positives that were thresholded
* TP+: the number of true positives that were thresholded
* Nr: the number of total keypoints that were thresholded

Our goal is to keep only these sets of parameters that retain most of the keypoints that
lead to correct assembly prediction, and discard most of the false positives, for every
structure, and for every resolution. To determine this, we define three metrics that are
based on the ratio of the keypoints that were thresholded:

N.
Tror = WT: the percentage of thresholded keypoints

N

Tep = ;;T : the percentage of thresholded false positives
N

Trp = TP - the percentage of thresholded true positives

TP
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It is obvious that higher Trp and lower Ttp at the same time lead to a better solution.
Based on these metrics, if P denotes the set of all the parameter combinations, we are
looking for a solution to the problem:

max TFP
14

Find p € P such that: { TP >0
min Trp
P

5.2 Results

5.2.1 Post-processing

Once we obtain the results, we apply a first post-processing step in order to remove
some parameter combinations that do not provide solutions. This is done by determin-
ing for which parameters, all of the true positives were discarded, since the minimum
requirement is a combination to provide at least one true positive. The reason is that
even one true positive might be enough for hetAP to make a correct assembly predic-
tion, due to the final step of the software, where it searches in a greedy way a perfect
match for the descriptors. In addition, we apply a second post-processing step which
has to deal with the resolutions. We keep only those parameter combinations that retain
at least one true positive, for every applicable resolution. In this way, we ensure that re-
gardless of the resolution, the remaining parameter sets will always provide solutions.
Thus, the final number of parameter combinations is 415, from the initial 448.

5.2.2 General analysis

We first make a general analysis on the discarded keypoints.

1. For each combination of the Gaussian sigma, the neighborhood, the ratio type,
the ellipse center and the confidence interval.

2. For all structures, regardless of the resolution
3. Collect Tror, Trp, T1p

As a result, for every possible parameter combination, we will have a collection of these
three percentages, which per triples will correspond to each structure. The distribution
of the minimum, the maximum, and the median values of the percentages of every pa-
rameter combination, for each collection is shown in Figure 17, Figure 18, and Figure 19
respectively.
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Figure 17: Minima, median and maxima values of every parameter combination, for the T1or

In Figure 17, we observe that the median values range between 40% and 80%, while
the minimum values go up to 60%. This behavior indicates that our method filters out
most of the computed keypoints, which was one of our basic goals; to reduce the huge
amount of extracted keypoints. In other words, there are parameter combinations that
discard at least 60% of the keypoints. However, although this is the overall behavior of
our method, we need to also study how both the true and the false positives are han-
dled.
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Figure 18: Minima, median and maxima values of every parameter combination, for the Tgp
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We continue our analysis for the case of the thresholded false positives. As shown in
Figure 18, the median values are quite high, ranging from 40% to 85%, while the mini-
mum value reaches again up to 60%. What is quite interesting is that for every parame-
ter combination set (Gaussian sigma, neighborhood, ratio type, ellipse center, confi-
dence interval), there exist structures, such that 100% of the false positives are discard-
ed.
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Figure 19: Minima, median and maxima values of every parameter combination, for the Tp

We conclude our general analysis with the distribution of the thresholded true positives,
as shown in Figure 19. The behavior is quite different compared to the thresholded false
positives. Although the median values range from 40% to 80%, most of them are con-
centrated around 60%. What is significant and most important to note, is the fact that
although the minimum might reach up to 40%, most of its regions are flat, with the big-
gest part being zero. Finally, we observe that due to the post-processing we mentioned
before, we guarantee that the used parameters will always retain some true positives
(maximum is never 100%).

From this general analysis, we can safely say that our method satisfies our goal, since
indeed discards most of the false positives, and removes 60% of the true positives in
average. Thus, our method removes a big number of keypoints, while still keeping solu-
tions. As a next step, we need to go a bit deeper and try to specify the exact set of pa-
rameters that leads to the best solution.

5.2.3 Parameter-specific analysis

We now want to control the parameters in a way that will allow us to compare between
the different combinations of the neighborhood, the ratio type and the ellipse center, in
order to specify the best combination. Note that we do not consider the Gaussian sigma
and the confidence interval, since these two parameters have a wider range of values
that can take.
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To do so, we will study the box-plots of the distributions of the minimum, maximum, and
median percentages for all the thresholding cases (Tror, Tre, Ttp), but we will now try to
fix the parameters one at a time.

