
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Distributed and Streaming Graph Processing Techniques

Panagiotis N. Liakos

ATHENS

JUNE 2018





ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Τεχνικές Επεξεργασίας Κατανεμημένων Γράφων και
Ρευμάτων Γράφων

Παναγιώτης Ν. Λιάκος

ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2018





PhD THESIS

Distributed and Streaming Graph Processing Techniques

Panagiotis N. Liakos

SUPERVISOR: Alex Delis, Professor NKUA

THREE-MEMBER ADVISORY COMMITTEE:
Alex Delis, Professor NKUA
Mema Roussopoulos, Associate Professor NKUA
Alexandros Ntoulas, Assistant Professor NKUA

SEVEN-MEMBER EXAMINATION COMMITTEE

Alex Delis, Mema Roussopoulos,
Professor NKUA Associate Professor NKUA

Alexandros Ntoulas, Dimitris Gunopoulos,
Assistant Professor NKUA Professor NKUA

Yiannis Ioannidis, Antonios Deligiannakis,
Professor NKUA Associate Professor TUC

Yiannis Kotidis,
Associate Professor AUEB

Examination Date: June 15, 2018





ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Τεχνικές Επεξεργασίας Κατανεμημένων Γράφων και Ρευμάτων Γράφων

Παναγιώτης Ν. Λιάκος

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Αλέξιος Δελής, Καθηγητής ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Αλέξιος Δελής, Καθηγητής ΕΚΠΑ
Μέμα Ρουσσοπούλου, Αναπληρώτρια Καθηγήτρια ΕΚΠΑ
Αλέξανδρος Ντούλας, Επίκουρος Καθηγητής ΕΚΠΑ

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Αλέξιος Δελής, Μέμα Ρουσσοπούλου,

Καθηγητής ΕΚΠΑ Αναπληρώτρια Καθηγήτρια
ΕΚΠΑ

Αλέξανδρος Ντούλας, Δημήτρης Γουνόπουλος,
Επίκουρος Καθηγητής ΕΚΠΑ Καθηγητής ΕΚΠΑ

Γιάννης Ιωαννίδης, Αντώνιος Δεληγιαννάκης,

Καθηγητής ΕΚΠΑ Αναπληρωτής Καθηγητής
Πολυτεχνείου Κρήτης

Γιάννης Κοτίδης,
Αναπληρωτής Καθηγητής ΟΠΑ

Ημερομηνία Εξέτασης: 15 Ιουνίου 2018





ABSTRACT

Beneath most complex systems playing a vital role in our daily lives lie intricate networks.
Such real-world networks are routinely represented using graphs. The volume of graph
data produced in today’s interlinked world allows for realizing numerous fascinating appli-
cations but also posses important challenges. Consider for example the friendship graph
of a social networking site and the findings we can come up with when executing net-
work algorithms, such as community detection, on this graph. However, the volume that
real-world networks reach oftentimes makes even the execution of fundamental graph
algorithms infeasible when following traditional techniques.

In this thesis we focus on two directions that allow for handling large scale networks,
namely distributed graph processing, and streaming graph algorithms. In this context,
we first provide contributions with regard to memory usage of distributed graph process-
ing systems by extending the available structures of a contemporary such system with
memory-optimized representations. Then, we focus on the task of community detection
and propose i) a local algorithm that reveals the community structure of a vertex and easily
facilitates distributed execution and ii) a streaming algorithm that greatly outperforms non-
streaming state-of-the-art approaches with respect to both execution time and memory
usage. In addition, we propose a streaming sampling technique that allows for captur-
ing the interesting part of an unmanageable volume of data produced by social activity.
Finally, we exploit the available data of a popular social networking site to empirically
investigate a well-studied opinion formation model, using a distributed algorithm.

SUBJECT AREA: Graph mining

KEYWORDS: Distributed graph processing, streaming graphs, graph compression, com-
munity detection, opinion formation.





ΠΕΡΙΛΗΨΗ

Κάτω από τα περισσότερα σύνθετα συστήματα που διαδραματίζουν έναν κομβικό ρόλο
στην καθημερινή μας ζωή κρύβονται περίπλοκα δίκτυα. Τέτοια δίκτυα πραγματικού κό-
σμου μοντελοποιούνται συχνά με τη χρήση γράφων. Ο μεγάλος όγκος των γράφων
που παράγονται στο σημερινό διασυνδεδεμένο κόσμο επιτρέπει την πραγματοποίηση
πολυάριθμων συναρπαστικών εφαρμογών αλλά και εγείρει σημαντικές προκλήσεις. Ανα-
λογιστείτε για παράδειγμα το γράφο φιλίας ενός ιστοχώρου κοινωνικής δικτύωσης και τα
ευρήματα στα οποία μπορούμε να φτάσουμε αν εκτελέσουμε αλγορίθμους δικτύων, όπως
η ανίχνευση κοινοτήτων, στο γράφο αυτό. Εντούτοις, ο όγκος τον οποίο αγγίζουν τα δίκτυα
πραγματικού κόσμου συχνά καθιστούν την εκτέλεση ακόμη και θεμελιωδών αλγορίθμων
γράφων αδύνατη όταν ακολουθούνται παραδοσιακές προσεγγίσεις.

Στην παρούσα διατριβή εστιάζουμε σε δύο κατευθύνσεις που επιτρέπουν τον χειρισμό
δικτύων μεγάλης κλίμακας και συγκεκριμένα την κατανεμημένη επεξεργασία γράφων και
τους αλγορίθμους ρευμάτων γράφων. Σε αυτό το πλαίσιο αρχικά συνεισφέρουμε όσον
αφορά στη χρήση μνήμης των κατανεμημένων συστημάτων επεξεργασίας γράφων, επε-
κτείνοντας τις υπάρχουσες δομές ενός τέτοιου σύγχρονου συστήματος με συμπαγείς ανα-
παραστάσεις. Έπειτα, επικεντρωνόμαστε στο πρόβλημα της ανίχνευσης κοινοτήτων και
προτείνουμε α) έναν τοπικό αλγόριθμο που αποκαλύπτει τη δομή κοινοτήτων γύρω από
έναν κόμβο κι ο οποίος δύναται εύκολα να εκτελεστεί σε κατανεμημένο περιβάλλον και
β) έναν αλγόριθμο ρευμάτων γράφων ο οποίος υπερκερά σημαντικά προσεγγίσεις τεχνο-
λογίας αιχμής που χρησιμοποιούν ολόκληρο το γράφο, τόσο σε χρόνο εκτέλεσης όσο και
σε χρήση μνήμης. Επιπρόσθετα, προτείνουμε μια τεχνική δειγματοληψίας που επιτρέπει
την ανάκτηση του ενδιαφέροντος κομματιού ενός ρεύματος κοινωνικής δραστηριότητας
που η εξ ολοκλήρου διαχείρισή του είναι αδύνατη εξαιτίας του όγκου του. Τέλος, εκμε-
ταλλευόμαστε τα διαθέσιμα δεδομένα ενός δημοφιλούς ιστοχώρου κοινωνικής δικτύωσης
ώστε να αξιολογήσουμε εμπειρικά ένα ευρέως διαδεδομένο μοντέλο διαμόρφωσης γνώ-
μης, χρησιμοποιώντας έναν κατανεμημένο αλγόριθμο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Εξόρυξη γράφων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Κατανεμημένη επεξεργασία γράφων, ρεύματα γράφων, συμπίεση γρά-
φων, ανίχνευση κοινοτήτων, διαμόρφωση γνώμης.





ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Η παρούσα διδακτορική διατριβή έχει τον τίτλο “Τεχνικές Επεξεργασίας Κατανεμημένων
Γράφων και Ρευμάτων Γράφων (Distributed and Streaming Graph Processing Techni-
ques)” και επικεντρώνεται στη θεματική περιοχή της μελέτης τεχνικών για αποτελεσματική
επεξεργασία γράφων σε κατανεμημένα περιβάλλοντα και συστήματα ρευμάτων. Σκοπός
της συγκεκριμένης διατριβής είναι να διευκολύνει το χειρισμό γράφων που αναπαριστούν
δίκτυα μεγάλης κλίμακας και να προτείνει και μελετήσει τεχνικές ανάλυσής τους.

Αρχικά, επικεντρωνόμαστε στις αναπαραστάσεις που χρησιμοποιούν σύγχρονα κατανε-
μημένα συστήματα επεξεργασίας γράφων και προτείνουμε καινοτόμες συμπαγείς δομές
με χρήση τεχνικών συμπίεσης. Οι δομές αυτές διευκολύνουν την εκτέλεση οποιουδήποτε
αλγορίθμου, μειώνοντας τις απαιτήσεις του σε μνήμη. Έπειτα, προτείνουμε λύσεις σε
καίρια σχετικά προβλήματα, όπως η ανίχνευση κοινοτήτων, η δειγματοληψία κοινωνικής
δραστηριότητας και η διαμόρφωση γνώμης σε κοινωνικά πλαίσια. Οι λύσεις αυτές βρί-
σκουν εφαρμογή σε κατανεμημένα περιβάλλοντα ή σε συστήματα ρευμάτων κι έτσι προ-
σφέρονται για το χειρισμό δικτύων μεγάλης κλίμακας.

Πιο συγκεκριμένα, η παρούσα διδακτορική διατριβή εξετάζει τα εξής πέντε θέματα:

Βελτιστοποίηση της χρήσης μνήμης των κατανεμημένων συστημάτων επεξεργα-
σίας γράφων: Μια πληθώρα εφαρμογών χρησιμοποιεί ευρέως δεδομένα γράφων, το
μέγεθος των οποίων φαίνεται να αυξάνει αδιάκοπα. Η τάση αυτή προκάλεσε την ανάπτυξη
πλήθους κατανεμημένων συστημάτων επεξεργασίας γράφων μεταξύ των οποίων τα Pre-
gel, Apache Giraph και GraphX.

Το μοντέλο Pregel καθιστά ευκολότερη την υλοποίηση κατανεμημένων αλγορίθμων και τα
παραπάνω συστήματα που το υιοθετούν επιτρέπουν την εκτέλεση των αλγορίθμων αυτών
πάνω σε δίκτυα μεγάλης κλίμακας, χρησιμοποιώντας συστάδες φθηνών υπολογιστικών
κόμβων. Παρόλα αυτά, η άνευ προηγουμένου κλίμακα στην οποία φθάνουν πλέον οι
γράφοι πραγματικού κόσμου, δυσχεραίνει την επεξεργασία τους ακόμη και σε κατανεμη-
μένο περιβάλλον εξαιτίας των υπερβολικών απαιτήσεων μνήμης. Συνεπώς, η αναπαρά-
σταση στη μνήμη αναδύεται ως πρωταρχικό μέλημα και στην κατανεμημένη επεξεργασία
γράφων. Πιο συγκεκριμένα, τα σύγχρονα κατανεμημένα συστήματα επεξεργασίας γρά-
φων χρησιμοποιούν δαπανηρές αναπαραστάσεις λιστών γειτνίασης, δίχως να εκμεταλ-
λεύονται τεχνικές συμπίεσης που έχουν μελετηθεί στο ευρύτερο πεδίο της επεξεργασίας
γράφων. Επιπλέον, ορισμένες αβλεψίες στις λεπτομέρειες υλοποίησης των αναπαραστά-
σεων που χρησιμοποιούν τα συστήματα αυτά, αυξάνουν περαιτέρω τις απαιτήσεις τους
σε μνήμη.

Στην παρούσα εργασία αντιμετωπίζουμε τις παραπάνω προκλήσεις εκμεταλλευόμενοι
εμπειρικές ιδιότητες γράφων πραγματικού κόσμου. Συγκεκριμένα, προτείνουμε:

• τρεις συμπιεσμένες αναπαραστάσεις λιστών γειτνίασης μου μπορούν να εφαρμο-
στούν σε οποιοδήποτε κατανεμημένο σύστημα επεξεργασίας γράφων,



• μία συμπιεσμένη αναπαράσταση η οποία υποστηρίζει αποτελεσματικά γράφους με
βάρη στις ακμές τους και

• μια συμπαγή δενδρική αναπαράσταση γειτόνων που εκτελεί αποτελεσματικά προσ-
θαφαιρέσεις ακμών.

Οι συμπιεσμένες αναπαραστάσεις αφορούν πρωτότυπες τεχνικές συμπίεσης που μει-
ώνουν το κόστος αναπαράστασης χωρίς να επιβαρύνουν τα συστήματα επεξεργασίας
με επιπρόσθετα κόστη ανάκτησης των στοιχείων του γράφου, αλλά και γνωστές τεχνικές
στο πεδίο της συμπίεσης γράφων που δεν έχουν όμως δοκιμαστεί σε κατανεμημένο πε-
ριβάλλον.

Στην κατεύθυνση της υποστήριξης επεξεργασίας γράφων με βάρη στις ακμές τους, προ-
τείνουμε μια ακόμη καινοτόμα αναπαράσταση η οποία χρησιμοποιεί variable byte κώδικες.
Μάλιστα, η αναπαράσταση αυτή μπορεί να χρησιμοποιηθεί σε συνδυασμό με κάποιες από
τις συμπιεσμένες αναπαραστάσεις λιστών γειτνίασης προσφέροντας επιπλέον όφελος.

Τέλος, η δενδρική αναπαράσταση γειτόνων που προτείνουμε χρησιμοποιεί ένα Κόκκινο-
μαύρο δένδρο (Red-black tree) με το οποίο επιτυγχάνουμε σημαντικά οφέλη στην εξοικο-
νόμηση μνήμης σε σύγκριση με την προκαθορισμένη αναπαράσταση ενός ευρέως διαδε-
δομένου κατανεμημένου συστήματος επεξεργασίας γράφων που βασίζεται σε ένανπίνακα
κατακερματισμού (Hash table).

Η υλοποίηση όλων των αναπαραστάσεων μας έγινε επεκτείνοντας το Apache Giraph,
το οποίο χρησιμοποιούμε και στην πειραματική μας αξιολόγηση ώστε να εκτιμήσουμε τα
οφέλη που μπορούν να προσφέρουν σε ένα υπάρχον σύστημα οι τεχνικές μας. Εξετά-
ζουμε συνολικά την εκτέλεση τριών κατανεμημένων αλγορίθμων χρησιμοποιώντας δημό-
σια διαθέσιμους γράφους, το μέγεθος των οποίων φτάνει τις 2 δισ. ακμές. Τα ευρήματά
μας αφορούν τόσο τα οφέλη όσον αφορά στη χρήση μνήμης όσο και στο χρόνο εκτέλεσης
που επιτυγχάνουμε με χρήση των τεχνικών μας. Συγκεκριμένα, αρχικά δείχνουμε πως οι
προτεινόμενες αναπαραστάσεις μειώνουν τις απαιτήσεις σε μνήμη μέχρι και 5 φορές σε
σχέση με την τεχνολογία αιχμής. Παράλληλα, οι τεχνικές μας διατηρούν την αποτελεσμα-
τικότητα ασυμπίεστων δομών επιτυγχάνοντας ταχύτητες εκτέλεσης αντίστοιχες με αυτές
των αναπαραστάσεων που δεν χρησιμοποιούν συμπίεση. Τέλος, δείχνουμε πως οι προ-
τεινόμενες τεχνικές επιτρέπουν την εκτέλεση αλγορίθμων σε γράφους μεγάλης κλίμακας
σε ρυθμίσεις με τις οποίες σύγχρονες εναλλακτικές δομές αποτυγχάνουν λόγω περιορι-
σμένης διαθέσιμης μνήμης.

Τοπική ανίχνευση κοινοτήτων σε δίκτυα μεγάλης κλίμακας: Η αποκάλυψη της δο-
μής των κοινοτήτων ενός δικτύου είναι καίριας σημασίας για την καλύτερη κατανόηση της
σύνθετης φύσης του. Εντούτοις, το συνεχώς αυξανόμενο μέγεθος των γράφων πραγμα-
τικού κόσμου και η εξέλιξη της αντίληψης του τι αποτελεί κοινότητα καθιστούν το έργο της
ανίχνευσης κοινοτήτων ιδιαίτερα απαιτητικό.

Μια σχετική πρόκληση είναι η ανίχνευση των πιθανώς επικαλυπτόμενων κοινοτήτων ενός
κόμβου σε ένα γράφο μεγάλης κλίμακας, ένα πρόβλημα αρκετά συνηθισμένο στα σύγ-
χρονα κοινωνικά δίκτυα όπως το Facebook και το LinkedIn. Σε αυτή την εργασία προτεί-
νουμε μια κλιμακούμενη τοπική προσέγγιση ανίχνευσης κοινοτήτων για να ανιχνεύουμε



αποτελεσματικά τις κοινότητες συγκεκριμένων κόμβων σε ένα δίκτυο. Ο στόχος μας
είναι να αποκαλύψουμε τις ομάδες που σχηματίζονται γύρω από τους κόμβους (χρήστες)
αξιοποιώντας τις σχέσεις των διαφορετικών πλαισίων στα οποία δραστηριοποιούνται.

Οι τοπικές προσεγγίσεις ανίχνευσης κοινοτήτων δέχονται σαν είσοδο έναν κόμβο ή μια
μικρή ομάδα κόμβων και περιορίζουν το χώρο αναζήτησης σε ένα υπογράφο του οποίου
οι κόμβοι βρίσκονται τοπολογικά κοντά στην είσοδο αυτή, επιτυγχάνοντας έτσι αποτε-
λεσματικότητα και υψηλή απόδοση. Εμείς εστιάζουμε στην περίπτωση που η είσοδος
αποτελείται από έναν μόνο κόμβο. Η περίπτωση αυτή παρουσιάζει ιδιαίτερο ενδιαφέρον
καθώς συγκεντρώνει την προσοχή γύρω από ένα κόμβο όπως ακριβώς και τα περισσό-
τερα σύγχρονα κατανεμημένα συστήματα επεξεργασίας γράφων που υιοθετούν το μο-
ντέλο Pregel. Επομένως, η κατανεμημένη εκδοχή της επιτυγχάνεται ιδιαίτερα απλοϊκά.
Παράλληλα, η συγκεκριμένη περίπτωση είναι ενδιαφέρουσα γιατί προκαλεί προβλήματα
σε παλαιότερες προσεγγίσεις εξαιτίας της ύπαρξης επικαλυπτόμενων κοινοτήτων. Έχο-
ντας μόνο έναν κόμβο ως σημείο αναφοράς, οι προσεγγίσεις αυτές συχνά αδυνατούν να
ανιχνεύσουν τις επικαλυπτόμενες κοινότητες ως διακριτές αλλά αντιθέτως τις αναγνωρί-
ζουν συνολικά ως μία κοινότητα.

Ο αλγόριθμός μας, με όνομα LDLC, μετρά την ομοιότητα των ζευγαριών των συνδέσμων
στο γράφο καθώς και το βαθμό της συμμετοχής τους σε διαφορετικά πλαίσια. Για να το
πετύχει αυτό χρησιμοποιεί μία πρόσφατα προτεινόμενη μετρική διασποράς. Έπειτα, κα-
θορίζει τη σειρά με την οποία πρέπει να ομαδοποιηθούν οι σύνδεσμοι για να σχηματιστούν
οι κοινότητες ακολουθώντας ιεραρχική συσταδοποίηση. Η προσέγγισή μας είναι απαλλα-
γμένη από περιορισμούς που αντιμετώπιζαν προηγούμενες τεχνικές, όπως η ανάγκη για
πολλαπλούς κόμβους αρχικοποίησης μιας κοινότητας, ή η ανάγκη συγχώνευσης πολλα-
πλών επικαλυπτόμενων κοινοτήτων σε μία.

Στην πειραματική μας αξιολόγηση χρησιμοποιούμε πλήθος μεγάλης κλίμακας δικτύων
πραγματικού κόσμου που συνοδεύονται από κοινότητες αντικειμενικής αλήθειας (ground-
truth). Τα ευρήματά μας δείχνουν πως ο αλγόριθμος που προτείνουμε ξεπερνά σημαντικά
τις επιδόσεις μεθόδων τεχνολογίας αιχμής τόσο σε ακρίβεια όσο και σε αποτελεσματι-
κότητα. Επιπλέον, η μετρική διασποράς που χρησιμοποιούμε συντελεί στην παραγωγή
ιδιαίτερα αναλυτικών δενδρογραμμάτων τα οποία περιγράφουν λεπτομερώς τη δομή των
κοινοτήτων του κόμβου υπό εξέταση.

Ανίχνευση κοινοτήτων σε συστήματα ρευμάτων: Το πρόβλημα της ανίχνευσης κοινο-
τήτων συγκεντρώνει εξαιρετικό ενδιαφέρον και στο πλαίσιο των δικτύων που αναπαρίστα-
νται με τη χρήση ρευμάτων γράφων. Τέτοια ρεύματα επιτρέπουν το χειρισμό δικτύων η
αναπαράσταση των οποίων στην κύρια μνήμη είναι αδύνατη εξαιτίας του μεγέθους τους.

Σε αυτή την εργασία προτείνουμε έναν αλγόριθμο ανίχνευσης κοινοτήτων για ρεύματα
γράφων ο οποίος επεκτείνει μικρά σύνολα κόμβων σε κοινότητες. Θεωρούμε ως είσοδο
ένα πλήθος συνόλων κόμβων κάθε ένα από τα οποία περιγράφει μια κοινότητα που μας
ενδιαφέρει. Τα σύνολα αυτά πρέπει να επεκταθούν με τους κόμβους εκείνους που απο-
τελούν κομμάτι της αντίστοιχης κοινότητας. Θεωρούμε επίσης ένα ρεύμα από ακμές το
οποίο επεξεργαζόμαστε χωρίς να διατηρούμε στη μνήμη ολόκληρη τη δομή του αντίστοι-
χου γράφου. Αντιθέτως, διατηρούμε ελάχιστη πληροφορία σχετικά με τους κόμβους του



και τις κοινότητες που αναζητούμε. Συγκεκριμένα, πέρα από τις κοινότητες που σχη-
ματίζουμε καθώς επεξεργαζόμαστε το ρεύμα, διατηρούμε για κάθε κόμβο το πλήθος των
γειτόνων του, αλλά και μια μετρική που ορίζουμε και η οποία ποσοτικοποιεί την πιθανότητα
συμμετοχής του σε κάθε μία από τις κοινότητες που αναζητούμε.

Πέρα από την καινοτόμα προσέγγισή μας, αναπτύσσουμε μια τεχνική που βελτιώνει ση-
μαντικά την ακρίβεια του αλγορίθμου μας και προτείνουμε ένα νέο αλγόριθμο συστα-
δοποίησης που επιτρέπει την αυτόματη ανίχνευση του μεγέθους των κοινοτήτων που
αναζητούμε. Η πρώτη τεχνική φροντίζει ώστε οι κόμβοι που είναι περισσότερο εδραιωμέ-
νοι σε μια υπό σχηματισμό κοινότητα να ωθούν με μεγαλύτερη ισχύ τους γείτονές τους
στην κοινότητα αυτή, σε σχέση με τους λιγότερο εδραιωμένους κόμβους που επίσης
αποτελούν κομμάτι της κοινότητας. Με αυτόν τον τρόπο η εστίαση του αλγορίθμου δεν
απομακρύνεται από την κοινότητα που αναζητούμε. Επιπλέον, ο καινοτόμος αλγόριθμος
συσταδοποίησης που προτείνουμε χρησιμοποιεί την κατανομή των τιμών κάθε κόμβου
όσον αφορά τη μετρική μας για τη συμμετοχή του στην κοινότητα προς ανίχνευση ώστε
να αποφασίσει ποιοι κόμβοι δεν αποτελούν κομμάτι της κοινότητας.

Η πειραματική μας αξιολόγηση γίνεται σε ένα πλήθος μεγάλης κλίμακας δικτύων πραγμα-
τικού κόσμουπου συνοδεύονται από κοινότητες αντικειμενικής αλήθειας. Στην αξιολόγηση
αυτή δείχνουμε πως η προτεινόμενη προσέγγιση επιτυγχάνει ακρίβεια αντίστοιχη ή και
καλύτερη αυτής των μεθόδων τεχνολογίας αιχμής που λειτουργούν σε ολόκληρη τη δομή
του γράφου. Πέραν αυτού, τόσο ο χρόνος εκτέλεσης όσο και οι απαιτήσεις σε μνήμη που
επιτυγχάνουμε είναι πραγματικά αξιοσημείωτες. Τέλος, εξακριβώνουμε πειραματικά πως
οι δύο επιπρόσθετες τεχνικές που προτείνουμε για βελτίωση της ακρίβειας του αλγορίθμου
μας και αυτόματη ανίχνευση του μεγέθους των κοινοτήτωνπου αναζητούμε είναι εξαιρετικά
αποδοτικές.

Δυναμική δειγματοληψία ποιοτικού περιεχομένου σε ρεύματα κοινωνικής δραστη-
ριότητας: Ο τρομακτικός ρυθμός με τον οποίο παράγεται πληροφορία στις υπηρεσίες
κοινωνικής δικτύωσης φέρνει στην επιφάνεια σημαντικές προκλήσεις σε εφαρμογές όπως
η σύσταση περιεχομένου, η εξόρυξη γνώμης, η ανάλυση συναισθημάτων και η ανίχνευση
αναδυόμενων ειδήσεων. Η επεξεργασία ενός πλήρους ρεύματος δραστηριότητας ενός
κοινωνικού δικτύου σε πραγματικό χρόνο είναι συχνά απαγορευτική, τόσο σε κόστος
αποθήκευσης όσο και σε υπολογιστικό κόστος.

Μια πιθανή προσέγγιση επίλυσης αυτού του προβλήματος είναι η δειγματοληψία της δρα-
στηριότητας ώστε να χρησιμοποιηθεί μόνο το δείγμα ως είσοδος σε εφαρμογές όπως οι
προαναφερθείσες. Στην παρούσα εργασία μελετούμε το πρόβλημα της δειγματοληψίας
αναρτήσεων σε ένα ρεύμα δραστηριότητας ενός κοινωνικού δικτύου, οι οποίες ανήκουν
σε εκείνους τους χρήστες που είναι πιο πιθανό να αναρτούν πληροφορία με επιρροή.
Επομένως, μια σημαντική πρόκληση που καλούμαστε να αντιμετωπίσουμε είναι η ανί-
χνευση των χρηστών αυτών. Προγενέστερες προσεγγίσεις βασίζουν τη λειτουργία τους σε
στατικές λίστες εγκεκριμένων χρηστών, το περιεχόμενο των οποίων συμπεριλαμβάνεται
στο τελικό δείγμα. Η χρήση στατικών λιστών όμως καθιστά αδύνατη την προσαρμογή σε
εξελισσόμενες τάσεις στο ρεύμα της δραστηριότητας.

Για το λόγο αυτό προχωρήσαμε χτίζοντας σε μια μετρική που έχει προταθεί στη βιβλιο-



γραφία στα πλαίσια της εξόρυξης εξειδικευμένων χρηστών. Προσαρμόσαμε τη μετρική
κατάλληλα ώστε να βρίσκει εφαρμογή σε ένα ευρύ πεδίο κοινωνικών δικτύων, και τη
χρησιμοποιούμε δυναμικά, καθώς δηλαδή συλλέγουμε το δείγμα. Εξ’ όσων γνωρίζουμε,
η προσέγγισή μας είναι η πρώτη που προσαρμόζεται με το χρόνο ώστε να λαμβάνει
υπόψη της εξελισσόμενες τάσεις στο ρεύμα της δραστηριότητας. Έτσι, επιτυγχάνουμε
τη συλλογή υψηλής ποιότητας περιεχομένου από χρήστες τους οποίους εναλλακτικές
στατικές μέθοδοι αγνοούν.

Τα αποτελέσματα της αξιολόγησής μας πάνω σε δύο δημοφιλή κοινωνικά δίκτυα και έως
μισό δισ. αναρτήσεις δείχνουν πως η προσέγγισή μας υπερέχει έναντι προγενέστερων σε
ανάκληση και ακρίβεια, ενώ προσφέρει και σημαντικά ακριβέστερη σειρά κατάταξης των
αποτελεσμάτων.

Εμπειρική μελέτη των δυναμικών διαμόρφωσης γνώμης στα κοινωνικά δίκτυα: Η
διαμόρφωση γνώμης σε ένα κοινωνικό πλαίσιο είναι ένα πρόβλημα που έχει απασχολήσει
ευρέως την ερευνητική κοινότητα και ιδιαίτερα το πεδίο της κοινωνιολογίας. Στις μέρες
μας, κι εξαιτίας της δημοφιλίας των κοινωνικών δικτύων, ο όγκος της διαθέσιμης σχετικής
πληροφορίας είναι μεγαλύτερος από ποτέ. Μπορούμε συνεπώς να μελετήσουμε σε με-
γάλη κλίμακα τη συμπεριφορά των ανθρώπων και να αναλύσουμε μεταξύ άλλων τη δια-
δικασία της διαμόρφωσης γνώμης σε ένα κοινωνικό πλαίσιο.

Έχει παρατηρηθεί πως σε ένα κοινωνικό περιβάλλον οι άνθρωποι συχνά σχηματίζουν
τη γνώμη τους συναρτήσει της γνώμης των φίλων τους, σε μια προσπάθεια ίσως να
τονίσουν τις κοινές τους πεποιθήσεις. Χρησιμοποιώντας ένα δημοφιλές κοινωνικό δίκτυο,
αναλύουμε τη δραστηριότητα των χρηστών και καταλήγουμε πως η κοινωνική αλληλεπί-
δραση όντως επηρεάζει τη γνώμη των συμμετεχόντων. Στο πλαίσιο αυτό έχουν προταθεί
διάφορα μοντέλα που επιδιώκουν να συλλάβουν τη συμπεριφορά των χρηστών. Στην
παρούσα εργασία χρησιμοποιούμε ένα τέτοιο μοντέλο, που θεωρεί πως η γνώμη των
συμμετεχόντων καθορίζεται από τις γνώμες που εκφράζουν οι άνθρωποι με τους οποίους
έρχονται σε επαφή, χωρίς όμως οι συμμετέχοντες τελικά να εκφράζουν απαραίτητα την
ίδια γνώμη. Μοντελοποιώντας λοιπόν την αλληλεπίδραση των χρηστών με χρήση της
εργαλειοθήκης της θεωρίας παιγνίων και υλοποιώντας έναν κατανεμημένο αλγόριθμο που
εφαρμόζεται επαναληπτικά έως ότου οι γνώμες των χρηστών συγκλίνουν, δείχνουμε πως
καταλήγουμε σε σημεία ισορροπίας Nash που είναι ενδεικτικά της αληθινής συμπεριφοράς
των χρηστών.

Αποτελέσματα των παραπάνω ερευνητικών προσπαθειών δημοσιεύθηκαν στον πλέον
έγκριτο περιοδικό διαχείρισης δεδομένων (IEEE TKDE - [85]) και παρουσιάστηκαν σε
κορυφαία συνέδρια της ίδιας περιοχής (ACM CIKM 2016 - [84], IEEE Big Data 2016 &
2017 - [80, 81, 82], AAAI ICWSM 2016 - [83]) Η διατριβή χαρακτηρίζεται από πρωτοτυπία
και πληρότητα.





To my brother, mother & father.

For the Fat Lady.





ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my advisor, Prof. Alex Delis, for his continuous
guidance as well as for the pressure he put on me, that helped me keep my progress
on schedule. His faith in me has been extremely flattering, motivating and reassuring
and I will be forever indebted to him for the kind words he often shared with me. I am
also in debt to him for the many wonderful acquaintances I might not have made without
him, among which are the two other members of my advisory committee, Prof. Mema
Roussopoulos and Prof. Alexandros Ntoulas. I would like to offer my special thanks to
Prof. Mema Roussopoulos for her eagerness to help me and her overall mentality. I am
also particularly grateful for the many chances I had to collaborate with Prof. Alexandros
Ntoulas, who has provided me with brilliant ideas and enthusiastic encouragement.

Besides the members of my advisory committee, the following exceptional individuals
have played a vital role in my becoming a researcher. First and foremost, I would like
to express my very great appreciation to Dr. Katia Papakonstantinopoulou whose pure
love for research and passion for her work has pretty much defined my research mental-
ity. I am also grateful for the many times we have collaborated, as working with her has
been inspiring and has kept me constantly motivated to improve. I would also like to thank
Dr. Michael Sioutis for his useful critiques on my research as well as for creating a friendly
atmosphere between the members of my first office in the University of Athens, which
was at the time packed with extraordinary talented researchers. Dr. Nikos Leonardos has
provided me with advice that has been greatly appreciated. His words always are, as you
rarely encounter someone who is as brilliant and as humble. Finally, I wish to acknowl-
edge two colleagues that have helped me shape my work ethic: Katerina El Raheb, who
I look up to for her professionalism, integrity and talent, and Alexandros Antoniadis, who
questions everything in pursuit of his goals.

I sincerely hope that all of you “will think of me again someday”.



