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ABSTRACT 
 
The knowledge of the shape, structure, and interactions of macromolecules, defines bi-
ology at the molecular level in atomic detail. Although knowing the architecture is an im-
portant step before reaching the knowledge of the function, it still is a challenging task. 
Current structure resolution techniques (X-ray Crystallography, cryo-EM, etc.), although 
quite successful, they fail to generalize well across different types of structures, since 
each one of these methods is designed for specific kinds of components. A way to 
combine experimental and computational data regardless of their resolution, is through 
Integrative Modeling (IM), which provides a comprehensive structural characterization of 
biomolecules. It gets as input (a) high resolution structures of the individual components 
composing the supramolecular complex, and (b) low-resolution envelopes of native as-
semblies, resulting in biologically relevant supramolecular assemblies consistent with 
the available set of experimental data. However, IM has limitations when it comes to 
heteromultimeric complexes, especially in the case of non-symmetric ones, where the 
heterogeneity increases the computational complexity. Most importantly, the individual 
components may adopt different conformations whether they are isolated or within their 
assembly. Very few methods exist to tackle this problem, and even fewer actually suc-
ceed; thus, a different way for characterizing and locating these components within their 
assembly, regardless of their different conformational states, is mandatory. In this work, 
we exploit the different aspects provided by the field of computer vision, and treat our 
biological problem as if it was a problem of object recognition. Specifically, we adopt the 
concept of localizing objects in a scene, and make use of local descriptors and the main 
steps of SIFT algorithm, for extracting distinctive features (local extrema) from images. 
Translated to our biological problem, we detect informative features (keypoints) in the 
atomic structures’ density maps, so as to localize them within their macromolecular as-
sembly. Our goal is to diminish the huge number of these extracted features, by specifi-
cally searching for corners, as these points remain stable regardless any rotation or 
change. We adopt the principles of Harris corner detector and expand them by using 
three-dimensional structure tensor analysis (STA). The significance lies in the fact that 
the eigenvalues and the corresponding eigenvectors of the structure tensor, describe 
the principal curvatures of the neighborhood around the local extrema. Based on the 
statistics of the eigenvalues’ ratios, we apply multiple types of thresholding under differ-
ent configurations, and benchmark the STA set of parameters on 54 different structures. 
For the evaluation of the parameters, we compare the extracted keypoints with a set 
that is known – from the already existing software – to lead to correct assembly predic-
tion. Experimental results show the existence of parameter sets that remove almost all 
of the unstable keypoints (false positives), others that retain almost all of the stable 
ones (true positives), while others provide solutions that can balance the trade-off be-
tween these two. Finally, we verify that there are specific complexes (1Z5S, 2GC7) 
without a trustworthy density profile, since no solutions can be obtained for every reso-
lution. The proposed method considerably speeds up the existing software by reducing 
the computational complexity – a key issue for heteromultimers, and is a general and 
accurate way for extracting localized features for correct assembly prediction, which can 
serve as a baseline for studying the dynamics of these keypoints under conformational 
changes. 
 
SUBJECT AREA: Structural Biology, Biomolecular Modeling, Computer Vision 
KEYWORDS: macromolecular structure, protein subunit localization, keypoint detection, 

Harris corner detection, extrema extraction 



ΠΕΡΙΛΗΨΗ 
 
Η γνώση του σχήµατος, της δοµής, και των αλληλεπιδράσεων των µακροµορίων, ορίζει 
τη βιολογία σε µοριακό επίπεδο σε λεπτοµέρεια ατόµων. Παρόλο που η γνώση της αρ-
χιτεκτονικής είναι ένα σηµαντικό βήµα πριν την κατανόηση της λειτουργίας, εξακολουθεί 
να είναι µια δύσκολη διαδικασία. Οι τρέχουσες τεχνικές ανάλυσης δοµής (X-ray Crystal-
lography, cryo-EM, etc.), αν και αρκετά επιτυχείς, αδυνατούν να γενικεύσουν καλά σε 
διαφορετικούς τύπους δοµών, καθώς κάθε µία από αυτές τις µεθόδους είναι σχεδιασµέ-
νη για συγκεκριµένους τύπους δοµικών στοιχείων. Ένας τρόπος για να συνδυάσουµε τα 
πειραµατικά µε τα υπολογιστικά δεδοµένα, ανεξάρτητα από την ανάλυσή τους, είναι µε-
σω του Integrative Modeling (IM), καθώς παρέχει έναν περιεκτικό χαρακτηρισµό της 
δοµής των βιοµορίων. Απαιτεί ως είσοδο (α) τις υψηλής ανάλυσης δοµές των επιµέρους 
µονάδων που συνθέτουν το υπερµοριακό σύµπλεγµα, και (β) τους χαµηλής ανάλυσης 
φακέλους αυτών των συµπλεγµάτων, και µας παρέχει βιολογικά συσχετιζόµενες 
υπερµοριακές συστοιχίες, συνεπείς µε το διαθέσιµο σύνολο των πειραµατικών δεδοµέ-
νων. Ωστόσο, το IM εµφανίζει κάποιες αδυναµίες όσον αφορά στα ετεροπολυµερικά 
σύµπλοκα, ειδικά στην περίπτωση των µη συµµετρικών, όπου η ετερογένεια αυξάνει 
την υπολογιστική πολυπλοκότητα. Το πιο σηµαντικό είναι ότι οι επιµέρους µονάδες των 
συµπλόκων µπορεί να υιοθετούν διαφορετικές διαµορφώσεις ανάλογα µε το αν είναι 
αποµονωµένες ή µέσα στη συστοιχία τους. Συνεπώς, είναι αναγκαία η εύρεση ενός 
διαφορετικού τρόπου για τον χαρακτηρισµό και τον εντοπισµό αυτών των επιµέρους 
µονάδων εντός των συστοιχιών τους. Στην εργασία αυτή, εκµεταλλευόµαστε πτυχές του 
πεδίου της µηχανικής όρασης, και χειριζόµαστε το βιολογικό µας πρόβληµα σαν να 
ήταν πρόβληµα αναγνώρισης αντικειµένων. Συγκεκριµένα υιοθετούµε την έννοια του 
εντοπισµού αντικειµένων σε µια σκηνή, και χρησιµοποιούµε local descriptors και τα 
βασικά βήµατα του αλγορίθµου SIFT για την εξαγωγή διακριτών χαρακτηριστικών 
(τοπικά ακρότατα) από εικόνες. Για το βιολογικό µας πρόβληµα, ανιχνεύουµε τα σηµεία-
κλειδιά (keypoints) των ατοµικών δοµών, ώστε να τις εντοπίσουµε µεσα στη µακροµορι-
ακή τους συστοιχία. Στόχος µας είναι να µειώσουµε τον τεράστιο αριθµό αυτών των 
keypoints, αναζητώντας τις γωνίες, καθώς αυτά τα σηµεία παραµένουν σταθερά 
ανεξάρτητα από οποιαδήποτε περιστροφή ή αλλαγή. Υιοθετούµε τις αρχές της µεθόδου 
ανίχνευσης γωνιών Harris, και τις επεκτείνουµε χρησιµοποιώντας µια 3-D ανάλυση 
δοµικών τανυστών. Η σπουδαιότητά της έγκειται στο γεγονός ότι οι ιδιοτιµές και τα 
αντίστοιχα ιδιοδιανύσµατα της δοµής του τανυστή περιγράφουν τη βασική καµπυλότητα 
της δοµής. Βασιζόµενοι στις στατιστικές των λόγων των ιδιοτιµών, εφαρµόζουµε 
πολλαπλούς τύπους κατωφλίωσης για διαφορετικές παραµέτρους, και δοκιµάζουµε 
αυτές τις παραµέτρους σε 54 διαφορετικές δοµές. Για την αξιολόγηση των παραµέτρων, 
συγκρίνουµε τα υπολογισθέντα keypoints µε ένα σύνολο για το οποίο γνωρίζουµε ότι 
επιτυγχάνει σωστή πρόβλεψη συστοιχιών. Τα πειραµατικά αποτελέσµατα δείχνουν την 
ύπαρξη παραµέτρων που αφαιρούν σχεδόν όλα τα ασταθή keypoints (false positives), 
παραµέτρων που διατηρούν σχεδόν όλα τα σταθερά (true positives), και παραµέτρων 
που δίνουν λύσεις εξισορροπώντας το trade-off µεταξύ των προηγούµενων δύο. Τέλος, 
επαληθεύουµε ότι υπάρχουν σύµπλοκα µε αναξιόπιστο προφίλ πυκνότητας, καθώς δε 
βρίσκονται λύσεις για όλες τις αναλύσεις τους. Η µέθοδος που προτείνουµε είναι ένας 
γενικός, γρήγορος και ακριβής τρόπος για την εξαγωγή τοπικών χαρακτηριστικών για 
σωστή πρόβλεψη συστοιχίας, και µπορεί να χρησιµεύσει ως βασική γραµµή για τη 
µελέτη των δυναµικών αυτών των keypoints όταν υπόκεινται σε διαµορφωτικές 
αλλαγές. 
ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Δοµική Βιολογία, Βιοµοριακή Μοντελοποίηση, Μηχανική Όραση 



ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: µακροµοριακή δοµή, εντοπισµός πρωτεϊνικών υποµονάδων, 
ανίχνευση σηµείων-κλειδιών, ανίχνευση γωνιών Harris, εξαγωγή 
ακρότατων 
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1. INTRODUCTION 

1.1 Importance of the structure 
The biological universe consists of two types of cells: prokaryotic and eukaryotic. In the-
se cells, a whole different universe of macromolecules lies, defining with their structure 
and function, the function of the cell itself. Therefore, the architecture of biological mac-
romolecules is critical for our understanding of their biological function. Knowledge of 
the shape, structure and interactions of these macromolecules defines biology at the 
molecular level, in atomic detail.  
On a more practical note, protein 3D-structures are the basis for structure-based drug 
design [1]. One example of such drug is Imatinib - or Gleevec [2]. Imatinib is a medica-
tion used to treat cancer, designed specifically to target two types of Leukemia. Its ad-
vantage above all previous drugs for cancer is that it can differentiate between cancer 
cells and other tissues, without harming the latter. This was only succeeded by knowing 
and determining its structure. 
 
1.2 Structure resolution techniques 
Although knowing the architecture is an important step before reaching the knowledge 
of the function, it still is a challenging task. Current resolution techniques used to deter-
mine the structure, although quite successful, they fail to generalize well across different 
types of structures, since each one of these methods is designed for specific kinds of 
components. Resolution, in terms of protein structure determination, is a measure of the 
quality of the data that has been collected on the crystal containing the protein [3]. In 
other words, it is the distance that corresponds to the smallest observable feature in the 
diffraction pattern resulted after the X-rays have penetrated the protein crystal. Thus, 
the smallest this distance (computed in Angstrom) is, the higher the resolution will be. 
X-ray Crystallography can determine structures of proteins that form diffractable crys-
tals, but encounters difficulties when it comes to larger or more flexible proteins. Nuclear 
magnetic resonance (NMR) spectroscopy provides information on proteins in solution, 
rather than being restricted by a crystal (as in X-ray crystallography), and thus, can ac-
tually study the atomic structures of more flexible proteins. As a result, these two meth-
ods are complementary, as the characteristics of one fill the gaps of the other [4], and 
both result in high resolution structural models. On the other hand, cryo-electron mi-
croscopy (cryo-EM), cryo-electron tomography (cryoET) and small-angle X-ray scatter-
ing (SAXS) yield structures in lower resolution (>10 Å), but they can handle larger pro-
teins. We will discuss cryo-EM in more detail in 1.5, as it is a method of significant inter-
est for this work. 
We can easily conclude then, that we cannot rely on a single technique to get atomic 
resolution. We would like to have a method that combines these techniques and all the 
knowledge we have at our disposal, in order to efficiently extract structural information 
from macromolecules. 
 
1.3 Integrative Modeling 
A way to combine experimental and computational data in order to obtain higher resolu-
tion information, is through Integrative Modeling (IM) [5], which provides a comprehen-
sive structural characterization of biomolecules, by building models. It requires as input 
(a) high resolution structures of the individual components composing the supramolecu-
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lar complex (i.e. structures resulted by X-ray Crystallography), (b) low-resolution enve-
lopes of native assemblies (i.e. cryo-EM maps), (c) other information, such as stoichi-
ometry from protein quantification, restraints from cross-linking, distance between the 
amino acids. After collecting data, IM chooses how to represent and evaluate the mod-
els, finds models with high score and analyzes them. It repeats this procedure until to 
converge to an ensemble of models that fit all the current information and is found to be 
satisfactory, according to the criteria that have been set [6]. On the output, IM results in 
biologically relevant supramolecular assemblies consistent with the available set of ex-
perimental data. The general features and procedures of IM are shown in Figure 1. 
 

 
Figure 1: (a) A visual example of a heteromultimeric complex, (b) Integrative modeling strategies. 

The figure was originally published in [7]. 

 
1.4 Asymmetric heteromultimeric assemblies 
Although Integrative Modeling seems to be the key to unlock the structural information 
of biological macromolecules, it has limitations when it comes to heteromultimeric com-
plexes. 
Heteromultimeric complexes can either be symmetric or non-symmetric, depending on 
the arrangement of their component(s). While current softwares exhibit success in the 
models’ prediction for symmetric heteromultimeric complexes ([8] – [11]), non-
symmetric cases are way more challenging. Symmetric assemblies are made of the 
repetition of a single subunit by sampling a four-dimensional search space of the three 
Eulerian angles α, β, γ - defining the protein orientation - and the radius of the symmet-
ric assembly [12]. By contrast, the absence of any symmetry and geometry, leads to an 
increase in terms of computational cost, as the search space increases as well. In other 
words, one has to consider not only one, but all of the individual components of the 
asymmetric construct, along with their dimensions and constraints. Moreover, the highly 
dynamic nature of these structures coupled with their complexity, generates a significant 
heterogeneity. Most importantly, the individual components may adopt different confor-
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mations whether they are isolated or within their assembly. An example of a symmetric 
and a non-symmetric construct is depicted in Figure 2. 
 