Figure 20 shows the box-plots for the Ttor percentage. We first focus on the choice of
the neighborhood. Although the difference between them is not quite significant, we
choose arbitrarily the 3x3x3 neighborhood because it is faster to compute, for equal re-
sults.
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Figure 20: Minima, median and maxima values for the percentage of the discarded keypoints, un-
der fixed parameter combinations

Concerning the other two parameters (ratio type and ellipse center), it is obvious that
the choice of SM / SL and the mean value of the eigenvalues’ ratios as the center of the
ellipses, give a higher removal percentage, since it provides the highest minimum, while
the median (~80%) is almost equal to the one obtained by the SL / ML. Thus, based on
the values of Ttor, the best parameter combination is:

* Neighborhood: 3x3x3
* Ratio type: SM / SL
* Ellipse center: Mean value of the eigenvalues’ ratios

In order to ensure that this set is actually the best, we proceed to the box-plot of the
thresholded false positives percentage, which is depicted in Figure 21. We can easily
observe that the minimal removal of keypoints goes again up to 60%, and in some cas-
es, we even have 100% of maximum removal. This means that there exist parameter
sets that remove all the false positives, and retain only stable keypoints. Thus, the set
that gives the best solutions for the Tgp is consistent with the best set of the Tror.
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Figure 21: Minima, median and maxima values for the percentage of the discarded false positives,
under fixed parameter combinations

Finally, we must study the behavior of this parameter set with respect to the percentage
of true positives being removed, as shown in Figure 22. In this case, we would like pa-
rameters that keep most of the keypoints. The previous set of parameters is now the
one discarding most of the true positives, while still keeping some of them (maximum
removal is never 100%). Thus, the best set now seems to be the:

* Neighborhood: 3x3x3
* Raito type: SL / ML
* Ellipse center: Max value of KDE

If we go back to the previous plots, we can easily see that this exact set is one of the
sets that keep most of the false positives, as well. In other words, there is not a unique
set that maximizes the percentage of discarded false positives, and at the same time
minimizes the percentage of discarded true positives. In fact, we have two different set
of parameters that cause this trade-off, and the final step is to make a further compari-
son between them, in order to determine which one to select.
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Figure 22: Minima, median and maxima values for the percentage of the discarded true positives,
under fixed parameter combinations

5.2.4 Parameter comparison and selection

The parameter set {3x3x3, SM / SL, mean} results in high percentage of keypoints’ re-
moval for both false and true positives — 100% removal in some cases — while still hav-
ing solutions. SM / SL in this case seems to filter out more keypoints, along with the
choice of the mean value of the eigenvalues’ ratios as the ellipse center, which is also
more exclusive than taking the max value of the KDE.

On the other hand, the set {3x3x3, SL / ML, max} results in a lower percentage of key-
points’ removal, even in the case of false positives. SL / ML seems to be more con-
servative in terms of discarding keypoints, which comes from the fact that the points in
the ratio plots of the eigenvalues are distributed in a vertical way, and combined with the
choice of threshold points on the ellipses, it does not allow an extreme thresholding.
The max value of the KDE also supports this soft thresholding, as it is more inclusive
than the mean value of the eigenvalues’ ratios.

In both cases, we observe that the neighborhood of 3x3x3 results in better solutions,
which leads us to the conclusion that it is more reasonable to consider the information
that a smaller neighborhood provides, rather than considering more neighboring voxels’
gradient information.

We decide that the first parameter set {3x3x3, SM / SL, mean} is the best for our case,
as we efficiently diminish the number of the keypoints (false and true positives), while at
the same time, manage to retain solutions. Recall that the minimum requirement we
want is a combination to provide at least one true positive.

Finally, for this set, we wanted to check if there are confidence intervals that are more
likely to appear. We observed that in most of the cases, the confidence interval is 35%,
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and in general the value range is between 30% and 40%. We could not draw any con-
clusion about the Gaussian sigma choice.

5.2.5 Structural specificity

As an additional notice, we observed that regardless the parameters, there are three
structures for which we cannot find solutions:

* 2GC7_chainB
» 2GC7_chainF
* 1Z5S8

If we take a look at their secondary structures (Figure 23), 2GC7_chainB and
2GC7_chainF are mostly globular and of constant density, whereas 1Z5S is a single coil
with no much secondary structure. We conclude that these are three cases with an un-
trustworthy density profile in general, and that we expect that the solutions found will be
less or even zero.