CONTENTS

1. INTRODUCTION 31
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2. MEMORY-OPTIMIZED DISTRIBUTED GRAPH PROCESSING 35
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Pregel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2 Apache Giraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.3 Properties of Real-World Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4 Codings for Graph Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Overview of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.1 Representations based on consecutive out-edges . . . . . . . . . . . . . . . . . . 44

2.3.1.1 BVEdges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1.2 IntervalResidualEdges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 IndexedBitArrayEdges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.3 VariableByteArrayWeights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.4 RedBlackTreeEdges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.2 Space Efficiency Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.3 Execution Time Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.3.1 PageRank Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.3.2 Shortest Paths Computation . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.3.3 Comparison using small-scale graphs . . . . . . . . . . . . . . . . . . . . . 55
2.4.3.4 Comparison using large-scale graphs . . . . . . . . . . . . . . . . . . . . . 56
2.4.3.5 Initialization time comparison . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.3.6 Comparison when using weighted graphs . . . . . . . . . . . . . . . . . . . 59
2.4.3.7 Comparison when performing mutations . . . . . . . . . . . . . . . . . . . . 60

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3. UNCOVERING LOCAL HIERARCHICAL LINK COMMUNITIES AT SCALE 63
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Egonet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



3.1.2 Tie Strength Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.2.1 Embeddedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.2.2 Jaccard similarity coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.2.3 Absolute and Recursive Dispersion . . . . . . . . . . . . . . . . . . . . . . 66

3.1.3 Partition Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.4 Networks in our Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Local Dispersion-aware Link Communities . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.1 Egonet Coverage Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Effective Detection of Local Hierarchical Overlapping Communities . . . . . . . . . . 69

3.2.2.1 Local hierarchical link communities . . . . . . . . . . . . . . . . . . . . . . 71
3.2.2.2 Building on dispersion-based measures . . . . . . . . . . . . . . . . . . . . 73

3.2.3 Our Proposed LDLC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.4 Reducing the Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.3 Evaluation via Ground-Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.4 Execution Time Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.5 Impact of Dispersion on the Resulting Hierarchical Community Structure . . . . . . . . 82
3.3.6 Impact of Sampling Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4. COMMUNITY DETECTION VIA SEED SET EXPANSION ON GRAPH STREAMS 89
4.1 Community Detection via Seed-Set Expansion on Graph Streams . . . . . . . . . . . . 91

4.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.2 Space complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.3 Our CoEuS Algorithm for Streaming Community Detection . . . . . . . . . . . . . . 94
4.1.4 Reckoning in edge quality w.r.t. each community . . . . . . . . . . . . . . . . . . . 96
4.1.5 Size of the community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.2 Impact of the Edge Quality Variation . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.3 Evaluation of Automatic Size Determination . . . . . . . . . . . . . . . . . . . . . 102
4.2.4 Comparison against state-of-the-art non-streaming local community detection algorithms 103

4.2.4.1 F1-score comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.4.2 Execution time and space efficiency comparison . . . . . . . . . . . . . . . . 104

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5. ADAPTIVELY SAMPLING AUTHORITATIVE CONTENT FROM SOCIAL AC-
TIVITY STREAMS 109

5.1 Identifying Authorities in Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.1.1 Network of Authorities from Social Activity . . . . . . . . . . . . . . . . . . . . . . 110
5.1.2 Ranking the Authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



5.1.3 Limitations of Static Lists of Authorities . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Rhea: Stream Sampling for Authoritative Content . . . . . . . . . . . . . . . . . . . 115

5.2.1 Maintaining User Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.1.1 Frequent Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.1.2 Reducing the Processing Overhead through Sampling . . . . . . . . . . . . . 116

5.2.2 Ranking Authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.3 Filtering-out Non-relevant Activity . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.4 The Proposed Rhea Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.2 Recall, Precision, and F1-score Comparison . . . . . . . . . . . . . . . . . . . . . 121
5.3.3 Evaluation of Ranked Retrieval Results . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.3.1 Evaluation using Spearman’s ρ . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.3.2 Evaluation using NDCG . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.4 Impact of Techniques and Parameters . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.4.1 Varying the Value of Probability p . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.4.2 Removing the Filtering Step . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.4.3 Impact of the Capacity of the Top-K-Heap . . . . . . . . . . . . . . . . . . . 126

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6. ON THE IMPACT OF SOCIAL COST ON OPINION DYNAMICS 131
6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2 Empirical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.1 Information propagation and reproductive ratio . . . . . . . . . . . . . . . . . . . . 134
6.2.2 Frequent cascade patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.1 Simulation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.2 Experiments using real-world data . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7. CONCLUSION AND OPEN DIRECTIONS 141

ABBREVIATIONS - ACRONYMS 143

REFERENCES 151



LIST OF FIGURES

Figure 1: A graph partitioned on a vertex basis in a distributed environment.
Each vertex maintains a list of its out-edges. . . . . . . . . . . . . . . 35

Figure 2: The Pregel programming model: workers compute in parallel the ver-
tices’ actions at every superstep and messages between iterations
are synchronized using a barrier before every superstep commences. 40

Figure 3: Giraph’s adjacency-list representations: ByteArrayEdges (a) and Hash-
MapEdges (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4: The storage of neighbors in BVEdges, detailed in Example 1. γ(x)
and ζ(x) denote the γ and ζ encodings of x respectively. . . . . . . . 45

Figure 5: The storage of neighbors in IntervalResidualEdges, detailed in Exam-
ple 2. (x)2 is the binary representation of x. . . . . . . . . . . . . . . . 46

Figure 6: A bit-array representation of an adjacency list and the storage of these
neighbors in IndexedBitArrayEdges, detailed in Example 3. (x)2 de-
notes the binary representation of x. . . . . . . . . . . . . . . . . . . . 47

Figure 7: The storage of edge weights using VariableByteArrayWeights. We-
ights of neighbors are held in variable-byte encoding. Two weights (32
and 378) are represented using only one and two bytes, respectively.
VariableByteArrayWeights can extend BVEdges and IntervalResi-
dualEdges to support weighted graphs. . . . . . . . . . . . . . . . . . 49

Figure 8: The storage of neighbors in RedBlackTreeEdges. Neighbors’ ids are
inserted as keys to a red-black tree. For weighted graphs each node
would additionally maintain a variable to hold the weight. . . . . . . . 50

Figure 9: Execution time (inminutes) of PageRank algorithm for indochina-2004
using a setup of 2, 4, and 8 workers. . . . . . . . . . . . . . . . . . . . 55

Figure 10: Execution time (in minutes) for each superstep of the PageRank al-
gorithm for the graph uk-2005 using 5 workers. ByteArrayEdges per-
formance fluctuates due to extensive garbage collection. . . . . . . . 57

Figure 11: Execution time (in minutes) of the PageRank algorithm for the graph
uk-2005 using 5 and 4 workers. IntervalResidualEdges and Inde-
xedBitArrayEdges outperform ByteArrayEdges which fails to com-
plete execution with 4 workers. . . . . . . . . . . . . . . . . . . . . . . 58

Figure 12: Initialization time (in seconds) for graphs indochina-2004 (using 2work-
ers) and uk-2005 (using 5 workers). There is notable performance
gain on large-scale graphs over ByteArrayEdges when using Inde-
xedBitArrayEdges or IntervalResidualEdges. BVEdges is the slow-
est of the representations examined. . . . . . . . . . . . . . . . . . . . 59



Figure 13: Execution time (in minutes) of the ShortestPaths algorithm for a single
vertex, on the graph uk-2005, using a setup of 5 and 4 workers. . . . . 60

Figure 14: Execution time (in minutes) of an algorithm performing a random num-
ber of mutations on the graph hollywood-2011 using 5 workers, for a
varying number of maximum mutations allowed. . . . . . . . . . . . . 61

Figure 15: Illustration of the social circles of an individual. Her family, co-workers,
basketball buddies and friends from college are distinct yet overlap-
ping communities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 16: Egonet coverage ratio for the ground-truth communities of graphs pro-
vided by SNAP. We show that the coverage ratio for all graphs, with
the exception of Orkut, is above 87%. The ratio is lower for Orkut due
to its large average ground-truth community size. . . . . . . . . . . . . 70

Figure 17: Social communities in the egonet of an individual (10) in a social net-
work. Using a force-directed layout we can easily identify two well-
connected groups of acquaintances. A special tie between (10) and
(6) is evident, as (6) is the only vertex having links (in red) towards
both communities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 18: The hierarchical link structure of the malformed community that re-
sults when performing link clustering in the egonet of Figure 17 using
Equation (3.6), and cutting at the level of optimal partition density.
The similarity of link (6,10) with link (8,10) leads to a community that
groups numerous nodes that are not linked with each other. . . . . . . 72

Figure 19: The egonet of a node in the DBLP graph. LEMON’s detected commu-
nity (19a) features, among others, all the nodes in the egonet. Num-
bers indicate the LEMON’s ranking of the nodes according to their likeli-
hood of belonging to the detected community. LDLC uses hierarchical
link clustering in the egonet of the target node and penalizes the links
with nodes exhibiting high dispersion to come up with two communi-
ties, colored teal and pink (19b). . . . . . . . . . . . . . . . . . . . . . 79

Figure 20: Impact of the use of recursive dispersion on the number of merges that
occur until LDLC terminates. When using recursive dispersion (LDLC)
the number of total merges increases significantly. Thus, the resulting
dendrogram reveals the hierarchical community structure in greater
detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 21: LDLC results on the networks of our dataset when using a random
sampling technique and our k-largest sampling technique. Impact is
negligible for the four first networks as very few or no egonets surpass
100 nodes. However, the k-largest sampling technique outperforms
the random technique for orkut and friendster. . . . . . . . . . . . . . 84

Figure 22: A stream comprising the edges of an undirected graph and a set of
communities initialized with a few seed nodes. For every edge of the
stream we wish to evaluate whether the adjacent nodes belong to the
communities we examine. . . . . . . . . . . . . . . . . . . . . . . . . . 90



Figure 23: Count-Min sketch update process. . . . . . . . . . . . . . . . . . . . . 94
Figure 24: Ranking of nodes according to their community participation values

and the partitioning that Algorithm 6 makes to come up with a com-
munity automatically for a random citation network community. . . . . 98

Figure 25: F1-score comparison for CoEuS when incrementing community de-
gree by 1 (CoEuS1) and by community degree of the adjacent node
(CoEuScp). The variation of CoEuScp clearly improves the F1-score
for all graphs our dataset. The improvement is impressive for graphs
orkut and dblp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 26: F1-score comparison between LEMON and CoEuS. . . . . . . . . . . 103

Figure 27: Deriving a network of authorities from a social activity stream. Poten-
tial authorities may be identified by applying measures on the resulting
weighted directed graph. . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 28: Precision@K 28a and Spearman’s ρ 28b results for the authorities
extracted from the tweets of September 2009, using the rankings re-
sulting from the tweets of the three subsequent months. Both metrics
reveal that the correlation between rankings of authorities according
to the tweets of subsequent months weakens significantly with time. . 113

Figure 29: Count-Min Sketch update process. . . . . . . . . . . . . . . . . . . . . 116
Figure 30:Recall comparison between our approach and a baseline for our two

datasets (T, SO) when querying for the tweets of the top-100, 250, 500,
750, and 1, 000 authorities of the stream. . . . . . . . . . . . . . . . . . 120

Figure 31: Precision comparison between our approach and a baseline for our
two datasets (T, SO) when querying for the tweets of the top-100, 250,
500, 750, and 1, 000 authorities of the stream. . . . . . . . . . . . . . . 121

Figure 32: F1-score comparison between our approach and a baseline for our
two datasets (T, SO) when querying for the tweets of the top-100, 250,
500, 750, and 1, 000 authorities of the stream. . . . . . . . . . . . . . . 122

Figure 33: Comparison of Rhea and WhiteList on Spearman’s ρ for Twitter (T)
and StackOverflow (SO). . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 34: Comparison of Rhea and WhiteList on NDCG for Twitter (T) and
StackOverflow (SO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 35: Impact of probability p on NDCG. . . . . . . . . . . . . . . . . . . . . . 126
Figure 36: Impact of the filtering step of Rhea on precision. . . . . . . . . . . . . 127
Figure 37: Impact of the capacity of the Top-K-Heap on F1-score. . . . . . . . . 128

Figure 38: Illustration of the model of [48]. Individuals’ hold internal opinions and
form their expressed opinions by additionally considering their friends’
expressed opinions due to social interaction. . . . . . . . . . . . . . . 132

Figure 39: Top-20 cascades that occurred in 50 randomly selected stories of the
digg dataset, ordered by frequency. . . . . . . . . . . . . . . . . . . . 135

Figure 40: Cumulative precision/recall curve for the two configurations of our mo-
del and a Ridge regression classifier for all the stories of our dataset. 138





LIST OF TABLES

Table 1: Dataset of our experimental setting with a total of ten publicly available
web and social network graphs [20, 18]. . . . . . . . . . . . . . . . . . . 52

Table 2: Memory requirements of Giraph’s ByteArrayEdges and our three out-
edge representations for the small and large-scale graphs of our dataset.
Requirements of BV [20] in a centralized setting are also listed to pro-
vide an indication of the compressibility potential of each graph. . . . . 53

Table 3: Graphs of our dataset reaching up to 1.8 billion edges. . . . . . . . . . . 67
Table 4: F1 Score comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 5: Execution time comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 6: Graphs of our dataset reaching up to 1.8 billion edges. . . . . . . . . . . 100
Table 7: Execution time comparison betweenCoEuS and LEMON for all the graphs

of our dataset. CoEuS is remarkably fast, even for the largest network
of our dataset and clearly outperforms LEMON. . . . . . . . . . . . . . . . 105

Table 8: Comparison of space requirements between CoEuS and LEMON for all
the graphs of our dataset. CoEuS uses two Count-Min sketches to hold
a graph’s elements and therefore its requirements depend only on the
desired approximation quality of the sketches. LEMON maintains the ad-
jacency lists of a graph and thus requires significantly more space. . . . 106

Table 9: Top-10 authorities for the tweets of 3 months. . . . . . . . . . . . . . . . 114





Distributed and Streaming Graph Processing Techniques

1. INTRODUCTION

Real-life systems involving interacting objects are typically modeled as graphs and can
often grow very large in size. A multitude of contemporary applications heavily involves
such graph data and has driven to research directions that allow for efficient handling of
large scale networks. Two prominent such directions are distributed graph processing
and streaming graph algorithms.

The tremendous growth of the Web graph has driven Google to introduce Pregel, a scal-
able platform with an API that allows for expressing arbitrary graph algorithms. Pregel
is a distributed graph processing system that powers the computation of PageRank and
has served as an inspiration to many systems that adopted its programming model. One
such system is Apache Giraph which originated as the open-source counterpart of Pre-
gel. Giraph is maintained by developers of Facebook that use it to analyze Facebook’s
social graph. Pregel-like systems follow a vertex-centric approach and address the task
of in-memory batch processing of large scale graphs [60]. Communication details are
abstracted away from the developers that implements algorithms for such systems. The
latter offer APIs that allow for specifying computations with regard to what each vertex
of the graph needs to compute whereas edges serve the purpose of transmitting results
from one vertex to another. The input graph is loaded on start-up and the entire execution
takes place in-memory. Consequently, the execution of a graph algorithm in a Pregel-like
system depends on the available memory and will fail if the later is not sufficient enough
to fit the graph.

The ever-increasing size of real-world networks has also motivated the design of algo-
rithms that process massive graphs in the data stream model [97]. More specifically, the
input of algorithms in this model is defined by a stream of data which usually comprises
the edges of the graph. Therefore, graph stream algorithms are a perfect fit for problems
dealing with networks that are formed as we attempt to analyze them, e.g., the network
describing the activity taking place in a social networking site. However, many challenges
arise in a streaming setting that need to be addressed when designing respective techni-
ques. A streaming graph algorithm processes the stream in the order it arrives and each
element of the stream must be processed immediately or stored as it will not become
available again. In addition, the size of the stream and the speed in which its elements
arrive do not allow for persisting the stream in its entirety. Therefore, processing cannot
occur at a later stage.

1.1 Contribution

In this thesis we focus on both distributed and streaming graph processing techniques.
We begin by investigating the memory usage patterns that contemporary distributed graph
processing systems adopt. We observe that graph compression techniques have not been
considered in the design of the representations that distributed systems employ. There-

31 P. Liakos



Distributed and Streaming Graph Processing Techniques

fore, we build on compression techniques that assume centralized execution and provide
numerous novel compact representations that are fitting for all Pregel-like systems. Our
structures offer memory-optimization regardless of the algorithm that is to be executed,
and enable the successful execution of algorithms in settings that state-of-the-art systems
fail to terminate. We continue by studying a problem that has received considerable at-
tention in the past, yet is still extremely relevant as previously proposed approaches fail
to handle the massive volume of today’s real-world graphs. In particular, we address the
problem of community detection and our contribution is twofold as we propose a vertex-
centric and a streaming approach. We follow the trend of seed-set expansion methods in
which small sets of nodes are expanded to communities. Our techniques offer impressive
results with regards to all accuracy, memory usage and execution time. Next, we consider
the stream of real-time activity of a social networking site and investigate ways of deriving
the interesting part out of it based on network properties. More specifically, we use the
interactions of the site’s users to construct a network of authorities and assess whether
each particular element of activity in the stream is interesting. This approach enables ap-
plications in numerous fields to exploit in real-time the enormous amount of information
that is made available online everyday without being overwhelmed by the volume of the
information. Finally, we investigate yet another field of study in the area of graph mining,
namely opinion formation. We adopt a well-studied model and employ a distributed graph
processing system to evaluate whether the predicted behavior of the users of a real social
network according to this model matches the actual behavior these users.

1.2 Outline

The rest of this thesis is organized as follows:

In Chapter 2 we propose three compressed adjacency list representations that may fit
any Pregel-like distributed graph processing system, a compressed representation that
adds support for weighted graphs, and a compact tree-based representation that allows
for efficient mutations on the graphs’ elements.

Chapter 3 introduces LDLC, a local community detection algorithm that reveals effectively
and efficiently the community structure around a given node in a network. Our algorithm
is vertex-centric and can easily be executed in a distributed setting.

In Chapter 4 we contribute a second community detection algorithm, termed CoEuS.
CoEuS operates on graph streams and offers remarkable improvements in terms of exe-
cution time and memory usage when compared to state-of-the-art approaches, while also
achieving equivalent accuracy.

Chapter 5 deals with the problem of sampling the interesting part of an activity stream of
a social networking site. To this end, we propose a dynamic streaming technique that
evaluates the authoritativeness of the network’s users and samples only those elements
of the stream whose users appear to have an impact in the network.

Chapter 6 studies the problem of opinion formation in a social context. We model user

P. Liakos 32



Distributed and Streaming Graph Processing Techniques

interactions based on the game theory framework, implement a distributed graph algorithm
for this model, and execute it using a dataset of a popular social network to to show that
the repeated averaging process results to Nash equilibria which are illustrative of how
users really behave.

Finally, Chapter ?? concludes this thesis and discusses possible future directions.

1.3 Credits

The contents of this thesis are based on published work that was conducted in collabora-
tion with others. Specifically:

• Realizing Memory-Optimized Distributed Graph Processing [85]: joint research with
Katia Papakonstantinopoulou and Alex Delis.

• Memory-Optimized DistributedGraph Processing throughNovel Compression Tech-
niques [84]: joint research with Katia Papakonstantinopoulou and Alex Delis.

• Scalable link community detection: A local dispersion-aware approach [80]: joint
research with Alexandros Ntoulas and Alex Delis.

• CoEuS: Community detection via seed-set expansion on graph streams [81]: joint
research with Alexandros Ntoulas and Alex Delis.

• Rhea: Adaptively sampling authoritative content from social activity streams [82]:
joint research with Alexandros Ntoulas and Alex Delis.

• On the Impact of Social Cost in Opinion Dynamics [83]: joint research with Katia
Papakonstantinopoulou.

33 P. Liakos



Distributed and Streaming Graph Processing Techniques

P. Liakos 34



Distributed and Streaming Graph Processing Techniques

2. MEMORY-OPTIMIZED DISTRIBUTED GRAPH PROCESSING

Worker 1 Worker 2

Worker 3

Pregel-like
graph processing

system

5
2

2
3,4,5

3

6
1,8

1
2,3,4

4

1,7

8
7

7
8

Figure 1: A graph partitioned on a vertex basis in a distributed environment. Each vertex maintains
a list of its out-edges.

The proliferation of web applications, the explosive growth of social networks, and the
continually-expanding WWW-space have led to systems that routinely handle voluminous
data modeled as graphs. Facebook has over 1 billion active users [32] and Google has
long reported that it has indexed unique URLs whose number exceeds 1 trillion [3]. This
ever-increasing requirement in terms of graph-vertices has led to the realization of a num-
ber of distributed graph-processing approaches and systems [1, 112, 89, 121]. Their key
objective is to efficiently handle large-scale graphs using predominantly commodity hard-
ware [60].

Most of these approaches parallelize the execution of algorithms by dividing graphs into
partitions [115, 133] and assigning vertices to workers (i.e., machines) following the “think
like a vertex” programming paradigm introduced with Pregel [93]. However, recent stud-
ies [60, 28] point out that the so-far proposed frameworks [1, 112, 89, 121] fail to handle
the unprecedented scale of real-world graphs as a result of ineffective, if not right out poor,
memory usage [60]. Thereby, the space requirements of real-world graphs have become
a major memory bottleneck.

Deploying space-efficient graph representations in a vertex-centric distributed environ-
ment to attain memory optimization is critical when dealing with web-scale graphs and
remains a challenge. Figure 1 illustrates a graph partitioned over three workers. Every
vertex is assigned to a single node and maintains a list of its out-edges. For example,
vertices 1, 4, and 6 are assigned to worker 1, and vertex 1 maintains out-edges towards
vertices 2, 3, and 4. This partitioning hardens the task of compression as vertices be-
come unaware of the physical node their neighbors ultimately find themselves in. Related
efforts have exclusively focused on providing a compact representation of a graph in a
centralized machine environment [20, 10, 31, 26, 87]. In such single-machine settings,

35 P. Liakos



Distributed and Streaming Graph Processing Techniques

we can exploit the fact that vertices tend to exhibit similarities. However, this is infea-
sible when graphs are partitioned on a vertex basis, as each vertex must be processed
independently of other vertices. Furthermore, to achieve memory optimization, we need
representations that allow for mining of the graph’s elements without decompression; this
decompression would unfortunately necessitate additional memory to accommodate the
resulting unencoded representation.

A noteworthy step towards memory optimization was taken by Facebook when it adopted
Apache Giraph [1] for its graph search service; the move yielded both improved perfor-
mance and scalability [32]. However, Facebook’s improvements regarding memory opti-
mization entirely focused on a more careful implementation for the representation of the
out-edges of a vertex [32]; the redundancy due to properties exhibited in real-world graphs
was not exploited.

Here, we investigate approaches that help realize compact representations of out-edges
in (weighted) graphs of web-scale while following the Pregel paradigm. The vertex place-
ment policy that Pregel-like systems follow necessitates for storing the out-edges of each
vertex independently as Figure 1 depicts. This policy preserves the locality of reference
property, known to be exhibited in real-world graphs [108, 18], and enables us to exploit
in this work, patterns that arise among the out-edges of a single vertex. We cannot how-
ever utilize similarities among out-edges of different vertices, for we are unaware of the
partition each vertex is placed into.

Our first technique, termed BVEdges, applies all methods proposed in [20] that can ef-
fectively function with the vertex placement policy of Pregel in a distributed environment.
BVEdges primarily focuses on identifying intervals of consecutive out-edges of a vertex and
employs universal codings to efficiently represent them. To facilitate access without im-
posing the significant computing overheads of BVEdges, we propose IntervalResidual-
Edges, which holds the corresponding values of intervals in a non-encoded format. We
facilitate support of weighted graphs with the use of a parallel array holding variable-byte
encoded weights, termed VariableByteArrayWeights. Additionally, we propose Inde-
xedBitArrayEdges, a novel technique that considers the out-edges of each vertex as a
single row in the adjacency matrix of the graph and indexes only the areas holding edges
using byte sized bit-arrays. Finally, we propose a fourth space-efficient tree-based data
structure termed RedBlackTreeEdges, to improve the trade-off between memory overhead
and performance of algorithms requiring mutations of out-edges.

Our experimental results with diverse datasets indicate significant improvements on space-
efficiency for all our proposed techniques. We reduce memory requirements up–to 5 times
in comparison with currently applied methods. This eases the task of scaling to billions
of vertices per machine and so, it allows us to load much larger graphs than what has
been feasible thus far. In settings where earlier approaches were also capable of execut-
ing graph algorithms, we achieve significant performance improvements in terms of time
of up–to 41%. We attribute this to our introduced memory optimization as less time is
spent for garbage collection. These findings establish our structures as the undisputed
preferable option for web graphs, which offer compression-friendly orderings, or any other
type of graph after the application of a reordering that favors its compressibility. Last

P. Liakos 36



Distributed and Streaming Graph Processing Techniques

but not least, we attain a significantly improved trade-off between space-efficiency and
performance of algorithms requiring mutations through a representation that uses a tree
structure and does not depend on node orderings.

In summary, our contributions in this chapter are that we: I) offer space-efficient repre-
sentations of the out-edges of vertices and their respective weights, II) allow fast mining
(in-situ) of the graph elements without the need of decompression, III) enable the execu-
tion of graph algorithms in memory-constrained settings, and IV) ease the task of memory
management, thus allowing faster execution.

2.1 Related Work

Our work lies in the intersection of distributed graph processing systems and compressed
graph representations. In this regard, we outline here pertinent aspects of these two ar-
eas: i) well-established graph processing systems and the challenges they face when it
comes to memory management, and ii) state-of-the-art space-conscious representation
of real-world graphs.

Google’s proprietary Pregel [93] is a graph processing system that enables scalable batch
execution of iterative graph algorithms. As the source code of Pregel is not publicly avail-
able, a number of graph processing systems that follow the same data flow paradigm
have emerged. Apache Giraph [1] is such an open-source Java implementation with con-
tributions from Yahoo! and Facebook, that operates on top of HDFS. Our work focuses on
Pregel-like systems and extends Giraph’s implementation. Therefore, we provide a short
discussion on both Pregel and Giraph in Section 2.2.1. GPS [112] is a similar Java open-
source system that introduces an optimization for high-degree vertices: as the degrees
of graphs created by human activity are heavy-tail distributed, certain vertices have an
“extreme number” of neighbors and stall the synchronization at every iteration. To over-
come this deficiency, GPS proposes the large adjacency list partitioning (LALP) technique.
Pregel+ [121] is implemented in C++ and uses MPI processes as workers to achieve high
efficiency. Moreover, Pregel+ features two additional optimizations. The first is the mirror-
ing of vertices, an idea similar to that of LALP. The second is a request-respond API which
simplifies the process of a vertex requesting attributes from other vertices and merges all
requests from a machine to the same vertex into a single request. Unlike the aforemen-
tioned distributed graph processing systems that follow Pregel’s BSP execution model,
some approaches employ asynchronous execution [89, 54, 59]. GraphLab [89] is such an
example that also adopts a shared memory abstraction. PowerGraph [54] is included in
GraphLab and mitigates the problem of high-degree vertices by following an edge-centric
model bundle. Han and Daudjee [59] extend Giraph with their Barrierless Asynchronous
Parallel (BAP) computational model to reduce the frequency of global synchronization bar-
riers and message staleness. GraphX [55] is an embedded graph processing system build
on top of the very successful Apache Spark [130] distributed dataflow system. GraphX has
received notable attention, partly due to the widespread adoption of the Spark framework.
However, a recent comparison [65] against Giraph shows that the latter is able to handle

37 P. Liakos



Distributed and Streaming Graph Processing Techniques

50x larger graphs than GraphX and is more efficient even on smaller graphs. Our work is
orthogonal to these approaches as we introduce compressed adjacency list representa-
tions that can be readily applied to all above systems. Several Facebook optimizations
contributed to Giraph are reported in [32]. Significant improvements are realized through
a new representation of out-edges which serializes the edges of every vertex into a byte-
array. However, this representation does not entail any memory optimization through
compression. MOCGraph [135] is a Giraph extension focused on improving scalability by
reducing the memory footprint. This is achieved through the message online computing
model according to which messages are digested on-the-fly. The MOCGraph approach is
also orthogonal to our work, as MOCGraph focuses solely on the memory footprint of mes-
sages exchanged, whereas our focus is on representation of the graph. Deca [90] trans-
parently decomposes and groups objects into byte-arrays to significantly reduce memory
consumption and achieves impressive execution time speed ups. Our techniques achieve
compression over Giraph’s graph representation that already uses byte-arrays and re-
sides in memory for the entire execution of algorithms. However, Deca can offer additional
benefits through the optimization of memory consumption with regard to objects other than
the graph representation, such as the messages exchanged.

As the size of graphs continues to grow numerous efforts focus on shared-memory or
secondary storage architectures. Shun et al. [114] consider compression techniques
that can be applied on a shared-memory graph processing system and manage to halve
space usage at the cost of slower execution when memory is not a bottleneck. Gem-
ini [136] achieves surprising efficiency by using MPI and performing updates directly on
shared-memory graph data, instead of passing messages between cores on the same
socket. Our focus is on shared-nothing distributed computing architectures, in which cer-
tain techniques of [114] and [136] are inapplicable. GraphChi [73], FlashGraph [134], and
Graphene [88] maintain graph data on disks and achieve reasonable performance, hav-
ing very modest requirements. However, no effort is spent on compressing the graph
data. Moreover, our approach does not impose any limitations on the execution time of
in-memory distributed graph processing systems, or sacrifice the ease of programming
and fault tolerance that go along with the Pregel paradigm.

The increasing number of proposed graph processing systems initiated research concern-
ing their performance. Lu et al. [91] experiment with the number of vertices in a graph and
report that GPS and GraphLab run out of memory in settings where Giraph and Pregel+
manage to complete execution. In [28], Cai et al. find that both Giraph and GraphLab face
significant memory-related issues. Han et al. [60] carry out a comparative performance
study that includes among others, Giraph, GraphLab and GPS. The asynchronous mode
of GraphLab is reported to have poor scalability and performance due to the overhead im-
posed by excessive locking. Moreover, the optimization of GPS for high degree vertices
offers little performance benefit. These findings motivated us to use the implementation
of Giraph as a basis for this work. [60] notes that Giraph is much improved compared
with its initial release, yet, it still demonstrates noteworthy space deficiencies. We note
that this is also the case in Giraph’s only subsequent release since, i.e., 1.2, as it does
not introduce any additional out-edge representations providing improved space- or time-

P. Liakos 38



Distributed and Streaming Graph Processing Techniques

efficiency. Therefore, in this chapter we investigate compact representations to further
reduce Giraph’s space requirements. Lastly, [60] additionally reports that Giraph’s new
adjacency list representation is not suitable for algorithms featuring mutations (i.e., addi-
tions and/or deletions). To this effect, we have opted to investigate structures that do not
necessarily favor mutations.

The field of graph compression has yielded significant research results after the work
presented in [108]. Randall et al. exploit the locality of reference as well as the similarity
property that is unveiled in web graphs when their links are sorted lexicographically. The
seminal work on web graph compression is that of Boldi and Vigna [20], who introduce
a number of sophisticated techniques as well as a new coding to further reduce the bits
per link ratio. Several following efforts [26, 31, 10] managed to present improved results
with regard to space but not access time of the graph’s elements. Brisaboa et al. [26]
introduce a graph compression approach that uses the adjacency matrix representation
of the graph, instead of adjacency lists. A tree structure is used to hold the areas of
the adjacency matrix that do actually represent edges. As real-world graphs are sparse,
these areas are a very small part of the original matrix. However, there is also a cost in
maintaining the in-memory tree structure. In [86, 87], this cost is amortized by representing
a specific area around the diagonal of the adjacency matrix without the use of an index
and the remaining elements of the graph through an adjacency list representation. All
the above approaches focus on providing a compact representation of a graph that can
be loaded in the memory of a single machine. Hence, the techniques used exploit the
presence of all edges in a centralized computing node, which is not suitable for distributed
graph processing systems. To the best of our knowledge, our approach is the first to
consider compressed graph representations for Pregel-like systems offering distributed
execution.

Gbase [66] is the only approach we are aware of that considers compressed graph rep-
resentations in a distributed environment in general. Gbase uses block compression to
efficiently store graphs by splitting the respective adjacency matrices into regions. The
latter are compressed using several methods including Gzip and Gap Elias’-γ encoding.
We should note, however, that Gbase does not follow the established by now “think like a
vertex” model we have adopted in this work. In addition, Gbase aims at minimizing the stor-
age and I/O cost and its techniques require full decompression of multiple blocks for the
extraction of the out-edges of a single vertex. In contrast, we seek to minimize the overall
memory requirements and, thus, we cannot apply the techniques used in Gbase; doing so
would require at least equivalent amount of memory with non-compressed structures.

A preliminary version of our work appeared in [84]. Here, we propose new representations
for weights of out-edges and algorithms requiring mutations. Further, we evaluate our
techniques through the execution of additional Pregel algorithms and carry out the entire
range of our experimentation using settings that suppress the overhead generated from
system logging activity.

39 P. Liakos



Distributed and Streaming Graph Processing Techniques

Worker 1

Worker 2

Worker 3

Worker 1

Worker 2

Worker 3

Worker 1

Worker 2

Worker 3

Superstep 1 Superstep 2 Superstep 3 ...

Synchronization barrier

Figure 2: The Pregel programming model: workers compute in parallel the vertices’ actions at every
superstep andmessages between iterations are synchronized using a barrier before every superstep

commences.

2.2 Background

Key Pregel concepts and structures used for representing adjacency lists by the Apache
Giraph make up the foundation upon which we develop our proposed techniques. In this
section, we outline both Pregel and Giraph, present empirically-observed properties of
real-world graphs, and offer definitions for the encodings to be used by our suggested
compression techniques.

2.2.1 Pregel

Pregel [93] is a computational model suitable for large scale graph processing, inspired
by the Bulk Synchronous Parallel (BSP) programming model. Pregel encourages pro-
grammers to “think like a vertex” by following a vertex-centric approach. The input to a
Pregel algorithm is a directed graph whose vertices, along with their respective out-edges,
are distributed among the machines of a computing cluster. Pregel algorithms are exe-
cuted as a sequence of iterations, termed supersteps. During a superstep, every vertex
independently computes a user-defined list of actions and sends messages to other ver-
tices, to be used in the following superstep. Therefore, edges serve as communication
channels for the transmission of results. A synchronization barrier between supersteps
ensures that all messages are delivered at the beginning of the next superstep. A vertex
may vote to halt at any superstep and will be reactivated upon receiving a message. The
algorithm terminates when all vertices are halted and there are no messages in transit.
This programming model is illustrated in Figure 2.

Pregel loads the input graph and performs all associated computations in-memory. The-

P. Liakos 40



Distributed and Streaming Graph Processing Techniques

reby, Pregel only supports graphs whose edges entirely fit in main-memory. Regarding
the management of out-edges, the basic operations provided by Pregel API are the initial-
ization of adjacency lists, the retrieval of the out-edges, and mutations of out-edges, i.e.,
additions and removals. For example in Figure 1, vertex 1maintains a list of its neighbors:
2, 3, and 4; Pregel algorithms need to be able to initialize such a list, retrieve its elements,
and possibly add or remove elements.

2.2.2 Apache Giraph

The Apache Software Foundation has spear-headed the implementation of Giraph [1],
an open-source implementation of Pregel that operates atop HDFS and uses map-only
Hadoop jobs for its computations. The project has been in rapid development since Face-
book released its own graph search service based on an earlier Giraph release. A key
Facebook contribution is related to the system’s memory optimization. Giraph used sep-
arate Java objects for all data types that needed to be maintained, including the out-edge
representation (HashMapEdges). A new representation, namely ByteArrayEdges, signifi-
cantly reduced the memory usage as well as the number of objects being maintained by
serializing edges as byte arrays instead of instantiating native Java objects. Below, we
outline these two widely used Giraph data structures to highlight their difference when it
comes to memory usage. We note that Giraph’s configuration allows for specifying the
representation of out-edges to be used and maintains an object of the respective class
for each vertex of the graph. Extending Giraph with a new out-edge representation is as
simple as writing your own class that implements the OutEdges interface.

• ByteArrayEdges: The default Giraph structure for holding the out-neighbors of a vertex
is that of ByteArrayEdges [32]. This representation is realized as a byte array, in which
target vertex ids and their respective weights are held consecutively, as Figure 3(a) illus-
trates. The bytes required per out-neighbor are determined by the data type used for its
id and weight; for integer numbers 4+4=8 bytes are required. ByteArrayEdges are im-
practical for algorithms involving mutations as they deserialize all out-edges to perform a
removal.

• HashMapEdges: An earlier andmore “memory-hungry” representation for holding the out-
neighbors of a vertex is HashMapEdges. This representation is backed by a hash-table that
maps target vertex ids to their respective weights as Figure 3(b) illustrates. HashMapEdges
offer constant timemutations to the adjacency list of a vertex but are very inefficient space-
wise. In particular, the memory cost of maintaining out-edges is up to 10 times larger with
HashMapEdges than it is with ByteArrayEdges [32].

2.2.3 Properties of Real-World Graphs

Over the last two decades, studies of real-world graphs have led to the identification of
common properties that the graphs in question exhibit [108, 20, 76]. In this context, we

41 P. Liakos



Distributed and Streaming Graph Processing Techniques

vertex id1

size 1 size 2 size 1 size 2

weight1 vertex id2 weight2
...

(a)

vertex id2 weight2

vertex id1 weight1

000
001
002
003
004
005
006

...

Hash
Function

vertex id2

vertex id1

(b)

Figure 3: Giraph’s adjacency-list representations: ByteArrayEdges (a) and HashMapEdges (b).

list here four empirically-observed properties of real-world graphs that are frequently en-
countered and allow for effective compression. We begin with two such properties of web
graphs that occur when their vertices are ordered lexicographically by URL [108, 20]. We
note that even though there is no equivalent way of ordering vertices of other types of
graphs, the same properties arise when we apply appropriate reordering algorithms [19,
18, 57]. Then, we list two additional properties observed in realistic graphs from various
domains, related to the distribution of node degrees and edge weights. More specifically,
the following properties of real-world graphs may be exploited:

– Locality of reference: this property states that the majority of the edges of a graph
link vertices that are close to each other in the order.

– Similarity (or copy property): vertices that are close to each other in the order tend
to have many common out-neighbors.

– Heavy-tailed distributed degrees: a constrained number of vertices demonstrate
high-degree, whereas the majority of vertices exhibit low-degree. Consequently,
graphs created by human activity are generally sparse.

– Right-skewed weight distributions: Statistical analysis of weighted graphs shows
that the weights of edges are right-skewed distributed [15].

2.2.4 Codings for Graph Compression

In order to compress the data in our structure, we can use various encoding approaches;
below, we provide the pertinent definitions of codings we employ in Section 2.3.1.1: Elias’
γ and ζ codings. We also furnish the definitions of baseline unary and minimal binary
coding that help define the first two codings. Let x denote a positive integer, b its binary
representation and l the length of b. The aforementioned codings are defined as follows:

P. Liakos 42



Distributed and Streaming Graph Processing Techniques

a) Unary coding: the unary coding of x consists of x− 1 zeros followed by a 1, e.g., the
unary coding of 2 is 01.

b) Minimal binary coding over an interval [21]: consider the interval [0, z − 1] and let
s = ⌈log z⌉. If x < 2s − z then x is coded using the x-th binary word of length s − 1
(in lexicographical order), otherwise, x is coded using the (x− z+2s)-th binary word
of length s. As an example, the minimal binary coding of 8 in [0, 56− 1] is 010000, as
8 = 2⌈log 56⌉ − 56 and therefore we need the 8− 56 + 26 = 16-th binary word of length
6.

c) Elias’ γ coding: the γ coding of x consists of l in unary, followed by the last l − 1
digits of b, e.g., b of 2 is 10, thus l in unary is 01 and the γ coding of 2 is 010.

d) ζ coding with parameter k [21]: given a fixed positive integer k, if x ∈ [2hk, 2(h+1)k−1],
its ζk-coding consists of h+1 in unary, followed by a minimal binary coding of x−2hk

in the interval [0, 2(h+1)k − 2hk − 1]. As an example, 16 is z3-coded to 01010000, as
16 ∈ [23, 26 − 1], thus h = 1 and the unary of h+ 1 = 2 is 01, and the minimal binary
coding of 16− 23 over the interval [0, 26 − 23 − 1] is 010000, as shown above.

In the context of graph compression, Elias’ γ coding is preferred for the representation
of rather small values of x, whereas ζ coding is more proper for potentially large values.
Handling zero is achieved by adding 1 before coding and subtracting 1 after decoding.
In the following representations, when no coding is mentioned, the unencoded binary
representation is being used.

2.3 Overview of our approach

In this section we describe in detail the space-efficient data structures we suggest for the
representation of a vertex’s neighbors in a graph. We first propose three compressed out-
edge representations that enable the efficient execution of graph algorithms in modest
settings. Then, we extend these representations to additionally support weighted graphs,
by providing a structure to hold the weights of out-edges. Finally, we propose a compact
tree-based out-edge representation that provides significant space and efficiency earn-
ings, favors mutations and offers type-flexibility.

Some centralized graph compression methods, as [20], focus on the compression of the
adjacency lists, while others, for example [26], are based on the compact representation
of the adjacency matrices. In this work, as we follow a vertex-centric approach, we con-
sider both of these approaches at a vertex level. In particular, we are unable to exploit
certain properties that centralized graph compression methods use, such as the similarity
property, as each vertex in Pregel is unaware of the information present in other vertices.
However, we are able to take into account all the other properties described in Section
2.2.3.

43 P. Liakos



Distributed and Streaming Graph Processing Techniques

2.3.1 Representations based on consecutive out-edges

A common property of graphs created by human activity is locality of reference: Vertices,
adhering to the orderings mentioned in Section 2.2.3, tend to neighbor with vertices of
similar ids. This property is evident through the adjacency lists of the graphs of our dataset,
all of which tend to have a lot of neighbors with consecutive ids.

We can exploit this property by applying a technique similar to the one introduced in [20].
In particular, [20] distinguishes between the neighbors whose ids form some interval of
consecutive ids, and the rest. To reconstruct all the edges of the intervals, only the leftmost
neighbor id and the length of the interval need to be kept. This information is further
compressed using gap Elias’ γ coding. The remaining out-edges, termed residuals, are
compressed using ζ coding.

