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Chapter 1

Introduction

The purpose of this essay is to examine the strategic behaviour of customers
who arrive at a queue evolving in alternating environment. We begin by
presenting the basic definitions and theorems that will be frequently used.

1.1 Queueing theory preliminaries

A queue or queueing system is a system that provides a service to
arriving customers. After the customers are served they depart from the
system immediately.

Generally, the arrival times and the service times of consecutive cus-
tomers are random variables. Therefore, the system’s progress in time (e.g.
the number of customers in the system) cannot be calculated with cer-
tainty. However, we can describe and study the system by using appropriate
stochastic processes.

1.1.1 Common performance measures of a queueing system
The main characteristics of a queue are the arrival process, the service pro-
cess and the service discipline.We will briefly describe each of them.

Arrival Process

The arrival process describes the mechanism by which consecutive customers
C1,Cs,...,C,, ... arrive at the system and is determined by the joint dis-
tributions of the arrival moments tg = 0 < t; < ¢ty < ... < t, < ... or
equivalently the interarrival times

Tn = tn+1 — tn, n € N.

The most common cases are listed below.



1. Poisson arrival process. This is the most common arrival process.
It is also called completely random arrival process and is the most suit-
able model for systems with great amount of potential customers that
use the service rarely and independently from each other. The models
that will be examined in this essay refer to this arrival process. It is
denoted by the capital letter (M) which is derived by the Memoryless
or Markovian property of the Poisson.

2. Deterministic arrival process. In this process customers arrive in
equal time intervals of length a, which means T, = a with probability
1. This is an appropriate process to model systems that serve by
making appointments. It is denoted by the capital letter (D).

3. General renewal arrival process. In this case,the interarrival times
T1,T5... are independent identically distributed random variables with
a general distribution A(z) (z > 0) and finite mean value

o= /OOO 2dA(z) = /000(1 _ A(2))dx = /OOO A°(z)dz.

The parameter A\ = 1/a ,which is the mean number of arrivals per
time unit, is referred to as the arrival rate. The deterministic arrival
process (D) is a special case of the general renewal arrival process
with A(x) = 0, if x < a, and A(z) = 1, if © > a. The Poisson
process is also a special case of this process with A(x) =0, z < 0 and
A(z) =1 — e x> 0 which means that Ty, T5,... are independent
identically distributed random variables that follow the exponential
distribution. The general renewal arrival process is denoted by the
capital letters (GI) which refer to the generally independent inter-
arrival times.

Service process

The service process describes how the customers are served. It is defined
by the number of servers in the system, k, (k € {1,2,...,00}) and the dis-
tribution of the service times. By denoting X,, the service time of the n-th
customer that joins the system, we assume that X, X5, ... are independent
identically distributed random variables that follow an arbitrary probability
distribution B(x) (z > 0) with finite mean value

b:/ooozndB(m):/Ooo(l—B(ac))d:x:/OooBc(x)dx.

In a queue with one server who is constantly busy the parameter = 1/b
represents the mean number of customers that depart from the system per
time unit which is also referred to as service rate. The service process that



does not assume a particular distribution for the time that is required for
a customer to be served by a server is denoted by (G). The most common
case is when B(z) = 1 — e #*(x > 0), the exponential distribution, and is
denoted by (M).

Service discipline

The service discipline determines in which order arriving customers will
be served. The most commonly used discipline is the FCFS (First-Come-
First-Served) or FIFO (First-In-First-Out), where the customers are served
according to the order of their arrivals at the system. Other important dis-
ciplines are LCFS (Last-Come-First-Served) or LIFO (Last-In-First-Out),
where, whenever a server becomes available, the customer that arrived
most recently in the system is served and SIRO (Service-In-Random-Order),
where the customer to be served is chosen randomly. The disciplines men-
tioned above do not take directly into consideration the service time of
the queued customers. There are others, like SSTF (Shortest-Service-Time-
First), where the customer with the least service time among those queued
is chosen to be served.

Another queueing regime is the one that sets priorities for a certain type of
customers. Those disciplines can be with preemption or without preemption.
Regarding those without preemption, when a new arrival is placed at the
head of the queue, the customer in service is allowed to complete it.When
the discipline is with preemption, a customer that has priority interrupts
the service of a low priority customer.There are two cases of priority service.
The conservative case, where the service, when resumed, is continued from
the point where it was interrupted and the non-conservative case, where the
service begins anew when resumed.

A common example of a preemptive discipline is the LCFS/P-R(Last-
Come-Flirst-Served/Preemptive-Resume). Under this queueing regime, a
new arrival preempts a customer who might be in service. The interrupted
customer returns to the queue and is chosen to continue her service with the
rule of the LCFS discipline. The service is resumed from the point it was
interrupted and no work is lost.

Kendall’s Notation

To classify queueing models we use the notation A|B|k
A refers to the arrival process
B refers to the service time distribution

k denotes the number of servers
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Therefore, GI|G|1 refers to a general queue with one server and M|D|3
refers to a queue that has 3 servers, constant service times and a Poisson
arrival process.

The capacity of the system is the maximum number of customers allowed in
the system including those in service. Assume that the capacity of the sys-
tem is a finite number s. Then the previous notation is expanded by adding
s and we use A|B|k|s. After this notation the service discipline is declared.
For example, D|G|1|10(LCF'S) refers to a queue with constant inter-arrival
times, general service times, one server, capacity for 10 customers and the
LCFS discipline.

Performance Measures

Let j € N\{0}, then:
e S, is the sojourn time of customer Cj,
o W; is the waiting time of customer Cj,
e X, is the service time of customer C}.

Obviously
S; =W; +Xj ( €N).

For t > 0 , we have the following notations
e Q(t) is the number of customers in the system (queue size)
e (Q,(t) is the number of queued customers and
o (Qs(t) is the number of customers currently served

at some point in time ¢.We observe that

Q(t) = Qq(t) + Qq(s).

The most useful stochastic processes for studying a queue are

{Q(t) - £ = 0}, {Qq(t) : t = 0}, {S; : j € N\{0}} and {Wj : j € N\{0}}.

Consider the following:

o Q)= tlim 1 fg Q(z)dz is the (long-term) average number of customers
—00

in the system (average queue length),

e Q,= tllglo 1 fg Qq(z)dz is the (long-term) average number of waiting

customers
° Q, = tlggo%fg Qs(z)dz is the (long-term) average number of cus-

tomers currently being served.
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Obviously , @, @q and Q, are averages with respect to time (time averages).

Consider also

e S=1

n
m % >~ Sj is the (long-term) average sojourn time,

. n
o W = lim % >~ W is the (long-term) average waiting time,
j=1

n
e X = lim > X; is the (long-term) average service time.

Obviously , S, W and X are averages with respect to the customers (cus-
tomer averages).

1.1.2 Queue length

The most useful stochastic process for describing a queueing system is the
queue length {Q(t) :t > 0}. Therefore, we are interested in computing the
probabilities

pi(t) = P(Q(t) =j) JjeN
of j customers in the system at any point t. However, those are usually
very difficult to compute. Moreover, after a short period of time, the system
will achieve a steady state, which means that {Q(¢)} becomes stationary.
Therefore, our attention focuses on the steady state probabilities
pj = lim p;(t) jeN
which are much simpler to compute.

If the interarrival times or the service times of a queue are continuously
distributed, which is usually the case, the steady state probabilities can
always be defined.

An important parameter is the utilization rate p = ﬁ where X is the
mean arrival rate and p is the mean service rate. Since A customers enter
the system per time unit and each one of them adds i workload to the
system,the mean workload that enters the system per time unit is p. If
p > k then the queue length keeps increasing in time and the steady state
probabilities p;(t) are all zero. On the other hand, if p < k, the probabilities
pj are not equal to 0 and the system reaches a steady state.

12



Embedded processes

It is much easier to study {Q(t)} when the Markov property holds. If the
Markov property holds, given the value of {Q(¢)} (the present) the random
variables {Q(u) : u > t} (the future) are independent from {Q(s) : s < t}
(the past). In many applications this property does not hold. Therefore,
we need to inspect the queue at specific time points ¢ € [0, 00] where the
Markov property holds. Those time points are those of consecutive arrivals
or consecutive departures of customers. We define the following random
variables

e Q. =Q(t,) , n € N, the queue length before the n-th arrival

n

e QF =Q(7,}), n € N, the queue length after the n-th departure.

The stochastic processes {Q,, , n € N} , {Q;", n € N} which describe the
system specifically at times of arrivals and departures respectively, are called
embedded processes of {Q(t) : t > 0}. We denote by

o rj= lim P(Q, =j),j€N,

n—oo

o d; = nh_}n(}OP(Qj{ =j),j€EN,
the limiting distributions of {Q, = j} and {Q;} = j} respectively. In a
system where we do not have multiple arrivals or departures at the same
moment it is proven that
T‘j = dj.

The PASTA property

The limiting distributions in continuous time {p;} and at arrival moments
{r;} or departure moments {d;} do not always coincide. However, this is
the case when we have a Poisson arrival process.Therefore,

pj =7y jEN,

when the arrival process is Poisson. Thus, an arrival from a Poisson process
observes the system as if it happens at a random moment in time. Therefore,
any performance measure of the queue at the instant of a Poisson arrival is
simply the long term time average of that measure. This property is referred
to as PASTA (Poisson Arrivals See Time Averages).

Little’s Law

When long queues are formed in a system, we intuitively expect to have long
sojourn times.This intuition is justified by Little’s Law:
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Under steady state conditions, the long-term average queue length in a
queueing system equals the average rate at which customers arrive multi-
plied by the long-term average sojourn time of a customer,

Q@ = \S (with probability 1).

Assume that the limiting distributions of the stochastic processes {Q(t) :
t >0} and {S, : n € N\{0}} are defined and let @), S be the respective limit
random variables. The following holds :

E(Q)=Q and E(S)=S.
Now , Little’s Law takes the following alternative form
E(Q) = \E(S).

An important aspect of the Little’s Law is that it also holds in subsys-
tems within systems. Therefore, if we consider the subsystem of waiting
customers, without the customers currently served, Little’s Law yields :

E(Qq) = AE(W),

where @4, W are the limit random variables that describe the number of
waiting customers in the queue and the waiting time respectively.
If we consider the customers currently being served as our system, Little’s
Law yields
E(Qs) = AE(X) = \b = p,

where b = F(X) is the average service time and @ is the limit random vari-
able that describes the number of customers currently served or equivalently,
the number of busy servers.

1.1.3 The M/M/1 queue
Birth-death process

A birth-death process is a special case of a Markov process where the state
space is S = N or § = {0,1,...,s}, and the state transitions are of only
two types : “births” which increase the state variable by one, from state n
to state n + 1 and “deaths” which decrease the state variable by one, from
state n to state n — 1. The process is specified by birth rates {\;} and death
rates {y;}. The state diagram is the following :

Ao A Aot M
H1 Ha He

Mi+1
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The stochastic process {X (¢) : t > 0} is called birth-death process. The
unique limiting (stationary) distribution

pn = lim pa(t)  neS

exists if and only if

B_l _ Z AOAl ...)\n_l < 007

neg HiH2---fin
and can be computed by
AOAL -+ A
pp =Bl g e S
M2 - -

In this case {X(t)} is positive recurrent. When B! = oo, p, = 0 (n € 9)
and {X (¢} is null recurrent or transient.

The M|M|1 queue

The M|M|1 queue is one of the simplest and most common service systems.
In this system customers arrive according to a Poisson arrival process with
parameter A\. There is only one server and the waiting capacity is infinite.
Therefore a customer that finds the system empty begins her service immedi-
ately whereas a customer that finds the server busy (the system not empty)
joins the queue. The consecutive service times are independent identically
distributed random variables that follow the exponential distribution exp(p)
and are independent of the arrival times. When customers complete their
service, they depart from the system and the server selects another customer
to serve (if the queue is not empty).

Consider the stochastic process of the queue length {Q(¢)} at a specific time
moment . The process {Q(t),t > 0} has a discrete state space {S C N}
and is a continuous time Markov chain since the interarrival times and the
successive service times are independent and follow the exponential(\) and
the exponential(u) distributions respectively.

If Q(t) = n we can only move to state n + 1 with rate A or to n — 1 with
rate pu. Thus, we have a birth-death process like the one described in the
previous section. Consequently, the unique limiting distribution exists if and

only if

00 0o 00

_ AOAT - A1 n

Blzg—zg —:Ep”<oo,
n=0 Hip2 - - fin n=0 wt n=0

where p = A/u is the utilization rate.
In order for B~ < 0o, p < 1 is a necessary condition and then :



Therefore, in order for the limiting distribution of {Q(t),t > 0} to exist, p
must be less than 1 in which case the limiting distribution is p, = (1 —p)p",
n € N, the Geometric(p) distribution. If p > 1, then p, =0, n € Nor

lim P(Q(t) >n)=1, neN,
t—o0
and the queue length becomes infinite.

When p < 1, the system, after some time, will reach a steady state. Let
) be the number of customers in the system while steady state has been
achieved. Then, the limiting random variable @ follows the geometric dis-
tribution with parameter p. Therefore, the mean value and the variance of
the queue length are given respectively by

V(Q)

pu— 1 — p2 .

Also, if S is the limiting random variable that represents the sojourn time of
a customer in the system while the steady state has been achieved , Little’s
law yields

The following results are also true.
e po=P(Q=0)=1—p the probability that the system is empty

o P(Q>k)=p" kel

1.2 Game theory preliminaries

In this section we will define and discuss elements of Game Theory that will
be used throughout this essay.

1.2.1 Description of non-cooperative games

We begin by giving the definition of a game between two or more players.
Definition 1.2.1. A game is specified by the following parameters
a. A finite set of players N = {1,2,3,...,n}

b. A set of actions available for player i € N which is denoted by A;
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c. The payoff function which assigns to every set of a players’ actions
a real number.

Remark 1. In the applications of Game Theory to Operations Research, the
set of players N is usually infinite.In this essay the players are the customers
that arrive at a queue and are considered potentially infinite.

1.2.2 Equilibrium strategies and payoff function

A strategy of a player represents a complete plan of actions that the player
will follow under any circumstances that may arise during the game. A
strategy profile is a set of strategies, one for each player of the game. There-
fore, a strategy profile is a predetermined course of action for every possible
situation throughout the game.

Assume a game that has r (r € N) different stages. A pure strategy for
player i is a vector of actions from A;, denoted by s; = (a1, ag, ..., a,) which
declares the action that player ¢ will take when the game is at one of those
T stages.

A mixed strategy is a vector that assigns a probability to all pure strate-
gies a player has available and is the probability a player uses the corre-
sponding strategy. For example, if a player has 4 different possible pure

strategies, some mixed strategies are m; = (i, i, %, %), mo = (%, %, %, i),

ms = (%, %, %, O). Obviously, the coordinates of a mixed strategy add up
to 1.

Let {sj1, si2, ..., 5ij 7 € N} be the available pure strategies of player i.Then
the set of mixed strategies M; is the set M;={(p1,p2,...,p;) : Zi:l P =
1, pr > 0}.

Every pure strategy can be expressed as a mixed strategy. Consider a pure
strategy of the i-th player s;z. Then the mixed strategy (0,...,0,1,0,..0)

with 1 at the k-th coordinate corresponds to s;i

Definition 1.2.2. The set M = My x ... x M,, = {my,...my : my €
Mi,....m, € M,} is the set of strategy profiles. m € M is a strategy
profile that defines a strategy for all players.

Payoff function

Each player is associated with a real payoff function Fj(m). This function
specifies the payoff received by player ¢ given that the strategy profile m
is adopted by the players. Denote by m_; a strategy profile for the set of
players N'\{i}.Then, if m = (mq, ..., mn), m—; = (M1, ...mi—1, Mjt1, ..., My)
and we can also express the strategy profile m as m = (m—_;, m;).

We can now define the payoff function F;(m) corresponding to player i, as
a function that assigns real numbers to the elements of the set of strategy
profiles M :

F; . (mi,m_i) —r; € R.

17



We assume that the function Fj(s) is linear in m;.
Therefore, by letting m; =p-a+ (1 —p)-b,p € [0,1],a,b € M; we get:

F(mi,m—;) =p- Fi(a,m—;) + (1 —p) - Fi(b,m_;).

Dominating strategies

Definition 1.2.3. A strategy mz1 1s said to weakly dominate strategy m?
(for player i), if for any m_;, Fy(m},m_;) > F;(m?,m_;) and for at least
one m_; the inequality is strict. A strategy m; is said to be weakly domi-
nant if it weakly dominates all other strategies in M,;.

Definition 1.2.4. A strategy m; is said to be a best response for player
i against the profile m_; if

*
m; € arg max F(m;,m_;)
m;EM;

Therefore, m; maximizes the utility of player i when the other players use
the m_; strategy.

We denote by BR;(m_;) the set of best responses of the i-th player when
all others follow the m_; strategy:

BRZ<TATL_Z) = {mf : E(mf,fn_z) > Fy(mi,m—;), Ym,; € MI}
= arg max F(m;,m_;).
m;eM;
Equilibrium

Definition 1.2.5. A strategy profile m® is an equilibrium profile if for

every i € N, m§ is a best response for player i against m¢; i.e.,
S F;(m;, m¢, i€ N
mg € arg max F;(m;,m®;), i
m;EM,;

Remark 2. If a best response m; is a mixture of strategies then all those
strategies are also best responses.This property does mot hold when “best
response” is replaced by “equilibrium”.

1.3 Game theory in queues

In this section we will discuss a queue from the perspective of game theory.
The arriving customers are the players of the game, therefore the players are
usually indistinguishable and infinitely many. When a customer arrives at
the queue she needs to make a decision. The possible decisions usually are
join or balk (not join). The options a customer has available are the elements

18



of each player’s action set. Depending on their choice, the customers will
receive a payment at the completion of their service, which is given by their
payoff function.

Let R be the reward customers gain when they complete their service and
C be the cost per time unit a customer incurs while in the system. We
consider that the different states of the game are the number of customers
in the queueing system given by the variable Q(t).

Considering that the players are indistinguishable, denote the common set
of strategies and the payoff function by S and F' respectively and let F'(a,b)
be the payoff of a player who chooses strategy a while everyone else selects
strategy b .We now have the following definition:

Definition 1.3.1. A symmetric equilibrium is a strateqy s¢ € S such
that

e e F e
s° € argmag (s,5%)

which means that s° is a best response against itself.

1.3.1 Information and strategies

The information a customer receives upon arriving at the system is usu-
ally very important when choosing a strategy. Consider the M|M|1 queue
(FCFS). If a customer arrives and observes an empty queue, she will proba-
bly join since her sojourn time is expected to be short. On the other hand,
if she observes a lot of customers in the system, her sojourn time increases
along with the cost she will suffer and thus, she will be more reluctant to
join. Therefore, we classify queues according to whether or not their length
can be observed before making a decision.

The objective of this essay will be to examine models with alternating
environment, i.e. the parameters of the system alternate randomly between
two or more states. For example, the system may alternate between two
service modes, a slow and a fast one. Naturally, a customer will prefer to
join when the fast mode is active in order to lower her mean sojourn time.
For this reason, we also need to classify queues according to whether or not
we can observe the state of the system before taking an action.

Let N(t) and I(t) be the number of customers and the state of the system at
a certain point in time ¢ € [0, 00]. Then, a customer may have the following
information levels available upon arrival:

1. Fully observable queue: In this case, the customers can observe
both the number of customers in the system N(¢) as well as the state
of the system I(t) before making a decision.

2. Almost observable: In this case, arriving customers observe the
number of customers in the system N(t), but can’t identify the state
of the system I(t) before deciding whether to join or balk.
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3. Almost unobservable: In this model, customers can tell apart the
different states of the system but cannot observe the number of cus-
tomers in the queue and the set of information each customer has
available is the set of possible states of the system {I(¢) : ¢ € [0, o0]}.

4. Fully unobservable: In this case, customers have no information
regarding the number of customers in the system and they cannot tell
apart the different states of the system.

Threshold strategies

Due to the structure of the payoff function, especially in the observable
models, the equilibrium strategy usually is a threshold strategy. When a
player follows a threshold strategy, she exhibits a certain behaviour until a
specific threshold is reached. When the threshold is exceeded , the customer
follows a different course of action. A simple example of a threshold strategy
is when a customer joins a queue if she observes less than 10 customers in
the system and balks when 10 or more customers are observed.

Definition 1.3.2.

e A pure threshold strategy with threshold n € N dictates that a cus-
tomer will take an action A while the system is in states 0,1,2,...,n-1
and some other action B while the system s in any other state.

e A mixed threshold strategy with threshold n+p, n € N;p € [0,1)
dictates that

— a player will take an action A while the system is in the states
0,1,2,...,n—1,

— while in state n, a player will take action A with probability p and
some other action B with probability 1 — p

— a player will take another action B for all other states of the
system.

1.3.2 Steady-state

A pure strategy prescribes an action to each state of the system. A strategy
profile and an initial state induce a probability distribution over the states of
the system. The player’s payoff is determined by her strategy, the strategy of
the other players and the state of the system, while every player is interested
only in maximizing her expected payoff.

When we calculate a player’s expected payoff while she follows a strategy
x against all others using strategy y we assume that steady-state conditions
have been reached. As stated above, the steady-state has the meaning that
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the probability distribution over the states is the limiting distribution, which
makes calculations much simpler. Moreover, convergence in steady state is
usually very fast, so the analysis remains valid if we neglect the transient
effects on the customer equilibrium behaviour.

1.3.3 Avoid the crowd or Follow the crowd

We have already stated that the payoff function of a customer is a function of
the strategy selected by other customers. In queueing models, the strategies
are usually represented by a single number. For example, in the observable
case we have a natural number that represents the threshold, while in the
unobservable case customers usually enter the queue with probability p €
[0, 1]. In such cases it is meaningful to consider whether an individual’s best
response is a monotone function of the strategy selected by other customers.

Let F(x,y) be the payoff function of a tagged customer who selects strategy
x when all others select strategy y. Assume that for every y there is a unique
best response z(y) = argméwF(x, y). Let z(y) be monotone in y.

e If z(y) is increasing in y then, when y increases, z(y) also increases,
meaning that the tagged customer follows the behaviour of the other
customers. This behaviour is called follow the crowd (FTC).

e If z(y) is decreasing in y then, when y increases, x(y) decreases, mean-
ing that the tagged customer does not follow the behaviour of the other
customers. This behaviour is called avoid the crowd (ATC).

An equilibrium strategy y satisfies that z(y) = y, which means that y is a
fixed point of function x. An interesting property of the FTC behaviour is
that multiple equilibria are possible, whereas in the ATC behaviour at most
one equilibrium is possible.

1.3.4 Costs and objectives

In order to calculate the equilibrium strategies we need to compute the payoff
function for a tagged customer who follows a strategy s;qggeq When all others
follow a strategy Sothers- 1he welfare of the tagged customer consists of the
benefit she gains upon completing her service minus the direct costs (e.g. the
price of a ticket to enter the queue) and the indirect costs that are associated
with waiting. Let R be the benefit a customer gains from completed service,
C the cost per time unit' while the customer remains in the system, p the
direct costs and ¢ the time a customer remains in the system. Then, we may
have the following optimization objectives:

1'We assume that the waiting cost is linear in time. While true for most applications,
this assumption does not always hold.
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e individual optimization Each customer maximizes her net benefit while
ignoring the costs she may inflict on other customers in the system.The
net benefit is given by

F(Staggeda Sothers) =R-Ct— p.

e social optimization A social planner dictates the strategy all players
(customers, servers, ...) must follow in order to maximize the social
welfare. In this case, payments between players are considered transfer
costs and do not affect the social welfare. The social welfare is com-
puted by the sum of the benefits from completed services minus the
costs incurred by the system’s operation and the sum of the waiting
costs of all players.

1.3.5 Joining, balking and reneging

The action set a customer has available when arriving in a queuing system
usually consists of the following three options:

e join: A customer arrives at the system and decides to enter in order
to be served.

e balk: A customer arrives at the system and decides not to enter. This
is called balking. Usually, after a customer balks, they do not have the
option of joining the system later on. This is the case for the models
that will be examined throughout this essay.

e renege After a customer has entered the queue, she sometimes has the
option to abandon the system while waiting. This is called reneging.
Again, a customer that reneges is usually considered lost by the system
and cannot rejoin at a later time. In the models of this essay, reneging
is not allowed.

In section 1.1.1 we discussed the meaning of the arrival rate \. After taking
into account that an arriving customer does not always enter the queue we
make the following adjustment:

We denote by A the rate customers arrive at the system -whether they join
or not- and we denote by A the rate of customers that arrive and decide
to join the system. A is referred to as the potential arrival rate, while X is
referred to as the effective arrival rate.