Figure 23: Secondary structures of the three aforementioned proteins: (a)2gc7 [B,F], (b)1z5s [A]

5.2.6 Computational complexity

Finally, we would like to provide a qualitative analysis on the effect our method in terms
of computational complexity. To understand the order of the impact, we provide the fol-
lowing example:

Recall that hetAP takes every subunit iteratively and tries to "match" its descriptors with
the descriptors of the complex in a greedy way, so as to localize the subunit within its
complex. Thus, let us say that we have 10 subunit descriptors and 10° complex de-
scriptors. Then, hetAP will have to apply 10° comparisons, in order to match the former
with the latter. Now, that we have chosen the best parameter set, we have 80% key-
point removal, which means only 4x10° comparisons to make. In other words, we can
reduce the theoretical computational time in hetAP by 96%.
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6. CONCLUSIONS AND FUTURE WORK

In this work, we explained the importance of the multimers' structure for the definition of
their function. We focused on hetAP software’s vulnerabilities, and integrated a method
for filtering the extracted keypoints, in order to retain the most stable ones; that is the
ones that will lead to correct assembly prediction. Our method extends the Harris corner
detection to the 3D space, and uses a structure tensor analysis to discard the unwanted
keypoints. We benchmark a set of different parameters, and specify the proper thresh-
olds based on the statistics of the structure tensor, and select this parameter set that is
more likely to lead to correct assembly prediction. The proposed method is accurate,
computationally efficient, and generalizes across different protein structures, regardless
of their resolution. However, we observed that some structures do not apply to our
method, and we did a preliminary analysis on their secondary structure.

As a next step, we aim to study how all the extracted keypoints of our method hold over
the conformational changes, by taking advantage of Molecular Dynamics. In more de-
tails, each system (atoms and molecules) evolves dynamically; it consists of trajectories
defining the position of each atom or molecule, at a specific moment (momentum).
However, the high-dimensionality of such systems requires ways to reduce the big
number of the produced trajectories. Thus, we can make use of clustering methods so
as to group the trajectories, and find one representative for each cluster. Then, for each
representative we will extract and filter — with the proposed method — the keypoints, and
we will compare them with the keypoints of the other representatives. These keypoints
that are consistently present in each cluster - and that are already known to lead to cor-
rect assembly prediction — will be the ones that alone can characterize a specific struc-
ture, regardless of its different conformational states.

Furthermore, we will focus on the computation of parameters that are structure, and
secondary structure specific (i.e. parameters for a structure that consist of B-sheets or
loops, or for a coiled coil protein where a-helices are coiled together etc.). Moreover,
current progress in cryo-EM, can determine structures in high resolution (<5 A), result-
ing to an increment of the quality and the size of the data. As a result, the number of
features that need to be considered for localizing the subunits into their macromolecular
assemblies, becomes quite large. For this reason, it is of great importance to find meth-
ods for reducing this large number of features, in order to accomplish faster and more
effective localization.

Finally, in the sense of a general machine learning framework, it is worth studying the
adoption of machine learning techniques for extracting stable keypoints. We might be
able to train a system with the data used in our method, where the corresponding tar-
gets (stable keypoints) will be based on the obtained results of our method, in order to
predict/detect the most stable keypoints that might lead to correct assembly prediction.
From a different point of view, another use of machine learning could be towards the
parameter estimation; using the data and the results from our method, we can train a
system for estimating the best set of parameters that should be plugged in our method,
in order to lead to more stable keypoints.
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ABBREVIATIONS - ACRONYMS

MD Molecular Dynamics

IM Integrative Modeling

STA Structure tensor Analysis
cryo-EM cryo-Electron Microscopy
cryo-ET cryo-Electron Tomography
NMR Nuclear Magnetic Resonance
SAXS Small-Angle X-ray Scattering
hetAP heteromultimeric Assembly Prediction
SSD Sum of Squared Differences
SM Small-to-Middle

SL Small-to-Large

ML Middle-to-Large

KDE Kernel Density Estimation

M. Rapti



Structure tensor analysis on proteins: efficient feature extraction for heteromultimeric assembly prediction

REFERENCES

[11 Anderson A.C. The process of structure-based drug design. Chem. Biol. 2003;10:787-797. doi:
10.1016/j.chembiol.2003.09.002.

[2] Cowan-J SW, Fendrich G, Floersheimer A, Furet P, Liebetanz J, Rummel G, Rheinberger P, Cen-
teleghe M, Fabbro D, Manley PW. Structural biology contributions to the discovery of drugs to treat
chronic myelogenous leukaemia. Acta Crystallogr D Biol Crystallogr. 2007 Jan;63(Pt 1):80-93. Epub
2006 Dec 13.

[3] Protein Data Bank (PDB): https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/methods-
for-determining-structure

[4] Bringer AT. X-ray crystallography and NMR reveal complementary views of structure and dynamics.
Nat Struct Biol. 1997 Oct;4 Suppl:862-5.

[5] Russel D, Lasker K, Webb B, Velazquez-Muriel J, Tjioe E, Schneidman-Duhovny D, et al. Putting the
pieces together: integrative modeling platform software for structure determination of macromolecular
assemblies. PLoS Biol. 2012; 10(1):e1001244.

