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Chapter 1

Introduction

The purpose of this essay is to examine the strategic behaviour of customers
who arrive at a queue evolving in alternating environment. We begin by
presenting the basic definitions and theorems that will be frequently used.

1.1 Queueing theory preliminaries

A queue or queueing system is a system that provides a service to
arriving customers. After the customers are served they depart from the
system immediately.
Generally, the arrival times and the service times of consecutive cus-

tomers are random variables. Therefore, the system’s progress in time (e.g.
the number of customers in the system) cannot be calculated with cer-
tainty. However, we can describe and study the system by using appropriate
stochastic processes.

1.1.1 Common performance measures of a queueing system

The main characteristics of a queue are the arrival process, the service pro-
cess and the service discipline.We will briefly describe each of them.

Arrival Process

The arrival process describes the mechanism by which consecutive customers
C1, C2, . . . , Cn, . . . arrive at the system and is determined by the joint dis-
tributions of the arrival moments t0 = 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ . . . or
equivalently the interarrival times

Tn = tn+1 − tn, n ∈ N.

The most common cases are listed below.
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1. Poisson arrival process. This is the most common arrival process.
It is also called completely random arrival process and is the most suit-
able model for systems with great amount of potential customers that
use the service rarely and independently from each other. The models
that will be examined in this essay refer to this arrival process. It is
denoted by the capital letter (M) which is derived by the Memoryless
or Markovian property of the Poisson.

2. Deterministic arrival process. In this process customers arrive in
equal time intervals of length a, which means Tn = a with probability
1. This is an appropriate process to model systems that serve by
making appointments. It is denoted by the capital letter (D).

3. General renewal arrival process. In this case,the interarrival times
T1, T2... are independent identically distributed random variables with
a general distribution A(x) (x ≥ 0) and finite mean value

a =

∫ ∞
0

xdA(x) =

∫ ∞
0

(1−A(x))dx =

∫ ∞
0

Ac(x)dx.

The parameter λ = 1/a ,which is the mean number of arrivals per
time unit, is referred to as the arrival rate. The deterministic arrival
process (D) is a special case of the general renewal arrival process
with A(x) = 0, if x < a, and A(x) = 1, if x ≥ a. The Poisson
process is also a special case of this process with A(x) = 0, x < 0 and
A(x) = 1 − e−λx, x ≥ 0 which means that T1, T2, . . . are independent
identically distributed random variables that follow the exponential
distribution. The general renewal arrival process is denoted by the
capital letters (GI) which refer to the generally independent inter-
arrival times.

Service process

The service process describes how the customers are served. It is defined
by the number of servers in the system, k, (k ∈ {1, 2, ...,∞}) and the dis-
tribution of the service times. By denoting Xn the service time of the n-th
customer that joins the system, we assume that X1, X2, ... are independent
identically distributed random variables that follow an arbitrary probability
distribution B(x) (x ≥ 0) with finite mean value

b =

∫ ∞
0

xdB(x) =

∫ ∞
0

(1−B(x))dx =

∫ ∞
0

Bc(x)dx.

In a queue with one server who is constantly busy the parameter µ = 1/b
represents the mean number of customers that depart from the system per
time unit which is also referred to as service rate. The service process that
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does not assume a particular distribution for the time that is required for
a customer to be served by a server is denoted by (G). The most common
case is when B(x) = 1 − e−µx(x ≥ 0), the exponential distribution, and is
denoted by (M).

Service discipline

The service discipline determines in which order arriving customers will
be served. The most commonly used discipline is the FCFS (First-Come-
First-Served) or FIFO (First-In-First-Out), where the customers are served
according to the order of their arrivals at the system. Other important dis-
ciplines are LCFS (Last-Come-First-Served) or LIFO (Last-In-First-Out),
where, whenever a server becomes available, the customer that arrived
most recently in the system is served and SIRO (Service-In-Random-Order),
where the customer to be served is chosen randomly. The disciplines men-
tioned above do not take directly into consideration the service time of
the queued customers. There are others, like SSTF (Shortest-Service-Time-
First), where the customer with the least service time among those queued
is chosen to be served.
Another queueing regime is the one that sets priorities for a certain type of

customers. Those disciplines can be with preemption or without preemption.
Regarding those without preemption, when a new arrival is placed at the
head of the queue, the customer in service is allowed to complete it.When
the discipline is with preemption, a customer that has priority interrupts
the service of a low priority customer.There are two cases of priority service.
The conservative case, where the service, when resumed, is continued from
the point where it was interrupted and the non-conservative case, where the
service begins anew when resumed.
A common example of a preemptive discipline is the LCFS/P-R(Last-

Come-First-Served/Preemptive-Resume). Under this queueing regime, a
new arrival preempts a customer who might be in service. The interrupted
customer returns to the queue and is chosen to continue her service with the
rule of the LCFS discipline. The service is resumed from the point it was
interrupted and no work is lost.

Kendall’s Notation

To classify queueing models we use the notation A|B|k

A refers to the arrival process

B refers to the service time distribution

k denotes the number of servers
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Therefore, GI|G|1 refers to a general queue with one server and M |D|3
refers to a queue that has 3 servers, constant service times and a Poisson
arrival process.
The capacity of the system is the maximum number of customers allowed in

the system including those in service. Assume that the capacity of the sys-
tem is a finite number s. Then the previous notation is expanded by adding
s and we use A|B|k|s. After this notation the service discipline is declared.
For example, D|G|1|10(LCFS) refers to a queue with constant inter-arrival
times, general service times, one server, capacity for 10 customers and the
LCFS discipline.

Performance Measures

Let j ∈ N\{0}, then:

• Sj is the sojourn time of customer Cj ,

• Wj is the waiting time of customer Cj ,

• Xj is the service time of customer Cj .

Obviously
Sj = Wj +Xj (j ∈ N).

For t ≥ 0 , we have the following notations

• Q(t) is the number of customers in the system (queue size)

• Qq(t) is the number of queued customers and

• Qs(t) is the number of customers currently served

at some point in time t.We observe that

Q(t) = Qq(t) +Qq(s).

The most useful stochastic processes for studying a queue are
{Q(t) : t ≥ 0}, {Qq(t) : t ≥ 0}, {Sj : j ∈ N\{0}} and {Wj : j ∈ N\{0}}.
Consider the following:

• Q = lim
t→∞

1
t

∫ t
0 Q(x)dx is the (long-term) average number of customers

in the system (average queue length),

• Qq = lim
t→∞

1
t

∫ t
0 Qq(x)dx is the (long-term) average number of waiting

customers

• Qs = lim
t→∞

1
t

∫ t
0 Qs(x)dx is the (long-term) average number of cus-

tomers currently being served.
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Obviously , Q, Qq and Qs are averages with respect to time (time averages).

Consider also

• S = lim
n→∞

1
n

n∑
j=1

Sj is the (long-term) average sojourn time,

• W = lim
n→∞

1
n

n∑
j=1

Wj is the (long-term) average waiting time,

• X = lim
n→∞

1
n

n∑
j=1

Xj is the (long-term) average service time.

Obviously , S, W and X are averages with respect to the customers (cus-
tomer averages).

1.1.2 Queue length

The most useful stochastic process for describing a queueing system is the
queue length {Q(t) : t ≥ 0}. Therefore, we are interested in computing the
probabilities

pj(t) = P (Q(t) = j) j ∈ N

of j customers in the system at any point t. However, those are usually
very difficult to compute. Moreover, after a short period of time, the system
will achieve a steady state, which means that {Q(t)} becomes stationary.
Therefore, our attention focuses on the steady state probabilities

pj = lim
n→∞

pj(t) j ∈ N

which are much simpler to compute.
If the interarrival times or the service times of a queue are continuously

distributed, which is usually the case, the steady state probabilities can
always be defined.
An important parameter is the utilization rate ρ = λ

µ where λ is the
mean arrival rate and µ is the mean service rate. Since λ customers enter
the system per time unit and each one of them adds 1

µ workload to the
system,the mean workload that enters the system per time unit is ρ. If
ρ ≥ k then the queue length keeps increasing in time and the steady state
probabilities pj(t) are all zero. On the other hand, if ρ < k, the probabilities
pj are not equal to 0 and the system reaches a steady state.
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Embedded processes

It is much easier to study {Q(t)} when the Markov property holds. If the
Markov property holds, given the value of {Q(t)} (the present) the random
variables {Q(u) : u > t} (the future) are independent from {Q(s) : s < t}
(the past). In many applications this property does not hold. Therefore,
we need to inspect the queue at specific time points t ∈ [0,∞] where the
Markov property holds. Those time points are those of consecutive arrivals
or consecutive departures of customers. We define the following random
variables

• Q−n = Q(t−n ) , n ∈ N , the queue length before the n-th arrival

• Q+
n = Q(τ+n ), n ∈ N, the queue length after the n-th departure.

The stochastic processes {Q−n , n ∈ N} , {Q+
n , n ∈ N} which describe the

system specifically at times of arrivals and departures respectively, are called
embedded processes of {Q(t) : t ≥ 0}. We denote by

• rj = lim
n→∞

P (Q−n = j), j ∈ N,

• dj = lim
n→∞

P (Q+
n = j), j ∈ N,

the limiting distributions of {Q−n = j} and {Q+
n = j} respectively. In a

system where we do not have multiple arrivals or departures at the same
moment it is proven that

rj = dj .

The PASTA property

The limiting distributions in continuous time {pj} and at arrival moments
{rj} or departure moments {dj} do not always coincide. However, this is
the case when we have a Poisson arrival process.Therefore,

pj = rj j ∈ N,

when the arrival process is Poisson. Thus, an arrival from a Poisson process
observes the system as if it happens at a random moment in time. Therefore,
any performance measure of the queue at the instant of a Poisson arrival is
simply the long term time average of that measure. This property is referred
to as PASTA (Poisson Arrivals See Time Averages).

Little’s Law

When long queues are formed in a system, we intuitively expect to have long
sojourn times.This intuition is justified by Little’s Law:
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Under steady state conditions, the long-term average queue length in a
queueing system equals the average rate at which customers arrive multi-
plied by the long-term average sojourn time of a customer,

Q = λS (with probability 1).

Assume that the limiting distributions of the stochastic processes {Q(t) :
t ≥ 0} and {Sn : n ∈ N\{0}} are defined and let Q, S be the respective limit
random variables. The following holds :

E(Q) = Q and E(S) = S.

Now , Little’s Law takes the following alternative form

E(Q) = λE(S).

An important aspect of the Little’s Law is that it also holds in subsys-
tems within systems. Therefore, if we consider the subsystem of waiting
customers, without the customers currently served, Little’s Law yields :

E(Qq) = λE(W ),

where Qq,W are the limit random variables that describe the number of
waiting customers in the queue and the waiting time respectively.
If we consider the customers currently being served as our system, Little’s

Law yields
E(Qs) = λE(X) = λb = ρ,

where b = E(X) is the average service time and Qs is the limit random vari-
able that describes the number of customers currently served or equivalently,
the number of busy servers.

1.1.3 The M/M/1 queue

Birth-death process

A birth-death process is a special case of a Markov process where the state
space is S = N or S = {0, 1, . . . , s}, and the state transitions are of only
two types : “births” which increase the state variable by one, from state n
to state n+ 1 and “deaths” which decrease the state variable by one, from
state n to state n−1. The process is specified by birth rates {λi} and death
rates {µi}. The state diagram is the following :
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The stochastic process {X(t) : t ≥ 0} is called birth-death process. The
unique limiting (stationary) distribution

pn = lim
t→∞

pn(t) n ∈ S

exists if and only if

B−1 =
∑
n∈S

λ0λ1 . . . λn−1
µ1µ2 . . . µn

<∞,

and can be computed by

pn = B
λ0λ1 . . . λn−1
µ1µ2 . . . µn

> 0, n ∈ S.

In this case {X(t)} is positive recurrent. When B−1 =∞, pn = 0 (n ∈ S)
and {X(t} is null recurrent or transient.

The M|M|1 queue

The M|M|1 queue is one of the simplest and most common service systems.
In this system customers arrive according to a Poisson arrival process with
parameter λ. There is only one server and the waiting capacity is infinite.
Therefore a customer that finds the system empty begins her service immedi-
ately whereas a customer that finds the server busy (the system not empty)
joins the queue. The consecutive service times are independent identically
distributed random variables that follow the exponential distribution exp(µ)
and are independent of the arrival times. When customers complete their
service, they depart from the system and the server selects another customer
to serve (if the queue is not empty).
Consider the stochastic process of the queue length {Q(t)} at a specific time

moment t. The process {Q(t), t ≥ 0} has a discrete state space {S ⊆ N}
and is a continuous time Markov chain since the interarrival times and the
successive service times are independent and follow the exponential(λ) and
the exponential(µ) distributions respectively.
If Q(t) = n we can only move to state n + 1 with rate λ or to n − 1 with

rate µ. Thus, we have a birth-death process like the one described in the
previous section. Consequently, the unique limiting distribution exists if and
only if

B−1 =
∞∑
n=0

λ0λ1 . . . λn−1
µ1µ2 . . . µn

=
∞∑
n=0

λn

µn
=
∞∑
n=0

ρn <∞,

where ρ = λ/µ is the utilization rate.
In order for B−1 <∞ , ρ < 1 is a necessary condition and then :

B−1 =
1

1− ρ
.
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Therefore, in order for the limiting distribution of {Q(t), t ≥ 0} to exist, ρ
must be less than 1 in which case the limiting distribution is pn = (1−ρ)ρn,
n ∈ N, the Geometric(ρ) distribution. If ρ ≥ 1, then pn = 0, n ∈ N or

lim
t→∞

P (Q(t) > n) = 1, n ∈ N,

and the queue length becomes infinite.
When ρ < 1, the system, after some time, will reach a steady state. Let
Q be the number of customers in the system while steady state has been
achieved. Then, the limiting random variable Q follows the geometric dis-
tribution with parameter ρ. Therefore, the mean value and the variance of
the queue length are given respectively by

E(Q) =
ρ

1− ρ
,

V (Q) =
ρ

1− ρ2
.