We build on these ideas and introduce two compressed representations that exploit locality
of reference in a similar fashion but are applicable to Pregel-like systems. We consider
that neighbors are sorted according to their id, as the case is in [20]. We also note that
both of our structures based on consecutive out-edges do not favor mutations, as any
addition or removal of an edge would require a complete reconstruction of the compact
representation to discover the new set of intervals and residuals.

2.3.1.1 BVEdges

Our first representation, namely BVEdges, focuses solely on compressing the neighbors
of a vertex, at the cost of computing overheads. Therefore, we simply adjust the method
of Boldi and Vigna [20] to the restrictions imposed by Pregel. In particular, we use the
ideas of distinguishing intervals and residuals, as well as applying appropriate codings on
them. The compressed data structure discussed in [20] considers the whole graph and
exploits the current vertex’s id during compression. However, the vertex id is not available
in the level where adjacency lists are kept in the Pregel model. To overcome this issue,
we use the first neighbor id we store in our structure as a reference to proceed with gap
encoding. As the case is with [20], we use Elias’ γ coding for intervals, and ζ coding for
residuals. Elias’ γ coding is most preferable for intervals of at least 4 elements [20]; shorter
intervals are more compactly stored as residuals. We note here that [20] uses copy lists
to exploit the similarity property. However, using copy lists in a vertex-centric distributed
environment is infeasible.

Definition 1 (BVEdges) Given a list l of a node’s neighbors, BVEdges is a sequence of
bits holding consecutively: the γ-coded number of intervals in l of length at least 4; for the
first such interval, the smallest neighbor id in it and the γ-coded difference of the interval
length minus 4; for each of the rest of the intervals, the difference of the smallest neighbor
id in it minus the largest neighbor id of the previous interval decreased by one; a ζ coding
for each of the remaining neighbors, its argument being either the difference x between
the current node’s id and the previous node id which was encoded to be stored in the
sequence minus 1, or, in case x < 0, the quantity 2|x| − 1.

P. Liakos 44



Distributed and Streaming Graph Processing Techniques

γ(1)

3 bits

γ(0)(9)2 ζ(13) ζ(11) ζ(2) ζ(0) ζ(1) ζ(106)

4 bytes

number of
intervals interval residuals

{{{ 1 bit 7 bits 7 bits 4 bits 3 bits 4 bits 11 bits

Figure 4: The storage of neighbors in BVEdges, detailed in Example 1. γ(x) and ζ(x) denote the γ
and ζ encodings of x respectively.

Example 1 Consider the following sequence of neighbors to be represented: (2, 9, 10,
11, 12, 14, 17, 18, 20, 127). We employ BVEdges as illustrated in Figure 4. Here, there
is only one interval of length at least equal to 4: [9 .. 12]. We first store the number of
intervals using γ coding. Then, we store the leftmost id of the interval, i.e., 9, using its
unencoded binary representation. We proceed with storing a representation of the length
of the interval to enable the recovery of the remaining elements. In particular, we store the
γ coding of the difference of the interval length minus the minimum interval length, which
is 4−4 = 0 in our case. Then, we append a representation for the residual neighbors. For
each residual, we store the ζ coding of the difference of its id with the id of the last node
stored, minus 1 (as each id appears at most once in the neighbors’ list). The residual id 2
is smaller than the smallest id of the first interval, so we store the residual neighbor 2 as
ζ(13), since 2|2− 9|− 1 = 13, and the residual 14 as ζ(11), since 14− 2− 1 = 11. Similarly,
we store 17, 18, 20 and 127 as ζ(2), ζ(0), ζ(1) and ζ(106), respectively.

The respective values computed in each step are written using a bit stream. This, com-
bined with the fact that values have to be encoded, renders the operation costly. We also
investigated the idea of treating all neighbors as residuals to examine if the re-construction
of intervals was more expensive. However, we experimentally found that the resulting
larger bit stream offered worse access time.

Accessing the out-edges of a vertex requires the following procedure: first, we read the
number of intervals. For the first interval, we read the id of the smallest neighbor in it and
decode its length. For each of the rest of the intervals, we construct the smallest neighbor
id by adding to the next γ-coded value the largest neighbor id of the previous interval
incremented by one, and decode its length. After we process the specified number of
intervals, we decode the residuals one by one.

2.3.1.2 IntervalResidualEdges

Our second compressed out-edge representation, namely IntervalResidualEdges, also
incorporates the idea of using intervals and residuals. However, we propose a different
structure to avoid costly bit stream I/O operations. In particular, we keep the value of the
leftmost id of an interval unencoded, along with a byte that is able to index up to 256 con-
secutive neighbors. Residuals are then also kept unencoded. Clearly, any consecutive
neighbors of length at least equal to 2 are represented more efficiently using an interval

45 P. Liakos



Distributed and Streaming Graph Processing Techniques

(2)2

4 bytes
number of
intervals

(9)2 (4)2 (17)2 (2)2

4 +1 bytes

1st interval

4 +1 bytes

2nd interval

(2)2 (14)2 (20)2 (127)2

4 bytes 4 bytes 4 bytes 4 bytes

residuals

{
Figure 5: The storage of neighbors in IntervalResidualEdges, detailed in Example 2. (x)2 is the

binary representation of x.

rather than two or more residuals. Therefore, we set the minimum interval length with
IntervalResidualEdges equal to 2. Due to the locality of reference property, this dedi-
cated byte of each interval allows us to compress the adjacency list significantly, while
also avoiding the use of expensive encodings and bit streams.

Definition 2 (IntervalResidualEdges) Given a list l of a node’s neighbors, IntervalRe-
sidualEdges is a sequence of bytes holding consecutively: the number of intervals in l; the
smallest neighbor id and the length of each such interval; the id of each of the remaining
neighbors.

Example 2 The representation of the aforementioned sequence of neighbors (2, 9, 10, 11,
12, 14, 17, 18, 20, 127) using IntervalResidualEdges is illustrated in Figure 5. In this case
there are two intervals of at least 2 consecutive neighbors, namely [9 .. 12] and [17, 18].
We first store the number of intervals, and then use one 5-byte element for each interval,
consisting of a 4-byte representation of the smallest neighbor id in it (i.e., 9 and 17), plus
a byte holding the number of neighbors in this interval (4 and 2 respectively). Finally we
append a 4-byte representation for each residual neighbor.

This representation delivers its elements through the following procedure: we first read
the number of intervals; while there are still unread intervals, we read 5-bytes, i.e., the
leftmost element of the interval and its length, and recover one by one the elements of the
interval. When all out-edges that are grouped into intervals are retrieved, we read in the
residuals directly as integers.

2.3.2 IndexedBitArrayEdges

Our first two representations are based on the presence of consecutivity among the neigh-
bors of a vertex. Here we propose a representation termed IndexedBitArrayEdges, that
takes advantage of the concentration of edges in specific areas of the adjacency matrix,
regardless of whether these edges are in fact consecutive. With IndexedBitArrayEdges

P. Liakos 46



Distributed and Streaming Graph Processing Techniques

...

(0)2

(1)2

(2)2

(15)2

4 bytes 1 byte

Figure 6: A bit-array representation of an adjacency list and the storage of these neighbors in Inde-
xedBitArrayEdges, detailed in Example 3. (x)2 denotes the binary representation of x.

we use a single byte to depict eight possible out-neighbors. Using a byte array, we con-
struct a data structure of 5-byte elements, one for each interval of neighbor ids having the
same quotient by 8. The first 4 bytes of each element represent the quotient, while the
last one serves as a set of 8 flags indicating whether each possible edge in this interval
really exists. As the neighbor ids of each node tend to concentrate within a few areas,
the number of intervals we need to represent is small and the compression achieved is
exceptional.

Definition 3 (IndexedBitArrayEdges) Given a bit-array r representing a list of a node’s
neighbors, IndexedBitArrayEdges is a sequence of 5-byte elements, each one holding
an octet of r that contains at least one 1: the first 4 bytes hold the distance in r of the first
bit of the octet from the beginning of r; the last one holds the octet.

Example 3 The representation of the aforementioned sequence of neighbors (2, 9, 10, 11,
12, 14, 17, 18, 20, 127) using IndexedBitArrayEdges is illustrated in Figure 6. In the top part
we see the bit-array r representation of this adjacency list. The quotient and remainder of
each node id divided by 8 give us the approximate position (octet) and the exact position of
the node in r, respectively; hence, as depicted in the bottom part of Figure 6, the neighbors
are grouped in four sets: {2}, {9, 10, 11, 12, 14}, {17, 18, 20}, {127}. All ids in each set share
the same quotient when divided by 8, which will be referred as index number henceforth.
For instance, the index number of the third set is 2, and is stored in the first part of the
third element, denoted by (2)2. Moreover, the remainders of the ids 17, 18 and 20 divided
by 8 are 1, 2, and 4 respectively, and so the 2nd, 3rd and 5th flags from the right side of
the same element are set to 1 to depict these neighbors.

Accessing the out-edges of a vertex is performed as follows: First, we read a 5-byte el-
ement. Then, we recover out-edges from the flags of its last byte and reconstruct the

47 P. Liakos



Distributed and Streaming Graph Processing Techniques

neighbor ids using the first 4 bytes. After we examine all flags of the last byte, we proceed
by reading the next 5-byte element and repeat until we retrieve all out-edges.

We note that IndexedBitArrayEdges is able to represent graphs that are up to 8 times
larger than the maximum size achieved with ByteArrayEdges and 32-bit integers. Hence,
we expect its space-efficiency against ByteArrayEdges will be even more evident when
dealing with a graph of this size. In addition, this representation is clearly more suitable
for supporting mutations as opposed to our other two suggested techniques. The addition
of an edge in the graph requires us to search linearly the 5-byte elements to ascertain
whether we have already indexed the corresponding byte. If that is the case, we merely
have to change a single flag in that byte. Otherwise, we have to append a 5-byte element
at the end of the structure with the new index number (4-bytes) plus one byte with one
–specific– flag set to 1. Obviously, IndexedBitArrayEdges does not require that the out-
edges are sorted by their id, an assumption that our two other compressed representations
make. To remove an edge from the structure, we again have to search for the element
with the corresponding index, and set a specific flag to 0. In the case of ending up with
a completely empty byte, removing the 5-byte element would be costly. However, this
cost is imposed only when elements are left completely empty. Hence, removals are
more efficient than with ByteArrayEdges, in which the cost is imposed for every out-edge
removal. Moreover, there is no inconsistency in keeping the element in our representation,
only some memory loss which can be addressed via marking elements when they empty
so that they be used in a subsequent neighbor addition.

2.3.3 VariableByteArrayWeights

Our proposed BVEdges and IntervalResidualEdges consider ordered lists of neighbors.
Thus, they can be easily modified to support weighted graphs through the use of an ad-
ditional array, holding the respective weights of the neighbors. This array could simply
adapt the format of ByteArrayEdges and maintain only the weight of each neighbor in its
uncompressed binary format. However, statistical analysis of weighted graphs has shown
that the weights of edges exhibit right-skewed distributions [15, 96]. Therefore, there is
strong potential for memory optimization in using a compressed weight representation.

Variable-byte coding [120] uses a sequence of bytes to provide a compressed represen-
tation of integers. In particular, when compressing an integer n, the seven least significant
bits of each byte are used to code n, whereas the most significant bit of each byte is set
to 0 in the last byte of the sequence and to 1 if further bytes follow. Hence, variable-byte
coding uses ⌊log128(n)⌋ + 1 bytes to represent an integer n. The advantage of this ap-
proach over the more compact bitwise compression schemes, such as Golomb-Rice, is
the significantly faster decompression time it offers due to byte-alignment. In particular,
Scholer et al. [113] show that when using the variable-byte coding scheme, queries are
executed twice as fast as with bitwise codes, at a small loss of compression efficiency.

Definition 4 (VariableByteArrayWeights) Given a list l of a node’s edge weights sorted
according to the id of their respective neighbor, VariableByteArrayWeights is a sequence

P. Liakos 48



Distributed and Streaming Graph Processing Techniques

0

1 byte

1st weight 2nd weight

{{ 1 00 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 01

1 byte 1 byte

Figure 7: The storage of edge weights using VariableByteArrayWeights. Weights of neighbors are
held in variable-byte encoding. Two weights (32 and 378) are represented using only one and two
bytes, respectively. VariableByteArrayWeights can extend BVEdges and IntervalResidualEdges to

support weighted graphs.

of bytes holding consecutively the weights in variable-byte coding.

Example 4 Consider the following sequence of edge weights to be represented: (32, 378).
Figure 7 provides an illustration of the parallel array using variable-byte coding that we ex-
tend BVEdges and IntervalResidualEdges with, to support weighted graphs. The weight
of the first neighbor is represented using only one byte, and thus the most significant bit
of the latter is set to 0. In contrast, the second weight requires two bytes, the first of which
has its most significant bit set to 1, to signify that the following byte is also part of the same
weight.

Extracting the weight of a neighbor is as simple as reading a sequence of bytes until
reaching one with the most significant bit set to 0, and using the 7 least significant bits of
each byte in the sequence to decode the weight.

2.3.4 RedBlackTreeEdges

Compressed representations essentially limit the efficiency of performing mutations. Even
the non-compressed ByteArrayEdges representation is impractical when executing algo-
rithms involving mutations of edges [60]. This is due to the excessive time required to per-
form a removal, as all out-edges need to be deserialized. However, we can achieve muta-
tion efficiency without the overwhelming memory overhead induced when using HashMap-
Edges. Java’s HashMap objects use a configurable number of buckets in their hash-table,
which doubles once their entries exceed a percentage of their current capacity. Giraph
sets the initial capacity of each HashMap to be equal to the number of out-edges of the
corresponding adjacency list, thus ending up with significantly more buckets than what
is needed at initialization. Furthermore, the iterator of out-edges for this representation
requires additional O(n) space.

The space wasted when using a HashMap due to empty hash-table buckets and additional
memory requirements for iterating elements motivated us to implement a red-black tree-
based representation1 offering the same type flexibility provided by HashMapEdges. Even

1Java’s TreeMap uses an unnecessary parent reference.

49 P. Liakos



Distributed and Streaming Graph Processing Techniques

127

20

18

17

14

12

11

10

9

2

key: 8 bytes (long)
le�: 4 bytes (compressed oop)
right: 4 bytes (compressed oop)
color: 1 byte (boolean)
depth: 2 bytes (short)

Figure 8: The storage of neighbors in RedBlackTreeEdges. Neighbors’ ids are inserted as keys to a
red-black tree. For weighted graphs each node would additionally maintain a variable to hold the

weight.

though the individual entries of the tree require more space, we noticed that the total mem-
ory used is reduced bymore than 15% for graphs of our dataset, as our tree does not waste
space for empty buckets. These savings can be significantly enhanced through the use
of primitive data types. Moreover, using Morris’ tree traversal algorithm [99], we can iter-
ate through the out-edges without additional cost in space. Based on these observations,
we developed RedBlackTreeEdges, a space-efficient representation that favors mutations
and offers type-flexibility.

Definition 5 (RedBlackTreeEdges) Given a list l of a node’s neighbors, each one poten-
tially associated with an edge weight, RedBlackTreeEdges is a red-black tree which uses
the id of a neighbor as a key. The nodes of the tree comprise two references to their left
and right child, a boolean for the color of the node, a short for its depth, and two variables
using primitive data types for the id and the weight. The memory requirements of the key
and the weight depend on the id’s respective primitive data type. The references on the
left and right children require 4 bytes each—when the maximum heap size for each worker
is less than 32GB and thus compressed ordinary object pointers (oops) can be used—or
8 bytes each otherwise.

Example 5 The representation of the aforementioned sequence of neighbors (2, 9, 10,
11, 12, 14, 17, 18, 20, 127) using RedBlackTreeEdges is illustrated in Figure 8. We observe
that the neighbors’ ids are inserted as keys to a red-black tree. For each id, a tree node
is created and holds the id as a key, references to the left and right child of the node,
the color of the node, and the depth of the node. In case of a weighted graph, each node
additionally maintains a variable to hold the weight. In this example, we consider that keys
are long integers, and thus require 8 bytes. In addition compressed oops can be used, so
the references to the left and right child need 4 bytes each. The graph is unweighted so

P. Liakos 50



Distributed and Streaming Graph Processing Techniques

no bytes are required for the weights, and finally, for the color and the depth of the node,
1 and 2 bytes are needed, respectively, as is always the case.

The use of a red-black tree instead of a hash-table allows us to access the neighbors
without inducing further costs space-wise, and to avoid resizing as neighbors are added
or removed. This leads to significantly less memory requirements than with HashMap-
Edges, without forgoing the efficiency of performing mutations. The use of primitive data
types instead of generic types necessitates defining suitable Java classes for the input
graph; however, this is insignificant when compared to our space earnings. Instead of
reducing the total memory requirements 15 percentage points we are able to achieve sig-
nificantly higher savings, as we will show in our experimental evaluation. Besides, the
majority of publicly available graphs use integer ids, and Facebook uses long integers,
which are represented at the same cost with RedBlackTreeEdges, due to JVM alignment.
We also note that the ordering of the vertices’ labels does not impact the performance of
this representation which is applicable to graphs with in-situ node labelings.

2.4 Experimental Evaluation

We implemented our techniques using Java and compared their performance against Gi-
raph’s out-edge representations using a number of publicly available and well-studied web
and social network graphs [20, 18], reaching up to 2 billion edges. Our implementation
is available online.2 We first present the dataset and detail the specifications of the ma-
chines used in our experiments. Then, we proceed with the evaluation of our out-edge
representations by answering the following questions:

• How much more space-efficient is each of our three compressed out-edge repre-
sentations compared to Giraph’s default representation?

• Are our techniques competitive speed-wise when memory is not a concern?

• How much more efficient are our compressed representations when the available
memory is constrained?

• Can we execute algorithms for large graphs in settings where it was not possible
before?

• Is our compressed weight representation able to induce additional gains?

• What are the benefits of using our tree-based out-edge representation instead of
Giraph’s fastest representation for algorithms involving mutations?

2https://goo.gl/hJlG8H

51 P. Liakos

https://goo.gl/hJlG8H


Distributed and Streaming Graph Processing Techniques

graph vertices edges type
uk-2007-05@100000 100,000 3,050,615 web
uk-2007-05@1000000 1,000,000 41,247,159 web
ljournal-2008 5,363,260 79,023,142 social
indochina-2004 7,414,866 194,109,311 web
hollywood-2011 2,180,759 228,985,632 social
uk-2002 18,520,486 298,113,762 web
arabic-2005 22,744,080 639,999,458 web
uk-2005 39,459,925 936,364,282 web
twitter-2010 41,652,230 1,468,365,182 social
sk-2005 50,636,154 1,949,412,601 web

Table 1: Dataset of our experimental setting with a total of ten publicly available web and social
network graphs [20, 18].

2.4.1 Experimental Setting

Our dataset consists of 10web and social network graphs of different sizes. The properties
of these graphs are detailed in Table 6. We ran our experiments on a Dell PowerEdge
R630 server with an Intel®Xeon® E5-2630 v3, 2.40 GHz with 8 cores, 16 hardware threads
and a total of 128GB of RAM. Our cluster comprises eight virtual machines running Xubuntu
14.04.02 with Linux kernel 3.16.0-30-generic and 13GB of virtual RAM. On this cluster we
set up Apache Hadoop 1.0.2 with 1master and 8 slave nodes and amaximum per machine
JVM heap size of 10GB. Lastly, we used Giraph 1.1.0 release.

2.4.2 Space Efficiency Comparison

We present here our results regarding space efficiency for the web and social network
graphs of our dataset. We compare our methods involving compression with the one dis-
cussed in [32], viz. ByteArrayEdges, which is currently the default Giraph representation
for out-edges. To measure the memory usage we loaded each graph using a fixed ca-
pacity Java array list to hold the adjacency lists, dumped the heap of the JVM and used
the Eclipse Memory Analyzer3 to retrieve the total occupied memory.

Table 2 lists the memory required by the four representations examined here and the
representation of [20] in MB. We observe that all our proposed compression techniques
have significantly reduced memory requirements compared to ByteArrayEdges. As was
expected, BVEdges, which essentially also serves as a yardstick to measure the perfor-
mance of our structures that focus on access-efficiency, outperforms all representations
as far as space-efficiency is concerned. In particular, depending on the graph, its mem-
ory requirements are always less than 40% of the requirements of ByteArrayEdges, and
reach much smaller figures in certain cases, e.g., 20.08% for hollywood-2011. However,

3https://eclipse.org/mat/

P. Liakos 52

https://eclipse.org/mat/


Distributed and Streaming Graph Processing Techniques

graph
Byte-

BVEdges (BV)
IntervalRe- IndexedBit-

ArrayEdges sidualEdges ArrayEdges
uk-2007-05@100000 22.61 MB 6.41 MB (0.96 MB) 7.92 MB 8.91 MB
uk-2007-05@1000000 279.16 MB 67.36 MB (10.54 MB) 82.7 MB 97.79 MB
ljournal-2008 866.36 MB 386.73 MB (117.68 MB) 497.52 MB 648.52 MB
indochina-2004 1,511.67 MB 442.34 MB (48.03 MB) 646.03 MB 554.23 MB
hollywood-2011 1,381.91 MB 287.53 MB (145.85 MB) 613.52 MB 676.88 MB
uk-2002 2,733.6 MB 1,092.82 MB (116.39 MB) 1,224.07 MB 1,255.67 MB

arabic-2005 4,820.09 MB 1,428.97 MB (187.58 MB) 1,674.75 MB 1,849.83 MB
uk-2005 7,401.88 MB 2,383.54 MB (279.45 MB) 2,728.74 MB 2,928.81 MB
twitter-2010 11,189.88 MB 4,628.48 MB (2,600.07 MB) 7,127.76 MB 8,888.50 MB
sk-2005 14,829.64 MB 4,889.85 MB (607.92 MB) 5,657.79 MB 6,354.17 MB

Table 2: Memory requirements of Giraph’s ByteArrayEdges and our three out-edge representations
for the small and large-scale graphs of our dataset. Requirements of BV [20] in a centralized setting

are also listed to provide an indication of the compressibility potential of each graph.

we observe that our novel IntervalResidualEdges as well as the less restrictive Inde-
xedBitArrayEdges, both of which do not impose any computing overheads, also manage
to achieve impressive space-efficiency.

2.4.3 Execution Time Comparison

In this section, we present results regarding the execution times of Pregel algorithms
using our compressed out-edge representations. Reported timings for all our results are
averages of multiple executions.

2.4.3.1 PageRank Computation

PageRank is a popular algorithm employed by many applications that run on top of real
world-networks, with (web page/social network users) ranking and fake account detection
being typical examples.

A Pregel implementation of PageRank is shown in Function computePageRank. In our
experimental setting MAX_SUPERSTEPS is set to 30 and α is set to 0.85. Every vertex exe-
cutes the function computePageRank at each superstep. The graph is initialized so that
in superstep 0 all vertices have value equal to 1

|V | . In each of the first 30 (i.e., 0 to 29)
supersteps, each vertex sends along each out-edge its current PageRank value divided
by the number of out-edges (line 9). From superstep 1 and on, each vertex computes
its PageRank value vvertex as shown in line 6. When superstep 30 is reached, no further
messages are sent, each vertex votes to halt, and the algorithm terminates.

We expect that any Pregel algorithm not involving mutations would exhibit similar behavior

53 P. Liakos



Distributed and Streaming Graph Processing Techniques

Function: computePageRank(vertex, messages)
1 begin
2 if superstep ≥ 1 then
3 sum← 0;
4 foreach message ∈ messages do
5 sum← sum + message;

6 vvertex ← 1−α
|V | +α×sum;

7 if superstep < MAX_SUPERSTEPS then
8 dvertex ← degree(vertex);
9 sendMessageToAllOutEdges( vvertexdvertex

);
10 else
11 voteToHalt();

Function: computeShortestPaths(vertex, messages)
1 begin
2 if superstep == 0 then
3 vertex.setValue(∞);

4 minDist← isSource(vertex) ? 0 : ∞;
5 for message in messages do
6 minDist← min(minDist, message);

7 if minDist < vertex.getValue() then
8 vertex.setValue(minDist);
9 for edge in vertex.getEdges() do
10 sendMessage(edge, minDist + edge.getValue());

11 voteToHalt();

for the different representations with the one reported here for PageRank, as it would also
feature the same set of actions regarding out-edges, i.e., initialization and retrieval.

2.4.3.2 Shortest Paths Computation

Single-source Shortest Paths algorithms [30] focus on finding a shortest path between a
single source vertex and every other vertex in the graph, a problem arising in numerous
applications.

A Pregel implementation of Shortest Paths is shown in Function computeShortestPaths.
Initially, the value associated with each vertex is initialized to infinity, or a constant larger
than any feasible distance in the graph from the source vertex. Then, using the temporary
variable minDist the function examines cases that may update this value. There are two
such cases: i) if the vertex is the source vertex the distance is set to zero, and ii) if the
vertex receives amessage with a smaller value than the one it currently holds, the distance
is updated accordingly. When a vertex updates its value it must also send a message to

P. Liakos 54



Distributed and Streaming Graph Processing Techniques

 0

 5

 10

 15

 20

 25

 30

8 workers 4 workers 2 workers

E
x
e
c
u
t
i
o
n
 
t
i
m
e
 
(
i
n
 
m
i
n
u
t
e
s
)

ByteArrayEdges
BVEdges

IntervalResidualEdges
IndexedBitArrayEdges

Figure 9: Execution time (in minutes) of PageRank algorithm for indochina-2004 using a setup of 2,
4, and 8 workers.

all its out-neighbors to notify them about the newly found path. Each message is set to
the updated distance of the vertex plus the weight of the edge that connects the vertex
with the respective neighbor. Finally, the vertex votes to halt and remains halted until a
message reaches it. The algorithm terminates when all vertices are halted, at which time
each vertex holds the value of the shortest path to the source vertex.

The Shortest Paths algorithm involves the same operations as the PageRank algorithm,
but additionally serves the purpose of evaluating our techniques on weighted graphs.

2.4.3.3 Comparison using small-scale graphs

We begin our access time comparison by investigating the performance of our three com-
pressed out-edge representations, as well as that of Giraph’s ByteArrayEdges. Figure 9
depicts the results of all four techniques when executing the PageRank algorithm for the
graph indochina-2004. We run experiments on setups of 2, 4, and 8 workers and present
the results of the total time needed for each representation.

We observe that IndexedBitArrayEdges and IntervalResidualEdges do not impose any
latency in the process. In fact, using either of our two novel representations we achieve
execution times for all three setups that are better than those of ByteArrayEdges. The
performance gain becomes more notable as we limit the number of available workers.
BVEdges is inferior speed-wise due to the computationally expensive access of the out-

55 P. Liakos



Distributed and Streaming Graph Processing Techniques

edges offered through this structure which requires decoding Elias-γ and ζ-coding values.
This indicates that the computing overheads imposed by the state-of-the-art techniques
of [20] are not negligible and simply adopting them proves to be inefficient. We note that
this graph is fairly small for all our setups and its memory requirements are not a bottleneck
for any of the representations we examine. However, the messages that are exchanged
during the execution of the algorithm need in total more than 65GB of memory. Thus,
garbage collection needs to take place in the setups of 2 and 4 workers.

For graphs which are equivalent to or smaller than indochina-2004 the performance is
similar. In particular, for all three setups IndexedBitArrayEdges and IntervalResidual-
Edges managed to execute the PageRank algorithm faster than ByteArrayEdges was able
to. On the contrary, BVEdges required more time for each superstep.

2.4.3.4 Comparison using large-scale graphs

We further examine the performance of our representations using setups where memory
does not suffice for the needs of the execution of PageRank. This forces the JVM to
work too hard and results in wasting a significant proportion of the total processing time
performing garbage collection. Hence, the overall performance degrades extremely. In
particular, we examine the behavior of all four representations for the graph uk-2005,
using a setup of 5 workers, i.e., the smallest possible setup that can handle the execution
of PageRank using ByteArrayEdges.

The merits of memory optimization in the execution of Pregel algorithms for large scale
graphs are evident in Figure 10. In particular, Figure 10 depicts the time needed for each
superstep of the execution of PageRank for the uk-2005 graph with each one of the four
space-efficient out-edge representations. We observe that BVEdges requires significantly
more time than our other two representations for every superstep, as was the case with
small-scale graphs. In particular, using BVEdges most supersteps require more than 3
minutes each, whereas using our other two representations most supersteps need about
2.5 minutes each. We also see, however, that in this setup the execution with Byte-
ArrayEdges tends to fluctuate in performance, and consequently performs worse than our
slowest structure, i.e., BVEdges. The increased memory requirements of Giraph’s de-
fault implementation, result in an unstable pace during the execution of PageRank, as it
needs to perform garbage collection very frequently to accommodate the memory objects
required in every superstep. IndexedBitArrayEdges and IntervalResidualEdges were
able to handle every superstep at a steady pace and greatly outperformed ByteArray-
Edges, requiring 2.45 and 2.46 minutes of execution per superstep, respectively, when in
fact ByteArrayEdges needed 4.03. Our most compact structure, i.e., BVEdges required 3.13
minutes per superstep to run the PageRank algorithm, which is also significantly faster
than Giraph’s default representation.

The performance difference of the four representations with regard to the total execution
time of PageRank for the graph uk-2005 is even more evident in Figure 11. The execu-
tions using IndexedBitArrayEdges and IntervalResidualEdges are faster by 40.63% and

P. Liakos 56



Distributed and Streaming Graph Processing Techniques

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25  30

E
x
e
c
u
t
i
o
n
 
t
i
m
e
 
(
i
n
 
m
i
n
u
t
e
s
)

Supersteps of PageRank execution

ByteArrayEdges
BVEdges

IntervalResidualEdges
IndexedBitArrayEdges

Figure 10: Execution time (in minutes) for each superstep of the PageRank algorithm for the graph
uk-2005 using 5 workers. ByteArrayEdges performance fluctuates due to extensive garbage collec-

tion.

40.01% than the one with ByteArrayEdges, respectively.

We further evaluate the performance of the four representations by executing PageRank
for the same graph using only 4 workers. As already mentioned, the execution with Byte-
ArrayEdges on this setup fails as the garbage collection overhead limit is exceeded, i.e.,
more than 98% of the total time is spent doing garbage collection. Our proposed imple-
mentations, however, are able to execute PageRank for the uk-2005 graph despite the
limited resources. The total time needed by our three representations is also illustrated
in Figure 11. We observe that under these settings IndexedBitArrayEdges, IntervalRe-
sidualEdges, and BVEdges need 212.65, 221.27, and 230.47 minutes, respectively. As we
can see in Table 2, IndexedBitArrayEdges requires more memory than IntervalResi-
dualEdges to represent the out-edges of uk-2005. However, the retrieval of out-edges us-
ing IndexedBitArrayEdges is more memory-efficient than using IntervalResidualEdges,
which results in it being 4% faster under these settings.

We note that for the uk-2005 graph, PageRank execution requires the exchange of mes-
sages that surpass 313GB of memory in total.

57 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0

 50

 100

 150

 200

uk-2005 (5 workers) uk-2005 (4 workers)

F
A
I
L
E
D

E
x
e
c
u
t
i
o
n
 
t
i
m
e
 
(
i
n
 
m
i
n
u
t
e
s
)

ByteArrayEdges
BVEdges

IntervalResidualEdges
IndexedBitArrayEdges

Figure 11: Execution time (inminutes) of the PageRank algorithm for the graph uk-2005 using 5 and 4
workers. IntervalResidualEdges and IndexedBitArrayEdges outperform ByteArrayEdges which fails

to complete execution with 4 workers.

2.4.3.5 Initialization time comparison

Having measured the execution time of the PageRank algorithm using small- and large-
scale graphs we now report the initialization time the different representations need. Fig-
ure 12 illustrates a comparison between our three space-efficient out-edge structures and
ByteArrayEdges in two different setups. In particular, we first examine the loading time
for the relatively small graph indochina-2004 when using two workers. We observe that
there are negligible differences between ByteArrayEdges, IntervalResidualEdges, and
IndexedBitArrayEdges, with the former being the slowest and the latter being the fastest.
In contrast, BVEdges is significantly slower than all other representations. Furthermore,
we see in Figure 12 that when loading a larger graph, i.e., uk-2005, the performance of
the different structures varies considerably. Again, IndexedBitArrayEdges is the fastest
approach, followed by IntervalResidualEdges, ByteArrayEdges, and BVEdges, but in this
setting there is obvious disparity in the initialization performance.

We note that the graph loading time is negligible compared to the execution time of the
PageRank algorithm. For instance, for graph uk-2005 using 5 worker nodes, IndexedBit-
ArrayEdges requires 121.64 seconds to initialize the graph, whereas the execution time for
this setting is over 70 minutes using any of the representations examined here. How-
ever, the significant performance gain induced when using IntervalResidualEdges and
IndexedBitArrayEdges can have a notable impact in algorithms requiring less execution

P. Liakos 58



Distributed and Streaming Graph Processing Techniques

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

indochina-2004 (2 workers) uk-2005 (5 workers)

F
A
I
L
E
D

I
n
i
t
i
a
l
i
z
a
t
i
o
n
 
t
i
m
e
 
(
i
n
 
s
e
c
o
n
d
s
)

ByteArrayEdges
BVEdges

IntervalResidualEdges
IndexedBitArrayEdges

Figure 12: Initialization time (in seconds) for graphs indochina-2004 (using 2 workers) and uk-2005
(using 5 workers). There is notable performance gain on large-scale graphs over ByteArrayEdges
when using IndexedBitArrayEdges or IntervalResidualEdges. BVEdges is the slowest of the repre-

sentations examined.

time.

2.4.3.6 Comparison when using weighted graphs

We continue our experimental evaluation by measuring the time needed for the execution
of a Pregel algorithm that operates on weighted graphs. In particular, we present per-
formance results for the different compact out-edge representations when executing the
Shortest Paths algorithm, as described through Function computeShortestPaths. Being
that all the graphs of our dataset are unweighted, we assign random weights exhibiting
a Zipf distribution4 on the edges of graph uk-2005. Then, we proceed with the execution
of the algorithm using ByteArrayEdges, BVEdges and IntervalResidualEdges in setups
of 5 and 4 workers. For BVEdges and IntervalResidualEdges we additionally use the
VariableByteArrayWeights representation to hold the weights of edges.

Figure 13 illustrates a comparison of the results we obtain with our representations against
Giraph’s ByteArrayEdges. We observe that using IntervalResidualEdges we are able to
execute the Shortest Paths algorithm more than 1.5minutes faster than using ByteArray-

4We used the numpy.random.zipf function from NumPy’s random sampling library to generate weights
for the graph using α = 2.

59 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0

 2

 4

 6

 8

 10

 12

 14

5 workers 4 workers

E
x
e
c
u
t
i
o
n
 
t
i
m
e
 
(
i
n
 
m
i
n
u
t
e
s
)

uk-2005

ByteArrayEdges
BVEdges

IntervalResidualEdges

Figure 13: Execution time (in minutes) of the ShortestPaths algorithm for a single vertex, on the
graph uk-2005, using a setup of 5 and 4 workers.

Edges in the setup of 5 workers. The significant savings in execution time are due to the
limited memory usage of IntervalResidualEdges and VariableByteArrayWeights. Our
BVEdges behaves similarly to ByteArrayEdges as the computation overhead involved in
accessing the edges counterbalances the merits of space-efficiency this representation
offers. Furthermore, Figure 13 shows the respective results for the setup of 4 workers.
We see that as we limit the available memory resources, the performance gains of our
representations become more evident. In particular, BVEdges is clearly also preferable
than ByteArrayEdges in this setting being more than 1.5 minute faster. Moreover, Inter-
valResidualEdges is able to terminate 2.26 minutes faster than ByteArrayEdges.

We note that VariableByteArrayWeights requires additional 1, 957.25MB of memory to
hold the weights of out-edges, whereas ByteArrayEdges needs 5, 074.36MB. Moreover,
IndexedBitArrayEdges does not presume that the ids of out-edges are sorted, and thus,
cannot support weighted graphs through VariableByteArrayWeights. For this reason we
do not include IndexedBitArrayEdges in this experiment.

2.4.3.7 Comparison when performing mutations

All the aforementioned experiments focus on space-efficient structures that are applicable
on algorithms that do not involve additions or removals of out-edges. However, oftentimes
graph algorithms need to perform mutations on the vertices’ neighbors. To this end, we
examine here the performance of our novel RedBlackTreeEdges representation, against

P. Liakos 60



Distributed and Streaming Graph Processing Techniques

 0

 2

 4

 6

 8

 10

 12

10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n
 
t
i
m
e
 
(
m
i
n
)

Maximum Mutations Allowed

HashMapEdges
RedBlackTreeEdges

Figure 14: Execution time (in minutes) of an algorithm performing a random number of mutations
on the graph hollywood-2011 using 5 workers, for a varying number of maximummutations allowed.

Giraph’s HashMapEdges. Both structures provide type flexibility, support weighted graphs,
and can operate on graphs with in-situ node labelings.

We consider here an input graph which uses long integers for the ids of its nodes5 and
the execution of a simple algorithm that performs additions and removals of out-edges on
this graph. In particular, we executed over hollywood-2011—the largest graph we were
able to load using HashMapEdges—an algorithm of two supersteps. The first one performs
a random number of insertions of out-edges, and the second one removes them.

The initialization phase, in which the graph is loaded in memory, is faster using our novel
tree-based structure. RedBlackTreeEdges needs 33.64 seconds to do so, whereas Hash-
MapEdges requires 38.73 seconds. Moreover, Figure 14 depicts the execution time needed
by the two representations when varying the number of maximum insertions/deletions al-
lowed in our algorithm. We observe that when the number of mutations is low, the time
spent using the two representations is equivalent. However, as the number of mutations
grows and more memory is needed for the representation of the graph, the performance
of HashMapEdges deteriorates significantly, and RedBlackTreeEdges proves to be clearly
superior.

