NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES
”ADVANCED INFORMATION SYSTEMS”

MSc THESIS

Experimental Evaluation of Big Geospatial Data Systems

Konstantinos E. Giannousis

SUPERVISORS: Manolis Koubarakis, Professor
Konstantina Bereta, PhD Candidate

ATHENS

SEPTEMBER 2018

EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAEMIKOINQNIQN

NMPOrPAMMA METANTYXIAKQN ZINMOYAQN

"MPOHIMENA NMAHPO®OPIAKA ZYZTHMATA”

AINAQMATIKH EPTAZIA

Meipapatiki ASI0AGYNON ZuoTNHATWY MEWXWPIKWYV
Aedopévwyv MeydAng KAipakag

KwvoTavTivog E. Navvouong

EMIBAENONTEZ: MavwAng Kouptrapdkng, Kadnyntng
KwvoTavtiva Mmrepéta, Ymoywn@ia AIdAKTwp

AOHNA

2EMTEMBPIOZ 2018

MSc THESIS

Experimental Evaluation of Big Geospatial Data Systems

Konstantinos E. Giannousis
Register Number: M1400

SUPERVISORS: Manolis Koubarakis, Professor
Konstantina Bereta, PhD Candidate

EXAMINATION COMMITTEE:

Manolis Koubarakis, Professor

Examination Date:

AINAQMATIKH EPTAZzIA

Meipapatikr AgloAdynon ZuoTnuaTwy Mewxwpikwyv Aedouévwy MeydAng KAipakag

KwvoTavTivog E. Navvouong
A.M.: M1400

EMIBAENONTEZ: MavwAng Kouptrapdkng, Kabnyntng
KwvoTavtiva Mirepéta, Ymoywneia AidakTwp

EZETAXITIKH ENITPOIH:
MavwAng Kouptrapdkng, Kabnyntig

Huepopnvia E¢étaong:

ABSTRACT

The volume of available spatial data that is generated and collected is significantly in-
creased. A number of applications based on Map-Reduce-like systems and cloud infras-
tructure emerged. These applications offer a variety of features, however they differ in
terms of spatial functions, partitioning and indexing. In this diploma thesis we present an
experimental study that compares the most modern and complete systems of distributed
geospatial query processing in terms of functionality and performance in runtime and scal-
ing. We conduct detailed functional and performance benchmarks that include corner
cases that stress the systems in comparison and reveal their advantages and weaknesses
in both functionality and performance.

SUBJECT AREA: Geospatial Distributed Systems

KEYWORDS: Geospatial Data, Big Data, Spatial Data, Distributed Systems

NEPIAHWH

O 6yKkog TWV BIABECINWY XWPIKWY OEDOUEVWY O OTTOIOG TTAPAYETAI KAl CUAAEYETAI £XEI
augnBei onuavTikd. Avadubnke €101 €vag aplBudg epapuoywy TTou Bacidovial o€ CUCTAPOTA
TUTTOoU Map-Reduce kai utrodopwyv cloud. AUTEG O EQAPUOYEG TTAPEXOUV UIA TTOIKIAIG
XOPAKTNPIOTIKWY, TTAapOAa auTd, SiapEpouv a€ OTI APOopPa TIG XWPIKEG HEBODOUG, TIC TEXVIKEG
KATOUEPIOUOU DEQOPEVWV KOl TO CUCTNUA EUPETNPIOU TTOU XPNCIUOTTOIOUV. ZTNnV TTapoucda
OITTAWMATIKA Epyacia TTAPOUCIACOUUE PIA TTEIPAUATIKI) JEAETN TTOU CUYKPIVEI TA TTIO OUY-
XPOVa Kal OAOKANPWHEVA CUCTANOTA KATAVEUNUEVNG ETTEEEPYATTAC YEWXWPIKWY ETTEPW-
TAOEWV WG TTPOG TNV AEITOUPYIKOTNTA KAI TV ATTOD0CN TOUG O€ XPOVO EKTEAEONG KaI KAIUO-
KWOoIUOTNTA. EKTEAEOTNKAV AETTTOPEPES OUYKPITIKEG OOKIUEG TOOO WG TTPOG TIG AEITOUPYIEG
OO0 KAl OTNV ATTOdOC0 TTEPIEXOVTAG OPIOKEG TTEPITITWOEIG TTOU KATATTOVOUV T GCUYKPIVOPEVA
OUCTHPATA KAl OTTOKOAUTITOUV T TTAEOVEKTANOTA KOl TIG AOUVAMIEG TOUG TOOO AEITOUPYIKA
000 KaI o€ ATTedOoOoTn.

OEMATIKH NMEPIOXH: Kataveunuéva ZuoTtripata Mewxwpikwyv Aedouévwv

AEZEIZ KAEIAIA: ewxwpikad Acdopéva, MeydAa Aedopéva, Xwpika Asdopéva, Kataveunuéva
2UoThHuaTa

To my family and in memory of my beloved father.

ACKNOWLEDGEMENTS

| would like to thank my professor M. Koubarakis for giving me the opportunity to evolve
in the field. | would like also to express a deep gratitude to PhD Candidate K. Bereta and
my colleague N. Karalis for their help to implement this MSc thesis.

CONTENTS

INTRODUCTION ... i i et et aa e as e aaansaseannannnnns 27
BACKGROUND i i it et et et e ta e e sasasasaennannnnnns 29
RELATED WORK. . ..o i i it e et n e asen s asasnnnnannnns 31
IMPLEMENTATION i it e e as e ansas s annannnnns 35
g R Y253 = 1 1T 35
410, STARK . 35
Partitioning 35
INEXING . . . oo 36
Query Languageot 36
4.1.2. GEOSPArK . . . oo 36
Partitioning 36
INdeXingo 37
Query Languageo oo 37
4.1.3. Magellan. 37
Partitioning 37
INEXING . . . oo 37
Query Language 37
4.1.4. Spatial-Spark 38
Partitioning 38
INdeXing e 38
Query Languageot 38
415, Exareme. 38
Partitioning 39
INdeXingo 39

QUENY Languaget 39

4.2. Performance benchmark.oiiii ittt e e e e e eeaaennn 42

4.21. Experimental set Up. e 42
4.2.2. Evaluationresults 42
4.2.2.1. Polygon Contains Point. 55
4.2.2.2. Polygon Contains Polygon 60
4.2.2.3. Polygon Disjoint Polygon. 64
4.2.2.4. Polygon Equals Polygon 64
4.2.2.5. Polygon Overlaps Polygon 65
4.2.2.6. Polygon Touches Polygon 67
4.2.2.7. Polygon Within Polygon 68
4.22.8. Line Crosses Line. 69
4.2.2.9. Line Crosses Polygon 70
4.2.210.Line Intersects Line. 71
4.2.211.Line Intersects Polygon. 72
4.2.2.12.Line Overlaps Polygon 75
4.2.2.13.Line Touches Polygon. 78
4.2.2.14.Line Within Polygon 79
4.2.215.Point Equals Point 82
4.2.2.16.PointIntersects Line 83
4.2.2.17.Point Intersects Polygon 85
4.2.2.18.Point Within Polygon. 89
4.3. Challengescociiiiiiii i ittt et e sa e anansasasnnnnrnnnns 92
5. CONCLUSIONS i ittt et et et e ea e sasansasasannnnnsas 93
ABBREVIATIONS - ACRONYMSo st er e e sanannans 95

REFERENCES i i it st a s s aa e enas 95

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

Figure 21:

LIST OF FIGURES

SpatialSpark vs Exareme Line Scalability ---------ocoooeeien 44
SpatialSpark Line Scalability -« -+« verrreiii 44
STARK vs Exareme Line scalability ------vvveeeeoeeai 45
STARK Line scalability -« -« «cervemremeta i 45
STARK vs Exareme Point scalability -« --vvvveeeeeeeaiiii 46
STARK Point SCalability ««« -« -« veeeemeemeeatii 46
Geospark vs Exareme Line Scalability -« -« «crevereemeaiiii 47
Geospark Line Scalability -« -« vevreree 47
SpatialSpark vs Exareme Polygon Scalability --------oovovveieinnn 48
SpatialSpark Polygon Scalability «- -« -« «veeeermereaii 48
STARK vs Exareme Polygon scalability -« -« -« cceoeeeeeenemian. 49
STARK Polygon Scalability -« -« «cereeemeememiiii 49
Geospark vs Exareme Polygon Scalability --------oooveeeeeeiinnn 50
Geospark Polygon Scalability -« -« -« «eeeeereeaeii 50
Magellan vs Exareme Polygon scalability --------ocvovveeeieinn 50
Magellan Polygon scalability -« -« -« e veeeemeemea 51
SpatialSpark vs Exareme Point Scalability ---------oooveei 51
SpatialSpark Point Scalability - -« -« coeeereeaei 52
Magellan vs Exareme Point Scalability « -« -« «cevereeereaian.. 52
Magellan Point Scalability -« -« eeereemeaea 53
Polygon Contains Point, Comparing Exareme to Spatial Spark ---------- 55

Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Figure 32:

Figure 33:
dexers --

Figure 34:
Figure 35:
Figure 36:

Figure 37:

cast Spatial Join W/ indexer

Figure 38:
Figure 39:

Figure 40:

cast Spatial Join W/ indexer

Figure 41:
Figure 42:

Figure 43:

Polygon Contains Point, Comparing Exareme to STARK
Polygon Contains Point, Comparing Exareme to GeoSpark ------+----.-.
Polygon Contains Point, Comparing Exareme to Magellan

Polygon Contains Point, Comparing STARK W/ and W/O indexers
Polygon Contains Point, Comparing Spatial Spark W/ and W/O indexers
Polygon Contains Point, Comparing GeoSpark W/ and W/O indexers
Polygon Contains Point, Comparing Magellan W/ and W/O indexers

Polygon Contains Polygon, Comparing Exareme to Spatial Spark
Polygon Contains Polygon, Comparing Exareme to STARK = ---+-«.c.o. ..
Polygon Contains Polygon, Comparing Exareme to GeoSpark -----------

Polygon Contains Polygon, Comparing STARK W/ and W/O indexers ---

Polygon Contains Polygon, Comparing Spatial Spark W/ and W/O in-

Polygon Contains Polygon, Comparing GeoSpark W/ and W/O indexers

Polygon Disjoint Polygon, Exareme W/ indexer

Polygon Equals Polygon, Exareme W/ indexer

Polygon Overlaps Polygon, Exareme W/ indexer and Spatial Spark Broad-

Polygon Overlaps Polygon, Spatial Spark W/ and W/O indexer

Polygon Touches Polygon, Exareme W/ indexer

Polygon Within Polygon, Exareme W/ indexer and Spatial Spark Broad-

Polygon Within Polygon, Spatial Spark W/ and W/O indexer

Line Crosses Line, Exareme W/ indexer

Line Crosses Polygon, Exareme W/ indexer

58

- 89

- 59

60

61

61

62

63

63

Figure 44:
Figure 45:

Figure 46:

Spark

Figure 47:
Figure 48:
Figure 49:

Figure 50:

Spark

Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:

Figure 65:

Line Intersects Line, Comparing systems W/ indexer -------cccovvnenenn. 71
Line Intersects Line, STARK W/ and W/O indexer -------cvvioveeinnnn. 72
Line Intersects Polygon, Comparing Exareme W/ indexer with Spatial
... 72
Line Intersects Polygon, Comparing Exareme W/ indexer with STARK -- 73
Line Intersects Polygon, Comparing Spatial Spark W/ and W/O indexer - 74
Line Intersects Polygon, Comparing STARK W/ and W/O indexer ------- 74
Line Overlaps Polygon, Comparing Exareme W/ indexer with Spatial
... 75
Line Overlaps Polygon, Comparing Exareme W/ indexer with GeoSpark 76
Line Overlaps Polygon, Comparing Spatial Spark W/ and W/O indexer -- 76
Line Overlaps Polygon, Comparing GeoSpark W/ and W/O indexer ----- 77
Line Touches Polygon, Exareme W/ indexer -« . oovvieeiiin.. 78
Line Within Polygon, Comparing Exareme W/ indexer with Spatial Spark 79
Line Within Polygon, Comparing Exareme W/ indexer with Magellan 80
Line Within Polygon, Comparing Magellan W/ and W/O indexer --------- 80
Line Within Polygon, Comparing Spatial Spark W/ and W/O indexer ----- 81
Point Equals Point, EXareme W/ iNEXEr -« -+« «terrvreemmieamieeannns. 82
Point Intersects Line, Systems W/ indexer ---«-«-covvvveviiiiiin 83
Point Intersects Line, STARK W/ and W/O indexer -------vvovvveinnnnn. 84
Point Intersects Line, Spatial Spark W/O indexer -« vovveveeonn. 84
Point Intersects Polygon, Systems W/ indexer with Spatial Spark -------- 85
Point Intersects Polygon, Systems W/ indexer with STARK ----+......... 86
Point Intersects Polygon, Systems W/ indexer with Magellan ----------.. 86

Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:

Figure 72:

Point Intersects Polygon, Spatial Spark W/ and W/O indexers ----------. 87
Point Intersects Polygon, STARK W/ and W/O indexers ------«-c-cvnene. 88
Point Intersects Polygon, Magellan W/ and W/O indexers ------«-covnvnen 88
Point Within Polygon, Exareme W/ indexer with Spatial Spark ----------- 89
Point Within Polygon, Exareme W/ indexer with Magellan ---------....... 90
Point Within Polygon, Spatial Spark W/ and W/O indexers -------«----.. 90
Point Within Polygon, Magellan W/ and W/O indexers ----«-«-covvnvennn. 91

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

Table 10:

Table 11:

Table 12:

Table 13:

Table 14:

Table 15:

Table 16:

Table 17:

Table 18:

Table 19:

Table 20:

LIST OF TABLES

Indices and partitions supported by each system -«----c v 33
FUNCHONAlity OVEIVIEW -« -« ve ettt 35
Topological relations, all Pair JOINS - -+« ««xrrerrremnmeaeae e, 40
Datasets used for MiCro BENCAMAIrK -« -« cvnernermemnme e, 41
Micro Benchmark supported operations per system (Polygons) --«-«------. 41
Comparing systems with indexers, no partitions -« -« coviviei 55
Comparing systems with indexers, 8 partitions - ------- oo 55
Comparing systems with indexers, 16 partitions -+« -covieienin 55
Comparing systems without indexers, no partitions --------ovoveeeieintn 57
Comparing systems without indexers, 8 partitions - -+ - covvieii 57
Comparing systems without indexers, 16 partitions -« -+ - vovveeontn 57
Comparing systems with indexers, no partitions - ----«-cocovieni 60
Comparing systems with indexers, 8 partitions -+« oo 60
Comparing systems with indexers, 16 partitions -+ --covieieii 60
Comparing systems without indexers, no partitions - ---« - covvvveein. 62
Comparing systems without indexers, 8 partitions --------ooveieiinn 62
Comparing systems without indexers, 16 partitions - -«-«-«-covveveeienennn. 62
Comparing Exareme results with iNAEXer ««-««««««evrveereeaiiieiiia.. 64
Comparing Exareme results with indexer -« -««««« oovvveeeiiii. 64