Also, if S is the limiting random variable that represents the sojourn time of
a customer in the system while the steady state has been achieved , Little’s
law yields

E(S) =
1

λ
E(Q)

=

1
µ

1− ρ
.

The following results are also true.

• p0 = P (Q = 0) = 1− ρ the probability that the system is empty

• P (Q ≥ k) = ρk, k ∈ N.

1.2 Game theory preliminaries

In this section we will define and discuss elements of Game Theory that will
be used throughout this essay.

1.2.1 Description of non-cooperative games

We begin by giving the definition of a game between two or more players.

Definition 1.2.1. A game is specified by the following parameters

a. A finite set of players N = {1,2,3,...,n}

b. A set of actions available for player i ∈ N which is denoted by Ai
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c. The payoff function which assigns to every set of a players’ actions
a real number.

Remark 1. In the applications of Game Theory to Operations Research, the
set of players N is usually infinite.In this essay the players are the customers
that arrive at a queue and are considered potentially infinite.

1.2.2 Equilibrium strategies and payoff function

A strategy of a player represents a complete plan of actions that the player
will follow under any circumstances that may arise during the game. A
strategy profile is a set of strategies, one for each player of the game. There-
fore, a strategy profile is a predetermined course of action for every possible
situation throughout the game.
Assume a game that has r (r ∈ N) different stages. A pure strategy for

player i is a vector of actions from Ai, denoted by si = (a1, a2, ..., ar) which
declares the action that player i will take when the game is at one of those
r stages.
A mixed strategy is a vector that assigns a probability to all pure strate-

gies a player has available and is the probability a player uses the corre-
sponding strategy. For example, if a player has 4 different possible pure
strategies, some mixed strategies are m1 =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
, m2 =

(
5
12 ,

1
4 ,

1
12 ,

1
4

)
,

m3 =
(

3
10 ,

1
10 ,

3
5 , 0
)
. Obviously, the coordinates of a mixed strategy add up

to 1.
Let {si1, si2, ..., sij j ∈ N} be the available pure strategies of player i.Then

the set of mixed strategies Mi is the set Mi={(p1, p2, ..., pj) :
∑j

k=1 pk =
1, pk ≥ 0}.
Every pure strategy can be expressed as a mixed strategy. Consider a pure

strategy of the i-th player sik. Then the mixed strategy (0, ..., 0, 1, 0, ..0)
with 1 at the k-th coordinate corresponds to sik

Definition 1.2.2. The set M = M1 × ... × Mn = {m1, ...,mn : m1 ∈
M1, ...,mn ∈ Mn} is the set of strategy profiles. m ∈ M is a strategy
profile that defines a strategy for all players.

Payoff function

Each player is associated with a real payoff function Fi(m). This function
specifies the payoff received by player i given that the strategy profile m
is adopted by the players. Denote by m−i a strategy profile for the set of
playersN\{i}.Then, if m = (m1, ...,mN ), m−i = (m1, ...mi−1,mi+1, ...,mN )
and we can also express the strategy profile m as m = (m−i,mi).
We can now define the payoff function Fi(m) corresponding to player i, as

a function that assigns real numbers to the elements of the set of strategy
profiles M :

Fi : (mi,m−i)→ ri ∈ R.
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We assume that the function Fi(s) is linear in mi.
Therefore, by letting mi = p · a+ (1− p) · b , p ∈ [0, 1], a, b ∈Mi we get:

F (mi,m−i) = p · Fi(a,m−i) + (1− p) · Fi(b,m−i).

Dominating strategies

Definition 1.2.3. A strategy m1
i is said to weakly dominate strategy m2

i

(for player i), if for any m−i, Fi(m
1
i ,m−i) ≥ Fi(m

2
i ,m−i) and for at least

one m−i the inequality is strict. A strategy mi is said to be weakly domi-
nant if it weakly dominates all other strategies in Mi.

Definition 1.2.4. A strategy m∗i is said to be a best response for player
i against the profile m−i if

m∗i ∈ arg max
mi∈Mi

F (mi,m−i)

Therefore, m∗i maximizes the utility of player i when the other players use
the m−i strategy.

We denote by BRi(m̂−i) the set of best responses of the i-th player when
all others follow the m̂−i strategy:

BRi(m̂−i) = {m∗i : Fi(m
∗
i , m̂−i) ≥ Fi(mi, m̂−i), ∀mi ∈Mi}

= arg max
mi∈Mi

F (mi, m̂−i).

Equilibrium

Definition 1.2.5. A strategy profile me is an equilibrium profile if for
every i ∈ N,me

i is a best response for player i against me
−i i.e.,

me
i ∈ arg max

mi∈Mi

Fi(mi,m
e
−i), i ∈ N

Remark 2. If a best response m∗i is a mixture of strategies then all those
strategies are also best responses.This property does not hold when “best
response” is replaced by “equilibrium”.

1.3 Game theory in queues

In this section we will discuss a queue from the perspective of game theory.
The arriving customers are the players of the game, therefore the players are
usually indistinguishable and infinitely many. When a customer arrives at
the queue she needs to make a decision. The possible decisions usually are
join or balk (not join). The options a customer has available are the elements
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of each player’s action set. Depending on their choice, the customers will
receive a payment at the completion of their service, which is given by their
payoff function.
Let R be the reward customers gain when they complete their service and
C be the cost per time unit a customer incurs while in the system. We
consider that the different states of the game are the number of customers
in the queueing system given by the variable Q(t).
Considering that the players are indistinguishable, denote the common set

of strategies and the payoff function by S and F respectively and let F (a, b)
be the payoff of a player who chooses strategy a while everyone else selects
strategy b .We now have the following definition:

Definition 1.3.1. A symmetric equilibrium is a strategy se ∈ S such
that

se ∈ argmax
s∈S

F (s, se)

which means that se is a best response against itself.

1.3.1 Information and strategies

The information a customer receives upon arriving at the system is usu-
ally very important when choosing a strategy. Consider the M |M |1 queue
(FCFS). If a customer arrives and observes an empty queue, she will proba-
bly join since her sojourn time is expected to be short. On the other hand,
if she observes a lot of customers in the system, her sojourn time increases
along with the cost she will suffer and thus, she will be more reluctant to
join. Therefore, we classify queues according to whether or not their length
can be observed before making a decision.
The objective of this essay will be to examine models with alternating

environment, i.e. the parameters of the system alternate randomly between
two or more states. For example, the system may alternate between two
service modes, a slow and a fast one. Naturally, a customer will prefer to
join when the fast mode is active in order to lower her mean sojourn time.
For this reason, we also need to classify queues according to whether or not
we can observe the state of the system before taking an action.
Let N(t) and I(t) be the number of customers and the state of the system at

a certain point in time t ∈ [0,∞]. Then, a customer may have the following
information levels available upon arrival:

1. Fully observable queue: In this case, the customers can observe
both the number of customers in the system N(t) as well as the state
of the system I(t) before making a decision.

2. Almost observable: In this case, arriving customers observe the
number of customers in the system N(t), but can’t identify the state
of the system I(t) before deciding whether to join or balk.
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3. Almost unobservable: In this model, customers can tell apart the
different states of the system but cannot observe the number of cus-
tomers in the queue and the set of information each customer has
available is the set of possible states of the system {I(t) : t ∈ [0,∞]}.

4. Fully unobservable: In this case, customers have no information
regarding the number of customers in the system and they cannot tell
apart the different states of the system.

Threshold strategies

Due to the structure of the payoff function, especially in the observable
models, the equilibrium strategy usually is a threshold strategy. When a
player follows a threshold strategy, she exhibits a certain behaviour until a
specific threshold is reached. When the threshold is exceeded , the customer
follows a different course of action. A simple example of a threshold strategy
is when a customer joins a queue if she observes less than 10 customers in
the system and balks when 10 or more customers are observed.

Definition 1.3.2.

• A pure threshold strategy with threshold n ∈ N dictates that a cus-
tomer will take an action A while the system is in states 0,1,2,...,n-1
and some other action B while the system is in any other state.

• A mixed threshold strategy with threshold n+p, n ∈ N, p ∈ [0, 1)
dictates that

– a player will take an action A while the system is in the states
0, 1, 2, . . . , n− 1,

– while in state n, a player will take action A with probability p and
some other action B with probability 1− p

– a player will take another action B for all other states of the
system.

1.3.2 Steady-state

A pure strategy prescribes an action to each state of the system. A strategy
profile and an initial state induce a probability distribution over the states of
the system. The player’s payoff is determined by her strategy, the strategy of
the other players and the state of the system, while every player is interested
only in maximizing her expected payoff.
When we calculate a player’s expected payoff while she follows a strategy
x against all others using strategy y we assume that steady-state conditions
have been reached. As stated above, the steady-state has the meaning that
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the probability distribution over the states is the limiting distribution, which
makes calculations much simpler. Moreover, convergence in steady state is
usually very fast, so the analysis remains valid if we neglect the transient
effects on the customer equilibrium behaviour.

1.3.3 Avoid the crowd or Follow the crowd

We have already stated that the payoff function of a customer is a function of
the strategy selected by other customers. In queueing models, the strategies
are usually represented by a single number. For example, in the observable
case we have a natural number that represents the threshold, while in the
unobservable case customers usually enter the queue with probability p ∈
[0, 1]. In such cases it is meaningful to consider whether an individual’s best
response is a monotone function of the strategy selected by other customers.
Let F (x, y) be the payoff function of a tagged customer who selects strategy
x when all others select strategy y. Assume that for every y there is a unique
best response x(y) = argmax

x
F (x, y). Let x(y) be monotone in y.

• If x(y) is increasing in y then, when y increases, x(y) also increases,
meaning that the tagged customer follows the behaviour of the other
customers. This behaviour is called follow the crowd (FTC).

• If x(y) is decreasing in y then, when y increases, x(y) decreases, mean-
ing that the tagged customer does not follow the behaviour of the other
customers. This behaviour is called avoid the crowd (ATC).

An equilibrium strategy y satisfies that x(y) = y, which means that y is a
fixed point of function x. An interesting property of the FTC behaviour is
that multiple equilibria are possible, whereas in the ATC behaviour at most
one equilibrium is possible.

1.3.4 Costs and objectives

In order to calculate the equilibrium strategies we need to compute the payoff
function for a tagged customer who follows a strategy stagged when all others
follow a strategy sothers. The welfare of the tagged customer consists of the
benefit she gains upon completing her service minus the direct costs (e.g. the
price of a ticket to enter the queue) and the indirect costs that are associated
with waiting. Let R be the benefit a customer gains from completed service,
C the cost per time unit1 while the customer remains in the system, p the
direct costs and t the time a customer remains in the system. Then, we may
have the following optimization objectives:

1We assume that the waiting cost is linear in time. While true for most applications,
this assumption does not always hold.
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• individual optimization Each customer maximizes her net benefit while
ignoring the costs she may inflict on other customers in the system.The
net benefit is given by

F (stagged, sothers) = R− Ct− p.

• social optimization A social planner dictates the strategy all players
(customers, servers, ...) must follow in order to maximize the social
welfare. In this case, payments between players are considered transfer
costs and do not affect the social welfare. The social welfare is com-
puted by the sum of the benefits from completed services minus the
costs incurred by the system’s operation and the sum of the waiting
costs of all players.

1.3.5 Joining, balking and reneging

The action set a customer has available when arriving in a queuing system
usually consists of the following three options:

• join: A customer arrives at the system and decides to enter in order
to be served.

• balk : A customer arrives at the system and decides not to enter. This
is called balking. Usually, after a customer balks, they do not have the
option of joining the system later on. This is the case for the models
that will be examined throughout this essay.

• renege After a customer has entered the queue, she sometimes has the
option to abandon the system while waiting. This is called reneging.
Again, a customer that reneges is usually considered lost by the system
and cannot rejoin at a later time. In the models of this essay, reneging
is not allowed.

In section 1.1.1 we discussed the meaning of the arrival rate λ. After taking
into account that an arriving customer does not always enter the queue we
make the following adjustment:
We denote by Λ the rate customers arrive at the system -whether they join

or not- and we denote by λ the rate of customers that arrive and decide
to join the system. Λ is referred to as the potential arrival rate, while λ is
referred to as the effective arrival rate.