We note that RedBlackTreeEdges requires less than half of the space that HashMapEdges
needs to load the graph hollywood-2011 in memory. In particular, RedBlackTreeEdges
uses 7,079.6MB of memory, whereas HashMapEdges uses 19,323.8MB.

5We examine the case of long integer ids as this is the data type used by Facebook, Giraph’s most
significant contributor.

61 P. Liakos



Distributed and Streaming Graph Processing Techniques

2.5 Conclusion

In this chapter, we propose and implement three compressed out-edge representations
for distributed graph processing, termed BVEdges, IntervalResidualEdges, and Inde-
xedBitArrayEdges, a variable-byte encoded representation of out-edge weights, termed
VariableByteArrayWeights, for compact support of weighted graphs, and a compact tree-
based representation that favors mutations, termed RedBlackTreeEdges. We focus on the
vertex-centric model that all Pregel-like graph processing systems follow and examine
the efficiency of our structures by extending one such system, namely Apache Giraph.
Our techniques build on empirically-observed properties of real-world graphs that are ex-
ploitable in settings where graphs are partitioned on a vertex basis. In particular, we
capitalize on the sparseness of such graphs, as well as the locality of reference property
they exhibit. We cannot, however, exploit the similarity property as vertices are unaware
of any information regarding other vertices.

All our representations offer significant memory optimizations that are applicable to any
distributed graph compressing system that follows the Pregel paradigm. BVEdges, which
is based on state-of-the-art graph compression techniques, achieves the best compres-
sion but offers relatively slow access time to the graph’s elements. Our IntervalResi-
dualEdges and IndexedBitArrayEdges representations outperform Giraph’s most efficient
representation, namely ByteArrayEdges, and are able to execute algorithms over large-
scale graphs under very modest settings. Furthermore, our representations are clearly
superior than ByteArrayEdges when memory is an issue, and are capable of successfully
performing executions in settings where Giraph fails due to memory requirements. Our
compressed out-edge representations are also shown to allow for efficient execution of
weighted graph algorithms, through VariableByteArrayWeights, a variable-byte encod-
ing based representation of out-edge weights. Finally, through our evaluation regarding
algorithms involving mutations we show that the performance of RedBlackTreeEdges is
equivalent to that of HashMapEdges when memory is sufficient, and shows significant im-
provements otherwise.

P. Liakos 62



Distributed and Streaming Graph Processing Techniques

3. UNCOVERING LOCAL HIERARCHICAL LINK COMMUNITIES AT
SCALE

family college
friends

basketball
buddies co-workers

Figure 15: Illustration of the social circles of an individual. Her family, co-workers, basketball bud-
dies and friends from college are distinct yet overlapping communities.

The neurons in our brains, the proteins in live cells, the powerplants of an electrical grid,
and the users of an online social networking service, are all entities of complex systems
that play a vital role in our daily lives. Networks are a powerful tool for modeling rela-
tions and interactions between the components of such complex systems. Respective
real-world networks are often massive; yet they exhibit a high level of order and organi-
zation, which allows the study of common properties they exhibit, such as the power-law
degree distribution and the small-world structure [37, 42]. Another important property that
real-world networks exhibit is the presence of community structure [51]. At a high level,
communities are groups of nodes that share a common functional property or context,
e.g., two people that attended the same school, or two movies with the same actor. In
several cases communities in a network are distinct; consider for example the fans of
different basketball teams. However, it is often the case that communities overlap. Fig-
ure 15 illustrates the communities of an individual in a social network, i.e., her family,
co-workers, basketball buddies and friends from college. It is obvious that the communi-
ties may overlap in different ways. For example, a co-worker may also be a basketball
buddy and a friend from college. Such overlapping communities may have a complex
structure of connections that are not easy to discern and are certainly more challenging
to identify compared to non-overlapping ones.

Effectively extracting the community structure of a node in a network has many useful
applications:

• We can provide more informative and engaging social network feeds by better un-
derstanding the membership of an individual to various organizational groups.

63 P. Liakos



Distributed and Streaming Graph Processing Techniques

• We can suggest common friends of an individual to connect because they share
mutual interests.

• We can create match-making algorithms for online players based on the similarity of
their game play.

• We can identify groups of customers with similar behavior and enhance the efficiency
of recommender systems.

Early community detection approaches focused either on grouping the nodes of a network
or on searching for links that should be removed to separate the clusters [45]. However,
these approaches did not consider the fact that communities may overlap, and ultimately
could not provide an accurate representation of a network’s community structure. Al-
gorithms that followed [7, 41, 53, 119, 123, 125] allow for nodes to belong to several
overlapping communities by employing techniques such as link clustering, matrix factor-
ization, and personalized PageRank vectors. Still, these approaches are not applicable
to the massive graphs of the Big Data era, as they focus on the entire graph structure
and do not scale with regards to both execution time and memory consumption. Recent
efforts have therefore shifted the focus from the global structure to a local view of the net-
work [61, 70, 72, 79]. More specifically, such approaches locally expand a set of target
nodes in the community of interest, instead of uncovering the communities of the entire
network.

Seed set expansion approaches employ techniques such as random walks to estimate the
likelihood of a node to participate in the target community, and manage to scale to large
networks [61, 70, 72, 79]. These approaches consider that overlaps between communities
are sparsely connected whereas the areas where communities overlap are denser than
the actual communities. However, studies of real-world networks show that two nodes
are more likely to be connected if they share multiple communities in common [127]. For
example, people belonging to both the co-workers and basketball buddies communities of
Figure 15, are expected to know each other with high probability. Hence, as the overlap-
ping area is in fact denser than the actual communities, seed set expansion approaches
are driven towards nodes that reside in the overlap. In addition to this, all scalable meth-
ods requiremultiple seeds to avoid detecting multiple overlapping communities as a single
one. This constitutes a challenge, as it is usually the case that we are interested in all com-
munities of a single node, instead of seeking one community involving multiple predefined
nodes. Finally, seed set expansion approaches are shown to perform well when detecting
relatively large communities, whereas high quality communities are in fact small [127].

Here, we focus on the neighbors of a single node in the network, i.e., its egonet, and aim at
extracting the –possibly overlapping– communities of this node. We build upon the ideas
of link clustering [7, 41] and employ similarity measures that allow for effectively handling
densely connected overlaps between communities. Our intuition is that when grouping
pairs of links we should capture the extent to which a link belongs to multiple overlapping
communities. To this end, we utilize a dispersion-based tie-strength measure that helps
us quantify the participation of a link’s adjacent nodes to more than one community. Our

P. Liakos 64



Distributed and Streaming Graph Processing Techniques

approach is both efficient and scalable as we focus on local parts of graphs comprising a
target node and its neighbors. As we show in our experimental evaluation, we produce a
more accurate and intuitive representation of the community structure around a node for
a number of real-world networks.

In summary, we make the following contributions:

• We propose a local community detection algorithm that effectively reveals the over-
lapping nature of real-world network communities of individual target nodes.

• We operate with less input from the user (a single seed vs a set of multiple seeds)
and generate communities of equal or better quality.

• We experimentally evaluate our algorithm against state-of-the-art approaches using
publicly available networks. Our results show that our approach significantly outper-
forms current methods using popular evaluation metrics.

• We reduce the execution time notably, by focusing on the neighborhood of a node
and thus, manage to handle billion-edge scale graphs.

• We provide a detailed view of the rich hierarchical structure of the derived commu-
nity.

3.1 Background

In this section we review some basic principles and definitions for our work. First, we
provide the definition of the egonet and subsequently we discuss measures that are used
to estimate the strength of ties in networks. Finally, we give the definition of partition
density and detail the dataset used in our study.

3.1.1 Egonet

Graph mining applications focusing on large-scale graphs are often based on local neigh-
borhoods of nodes [52]. The set of nodes that are one hop away from a given node allows
for a variety of analyses that build intuition about that node and its role. Focusing on local
neighborhoods of nodes enables respective applications to scale effortlessly to large net-
works as the task in hand can be executed in parallel for all nodes in the network. In the
context of social networks, this one hop neighborhood is frequently called the egonet of a
user. Figure 15 depicts such an egonet of an individual and the overlapping communities
she is part of.

In this work, we address the challenge of extracting efficiently the community structure
formed by the nodes adjacent to a single target node. The networks we are interested
are often massive and, thus, our approach should scale to graphs of extreme volume. To
this end, we investigate ground-truth communities of real-world networks and in particular,

65 P. Liakos



Distributed and Streaming Graph Processing Techniques

whether these communities are recoverable using egonets alone. Eventually, we focus
on the egonets of target nodes to significantly reduce the search space of our algorithm.

3.1.2 Tie Strength Measures

The closeness between nodes in a network and its impact on the network’s dynamics
has been studied extensively [58, 95]. Understanding the complex nature of interacting
objects calls for quantifying the strength of ties to distinguish the connections of particular
importance. We outline here the tie strength measures that we employ in the context of
this work:

3.1.2.1 Embeddedness

Intuitively, a large number of shared neighbors between nodes indicates a strong tie,
whereas a few mutual neighbors indicate a weak tie. Therefore, a frequently used mea-
sure to estimate the tie strength between two nodes u and v is embeddedness, formally
defined as:

emb(u, v) = |N+(u) ∩N+(v)| (3.1)
where N+(u) is the set of nodes adjacent to u.

In the case of social networks, individuals operating on a common context are more likely
to share joint activities with each other, as opposed to people that do not share this particu-
lar context [43]. Therefore, embeddedness can effectively be applied for the identification
of couples [44].

3.1.2.2 Jaccard similarity coefficient

The Jaccard similarity coefficient is a frequently used measure of similarity of two sets and
is defined as the size of their intersection divided by the size of their union. In the case of
two nodes u and v in a network, the Jaccard similarity coefficient can be applied on the
respective sets of neighbors, N+(u) and N+(v), as follows:

J(u, v) =
|N+(u) ∩N+(v)|
|N+(u) ∪N+(v)|

(3.2)

3.1.2.3 Absolute and Recursive Dispersion

The task of identifying spouses or romantic partners in a social network is also the focus
of [12]. Backstrom and Kleinberg address this challenge through the use of dispersion-
based measures. They analyze real data from Facebook and conclude that high disper-
sion is indeed present, not only to spouses or romantic partners, but to people who share
multiple relevant aspects of their social environment in general.

P. Liakos 66



Distributed and Streaming Graph Processing Techniques

Table 3: Graphs of our dataset reaching up to 1.8 billion edges.

Graphs Type Nodes Edges Average Av. Commu-
Degree nity Size

DBLP Co-authorship 317, 080 1, 049, 866 3.31 22.45
Amazon Co-purchasing 334, 863 925, 872 2.76 13.49
Youtube Social 1, 134, 890 2, 987, 624 2.63 14.59
LiveJournal Social 3, 997, 962 34, 681, 189 8.67 27.80
Orkut Social 3, 072, 441 117, 185, 083 38.14 215.72
Friendster Social 65, 608, 366 1, 806, 067, 135 27.53 46.81

Formally, we consider the egonet Gu of u in G and define absolute dispersion as:

disp(u, v) =
∑

s,t∈Cuv
s<t

dv(s, t) (3.3)

where Cuv is the set of common neighbors of u and v in Gu, and dv(s, t) is a distance
function equal to 1 when s and t are not directly linked themselves and have no common
neighbors in Gu other than u and v, and 0 otherwise.

Experiments show that for a fixed value of disp(u, v), increased embeddedness is a neg-
ative predictor of whether v is close to u [12]. Thus, absolute dispersion is more effec-
tive when normalized using embeddedness. In addition, the performance of dispersion is
found to strengthen when applying it recursively as follows. First, we consider xv = 1 for
all neighbors v of u. Then, we iteratively update xv using the formula:

xv =

∑
w∈Cij

x2
w + 2

∑
s,t∈Cij
s<t

dv(s, t)xsxt

emb(u, v)
(3.4)

The value produced after the third iteration of (3.4) is empirically found to perform the
best [12]. We will refer to this value as recursive dispersion of v in Gu for the rest of this
chapter, and use it to identify pairs of nodes that operate in multiple common contexts.

3.1.3 Partition Density

Agglomerative community detection algorithms provide us with a dendrogram describing
the hierarchical organization pattern of communities [102, 45, 7]. To obtain meaningful
communities from the dendrogram it is necessary to determine the level at which to cut
the tree at. To this end, Ahn et al. [7] introduced the measure of partition density D, that
is formally defined as follows:

D =
2

|E|
∑
c∈C

ec
ec − (nc − 1)

(nc − 2)(nc − 1)
(3.5)

67 P. Liakos



Distributed and Streaming Graph Processing Techniques

where C is the set of communities discovered, ec is the number of links in a community
c ∈ C, and nc is the number of nodes all the links in ec touch.

We can come up with the optimal value of D by examining its value at each step of the
hierarchical clustering process. Cutting the dendrogram at the level that produces the
optimal value of D is shown to effectively derive meaningful and relevant communities. In
addition, partition density is suitable for large-scale graphs as it does not suffer a resolution
limit likemodularity [46], being that every term in Equation (3.5) is local in each community
c.

3.1.4 Networks in our Dataset

Evaluating and comparing communities detected by different algorithms is not a trivial
task. Large networks exhibit extremely complex organization and cannot be visualized
in meaningful ways. However, we can measure the accuracy of a community detection
algorithm given the presence of ground-truth communities [127].

In this work, we employ all six of the real-world networks with available ground-truth com-
munities that are provided by the Stanford Network Analysis Project (SNAP).1 In particular,
our evaluation is based on the top-5, 000 highest quality communities of each of these net-
works [124]. Table 6 provides the details of our dataset.

DBLP is a co-authorship network and ground-truth is formed from authors who published
in the same journal or conference. Amazon is a product co-purchasing network and the
annotated communities associated with it are based on the categories of the products. Fi-
nally, Youtube, LiveJournal, Orkut, and Friendster are all social networks, and the respec-
tive ground-truth communities are user groups that have been formed in these networks.
We note that Table 6 features a graph that exceeds 1.8 billion edges, namely Friendster.
We also see that, the average community size of most networks is relatively small, with
the exception of Orkut with an average size of 215.72.

3.2 Local Dispersion-aware Link Communities

In this section we describe in detail our approach for local community detection. We com-
mence by examining the coverage ratio of egonets on the ground-truth communities of
the networks in our dataset. We then discuss the difficulties that existing methods based
on seed set expansion and link clustering face due to the nature of real-world overlap-
ping communities. We show that the use of dispersion-based measures of tie strength
can alleviate such issues. Then, we present our algorithm, termed LDLC, in detail. Fi-
nally, we discuss a novel sampling technique to effectively reduce the search space of
our algorithm.

1https://snap.stanford.edu/data/#communities

P. Liakos 68

https://snap.stanford.edu/data/#communities


Distributed and Streaming Graph Processing Techniques

3.2.1 Egonet Coverage Ratio

Community detection methods that focus on the global structure of graphs fail to scale to
the massive volume that real-world networks reach, i.e., millions of nodes and billions of
edges. We aim at detecting communities for large-scale graphs efficiently. To this end,
we focus on the local structure of a node in the network. Studies of real-world networks
show that community members tend to organize themselves around hub nodes that are
linked with most of the nodes in the community [127]. We begin discussing our approach
by investigating ground-truth communities of real-world networks, and in particular, the
fraction of the nodes they comprise that is part of egonets of nodes that belong to the
respective communities.

We report in Figure 16 the coverage ratio of egonets regarding the ground-truth commu-
nities of the networks of our dataset. For every ground-truth community of all six networks
of our dataset, we examined the coverage of the egonets of each of the nodes belonging
to the community. The average coverage ratio depicted in Figure 16, results from the
egonets of the nodes with the largest coverage for each ground-truth community. We
observe that the coverage ratio is very high for all networks, ranging from 87% to 97%,
with the exception of Orkut at slightly under 67%. The lower coverage ratio of Orkut is at-
tributed to the larger average community size of this network. Empirical observations [127]
show that high quality communities usually consist of no more than 100 nodes, whereas
the average community size of Orkut is more than twice as high and remains low even
when using the 2-step geodesic neighborhood of nodes, as reported in [61].

The large coverage ratio of egonets on ground-truth communities verifies our hypothesis
that high quality communities can be detected when focusing on egonets of nodes. This
allows us to significantly reduce the scale of our search by focusing only on a small part of
a possibly extremely large network. Even in the case of nodes exhibiting large degrees,
dealing with the respective egonets instead of the global structure of the graph is beyond
comparison with regard to efficiency. Space complexity is also reduced greatly, as the
memory footprint of the egonet is insignificant when compared to the whole network.

3.2.2 Effective Detection of Local Hierarchical Overlapping Communities

Investigations on the structure of real-world networks have revealed that there is an in-
creasing relationship between the number of shared communities and the probability of
nodes being linked with an edge [127]. Hence, the nodes residing in overlapping parts of
communities are more densely connected than the nodes residing in the non-overlapping
parts. Moreover, connector nodes, i.e., nodes linked with most of the members of a com-
munity, belong to the overlap [127].

Recent local community detection methods [61, 70, 79] expand seed sets by utilizing the
dynamics of random walks initiating from the seeds. The participation of a node in the tar-
get local community is determined by the corresponding probability score that results from
these randomwalks. Naturally, nodes that reside in the dense overlapping area of multiple

69 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

ve
ra

ge
 P

er
ce

n
ta

ge

DBLP
Amazon
Youtube

LiveJournal
Orkut

Friendster

Figure 16: Egonet coverage ratio for the ground-truth communities of graphs provided by SNAP.
We show that the coverage ratio for all graphs, with the exception of Orkut, is above 87%. The ratio

is lower for Orkut due to its large average ground-truth community size.

communities of a particular node, have high probability scores for random walks starting
off this node. In addition to this, nodes outside the overlapping area that are selected in
the resulting community due to their probability scores, do not necessarily belong to the
same community, as each random walk starting from a seed node is likely to reach a dif-
ferent community. Hierarchical link clustering approaches focusing on the global network
structure [7, 41] examine the similarity of pairs of links, and thus, avoid grouping nodes
that actually belong to disparate communities. However, such approaches do consider
that communities in whole are more densely connected than their overlapping parts [126].
Therefore, these approaches are also unable to handle overlaps appropriately.

Figure 17 illustrates the egonet of an individual (10) in a social network. We use this
egonet here as a toy example. The use of a force-directed layout enables us to easily
identify the organizational groups shaped around this node. In particular, we observe
that the neighbors of node 10 form two well-connected groups. We also notice, that the
only node in the egonet that maintains links (red-colored) with nodes of both groups other
than 10, is 6. The relationship between nodes 10 and 6 is a particular case of a strong
tie which is frequent in networks and has to be considered when identifying overlapping
communities. Node 6 acts as a connector in the egonet of 10 and is linked with nodes

P. Liakos 70



Distributed and Streaming Graph Processing Techniques

0
1

2

10

3

4

5

6

8

9

7

Figure 17: Social communities in the egonet of an individual (10) in a social network. Using a force-
directed layout we can easily identify two well-connected groups of acquaintances. A special tie
between (10) and (6) is evident, as (6) is the only vertex having links (in red) towards both commu-

nities.

that are not themselves well-connected, as they belong to different organizational groups.

3.2.2.1 Local hierarchical link communities

We address the task of local community detection by merging pairs of links in the egonet
of a target node. Links often demonstrate a particular relation, e.g., a friendship between
two nodes, whereas nodes are usually part of multiple groups. Thus, by grouping links
–instead of nodes– we allow for the participation of nodes into multiple overlapping com-
munities. To quantify the relevance of two edges ewu and ewv sharing a common node w,
we can properly adopt the Jaccard similarity coefficient in the context of links [7]. Using
the common node of the two links provides no additional information, and may introduce
bias, depending on the degree of w. Therefore, using Equation (3.2), we can define the
similarity of the pair (ewu, ewv) as:

J(ewu, ewv) = J(u, v) =
|N+(u) ∩N+(v)|
|N+(u) ∪N+(v)|

(3.6)

where u and v are both adjacent to w.

After quantifying the similarity of all pairs of links in the egonet of Figure 17 that share
a common node using Equation (3.6), we can build a hierarchy of communities through
agglomerative clustering. More specifically, we proceed by merging pairs of links by de-
scending order of similarity. Finally, we cut the resulting dendrogram at the level of optimal

71 P. Liakos



Distributed and Streaming Graph Processing Techniques

2, 5, 6, 7, 8, 9, 10

2, 5, 6, 10

2, 5, 6

2, 6 5, 6

6, 10

7, 8, 9, 10

7, 10 8, 9, 10

8, 10 9, 10

Figure 18: The hierarchical link structure of the malformed community that results when performing
link clustering in the egonet of Figure 17 using Equation (3.6), and cutting at the level of optimal par-
tition density. The similarity of link (6,10) with link (8,10) leads to a community that groups numerous

nodes that are not linked with each other.

partition density, and the communities we come up with are:

a) {0, 1, 2, 3, 4, 5, 10}

b) {6, 7, 8, 9, 10}

c) {2, 5, 6, 7, 8, 9, 10}

We see that the first two communities are well-knit, i.e., the respective sub-graph is quite
dense. However, we also observe that the third community coalesces numerous nodes
that are not linked together (2, 5 with 7, 8, 9). This is an effect of the Jaccard similarity
coefficient that is used for quantifying the similarity of pairs of links, as this measure is
unable to capture how well the neighbors of two nodes are interconnected. Indeed, the
hierarchical link structure of this particular community, as portrayed through Figure 18,
highlights evidently the cause of this undesired behavior. We see that the third community
actually results from the coalescence of two well-separated clusters (2, 5, 6, 10 and 7, 8, 9,
10). This grouping occurs due to the similarity of links (6, 10) and (8, 10). These links are in
fact similar when considering the Jaccard similarity coefficient; however they belong to an
overlapping area of different communities that Equation (3.6) is unable to take into account
and consequently reveal. In addition, as the distance between two clusters is determined
by a single pair, grouping large clusters with each other results in a dendrogram that
reveals very little about the hierarchical structure of the community.

P. Liakos 72



Distributed and Streaming Graph Processing Techniques

3.2.2.2 Building on dispersion-based measures

Estimating the relevance of pairs of links in the presence of dense community overlaps
calls for measures that take into account the extent to which the neighbors of two nodes
are interconnected. Dispersion-based measures address this challenge and therefore fit
perfectly in the task of overlapping community detection. Through their use, we are able
to single out connector nodes that lie in overlapping parts of communities. For example,
using Equation (3.3) we obtain that node 6 exhibits the highest absolute dispersion in the
egonet of 10 with a value of 4. Hence, we can employ dispersion-based measures to fa-
vor groupings of pairs of links with adjacent nodes that share a lot of common neighbors
(high Jaccard similarity coefficient) only if these neighbors are also well interconnected
(low recursive dispersion). In this way, connector nodes are involved in groupings at a
higher level of the resulting dendrogram, which then depicts more accurately the hierar-
chical structure of the communities in the egonet. In particular, we propose the use of
the recursive dispersion measure along with the Jaccard similarity coefficient in order es-
timate the relevance of pairs of links. More formally, we define the similarity S of two pairs
of links (ewu, ewv) to be:

S(ewu, ewv) =
J(ewu, ewv)

rec(u) + rec(v) + rec(w)
(3.7)

where rec(u) is the recursive dispersion of u in the egonet of the target node.

Returning on the example of Figure 17 and the egonet of node 10, if we apply hierarchical
link clustering using Equation (3.7) as a measure of similarity instead of (3.6), we come
up with the following communities:

a) {0, 1, 2, 3, 4, 5, 10}

b) {7, 8, 9, 10}

c) {2, 5, 6, 10}

d) {6, 8, 9, 10}

We observe that the nodes of all communities are much more well-connected. Moreover,
node 6 is featured in two communities, in which every two distinct vertices are adjacent,
i.e., they form cliques. Evidently, through Equation (3.7), we are able to penalize the high
dispersion that node 6 exhibits in this egonet. Links featuring this node are now merged
at a higher level of the resulting dendrogram, and thus, we avoid forming communities
featuring nodes of different organizational groups.

3.2.3 Our Proposed LDLC Algorithm

We present here the LDLC algorithm for finding local hierarchical overlapping communities
in large-scale graphs. LDLC is an agglomerative clustering algorithmwhose aim is to reveal

73 P. Liakos



Distributed and Streaming Graph Processing Techniques

Algorithm 1: LDLC(G, u)

input : An undirected network G = (V,E),
and a node u ∈ V .

output : A dendrogram depicting the hierarchical (possibly overlapping) communities of Gu.
1 begin
2 Gu(Vu, Eu)← egonet(G, u);
3 rec← dict();
4 foreach v ∈ Gu, v ̸= u do
5 rec[v]← 1;

6 for iteration← 1 to 3 do
7 foreach v ∈ Vu, v ̸= u do

8 rec[v]←

∑
w∈Cuv

rec[w]2+2
∑

s,t∈Cuv
s<t

d(s,t)rec[s]rec[t]

emb(u,v) ;

9 similarities← min_heap();
10 for k ∈ Vu do
11 for (eik, ejk)← combinations(N+(k), 2) do
12 J(eik, ejk)← |N+(i)∩N+(j)|

|N+(i)∪N+(j)| ;

13 S(eik, ejk)←
J(eik,ejk)

rec[i]+rec[j]+rec[k] ;
14 similarities← (1− S(eik, ejk), (eik, ejk));

15 foreach (similarity, (eij , ejk)) ∈ similarities do
16 join_clusters(eik, ejk);
17 if len(clusters) == 1 then
18 break;

the hierarchical structure of the possibly overlapping communities of a single target node
in a network. LDLC uses Equation (3.7) to determine the similarity of all pairs of links in
the egonet of the target node in the network that share a common node. These pairs of
links are merged progressively in ranking order according to their similarity. The groupings
result in a dendrogram that depicts the hierarchical organization of the communities the
target node belongs to. To derive the actual communities, we may cut this dendrogram at
the level that produces the optimal partition density (Equation (3.5)), or alternatively, we
can cut it at the level that produces the desired number of communities.

Algorithm 1 outlines our suggested LDLC. The input of our algorithm comprises an undi-
rected graph G(V,E) and a single target node u ∈ V . The output of LDLC is a dendrogram
depicting the rich hierarchical structure of the local communities of node u.

Loading the egonet and initializing the communities: We start by loading in mem-
ory the egonet of u, i.e., node u, its adjacent nodes, and the edges among them (Line
2). Depending on the network representation, this process can be quite costly. For
example, using an edge-list or an adjacency-list stored in a file would necessitate two
passes over the files, to identify the neighbors of u as well as the neighbors of u’s neigh-

P. Liakos 74



Distributed and Streaming Graph Processing Techniques

bors. To alleviate this cost we focus instead on space-efficient in-memory representa-
tions [2, 20, 87, 84, ?]. Such approaches allow for fast neighbor queries as they maintain
adjacency lists in-memory, usually in sorted order. Thus, to come up with the egonet of
u, we first retrieve the adjacency list of u, and then the adjacency lists of u’s neighbors.
For each of the latter adjacency lists we keep only those nodes that are neighbors of u, by
applying intersection with the adjacency list of u. This operation ends up with u’s egonet
as it discards all nodes that are not adjacent to u, as well as the respective edges. Hav-
ing loaded the egonet, we proceed by initializing the communities. More specifically, we
consider every edge e ∈ Eu to be a community of its own, with the two adjacent nodes as
its members.

Computing the recursive dispersion of u’s neighbors: Lines 3–8 compute the recursive
dispersion of all neighbors of u, v ∈ Vu. Wemap the respective recursive dispersion values
of the neighbors in a dictionary (associative array) that uses the nodes as keys (Line 3).
We first assign a value of 1 for all nodes (Lines 4−5) and then we apply Equation (3.4) for
three iterations (Lines 6 − 8). This process results in the values of recursive dispersion,
as defined in [12] and detailed in Section 3.1.2.3.

Computing the similarities of pairs of links: Our next objective is to come up with the
similarity of all pairs of links in the egonet that share a common node. To this end, for
every node in the egonet we examine the similarity of all possible pairs of its links (Lines
9−14). The use of amin-heap allows us to maintain the similarities of pairs of links sorted
(Line 9). We first calculate the distance of two links using the Jaccard similarity coefficient
(Line 12), and then we balance this distance using the previously calculated recursive
dispersion measure, as specified in Equation (3.7). In particular, we divide the value of
Jaccard similarity coefficient with the sum of the recursive dispersion of the nodes involved
in the links (Line 13). Finally, we insert the resulting similarity value in the heap holding
the similarities of all pairs (Line 14).

Creating the dendrogram: The last step of our algorithm is to merge the pairs of links and
come up with the dendrogram that portrays the hierarchical structure of the local communi-
ties of node u. More specifically, we iterate through our heap holding the sorted similarities
of pairs of links, and group the pairs one by one (Lines 15–16). At every grouping stage, we
keep track of the action that takes place to allow for the construction of the dendrogram.
Moreover, we monitor the current partition density using Equation (3.5), to determine the
best level at which to cut the dendrogram at. When the dendrogram is built, i.e., when we
are left with a single cluster, LDLC terminates (Lines 17–18). The resulting dendrogram we
come up with reveals the overlapping nature of the network’s communities through a rich
and intuitive hierarchical structure.

Analysis of LDLC: The running time of our algorithm depends on the calculations needed
to come up with the intersection and the union of the neighbors of all pairs of nodes in
the egonet. The former is needed for the calculation of both recursive dispersion and
similarity, whereas the latter is needed just for calculating similarity. There are totally(|Vu|

2

)
pairs of nodes in the egonet, where |Vu| is the number of nodes in the egonet. Both

the intersection and union operations require linear time, as we consider representations
of sorted adjacency lists. Consequently, the running time of LDLC is O(|Vu|3). When it

75 P. Liakos



Distributed and Streaming Graph Processing Techniques

comes to egonets of nodes with large degrees, this order may become unmanageable;
hence, we continue with a discussion on how we can reduce our search space and be
efficient even in such cases.

3.2.4 Reducing the Search Space

LDLC operates on the egonets of a target node, as community detection in the global struc-
ture of the network is prohibitively expensive for large-scale graphs. However, detecting
communities in the egonets of certain nodes in the network may have equivalent cost.
In particular, many real-world networks, such as the Internet router graph [42], the World
Wide Web graph [14, 27, 4], and citation graphs [109], are known to exhibit power law
degree distributions and a few of their nodes exhibit extremely large degrees. Therefore,
the size of the respective egonets of these nodes may be comparable to the size of the
network.

Uncovering the community structure of nodes with large egonets efficiently calls for a
sampling technique that is applied on the egonet to reduce the search space. To this
end, a straightforward approach is to perform random sampling, i.e., to pick uniformly
at random a subset of the nodes in the egonet, and apply LDLC on the respective sub-
graph that comprises these nodes. Such an approach would successfully reduce the time
needed to execute our algorithm; however, a random sample of the neighborhood of a
node exhibiting high degree is likely include many disparate nodes.

Algorithm 2 outlines an alternative sampling technique. Instead of including nodes in our
sample at random, we maintain the most involved nodes of the egonet. More specifically,
we use amin-heap (Line 2) that holds in its root the inserted node with the smallest degree.
First, we insert in the min-heap the first k nodes of the egonet (Lines 3− 4). Then, for the
rest of the nodes in the egonet (Line 5), we examine whether their degree is larger than
that of the node in the root of the min-heap (Line 6). If so, we remove the node in the root
and insert the current node in the min-heap (Line 7 − 8). After we have iterated through
all nodes in the egonet, the min-heap will hold the nodes with the largest degrees in the
network, which is the outcome of Algorithm 2.

We employ this sampling technique in our experimental section for egonets that surpass
100 nodes and examine its effectiveness through a comparison against a random sampling
approach. We note that communities with more than 100 nodes are reported to be of poor
quality [127].

3.3 Experimental Evaluation

We compare LDLC against three prominent community detection algorithms based on
seed-set expansion, namely LEMON [79], LOSP [61], and HeatKernel [70]. All three above
algorithms perform local community detection and thus, allow for comparison with our ap-
proach in a similar setting. We first discuss the specifications of our experimental setting.

P. Liakos 76



Distributed and Streaming Graph Processing Techniques

Algorithm 2: k-largest(G, u)

input : The egonet of u ∈ G, Gu = (Vu, Eu),
and maximum size k.

output : A sample V ′
u of Vu, where N+(v) in the top-k in Gu ∀v ∈ V ′

u.
1 begin
2 V ′

u ← min_heap();
3 for i← 1 to k do
4 V ′

u ← Vu[i]

5 for i← k + 1 to |Vu| do
6 if Vu[i] > V ′

u.low() then
7 delete V ′

u[1];
8 V ′

u ← Vu[i]

9 return V ′
u;

Then, we proceed with the evaluation of our LDLC by answering the following questions:

• How well does LDLC overcome the need of constraints other methods have, such as
requiring multiple seeds to avoid mixing-up multiple overlapping communities, and
detecting mostly large communities?

• How well does LDLC perform in detecting communities of real-world networks com-
pared to other methods?

• How efficient is LDLCwhen compared to other local community detection approaches?

• What is the impact of dispersion-based measures on the quality of the derived hier-
archical community structures?

• How effective is our sampling algorithm when compared with a random sampling
approach?

3.3.1 Experimental Setting

Our dataset comprises six social, co-authorship, and co-purchasing networks of different
sizes, the details of which are outlined in Section 3.1.4. We implemented LDLC using
Python 2.7 and the Snap.py interface2 of the SNAP system [2]. Our algorithm is publicly
available.3 We conducted our timing experiments on a Dell PowerEdge R630 server with
an Intel®Xeon® E5-2630 v3, 2.40 GHz with 8 cores, and a total of 256GB of RAM. Our
approach could be easily run in parallel as each node can act unilaterally, but we restricted
to using only one core to refrain from treating the rest of the approaches unfairly.

2https://snap.stanford.edu/snappy/index.html
3https://bitbucket.org/panagiotisl/ldlc

77 P. Liakos

https://snap.stanford.edu/snappy/index.html
https://bitbucket.org/panagiotisl/ldlc


Distributed and Streaming Graph Processing Techniques

3.3.2 Qualitative Evaluation

We begin our discussion on experimental results by illustrating the behavior of our LDLC
against LEMON, when discovering the communities of a target node in theDBLP co-authorship
network.

Figure 19 depicts the egonet of the target node which we use as a seed to both algorithms
(white colored node), as well as the communities detected by the two algorithms. The
force-directed layout we use to enhance the visualization, reveals that the nodes form
two well-connected groups. The nodes of the grouping in the right actually belong to one
of DBLP’s high quality ground-truth communities to which none of the nodes of the left
grouping belongs to. Moreover, we observe, that the pink colored node is part of the left
group but features a link with a node that is part of the right group and is not connected
with any of the pink node’s neighbors other than the white node. This results to a high
value of absolute dispersion for the pink node in the egonet of the white node.

Figure 19a illustrates part of the community that is detected using LEMON. In particular,
providing the white colored node as a seed to LEMON, results in a detected community
of 81 nodes in total, featuring all the neighbors of the seed node, as well as nodes that
are only connected to the target’s neighbors. The numbers on the nodes in Figure 19a
indicate their ranking according to their likelihood to belong to the target community. We
observe that the community detected by LEMON exhibits certain unexpected or undesired
attributes. First, high quality ground-truth communities are reported to be much smaller
than the community detected by LEMON. In particular, the high quality communities ofDBLP
have an average community size of 22.45 nodes, as shown in Table 6. The community
of Figure 19a however, is more than 3 times as large. Second, using the target node as
the single seed results in the participation in the detected community of nodes that belong
to different social circles. In particular, LEMON performs random walks starting from the
target node to calculate the likelihood of a node belonging to the detected community.
Naturally, nodes of different social circles are likely to exhibit high likelihood and LEMON
is unable to distinguish between the different and possibly overlapping communities of
the target node. This behavior is evident in Figure 19a. We observe that nodes ranked
from 2 to 7 according to their likelihood, reside in the middle part of the left well-connected
group of the seed’s neighbors. The node that LEMON adds to the community immediately
after, ranked 8th, does not share a single link with these nodes, and clearly belongs to
another community. Similarly, LEMON continues to add nodes in the detected community
from diverse areas around the seed node, until it meets a stopping criterion. Therefore,
we see that LEMON favors nodes that reside in dense areas regardless of their relevance
to one another. Overcoming this issue would require multiple cherry-picked seeds that
would increase the likelihood of nodes that are actually part of the same community. This is
equally true for other methods that employ randomwalks for seed set expansion, including
LOSP.4 Last, the pink colored node continues to exhibit high dispersion in the community
detected by LEMON, as the community features its link with a node of the cluster on the right

4As the authors show in [61] (Figure 2) the presence of three seeds is essential to enable LOSP to distin-
guish between two overlapping cliques.

P. Liakos 78



Distributed and Streaming Graph Processing Techniques

1

2
3

4
5

6

7

8

9

1011

12

13

14

15

16

18

1719
20

21

22

23

24

25

26
27

28

29

31

32

33

34

35

36

38

40

42

41

39

44

37 30

(a) LEMON

(b) LDLC

Figure 19: The egonet of a node in the DBLP graph. LEMON’s detected community (19a) features,
among others, all the nodes in the egonet. Numbers indicate the LEMON’s ranking of the nodes ac-
cording to their likelihood of belonging to the detected community. LDLC uses hierarchical link clus-
tering in the egonet of the target node and penalizes the links with nodes exhibiting high dispersion

to come up with two communities, colored teal and pink (19b).

79 P. Liakos



Distributed and Streaming Graph Processing Techniques

Table 4: F1 Score comparison.