Comparing systems with indexers, no partitions -« -------covvieien 65

Table 21:

Table 22:

Table 23:

Table 24:

Table 25:

Table 26:

Table 27:

Table 28:

Table 29:

Table 30:

Table 31:

Table 32:

Table 33:

Table 34:

Table 35:

Table 36:

Table 37:

Table 38:

Table 39:

Table 40:

Table 41:

Table 42:

Table 43:

Comparing systems with indexers, 8 partitions -« -« oo 65
Comparing systems with indexers, 16 partitions -« vvvvieeen 65
Comparing Spatial Spark without indexers «------cvvvinnn, 66
Comparing Exareme with indexer -« -« vvveeeeiiiiiiianiiii 67
Comparing systems with indexers, no partitions ------ - coviii 68
Comparing systems with indexers, 8 partitions -+« ccvvveiii 68
Comparing systems with indexers, 16 partitions -+ -+ - -covoeieiii 68
Comparing Spatial Spark W/ and W/O indexer -« cvviveneniniint. 69
Comparing Exareme With iNdeXer -« -« ««coreeermremitaiiii ., 69
Comparing Exareme with indexer - -« -« vvveeeiiiiiiaii 70
Spatial Spark With INAEXENS «+ -+« v v rvreetniiteie e 71
STARK With INAEXEE -+« «« v e vt et ea e ettt e e et 71
Comparing STARK W/O INA@XEI -« -+« nvvvereeaiiiiiaaiiiiia 72
Comparing systems with indexers, no partitions -« ---- - oviin 73
Comparing systems with indexers, 8 partitions -« viiii 73
Comparing systems with indexers, 16 partitions - -« o covveiiin 73
Spatial Spark With INAEXEIS - -« ««xveerrreanitatt i 73
Spatial Spark WithOUt INAEXENS «««+ v« vrenreaniie i 74
STARK WithOUt INAEXEIS « «« -+« v v v e eeaeene et e et e 74
Comparing systems with indexers, no partitions -------- oo 75
Comparing systems with indexers, 8 partitions -+« ccvvveii 75
Comparing systems with indexers, 16 partitions -+ oo 75

Spat|a| Spark without indexXers -« -« i 76

Table 44:

Table 45:

Table 46:

Table 47:

Table 48:

Table 49:

Table 50:

Table 51:

Table 52:

Table 53:

Table 54:

Table 55:

Table 56:

Table 57:

Table 58:

Table 59:

Table 60:

Table 61:

Table 62:

Table 63:

Table 64:

Table 65:

Table 66:

GeoSPark WithOUt INAEXET « -+« « v vrneeneae et 76
Comparing Exareme With indeXer -« -« -« -vveeeeeiiiiiianiiii . 78
EXAremeE With INAEXEE «« - -+« « v e e rnneenne ettt iaeeas 79
Magellan With INAEXEr -+« «x v rrmene ettt 79
Spatial Spark With INAEXEr -+« -+« «+ v eemrentat i 79
Magellan WithOUt INAEXET -+« ««+«« v v re ettt ettt 80
Spatial Spark WithOUt INAEXEr ««««+« v v verreenieaitae e 80
EXAreme With INAEXEE «« « -+« v v e trnne e te e ettt e 82
Compare systems with indexer, No partitions -« -+ v, 83
Compare systems with indexer, 8 partitions - --------vvvvvii 83
Compare systems with indexer, 16 partitions - ---- -+ oo 83
STARK W/O INAEXEIS ««« v v e ettt e et ettt et e 84
Spatial SPark W/0 INAEXEIS - -+« « v rveermreanit ettt 84
Compare systems with indexer, No partitions -« -+« ccvovenenin, 85
Compare systems with indexer, 8 partitions - -------cvvvvvii 85
Compare systems with indexer, 16 partitions -+« vt 85
Compare systems W/O indexer, No partitions -+« ---vovovenenninn, 87
Compare systems W/O indexer, 8 partitions -+ cvovvieini 87
Compare systems W/O indexer, 16 partitions ------cccoveienennin. 87
Compare systems with indexer, No partitions -« -+ -+ v 89
Compare systems with indexer, 8 partitions -« -« ccvovennn 89
Compare systems with indexer, 16 partitions -« -+ oo 89

Mage"an W/O indexer’ No partitions 90

Table 67: Spatial Spark W/O indexer

PREFACE

In this diploma thesis we present an experimental study that compares the most modern
and complete systems of distributed geospatial query processing in terms of functionality
and performance in runtime and scaling. We conduct detailed benchmarks that include
corner cases to stress the systems in comparison and reveal their advantages and weak-
nesses in both functionality and performance.

Experimental Evaluation of Big Geospatial Data Systems

1. INTRODUCTION

Large amounts of spatial data is currently available from multiple sources, GPS-enabled
mobile phones, Sensor Observation Services, Automatic ldentification System (AIS) sen-
sors used in maritime and many more. This vast spatial data is collected and analyzed,
as for example, the exploitation of a large volume of historical AIS data to estimate the lo-
cation and connections of the major trade routes [12]. Meteorologists study and simulate
climate data through spatial analysis. News reporters use geo-tagged tweets for event
detection and analysis.

Domain experts (e.g., earth scientists, meteorologists, etc.) use extensively Geographic
Information Systems (GIS) as they offer a user interface for visualising spatial data and
performing spatial operations. Spatial data is often stored in geospatial databases. Decades
of research focused in developing techniques of efficiently storing and querying geospatial
data in relational databases. Most of these research results were adopted by RDBMSs
and currently there is a variety of open source and commercial RDBMSs with geospatial
support (e.g., PostGIS', Spatialite?, Oracle-Spatial®).

In the era of big data and with the contributions of efforts made by multiple domains, the
spatial data is first class citizen (e.g., Earth observation, AIS tracking etc). Developing
techniques for distributed processing of spatial data is a major problem, that has been
addressed by recent efforts that extend distributed frameworks (e.g., Spark*, Hadoop?®)
with spatial support. The need for supporting spatial SQL queries makes this challenge
even bigger.

This paper is organized as follows. In Chapter 2 we present the background knowledge
about the geospatial systems. Then, in Chapter 3 we describe the current state-of-the-
art in the area of distributed spatial data management systems which forms the ground
on which our work is built on. Next, in Chapter 4, in section 4.1 we present the state-of-
the-art distributed systems that offer spatial support (i.e., STARK®, GeoSpark’, Magellan®,
Spatial-Spark® and Exareme [3]) that take part to our evaluation, while in section 4.2 we
perform a detailed functional and performance evaluation. Last, in section 4.3, we refer to
the challenges that we run into during the benchmark. Finally, in Chapter 5 we summarise
the findings of our study.

"https://postgis.net/

2https://lwww.gaia-gis.it/fossil/libspatialite/index
3https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
“4https://spark.apache.org/

Shttp://hadoop.apache.org/

Shttps://github.com/dbis-ilm/stark

"http://datasystemslab.github.io/GeoSpark/

8https://github.com/harsha2010/magellan

%http://simin.me/projects/spatialspark/

27 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

K. Giannousis

28

Experimental Evaluation of Big Geospatial Data Systems

2. BACKGROUND

Spatial objects, such as points, lines and polygons, in a Geographic Information System
(GIS) are stored in a two-dimensional space and the queries asked of such a system are
different from regular SQL queries. Typical geospatial queries [6] include partial matching
queries, range queries, nearest-neighbor queries and where-am-| queries [11]. Thanks to
the work of the Open Geospatial Consortium (OGC)', standards for spatial functions have
been defined and are being adopted by many databases and, in our case, systems that
are based in Map-Reduce approach and cloud infrastructure.

Additionally, since the spatial databases, the spatial indexes were introduced. Non-spatial
RDBSs’ indexes were not sufficient for spatial data. Spatial indexes allow systems to store
the datain the file system in a spatial manner taking the spatial attributes into consideration
[4]. The goal is to allow queries to run faster by making use of the index. The indexes
implemented in systems vary and they include both flat indexes (grid and geohash) and
hierarchical indexes (R-tree, R+-tree, Quad tree, PMR Quad tree and K-d tree). Notice
that some systems implement local-only indexes by creating an index in each cluster node.

According to Gartner [2] “Big data is high-volume, high-velocity and/or high-variety in-
formation assets that demand cost-effective, innovative forms of information processing
that enable enhanced insight, decision making, and process automation®. This definition
states that big data needs a new management system other than traditional databases, a
system that is highly scalable, massively parallel and cost-effective. Hadoop has set the
foundations for Map-Reduce-like systems and others extending it. In the Hadoop Ecosys-
tem Table ? are included a great number of such systems. It is noticeable that not many
are mentioning spatial support.

In this paper we will not examine systems of the MapReduce architecture. Apache Spark
is using RDD architecture and Exareme is a paralleDB system.

Apache Spark’s architecture, that most systems in this paper support, is based on Resilient
Distributed Datasets (RDDs) and Direct Acyclic Graphs (DAGs). RDDs are collections of
data items that are split into partitions and can be stored in-memory on worker’s nodes
of the Spark cluster. They can support either Hadoop Datasets or parallelized collections
based on existing Scala collections. DAGs are sequences of computations performed on
data where each node is an RDD partition and edge is a transformation on top of data.

In a Parallel DB architecture a DBMS is extended in such way to provide a parallel DBMS
system with a SQL-like query language.

In order to efficiently analyze and manage spatial data, state-of-the-art geospatial dis-
tributed systems emerged. Some of them are built on-top of existing systems for non-
spatial data where user defined functions (UDFs) are used in order to handle spatial data
[4]. Another approach is the build-in, where they use an existing system and they extend
it by giving it spatial data awareness. There is of course a third approach, called from-

"http://www.opengeospatial.org/ogc
2https://hadoopecosystemtable.github.io

29 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

scratch where a new system is built. This is more efficient but also harder to maintain.

In the following lines we will examine systems that are extending RDDs into Spatial RDDs
[1], collections that can manage better spatial datasets, or create their own spatial objects
to support spatial data and operations [8]. Moreover, Exareme is extending spatial DBMS
into a parallel spatial DMBS [3].

K. Giannousis 30

Experimental Evaluation of Big Geospatial Data Systems

3. RELATED WORK

The first renowned systems for distributed spatial query processing were implemented as
extensions for Hadoop MapReduce such as SpatialHadoop', Hadoop-GIS?, and Hive on
Hadoop® with ESRI’s spatial extensions. Hadoop provides a very fault tolerant environ-
ment for parallel execution, but storing intermediate results to disk increases the execution
time for spatial operations. Hence, the in-memory execution model of Spark became very
popular as it reduces the execution time drastically, compared to MapReduce jobs [7].
Following to this trend, many Spark-based systems included geospatial support, most no-
table of which are the systems STARK, GeoSpark, Magellan and Spatial-Spark. In the
context of this work, we will only consider the Spark-based systems as they reportedly
achieve better performance [7, 8] than the Hadoop-based systems.

STARK [8] is built on top of Spark and provides a domain specific language (DSL) that
seamlessly integrates into any Spark program (written in Scala). It also includes an ex-
pressive set of spatio-temporal operators for filter, join with various predicates as well as
k nearest neighbor search. A density based clustering operator allows to find groups of
similar events.

GeoSpark [1] is an in-memory cluster computing framework for processing large-scale
spatial data. GeoSpark is used to load, process, and analyze large-scale spatial data in
Apache Spark. It provides a set of out-of-the-box Spatial Resilient Distributed Dataset
(SRDD) types (e.g., Point RDD and Polygon RDD) that provide in-house support for geo-
metrical and distance operations. SRDDs provide an Application Programming Interface
(API) for Apache Spark programmers to easily develop their spatial analysis programs.

Magellan is a distributed execution engine for geospatial analytics on big data. It uses
database techniques like efficient data layout, code generation and query optimization
in order to optimize geospatial queries. Developers can write either standard SQL or
data frame queries for spatial operations, while the execution engine efficiently takes care
of laying data out in memory during query processing. Magellan extends Spark SQL to
provide a relational abstraction for geospatial analytics.

Spatial-Spark [14] provides efficient spatial operations dedicated for big spatial data using
Apache Spark. It provides two different spatial join operators, namely broadcast spatial
join and partitioned spatial join. Broadcast spatial join is designed for joining one big
dataset with another small dataset efficiently. Partitioned spatial join is more general for
joining two big datasets. Finally, it provides spatial range queries with/whithout indexing.

Another notable system that supports distributed execution of spatial operations is the sys-
tem Simba [13]. Simba extends the Spark SQL engine across the system stack to support
rich spatial queries and analytics through both SQL and DataFrame query interfaces. Due
to the fact that indexing of more complex geometries than points (e.g., polygons) has not

'http://spatialhadoop.cs.umn.edu/
Zhttps://sites.google.com/site/hadoopgis/
3https://github.com/Esri/spatial-framework-for-hadoop

31 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

yet been implemented and due to its very limited spatial support* we decided not to in-
clude it in our functionality and performance benchmarking which is presented in Chapter
4.

Jackpine Benchmark [11] is a state-of-the-art benchmark for spatial SQL queries that can
support any database that can be accessed via JDBC. Since it is considered a robust,
state-of-the-art benchmark platform for spatial databases, our idea is to extend the usages
of its operations into distributed spatial systems to assess the performance of individual
spatial SQL functions.

Lastly, It is worth mentioning Geographica [5], a benchmark for geospatial data expressed
in RDF. This benchmark is used for the evaluation of the new generation of RDF stores
supporting the query languages GeoSPARQL and stSPARQL. Following the approach
of Jackpine, it defines a micro benchmark and a macro benchmark. The micro bench-
mark tests primitive spatial functions. The spatial component of a system is checked with
queries that use non-topological functions, spatial selections, spatial joins and spatial ag-
gregate functions. In the macro benchmark it is testing the performance of the selected
RDF stores in typical application scenarios like reverse geocoding, map search and brows-
ing, and a real-world use case from the Earth Observation domain.