1.4 Strategic behaviour in queueing systems in al-
ternating environment

As stated in the previous sections, the economic analysis of customer be-
haviour in queueing systems is based on some reward-cost structure which
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is imposed on the system and reflects the customers’ desire for service and
their unwillingness to wait. Customers are allowed to make decisions about
their actions in the system, for example they decide whether to join or balk,
to abandon the queue, to buy priority or not etc. The customers want to
maximize their benefit while taking into account that other customers have
the same objective. This situation can be considered a game among the
players. The basic problem is to find an equilibrium and socially optimal
strategies. These ideas go back at least to the works of Naor (1969) and
Edelson and Hildebrand (1975) who studied equilibrium and socially
optimal strategies for whether to join or balk in an M |M |1 queue with a
simple linear reward-cost structure. Naor (1969) assumed that an arriv-
ing customer observes the queue length before making her decision to join
(observable case). His study was complemented by Edelson and Hilde-
brand (1975) who studied the unobservable case, where the customers
had to make their decision without information about the state of the sys-
tem. Since then, there is a growing number of papers that deal with the
economic analysis of the balking behaviour of customers in variants of the
M |M |1 queue, see e.g. Hassin and Haviv (1997) (M |M |1 queue with
priorities), Burnetas and Economou (2007) (M |M |1 queue with setup
times), Guo and Zipkin (2007) (M |M |1 queue with various levels of
information and uncertainty in the system parameters), Economou and
Kanta (2008) (M |M |1 queue with compartmented waiting space), Sun et
al. (2010) (M |M |1 queue with setup/closedown times) and Zhang and
Wang (2010) (M |M |1 queue with delayed repairs).
One of the models that will be discussed in this study is the M |M |1 queue

with an unreliable server. The strategic behaviour in vacation queueing
systems, where the server may become unavailable in between services, is
a quite recent endeavor. Burnetas and Economou (2007) studied the
M |M |1 queue with setup times under a strategic perspective. Subsequently,
Economou and Kanta (2008) and Jagannathan, Menache, Modi-
ano and Zussman(2011) studied the strategic joining/balking behaviour
of the observable and unobservable models of the M |M |1 queue with un-
reliable server. Guo and Hassin (2011;2012) studied the strategic be-
haviour of customers in an M |M |1 vacation queue with an N -policy. The
study of the strategic customer behaviour in vacation queues has been also
extended in models with additional characteristics such as closedown times,
general service or vacation time etc., see e.g. Sun Guo and Tian (2010),
Economou,Gómez-Corral and Kanta (2011), Li and Han (2011),
Do, Tran, Nquyen, Hong, and Lee (2012), Liu, Ma, and Li (2012),
Zhang, Wang, and Liu (2013) and Yang, Wang, and Zhang (2014).
For the study of vacation queues it is usually convenient to consider fluid

queues. Fluid queues are suitable for representing systems where the process
of the customers is very fast in comparison with changes in the server status.
A fluid queue is an input-output system, where the customers are modeled
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as a continuous fluid that enters and leaves a storage space, called the buffer,
according to rates that depend on some underlying stochastic process that is
related to the state of the system. Fluid queues have been used extensively
as an approximation of the standard queues with discrete units in applica-
tions such as high-speed data networks, automated manufacturing systems,
traffic/transportation networks etc.
There is an extensive literature devoted to the study of the fluid flow mod-

els. Several early computational approaches and results can be found in
the papers of Kosten (1974a)(1974b) and Kosten and Vrieze (1975).
Anick, Mitra, and Sondhi (1982) introduced a benchmark model that
is now known as AMS model. This is a fluid queue that represents a single
buffer which receives data from several independent sources, each of which
switches between on and off states according to a continuous time Markov
chain. For a smooth introduction in the area and a literature review of
classical references see Kulkarni (1997), Schwartz (1996) or Gautam
(2012).
The fluid queues are in some sense semi-deterministic counterparts of va-

cation queueing models in random environment. Indeed, the on-off alter-
ations of the independent sources that occur in fluid models can be seen
as vacation/failures of the server of the system. Even though fluid queues
treat situations similar to vacation queues, the literature has been devoted
mainly on performance evaluation issues and control problems under a cen-
tral planer (see e.g. Rajagopal, Kulkarni, and Stidham (1995) for the
optimal flow control problem). There are also a number of studies with
strategic considerations and fluid models that concern completely different
situations from vacation queues, see e.g. Maglaras (2006), Jain, Juneja,
and Shimkin (2013), and Haviv (2013). The strategic behaviour re-
garding the joining/balking dilemma in an observable fluid queue with a
Fist-Come-First-Served (FCFS) discipline, where the system alternates be-
tween exponentially distributed fast and slow service periods was studied by
Economou and Manou (2016).
In the two queuing models mentioned so far the studies in the changes of

the environment mainly refer to the service process. When both the service
and arrival processes alternate, the analysis becomes much more compli-
cated. An interesting queueing model, where we can consider that the sys-
tem alternates between states with different arrival and service rates, is the
stochastic clearing system. In this model, the customers are accumulated in
a waiting room and the server removes all customers at the completion of
a service cycle. Stochastic clearing systems have been studied by Stidham
(1974), Serfozo and Stidham (1978), Artajelo and Gomez-Corral
(1998) and Yang et al. (2002). They have been also studied in the
framework of stochastic systems subject to (total) catastrophes or disasters,
where catastrophic events are assumed to remove all customers/units of the
system/population (see e.g. Kyriakidis (1994), Economou and Fakinos
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(2003, 2008), Stirzaker (2006, 2007) and Gani and Swift (2007)). In
the majority of such studies the interest of investigators lies in the transient
and/or the stationary distribution of the process of interest. However, op-
timization issues for this class of systems have also attracted the interest in
the literature (see e.g. Kyriakidis (1999a, 1999b), Economou (2003),
Kyriakidis and Dimitrakos (2005).
The optimization questions that have been studied in the context of stochas-

tic clearing systems concern the central planning of the systems and the
objective is the determination of optimal strategies for the server, about
when he should remove the customers from the system (see e.g. Stidham
(1977), Kim and Seila (1993), Economou (2003), Kyriakidis and
Dimitrakos (2005)). The behaviour of customers in a clearing system in
alternating environment when they are free to make decisions to maximize
their benefit has been studied by Economou and Manou (2013).
In this essay we will examine customer strategic behaviour in queuing sys-

tems in alternating environments. The essay is organized as follows. In
chapter 2, we will describe a queue with an unreliable server. The cus-
tomers arrive at the system, observe the number of customers in it and
decide whether to join or balk. We will consider two information cases, the
fully observable and the almost observable case and identify the equilibrium
balking strategies.
In chapter 3, we will consider a stochastic clearing system in random en-

vironment. We will explore the customers’ strategies under various infor-
mation cases. In all cases, we will show that the expected net benefit of a
customer depends only on her strategy and not on the strategies followed
by other customers, a fact that implies the existence of dominant strategies.
This is a special feature of the system and is related to the nature of the
stochastic clearing mechanism. In the almost observable case, we notice
that the number of waiting customers does not imply an additional cost on
the individual, but their presence provides a signal about the state of the
system.Then, we will characterize all the equilibrium strategies within the
class of threshold and reverse threshold strategies and provide an algorithm
to compute those equilibrium strategies.
In chapter 4, we will study the customers’ join/balk dilemma in a fluid

queue in alternating environment. Again, we will explore two informational
cases and we will determine equilibrium customer strategies. We will also
compute the expected social benefit per time unit under a given strategy and
consider the related optimization problems. We then compare the expected
social benefits per time unit under various combinations regarding the nature
of the customers.
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Chapter 2

Equilibrium balking
strategies for an observable
queue with breakdowns and
repairs

2.1 The model

Consider a M|M|1 queue with infinite capacity. The customers arrive accord-
ing to a Poisson process with rate λ and the service times are exponentially
distributed with rate µ. In this model the server is not always active, but al-
ternates between on and off periods. We assume that the on and off periods
are also exponentially distributed with rates ζ and θ respectively.
Let N(t) be the queue length at time t and I(t) the state of the server at

time t (I(t) = 0 corresponds to the state where the server is off and I(t) = 1
to the state where the server is on). The process {N(t), I(t) : t ≥ 0} is a
continuous time Markov chain where the transition rates are given by

q(n,i)(n+1,i) = λ, n = 0, 1, 2, ... and i = 0, 1

q(n,i)(n−1,i) = µ, n = 1, 2, 3, ...

q(n,0)(n,1) = θ, n = 0, 1, 2, ...

q(n,1)(n,0) = ζ, n = 0, 1, 2, ... .

We assume that customers arrive at the queueing system and receive some
information. Then, they decide whether to join or not. When a customer
joins the system, she receives a reward or R units upon completion of her
service and she incurs a waiting cost of C units per time unit that is con-
tinuously accumulated while she remains in the system. When a customer
does not join, her net benefit is considered to be 0. Each customer tries to
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Figure 2.1: Transition diagram

maximize her expected net benefit. When a customer decides whether to
join or not, her decision is irrevocable, meaning that reneging of entering
customers or retrials of balking customers is not allowed.
We will consider two informational cases separately. We will study the fully

observable case first, where the customers observe both the queue length
N(t) and the state of the system I(t).

2.2 Equilibrium threshold strategies in the fully
observable case

As stated above, in this information case, customers observe the queue size
N(t) and the the state of the system I(t) before joining. The equilibrium
threshold strategy has the form (ne(0), ne(1)), which declares that when
customers observe the system in state i, they should join if N(t) ≤ ne(i),
and they should balk otherwise. In the fully observable case we will conclude
that the strategy of a customer is independent of the strategy of the other
customers which is a trait of dominant strategies.
We have the following result.

Theorem 2.2.1. In the fully observable case of an M|M|1 queue with break-
downs and repairs there exist a pair of thresholds

(ne(0), ne(1)) =

(⌊
Rµθ

C(θ + ζ)
− µ

θ + ζ

⌋
− 1,

⌊
Rµθ

C(θ + ζ)

⌋
− 1

)
(2.1)

such that the strategy “While arriving at time t, observe (N(t), I(t)); enter
if N(t) ≤ ne(I(t)) and balk otherwise” is a weakly dominant strategy.

Proof. Consider a tagged customer that follows a strategy stagged when all
other customers follow a strategy sothers. The tagged customers’ net benefit
is given by

F (n, i) = R− CT (n, i), (2.2)
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where T (n, i) = E[S|N− = n, I− = i] is the average sojourn time of a
customer that finds the system at state (n, i) upon arrival.
Let mn,i be the expected time the system remains in state (n, i) and
q(n1,i),(n2,i′) be the transition rate from state (n1, i) to state (n2, i

′).

When the system is in state (n, 1) n = 1, 2, ... two possible transitions are
possible (ignoring arrivals which do not affect the sojourn time of a customer
already in the system) : (n − 1, 1), which corresponds to the service of a
customer, or (n, 0), which corresponds to a breakdown of the system. The
time spent in state (n, 1) is the minimum of the time it takes for a customer
to be served or for a breakdown to happen. Therefore, it follows exp(µ +
ζ) as the minimum of two independent variables that follow exponential
distributions. Consequently, mn,1 = 1

µ+ζ .
From state (n, 1) the service of a customer may be completed with prob-

ability p((n, 1) → (n − 1, 1)) =
q(n,1)(n−1,1)

mn,1
= µ

µ+ζ and the system moves

to state (n− 1, 1) or a breakdown may happen with probability p((n, 1)→
(n, 0)) =

q(n,1)(n,0)
mn,1

where the system moves to state (n, 0).
By a similar analysis for states (n, 0) and (0, 1) and using a first step argu-

ment we have the following equations.

T (n, 0) =
1

θ
+ T (n, 1). n = 0, 1, 2, ... (2.3)

T (0, 1) =
µ

µ+ ζ
+

ζ

ζ + µ
T (0, 0). (2.4)

T (n, 1) =
1

ζ + µ
+

µ

ζ + µ
T (n− 1, 1) +

ζ

ζ + µ
T (n, 0). n = 1, 2, 3, ... (2.5)

By solving the system (2.3) for n = 0 and (2.4) we obtain T (0, 0) and
T (0, 1). By plugging (2.3) in (2.5) we obtain a first order recursive relation
for T (n, 1),

T (n, 1) =
1

µ
(1 +

ζ

θ
) + T (n− 1, 1),

which yields

T (n, i) = (n+ 1)(1 +
ζ

θ
)
1

µ
+ (1− i)1

θ
. (2.6)

A customer joins if

F (n, i) > 0⇔ R− CT (n, i) > 0⇔ R− C(n+ 1)(1 +
ζ

θ
)
1

µ
+ (1− i)C

θ
⇔

n <
Rµθ

C(θ + ζ)
− 1− (i− 1)

µ

θ + ζ
.

Therefore, when i = 1 a customer joins if she observes less than
⌊

Rµθ
C(θ+ζ) − 1

⌋
customers in the system, is indifferent between entering or balking if she
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observes
⌊

Rµθ
C(θ+ζ) − 1

⌋
and balks otherwise. In other words, she follows a

threshold strategy with threshold ne(1) =
⌊

Rµθ
C(θ+ζ) − 1

⌋
.

Similarly, when i = 0 customers follow a threshold strategy with threshold

ne(0) =
⌊

Rµθ
C(θ+ζ) −

µ
θ+ζ

⌋
− 1.

Thus, an arriving customer prefers to enter if n ≤ ne(i), where (ne(0), ne(1))
is given by (2.1). This strategy is preferable, independently of what the other
customers do i.e. it is a weakly dominant strategy.

Remark 3. One would expect that the relationship between ne(1) and ne(0)
depends on the value of ζ and θ, since those parameters affect the time the
system is on and off respectively. This may be the case in other models with
similar breakdowns (ex. Burnetas and Economou (2007)). In our model, by
comparing the two thresholds, we notice that ne(0) ≤ ne(1) is always true,
regardless of the parameters of the system. In other words, customers that
observe the server to be down are more reluctant to join the system. This
happens because the only difference between the two states of the server is
that if a customer enters while the system is down, she will have to wait for
the server to be activated and thus incur an extra waiting cost.