 

 

 
Figure 2: The challenge between (a) symmetric homomultimers - such a construct is aerolysin 
pore toxin [30], (b) asymmetric heteromultimers - such a construct is the crystal structure of 

Arp2/3 complex with bound ATP and calcium with pdb name: 1tyq 

 
1.5 Cryo-Electron Microscopy 
Cryo-electron microscopy has established itself as a mainstream technique to capture 
the structure of large macromolecular assemblies. The steps that are involved in deter-
mining molecular structures are: sample treatment, EM grid preparation, image acquisi-
tion, image processing [13], and they are also depicted in Figure 3. Cryo-EM results in 
three-dimensional grids – or density maps - consisting of voxels, each one having a nu-
cleic density value. Current improvement at each one of these steps led cryo-EM to be 
able to reach higher resolution cryo-EM maps [14], [15] and to be considered as a po-
tential important tool for drug discovery. 
In more details, a cryo-EM experiment begins with a purified protein sample. Then the 
sample solution is deposited on the sample grid, and vitrification follows, in which the 
protein solution is cooled so rapidly that water molecules do not have time to crystallize; 
in this way, the sample is being protected from radiation damage as well. The sample is 
then screened for particle concentration – by particles we mean the 2D projections of 
the sample molecules –, distribution and orientation, with the use of a transmission elec-
tron microscope. Next, a series of images is acquired and two-dimensional classes – 
particle images representing the same view – are computationally extracted. Finally, the 
data is processed by reconstruction software yielding detailed 3D models of biological 
structures. 
However, cryo-EM captures the native states of the molecules so that different confor-
mational states are captured and can be found in the same data set, too. This leads to 
very heterogeneous data sets, and the corresponding need for 3D classification algo-
rithms, able to differentiate between different states of the same molecule and different 
molecules. 
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Figure 3: The overall single-particle cryo-EM workflow, from protein sample to 3D model. The fig-

ure and its title were originally published in [16]. 

 
Going back to Integrative Modeling concept, cryo-EM now offers a guide to localize the 
subunits within their assembly, individually rather than simultaneously, as it reduces the 
search space by fitting the atomic models into the density/cryo-EM maps. The fact 
though that we are dealing with highly dynamic structures, is still considered a problem 
that should be faced. A different way for characterizing and locating these components 
within their assembly, regardless of their different conformational states and their dy-
namics, is mandatory. 
 
1.6 Outline 
Considering the importance of the biological macromolecules’ structure, as well as the 
limitations that Integrative Modeling faces when it comes to extract structural infor-
mation from asymmetric heteromultimeric complexes, we use the method being pro-
posed by the current software of the lab [17], for characterizing and localizing the as-
semblies’ individual components. Heteromultimeric Assembly Prediction (hetAP) soft-
ware exploits the field of computer vision and treats the aforementioned biological prob-
lem as if it was a problem of object recognition. Particularly, it uses the concept of local-
izing objects in a scene; if someone had to localize a specific car in a scene of a traffic 
road, then the analogy would be to localize an atomic structure within its assembly. In 
other words, it adopts the existing theory for 2D images, in the 3D space of protein 
structures. It is based on local descriptors and the main steps of SIFT algorithm, and 
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extracts density keypoints (local extrema) from the density maps of both the complex 
and its components. Roughly quoted, it does not consider the bigger conformational is-
sue, but it rather focuses on local information. We will refer with more details to hetAP 
software in 2.2. 
In this work, we will diminish the huge number of these extracted features, by specifical-
ly searching for corners, as these points should remain stable regardless of any rotation 
or change. To do so, we will adopt the principles of Harris corner detector and expand 
them by using three-dimensional structure tensor analysis, in order to define the princi-
pal curvatures of the neighborhood around the local extrema. The proposed method is a 
general, fast, and accurate way for extracting localized features for correct assembly 
prediction, which can serve as a baseline for studying the dynamics of these keypoints 
under conformational changes. 
The rest of the dissertation is organized as follows; in Chapter 2, the principles of Local 
Descriptors and SIFT’s algorithm, as applied in the field of Computer Vision, are pre-
sented. The Harris corner detection algorithm and its extension to 3D structure tensor 
analysis is provided in Chapter 3. In Chapter 4 we present the implementation of the 
proposed method for extracting localized features for heteromultimeric assembly predic-
tion. Finally, Chapter 5 shows and analyzes our implementation’s results, while the con-
clusions and future work are discussed in Chapter 6. 
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2. COMPUTER VISION 

2.1 The SIFT algorithm 
In the blink of an eye, SIFT [18] introduces two major stages of computation 

1. Feature Extraction – Accurate Keypoint Detection and Localization 
2. Descriptor Generation 

We focus on the first step, which is about detecting the keypoints on the image (i.e. lo-
calized, distinctive points of interest) and evaluating their stability (i.e. their robustness 
against rotation, translation, or other image modifications). In short, the algorithm de-
tects the local extrema (local maxima, local minima) of an image, and discards the "un-
stable" keypoints that usually lie on the edges and low contrast regions. 
In more details, the algorithm executes the following 6 steps, with steps 1-5 belonging to 
the feature extraction stage, while the last step is the generation of the descriptor: 

1. First, it creates a scale space with the corresponding octaves. Each octave starts 
with an image of specific scale; i.e. the first octave contains an image of double 
the size of the original, the second contains an image of the same size as the orig-
inal, the third half of the original, the fourth quarter of the original etc. Each image 
in the octave is then progressively blurred by convolving it with a Gaussian kernel 
(Gaussian blurring); it blurs the first image, then blurs the result of the first blurring, 
then the result of the second blurring etc. 

2. Then, from the scale space it generates another set of images using the Laplacian 
of Gaussians (LoG). However, it requires the second order derivatives, which is 
computationally expensive, and thus it approximates the LoG through the Differ-
ence of Gaussians (DoG); that is, the difference between two consecutive scales 
(blurring levels). Apart from the computational complexity, another advantage of 
the DoG images is that their detected extrema are scale invariant. 

3. The next step is to coarsely locate the maxima and minima. This is done iteratively 
through each pixel, by checking its 3x3 neighbors. The check is done within the 
current image, and also the one above and below it (different scales/blurring lev-
els). This way, a total 26 checks are made, and a point is marked as an approxi-
mated keypoint if it’s the maximum or the minimum of all 26 neighbors. To obtain 
the true local maxima/minima, one has to obtain the subpixel values; they are 
generated by finding the extrema of the Taylor expansion of the image around the 
approximated keypoint. These subpixel values increase both the chances of 
matching and the stability of the algorithm. 

4. The procedure described in step 3 results in a big number of obtained keypoints. 
However, some of them might lie along an edge, might don't have enough con-
trast. In both cases, they are not "useful" as features. To get rid of them, the algo-
rithm follows an approach that is similar to the one used in the Harris detector [19] 
for removing edge features; remove low contrast features by simply checking their 
intensities. It computes a 2x2 Hessian matrix, H, at the location and scale of the 
keypoint, and uses its two eigenvalues’ ratio – actually the ratio of the trace of H to 
the determinant of H – rather than their individual values. If α is the larger eigen-
value and β is the smaller eigenvalue of H, then the aforementioned ratio will be 

! = !!	  
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A more detailed description of the Harris corner detector is analyzed in Chapter 3. 

5. After step 4, the algorithm has detected stable, scale invariant keypoints. The next 
thing is to assign an orientation to each keypoint, so that it becomes also rotation 
invariant. The idea is to collect gradient directions and magnitudes around each 
keypoint, to figure out the most prominent orientation(s) in that region, and finally 
to assign the orientation(s) to the keypoint. For more details about this step, we re-
fer the reader to read the official description of the algorithm in [18]. 

6. Finally, the algorithm generates a feature vector for every keypoint, which de-
scribes the keypoint in a unique way. For more details, we encourage the reader 
again to read the official description of the algorithm in [18]. 