Exareme, implements a JDBC driver, so the Jackpine platform can be used directly with
Exareme to run the supported spatial operations. For the rest of the evaluating systems,
that do not implement a JDBC driver, we created applications that to run Jackpine’s sup-
ported micro benchmark operations.

4As noted in [13], at Table 1, row ‘Geometric object' and at the corresponding notation ‘Simba is being
extended to support general geometric objects’, but until now it supports spatial operations only between
points, p. 3, section 2.4 Spatial Operations

K. Giannousis 32

Experimental Evaluation of Big Geospatial Data Systems

Table 1: Indices and partitions supported by each system

System Indices Partitions
Exareme R*Tree Grid
GeoSpark R-Tree (used in the experi- | Global Grid using Equalgrid
ments) or Quad-Tree (used in the experiments),
Hilbert, R-Tree, Voronoi or
Quad-Tree
Stark R-Tree Fixed Grid Partitioned (used in
the experiments) and cost based
BSP (Binary Space Partitioner)
For k-means an Extended
R-Tree (based on JTSplus
implementation for KNN
queries)
Magellan Z-Order Curve (finally | None
treated as a linear or

pointer based Quad-Tree)

Spatial-Spark

R-Tree

Fixed-Grid Partition (FGP), Sort-
Tile Partition (STP), Binary-Split
Partition (BSP)

33

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

K. Giannousis

34

Experimental Evaluation of Big Geospatial Data Systems

4. IMPLEMENTATION

In this chapter we describe a functionality and performance benchmark as implemented
for this diploma thesis. We describe the functionalities of the state-of-the-art distributed
systems that support spatial queries and we compare them. Table 2 briefly describes
the indexing and partitioning mechanisms supported in these systems, as well as the
respective programming languages that they support, which are further explained.

Table 2: Functionality overview

System Spatial Index Spatial Partitioning | Language
STARK R-Tree Grid DSL
Geospark R-Tree, Quad-Tree | Grid Java API
Magellan Z-order SQL
Spatial-Spark | R-Tree FGP, BSP, STP Scala
Exareme R-Tree Grid SQL

4.1. Systems

41.1. STARK

The STARK framework has been designed for scalable spatio-temporal analytics on Spark,
extending it with dedicated data types and operators for spatio-temporal data. In contrast
to other similar existing solutions, STARK is the only framework that supports both spatial
and spatio-temporal data. STARK is tightly integrated into the Apache Spark API so that
users can directly invoke the spatio-temporal operators and their RDDs. This is achieved
by creating new data type and operator classes that make use of already existing Spark
operations, but also extend internal Spark classes.

Partitioning Apache Spark’s partitioners don’t exploit spatial (or spatio-temporal) char-
acteristics. Spatial-temporal partitioning means that partitions are not created by taking
into consideration the location in space and/or time. Also, if the partitions sizes are not
balanced then a single node can do most of the work and the others stay idle. STARK
considers both the spatial component for creating and balancing partitions. Two spatial
partitioners are implementing Spark’s Partitioner interface so that they can be used to
spatially partition an RDD with the RDD’s partitionBy method.

The Grid Partitioner is a fixed grid partitioner where it divides data space into a number
of intervals per dimension resulting in a grid of rectangular cells (partitions) with equal
dimensions. Because all cells have equal size, some of them may contain more data
items than others. To overcome this problem, the Cost-Based Binary Space Patrtitioner,
based on [9] divides the space into two partitions with equal cost (number of contained
items). When the items of one partition are exceeding a threshold, it is recursively divided

35 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

into two partitions of equal cost. This way, large regions with only a few items will belong
to the same partition, while dense regions are split into multiple partitions.

Indexing STARK uses an R-Tree (STR-Tree) implementation for indexing the contents
of a partition. STARK has three indexing modes:

* No Indexing. The partitions are not indexed and all items within a partition have to
be evaluated with the respective predicate function.

* Live Indexing. While processing a partition for evaluating a predicate, the contents
of that partition are indexed on-the-fly while the query is evaluated.

* Persistent Indexing. STARK allows the materialization of the R-Tree index to disk/HDFS
using Spark’s method to save binary objects. That way, a persisted index can be
used eliminating the cost of indexing data on-the-fly in the execution time of a query.

Query Language STARK provides an integrated DSL (domain specific language) for
spatio-temporal query processing that seamlessly integrates into any (Scala) Spark pro-
gram. Spatial Joins and filters can be called directly as transformations on standard
RDDs. Additionally, it allows defining custom distance functions and predicates for its
operators. More specifically, it supports the following operators: intersect, contains
and containedBy. It does not support SQL.

4.1.2. GeoSpark

GeoSpark is a Java implementation and it consists of three layers: (i) the Apache Spark
layer that provides the basic Apache Spark functionality, (ii) the Spatial Resilient Dis-
tributed Dataset (SRDD) layer that offers an extension to Apache Spark’s RDD, and (iii) the
Spatial Query Processing layer that is based on the SRDD and supports spatial queries
(range and join) for large-scale spatial datasets.

The SRDD layer supports five different RDD types such as PointRDD, LineStringRDD,
CircleRDD, RectangleRDD and PolygonRDD to handle geometrical objects and it also
supports spatial operations on these RDD types.

Partitioning GeoSpark partitions all loaded Spatial RDDs by creating one global grid file
for data partitioning. The Spatial RDDs are using the Apache Spark layer by extending
Spark’s partitioner. Global grids are low cost in either file-size or data partitioning but
constructing a global grid file demands multiple coordinate sorting on the same datasets.
It supports several partitioning techniques such as Equalgrid (used in the experiments),
Hilbert, R-Tree, Voronoi and Quad-Tree.

K. Giannousis 36

Experimental Evaluation of Big Geospatial Data Systems

Indexing Spatial indexes like R-Tree (STR-Tree that is used in the experiments) or
Quad-Tree are provided in the Spatial Query Processing layer. The Sort-Tile-Recursive
(STR) algorithm is a simple and efficient bulk-loading method for spatial or multidimen-
sional data management using R-tree [10]. Finally, GeoSpark’s index can be persisted
either in memory or in disk for later from the same program.

Query Language As mentioned above, GeoSpark can be used via its Java API. Users
have to create SRDD objects and pass them into their JavaRDD base. For each oper-
ation, an object of the supported operations has to be created and this will return a List,
a JavaPairRDD or a JavaRDD object. The supported spatial operations are Spatial Join
Query, Spatial KNN Query and Spatial Range Query. The following operators are sup-
ported as spatial join conditions: Overlap, Inside, and Disjoint. Construct operators
such as MinimumBoundingRectangle and group operators such as Union are also sup-
ported. SQL is not supported.

4.1.3. Magellan

Magellan is built on top of Apache Spark to create a distributed engine for geospatial
analytics on big data and it extends Spark SQL to support geospatial queries. Spatial
information can be given as input in the following formats: GeoJSON, OSM-XML and
WKT. The following geomtry types are supported: Point, LineString, Polygon, MultiPoint,
MultiPolygon. Magellan also supports the following topological functions that can be used
in SQL queries : Intersects, Contains and Within.

Partitioning Magellan does not perform spatial partitioning. Instead, it can use Spark’s
partitioner in order to provide an RDD partitioning based on the data provided.

Indexing As spatial index it uses a Z-Order Curve, which is finally treated as a linear
or pointer based Quad-Tree. Given a column of shapes, the values are indexed using a
geohash function. This produces a new column which is a list of Z-Order Curves of a spe-
cific precision that cover the respective shape. While loading a spatial file (in GeoJSON,
Shapefile or SM-XML format), spatial data gets automatically indexed.

Query Language Magellan extends Spark SQL with spatial support. In that way it in-
herently supports relational spatial joins. However, these joins are not handled as spatial
joins by default, unless a spatial join rule is injected. Otherwise, the join will be evaluated
as a Cartesian Join followed by a predicate. '

'As mentioned in https://github.com/harsha2010/magellan paragraph Spatial Joins

37 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

4.1.4. Spatial-Spark

Spatial Spark was one of the early systems that extended Spark with spatial support. It
provides a large-scale spatial join query processing on two leading in memory Big Data
systems, namely Apache Spark and Cloudera Impala [14]. To achieve this, they focus
on data processing on parallel hardware like multi-core CPUs and GPUs. Spatial-Spark
implements two different kinds of spatial joins: Broadcast Spatial Join and Partitioned
Spatial Join. With broadcast join the object in the right relation is read into memory and
distributed to all workers. If the relation is too big to fit in memory then the Partitioning Join
can be used instead.

Partitioning Spatial-Spark with Spatial Partitioning Join uses Fixed-Grid Partition (FGP),
Binary-Split Partition (BSP) and Sort-Tile Partition (STP). As mentioned above, when a
dataset is too big to fit into the main memory then a partitioner is used to distribute the
data in different nodes. BSP and STP partitioners are using R-Tree to distribute and broad-
cast data while FGP is using the fixed-grid approach. In the Broadcast Spatial Join, when
data does not fit in memory, the default Spark partitioner is employed in order to distribute
the data, without the ability to provide spatial partitioning.

Indexing Spatial-Spark uses an R-Tree index in Broadcast Spatial Join for spatial op-
erations. Indexing is also used during spatial range queries but not in Partitioned Spatial
Join queries.

Query Language Spatial Spark can be used via the command line and run single op-
erations or as a library in Scala programs. It currently supports the following operators:
intersect, contains, within, within distance, overlaps and nearest distance. Spatial-Spark
does not support SQL queries.

4.1.5. Exareme

Exareme [3] is a system for elastic large-scale data processing on the cloud that follows a
more general paradigm. It operates as a paralleled RDBMS that uses a master-worker ar-
chitecture and each parallel node is running an instance of Exareme. The core component
of Exareme is a data flow system named MadlIS. MadIS is based on an APSW wrapper of
SQLite? to process queries over data that are stored (or can be virtually seen) as tables.
For the spatial extension of Exareme, we enabled the spatial extension of SQLite, named
Spatialite®.

From a user’s point of view, the system is used as a traditional database system: cre-
ate/drop tables or indexes, import external data, issue queries, while its language is based

http://www.sqlite.org/
3https://www.gaia-gis.it/fossil/libspatialite/index

K. Giannousis 38

Experimental Evaluation of Big Geospatial Data Systems

on SQL to express both intra-worker and inter-worker dataflows. Exareme uses UDFs
and an inverted syntax to easily express local pipelines and complex computations. Inter-
worker dataflows are described with simple parallelism primitives.

Partitioning Data are inserted in form of database table inputs. A table is defined as a
set of partitions and a partition is defined as a set of records having a particular property.
Partitions are created during the data loading into the system. For non-spatial data, the
declaration of the table creation includes the number of partitions it will be split into with
respect to a specific column. However, when joining two tables that are partitioned into
different number of partition on the same property, Exareme performs re-partitioning: One
of two tables will be re-partitioned on-the-fly so that a direct join can be performed or the
join is implemented using Cartesian product.

For spatial data, geometries are partitioned using a grid. Partitioning geometries is a
more challenging task than partitioning numeric values, as geometries are typically multi-
dimensional values. The overhead of re-partitioning is bigger when geometries are in-
volved as geometric computations care typically more costly. Partitions that overlap with
a cell of a grid are contained in the same partition that corresponds to this cell. Every par-
tition (e.g., grid cell) is assigned to a different worker to facilitate the parallel execution of
a spatial query. Each worker fetches the partitions needed for the execution and caches
them to its local disk for subsequent usage.

Indexing Exareme is using R*Tree for spatial indexing which is provided by SpatiaL.ite.
As we explained above, every cell of the grid that the spatial data are partitioned corre-
sponds to a different partition. For every partition, an R-Tree index is constructed. When
a spatial join needs to be evaluated, every worker is assigned to process locally a different
cell of the grid. The local R-tree index that is constructed for the respective raster cell may
be used if the optimizer decides so.

Query Language The system offers a declarative language which is based on SQL with
user-defined functions (UDFs) extended with parallelism primitives and an inverted syntax
to easily express data pipelines. Exareme adopts the relational data model and extends
it with UDFs that can be implemented by the user as row, aggregate, or virtual table op-
erators and can be used embedded in SQL queries. The query language supported by
Exareme is ExaQL, an extension of SQL-92 with user-defined functions (UDFs). Queries
can also be issued to Exareme using a lower-level language, named ExaDFL. ExaDFL
is a dataflow language that describes DAGs and it's based on SQL extended with UDFs
and data parallelism primitives. The spatial component of Exareme inherits the spatial
functionalities of Spatialite.

The goal of the micro benchmark is to test the basic topological relationships and spatial
analysis functions. A topological relationship describes how two spatial objects relate to
each other in terms of topological constraints. The geometric objects could be point, line
or polygon.

39 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Table 3: Topological relations, all pair joins

Operation | Description Query

Equals Polygon equals polygon Find the polygons that are spatially equal to other
polygons in arealm_merge table

Equals Point equals point Find the points that are spatially equal to other
points in pointlm_merge table

Disjoint Polygon disjoint polygon Find the polygons that are spatially disjoint from
other polygons in arealm_merge table

Intersects | Line intersects polygon Find the lines in edges_merge table that intersect
polygons in arealm_merge table

Intersects | Point intersects polygon Find the points in pointlm_merge table that inter-
sect polygons in arealm_merge table

Intersects | Point intersects line Find the points in pointlm_merge table that inter-
sect lines in edges_merge table

Intersects | Line intersects line Find the lines that intersect lines in edges_merge
table

Touches | Polygon touches polygon Find the polygons that touch polygons in
arealm_merge table

Touches | Line touches polygon Find the lines in edges_merge table that touch
polygons in arealm_merge table

Crosses Line crosses line Find first 5 lines that crosses other lines in
edges_merge table

Crosses Line crosses polygon Find the lines in edges_merge table that cross
polygons in arealm_merge table

Overlaps | Polygon overlaps polygon | Find the polygons that overlap other polygons in
arealm_merge table

Overlaps | Line overlaps polygon Find the lines in edges_merge that overlap poly-
gons in arealm_merge table

Within Polygon within polygon Find the polygons that are within other polygons
in arealm_merge table

Within Line within polygon Find the lines in edges_merge table that are inside
the polygons in arealm_merge table

Within Point within polygon Find the points in pointlm_merge table that are
inside the polygons in arealm_merge table

Contains | Polygon contains polygon | Find the polygons that contain other polygons in
arealm_merge table

Contains | Polygon contains point Find the polygons in arealm_merge that contain

points in pointlm_merge table

Spatial analysis functions are analytic operations to determine the spatial properties of

interest.