Remark 4. We assume that ne(1) > 0 or by (2.1) R > C 1
µ(1 + ζ

θ ), which
leads to R > T (0, 1). If this inequality does not hold, then customers will
not enter the queue even if they find it empty with an active server since
they will incur a negative benefit. Therefore, the system will remain always
empty.

2.3 Equilibrium threshold strategies in the almost
observable case

We move on to the almost observable case, where arriving customers observe
the number of customers in the system but not the state of the server. We
will search for an equilibrium strategy within the class of pure threshold
strategies. In order to do so, we must first compute the stationary distribu-
tion of the system assuming that all customers follow a given pure threshold
strategy.

Proposition 2.3.1. Consider the almost observable M|M|1 queue with break-
downs and repairs where the customers enter the system according to a
threshold strategy “While arriving at time t, observe N(t); enter if N(t) ≤ ne
and balk otherwise”. Then, the stationary distribution (p(n, i) : (n, i) ∈
{0, 1, 2, ..., ne + 1} × {0, 1}) is given as follows:
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Figure 2.2: Transition diagram of the almost observable model in pure
strategies

p(n, 0) = A(ρn+1
1 − ρn+1

2 ), n = 0, 1, 2, ..., ne (2.7)

p(n, 1) = A(ν1ρ
n+1
1 − ν2ρn+1

2 ), n = 0, 1, 2, ..., ne (2.8)

p(ne + 1, 0) =
λA

θ

((
1 +

ζ

µ
(1 + ν1)

)
ρne+1
1 −

(
1 +

ζ

µ
(1 + ν2)

)
ρne+1
2

)
(2.9)

p(ne + 1, 1) =
λA

µ

(
(1 + ν1)ρ

ne+1 − (1 + ν2)ρ
ne+1
2

)
(2.10)

where A is computed using the normalization equation and

ρ1,2 =
λ

2µ(λ+ θ)

(
µ+ ζ + λ+ θ ±

√
(µ+ ζ + λ+ θ)2 − 4µ(λ+ θ)

)
(2.11)

νi =
(λ+ θ)ρi − λ

ζρi
, i = 1, 2. (2.12)

Proof. When all customers follow a threshold strategy of the form “While
arriving at time t, observe N(t); enter if N(t) ≤ ne and balk otherwise”, the
transitions of the system N(t), I(t) : t ≥ 0 are shown in figure 2.2.
The stationary distribution (p(n, i)) is obtained using the balance equa-

tions:

(λ+ θ)p(0, 0) = ζp(0, 1) (2.13)

(λ+ θ)p(n, 0) = λp(n− 1, 0) + ζp(n, 1), n = 1, 2, ...ne (2.14)

θp(ne + 1, 0) = λp(ne, 0) + ζp(ne + 1, 1) (2.15)

µp(n+ 1, 1) = λp(n, 1) + λp(n, 0), n = 0, 1, 2..., ne (2.16)
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Solving (2.14) with respect to p(n, 1) and substituting in (2.16) we obtain

µ(λ+θ)p(n+1, 0)−λ(µ+ζ+λ+θ)p(n, 0)+λ2p(n−1, 0) = 0, n = 1, 2, ..., ne−1

which is a homogeneous second-order difference equation with solution

p(n, 0) = c1ρ
n
1 + c2ρ

n
2 , n = 0, 1, 2, ..., ne (2.17)

where ρ1, ρ2, as given by (2.11), are the roots of the corresponding charac-
teristic equation

µ(λ+ θ)x2 − λ(µ+ ζ + λ+ θ)x+ λ2 = 0

and c1, c2 are to be determined. We can easily see that ρ1 6= ρ2. Plugging
(2.17) in (2.14) we obtain

p(n, 1) = c1ν1ρ
n
1 + c2ν2ρ

n
2 , n = 1, 2, ..., ne (2.18)

where νi are given by (2.12). By (2.13) and (2.17) we obtain

p(0, 1) =
λ+ θ

ζ
(c1 + c2). (2.19)

Furthermore, p(ne + 1, 1) is computed by inserting n = ne in (2.16) and
considering (2.17) and (2.18). Therefore,

p(ne + 1, 1) =
λ

µ
c1(1 + ν1)ρ

ne
1 +

λ

µ
c2(1 + ν2)ρ

ne
2 .

Also, p(ne + 1, 0) is given by (2.15) and using the computations above we
obtain

p(ne + 1, 0) =
λ

θ
c1(1 +

ζ

µ
(1 + ν1)ρ

ne
1 ) +

λ

θ
c2(1 +

ζ

µ
(1 + ν2)ρ

ne
2 )

We have expressed all the stationary probabilities in terms of the constants
c1 and c2. By plugging n = 0 in (2.16) we obtain µp(1, 1) = λp(0, 1) +
λp(0, 0). We now plug in the probabilities yielded by (2.18) by setting n = 1
and (2.17) by setting n = 0 and using (2.19) we obtain after some algebra
that

c2 = −ρ2
ρ1
c1.

Then, the unique unknown constant c1 is computed using the normalization
equation

1∑
i=0

ne+1∑
n=0

p(n, i) = 1

as an explicit but involved sum. Letting A = c1
ρ1

we have c1 = Aρ1 and
c2 = −Aρ2 and the stationary probabilities are given from (2.7− 2.10).
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We are now in position to find the expected net reward of a customer
that observes n customers ahead of her and decides to enter. We have the
following.

Proposition 2.3.2. Consider the almost observable M|M|1 queue with break-
downs and repairs where the customers enter to the system according to a
threshold strategy “While arriving at time t, observe N(t); enter if N(t) ≤ ne
and balk otherwise”. The net benefit of a customer that observes n customers
and decides to enter is given by

F (n) = R− Cn+ 1

µ

(
1 +

ζ

θ

)
(2.20)

− C

θ

σn+1 − 1

(1 + ν1)σn+1 − (1 + ν2)
, n = 0, 1, ..., ne

F (ne + 1) = R− Cne + 2

µ

(
1 +

ζ

θ

)
(2.21)

− C

θ

(µ+ ζ(1 + ν1))σ
ne+1 − (µ+ ζ(1 + ν2))

(µ+ (ζ + θ)(1 + ν1))σne+1 − (µ+ (ζ + θ)(1 + ν2))
,

where σ = ρ1
ρ2

.

Proof. The expected net benefit for a customer that joins the system when
she observes n customers is

F (n) = R− CT (n), (2.22)

where T (n) = E[S|N− = n] denotes her expected mean sojourn time given
that she finds n customers in the system just before her arrival. Conditioning
on the state of the server that she finds upon arrival we obtain

T (n) = T (n, 1)Pr[I− = 1|N− = n] + T (n, 0)Pr[I− = 0|N− = n]

(2.3)
= T (n, 1) +

1

θ
Pr[I− = 0|N− = n]

(2.23)

where T (n, 1) is given by (2.6) for i = 1. The probability Pr[I− = 0|N− =
n] that a customer finds the server inactive upon her arrival given that

she finds n customers in front of her is λp(n,0)
λp(n,1)+λp(n,0) , n = 0, 1, ..., ne + 1.

Using the stationary probability obtained in Proposition 2.3.1 we obtain the
probabilities

Pr[I− = 0|N− = n] =
ρn+1
1 − ρn+1

2

(1 + ν1)ρ
n+1
1 − (1 + ν2)ρ

n+1
2

, n = 0, 1, ..., ne

Pr[I− = 0|N− = ne+1] =
(µ+ ζ(1 + ν1))ρ

ne+1
1 − (µ+ ζ(1 + ν2))ρ

ne+1
2

(µ+ (ζ + θ)(1 + ν1))ρ
ne+1
1 − (µ+ (ζ + θ)(1 + ν2))ρ

ne+1
2

32



Setting σ = ρ1
ρ2

and using (2.6) and the probabilities we obtained above we
conclude that

T (n) =
n+ 1

µ

(
1 +

ζ

θ

)
+

1

θ

σn+1 − 1

(1 + ν1)σn+1 − (1 + ν2)
, (2.24)

n = 0, 1, ..., ne

T (ne + 1) =
ne + 2

µ

(
1 +

ζ

θ

)
(2.25)

1

θ

(µ+ ζ(1 + ν1))σ
ne+1 − (µ+ ζ(1 + ν2))

(µ+ (ζ + θ)(1 + ν1))σne+1 − (µ+ (ζ + θ)(1 + ν2))
.

Now the substitution of T (n) in (2.22) yields (2.20) and (2.21)

For excluding the trivial case where a customer does not enter the system
even if she finds no customers in front of her we assume that (2.20) is positive
for n = 0 or R > CT (0) and after some algebra we see that the equivalent
to this condition is

R >
C

µ

(
1 +

ζ

θ

)
+
C

θ

ζ

λ+ θ + ζ
(2.26)

which we assume from now on.
We can now describe the equilibrium balking threshold strategies in the

almost observable case. We have the following result.

Theorem 2.3.1. Define the sequences (f1(n) : n = 0, 1, 2, ...) and (f2(n) :
n = 0, 1, 2, ...) by

f1(n) =R− Cn+ 1

µ

(
1 +

ζ

θ

)
− C

θ

σn+1 − 1

(1 + ν1)σn+1 − (1 + ν2)

n = 0, 1, ...

(2.27)

f2(n) = R− Cn+ 1

µ

(
1 +

ζ

θ

)
− C

θ

(µ+ ζ(1 + ν1))σ
n − (µ+ ζ(1 + ν2))

(µ+ (ζ + θ)(1 + ν1))σn − (µ+ (ζ + θ)(1 + ν2))
,

n = 0, 1, ...

(2.28)

Then there exist finite non-negative integers nL ≤ nU such that

f1(0), f1(1), f1(2), ..., f1(nU ) > 0 and f1(nU + 1) ≤ 0 (2.29)

and

f2(nU + 1), f2(nU ), f2(nU − 1), ..., f2(nL + 1) ≤ 0 and f2(nL) > 0 (2.30)
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or
f2(nU + 1), f2(nU ), f2(nU − 1), ..., f2(0) ≤ 0. (2.31)

In the almost observable M|M|1 queue with breakdowns and repairs the pure
threshold strategy of the form “While arriving at time t, observe N(t); enter
if N(t)≤ ne and balk otherwise”, for ne ∈ {nL, nL+1, ..., nU}, are equilibrium
strategies.

Proof. We have that f1(0) > 0 because of (2.26). Moreover, limn→∞ = −∞,
so if nU + 1 is the subscript of the first non-positive term of the sequence
(f1(n)), we have that for the finite number nU the condition (2.29) holds.
Note also that f1(n) given by (2.27) can be written in the alternative form

f1(n) = R− Cn+ 1

µ

(
1 +

ζ

θ

)
(2.32)

− C

θ

(µ+ ζ(1 + ν1))σ
n − (µ+ ζ(1 + ν2))

(µ+ (ζ + λ+ θ)(1 + ν1))σn − (µ+ (ζ + λ+ θ)(1 + ν2))
.

Let

f(n, x) = R− Cn+ 1

µ

(
1 +

ζ

θ

)
(2.33)

− C

θ

(µ+ ζ(1 + ν1))σ
n − (µ+ ζ(1 + ν2))

(µ+ (ζ + λx+ θ)(1 + ν1))σn − (µ+ (ζ + λx+ θ)(1 + ν2))
.

By comparing (2.33) with (2.32) and (2.28), we can see that f1(n) = f(n, 1)
and f2(n) = f(n, 0). By writing f(n, x) in the alternative form

f(n, x) = R− Cn+ 1

µ

(
1 +

ζ

θ

)
− C

θ

(µ+ ζ(1 + ν1))σ
n − (µ+ ζ(1 + ν2))

λx((1 + ν1)σn − (1 + ν2)) + (µ+ (ζ + θ)(1 + ν1))σn − (µ+ (ζ + θ)(1 + ν2))
,

(2.34)

we can see that f(n, x) is increasing in x. Therefore,

f1(n) > f2(n), n = 0, 1, 2, ... (2.35)

In particular we conclude that f2(nU + 1) < f1(nU + 1) ≤ 0. We begin to
go backwards, starting from the subscript nU + 1 towards 0 and we let nL
be the subscript of the first positive term of the sequence (f2(n)). Then we
have (2.30). If all terms of (f2(n)) going backwards from nu + 1 towards 0
are non-positive we have (2.31).
Suppose, now, that we have the model where customers follow a pure

threshold strategy of the form “While arriving at time t, observe N(t);
enter if N(t) ≤ ne and balk otherwise” for some fixed threshold ne ∈
{nL, nL+, ..., nU}. We consider a tagged customer at her arrival instant.
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Then, her net benefit if she observes n customers and decides to join is
given by (2.20)− (2.21).
If the tagged customer observes n ≤ ne customers, her expected net benefit

is F (n) as given by (2.20) which, by (2.32), equals to f1(n). Therefore,
F (n) = f1(n) > 0 for n = 0, 1, 2..., ne when ne ∈ {nL, nL+1, ..., nU} because
of (2.29) and the customer prefers to join the system.
Likewise, if the tagged customer observes n = ne+1 customers in the system

her net benefit F (ne + 1) = f2(ne + 1) ≤ 0 when ne ∈ {nL, nL + 1, ..., nU}
because of (2.21), (2.28) and (2.30) or (2.31) and the customer prefers to
balk.
Therefore, we conclude that the strategy “While arriving at time t, observe

N(t); enter if N(t)≤ ne and balk otherwise” for any ne ∈ {nL, nL+1, ..., nU}
is best response against itself, i.e. an equilibrium.