1.4 Strategic behaviour in queueing systems in al-
ternating environment

As stated in the previous sections, the economic analysis of customer be-
haviour in queueing systems is based on some reward-cost structure which
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is imposed on the system and reflects the customers’ desire for service and
their unwillingness to wait. Customers are allowed to make decisions about
their actions in the system, for example they decide whether to join or balk,
to abandon the queue, to buy priority or not etc. The customers want to
maximize their benefit while taking into account that other customers have
the same objective. This situation can be considered a game among the
players. The basic problem is to find an equilibrium and socially optimal
strategies. These ideas go back at least to the works of Naor (1969) and
Edelson and Hildebrand (1975) who studied equilibrium and socially
optimal strategies for whether to join or balk in an M|M|1 queue with a
simple linear reward-cost structure. Naor (1969) assumed that an arriv-
ing customer observes the queue length before making her decision to join
(observable case). His study was complemented by Edelson and Hilde-
brand (1975) who studied the unobservable case, where the customers
had to make their decision without information about the state of the sys-
tem. Since then, there is a growing number of papers that deal with the
economic analysis of the balking behaviour of customers in variants of the
M|M]|1 queue, see e.g. Hassin and Haviv (1997) (M|M|1 queue with
priorities), Burnetas and Economou (2007) (M|M]|1 queue with setup
times), Guo and Zipkin (2007) (M|M|1 queue with various levels of
information and uncertainty in the system parameters), Economou and
Kanta (2008) (M|M]1 queue with compartmented waiting space), Sun et
al. (2010) (M|M|1 queue with setup/closedown times) and Zhang and
Wang (2010) (M|M|1 queue with delayed repairs).

One of the models that will be discussed in this study is the M|M|1 queue
with an unreliable server. The strategic behaviour in vacation queueing
systems, where the server may become unavailable in between services, is
a quite recent endeavor. Burnetas and Economou (2007) studied the
M|M]|1 queue with setup times under a strategic perspective. Subsequently,
Economou and Kanta (2008) and Jagannathan, Menache, Modi-
ano and Zussman(2011) studied the strategic joining/balking behaviour
of the observable and unobservable models of the M|M|1 queue with un-
reliable server. Guo and Hassin (2011;2012) studied the strategic be-
haviour of customers in an M|M|1 vacation queue with an N-policy. The
study of the strategic customer behaviour in vacation queues has been also
extended in models with additional characteristics such as closedown times,
general service or vacation time etc., see e.g. Sun Guo and Tian (2010),
Economou,Gémez-Corral and Kanta (2011), Li and Han (2011),
Do, Tran, Nquyen, Hong, and Lee (2012), Liu, Ma, and Li (2012),
Zhang, Wang, and Liu (2013) and Yang, Wang, and Zhang (2014).

For the study of vacation queues it is usually convenient to consider fluid
queues. Fluid queues are suitable for representing systems where the process
of the customers is very fast in comparison with changes in the server status.
A fluid queue is an input-output system, where the customers are modeled
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as a continuous fluid that enters and leaves a storage space, called the buffer,
according to rates that depend on some underlying stochastic process that is
related to the state of the system. Fluid queues have been used extensively
as an approximation of the standard queues with discrete units in applica-
tions such as high-speed data networks, automated manufacturing systems,
traffic/transportation networks etc.

There is an extensive literature devoted to the study of the fluid flow mod-
els. Several early computational approaches and results can be found in
the papers of Kosten (1974a)(1974b) and Kosten and Vrieze (1975).
Anick, Mitra, and Sondhi (1982) introduced a benchmark model that
is now known as AMS model. This is a fluid queue that represents a single
buffer which receives data from several independent sources, each of which
switches between on and off states according to a continuous time Markov
chain. For a smooth introduction in the area and a literature review of
classical references see Kulkarni (1997), Schwartz (1996) or Gautam
(2012).

The fluid queues are in some sense semi-deterministic counterparts of va-
cation queueing models in random environment. Indeed, the on-off alter-
ations of the independent sources that occur in fluid models can be seen
as vacation/failures of the server of the system. Even though fluid queues
treat situations similar to vacation queues, the literature has been devoted
mainly on performance evaluation issues and control problems under a cen-
tral planer (see e.g. Rajagopal, Kulkarni, and Stidham (1995) for the
optimal flow control problem). There are also a number of studies with
strategic considerations and fluid models that concern completely different
situations from vacation queues, see e.g. Maglaras (2006), Jain, Juneja,
and Shimkin (2013), and Haviv (2013). The strategic behaviour re-
garding the joining/balking dilemma in an observable fluid queue with a
Fist-Come-First-Served (FCFS) discipline, where the system alternates be-
tween exponentially distributed fast and slow service periods was studied by
Economou and Manou (2016).

In the two queuing models mentioned so far the studies in the changes of
the environment mainly refer to the service process. When both the service
and arrival processes alternate, the analysis becomes much more compli-
cated. An interesting queueing model, where we can consider that the sys-
tem alternates between states with different arrival and service rates, is the
stochastic clearing system. In this model, the customers are accumulated in
a waiting room and the server removes all customers at the completion of
a service cycle. Stochastic clearing systems have been studied by Stidham
(1974), Serfozo and Stidham (1978), Artajelo and Gomez-Corral
(1998) and Yang et al. (2002). They have been also studied in the
framework of stochastic systems subject to (total) catastrophes or disasters,
where catastrophic events are assumed to remove all customers/units of the
system/population (see e.g. Kyriakidis (1994), Economou and Fakinos
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(2003, 2008), Stirzaker (2006, 2007) and Gani and Swift (2007)). In
the majority of such studies the interest of investigators lies in the transient
and/or the stationary distribution of the process of interest. However, op-
timization issues for this class of systems have also attracted the interest in
the literature (see e.g. Kyriakidis (1999a, 1999b), Economou (2003),
Kyriakidis and Dimitrakos (2005).

The optimization questions that have been studied in the context of stochas-
tic clearing systems concern the central planning of the systems and the
objective is the determination of optimal strategies for the server, about
when he should remove the customers from the system (see e.g. Stidham
(1977), Kim and Seila (1993), Economou (2003), Kyriakidis and
Dimitrakos (2005)). The behaviour of customers in a clearing system in
alternating environment when they are free to make decisions to maximize
their benefit has been studied by Economou and Manou (2013).

In this essay we will examine customer strategic behaviour in queuing sys-
tems in alternating environments. The essay is organized as follows. In
chapter 2, we will describe a queue with an unreliable server. The cus-
tomers arrive at the system, observe the number of customers in it and
decide whether to join or balk. We will consider two information cases, the
fully observable and the almost observable case and identify the equilibrium
balking strategies.

In chapter 3, we will consider a stochastic clearing system in random en-
vironment. We will explore the customers’ strategies under various infor-
mation cases. In all cases, we will show that the expected net benefit of a
customer depends only on her strategy and not on the strategies followed
by other customers, a fact that implies the existence of dominant strategies.
This is a special feature of the system and is related to the nature of the
stochastic clearing mechanism. In the almost observable case, we notice
that the number of waiting customers does not imply an additional cost on
the individual, but their presence provides a signal about the state of the
system.Then, we will characterize all the equilibrium strategies within the
class of threshold and reverse threshold strategies and provide an algorithm
to compute those equilibrium strategies.

In chapter 4, we will study the customers’ join/balk dilemma in a fluid
queue in alternating environment. Again, we will explore two informational
cases and we will determine equilibrium customer strategies. We will also
compute the expected social benefit per time unit under a given strategy and
consider the related optimization problems. We then compare the expected
social benefits per time unit under various combinations regarding the nature
of the customers.

25



Chapter 2

Equilibrium balking
strategies for an observable
queue with breakdowns and
repairs

2.1 The model

Consider a M|M|1 queue with infinite capacity. The customers arrive accord-
ing to a Poisson process with rate A and the service times are exponentially
distributed with rate u. In this model the server is not always active, but al-
ternates between on and off periods. We assume that the on and off periods
are also exponentially distributed with rates { and 6 respectively.

Let N(t) be the queue length at time ¢ and I(t) the state of the server at
time ¢ (I(¢) = 0 corresponds to the state where the server is off and I(t) =1
to the state where the server is on). The process {N(t),I(t) : t > 0} is a
continuous time Markov chain where the transition rates are given by

Uniyn+1) =N, n=0,1,2,...and i=0,1
q(nvi)(nflzi) = /’L’ n = 17 27 37
Aoy =0, n=0,1,2,..

An)n0) =C n=0,1,2, ...

We assume that customers arrive at the queueing system and receive some
information. Then, they decide whether to join or not. When a customer
joins the system, she receives a reward or R units upon completion of her
service and she incurs a waiting cost of C' units per time unit that is con-
tinuously accumulated while she remains in the system. When a customer
does not join, her net benefit is considered to be 0. Each customer tries to
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maximize her expected net benefit. When a customer decides whether to
join or not, her decision is irrevocable, meaning that reneging of entering
customers or retrials of balking customers is not allowed.

We will consider two informational cases separately. We will study the fully
observable case first, where the customers observe both the queue length
N(t) and the state of the system I(t).

2.2 Equilibrium threshold strategies in the fully
observable case

As stated above, in this information case, customers observe the queue size
N(t) and the the state of the system I(t) before joining. The equilibrium
threshold strategy has the form (n.(0),n.(1)), which declares that when
customers observe the system in state i, they should join if N(t) < n.(7),
and they should balk otherwise. In the fully observable case we will conclude
that the strategy of a customer is independent of the strategy of the other
customers which is a trait of dominant strategies.
We have the following result.

Theorem 2.2.1. In the fully observable case of an M|M|1 queue with break-
downs and repairs there exist a pair of thresholds

w00 = (|0 - atre] -+ |ewra) ) e

such that the strategy “While arriving at time t, observe (N (t),1(t)); enter
if N(t) < ne(I(t)) and balk otherwise” is a weakly dominant strategy.

Proof. Consider a tagged customer that follows a strategy siqggeq When all
other customers follow a strategy Soipers- The tagged customers’ net benefit
is given by

F(n,i) = R—CT(n,i), (2.2)
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where T'(n,i) = E[S|N™ = n,I~ = i] is the average sojourn time of a
customer that finds the system at state (n,) upon arrival.

Let my; be the expected time the system remains in state (n,i) and
U(n i),(no,i7) D€ the transition rate from state (n1,i) to state (ng, ).

When the system is in state (n,1) n = 1,2, ... two possible transitions are
possible (ignoring arrivals which do not affect the sojourn time of a customer
already in the system) : (n — 1,1), which corresponds to the service of a
customer, or (n,0), which corresponds to a breakdown of the system. The
time spent in state (n, 1) is the minimum of the time it takes for a customer
to be served or for a breakdown to happen. Therefore, it follows exp(u +
¢) as the minimum of two independent variables that follow exponential

distributions. Consequently, my, 1 = ﬁ
From state (n, 1) the service of a customer may be completed with prob-
ability p((n,1) — (n —1,1)) = %j;“) = 4¢ and the system moves

to state (n — 1,1) or a breakdown may happen with probability p((n,1) —
(n,0)) = W where the system moves to state (n,0).

By a similar analysis for states (n,0) and (0,1) and using a first step argu-
ment we have the following equations.

T(n,0) = % +T(n,1). n=0,1,2,.. (2.3)
_ K ¢

7(0,1) = e + C+MT(O,O). (2.4)
N _¢ _

T(n,1) = = CJr,uT(n 1,1)+ an MT(n,O). n=12.3,.. (2.5)

By solving the system (2.3) for n = 0 and (2.4) we obtain 7°(0,0) and
T(0,1). By plugging (2.3) in (2.5) we obtain a first order recursive relation
for T'(n, 1),

1 ¢
T(n1) =2 (14 5) + Tn = 1,1),
which yields
T(n,i) = (n+ 1)1+ )7+ (1) (26)
n,i) = (n ) iy )
A customer joins if
. . ¢ 1 NG
F(n,z)>0<:>R—CT(n,z)>O@R—C(n+1)(1+§);+(1—z)g@
Rub ) 7
<« M (-1 .
ST+ (=Dge

Therefore, when ¢ = 1 a customer joins if she observes less than {%’f) — 1J

customers in the system, is indifferent between entering or balking if she
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observes L% — 1J and balks otherwise. In other words, she follows a

threshold strategy with threshold n.(1) = L% — 1J

Similarly, when ¢ = 0 customers follow a threshold strategy with threshold

Ruf
ne(0) = [Wffm - ﬁj -~

Thus, an arriving customer prefers to enter if n < n.(i), where (n.(0),n.(1))
is given by (2.1). This strategy is preferable, independently of what the other
customers do i.e. it is a weakly dominant strategy.

O

Remark 3. One would expect that the relationship between n.(1) and n.(0)
depends on the value of ¢ and 6, since those parameters affect the time the
system is on and off respectively. This may be the case in other models with
similar breakdowns (ex. Burnetas and Economou (2007)). In our model, by
comparing the two thresholds, we notice that n.(0) < n.(1) is always true,
regardless of the parameters of the system. In other words, customers that
observe the server to be down are more reluctant to join the system. This
happens because the only difference between the two states of the server is
that if a customer enters while the system is down, she will have to wait for
the server to be activated and thus incur an extra waiting cost.

Remark 4. We assume that n.(1) > 0 or by (2.1) R > C’i(l + %), which
leads to R > T'(0,1). If this inequality does not hold, then customers will
not enter the queue even if they find it empty with an active server since
they will incur a negative benefit. Therefore, the system will remain always
empty.

2.3 Equilibrium threshold strategies in the almost
observable case

We move on to the almost observable case, where arriving customers observe
the number of customers in the system but not the state of the server. We
will search for an equilibrium strategy within the class of pure threshold
strategies. In order to do so, we must first compute the stationary distribu-
tion of the system assuming that all customers follow a given pure threshold
strategy.

Proposition 2.3.1. Consider the almost observable M|M|1 queue with break-
downs and repairs where the customers enter the system according to a
threshold strategy “While arriving at time t, observe N (t); enter if N(t) < ne
and balk otherwise”. Then, the stationary distribution (p(n,i) : (n,i) €
{0,1,2,...,ne + 1} x {0,1}) is given as follows:
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Figure 2.2: Transition diagram of the almost observable model in pure
strategies

p(n,0) = AP = pi*Y), n=0,1,2,...m, (2.7)
p(”a 1) = A(lel VQp;H—l)v n=0,1,2, .., n¢ (28)
AA
p(ne +1,0) = — 1—|—£(1+1/1) prett — (1 C(l—}—ug) netl
0 7 jz
(2.9)
AA ne+1 ne+1
e +1,1) = 22 (14 )" = (14 (2.10)
where A is computed using the normalization equation and
= uH A+ IE V(A 0)2 —4p(A+ 6
na= gt (¢ VIrF AT - i 0))
(2.11)
v = W, i=1,2. (2.12)
Cpi

Proof. When all customers follow a threshold strategy of the form “While
arriving at time ¢, observe N (t); enter if N(¢) < n. and balk otherwise”, the
transitions of the system N (¢),I(t) : ¢ > 0 are shown in figure 2.2.

The stationary distribution (p(n,i)) is obtained using the balance equa-
tions:

(A+6)p(0,0) = ¢p(0,1) (2.13)
(A+0)p(n,0) = Ap(n — 1,0) + Cp(n, 1), n=1,2,..n. (2.14)
Op(ne +1,0) = Ap(ne, 0) + Cp(ne +1,1) (2.15)
up(n+1,1) = Ap(n,1) + Ap(n,0), n=0,1,2....;n (2.16)
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Solving (2.14) with respect to p(n, 1) and substituting in (2.16) we obtain
p(A+0)p(n+1,0)=A(p+C+A4+0)p(n,0)+A°p(n—1,0) = 0, n=1,2,...,n.—1
which is a homogeneous second-order difference equation with solution

p(n,0) =c1p] + capy,n=0,1,2,....,n, (2.17)

where p1, p2, as given by (2.11), are the roots of the corresponding charac-
teristic equation

pA+0)2* —Ap+C+A+0)z+ X1 =0

and cj, co are to be determined. We can easily see that p; # pa. Plugging
(2.17) in (2.14) we obtain

p(n7 1) = Clle?"i‘CZVQPga n= 1727"'7n6 (218)
where v; are given by (2.12). By (2.13) and (2.17) we obtain

A+0

p(0,1) = (c1+ c2). (2.19)

Furthermore, p(n. + 1,1) is computed by inserting n = n, in (2.16) and
considering (2.17) and (2.18). Therefore,

A A
p(ne+1,1) = ;01(1 + v1)pie + ;Cz(l + 12)p5°.

Also, p(ne + 1,0) is given by (2.15) and using the computations above we
obtain

6

We have expressed all the stationary probabilities in terms of the constants
c1 and ¢o. By plugging n = 0 in (2.16) we obtain up(1,1) = Ap(0,1) +
Ap(0,0). We now plug in the probabilities yielded by (2.18) by setting n = 1
and (2.17) by setting n = 0 and using (2.19) we obtain after some algebra
that

A A
Pl +1,0) = Ger(L+ (14 m)s) + Gl + (1 + )o3)

co = ——c1.
P1
Then, the unique unknown constant ¢y is computed using the normalization

equation
1 ne+l
> 2 plni) =1
i=0 n=0
as an explicit but involved sum. Letting A = £ we have ¢; = Ap; and

1
co = —Apo and the stationary probabilities are given from (2.7 — 2.10). O
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We are now in position to find the expected net reward of a customer
that observes n customers ahead of her and decides to enter. We have the
following.

Proposition 2.3.2. Consider the almost observable M|M|1 queue with break-
downs and repairs where the customers enter to the system according to a
threshold strategy “While arriving at time t, observe N (t); enter if N(t) < ne
and balk otherwise”. The net benefit of a customer that observes n customers
and decides to enter is given by

n+1 ¢
Fn)=R-C p (1 + 9) (2.20)
C n+1 -1
— =0,1,...,m
9 (1 + V1)0n+1 (1 + 1/2)’ n 0, ) 7n
2
F(ne+1)=R— 0”6: (1 + g) (2.21)

(+ ¢+ v1))o™ ! — (4 (1 + 1))
(n+ (C+0) (1 +vi))omett — (u+ (C+0)(1 +1v2))’

Q =

where o = £+,
P2

Proof. The expected net benefit for a customer that joins the system when
she observes n customers is

F(n) = R — CT(n), (2.22)

where T'(n) = E[S|N~ = n| denotes her expected mean sojourn time given
that she finds n customers in the system just before her arrival. Conditioning
on the state of the server that she finds upon arrival we obtain

T(n)=T(n,1)Pr[I- =1N" =n]+T(n,0)Pr[I” =0|N~ =n]
2.23
) 1, )+9Pr[ — 0[N~ =1 (2:23)
where T'(n,1) is given by (2.6) for ¢ = 1. The probability Pr[I~ = 0[N~ =

n| that a customer finds the server inactive upon her arrival given that
she finds n customers in front of her is m,n =0,1,...,n + 1.
Using the stationary probability obtained in Proposition 2.3.1 we obtain the
probabilities

n+1 n+1
n] = P1_ — P2

(14+11) ?H - (14 Vg)ngrl,

Pr[I” =0|N~ = n=0,1,...,n

PriI= = 0[N~ =n.+1] = (ot G+ v))pi ™ = (ot (L + va))py

(14 (C+0) (L + )t — (n+ (C+ 0) (1 + v2))phe™!
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Setting o = % and using (2.6) and the probabilities we obtained above we
conclude that

n+1 ¢ 1 ot —1
T = 1+=2 — 2.24
== < +9>+9(1+V1)0”+1—(1+V2)’ (2.24)
n=20,1,....,n¢
e+ 2
T(ne+1):n: <1+g> (2.25)

1 (p+ ¢ +wv))a™ ™ — (u+ (1 + 1))
0 (p+ (C+O)A+wv1))om — (u+ (C+0)(1+12))

Now the substitution of T'(n) in (2.22) yields (2.20) and (2.21) O

For excluding the trivial case where a customer does not enter the system
even if she finds no customers in front of her we assume that (2.20) is positive
for n =0 or R > CT(0) and after some algebra we see that the equivalent

to this condition is
C ¢ C ¢
—(1+= - 2.2
R>M<+9>+9A+9+C (2.26)

which we assume from now on.
We can now describe the equilibrium balking threshold strategies in the
almost observable case. We have the following result.

Theorem 2.3.1. Define the sequences (fi(n) :n =0,1,2,...) and (f2(n) :
n=0,1,2,...) by

_ n+1 ¢ C ot -1
filn) =R -0C <1 * 9) 0 (1)t — (14 ) (2.27)
n=01,..
o n+1 S
faln)=R—C ; (1+9>
_C (p+C(1+w1))o™ — (p+ (1 +12)) (2.28)
0 (n+ (C+0)1+w1))o™ — (n+ (C+0)(1+12))

n=0,1,..
Then there exist finite non-negative integers ny < ny such that

fl(()), fl(l),fl(Q), ...,fl(TLU) >0 and fl(’l’LU + 1) <0 (2.29)

and

fg(nU + 1),f2(nU),f2(nU — 1), ...,fg(nL + 1) <0 and fg(nL) >0 (230)
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or

fg(nU + 1), fg(nU), fg(nU — 1), ey fg(O) <0. (2.31)

In the almost observable M|M|1 queue with breakdowns and repairs the pure
threshold strategy of the form “While arriving at time t, observe N(t); enter
if N(t)< ne and balk otherwise”, for n. € {nr,np+1,....,nu}, are equilibrium
strategies.

Proof. We have that f1(0) > 0 because of (2.26). Moreover, limy_ooc = —00,
so if ny + 1 is the subscript of the first non-positive term of the sequence
(f1(n)), we have that for the finite number ny the condition (2.29) holds.
Note also that fi(n) given by (2.27) can be written in the alternative form

fl(n):R_Cn:1<1+g> (2.32)
¢ (4 ¢ +wm))o™ = (p+ (1 + 1))
0 (u+(C+A+O)(A+v1))o™ = (p+ (C+A+0)(L+12))
Let
f(n,z) =R — C": ! (1 + g) (2.33)
¢ (B4 ¢+ r1))o™ = (p+ (1 + )
0 (u+{C+X+0)(1+wr1))o"—(p+ (C+AXz+0)(1+12))

By comparing (2.33) with (2.32) and (2.28), we can see that fi(n) = f(n,1)
and fa(n) = f(n,0). By writing f(n,z) in the alternative form

f(n,x):R—Cn:1<1+g>

e (14 C(L+11))o™ = (14 C(L+ 1))
0 Aa((1+ v1)o" — (L+ 1) + (1 + (C+ 0)(1+11))0" — m(+ (© : 01+ 1))’
2.34

we can see that f(n,x) is increasing in x. Therefore,
filn) > fa(n), n=0,1,2,.. (2.35)

In particular we conclude that fa(ny +1) < fi(ny + 1) < 0. We begin to
go backwards, starting from the subscript ny + 1 towards 0 and we let ny,
be the subscript of the first positive term of the sequence (f2(n)). Then we
have (2.30). If all terms of (f2(n)) going backwards from n, + 1 towards 0
are non-positive we have (2.31).

Suppose, now, that we have the model where customers follow a pure
threshold strategy of the form “While arriving at time ¢, observe N(t);
enter if N(t) < n. and balk otherwise” for some fixed threshold n. €
{np,nr+,...,ny}. We consider a tagged customer at her arrival instant.
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Then, her net benefit if she observes n customers and decides to join is
given by (2.20) — (2.21).

If the tagged customer observes n < n, customers, her expected net benefit
is F(n) as given by (2.20) which, by (2.32), equals to fi(n). Therefore,
F(n) = fi(n) > 0forn=0,1,2...,n. when ne € {ngp,ny+1,...,ny} because
of (2.29) and the customer prefers to join the system.

Likewise, if the tagged customer observes n = n.+1 customers in the system
her net benefit F(n. + 1) = fa(ne + 1) < 0 when n, € {nr,nr +1,....,ny}
because of (2.21),(2.28) and (2.30) or (2.31) and the customer prefers to
balk.

Therefore, we conclude that the strategy “While arriving at time t, observe
N(t); enter if N(t)< n. and balk otherwise” for any n. € {np,nr+1,...,ny}
is best response against itself, i.e. an equilibrium. O

Theorem 2.3.1 provides an algorithm in order to identify the equilibrium
strategies of the almost observable model. One has to start computing
(fi(n)) up to the first negative term. This “forward” procedure yields the
highest equilibrium threshold ng. Then, one has to start computing fa(n)
starting from fo(ny +1) and going towards 0 till the first positive term. The
“backward” procedure yields the lowest equilibrium threshold ny.