An overview of the aforementioned 6 steps of SIFT algorithm is depicted in Figure 4 
 
a 

 

b 

 

c 
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f 
 

 

Figure 4: The 6 steps of the SIFT algorithm: (a) Scale space, (b) Difference of Gaussians, (c) Local 
Extrema extraction, (d) Low contrast features’ removal, (e) Orientation assignment, (f) Descriptor 

generation 
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2.2 Applying SIFT's principals to macromolecular assemblies – hetAP 
As we have already mentioned, SIFT algorithm is applied in the case of 2D images, in 
order to extract distinctive features that can be identified even under different views of 
an object or scene. Thus, it is designed for two-dimensional problems. HetAP expands 
these principals in 3D space, so as to deal with the three-dimensional data. Recall that 
the goal of the software is to localize the individual components (subunits) within their 
native heteromultimeric assembly (complex), in order to surpass the challenges that IM 
faces, when it comes to assemble all these highly dynamic subunits into their complex. 
In more details, the software operates as follows: 

1. It gets as input (a) the cryo-EM maps (point clouds) of the assemblies, and (b) the 
atomic structures of their components, resulted from experiments like X-ray crys-
tallography, NMR etc. 

2. Then, in order to be able to compare the complex and its subunits, it uses the 
pdb2vol tool from Situs package [20], which projects an atomic structure on a 3D 
grid (point cloud). In this way, now the density maps of the subunits can easily be 
compared with the cryo-EM maps of their complex. This tool also allows one to 
lower the resolution of an atomic structure to a user-specified value. HetAP speci-
fies the values of resolution to be: 7, 10, 15, 20 

3. As a next step, it applies (if needed – only for resolution 10, 15, 20) a Laplacian of 
Gaussian filtering to the complex and its subunits, in order to enhance the sharp-
ness and the contrast of the edges. 

4. Then, for both the complex and its subunits, the software extracts the local extre-
ma on a 3x3x3 box around each candidate voxel, and thus finds their keypoints. 

5. Once the keypoints are obtained, it assigns them the proper orientation, following 
the paradigm of SIFT algorithm, but in a very different way as now we do not have 
two but three dimensions and this make the problem more complex, and gener-
ates the local descriptors of the complex and its subunits. 

6. Finally, for the localization of a subunit within its complex, hetAP takes every sub-
unit iteratively and tries to "match" its descriptors with the descriptors of the com-
plex in a greedy way (compare every local descriptor of each subunit, with every 
local descriptor of the complex). Through this matching procedure, the software is 
able to predict the assembly. 

The basic steps of hetAP software are shown in Figure 5. HetAP is a complete soft-
ware, which means that after implementing all these steps, it has solutions – keypoints 
that actually lead to correct assembly prediction. We will use this knowledge in order to 
make sure that our method, that will be introduced properly in Chapter 4, diminishes the 
number of keypoints being extracted and, in the same time, keep most of these solu-
tions found by hetAP. 
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Figure 5: Main steps of the hetAP software. (a) input of the software: atomic structures of the indi-
vidual components and cryo-EM map of their assembly, (b) density maps of the individual com-
ponents (Situs package), (c) LoG filtering, (d) local extrema extraction, (e) descriptor generation 

around each local extremum, (d) matching of each component’s descriptor with its corresponding 
descriptor from the assembly. 

 

2.3 Motivation – Keypoint reduction 
Although hetAP software is a very good tool for predicting the heteromultimeric assem-
bly using localized information, it still has some limitations. These limitations relate to 
the fact that hetAP does not apply any filtering to the produced keypoints, which as a 
result lead to a large amount of extracted keypoints, many of which can give dubious, 
and even wrong, solutions. By consequence, the computational cost for the descriptor 
matching will be very high, as it is trying to match each keypoint descriptor of the subu-
nit to each keypoint descriptor of the assembly. 
Motivated by this main difficulty of hetAP, we focus on the 4th step of SIFT algorithm and 
aim to integrate into the software a filtering step, in order to reduce the amount of ex-
tracted keypoints, by removing the false positives and resulting in this way to significant 
speedup efficiency. 
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3. CORNERS AS KEYPOINTS – HARRIS CORNER DETECTION 

As already mentioned in the previous chapter, our goal is to detect the most stable key-
points, and discard as many false positives – keypoints that in practice are not of inter-
est – as possible. Recalling that a point-of-interest in two dimensions is a point that has 
a well-defined position, is ideally fast to compute, and can be robustly detected under 
conditions of different lighting, translation, rotation and other transforms. Several inter-
est point detectors there exist, commonly using maxima and minima points, such as 
gradient peaks or corners. Most of them also apply a Gaussian filter first, in order to re-
duce the noise and detail of an image.  
Moravec [21] is an early corner detection algorithm that tests each pixel of an image to 
see if a corner is present, by correlating the patch/window centered on the pixel with the 
surrounding – overlapping – patches of the neighboring pixels. The problems that Mora-
vec algorithm faces are the noisy response because of a binary window function that it 
is using, and the fact that it considers only the smallest Sum of Squared Differences 
(SSD), where the SSD function calculates the correlation difference between two over-
lapping patches. The Harris and Stephens corner detector [19] provides significant im-
provements over the aforementioned method, that we will discuss in detail in 3.1. Other 
worth mentioning algorithms are Shi-Tomasi [22] corner detector, an optimization on the 
Harris method using only the minimum eigenvalues for discrimination, the SUSAN 
method [23], [24] that is dependent on segmenting image features based on local areas 
of similar brightness. Moreover, the Trajkovic and Hedley corner detector [25] and FAST 
detector [26], both based on SUSAN; for more details, we encourage the reader to read 
the corresponding bibliography. 
We focus and base our method on the Harris & Stephens detector, since it can be ex-
tended to the three-dimensional space, and its principles are also applied in the 4th step 
of SIFT algorithm. 
 
3.1 Harris Corner Detection 
In general, whenever an object exists on an image, then the image should contain some 
edges, some corners, and some other regions that are mostly flat (i.e. background, sur-
face of object etc.). In order to detect which points of the image correspond to one of 
these three regions, Harris detector algorithm captures the variations of the image. It 
considers a neighborhood P around a point, obtained by shifting a subregion in which 
the intensity of the gradient is studied to determine if the region around the reference 
point contains a corner. Based on that, corners can be defined as the regions within the 
image in which there are large variations in the intensity of the gradient in all directions, 
as depicted in Figure 6. 

 
Figure 6: Left (flat): the gradient is zero among every direction. Center (edge): the gradient is con-
stant only across the direction of the edge. Right (corner): the gradient changes among every di-

rection. 
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To better understand the algorithm, let I be a 2D grayscale image. Consider taking an 
image patch over the area of a point (u, v) and shifting it by (x, y). Then, the weighted 
Sum of Squared Differences (SSD) between these two patches, denoted by S(x, y), is 
given by 

!(#, %) =(()(*, +)[-(* +#, + + %)− -(*, +)]1
23

 
 

Using a Taylor expansion, then 
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where	"#, "%	are the partial derivatives of the image	".  
This produces the approximation 
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which can be written in a matrix form 

!(#,%) ≈ (# %)( )#%*  
where A is the structure tensor 
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and w(u, v) denotes the type of window that slides over the image. If a gaussian window 
is used, then the response will be isotropic. 
The next step of the algorithm is to define a score function for determining if a point be-
longs to a corner or not. The eigenvalues of the structure tensor can help determine the 
suitability of the window. This is done through the corner response calculation 