The queries included in the micro benchmark should provide complete, yet minimal, cov-

K. Giannousis

40

Experimental Evaluation of Big Geospatial Data Systems

Table 4: Datasets used for micro Benchmark

Dataset name | Geometry | Cardinality | Data file size (Bytes)
edges_merge | line 5895060 2,034,869,136
pointim_merge | point 13441 821,049
arealm_merge | polygon 5963 3,756,243

Table 5: Micro Benchmark supported operations per system (Polygons)

Exareme | GeoSpark | Stark | Magellan | Spatial-Spark
Polygon Contains Point Y Y Y Y Y
Polygon Contains Polygon Y Y Y Y
Polygon Disjoint Polygon Y
Polygon Equals Polygon Y
Polygon Overlaps Polygon Y Y
Polygon Touches Polygon Y
Polygon Within Polygon Y Y
Line Crosses Polygon Y
Line Crosses Line Y
Line Intersects Polygon Y Y Y
Line Intersects Line Y Y Y
Line Overlaps Polygon Y Y Y
Line Touches Polygon Y
Line Within Polygon Y Y
Point Equals Point Y
Point Intersects Line Y Y Y
Point Intersects Polygon Y Y Y Y
Point Within Polygon Y Y Y

erage of topological relations.

Following Jackpine’s approach, we are using the Dimensionally Extended Nine-Intersection
Model (DE-9IM) which proposes the relationships: Equals, Disjoint, Intersects, Touches,
Crosses, Within, Contains and Overlaps. The DE-9IM has been adopted by the Open
Geospatial Consortium.

For our evaluation we are using a subset of Jackpine’s micro Benchmark topological rela-
tionships among polygon, line and points, those concerning topological relations and pair
joins as shown in table 3. Table 4 shows the data models that are used for our evaluation.

The supported operations per system are shown in table 5.

41 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

4.2. Performance benchmark

4.21. Experimental set up

For our experiments we used the Okeanos Cloud Infrastructure*. The experiments were
executed using a cluster of 3 VMs, consisted by 8 Cores CPU, 8 GB RAM and 60 GB Stor-
age capacity each. We installed Ubuntu 16.04.4 LTS to VMs and configured the cluster
to provide HDFS for storage (Hadoop 2.7.3), and Apache Spark 2.2.0.

The same cluster was used also for the evaluation of Exareme but without the HDFS and
Apache Spark. For the spatial support we installed SpatiaLite 4.3.0a, based on SQLite
3.11.0.

Apache Spark’s mechanisms are responsible for the distribution of the resources and parti-
tioning of data. We set the amount of memory for the driver process (spark.driver .memory)
to 10 GB and the Default timeout for all network interactions (spark.network.timeout) to
1000 seconds. Finally, we set the limit of total size of serialised results of all partitions for
each Spark action (spark.driver.maxResultSize) to 5 GB. This value was set in order to
protect the driver from out-of-memory errors.

In Exareme, each worker is occupying a VM and consumes its resources to process the
operations. The configuration and the installation was ready out-of-the-box.

4.2.2. Evaluation results

The results of the benchmark queries are described in this section. In each benchmark
we run experiments 4 times, considering the first as the warmup execution and measuring
the average execution time for the last 3 runs. Each benchmark is run for all systems
multiple times but with different configurations. We used three partition configurations
(No partitions, 8 or 16) and three Core configurations (8, 16 or 24 Cores) per run. The
scenarios are comprised of 18 pairwise spatial join queries among polygon, line and point
objects and the results are shown categorised by these configurations.

For the experiments we used the following indexing and partitioning techniques. For
STARK we used the live index with R-Tree and the Spatial Grid Partitioner to partition
the data. In GeoSpark we used the R-Tree index and the Equalgrid partitioner. For Mag-
ellan we used the default indexer of the system (Z-Order Curve). There is no reference
for partitioning in Magellan and so we assume that it uses the Spark’s Partitioner. For
Spatial-Spark we define two cases. One where we use the Broadcast Spatial Join with
R-Tree indexer and the other, where we use Partitioned Spatial Join. On the first there is
no spatial partition support and therefore we use Spark’s partitioner. On the latter, there is
no indexer but it supports spatial partitioning. There we use the Fixed Grid Partitioner to
partition the datasets. Finally, in Exareme we used Grid partitioning and R-Tree indices.

“4https://www.okeanos.grnet.gr/

K. Giannousis 42

Experimental Evaluation of Big Geospatial Data Systems

The results of the experiments are also available online®.

Among the experiments, we consider as the most informative for the systems, the results
of queries that involve spatial joins with complex geometries, such as lines and examine
how the systems in comparison scale in these queries.

This is interesting because, in the respective experiment of the Jackpine benchmark, the
dataset with line objects is too big to fit in memory, so we wanted to examine the behaviour
of the Spark-based systems in this realistic scenario in comparison to Exareme. In such
cases, systems like Spatial-Spark and GeoSpark needed to be configured differently than
others.

Since Broadcast Spatial Join doesn’t support spatial partitioning, the partitions are based
on Spark’s default partitioner. In the experiments with Partitioned Spatial Join (no in-
dexer here), the Fixed Grid partitioner is using the same technique when needed for large
datasets.

GeoSpark supports persistent index, so, we enabled persistence to Disk for line objects.
This was also required in non indexed queries where we enabled persistence for parti-
tioning as well, because we were receiving error messages for insufficient memory during
tests otherwise.

In the following figures we provide diagrams of the results for experiments related to the
scalability of the geometric objects. For each Spark system two diagrams are provided.
A diagram that compares the referenced system with Exareme and a diagram that shows
the geometric scalability with and without indexer.

Exareme has been tested only with the spatial indexer. In the diagrams, Exareme results
are shown with the star pointer and the results of the Spark based system are shown with
the triangle pointer.

Correspondingly and in order to provide an easy to look comparison between the two
diagrams, the results with index are shown with the triangle pointer and the results without
index are shown with the star pointer. The colour coding of the two diagrams have been
kept the same when possible.

The values used to produce the results are referring to experiments with datasets in 8
partitions. This number has been selected because all systems give useful results that
can be compared to each other.

Infigures 1, 2, 3,4, 5, 6, 7 and 8 we provide diagrams of the results for experiments related
to line objects. Some diagrams may refer to point scalability but we mentioned them for
line objects as well.

Shttps://github.com/kgiann78/GeoSpatial-Distributed-Systems

43 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

K. Giannousis

SpatialSpark vs Exareme Line Scalability (Indexed)

Average Execution Time (sec)

1000

500

100

50

10

SpatialSpark Line Scalability

Average Execution Time (sec)

1000

500

100

50

10

A 174871
669.1366667
*
31.1643
21.3833 20.2287
\A A
e * ~ *
e —'— e
1o} 12y q
8 16 24
Cores

A 174871
172.867 135973 149.172
b 117 2= g'i
“‘*_. Felod
176.241 165:314 173717
y—r
29.6363
21.223 21.156
8 16 24
Cores

A
A

* % % »

*

Line Intersects Line
Line Intersects Polygon
Line Overlaps Polygon
Line Within Polygon
Line Crosses Polygon
Line Crosses Line

Line Intersects Polygon
Line Overlaps Polygon
Line Touches Polygon

Line Within Polygon

Figure 1: SpatialSpark vs Exareme Line Scalability

Line Intersects Line
Line Intersects Polygon
Line Overlaps Polygon
Line Within Polygon

Line Intersects Polygon
W/0 Indexer

Line Overlaps Polygon
W/0 Indexer

Line Within Polygon
W/0 Indexer

Figure 2: SpatialSpark Line Scalability

44

Experimental Evaluation of Big Geospatial Data Systems

STARK vs Exareme Line Scalability (Indexed)

250 A Line Intersects Line
A L
196.867 Line Intersects Polygon
183.619 Line Crosses Polygon
5 200 172,071 v
2 % Line Crosses Line
g 150 % Line Intersects Polygon
% % Line Overlaps Polygon
%‘ % Line Touches Polygon
,_% 100 * Line Within Polygon
S
©
5 50 \
-
0 6:643666667: 6:570666667. 6.114666667
8 16 24
Cores

Figure 3: STARK vs Exareme Line scalability

STARK Line Scalability

5000 . = — A Line Intersects Line
Yo" e
876,48 4640.05 419312 A Line Intersects Polygon
) % Line Intersects Line
’g 1000 W/0O Indexer
‘z’ % Line Intersects Polygon
E 500 269:777 W/O Indexer
= 209.012
5 158.358
E - S
& 100 172:071 183619 196.867
S 39.791
g 50 27.246 28:597
>
g ‘\‘?__‘

Cores

Figure 4: STARK Line scalability

45 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

K. Giannousis

STARK vs Exareme Point Scalability (Indexed)

500 .

146.7806667 160.84 178.4423333 A
A A N

Eﬂi 100 N

' N

3 *

S

2

Q

510

g s are 3.674333333 3.544666667

z Erer————=199333333=F 3.163666667

A—2116666667
66667, 1.605— - 1.870666667

8 16 24

Cores

Point Intersects Polygon
Point Intersects Line
Point Equals Point

Point Intersects Polygon
Point Intersects Line

Point Within Polygon

Figure 5: STARK vs Exareme Point scalability

STARK Point Scalability

500 287-395
201.949 197.938

\L +

w —X
" N

* % > P

= A—
(7]
100
2 146.7806667 160.84 1784423333
E 50
=
=
S
3
(7]
@ 10
&
@
g 5 2.985 100 2432666667
g :
mﬁ‘ﬁ'ﬁ%? A 1.870666667
;
8 16 24
Cores

Figure 6: STARK Point scalability

46

Point Intersects Polygon
Point Intersects Line

Point Intersects Polygon
W/O Indexer

Point Intersects Line
W/O Indexer

Experimental Evaluation of Big Geospatial Data Systems

In STARK we are using live index, which means that in each experiment it creates on the
fly an index. The content of a partition is first put into an R-tree and then, this index is
queried using the query object. The elements of the R-Tree have to be checked again to
see if they really match the query object. For small datasets, this performs better but for
larger datasets it creates some latency due to the number of elements and the network
communication as it can be seen in figures 4 and 6.

Geospark vs Exareme Line Scalability (Indexed)
150 A Line Overlaps Polygon

\A % Line Crosses Polygon
143.327

Line Crosses Line
127.7576667 .
100 % Line Intersects Polygon
% Line Overlaps Polygon
Line Touches Polygon

% Line Within Polygon
50

Average Execution Time (sec)

L
"

b o

oo | Mof

16 24

Cores

Figure 7: Geospark vs Exareme Line Scalability

Geospark Line Scalability

2000 A Line Overlaps Polygon
% Line Overlaps Polygon
) 1469.978333 W/0O Indexer
@
e 150 1237.103667
E
i
[=
£ 1000
3
Q
Q
>
w
@
=3 500
5 143.327 127.7576667
L A
0
8 16 24

Cores

Figure 8: Geospark Line Scalability

GeoSpark, is using an R-Tree index per each partition, after data are partitioned. This
is supposed to be fast but in our experiments it increases the communication between
different partitions. Especially, for large datasets, it has a significant performance impact
(Line overlaps polygon fig. 8).

Magellan, provides a clever way to enhance Spark SQL with spatial support but the lack

47 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

of spatial partitioning and the limited number of operations didn’t give much to the com-
parisons.

In figures 9, 10, 11, 12, 13, 14, 15 and 16 we present the polygon scalability among
systems.

SpatialSpark vs Exareme Polygon Scalability (Indexed)

4.5 A Polygon Contains Point
A Polygon Contains Polygon
ii § § : Polygon Overlaps Polygon
(4] eahe s
\s,_” 3358333333 \k\x A Polygon Within Polygon
g 3.5 3.155 % Polygon Contains Point
'; % Polygon Contains Polygon
S A 2.76 L
§ - % Polygon Disjoint Polygon
L% 05 Polygon Equals Polygon
§1 ’ % Polygon Overlaps Polygon
5 1.91133 Polygon Touches Polygon

1.556 1.62767 % Polygon Within Polygon
1.5

8 16 24

Cores

Figure 9: SpatialSpark vs Exareme Polygon Scalability

SpatialSpark Polygon Scalability

15 A Polygon Contains Point
A Polygon Contains
\ Polygon
*N}—# Polygon Overlaps
Polygon
10 F~_9.966

A Polygon Within Polygon

8:49967————k 8.388 % Polygon Contains Point
W/0 Indexer

% Polygon Contains
5 Polygon
W/0 Indexer

Polygon Overlaps
Polygon
A A W/0 Indexer

* Polygon Within Polygon
0 W/0O Indexer
8 16 24

1.9113% 97467, 1-556.25724 1:6276:2.99033
y —

Average Execution Time (sec)

Cores

Figure 10: SpatialSpark Polygon Scalability

Finally, in figures 5, 6, 17, 18, 19 and 20 we provide diagrams of the results for experiments
related to the scalability of the point geometries among systems.