[6] Alber F, Forster F, Korkin D, Topf M, Sali A. Integrating diverse data for structure determination of
macromolecular assemblies. Annu Rev Biochem. 2008;77:443-477.

[71 Tamo GE, Abriata LA, Dal Peraro M. The importance of dynamics in integrative modeling of supramo-
lecular assemblies. Curr Opin Struct Biol. 2015 Apr;31:28-34.

[8] I. Andre, P. Bradley, C. Wang, D. Baker Prediction of the structure of symmetrical protein assemblies
Proc. Natl. Acad. Sci., 104 (2007), pp. 17656-17661.

[9] F. Alber, S. Dokudovskaya, L.M. Veenhoff, W. Zhang, J. Kipper, D. Devos, A. Suprapto, O. Karni-
Schmidt, R. Williams, B.T. Chait, et al. Determining the architectures of macromolecular assemblies
Nature, 450 (2007), pp. 683-694.

[10] S.J. de Vries, A.D.J. van Dijk, M. Krzeminski, M. van Dijk, A. Thureau, V. Hsu, T. Wassenaar,
A.M.J.J. Bonvin HADDOCK versus HADDOCK: new features and performance of HADDOCK2. 0 on
the CAPRI targets Proteins, 69 (2007), pp. 726-733.

[11] Degiacomi MT, Dal Peraro M. Macromolecular Symmetric Assembly Prediction Using Swarm Intelli-
gence Dynamic Modeling. Structure. 2013 Jul 2;21(7):1097-1106.

[12] Tamo GE, Maesani A, Trager S,Degiacomi MT, Floreano D, Dal Peraro M. Disentangling constraints
using viability evolution principles in integrative modeling of macromolecular assemblies. Sci
Rep.2017;7(1):235.

[13] Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Cryo-EM in drug discov-
ery: achievements, limitations and prospects. Nat Rev Drug Discov. 2018 Jul;17(7):471-492.

[14] Kuhlbrandt, W. Biochemistry. The resolution revolution. Science 343, 1443-1444 (2014).

[15] Bai XC, McMullen G, Scheres HW. How cryo-EM is revolutionizing structural biology. Trends Bioche,
Sciences. 2015;40:49-57.

[16] Doerr A. Single-particle cryo-electron microscopy. Nat Methods volume 13, page 23 (2016)

[17] S. Traeger, hetAP (software), Lab for Biomolecular Modeling (LBM), EPFL, 2016-2018.

[18] Lowe, David G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision. 60 (2): 91-110.

[19] Chris Harris and Mike Stephens (1988). "A Combined Corner and Edge Detector". Alvey Vision Con-
ference. 15.

[20] Wriggers W. Using Situs for the integration of multi-resolution structures. Biophys Rev. 2010 Feb;
2(1): 21-27.

[21] H. Moravec (1980), Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover.
Tech Report CMU-RI-TR-3 Carnegie-Mellon University, Robotics Institute.

[22] J. Shiand C. Tomasi (1994), Good Features to Track. 9th IEEE Conference on Computer Vision and
Pattern Recognition. Springer.

[23] S. M. Smith and J. M. Brady (May 1997). "SUSAN — a new approach to low level image processing".
International Journal of Computer Vision. 23 (1): 45-78.

[24] S. M. Smith and J. M. Brady (January 1997), "Method for digitally processing images to determine
the position of edges and/or corners therein for guidance of unmanned vehicle". UK Patent 2272285,
Proprietor: Secretary of State for Defence, UK.

[25] M. Trajkovic and M. Hedley (1998). "Fast corner detection". Image and Vision Computing. 16 (2):
75-87.

[26] E. Rosten and T. Drummond (May 2006). "Machine learning for high-speed corner detection,". Euro-
pean Conference on Computer Vision.

[27] J. Ryde and J. A. Delmerico, Extracting edge voxels from 3d volumetric maps to reduce map size
and accelerate mapping alignment, in Computer and Robot Vision (CRV), 2012 Ninth Conference on.
IEEE, 2012, pp. 330-337.

M. Rapti 47




Structure tensor analysis on proteins: efficient feature extraction for heteromultimeric assembly prediction

[28] Vincent Spruyt, How to draw an error ellipse representing the covariance matrix,
http://www.visiondummy.com/2014/04/draw-error-ellipse-representing-covariance-matrix/

[29] Pawel A Penczek, Analysis of Conformational Heterogeneity of Macromolecules in Cryo-Emectron
Microscopy, lecture of the University of Texas-Houston Medical School, Department of Biochemistry.

[30]M. Podobnik, M. Kisovec, G. Anderluh. Molecular mechanism of pore formation by aerolysin-like pro-
teins. Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726).

M. Rapti 48