! = det(') −*+,-./0(')12 = 3432 − *(34 + 32)2  
where	" ∈ [0.04,0.06].  
All windows that have a score R greater than a certain value are corners. Observe that 
R depends only on the eigenvalues of A. Thus, the final step of the algorithm is to clas-
sify the points of the window using the obtained eigenvalues.  
Since A is symmetric, we can visualize it as an ellipse with axis lengths determined by 
the eigenvalues, and orientation determined by R. In short, a big circle should corre-
spond to a corner point, a smaller circle to a point of a flat region, and an ellipse to an 
edge point. The classification regions with respect to the eigenvalues and the shape of 
the ellipse are depicted in Figure 7. 
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Figure 7: Classification regions and the corresponding ellipses 

 
3.2 Corner detection using 3D structure tensor 
However, in order to apply the 2D Harris corner detector to our problem, it has to be ex-
tended to the three-dimensional space. The authors in [27] extend the structure tensor 
to the 3D space, and do the corresponding analysis for extracting edge voxels from 
three-dimensional volumetric maps. Their motivation is the fact that they want a descrip-
tive mechanism, able to represent the surroundings of mobile robots, as captured by 
their sensors. To do so, they apply a structure tensor operation to the voxel map, fol-
lowed by a classification of the obtained eigenvalues, in order to remove voxels that are 
part of flat regions. This classification is done by thresholding both the magnitudes of 
the eigenvalues, as well as the ratios of the middle-to-largest and smallest-to-largest 
eigenvalues. 
 

3.2.1  3-D Structure Tensor 

Following the same notion as before, but with the difference that the pixels become 
voxels, the structure tensor becomes: 
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Furthermore, in [27] they exploit the fact that the eigenvalues and their corresponding 
eigenvectors that result from this analysis, summarizes the distribution of the gradient 
within a neighborhood of a voxel p, defined by a Gaussian window w. In other words, 
the eigenvalues and the eigenvectors describe the curvature of a structure. 
Thus, the classification of the voxels is now done based on the relative magnitude of the 
structure tensor eigenvalues as follows: 

• A planar voxel will have one direction with a large gradient (normal to the plane), 
and two directions with small gradients. Thus, it will have one large and two small 
eigenvalues. 

• A line or edge will be characterized by two directions of large gradient, and one di-
rection of small gradient. Thus, it will have two large and one small eigenvalue. 
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• An isolated region in space (corner) will have large gradients in every direction. 
Thus, it will have three large eigenvalues. 

• Similarly, for homogeneous regions, the gradient will be small in every direction. 
Thus, they will have three small eigenvalues. 

In order to simplify the aforementioned classification rules, instead of focusing on the 
values of the eigenvalues independently, they choose to study the distribution of the 
middle and smallest eigenvalues, normalized by the largest. Following this approach, 
the rule for classifying the voxels into "edges", "planar", and "corners", can be easily ob-
tained on the space generated by the distribution of the ratios, as shown in Figure 8. 
 

 
Figure 8: Different classification regions of voxels. The basic figure (2D histogram plot) was origi-

nally published in [27]. 

 
Motivated by the authors' approach, we adopt the 3D structure tensor analysis, and in-
tegrate it in hetAP, in order to detect the isolated regions of the 3D space (corners). 
Once the analysis is adopted, the next step that needs to be considered is the proper 
values of the corresponding thresholds for deciding if a given keypoint can be classified 
as a corner. 
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4. IMPLEMENTATION 

In this Chapter we will analyze the proposed method, implemented in the hetAP soft-
ware. Recall that our goal is to define a unique, global set of parameters for detecting 
the most stable keypoints and discard as much false positives as possible, which will 
increase the speedup of hetAP. First, we will show how we extend the structure tensor 
to the 3D domain, based on the approach described in [27]. Then, we will analyze the 
results obtained from the 3D structure tensor analysis, which, finally, will lead us to 
search for stable keypoints based on the statistics of the eigenvalues' ratios distribution. 
 
4.1 Extension to 3D structure tensor 
3D structure tensor, same as in the 2D case, is derived from the weighted sum of 
squared differences between shifted volume patches. In order to extend the tensor 
structure on the 3D space, we focus on the 4th step of hetAP, where the local extrema of 
the voxels are extracted. For a given complex and its subunits, we operate as follows: 

1. We iterate on the data of the complex and the subunits. 
2. For every voxel, we define a 3x3x3 neighborhood around it, and hetAP extracts 

the local maxima and the local minima of every neighborhood. The extracted ex-
trema are considered as the keypoints of the given structure (complex, subunit). 

3. Up to this point, we have the keypoints for a given protein structure. Then, for 
every one of these keypoints (x,y,z) we define again a NxNxN neighborhood 
around it. Each one of these neighborhoods that corresponds to different key-
points, is a subvolume of the original volume of the structure. 

4. For every voxel xp,yp,zp in each subvolume (including the keypoint x,y,z  itself), 
we compute the gradient structure and generate a matrix of the three partial de-
rivatives of the function I of each voxel 

!!! !!!! !!!!
!!!! !!! !!!!
!!!! !!!! !!!

	
 

5. Then, again on every voxel xp,yp,zp in the subvolume, we apply a 3D Gaussian 
weighting function 

! !,!, ! = exp − (! − !!)! +  (! − !!)! +  (! − !!)!
2!! 	

 
 
6. Finally, the 3D structure tensor A is obtained by summing over the product of the 

gradient matrices with the Gaussian weighting functions 
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Now that we have successfully generated the 3D structure tensor, we can proceed to 
the structure tensor analysis. 
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In Figure 9, we visualize how it actually looks like each aforementioned subvolume on 
the structure, consisting of the central voxel, the neighboring voxels and the direction of 
the gradient vectors. 
  

 

 

Figure 9: Visualization of a 3x3x3 neighborhood on the structure. The central keypoint x,y,z (in 
light blue) and its 26 direct neighboring voxels xp,yp,zp (in light green) scaled by their density val-
ue. The red arrows show the direction of the gradient vectors, thus they correspond to each one 
of the three eigenvalues of the structure tensor. This is a case of an edge voxel as it has two di-

rections of large gradient, and one direction of small gradient 

 
4.2 3D structure tensor analysis: the individual eigenvalues case 
Proceeding to the structure tensor analysis, what the study does first is to sort the three 
eigenvalues of each structure tensor, that corresponds to each keypoint, in order to 
characterize them as small, middle, and large. Then, we take the sorted eigenvalues 
and plot their distribution depending on the class they belong to. Recall that for a voxel 
to lie on an isolated region in space (corner), all three eigenvalues should be large. 
The distribution of each eigenvalue class is depicted in Figure 10. The x-axis corre-
sponds to the eigenvalues, while the y-axis to the value of the distribution, as computed 
by fitting a Normal distribution to the data using a Kernel Density Estimation – KDE. 
With black lines we denote the obtained eigenvalues, while with red we superimpose 
the eigenvalues of the keypoints that are known to lead to correct assembly prediction.  
Since our goal is to select those keypoints that have large eigenvalues in all three direc-
tions, we are looking for a unique, global threshold that will keep only those keypoints 
that have eigenvalues above that threshold. However, we observe that from the distribu-
tions of Figure 10, it is not quite obvious where this threshold point should be placed. 
For this reason, we choose to study the distribution of the relative ratios of the eigenval-
ues, hoping that this will be more informative. 
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Figure 10: Distribution of the extracted keypoints' eigenvalues 

 
4.3 3D structure tensor analysis: the normalized distributions case 
Thus, instead of studying the distribution of each eigenvalue class individually, we now 
focus on the relative ratios of the eigenvalues. The idea is to count on the interactions 
between the three eigenvalues. 
For our analysis, we define the following two types of ratios: 

1. Middle-to-Large / Small-to-Large; that is the middle eigenvalue normalized by 
the large one, related to the small eigenvalue normalized by the large one. In 
other words, we look for cases were both middle and small eigenvalues are close 
to large ones, translated to three relatively large eigenvalues. From now on, we 
refer to this ratio as ML / SL. 