Algorithm DBLP Amazon Youtube LiveJournal Orkut Friendster
LDLC 0.843 0.894 0.560 0.876 0.438 0.688

LEMON [79] 0.525 0.910 0.190 - 0.170 -
LOSP [61] 0.691 0.845 0.413 0.674 0.216 -

HeatKernel [70] 0.257 0.325 0.177 0.131 0.055 0.078

Table 5: Execution time comparison.

Algorithm DBLP Amazon Youtube LiveJournal Orkut Friendster
LDLC 0.0063 sec 0.0007 sec 0.0048 sec 0.1471 sec 0.3742 sec 0.0642 sec
LEMON 9.2781 sec 9.9206 sec 12.2579 sec - 13.1432 sec -
LOSP 0.38 sec 0.04 sec 3.85 sec 1.47 sec 4.74 sec -

side of Figure 19a.

Figure 19b illustrates the communities discovered in the egonet of the white colored node
using LDLC. We cut the tree produced by LDLC at the level that produces the optimal par-
tition density and observe that our algorithm detects two communities, depicted with pink
and teal color, respectively. The pink community has a size of 12 nodes, and the teal
community a size of 33 nodes. The average size of the two communities of LDLC (22.5) is
very close to the average size of the ground-truth communities of this network. Both de-
tected communities are well-connected. In addition, the pink-colored community is a very
accurate detection of an actual ground-truth community. Finally, the pink-colored node
is featured in both detected communities and does not exhibit high dispersion in either
community.

We saw here that previous approaches may not detect communities well in situations like
the one that we described in this qualitative evaluation. Of course, there are other exam-
ples where previous approaches can accurately identify communities. Our goal was to
show the strengths of our method through a concrete example. To measure performance
more objectively, we now turn to comparing the accuracy of previous local community
detection techniques and LDLC through the use of our ground truth datasets.

3.3.3 Evaluation via Ground-Truth

Evaluating and comparing communities detected by different algorithms is not a trivial
task. Large networks exhibit extremely complex organization and cannot be visualized
in meaningful ways. However, we can measure the accuracy of a community detection
algorithm given the presence of ground-truth communities [127]. In particular, we can
quantify the similarity of a detected community C and a ground-truth community T using
F1 score, which is defined as:

F1(C, T ) =
2 ∗ Precision(C, T ) ∗Recall(C, T )

Precision(C, T ) +Recall(C, T )
(3.8)

P. Liakos 80



Distributed and Streaming Graph Processing Techniques

where precision is the fraction of detected nodes that are relevant and recall is the fraction
of relevant nodes that are retrieved:

Precision(C, T ) =
|C ∩ T |
|C|

(3.9)

Recall(C, T ) =
|C ∩ T |
|T |

(3.10)

As there is no standard way of selecting a seed, we followed the procedure performed
in [70]. We execute LDLC for all ground-truth communities of each network of our dataset,
using every single node as an individual seed. For each ground-truth community, we
kept the seed that produced the community with the highest F1 score. Table 4 shows
the average F1 score of LDLC for all ground-truth communities of each network. In addi-
tion, we present results of 3 state-of-the-art local community detection algorithms on the
same datasets. In particular, we used the publicly available implementation of LEMON5 to
perform experiments through the same exhaustive procedure. We also executed LEMON
using 3 random seeds as suggested in [79]. The results we obtained are worse than the
ones reported in [79] for both cases, as the optimal initialization setting of LEMON differs
for the various networks of our dataset. Therefore, we opt to present in Table 4 the re-
sults reported in [79] instead. We also include the results on the same dataset of LOSP, as
reported in [61], and HeatKernel from [70]. We note that the results of LOSP and HeatK-
ernel are obtained using a subset of only 500, and 100 ground-truth communities for each
network, respectively.

We see in Table 4 that our LDLCmanages to outperform all three state-of-the-art algorithms
for all the networks of our dataset, with the exception of the Amazon co-purchasing graph
for which LEMON is slightly better. The average F1 score of LDLC is significantly larger
for all other networks, and the improvement is more evident on the social networks of
our dataset, i.e., Youtube, LiveJournal, Orkut, and Friendster. For DBLP, Youtube, and
LiveJournal the results of LDLC are impressive and much more accurate than all three
other methods. Regarding Orkut, accurate detection is a particularly hard task, as the
size of the ground-truth communities is unusually large in this network. Nonetheless,
LDLC is much more effective than the other methods. The friendship graph of Friendster
almost reaches 2 billion edges, and both LEMON and LOSP have failed to report results for
this network due memory consumption. We are able to operate on the Friendster network
despite its size, as LDLC employs a memory-efficient representation (SNAP). HeatKernel
also manages to load graphs of this scale by using pylibbvg.6 We see in Table 4 that LDLC
is able to achieve an F1 score of 0.688, which clearly outperforms HeatKernel. The results
regarding the Amazon network differentiate due to the particular nature of its communities,
which allows all 4 algorithms to achieve high accuracy. More specifically, Amazon is a co-
purchasing network and, thus, does not feature any connector nodes [127]. In addition,

5https://github.com/YixuanLi/LEMON
6https://pypi.python.org/pypi/pylibbvg

81 P. Liakos

https://github.com/YixuanLi/LEMON
https://pypi.python.org/pypi/pylibbvg


Distributed and Streaming Graph Processing Techniques

the overlapping ground-truth communities of Amazon are usually nested communities,
that are subsets of other communities [127].

3.3.4 Execution Time Comparison

We further evaluate LDLC as far as the execution time is concerned. In particular, for every
graph of our dataset we executed LDLC for 5,000 random nodes of the graph, and report
here the average execution time needed. We perform the same experiment using LEMON.

Table 7 shows the results we obtained for the two algorithms and restates the results
as reported in [61] for LOSP. We observe that LDLC is significantly faster than both other
methods. In particular, we are able to respond in real-time for the communities of all the
graphs of our dataset, including Friendster that comprises 1,806,067,135 edges. We see in
Table 7 that LDLC significantly outperforms both LEMON and LOSP with regard to execution
time. This is expected, as LDLC operates only on the egonet of a target node. To produce
the egonet we simply need to apply intersection on the sets of neighbors of all neighbors
of the target node. Instead, LEMON and LOSP perform multiple random walks to generate a
local neighborhood around the target node, a procedure that is muchmore costly timewise.
In addition, the local neighborhood of LEMON or LOSP is usually significantly larger than the
egonet of the target node. Therefore, LDLC is applied on a much smaller portion of the
original graph, compared to LEMON and LOSP. We note, that the average execution time
of LDLC for the Friendster graph is smaller than that for LiveJournal and Orkut, as the
egonets of the first are sparser. Thus, LDLC has to iterate over fewer pairs of links in the
grouping phase for the graph of Friendster and terminates faster.

3.3.5 Impact of Dispersion on the Resulting Hierarchical Community Structure

LDLC builds on hierarchical link clustering and dispersion-based measures to detect the
communities of a single node in its egonet. Having discussed the accuracy and efficiency
of our algorithm we investigate here its effectiveness with regard to deriving a detailed
hierarchical community structure. The toy example discussed in Section 3.2.2 shows that
there are cases in which relying strictly on the Jaccard similarity coefficient may result in
grouping overlapping communities at an early stage. More specifically, clusters featuring
multiple links are likely to be grouped with each other due to the similarity of a single pair
at the low levels of the respective dendrogram.

We attempt here to quantify the extent of this trend as well as the impact of recursive
dispersion on it. In particular, we consider two settings for LDLC: i) the first one (LDLCnd)
employs Equation (3.6) to estimate the similarity of pairs of links, whereas ii) the second
one (LDLDC) employs Equation (3.7). Then, we investigate for every ground truth commu-
nity of every network of our dataset the total merges involving the final cluster, i.e., the one
featuring all links of the egonet. We use the number of total merges as a quality function,
as it is indicative of the height the dendrogram reaches, and thus, of the detail we achieve
with regard to the resulting community structure.

P. Liakos 82



Distributed and Streaming Graph Processing Techniques

 0

 100

 200

 300

 400

 500

 600

 700

 800

Am
azon

D
BLP

Youtube

LiveJournal

O
rkut

Friendster

T
o

ta
l m

er
ge

s

Graph

LDLCnd
LDLC

Figure 20: Impact of the use of recursive dispersion on the number of merges that occur until LDLC
terminates. When using recursive dispersion (LDLC) the number of total merges increases signif-
icantly. Thus, the resulting dendrogram reveals the hierarchical community structure in greater

detail.

Figure 20 illustrates a comparison between the two settings for all networks of our dataset.
We see that the first setting consistently leads to shorter dendrograms when compared
to the ones resulting using the second setting. Evidently, the use of recursive dispersion
results in dendrograms with significantly richer structure. Through Equation (3.7) LDLC
successfully delays the grouping of pairs of links exhibiting high dispersion in the egonet.
Thus, our algorithm reveals the hierarchical community structure in greater detail. The
impact is noticeable in all networks as we end up with at least twice as much merges us-
ing the second setting. The total number of merges depends on network properties such
as the average degree and the average community size. For dblp, both these properties
exhibit small values and thus the number of total merges that occur is small for both set-
tings. In contrast, for orkut both these properties exhibit large values and the number of
total merges that occur is large for both settings.

3.3.6 Impact of Sampling Technique

We complete our experimental section by evaluating the effectiveness of our sampling
technique. More specifically, if the target node has a large egonet LDLC obtains a sample

83 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

Am
azon

D
BLP

Youtube

LiveJournal

O
rkut

Friendster

F
1

-s
co

re

Graph

random
k-largest

Figure 21: LDLC results on the networks of our dataset when using a random sampling technique
and our k-largest sampling technique. Impact is negligible for the four first networks as very few or
no egonets surpass 100 nodes. However, the k-largest sampling technique outperforms the random

technique for orkut and friendster.

of the egonets and operates on the sample. Algorithm 2 outlines this process in which k
nodes exhibiting the largest degrees in the egonet are retrieved efficiently. We examine
here the effectiveness of this approach by comparing it with a sampling technique that
selects k nodes of the egonet uniformly at random.

Figure 21 illustrates the F1-score results we obtain for all networks of our datasets when
applying each of the two techniques for nodes with egonets larger than 100 nodes. There
are very few or no such nodes in our results for the four smaller networks of the dataset,
i.e., amazon, dblp, youtube, and livejournal. Thus, the difference in performance between
the two techniques is negligible for these networks. However, for orkut and friendster
several communities included in our results resulted from target nodes with egonets com-
prising more than 100 nodes and were sampled with the use of the two techniques. We
observe that using random sampling we achieve an F1-score of 0.50 for orkut and 0.67
for friendster. The respective values when using k-largest sampling are 0.55 for orkut and
0.71 for friendster. That is, sampling the most involved nodes of the egonet instead of
sampling uniformly at random has a significant impact on the accuracy we achieve.

P. Liakos 84



Distributed and Streaming Graph Processing Techniques

3.4 Related Work

The problem of identifying communities emanates from research on graph partitioning,
which has been active since the 1970s [68]. Girvan and Newman, with their seminal pa-
per on community detection [51], build on Freeman’s betweeness centrality measure [47]
and define edge betweeness as the number of shortest paths between pairs of vertices
that run along an edge. Using this measure, they iteratively remove the edges with high
betweeness, as they have a tendency to connect different clusters, and thus, reveal the
underlying community structure of a network. The algorithm is computationally expensive,
yet this work sparked significant research in the field of community detection [45].

Many clustering methods aim at maximizing modularity, a measure introduced by New-
man and Girvan [101]. Modularity captures the quality of a specific proposed division of
a network into communities, by examining how higher the internal cluster density is than
the external cluster density. One such method is that of Clauset et al. [34]. There, the
proposed algorithm discovers a hierarchical community structure and identifies the best
level to cut the tree at as the one that produces the division that maximizes modularity.
Blondel et al. [17] propose Louvain, another greedy modularity maximization algorithm.
Nodes are iteratively aggregated into communities as long as such a move locally im-
proves modularity. Methods of this class are know to suffer from a resolution limit [46].

Another popular direction in the field of community detection, is the use of random walks.
Pons and Latapy [107] use random walks to measure the similarity between vertices. In
another line of work, Infomap [110] finds the shortest multilevel description of a random
walker to get a hierarchical clustering of the network.

The previous methods, hierarchically nested or else, do not take into account the fact that
communities in networks may overlap [105]. Palla et al. [105], propose the Clique Per-
colation Method, a local approach based on k-cliques. Overlaps between communities
are allowed as a given node can be part of several k-clique percolation clusters at the
same time. A revolutionary idea in overlapping community detection was introduced in
two approaches that were developed almost simultaneously [7, 41]. The core of these
approaches is that instead of focusing on grouping nodes, communities should be formed
by considering groups of links. This allows for a natural incorporation of overlaps between
communities while also retaining a hierarchical community structure. Ahn et al. [7] addi-
tionally report a comparison of their proposed algorithm with previous approaches, proving
that it outperforms all of them.

Later research efforts focused on providing more scalable approaches. Coscia et al. [36]
use egonet analysis methods and propose DEMON that allows nodes to vote for the com-
munities they see locally in an effort to improve the quality of overlapping partitions. Yang
and Leskovec [123] report that, contrary to previous belief, community overlaps are more
densely connected than the non-overlapping parts. This relaxes the assumption that gov-
erned all previous efforts on overlapping community detection. Building on their empirical
observations, they also propose BigClam [125], a community detection method that uses
matrix factorization to detect communities. BigClam requires as an input the number of

85 P. Liakos



Distributed and Streaming Graph Processing Techniques

communities to look for, or else should be guided with the minimum and maximum number
of communities as well as the number of tries it should make. Gleich and Seshadhri [53]
formalized the problem of community detection as finding vertex sets with small conduc-
tance, where conductance of a cluster is a measure of the probability that a one-step
random walk starting in that cluster, leaves the cluster. They proposed the use of person-
alized PageRank vectors to identify communities with good conductance scores. A similar
approach is investigated in [119], where a number of alternative seeding phases before
the use of personalized PageRank vectors is examined. However, minimizing conduc-
tance leads to the identification of dense areas of a network as single communities, when
they are in fact overlapping parts of multiple communities [126]. These approaches are
more efficient than previous overlapping methods but fail to handle massive scale graphs.

Recent approaches depart from the direction of detecting communities on the global graph
structure. Instead, they detect local communities in time functional to the size of the com-
munity, and provide support for large scale graphs. Kloster and Gleich [70] propose a
deterministic local algorithm to compute heat kernel diffusion and study the communities
it produces. The authors compare with PageRank diffusion on real-world datasets and re-
port that their approach is able to detect smaller, more accurate communities, with slightly
worse conductance. Li et al. [79] propose LEMON that uses seeds to perform short random
walks and form an approximate invariant subspace termed local spectra. Then, LEMON
looks for the minimum 1-norm vector in the span of this local spectra such that the seeds
are in its support. Building on the findings of LEMON, He et al. propose LOSP [61] that is
additionally able to detect small communities and performs better when initiated with a
single seed. In another line of work, Metwally et al. [98] employ general purpose cluster-
ing algorithms to detect click rings that launch advertising traffic fraud attacks. However,
their techniques are not applicable on single graphs, as they use multi-faceted graphs,
where each facet is a set of edges that represents the relationships between the nodes in
a specific context. Our approach focuses on local communities but employs hierarchical
clustering of pairs of links in the egonet of a target node, using tie strength measures that
effectively handle networks with dense overlapping parts of communities. Thus, we effi-
ciently reveal a more accurate hierarchical community structure in large scale networks.

A preliminary version of our work appeared in [80]. In this extended version:

• We delve into the merits of employing dispersion-based measures with regard to
the hierarchical community structure provided by our algorithm. We show that such
measures result in richer hierarchical structures through experimentation on our en-
tire dataset.

• We propose a sampling technique that reduces the search space of our algorithm
by focusing on the most involved nodes of an egonet. This technique allows us
to maintain the efficiency of our algorithm in cases when target nodes exhibit large
degrees in the network.

• We compare our sampling technique against a random sampling technique and
show that our approach is very effective.

P. Liakos 86



Distributed and Streaming Graph Processing Techniques

• We carry out the entire range of our experimentation using our sampling technique
and report updated results with regards to both accuracy and execution time.

In another line of work [81], we apply community detection via seed set expansion on
graph-streams. Our approach, termed CoEuS allows for local community detection without
a need for in-memory representation of the network, as we employ a one-pass streaming
approach and effectively determines the size of communities automatically. However,
CoEuS requires more input target nodes than LDLC.

3.5 Conclusion

In this chapter, we propose and develop LDLC, a novel local community detection algorithm
for large scale graphs. LDLC focuses on the egonet of a target node in the network and per-
forms hierarchical agglomerative clustering on the egonet’s pairs of links. We investigate
measures that evaluate the strength of ties in networks, building on the notion that mutual
neighbors of nodes may be or may be not well interconnected. The nodes involved in ties
that belong in the second category, act as connector nodes between overlapping commu-
nities. Therefore, in a hierarchical approach they should be considered for grouping when
the higher levels of the respective dendrogram are forming. We achieve that, by using the
recursive dispersion measure to balance the similarity of two links and prioritize the group-
ing of pairs of links with mutual neighbors that function in a single context. Consequently,
our approach is able to handle overlapping communities appropriately and provides in-
creased accuracy, while also revealing the rich hierarchical structure of the communities
of a node in the network. We compare LDLC with three state-of-the-art local community
detection methods to highlight the effectiveness of our approach when handling overlap-
ping areas of multiple communities. Moreover, we examine the accuracy of all algorithms
against ground-truth communities and find that LDLC significantly outperforms all of them
for a wide range of publicly available networks. Our timing experiments showcase that
LDLC additionally offers improved efficiency and scales to large scale graphs. Finally, we
discuss the merits of employing dispersion-based measures, as well as applying a sam-
pling technique we introduce on the egonets of target nodes.

87 P. Liakos



Distributed and Streaming Graph Processing Techniques

P. Liakos 88



Distributed and Streaming Graph Processing Techniques

4. COMMUNITY DETECTION VIA SEED SET EXPANSION ON GRAPH
STREAMS

Graph structures attract significant attention as they allow for representing entities of var-
ious domains as well as the relationships these entities entail. Real-world networks are
commonly portrayed using graphs and are often massive. Despite their size, such net-
works exhibit a high level of order and organization, a property frequently referred to as
community structure [51]. Nodes tend to organize into densely connected groups that
exhibit weak ties with the rest of the graph. We refer to such groups as communities,
whereas the task of identifying them is termed community detection.

Community detection is a fundamental problem in the study of networks and becomes
more relevant with the prevalence of online social networking services such as Twitter
and Facebook. Identifying the social communities of an individual enables us to perform
recommendations for new connections. Moreover, by better understanding the member-
ship of an individual to various organizational groups, we can provide more informative
and engaging social network feeds. In addition to social networks, community detection
is successfully applied to numerous other types of networks, such as biological or citation
networks. In the former, we are particularly interested in inferring communities of interact-
ing proteins, whereas in the latter we wish to uncover relationships between disciplines or
the citation patterns of authors [45].

In the last two decades a plethora of community detection methods has been proposed.
Initially, the focus has been on non-overlapping communities [17, 34, 101, 107]. More
recent approaches, however, allow for nodes to belong to more than one community [7,
41, 53, 119, 123, 125]. Still, these approaches are not applicable to the massive graphs of
the Big Data era, as they focus on the entire graph structure and do not scale with regards
to both execution time andmemory consumption. Recent efforts manage to scale as far as
execution time is concerned by focusing on the local structure and expanding exemplary
seeds-sets into communities [70, 79, 61, 80]. Such a seed-set expansion setting can
be applied to numerous real world applications, e.g., given a few researchers focusing
on Big Data we can use a citation network to detect their colleagues in the same field.
However, the space requirements of such algorithms rapidly become a concern due to the
unprecedented size now reached by real-world graphs. The latter have become difficult
to represent in-memory even in a distributed setting [84].

An increasingly popular approach for massive graph processing is to consider a data
stream model, in which the stream comprises the edges of a graph [97]. This is a new
direction in the field of community detection and to the best of our knowledge no prior ap-
proach has considered such a setting without imposing restrictions on the order in which
edges are made available [62, 128]. In this chapter, we propose CoEuS, a novel com-
munity detection algorithm that is fully applicable on graph streams. Figure 22 depicts
such a graph stream whose edges arrive at no particular order. CoEuS is initialized with
seed-sets of nodes that define different communities, such as the three sets depicted with
the circles of Figure 22. As edges arrive, we can process them but we cannot afford to

89 P. Liakos



Distributed and Streaming Graph Processing Techniques

5

2
8

3

6
4

7

1

9 8

2 3
..
.

Figure 22: A stream comprising the edges of an undirected graph and a set of communities initialized
with a few seed nodes. For every edge of the streamwe wish to evaluate whether the adjacent nodes

belong to the communities we examine.

keep them all in-memory. Therefore, CoEuS maintains rather limited information about
the adjacent nodes of each edge and their participation in the communities in question.
This information is kept using probabilistic data structures to further reduce the memory
requirements of our algorithm. In addition to our original idea for community detection in
graph streams, we propose two algorithms to enhance the effectiveness of CoEuS. The
first one focuses on better quantifying the quality of each edge w.r.t. to a community. The
second one is a novel clustering algorithm that allows for automatically determining the
size of the resulting communities, in spite of the absence of the graph structure.

Our experimental results on various large scale real-world graphs show that CoEuS is
extremely competitive with regard to accuracy against approaches that employ the entire
graph structure and cannot operate on graph streams. More specifically, CoEuS can
process with just a few MBs, graphs that prior approaches fail to handle on a machine with
16GB of RAM. Moreover, CoEuS is able to derive the communities in question inordinately
faster. For instance we show that CoEuS is more than 17 times faster for the largest graph
we could process with previously suggested approaches. More importantly, CoEuS is able
to return its resulting communities on demand at any time as we process the graph stream.
This is particularly important, as even if we could afford to use space linear to the number
of a graph’s edges, no other approach is able to update communities as new edges arrive
with no additional significant computational cost.

In summary, we make the following contributions:

P. Liakos 90



Distributed and Streaming Graph Processing Techniques

• We propose CoEuS, a novel community detection algorithm that can operate on a
graph stream. To the best of our knowledge this is the first community detection
algorithm that uses space sublinear to the number of edges and does not impose
any restrictions on the order in which edges arrive in the stream.

• We develop a variation of our algorithm to better quantify the quality of each edge
w.r.t. a community and verify that it improves the accuracy of CoEuS impressively.

• We suggest a novel clustering algorithm that allows for automatically determining
the size of the resulting communities of CoEuS.

• We experimentally evaluate the accuracy of our algorithm and show that it is ex-
tremely competitive with prior approaches that cannot operate on graph streams
and require the presence of the entire graph structure. In addition, we show that
both the execution time and space requirements of CoEuS are astonishingly low.

4.1 Community Detection via Seed-Set Expansion on Graph Streams

This section first formulates the problemwe target in this work. Then, we discuss the space
requirements of our algorithm, and present our novel approach for streaming community
detection. Lastly, we propose two enhancements to our algorithm, that greatly improve its
effectiveness and efficiency.

4.1.1 Problem formulation

Consider a streaming sequence of unique unordered pairs e = {u, v} where u, v ∈ V .
Such a stream S = ⟨e1, e2, . . . , em⟩ naturally defines an undirected unweighted graph G =
{V,E}, where V is the set of vertices {v1, v2, . . . , vn} and E is the set of undirected edges
{e1, e2, . . . , em}. Given a community seed-set K = {k1, k2, . . . , kl} ∈ V , our goal is to
extend it to a community C. Figure 22 shows such a graph stream with two visible arriving
edges, and three seed-sets that are to be extended to communities.

A community is generally thought to be a set of nodes of a graph that are tightly connected
to each other and maintain very few ties with the rest of the graph’s nodes [101]. However,
there is no universal definition of what communities are, and thus, there exists a plethora
of different approaches in detecting them. A widely used [53, 79, 92, 119] quality function
in the field of community detection is the conductance of a community. More specifically,
conductance ϕ(C) of a community C is formally defined as:

ϕ =
adj(C, V \ C)

min(adj(C, V ), adj(V \ C, V ))
, (4.1)

where:
adj(Ci, Cj) = |{(u, v) ∈ E : u ∈ Ci, v ∈ Cj}|.

91 P. Liakos



Distributed and Streaming Graph Processing Techniques

Several methods try to detect communities exhibiting low conductance, in an effort to
come up with a set of nodes with a limited number of ties to nodes outside of the commu-
nity. However, tracking the conductance of all possible communities as we process the
edges of stream is inefficient with regard to both time and space. Instead, we introduce
here community participation cp(u) of a node u in a community, that measures a node’s u
participation level in a community. In particular the community participation of node u in
community C is defined as:

cp(u) =
|{(u, v) ∈ E : v ∈ C}|
|{(u, v) ∈ E}|

, (4.2)

i.e., community participation of a node in a community is the fraction of its adjacent nodes
in the graph that are part of the community. Our intuition is that including nodes exhibit-
ing high values of cp to a community C will result to a low value of conductance for the
community. To this end, our approach employs Eq. (4.2) to detect communities. We note,
however, that the use of a particular quality function, such as conductance or community
participation, does not hinder in any way the evaluation of our approach against commu-
nity detection methods using different quality functions. Such an evaluation is possible, as
there exist publicly available networks with ground-truth communities. Our experimental
setting features numerous such networks that allow us to verify the efficiency of different
algorithms.

4.1.2 Space complexity

The motivation behind graph stream algorithms lies in the fact that many real-world net-
works nowadays reach sizes that are simply too large. Thus, graph algorithms are unable
to store and process the respective graphs in their entirety [97]. In contrast, graph stream
algorithms process a stream comprising the edges of the graph in the order in which these
edges arrive over time using limited memory.

Earlier streaming community detection approaches have successfully revealed the com-
munity structure of graphs streams with limited memory requirements. However, the latter
were minimized at the expense of additional constraints on the order in which the edges
of the stream arrive. In particular, Yun et al. [128] consider a data stream model in which
rows of the adjacency matrix of the graph are revealed sequentially. In such a setting we
are aware at any moment of all neighbors of certain nodes. Thus, we can apply com-
munity detection with partial information on the subgraphs as they are revealed to us.
Memory requirements are kept low as we can discard at each step all information that
was made available in earlier steps. Moreover, SCoDa [62] considers a setting in which the
edges of the graph stream arrive as if we picked them uniformly at random. This allows
for estimating whether a newly arriving edge is an intra-community or an inter-community
edge and enables SCoDa to achieve space complexity that is linear to the number of the
graph’s nodes. However, picking an edge of the graph uniformly at random requires that
we already possess the graph in its entirety. The latter assumption is not true for graph
streams.

P. Liakos 92



Distributed and Streaming Graph Processing Techniques

We consider a more practical scenario of a streaming setting in which the edges of a graph
arrive at no particular order. Thus, we cannot discard information in ways similar to the
techniques in [62, 128]. We focus instead on estimating the participation level of each
node of the graph in each of the communities we examine, according to Eq. (4.2). In this
context, we need to keep track of the following aspects as we process a graph stream:

a) degrees: the total number of nodes each node in the graph is adjacent to, i.e., the
degree of each node in the graph,

b) community degrees: the degree of each node in the subgraph of each community,
and

c) communities: the nodes that comprise each community we examine.

Essentially, if |C ′| is the number of communities we examine, the above information can be
kept in-memory using |C ′| sets (one set for each community we examine), and |V |(|C ′|+1)
integers (|C ′| + 1 integers for each node of the graph). More specifically, we need one
integer for the degree of each node in the graph, and one integer for each community we
examine to hold the degree of the node in the subgraph that comprises the nodes of the
community. Given that the number of communities we examine can be large we decided
to use Count-Min sketches to hold the |C ′|+ 1 integers.

The Count-Min sketch [35] is a well-known sublinear space data structure for the repre-
sentation of high-dimensional vectors. Count-Min sketches allow fundamental queries to
be answered efficiently and with strong accuracy guarantees. They are particularly useful
for summarizing data streams as they are capable of handling updates at high rates. A
Count-Min sketch uses a two-dimensional array of w columns and d rows, where w = ⌈ e

ϵ
⌉,

d = ⌈ ln(1)
δ
⌉, and the error in answering a query is within a factor of ϵ with probability δ. A

total of d pairwise independent hash functions is also used, each one associated with a
row of the array.

Figure 29 illustrates the update process of a Count-Min sketch for our specific problem.
Consider that an edge (u, v) arrives in the stream and as v ∈ C we need to increase the
number of adjacent nodes u has in community C. Thus, we form a unique id using the
indices of the node and the community and create an update (i : u, 1), indicating that
the count of i : u should be incremented by 1. The array count is updated as follows:
for each row j of count we apply the corresponding hash function to obtain a column
index k = hj(i : u) and increment the value in row j, column k of the array by 1, i.e.,
count[j, k]+ = 1. This allows us to retrieve at any time an (over)estimation of the count of
an event i : u using the least value in the array for i : u, i.e., ˆai:u = minjcount[j, hj(i : u)].

93 P. Liakos



Distributed and Streaming Graph Processing Techniques

+1

+1

+1

+1

h1

h2

hd

...
i : u d

w

count

Figure 23: Count-Min sketch update process.

4.1.3 Our CoEuS Algorithm for Streaming Community Detection

In this section, we discuss the details of our algorithm for streaming community detection,
termed CoEuS.1 The pseudocode of CoEuS is given in Algorithm 3.

Input/Output: CoEuS takes as its input two parameters: The first one is a set of commu-
nity seed-sets K ′ = {K1, K2, ..., Ks}, where each Ki = {k1, k2, . . . , kl} ∈ V . The second
one is a stream S = ⟨e1, e2, . . . , em⟩, where ei ∈ E, and E is the set of edges of the undi-
rected graph G = {V,E} that S defines. CoEuS processes the edges of the graph stream
to extend each of the seed-sets in K ′ to a community. Thus, the output of CoEuS is the
set of communities C ′ = {C1, C2, ..., Cs}, with community Ci corresponding to seed-setKi.
This output is available on-demand at all times as we process the stream.

Initialization: The first step of CoEuS is to initialize the communities using the seed-sets
(Lines 2-6). This is a simple procedure in which we create an additional set for each of the
community seed-sets, to hold the nodes of the respective communities. The seed-sets
and the community sets enable us to query efficiently at any time whether a node is a
seed or a member of a community. Using Figure 22 as an example, consider that we wish
to detect three communities. CoEuS is initiated with three seed-sets that describe these
communities, namely {2, 5, 8}, {3, 6, 8}, and {1, 4, 7}. In this setting, CoEuS creates three
community sets that comprise these nodes.

Stream processing: After initializing the communities, CoEuS is ready to process the
stream (Lines 7-21). Due to the size of the network, we consider that maintaining the
whole graph is prohibitive. Instead, we focus on the degree of each node in the graph
as well as its degree in each community, and the nodes that comprise each community.
For each incoming edge of the stream, we first increment by 1 the degree of each of the
adjacent nodes in the graph (Lines 8-9). Then, for each community we wish to extend,
we examine whether each of the adjacent nodes is a member of the community. If this is

1In Greek mythology Coeus was the Titan of intellect, the axis of heaven around which the constellations
revolved and probably of heavenly oracles.

P. Liakos 94



Distributed and Streaming Graph Processing Techniques

Algorithm 3: CoEuS(S,K ′)

input : A set of community seed-sets K ′,
and a graph stream S.

output: A set of communities C ′.
1 begin
2 foreach K ∈ K ′ do
3 C ← {};
4 foreach k ∈ K do
5 C[k] = 1;
6 C ′.put(C);
7 while ∃(u, v) ∈ S do
8 degreeV [u]+ = 1;
9 degreeV [v]+ = 1;
10 foreach C ∈ C ′ do
11 if u ∈ C then
12 degreeC [v]+ = 1;
13 if v ∈ C then
14 degreeC [u]+ = 1;
15 if u ∈ C then
16 C.put(v);
17 if v ∈ C then
18 C.put(u);
19 processedElements+ = 1;
20 if processedElements modW == 0 then
21 C ← prune(C, s, degreeV , degreeC);

the case, we increment the community degree of the other node. In addition, if the other
node is not a member of the community, we add the node to the community (Lines 11-18).
Going back to the example of Figure 22, with the arrival of edge {9, 8} CoEuS will first
increment the degree of both nodes 8 and 9 by 1. After that, CoEuS will examine for every
community if nodes 9, or 8 are members of the community. This is true regarding node 8
for two communities. Therefore, CoEuS will increment the community degree of node 9
by 1 for both communities. In addition, CoEuS will add node 9 to both communities that
node 8 belongs to.

As the diameters that real-world networks exhibit are small and in many cases decrease as
the network grows [76], the communities CoEuS detects through the above process often
grow considerably in size. However, we wish to focus on nodes that are tightly connected
to each other for each community. To this end, we additionally consider a window of size
W . During a window, the communities may grow freely in size, as new edges arrive.

95 P. Liakos



Distributed and Streaming Graph Processing Techniques

Algorithm 4: pruneComm
1 Function pruneComm (C, s, degreeV , degreeC)
2 minheap← [];
3 foreach c ∈ C do
4 cp(c) = degreeC [c]

degreeV [c]
;

5 if minheap.size() < s then
6 minheap.push((c, cp(c)));
7 else if cp(c) > minheap[0] then
8 minheap.pop();
9 minheap.push(c, cp(c));

10 return set(minheap);

However, when the window closes, CoEuS prunes all communities and keeps only the
most highly involved nodes of each community (Lines 20-21). This process is detailed
with Algorithm 4 and function pruneComm, which uses Eq. 4.2 to evaluate each node’s
participation level to community C. For each node c ∈ C we calculate cp(c) (Line 4). Then,
we use a min-heap to hold the nodes with the highest community participation values. If
the size of the min-heap is currently below s, i.e., the size at which we want to prune
the community, we push the node and its community participation value to the min-heap
(Lines 5-6). Otherwise, we examine whether the community participation value of the
current node is higher than that of the minimum value in the min-heap (Line 7). If so, we
pop the latter out of the min-heap, and push the current node in it (Lines 8-9). The function
outputs a set that comprises the nodes that remained in the min-heap after examining all
the nodes of the community (Line 10). CoEuS prunes communities to a size of 100, as
related studies state that quality communities do not surpass 100 nodes [127]. Moreover,
CoEuS uses a window of 10,000 edges, a value derived via extensive exploratory testing
that consistently works well.

Termination: CoEuS can be stopped at will, as the member nodes of each community are
available at any moment. In the pseudocode of Algorithm 3, we consider a finite stream
and CoEuS terminates when all elements of the stream have been processed. However,
CoEuS can handle infinite streams as well. Besides, all nodes of each community are
associated with a community participation value that CoEuS may include in its output.
The higher this value is, the more certain we are that the respective node is part of the
community.

4.1.4 Reckoning in edge quality w.r.t. each community

For every edge of a graph stream, CoEuS examines whether an adjacent node is a mem-
ber of a community. If so, CoEuS increments the respective community degree of its
adjacent node by 1. This procedure takes under consideration the number of adjacent

P. Liakos 96



Distributed and Streaming Graph Processing Techniques

Algorithm 5: addToCommByEdgeQuality
1 Procedure addToCommByEdgeQuality
2 foreach C ∈ C ′ do
3 if u ∈ C then
4 degreeC [v]+ = degreeC [u]

degreeV [u]
;

5 if v ∈ C then
6 degreeC [u]+ = degreeC [v]

degreeV [v]
;

7 if u ∈ C then
8 C.put(v);
9 if v ∈ C then
10 C.put(u);

nodes each node has in a community to estimate the participation of the node in the latter.
However, we do not consider the level of involvement of the adjacent nodes in the com-
munity. All nodes included in a community provide increments of 1 to all of their adjacent
nodes, regardless of how well-established the former are in the community. We discuss
here a variation of CoEuS to improve over a simple community degree measure by taking
into account the edge quality of nodes w.r.t. each community. This variation is reminis-
cent of PageRank, that employs the network’s link structure to improve over the in-degree
measure [25].

Our variation employs Eq. (4.2), instead of incrementing the community degree of a node
by 1 for all of its adjacent nodes that are members of a community. Eq. (4.2) is equal to
the fraction of the adjacent nodes of a node that are also members of the community in
question. This fraction is essentially an estimation of the probability that a one-step ran-
dom walk starting from the node will lead to a node that is a member of the community in
question. Therefore, the value of Eq. (4.2) for each node grows with its involvement in the
community. If this value is high, then the probability that an adjacent node is a member of
the community is also high. Incrementing the community degree of a node using the value
of Eq. (4.2) of its adjacent node instead of 1, enables CoEuS to maintain its focus in the
community. In particular, this variation favors nodes that are adjacent to well-established
members of the community, as such nodes receive a significant increment to their com-
munity degree. In contrast, nodes that exhibit low values of Eq. (4.2) provide insignificant
increments to the participation levels of their adjacent nodes. Thus, the potential of nodes
exhibiting low values of Eq. (4.2) to shift the focus of the community is limited.

Algorithm 5 details the above outlined approach, and can replace Lines 9-17 of Algo-
rithm 3. The difference in functionality is in Lines 4 and 6 of Algorithm 5, which increment
the participation level of a node in the community using an estimation of Eq. (4.2) for the
respective adjacent node.

97 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0

 0.01

 0.02

 0.03

 0.04

 25  50  75  100

cp

Rank

community nodes
tail nodes

Figure 24: Ranking of nodes according to their community participation values and the partitioning
that Algorithm 6 makes to come up with a community automatically for a random citation network

community.

4.1.5 Size of the community

CoEuS associates each node included in the expanded community with a community par-
ticipation value. However, the size of an actual community might be smaller than the one
CoEuS examines. Therefore, CoEuS needs to additionally solve the issue of determining
the size of a community automatically and removing any irrelevant nodes.