Remark 5. The equilibrium strategy “While arriving at time ¢, observe
N(t); enter if N(t) < n. and balk otherwise” is the pure threshold strategy
with threshold n. + 1. In other words, it can be represented by the vector
(1,1,1,...1,0,...) which consists of (n. + 1) ones.

Follow the crowd

In the present model the customers adopt a “follow the crowd” (FTC)
behaviour where customers tend to follow the behaviour of other customers.
FTC behaviour is expressed when the best response of a customer against
strategy z of other customers is increasing in x. Let F),_ (n) be the expected
net reward of a tagged customer that observes a queue length of n customers
and enters the system, while all other customers follow an n. threshold
strategy. The best response against this strategy, BR(n.), is defined by
BR(ne) = maz{n : F,,(n) > 0,n =0,1,2...,n. + 1}. Note that BR(n.) <
ne + 1. Suppose that all other customers adopt a threshold strategy with
threshold n+1. Then, the best response of the tagged customer is defined by
BR(ne+1) =maz{n: F, +1(n) >0,n=0,1,2,...,n.+2} , where F},_11(n)
is the expected net benefit of a customer that observes n customers and joins
the system when all others follow an n. 4+ 1 threshold strategy which is (by
(2.20) — (2.30))
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n+1 ¢ c ot —1
F, =R-C 1+2) —— =0,1,... 1
ne+1<n> m < + ) 9 (1 4 1 n - y Ne + )

0 Yot — (14 vy)’
Fo.41(ne+2)=R— C"e: 2 <1 + g)
c (u+ ¢+ )"t — (p+¢(1 + 1))

0 (p+(C+0)(1+w))omtt — (u+ (C+0)(1+12))

We can see that F),_;1(n) is equal to Fy,_ (n), for n = 0,1,...,n.. There-
fore, considering the definition of BR(n.), Fy, +1(n) = F, (n) > 0,n =
0,1,...BR(ne). If BR(ne) = ne + 1 then F,_11(ne +1) = fi(ne+1) >
fo(ne+1) = F, (ne+ 1) = F,,,(BR(ne)) > 0. The two equalities are given
by (2.27),(2.28) respectively and the inequality is true because fi(n) > fa(n)
by (2.35). From this analysis, we conclude that BR(n.+1) > BR(n.) which
means that the threshold that is a best response of a tagged customer when
all others follow a threshold strategy n. + 1 is greater than the threshold
that is a best response when all others adopt the threshold n.. This proves
that the behaviour of the customers is FTC.

Remark 6. We can see that in this model multiple equilibria are possible
since any threshold n. € {ny,nr+1,...,ny} is an equilibrium strategy. This
is a common property of FTC behaviour.
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Chapter 3

Equilibrium balking
strategies for a clearing
queueing system in
alternating environment

In this chapter, we consider a Markovian clearing queueing system, where
the customers are accumulated according to a Poisson process and the server
removes all present customers at the completion epochs of exponential ser-
vice cycles. This system may represent the visits of a transportation facility
with unlimited capacity at a certain station. The system evolves in an alter-
nating environment that influences the arrival and service rates. We assume
that the arriving customers decide whether to join or balk, based on a natu-
ral linear reward-cost structure. We will study the balking behaviour of the
customers and derive the corresponding Nash equilibrium strategies under
various information levels.

Queueing systems with batch services are often used to represent the visits
of a transportation facility at a certain station. This allows for the quan-
tification of the congestion of the station and can be used to take control
measures (e.g. the changing the frequency of the visits), so that the quality
of service is kept within acceptable limits. The capacity of the system is
usually assumed unlimited. This is justified, because in most applications
the capacity of the facility is chosen large enough, so that the probability
that some waiting customers cannot be accommodated is negligibly small.
Moreover, the waiting customers that cannot be served at a visit of the fa-
cility are not in general willing to wait for its next visit and abandon the
system. Therefore, it is realistic to assume that all present customers are re-
moved at the visit points of the facility. Such stochastic systems are referred
to as stochastic clearing systems.
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3.1 The model

We consider a transportation station with infinite waiting space that op-
erates in an alternative environment. The environment is specified by a
2-state continuous-time Markov chain {I(t)}, with state space ST = {1,2}
and transition rates g;;, for ¢ # 7. Whenever the environment is at state
i, customers arrive according to a Poisson process at rate \;, whereas the
transportation facility visits the station according to a Poisson process at
rate p;. The two Poisson processes are assumed independent. At the visit
epochs of the transportation facility all customers are served simultaneously
and removed from the station. Therefore, we have a stochastic clearing
system in an alternating environment.

We represent the state of the station by a pair (N(t),I(t)), where N(t)
records the number of customers at the station and I(t) denotes the envi-
ronmental state. The stochastic process {N(t),(t)} is a continuous time
Markov chain with state space SN/ = {(n,i) : n > 0,i = 1,2} and its
non-zero transition rates given by

q(n,i)(n+17i) = Ai? n Z 07 Z = 17 27
A(ni)(04) = Hiy, n =1, 1=1,2,
d(n,1)(n,2) = q12, N >0,

)
)
)
)

NS N

3.
3.
3.
3.

Py

d(n2)(n1) = q21, n=0.

We define p; = %,z = 1, 2. The value of p; can be thought as the measure of
congestion of the system under the environmental rate ¢, as it expresses the
mean number of customers accumulated between two successive visits of the
transportation facility (given that the environment remains continuously in
state 7).

We are interested in the behaviour of customers that arrive on the station
and decide whether to join or balk. We assume that joining customers gain
reward of R units upon completion of their service and accumulate waiting
costs at the rate of C' units per time unit they remain in the system. We also
assume that customers are risk neutral and they try to maximize their net
benefit. Finally, the decision of joining or balking is irrevocable in the sense
that joining customers are not allowed to renege and balking customers are
not allowed to re-enter the system.

Since all customers are assumed indistinguishable, we can consider the
situation as a symmetric game among them. Denote the common set of
available strategies and the payoff function as S and F' respectively. Let
F(s;,s—;) be the payoff of customer ¢ who follows strategy s; when all others
follow strategy s_;.

In these chapter we will obtain equilibrium strategies for joining/balking.
We distinguish between four cases depending on the information available
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to customers upon their arrival instants, before the decision is made:

e Fully unobservable case : Customers do not observe N (t) or I(t)
before joining.

e Almost unobservable case : Customers do not observe N(t), but
observe I(t).

e Fully observable case : Customers observe N (t) and I(t).

e Almost observable case : Customers observe N(t), but not I(t).

From a methodological point of view the first three cases are similar so
we will start by examining them first. The almost observable case which is
the most interesting and methodologically demanding will be examined in
section 3.3.

3.2 The unobservable and the fully observable case

Let T; be the time until the next arrival of the transportation facility, given
that the environment is at state i. A moment of reflection shows that T;
is independent from the number of customers in the system, because of the
mechanism of the total removals of customers at the visits of the facility and
the memoryless property of the exponential distribution.

By a first-step analysis argument, conditioning on the next transition of the
Markov chain (N(t), I(t)), which is either a visit of the facility or a change
in the environment, we obtain the following equations

E(Ty) = [time until next transition happens] (3.5)
+ Pr[visit of the facility] - 0 + Pr[change in environment| - E(7%)
1
p1tq2 H2t g2 M1+ q12
1
E(Ty) = + 2 o4+ BBy (3.6)
M2t g1 M2+ g2 M2 + g21

Solving (3.5) — (3.6) yields

E(T)) = M2 + q12 + Q21
pip2 + p1qe1 + p2qi2

E(Ty) = M1+ qi2 + Q21
B2 + p1qe1 + H2qi2
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Value of & E<Vi Z=V5 E>Vp
Dominant strategy(ies) 0 q€0,1] 1

Table 3.1: Dominant strategies in the fully unobservable case

3.2.1 The fully unobservable case

In this section we examine the fully unobservable case, where customers
neither observe the number of customers in the system N(t) nor the the
environment of the facility. A balking strategy in the fully observable case
is specified by a single joining probability g. The case ¢ = 0 corresponds to
the pure strategy “always balk” whereas the ¢ = 1 strategy corresponds to
the “always join” strategy. Any value of ¢ € (0, 1) corresponds to the mixed
strategy “to join with probability ¢q or balk with probability 1 —q”. We have
the following theorem.

Theorem 3.2.1. In the fully unobservable model of the stochastic clearing
system in alternating environment, there always exists a dominant strategy.
The dominant strategies depend on the relative value of the ratio % with
respect to the critical value

A qiapi2 + A2qiapi n g21 + q12

Ve, —
fu (A1g21 + Aeqi2) (ape + p1ger + p2qiz)  pipe + p1ga1 + peqiz

(3.9)

We have three cases that are summarized in Table 3.1.

Proof. Suppose that customers follow a certain strategy and consider a
tagged customer upon arrival. The probability that she finds the system
at environment i is

_ Aipr (%)
Apr(1) 4+ Aopr(2)’

where (py(i),7 = 1, 2) is the stationary distribution of the environment which
is given by

(3.10)

PI—arrival (Z)

q21
1) = —— 3.11
p;( ) q12 + q21 ( )
q12
2) = ————. 3.12
pr(2) Q12 + q21 ( )

The expected net benefit of the tagged customer if she decides to join is
given by

2
Ffu = Zp[—arm'val(i)(R - CE(Tz))a (313)
=1

40



where E(T;) are given by (3.7), (3.8). Plugging (3.11) and (3.12) in (3.10)
and substituting in (3.13) yields

Maq1 E[Th] 4+ A2qi2E[T5]

Fiy=R-C
fu A1q21 + A2qi12
_np_ < A1ga1p2 + Aaqizfin n 421 + q12
(A1g21 + A2qi2)(Hapie + p1gor + p2qiz) — pape + pager + p2qi2

(3.14)

The tagged customer prefers to join when Fy, > 0, is indifferent when
Fy, = 0 and prefers to balk otherwise. Solving with respect to g, we obtain
the three cases in table 3.1.

O

3.2.2 The almost unobservable case

We now proceed to the almost unobservable case, where the customers ob-
serve the environment I(¢) but not the number of customers in the system
N(t). A general balking strategy in the almost unobservable case is specified
by an ordered pair of joining probabilities (g1, ¢2), where ¢; is the joining of
a customer if the environment state upon arrival is 7,7 = 1,2. We have the
following Theorem.

Theorem 3.2.2. In the almost unobservable model of the stochastic clearing
system in alternating environment, there always exists a dominant strategy.
The dominant strategies depend on the relative value of the ratio g with

respect to the critical values

min _ man(p, p2) + qa1 + qi2 pmaz _ maz (i, p2) + g21 + qi2

au - -

pape + H1go1 + peqi2 o pip2 + p1qer + M2Q12< '
3

15)
If uy # pa, then V1 < Vmaz gnd we have the five cases that are summa-
rized in Table 3.2.

If g = pa, then VWn = Vma - Let V.. denote the common value of V"
and V% . We have the three cases summarized in Table 3.3

Proof. Consider a tagged customer that observes the state of the environ-
ment upon arrival. If she decides to join given that she finds the environment
at state ¢, then her expected benefit will be

Fau(i) = R — CE(T;), (3.16)
where FE(T;) are given by (3.5) — (3.6). The customer decides to join if
Fo(7) > 0, which is written equivalently as % > E(T;). Similarly, she prefers
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Value of £ B <ymin B —ymin ymin o £ o ymer K — yma

R
&S e

)7 (Ov 1) (Q17 1)5

Dominant (0,0) (0, g2
strategy (ies) q2 €[0,1] ¢ €[0,1]
when 1 < pa

Dominant (0,0) (g1,0), (1,0) (1,q2),
strategy (ies) q1 € [0,1] g2 € [0, 1]
when 1 > uo

(1,1)

(1,1)

Table 3.2: Dominant strategies in the almost unobservable case, when u; #
2

Value of % % < Vou % = Vou g > Vo
Dominant strategy(ies), (0,0) (q1,92),
when puy = po q1,q2 € [0,1]

Table 3.3: Dominant strategies in the almost unobservable case, when p; =
2

to balk when % > F(T;) and is indifferent between balking and joining when
g = E(T;). By considering the various possible cases with regard to the
order of the quantities g, E(Ty) and E(T3), we obtain the corresponding
cases in the statement of Theorem 3.2.2. Note that the strategies prescribed
in Theorem 3.2.2 are dominant, since they do not depend on what other

customers do, i.e. they are the best responses against any strategy of others.
O

3.2.3 The fully observable case

In this case the customers observe both the environment /() and the number
of waiting customers N (¢) upon arrival. We can see that the mean sojourn
time of a customer depends on the state of the environment, but it does
not depend on the number of customers that are in the system, since all
customers are served simultaneously. Therefore, if a customer arrives and
observes the environment at state ¢ while n customers are in the system, the
information about the number of customers is consider superfluous and is
discarded which makes this case identical to the almost unobservable case.
We conclude that the dominant balking strategies are the ones given in
Theorem 3.2.2.

42



3.3 The almost observable case

In this chapter we consider the almost observable case where customers ob-
serve the number of customers N(t) but not the state of the environment
I(t). Thus, a general balking strategy can be specified by a vector of proba-
bilities (0, 01,02, ...), where 6; is the probability a customer joins when she
observes i customers in the system upon arrival (excluding herself).

Suppose that a tagged customer observes n customers upon arrival. Al-
though the number of customers in the system does not influence her sojourn
time, the information of the number of customers influences the probabil-
ities that the environment is at state 1 or 2. We expect intuitively that
there are two cases: Either the “slow service” environmental state with
i = min(uy, p2) coincides to the “more congested” environmental state i’
with py = maz(p1, p2), or it coincides with the “less congested” environ-
mental state i with p;» = min(p1, p2). In the former case, a large number
of customers signals that the environment is probably in the “slow service”
state and an arriving customer is less inclined to join. Thus, we assume
that the customer will benefit from joining the system if the number of
customers n is below a certain threshold, i.e. she will adopt the a thresh-
old strategy. On the contrary, in the latter case, the situation is reversed.
Now, greater number of customers in the system means a higher probability
that the environment is in the “fast service” state. Therefore, we expect
that a tagged customer will benefit from joining the system, if the number
of customers n exceeds a certain threshold i.e. she will adopt a so called
reverse-threshold strategy. Following this reasoning, we will limit our search
for equilibrium strategies within the class of threshold and reverse-threshold
strategies. As we will see, this family is rich enough to ensure the existence
of an equilibrium strategy for any values of the underlying parameters of
the model.

Definition 3.3.1. A balking strategy (6, 01,62, ...), where 6; is the joining
probability of a customer that sees ¢ customers in the system upon arrival
(excluding herself) is said to be a mixed threshold strategy, if there exist
no € {0,1,...} and 6 € [0, 1] such that 6; = 1 for i < ng, 6,, =0 and 6, =0
for i > ng. Such strategy will be referred to as the (ng, #)-mixed threshold
strategy (symbolically the [ng, 6] strategy) and it prescribes to join if you
see less than ngy customers, to join with probability @ if you see exactly ng
customers and to balk if you see more than ng customers.

An (ng, 0)-mixed threshold strategy which prescribes to join if you see less
than ng customers and and to balk otherwise will be referred to as the
no-pure threshold strategy (symbolically the [ng] strategy).

A balking strategy (6o, 61,62, ...) is said to be a mixed reverse-threshold
strategy, if there exist ng € {0,1,...} and 6 € [0,1] such that 6§; = 0 for
it < ng, O, = 6 and 0; = 1 for i > ng. Such strategy will be referred
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to as the (ng, #)-mixed reverse-threshold strategy (symbolically the |ng, 0]
strategy) and it prescribes to balk if you see less than ngy customers, to join
with probability € if you see ng customers and to balk if you see more than
ng customers.

An (ng, 1)-mixed reverse-threshold strategy which prescribes to join if you
see at least ng customers and and to balk otherwise will be referred to as
the no-pure reverse-threshold strategy (symbolically the |ng] strategy).

The strategy which prescribes to join in any case is considered to be both
a threshold and a reverse threshold strategy (symbolically the [oo]or [0]
strategy). The same is true for the strategy which prescribes to balk in any
case (symbolically [0] or |oco] strategy).

3.3.1 Stationary distributions

In this subsection, we determine the stationary distributions of the system,
when the customers follow any given strategy from the ones that have been
described in Definition 3.3.1. We will first determine the stationary distri-
bution of the original system when all customers join. The result is reported
in the following Proposition 3.3.1.

Proposition 3.3.1. Consider the stochastic clearing system in alternating
environment, where all customers join. The stationary distribution (p(n,i))
1s given by the formulas

1 " 1
= > 0. .
p(?’l/,l) Al(l-Zl) +B1<1—Z2>’ n=>0 (317)

1 " 1
= > 0. .
p(n,2) A2(1_21> —|—Bg<1_22), n>0 (3.18)

A 1
A — (1Aoz1 + papo + p2qi2 + p1ga1)pi( )7 (3.19)

\/Z(l — 21)
B = — (H1doz2 + pipe + p2qi2 + N1L]21)p](1)7 (3.20)
\/Z(l — ZQ)

(X121 + pape + p2qi2 + p1g21)pr(2)

Ay = , 3.21)
VAQ - 1) (
B, — WMzt g + piagqia + M1Q21)p1(2), (3.22)
\/E(l — ZQ)
A = [Ma(p1 + q12) — M (2 + g21)] + 4X1X2q12q21, (3.23)
—A - A + VA

= 1(p2 + q21) o1 + q12) VA (3.24)

’ 21 \a

and pr(1),pr(2) are the stationary probabilities of I(t) given from (3.11) —
(3.12).
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Proof. For the stationary analysis, note that the state of the system is de-
scribed by a continuous Markov chain with state space S/ = {(n,4) : n >
0,7 = 1,2} with its non-zero transition rates given by (3.1)-(3.4). The cor-
responding stationary distribution (p(n,i) : (n,i) € S™N!) is obtained as
the unique positive normalized solution of the following system of balance
equations:

(A1 + p1 + q12)p(0,1) = ¢21p(0,2) + i pip(n, 1), (3.25)
n=0

(M + p1 + q2)p(n, 1) = gaip(n, 2) + Aip(n — 1,1),n > 1, (3.26)

(A2 + p2 + 21)p(0,2) = qu2p(0,1) + i p2p(n, 2), (3.27)
n=0

(A2 + p2 + q21)p(n, 2) = qrap(n, 1) + Aop(n — 1,2),n > 1, (3.28)

where we have included in (3.25)-(3.27) the pseudo-transitions from (0,1%)
to (0,i), i = 1,2, with rate u;, that correspond to visits of the facility
at an empty system. Note also that the underlying Markov chain is always
positive recurrent as the stochastic clearing mechanism ensures that starting
from state (0, 1), the process will visit it again with probability 1 and the
corresponding time is finite.

We define the partial stationary probability generating functions of the
system as

Gi(z) =) _p(n,i)2", || < 1,i=1,2. (3.29)
n=0

Then we have G1(1) = pr(1),G2(1) = pr(2) with pr(1),pr(2) given from
(3.11)-(3.12). Summing equation (3.25) and equations (3.26) multiplied by
z". n > 1, yields after some straightforward algebra

A1 = 2) + p1 + q12]G1(2) — g1 G2(2) = pipr(1). (3.30)
Similarly, equations (3.27)-(3.28), yield

—q12G1(2) + [M2(1 = 2) + p2 + q21]G2(2) = p2pr(2). (3.31)

Solving the system of equations (3.30)-(3.31) with respect to Gi(z) and
Ga(z) yields

pr(D{qiape + pi[Xa(1 — 2) + p2 + g21]}

G —
) = 3= 2) + i + gr2lha(l = 2) + fiz + @o1] — Gondia

(3.32)

pr(2){ge1pm + p2[M (1 — 2) + p1 + qi2]}

G —
2(2) = BT =2) + s + qr2lDha(l —2) + fis + qa] — doran

(3.33)
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Let g(z) be the common denominator of G'1(z) and G2(z) in (3.32)-(3.33)
i.e. g(z) is given as

9(2) = M1 —2) + p1 + qu2][A2(1 — 2) + p2 + g21] — ¢21q12
= MA2(1 = 2)% + (o + qiada + paA1 + qaiAr)(1 — 2) (3.34)
+ pipe + p1g21 + p2qie-

We can factorize g(z) in the form

z

9(2) = MAo(1 — 21) [1 - } (1— 2) [1 — ] (3.35)

1—2’1 1—2’2

where A and z1, 22 are given by (3.23)-(3.24), Note, now, that G;(z) is a
rational function of z with a first degree numerator and a second degree
denominator g(z). By using partial fraction expansion we have that

Ay By

1—2z1 1—22

with A; and B given by (3.19)-(3.20). Expanding the powers of z yields

Gl(z):i[A1<1_121>n+31<1_122)n]z” (3.37)

n=0

(3.36)

and we deduce (3.17). Similarly, Ga(z) is written as

GQ(z)—i[A2<1_121>n+32<1_1z2>n]z” (3.38)

n=0

with As and By given by (3.21)-(3.22) and we deduce (3.18).
O

We will now deduce the stationary distribution of the system when cus-
tomers follow a mixed threshold strategy. We have the following Proposition
3.3.2.

Proposition 3.3.2. Consider the almost observable model of the stochas-
tic clearing system in alternating environment, where the customers join
the system according to (ng,0)-mized threshold strategy. The corresponding
stationary distribution (pao(n,i; [no,0])) is given by the formulas
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Pao(n,4; [n0,0]) =p(n,i), 0<n<ny—1, i=1,2, (3.39)

Pao(n0, 13 10, 0]) = > (1= 6)""p(n,i), e=1,2, (3.40)
e
Pao(no + 1,45 [n0,01) = Y [1=(1—=0)""p(n,i), e=1,2, (3.41)
n=ng+1
Pao(n, 35 [n0,0]) =0, n>ng+2,i=1,2, (3.42)

where p(n,i) are given by (3.17)-(3.18)

Proof. We assume that the customers follow the (ng,#)-mixed threshold
strategy. Then the evolution of the system can be described by a Markov
chain which is absorbed with probability 1 in the positive recurrent closed
class of stated S2y([ng,0]) = {(n,i) : (0 < n < ng+1,i = 1,2)}. For
the sake of brevity, we suppress the notation regarding [ng, ] in the rest
of the proof. Thus, we refer to the corresponding stationary probabilities
pao(na 1; ’V’rlg, 0-|) by pao(na Z)

Since the Markov chain is finally absorbed in Say” ([ng, #]) we obtain imme-
diately (3.42). The vector of the stationary probabilities (pgo(n,i) : (n,7) €
SN (ng,67)) is obtained as the unique positive normalized solution of the
system of balance equations

no+1

()\1 + p1 + QIQ)pao(Oa 1) = Qleao(Oa 2) + Z Mlpao(na 1)7 (3'43)
n=0

()\1 + p1 + q12)pao(n, 1) = Q21pao(n, 2) + Alpao(n - 17 1)7 1<n<nyg—-1,

(3.44)

()\16 + u1 + q12)pao(n07 1) = Q21pao<n07 2) + )\lpao(no - 17 1)7 (345)

(ﬂl + q12)pao(n0 +1, 1) = q21paa(n0 +1, 2) + AleptlfJ(nO’ 1)7 (346)
no+1

(>\2 + po + q21)pao(07 2) = q12pa0(07 1) + Z ,u2pao(na 2)7 (347)
n=0

()\2 + po + q21)pao(n, 2) = Q12pao(n, 1) + >\2pao(n - 17 2)5 1<n<ng—1,

(3.48)

()\29 + 125] + q21)pao(n07 2) = Q12paa(n0, 1) + )\2pao(n0 - 17 2)7 (349)

(M2 + q21)pao(n0 +1, 2) = Q12pao(no +1, 1) + /\20170,0(”07 2)7 (3-50)

where we have included in (3.43) and (3.47) the pseudo transition from (0, 7)
to (0,7),7 = 1,2, with rate p;, that correspond to visits of the facility at an
empty system.
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For deducing the formulas (3.39)-(3.42) for the stationary probabilities, we
may again follow the standard probability generating function approach as
in the proof of Proposition 3.3.1.

O

We can now conclude the following corollaries.