K. Giannousis 48

Experimental Evaluation of Big Geospatial Data Systems

STARK vs Exareme Polygon Scalability (Indexed)

5 A Polygon Contains Point
A Polygon Contains

Polygon
4 3.@ Polygon Contains Point

£} *

L;’, * Polygon Contains
P

E 3 2:566 7.522 ovgen

c A % Polygon Disjoint

S 2.103333333——————A Polygon

3

o 1.706333333

E 2 1475 % Polygon Equals Polygon

@ % Polygon Overlaps

g Polygon

4

z 1 # Polygon Touches
Polygon

0 % Polygon Within Polygon
8 16 24
Cores

Figure 11: STARK vs Exareme Polygon scalability

STARK Polygon Scalability

4 A Polygon Contains Point
3.61 A Polygon Contains
3280 Polygon
iy 3) Polygon Contains Point
8 W/0O Indexer
g 2:566 J‘szszo_—i 2.573 % Polygon Contains
= g Polygon
c W/0 Indexer
-,9.. 2
3 2.103333333
>
e 1.706333333
g 1.475
S
<
0
8 16 24
Cores

Figure 12: STARK Polygon scalability

49 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Geospark vs Exareme Polygon Scalability (Indexed)

4971 A Polygon Contains Point
4.177666667 -

4.048 A Polygon Contains Polygon
'gf 4 @ Polygon Contains Point
% % Polygon Contains Polygon
'E 3 % Polygon Disjoint Polygon
.§ % Polygon Equals Polygon
g 2 1.677333333 1379 1.612 % Polygon Overlaps Polygon
E \k/—‘ % Polygon Touches Polygon
g 1 % Polygon Within Polygon
<

0
8 16 24
Cores

Figure 13: Geospark vs Exareme Polygon Scalability

Geospark Polygon Scalability

6 A Polygon Contains
4.890666667 ~ >-046333333 Point

A Polygon Contains

4.318333333 Polygon

4 A — % Polygon Contains

4971 Point
4.177666667 - %gﬁg W/O Indexer
2.289333333 ' % Polygon Contains

2 \-A/ W/O Indexer

Average Execution Time (sec)

1.677333333
1.379 1612
0
8 16 24
Cores

Figure 14: Geospark Polygon Scalability

Magellan vs Exareme Polygon Scalability (Indexed)
10 A Polygon Contains Point

Polygon Contains Point
8 8.958 Polygon Contains Polygon

*

o
(7]
2
o 7.885 % Polygon Disjoint Polygon
£ 7.309
[6 : * Polygon Equals Polygon
c
-% % Polygon Overlaps Polygon
§ 4 % % Polygon Touches Polygon
S **/ s Polygon Within Polygon
]
E.;, 2
<

0

8 16 24
Cores

Figure 15: Magellan vs Exareme Polygon scalability

K. Giannousis 50

Experimental Evaluation of Big Geospatial Data Systems

Magellan Polygon Scalability

25
19.655
18.748
&
£
e 15
c
2
5 8.958
g 0 7:300 7885
's /\
[<}]
g
E 5
<
0
8 16 24
Cores

A Polygon Contains Point

% Polygon Contains Point
W/0 Indexer

Figure 16: Magellan Polygon scalability

SpatialSpark vs Exareme Point Scalability (Indexed)

6
55
5 5
[7]
-,
o 4.5
E 3.76
'— .
. e 3.674333333 P
2 35 —
(7]
5 : 2.39267
o
&)
g 25 2.231 2.13033
< -~ N /AA
2
15
8 16 24
Cores

A

A

Point Intersects
Polygon

Point Within Polygon
Point Equals Point

Point Intersects
Polygon

Point Intersects Line

Point Within Polygon

Figure 17: SpatialSpark vs Exareme Point Scalability

51

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

K. Giannousis

SpatialSpark Point Scalability

500

100
50

10

Average Execution Time (sec)

8.358

F=7:08133 e 7:38333———k 7.486

7.176

7.521

Point Intersects
Polygon

Point Within Polygon

Point Intersects
Polygon
W/0O Indexer

Point Intersects Line
W/0O Indexer

Point Within Polygon
W/O Indexer

2.096 2.119 2174
hz,__z'ﬂ 013033 —-‘ 2.39267
8 16 24
Cores
Figure 18: SpatialSpark Point Scalability

Magellan vs Exareme Point Scalability (Indexed)

40
m
8 30
[}

E
-
c
S 20
=
o
@
oS
@
2 10
g
<<
0

31.706

30.854

27.765

S

2.841

3.199333333

A,

3.163666667

e e —

8

16

Cores

52

24

A

A

Point Intersects
Polygon

Point Within
Polygon

Point Equals Point

Point Intersects
Polygon

Point Intersects Line

Point Within
Polygon

Figure 19: Magellan vs Exareme Point Scalability

Experimental Evaluation of Big Geospatial Data Systems

Magellan Point Scalability

Average Execution Time (sec)

A Point Intersects
Polygon
40 — 375662 33652 A Point Within
A31:706 2661130850 V9O
\27_‘765 % Point Intersects
20.783 Polygon
19.141 W/O Indexer
20 17.362 . .
% Point Within
Polygon
W/0 Indexer
10 8.31 8.222 8.796
8 " .k
8 16 24
Cores

Figure 20: Magellan Point Scalability

53

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

In general, each system performed differently in various tests. Considering the number of
operations, Exareme implements almost all of them® and the results are within a steady
range for all different configurations and in most of the experiments. When the datasets
are small, SpatialSpark with Spatial Broadcast Join even if it uses Spark’s Partitioner has
performed better than others. Considering the number of operations, SpatialSpark comes
right after Exareme. Unfortunatelly, it performed poorly in cases where a large dataset was
member of a spatial operation. On the other hand, STARK implements less operations
than Exareme and SpatialSpark but performs better in many cases. Of course, it should
be taken into consideration that the number of partitions is larger than other systems with
the same nominal number, due to the grid partitioning. Geospark and Magellan implement
the less operations, without many differences to Exareme or other systems.

In the following sections we present the evaluation results from all micro benchmark op-
erations’ results in comparing tables and figures. The tables in these sections are based
in the experiments that are grouped by partitions and parted by the system configuration.
Three different configurations per system provide multiple different results per partition.
The grouping on the partition number has been decided due to the lack of some systems
to support multiple partitions or use different partitioning than others (i.e. some experi-
ments run on SpatialSpark in different partitions than other systems).

Additionally, there are experiments where some systems don’t return results either in some
or all configurations. The partial results are shown but in case of complete lack of results,
nothing is shown in the table.

In sections 4.2.2.1 to 4.2.2.7 we provide the results of the benchmarks for polygon ge-
ometries interacting to other polygons or points. No line geometries were used in these
benchmarks as the right members of the relationships examined.

Next, in sections 4.2.2.8 t0 4.2.2.14 we provide the results for line geometries. In scenario
‘Line Crosses Line‘ (section 4.2.2.8) only Exareme provided partial results. The reason
that some benchmarks didn’t return anything must have to do with the miscommunication
among the nodes of the cluster.

In scenario ‘Line Intersects Line' (section 4.2.2.10) the line geometries are both the left
and right member of the relationship. For this benchmark we had to change the setup for
Spatial Spark. Because the line geometry as the right member of the relationship doesn’t
fit in memory for the Broadcast Spatial Join we needed to a different setup for the system.
So we used instead a non spatial partitioning of namely 256 and 512 partitions in order
to achieve some partial results. The reason that we used non spatial partitioning is
because Broadcast Spatial Join doesn’t support spatial partitioning. On the other hand,
Spatial Spark without indexer, Partitioned Spatial Join, that uses spatial partitioning didn’t
return any results even with a setup like above (256 and 512 partitions).

In the same scenario, although Exareme supports operation ‘Line Intersects Line', it didn’t
return any result after a long period of time (more than 5 hours) and the benchmark had
to be terminated.

6Except ‘Line Intersects Line' which didn’t finish

K. Giannousis 54

Experimental Evaluation of Big Geospatial Data Systems

Finally, in sections 4.2.2.15 to 4.2.2.18 we provide the results for point geometries. In
the ‘Point Intersects Line‘ scenario (section 4.2.2.16) the Broadcast Spatial Join of Spatial
Spark didn’t return any results (since line geometry was the right member of the relation-
ship) even with a different setup for partitioning like above.

On the other hand, Spatial Spark with Partitioned Spatial Join returned partial results for
the a setup like the above (64 and 256 partitions).

4.2.2.1. Polygon Contains Point
Table 6: Comparing systems with indexers, no partitions
Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | STARK Livelndex | GeoSpark Indexed | Magellan Indexed
8 3.020333333 7.52133 0.9113333333 3.626666667 7.309
16 2.799 5.073 1.055333333 3.097 8.958
24 3.140666667 7.56633 4.225 3.024666667 7.885

Table 7: Comparing systems with indexers, 8 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | STARK Livelndex | GeoSpark Indexed
8 3.358333333 1.91133 1.706333333 1.677333333
16 2.76 1.556 2.103333333 1.379
24 3.155 1.62767 1.475 1.612

Table 8: Comparing systems with indexers, 16 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | STARK Livelndex | GeoSpark Indexed
8 4.935666667 1.56333 3.93 1.133
16 4.661666667 1.88267 3.216 1.399333333
24 4.161333333 1.465 2.799666667 1.524666667

Exareme W/ Index - Spatial Spark Broadcast Join Indexed

8

Average Execution Time (sec)

—_—

% Exareme
No partitions

% Exareme
8 Partitions

Exareme
16 Partitions

A Spatial Spark
No Partitions

Spatial Spark
8 Partitions

Spatial Spark
16 Partitions

8 Cores

16 Cores 24 Cores

Figure 21: Polygon Contains Point, Comparing Exareme to Spatial Spark

55

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Exareme W/ Index - STARK W/ Index

5 * Exareme
No partitions

* Exareme
8 Partitions

Exareme
16 Partitions

A STARK
3 No Partitions

A STARK
8 Partitions

2 A STARK
16 Partitions

Average Execution Time (sec)

8 Cores 16 Cores 24 Cores

Figure 22: Polygon Contains Point, Comparing Exareme to STARK

Exareme W/ Index - GeoSpark W/ Index

5 % Exareme
No partitions

% Exareme
8 Partitions

Exareme
16 Partitions

A GeoSpark
3 No Partitions

A GeoSpark
8 Partitions

2 A GeoSpark

8 Cores 16 Cores 24 Cores

Average Execution Time (sec)

Figure 23: Polygon Contains Point, Comparing Exareme to GeoSpark

K. Giannousis 56

Experimental Evaluation of Big Geospatial Data Systems

Exareme W/ Index - Magellan W/ Index

Average Execution Time (sec)

10

_

8 Cores 16 Cores

24 Cores

% Exareme
No partitions

% Exareme
8 Partitions

Exareme
16 Partitions

A Magellan
No Partitions

Figure 24: Polygon Contains Point, Comparing Exareme to Magellan

Table 9: Comparing systems without indexers, no partitions

Cores | Spatial-Spark Partitioned Spatial Join | STARK w/o Indexer | GeoSpark w/o Indexer | Magellan w/o Indexer
8 21.22033333 7.448 5.611333333 18.748
16 16.19333333 7.834 4.978666667 19.655
24 18.03566667 6.451333333 5.341666667 18.221

Table 10: Comparing systems without indexers, 8 partitions

Cores | Spatial-Spark Partitioned Spatial Join | STARK w/o Indexer | GeoSpark w/o Indexer
8 9.966 2.502666667 2.289333333
16 8.49967 2.581333333 1.995333333
24 8.388 2.029666667 2.548
Table 11: Comparing systems without indexers, 16 partitions

Cores | Spatial-Spark Partitioned Spatial Join | STARK w/o Indexer | GeoSpark w/o Indexer
8 5.733 4.453333333 1.462333333
16 5.276 4.663333333 1.468333333
24 4.99467 3.623333333 1.566666667

57

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

STARK W/ Index - STARK W/0 Index

8
I 6
@
Z
K3
Q
£
=
S
S 4
3
(%]
Q
>
()
Q
(=]
E
g 2
X

7.834

7.448

6.451333333

4.225

H—0:9113333333

1.055333333

8 Cores 16 Cores

24 Cores

STARK
No Partitions

STARK
8 Partitions

STARK
16 Partitions

STARK W/0 Index
No Partitions

STARK W/0 Index
8 Partitions

STARK W/O Index
16 Partitions

Figure 25: Polygon Contains Point, Comparing STARK W/ and W/O indexers

SpatialSpark W/ Index - SpatialSpark W/0 Index

25
20

m

[T}

2

Q

E 15

'_

=

)

5

Q

£ 10

w

[

o

@

g

<
0

21.22033333

18.03566667

R
1.91133 1.556 1.62767
e e
8 Cores 16 Cores 24 Cores

*

*

Spatial Spark
No Partitions

Spatial Spark
8 Partitions

Spatial Spark
16 Partitions

Spatial Spark
W/0 Index
No Partitions

Spatial Spark
W/0 Index
8 Partitions

Spatial Spark
W/0 Index
16 Partitions

Figure 26: Polygon Contains Point, Comparing Spatial Spark W/ and W/O indexers

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

GeoSpark W/ Index - GeoSpark W/O Index

6 * GeoSpark
No Partitions
% GeoSpark
5611333333 8 Partitions
5.341666667
£} 4.978666667 GeoSpark
\3’; 4 3.626666667 16 Partitions
£ A GeoSpark
= 3.097 3.024666667 W/0 Index
c No Partitions
=
3 A GeoSpark
3 W/0 Index
o 8 Partitions
% z A GeoSpark
g — ——k W/0 Index
Z = ~ 16 Partitions

8 Cores 16 Cores 24 Cores

Figure 27: Polygon Contains Point, Comparing GeoSpark W/ and W/O indexers

Magellan W/ Index - Magellan W/0 Index

20 * Magellan
‘/—\ No Partitions
19.655

A Magellan
18.748 18.221 W/O Index
No Partitions
= 15
@
2
(]
E
'—
& 10 8.958
g 7.309 7.885
£
(¥}
(]
=]
o
o 5
=

8 Cores 16 Cores 24 Cores

Figure 28: Polygon Contains Point, Comparing Magellan W/ and W/O indexers

59 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.2. Polygon Contains Polygon

Table 12: Comparing systems with indexers, no partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | STARK Livelndex | GeoSpark Indexed
8 5.866333333 9.21467 5.167 5.28467
16 6.15 8.54933 6.407 4.97733
24 6.185333333 11.186 5.946 4.909

Table 13: Comparing systems with indexers, 8 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | STARK Livelndex | GeoSpark Indexed

8 4.167666667 2.97467 3.289 4.177666667
16 4.169 2.724 2.566 4.271
24 3.684666667 2.99033 2.522 4.048

Table 14: Comparing systems with indexers, 16 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | STARK Livelndex | GeoSpark Indexed

8 5.445666667 2.796 4.853 3.24067
16 4.943 2.694 3.975 3.521333333
24 4.946333333 2.708 3.574 3.699

Exareme W/ Index - Spatial Spark Broadcast Join Indexed

12 % Exareme
No partitions

% Exareme
10 8 Partitions

Exareme
16 Partitions

A Spatial Spark
No Partitions

°
(7]
@
L)
E
’_
5 6 + - —k A Spatial Spark
3 8 Partitions
._% N N Spatial Spark
® 4 e % 16 Partitions
=3 .
o
2 _‘**___—A
z ’

2

8 Cores 16 Cores 24 Cores

Figure 29: Polygon Contains Polygon, Comparing Exareme to Spatial Spark

K. Giannousis 60

Experimental Evaluation of Big Geospatial Data Systems

Exareme W/ Index - STARK W/ Index
8 % Exareme
No partitions

* Exareme
8 Partitions

6 Exareme
16 Partitions

A STARK
No Partitions

4 A STARK
8 Partitions

A STARK
16 Partitions

Average Execution Time (sec)

8 Cores 16 Cores 24 Cores

Figure 30: Polygon Contains Polygon, Comparing Exareme to STARK

Exareme W/ Index - GeoSpark W/ Index

7 % Exareme
No partitions

% Exareme
8 Partitions
e -~k

= 6 / Exareme
2 16 Partitions
E A GeoSpark
i No Partitions
F i \\‘ A GeoSpark
§ 8 Partitions
,_% A GeoSpark
o _ 16 Partitions
] 4
S