Algorithm 6 details dropTail, a procedure that identifies nodes irrelevant to the community
formed with CoEuS and removes them. In this regard, dropTail utilizes the community
participation values of the nodes included in the community, and allows for fully automatic,
on-demand removal of irrelevant nodes. More specifically, irrelevant nodes exhibit weak
ties to the actual community and thus, their respective community participation values
are insignificant when compared to the values of other nodes included in the community.
This is evident in Figure 24 that illustrates the community participation values of nodes
included in a community of a real-world graph, as found by CoEuS. We observe that
ordering nodes according to their community participation values results to a clearly visible

P. Liakos 98



Distributed and Streaming Graph Processing Techniques

Algorithm 6: dropTail
1 Procedure dropTail
2 Ĉ ← reverseSort(C);
3 totalDifference← 0;
4 previous← 0;
5 foreach c ∈ Ĉ do
6 if previous > 0 then
7 totalDifference← cp(c)− previous;
8 previous← cp(c);

9 averageDifference← totalDifference

Ĉ.size()−1
;

10 previous← 0;
11 foreach c ∈ Ĉ do
12 if previous > 0 then
13 difference← cp(c)− previous;
14 previous← cp(c);
15 if difference < averageDifference then
16 Ĉ.remove(c);
17 else
18 break;

tail. The distribution of community participation values varies, depending on both the graph
and the community in question. Thus, setting a constant threshold value and discarding
nodes that exhibit lower community participation values to remove such tails is not an
option. Instead, we need to adjust to each particular community and isolate the nodes that
belong to the tail through clustering, To do so, dropTail calculates the average distance
between two consecutive nodes with regard to their ranking by their associated community
participation values (Lines 5-9). Then, dropTail iteratively examines the value distance of
two nodes in this ranking, starting from the last node. When this distance is found to be
larger than the average distance of nodes, dropTail stops, as it has spotted a significant
gap between the values of two consecutive nodes (Lines 11-18). The result of this process
for our example is also illustrated in Figure 24. The average distance between consecutive
nodes w.r.t. the ranking by community participation value is 0.00043. The first node from
the end that exhibits a gap larger than that from its predecessor is the one ranked 35th.
Therefore, dropTail considers that the tail of irrelevant nodes begins from the 35th node
(depicted using red crosses), and the actual community is formed by the first 34 nodes
(depicted using green dots).

We note that seed nodes exhibit relatively large community participation values and their
inclusion in this process is experimentally found to include more relevant nodes in the tail.
Thus, dropTail does not consider seed nodes, but only those nodes that have been added

99 P. Liakos



Distributed and Streaming Graph Processing Techniques

Table 6: Graphs of our dataset reaching up to 1.8 billion edges.

Graphs Type Nodes Edges Average Degree
Amazon Co-purchasing 334, 863 925, 872 2.76
DBLP Co-authorship 317, 080 1, 049, 866 3.31
Youtube Social 1, 134, 890 2, 987, 624 2.63
LiveJournal Social 3, 997, 962 34, 681, 189 8.67
Orkut Social 3, 072, 441 117, 185, 083 38.14
Friendster Social 65, 608, 366 1, 806, 067, 135 27.53

to the community during its expansion process.

4.2 Experimental Evaluation

We proceed by evaluating the performance of CoEuS on a range of networks from various
domains. Our experiments measure the impact of the novel techniques of our algorithm
and feature comparisons against state-of-the-art community detection approaches that
use the entire graph. We first discuss the specification of our experimental setting. Then,
we proceed with the evaluation of CoEuS by answering the following questions:

• What is the impact of employing the edge quality variation of CoEuS with regard to
its accuracy in detecting communities?

• Is CoEuS able to automatically determine the size of a detected community using
our novel dropTail clustering procedure?

• Is the accuracy achieved through CoEuS comparable to that of state-of-the-art local
community detection methods that use the entire graph?

• What are the merits of CoEuS with regard to execution time as well as space effi-
ciency when compared to prior efforts?

4.2.1 Experimental Setting

Our dataset comprises the six publicly available social, co-authorship, and co-purchasing
networks listed in Table 6.2 The respective graphs reach up to 1.8 billion edges and pos-
sess ground-truth communities which allow for quantifying the accuracy of community
detection algorithms. To ensure a fair comparison against a state-of-the-art algorithm [79]
we have adopted its experimental setting and use the top-5000 ground-truth communi-
ties of each network that possess the highest quality according to [77], after enforcing a
minimum community size of 20.

2https://snap.stanford.edu/data/#communities

P. Liakos 100

https://snap.stanford.edu/data/#communities


Distributed and Streaming Graph Processing Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

Am
azon

DBLP

Youtube

LiveJournal

Orkut

Friendster

F
1

-s
co

re

Graph

CoEuS1
CoEuScp

Figure 25: F1-score comparison for CoEuSwhen incrementing community degree by 1 (CoEuS1) and
by community degree of the adjacent node (CoEuScp). The variation of CoEuScp clearly improves
the F1-score for all graphs our dataset. The improvement is impressive for graphs orkut and dblp.

We implemented CoEuS using Java 8. Our implementation, as well as execution tests
that enable the reproducibility of our results are publicly available.3 The experiments were
carried out on a machine with an Intel® CoreTM i5-4590, with a CPU frequency of 3.30GHz,
a 6MB L3 cache and a total of 16GB DDR3 1600MHz RAM and the Linux Xubuntu 14.04.5
(Trusty Tahr) x86 64 OS. To maintain node and community degrees we employ in all our
experiments Count-Min sketches. The latter are initialized with the following parameters:
i) d = 7, and ii) w = 200,000, so that we obtain 99% confidence that ϵ < 0.00001. Our eval-
uation assumes that three random nodes of each ground-truth community are provided to
each algorithm as an input seed-set. To measure the accuracy of each algorithm we use
the average F1-score achieved for the communities of each graph. All results reported
are averages of multiple executions (for various random seed-sets and permutations of
the order of edges) and are accompanied with their respective 95% confidence intervals.

101 P. Liakos



Distributed and Streaming Graph Processing Techniques

4.2.2 Impact of the Edge Quality Variation

We begin by studying the behavior of CoEuS when considering our two different tech-
niques of incrementing the community degree of a node. We denote our algorithm as
CoEuS1 when the community degree of each node is incremented by 1 for every adjacent
node found in the community (Algorithm 3) and CoEuScp when the community degree of
each node is incremented by the community degree of the adjacent node (Algorithm 3
with the edge quality variation of Algorithm 5).

Figure 25 illustrates a comparison between CoEuS1 and CoEuScp on their accuracy on
detecting the ground-truth communities of the networks in Table 6. It is clearly evident that
the edge quality variation we introduce to CoEuS heavily impacts the ability of our algo-
rithm to accurately retrieve the members of a community. We see that CoEuScp achieves
an increased F1-score compared to CoEuS1 for all graphs included in our dataset. The im-
provement for graphs dblp, livejournal, and friendster is particularly impressive, increasing
from 0.263 to 0.469, from 0.369 to 0.684, and from 0.15 to 0.464, respectively. Significant im-
provements with regard to F1-score are also achieved for graphs orkut, amazon, youtube,
for which the F1-scores increase from 0.397 to 0.444, from 0.838 to 0.878, and from 0.082
to 0.121, respectively.

These results verify emphatically that the variation of Algorithm 5 successfully favors
nodes that are actual members of the community in question, and penalizes nodes that
exhibit weak ties with the community, when incrementing their respective community de-
grees. Thus, the resulting communities are much more accurate than the ones detected
when relying entirely on Algorithm 3.

We note that this experiment considers for both CoEuS1 and CoEuScp as size of each
resulting community the size of the respective ground-truth community. We now proceed
with the evaluation of our automatic size determination clustering algorithm (Algorithm 6),
as we cannot assume that the size of a community is known a priori.

4.2.3 Evaluation of Automatic Size Determination

Community detection via seed-set expansion calls for a stopping criterion for the expand-
ing process. CoEuS employs two techniques to limit the expansion of each community.
The first one, i.e., Algorithm 4, is a pruning procedure that is periodically applied to re-
duce the size of the community. The second one, i.e., Algorithm 6, is a novel clustering
algorithm that is applied on the resulting community of CoEuS to separate the nodes that
exhibit weak ties with the community and should be removed. In this experiment we eval-
uate the effectiveness of our clustering algorithm by comparing the average F1-score of
CoEuScp and CoEuScp-auto; for CoEuScp we assume that the size of each community is
known a priori, whereas CoEuScp-auto automatically derives the size of a community using
Algorithm 6.

3https://github.com/panagiotisl/CoEuS

P. Liakos 102

https://github.com/panagiotisl/CoEuS


Distributed and Streaming Graph Processing Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

Am
azon

DBLP

Youtube

LiveJournal

Orkut

Friendster

F
1

-s
co

re

Graph

CoEuScp
CoEuScp-auto

LEMON

Figure 26: F1-score comparison between LEMON and CoEuS.

The first two bars of Figure 26 illustrate the F1-scores achieved through CoEuScp and
CoEuScp-auto when detecting the ground-truth communities of the networks of our dataset.
As we can see, our dropTail clustering algorithm is able to offer impressive performance,
as the difference between the F1-score of CoEuScp is in most cases negligible. More
specifically, the difference in F1-score is under 0.06 for all networks of our dataset and
0.04 on average. This result strongly highlights the effectiveness of Algorithm 6 to deter-
mine the size of a community automatically. We also note that Algorithm 6 is extremely
efficient, both time- and space-wise, requiring only two passes over each resulting com-
munity (about 100 nodes), without any access to the graph’s elements. In contrast, other
size determination techniques such as the one employed in [79] necessitate calculations
of complex community quality measures like that of Eq. (4.1) for every possible size of
each community and require the presence of the entire graph.

4.2.4 Comparison against state-of-the-art non-streaming local community detec-
tion algorithms

After evaluating the impact of Algorithms 5 and 6 on the accuracy of CoEuS, and having
verified their effectiveness in detecting communities in a variety of networks, we now pro-

103 P. Liakos



Distributed and Streaming Graph Processing Techniques

ceed with comparing our graph stream algorithm against state-of-the-art non-streaming
local community detection algorithms. Our comparison focuses on LEMON as it is shown
in [79] to outperform all [70, 71, 119], whereas the more recent SCODA [62] reports signifi-
cantly lower F1-scores and does not allow overlaps.

4.2.4.1 F1-score comparison

We begin the comparison of CoEuScp-auto with LEMON as far as their accuracy on detecting
communities is concerned. We initialize LEMON with three random seeds of each ground-
truth community of our dataset and report here averages of multiple executions. The third
bar of Figure 26 illustrates the F1-scores achieved with LEMON for all six networks. Note,
that we were unable to retrieve results for the two largest networks of our datasets due
to LEMON’s memory requirements. However, we include here the results reported for orkut
in [79].

As we can see, using the entire graph, LEMON is usually able to slightly outperformCoEuScp-auto
for small graphs. However, our algorithm is extremely competitive w.r.t. accuracy, despite
the fact that it operates on a graph stream setting. More specifically, The average F1-score
difference of CoEuScp-auto with LEMON for the four smaller graphs of our dataset is 0.061.
Regarding orkut, CoEuScp-auto is far more accurate achieving an F1-score of 0.408 against
LEMON’s 0.17. Finally, our algorithm is able to achieve a notable F1-score of 0.417 for the
largest graph of our dataset, which LEMON fails to handle due to its size.

These results are particularly impressive as the graph stream setting that CoEuS adheres
to, is much more restrictive than the setting LEMON and other prior seed-set expansion
methods operate on. CoEuS processes each edge of the graph as it is becoming avail-
able and maintains very limited information for each node and community. Hence, it is
surprising that our algorithm achieves comparable accuracy to methods that utilize the
entire graph structure. Furthermore, it is evident in Figure 26 that our effective novel graph
stream techniques enable CoEuS to easily scale to large graphs, which other community
detection methods fail to handle.

4.2.4.2 Execution time and space efficiency comparison

Having shown that CoEuS is competitive or better than state-of-the-art non-streaming
algorithms as far as accuracy is concerned, we now report results concerning execution
time and space efficiency.

Table 7 illustrates a comparison on the execution time between CoEuScp-auto and LEMON.
Regarding CoEuScp-auto, we consider a streaming setting in which we process every edge
of each graph to update our structures and expand the communities in question. Similarly
for LEMON, we read the entire graph in-memory, as only then we can sequentially expand
each community in question. We use only one CPU core for both algorithms as parallel
execution is not an option for LEMON which is written in Python. The results concern the

P. Liakos 104



Distributed and Streaming Graph Processing Techniques

Table 7: Execution time comparison between CoEuS and LEMON for all the graphs of our dataset.
CoEuS is remarkably fast, even for the largest network of our dataset and clearly outperforms LEMON.

Graphs CoEuS LEMON
Amazon 0.0458 sec 3.1197 sec
DBLP 0.0575 sec 7.2756 sec
Youtube 0.176 sec 11.3834 sec
LiveJournal 1.573 sec 28.14 sec
Orkut 7.5171 sec −
Friendster 158.6547 sec −

average time needed for one community of each network. As we can see in Table 7,
our algorithm is extremely faster. In particular, CoEuScp-auto is able to detect a community
in the four smaller networks in time less than 2 seconds, whereas LEMON needs up to
28.14 seconds. Moreover, CoEuS is able to scale to networks reaching billions of edges
requiring only an impressive total of 158.66 seconds for a community of the friendster
network.

We note that even though these results clearly show that CoEuS is considerably faster
than prior approaches, they are not indicative of CoEuS’s speed in a real streaming set-
ting. In particular, CoEuS is able to return the communities in question on-demand as
we process the stream in real-time. The measurements reported in Table 7 additionally
consider edge processing, which we expect that in a real-life setting will happen faster
than edges are made available. In this regard, the actual response time of CoEuS in a
streaming setting is in the order of milliseconds regardless of the size of the graph. Yet, the
results of Table 7 indicate that CoEuS is a very attractive option even for non-streaming
settings.

Table 8 shows a comparison between the two algorithms on their space requirements
concerning the graph structure. CoEuScp-auto employs two Count-Min sketches which are
initialized in our experiments to require the same space regardless of the graph. There-
fore, the space requirements are independent of the size of the graph and depend only
on the desired approximation quality of the sketches and the number of communities in
question. In contrast, LEMON needs to maintain in-memory the entire graph structure, us-
ing adjacency lists. Both algorithms require additional space to hold the communities we
seek; however, this space is linear to the number of the communities and fairly insignificant
compared to the graph structure.

It is evident that the space requirements of CoEuS are remarkably low. Even the largest
graph of our dataset, reaching up to 1.8 billion edges is handled appropriately with just
21.36MB. In contrast, the space requirements of LEMON grow with the number of edges of
a graph. The largest graph we are able to handle is livejournal with 34 million edges for
which more than 2,500MB are needed. The two largest graphs of our dataset result in
memory errors.

105 P. Liakos



Distributed and Streaming Graph Processing Techniques

Table 8: Comparison of space requirements between CoEuS and LEMON for all the graphs of our
dataset. CoEuS uses two Count-Min sketches to hold a graph’s elements and therefore its require-
ments depend only on the desired approximation quality of the sketches. LEMON maintains the adja-

cency lists of a graph and thus requires significantly more space.

Graphs CoEuS LEMON
Amazon 21.36MB 155.74MB
DBLP 21.36MB 156.49MB
Youtube 21.36MB 457.62MB
LiveJournal 21.36MB 2, 652.99MB
Orkut 21.36MB −
Friendster 21.36MB −

4.3 Related Work

Our work lies in the intersection of community detection over streaming graphs and local
community detection via seed-set expansion. We outline here pertinent aspects of these
two areas.

Local community detection via seed-set expansion: Numerous recent approaches
depart from the direction of working on the entire graph structure. Instead, they focus on
detecting local communities in time functional to the size of the community and are thus
able to support large scale graphs. Such approaches usually operate using a seed-set of
nodes which they expand to a community. Kloster and Gleich [70] propose a deterministic
local algorithm to compute heat kernel diffusion and study the communities it produces
when initiated with seed nodes. The authors compare with PageRank diffusion on large
scale real-world graphs and report that using Heat Kernel diffusion they are able to detect
smaller, more accurate communities, with slightly worse conductance. LEMON [79] also
uses seeds to perform short random walks and forms an approximate invariant subspace
termed local spectra. Then, LEMON looks for the minimum 1-norm vector in the span of
this local spectra such that the seeds are in its support. To determine the size of the
community, the authors of [79] employ the measure of conductance. In particular, they
measure the conductance of the community as they increase its size, and stop at the first
relative minimum conductance encountered. Both the above approaches are similar to
our setting as they expand a seed-set of nodes into a community. However, neither of
them is able to handle graph streams. LDLC [80] focuses on egonets of nodes in networks
and performs hierarchical link clustering to detect all the overlapping communities of a
node. In addition, LDLC uses a measure of dispersion to detect nodes that share multiple
communities and thus avoids to group together overlapping parts of communities. Our
CoEuS is different as it uses a seed-set of nodes and expands it into a single community.

Streaming community detection: Yun et al. [128] consider settings in which the size of
the network is so large that maintaining the respective graph is prohibitive. Thus, they
study the problem of clustering the nodes of a graph to communities in a streaming set-
ting where rows of the adjacency matrix of the graph are revealed sequentially. They

P. Liakos 106



Distributed and Streaming Graph Processing Techniques

propose an online algorithm with space complexity that grows sub-linearly with the size
of the network. Our streaming setting does not assume that rows of the adjacency ma-
trix are completely revealed to us. Instead, we consider that edges involving any node
of the graph may arrive at any moment. Moreover, we are unaware of the size of the
graph, which grows with time. Zakrzewska and Bader [131] propose a dynamic seed set
expansion algorithm for community detection. In particular, they consider that edges may
be inserted to or removed from the graph dynamically and detect the local community
of a seed set by incrementally adjusting to the changes of the graph. The latter allows
for faster execution compared to an algorithm that requires re-computation after every
update at the cost of slightly worse community quality. Our approach is different as we
assume that we cannot maintain the whole graph in-memory, whereas the incremental
adjustments that [131] performs do impose such a requirement. Moreover, we suggest a
significantly more cost-effective recomputation of the local community at every step. Hol-
locou et al. [62] consider an edge streaming setting and assign all the nodes of a graph
to non overlapping communities using only two integers per node that hold: i) the node’s
degree, and ii) the current community index assigned to the node. Their work is heavily
based on the observation that if we pick uniformly at random an edge of the graph, this
edge is more likely to link nodes of the same community, than nodes from distinct commu-
nities. This is expected to be true as nodes tend to be more connected within a community
than across communities, thus, if we process edges in a random order we expect many
intra-community edges to arrive before the inter-community edges. However, this requires
that we already hold the graph in its entirety and we are able to select its edges one by
one uniformly at random. We operate on the more practical assumption that the edges of
the graph arrive at no particular order.

4.4 Conclusion

In this chapter we propose and develop CoEuS, a novel graph stream community detection
algorithm that expands seed-sets of nodes into communities. To the best of our knowledge
CoEuS is the first streaming algorithm that performs community detection using space
sublinear to the number of edges without imposing any restrictions in the order in which
edges arrive in the stream. CoEuS processes a stream of edges and maintains limited
information about the respective graph, concerning the nodes’ degrees, the participation of
nodes into communities and the nodes that comprise each community we seek. In addition
to CoEuS, we propose two algorithms to improve the effectiveness of our approach. The
first one places emphasis on the quality of an edge w.r.t. a community and is able to better
preserve the focus of a community as the latter is expanding. The second one allows for
automatic on-demand determination of the size of a community through a novel clustering
technique, tailored to the needs of CoEuS.

We compare CoEuS with a non-streaming local community detection method that report-
edly outperforms other recent approaches. Using large-scale networks from various do-
mains we show that CoEuS is able to offer accuracy that is equivalent to or better than that
of methods exploiting the entire graph, even though it operates on a graph stream. The

107 P. Liakos



Distributed and Streaming Graph Processing Techniques

two algorithms we propose to enhance CoEuS, contribute enormously to its effectiveness
and efficiency, by improving its accuracy and allowing for real-time determination of the
size of each community. Furthermore, we examine the requirements of CoEuS and show
that our algorithm is clearly superior than prior approaches with regard to both execution
time and space used. Therefore, our CoEuS algorithm proves to be not only an extremely
accurate graph stream algorithm, but a very attractive option for large-scale community
detection in general.

P. Liakos 108



Distributed and Streaming Graph Processing Techniques

5. ADAPTIVELY SAMPLING AUTHORITATIVE CONTENT FROM
SOCIAL ACTIVITY STREAMS

The tremendous scale of content generation in online social networks brings several chal-
lenges to applications such as content recommendation, opinion mining, sentiment anal-
ysis, or emerging news detection, all of which have an inherent need to mine this content
in real time. As an example, the daily volume of new tweets posted by users of Twit-
ter surpasses 500 million.1 However, not all generated online social activity is useful or
interesting to all applications. Using Twitter again as an example, more than 90% of
its posts is actually conversational and of interest strictly limited to a handful of users, or
spam [50]. Therefore, applications such as emerging news detection that operate on the
entire stream, spend a lot of computational cycles as well as storage in processing posts
that are not very useful.

One way to solve this problem is, instead of processing the social activity stream in its en-
tirety, to take a sample of the activity and operate on the sample. Through sampling, our
goal is to still capture the important and interesting parts of the activity stream, while reduc-
ing the amount of data that we would have to process. To this end, one obvious approach
is to perform random sampling, i.e., randomly pick a subset of the activity stream and
use that in the respective application. A more effective approach however, is to sample
content published in the activity stream only from the users that are considered authori-
tative (or authorities).2 By sampling the posts of authoritative users from the stream, we
are reportedly [129] more likely to produce samples that are of high-quality, with limited
conversational content and less spam.

The challenge in sampling high quality content from a social activity stream lies therefore
in identifying authoritative users. Existing work deploys white-lists of users that are likely to
produce authoritative content [49, 50, 116, 129] and samples their activity. Although such
approaches have been shown to work well for certain applications, we will show experi-
mentally that they are unable to cope with the dynamic nature of a social activity stream
where, for example, new users emerge as authorities and old ones fade out. Other prior
efforts on identifying authoritative users in social networks (not streams) have focused on
computing a relative ranking of users based on network attributes [6, 23, 24, 64, 103, 132].
We build on the findings of such approaches to identify authorities likely to produce use-
ful content; our approach is different however, as we cannot presume that the complete
structure of the social network is available, nor that we can afford to process the network
offline.

We operate with the more practical assumption that we have incomplete access to the
social network. In other words, we do not know which users exist in the network but we
simply observe some partial activity from a social activity stream. Our goal is to produce
high quality samples from such streams that will still be as useful as possible compared
to being able to access the entirety of the social network and the activity within.

1http://www.internetlivestats.com/twitter-statistics/
2We use terms authoritative users and authorities interchangeably.

109 P. Liakos

http://www.internetlivestats.com/twitter-statistics/


Distributed and Streaming Graph Processing Techniques

We propose Rhea,3 an adaptive algorithm for sampling authoritative social activity con-
tent. Rhea forms a network of authorities as it processes a stream and includes in its
sample only the content published by the top-K authorities in this network. Given a social
activity stream with user interactions (e.g., answers in Q&A sites or mentions in the case of
Twitter) we create a weighted graph used to quantify user authoritativeness. To deal with
the potentially enormous amount of items that we encounter in the stream and limit mem-
ory blowup, we construct a highly compact, yet extremely efficient sketch-based novel
data structure to maintain the authoritative users of the network. Our experimental results
with half a billion posts from two popular social networks show significant improvements
with regard to various binary and ranked retrieval measures over previous approaches.
Rhea is able to sample significantly more relevant documents, with higher precision and
remarkably more accurate ranking compared to sampling based on static white-lists of au-
thoritative users. Our approach is generic and can be used with any online social activity
stream, as long as we can observe indicators of authoritativeness in the stream.

In summary, we make the following contributions:

a) We propose Rhea, a stream sampling algorithm, that employs network-based mea-
sures to dynamically elicit authoritative content of social activity. To the best of our
knowledge, this is the first work that addresses the problem of dynamically sampling
the posts of authoritative users from a social activity stream.

b) We evaluate Rhea with datasets reaching up to half a billion posts from two popular
social networks and show that it outperforms contemporary approaches with regard
to precision, recall, and ranking accuracy.

c) We empirically demonstrate that static white-lists cannot always capture temporal
changes in rankings of authorities, and thus, are not an appropriate choice when
sampling authoritative content from streams.

5.1 Identifying Authorities in Streams

5.1.1 Network of Authorities from Social Activity

Streams of social activity reveal very little about the respective network structure. De-
pending on the social network, users may perform certain actions like “posting” messages
or “liking” content other users have posted. For example in Twitter, tweets may mention
another user’s @username, in Facebook users may tag another user, in Linkedin users
can make endorsements, while in Q&A sites such as StackOverflow, users can provide an-
swers to other users’ questions. The aforementioned actions (mentions, endorsements,
answers, etc.) as well as their direction may often be considered as indications of impor-
tance, and can be used to form a network of authorities from the respective stream. More

3Rhea was the Titaness daughter of the earth goddess Gaia and the sky god Uranus. Her name stands
for “she who flows”.

P. Liakos 110



Distributed and Streaming Graph Processing Techniques

specifically, users receiving numerous mentions or regularly providing answers, without
reciprocating these actions with the same frequency, may be deemed as important in the
network [118].

To illustrate the process of deriving a network of authorities from social activity, we pro-
vide an example of a stream featuring the three tweets depicted in Figure 27. In the first
element of the stream,@user1 creates a mention to user@SLAM by retweeting a post of
that user regarding the injury of a basketball player. Then, the same user retweets some
additional information on the same story from the same source. These posts appear in the
feeds of the users that follow@user1. Soon,@user2 posts a reply to@user1 and reports
that another source (@SI) has also confirmed the story. Overall, there are 4 mentions in
this stream, most of which offer valuable evidence regarding user importance. However,
one of the mentions (to@user1) is actually only a reply; the respective tweet is conversa-
tional and the user simply intends to notify another user. Similarly, in a Q&A site, providing
answers is usually an indication of authoritativeness, even though some answers may be
inaccurate.

Figure 27 also depicts the actual process of forming a network of authorities out of this
particular social activity stream. The network is represented as a directed weighted graph.
For each mention in the stream we create an edge from the source node (i.e., user) to the
receiving node. If the edge is already present, we increase the respective weight by 1.
Using the 3 tweets of our example we can detect a total of 4 nodes. We observe that one
of the nodes stands out with regard to weighted in-degree (@SLAM). However, we also
see that based on weighted in-degree alone, we cannot differentiate between receiving
mentions indicating importance and replies. To this end, we can additionally utilize the
weighted out-degree to quantify the extent to which these actions are reciprocated, as we
discuss next.

5.1.2 Ranking the Authorities

Numerous prior efforts have utilized network structure to identify authorities and exploit
the content they produce [6, 23, 64, 132]. Although in our setting we cannot recover the
complete network structure, there are usually indications of expertise inherent in the social
activity stream that we can utilize. When a user mentions another user in Twitter she is
either acknowledging the authority of the latter, or trying to engage in a conversation. Both
these actions typically imply that the initiating user considers herself less authoritative than
the target user. On the other hand, receiving a mention is often an indicator of importance
for the recipient. Similarly, asking questions in Q&A sites is usually a negative indicator of
authoritativeness, whereas providing answers is a positive one. Therefore, one way to
capture this balance is to compute the fraction of the difference between these indicators
of importance.

Zhang et al. [132] focus on Q & A communities and propose z-score, a measure that builds
on positive and negative predictors of expertise. The z-score of user u is formally defined

111 P. Liakos



Distributed and Streaming Graph Processing Techniques

Figure 27: Deriving a network of authorities from a social activity stream. Potential authorities may
be identified by applying measures on the resulting weighted directed graph.

as:
z(u) =

a(u)− q(u)√
a(u) + q(u)

(5.1)

where, a(u) is the number of questions u has answered and q(u) is the number of ques-
tions u has asked. Through crowdsourcing Zhang et al. show that z-score outperforms
measures such as the in-degree as well as sophisticated approaches based on PageR-
ank [74] and HITS [69] when identifying distinguished users in social networks. We build
on this finding and propose auth-value, a generalized version of z-score for a wide range
of social networks, that we formally define as:

auth(u) =
in(u)− out(u)√
in(u) + out(u)

(5.2)

where, in(u) is the weighted in-degree of u in the network of authorities and out(u) is her
respective weighted out-degree. Thus, our auth-value measure enables us to extract the
authoritative users of a network in which social activity does not necessarily imply user
expertise. As the effectiveness of z-score against other measures has been previously
exhibited [132], we rely on Eq. (5.2) to measure authoritativeness and our focus is on
applying it effectively in a streaming setting.

Taking into account both positive and negative predictors of importance through Eq. (5.2)
allows us to differentiate between authorities and frequent posters. In particular, users
who are frequently mentioned in conversational tweets or provide (possibly incorrect) an-
swers to numerous questions, are also expected to make a lot of mentions to other users
or frequently ask questions, and will be penalized by Eq. (5.2) for doing so. More specifi-
cally, such users are expected to a exhibit an auth-value that is negative or close to zero.

P. Liakos 112



Distributed and Streaming Graph Processing Techniques

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  250  500  750  1000

P
r
e
c
i
s
i
o
n
@
K

K (authorities)

Sept. 2009 & Oct. 2009
Sept. 2009 & Nov. 2009
Sept. 2009 & Dec. 2009

(a) Precision@K results.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  250  500  750  1000

S
p
e
a
r
m
a
n
’
s
 

ρ 
c
o
r
r
e
l
a
t
i
o
n

K (authorities)

Sept. 2009 & Oct. 2009
Sept. 2009 & Nov. 2009
Sept. 2009 & Dec. 2009

(b) Spearman’s ρ results.

Figure 28: Precision@K 28a and Spearman’s ρ 28b results for the authorities extracted from the
tweets of September 2009, using the rankings resulting from the tweets of the three subsequent
months. Both metrics reveal that the correlation between rankings of authorities according to the

tweets of subsequent months weakens significantly with time.

In contrast, authoritative users who receive much more mentions than they give or an-
swer significantly more questions than they ask will exhibit high auth-values. We note,
that auth(u) is susceptible to spam-farms that may attempt to boost the values of certain
users; however, this is the case with alternative network measures as well, e.g., in-degree,
PageRank, or HITS. Thus, we consider that fighting web-spamming is beyond the scope
of our work. Moreover, we use the notion of authoritativeness to describe influential con-
tributors of a network regardless of the diversity of topics discussed. Our focus is on the
entire activity and thus, our goal is to distinguish the highly influential players overall, as
the case is with prior stream sampling efforts [50].

5.1.3 Limitations of Static Lists of Authorities

Previous approaches on sampling the activity of authoritative users from social streams
employ white-lists of authorities extracted from user annotated content [49, 50, 116, 129].
In particular, social networks often enable users to create lists that group together distin-
guished users. We can form a white-list of authorities by including users with considerable
appearances in such user-generated lists [49]. Although this approach can work well in
some cases, static white-lists may often be outdated, featuring inactive accounts or users
that are no longer receiving attention. Activity in social networks is highly dynamic and
authorities tend to rise and fall with time. To quantify how dynamic social activity is, we
used Twitter posts from 3 consecutive months. We created a white-list for each month,
that comprises the most authoritative users according to their auth-values, and examined
the similarity of these white-lists.

Table 9 shows the top-10 authorities for these 3 months. We observe that even at the

113 P. Liakos



Distributed and Streaming Graph Processing Techniques

Table 9: Top-10 authorities for the tweets of 3 months.

October 2009 November 2009 December 2009
user u auth(u) user u auth(u) user u auth(u)

1 justinbieber 393.885 justinbieber 448.815 justinbieber 433.185
2 donniewahlberg 358.286 donniewahlberg 249.988 nickjonas 249.558
3 tweetmeme 263.103 revrunwisdom 242.807 revrunwisdom 222.571
4 revrunwisdom 237.964 tweetmeme 195.379 donniewahlberg 202.996
5 mashable 229.650 addthis 186.282 tweetmeme 183.603
6 addthis 212.325 ddlovato 181.720 jonasbrothers 182.882
7 ddlovato 204.910 luansantanaevc 167.514 addthis 181.403
8 jordanknight 191.045 jordanknight 167.197 omgfacts 154.136
9 jonasbrothers 175.054 jonasbrothers 165.520 mashable 153.616
10 lilduval 174.616 mashable 164.496 johncmayer 147.241

first 10 positions user rankings vary across different months. For instance, user ddlovato4
started from the 7th spot in October, moved up to the 6th spot in November, before drop-
ping off from the list in December. This is an example of a user that receives increasing
attention over time before eventually being surpassed by other emerging users later on.
Similarly, user luansantanaevc5 appeared in the first 10 positions only for the tweets of
November. This is an example of a user that received attention temporarily. More impor-
tantly, this user started posting tweets using a second account (luansantana) on January
19th, 2011, without deactivating the first account. Hence, we observe that white-lists can
be unstable and quickly become out-of-date.

To further quantify the volatility of rankings in white-lists, we examined their similarity over
time based on the percentage of the users appearing in the list of September 2009 that
also appeared in the lists of the 3 subsequent months. More specifically, we consider the
ranking resulting from the tweets of September to be the ground-truth, and calculate the
Precision@K achieved in the following 3 months. Figure 28a depicts the Presicion@K
results for 100 ≤ K ≤ 1,000 for October, November, and December, respectively. For
October (the immediately following month), less than 70% of the authorities of September
are also identified as authorities, for all values ofK examined. As expected, Precision@K
deteriorates very quickly in the following months. For the same range of K, we get that
0.57 < Precision@K ≤ 0.61 for November, and 0.50 < Precision@K ≤ 0.51 for December.
Overall, Precision@K remains relatively stable as we increase K and deteriorates as
we increase the time interval from the ground truth. We additionally measure the rank
correlation using Spearman’s ρ with the similar setting of considering September as the
ground truth. Figure 28b illustrates Spearman’s ρ results for the same pairs of months.
There is moderate correlation between the rankings of users, which remains stable as we

4ddlovato is the account of American singer/actress Demi Lovato:
https://twitter.com/ddlovato.

5luansantanaevc is the old account of Brazilian singer Luan Santana:
https://twitter.com/luansantanaevc.

P. Liakos 114

https://twitter.com/ddlovato
https://twitter.com/luansantanaevc


Distributed and Streaming Graph Processing Techniques

increase K. However, the rank correlation also weakens as we increase the time interval
from the ground-truth.

Our findings strongly suggest that white-lists are inappropriate when extracting author-
itative users from streams, as social activity is dynamic; instead, we need an adaptive
algorithm. We proceed by presenting such an algorithm and measuring its effectiveness
against contemporary white-list based approaches.

5.2 Rhea: Stream Sampling for Authoritative Content

In this section we present Rhea, an adaptive sampling algorithm for authoritative con-
tent from social activity streams. More formally, Rhea seeks to produce a sample Ŝ of a
stream S such that ∀s ∈ S whose respective user is in the top-K authorities of the network
according to Eq. (5.2), s ∈ Ŝ.

This endeavor involves three main challenges: 1) Online social networks are ever in-
creasing and users publishing content may surpass 1 billion [33]. Hence, maintaining user
information as we process the stream may be costly in both memory requirements and
computational time. 2) Ranking users according to their authoritativeness and classifying
their content as relevant or non-relevant, often requires reckoning in multiple measures.
3) Finally, many elements we opt to include in the sample as we process the stream may
actually be published by non-authorities. Thus, we need to filter out posts that mistakenly
lurked in our sample. In this section, we discuss the individual pieces of Rhea that address
these three challenges and then present our algorithm.

5.2.1 Maintaining User Information

5.2.1.1 Frequent Items

Rhea maintains a limited view of the social network based on the social activity stream. In
particular, Rhea is aware of the weighted in- and out-degrees of each user in the stream,
as depicted in the weighted directed graph of Figure 27. In practice, we expect that an
enormous number of users will participate in the activity stream of an online social net-
work. Efficiently mapping their respective weighted in- and out- degrees with structures
such as hash tables would require memory that far surpasses that of a modern day com-
puter. Moreover, resizing such hash tables would be necessary to maintain new users
encountered in the stream, and would eventually cause serious bottlenecks in terms of
CPU cycles.

The Count-Min sketch [35] is a well-known and widely-used [5, 106] sublinear space data
structure for the representation of high-dimensional vectors. Count-Min sketches allow
fundamental queries to be answered efficiently and with strong accuracy guarantees. It
is particularly useful for summarizing data streams as it is capable of handling updates
at high rates. The sketch uses a two-dimensional array of w columns and d rows, where

115 P. Liakos



Distributed and Streaming Graph Processing Techniques

+c

+c

+c

+c

h1

h2

hd

.

.

.

i d

w

count

Figure 29: Count-Min Sketch update process.

w = ⌈ e
ϵ
⌉, d = ⌈ ln(1)

δ
⌉, and the error in answering a query is within a factor of ϵwith probability

δ. A total of d pairwise independent hash functions is also used, each one associated with
a row of the array. Figure 29 illustrates the update process of a Count-Min sketch for
our specific problem. Consider that an update (i, c) arrives, indicating that user’s i count
should be incremented by c. The array count is updated as follows: for each row j of
count we apply the corresponding hash function to obtain a column index k = hj(i) and
increment the value in row j, column k of the array by c, i.e., count[j, k]+ = c. This allows
for retrieving at any time an (over)estimation of the count of an event i using the least
value in the array for i, i.e., âi = minjcount[j, hj(i)].

Rhea keeps track of both positive and negative indicators of importance. Thus, we em-
ploy two Count-Min sketches to compactly maintain both these indicators for all users
appearing in a stream.