Corollary 3.3.0.1. Consider the almost observable model of the stochas-
tic clearing system in alternating environment, where the customers join
according to the ng-pure threshold strategy. The corresponding stationary
distribution (pao(n,i;[nol)) is given by the formulas

Pao(n,1; [n0]) = p(n,i), 0<n<nyg—1, i=1,2, (3.51)

Pao(n, i [no]) = > p(n,i), i=1,2, (3.52)
n=ng

Pao(n,1;[n0]) =0, n>no+1, i=1,2, (3.53)

where p(n,i) are given by (3.17) — (3.18).

Corollary 3.3.0.2. Consider the almost observable model of the stochas-
tic clearing system in alternating environment, where the customers always
balk. The corresponding stationary distribution (peo(n,i;[0])) is given by
the formulas

Pao(0, 4 [0]) = pr(i), i=1,2, (3.54)
Pao(n,i;[0]) =0, n>1, i=1,2 (3.55)

where pr(i),1 = 1,2 are given by (3.11) — (3.12).

We will now deduce the stationary distribution of the system when cus-
tomers follow an (ng, #)-mixed reverse-threshold strategy.

Remark 7. Under an (ng, #)-mixed reverse-threshold strategy with ng > 1,
we have that the customers balk when they arrive at an empty system.
Thus, we have the stationary distribution of Corollary 3.3.0.2.

Next, we will examine the case where customers follow a (0, #)-mixed
reverse-threshold strategy.

Proposition 3.3.3. Consider the almost observable model of the stochastic
clearing system in alternating environment, where the customers join the
system according to a (0,0)-mized reverse-threshold strategy. For 6 = 0, the
stationary distribution (pao(n,i;|0,0])) is given by the formulas
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Pao(0,7;10,0]) = pr(i), i=1,2, (3.56)
Pao(n,1;10,0]) =0, n>1,i=1,2, (3.57)

where pr(i),1 = 1,2 are given by (3.11) — (3.12).
For 0 € (0,1), the stationary distribution (pae(n,i; |0,0])) is given by the
formulas

Pao(0,4;[0,01) = Y (1 —0)"p(n,i), i=1,2, (3.58)
n=0
Pao(n,;[0,0]) = 60 i(l — ki), n>1,i=1,2, (3.59)
k=n

where p(n,i) are given by (3.17) — (3.18)
For 6 = 1, the stationary distribution (pao(n,i;|0,1])) is given by the for-
mula

Pao(n,3;|0,1]) = p(n,i), n>0,i=1,2, (3.60)
where p(n,i) are given by (3.17) — (3.18).

The proof of Proposition 3.3.3 for 8 = 0 is immediate, as in this case the
customers balk whenever they arrive at an empty system. Therefore, the
continuous Markov chain is absorbed in the subset {(0, 1), (0,2)} of the state
space and the stationary distribution is the one given in (3.54)-(3.55). In
case 6 = 1, the customers always join and we apply Proposition 3.3.1. Thus,
the only interesting case is for 8 € (0,1). Then, the proof of Proposition
3.3.3 follows the proofs of Proposition 3.3.1 and 3.3.2.

3.3.2 Expected net benefit functions

Based on the results of the previous section, we can now derive the expected
net benefit of a tagged customers if she decides to join the system after
observing n customers upon arrival. Thus, we have various cases, according
to whether they follow a threshold or a reverse-threshold strategy. We have
the following Propositions 3.3.4-3.3.6.

Proposition 3.3.4. Consider the almost observable model of the stochastic
clearing system in alternating environment, where all customers join the
system. Then, the expected net benefit Foo(n;[oo]|) = Fao(n; |0]) of an
arriving customer, if she decides to join, given that she finds n customers
in the system, is given by
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I=2" 5 >0, (3.61)

A=MALE(Th) + M AsE(Th),
B = \BE(Ty) + \aBoE(T3),
D = X\A;+ Ag,

E=MB1+ XBy

and E(Ty), E(Ty), A1, A, By, By, 21,22 are given by (3.7) — (3.8),(3.19) —
(3.22) and (3.24).

Proof. The mean sojourn time of an arriving customer, if she decides to join,
given that she finds n customers in the system is given by

Pao(1[n; [00 ) E(T) + pao(2[n; [00]) E(T2), (3.66)

where p_,(i|n; [00]),i = 1,2, is the probability that an arriving customer
that observes n customers in the system finds the environment at state
i, when the [oo] strategy is followed by other customers. The embedded
probabilities p,, (i|n; [oo]) are given by
— . )‘Zp(n72) .
iln; [oo]) = i =1,2, 3.67
Paoliin: o)) = s (3.67)
where p(n, i) are given by (3.17)-(3.18). Thus, the expected benefit of the
tagged arriving customer, if she decides to join, is equal to

Fao(n; [00]) = R = Clpgo(1|n; [00]) E(T1) 4 pao(2|n; [oo]) E(T2)]. (3.68)

Plugging the formulas (3.17)-(3.18) into (3.67) and subsequently into (3.68)
yields (3.61). O

Proposition 3.3.5. Consider the almost observable model of the stochastic
clearing system in alternating environment, where the customers join the
system according to the (ng,0)-mized threshold strategy. Then, the expected
net benefit Fyo(n;[ng,0]) of an arriving customer, if she decides to join,
given that she finds n customers in the system, is given by
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A=
Fuo(n; [n0,0]) = R—-C ( 21

Zzozno(l - G)kino [A(l—lzl )k + B(1—1z2 )k]
Ziino(l — )k~ [D(5 L)k + E(5 L)k

Fao(nO; [n07 01) =R-C

kgl — (1= O ™[A(=)" + B(=5)"]

Foo(ng + 15 [np,0])) =R-C

1
S htngr1[l = (1= 0)F=m0][D(=5)% + E(=;

where A,B,D,E,z1, zo are given by (3.62)-(3.65) and (3.24).

Proof. Assume that customers join the system according to the (ng, #)-mixed
threshold strategy. Then, the mean sojourn time of a tagged customer,if she
decides to join, given that she finds n customers in the system before arrival
is given by

Pao(111; [n0, 01) E(T1) + Py (2|n; [10.01) E(T3), (3.72)

where p_,(1|n; [no,0]),7 = 1,2, is the probability that an arriving customer
finds the environment at state ¢, given that there are n customers in the
system and that the [ng.0]-strategy is followed. The embedded probabilities
are given by

_ Aipao(”a Z7 [n07 9-|)
Alpao(nv 1; (77,0, 9~|) + )\2pao(na 2; ’—n07 9—‘)

where pgo(n,i; [ng, 0]) are given by (3.39)-(3.41). Thus, the expected net
benefit of the tagged customer, if she decides to join, is given equal to

Pao(ilns [no, 01) i=1,2, (3.73)

Fao(n; [10,01) = R = Clpg,(1n; [no, 01) E(T1) + puo(2(n; ; [10, 01) E(T2)].
(3.74)
Using the various forms of p,,(n,i; [ng,0]) in (3.39)-(3.41) yields (3.69)-
(3.71). O

In the case of the ng-pure threshold, we obtain the following Corollary.

Corollary 3.3.0.3. Consider the almost observable model of the stochastic
clearing system in alternating environment, where the customers join the
system according to the (ng)-pure threshold strategy. Then, the expected net
benefit Fuo(n; [ng]) of an arriving customer, if she decides to join, given
that she finds n customers in the system, is given by
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Foo(n;[no]) = R — C—1=2

>y A" + B(=5)"]
Zzo:no [D( ljzl )k + E( 1jz2 )k] 7

where A,B,D,E,z1,z9 are given by (3.62)-(3.65) and (3.24).

0<n<mnyg—1, (3.75)

Foo(ng; [no]) =R—-C (3.76)

Remark 8. Applying Corollary 3.3.0.3 for ng = 0 yields the expected net
benefit F,,(0; [0]) = F,0(0; [oo]) of an arriving customer, when the others
follow the “always balk” strategy.

When the customers follow a (0 — #)-mixed reverse threshold strategy, with
0 € (0,1), we can use the same line of argument with Propositions 3.3.4
and 3.3.5, using the stationary distribution given by (3.58)-(3.59). Then, we
have the following proposition.

Proposition 3.3.6. Consider the almost observable model of the stochastic
clearing system in alternating environment, where the customers join the
system according to the (0,0)-mized reverse-threshold strategy for some 0 €
(0,1). Then, the expected net benefit Fy,(n; |0,0]) of an arriving customer,
if she decides to join, given that she finds n customers in the system, is given

by

Yien(1 = A" + B(25)"
Soren (1= 05D (=) + E(=5)*]

Fao(”? LO,@J) =R-C

where A,B,D,E,z1,zo are given by (3.62) — (3.65) and (3.24).

To express the various formulas reported in Propositions 3.3.4, 3.3.5, 3.3.6
and in Corollary 3.3.0.3 for the expected net benefit function in a compact,
unified way, we introduce the functions

n,0) = N _ ken | B 1 g B 1 b
S( ,9)_’;(1 0) _(RD CA)(l_Z1> + (RE CB)(I_ZQ>],
(3.78)

n,0) = S ~vkeen| 1 \* 1 \*
G( ,9)_’;(1 0) _D<1_21> +E<1_22> } (3.79)
HY(n) = (S;((Z ?) H"(n) = gEZ’gi,nzo. (3.80)

52



Then we have

Foo(n; [00]) = Fuo(n; [0]) = 1)~ HY(n), n>0 (3.81)
Fuo(n: [0, 8]) = Z((Z ?) CHU(m), 0<n<ng—1, (3.82)

Fao(no; 10, 61) Z((Z?)Z)) (3.83)

Fuolno + 1; [ng, 0]) = 2222 8; - Z((Z?)H@)) (3.84)
Fuo(n: [no]) = Z((Z ?) HU(), 0<n<ng—1, (3.85)

Fuolne: o)) = 23 = HY ). (3.86)

Fuo0501) = Foo(05 o)) = 2503 = H(0), (387
Foo(n:10,0]) = Z((ZZ)) n>0. (3.88)

3.3.3 Equilibrium strategies

As we have previously discussed, when the “fast service” coincides with the
less congested environmental state, i.e. (1 — p2)(p1 — p2) < 0, customers
should adopt a threshold strategy. On the contrary, when the “fast service”
coincides with the more congested environmental state, customers should
adopt a reverse-threshold strategy. This intuitive finding is associated with
the monotonicity of HY (n) which plays a key role in the following analysis.
We have the following Proposition 3.3.7.

Proposition 3.3.7. We have the following equivalences:

HY(n) is strictly decreasing < AE — BD > 0 < (u1 — p2)(p1 — p2) < 0

(3.89)
HY(n) is constant < AE — BD =0 < py = p or p1 = pa (3.90)
HY (n) is strictly increasing < AE — BD < 0 < (u1 — p2)(p1 — p2) > 0

(3.91)

The proof of this proposition is omitted, since the first case follows easily
by simple algebraic manipulations that start from the relation HY (n+1) —
HY(n) < 0 and lead to AE — BD > 0 and (1 — p2)(p1 — p2) < 0, through
successive equivalences. The other two cases are treated similarly. Moreover,

the monotonicity if the function g((zg)) with respect to 6 depends on the sign

of (u1 — p2)(p1 — p2). Specifically, we have the following Proposition 3.3.8.
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Proposition 3.3.8.

S
G((Z )) is strictly increasing in § < AE — BD > 0 < (u1 — pu2)(p1 — p2) <0
(3.92)
0
CS;((Z: 9; is constant in 0 < AE — BD =0 < uy = ug or p1 = po (3.93)
S(n,0)

is strictly decreasing in 0 < AE — BD <0< (1 — p2)(p1 —p2) >0
(3.94)

>

G(n,0)

The proof of this proposition is also omitted, since the result is deduced eas-
ily after some algebra. We now state some properties of S(n, ), G(n,0) and
HY(n), H"(n) that we will use in the sequel. Their proof is straightforward
from their definition and is thus omitted.

Lemma 3.3.1. The functions S(n,0),G(n,0) satisfy the following proper-
ties:

o0

. _ n\k—n
S(n,@)—;(l 0)""S(k, 1) (3.95)

:S(n71)+(1_0)5(n+1a0)7 HZO,HE[O,I],

[e.e]

. o k—n
G(n,@)—;(l 0)" "G (k,1) (3.96)

— G(n 1)+ (1-0)G(n+1,0), n=0,0¢€]0,1],

G(n,0) >0, n>0,0¢c]0,1], (3.97)
G(n,0) is strictly icreasing with respect to 0 for any fized n > 0.
(3.98)

Note that properties (3.97) and (3.98) of G(n, ) assure that all denomina-
tors in (3.81)-(3.88) are positive.

The intuitive discussion at the beginning of section 3.3 in combination
with propositions 3.3.7 and 3.3.8 suggests that we should methodologically
proceed by considering three different cases corresponding to the sign (neg-
ative,positive or zero) of (u1 — u2)(p1 — p2).

Case A: (1 — p2)(p1 — p2) <0

In case A, we will prove that an equilibrium strategy always exists. More-
over, we will present a systematic procedure for determining all equilibrium
threshold strategies. We first introduce quantities that we will need in the
sequel.
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Definition 3.3.2. Suppose that

(11 — p2)(p1 — p2) < 0. (3.99)
We define
ny =inf{n >0:S(n,1) <0}, (3.100)
nr =inf{n >0:5(n,0) <0}, (3.101)
ng =inf{n >0:5(n,1) <0}, (3.102)
nf =inf{n>0:5(n,0) <0} (3.103)

Then, we have several properties of ny, nL,n{,,nf that we summarize in
the following Lemma 3.3.2.

Lemma 3.3.2. Suppose that (3.99) holds. Then, there are three cases:
Case I: HY(0) < 0.

Then
ny=ng=ng;=nf =0 (3.104)
S(n,0) <0, n>0,0¢c]0,1], (3.105)
S(n,0) — S(n,0) <0, n>0,0c¢c0,1] (3.106)
Case II: HY(0) > 0. and lim, o HY (n) < 0.
Then
1<ny <o (3.107)
S(n,1) >0, 0<n<ny-2, (3.108)
S(ny —1,1) >0, (3.109)
S(n,1) <0,n > ny. (3.110)
and
0 <ng <ny, (3.111)
S(n,0) >0, 0<n<ng-—1, (3.112)
S(ng,0) <0, (3.113)
S(n,0) <0, n>ng+1 (3.114)
Moreover,
L= { np+1, if S(ng, ): (3:.115)
- ny, if S(TLU 1, ) >
nU o { ny — 1, if S(nU , ) (3.116)
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For every ng € {n},....ng}, a unique solution 6(ng) € (0,1) of the equation
S(no,0) = 0 exists with respect to 0, i.e.

S(no,0(ng)) =0, nj <n<nj-—1 (3.117)
Case III: lim, .. HY (n) > 0.
Then
ny =ng=ny; =nj = (3.118)
S(n,0) >0, n>0,0¢c][0,1], (3.119)
S(n,0) = S(n,0) >0, n>0,0c(0,1]. (3.120)

Proof. In Case I, the condition HY(0) < 0 in combination with monotonic-
ity of HY(n) (due to (3.89)) implies that HY(n) < 0,n > 0. By (3.80)
and (3.97) we have that S(n,1) < 0 and therefore, S(n,0) = > 22 (1 —
0)e-nS(k,1) < 0,n > 0,0 € [0,1] and S(n,0) — S(n,0) = S°° 11 — (1 —
0)k="] < 0,n > 0,0 € (0,1].

In Case II, the conditions HY(0) > 0. and lim, oo HY (n) < 0. combined
with the conditions (3.89) for the monotonicity of HY(n) imply (3.107)-
(3.110).

Equation (3.110) implies that S(ny,0) = 3232, S(k,1) < 0 and we con-
clude (3.111). By the definition of n;, we have (3.112)-(3.113). Moreover,
we have that S(n,0) =3 72 S(k,1) <0 for n > ny.

For n with n;, + 1 < n < ny — 1 we also have that S(n,0) < 0. Indeed,
consider that there is an n such that n;,+1 <n < ny—1and S(n,0) > 0. By
(3.95), we have that S(n—1,0) = S(n—1,1)+ S(n,0). Since S(n—1,1) >0
by (3.108) and we assumed that S(n,0) > 0 we have that S(n —1,0) > 0
and inductively, we obtain S(nz,0) > 0 which contradicts (3.113). Thus
S(n,0) <0 for n > ny, + 1 and we obtain (3.114).

Equations (3.115)-(3.116) are immediate from (3.108)-(3.110) and (3.112)-

(3.116). Consider now an ng € {n},...n;; — 1}. We have that gizg?) > 0.

This is the case since ng < n;; —1 and there are two possibilities (see 3.116).
Either n;; = ny and ng is strictly less than ny and (by (3.108)-(3.109) and

3.115)) 2ol 0 i strictly positive or n;; = ny — 1 which means that
G(no,1) U

ng < ny—2 and by (3.108) % > 0 is again positive. Also, since ng > nj,

considering the two possible values of nj{ given by (3.115) and the equations

(3.113)-(3.114) we can easily conclude that 20} < 0. By condition (3.92)
S(ng,0)

we have that Clno 0) is a strictly increasing and continuous function of 6,
so by Bolzano’s Theorem we conclude that there exists a unique solution

0(ng) € (0,1) of the equation g%ﬁﬂ’?% = (. Thus, we obtain (3.117).

In Case III, the condition i, oo HY (n) > 0 in combination with mono-
tonicity of HY(n) (due to (3.89)) implies that HY (n) > 0,n > 0. By (3.80)
and (3.97) we have that S(n,1) > 0 and therefore, S(n,0) = > 22 (1 —
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0)F"S(k,1) > 0,n > 0,0 € [0,1] and S(n,0) — S(n,0) = S22 [1 - (1 -
0)k="] < 0,n > 0,0 € (0, 1]. Thus, we conclude (3.118)-(3.120). O

Using Lemma 3.3.2 we will now prove the existence of threshold equilibrium
strategies, when (3.99) holds. We have the following Theorem 3.3.3.

Theorem 3.3.3. In the almost observable model of the stochastic clearing
system in alternating environment where (3.99) holds, equilibrium threshold
strategies always exist. In particular, in the three cases of Lemma 3.5.2 we
have:

CaseI : HU(0) <0
Then there exists a unique equilibrium threshold strategy,the [0] strat-
egy(always to balk).

Case IT : HY(0) > 0. and lim, oo HY (n) < 0.
Then, an equilibrium pure threshold strateqy always exists. Moreover,
the equilibrium strategies within the class of all pure strategies are
the strategies [ng| with ng = np,np + 1,...,ny. Also, the equilibrium
strategies within the class of genuinely mixed threshold strategies are
the strategies [ng,0(no)] with ng € {nf,...,n; — 1} and 6(ng) the
unique solution of S(ng,0) = 0 with respect to 6.

Case III : lim, .o HY(n) > 0.
Then, there is a unique equilibrium threshold strategy, the [oo]-strategy(always
to join).

Proof. Case 1: Consider a tagged customer at his arrival instant and assume
all other customers follow an [ng] strategy for some ny > 0. Inequality
(3.109) and relations (3.85)-(3.86) imply that the expected net benefit of
the tagged customer, when she finds n customers and decides to join is
Fao(n;[no]) <0, for 0 < n < ng. Thus, she always prefers to balk and her
best response against [ng] is [0].

We now assume that other customers follow an [ng, 0] strategy, for some
ng > 0 and 6 € (0,1). Then, if the tagged customer finds n customers
at her arrival instant and decides to join, her expected net benefit will be
Foo(n; [no, 6] <0 for 0 <n <mng+1 from (3.105)-(3.106) and (3.83)-(3.84).
Therefore, the tagged customer is always unwilling to join and her best
response against [ng, 0] is [0].

If all customers follow the [oo]| strategy, (3.109) and (3.81) yield F,o(n; [oo]) <
0 for n > 0. Again, due to negative expected benefit, it is preferable for the
tagged customer to balk. So, her best response against [oo] is [0]. Thus,
we conclude that the only best response against itself within the class of
(pure and mixed) threshold strategies is [0].

Case II: Consider a tagged arriving customer and suppose all other cus-
tomers follow an [ng] strategy for some ng < ny—1. If she finds ng customers
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and decides to join her expected net benefit will be F,,(ng; [ng]) > 0, from
(3.112) and (3.86). This implies that when she finds ny customers, she is
willing to join. Thus, [ng| cannot be an equilibrium since it cannot be a
best response against itself.

Consider a tagged arriving customer and suppose all other customers
follow an [ng] strategy for some ng > ny + 1. Using (3.85) and (3.110) we
have that F,,(n; [ng]) < 0 for niy < n < ng—1. This implies that when she
finds n customers, with nyy < n < ng — 1, she is unwilling to enter. Thus,
the [ng] cannot be an equilibrium strategy. We conclude that the search of
equilibrium strategies should be restricted within the class of pure threshold
strategies should be restricted to strategies [no]| with ny < ng < ngy.

We mark an arriving customer and we assume that all other customers
follow an [ng| strategy for some ng with n;, < ny < ny. From (3.85), (3.86),
(3.108), (3.109), (3.113) and (3.114) we have that the expected net benefit
of a customer who finds n customers upon arrival and decides to join is
Fao(n;[no]) > 0, for 0 < n < ng—1 and Fye(no; [no]) < 0. Thus, [ng] is
a best response against itself and we conclude that all such strategies are
equilibrium strategies.

To finish our search of equilibrium strategies within the class of pure
threshold strategies, we examine the [oo] strategy. This cannot be an equi-
librium, since (3.110) and (3.81) imply that Fy.(n;[oo]) < 0, for n > ny,
which means that it is not optimal for the tagged customer to join when she
sees n customers for some n > ny. Therefore, we conclude that the equilib-
rium strategies within the class of pure threshold strategies are exactly the
strategies [ng| for ny, < ng < ny.

We will now search for equilibrium strategies in the class of genuinely
mixed threshold strategies, i.e. among strategies [ng, 6y| with 6y € (0,1). In
order for a mixed threshold strategy [ng,fy] to be an equilibrium strategy,
the following relations must be true : S(n,1) > 0, for 0 < n < ng — 1,
S(no,00) = 0 and S(ng,0) — S(ng,8p) < 0. We derive those relations from
the equations (3.82)-(3.84) which express a customers’ expected benefit when
she joins while observing less than ng, exactly ng and ng + 1 customers in
the system respectively. By comparing (3.82)-(3.84) with (3.85)-(3.86) we
can easily see that [ng, 0] may be an equilibrium if and only if [ng] is an
equilibrium. Thus, we should restrict our search for equilibrium genuinely
mixed threshold strategies to strategies [ng, 0] with ng =ng,...,ny.

If S(nr,0) = 0, then there does not exist 6 € (0, 1) such that S(nr,0) =0,

since g((zz)) is strictly decreasing. Therefore, [nr, 6| cannot be an equilib-

rium strategy for any # € (0,1). Similarly, if S(ny — 1,1) = 0, then the
strategy [ny — 1,0] cannot be an equilibrium strategy for any 6 € (0,1).
Moreover, [ny, 0] cannot be an equilibrium strategy for any 6 € (0, 1), since
S(ny,0) < 0,0 € (0,1). Therefore, a strategy [ng, 8] with € € (0,1) may be
an equilibrium only if nj-: <no<ny-—1
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Now, for every ng € {nJLr, ..ng;} the only [ng, 0] strategy that can be an
equilibrium is the one that corresponds to 8y = 6(ng) since S(ng, #(ng)) = 0.
Indeed, if all customers follow the [ng, #(ng)]| strategy, the expected benefit
for a tagged customer, who finds n customers in the system and decides to
join is Fyo(n; [no, 0(no)]) > 0 for 0 < n < ng — 1, Fuo(no; [no,0(ng)]) =0
and Fyo(no + 15 [ng,0(np)]) < 0, from (3.108), (3.114) and (3.117). Thus,
[ng,0(np)] is an equilibrium strategy.

Case III : Following the same line of argument as in case I, we now find that
when all customers follow a pure threshold strategy [ng]| or a mixed thresh-
old strategy [no,f] the expected net benefit function is always positive.
Thus, the best response of a customer is always to join the system. There-
fore, the only best response against itself in the class of threshold strategies
is the [oo] strategy.

O

Note that although pure threshold strategies always exist, it is possible that
genuinely mixed threshold strategies do not. This happens if n;; — 1 < nz

Case B:(u1 — p2)(p1 — p2) >0

In case B, we seek equilibrium strategies in the class of reverse-threshold
strategies. We will exclude strategies |no| and |ng, 0| with ng > 1. Indeed,
all these strategies prescribe to balk when the customer faces an empty
system. Thus, under such strategy, the system continuously remains empty
after the first service completion. Therefore, in steady state, these strategies
are equivalent to the “always balk” strategy |oo]. Thus, we seek equilibrium
strategies only in the set S,_; = {[0], [oo] } U{|0,600] : 6y € (0,1)}. We first
introduce several quantities that we will use in the sequel.