2. Small-to-Middle / Small-to-Large; that is the small eigenvalue normalized by the 
middle one, related to the small eigenvalue normalized by the large on. In other 
words, we look for cases where the small eigenvalues are close to the middle 
ones, and at the same time the small to be close to the large ones. Thus, also 
the middle to be relatively close to large ones, resulting to three relatively high 
eigenvalues. From now on, we refer to this ratio as SM / SL. 

We compute the aforementioned ratios of the eigenvalues, and again we apply a KDE 
on our data, in order to estimate their density. An example of the resulting plots for the 
two ratio types is depicted in Figure 11 and Figure 12 respectively. The green area cor-
responds to the KDE over the corresponding ratios. It is reasonable to say that, for both 
cases, we expect that the desired keypoints should present values that tend to be to-
wards the upper-right corner of the plots, since both of the ratios should be close to 1.  
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Figure 11: Density of the eigenvalue's ratios for ML / SL (1tyq_chainA, resolution=7, on a 3x3x3 

neighborhood, and σ=2) 

 

 

 
Figure 12: Density of the eigenvalue's ratios for SM / SL (1tyq_chainA, Resolution=7, on a 3x3x3 

neighborhood, and σ=2) 

 
Compared to the individual distribution case described in the previous section, we have 
a clearer image on how the three eigenvalues are related. Unfortunately, the problem of 
identifying the proper threshold point for keeping the desired keypoints still remains, 
since the position of the solutions (desired keypoints – known to lead to solution) is 
again mixed with many false positives. 
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4.4 Threshold selection 
Thus, the next and most important step, is to choose a global threshold point based on 
the ratios of the eigenvalues we described before. It is not obvious how to select this 
point, since it highly depends on the protein's structure, the ratio type, and of course the 
parameters we use. For this reason, we should base the choice of the threshold on the 
statistics of the eigenvalue ratios. Since we fit a KDE on our data, we can exploit the 
statistics it provides, and specifically, we can make use of the covariance error ellipses. 
 

4.4.1 Covariance Error Ellipses 

A covariance error ellipse represents an iso-contour of the Gaussian distribution, and 
visualizes a confidence interval on a 2D space. The confidence interval refers to a re-
gion that contains a specific percentage of all samples drawn from a Gaussian distribu-
tion; if a set of measurements were repeated many times and a confidence interval cal-
culated in the same way on each set of measurements, then a certain percentage of the 
time this interval would include the point representing the "true" values of the set of var-
iables being estimated. The construction of an ellipse is based on the eigenvectors and 
the eigenvalues of the covariance matrix of a multivariate Gaussian distribution. For the 
case of two variables, the first principal component of the covariance matrix explains the 
"most variance", while the second one fits the errors produced by the first. Thus, for a 
given confidence interval, the scale s of the ellipse is given using the Chi-Square proba-
bility table, and the half major/minor axes lengths are obtained as 

!"#$  

!"#$ 
  
An example of the error ellipses under different confidence intervals is shown in Figure 
13. 

 
Figure 13: An example of error ellipses and the corresponding confidence intervals. The image is 

taken from [28]. 

 
In our implementation, we compute the covariance matrix of the KDE over the ratios, 
and extract the corresponding eigenvalues and eigenvectors. In general, 4 types of er-
ror ellipses can occur, depending on the directions of the eigenvectors. Based on each 
case, the threshold point is defined either by (a) the maximum value of the KDE or (b) 
the mean value of the eigenvalues’ ratios. Then, we move this point along the direction 
of the eigenvector, in such a way to retain the values that tend to grow towards the up-
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per right corner of the ratio plot – either in the direction of the major or the minor axis, 
dependent on the orientation of the ellipse. Obviously, since how far you can go along 
the axes of the ellipse depends on the specified confidence interval, the threshold point 
must be adjusted appropriately. In other words, two more parameters that we should 
consider for the computation of the threshold is whether we choose (a) or (b), and the 
confidence interval. The 4 different types of error ellipses, with the corresponding confi-
dence intervals and the threshold points are depicted in Figure 14. 
 

 
 
 
  

 
 

(a) 

 
 
 

 
   

(b) 

 

 

 
 

(c) 

 
 

 

 

 
 
 

(d) 

Figure 14: Different types of ellipses and threshold points in the direction of the KDE’s covariance 
matrix’s eigenvectors, that we chose for our method 

 

4.4.2 Combining the resolutions 

One important thing to note again here, is the resolution, which in structure determina-
tions, is the distance corresponding to the smallest observable feature; if two objects 
are closer than this distance, they appear as one combined blob rather than two sepa-
rate objects. In other words, higher numeric values of resolution mean poorer level of 
detail, and thus fewer local extrema. 
Since the aforementioned error ellipses are based on the covariance matrix of the rati-
os, and thus on the ratio data themselves, which in turn are related to the extracted 
keypoints, then for lower resolutions we will not have enough points to fit the KDE. As a 
consequence, in some structures we don’t have enough points to justify doing KDE on 
them. 
To avoid this situation, we choose to reverse the procedure of our approach and deter-
mine the appropriate threshold points as follows: 
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1. For every structure individually, for every parameter combination (LoG, neighbor-
hood size, sigma, eigenvalue ratio type, ellipse center) we extract the keypoints for 
each resolution independently, and we combine them to one big set of keypoints 
that were extracted. In this way, we manage to have the full picture of a structure 
under any resolution. 
The idea that we were based on to proceed in this way, apart from the keypoints’ 
deficiency in some cases as mentioned before, is the fact that cryo-EM maps are 
usually ‘composite’ in terms of resolution. This means that in a single cryo-EM 
map, there are regions with higher and regions with lower resolution, depending 
on the quality of the map in these regions. 

2. For these keypoints we fit the KDE on the ratios of their eigenvalues, and compute 
the corresponding ellipses for the different confidence intervals. 

3. Based on the type of the ellipses and their center, we specify the threshold points 
(that correspond to specific confidence intervals and specific ellipse center), in or-
der to re-apply them on each resolution independently.  

An example of how the obtained threshold points (under every resolution) are applied to 
each individual resolution is depicted in Figure 15. 
The aforementioned procedure, for a specific structure, and for a specific parameter 
combination, will result in specific threshold points. As a next step, we will set up a big 
experiment, where for every structure, for every parameter combination, we will apply 
these threshold points to each resolution independently, so that eventually we can se-
lect the parameter configuration that detects the most stable keypoints that lead to a 
more accurate prediction. 