5.2.1.2 Reducing the Processing Overhead through Sampling

Palguna et al. [104] show that a uniform random sample with replacement of enough size
is able to guarantee with strong accuracy that i) elements that occur with frequency more
than θ in the stream occur with frequency more than (1− ϵ

2
)θ in the sample and ii) elements

that occur with frequency less than (1 − ϵ)θ in the stream occur with frequency less than
(1− ϵ

2
)θ in the sample, where θ ∈ [0, 1] and ϵ ∈ [0, 1]. In addition, they experimentally show

that the behavior of the Bernoulli sampling scheme is very similar and primarily influenced
by the sample size alone. Obviously, we are unable to use uniform random sample with
replacement, as elements of the stream are only seen once. However, we can employ
the Bernoulli sampling scheme. In particular, we can include each element of the stream
in our authorities’ network formation process with probability p and exclude the element
with probability 1 − p, independently of other elements, where p ∈ (0, 1]. This allows us
to reduce the computational overhead of Rhea without sacrificing its effectiveness. We
thoroughly investigate the impact of p in our evaluation to come up with the size of the
sample that will facilitate our set requirements.

P. Liakos 116



Distributed and Streaming Graph Processing Techniques

Algorithm 7: put(Top-K-Heap, key, value)
input : A Top-K-Heap structure and a key associated with a value to be inserted in the

Top-K-Heap.
output : The updated Top-K-Heap.

1 begin
2 if Top-K-Heap.size() < K then
3 if Top-K-Heap.contains(key) then
4 Top-K-Heap.replace(key, value);

5 else
6 Top-K-Heap.push(key, value);

7 else
8 if Top-K-Heap.contains(key) then
9 Top-K-Heap.replace(key, value);

10 else if value > Top-K-Heap.low() then
11 Top-K-Heap.pop();
12 Top-K-Heap.push(key, value);

13 return Top-K-Heap;

5.2.2 Ranking Authorities

Count-Min sketches provide answers to point and dot product queries with strong accuracy
guarantees. Using two such sketches, we are able to approximate the number of positive
and negative indicators of importance a user exhibits. This is enough to provide us with an
approximation of a user’s auth-value through Eq. (5.2). However, we are not interested in
the absolute value of auth(u). Rather, we wish to know at any time whether a user’s value
is among the top-K overall. To this end, we employ a structure we term Top-K-Heap to
hold user elements with associated auth-values. A Top-K-Heap puts an element in the
structure if its value is larger than the minimum value currently on the structure or the
structure holds less than K elements. In case the element is already inserted, we update
its value accordingly; otherwise, we first remove the element with the smallest value. Thus,
a Top-K-Heap holds a maximum ofK elements. In addition, duplicate values are allowed,
as users may exhibit the same auth-value.

A min-heap [11] allows for duplicate values and enables us to examine the minimum ele-
ment of our structure in constant time. In addition,min-heaps support insertion of elements
or removal of the minimum element in logarithmic time. Therefore, if the element is not
present in the structure, we can place it in a min-heap and remove the root holding the
minimum value in logarithmic time. However, examining if an element is already in a min-
heap takes linear time. To alleviate this problem, we additionally employ a hash-table
to hold the inserted elements, which allows for examining the presence of an element in
our Top-K-Heap in constant time. We note that K is insignificant compared to the total
number of users, and the cost of using an additional hash-table is negligible.

Algorithm 7 details the insertion in a Top-K-Heap. Lines 2-6 concern the case when

117 P. Liakos



Distributed and Streaming Graph Processing Techniques

the Top-K-Heap holds less than K elements. If the new element is already inserted we
replace its value (Line 4), i.e., we remove the old element from themin-heap and the hash-
table and insert the new one with the updated value (O(logn)). If the new element is not
in the structure, we simply place it inside (Line 6), i.e., we insert it to both the min-heap
and the hash-table (O(logn)). Lines 7-12 are executed in the case when the Top-K-Heap
holds exactly K elements. If the latter is true and the element to be added is already
inserted, we replace its value as before (Line 9). However, if the new element is not
already in the Top-K-Heap, we examine if its value is larger than the minimum value on
the Top-K-Heap (Line 10), and remove the root of the Top-K-Heap before inserting it.
This requires us to access the minimum value (O(1)), remove the root of the min-heap
(O(logn)) and the respective element in the hash-table (O(1)), and then insert the new
element in the min-heap (O(logn)) and the hash-table (O(1)). We note that Eq. (5.2) may
both increase or decrease as elements appear in the stream. Therefore, when we update
an element in the Top-K-Heap with a value that is smaller than the one previously held,
it might be the case that the element should no longer be part of the top-K. However, as
we update the Top-K-Heap with every element that appears on the stream, the element
that would actually belong to the top-K will claim its position at its next appearance, and
will be included in the sample.

5.2.3 Filtering-out Non-relevant Activity

Rhea makes decisions based on what appears to be optimal at the time. During stream
processing, Rhea may deem as a top-K authority a user that temporarily exhibits a high
auth-value but is actually not among the top-K overall for the particular stream. Thus,
posts of non-authorities may end up in our sample, i.e., we lose in precision. Similarly,
Rhea might stumble upon posts of an authority that is not yet identified as such. This will
lead to relevant posts being excluded from our sample, i.e., we lose in recall. For this
latter case, we are unable to improve our recall at a later stage, as the elements that we
discard from the stream are lost. However, for the former case we can perform a post-
processing step to filter-out non-relevant posts using the more refined classification model
that is formed after seeing a good portion of the stream. For each document included in
our sample, Rhea examines the respective user that published it. If the user is contained
in our Top-K-Heap, we keep the document in the sample; otherwise, we discard it. In our
evaluation, we investigate the impact of this technique in detail.

5.2.4 The Proposed Rhea Algorithm

Algorithm 8 outlines our proposed Rhea method for stream sampling. Rhea processes
a stream S with elements of social activity. Each element contains some content and
is associated with a user and a timestamp. Rhea takes as its input parameters K and p,
that specify the amount of authorities whose activity we wish to sample, and the probability
according to which we process an element in the stream to form our network of authorities,

P. Liakos 118



Distributed and Streaming Graph Processing Techniques

Algorithm 8: Rhea(S,K, p)

input : A stream S, a parameter K > 0 and a probability p ∈ (0, 1].
output : A set Ŝ ⊂ S containing elements whose respective users are likely to be among the top-K

w.r.t. to the auth-value.
1 begin
2 Top-K-heap← ∅;
3 CMSin← ∅;
4 CMSout← ∅;
5 foreach s ∈ S do
6 if random(0, 1] < p then
7 (in, out)← extractIndicators(s.message) ;
8 CMSin[in]+ = 1 ;
9 CMSout[out]+ = 1 ;

10 authuser ← CMSin[s.user]−CMSout[s.user]√
CMSin[s.user]+CMSout[s.user]

;

11 if authuser > Top-K-heap.low() then
12 put(Top-K-heap, user, authuser);
13 Ŝ.put(s);

14 foreach s ∈ Ŝ do
15 if s.user /∈ Top-K-heap then
16 Ŝ.remove(s);

17 return Ŝ;

respectively. The output is a sample of S containing elements whose respective users are
likely among the top-K w.r.t. the auth-value.

Rhea begins by initializing the structures to be used while processing the stream (Lines
2-4), i.e., a Top-K-Heap to hold the current K users with the highest auth-value in the
stream, and two Count-Min sketches to maintain the weighted in- and out-degree of each
user. Then, we process the elements of the stream (Line 5), a phase that involves two
actions:

Creating the Network of Authorities (Lines 6-9):
We apply a Bernoulli sampling scheme and use an element of the stream with probability
p ∈ (0, 1] to extract positive and negative indicators of importance (Line 6-7). The extracted
indicators are used to update the two Count-Min sketches (Lines 8-9).6 Hence, sketches
CMSin and CMSout keep track of the weighted in- and out-degrees of the users of the formed
authorities’ network, respectively.

Stream Sampling for Authoritative Content (Lines 10-13):
First, we derive an approximation of the auth-value of the respective user of the current
element of the stream (Line 10). Then, we compare with the lowest value in the Top-K-
Heap to decide whether the current user is an authority, and thus, her activity must be

6Depending on the stream an element may contain more than one positive or negative indicators of
importance. We consider this in our implementation but we omit it from the presentation of our algorithm for
simplicity.

119 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

R
e
c
a
l
l

K (authorities)

Rhea  (T)

WhiteList  (T)

Rhea (SO)

WhiteList (SO)

Figure 30: Recall comparison between our approach and a baseline for our two datasets (T, SO) when
querying for the tweets of the top-100, 250, 500, 750, and 1, 000 authorities of the stream.

sampled or not (Line 11). If the user is classified as an authority, we update the Top-K-
Heap with the auth-value of the user (Line 12), and include the element in our sample
(Line 13).

Finally, Rhea features a post-processing step to improve the quality of the sample by
filtering-out elements that were wrongly considered as relevant while we were processing
the stream (Lines 14-16). This step processes the elements of the sample and removes
all those whose respective users are not in the Top-K-Heap.

5.3 Experimental Evaluation

We implemented7 Rhea using Java. Our evaluation is based on two datasets: i) one that
comprises 467 million tweets from 20 million users of Twitter (T), covering a period from
June 2009 to December 2009 [122], and ii) one that consists of 263,540 answers to 83,423
questions posted by 26,752 users of StackOverflow (SO), between February 18, 2009 and
June 7, 2009 [39]. We first present the details of our experimental setting. Then, we
proceed with the evaluation of Rhea by answering the following questions:

a) How does Rhea compare against white-list based sampling in terms of recall, preci-
sion, and F1-score?

b) Is Rhea able to assess the ranking relevance of the sampled documents?

c) What is the impact of the parameters involved in the execution of Rhea?
7Source code and reproducible tests: https://github.com/panagiotisl/rhea

P. Liakos 120

https://github.com/panagiotisl/rhea


Distributed and Streaming Graph Processing Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

R
e
c
a
l
l

K (authorities)

Rhea  (T)

WhiteList  (T)

Rhea (SO)

WhiteList (SO)

Figure 31: Precision comparison between our approach and a baseline for our two datasets (T, SO)
when querying for the tweets of the top-100, 250, 500, 750, and 1, 000 authorities of the stream.

5.3.1 Experimental Setting

For our Twitter dataset we include in our stream all tweets published during August 2009
– December 2009, i.e., |S| = 411,778,304. Similarly, |S| = 131,768 for our StackOverflow
dataset. We did not use all available elements for the stream, as we also needed a suffi-
ciently large part of the dataset to create static white-lists for a method based in [50] that
we compare against. We created the white-lists using the auth-value rankings that result
from all the available user activity occurring before the activity of the stream. The respec-
tive approach decides to sample elements from the stream based on a single criterion:
whether the user publishing the element is part of the white-list or not. For the rest of this
work we will refer to this method as WhiteList. The elements of both our datasets are
timestamped which enables us to replay them chronologically. Unless stated otherwise,
Rhea is initialized using the following parameters: i) p = 0.2, to use 20% of the stream’s
elements to extract mentions, and ii) d = 7, w = 20,000, which gives us 99% confidence
that ϵ < 0.0001.

5.3.2 Recall, Precision, and F1-score Comparison

We commence our evaluation by comparing the performance of Rhea against WhiteList
with regard to recall, precision and F1-score measures. For each element (tweet or an-
swer) we include in our samples, we make a binary assessment concerning the user who
posted it. If the user is among the top-K according to the ground-truth, we mark the ele-
ment as relevant; otherwise, we consider the element to be non-relevant.

We observe in Figure 30 that Rhea significantly outperforms WhiteList with regard to
recall for both datasets. That is, Rhea is able to include more relevant documents than

121 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

R
e
c
a
l
l

K (authorities)

Rhea  (T)

WhiteList  (T)

Rhea (SO)

WhiteList (SO)

Figure 32: F1-score comparison between our approach and a baseline for our two datasets (T, SO)
when querying for the tweets of the top-100, 250, 500, 750, and 1, 000 authorities of the stream.

WhiteList in its sample. In particular, more than 74% of the relevant documents is in-
cluded in the sample of Rhea for both datasets even forK = 1,000, whereas, WhiteList’s
recall drops as low as 0.55. Figure 31 illustrates the precision achieved by Rhea and
WhiteList. Rhea behaves much better than WhiteList for the StackOverflow dataset,
achieving almost perfect precision. For Twitter, we observe that both methods initially
behave similarly. This is because a few very active non-authorities that are mistakenly
taken as authorities may heavily impact precision for small values of K. However, as K
grows Rhea significantly outperforms WhiteList for Twitter as well. Finally, we illustrate
the results of both methods regarding F1-score, i.e., the harmonic mean of precision and
recall, in Figure 32. We observe that our approach achieves an F1-score that is above
0.8 for StackOverflow and close to 0.8 for Twitter regardless of K. In contrast, using a
static white-list, the F1-score is much lower and ranges between 0.54 and 0.7.

5.3.3 Evaluation of Ranked Retrieval Results

Recall, precision, and F1-scoremeasures are appropriate for sets of documents that have
no ranking information associated to them. The binary assessment we make to classify
an element as relevant or non-relevant does not consider the significance of the element
with regard to its respective user’s authoritativeness. However, we are keenly interested
in ranking quality. To this end, we employ two additional measures that take under con-
sideration the level of relevance of each element, namely Spearman’s ρ and Normalized
Discounted Cumulative Gain (NDCG).

P. Liakos 122



Distributed and Streaming Graph Processing Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

S
p
e
a
r
m
a
n
’
s
 

ρ 
c
o
r
r
e
l
a
t
i
o
n

K (authorities)

Rhea  (T)
WhiteList  (T)

Rhea (SO)
WhiteList (SO)

Figure 33: Comparison of Rhea and WhiteList on Spearman’s ρ for Twitter (T) and StackOverflow
(SO).

5.3.3.1 Evaluation using Spearman’s ρ

We first investigate the rank correlation between the ground-truth auth-values resulting
from all the elements of the stream and the auth-values derived from each of the two
methods examined in this chapter. Figure 33 depicts the Spearman’s rank correlation for
the top-K users of the ground-truth with their respective rankings for Rhea and WhiteList.
In particular, we assigned the rank of 1 to the user with the highest auth-value in the
ground-truth and increased the rank as we proceeded to users with lower auth-value, until
the Kth user. Then, we created pairs with the rankings of the users that occur when
using Rhea and WhiteList. We observe that there is an extremely strong correlation for
Rhea, i.e., our approach is able to adapt and derive the order of the top-K authorities
very accurately. In contrast, WhiteList exhibits moderate to weak correlation. These
results do exhibit in unambiguous terms the superiority of Rhea over contemporary white-
list methods, as in addition to higher precision and recall, our adaptive algorithm captures
much more accurately the level of importance of each user.

5.3.3.2 Evaluation using NDCG

Next, we use NDCG, a measure, suitable for situations of non-binary notions of rele-
vance [94]. NDCG is evaluated over some number K of top results. We consider reli
to be the graded relevance of the result at position i. Then, the discounted cumulative
gain (DCG) at K is defined as:

DCGK = rel1 +
K∑
i=2

reli
log2(i)

(5.3)

123 P. Liakos



Distributed and Streaming Graph Processing Techniques

From Eq. (5.3) we observe that DCG reduces the graded relevance value of each result
logarithmically proportional to its respective position in the ranking, to penalize highly rel-
evant documents that appear lower than their actual position [117]. Our goal is not only
to retrieve a ranked listed of users according to their authoritativeness, but also retrieve
their social activity. Therefore, for our purpose we propose an extension of Eq. (5.3) that
considers the recall for each user i:

DCGK = rel1 ∗ recall1 +
K∑
i=2

reli ∗ recalli
log2(i)

(5.4)

NDCG results after normalizing the cumulative gain at each position for a given K as
follows:

NDCGK =
DCGK

IDCGK

(5.5)

where IDCGK is the maximum possible (ideal) DCG for the given set of relevances:

IDCGK = rel1 +

|REL|∑
i=2

reli
log2(i)

(5.6)

and |REL| stands for the ordered list of relevant documents up to position K.

We consider that the elements of user i have a relevance reli = K + 1 − rank(i), where
rank(i) is the ranking of the users according to their ground-truth auth-value. Thus, the
elements of the user with the highest auth-value have a relevance of K, whereas those
of the user with the Kth highest ground-truth ranking have a relevance of 1.

Figure 34 illustrates the results of Rhea and WhiteList with regard to NDCG for different
values ofK. We observe that Rhea again significantly outperforms the WhiteList method
for both datasets. The latter performs poorly with regard to NDCG as its value is penalized
severely when assigning low rankings to highly relevant users. A vital observation here
is the improved performance of Rhea on NDCG compared to recall (Fig. ????). From
this we can induce that the few relevant documents that Rhea is unable to retrieve, are
usually not of high relevance. If that was the case, the NDCG results would be worse
than those measuring recall. This is particularly important; we are interested in sampling
the elements of the top-K users in the stream, and thus, we are generally more keen on
retrieving the elements of the most relevant users. Figure 34 shows that Rhea is very
effective in doing so.

5.3.4 Impact of Techniques and Parameters

In this section, we investigate the impact of Rhea’s techniques and parameters using the
largest of our two datasets, namely Twitter. First, we examine the performance of Rhea
when altering the probability p of examining a tweet of the stream S to extract mentions
and form the network of authorities. Second, we quantify the importance of the filtering
step of the Rhea algorithm (Lines 14-16 of Algorithm 8). Third, we vary the size of the
Top-K-Heap to examine its impact on F1-score. Our findings are in agreement with those
that come up using the StackOverflow dataset, but we omit the latter due to limited space.

P. Liakos 124



Distributed and Streaming Graph Processing Techniques

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  250  500  750  1000

N
D
C
G

K (authorities)

Rhea  (T)

WhiteList  (T)

Rhea (SO)

WhiteList (SO)

Figure 34: Comparison of Rhea and WhiteList on NDCG for Twitter (T) and StackOverflow (SO).

5.3.4.1 Varying the Value of Probability p

Rhea involves a random sampling subprocedure, that selects to use with some probability
p ∈ (0, 1] an element of the stream to form the network of authorities. This process sig-
nificantly reduces the computational overhead of Rhea as we use |S| ∗ p elements of the
stream, instead of |S|. We examine here the impact this probability has on the results of
Rhea with regard to NDCG. Figure 35 depicts the performance of our algorithm in settings
where p is equal to 0.01, 0.05, 0.1, 0.2, and 1, respectively. We observe that using a sam-
ple of 20% of the stream’s elements we are able to achieve performance that is almost
as good as that of using the entire stream. Moreover, we observe negligible differences
when reducing p to 0.1 or 0.05. In fact, the impact of probability p is noticeable only when
p is extremely low. Finally, even though using 1% of the elements leads to worse perfor-
mance, the NDCG results we get for Rhea still outperform WhiteList significantly. We
note that using p = 0.2 instead of p = 1 greatly reduces processing time. For example, we
drop from 3,844 to 2,533 seconds for K = 100. For p = 0.01 Rhea terminates after 2,189
seconds, slightly over WhiteList that needs 2,040 seconds.

5.3.4.2 Removing the Filtering Step

Rhea samples elements from the stream in a greedy fashion. Therefore, elements of
users that are only temporarily part of the top-K authorities manage to end up in our
sample. However, when the sampling process is over, we are aware of a final set of top-K
authorities, that we have experimentally shown to be a very accurate representation of the
actual list of authorities. Hence, we are able to filter-out the elements that in retrospect
should not have been collected, by iterating over the sampled elements. We note that
Ŝ ≪ S, so this operation is inexpensive. Figure 36 compares the performance of Rhea

125 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  250  500  750  1000

N
D
C
G

K (authorities)

p = 1.00
p = 0.20
p = 0.10
p = 0.05
p = 0.01

Figure 35: Impact of probability p on NDCG.

when the filtering step is on (Rhea) and off (Rhea-NF). We opt to report the precision value,
as recall, Spearman’s ρ, and NDCG results are all unaffected by this modification. We
observe that the difference in precision performance is indeed significant. In particular, the
difference is over 25 percentage points forK = 1,000, and is never less than 10 percentage
points for any K examined.

5.3.4.3 Impact of the Capacity of the Top-K-Heap

We complete our exploration on the parameters of Rhea by examining the impact of the
size of the structure we use for holding the stream’s current list of authorities. Rhea main-
tains a heap of authorities induced from the social activity occurring in the stream. This
heap has a maximum capacity that enables us to decide on whether to temporarily include
an element in our sample or permanently discard it. The size of this heap in our experi-
ments is set to K, i.e., the number of authorities whose activity we aim to include in our
sample.

We investigate here an approach that may potentially increase our recall. Our intuition
is that some authoritative users are “late bloomers”, i.e., their importance is not visible
until later than expected. Rhea is unable to recover the entire activity of such users as
it is unaware at the time of sampling of the final ranking of each user. However, we
may opt to include the activity of more users while sampling, and eventually hold on to the
elements produced by thosewhowe believe are the top-K authorities. Figure 37 illustrates
a comparison of the performance of Rhea when using a Top-K-Heap of capacity K and
2K, respectively. We use the F1-score measure as the capacity of this structure impacts
both recall and precision. We observe that the F1-score of Rhea when using a capacity
of 2K is slightly worse. More specifically, our recall is improved as we include the activity
of more users during sampling. However, using a larger capacity also leads to including

P. Liakos 126



Distributed and Streaming Graph Processing Techniques

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  250  500  750  1000

P
r
e
c
i
s
i
o
n

K (authorities)

Rhea

Rhea-NF

Figure 36: Impact of the filtering step of Rhea on precision.

more false positives in our sample. Therefore, we do indeed notice an improvement in
recall, but it is accompanied with significantly worse precision.

5.4 Related Work

Our work lies in the intersection of social activity stream sampling and authoritative social
network users identification. Here, we briefly discuss pertinent efforts in these two areas.

Social Activity Stream Sampling: Related research efforts have mainly focused on the
Twitter microblogging service due to its immense popularity and low latency access to
its stream of activity. Ghosh et al. [50] compare random samples of Twitter with samples
that are taken using a white-list of users. Their motivation is to avoid the large amount
of spam, non-topical and conversational tweets that random sampling preserves. The
first set of tweets was acquired through the Streaming API, while the second is created
using tweets from half million white-listed users. The white-list is derived using Twitter
Lists [49], i.e., user generated lists of prominent Twitter accounts. The random sample
features a substantially larger population of users, whereas the white-list sample’s tweets
are extremely more popular. Moreover, the quality of the tweets of the white-listed users
is found to be superior. In particular, about 90% of the random sample’s tweets are con-
versational, whereas 43% of the white-list sample’s tweets contain useful information on
a certain topic. Our work is similar to [50] as we also sample streaming social activity
content. However, our work does not rely on static white-lists and our focus is not on a
specific social network.

Palguna et al. [104] come up with a theoretical formulation for sampling Twitter data.
They investigate the number of tweets that is needed to come up with a representative
sample using random sampling with replacement. To decide on how representative a

127 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0  250  500  750  1000

F
1
-
s
c
o
r
e

K (authorities)

Rhea

Rhea-2K

Figure 37: Impact of the capacity of the Top-K-Heap on F1-score.

sample is, they examine how the frequency of elements in the streams correlates in the
sample and the original data. In addition, they examine the case of going through tweets
one-by-one and sampling each tweet independent of others with probability p. They show
that this behaves similarly to random sampling with replacement and is primarily influenced
by the size of the sample. We build on this very last result to speed-up the formation of
our network of authorities.

Research efforts have also focused on the quality of the samples offered directly from
Twitter. Morstatter et al. [100] perform a comparison of Twitter’s Streaming API sample
and Twitter’s Firehose to examine the impact of the sampling technique of the first. They
compare the top hashtags of the two datasets, as well as those of random samples taken
from the Firehose dataset, and find that the random samples find the top hashtags more
consistently than the Streaming API. Moreover, a comparison of topics in the two datasets
is performed, using LDA, which shows that decreased coverage in the Streaming API data
causes variance in the discovered topics.

Mining streams of social activity is challenging due to the implicit network structure within
the stream that ought to be considered along with the content. Aggarwal and Subbian [5]
focus on clustering and event detection using social streams. They show that using both
the content and the linkage information has numerous advantages. Node counts for indi-
vidual clusters are handled by employing Count-Min sketches [35]. We also apply Count-
Min sketches to summarize counting information of social streams. However, we do not
deal with clustering or event detection; rather, we focus on sampling content published by
authorities.

Authoritative Users in Online Social Networks: Zhang et al. [132] investigate different
network-based ranking algorithms to identify prominent users in a online social network.
They show that relative expertise can be automatically determined through structural in-

P. Liakos 128



Distributed and Streaming Graph Processing Techniques

formation of the network, as they find that network-based algorithms perform nearly as
good as crowd-sourcing. In addition, they report that simple measures behave at least
as good as complex algorithms. In particular, they come up with z-score, a measure that
considers both the question and answer patterns of a user in a Q & A community, that
best captures the relative expertise of users in a network. In this chapter, we rely on the
findings of [132] on the effectiveness of z-score and propose a generalized version of this
measure to identify the top-K authorities in any social activity stream. Agichtein et al.
[6] exploit various kinds of community feedback to export high quality content from social
media. Among else, they use quality ratings on the content. Pal and Counts [103] use
probabilistic clustering and a within-cluster ranking procedure to identify topical authorities
on Twitter. In an effort to exclude users with high visibility they use nodal features, such
as the in-degree. In [24], Bozzon et al. focus on finding topical experts in various popular
social networking sites. Their approach takes into account user activity as well as profile
information. We operate on a streaming setting and decide whether new content is useful
as it becomes available. Therefore, certain aspects of the aforementioned approaches,
such as exploiting user ratings, in-degrees, and profile information are not applicable.
Ghosh et al. [49] propose Cognos, which distinguishes authoritative Twitter users using
the frequency at which they are included in Twitter Lists. This approach assumes the
presence of user annotated information indicating importance, whereas in this chapter we
consider the task of sampling a stream without any prior knowledge. Moreover, we show
that static white-list approaches get outdated very quickly and are unable to identify newly
emerging authorities. Rybak et al. [111] also point out that authoritativeness is not static.
However, they do not deal with stream sampling. Instead, they focus on a co-authorship
network and create timestamped profiles of user importance.

5.5 Conclusion

In this chapter, we propose and implement Rhea, the first reported effort to realize adaptive
behavior for sampling authoritative content from social activity streams. We commence by
exposing the dynamic nature of this task which calls for approaches different from employ-
ing static white-lists of authoritative users. Then, we proceed by addressing the challenges
involved in our dynamic approach. Rhea employs Count-Min sketches to compactly main-
tain both positive and negative indicators of importance of all users appearing in a social
activity stream. We additionally propose a novel structure termed Top-K-Heap, to effi-
ciently query for the top-K authoritative users in the stream, using their relative ranking
resulting from their auth-value. The latter allows for identifying authoritative users indepen-
dently of the underlying social network. To reduce the processing overhead of extracting
indicators of importance from social activity streams, Rhea opts to include in this process
each element of the stream with probability p. Finally, Rhea features a post-processing
step that reevaluates content included in the sample, using the more refined classification
model that is available after reading the whole stream.

We compare Rhea with a static white-list approach using two datasets reaching up to
half a billion posts. We show that Rhea exhibits significantly improved performance with

129 P. Liakos



Distributed and Streaming Graph Processing Techniques

regard to both recall and precision. The superiority of Rhea is even more evident when
comparing on ranking accuracy, using the Spearman’s ρ andNDCGmeasures. Finally, we
investigate the effect of various parameters of Rhea and ascertain its improved efficiency
and effectiveness.

P. Liakos 130



Distributed and Streaming Graph Processing Techniques

6. ON THE IMPACT OF SOCIAL COST ON OPINION DYNAMICS

An ever-increasing amount of social activity information is available today, due to the ex-
ponential growth of online social networks. The structure of a network and the way the
interaction among its users impacts their behavior has received significant interest in the
sociology literature for many years. The availability of such rich data now enables us to
analyze user behavior and interpret sociological phenomena at a large scale [8].

Social influence is one of the ways in which social ties may affect the actions of an indi-
vidual, and understanding its role in the spread of information and opinion formation is a
new and interesting research direction that is extremely important in social network anal-
ysis. The existence of social influence has been reported in psychological studies [67]
as well as in the context of online social networks [22]. The latter usually allow users to
endorse articles, photos or other items, thus expressing shortly their opinion about them.
Each user has an internal opinion, but since she receives a feed informing her about her
friends’ endorsements, her expressed (or overall) opinion may well be influenced by her
friends’ opinions. This process may lead to a consensus.

The most notable example of studying consensus formation due to information transmis-
sion is the DeGroot model [38]. This model considers a network of individuals with an
opinion which they update using the average opinion of their friends, eventually reaching
a shared opinion. In [48] the notion of an individual’s internal opinion is added, which,
unlike her expressed opinion, is not altered due to social interaction. Such a setting is
illustrated in Figure 38 where an individual’s expressed opinion results from her friend’s
expressed opinions as well as her internal belief. This model captures more accurately the
fact that consensus is rarely reached in real word scenarios. The popularity of a specific
article, for instance, may vary largely between different communities in a social network.
This fact gives rise to the study of the lack of consensus, and the quantification of the
social cost that is associated with disagreement [16]; the authors here consider a game
where the utilities are the users’ social costs and perform repeated averaging to get the
Nash equilibrium. The resulting models of opinion dynamics in which consensus is not in
general reached allow for testing against real-world datasets, and enable the verification
of influence existence.

An approach towards verifying the existence of influence against real-world data based
on general models is that of [8]. However, the models proposed are probabilistic and the
correlation that is present on the data is not attributed to influence. Investigating game
theoretic models of networks against real data is crucial in understanding whether the
behavior they portray depicts an illustration that is close to the real picture.

Our contributions
We study the spreading of opinions in social networks, using a variation of the DeGroot
model [48] and the corresponding game detailed in [16]. We perform an extensive anal-
ysis on a large sample of a popular social network and highlight its properties to indicate
its appropriateness for the study of influence. The observations we make verify our intu-

131 P. Liakos



Distributed and Streaming Graph Processing Techniques

Formation of opinions in a social context

intrinsic belief
+

friends’ expressed
opinions

expressed
opinion

UoA Panagiotis Liakos On the Impact of Social Cost in Opinion Dynamics 10/38
Figure 38: Illustration of the model of [48]. Individuals’ hold internal opinions and form their ex-
pressed opinions by additionally considering their friends’ expressed opinions due to social inter-

action.

itions regarding the source and presence of social influence. Furthermore, we initialize
instances of games using real data and use repeated averaging to calculate their Nash
equilibrium. We experimentally show that our model, when properly initialized, is able to
mimic the original behavior of users and captures the social cost affecting their activity
more accurately than a classification model utilizing the same information.

6.1 Model

We study a setting in which a group of individuals (also called users) are members of a
social network, and investigate the impact of social influence on their opinions on some
issue. We are concerned with users that perform, within this network, a certain action for
the first time. Consider for example a social network in which a user can endorse articles
and get informed about her friends’ endorsements. We examine whether this information
modifies the users’ opinions on related subjects, e.g., their preferences in articles. We
represent the social network as a directed graph G. Each node of G corresponds to a
user, and there is an edge from node i to j iff user i gets informed about the actions of j.

We assume that if a user endorses an article after some friend of her has done so, the
endorsement results from influence. In order to identify adjustments in users’ opinions,
we have to observe the system for a certain period of time. We keep trace of the en-
dorsements of each user (from which we infer her opinion) and the endorsements of their
friends, and compare their opinions in the initial state of the system to their opinions in the
final state. The comparison illustrates whether some opinion has changed under social

P. Liakos 132



Distributed and Streaming Graph Processing Techniques

influence.

We model the users’ opinions using the notions of [16] and [48]. Each user i maintains a
persistent intrinsic belief si and an overall (or expressed) opinion zi: si remains constant,
while zi is updated iteratively, during the game, through averaging. In what follows, opinion
refers to the overall opinion. We assume that for each user i that endorsed some article
prior to all of her friends it is si = 1, otherwise si = 0. The same heuristic is used in [29].
zi is a real number, representing the probability that i endorses the article. At each time
step user i updates zi to minimize the social cost of disagreement with her friends, using
the formula:

zi =
si +

∑
j∈N(i) wijzj

1 +
∑

j∈N(i) wij

(6.1)

where N(i) denotes the set of nodes that i follows and wij expresses the strength of the
influence of j on i. According to our intuition, the influence of j on i regarding a specific
article is strong if i generally respects j’s opinion and/or j is authoritative on the article
under consideration. We therefore define wij = aijbj, where aij expresses how much j
influences i in general, and bj expresses the expertise of user j on the topic of the article.
The weights wij are used to distinguish between close and distant friends, and are real
numbers that may be greater than 1, as a user may value the opinion of a friend higher
than her intrinsic belief.

A user’s opinion in a social network may also change due to reasons other than social
influence. Our model does not capture those cases.

6.2 Empirical analysis

We studied the behavior of users in a social network and the impact of social influence on
their actions in its context by analyzing a sample of Digg1, a social news aggregator, to
which we will refer to as the digg dataset in the following [75].

Digg allows users to submit links to news stories and vote them up (digg). A user is also
able to follow other members and track the stories they recently voted for. The digg dataset
consists of the votes of the 3, 553most popular stories of June 2009, and the directed social
graph depicting the followers of each voter. A total of 3, 018, 196 votes from 139, 409 users
and 1, 731, 658 follower edges is available. The probability distribution of the users’ follows
as well as the distribution of votes per user are heavy-tailed, indicating that most of the
activity can be attributed to a small number of users. Such heavy-tailed activity patterns
have been tightly connected with many aspects of human behavior [13].

1Digg: http://digg.com

133 P. Liakos

http://digg.com


Distributed and Streaming Graph Processing Techniques

6.2.1 Information propagation and reproductive ratio

Information can travel through many paths in a social network and identifying word-of-
mouth hops that form social cascades is a rather infeasible task. To differentiate the users
of digg who endorsed a story due to social influence from the ones that acted freely, we
adopt the heuristic used in [29] and consider an endorsement to have propagated from
user i to user j if j endorsed a story after i did, and j followed i before endorsing the story.
If multiple users i satisfy these conditions, we assume that the propagation was caused
by all of them. Those users j that endorsed a story having no users i influencing them
are considered as seeders.

In epidemiological models, the reproductive ratio, denoted R0, is used to measure the
potential for disease spread in a population [9]. IfR0 > 1, an infected individual is expected
to infect more than one other individuals and the infection will be able to spread in a
population, otherwise the infection will die out. We observe that in more than 92% of the
stories of the digg dataset the total ‘infections’ were less than the number of initial seeders,
indicating that the reproductive ratio is well below 1.

We also examine the distribution of the total cascades caused by every individual for
every story of the dataset, which appears to be heavy-tailed. This verifies our intuition
about the presence of authoritative users, although the average transmission probability
is quite small. However, it is worth noting that influence varies depending on the story,
and even the users that frequently trigger cascades tend to be more effective in certain
stories than in others. Therefore a good estimation of bj can only occur when examining
it in the context of a single topic.

6.2.2 Frequent cascade patterns

To further study the complex collective behavior attributed to the interaction of social net-
work users, we mined the frequent cascade patterns occurring in the digg dataset. We
picked 50 stories at random and formed a graph by creating a node for every {voter_id,
story_id} pair and an edge from vir to vjr if voter i endorsed a story r before voter j
did. Figure 39 illustrates the 20 most frequent cascade patterns met, extracted using
Grami [40].

We observe that the spread of information for the stories of our dataset exhibits small
chain- and tree-like cascades, as was the case with most of the datasets examined in [78].
However, splits are much more infrequent than collisions in our dataset, as opposed to
the datasets of [78]. This is also an indication of a relatively small reproductive ratio R0 in
digg.

P. Liakos 134



Distributed and Streaming Graph Processing Techniques

Rank Pattern Rank Pattern Rank Pattern Rank Pattern

1 .... 6
..........

11

..........

16
..........

2
......

7 .......... 12
........

17
............

3 ...... 8 ............ 13
..........

18
............

4
........

9 .............. 14
..........

19

..............

5
........

10
......

15
............

20
..............

Figure 39: Top-20 cascades that occurred in 50 randomly selected stories of the digg dataset, or-
dered by frequency.

6.3 Experimental evaluation

Having verified our intuitions regarding the adoption of an opinion due to social influence,
we apply (6.1) on real-world data to examine its fitting performance with respect to our
findings. We conduct experiments on the cascade graphs of the digg dataset stories to
answer:

• How much more improved is the precision of (6.1) when distinguishing the crucial
aspects of social interaction related to the spread of influence?

• How does (6.1) perform against a linear regression model?

6.3.1 Simulation methodology

We perform repeated averaging in our model until it converges to the unique Nash equi-
librium. To initialize our model we apply the following set-up for each story we examine:

• We consider that every user of digg that endorsed a story before any of the members
she follows did so, has a strongly positive intrinsic opinion about it. However, we
cannot hypothesize on the intrinsic opinion of users that voted up a story after at least

135 P. Liakos



Distributed and Streaming Graph Processing Techniques

Algorithm 9: Repeated Averaging algorithm
1 initialization of si, aij, and bj for each i, j;
2 foreach i do zi = si;
3 while not converged do
4 foreach i do znewi =

si+
∑

∀j∈N(i) aij∗bj∗zj
1+

∑
∀j∈N(i) aij∗bj

;
5 zi = znewi

6 end
7 for threshold← 0 to 1 do
8 calculate recall and precision;
9 end
10 plot the precision-recall curve;

one of the users they follow did so, as their behavior can be attributed to numerous
causes. Hence, we consider for user i: si = 1, if i voted a story before any user she
follows, and 0 otherwise.