Definition 3.3.3. Suppose that

(11 — p2)(p1 — p2) > 0. (3.121)
We define
my =inf{n >0:S5(n,1) > 0}, (3.122)
mp =inf{n >0:5(n,0) >0}, (3.123)
my = inf{n >0:5(n,1) > 0}, (3.124)
m} =inf{n >0:S(n,0) > 0}. (3.125)

Then, we have several properties of my, myz, m&,mz that we summarize
in the following Lemma 3.3.4.

Lemma 3.3.4. Suppose that (3.121) holds. Then, there are three cases:
Case I: HY(0) > 0.
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Then

my =mp =mg; =mj =0 (3.126)
S(n,0) >0, n>00¢]0,1]. (3.127)
Case II: HY(0) < 0. and lim, oo HY (n) > 0.
Then
1 <my < oo (3.128)
S(n,1) <0, 0<n<my—2, (3.129)
Stmy —1,1) <0, (3.130)
S(n,1) <0,n >my. (3.131)
and
0<mg <my, (3.132)
S(n,0) <0, 0<n<my—1, (3.133)
S(mz,0) >0, (3.134)
S(n,0) >0, n>mg+1. (3.135)
Moreover,
ML= { mr+1, i S(mL,O) (3.136)
- my, ifS(mU—1,1)<0
My = { my —1, if S(my —1,1) =0 (3.137)

If mf =0 and my; > 1, then there exists a unique 0(0) € (0,1) such that

5(0,60(0)) = (3.138)
S(n,0(0)) > O n > 1. (3.139)
Case III: lim, .. HY (n) <0.
Then
my =mpg =mg; =mf = oo (3.140)
S(n,0) <0, n>0,0¢€]l0,1]. (3.141)

We omit the proof of Lemma 3.3.4 as it is completely analogous to the proof
of Lemma 3.3.2. We are now in position to prove the existence and unique-
ness of reverse-threshold strategies when (3.121) holds. We present the
results in he following Theorem 3.3.5. The statements about the uniqueness
of the reverse-threshold equilibrium strategies should be interpreted within
the class S, = {[0], [oo]} U{]0,600] : o € (0,1)} of the reverse threshold
strategies.
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Theorem 3.3.5. In the almost observable model of the stochastic clearing
system in alternating environment where (3.121) holds, equilibrium reverse-
threshold strategies always exist. In particular, in the three cases of Lemma
3.3.4 we have:

CaseI : HY(0) >0
Then there exists a unique equilibrium reverse-threshold strategy, the
0] strategy (“always to join”).

Case IT : HY(0) < 0. and limy oo HY (n) > 0.
If my; =0, the [0 strategy (“always to join”) is the unique equilibrium
reverse-threshold strategy. If mz > 1 then the |oo] strategy “always
to balk” is the unique equilibrium reverse-threshold strategy. Other-
wise, the |0,0(0)| strategy is the unique equilibrium reverse-threshold
strategy.

Case III : lim,_,..HY(n) <0.
Then, there is a unique equilibrium reverse-threshold strategy, the |oc |-
strategy (“always to balk”).

Proof. Case I : Consider a tagged customer at his arrival instant that ob-
serves n customers in the system, when all other customers follow the [0]
strategy. Then, the expected net benefit of the tagged customer is given by
(3.81) and since S(n,0) > 0 for n > 0,6 € [0, 1] by (3.127) and G(n,0) > 0,
for n > 0,0 € [0, 1] by (3.97), we have that Fy,(n;[0]) > 0 for n > 0. Thus,
the tagged customer always prefers to join and her best response against 0]
is [0].

Similarly, consider a tagged customer at his arrival instant that observes n
customers in the system, when all other customers follow a |0, 6y] strategy,
for some 0y € (0,1). Then, the expected net benefit of the tagged customer
is given by (3.88) and by (3.127) we have that F,,(n; [0, 6p]) > 0 for n > 0.
Thus, the tagged customer always prefers to join and her best response
against |0,6p] is [0].

If all other customers follow the |oo| strategy, the net benefit of a tagged
customer that enters the system and observes n customers in the system
Foo(n;[00]) is positive for n > 0 by (3.87) and (3.127). Thus, the tagged
customer always prefers to join and her best response against |oo| is [0].
So the only reverse-threshold strategy which is best response against itself
is the |0] strategy.

Case II: Assume that my; = 0. Then S(0,1) = 0 and my = 1. Consider
now a tagged customer at her arrival instant and suppose all other customers
follow the |0 strategy. Inequality (3.131) and relation (3.81) imply that her
expected net benefit, when she finds n customers in the system and decides
to join is Fye(n; [0]) > 0 for n > 0. Thus, |0] is a best response against
itself.
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Assume, now, that mJLr > 1. By definition of mj-: is equal to mp, or

my, + 1. In the former case, we have that 0 < my — 1 and (3.133) yields
that S(0,0) < 0. In the latter case, we have that my = 0 or my > 0. If
my, > 0 again by (3.133) we have that S(0,0) < 0. If mz = 0 then by (3.136)
F(mp,0) = F(0,0) = 0. Therefore, if m; > 1 we have F(0,0) < 0. If we
consider a tagged arriving customer and suppose all other customers follow
the |oo]| strategy, then the tagged customer, if she observes 0 customers
and decides to join, has expected net benefit F,,(0; |co|) < 0 due to (3.87).
Thus, |0o] is a best response against itself i.e. it is an equilibrium strategy.
Otherwise, we will have that mJLr = (. Consider again a tagged customer
and suppose that all other customers follow the [0,6(0)] strategy. If the
tagged customer at her arrival instant finds n customers in the system and
decides to join, her expected net benefit will be either F,,(0; |0,6(0)]) =0
when n = 0 or Fye(n; [0,6(0)]) > 0if n > 1 due to (3.88), (3.138), (3.139).
Therefore, the |0,0(0)] strategy is an equilibrium strategy.

Case III : Following the same line of argument as in case I, we now
conclude that the expected net benefit function is negative. Thus, the best
response to every reverse-threshold strategy is |oco]. Thus the only equilib-
rium reverse-threshold strategy is |oo| O

Case C:(u1 — p2)(pr — p2) =0

Case C occurs when p = o or % = %. In this case, the distinction “fast
environmental state” and “slow environmental state” has no sense or the
distinction “more congested environmental state” and “less congested envi-
ronmental state” has no sense. Therefore, we conclude that the information
on the number of customers in the system, does not affect the decision of a
tagged arriving customer. A similar analysis is possible as in the other two

cases and we have the following Theorem 3.3.6.

Theorem 3.3.6. In the almost observable model of the stochastic clearing
system in alternative environment, where

fi1 = p2 or p1 = pa, (3.142)

an equilibrium strateqy exists within the class of threshold and reverse-threshold
strategies. In particular, we have the following three cases:

Case I : HU(0) <0
Then the unique equilibrium strategy in the class of threshold and
reverse-threshold strategies is the [0] = |oo] strategy( “always to balk”).

Case IT : HY(0) =0
Then every strategy in the class of threshold and reverse-threshold
strategies is equilibrium strategy.
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Case III : HY(0) > 0.
Then, the unique equilibrium strategy in the class of threshold and
reverse-threshold strategies is the [oo] = |0]-strategy (“always to join”).

Proof. By (3.142) and (3.90) we can see that HY(n) is constant. Therefore,
in case I, HY(n) is always negative. We consider the cases where other cus-
tomers follow [co] = [0], [ng], |0,60] and [0] = |occ]. By (3.81),(3.85),(3.87)
and (3.88) we can see that the expected net benefit in each of those cases,
when a tagged customer observes n customers in the system and joins, is
negative (in the [ng] case we assume n < ng ) and therefore prefers to balk.
Thus, the only equilibrium strategy is [0] = |oco](“always to balk”). We do
not need to check [ng, @] strategies because if [ng] is not an equilibrium,
[n0, 0] cannot be an equilibrium.

The other two cases are similar. In case II the expected net benefit
is always 0, therefore any strategy is equilibrium, whereas in case III, the
expected benefit is always positive, and customers prefer to “always join”.

O]

This concludes the analysis of customer strategic behaviour in a clear-
ing systems in an alternating environment. We identified four cases with
respect to the information level of information provided to arriving cus-
tomers and derived the equilibrium strategy for each case. It is important
to notice that in each case, we searched for equilibrium strategies within
the appropriate class of strategies. Moreover, in the almost observable
case, which is the most interesting, Theorems 3.3.3, 3.3.5 and 3.3.6 sug-
gest that the equilibrium strategies in the class of threshold and reverse-
threshold strategies are completely characterized by the signs of the quan-
tities (1 — p2)(p1 — pg),HU(n),limn%mHU(n) and H%(n). Thus, we can
easily combine these theorems and develop an algorithm for determining
equilibrium strategies.

ATC or FTC?

We must also notice that, in the almost observable case, the two cases A and
B concerning the sign of the quantity (u1—pe)(p1—p2) are quite different. In
case A, there is a general interval of thresholds which constitute equilibrium
strategies. On the other hand, in case B, we have a unique reverse-threshold
equilibrium strategy. As stated in the introduction, multiple equilibria are a
property of the follow the crowd (FTC) behaviour, whereas in the avoid the
crowd (ATC) behaviour, at most one equilibrium is possible. This is indeed
the case here :

Consider case A, where (1 — p2)(p1 — p2) < 0 and the “fast service” co-
incides with the “less congested” environmental state. We compare two
threshold strategies n and n+1 as follows. Consider a tagged customer who
arrives at the system and observes n customers, while all other customers

63



follow an n threshold strategy. Then, she can deduce that at least n cus-
tomers have arrived at the station since the last clearing epoch, since some
customers may have come and balked when they faced n customers. If the
customers follow an n + 1 threshold strategy instead, the tagged customer
knows that ezactly n customers arrived at the system since the last clearing
epoch. This gives the customer the sense that the system is less congested
which is a signal that the environmental state is probably the “fast service”
one. Therefore, the customer is more willing to join the system and adopts
a higher threshold. Thus, if the customers adopt a higher threshold, an
arriving customer tends to follow them in adopting a higher threshold and
we have an FTC situation.

On the other hand, consider case B where (u1 — u2)(p1 — p2) > 0 and the
“slow service” coincides with the “less congested” environmental state. In
this case, we deal with reverse-threshold strategies. Also, if the customers
follow a strategy |ng, 0| with ng > 1 and 6 € [0, 1] the system remains empty.
Therefore, we will limit our intuitive discussion in the case where customers
follow an [0,6] with 6 € [0, 1]. Now, consider a tagged customer who arrives
at the system and observes 0 customers, while all other customers initially
follow an |0, 0| reverse-threshold strategy and then move to a [0,6'| with
¢’ > 0. When the customers follow the [0,6’| the information of an empty
system means that the system is probably in the the “less congested” envi-
ronmental state, which now coincides with the slow service. Therefore, the
tagged customer becomes less willing to enter the system. Thus, when other
customers enter the system with a higher probability, the tagged customer
tends to decrease the probability of joining the system i.e. we have an ATC
situation.

Social optimization

Due to the clearing mechanism all customers are removed simultaneously at
the end of a clearing epoch. Therefore, customers do not impose any exter-
nalities on other customers, and by maximizing their expected net benefit,
they also maximize the social benefit. Thus, in the fully observable, fully un-
observable and the almost unobservable case, equilibrium strategies are also
socially optimal. In the almost observable case, equilibrium strategies are
also socially optimal, except from the case where HY (n) is strictly decreas-
ing, HY(n) > 0 and lim,, oo HY (n) < 0. In this case, when customers adopt
an [ng| with ng € {ng,...,ny}, joining customers have positive expected net
benefit. Naturally, a social planner would want to have the highest threshold
possible, while the customers’ expected net benefit remains positive. This
means that the unique socially optimal strategy is the [ny] strategy.
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Chapter 4

Strategic behaviour in an
observable fluid queue with
an alternating environment

4.1 The model

We consider a fluid queue that represents a production facility, that alter-
nates between fast and slow periods, which are independent and exponen-
tially distributed with rates ¢; and qg respectively. The state of the machine
is recorded by the 2-state continuous time Markov chain {Z(t)}, where the
states 1 and 0 correspond respectively to the fast and slow modes. The
input rate of the fluid that represents the arrivals of new customers is A.
The output rate is 1, when the machine is in the fast service rate, and pq
otherwise. We assume that 0 < ug < p1. The case ug = 0 is qualitatively
similar, but it is omitted from this presentation, as the various formulas do
change and they should be evaluated by taking appropriate limits (see e.g.
(4.2)). The waiting (buffer) capacity of the facility is infinite. The dynamics
of the process {X (t)} that records the level of the fluid is given by

dX(t) _ A — L if X(t) > 0and Z(t) =1, (4 1)
dt A—p)t if Xy =0and Zyy =i, '
where (x)* = maz(z,0). It is easy to see that the bivariate process

{(X(t),Z(t))} is Markovian. In what follows, we will use the notational
convention i = 1 — 14, ¢ = 0, 1. Thus, if 7 refers to the current state of the
machine, ¢’ is the opposite state.

The customers are strategic and decide whether to join or balk upon arrival
with the objective of maximizing their expected utility. Every customer
receives a reward of R units for completing service. On the other hand,
he accumulates waiting cost at rate C' per time unit in the system. The
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decisions of the customers are assumed irrevocable. In particular no retrials
of balking customers nor reneging of entering customers are allowed. Since
all customers are indistinguishable and each one tries to maximize his own
benefit by taking into account that the other customers do the same, we can
consider this situation as a symmetric game among them. We are interested
in the computation of the symmetric equilibrium strategies for this game.
These strategies are best responses against themselves, so no customer has
an incentive to deviate from such a strategy unilaterally.

The strategic behaviour of the customers is influenced by the level of in-
formation that they receive upon arrival, before making their decisions. We
will consider the following two cases:

e The fully observable (fo) case: Customers observe (X, Z))

e The almost observable (ao) case: Customers observe only X ;).
There are two other interesting informational cases:

e The almost unobservable (au) case: Customers observe only Z ;).

e The fully unobservable (fu) case: Customers observe neither X ;) nor
Zpy.
(®)

4.2 The fully observable case

Suppose that a customer arrives at the production facility and observes the
state (x, 7). Then, to assess its expected utility if he joins, he needs to com-
pute his conditional expected sojourn time in the system, S;(x). Note that
this conditional expected sojourn time does not depend on the strategies of
the other customers, given (z, 7). Indeed, future customers do not influence
S;(x) because of the FCFS discipline and past customers do not influence it
either, since reneging is not allowed. We can easily obtain closed formulas
for S;(z). Indeed, we have the following Lemma 4.2.1.

Lemma 4.2.1. The conditional expected sojourn time of a customer in the
system, given that the state of the server is i and the fluid level in front of
him is x is given by the formula

Gi(g) = Dota ifhir (it _Ni)Q
qoi1 + q1pto (qop1 + q1pt0)

x (1—e‘<33+$)‘”>, z>0,i=0, 1.

(4.2)

Proof. To compute S;(x), we condition on the length 7; of the remaining so-
journ time of the machine at state i, which is exponentially distributed with
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rate ¢;, because of the memoryless property of the exponential distribution.
Then, we obtain

z

Si(x) = Mﬁe_qi“ii /M (t + Sy (x — pit))gie”%dt. (4.3)
1 0

Changing the variable of the integration to v = x — ;¢ and using integration
by parts yields

1 1 _% ;i z %
Si(z) = — — —e mi' + %, Mz/ Sy (w)eri " du.
9 4 Hi 0
495
Multiplying by pie*i* and differentiating with respect to x, we obtain the
linear system of ODEs
dSi(x) qi qi .
—F = —=—5;(z)+ —=Sy(x)+ —,i=0, 1,
dx Miz() NiZ() i
with initial conditions S;(0) = 0,7 = 0, 1. Using the standard theory for
first-order linear systems of ODEs with constant coefficients (see e.g. Braun,
1983, Chapter 3), we obtain the unique solution stated in (4.2). O

We can now derive the customer equilibrium strategies in the fo case. We
have the following Theorem 4.2.2.

Theorem 4.2.2. In the fo case, the equilibrium strategies are specified by
two thresholds, that is they prescribe “While arriving at time t, observe
(X)) Zw)),s join if Xy < we(Z(y)) and balk if Xy > xe(Zy))”. The thresh-
olds z.(1),i = 0, 1 are given as the unique roots of the equations
s x + it (1o — i) X (1 — e_(z(g)+f‘ll>x> = E, i=0,1, (4.4)
qom1 + qipo (qopr + qipo)?

C
with respect to x.

Proof. The expected utility of a customer that observes upon arrival the
system at state (X(;),Z)) = (v,7) and decides to join is Utfo)(z,i) =
R — CS;(x). Note that this expected utility does not depend on the strate-
gies followed by the other customers. The customer prefers strictly to join if
U (z,1) > 0, prefers strictly to balk if U (z,i) < 0 and he is indifferent
between joining and balking if U/°)(x,i) = 0. These conditions are equiv-
alent respectively to S;(z) < %, Si(x) > g and S;(z) = %. Differentiation
of (4.2) yields

dSi(z) _ q+a n Gipr (pir — Jii) o (CIO n Q1> e—(j—%JrZ—ll)x

)

dr  qop+aqipo - (qopn +qip0)® T \po
2>0,i=0, 1, (4.5)
24, (e — 11 2
E5iw) _ _ gty — pi) (qo N %) (i) ps0i=0 1.
dx (qop1 + qip0)* \po
(4.6)
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Figure 4.1: Typical sample path of fluid level for z,.(0) = 3, z.(1) =6, A =
5, o =2 and p; =4 (corresponding to case I of Lemma 4.2.3).

Therefore ds;ix) > 0, d25;2(x) > 0 and %ﬁo) = % > (0 and we conclude that
Si(z) is strictly increasing in [0, co) with image the interval [0, co). This

shows that there exists a unique root x(i) of S;(z) = g with respect to x

which is exactly Eq. (4.4). Then, a customer that finds the system at state
(z, i) prefers to join for x < z.(i). He is indifferent between joining and
balking if = x.(7). Finally, he prefers to balk for x > x.(7). O

We can see that z.(0) < x.(1), that is a customer finding the system at

the fast service rate affords higher fluid levels in front of him under the
equilibrium strategy than a customer that finds the system at the slow
service state. This is intuitively clear and can be formally shown since
Si(z) < Sp(x), x > 0. Indeed

— — (4% 91
51(33)_50($):M <1—€ (u0+u1>x> , x> 0.
qoi1 + q1io

A subtle point is that an equilibrium strategy should specify necessarily
joining or balking, according to whether X,y < z.(Z()) or not, only for
states (X(y), Z(;)) that are reachable with positive probability, given the
initial state. Indeed, an equilibrium strategy can prescribe anything in states
that are not reachable. For example, suppose that the system is initially
empty and consider a strategy that prescribes joining, whenever (Z;) = 0
and Xy < z.(0)) or (Zy =1 and Xy # we(1)). This is an equilibrium
strategy, because what it does for states (X, Z(y)) = (z,1) withz > (1)
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does not matter, since such states are never observed. However we can use
the notion of subgame perfect equilibrium strategy to refine the equilibrium
strategies and to eliminate such “pathological” cases (that occur also in the
standard analysis of the M/M/1 queue - see e.g. Hassin and Haviv (2003)
Remark 2.2 in p.24, or Hassin and Haviv (2002)). Then, the subgame perfect
equilibrium strategies prescribe joining when X(;) < z¢(Z(y)), balking when
X(t) > Ie(Z(t)) and whatever for X(t) = xe(Z(t)).

Moreover, we note that in a game-theoretical terminology, the equilibrium
strategies in the fo case are dominant strategies. Indeed, such a strategy
is a best response of a tagged customer against any strategy of the other
customers. Thus, we have a very strong equilibrium concept in the fo case.
This does not happen in the other informational case as we will see in the
following section.

We now move to the computation of the expected social benefit function
per time unit, when the customers follow a threshold strategy. In the state-
ment of Theorem 4.2.2, we have not explicitly stated what the customers do
when they observe (X(y), Z()) with X = zc(Z)). Clearly, an equilibrium
strategy can prescribe anything at such a state. However, for the computa-
tion of the expected social benefit per time unit under a threshold strategy
with threshold-vector (z,(0), z«(1)), it is necessary to take into account the
fraction of entering customers, when the fluid level x,(i) is reached and
the environment is in state i, ¢ = 0, 1. Therefore, for a certain threshold
strategy, we note that when the threshold has been reached, this fraction
stabilizes the fluid level till the next change of the environmental state.
Now, we compute the steady-state distribution of the fluid level, when the
customers follow such a strategy, that is we compute the functions F;(x)
with

Fl($> = PT[X(t) < Z, Z(t) = i], T > 0, 1= 0, 1 (47)

where ¢ is an arbitrary time point, assuming that the process {(X (t)s Z(t)}
has achieved stationarity. This is done in Lemma 4.2.3. To facilitate the
reader to follow the proof, we provide some graphs that show the typical
sample paths of X ;) under a strategy specified by two thresholds x.(0) and
24(1). These are given in Figs. 4.1 and 4.2.

Lemma 4.2.3. Suppose that the customers follow a strateqy specified by
two thresholds x4(0) and x(1), such that z.(0) < z.(1). Then, we have the
following cases.

Case I. X > .
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Figure 4.2: Typical sample path of fluid level for z,(0) = 3, z,.(1) =6, A =
3, o = 2and 1 =5 (corresponding to case III of Lemma 4.2.3).

The fluid level oscillates in [z4(0), x4«(1)]. In particular

Fyo(r) =

and

Fi(x) =

0
if x < x(0)
T —q1pt0+q0(A—p1) eXP{— (ﬁ_%) [z—zx (0)}}

qotar —aqipo+aoA—p) exp{ — (52— 20 ) [z, ()2 (0)]}  (4.8)
if 2.(0) <z < x,(1)

q1
qo+q1

if x> x(1)

0
if x < x.(0)
w_ . —om(izeo{- (- %)e-e0)})

qgoFar —Q1M0+QO(>\—H1)’3XP{—<>\3L1 —Z%)[I*(l)_x*(o)]} (4'9)
if 24(0) <z < m(1)

q0
qo0+q1

if x> x(1)

In other words, the distribution Fy(z) is mized with a point mass
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po(x4(0)) at z.(0) given by

_ q1
qo + q1

po(z«(0))

—qipt0 + qo(A — 1)

| —qupo + qo(A — p1) exp {— (A%l - %) [ (1) — x*(O)]}
(4.10)

and probability density fo(z) in (x.(0), x.(1)) given by

q1
xTr) =
fol@) 90+ q1

o =) (= 5 ep { - (% — g8 ) e — .01
—aqipio + ao(A — ) exp { = (38 = 20 [2,(1) - 2., (0)]}
24(0) < x < x4(1), (4.11)

)

while Fy(x) is mized with a point mass p1(x«(1)) at z.(1) given by

_ q0
qo + q1

lao(X = ) = aupro] exp { = (52 = 2) [ (1) — 2.(0)]}

—qp0+ a0\ — ) exp { = (52 = 20 [2,(1) - 2.(0)]}
(4.12)

p1(z«(1))

and probability density f1(x) in (x4(0), z.(1)) given by

q0
1\T) =
fi(@) q + q1

o (58 e - (45— ) e - = 0)])
—qp0+ a0\ — ) exp { = (52 = 20 [2.(1) - 2.(0)]}
24(0) < x < i (1). (4.13)

)

Case II. A\ = p.
The fluid level stabilizes at x.(0).