 
(a) Resolution 7 
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(b) Resolution 10 

 

 
(c) Resolution 15 
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(d) Resolution 20 

 
Figure 15: Applying on each individual resolution the threshold points that were obtained by 

combining all resolutions. The different threshold points are adjusted to the specified confidence 
intervals. The ellipses that are shown come from the ratios of the eigenvalues of the extracted 

keypoints after combining all resolutions. 
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5. EXPERIMENTAL RESULTS 

5.1 Setup 
We benchmark the proposed method for the complexes with pdb names {1CS4, 1E6V, 
1GTE, 1TYQ, 1URZ, 1Z5S, 2BO9, 2GC7, 7CAT} and their corresponding subunits, as 
shown in Figure 16. Regarding the parameters, their type and their values are shown in 
Table 1. As for the experiment, first, for each structure and for each parameter combina-
tion, we extract the keypoints for each resolution, we combine these keypoints together, 
and we compute the threshold points on this combined set. Then, we repeat the same 
experiment, but now on each individual resolution, and we do not determine any new 
threshold points, but we apply the already obtained ones. In other words, we define the 
threshold points over all resolutions, and we apply them to individual resolutions after-
wards.  
 
 
a 

 

b 

 

c 

 

d 

 

e 

 
f 

 

g 

 

h 

 

i 

 

 

Figure 16: The protein assemblies we use to benchmark our method: (a)1cs4, (b)1e6v, (c)1gte, 
(d)1tyq, (e)1urz, (f)1z5s, (g)2bo9, (h)2gc7, (i)7cat 
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Table 1: The parameters and their corresponding values 

Parameter Parameter Value 

Neighborhood 
size 

• 3x3x3 

• 5x5x5 

Gaussian 
sigma (window) 

• 1.0 

• 1.5 

• 2.0 

• 2.5 

Eigenvalues' ratio 
• M/L-to-S/L 

• S/M-to-S/L 

Confidence inter-
val 

• [5, 50]: direction of the eigenvector of the KDE’s covariance 
matrix  

• 0: threshold point at the center of the ellipse 

• [-15, 5]: opposite direction of the eigenvector of the KDE’s co-
variance matrix  

Ellipse center 
• Maximum value of Kernel 

• Mean value of the eigenvalues’ ratios 

 
Let the following be: 

• N: the total number of local extrema. 

• FP: the total number of local extrema that are false positives. 

• TP: the total number of local extrema that are true positives. 

• FPT: the number of false positives that were thresholded 

• TPT: the number of true positives that were thresholded 

• NT: the number of total keypoints that were thresholded 
Our goal is to keep only these sets of parameters that retain most of the keypoints that 
lead to correct assembly prediction, and discard most of the false positives, for every 
structure, and for every resolution. To determine this, we define three metrics that are 
based on the ratio of the keypoints that were thresholded: 

!"#" =
%"
% :	the percentage of thresholded keypoints 

  

!"# =
%"#&
'( : the percentage of thresholded false positives 

  

!"# =
%"#&
!' : the percentage of thresholded true positives 
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It is obvious that higher TFP and lower TTP at the same time lead to a better solution. 
Based on these metrics, if P denotes the set of all the parameter combinations, we are 
looking for a solution to the problem: 

!"#$ ! ∈ ! !"#ℎ !ℎ!": 
max
!
!!"

!" > 0
min
!
!!!

	
 

 
5.2 Results 

5.2.1 Post-processing 

Once we obtain the results, we apply a first post-processing step in order to remove 
some parameter combinations that do not provide solutions. This is done by determin-
ing for which parameters, all of the true positives were discarded, since the minimum 
requirement is a combination to provide at least one true positive. The reason is that 
even one true positive might be enough for hetAP to make a correct assembly predic-
tion, due to the final step of the software, where it searches in a greedy way a perfect 
match for the descriptors. In addition, we apply a second post-processing step which 
has to deal with the resolutions. We keep only those parameter combinations that retain 
at least one true positive, for every applicable resolution. In this way, we ensure that re-
gardless of the resolution, the remaining parameter sets will always provide solutions. 
Thus, the final number of parameter combinations is 415, from the initial 448. 
 

5.2.2 General analysis 

We first make a general analysis on the discarded keypoints.  
1. For each combination of the Gaussian sigma, the neighborhood, the ratio type, 

the ellipse center and the confidence interval. 
2. For all structures, regardless of the resolution 
3. Collect TTOT, TFP, TTP 

As a result, for every possible parameter combination, we will have a collection of these 
three percentages, which per triples will correspond to each structure. The distribution 
of the minimum, the maximum, and the median values of the percentages of every pa-
rameter combination, for each collection is shown in Figure 17, Figure 18, and Figure 19 
respectively. 



Structure tensor analysis on proteins: efficient feature extraction for heteromultimeric assembly prediction 
 

M. Rapti   39 
 

 
Figure 17: Minima, median and maxima values of every parameter combination, for the TTOT 

 
In Figure 17, we observe that the median values range between 40% and 80%, while 
the minimum values go up to 60%. This behavior indicates that our method filters out 
most of the computed keypoints, which was one of our basic goals; to reduce the huge 
amount of extracted keypoints. In other words, there are parameter combinations that 
discard at least 60% of the keypoints. However, although this is the overall behavior of 
our method, we need to also study how both the true and the false positives are han-
dled. 

 
Figure 18: Minima, median and maxima values of every parameter combination, for the TFP 
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We continue our analysis for the case of the thresholded false positives. As shown in 
Figure 18, the median values are quite high, ranging from 40% to 85%, while the mini-
mum value reaches again up to 60%. What is quite interesting is that for every parame-
ter combination set (Gaussian sigma, neighborhood, ratio type, ellipse center, confi-
dence interval), there exist structures, such that 100% of the false positives are discard-
ed. 

 
Figure 19: Minima, median and maxima values of every parameter combination, for the TTP 

 
We conclude our general analysis with the distribution of the thresholded true positives, 
as shown in Figure 19. The behavior is quite different compared to the thresholded false 
positives. Although the median values range from 40% to 80%, most of them are con-
centrated around 60%. What is significant and most important to note, is the fact that 
although the minimum might reach up to 40%, most of its regions are flat, with the big-
gest part being zero. Finally, we observe that due to the post-processing we mentioned 
before, we guarantee that the used parameters will always retain some true positives 
(maximum is never 100%). 
From this general analysis, we can safely say that our method satisfies our goal, since 
indeed discards most of the false positives, and removes 60% of the true positives in 
average. Thus, our method removes a big number of keypoints, while still keeping solu-
tions. As a next step, we need to go a bit deeper and try to specify the exact set of pa-
rameters that leads to the best solution. 
 

5.2.3 Parameter-specific analysis 

We now want to control the parameters in a way that will allow us to compare between 
the different combinations of the neighborhood, the ratio type and the ellipse center, in 
order to specify the best combination. Note that we do not consider the Gaussian sigma 
and the confidence interval, since these two parameters have a wider range of values 
that can take. 
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To do so, we will study the box-plots of the distributions of the minimum, maximum, and 
median percentages for all the thresholding cases (TTOT, TFP, TTP), but we will now try to 
fix the parameters one at a time. 
Figure 20 shows the box-plots for the TTOT percentage. We first focus on the choice of 
the neighborhood. Although the difference between them is not quite significant, we 
choose arbitrarily the 3x3x3 neighborhood because it is faster to compute, for equal re-
sults. 