• Regarding the influential strength of j on i, wij, we consider two variants:
(i) A straight-forward approach where users are equally authoritative on all stories
of digg, i.e., bj = 1 for every j. Additionally, users are equally influenced by all the
members they follow and are not influenced at all by the rest of the users, i.e., aij = 1
if user i follows user j, and 0 otherwise.
(ii) An approach that follows our intuition that the influence of j on i increases with
the ratio of votes of j that i followed and builds on the findings reported during our
empirical analysis. We specify aij by how frequently j influences i, using information
about the total influence of j on i to compute the influence on a certain story:

aij =
# times i is influenced by j

# votes of j
(6.2)

Moreover, we quantify bj by how authoritative user j is for the article under consid-
eration:

bj =
# users influenced by j in this story

# followers of j
, (6.3)

thus, capturing the expertise of each user per story.

Algorithm 9 outlines our approach. We perform repeated averaging with both configura-
tions until we reach convergence, to calculate the unique Nash equilibrium of the corre-
sponding games. At the state of convergence, the expressed opinions of the users are
given values in [0, 1]. Deciding whether a value stands for endorsement or not calls for
the use of a threshold. We examine the trade-off between precision and recall by vary-
ing the threshold value to obtain the respective curves, where precision is the fraction of
users predicted as endorsers that actually voted up, while recall is the fraction of users
that voted up that are predicted to do so.

P. Liakos 136



Distributed and Streaming Graph Processing Techniques

Algorithm 10: compute
1 sumw ← 0;
2 sumwz ← 0;
3 foreach (z, w) ∈ messages do
4 sumw ← sumw + w;
5 sumwz ← sumwz + w · z
6 end
7 diff ← |value.left− value.right+sumwz

1+sumw
|;

8 value.left← value.right+sumwz
1+sumw

;
9 aggregate(DIFF, diff);
10 if getAggregatedValue(DIFF)<tolerance then
11 voteToHalt();
12 end
13 else
14 sendMessageToAllInEdges(value.left, edge.weight);
15 end

Distributed algorithm: Applying graph algorithms on real-world networks is often pro-
hibitive because of the massive volume that the latter may reach. Pregel [93] is a compu-
tational model suitable for large scale graph processing due to its vertex-centric approach.
Pregel encourages programmers to “think like a vertex”, and distributes the vertices of the
network, and along with them the execution of the algorithm, among the machines of a
computing cluster.

Algorithm 10 is a Pregel version of Algorithm 9 and details the actions that need to be
taken by each vertex in the network in every iteration (superstep) of the execution. We
consider that each vertex v ∈ V holds a pair of values (zv, sv), where zv is the opinion of v
and si the internal opinion of v. Moreover, the edges of the network are weighted.

The node initially calculates its updated value according to Eq. (6.1), as well as its differ-
ence from the previous value of the node (Lines 1-7). In the first superstep no messages
have been received and thus, zi is equal to si. However, is subsequent supersteps the
value is updated according to the averaged values of the nodes’ neighbors. After, the new
value is calculated the node provides the difference to an aggregator (Line 8), that allows
for checking whether a condition is satisfied in the whole graph. In our case the condition
is whether the total difference in the previous superstep is smaller than the specified tol-
erance, and thus, we can assume that we have reached convergence (Line 9). If so, the
nodes vote to halt and the algorithm terminates (Line 10). If not, the nodes send their new
values to all nodes that have an edge towards them, and the process continues until we
reach convergence (Lines 11-12).

137 P. Liakos



Distributed and Streaming Graph Processing Techniques

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

p
r
e
c
i
s
i
o
n

recall

Repeated-averaging (wij=aijbj
)

Repeated-averaging (wij=1)

Ridge Regression

Figure 40: Cumulative precision/recall curve for the two configurations of our model and a Ridge
regression classifier for all the stories of our dataset.

Ridge regression: We also use Ridge regression 2 to train a regression model that pre-
dicts user actions and compare against it. To this end, we use the following independent
variables: (i) si, (ii) the sum of (6.2) for every j friend of i, and (iii) the sum of (6.3) for
every j friend of i.

6.3.2 Experiments using real-world data

We performed extensive simulations using our methodology on different stories of the digg
dataset, and obtained precision-recall curves for the two configurations of our model. Our
distributed implementation with Spark’s GraphX [56] is publicly available.3 Furthermore,
we obtained the respective curves that occur through the use of the Ridge regression
model.

Figure 40 illustrates a cumulative precision/recall curve for all the stories of our dataset.
In particular, we have applied the two configurations of our model to each story of our
dataset and used the predicted values to come up with a precision/recall curve for all of

2We employ sklearn.linear_model.Ridge: https://tinyurl.com/yd7v5qky.
3https://bitbucket.org/network-analysis/social-cost

P. Liakos 138

https://tinyurl.com/yd7v5qky
https://bitbucket.org/network-analysis/social-cost


Distributed and Streaming Graph Processing Techniques

them. It is obvious that the second configuration of our model captures much more ac-
curately the true activity of digg in comparison with our simplistic setting. For instance,
for 90% recall our model achieves on average about 58.12 percentage points higher preci-
sion. This verifies our belief that the opinions of all users in digg can be approximated by
applying (6.1), given that the social influence imposed by users of the network is weighted
appropriately. We note that the different storiesmay vary in terms of popularity or number
of cascades. However, the second configuration consistently outperforms the first one
significantly, regardless of these properties.

Moreover, we see in Figure 40 that our model consistently outperforms the Ridge regres-
sionmodel, and the improvement remains relatively stable as the desired recall increases.
In particular, we observe that for low recall the Ridge regression model behaves similarly
with our model, as both predict exclusively users with positive intrinsic opinion will vote
a story. However, as we adjust the threshold to acquire higher recall, the trade-off with
precision is worse for the Ridge regression model. For instance, for 90% recall our model
achieves on average about 41.33% better precision, i.e., 20.77 percentage points higher
precision. This improvement is due to the fact that our model additionally captures the
opinion adjustments during the averaging process.

We note here that the deviation from the original activity of digg for all methods is not
surprising. Our hypothesis regarding the internal opinion of its users for each story is
convenient for conducting experiments but may well be mistaken for quite a lot of them.

6.4 Conclusion

In this work we specified the details which allow for a better formalization of the social
effects on a variation of the DeGroot model. To verify our intuitions on the causes of social
influence, we performed a comprehensive analysis on a real-life popular social network.
In addition to this, we initialized several instances of the dataset and applied repeated
averaging on them using a distributed graph processing algorithm, to calculate the state
where our model converges. As it is shown in [16], this state is the unique Nash equilibrium
of the game defined by the individual cost functions. We presented results comparing
this state with the original actions of the network’s members. Our findings show that a
properly initialized instance following our model, converges to a Nash equilibrium that
closely mimics the original social activity of a real-world dataset. Therefore, we verified
that users act according to the social cost described above.

139 P. Liakos



Distributed and Streaming Graph Processing Techniques

P. Liakos 140



Distributed and Streaming Graph Processing Techniques

7. CONCLUSION AND OPEN DIRECTIONS

In this thesis we study two research directions that allow for handling large-scale graphs,
i.e., distributed graph processing and streaming graph algorithms. Our focus is on im-
proving contemporary distributed systems, introducing novel techniques for important and
challenging graph processing problems, and employing scalable platforms to empirically
study real-world networks.

In Chapter 2 we discuss how we can extend Apache Giraph with novel memory-optimized
structures that are applicable to any distributed graph compressing system that follows
the Pregel paradigm. Our representations are able to execute algorithms over large-
scale graphs under very modest settings and greatly outperform earlier representations
when memory is an issue.

Chapters 3 and 4 focus on the problem of community detection and propose a vertex-
centric and a streaming technique, respectively. Both approaches consider the setting of
seed-set expansion where a number of small seed-sets of nodes is given as an input and
the challenge is to expand these sets into communities. Our results show that our tech-
niques offer impressive improvements over the state-of-the-art with regards to accuracy,
execution time and memory usage.

In Chapter 5 we deal with another challenge that arises when dealing with a graph stream.
In particular, we address the task of sampling the content posted by authoritative social
network users from a stream of social activity. To the best of our knowledge our approach
is the first to consider a dynamic setting and we are able to outperform previously proposed
white-list based methods with regards to all recall, precision and ranking accuracy.

Finally, in Chapter 6 we empirically analyze a popular social network and implement a
distributed graph processing algorithm to calculate the state where a well-studied opinion
formation model converges. Our findings show that when initializing our model properly,
it converges to a Nash equilibrium that closely mimics the original social activity of a real-
world dataset.

Large-scale graph processing poses many challenges and thus, there are numerous pos-
sible directions for future research. Naturally, improving existing results would be inter-
esting. In addition, distributed graph processing systems depend on much more than just
the in-memory representations of graphs. For example the messages that are exchanged
during the iterations of distributed algorithm execution also consume a significant amount
of memory. Therefore, limiting memory requirements of Pregel-like systems with regards
to aspects other than the structures depicting the graphs’ elements is also desirable. Re-
garding our community detection techniques, we believe that a drift from the currently
available ground-truth communities depicting metadata groups [63] to communities that
better portray the functional roles of a network’s nodes would be an interesting future
direction. Such communities will allow for a more accurate comparison of community de-
tection techniques. To this end, we can collect data from social network groups where
membership signifies affinity. Finally, with regard to our effort on opinion formation, hav-

141 P. Liakos



Distributed and Streaming Graph Processing Techniques

ing verified that opinion dynamics of a real life social network can be accurately captured
through network interaction models, we can proceed with estimating the price of anarchy
in such a network. Furthermore, we can examine ways to reduce the social cost of these
networks.

Hopefully, these directions will be explored in our future research.

P. Liakos 142



Distributed and Streaming Graph Processing Techniques

ABBREVIATIONS - ACRONYMS

BSP Bulk synchronous parallel

CoEuS Community detection via seed-set Expansion on graph Streams

JVM Java virtual machine

LALP Large adjacency list partitioning

LDLC Local Dispersion-aware Link Communities

MPI Message Passing Interface

NDCG Normalized discounted cumulative gain

SNAP Stanford Network Analysis Project

143 P. Liakos



Distributed and Streaming Graph Processing Techniques

P. Liakos 144



Distributed and Streaming Graph Processing Techniques

REFERENCES

[1] Apache Giraph. http://giraph.apache.org/.
[2] Stanford Network Analysis Project. https://snap.stanford.edu/.
[3] We knew the web was big…. http://googleblog.blogspot.ca/2008/07/we-knew-web-was-big.

html.
[4] Lada A Adamic and Bernardo A Huberman. Power-law distribution of the world wide web. science,

287(5461):2115–2115, 2000.
[5] Charu C. Aggarwal and Karthik Subbian. Event detection in social streams. In SDM 2012, pages 624–

635.
[6] Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and Gilad Mishne. Finding high-

quality content in social media. InWSDM 2008, pages 183–194.
[7] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. Link communities reveal multiscale complexity

in networks. Nature, 466(7307):761–764, 2010.
[8] Aris Anagnostopoulos, Ravi Kumar, and Mohammad Mahdian. Influence and correlation in social net-

works. In SIGKDD, pages 7–15, Las Vegas, Nevada, USA, 2008.
[9] Roy M Anderson and Robert McCredie May. Infectious diseases of humans. Oxford University Press,

1991.
[10] Alberto Apostolico and Guido Drovandi. Graph compression by BFS. Algorithms, 2(3):1031–1044,

2009.
[11] M. D. Atkinson, Jörg-Rüdiger Sack, Nicola Santoro, and Thomas Strothotte. Min-max heaps and

generalized priority queues. Commun. ACM, 29(10):996–1000, 1986.
[12] Lars Backstrom and Jon Kleinberg. Romantic partnerships and the dispersion of social ties: A network

analysis of relationship status on facebook. In Proc. of the 17th ACM Conf. on Computer Supported
Cooperative Work & Social Computing, pages 831–841, 2014.

[13] Albert-Laszlo Barabasi. The origin of bursts and heavy tails in human dynamics. Nature,
435(7039):207–211, 2005.

[14] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[15] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The architecture of complex weighted
networks. Proc. of the National Academy of Sciences of the United States of America, 101(11):3747–
3752, 2004.

[16] David Bindel, Jon M. Kleinberg, and Sigal Oren. How bad is forming your own opinion? In FOCS,
pages 57–66, 2011.

[17] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfold-
ing of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, 2008.

[18] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label propagation: a
multiresolution coordinate-free ordering for compressing social networks. In Proc. of the 20th Int. Conf.
on World Wide Web, Hyderabad, India, March 28 - April 1, pages 587–596, 2011.

[19] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Permuting web and social graphs. Internet
Mathematics, 6(3):257–283, 2009.

[20] Paolo Boldi and Sebastiano Vigna. The webgraph framework I: compression techniques. In Proc. of
the 13th Int. Conf. on World Wide Web, New York, NY, USA, May 17-20, pages 595–602, 2004.

[21] Paolo Boldi and Sebastiano Vigna. The webgraph framework II: codes for the world-wide web. In Proc.
of the 2004 Data Compression Conference, March 23-25, Snowbird, UT, USA, page 528, 2004.

[22] Robert M Bond, Christopher J Fariss, Jason J Jones, Adam DI Kramer, Cameron Marlow, Jaime E
Settle, and James H Fowler. A 61-million-person experiment in social influence and political mobilization.
Nature, 489(7415):295–298, 2012.

145 P. Liakos

http://giraph.apache.org/
https://snap.stanford.edu/
http://googleblog.blogspot.ca/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.ca/2008/07/we-knew-web-was-big.html


Distributed and Streaming Graph Processing Techniques

[23] Mohamed Bouguessa and Lotfi Ben Romdhane. Identifying authorities in online communities. ACM
Trans. Intell. Syst. Technol., 6(3):30:1–30:23, 2015.

[24] Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Matteo Silvestri, and Giuliano Vesci. Choosing
the right crowd: expert finding in social networks. In EDBT ’13, pages 637–648.

[25] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks, 30(1-7):107–117, 1998.

[26] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. k2-Trees for Compact Web Graph Repre-
sentation. In String Processing and Information Retrieval, volume 5721, pages 18–30. 2009.

[27] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie
Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web. Computer networks, 33(1):309–
320, 2000.

[28] Zhuhua Cai, Zekai J. Gao, Shangyu Luo, Luis Leopoldo Perez, Zografoula Vagena, and Christopher M.
Jermaine. A comparison of platforms for implementing and running very large scale machine learning
algorithms. In Proc. of the Int. Conf. on Management of Data, Snowbird, UT, USA, June 22-27, pages
1371–1382, 2014.

[29] Meeyoung Cha, Alan Mislove, and Krishna P Gummadi. A measurement-driven analysis of information
propagation in the flickr social network. InWWW, pages 721–730, 2009.

[30] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest paths algorithms: Theory
and experimental evaluation. Mathematical Programming, 73(2):129–174, 1996.

[31] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and
Prabhakar Raghavan. On compressing social networks. In Proc. of the 15th Int. Conf. on Knowledge
Discovery and Data Mining, Paris, France, June 28 - July 1, pages 219–228, 2009.

[32] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan. One
Trillion Edges: Graph Processing at Facebook-Scale. Proc. of the VLDB Endowment, 8(12):1804–1815,
2015.

[33] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan. One
trillion edges: Graph processing at facebook-scale. PVLDB, 8(12):1804–1815, 2015.

[34] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure in very large
networks. Physical review E, 70(6):066111, 2004.

[35] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch
and its applications. J. Algorithms, 55(1):58–75, 2005.

[36] Michele Coscia, Giulio Rossetti, Fosca Giannotti, and Dino Pedreschi. DEMON: a local-first discov-
ery method for overlapping communities. In Proc. of the 18th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 615–623, 2012.

[37] Ithiel de Sola Pool and Manfred Kochen. Contacts and influence. Social networks, 1(1):5–51, 1978.
[38] Morris H DeGroot. Reaching a consensus. Journal of the ASA, 69(345):118–121, 1974.
[39] Christopher DuBois. StackOverflow Data. https://www.ics.uci.edu/~duboisc/stackoverflow/,

jun 2009.
[40] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis. Grami: Frequent

subgraph and pattern mining in a single large graph. Proceedings of the VLDB Endowment, 2014.
[41] TS Evans and R Lambiotte. Line graphs, link partitions, and overlapping communities. Physical Review

E, 80:016105, 2009.
[42] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the inter-

net topology. In ACM SIGCOMM computer communication review, volume 29, pages 251–262. ACM,
1999.

[43] Scott L Feld. The focused organization of social ties. American journal of sociology, pages 1015–1035,
1981.

[44] Diane H Felmlee. No couple is an island: A social network perspective on dyadic stability. Social
Forces, 79(4):1259–1287, 2001.

[45] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.
[46] Santo Fortunato and Marc Barthélemy. Resolution limit in community detection. Proceedings of the

National Academy of Sciences, 104(1):36–41, 2007.

P. Liakos 146

https://www.ics.uci.edu/~duboisc/stackoverflow/


Distributed and Streaming Graph Processing Techniques

[47] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pages 35–41,
1977.

[48] Noah E Friedkin and Eugene C Johnsen. Social influence and opinions. Journal of Mathematical
Sociology, 15(3-4):193–206, 1990.

[49] Saptarshi Ghosh, Naveen Kumar Sharma, Fabrício Benevenuto, Niloy Ganguly, and P. Krishna Gum-
madi. Cognos: crowdsourcing search for topic experts in microblogs. In SIGIR ’12, pages 575–590.

[50] Saptarshi Ghosh, Muhammad Bilal Zafar, Parantapa Bhattacharya, Naveen Kumar Sharma, Niloy
Ganguly, and P. Krishna Gummadi. On sampling the wisdom of crowds: random vs. expert sampling
of the twitter stream. In CIKM’13, pages 1739–1744.

[51] Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks. Proc.
of the National Academy of Sciences, 99(12):7821–7826, 2002.

[52] David F. Gleich and Michael W. Mahoney. Mining large graphs. In Peter Bühlmann, Petros Drineas,
Michael Kane, and Mark van de Laan, editors, Handbook of Big Data, Handbooks of modern statistical
methods, pages 191–220. CRC Press, 2016.

[53] David F Gleich and C Seshadhri. Vertex neighborhoods, low conductance cuts, and good seeds for
local community methods. In Proc. of the 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pages 597–605, 2012.

[54] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. PowerGraph:
Distributed Graph-Parallel Computation on Natural Graphs. In Proc. of the 10th USENIX Symposium
on Operating Systems Design and Implementation, Hollywood, CA, USA, October 8-10, pages 17–30,
2012.

[55] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion
Stoica. Graphx: Graph processing in a distributed dataflow framework. In Proc. of the 11th USENIX
Conference on Operating Systems Design and Implementation, pages 599–613, Berkeley, CA, USA,
2014.

[56] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion
Stoica. Graphx: Graph processing in a distributed dataflow framework. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014.,
pages 599–613, 2014.

[57] Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao. Edge labeling schemes for graph
data. In Proceedings of the 29th International Conference on Scientific and Statistical Database Man-
agement, SSDBM ’17, pages 12:1–12:12, New York, NY, USA, 2017. ACM.

[58] Mark S Granovetter. The strength of weak ties. American journal of sociology, pages 1360–1380,
1973.

[59] MinyangHan and KhuzaimaDaudjee. GiraphUnchained: Barrierless Asynchronous Parallel Execution
in Pregel-like Graph Processing Systems. Proc. VLDB Endow., 8(9):950–961, May 2015.

[60] Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer Özsu, Xingfang Wang, and Tianqi Jin.
An Experimental Comparison of Pregel-like Graph Processing Systems. Proc. of the VLDB Endowment,
7(12):1047–1058, 2014.

[61] Kun He, Yiwei Sun, David Bindel, John E. Hopcroft, and Yixuan Li. Detecting overlapping communities
from local spectral subspaces. In IEEE International Conference on Data Mining, Atlantic City, NJ, USA,
pages 769–774, 2015.

[62] A. Hollocou, J. Maudet, T. Bonald, and M. Lelarge. A linear streaming algorithm for community detec-
tion in very large networks. ArXiv e-prints, March 2017.

[63] Darko Hric, Richard K Darst, and Santo Fortunato. Community detection in networks: Structural com-
munities versus ground truth. Physical Review E, 90(6):062805, 2014.

[64] Pawel Jurczyk and Eugene Agichtein. Discovering authorities in question answer communities by
using link analysis. In CIKM 2007, pages 919–922.

[65] Maja Kabiljo, Dionysis Logothetis, Sergey Edunov, and Avery Ching. A comparison of
state-of-the-art graph processing systems. https://code.facebook.com/posts/319004238457019/
a-comparison-of-state-of-the-art-graph-processing-systems/.

[66] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos. Gbase: an efficient
analysis platform for large graphs. VLDB J., 21(5):637–650, 2012.

147 P. Liakos

https://code.facebook.com/posts/319004238457019/a-comparison-of-state-of-the-art-graph-processing-systems/
https://code.facebook.com/posts/319004238457019/a-comparison-of-state-of-the-art-graph-processing-systems/


Distributed and Streaming Graph Processing Techniques

[67] Herbert C Kelman. Compliance, identification, and internalization: Three processes of attitude change.
Journal of conflict resolution, pages 51–60, 1958.

[68] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs. Bell system
technical journal, 49(2):291–307, 1970.

[69] Jon M. Kleinberg. Hubs, authorities, and communities. ACM Comput. Surv., 31(4es):5, 1999.
[70] Kyle Kloster and David F. Gleich. Heat kernel based community detection. In The 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pages 1386–
1395, 2014.

[71] Isabel M. Kloumann and Jon M. Kleinberg. Community membership identification from small seed
sets. In Proc. of the 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages
1366–1375.

[72] Isabel M. Kloumann and Jon M. Kleinberg. Community membership identification from small seed
sets. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 1366–1375, 2014.

[73] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation on just
a PC. In 10th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2012,
Hollywood, CA, USA, October 8-10, pages 31–46.

[74] Page Lawrence, Brin Sergey, Rajeev Motwani, and Terry Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford University, 1998.

[75] Kristina Lerman, Rumi Ghosh, and Tawan Surachawala. Social contagion: An empirical study of
information spread on digg and twitter follower graphs. arXiv preprint arXiv:1202.3162, 2012.

[76] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over Time: Densification Laws,
Shrinking Diameters and Possible Explanations. In Proc. of the 11th Int. Conf. on Knowledge Discovery
and Data Mining, Chicago, Illinois, USA, August 21-24, pages 177–187, 2005.

[77] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Statistical properties of
community structure in large social and information networks. In Proc. of the 17th Int. Conf. on World
Wide Web, WWW ’08, pages 695–704, 2008.

[78] Jure Leskovec, Ajit Singh, and Jon Kleinberg. Patterns of influence in a recommendation network. In
Advances in Knowledge Discovery and Data Mining, pages 380–389. 2006.

[79] Yixuan Li, Kun He, David Bindel, and John E Hopcroft. Uncovering the small community structure in
large networks: A local spectral approach. In Proc. of the 24th Int. Conf. on World Wide Web, pages
658–668, 2015.

[80] Panagiotis Liakos, Alexandros Ntoulas, and Alex Delis. Scalable link community detection: A local
dispersion-aware approach. In 2016 IEEE International Conference on Big Data, BigData 2016, Wash-
ington DC, USA, December 5-8, 2016, pages 716–725, 2016.

[81] Panagiotis Liakos, Alexandros Ntoulas, and Alex Delis. COEUS: community detection via seed-set
expansion on graph streams. In 2017 IEEE International Conference on Big Data, BigData 2017, Boston,
MA, USA, December 11-14, 2017, pages 676–685, 2017.

[82] Panagiotis Liakos, Alexandros Ntoulas, and Alex Delis. Rhea: Adaptively sampling authoritative con-
tent from social activity streams. In 2017 IEEE International Conference on Big Data, BigData 2017,
Boston, MA, USA, December 11-14, 2017, pages 686–695, 2017.

[83] Panagiotis Liakos and Katia Papakonstantinopoulou. On the impact of social cost in opinion dynamics.
InProceedings of the Tenth International Conference onWeb and Social Media, Cologne, Germany, May
17-20, 2016., pages 631–634, 2016.

[84] Panagiotis Liakos, Katia Papakonstantinopoulou, and Alex Delis. Memory-optimized distributed graph
processing through novel compression techniques. In Proc. of the 25th ACM Int. Conf, on Information
and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016, pages 2317–
2322.

[85] Panagiotis Liakos, Katia Papakonstantinopoulou, and Alex Delis. Realizing memory-optimized dis-
tributed graph processing. IEEE Trans. Knowl. Data Eng., 30(4):743–756, 2018.

[86] Panagiotis Liakos, Katia Papakonstantinopoulou, and Michael Sioutis. On the effect of locality in com-
pressing social networks. In Proc. of the 36th Eur. Conf. on IR Research, Amsterdam, The Netherlands,
April 13-16, pages 650–655, 2014.

P. Liakos 148



Distributed and Streaming Graph Processing Techniques

[87] Panagiotis Liakos, Katia Papakonstantinopoulou, and Michael Sioutis. Pushing the Envelope in Graph
Compression. In Proc. of the 23rd ACM Int. Conf. on Information and Knowledge Management, pages
1549–1558, Shanghai, China, 2014.

[88] Hang Liu and H. Howie Huang. Graphene: Fine-grained io management for graph computing. In 15th
USENIX Conference on File and Storage Technologies (FAST 17), pages 285–300, Santa Clara, CA,
2017. USENIX Association.

[89] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Heller-
stein. Distributed GraphLab: A Framework for Machine Learning in the Cloud. Proc. of the VLDB
Endowment, 5(8):716–727, 2012.

[90] Lu Lu, Xuanhua Shi, Yongluan Zhou, Xiong Zhang, Hai Jin, Cheng Pei, Ligang He, and Yuanzhen
Geng. Lifetime-based memory management for distributed data processing systems. PVLDB,
9(12):936–947, 2016.

[91] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. Large-scale distributed graph computing systems:
An experimental evaluation. Proc. VLDB Endow., 8(3):281–292, November 2014.

[92] Michael W. Mahoney, Lorenzo Orecchia, and Nisheeth K. Vishnoi. A local spectral method for graphs:
With applications to improving graph partitions and exploring data graphs locally. J. Mach. Learn. Res.,
13(1):2339–2365, August 2012.

[93] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser,
and Grzegorz Czajkowski. Pregel: A System for Large-Scale Graph Processing. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, Indianapolis, Indiana, USA, June 6-10, pages 135–146,
2010.

[94] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA, 2008.

[95] Peter V Marsden and Karen E Campbell. Measuring tie strength. Social forces, 63(2):482–501, 1984.
[96] Mary McGlohon, Leman Akoglu, and Christos Faloutsos. Weighted graphs and disconnected compo-

nents: patterns and a generator. In Proc. of the 14th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pages 524–532.

[97] Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20.
[98] Ahmed Metwally, Jia-Yu Pan, Minh Doan, and Christos Faloutsos. Scalable community discovery from

multi-faceted graphs. In IEEE Int. Conf. on Big Data, Santa Clara, CA, USA, pages 1053–1062, 2015.
[99] Joseph M Morris. Traversing binary trees simply and cheaply. Information Processing Letters,

9(5):197–200, 1979.
[100] Fred Morstatter, Jürgen Pfeffer, Huan Liu, and Kathleen M. Carley. Is the Sample Good Enough?

Comparing Data from Twitter’s Streaming API with Twitter’s Firehose. In ICWSM 2013.
[101] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys. Rev.

E, 69(2):026113, February 2004.
[102] Newman, M. E.J. Detecting community structure in networks. Eur. Phys. J. B, 38(2):321–330, 2004.
[103] Aditya Pal and Scott Counts. Identifying topical authorities in microblogs. In WSDM 2011, pages

45–54.
[104] Deepan Subrahmanian Palguna, Vikas Joshi, Venkatesan T. Chakaravarthy, Ravi Kothari, and

L. Venkata Subramaniam. Analysis of sampling algorithms for twitter. In IJCAI 2015, pages 967–973.
[105] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the overlapping community

structure of complex networks in nature and society. Nature, 435(7043):814–818, 2005.
[106] Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis. Sketch-based querying of

distributed sliding-window data streams. PVLDB, 5(10):992–1003, 2012.
[107] Pascal Pons and Matthieu Latapy. Computing communities in large networks using random walks.

In Computer and Information Sciences-ISCIS 2005, pages 284–293. 2005.
[108] Keith H. Randall, Raymie Stata, Janet L. Wiener, and Rajiv Wickremesinghe. The link database: Fast

access to graphs of the web. In Proc. of the 2002 Data Compression Conference, 2-4 April, Snowbird,
UT, USA, pages 122–131, 2002.

[109] Sidney Redner. How popular is your paper? an empirical study of the citation distribution. The
European Physical Journal B-Condensed Matter and Complex Systems, 4(2):131–134, 1998.

149 P. Liakos



Distributed and Streaming Graph Processing Techniques

[110] Martin Rosvall and Carl T Bergstrom. Multilevel compression of random walks on networks reveals
hierarchical organization in large integrated systems. PloS one, 6(4):e18209, 2011.

[111] Jan Rybak, Krisztian Balog, and Kjetil Nørvåg. Expertime: tracking expertise over time. In SIGIR ’14,
pages 1273–1274.

[112] Semih Salihoglu and Jennifer Widom. GPS: a graph processing system. In Proc. of the 25th Int.
Conf. on Scientific and Statistical Database Management, Baltimore, MD, USA, July 29 - 31, 2013,
pages 22:1–22:12, 2013.

[113] Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compression of inverted indexes for
fast query evaluation. In Proc. of the 25th Annual Int. ACM SIGIR Conf. on Research and Development
in Information Retrieval, August 11-15, 2002, Tampere, Finland, pages 222–229.

[114] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. Smaller and faster: Parallel processing of
compressed graphs with ligra+. In 2015 Data Compression Conference, DCC 2015, Snowbird, UT,
USA, April 7-9, pages 403–412, 2015.

[115] Johan Ugander and Lars Backstrom. Balanced Label Propagation for Partitioning Massive Graphs.
In Proc. of the 6th ACM Int. Conf. on Web Search and Data Mining, Rome, Italy, February 4-8, pages
507–516, 2013.

[116] Claudia Wagner, Vera Liao, Peter Pirolli, Les Nelson, and Markus Strohmaier. It’s not in their tweets:
Modeling topical expertise of twitter users. In PASSAT 2012, and SocialCom 2012, pages 91–100.

[117] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. A theoretical analysis of NDCG type
ranking measures. In COLT 2013, pages 25–54.

[118] Stanley Wasserman and Katherine Faust. Social network analysis: Methods and applications, vol-
ume 8. Cambridge University Press, 1994.

[119] Joyce Jiyoung Whang, David F Gleich, and Inderjit S Dhillon. Overlapping community detection using
seed set expansion. In Proc. of the 22nd ACM Int. Conf. on Information & Knowledge Management,
pages 2099–2108, 2013.

[120] Hugh E. Williams and Justin Zobel. Compressing integers for fast file access. Comput. J., 42(3):193–
201, 1999.

[121] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Effective Techniques for Message Reduction and
Load Balancing in Distributed Graph Computation. In Proc. of the 24th Int. Conf. on World Wide Web,
Florence, Italy, May 18-22, 2015, pages 1307–1317, 2015.

[122] Jaewon Yang and Jure Leskovec. Patterns of temporal variation in online media. In WSDM 2011,
pages 177–186.

[123] Jaewon Yang and Jure Leskovec. Community-affiliation graph model for overlapping network com-
munity detection. In Proc. of the 12th IEEE International Conference on Data Mining, pages 1170–1175,
2012.

[124] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-
truth. In Proc. of the 12th IEEE International Conference on Data Mining, pages 745–754, 2012.

[125] Jaewon Yang and Jure Leskovec. Overlapping community detection at scale: a nonnegative matrix
factorization approach. In Proc. of the 6th ACM int. Conf. on Web Search and Data Mining, pages
587–596, 2013.

[126] Jaewon Yang and Jure Leskovec. Overlapping communities explain core–periphery organization of
networks. Proc. of tihe IEEE, 102(12), 2014.

[127] Jaewon Yang and Jure Leskovec. Structure and overlaps of ground-truth communities in networks.
ACM Transactions on Intelligent Systems and Technology, 5(2):26, 2014.

[128] Se-Young Yun, Marc Lelarge, and Alexandre Proutière. Streaming, memory limited algorithms for
community detection. In Advances in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 3167–3175, 2014.

[129] Muhammad Bilal Zafar, Parantapa Bhattacharya, Niloy Ganguly, Saptarshi Ghosh, and Krishna P.
Gummadi. On the wisdom of experts vs. crowds: Discovering trustworthy topical news in microblogs.
In CSCW 2016, pages 437–450.

P. Liakos 150



Distributed and Streaming Graph Processing Techniques

[130] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark:
Cluster computing with working sets. In Proc. of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, pages 10–10, Berkeley, CA, USA, 2010.

[131] Anita Zakrzewska and David A. Bader. A dynamic algorithm for local community detection in graphs.
In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining, ASONAM 2015, Paris, France, August 25 - 28, 2015, pages 559–564, 2015.

[132] Jun Zhang, Mark S. Ackerman, and Lada A. Adamic. Expertise networks in online communities:
structure and algorithms. InWWW 2007, pages 221–230.

[133] Angen Zheng, Alexandros Labrinidis, Panos K. Chrysanthis, and Jack Lange. Argo: Architecture-
aware graph partitioning. In 2016 IEEE Int. Conf. on Big Data, Washington DC, USA, December 5-8,
2016, pages 284–293, 2016.

[134] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe, and Alexander S.
Szalay. Flashgraph: Processing billion-node graphs on an array of commodity ssds. In 13th USENIX
Conference on File and Storage Technologies (FAST 15), pages 45–58, Santa Clara, CA, 2015. USENIX
Association.

[135] Chang Zhou, Jun Gao, Binbin Sun, and Jeffrey Xu Yu. Mocgraph: Scalable distributed graph pro-
cessing using message online computing. Proc. VLDB Endow., 8(4):377–388, December 2014.

[136] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A computation-centric
distributed graph processing system. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, pages 301–316.

151 P. Liakos


	CONTENTS
	INTRODUCTION
	Contribution
	Outline
	Credits

	MEMORY-OPTIMIZED DISTRIBUTED GRAPH PROCESSING
	Related Work
	Background
	Pregel
	Apache Giraph
	Properties of Real-World Graphs
	Codings for Graph Compression

	Overview of our approach
	Representations based on consecutive out-edges
	BVEdges
	IntervalResidualEdges

	IndexedBitArrayEdges
	VariableByteArrayWeights
	RedBlackTreeEdges

	Experimental Evaluation
	Experimental Setting
	Space Efficiency Comparison
	Execution Time Comparison
	PageRank Computation
	Shortest Paths Computation
	Comparison using small-scale graphs
	Comparison using large-scale graphs
	Initialization time comparison
	Comparison when using weighted graphs
	Comparison when performing mutations


	Conclusion

	UNCOVERING LOCAL HIERARCHICAL LINK COMMUNITIES AT SCALE
	Background
	Egonet
	Tie Strength Measures
	Embeddedness
	Jaccard similarity coefficient
	Absolute and Recursive Dispersion

	Partition Density
	Networks in our Dataset

	Local Dispersion-aware Link Communities
	Egonet Coverage Ratio
	Effective Detection of Local Hierarchical Overlapping Communities
	Local hierarchical link communities
	Building on dispersion-based measures

	Our Proposed LDLC Algorithm
	Reducing the Search Space

	Experimental Evaluation
	Experimental Setting
	Qualitative Evaluation
	Evaluation via Ground-Truth
	Execution Time Comparison
	Impact of Dispersion on the Resulting Hierarchical Community Structure
	Impact of Sampling Technique

	Related Work
	Conclusion

	COMMUNITY DETECTION VIA SEED SET EXPANSION ON GRAPH STREAMS
	Community Detection via Seed-Set Expansion on Graph Streams
	Problem formulation
	Space complexity
	Our CoEuS Algorithm for Streaming Community Detection
	Reckoning in edge quality w.r.t. each community
	Size of the community

	Experimental Evaluation
	Experimental Setting
	Impact of the Edge Quality Variation
	Evaluation of Automatic Size Determination
	Comparison against state-of-the-art non-streaming local community detection algorithms
	F1-score comparison
	Execution time and space efficiency comparison


	Related Work
	Conclusion

	ADAPTIVELY SAMPLING AUTHORITATIVE CONTENT FROM SOCIAL ACTIVITY STREAMS
	Identifying Authorities in Streams
	Network of Authorities from Social Activity
	Ranking the Authorities
	Limitations of Static Lists of Authorities

	Rhea: Stream Sampling for Authoritative Content
	Maintaining User Information
	Frequent Items
	Reducing the Processing Overhead through Sampling

	Ranking Authorities
	Filtering-out Non-relevant Activity
	The Proposed Rhea Algorithm

	Experimental Evaluation
	Experimental Setting
	Recall, Precision, and F1-score Comparison
	Evaluation of Ranked Retrieval Results
	Evaluation using Spearman's 
	Evaluation using NDCG

	Impact of Techniques and Parameters
	Varying the Value of Probability p
	Removing the Filtering Step
	Impact of the Capacity of the Top-K-Heap


	Related Work
	Conclusion

	ON THE IMPACT OF SOCIAL COST ON OPINION DYNAMICS
	Model
	Empirical analysis
	Information propagation and reproductive ratio
	Frequent cascade patterns

	Experimental evaluation
	Simulation methodology
	Experiments using real-world data

	Conclusion

	CONCLUSION AND OPEN DIRECTIONS
	ABBREVIATIONS - ACRONYMS
	REFERENCES