Case IIl. py < A < pq.
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The fluid level oscillates in [0, 2.(0)]. In particular

0
ife <0
Qa g0 (A~ u1)<1 eXp{ (A #1 - ) })
F()(IL') = 0t g (A—p))+q (A— uo)exp{ (/\ql +A Mo)x*(O} (414)

M1
if 0 <z <xz(0)
q1

q0+q1
if x> x.(0)
and
0
ifr <0
w0 qo(A—u1)+q1(A—u0)eXP{_(A%lﬂcho)x}
Fi(z) = ¢ 7" wGom)tn 0w ool - (4525 )0} (4.15)

if0 <z <z,.(0)

q0
qo+q1

if x> x.(0)

In other words, both Fy(x) and Fy(z) are mized. The distribution
Fo(z) has a point mass po(x«(0)) at z.(0) given by

q1
24(0)) =
po(z4+(0)) ot

[q1(A = po) + go(A — p11)] exp {— (A?
qo(A — p1) + ¢1 (A — po) exp {— (Agl

and probability density fo(x) in (0, 2.(0)) given by

% 'qO(A_Ml)(AmJFA )eXp{_(AMJFA )x}

fo(z) =

qo +q1 qo()\—m)—i—m()\—,u,o)exp{— (A o —i-)\ > (0)}
0 <z < x.(0) (4.17)

Regarding Fi(x), we can easily see that it has a point mass p1(0) at 0
given by
q0 qo(A — ) + 1 (A — po)

pi(0) = qo +‘11.QO()\—M1) +q1()‘_“0)eXp{_ (A TIPS )x*(O)}
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and probability density f1(x) in (0, 2.(0)) given by

q q q g
filz) = 2. (A~ po) <_>‘—1“1 _ ﬁ) eXp{_ <’\—1#1 + AJLO) x}
W+ go(A— ) + @ (A= po) exp { — (52 + 52 2.(0) }
0 <z < z(0). (4.19)

Case IV. The fluid level stabilizes at 0.

Proof. First, note that in all cases, the fluid level enters in levels smaller
than or equal to x,(1), because of the threshold strategy and the fact that
24(0) < x4 (1).

Cases Il and IV are immediate. Indeed, for case 11, if the fluid starts from a
level below x,(0), then during sojourn times in the fast mode it stays at the
same level (since A — p1 = 0), while during sojourn times in the slow mode
it grows linearly at rate A — o, until it reaches the level z,(0). Thereafter,
it stays at this level. If it starts from a level above z,(0), a similar situation
occurs and the fluid reaches again eventually z,(0). Case IV is also clear,
as there is a non-positive drift under the slow mode and a strictly negative
drift under the fast mode, so the fluid level decreases (with some possible
constant intervals) till it reaches zero.

For cases I and 111, let us consider a fluid queue that alternates between two
environmental states — and 4, with exponential sojourn times with rates
q— and g4 respectively, where the fluid drift is n— < 0 for the environmental
state — and 14 > 0 for the environmental state +. If the fluid is constrained
to oscillate in [0, T (i.e., the fluid rates become zero when the fluid hits
the boundary states 0 and T') and F_(z) (respectively F(z)) denotes the
limiting probability that the fluid level is smaller than or equal to x and the
environment is at state — (respectively +), then we have that F_(x) and
F. (z) are differentiable in (0, T") and satisfy the linear system of ODEs

dF_(x

O P @) e R), (4.20)

dFy (x
) P @) - P, (4.21)
T

with boundary conditions
a+

F(T)=—"F F,(0)=0 4.22

1) = 4 Fy(0) (1.2)

(see e.g. Kulkarni (1997)). Using the standard theory for first-order linear
systems of ODEs with constant coefficients and computing the constants by
the boundary conditions (see e.g. Braun (1983), Chapter 3), we have that
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this system has a unique solution which is given by the relations

0 ife <0
q+n—+q-n+ eXp{*(qurqi)x} .
F_(x)= qfq-i-Fqu . PR exp{—(g—:—&-%)T} if0<z<T (4.23)
q:ﬁq+ ifr 2T
and
0 ife <0
) e (en{-(E4E)e})
Fila) = =0 qin_tq-ns exp{—(f]f-:%)T} iosesT (4.24)
q}IQJr ifz 2T

For case I, a moment of reflection shows that the fluid oscillates in [z, (0),
x4(1)] with negative drift —ug when the machine is in the slow mode and
positive drift A — p; when then machine is in the fast mode. We can then
use the formulas (4.23) and (4.24), substituting « — z.(0) for = and setting
4— = qo, 4+ = q1, N— = —pp and Ny = A — pq. This yields (4.8) and (4.9).

Similarly, in case III, the fluid is easily seen to oscillate in [0, x.(0)] and
we use formulas (4.23) and (4.24) with ¢— = ¢1, ¢+ = qo, 7— = A — p1 and
N+ = A — po to obtain (4.14) and (4.15). O

We are now ready to compute the function of the expected social benefit
per time unit, BY°)(z,(0),z.(1)), when the customers follow a threshold
strategy with thresholds z,(0) and z.(1). We have Theorem 4.2.4.

Theorem 4.2.4. Suppose that the customers follow a strategy specified by
two thresholds x.(0) and x.(1), such that x.(0) < x.(1). Then, we have the
following cases.

Case I. X > 111

The expected social benefit per time unit is given by

BU) (2,(0), 2.(1 :< @ + o )R—CEX, 4.25
(2:(0), z.(1)) ot [X], (4.25)

where

Zx(1)
w(fo(x) + fi(z))de + 2. (1)p1(z.(1))

(4.26)
with po(+(0)), fo(x), p1(z+(1)) and fi(z) given by (4.10)-(4.13).

E[X] = 2. (0)po(2.(0)) + /

z+(0)
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Case II. A\ = p.

The expected social benefit per time unit is given by

B (2,(0), z.(1 :A( @ Ko, )R—C:c*o. 4.27
(@ (0) (1) = A A B (0). (127

Case III. g < XA < pq.

The expected social benefit per time unit is given by

z+(0)
B(fo)(x*(O),:E*(l)) =\ (/0 fo(x)dz +p0(x*(0))% + qoc_],(_)q1> R

— CE[X], (4.28)

where
Z+(0)
mmzmwmwmm+A (folx) + fi(e))de  (4.29)

with po(x«(0)), fo(z) and fi(z) given by (4.16), (4.17) and (4.19),

respectively.

Case IV. A < py.

The expected social benefit per time unit is given by

BY°) (2,(0), 2,(1)) = AR. (4.30)

Proof. In all cases, the expected social benefit per time unit is given as
BY)(2,(0),2.(1)) = Ay R — CE[X], (4.31)

where A.ry is the effective fluid arrival rate, which counts the arrivals of
customers that do enter in the system and E[X] is the expected stationary
fluid level. In case I, the fluid fluctuates in [2.(0), z.(1)]. Moreover, the fluid
once at level z,(0) during an environmental sojourn time at the slow mode,
it stays there till the next environmental change. Therefore, a fraction 52 of
the customers that find the system at the slow mode and the fluid at level
24(0) do enter in the system, in order to ensure that the net fluid change
rate is 0. On the other hand, customers that find the system at the slow
mode but the fluid level strictly above x,(0) do not enter. Similarly, all
customers that find the system at the fast mode and the fluid level strictly
below x,(1) do enter, whereas only a fraction 5 of the customers that find
the system at the fast mode and the fluid at level z.(1) enter in the system.
Thus, the effective arrival rate in case I is

(1)

Aeff = A (po(w*(o))io +/x fi(z)dx +p1(:c*(1))‘;1> : (4.32)



The expected stationary fluid level E[X] is computed by (4.26), as the
distribution of the fluid level has point masses po(x«(0)) and p;(z.(1)) at
24(0) and z.(1), given by (4.10) and (4.12), and probably density function
fo(x) + fi(z) with fo(z) and fi(z) given by (4.11) and (4.13). Substitu-
tion of (4.32) and (4.26) in (4.31) yields after some straightforward algebra
(4.25). Another, more intuitive, way to justify (4.25) is to observe that in
case I the server is continuously busy, so the effective arrival rate is equal to
the mean service rate, which is qo‘ilql 1o + oq+0q1 p1-

In the case II, the fluid level stabilizes at x.(0) so E[X] = z.(0) and all
customers see upon arrival this state. Therefore, all customers that find the
machine at the fast mode enter, while only a fraction 42 of those that find
the machine at the slow mode do enter. Hence the effective arrival rate is

now
q1 Ho q0
Aeff = A =+ 4.33
1 <QO+(11 A QO+(11> (4.33)

and we obtain readily (4.27).
Case III is proved similarly to case I, so we omit the details. Finally, in case

IV, all customers enter and are served immediately without delay. Hence
Aeff = A and E[X] = 0, so we obtain (4.30). O

The formulas for the expected social benefit per time unit in Theorem 4.2.4
can be further reduced in more explicit expressions, as the relevant integrals
are computable in closed form (indeed, a moment of reflection shows that
only exponential functions are involved). Nevertheless, the formulas are too
complicate and there is no need to be reported. Due to this complexity, the
socially optimal strategies cannot be computed in closed form in all cases.
More concretely, in cases I, IT and IV, it is easy to determine the socially
optimal strategies. However, in case III, an explicit solution is not possible,
so we have performed several numerical experiments and we present the
main results.

In cases I and II, the effective arrival rate is independent of the strategy

(24(0),24(1)) and equals the mean service rate i = qo(ﬁm 1o + qOC_’qum, ie.,

)\eff = . (4.34)

Indeed, in these two cases, we have that A > max(uo, p1) and consequently
the server uses his maximum service capacity at both environmental states.
So, a strategy is socially optimal, if it minimizes the expected fluid level.
Thus, in case I, the unique socially optimal strategy is the threshold strategy
with threshold vector (0, 0), whereas in case 11, every threshold strategy with
threshold vector (0,x),z > 0, is socially optimal.

In case IV, the arrival rate A is so small that the buffer remains empty under
any strategy. Therefore, the strategy is not relevant for the fluid level. So,
the socially optimal behaviour is always to join as a joining customer receives
the reward from service and has no waiting cost.
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In case III, the expected social benefit per time unit under a threshold
strategy (2.(0),z4(1)), with 2,(0) < (1), depends only on the threshold
2,(0). So, we can write B9 (z,(0)) instead of B (x,(0),z.(1)) for this
case. As the threshold z.(0) increases, we have a socially favourable effect,
the increase of the effective arrival rate, and a socially unfavourable one, the
increase of the expected fluid level. The effective arrival rate is given as

Z+(0)
Aeff = A </0 fo(z )derpo(x*(o))“; + D >

qo0 + q1

a0 =) - o) () e { - (545 + 355 ) (0

QoA = ) +(11()\—N0)8XP{— (A R )w*(O)}
(4.35)

which can be seen to be an increasing and concave function in z.(0). More-
over,
lim  Aepr=A (4.36)
z+(0)—o0
The expected fluid level can be computed by evaluating the integrals in
(4.29). After some straightforward algebraic manipulations, it yields

a1(a0 + 1) — o) (0) exp { = (52 + 5 )x*<o>}

E[X] =

q + q1) [QO()‘ p1) + qr(X — po eXp{ ( ) x*(O)}]
qoq1 (i1 — o) [exp {— (Aflm ) «(0 }

)
22 [a0(A = 1) + a1 (A = o eXp{ (5% + 325) O3]
(4.37)

+

(g0 +q1) (,\31

The expected fluid is also an increasing function in z,(0) but the limit as
24(0) — oo depends on the relative order of the arrival rate A and the mean
service rate . when all customers join. In particular, taking x.(0) — oo
yields

(g0+q1)[gq1 (ro—XN)+qo (1 —N)] if q0+q1 po + q0+q1 > A,

o0 Zf 110+Q1 Ho + QO‘HIIMl <A
(4.38)
Indeed, if the mean service rate 11 exceeds the arrival rate A\, we see that the
mean drift A — 7w of the fluid process is negative and therefore the expected
fluid level should tend to a finite number, as x,(0) — oo. In the other
hand, if the mean service rate is smaller than or equal to the arrival rate
A, the fluid increases beyond any finite number in the long run. From the
above discussion, we realize that the behavior of the function BY®)(x,(0)) as

lim  E[X]=

z+(0)—00

{ q1 (1 —p0) (A—po)
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Figure 4.3: Expected social benefit B (x,(0)) with respect to the thresh-
old z,(0) for qp =2, 1 =1, A=2, pgp =11 =5, R=10 and C = 1.
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Figure 4.4: Expected social benefit B(/°) (1, (0)) with respect to the thresh-
old z,(0) for go =2,q1 =1, A\=34, pp=1p1 =5, R=10 and C = 1.
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Figure 4.5: Expected social benefit B (x,(0)) with respect to the thresh-
old z,(0) for g =2, g1 =1, A\=4, po=1p1 =5, R=10 and C =1.

24(0) increases depends on the trade-off between the increase of the effective
arrival rate and the increase of the expected fluid level.

In Figs. 4.3-4.5, we present the three typical cases for the behavior of
the expected social benefit function B with respect to z,(0). We have
considered a basic scenario with rates ¢qg =2, g1 =1, po =1, p1 =5, R =
10 and C = 1. The arrival rate X\ varies and takes the values 2, 3.4 and 4
for Figs. 4.3-4.5, respectively.

In Fig.4.3, the arrival rate is small enough so that the mean drift is negative.
The expected social benefit is an increasing function of the threshold z.(0)
and tends to 19.7333 (taking into account (4.36) and (4.38)). The socially
optimal strategy in this case corresponds to x,(0) = oo, i.e., it is the 'always
join’ strategy. This case (increasing expected social benefit) occurs generally
when the arrival rate dominates the negative effect on the expected fluid
level.

In Fig. 4.4, the arrival rate is a bit larger, but still the mean drift is
negative. In this case the expected social benefit is a unimodal function
of the threshold z,(0) that stabilizes as x,(0) — oo. In particular, we see
that the expected social benefit is increasing in z,(0), for z,(0) € [0, 4.8],
and decreasing in x.(0), for z.(0) € [4.8, 00). As z.(0) — oo, we have
that BY)(z,(0)) — 30. So, every threshold strategy with threshold-vector
(24(0),24(1)), where x,(0) = 4.8 and x4(1) > z.(0) is socially optimal. In
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general, this is the typical case (unimodal expected social benefit with finite
limit) for intermediate values of A, i.e., when the drift is negative, but A is
not very close to .

Finally, in Fig. 4.5, the arrival rate is higher and the mean drift becomes
positive so that the expected fluid level tends to infinity as x,(0) tends to
infinity. The expected social benefit is increasing in x,(0), for z,(0) € [0, 24],
and decreasing in z.(0), for x.(0) > 2.4. So, every threshold strategy with
threshold vector (x.(0), x«(1)), where z,(0) = 2.4 and x.(1) > x.(0) is
socially optimal. This typical case (unimodal expected social benefit with
infinite limit) occurs when the arrival rate is so large that the drift is non-
negative.

4.3 The almost observable case

In this section, we identify the equilibrium customer strategies regarding
the joining/balking dilemma, when the customers observe only the level of
the fluid before making their decisions. We limit ourselves to the class of
threshold strategies, where customers decide to join if they find the fluid
at levels below some threshold x,, while they decide to balk if the fluid
level exceeds z,. As in the fo case (see the relevant discussion just before
Lemma 4.2.3), we need to specify the fraction of entering customers when
the fluid level reaches the threshold x,. Again, when the threshold has been
reached, then the maximum fraction of customers is entered so that the
fluid level does not exceed the threshold. To assess the best response of
a tagged customer, given that the others follow a given threshold strategy
with threshold z,, we need to compute the steady-state distribution of the
fluid level, that is the distribution functions F;(z) defined in (4.7). This can
be done using Lemma 4.2.3 for z,(0) = z.(1) = x,. Then, we can obtain the
conditional expected sojourn time of a customer in the system, given that
the fluid level he finds upon arrival is z and the others follow a threshold
strategy .. This is done in Lemma 4.3.1.

Lemma 4.3.1. Let 5\ (z;z,) denote the conditional expected sojourn time
of a customer in the system , given that the fluid level is x and the other
customers follow a threshold strategy x..

Case I. A > 1.

S(ao) (Hf*; CC*) _ qo + q1 .
qoft1 + q1i40

2
9091 (11 — po) (1 — e‘(ﬁ?fﬁﬁ)’”*) . (4.39)
(g0 + q1)(qop1 + q1p00)?
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Case II. py < A < py.

;

0
ife=0
qo+q1 N qwo@(\—#o)—i-qoul)(;\—m) (1 - e_(z(())_i_‘?l)x*)
qop1+q1 o qofi1 41 po
S(ao) T 2,) =
( ) if0<z <y
_aqotqr gop(po—p1). (0 @),
%N?-ﬁ-qiuo * 7 (qopm1+qip0)2 (1 —e (uo u1>
(4.40)
Case III. A < py.

Proof. By conditioning on the (unobservable) state of the machine at the
arrival time of a tagged customer, we have that

§) (@3.) = myx (O] ) So(w) + 775 (s ) S1(2), 7 > 0, (4.42)

where 77| x (i|z; 7. ) is the probability that the tagged customer finds the ma-
chine at mode 7, given that he observes fluid level z and the other customers
follow the threshold strategy ..

In case I (which corresponds to cases I and IT of Lemma 4.2.3), the fluid level
stabilizes at x,. Therefore, all customers observe this level upon arrival, so
the observation is uninformative. So, in case I, we have 7| x (0]z; z,) =

T
and 7z x (1]2;24) = qo‘fql. Using (4.42) and (4.2) we obtain easily (4.?()18)).(11

In case II (which corresponds to case III of Lemma 4.2.3), the fluid level
oscillates in [0, z,]. For z, > 0, recall that the distributions Fy(x) and F}(z)
are given by (4.14) and (4.15), with z,(0) = x,. Since Fi(x) has a point mass
at 0, while Fy(z) has not, we conclude that 7z x(0/0;24) = 0. Similarly,
since Fp(z) has a point mass at x,, while Fij(z) has not, we conclude that

7z1x (0|2« 24) = 1. Finally, for z € (0,2.), we have that mz x(0]x;2.) =
%, with fo(z) and fi(x) given by (4.17) and (4.19) respectively,
with 2,(0) = .. This yields, after a few simplifications, 7 x(0|z; 7.) =

=X 0 < 5 < z,. Thus in a nutshell,

H1—po’
0 T =
Tz1x (0]z; 24) = /Zl:/j‘o 0 <<y,
1 T = T,
1 T =
mzx(la;z) = § 28 0 <z <., (4.43)
0 T = Tx.
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Using (4.43), (4.42) and (4.2), we obtain easily (4.40), whenever z, > 0.
For xz, = 0, all customers observe fluid level equal to 0 upon arrival, so
S(a0)(0;74) = 0 and we can see that (4.40) remains valid. The same argu-
ment yields also (4.41), in case III. O

We can now identify all equilibrium threshold strategies in the ao case. We
have Theorem 4.3.2.

Theorem 4.3.2. In the ao case, we have the following cases for the ex-
istence of equilibrium threshold strategies that prescribe “While arriving at
time t, observe Xy, join if X(y) < xe and balk if Xy > z.”.

Case I. X > .

There exists a unique equilibrium threshold strategy with threshold x.
which is the unique root of the equation

ERY
wta o qo0q1 (K1 — o) _ <1 B e—(q—0+q—1)m :g

HO K1
qop1 + g0 (g0 + q1)(qop + qipio)?
(4.44)

with respect to x.
Case II. pg < A < pq.

There exists a unique equilibrium threshold strategy with threshold x.,
which is the unique root of the equation

qo + ¢1 ot qop1 (p1 — fio) ( _e(qoﬂl)x*) (R;

5 Bo M1 = — (4_45)
o1 + q1tto (qope1 + qipi0)
with respect to x.

Case III. A < po

All threshold strategies are equilibrium strategies.

Proof. Suppose that the customers follow a threshold strategy z.. The
expected utility of a tagged customer that observes upon arrival the fluid at
level X ;) = z and decides to join is U@ (z;z,) = R — €S0 (z; z,).

In case I, because the fluid level stabilizes at x,, the tagged customer will
see necessarily this level and so his conditional expected sojourn time in
the system is given by (4.39). The threshold strategy x, is a best response
against itself, when U(@°)(z,; x,) = 0. Therefore, z, is a root of (4.44). Note
that the left side of (4.44) is monotone in , since it is equal to _%—So(z) +
qo?fzn S1(x) and both So(z) and S1(z) are monotone, as we have established
in the proof of Theorem 4.2.2. Therefore, (4.44) has a unique root that gives
the unique equilibrium threshold strategy in this case.
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In case II, a threshold strategy z., is a best response against itself, if and
only if U(‘“’)(a;;x*) >0for 0 <z < z, and U(“O)(a:*;a:*) = 0. These
conditions are seen to be equivalent to

go+a  aipo(A—po) + QOMI(;\ — ) (1 N e(zgﬁjll)x*) < 57 0<z<a.
qop1 + q1fto (gop1 + qipio) C
(4.46)
— _ (49 a1 R
Qota g0l u1)2 <1 iy (MO+M§)I*> R
qop1 + q1jto (ot + qipio) C

Due to the monotonicity of the left side of (4.46) with respect to  (which is
equal to 51_/10 So(x) + ;Z_—/ﬁ)o Si(x)) and the fact that the left side of (4.47)
(which is equal to Sp(x4)) exceeds the left side of (4.46) for z = x,, we can
easily conclude that the relations are valid if and only if x, is the unique
solution 2, of Eq. (4.45).

In case III, any threshold strategy is a best response against itself. Indeed,
whatever threshold the other customers may follow, a tagged customer may
use the same threshold, since he always observes the fluid at state 0 and he

is willing to enter since U(%)(0;z,) = R — CS®)(0;z,) = R > 0. O

It is interesting to notice that the equilibrium threshold does not depend
on the exact value of the arrival rate A (since the corresponding equations do
not involve A), but only on its relative order with respect to the service rates
o and 1. We can now compute the function of the expected social benefit
per time unit, B(@) (zx), when the customers follow a threshold strategy
Zy, using Theorem 4.2.4 and setting B(@°) (xy) = B(fo) (x4, 24). We have
Theorem 4.3.3.

Theorem 4.3.3. In the ao case, suppose that the customers follow a thresh-
old strategy x.. Then, we have the following cases.

Case I. A > p1.

The expected social benefit per time unit is given by

Blao) T :< L + £l )R—Cx*. 4.48
() ora ot oM (4.48)

Case II. ug < A < uy. The expected social benefit per time unit is given by

B9 (2,) = A </Ox fola)dz + pola) 22 + D > % R — CE[X],

At
(4.49)
where .
PIX] = apo(e) + [ alfola) + fl@)ds (450)
with po(z+), fo(x) and fi(z) given by (4.16), (4.17) and (4.19), re-
spectively.
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Case III. A\ < ug. The expected social benefit per time unit is given by

B (z,) = AR. (4.51)

A moment of reflection shows that, in case I, the unique socially opti-
mal strategy is the threshold strategy 0. In case II, a threshold strategy
x4 is socially optimal in the ao case if and only if the threshold strategies
(2, 7)), with a/, > z,, are socially optimal in the fo case. Finally, in case
III, any threshold strategy x. is socially optimal as the buffer is always
empty. Thus, in all cases, we have that max(,, (0,2, (1)) BU) (2,(0), 2.(1)) =
maxg, Blao) (x4), i.e., the optimal expected social benefit in the fo case co-
incides with the optimal expected social benefit in the ao case.

4.4 Numerical results - qualitative insight - dis-
cussion

In this chapter we studied the fo and the ao cases of the fluid queue with
alternating service process. We aimed at determining the equilibrium and
the socially optimal strategies within appropriate sets of strategies for each
level of information. We have the following results in the three cases regard-
ing the relative order of the arrival rate A with respect to the service rates

po and fi1.

Case I. A >y

In this case that corresponds to case I and II - fo and case I - ao,
we proved that the unique equilibrium threshold strategy, in the fo
case, is the (z.(0),z.(1)) strategy, where z.(i) is the unique root of
Eq. (4.4), 7 =0, 1. In the ao case, the unique equilibrium threshold
strategy is the z. strategy, where z. is the unique root of Eq. (4.44).
We have that z.(0) < z. < x.(1).

The socially optimal strategy, in the fo case, is the threshold strategy
(0, 0) and, in the ao case, is the threshold strategy 0. Moreover, the
effective arrival rate under any threshold strategy is equal to the mean
service rate, a the server is never idle. Thus, the effective arrival rate
under any threshold strategy in the fo and ao cases equals qo‘ilql Lo +
qo?fql 1. So, the fraction of customers that join under the equilibrium
strategies is equal to the fraction of customers that join under the
socially optimal strategies. Nevertheless, under equilibrium strategies
the customers keep the fluid at high levels, whereas, under socially
optimal strategies the buffer is always empty. This happens because,
in the decentralized version, the arriving customers ignore the waiting
cost they impose to future customers by joining and tend to join even if
the fluid is at high levels. On the other hand, in the centralized version,
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Figure 4.6: Expected social benefits BY)(z,.(0),z.(1)) and B (z.) with
respect to the arrival rate A for ¢ =3, ¢1 =2, upo =2, p1 =5, R=5 and
C=1.
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Case II.