3

8 Cores 16 Cores 24 Cores

Figure 31: Polygon Contains Polygon, Comparing Exareme to GeoSpark

61 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Figure 32: Polygon Contains Polygon, Comparing STARK W/ and W/O indexers

K. Giannousis

Table 15: Comparing systems without indexers, no partitions

Cores | Spatial-Spark Partitioned Spatial Join | STARK w/o Indexer | GeoSpark w/o Indexer
8 26.1217 5.837 16.997
16 28.2593 6.904 16.689
24 28.4877 7.116 16.71233333
Table 16: Comparing systems without indexers, 8 partitions
Cores | Spatial-Spark Partitioned Spatial Join | STARK w/o Indexer | GeoSpark w/o Indexer
8 13.247 3.61 4.890666667
16 11.2867 2.431 5.046333333
24 11.4163 2.573 4.318333333
Table 17: Comparing systems without indexers, 16 partitions
Cores | Spatial-Spark Partitioned Spatial Join | STARK w/o Indexer | GeoSpark w/o Indexer
8 8.014 4.798 10.332
16 7.53833 4.256 3.363333333
24 7.60033 3.671 3.699666667
STARK W/ Index - STARK W/O Index
8 % STARK
6.904 7.116 No Partitions
* STARK
5837 6.407 8 Partitions
= 6 STARK
§ 5946 16 Partitions
g 5.167 A STARK
= W/0 Index
= No Partitions
S 4
5 A STARK
§ W/O Index
._: 3.61 8 Partitions
b= ST/E\)RKd
@ W/0 |
Z 2 2.437 2.573 16 Partitions
8 Cores 16 Cores 24 Cores

62

Experimental Evaluation of Big Geospatial Data Systems

SpatialSpark W/ Index - SpatialSpark W/0 Index

Average Execution Time (sec)

30
A A
28.2593 28.4877
26.1217
20
13.247
11.2867 11.4163
. \7 11.186
#—09.21 467——1’8.54933 K
2.97467 2724 2.99033
8 Cores 16 Cores 24 Cores

*

*

Spatial Spark
No Partitions

Spatial Spark
8 Partitions

Spatial Spark
16 Partitions

Spatial Spark
W/0 Index
No Partitions

Spatial Spark
W/0O Index
8 Partitions

Spatial Spark
W/0 Index
16 Partitions

Figure 33: Polygon Contains Polygon, Comparing Spatial Spark W/ and W/O indexers

GeoSpark W/ Index - GeoSpark W/O Index

Average Execution Time (sec)

20
A A A
15 16.997 16.689 16.71233333
10
10.332
5.28467 497733 4.909
5 f A .
—_——
3.363333333 3699666667
8 Cores 16 Cores 24 Cores

GeoSpark
No Partitions

GeoSpark
8 Partitions

GeoSpark
16 Partitions

GeoSpark
W/0O Index
No Partitions

GeoSpark
W/0O Index
8 Partitions

GeoSpark
W/0O Index
16 Partitions

Figure 34: Polygon Contains Polygon, Comparing GeoSpark W/ and W/O indexers

63

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.3. Polygon Disjoint Polygon
Table 18: Comparing Exareme results with indexer
Cores | Exareme Spatiallndex No Partitions | Exareme Spatiallndex 8 Partitions | Exareme Spatiallndex 16 Partitions
8 5.030666667 4.08 4.880333333
16 4.902 3.694666667 4.353333333
24 4.997333333 3.624 4.300333333
Exareme W/ Index
55 % Exareme
No partitions
% Exareme
8 Partitions
< 5 **//’_* Exareme
o 16 Partitions
o
E
=
c
2 45
3
g
a
S
] 4
z
35
8 Cores 16 Cores 24 Cores
Figure 35: Polygon Disjoint Polygon, Exareme W/ indexer
4.2.2.4. Polygon Equals Polygon
Table 19: Comparing Exareme results with indexer
Cores | Exareme Spatiallndex No Partitions | Exareme Spatiallndex 8 Partitions | Exareme Spatiallndex 16 Partitions
8 5.597666667 3.761 5.019666667
16 5.567333333 3.855333333 4.476
24 5.487666667 3.662666667 5.367

K. Giannousis

64

Exareme W/ Index
6

Experimental Evaluation of Big Geospatial Data Systems

55 TTTTT——

4.5

Average Execution Time (sec)

3.5

8 Cores 16 Cores

24 Cores

% Exareme
No partitions

% Exareme
8 Partitions

Exareme
16 Partitions

Figure 36: Polygon Equals Polygon, Exareme W/ indexer

4.2.2.5. Polygon Overlaps Polygon

Table 20: Comparing systems with indexers, no partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join
8 6.415666667 8.68733
16 6.572666667 9.307
24 6.665666667 5.79767

Table 21: Comparing systems with indexers, 8 partitions

Cores | Exareme Spatiallndex

Spatial Spark Broadcast Spatial Join

8 4.018666667 2.95967
16 4.162333333 2.785
24 3.903333333 3.03667

Table 22: Comparing systems with indexers, 16 partition

(7}

Cores | Exareme Spatiallndex

Spatial Spark Broadcast Spatial Join

8 5.244666667 2.92733
16 4.356666667 3.08467
24 4.801333333 3.069

65

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Exareme W/ Index - Spatial Spark Broadcast Join Indexed

10

* Exareme

No partitions

% Exareme

*

8 Partitions

Exareme
16 Partitions

A Spatial Spark

No Partitions

A Spatial Spark

g

b

Average Execution Time (sec)

8 Cores

16 Cores 24 Cores

8 Partitions

Spatial Spark
16 Partitions

Figure 37: Polygon Overlaps Polygon, Exareme W/ indexer and Spatial Spark Broadcast Spatial Join

W/ indexer
Table 23: Comparing Spatial Spark without indexers
Cores | Spatial-Spark Partitioned Spatial Join | Spatial-Spark Partitioned Spatial Join | Spatial-Spark Partitioned Spatial Join
No Partitions 8 Partitions 16 Partitions
8 27.3463 12.361 8.30867
16 25.8323 12.372 8.25933
24 26.782 11.989 7.34933

K. Giannousis

SpatialSpark W/ Index - SpatialSpark W/O Index

—_—

25.8323 26.782

12.372

A

11.989

30
27.3463

o)

3

< 2

E

'—

s

2 12.361

2 A

>

wl

o 10

8

g

<<

-2:95967:

A
—

£—8:68733 2307
5.79767

3.03667

W—2+785

8 Cores

16 Cores 24 Cores

% Spatial Spark
No Partitions

% Spatial Spark
8 Partitions

Spatial Spark
16 Partitions

A Spatial Spark
W/0 Index
No Partitions

A Spatial Spark
W/0 Index
8 Partitions

A Spatial Spark
W/0 Index
16 Partitions

Figure 38: Polygon Overlaps Polygon, Spatial Spark W/ and W/O indexer

66

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.6. Polygon Touches Polygon

Table 24: Comparing Exareme with indexer

Cores | Exareme Spatiallndex No Partitions | Exareme Spatiallndex 8 Partitions | Exareme Spatiallndex 16 Partitions
8 6.509 3.968 5.091
16 6.339333333 4.077 4.456
24 6.616666667 3.876666667 4.437333333

Exareme W/ Index

7 % Exareme
No partitions
**//* * Exareme
8 Partitions
6 Exareme

16 Partitions

4 —_—

Average Execution Time (sec)

8 Cores 16 Cores 24 Cores

Figure 39: Polygon Touches Polygon, Exareme W/ indexer

67 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.7. Polygon Within Polygon

Table 25: Comparing systems with indexers, no partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join
8 6.024333333 9.16567
16 5.830666667 8.032
24 6.105333333 9.29533

Table 26: Comparing systems with indexers, 8 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join
8 3.778 2.80133
16 4.215333333 2.80567
24 3.747 3.008

Table 27: Comparing systems with indexers, 16 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join
8 5.364333333 2.937
16 4.372 2.64567
24 4.266333333 2.80067

Exareme W/ Index - Spatial Spark Broadcast Join Indexed

10

Average Execution Time (sec)

% Exareme
No partitions

* Exareme
8 Partitions

Exareme
16 Partitions

A Spatial Spark
No Partitions

A Spatial Spark
8 Partitions

Spatial Spark
16 Partitions

8 Cores 16 Cores

24 Cores

Figure 40: Polygon Within Polygon, Exareme W/ indexer and Spatial Spark Broadcast Spatial Join
W/ indexer

K. Giannousis 68

Experimental Evaluation of Big Geospatial Data Systems

Table 28: Comparing Spatial Spark W/ and W/O indexer

Cores | Spatial-Spark Partitioned Spatial Join | Spatial-Spark Partitioned Spatial Join | Spatial-Spark Partitioned Spatial Join
No Partitions 8 Partitions 16 Partitions
8 24.1467 12.312 8.354
16 26.4613 11.939 7.44767
24 27.8107 11.2147 6.48867
SpatialSpark W/ Index - SpatialSpark W/O Index
30 % Spatial Spark
No Partitions
% Spatial Spark
27.8107 8 Partitions
26.4613 Somtial Soark
—_ atia ar
§ 24.1467 12 Partiti%ns
g 20 A Spatial Spark
= W/Q Index
5 No Partitions
E 12.312 11.939 A Spatial Spark
§ A L 112147 V\F/OIndeE(
s A 8 Partitions
& 10 $—9.16567 % 929533 A Spatial Spark
5 —————8:032 V\F/O Indegc
z 16 Partitions
Ye=—2:80133————rp==2:80567—=or 3.008
0
8 Cores 16 Cores 24 Cores
Figure 41: Polygon Within Polygon, Spatial Spark W/ and W/O indexer
4.2.2.8. Line Crosses Line
Table 29: Comparing Exareme with indexer
Cores | Exareme Spatiallndex No Partitions | Exareme Spatiallndex 8 Partitions | Exareme Spatiallndex 16 Partitions
8 669.1366667
16 990.6183333
24 463.6186667 510.046

69

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Exareme W/ Index

% Exareme
No partitions

* Exareme
8 Partitions

Exareme
16 Partitions

1000
< 750
&
> *
E
'—
c
2 500
3
Q
Q
>
w
(]
o
o
% 250

8 Cores

16 Cores 24 Cores

Figure 42: Line Crosses Line, Exareme W/ indexer

4.2.2.9. Line Crosses Polygon
Table 30: Comparing Exareme with indexer
Cores | Exareme Spatiallndex No Partitions | Exareme Spatiallndex 8 Partitions | Exareme Spatiallndex 16 Partitions
8 44.521 13.674 14.72133333
16 43.40633333 13.13933333 14.67
24 43.719 13.494 14.65033333
Exareme W/ Index
50 * Exareme
No partitions
Fe— e iy Y Exareme
8 Partitions
40
< Exareme
3 16 Partitions
Y
E 30
=
s
2
£ 20
w
Q
g — + %
g = ol =
< 10
8 Cores 16 Cores 24 Cores

K. Giannousis

Figure 43: Line Crosses Polygon, Exareme W/ indexer

70

4.2.2.10. Line Intersects Line

Experimental Evaluation of Big Geospatial Data Systems

Table 31: Spatial Spark with indexers

Spatial Spark Broadcast Join Indexed - STARK W/ Index

5000

o 1000
[}
e
Q

£ 500
=
=
o
5
[¥]
>

[} 100
[
o
©

o 50
z

10

1748.71

¥ 1533.694

56.176

41.608

41.942

e
L\A—__‘

8 Cores

16 Cores

24 Cores

% Spatial Spark
256 Partitions

% Spatial Spark
512 Partitions

STARK
No Partitions

A STARK
8 Partitions

A STARK
16 Partitions

Cores | Spatial Spark Broadcast Spatial Join | Spatial Spark Broadcast Spatial Join | Spatial Spark Broadcast Spatial Join
No partitions 256 Partitions 512 Partitions
8 1748.71 1533.694
16
24
Table 32: STARK with indexer
Cores | STARK Livelndex | STARK Livelndex | STARK Livelndex
No partitions 8 Partitions 16 Partitions

8 16.867 39.791 56.176

16 22.055 27.246 41.608

24 23.792 28.597 41.942

Figure 44: Line Intersects Line, Comparing systems W/ indexer

71

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.11.

Figure 46: Line Intersects Polygon, Comparing Exareme W/ indexer with Spatial Spark

K. Giannousis

Average Execution Time (sec)

5000

1000

500

iy
[=]
o

o
o

10

Table 33: Comparing STARK W/O indexer

Cores STARK STARK STARK
No Partitions | 8 Partitions | 16 Partitions
8 15.646 3876.38 455.907
16 14.78 4640.05 492.798
24 19.431 4193.12 546.562
STARK W/ Index - STARK W/O Index
e N A STARK
— —a No Partitions
3876.38 4640.05 4193.12 A STARK
8 Partitions
STARK
16 Partitions
A A —4 A STARK
No Partitions
No Index
A STARK
8 Partitions
No Index
A STARK
16 Partitions
\ No Index
<i’;?
8 Cores 16 Cores 24 Cores

Figure 45: Line Intersects Line, STARK W/ and W/O indexer

Line Intersects Polygon

Exareme W/ Index - Spatial Spark Broadcast Join Indexed

Average Execution Time (sec)

40
30
20
~h— -
10 = = -
N Lo} ‘—K'L
0
8 Cores 16 Cores 24 Cores

% Exareme
No partitions

% Exareme
8 Partitions

Exareme
16 Partitions

A Spatial Spark
No Partitions

A Spatial Spark
8 Partitions

A Spatial Spark
16 Partitions

Experimental Evaluation of Big Geospatial Data Systems

Table 34: Comparing systems with indexers, no partitions

Cores | Exareme Spatiallndex | STARK Livelndex
8 11.18166667 63.44
16 10.932 85.7193
24 9.779333333 79.882

Table 35: Comparing systems with indexers, 8 partitions

Cores | Exareme Spatiallndex | STARK Livelndex
8 6.643666667 172.071
16 6.570666667 183.619
24 6.114666667 196.867