Theorem 2.3.1 provides an algorithm in order to identify the equilibrium
strategies of the almost observable model. One has to start computing
(f1(n)) up to the first negative term. This “forward” procedure yields the
highest equilibrium threshold nU . Then, one has to start computing f2(n)
starting from f2(nU +1) and going towards 0 till the first positive term. The
“backward” procedure yields the lowest equilibrium threshold nL.

Remark 5. The equilibrium strategy “While arriving at time t, observe
N(t); enter if N(t) ≤ ne and balk otherwise” is the pure threshold strategy
with threshold ne + 1. In other words, it can be represented by the vector
(1, 1, 1, ...1, 0, ...) which consists of (ne + 1) ones.

Follow the crowd

In the present model the customers adopt a “follow the crowd”(FTC)
behaviour where customers tend to follow the behaviour of other customers.
FTC behaviour is expressed when the best response of a customer against
strategy x of other customers is increasing in x. Let Fne(n) be the expected
net reward of a tagged customer that observes a queue length of n customers
and enters the system, while all other customers follow an ne threshold
strategy. The best response against this strategy, BR(ne), is defined by
BR(ne) = max{n : Fne(n) > 0, n = 0, 1, 2..., ne + 1}. Note that BR(ne) ≤
ne + 1. Suppose that all other customers adopt a threshold strategy with
threshold ne+1. Then, the best response of the tagged customer is defined by
BR(ne+1) = max{n : Fne+1(n) > 0, n = 0, 1, 2, ..., ne+2} , where Fne+1(n)
is the expected net benefit of a customer that observes n customers and joins
the system when all others follow an ne + 1 threshold strategy which is (by
(2.20)− (2.30))
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Fne+1(n) = R− Cn+ 1

µ

(
1 +

ζ

θ

)
− C

θ

σn+1 − 1

(1 + ν1)σn+1 − (1 + ν2)
, n = 0, 1, ..., ne + 1,

Fne+1(ne + 2) = R− Cne + 2

µ

(
1 +

ζ

θ

)
− C

θ

(µ+ ζ(1 + ν1))σ
ne+1 − (µ+ ζ(1 + ν2))

(µ+ (ζ + θ)(1 + ν1))σne+1 − (µ+ (ζ + θ)(1 + ν2))

We can see that Fne+1(n) is equal to Fne(n), for n = 0, 1, ..., ne. There-
fore, considering the definition of BR(ne), Fne+1(n) = Fne(n) > 0, n =
0, 1, ...BR(ne). If BR(ne) = ne + 1 then Fne+1(ne + 1) = f1(ne + 1) >
f2(ne + 1) = Fne(ne + 1) = Fne(BR(ne)) > 0. The two equalities are given
by (2.27),(2.28) respectively and the inequality is true because f1(n) > f2(n)
by (2.35). From this analysis, we conclude that BR(ne+1) ≥ BR(ne) which
means that the threshold that is a best response of a tagged customer when
all others follow a threshold strategy ne + 1 is greater than the threshold
that is a best response when all others adopt the threshold ne. This proves
that the behaviour of the customers is FTC.

Remark 6. We can see that in this model multiple equilibria are possible
since any threshold ne ∈ {nL, nL+1, ..., nU} is an equilibrium strategy. This
is a common property of FTC behaviour.
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Chapter 3

Equilibrium balking
strategies for a clearing
queueing system in
alternating environment

In this chapter, we consider a Markovian clearing queueing system, where
the customers are accumulated according to a Poisson process and the server
removes all present customers at the completion epochs of exponential ser-
vice cycles. This system may represent the visits of a transportation facility
with unlimited capacity at a certain station. The system evolves in an alter-
nating environment that influences the arrival and service rates. We assume
that the arriving customers decide whether to join or balk, based on a natu-
ral linear reward-cost structure. We will study the balking behaviour of the
customers and derive the corresponding Nash equilibrium strategies under
various information levels.
Queueing systems with batch services are often used to represent the visits

of a transportation facility at a certain station. This allows for the quan-
tification of the congestion of the station and can be used to take control
measures (e.g. the changing the frequency of the visits), so that the quality
of service is kept within acceptable limits. The capacity of the system is
usually assumed unlimited. This is justified, because in most applications
the capacity of the facility is chosen large enough, so that the probability
that some waiting customers cannot be accommodated is negligibly small.
Moreover, the waiting customers that cannot be served at a visit of the fa-
cility are not in general willing to wait for its next visit and abandon the
system. Therefore, it is realistic to assume that all present customers are re-
moved at the visit points of the facility. Such stochastic systems are referred
to as stochastic clearing systems.
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3.1 The model

We consider a transportation station with infinite waiting space that op-
erates in an alternative environment. The environment is specified by a
2-state continuous-time Markov chain {I(t)}, with state space SI = {1, 2}
and transition rates qii′ , for i 6= i′. Whenever the environment is at state
i, customers arrive according to a Poisson process at rate λi, whereas the
transportation facility visits the station according to a Poisson process at
rate µi. The two Poisson processes are assumed independent. At the visit
epochs of the transportation facility all customers are served simultaneously
and removed from the station. Therefore, we have a stochastic clearing
system in an alternating environment.
We represent the state of the station by a pair (N(t), I(t)), where N(t)

records the number of customers at the station and I(t) denotes the envi-
ronmental state. The stochastic process {N(t), I(t)} is a continuous time
Markov chain with state space SN,I = {(n, i) : n ≥ 0, i = 1, 2} and its
non-zero transition rates given by

q(n,i)(n+1,i) = λi, n ≥ 0, i = 1, 2, (3.1)

q(n,i)(0,i) = µi, n ≥ 1, i = 1, 2, (3.2)

q(n,1)(n,2) = q12, n ≥ 0, (3.3)

q(n,2)(n,1) = q21, n ≥ 0. (3.4)

We define ρi = λi
µi
, i = 1, 2. The value of ρi can be thought as the measure of

congestion of the system under the environmental rate i, as it expresses the
mean number of customers accumulated between two successive visits of the
transportation facility (given that the environment remains continuously in
state i).
We are interested in the behaviour of customers that arrive on the station

and decide whether to join or balk. We assume that joining customers gain
reward of R units upon completion of their service and accumulate waiting
costs at the rate of C units per time unit they remain in the system. We also
assume that customers are risk neutral and they try to maximize their net
benefit. Finally, the decision of joining or balking is irrevocable in the sense
that joining customers are not allowed to renege and balking customers are
not allowed to re-enter the system.
Since all customers are assumed indistinguishable, we can consider the

situation as a symmetric game among them. Denote the common set of
available strategies and the payoff function as S and F respectively. Let
F (si, s−i) be the payoff of customer i who follows strategy si when all others
follow strategy s−i.
In these chapter we will obtain equilibrium strategies for joining/balking.

We distinguish between four cases depending on the information available
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to customers upon their arrival instants, before the decision is made:

• Fully unobservable case : Customers do not observe N(t) or I(t)
before joining.

• Almost unobservable case : Customers do not observe N(t), but
observe I(t).

• Fully observable case : Customers observe N(t) and I(t).

• Almost observable case : Customers observe N(t), but not I(t).

From a methodological point of view the first three cases are similar so
we will start by examining them first. The almost observable case which is
the most interesting and methodologically demanding will be examined in
section 3.3.

3.2 The unobservable and the fully observable case

Let Ti be the time until the next arrival of the transportation facility, given
that the environment is at state i. A moment of reflection shows that Ti
is independent from the number of customers in the system, because of the
mechanism of the total removals of customers at the visits of the facility and
the memoryless property of the exponential distribution.
By a first-step analysis argument, conditioning on the next transition of the

Markov chain (N(t), I(t)), which is either a visit of the facility or a change
in the environment, we obtain the following equations

E(T1) = [time until next transition happens] (3.5)

+ Pr[visit of the facility] · 0 + Pr[change in environment] · E(T2)

=
1

µ1 + q12
+

µ2
µ2 + q12

· 0 +
q12

µ1 + q12
,

E(T2) =
1

µ2 + q21
+

µ2
µ2 + q21

· 0 +
q21

µ2 + q21
· E(T1). (3.6)

Solving (3.5)− (3.6) yields

E(T1) =
µ2 + q12 + q21

µ1µ2 + µ1q21 + µ2q12
(3.7)

E(T2) =
µ1 + q12 + q21

µ1µ2 + µ1q21 + µ2q12
(3.8)
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Value of R
C

R
C < Vfu

R
C = Vfu

R
C > Vfu

Dominant strategy(ies) 0 q ∈ [0, 1] 1

Table 3.1: Dominant strategies in the fully unobservable case

3.2.1 The fully unobservable case

In this section we examine the fully unobservable case, where customers
neither observe the number of customers in the system N(t) nor the the
environment of the facility. A balking strategy in the fully observable case
is specified by a single joining probability q. The case q = 0 corresponds to
the pure strategy “always balk” whereas the q = 1 strategy corresponds to
the “always join” strategy. Any value of q ∈ (0, 1) corresponds to the mixed
strategy “to join with probability q or balk with probability 1−q”. We have
the following theorem.

Theorem 3.2.1. In the fully unobservable model of the stochastic clearing
system in alternating environment, there always exists a dominant strategy.
The dominant strategies depend on the relative value of the ratio R

C with
respect to the critical value

Vfu =
λ1q12µ2 + λ2q12µ1

(λ1q21 + λ2q12)(µ1µ2 + µ1q21 + µ2q12)
+

q21 + q12
µ1µ2 + µ1q21 + µ2q12

(3.9)

We have three cases that are summarized in Table 3.1.

Proof. Suppose that customers follow a certain strategy and consider a
tagged customer upon arrival. The probability that she finds the system
at environment i is

pI−arrival(i) =
λipI(i)

λ1pI(1) + λ2pI(2)
, (3.10)

where (pI(i), i = 1, 2) is the stationary distribution of the environment which
is given by

pI(1) =
q21

q12 + q21
(3.11)

pI(2) =
q12

q12 + q21
. (3.12)

The expected net benefit of the tagged customer if she decides to join is
given by

Ffu =
2∑
i=1

pI−arrival(i)(R− CE(Ti)), (3.13)
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where E(Ti) are given by (3.7), (3.8). Plugging (3.11) and (3.12) in (3.10)
and substituting in (3.13) yields

Ffu = R− Cλ1q21E[T1] + λ2q12E[T2]

λ1q21 + λ2q12

= R− C
(

λ1q21µ2 + λ2q12µ1
(λ1q21 + λ2q12)(µ1µ2 + µ1q21 + µ2q12)

+
q21 + q12

µ1µ2 + µ1q21 + µ2q12

)
.

(3.14)

The tagged customer prefers to join when Ffu > 0, is indifferent when
Ffu = 0 and prefers to balk otherwise. Solving with respect to R

C , we obtain
the three cases in table 3.1.

3.2.2 The almost unobservable case

We now proceed to the almost unobservable case, where the customers ob-
serve the environment I(t) but not the number of customers in the system
N(t). A general balking strategy in the almost unobservable case is specified
by an ordered pair of joining probabilities (q1, q2), where qi is the joining of
a customer if the environment state upon arrival is i, i = 1, 2. We have the
following Theorem.

Theorem 3.2.2. In the almost unobservable model of the stochastic clearing
system in alternating environment, there always exists a dominant strategy.
The dominant strategies depend on the relative value of the ratio R

C with
respect to the critical values

V min
au =

min(µ1, µ2) + q21 + q12
µ1µ2 + µ1q21 + µ2q12

, V max
au =

max(µ1, µ2) + q21 + q12
µ1µ2 + µ1q21 + µ2q12

.

(3.15)
If µ1 6= µ2, then V min

au < V max
au and we have the five cases that are summa-

rized in Table 3.2.
If µ1 = µ2, then V min

au = V max
au . Let Vau denote the common value of V min

au

and V max
au . We have the three cases summarized in Table 3.3

Proof. Consider a tagged customer that observes the state of the environ-
ment upon arrival. If she decides to join given that she finds the environment
at state i, then her expected benefit will be

Fau(i) = R− CE(Ti), (3.16)

where E(Ti) are given by (3.5) − (3.6). The customer decides to join if
Fau(i) > 0, which is written equivalently as R

C > E(Ti). Similarly, she prefers
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Value of R
C

R
C < V min

au
R
C = V min

au V min
au < R

C < V max
au

R
C = V max

au
R
C > V max

au

Dominant (0, 0) (0, q2), (0, 1) (q1, 1), (1, 1)
strategy(ies) q2 ∈ [0, 1] q1 ∈ [0, 1]

when µ1 < µ2

Dominant (0, 0) (q1, 0), (1, 0) (1, q2), (1, 1)
strategy(ies) q1 ∈ [0, 1] q2 ∈ [0, 1]

when µ1 > µ2

Table 3.2: Dominant strategies in the almost unobservable case, when µ1 6=
µ2

Value of R
C

R
C < Vau

R
C = Vau

R
C > Vau

Dominant strategy(ies), (0, 0) (q1, q2), (1, 1)
when µ1 = µ2 q1, q2 ∈ [0, 1]

Table 3.3: Dominant strategies in the almost unobservable case, when µ1 =
µ2

to balk when R
C > E(Ti) and is indifferent between balking and joining when

R
C = E(Ti). By considering the various possible cases with regard to the
order of the quantities R

C , E(T1) and E(T2), we obtain the corresponding
cases in the statement of Theorem 3.2.2. Note that the strategies prescribed
in Theorem 3.2.2 are dominant, since they do not depend on what other
customers do, i.e. they are the best responses against any strategy of others.