Case III.

the central planner takes into account these negative externalities and
keep the fluid level at 0.

po < A< pr.

In this case that corresponds to case III - fo and case II - ao, formulas
(4.14) and (4.15) show that under any threshold strategy (x.(0), z.(1)),
with x,(1) > 2,(0), the fluid oscillates in [0, z.(0)] and the steady-
state distribution of the fluid level is the same as under the threshold
strategy x.(0). In the fo case, the unique subgame perfect equilibrium
is the threshold strategy (x.(0),z¢(1)), where x.(i) is the unique root
of Eq. (4.4), i =0, 1. However, any threshold strategy (x.(0),z) with
x > (0), is equilibrium as the customers will never find the fluid level
strictly above x.(0). In the ao case, the unique equilibrium thresh-
old strategy is the z/, strategy, where the z is the unique root of Eq.
(4.45). So, xl, = x¢(0). Thus, the equilibrium strategy z in the ao
case yields the equilibrium strategies (x., z) for every = > . in the fo
case and the expected social benefit under the equilibrium strategies
in both cases is the same. So, BUY9) (¢, x) = B@°)(z!), for z > x.
Thus, in the decentralized version of the model, given that the fluid
level is known, the customers do not benefit not lose by knowing also
the state of the server.

The situation is similar in the centralized version, where, if the thresh-
old strategy z, is socially optimal in the ao case, any threshold strategy
(4, x) with x > x,, is socially optimal in the fo case and the expected
social benefit under these socially optimal strategies is the same.

)\S,uo.

In this case that corresponds to case IV - fo and case I1I - ao, the fluid
level stabilizes at 0. Thus, any threshold strategy is equilibrium and
socially optimal strategy in the fo case. Also, any threshold strategy is
equilibrium and socially optimal strategy in the ao case. The expected
social benefit under all these strategies is AR. So, as in the previous
case, given that the fluid level is known, the knowledge of the state
of the server does not change the benefit in the decentralized and the
centralized versions.

We would also like to compare the effect of information on the expected
social benefit when the customers decide selfishly and when they make their
decisions so that they maximize the expected social benefit. From above,
it is obvious that the optimal expected social benefits in the fo and ao
cases do coincide. So, if the customers are altruistic/cooperative and want
to maximize the expected social benefit, they are indifferent between the
two levels of information. Also, the expected social benefit under any equi-
librium threshold strategy in the fo case is equal to the expected social
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Figure 4.7: PoA in the fo case with respect to the arrival rate A for qg =
1, Q1=3, M0=2M1:4,R:5 and C' = 1.
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Figure 4.8: PoA in the ao case with respect to the arrival rate A for ¢ =
1, Q1=3, M0=2M1=4,R:5 and C' = 1.
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benefit under any equilibrium threshold strategy in the ao case except for
the case where A > p;. In Fig. 4.6, we present the expected social bene-
fit in equilibrium in the fo case, B9 (z.(0),z.(1)), and the expected so-
cial benefit in equilibrium in the ao case, B(®) (xe), in an example with
G0=3qa=2puw=2,u=5R=5C=1, and X € [5,10]. We observe
that B(%)(z,) is a constant function of X. This is clear because of (4.48)
and the fact that z. does not depend on A (see relevant comment just after
the proof of Theorem 4.3.2). On the other hand, BY)(z.(0),z.(1)) is a
decreasing function of A, so there exists a critical value Ax, which is equal
to 6.8 in the present example, such that BY°)(z,(0), z.(1)) > B (z,), for
A < M, while BU9) (2,(0), z.(1)) < B@)(z,), for A > Ax. Thus, it is better
to reveal the service mode to selfish customers for values of A € (u1, A%),
while it is better to conceal it for A € (Ax,00).

Finally, we study the Price of Anarchy (PoA). In the current context, for
the fo case, the PoA is defined as the ratio of the optimal expected social
benefit per time unit over the corresponding equilibrium expected social
benefit per time unit, i.e,

B(fo)(xgoc(()), zsoc(1))
BUO) (2,(0), zc(1))

PoAFo) — (4.52)

where z.(7) and zgoc (i) denote the equilibrium and socially optimal thresh-
olds respectively, Similarly, in the ao case, we define

(ao) _ B“(as00)

PoA
o B(ao)(l‘e) )

(4.53)

where z. and zgoc denote the equilibrium and socially optimal thresholds,
respectively.

In the fo case, when the arrival rate is small (up to a bit higher than ug),
the PoA is equal to 1, as the optimal expected social benefit is equal to the
equilibrium expected social benefit. As the arrival rate increases, the PoA
increases and as A tends to infinity, the limit of the PoA is

lim PoA{o) —

A—00

q q
R <¢I0-|3fh o+ govan 'u’l)
R( " M1>— [(qo+q1)qoze(1)fq1uo]exp{%‘;(ﬂfe(l)*we(o))}ﬂwo
q0Tq q0Tq1 (QO—H]l)QOOXP{Z%(%(U—%(O))}

(4.54)

where x.(i) is the unique root of Eq. (4.4), i =0, 1. So, the PoA in the fo
case is bounded. In Fig. 4.7, we consider the PoA with respect to A in an
example with g = 1, g1 =3, po =2, 1 = 4, R =5, and C = 1. In this
example, we have that lim)_,., PoA? = 393.0964.
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In the ao case, the PoA is equal to 1, for small arrival rates, and, when the
arrival rate is greater than p1, the PoA becomes constant. We have that

q1 q0
lim PoA(@) — R (qO+q1 fo + q0+q1 ,LL1>

A—>00 a1 90 _
R <QO+¢I1 fo qo+q1 ’u1> Cze

(4.55)

where z. is the unique root of Eq. (4.42). In Fig. 4.8, we have the PoA with
respect to A in an example with g =1, ¢4 =3, puo =2, py =4, R =15, and
C=1.

As a conclusion, the graphs of the PoA as a function of the arrival rate
A coincide for the two informational cases, for values of A smaller than the
fast service rate p1. Both graphs start from the value 1 and keep this value
till a bit higher than the low service rate (which is g = 2 in the considered
scenario). Then, they continue almost linearly till the high service rate
(which is g1 = 4 in the considered scenario). But after this point, in the fo
case the PoA increases in a continuous way and approaches its limit given
by (4.54), while in the ao case, it has a discontinuity at p; and becomes
constant after that point, assuming the value given by (4.55). The limiting
value of the PoA for the fo case exceeds considerably the corresponding
value for the ao case. Therefore, we conclude that for low arrival rates the
socially optimal and the equilibrium thresholds do coincide, while this is not
the case for higher arrival rates.

We close our discussion by referring to two directions that may lead to
interesting generalizations of the results. Both of them were suggested by
an anonymous referee. The first idea is to generalize the analysis in the case
of more complex but yet natural utility functions for the customers. In the
present essay, the utility function of the customers has the form U(z,7) =
R—CSi(z) = R—CE, ;[5], where S denotes a sojourn time of a customer in
the system and the subscript (z, i) refers to the state seen upon arrival. An
interesting option would be to consider a utility function that involves the
variance, i.e., U(r,i) = R — C(E(;;[S] + aVar ;)[S]). With such a utility
function, a customer may be tempted to balk, if there is a lot of variability in
the sojourn time. However, the computations become much more involved.
For example, we have that Varg,  [S] = Eg [S?] — (E,1)[S])? and to
compute E, ;[S?], we can condition similarity to (4.3) and we will have
that

T

2 o
> e_qifTi +/0#z (tg +2tE(x—uit7i’) [S] +E(x—uit7i’) [SQ])qie_qitdt.

(4.56)
These equations can be solved similarly with the methodology of Lemma
4.2.1. However, the corresponding formulas are too involved and do not
allow to continue analytically. Considering an exponential utility function
of the form U(z,i) = R— CE, ;[e**] (as it is common in finance/insurance

B,.l8?] = <x

i
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models) leads also to computationally intractable expressions. Yet, a nu-
merical investigation of the present model with such utility functions seems
interesting from an economic viewpoint.

Another interesting direction of generalizing the model is to consider the
case where the machine mode process {Z(t)} has more than two states. The
generalization is not easy since the sample paths of the fluid level assume
very different forms because of the various machine modes and the associated
thresholds. Finally it would be interesting to study a diffusion counterpart
of the process {X (t)}, i.e., a Brownian motion with drift, also modulated by
a machine mode process {Z(t)}. This could have an influence in computing
the corresponding expected social benefit in both the fo and ao cases and
their numerical optimization.
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Chapter 5

Summary in Greek -

ITepiAndm

2ITEATNYIXY) CUUTERLPOREA COE GUC THUATI AVOULO-
VAS O EVAAAACCOUEVO TEPLBAAAOY

‘Eva cOotnua avouovic 1 ahhede ovpd, efval éva cGTNU 6TO 0Tolo TEATES
eloépyovial yia va deydolv xdmota umneeoia 1 omola €yel xdmotar SLAPXELAL.
‘Otay évog TEAATNG ELoEPYETOL 0TO CUCTNUA, OV BEV UTEOYEL XATOLOS UTNEETNS
Slodéotuog yioo va exviioel 1 eEUTNEETNOT TOU, O TEAATNG ELOEQYETOL GTOV
YWEO AVOUOVIC TOU CUCTAUNTOSC OTIOU TEPWEVEL T1) OELpd Tou Vo eunnpeTtniel
%0l £TOL ONULOVQRYELTOL Lol OVES OVIUOVTG.

H owovouxt; avdlucr tne cuumeplpopds Twv Tehatoyv Poactletou o pio do-
un ouoifric-x60Toug 1 omolo ELAYETAUL OTO GUCTNUA MDOTE VO AVTAVOXAS TNV
emLUlal TWV TEAXTOV YLoL TNV UTNEEGTR TOU TRocpEépeTal, X Xou TNV AmEo-
Yuplo Toug Vo TERLUEVOLY. LTOUC TEAYTES EMTEETETOL VO ATOPAGITOLY Yl TIC
evépyelég Toug Péoa oTo GLOTNUL, T.Y. amogascilouv av Yo eléhdouy N o o-
TOYWEHOOLY and To GV TNUA, av Va eyxatahelpouy To chotnua eV Beloxovto
OTO YWEO AVaovic, av Yo aryopdoouv tpotepardTnta x.o. Ot mehdteg YéAouv
VO UEYLOTOTIOLACOUY TO xodopd %E€pB0¢ Toug YvwpellovTag 6Tl xou ot dAAol Te-
Adteg mpoomadoly Vo xdvouy To (610, Oewpolue AotV OTL Eva TETOLO GUG TN
AmOTEAEL VAL CUUUETELXO TOLYVIO OVOUECH GTOUC TEAGTES XAl YLoL TNV oVAAUGT
Tou yenowomnolue epyalela and 1 Jewplo oupnv xou T Yewplo mowyviewy.
Ytdyoc wag tétolag avdhuong ebval 1) €0PECT) GTEATNYIXWY LIGOEEOTIS, OTOL O
#dde meAdTNG PeATioTOTOLE! TNV TROCKTUXY TOU WPERELX Xol 1) EVPEC KOWVWVLXA
BEATIOTWV OTREATNYIXWY, TOU UEYICTOTOWOLY T GUVOAIXT| XOWWWIXT WQEAEL,
otay viodetnioly and Toug TEAATES.

Y auTh TV epyacio JEAETAUE TN CTEATNYLXY| CUUTERLPORE TEAATHOY TOU PUAVOLY
o éva 0O TN VopoVNS TO 0Tolo EEMCTETOL O EVOANACGOUEVO TERBAAROY,
onAad” oe éva oo TNua oL 0 UGS APLENS TWV TEAATMY, OARE xat o pul-
uog eunneétnong toug petoPdiheton. H otpotnywn mou viodetodv ol teAdteg
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e€0pTATOL XoU OO TNV TANEOYOENCT) oL SEYoVTAUL PTAVOVTUS 0To cUoTNUa. E-
Zetdloupe AOLOV TN CUUTIERLPORE TWYV TEAATMY T ToEoXdTe Tidovd enineda

TANEOPOENOTC:

e Ilopatneriown teplntwot, 6ToL 0 TEANTNS ToEATNEEL To TARVOC TwV TE-
Aty mou Peloxoviar 6T0 cUGTNUA, GAAS XoL TNV XATACTUCY] TOU TERL-
BdhhovTog TOU GLUCTHUATOC.

o Mepixwg mapatneriown Tepintwor, 6Tou o TEAdTNng topatneet To TAflog
TwV TeEhaT®OV Tou Peloxovion 6To cloTNUA, oANE eV YVwellel TNV xo-
TACTAOT) TOU TEPYBAAAOVTOS TOU GUO THUTOC.

o Mepixwg un-napatneroylyn Teplntwor, 6Tou o TEAJTNG dev Topatneel To
madoc Twv TeEatwy Tou Peloxovian 6To cLoTNUA, dAAS TapaTnEEl TNV
xatdoTacn Tou tep3dhhovtog oto onolo Bploxeton To cloTNUA.

e Mn-mopatneriowun teplntwor, énou o TeEAdTNe dev mapatneel To TARYog
TWV TEAATOV oL PBploxovion 6T0 UG TNUA, 00TE TNV XATAG TUCT TOU TE-
PLBAAAOVTOC TOU GUC THUATOC.

Yuvidwe, av ol teAdTte eEUTNEETOUVTAL UE TN GELRE TOL PTACUVE GTO GG TNUA
(FCFS newdapyio ovpdc), 660 avZdveton to TAdog twv TeEAatey 0T 6o TN,
auEAvETaL XU O HECOS YEOVOS OVIUOVAC TWV TEAATMOV, X0l CUVETMS TO XOGTOS
Toug. Autd onpalvel 6Tt dTav Evag TEAATNG TopaTNEEl UEYdAo apLiud TeEAATHOY
UTEOoTd Tov, elvan Atydtepo mpduuog va ewéllel 6to cLotnua. ‘Etol Aot
TOV, OTA CUC THUATA TOV EVUS APLXVOUUEVOS TEAYTNG UTOREL VoL TR TNEHOEL TO
TANO0C TV TEAATOV UTPOGTA TOU, XATUATYOUUE CUVATKC OE GTRUTNYIXES XOo-
Tw@Aiou, 6ToL Evag TEALTNG TOL EVERYEL CUUPMVA UE TN GTEUTNYLXY XATOPALOL
(ng), av mapotnEioeL uéypt Ny GToPd EWGEPYETOL OTNY OUP, AANLOSC OOy WEEL.

Yty nopovoa epyacta e€eTdlovue 3 CUOTAUATA AVAUULOVAS OE EVOANACCOUEVO
nep3dhhoy xan eviomiCoupe BEATIGTES CTRATNYIXES TV TEAATMY YLt TO SIANUUL
NS €L00d0U-anoyYWeNoNG 0To cUoTnua. Ta cuoTAuata Tou e€eTdloUUE Xxou Ta
devpa oo omolor pehe UMMy ebvan Tor ToiEadTe

o M/M/1 ovpd pe avaiibmoto urneétn (Owovépou xow Kavtd (2008) )

e Ylotnua avopovig Ye TAYen exxaddplon o eVOAAACCOUEVO TEQIBAAAOY
(Owovépou xou Mévou (2013) )

o Ylotnua eunnEéTnong EEVOTON GE EVUAAICOOUEVO TEQBAAAOY
(Owovépou xou Mévou (2016) )

M/M/1 ovpd pe avaZldOTLoTO LTNEETY

Ocewpolpe mpdto wa M/M/1 ovpd pe avalldmoto uTnEéTn, 0 omolog EVol-
AAoGETOL AVAUECH GE EVEQRYY| XOU AVEVERYT| XATAG TUCT), UE TN OLdEXELX TNG *die
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xatdoTaong vo axohovlel exdetiny xatovour| ue puiud ¢ xou 6 avictowya. Ot
TEAGTES PTAVOLY GTO GG TN CUUPOVA PE Wi dtadixacio Poisson e pudud A.
‘Otav o umneétng Beloxeton oty evepYn %xATdoTACT, 0 YEOVOC EEUTNRETNONG
oxohoudel TNV extetin| xotavour| ue pUIHO fi, EVE GTNY OVEVERYT| XUTACTAOT
oev eCumnpetel. Ot neldtec AauBdvouy R povadec w@éhetag 6Tay OAOXANROVE-
Tan 1) eEUTNEETNOY| TOUC Xou LTOXEWTAL o€ x6cTo¢ C avd yovdda ypovou. Ot
meAdteg amogactlouy av Yo ewoéhdouy 1 av Vo amoywenicouy Tn oTiyun Tou
(PTAVOLY OTO GUGTNUA XOU 1) AmOPACcY| Toug eivon opeTdxAnTy. E&etdlouye
CUUTEELPORS TV TEAATWY, OTAY BEATIOTOTOOLY T0 xodopd x€pBOG TOUg, OE BUO
OLUPOPETIXG ETUTED TANPOPOENONG, OTNV TUEUTNENOUUT OUEG XL OTT) UERXAC
TUEATNENOLULT] OURA.

YNy napatneody) TERITTMOT), XATUAHYOUNE OTL 1 BEATIO TN OTRATNYIXT
etvar e pophc (ne(0), ne(1)) mou eivon éva Ledyog otpatny v xatwgiiou.
‘Otay évag TEAATNG TUPATNEEL TOV UTNEETY OTNV AVEVERYT) XATAC TAOT) UIOVETEL
ne(0)-oTpatnyeh xotmehiov, v Gtay Tapatneel TOV UTNEETN OTNY EVERY T X0-
tdotaon viovetel ne(1)-otpatnynd xatwgiiov. H otpotnym auth etvar aode-
VoS xuptapyoVoa oTeatnyxh xadwe elvon BEATIOTN amdvTnoT €VavTl OToLdo-
OYmote oTpATYXAC TWV AWy tedatdv. Emiong, woyler 6t ne(0) < ne(l),
% OTaAY EVOC APXVOUPEVOS TEAATNG TAEATNEEL TOV UTNEETYN OTNV AVEVERYY
TOU XATAoTAoT), Vo UTOGTEL Vel ETTAEOV XOGTOG AVUUOVHC UEYQL TNV EVEQYO-
nolnot Tou.

Dot T ueEAéTn TNG UERELXAE TORAUTNENOWNG TERITTWONS, Y el OUACTE TN G TAOL-
un xatovour tou cuoThuatoc. YTrodétouue 6T oL meEAdTeES axorovdolyv uia
O TEUTNYLXN XATWPAOL N xat LTOAOYILOVUE TN O TACLUT XUTAVOUT) TOU GUC THUO-
T0¢ Yéow Twv e€lowoswy Wopponioc. ‘Eneita, unohoyilovtag 10 avauevouevo
xadapd *€EBOC EVOC ETMAEYUEVOLU TEAATY), €VG Ol UTOAOLTOL oxOAOLVOUY ULl
Ne-CTEATIYIXY XATWPAIOL, HEAETMOVTUS TIC WLOTNTES TWV CUVIRTHOEWY TANRW-
UG TOU ETAEYHEVOU TEAYTY), XUTAAAYOUUE OTL 1 GTEUTNYLXY LooppoTiog etval
omoldAnoTE GTEUTNYIX XUTOPAOL Pe XoTdPh ne € {nr,nr + 1,...,ny}, ye
TA NI, XA Ny VAL TROXVTTOUY oo TS WIOTNTES TNE oLVdETNong TAnewuhc. H
UToEEN TOANATADY G TEATNYIXWY LoopEoTiag lvor €VOELEN WS OL TEAUTES GUUTE-
oupépovtan olugove ye to tAfdog (ETII), dnhadh tav ot utdrotnor Terdtee
vtodeToly éva UPMAGTERD 1 avTio TOLY O YOUNAGTERO XUTAOPAL, TO (Bl XAVEL Xan
0 ETAEYHEVOC TIEAATNG.

YOotnpa avaovig e TAYEY eExxaddpLor o EVAANACCOUE-
vo mepl3dAlov

To enduyevo oot TOL YeheTdUE elvon Eval GUGTNUA AVAOVAC UE exxaddpion
o€ YeToBolhouevo TepBdhhoy. Mropolue Vo oxe@TONACTE £val TETOLO GUC TN
oav évay oToUd EVOS PETUPORIXOL UECOU, OTIOU OL TEAATES ELOEPYOVTOL OTO
ool xan eCunneeTodvTon Ghot pall, THUTOY POV xou axaptaia, OTAY TO UECO
emoxénteton 10 otadud. To mepiBdAlov Tou Yécou petapopds €xel dUo xo-
TAOTAOELS @A) oTny xotdotaon 1 ol teddteg @ddvouy oto otoadud clupomva
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ue ula dwadcactoa Poisson puduod A1 xan 0 ypovog eCunneétnong axoloudel
exeTed) xotavoun e puduo pg B) oty xatdotaon 2 ot tehdteg @davouv e
ula Sraducacto Poisson puiduol Ag xou 0 yeévog eEunneétnang axoloudel exde-
T xoTovout| Me puIO . Katd tnv ohoxhripwon tng eEunneétnone Toug ot
TEAATES AaUPBdvouy R LOVADES WPERELAS XAl XATE THY AVAUUOVT] TOUS LPIC TaVTON
éva x606T0¢ C' Uovadwy avd ypeovixy| povdda. O tehdteg anogocilouvy av Ho
eloéhfouv 1 Yo amoyweHooLY amd TO GUGTNUA XATU TNV APER TOUG Kol AUTES
oL amo@doeic ebvar opeTdxANnTeS. AvalnTolue TIC OTRATNYIXEC LOOPEOTIOC TWV
TEAATWY YL TO BIANUMAL ELGOBOL-ATOYMENONS UG TO GUC TN OTA TUEOXATE
enineda TAnpopdenone o) mapatneriowun Tepintwon, B) Hepx®S TapaTneot-
un meplntwon y) pepxds Wn mopatnerown nepintwon 8) un mapotnerown
nepintwon. H pedodoloyia yio tnv edpeon otpatnyxdy 1ooppoTiag Twv Te-
OLTTOOEWY o), ), 0) elvon mopdpoLa xat QUTEC TIC TEPLTTOCELS TiC eEETALOUUE
woli, eved n mepintwon B) mou eivor 1 o evdlagpépouca e&etdleTon LoV TNC.

My nopatnefoiun neplntwon

X1 pn mopatneown TERITTWoT), 1 xuplapyoVoo GTeaTNYXY e&apTdTol and Tn
oyéomn TNe TWASC TOU XAJCUATOC g ue pio xplown Ty, n omolo e€optdtar omod
To PECO YPOVO TAPOUOVHE TOU TEAdTn 6To oloTnua. Av 1 Ty Tou % elvon
UXEOTERT amd T Xplowun Y, Ol TEAUTEC TAVTA Aoy WEOVY and T0 GUCTNUA,
oV N THY| Tou g elvou fom pe N xployn Ty lvor abLdpopol ke Teog To av Yo
eloéAdouy 1) Oyl xon av 1) T Tou % elvon peyoahOTepn amd TNy xployn T, oL
TEAGTES TaVTA ELo€pyOVTaL 0TO GUOTNHAL.

Mepuxwg pn mapatnenolwyn nepintwon

£T0 UEPIXME UN) TURATNENOWO LOVTEAO, av OL YeOVoL eEuTNnEETNONG €YUV Bla-
POPETING PLIUG, SNhadY| 11 # p2, TOTE €xouue Uio Yeryoen Asttoupylo Tou
umneETN xou o oyt Koaddde ol meddte mopatneolyv Ty xatdo TaoT) Tou Ut
EETN XATA TNV APLEY| TOUC, 1) xUELIEY 0V GTEATNYLIXY) EEURTATAL AT T1) OYETIXT
Ty Tou % ¢ TEOC BLO %PICLUES THES TOL AVTIOTOLYOUYV GTN YRETYORT| XU OTNV
oYY Aertovpyla avtiotowya. Eyouue Tic mopaxdte TEQITTWOELS.

e Av 1o % elvon UixpoTepo amd TN UXpOTERN Xplor TN, TOTE O TEALTNG

TavTa anoyweel and to choTNUA.