 
Figure 20: Minima, median and maxima values for the percentage of the discarded keypoints, un-

der fixed parameter combinations 

 
Concerning the other two parameters (ratio type and ellipse center), it is obvious that 
the choice of SM / SL and the mean value of the eigenvalues’ ratios as the center of the 
ellipses, give a higher removal percentage, since it provides the highest minimum, while 
the median (~80%) is almost equal to the one obtained by the SL / ML. Thus, based on 
the values of TTOT, the best parameter combination is: 

• Neighborhood: 3x3x3 

• Ratio type: SM / SL 

• Ellipse center: Mean value of the eigenvalues’ ratios  
In order to ensure that this set is actually the best, we proceed to the box-plot of the 
thresholded false positives percentage, which is depicted in Figure 21. We can easily 
observe that the minimal removal of keypoints goes again up to 60%, and in some cas-
es, we even have 100% of maximum removal. This means that there exist parameter 
sets that remove all the false positives, and retain only stable keypoints. Thus, the set 
that gives the best solutions for the TFP is consistent with the best set of the TTOT. 
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Figure 21: Minima, median and maxima values for the percentage of the discarded false positives, 

under fixed parameter combinations 

 
Finally, we must study the behavior of this parameter set with respect to the percentage 
of true positives being removed, as shown in Figure 22. In this case, we would like pa-
rameters that keep most of the keypoints. The previous set of parameters is now the 
one discarding most of the true positives, while still keeping some of them (maximum 
removal is never 100%). Thus, the best set now seems to be the: 

• Neighborhood: 3x3x3 

• Raito type: SL / ML 

• Ellipse center: Max value of KDE 
If we go back to the previous plots, we can easily see that this exact set is one of the 
sets that keep most of the false positives, as well. In other words, there is not a unique 
set that maximizes the percentage of discarded false positives, and at the same time 
minimizes the percentage of discarded true positives. In fact, we have two different set 
of parameters that cause this trade-off, and the final step is to make a further compari-
son between them, in order to determine which one to select. 
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Figure 22: Minima, median and maxima values for the percentage of the discarded true positives, 

under fixed parameter combinations 

 

5.2.4 Parameter comparison and selection 

The parameter set {3x3x3, SM / SL, mean} results in high percentage of keypoints’ re-
moval for both false and true positives – 100% removal in some cases – while still hav-
ing solutions. SM / SL in this case seems to filter out more keypoints, along with the 
choice of the mean value of the eigenvalues’ ratios as the ellipse center, which is also 
more exclusive than taking the max value of the KDE. 
On the other hand, the set {3x3x3, SL / ML, max} results in a lower percentage of key-
points’ removal, even in the case of false positives. SL / ML seems to be more con-
servative in terms of discarding keypoints, which comes from the fact that the points in 
the ratio plots of the eigenvalues are distributed in a vertical way, and combined with the 
choice of threshold points on the ellipses, it does not allow an extreme thresholding. 
The max value of the KDE also supports this soft thresholding, as it is more inclusive 
than the mean value of the eigenvalues’ ratios. 
In both cases, we observe that the neighborhood of 3x3x3 results in better solutions, 
which leads us to the conclusion that it is more reasonable to consider the information 
that a smaller neighborhood provides, rather than considering more neighboring voxels’ 
gradient information. 
We decide that the first parameter set {3x3x3, SM / SL, mean} is the best for our case, 
as we efficiently diminish the number of the keypoints (false and true positives), while at 
the same time, manage to retain solutions. Recall that the minimum requirement we 
want is a combination to provide at least one true positive.  
Finally, for this set, we wanted to check if there are confidence intervals that are more 
likely to appear. We observed that in most of the cases, the confidence interval is 35%, 
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and in general the value range is between 30% and 40%.  We could not draw any con-
clusion about the Gaussian sigma choice. 
 

5.2.5 Structural specificity 

As an additional notice, we observed that regardless the parameters, there are three 
structures for which we cannot find solutions: 

• 2GC7_chainB 

• 2GC7_chainF 

• 1Z5S 
If we take a look at their secondary structures (Figure 23), 2GC7_chainB and 
2GC7_chainF are mostly globular and of constant density, whereas 1Z5S is a single coil 
with no much secondary structure. We conclude that these are three cases with an un-
trustworthy density profile in general, and that we expect that the solutions found will be 
less or even zero. 
 
a 

 

b 

 
Figure 23: Secondary structures of the three aforementioned proteins: (a)2gc7 [B,F], (b)1z5s [A] 

 

5.2.6 Computational complexity 

Finally, we would like to provide a qualitative analysis on the effect our method in terms 
of computational complexity. To understand the order of the impact, we provide the fol-
lowing example:  
Recall that hetAP takes every subunit iteratively and tries to "match" its descriptors with 
the descriptors of the complex in a greedy way, so as to localize the subunit within its 
complex. Thus, let us say that we have 102 subunit descriptors and 103 complex de-
scriptors. Then, hetAP will have to apply 105 comparisons, in order to match the former 
with the latter. Now, that we have chosen the best parameter set, we have 80% key-
point removal, which means only 4x103 comparisons to make. In other words, we can 
reduce the theoretical computational time in hetAP by 96%. 
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6. CONCLUSIONS AND FUTURE WORK 

In this work, we explained the importance of the multimers' structure for the definition of 
their function. We focused on hetAP software’s vulnerabilities, and integrated a method 
for filtering the extracted keypoints, in order to retain the most stable ones; that is the 
ones that will lead to correct assembly prediction. Our method extends the Harris corner 
detection to the 3D space, and uses a structure tensor analysis to discard the unwanted 
keypoints. We benchmark a set of different parameters, and specify the proper thresh-
olds based on the statistics of the structure tensor, and select this parameter set that is 
more likely to lead to correct assembly prediction. The proposed method is accurate, 
computationally efficient, and generalizes across different protein structures, regardless 
of their resolution. However, we observed that some structures do not apply to our 
method, and we did a preliminary analysis on their secondary structure.  
As a next step, we aim to study how all the extracted keypoints of our method hold over 
the conformational changes, by taking advantage of Molecular Dynamics. In more de-
tails, each system (atoms and molecules) evolves dynamically; it consists of trajectories 
defining the position of each atom or molecule, at a specific moment (momentum). 
However, the high-dimensionality of such systems requires ways to reduce the big 
number of the produced trajectories. Thus, we can make use of clustering methods so 
as to group the trajectories, and find one representative for each cluster. Then, for each 
representative we will extract and filter – with the proposed method – the keypoints, and 
we will compare them with the keypoints of the other representatives. These keypoints 
that are consistently present in each cluster - and that are already known to lead to cor-
rect assembly prediction – will be the ones that alone can characterize a specific struc-
ture, regardless of its different conformational states. 
Furthermore, we will focus on the computation of parameters that are structure, and 
secondary structure specific (i.e. parameters for a structure that consist of β-sheets or 
loops, or for a coiled coil protein where α-helices are coiled together etc.). Moreover, 
current progress in cryo-EM, can determine structures in high resolution (<5 Å), result-
ing to an increment of the quality and the size of the data. As a result, the number of 
features that need to be considered for localizing the subunits into their macromolecular 
assemblies, becomes quite large. For this reason, it is of great importance to find meth-
ods for reducing this large number of features, in order to accomplish faster and more 
effective localization. 
Finally, in the sense of a general machine learning framework, it is worth studying the 
adoption of machine learning techniques for extracting stable keypoints. We might be 
able to train a system with the data used in our method, where the corresponding tar-
gets (stable keypoints) will be based on the obtained results of our method, in order to 
predict/detect the most stable keypoints that might lead to correct assembly prediction. 
From a different point of view, another use of machine learning could be towards the 
parameter estimation; using the data and the results from our method, we can train a 
system for estimating the best set of parameters that should be plugged in our method, 
in order to lead to more stable keypoints. 
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ABBREVIATIONS – ACRONYMS 

MD Molecular Dynamics 

IM Integrative Modeling 

STA Structure tensor Analysis 

cryo-EM cryo-Electron Microscopy 

cryo-ET cryo-Electron Tomography 

NMR Nuclear Magnetic Resonance 

SAXS Small-Angle X-ray Scattering 

hetAP heteromultimeric Assembly Prediction 

SSD Sum of Squared Differences 

SM Small-to-Middle 

SL Small-to-Large 

ML Middle-to-Large 

KDE Kernel Density Estimation 
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