3.2.3 The fully observable case

In this case the customers observe both the environment I(t) and the number
of waiting customers N(t) upon arrival. We can see that the mean sojourn
time of a customer depends on the state of the environment, but it does
not depend on the number of customers that are in the system, since all
customers are served simultaneously. Therefore, if a customer arrives and
observes the environment at state i while n customers are in the system, the
information about the number of customers is consider superfluous and is
discarded which makes this case identical to the almost unobservable case.
We conclude that the dominant balking strategies are the ones given in
Theorem 3.2.2.
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3.3 The almost observable case

In this chapter we consider the almost observable case where customers ob-
serve the number of customers N(t) but not the state of the environment
I(t). Thus, a general balking strategy can be specified by a vector of proba-
bilities (θ0, θ1, θ2, ...), where θi is the probability a customer joins when she
observes i customers in the system upon arrival (excluding herself).
Suppose that a tagged customer observes n customers upon arrival. Al-

though the number of customers in the system does not influence her sojourn
time, the information of the number of customers influences the probabil-
ities that the environment is at state 1 or 2. We expect intuitively that
there are two cases: Either the “slow service” environmental state with
µi = min(µ1, µ2) coincides to the “more congested” environmental state i′

with ρi′ = max(ρ1, ρ2), or it coincides with the “less congested” environ-
mental state i′′ with ρi′′ = min(ρ1, ρ2). In the former case, a large number
of customers signals that the environment is probably in the “slow service”
state and an arriving customer is less inclined to join. Thus, we assume
that the customer will benefit from joining the system if the number of
customers n is below a certain threshold, i.e. she will adopt the a thresh-
old strategy. On the contrary, in the latter case, the situation is reversed.
Now, greater number of customers in the system means a higher probability
that the environment is in the “fast service” state. Therefore, we expect
that a tagged customer will benefit from joining the system, if the number
of customers n exceeds a certain threshold i.e. she will adopt a so called
reverse-threshold strategy. Following this reasoning, we will limit our search
for equilibrium strategies within the class of threshold and reverse-threshold
strategies. As we will see, this family is rich enough to ensure the existence
of an equilibrium strategy for any values of the underlying parameters of
the model.

Definition 3.3.1. A balking strategy (θ0, θ1, θ2, ...), where θi is the joining
probability of a customer that sees i customers in the system upon arrival
(excluding herself) is said to be a mixed threshold strategy, if there exist
n0 ∈ {0, 1, ...} and θ ∈ [0, 1] such that θi = 1 for i < n0, θn0 = θ and θi = 0
for i > n0. Such strategy will be referred to as the (n0, θ)-mixed threshold
strategy (symbolically the dn0, θe strategy) and it prescribes to join if you
see less than n0 customers, to join with probability θ if you see exactly n0
customers and to balk if you see more than n0 customers.
An (n0, 0)-mixed threshold strategy which prescribes to join if you see less

than n0 customers and and to balk otherwise will be referred to as the
n0-pure threshold strategy (symbolically the dn0e strategy).
A balking strategy (θ0, θ1, θ2, ...) is said to be a mixed reverse-threshold

strategy, if there exist n0 ∈ {0, 1, ...} and θ ∈ [0, 1] such that θi = 0 for
i < n0, θn0 = θ and θi = 1 for i > n0. Such strategy will be referred

43



to as the (n0, θ)-mixed reverse-threshold strategy (symbolically the bn0, θc
strategy) and it prescribes to balk if you see less than n0 customers, to join
with probability θ if you see n0 customers and to balk if you see more than
n0 customers.
An (n0, 1)-mixed reverse-threshold strategy which prescribes to join if you

see at least n0 customers and and to balk otherwise will be referred to as
the n0-pure reverse-threshold strategy (symbolically the bn0c strategy).
The strategy which prescribes to join in any case is considered to be both

a threshold and a reverse threshold strategy (symbolically the d∞eor b0c
strategy). The same is true for the strategy which prescribes to balk in any
case (symbolically d0e or b∞c strategy).

3.3.1 Stationary distributions

In this subsection, we determine the stationary distributions of the system,
when the customers follow any given strategy from the ones that have been
described in Definition 3.3.1. We will first determine the stationary distri-
bution of the original system when all customers join. The result is reported
in the following Proposition 3.3.1.

Proposition 3.3.1. Consider the stochastic clearing system in alternating
environment, where all customers join. The stationary distribution (p(n, i))
is given by the formulas

p(n, 1) = A1

(
1

1− z1

)n
+B1

(
1

1− z2

)
, n ≥ 0. (3.17)

p(n, 2) = A2

(
1

1− z1

)n
+B2

(
1

1− z2

)
, n ≥ 0. (3.18)

A1 =
(µ1λ2z1 + µ1µ2 + µ2q12 + µ1q21)pI(1)√

∆(1− z1)
, (3.19)

B1 = −(µ1λ2z2 + µ1µ2 + µ2q12 + µ1q21)pI(1)√
∆(1− z2)

, (3.20)

A2 =
(µ2λ1z1 + µ1µ2 + µ2q12 + µ1q21)pI(2)√

∆(1− z1)
, (3.21)

B2 = −(µ2λ1z2 + µ1µ2 + µ2q12 + µ1q21)pI(2)√
∆(1− z2)

, (3.22)

∆ = [λ2(µ1 + q12)− λ1(µ2 + q21)]
2 + 4λ1λ2q12q21, (3.23)

z1,2 =
−λ1(µ2 + q21)− λ2(µ1 + q12)±

√
∆

2λ1λ2
(3.24)

and pI(1), pI(2) are the stationary probabilities of I(t) given from (3.11)−
(3.12).
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Proof. For the stationary analysis, note that the state of the system is de-
scribed by a continuous Markov chain with state space SN,I = {(n, i) : n ≥
0, i = 1, 2} with its non-zero transition rates given by (3.1)-(3.4). The cor-
responding stationary distribution (p(n, i) : (n, i) ∈ SN,I) is obtained as
the unique positive normalized solution of the following system of balance
equations:

(λ1 + µ1 + q12)p(0, 1) = q21p(0, 2) +
∞∑
n=0

µ1p(n, 1), (3.25)

(λ1 + µ1 + q12)p(n, 1) = q21p(n, 2) + λ1p(n− 1, 1), n ≥ 1, (3.26)

(λ2 + µ2 + q21)p(0, 2) = q12p(0, 1) +

∞∑
n=0

µ2p(n, 2), (3.27)

(λ2 + µ2 + q21)p(n, 2) = q12p(n, 1) + λ2p(n− 1, 2), n ≥ 1, (3.28)

where we have included in (3.25)-(3.27) the pseudo-transitions from (0, i)
to (0, i), i = 1, 2, with rate µi, that correspond to visits of the facility
at an empty system. Note also that the underlying Markov chain is always
positive recurrent as the stochastic clearing mechanism ensures that starting
from state (0, 1), the process will visit it again with probability 1 and the
corresponding time is finite.
We define the partial stationary probability generating functions of the

system as

Gi(z) =

∞∑
n=0

p(n, i)zn, |z| ≤ 1, i = 1, 2. (3.29)

Then we have G1(1) = pI(1), G2(1) = pI(2) with pI(1), pI(2) given from
(3.11)-(3.12). Summing equation (3.25) and equations (3.26) multiplied by
zn, n ≥ 1, yields after some straightforward algebra

[λ1(1− z) + µ1 + q12]G1(z)− q21G2(z) = µ1pI(1). (3.30)

Similarly, equations (3.27)-(3.28), yield

−q12G1(z) + [λ2(1− z) + µ2 + q21]G2(z) = µ2pI(2). (3.31)

Solving the system of equations (3.30)-(3.31) with respect to G1(z) and
G2(z) yields

G1(z) =
pI(1){q12µ2 + µ1[λ2(1− z) + µ2 + q21]}

[λ1(1− z) + µ1 + q12][λ2(1− z) + µ2 + q21]− q21q12
(3.32)

G2(z) =
pI(2){q21µ1 + µ2[λ1(1− z) + µ1 + q12]}

[λ1(1− z) + µ1 + q12][λ2(1− z) + µ2 + q21]− q21q12
(3.33)
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Let g(z) be the common denominator of G1(z) and G2(z) in (3.32)-(3.33)
i.e. g(z) is given as

g(z) = [λ1(1− z) + µ1 + q12][λ2(1− z) + µ2 + q21]− q21q12
= λ1λ2(1− z)2 + (µ1λ2 + q12λ2 + µ2λ1 + q21λ1)(1− z)
+ µ1µ2 + µ1q21 + µ2q12.

(3.34)

We can factorize g(z) in the form

g(z) = λ1λ2(1− z1)
[
1− z

1− z1

]
(1− z2)

[
1− z

1− z2

]
(3.35)

where ∆ and z1, z2 are given by (3.23)-(3.24), Note, now, that G1(z) is a
rational function of z with a first degree numerator and a second degree
denominator g(z). By using partial fraction expansion we have that

G1(z) =
A1

1− z
1−z1

+
B1

1− z
1−z2

, (3.36)

with A1 and B1 given by (3.19)-(3.20). Expanding the powers of z yields

G1(z) =

∞∑
n=0

[
A1

(
1

1− z1

)n
+B1

(
1

1− z2

)n]
zn (3.37)

and we deduce (3.17). Similarly, G2(z) is written as

G2(z) =
∞∑
n=0

[
A2

(
1

1− z1

)n
+B2

(
1

1− z2

)n]
zn (3.38)

with A2 and B2 given by (3.21)-(3.22) and we deduce (3.18).

We will now deduce the stationary distribution of the system when cus-
tomers follow a mixed threshold strategy. We have the following Proposition
3.3.2.

Proposition 3.3.2. Consider the almost observable model of the stochas-
tic clearing system in alternating environment, where the customers join
the system according to (n0, θ)-mixed threshold strategy. The corresponding
stationary distribution (pao(n, i; dn0, θe)) is given by the formulas
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pao(n, i; dn0, θe) = p(n, i), 0 ≤ n ≤ n0 − 1, i = 1, 2, (3.39)

pao(n0, i; dn0, θe) =
∞∑

n=n0

(1− θ)n−n0p(n, i), e = 1, 2, (3.40)

pao(n0 + 1, i; dn0, θe) =

∞∑
n=n0+1

[1− (1− θ)n−n0 ]p(n, i), e = 1, 2, (3.41)

pao(n, i; dn0, θe) = 0, n ≥ n0 + 2, i = 1, 2, (3.42)

where p(n, i) are given by (3.17)-(3.18)

Proof. We assume that the customers follow the (n0, θ)-mixed threshold
strategy. Then the evolution of the system can be described by a Markov
chain which is absorbed with probability 1 in the positive recurrent closed
class of stated SN,Iao (dn0, θe) = {(n, i) : (0 ≤ n ≤ n0 + 1, i = 1, 2)}. For
the sake of brevity, we suppress the notation regarding dn0, θe in the rest
of the proof. Thus, we refer to the corresponding stationary probabilities
pao(n, i; dn0, θe) by pao(n, i).
Since the Markov chain is finally absorbed in SN,Iao (dn0, θe) we obtain imme-

diately (3.42). The vector of the stationary probabilities (pao(n, i) : (n, i) ∈
SN,Iao (dn0, θe)) is obtained as the unique positive normalized solution of the
system of balance equations

(λ1 + µ1 + q12)pao(0, 1) = q21pao(0, 2) +

n0+1∑
n=0

µ1pao(n, 1), (3.43)

(λ1 + µ1 + q12)pao(n, 1) = q21pao(n, 2) + λ1pao(n− 1, 1), 1 ≤ n ≤ n0 − 1,
(3.44)

(λ1θ + µ1 + q12)pao(n0, 1) = q21pao(n0, 2) + λ1pao(n0 − 1, 1), (3.45)

(µ1 + q12)pao(n0 + 1, 1) = q21pao(n0 + 1, 2) + λ1θpao(n0, 1), (3.46)

(λ2 + µ2 + q21)pao(0, 2) = q12pao(0, 1) +

n0+1∑
n=0

µ2pao(n, 2), (3.47)

(λ2 + µ2 + q21)pao(n, 2) = q12pao(n, 1) + λ2pao(n− 1, 2), 1 ≤ n ≤ n0 − 1,
(3.48)

(λ2θ + µ2 + q21)pao(n0, 2) = q12pao(n0, 1) + λ2pao(n0 − 1, 2), (3.49)

(µ2 + q21)pao(n0 + 1, 2) = q12pao(n0 + 1, 1) + λ2θpao(n0, 2), (3.50)

where we have included in (3.43) and (3.47) the pseudo transition from (0, i)
to (0, i), i = 1, 2, with rate µi, that correspond to visits of the facility at an
empty system.
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For deducing the formulas (3.39)-(3.42) for the stationary probabilities, we
may again follow the standard probability generating function approach as
in the proof of Proposition 3.3.1.

We can now conclude the following corollaries.

Corollary 3.3.0.1. Consider the almost observable model of the stochas-
tic clearing system in alternating environment, where the customers join
according to the n0-pure threshold strategy. The corresponding stationary
distribution (pao(n, i; dn0e)) is given by the formulas

pao(n, i; dn0e) = p(n, i), 0 ≤ n ≤ n0 − 1, i = 1, 2, (3.51)

pao(n, i; dn0e) =
∞∑

n=n0

p(n, i), i = 1, 2, (3.52)

pao(n, i; dn0e) = 0, n ≥ n0 + 1, i = 1, 2, (3.53)

where p(n, i) are given by (3.17)− (3.18).