R oy ¢ , ‘ L . .
e Av o 7 ebvou (oo pe tn pixpdtepn xplown Tuh, ToTE 0 TEAGTNC TEVTA oTo-

Y weel, av To cLo TN Beloxetar oTny 0EYY) Aettoupyio xou etvor adLdPopog
¢ TEOG To vaL eloEheL 1) Oyt OTay TapaTneel TNV YerYoen Acttoupyia.

e Av 10 % elvon avdueoa oTic dVo xplowes TWéS, TOTE 0 MENATNG TavTAL
anoyweel, av to cUoTnua Beloxetar otny apYn Asttovpyio xou TAvVTA El-
ogpyeTal 6Tay mopatneel TNV Yeryoen Asttoupyia.
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e Av 10 % elvon (oo pe N yeyohltepn xplown Ty, T0TE 0 TEAATNG Elvon

adldpopog we Teog To av Va eloéhdel 0To GUCTNUO OTAY TaEATNEEl ToV
uTNEETN oTNV dEYN Aettoupyior xou TAVTA ELCEPYETOL GTO GUOTNUA OTAY
Tapatneel Tov UTNEETN 0T YENYoEN AElToupYIa.

R ’ ’ ’ ’ / ’ ’
e AvTto & elvan peyohitepo amd T peyohitepn xploun Tt TOTE 0 TEASTNG
TAVTA ELOEQYETOL GTO GUGTYUOL.

Av ol ypovol eCunnpétnong €youv Blo puduod, TOTE oL BUO XEICWES TYWES Ou-
UTTTOUY o Ol GTEATNYWES LGOPEOTHUG TV TEAATMY OTUY TUQUTNEOLY TNV
XATAC TUGT, TOU UTNEETY EVOL TOPOUOLES UE TNV U] TOEATNENOWT TEQITTWOT.

IMapatneriowwn nepinTtwon

Yy mopotnenoun TERINTWon, 0 YeOVoS TUPUUOVAC TWV TEAUTOV e€opTdTol
HOVO OO TNV XATAOTACT) TOU UTNEETN ot OYL and 10 TAYYOC TV TEAATOY 6TO
oLOTNUA xaL €ToL To TARUOC TV TEAATOV VeEwpelton TEPLTTH TANPOQOpla Xau
ayvoeitan. Ondte oL avdhuon elvon oxpU3Kg 1 (BLoL UE T HEELXS K1) TORATNENOWT
nepintwon.

Mepixwg Topatnen oLy nepinTwon

YNV UEPIXS TOQATNEY O TEQITTWOT), Ol APIXVOUUEVOL TEAATES TAUPATNEOVY
70 TAY0C TV TEAATOVY Tpy eloéAtouy 6To cloTtnua. Av xat To TARYog Twv
TeAaTedY dev emnpedlel Tov €GO YEOVO TORUUOVAC EVOS TENATN 0TO GUCTNUA
Gueoa, 6ivel xdmola TANpopopla Yot TNV xatdoTtacn Tou cuothuatos. Optlouue

WS i = 45 TO PETPO CUVKOTIOUOU TOU GUOTAUOTOS OTNY Xatdotaon @ = 1,2,

7

"Eyoupe TIC TopoxdTe TEQITTOOELS:

o (11— p2)(p1—p2) <0, 6mou bty évag apvolUEVOS TEAdTNG Tapatnpeel
L. CUVWO TIOUEVT] XATACTAGT, TOU CUCTAUATOS, augdveTton 1 mdavotnrta
o umneétng va Peloxetar oty apyt| Asttoupyio. MNuvemde, otav BAénel
LPNAG aELiud TEAAT®Y 0To CUCTNUA, EVaC ETAEYHEVOS TTEAATNG lvan Al-
YoTERO dordeTlévog var eloéAeL, dpa TEPWUEVOUUE VoL axohoLINCEL Uial
CTEATN YY) XATOPALOL.

o (p1—p2)(p1—p2) > 0, 610U GTaV EVag APIXVOUUEVOC TEAJTNC TPOTNPEL
UL CUVWO TIOUEVT] XATAC TAGT, TOU CUCTAUATOC, augdveTton 1 mdavotnta
o umneEETNe va Beloxetar oTny Yeryoen Acttovpyia. Xe autr Tny Tepintw-
om, otay Brénel LPNAG aELUd TEAUTOY OTO GUCTNUA, EVAC EMAEYUEVOCS
TEAATNG elvon TEPLGOOTERO BlodeTEVOS Var ELGEAVEL, dpol TEQUIEVOUUE VAl
OXOAOUITCEL ULl O TEATNYIXT] AVTIO TROPOU XATWPAOU, UTO TNV onola Evag
TaixTng elogpyeTon 0T0 UG TNUA OTAY TAEATNEEL TévVe amtd €Vl GUYXEXEL-
HEVO apLiud TEAATOVY.

o (11— p2)(p1 — p2) =0, bmou dev €yel vomua o daywplolds avueca o€
AYOTEQO 1) TEQIGCOTEQO GUVWGTIOUEVT] XATUCTUCT).
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IMepintwon 1: (u — p2)(pr — p2) <0

And 1 Sioucntinr) oulATNON TOU €YIVE TURATAV, GE AUTH TNV TERITTWOOTN o-
Vol NTOVUE OTRATNYIXES LGOPEOTHOC OTNY XAAOT TV CTRATIYIXWY XATWPAIOL.
Troloyilovtag T 0TACWN XATAVOUT| TOU GUCTALATOC LT TiC Tavé GTEo-
TYWES xoTwPAlou Tou LToVETOLUE WS axohoulolv oL UTOAOLTOL TEAATES,
Beloxoupe T cuVAETNOT TANEWUNC EVOS ETMAEYUEVOU TEALTY EVAVTIL OE OU-
té¢ Ti¢ otpatnywés. Optloviag wg HU(n) TN CLVAETNOT TANPWUNS EVOC ETI-
AeYpévou TEAATN OTAY Ol UTOAOLTOL TEAATES oxohov ol pla uetxtr 1 xodapn
CTEUTNYXY No-XATOPAIOL XaL 0 EMAEYUEVOS TEAdTNG Tapatneel n < ng me-
Adteg, amoBeXVOOUUE Ulal OELRd oo WOLOTNTES YIo TIC CUVAPTACELS TANPWUAC
UTIO OTIOLAONTIOTE CTEATNYIXT XATWPAOU X0 EYOVUE TIC TOPOXATE TEPLTTWOELS

IMepintwon A : HY(0) <0
Trdpyet povadny| otpatnyx toopporioc, n [0] otpotnymi(mdvro vo
amoyweEt).

Mepintwon B : HY(0) > 0. ka1 lim, oo HY (n) < 0.

Tote, undpyouv mavta xadupés oTpatnyYXéS Woppotiag. Emmiéov, ol
OTEATNYES LoopEoTiaG UEGA OTNY XAJOT OAWY TV XxadopdV CTEATNYI-
xGVv elvon oL otpatnYWwES [ng| ue ng avdueoo oe Buo axpales TWES Ny,
xa nyy. Enlong, ol otpatnyiéc 1ooppomiag YEGH GTNY XAACT] TWV ULy KOS
WXTOY oTEUTNYIXOY Elvor ot oTpatnyés [ng, B(ng)| ye ng avdueoa oe
B0o axpatec Twée ny xou ng — 1 xoun 6(ng) N povodied Tk tou 0 Tou un-
oevilel TNV avauevouevn TANEwUY TOU TEALTY), 6Tay Toputneel o TEAdTES
GTO GUO TN X0 OL UTOAOLTTOL TEAATEG 0XONOLVOUY UELXTH) CTRUTNYIXN UE
XATOPAL .

IMepintwon I' : limy, o HY () > 0.
Téte, undpyer Tévta otpatNYXY Woppotiag, 1 [oco]-otpatnyxy (ndvTa
VL ELCEPYETAL).

Iepintwon 2: (g — p2)(p1 — p2) <0

Ye authy TNV TepinTwon avalnTolUE GTRUTNYIXEC IGOPEOTHAS GTNY XAACT| TLV
CTRUTNYIXWY AvTIoTEOYoU xatwehiou. Mia xadapr otpatnyxr no-xatw@hiou
|no] unayopever oe évay TeNdT v elcépyeTon dToy mopatneel n > ngy dropo
070 GUOTNUA Xou VoL Aoy weel odhe. Mia uxth o tpatnyixd xatwgiiov |ng, 6|
UTIOLYOREVEL GTOUC TEAATEG VoL ELGEQYOVTAL OTOY TUEATNEOUY 1 > N, VO ELGER-
yovtow he miovotnTa 6 oV TopaTnEolY ng TEAUTES XAl VAL ATOYWEOLY AAALAC.
Axohovdovtog Topduota aveAUCT) UE TNV TEPITTWoT 1, €YOUVUE To TOEOXATE
ATOTEAECUOTA.

Mepintwon A: HY(0) >0

Téte, undpyel YOVADIXH OTEATNYIXY LOOPEOTIAS AVTIOTEOPOU XATWPAOU, 1)
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otpatnywy [0].

Mepintwon B: HY(0) <0 xou limy, oo HY (n) > 0.

Edw, avdhoya pe Ti¢ TapauéTeouc TOU CUCTAUATOS, UTHEYEL LOVODIXT CTEUT
YA 10oppoTiac avTioTEOPOL XaTwPAiou xat utopel va eivon e popehc (0] |
[0 1 [0,0(0) .

Mepintwon It lim, o HY(n) < 0. Téte, undpyet povadnd otpatnyixd
tooppotiog avTloTedpou xatw@hiou, 1 [oo] oteatny.

Iepintwon 3: (11 — p2)(p1 —p2) =0

Y1y tedeutola TERIMTWOT BEV UTIEYEL YENYOROTERT 1} AlYOTERO CUVWO TICUEVT
XATAGTUCT] TOU GUCTAUATOS XAl 1) TANEOQopla TOU aptduol TwV TEAUTOV TOU
Tapatnpel £vog apevolUevog TEAATNE Bev emneedlel TNy andgaoT Tou. ‘Eyouue
TIC TOEOXATR) TEQLTTOOELS:

Mepintwon A: HY(0) <0

Tote, 1 povadixy oTeatnYX loopeoTiag HECH TNV XAACT TWV CTRATNYIXWY
XxaTwPAioU xon avTlo TedPou xotwehiou eivor 1 [0] = oo (ndvta anoyweel)
Mepintwon B: HY(0) =0

Tote, xdde oTpaTNYXT GTNY HAACT) TV CTEATNYLIXMY XATW@AOL XL avTicTpo-
PO XATWPAOL Elvor GTEATNYXY IGopEOTIAG.

IMepintwon I': HY(0) > 0.

Tote, 1 Yovadixh oTEATNYIXT LOOPEOTIAC UECH OTN XAAOT TWV CTRATNYIXWY
xatw@Aiou xar avtiotpopou xoutw@hiov eivar 1 [oo] = |0] otpatnyws (mdvto
VL ELOEPYETOL).

YOoTnua eEUTNEETNONS PEVG TOL OE EVAAAACCOUE-
vo mepl3dAhov

To televtalo cUCTNUA TOU PEAETUE Elvor Vol GLG TN ECUTNEETNONG PEUC TOV
oe evolaooduevo tepBdihov. ‘Eva cvotnua eEunnpétnong peuotol (# oupd
pevoTo0) elvan €vo 006 TNUA EL06B0U-EEGB0L, GTIOU 0L TENETES LOVTEAOTOLOVVTOL
¢ éva pELOTO ToU EloépyeTal Xt eEEpYETAL AmO TO YOEO eEUTNEETNONG. Ocw-
EOUKE OTL 0 UTNEETNS EVUANAGOETAL UETAED BUO XATAC TAGEWY &, WIS YR YOPNS
(1 = 1) o wog apyhc (i = 0), pe pudud g1 % go avtiotoya. O pudude
€10000U Tou peUcToY ebvar A xou o puiude €€6dou elvon (1 oTN Yeryopn Xo-
TdoTaon xaL po oANOS. Ocwpolue 6t 0 < pp < pi. H oloxdfpwon tng
eCunneétnong evog mehdtn aliler R UovAdEC WPEAELNC Xol TO XOGTOS AVUUO-
vic elvon C avd povdda ypovou. E&etdloupe duo enineda mAnpopdenong, Ty
TUEATNENOWY] TEPIMTWON X TN UEPIXMOS TORUTNENOWT TEQITTWOT).
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IMapatnpoiun nepintwon
Ytpatnyxég ooppomiag

Ye auth TNV TEPINTOOT), EVAS APIXVOUPEVOS TEAYTNG TORATNEEL oL TO ETUTEDO
TOU PEUGTOV T X TNV XATACTAGT, TOL LTNEETT 4. O©€Aoupe va utoloyicouue To
avopevoueVo xodapd xépdog evde emheyuévou teldtn U = R — C'S;(z), 6mou
ue Si(x) opilouye o péoo ypbvo mopauovhc VoS TEANETN 6TO GLGTNUA GTOY
auTOC TopaTnEel TN GTEUUN TOLU EEVGTOL OTO ENIMESO T XAl TOV UTNEETN OTNV
XATIoTAoT €, xatd TV APiEn Tou. T var umtohoyicoupe Aolmdy To avoEVOUE-
VO *€pB0¢ EVOC ETAEYUEVOU TEAYTY), TEETEL VAl UTOAOYIOOUUE TO UEGO YpOVO
TUPAUOVHC TOU GTO GUCTNUA, TO OTOl0 TO XAVOUUE BECUELOVTUS (S TEOS TOV
YEOVO TORUUOVTC TOU UTNEETN oTNY xotdotaot ¢ ‘Evag emieypévoc neddtng
eloépyeton oto obotnua otay S;(x) > %, amoyweel 6tav Si(z) < % xan ebvon
adLdpopoc we mpoc TNV elcodo R amoywenon and to cloTnua av Si(zr) = %.
Hopatnpdvrag 6t 1 Si(x) elvon av€ouca ouvdptnon oo [0, 00) xou Eyel exdva
0 didotnua [0,00), N eZiowon Si(z) = £ éyer povadind hoom ze(i). Apa
oTpoTnyxi| tooppotiog oplletar oo to dUo xotdeha (2 (0), zc(1)).

Kowwvixr BeAtiotonoinon

YuveylCoupe 0TOV UTOAOYIOUS TWV XOWVWVIXE BEATIOTWY CTEUTNYXGV. Apyi-
%4, TopatNEoVUE OTL av 1 6 T8N Tou peucToL x(t) elvon 2 (7) dTov o LTNEETNC
BeloxeTton otV xatdoTAOY @, OTOWOHTOTE cTEuTNYLXY ivan BéTioTn. T Tov
UTOAOYIOUO TNS PEOTE XOWWVIXNG wélelag Yo uToHETOLUE OTL GTNY XUTAC To-
on (ze(i), 1) éva mocootéd min{l, 5} twv apuevoiuevey nehatdv eloépyeton
070 GLCTNUA, ONAXDT| ELGERYETAL TETOLO TOCOGTO MOTE 1) GTAVUN TOU PEUGTOV
VoL TTOpOUEVEL 0T ETUNEDO X (). Zexwdue vnohoyilovtag T oTdown XoTovo-
U7} TOU CUGTAUATOS OTOV Ol TEAATEC AXOAOLVOUV Ulol GTEUTNYIXY XATWPAiOU
(4(0), 24(1)), 6moU 24(0) < 24(1). Koatahfiyouue oTic Toipaxdte TEpInTOoeLS:

1. A > p1: To peuotd todavtetetoa oto dtdotnua [4(0), z4(1)].
2. A= p1: To pevotéd oradeponoteiton 1o 24(0).
3. p2 < A < p1: To peuotd tohavtevetoar oo ddotnua [0, 24 (0)].

4. X < p2: To peuotéd otadepomoieiton oto 0.

‘Eyovtoc unoloyicel tn otdoiun xotavous|, utohoyilouye To UEGO XOWOVIXO
OQENOG VOl YEOVIXY| HOVAdA To omolo dlveton Yot xdle pLo amd TG ToEATAVE
TEPITTOOELS ond T ayéon AefpR — CE(x), 6mou 10 Acsy elvan o mporypotinde
ELIUOS ELGOBOL TWV TEAATOY TIOU ELCEPYETUL GTO GUGTNUO UTO T OTEUTNYIXN
(24(0),24(1)) xou E(z) eivon n péon otddun tou peuotod uTd TN GTEATNYIXN
(2.(0), 2.(1)).

Yt nepimtwoeis (1) xau (2), o mpaypotixde pudude dpiEne melatdv ebvor
aveZdptnrog and ™ otpatnyxh (24(0), 4(1)) xou wwobtow pe to Yéco pudud
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eCumneétnong i, xadde o uTNEETNg e€unneeTel oTr YEYIo TN SUVITOTNTA TOL Yo
OTIC U0 XATACTACELS, Aol 0 puiUoS dpling Tou peucTol elvanl PEYAADTEROC
xou amd Toug duo puduole egumneétnone. Apa, oty nepintwon (1), 1 xowvw-
vixd Bértiotn otpatnyq eivan 1 (0,0), evdd oty mepintwon (2), 1 xovwvixd
BéTiotn oTpatnyY elvan ontotadinote atpotnyx (0, z) ye x > 0.

Yy nepintwon (4), o pudude dpiine twv mehatwy elvor Uixpds oe oyéon
ue toug puiuolg eEUTNEETNONG %o Ol TEAATES TUEATNEOUY TO PEUGTO TAVTOL
070 eninedo 0. YUVETKOC, 1 xOWnVIXd BEATIOT OTEUTNYIXY ElVOL VoL ELGERYETAL
TAVTOL EVAG APLXVOUUEVOS TEALTNG, 0ol AauPdivel To x€pdog I xan €xelL undevind
(00TOC AVAUOVAC.

Yy neplntowon (3), napotneolue 6Tl 1 puéon xovwvixr weélela elval ove-
Edpntn Tou x4(1). Kadde 1o x4(0) avddveton éyoupe éva xovmvixd Yetixd
amoTéAECUA, TNV adENon Tou TpaypaTtixod pLILOD ELGOBOL TOU PEUGTOU GTO
cUOTNUA, YO EVOL XOWVWVIXA EVNTIXG ATOTENECUA TToU ebvan 1 adEnom Tng Y€omng
O TUUNG TOU PEVCTOV. LUVETMS 1) GUUTERLPORA TNE CLUVAPTNONS TNG UECTS XOL-
VoVXC w@élelag e€aptdton and to Badud mou emnpedlovion aUTEC Ol TOGOTY-
TEC.

H pepuxdg nopatnerolny nepintwon
Ytpatnyxég looppomiag

Ye autd 10 xoPPdTL EVTOTILOUUE TIC CTRATNYIXES IGOPEOTIOG TWV TEAXTMY TOU
(PTAVOLY GTO GUC TN XA TOEATNEOVY TN o Tddun TOL PEVGTOL YWElC Vo ToEa-
TneolV TNV xatdotacn Tou utneétn. H otpatnyuxn woppomiog 6w etvor éva
HATOPAL T , ONAAOT OL TEAGTES ElGERYOVTAL OTOY ToEATNEOUY T o Tddurn Tou
PELCTOV YT ATO TO T, AMOYWEOVV OTAV 1) GTAVUN TOU PEVGTOL Elvor VL
AmO TO Te XL OTAV TAUEATNEOVLY TN TN TOU PEVGTOL GTO ETUNEDO T ELGER-
YETOL €VAL TOCOCTO TEAATOV €T0L WOTE 1) o TddUN var Topopévn otodept]. o va
UTOAOY{GOUUE TO XATOPAL T TEETEL VO UTOAOYICOUUE TEWTA TO UEGO YPOVO To-
POUOVTC EVOC TEAATY GTO GUCTNUA, OTAY TURATNEEL TO PEVCTO 6T GTAVUN T X
ol untéhotnol TeEhdTeg axoAoutoly GTEATNYXH XoTw@PAlou Zy. Troloyilouue T
G TAOLUY) XUTAUVOUT| TOU PEUCTOU Yo OECUEDOVTOC WS TEOS TNV XATACTACT) TOU
EELGTOV OTAY TAUEATNEOVUE O TddUN = €YOUUE OTL O PECOS YPOVOC TUPUUOVAC
evog meAdTr etvan
i=1
S(wswa) = w(ilw; 2.)Si(x),
i=0

omou 7(i|z; xy) ebvon N mbavédTnTa 0 LTNEETNS Vv Elval GTNY XUTACTAUOT § EVE
EVOIG APIXVOVUPEVOS TEAATNG Tapatneel o TalUn & UTO T G TEATNYIXY XATw@Aiou
Ty xou S;() 0 Y€oog ypedvog mapouovic Tou TERdTN 6To GUGTNUN EVE O UTN-
e€tne Beloxeton oty xatdotoom @ xou 1 oTdIUT Tou PEVGTOV Elvol 0TO ENINEBO
z. H otdoyn xatavour| Tng otdiung Tou peucTol OT1 UEPXKOS TORATNEHON
nepintwon TauTileton e TN OTACHUN XUTUVOUT| TNG TUQATNENOWNG TEQITTWONG
otav Yéooupe x4 (0) = z4(1) = .
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H ouvdptnon xépdouc evic mehdrn divetan and ) oyéon R — CS(x; xy). O-
Tav 0 puiude A ebvan peyalbtepog and to puiud yYeryoens eCUTNEETNONG fi1,
TO PEVCTO LOOPEOTEL GTN GTAVUN Ty. LUVETMG, XAVE APIXVOUUEVOS TEAATNG
Tapatneel T0 pELCTO OTN oTAOUN X, xou €TOL BeEV Tou BiveTow xdmOL TATEO-
popla Yoo TNV xatdotacy Tou utneét. To xatdhgil diveton and T Adon Tng
elowone R — CS(x;24) = 0. Ly nepintoon 6mov o pudude dpiEne v ne-
Aoty Beloxeton avduesa otoug puduols eEUTNEETNONS Ko, 41, ATODEXVOOUUE
6TL udipyeL povadxh) Aon otny eZiowon R — CS(x;x.) = 0 n onola anotehel
70 xoTWPA 4. TEhog, av o pududg A elvan uixpdtepog Tou puiuol pg, TO
oLo TN ToEUEVEL TIaVTA 0T oTdUUn 0 Xou oL TEAATES TAVTA ELCERPYOVTAL.

Kowwvixr BeAtiotonoinon

[o var utohoylooude T PEOT XOWOVIXY WPEAELX AVA YEOVIXT] HOVADA, YETOL-
UOTIOLOVUE T1 GUVEETNOT XOWOVIXAC WPEAELNS TN TORATNENOWNG TEQITTWONG
Vétovtog 24(0) = z4(1) = z,. Kotoahfyouue hoimdv 6t oty nepintwon mou
o puluodg A ebvar peyohltepog amd to pLiUO YeNyoens €EUTNEETNONG i1, )
xowwvixd Bértiotn otpatnyr etvar to xot@@Al 0. Otav o puduog dging
Twv mehatov Beloxeton avdueoa otoug puipols eCUTNEETNONG Lo, (11 1) XA
CTRUTNYIXN Ty EVOL XOWVWVIXE BEATIO TN OTN UEPXOE TORATNEY O TER(TTWOT)
av xou Wovo av M otpatnyxh| (T, o)) Ye x, > T, eivor xowwvixd BékTiot
otnv mapatnerown nepintwon. Téhog, av o pududg A elvon wxpdTepog Tou
eLlUo0 Lo %dde oTEATNYIXY XATWPAIOL Ty eivon xowwvixd BérTiotn. Topotn-
EOUKE OTL Ol XOVWVIXE BEATIOTES GTEUTNYXESC CUUTETTOUY Xou oTol BUo ETimeda

TANPOPOENOTC.

Twn Tnge avopyiog

H wyn e avopylog mocotixonolel Ty andxAlon TwV CTRATNYIXOV LGOPEO-
o amd T xOWVOVIXE BEATIOTEC OTEATNYIXES. LTNV TAURATNENOWY TERITTHON
oplletan w¢ TO *AdoU

B(x.(0), z.(1))
B(xe(0), ze(1))’

ONAadY) To xhdoua Ye apudUnTy| TNV UECT XOWVWVIXT) WPEAELA OVAL YPOVIXT UO-
VB UG XOWOVIXA BEATIOTEC OTEATNYIXES TEOC TNV HECT) XOWMVIXY| WPEAELN
oV yeovixn povddo uTd oTEATNYIXES looppoTias. AvTiGToly o, 0T UERIXMS TTo-
poTneNoWn TeRITTWoT 1 T TNe avapytog divetar amd to xAdouo PoA = gge; .
E&etdlovtog autd tor xhdopota o€ oyéon Ue To pLIUS APENg A XATOATYOUUE
oTL N T Tne avapylag ebvan 1yl uxpéc TWES Tou A xan TEEVOVTOC TO OpLo
xad®¢ o A Tebvel 670 dmelpo TN T TNg avapylag gedoeTon and xdmoloy aptius.

PoA =
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