50

16 Partitions

Table 36: Comparing systems with indexers, 16 partitions
Cores | Exareme Spatiallndex | STARK Livelndex
8 7.152333333 132.378
16 7.015333333 108.217
24 7.722333333 129.245
Exareme W/ Index - STARK W/ Index
200 % Exareme
No partitions
/ % Exareme
8 Partitions
< 150 Exareme
2 16 Partitions
g A STARK
= No Partitions
S 100 A STARK
§ 8 Partitions
X STARK
[
g
g
<

e

b
7

x

v

A

8 Cores

16 Cores

24 Cores

Figure 47: Line Intersects Polygon, Comparing Exareme W/ indexer with STARK

Table 37: Spatial Spark with indexers

Cores | Spatial Spark Broadcast Spatial Join | Spatial Spark Broadcast Spatial Join | Spatial Spark Broadcast Spatial Join
No Partitions 256 Partitions 512 partitions
8 25.992 31.1643 34.5913
16 17.676 21.3833 23.5087
24 17.8473 20.2287 23.1947
73 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Table 38: Spatial Spark without indexers

Cores | Spatial Spark Partitioned Spatial Join | Spatial Spark Partitioned Spatial Join | Spatial Spark Partitioned Spatial Join
64 partitions 256 partitions 512 partitions
8 176.241 190.424
16 165.314 138.988
24 173.717 127.113
Table 39: STARK without indexers
Cores | STARK No Partitions | STARK 8 Partitions | STARK 16 Partitions

8 672.017 269.777 285.78

16 647.499 209.012 210.202

24 509.661 158.358 191.217

SpatialSpark W/ Index - SpatialSpark W/0 Index

200

150

100

50

Average Execution Time (sec)

176.241

173.717

=25992
=K 17.8473

* Spatial Spark
No Partitions

% Spatial Spark
8 Partitions

Spatial Spark
16 Partitions

A Spatial Spark
W/0O Index
256 Partitions

A Spatial Spark
W/0 Index
512 Partitions

8 Cores

16 Cores

24 Cores

Figure 48: Line Intersects Polygon, Comparing Spatial Spark W/ and W/O indexer

STARK W/ Index - STARK W/0O Index

5000

‘o 1000
@
&

E 500
=
c
2
5
o
2

i 100
@
=3
©

?g 50
<

10

* STARK
No Partitions
* STARK
8 Partitions
672.017 647.499 STARK
509.661 16 Partitions
———k A STARK
285,78 210.202 W/0 Index
: 191.217 No Partitions
i)ﬁzﬁ A STARK
85.7193 79:882 W/0 Index
63.44 8 Partitions
—_— % A STARK

8 Cores

16 Cores

24 Cores

16 Partitions

Figure 49: Line Intersects Polygon, Comparing STARK W/ and W/O indexer

K. Giannousis

74

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.12. Line Overlaps Polygon

Table 40: Comparing systems with indexers, no partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | GeoSpark Indexed
8 43.72133333 28.9673 153.0473333
16 43.31733333 21.186
24 43.713 225777

Table 41: Comparing systems with indexers, 8 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | GeoSpark Indexed
8 13.437 28.0183
16 13.09566667 21.9503 143.327
24 14.256 19.3307 127.7576667

Table 42: Comparing systems with indexers, 16 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | GeoSpark Indexed
8 14.64333333 28.5523 161.2096667
16 14.97733333 20.3847 105.4203333
24 14.29566667 24.9103

Exareme W/ Index - Spatial Spark Broadcast Join Indexed

Average Execution Time (sec)

50 *
43.72133333 43.31733333 43.713

Fe— e — *

40
A

30

L

\ A
20 <

8 Cores

16 Cores 24 Cores

Exareme
No partitions

Exareme
8 Partitions

Exareme
16 Partitions

Spatial Spark
No Partitions

Spatial Spark
8 Partitions

Spatial Spark
16 Partitions

Figure 50: Line Overlaps Polygon, Comparing Exareme W/ indexer with Spatial Spark

75

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Exareme W/ Index - GeoSpark W/ Index

200 * Exareme
No partitions
161.2096667 % Exareme
8 Partitions
143.327
g 180 4 127.7576667 E)éapreme
Q - 1 titi
& 153.0473333 aritions
2 A GeoSpark
-E 105.4203333 No Partitions
‘5 100 A GeoSpark
*é 8 Partitions
E A GeoSpark
o 16 Partitions
g 43.72133333 43.31733333 43.713
g ¥ B * "
0
8 Cores 16 Cores 24 Cores

Figure 51: Line Overlaps Polygon, Comparing Exareme W/ indexer with GeoSpark

Table 43: Spatial Spark without indexers

Cores | Spatial Spark Partitioned Spatial Join | Spatial Spark Partitioned Spatial Join | Spatial Spark Partitioned Spatial Join
64 partitions 256 partitions 512 partitions
8 222.878 171.346 180.521
16 135.5 130.491
24 149.45 119.093
Table 44: GeoSpark without indexer
Cores | GeoSpark No Partitions | GeoSpark 8 Partitions | GeoSpark 16 Partitions
8 1144.688333 365.7136667
16 1049.238 1237.103667 356.5803333
24 1078.862333 1469.978333 402.1166667

SpatialSpark W/ Index - SpatialSpark W/O Index

250

200

150

100

Average Execution Time (sec)

50

A 222878
180:521

130:491

119.093

22.5777

% Spatial Spark

No Partitions

% Spatial Spark

8 Partitions

Spatial Spark
16 Partitions

A Spatial Spark
W/0 Index
64 Partitions

A Spatial Spark
W/0 Index
256 Partitions

A Spatial Spark
W/0 Index
512 Partitions

8 Cores

16 Cores

24 Cores

Figure 52: Line Overlaps Polygon, Comparing Spatial Spark W/ and W/O indexer

K. Giannousis

76

Experimental Evaluation of Big Geospatial Data Systems

GeoSpark W/ Index - GeoSpark W/O Index

1500 % GeoSpark
No Partitions
1469.978333 * GeoSpark
8 Partitions
_ GeoSpark
§ 1237.103667 A 16 Partitions
~ 1000
E A GeoSpark
E W/0 Index
- No Partitions
Lo
] A GeoSpark
3 W/0 Index
£ 109 1166667 8 Partitions
) 500 —365.7136667 356.5803333) A GeoSpark
g | A W/0 Index
z - 16 Partitions
153.0473333 143.327 127.7576667
* —
0
8 Cores 16 Cores 24 Cores

Figure 53: Line Overlaps Polygon, Comparing GeoSpark W/ and W/O indexer

77 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.13. Line Touches Polygon

K. Giannousis

Table 45: Comparing Exareme with indexer

Cores | Exareme Spatiallndex | Exareme Spatiallndex | Exareme Spatiallndex
No Partitions 8 Partitions 16 Partitions
8 45.757 14.72033333 15.956
16 45.62733333 14.705 16.04433333
24 4450833333 14.32133333 15.783
Exareme W/ Index
50 % Exareme
No partitions
Fo— = +
) * Exareme
40 45.757 45.62733333 44.50833333 8 Partitions
s Exarem.e_
2 16 Partitions
r
E 30
'_.
c
g
3
£ 2
w
Q
g > > -
g
< 10 14.72033333 14.705 14.32133333
8 Cores 16 Cores 24 Cores

Figure 54: Line Touches Polygon, Exareme W/ indexer

78

4.2.2.14. Line Within Polygon

Experimental Evaluation of Big Geospatial Data Systems

Table 46: Exareme with indexer

Cores | Exareme Spatialindex | Exareme Spatiallndex | Exareme Spatiallndex
No Partitions 8 Partitions 16 Partitions
8 18.52633333 6.662333333 8.343333333
16 19.06266667 7.655666667 8.143
24 18.192 6.652666667 7.581666667

Table 47: Magellan with indexer

Cores | Magellan Indexed
No Partitions
8 7.309
16 8.958
24 7.885

Table 48: Spatial Spark with indexer

Cores | Spatial Spark Broadcast Spatial Join | Spatial Spark Broadcast Spatial Join | Spatial Spark Broadcast Spatial Join
No Partitions 64 Partitions 256 Partitions
8 25.5593 29.6363
16 17.6893 21.223
24 18.734 21.156

Exareme W/ Index - Spatial Spark Broadcast Join Indexed

40

30

Average Execution Time (sec)

) \)‘L
e— <%

N
K
10
___—_-—-—'—'R'_~__
0
8 Cores 16 Cores 24 Cores

% Exareme
No partitions

* Exareme
8 Partitions

Exareme
16 Partitions

A Spatial Spark
64 Partitions

A Spatial Spark
256 Partitions

Spatial Spark
512 Partitions

Figure 55: Line Within Polygon, Comparing Exareme W/ indexer with Spatial Spark

79

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Exareme W/ Index - Magellan W/ Index

—_—— T —

20
Ty 15
[}
A
(]
E
'_
s
= 10
[%]
[T
>
w
@
(=2}
o
g 5

e

8 Cores

16 Cores 24 Cores

% Exareme
No partitions

* Exareme
8 Partitions

Exareme
16 Partitions

A Magellan
No Partitions

Figure 56: Line Within Polygon, Comparing Exareme W/ indexer with Magellan

Table 49: Magellan without indexer

Cores | Magellan
8 18.748
16 19.655
24 18.221

Table 50: Spatial Spark without indexer

Cores | Spatial Spark Partitioned Spatial Join

Spatial Spark Partitioned Spatial Join

Spatial Spark Partitioned Spatial Join

No Partitions 256 Partitions 512 Partitions
8 172.867 187.909
16 135.273 134.413
24 149.172 122.559

K. Giannousis

Magellan W/ Index - Magellan W/ Index

20
18.748
) 15
@
R
(]
E
'—
s
2 10
[¥]
Q
>
w
(]
(=2}
©
5 5

_/—:.‘655\'

18.221

8.958
7.885

7-1?9/**

8 Cores

16 Cores 24 Cores

* Magellan
No Partitions

* Magellan
W/0O Index
No Partitions

Figure 57: Line Within Polygon, Comparing Magellan W/ and W/O indexer

80

Experimental Evaluation of Big Geospatial Data Systems

SpatialSpark W/ Index - SpatialSpark W/0 Index

200 % Spatial Spark
64 Partitions

’ % Spatial Spark
172.867 256 Partitions

150 149.172 Spatial Spark
. 512 Partitions
135.273

T A Spatial Spark

W/0 Index
256 Partitions
100

Spatial Spark
W/0 Index
512 Partitions

50

Average Execution Time (sec)
>

25.5593
17.6893 18.734

8 Cores 16 Cores 24 Cores

Figure 58: Line Within Polygon, Comparing Spatial Spark W/ and W/O indexer

81 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.15. Point Equals Point

K. Giannousis

Table 51: Exareme with indexer

Cores | Exareme Spatiallndex | Exareme Spatiallndex | Exareme Spatiallndex
No Partitions 8 Partitions 16 Partitions
8 3.610333333 3.184 4,785
16 3.629 3.515666667 4.320333333
24 3.559666667 2.982333333 3.802
Exareme W/ Index
5 % Exareme
No partitions
% Exareme
8 Partitions
45
Ty Exareme
g 16 Partitions
r
E 4
'_
c
°
7 >— * N
£ 35 -
w
@
&
g
< 3
2.5
8 Cores 16 Cores 24 Cores

Figure 59: Point Equals Point, Exareme W/ indexer

82

4.2.2.16. Point Intersects Line

Experimental Evaluation of Big Geospatial Data Systems

Table 52: Compare systems with indexer, No partitions

Cores | Exareme Spatiallndex | STARK Livelndex
8 5.230333333 58.169
16 5.324666667 78.7197
24 5.582 84.255

Table 53: Compare systems with indexer, 8 partitions

Cores | Exareme Spatiallndex | STARK Livelndex
8 3.76 164.792
16 3.674333333 181.174
24 3.544666667 206.851

Table 54: Compare systems with indexer, 16 partitions

Cores | Exareme Spatiallndex | STARK Livelndex
8 5.134 130.847
16 4.623 101.258
24 4.660333333 106.007

Exareme W/ Index - STARK W/ Index (Log scale)

500 *
*
"N A
T 100
I}
o N /
P e
£ 50 A
=
S A
5
o
2
[10
(]
o
o o e i
© 5 3 x
z e > *
8 Cores 16 Cores 24 Cores

Exareme
No partitions

Exareme
8 Partitions

Exareme
16 Partitions

STARK
No Partitions

STARK
8 Partitions

STARK
16 Partitions

Figure 60: Point Intersects Line, Systems W/ indexer

83

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Table 55: STARK w/o indexers

Cores | STARK w/o Indexer No Partitions | STARK w/o Indexer 8 Partitions | STARK w/o Indexer 16 Partitions
8 1568.74 287.395 251.779
16 1082.6 201.949 168.79
24 1320.85 197.938 152.729
Table 56: Spatial Spark w/o indexers
Cores | Spatial Spark Partitioned Spatial Join | Spatial Spark Partitioned Spatial Join | Spatial Spark Partitioned Spatial Join

No Partitions 64 Partitions 256 Partitions
8 201.138 178.307
16 226.744 124.014
24 143.49

STARK W/ Index - STARK W/O Index

2000
1568.74

< 1500

@

2

(]

E

£

c

S 1000

3

(¥}

Q

in

[]

(=]

@

g 500

Z 251.779

e

1320.85

1082.6

168.79 152.729

STARK
No Partitions

STARK
8 Partitions

STARK
16 Partitions

STARK
W/0 Index
No Partitions

STARK
W/0 Index
8 Partitions

STARK
W/0 Index
16 Partitions

Je—61-706————60:27966667— 85.41066667

8 Cores

16 Cores 24 Cores

Figure 61: Point Intersects Line, STARK W/ and W/O indexer

SpatialSpark W/0 Index

250
201 V*

200

o

(7]

)

[

E 150

'—

=

o

5

Q

£ 100

w

[}

(=]

©

g

< 50

8 Cores

16 Cores 24 Cores

% Spatial Spark
64 Partitions

% Spatial Spark
256 Partitions

Spatial Spark
512 Partitions

Figure 62: Point Intersects Line, Spatial Spark W/O indexer

K. Giannousis

84

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.17. Point Intersects Polygon

Table 57: Compare systems with indexer, No partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | STARK Livelndex | Magellan Indexed
8 2.966 6.00233 1.120666667 31.706
16 3.114666667 8.96567 3.878333333 27.765
24 2.715333333 7.30667 3.802666667 30.854

Table 58: Compare systems with indexer, 8 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | STARK Livelndex
8 2.841 2.231 2.116666667
16 3.199333333 2.13033 1.625
24 3.163666667 2.39267 1.870666667

Table 59: Compare systems with indexer, 16 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | STARK Livelndex
8 4.565666667 2.17033 3.794666667
16 3.994333333 2.29233 3.029333333
24 3.870666667 2.07867 3.083333333

Exareme W/ Index - Spatial Spark Broadcast Join Indexed

Average Execution Time (sec)