Corollary 3.3.0.2. Consider the almost observable model of the stochas-
tic clearing system in alternating environment, where the customers always
balk. The corresponding stationary distribution (pao(n, i; d0e)) is given by
the formulas

pao(0, i; d0e) = pI(i), i = 1, 2, (3.54)

pao(n, i; d0e) = 0, n ≥ 1, i = 1, 2, (3.55)

where pI(i), i = 1, 2 are given by (3.11)− (3.12).

We will now deduce the stationary distribution of the system when cus-
tomers follow an (n0, θ)-mixed reverse-threshold strategy.

Remark 7. Under an (n0, θ)-mixed reverse-threshold strategy with n0 ≥ 1,
we have that the customers balk when they arrive at an empty system.
Thus, we have the stationary distribution of Corollary 3.3.0.2.

Next, we will examine the case where customers follow a (0, θ)-mixed
reverse-threshold strategy.

Proposition 3.3.3. Consider the almost observable model of the stochastic
clearing system in alternating environment, where the customers join the
system according to a (0, θ)-mixed reverse-threshold strategy. For θ = 0, the
stationary distribution (pao(n, i; b0, 0c)) is given by the formulas
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pao(0, i; b0, 0c) = pI(i), i = 1, 2, (3.56)

pao(n, i; b0, 0c) = 0, n ≥ 1, i = 1, 2, (3.57)

where pI(i), i = 1, 2 are given by (3.11)− (3.12).
For θ ∈ (0, 1), the stationary distribution (pao(n, i; b0, θc)) is given by the

formulas

pao(0, i; d0, θe) =
∞∑
n=0

(1− θ)np(n, i), i = 1, 2, (3.58)

pao(n, i; d0, θe) = θ

∞∑
k=n

(1− θ)k−np(k, i), n ≥ 1, i = 1, 2, (3.59)

where p(n, i) are given by (3.17)− (3.18)
For θ = 1, the stationary distribution (pao(n, i; b0, 1c)) is given by the for-

mula

pao(n, i; b0, 1c) = p(n, i), n ≥ 0, i = 1, 2, (3.60)

where p(n, i) are given by (3.17)− (3.18).

The proof of Proposition 3.3.3 for θ = 0 is immediate, as in this case the
customers balk whenever they arrive at an empty system. Therefore, the
continuous Markov chain is absorbed in the subset {(0, 1), (0, 2)} of the state
space and the stationary distribution is the one given in (3.54)-(3.55). In
case θ = 1, the customers always join and we apply Proposition 3.3.1. Thus,
the only interesting case is for θ ∈ (0, 1). Then, the proof of Proposition
3.3.3 follows the proofs of Proposition 3.3.1 and 3.3.2.

3.3.2 Expected net benefit functions

Based on the results of the previous section, we can now derive the expected
net benefit of a tagged customers if she decides to join the system after
observing n customers upon arrival. Thus, we have various cases, according
to whether they follow a threshold or a reverse-threshold strategy. We have
the following Propositions 3.3.4-3.3.6.

Proposition 3.3.4. Consider the almost observable model of the stochastic
clearing system in alternating environment, where all customers join the
system. Then, the expected net benefit Fao(n; d∞e) ≡ Fao(n; b0c) of an
arriving customer, if she decides to join, given that she finds n customers
in the system, is given by

49



Fao(n; d∞e) ≡ Fao(n; b0c) = R− C
A( 1

1−z1 )n +B( 1
1−z2 )n

D( 1
1−z1 )n + E( 1

1−z2 )n
n ≥ 0, (3.61)

where

A = λ1A1E(T1) + λ2A2E(T2), (3.62)

B = λ1B1E(T1) + λ2B2E(T2), (3.63)

D = λ1A1 + λ2, (3.64)

E = λ1B1 + λ2B2 (3.65)

and E(T1), E(T2), A1, A2, B1, B2, z1, z2 are given by (3.7) − (3.8), (3.19) −
(3.22) and (3.24).

Proof. The mean sojourn time of an arriving customer, if she decides to join,
given that she finds n customers in the system is given by

p−ao(1|n; d∞e)E(T1) + p−ao(2|n; d∞e)E(T2), (3.66)

where p−ao(i|n; d∞e), i = 1, 2, is the probability that an arriving customer
that observes n customers in the system finds the environment at state
i, when the d∞e strategy is followed by other customers. The embedded
probabilities p−ao(i|n; d∞e) are given by

p−ao(i|n; d∞e) =
λip(n, i)

λ1p(n, 1) + λ2p(n, 2)
, i = 1, 2, (3.67)

where p(n, i) are given by (3.17)-(3.18). Thus, the expected benefit of the
tagged arriving customer, if she decides to join, is equal to

Fao(n; d∞e) = R− C[p−ao(1|n; d∞e)E(T1) + p−ao(2|n; d∞e)E(T2)]. (3.68)

Plugging the formulas (3.17)-(3.18) into (3.67) and subsequently into (3.68)
yields (3.61).

Proposition 3.3.5. Consider the almost observable model of the stochastic
clearing system in alternating environment, where the customers join the
system according to the (n0, θ)-mixed threshold strategy. Then, the expected
net benefit Fao(n; dn0, θe) of an arriving customer, if she decides to join,
given that she finds n customers in the system, is given by

50



Fao(n; dn0, θe) = R− C
A( 1

1−z1 )n +B( 1
1−z2 )n

D( 1
1−z1 )n + E( 1

1−z2 )n
0 ≤ n ≤ n0 − 1,

(3.69)

Fao(n0; dn0, θe) = R− C
∑∞

k=n0
(1− θ)k−n0 [A( 1

1−z1 )k +B( 1
1−z2 )k]∑∞

k=n0
(1− θ)k−n0 [D( 1

1−z1 )k + E( 1
1−z2 )k]

,

(3.70)

Fao(n0 + 1; dn0, θe) = R− C
∑∞

k=n0
[1− (1− θ)k−n0 ][A( 1

1−z1 )k +B( 1
1−z2 )k]∑∞

k=n0+1[1− (1− θ)k−n0 ][D( 1
1−z1 )k + E( 1

1−z2 )k]
,

(3.71)

where A,B,D,E,z1, z2 are given by (3.62)-(3.65) and (3.24).

Proof. Assume that customers join the system according to the (n0, θ)-mixed
threshold strategy. Then, the mean sojourn time of a tagged customer,if she
decides to join, given that she finds n customers in the system before arrival
is given by

p−ao(1|n; dn0, θe)E(T1) + p−ao(2|n; dn0.θe)E(T2), (3.72)

where p−ao(1|n; dn0, θe), i = 1, 2, is the probability that an arriving customer
finds the environment at state i, given that there are n customers in the
system and that the dn0.θe-strategy is followed. The embedded probabilities
are given by

p−ao(i|n; dn0, θe) =
λipao(n, i; dn0, θe)

λ1pao(n, 1; dn0, θe) + λ2pao(n, 2; dn0, θe)
, i = 1, 2, (3.73)

where pao(n, i; dn0, θe) are given by (3.39)-(3.41). Thus, the expected net
benefit of the tagged customer, if she decides to join, is given equal to

Fao(n; dn0, θe) ≡ R− C[p−ao(1|n; dn0, θe)E(T1) + p−ao(2|n; ; dn0, θe)E(T2)].
(3.74)

Using the various forms of p−ao(n, i; dn0, θe) in (3.39)-(3.41) yields (3.69)-
(3.71).

In the case of the n0-pure threshold, we obtain the following Corollary.

Corollary 3.3.0.3. Consider the almost observable model of the stochastic
clearing system in alternating environment, where the customers join the
system according to the (n0)-pure threshold strategy. Then, the expected net
benefit Fao(n; dn0e) of an arriving customer, if she decides to join, given
that she finds n customers in the system, is given by
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Fao(n; dn0e) = R− C
A( 1

1−z1 )n +B( 1
1−z2 )n

D( 1
1−z1 )n + E( 1

1−z2 )n
0 ≤ n ≤ n0 − 1, (3.75)

Fao(n0; dn0e) = R− C
∑∞

k=n0
[A( 1

1−z1 )k +B( 1
1−z2 )k]∑∞

k=n0
[D( 1

1−z1 )k + E( 1
1−z2 )k]

, (3.76)

where A,B,D,E,z1, z2 are given by (3.62)-(3.65) and (3.24).

Remark 8. Applying Corollary 3.3.0.3 for n0 = 0 yields the expected net
benefit Fao(0; d0e) ≡ Fao(0; b∞c) of an arriving customer, when the others
follow the “always balk” strategy.

When the customers follow a (0−θ)-mixed reverse threshold strategy, with
θ ∈ (0, 1), we can use the same line of argument with Propositions 3.3.4
and 3.3.5, using the stationary distribution given by (3.58)-(3.59). Then, we
have the following proposition.

Proposition 3.3.6. Consider the almost observable model of the stochastic
clearing system in alternating environment, where the customers join the
system according to the (0, θ)-mixed reverse-threshold strategy for some θ ∈
(0, 1). Then, the expected net benefit Fao(n; b0, θc) of an arriving customer,
if she decides to join, given that she finds n customers in the system, is given
by

Fao(n; b0, θc) = R− C
∑∞

k=n(1− θk−n)[A( 1
1−z1 )k +B( 1

1−z2 )k]∑∞
k=n(1− θk−n)[D( 1

1−z1 )k + E( 1
1−z2 )k]

, n ≥ 0,

(3.77)

where A,B,D,E,z1, z2 are given by (3.62)− (3.65) and (3.24).

To express the various formulas reported in Propositions 3.3.4, 3.3.5, 3.3.6
and in Corollary 3.3.0.3 for the expected net benefit function in a compact,
unified way, we introduce the functions

S(n, θ) =

∞∑
k=n

(1− θ)k−n
[
(RD − CA)

(
1

1− z1

)k
+ (RE − CB)

(
1

1− z2

)k]
,

(3.78)

G(n, θ) =

∞∑
k=n

(1− θ)k−n
[
D

(
1

1− z1

)k
+ E

(
1

1− z2

)k]
, (3.79)

HU (n) =
S(n, 1)

G(n, 1)
, HL(n) =

F (n, 0)

G(n, 0)
, n ≥ 0. (3.80)
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Then we have

Fao(n; d∞e) ≡ Fao(n; b0c) =
S(n, 1)

G(n, 1)
= HU (n), n ≥ 0 (3.81)

Fao(n; dn0, θe) =
S(n, 1)

G(n, 1)
= HU (n), 0 ≤ n ≤ n0 − 1, (3.82)

Fao(n0; dn0, θe) =
S(n0, θ)

G(n0, θ)
, (3.83)

Fao(n0 + 1; dn0, θe) =
S(n0, 0)− S(n0, θ)

G(n0, 0)−G(n0, θ)
, (3.84)

Fao(n; dn0e) =
S(n, 1)

G(n, 1)
= HU (n), 0 ≤ n ≤ n0 − 1, (3.85)

Fao(n0; dn0e) =
S(n0, 0)

G(n0, 0)
= HL(n0), (3.86)

Fao(0; d0e) ≡ Fao(0; b∞c) =
S(0, 0)

G(0, 0)
= HL(0), (3.87)

Fao(n; b0, θc) =
S(n, θ)

G(n, θ)
, n ≥ 0. (3.88)

3.3.3 Equilibrium strategies

As we have previously discussed, when the “fast service” coincides with the
less congested environmental state, i.e. (µ1 − µ2)(ρ1 − ρ2) < 0, customers
should adopt a threshold strategy. On the contrary, when the “fast service”
coincides with the more congested environmental state, customers should
adopt a reverse-threshold strategy. This intuitive finding is associated with
the monotonicity of HU (n) which plays a key role in the following analysis.
We have the following Proposition 3.3.7.

Proposition 3.3.7. We have the following equivalences:

HU (n) is strictly decreasing⇔ AE −BD > 0⇔ (µ1 − µ2)(ρ1 − ρ2) < 0
(3.89)

HU (n) is constant⇔ AE −BD = 0⇔ µ1 = µ2 or ρ1 = ρ2 (3.90)

HU (n) is strictly increasing⇔ AE −BD < 0⇔ (µ1 − µ2)(ρ1 − ρ2) > 0
(3.91)

The proof of this proposition is omitted, since the first case follows easily
by simple algebraic manipulations that start from the relation HU (n+ 1)−
HU (n) < 0 and lead to AE −BD > 0 and (µ1 − µ2)(ρ1 − ρ2) < 0, through
successive equivalences. The other two cases are treated similarly. Moreover,
the monotonicity if the function S(n,θ)

G(n,θ) with respect to θ depends on the sign

of (µ1 − µ2)(ρ1 − ρ2). Specifically, we have the following Proposition 3.3.8.
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Proposition 3.3.8.

S(n, θ)

G(n, θ)
is strictly increasing in θ ⇔ AE −BD > 0⇔ (µ1 − µ2)(ρ1 − ρ2) < 0

(3.92)

S(n, θ)

G(n, θ)
is constant in θ ⇔ AE −BD = 0⇔ µ1 = µ2 or ρ1 = ρ2 (3.93)

S(n, θ)

G(n, θ)
is strictly decreasing in θ ⇔ AE −BD < 0⇔ (µ1 − µ2)(ρ1 − ρ2) > 0

(3.94)

The proof of this proposition is also omitted, since the result is deduced eas-
ily after some algebra. We now state some properties of S(n, θ), G(n, θ) and
HU (n), HL(n) that we will use in the sequel. Their proof is straightforward
from their definition and is thus omitted.