10 *
*
8
A
6
A
4
<4 -
— ——1:*—,.
A A
2 B —— —
8 Cores 16 Cores 24 Cores

Exareme
No partitions

Exareme
8 Partitions

Exareme
16 Partitions

Spatial Spark
No Partitions

Spatial Spark
8 Partitions

Spatial Spark
16 Partitions

Figure 63: Point Intersects Polygon, Systems W/ indexer with Spatial Spark

85

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

K. Giannousis

Exareme W/ Index - STARK W/ Index

Average Execution Time (sec)

5 % Exareme
No partitions

% Exareme
8 Partitions

—Aa Exareme
16 Partitions

A STARK

3 + .
b \ No Partitions

A STARK
8 Partitions

2 A STARK
16 Partitions

8 Cores 16 Cores 24 Cores

Figure 64: Point Intersects Polygon, Systems W/ indexer with STARK

Exareme W/ Index - Magellan W/ Index

Average Execution Time (sec)

40 % Exareme
No partitions
% Exareme
8 Partitions
30 Exareme
16 Partitions
A Magellan
No Partitions
20
10

-+ o
Yoe—— n —

8 Cores 16 Cores 24 Cores

Figure 65: Point Intersects Polygon, Systems W/ indexer with Magellan

86

Experimental Evaluation of Big Geospatial Data Systems

Table 60: Compare systems W/O indexer, No partitions

Cores | Spatial-Spark Partitioned Spatial Join | STARK w/o Indexer | Magellan w/o Indexer
8 15.0203 6.54 31.662
16 14.3707 7.091 33.652
24 13.3583 6.883666667 26.611

Table 61: Compare systems W/O indexer, 8 partitions

Cores | Spatial-Spark Partitioned Spatial Join | STARK w/o Indexer
8 8.358 2.985
16 7.176 1.996
24 7.521 2.432666667

Table 62: Compare systems W/O indexer, 16 partitions

Cores | Spatial-Spark Partitioned Spatial Join | STARK w/o Indexer
8 5.207 3.99
16 4.683 3.591333333
24 4.16533 3.290333333

SpatialSpark W/ Index - SpatialSpark W/O Index

Average Execution Time (sec)

10 8.96567
7.30667
6.0@@*
5
. —
0
Figure 66: Point Intersects Polygon, Spatial Spark W/ and W/O indexers

20

15.0203
14.3707

% Spatial Spark

No Partitions

% Spatial Spark

15 "\L\”issa

8 Partitions

Spatial Spark
16 Partitions

A Spatial Spark

W/0 Index
No Partitions

A Spatial Spark

87

W/O0 Index
8 Partitions

Spatial Spark
W/0 Index
16 Partitions

K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

STARK W/ Index - STARK W/O Index

8 * STARK
7.091 6.883666667 No Partitions

6.54 * STARK
8 Partitions

6 STARK
16 Partitions

A STARK
W/0 Index

3.878333333 3.802666667 No Partitions
4 S S — :
) - A STARK
s — 4 W/O Index
8 Partitions
A STARK

W/0 Index
1.120666667 16 Partitions

Average Execution Time (sec)

8 Cores 16 Cores 24 Cores

Figure 67: Point Intersects Polygon, STARK W/ and W/O indexers

Magellan W/ Index - Magellan W/O Index

34 % Magellan
33.652 No Partitions
* Magellan
W/0 Index
No Partitions
= 32
1]
@
[«}]
E
=
g
2 30
[+
Q
»
w
Q
(=]
o
9] 28
z
26.611
26

8 Cores 16 Cores 24 Cores

Figure 68: Point Intersects Polygon, Magellan W/ and W/O indexers

K. Giannousis 88

Experimental Evaluation of Big Geospatial Data Systems

4.2.2.18. Point Within Polygon

Table 63: Compare systems with indexer, No partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join | Magellan Indexed
8 3.005333333 5.789 8.31
16 2.924 6.43 8.222
24 2.963 6.61433 8.796

Table 64: Compare systems with indexer, 8 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join

8 3.129666667 2.096
16 2.873 2.119
24 3.194666667 2174

Table 65: Compare systems with indexer, 16 partitions

Cores | Exareme Spatiallndex | Spatial Spark Broadcast Spatial Join

8 4.909333333 2.25
16 4.232333333 2.03067
24 3.884666667 2.082

Exareme W/ Index - Spatial Spark Broadcast Join Indexed

8 % Exareme
No partitions

% Exareme
8 Partitions
6 /—" Exareme
16 Partitions
A Spatial Spark
No Partitions

Average Execution Time (sec)

4 A Spatial Spark
8 Partitions
F— —_% Spatial Spark
k- = 16 Partitions
2 —r ——h
0
8 Cores 16 Cores 24 Cores

Figure 69: Point Within Polygon, Exareme W/ indexer with Spatial Spark

89 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

Exareme W/ Index

- Magellan W/ Index

10
L ‘/
8
o
Q
A
(]
E 6
'_
c
r=l
5
(%]
£ 4
w
(]
—_k
iy F— —— X
[
2
0
8 Cores 16 Cores 24 Cores

* Exareme
No partitions

% Exareme

8 Partitions

Exareme
16 Partitions

Magellan
No Partitions

Figure 70: Point Within Polygon, Exareme W/ indexer with Magellan

Table 66: Magellan W/O indexer, No partitions

Cores | Magellan w/o Indexer
8 19.141
16 20.783
24 17.362

Table 67: Spatial Spark W/O indexer

Cores | Spatial-Spark Partitioned Spatial Join | Spatial-Spark Partitioned Spatial Join | Spatial-Spark Partitioned Spatial Join
No Partitions 8 Partitions 16 Partitions
8 12.314 7.08133 5.31833
16 15.449 7.38333 6.01167
24 15.5243 7.486 4.48633

SpatialSpark W/ Index - SpatialSpark W/O Index

20
15.449 15.5243

5 15
8 12.314
(<]
E
'—
c
S 10
3
o 6.43 6.61433
@ i —k
g t——’:———"\A
7] 5
=3

8 Cores

16 Cores 24 Cores

*

*

Spatial Spark
No Partitions

Spatial Spark
8 Partitions

Spatial Spark
16 Partitions

Spatial Spark
W/0 Index
No Partitions

Spatial Spark
W/0 Index
8 Partitions

Spatial Spark
W/0 Index
16 Partitions

Figure 71: Point Within Polygon, Spatial Spark W/ and W/O indexers

K. Giannousis

90

Experimental Evaluation of Big Geospatial Data Systems

Magellan W/ Index - Magellan W/O Index

25 * Magellan
No Partitions

* Magellan
20 20.783 W/O Index

= *—1977 No Partitions
8 17.362
@
E 15
'—
c
2
=3
%’ 10 8.31 8.222 8.796
@ e b ——=7
(=] ~]
@
g
< 5

0

8 Cores 16 Cores 24 Cores

Figure 72: Point Within Polygon, Magellan W/ and W/O indexers

91 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

4.3. Challenges

For STARK, GeoSpark and Spatial-Spark, in the operations that are using Line objects
(edgesim_merge dataset) we changed the memory of Spark executors and that of the
system. That was done because of the size of the dataset and the additional need in
memory. Practically, we increased the amount of memory to use per executor process
(spark.executor.memory)to 5 GB and decreased the memory to use for the driver process
(spark.driver.memory) from 10GB to 4GB. This decrease was necessary for balancing
the memory of the systems.

STARK’s Grid partitioner currently supports 2 dimensional grids. Setting the number of
partitions we practically set the number of cells in each side of the grid per dimension.
So, a nominal of 8 partitions, corresponds to an 8 x 8 grid, rather than 8 distinguished
partitions as Exareme does.

Spatial-Spark in Broadcast Spatial Join, couldn’t fit edges_merge to memory as the right
member of a spatial relationship. In order to run the tests, it needed to be partitioned
in more than 8 or 16 partitions. We took advantage of STARK’s fixed grid logic and we
replicated that by giving 64 and 256 partitions correspondingly to the partitioners.

Spatial-Spark can perform worse on multiple computing nodes than on a single node, es-
pecially for experiments that are more data intensive. The low scalability may indicate that
data communication overheads among distributed computing nodes might be a potential
bottleneck.

In GeoSpark, in operations with Line objects index had to be persisted to disk because of
memory issues that couldn’t be resolved by just adjusting the memory properties for the
Spark jobs.

In Exareme the partitioning was performed during the dataset loading. Dataset edges _merge
took the most time due to its size, exceeding more than 2 hours. The experiment Line
Crosses Line gave partial results and experiment Line intersects Line gave no results
exceeding the timeout limit.

K. Giannousis 92

Experimental Evaluation of Big Geospatial Data Systems

5. CONCLUSIONS

In this paper we conducted a detailed functional and performance evaluation to some of
the most modern and complete state-of-the-art geospatial distributed systems. It is the
first time that a well-established benchmark like Jackpine is used to evaluate the perfor-
mance of distributed systems with spatial support. The outcome of the benchmarks shows
that each system supports different spatial operations that can be used in SQL queries.
STARK achieved great performance but it was supporting only some operations. On the
other hand, Exareme supports all the operations and shows stable performance in query
execution times but in most cases a bit less than the rest of the systems. Spatial Spark
achieves great query execution times when datasets fit into the memory, but performance
decreases when data is too large to fit in memory. Finally, GeoSpark and Magellan are
among the weakest of the systems due to the poor support of operations, while Magellan
doesn’t even support spatial partitioning.

93 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

K. Giannousis

94

Experimental Evaluation of Big Geospatial Data Systems

ABBREVIATIONS - ACRONYMS

GPS Global Positioning System

SOS Sensor Observation Services

AIS Automatic Identification System

GIS Geographic Information Systems

OGC Open Geospatial Consortium

RDBMS Relational DataBase Management System
DSL Domain Specific Language

JDBC Java DataBase Connector

APSW Another Python SQL Wrapper

RDD Resilient Distributed Dataset

SRDD Spatial Resilient Distributed Dataset

KNN K-Nearest Neighbours

OSM-XML | Open Street Map XML

WKT Well Known Text

DE-9IM Dimensionally Extended Nine-Intersection Model
DAG Data Acyclic Graph

UDF User Defined Function

ExaQL Exareme Query Language

ExaDFL Exareme DataFLows

VM Virtual Machine

HDFS Hadoop Distributed File System

RDF Resource Description Framework
SPARQL | SPARAQL Protocol and RDF Query Language
OWL Web Ontology Language

95 K. Giannousis

Experimental Evaluation of Big Geospatial Data Systems

K. Giannousis

96

Experimental Evaluation of Big Geospatial Data Systems

REFERENCES

[11 J. Bao, C. Sengstock, M. E. Ali, Y. Huang, M. Gertz, M. Renz, and J. Sankaranarayanan, editors. Pro-
ceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information
Systems, Bellevue, WA, USA, November 3-6, 2015. ACM, 2015.

[2] M. A. Beyer and D. Laney. The importance of 'big data’: A definition”. Gartner, 2012.

[3] Y. Chronis, Y. Foufoulas, V. Nikolopoulos, A. Papadopoulos, L. Stamatogiannakis, C. Svingos, and
Y. E. loannidis. A relational approach to complex dataflows. In Proceedings of the Workshops of the
EDBT/ICDT 2016 Joint Conference, EDBT/ICDT Workshops 2016, Bordeaux, France, March 15, 2016.,
2016.

[4] A.Eldawy and M. F. Mokbel. The era of big spatial data: A survey. Foundations and Trends in Databases,
6(3-4):163-273, 2016.

[5] G. Garbis, K. Kyzirakos, and M. Koubarakis. Geographica: A Benchmark for Geospatial RDF Stores.
ISWC 2013.

[6] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database system implementation. Prentice Hall, 1999.

[7]1 S.Hagedorn, P. Gotze, and K. Sattler. Big spatial data processing frameworks: Feature and performance
evaluation. In Proceedings of the 20th International Conference on Extending Database Technology,
EDBT 2017, Venice, Italy, March 21-24, 2017., pages 490-493, 2017.

[8] S. Hagedorn and T. Rath. Efficient spatio-temporal event processing with STARK. In Proceedings of
the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Iltaly, March
21-24, 2017., pages 570-573, 2017.

[9] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan. MR-DBSCAN: a scalable mapreduce-based DBSCAN
algorithm for heavily skewed data. Frontiers Comput. Sci., 8(1):83-99, 2014.

[10] S.T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A simple and efficient algorithm for r-tree
packing. In Proceedings of the Thirteenth International Conference on Data Engineering, April 7-11,
1997, Birmingham, UK, pages 497-506, 1997.

[11] S.Ray, B. Simion, and A. D. Brown. Jackpine: A benchmark to evaluate spatial database performance.
In 2011 IEEE 27th International Conference on Data Engineering, pages 1139-1150, April 2011.

[12] G. Spiliopoulos, K. Chatzikokolakis, D. Zissis, E. Biliri, D. Papaspyros, G. Tsapelas, and S. Mouzakitis.
Knowledge extraction from maritime spatiotemporal data: An evaluation of clustering algorithms on big
data. In 2017 IEEE International Conference on Big Data (Big Data), pages 1682—-1687, Dec 2017.

[13] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: Efficient in-memory spatial analytics. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 1071-1085, 2016.

[14] S. You, J. Zhang, and L. Gruenwald. Large-scale spatial join query processing in cloud. In 37st IEEE
International Conference on Data Engineering Workshops, ICDE Workshops 2015, Seoul, South Korea,
April 13-17, 2015, pages 34—41, 2015.

97 K. Giannousis

	CONTENTS
	INTRODUCTION
	BACKGROUND
	RELATED WORK
	IMPLEMENTATION
	Systems
	STARK
	Partitioning
	Indexing
	Query Language

	GeoSpark
	Partitioning
	Indexing
	Query Language

	Magellan
	Partitioning
	Indexing
	Query Language

	Spatial-Spark
	Partitioning
	Indexing
	Query Language

	Exareme
	Partitioning
	Indexing
	Query Language

	Performance benchmark
	Experimental set up
	Evaluation results
	Polygon Contains Point
	Polygon Contains Polygon
	Polygon Disjoint Polygon
	Polygon Equals Polygon
	Polygon Overlaps Polygon
	Polygon Touches Polygon
	Polygon Within Polygon
	Line Crosses Line
	Line Crosses Polygon
	Line Intersects Line
	Line Intersects Polygon
	Line Overlaps Polygon
	Line Touches Polygon
	Line Within Polygon
	Point Equals Point
	Point Intersects Line
	Point Intersects Polygon
	Point Within Polygon

	Challenges

	CONCLUSIONS
	ABBREVIATIONS - ACRONYMS
	REFERENCES