Lemma 3.3.1. The functions S(n, θ), G(n, θ) satisfy the following proper-
ties:

S(n, θ) =
∞∑
k=n

(1− θ)k−nS(k, 1)

= S(n, 1) + (1− θ)S(n+ 1, θ), n ≥ 0, θ ∈ [0, 1],

(3.95)

G(n, θ) =
∞∑
k=n

(1− θ)k−nG(k, 1)

= G(n, 1) + (1− θ)G(n+ 1, θ), n ≥ 0, θ ∈ [0, 1],

(3.96)

G(n, θ) > 0, n ≥ 0, θ ∈ [0, 1], (3.97)

G(n, θ) is strictly icreasing with respect to θ for any fixed n ≥ 0.
(3.98)

Note that properties (3.97) and (3.98) of G(n, θ) assure that all denomina-
tors in (3.81)-(3.88) are positive.
The intuitive discussion at the beginning of section 3.3 in combination

with propositions 3.3.7 and 3.3.8 suggests that we should methodologically
proceed by considering three different cases corresponding to the sign (neg-
ative,positive or zero) of (µ1 − µ2)(ρ1 − ρ2).

Case A: (µ1 − µ2)(ρ1 − ρ2) < 0

In case A, we will prove that an equilibrium strategy always exists. More-
over, we will present a systematic procedure for determining all equilibrium
threshold strategies. We first introduce quantities that we will need in the
sequel.
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Definition 3.3.2. Suppose that

(µ1 − µ2)(ρ1 − ρ2) < 0. (3.99)

We define

nU = inf{n ≥ 0 : S(n, 1) < 0}, (3.100)

nL = inf{n ≥ 0 : S(n, 0) ≤ 0}, (3.101)

n−U = inf{n ≥ 0 : S(n, 1) ≤ 0}, (3.102)

n+L = inf{n ≥ 0 : S(n, 0) < 0}. (3.103)

Then, we have several properties of nU , nL, n
−
U , n

+
L that we summarize in

the following Lemma 3.3.2.

Lemma 3.3.2. Suppose that (3.99) holds. Then, there are three cases:
Case I: HU (0) < 0.
Then

nU = nL = n−U = n+L = 0 (3.104)

S(n, θ) < 0, n ≥ 0, θ ∈ [0, 1], (3.105)

S(n, 0)− S(n, θ) < 0, n ≥ 0, θ ∈ (0, 1]. (3.106)

Case II: HU (0) ≥ 0. and limn→∞H
U (n) < 0.

Then

1 ≤ nU <∞ (3.107)

S(n, 1) > 0, 0 ≤ n ≤ nU − 2, (3.108)

S(nU − 1, 1) ≥ 0, (3.109)

S(n, 1) < 0, n ≥ nU . (3.110)

and

0 ≤ nL ≤ nU , (3.111)

S(n, 0) > 0, 0 ≤ n ≤ nL − 1, (3.112)

S(nL, 0) ≤ 0, (3.113)

S(n, 0) < 0, n ≥ nL + 1. (3.114)

Moreover,

n+L =

{
nL, if S(nL, 0) < 0
nL + 1, if S(nL, 0) = 0

(3.115)

n−U =

{
nU , if S(nU − 1, 1) > 0
nU − 1, if S(nU − 1, 1) = 0

(3.116)
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For every n0 ∈ {n+L , ..., n
−
U}, a unique solution θ(n0) ∈ (0, 1) of the equation

S(n0, θ) = 0 exists with respect to θ, i.e.

S(n0, θ(n0)) = 0, n+L ≤ n ≤ n
−
U − 1. (3.117)

Case III: limn→∞H
U (n) ≥ 0.

Then

nU = nL = n−U = n+L =∞ (3.118)

S(n, θ) > 0, n ≥ 0, θ ∈ [0, 1], (3.119)

S(n, 0)− S(n, θ) > 0, n ≥ 0, θ ∈ (0, 1]. (3.120)

Proof. In Case I, the condition HU (0) < 0 in combination with monotonic-
ity of HU (n) (due to (3.89)) implies that HU (n) < 0, n ≥ 0. By (3.80)
and (3.97) we have that S(n, 1) < 0 and therefore, S(n, θ) =

∑∞
k=n(1 −

θ)k−nS(k, 1) < 0, n ≥ 0, θ ∈ [0, 1] and S(n, 0) − S(n, θ) =
∑∞

k=n[1 − (1 −
θ)k−n] < 0, n ≥ 0, θ ∈ (0, 1].
In Case II, the conditions HU (0) ≥ 0. and limn→∞H

U (n) < 0. combined
with the conditions (3.89) for the monotonicity of HU (n) imply (3.107)-
(3.110).
Equation (3.110) implies that S(nU , 0) =

∑∞
k=nU

S(k, 1) < 0 and we con-
clude (3.111). By the definition of nL we have (3.112)-(3.113). Moreover,
we have that S(n, 0) =

∑∞
k=n S(k, 1) < 0 for n ≥ nU .

For n with nL + 1 ≤ n ≤ nU − 1 we also have that S(n, 0) < 0. Indeed,
consider that there is an n such that nL+1 ≤ n ≤ nU−1 and S(n, 0) ≥ 0. By
(3.95), we have that S(n−1, 0) = S(n−1, 1)+S(n, 0). Since S(n−1, 1) > 0
by (3.108) and we assumed that S(n, 0) > 0 we have that S(n − 1, 0) > 0
and inductively, we obtain S(nL, 0) > 0 which contradicts (3.113). Thus
S(n, 0) < 0 for n ≥ nL + 1 and we obtain (3.114).
Equations (3.115)-(3.116) are immediate from (3.108)-(3.110) and (3.112)-

(3.116). Consider now an n0 ∈ {n+L , ....n
−
U − 1}. We have that S(n0,1)

G(n0,1)
> 0.

This is the case since n0 ≤ n−U −1 and there are two possibilities (see 3.116).
Either n−U = nU and n0 is strictly less than nU and (by (3.108)-(3.109) and

(3.115)) S(n0,1)
G(n0,1)

> 0 is strictly positive or n−U = nU − 1 which means that

n0 ≤ nU−2 and by (3.108) S(n0,1)
G(n0,1)

> 0 is again positive. Also, since n0 ≥ n+L ,

considering the two possible values of n+L given by (3.115) and the equations

(3.113)-(3.114) we can easily conclude that S(n0,0)
G(n0,0)

< 0. By condition (3.92)

we have that S(n0,θ)
G(n0,θ)

is a strictly increasing and continuous function of θ,
so by Bolzano’s Theorem we conclude that there exists a unique solution
θ(n0) ∈ (0, 1) of the equation S(n0,θ)

G(n0,θ)
= 0. Thus, we obtain (3.117).

In Case III, the condition limn→∞H
U (n) ≥ 0 in combination with mono-

tonicity of HU (n) (due to (3.89)) implies that HU (n) > 0, n ≥ 0. By (3.80)
and (3.97) we have that S(n, 1) > 0 and therefore, S(n, θ) =

∑∞
k=n(1 −
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θ)k−nS(k, 1) > 0, n ≥ 0, θ ∈ [0, 1] and S(n, 0) − S(n, θ) =
∑∞

k=n[1 − (1 −
θ)k−n] < 0, n ≥ 0, θ ∈ (0, 1]. Thus, we conclude (3.118)-(3.120).

Using Lemma 3.3.2 we will now prove the existence of threshold equilibrium
strategies, when (3.99) holds. We have the following Theorem 3.3.3.

Theorem 3.3.3. In the almost observable model of the stochastic clearing
system in alternating environment where (3.99) holds, equilibrium threshold
strategies always exist. In particular, in the three cases of Lemma 3.3.2 we
have:

Case I : HU (0) < 0
Then there exists a unique equilibrium threshold strategy,the d0e strat-
egy(always to balk).

Case II : HU (0) ≥ 0. and limn→∞H
U (n) < 0.

Then, an equilibrium pure threshold strategy always exists. Moreover,
the equilibrium strategies within the class of all pure strategies are
the strategies dn0e with n0 = nL, nL + 1, ..., nU . Also, the equilibrium
strategies within the class of genuinely mixed threshold strategies are
the strategies dn0, θ(n0)e with n0 ∈ {n+L , ..., n

−
U − 1} and θ(n0) the

unique solution of S(n0, θ) = 0 with respect to θ.

Case III : limn→∞H
U (n) ≥ 0.

Then, there is a unique equilibrium threshold strategy, the d∞e-strategy(always
to join).

Proof. Case 1: Consider a tagged customer at his arrival instant and assume
all other customers follow an dn0e strategy for some n0 ≥ 0. Inequality
(3.109) and relations (3.85)-(3.86) imply that the expected net benefit of
the tagged customer, when she finds n customers and decides to join is
Fao(n; dn0e) < 0, for 0 ≤ n ≤ n0. Thus, she always prefers to balk and her
best response against dn0e is d0e.

We now assume that other customers follow an dn0, θe strategy, for some
n0 ≥ 0 and θ ∈ (0, 1). Then, if the tagged customer finds n customers
at her arrival instant and decides to join, her expected net benefit will be
Fao(n; dn0, θe < 0 for 0 ≤ n ≤ n0 + 1 from (3.105)-(3.106) and (3.83)-(3.84).
Therefore, the tagged customer is always unwilling to join and her best
response against dn0, θe is d0e.

If all customers follow the d∞e strategy, (3.109) and (3.81) yield Fao(n; d∞e) <
0 for n ≥ 0. Again, due to negative expected benefit, it is preferable for the
tagged customer to balk. So, her best response against d∞e is d0e. Thus,
we conclude that the only best response against itself within the class of
(pure and mixed) threshold strategies is d0e.

Case II: Consider a tagged arriving customer and suppose all other cus-
tomers follow an dn0e strategy for some n0 ≤ nL−1. If she finds n0 customers
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and decides to join her expected net benefit will be Fao(n0; dn0e) > 0, from
(3.112) and (3.86). This implies that when she finds n0 customers, she is
willing to join. Thus, dn0e cannot be an equilibrium since it cannot be a
best response against itself.

Consider a tagged arriving customer and suppose all other customers
follow an dn0e strategy for some n0 ≥ nU + 1. Using (3.85) and (3.110) we
have that Fao(n; dn0e) < 0 for nU ≤ n ≤ n0− 1. This implies that when she
finds n customers, with nU ≤ n ≤ n0 − 1, she is unwilling to enter. Thus,
the dn0e cannot be an equilibrium strategy. We conclude that the search of
equilibrium strategies should be restricted within the class of pure threshold
strategies should be restricted to strategies dn0e with nL ≤ n0 ≤ nU .

We mark an arriving customer and we assume that all other customers
follow an dn0e strategy for some n0 with nL ≤ n0 ≤ nU . From (3.85), (3.86),
(3.108), (3.109), (3.113) and (3.114) we have that the expected net benefit
of a customer who finds n customers upon arrival and decides to join is
Fao(n; dn0e) ≥ 0, for 0 ≤ n ≤ n0 − 1 and Fao(n0; dn0e) ≤ 0. Thus, dn0e is
a best response against itself and we conclude that all such strategies are
equilibrium strategies.

To finish our search of equilibrium strategies within the class of pure
threshold strategies, we examine the d∞e strategy. This cannot be an equi-
librium, since (3.110) and (3.81) imply that Fao(n; d∞e) < 0, for n ≥ nU ,
which means that it is not optimal for the tagged customer to join when she
sees n customers for some n ≥ nU . Therefore, we conclude that the equilib-
rium strategies within the class of pure threshold strategies are exactly the
strategies dn0e for nL ≤ n0 ≤ nU .

We will now search for equilibrium strategies in the class of genuinely
mixed threshold strategies, i.e. among strategies dn0, θ0e with θ0 ∈ (0, 1). In
order for a mixed threshold strategy dn0, θ0e to be an equilibrium strategy,
the following relations must be true : S(n, 1) > 0, for 0 ≤ n ≤ n0 − 1,
S(n0, θ0) = 0 and S(n0, 0) − S(n0, θ0) ≤ 0. We derive those relations from
the equations (3.82)-(3.84) which express a customers’ expected benefit when
she joins while observing less than n0, exactly n0 and n0 + 1 customers in
the system respectively. By comparing (3.82)-(3.84) with (3.85)-(3.86) we
can easily see that dn0, θ0e may be an equilibrium if and only if dn0e is an
equilibrium. Thus, we should restrict our search for equilibrium genuinely
mixed threshold strategies to strategies dn0, θ0e with n0 = nL, ..., nU .

If S(nL, 0) = 0, then there does not exist θ ∈ (0, 1) such that S(nL, θ) = 0,

since S(n,θ)
G(n,θ) is strictly decreasing. Therefore, dnL, θe cannot be an equilib-

rium strategy for any θ ∈ (0, 1). Similarly, if S(nU − 1, 1) = 0, then the
strategy dnU − 1, θe cannot be an equilibrium strategy for any θ ∈ (0, 1).
Moreover, dnU , θe cannot be an equilibrium strategy for any θ ∈ (0, 1), since
S(nu, θ) < 0, θ ∈ (0, 1). Therefore, a strategy dn0, θe with θ ∈ (0, 1) may be
an equilibrium only if n+L ≤ n0 ≤ n

−
U − 1.
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Now, for every n0 ∈ {n+L , ...n
−
U} the only dn0, θ0e strategy that can be an

equilibrium is the one that corresponds to θ0 = θ(n0) since S(n0, θ(n0)) = 0.
Indeed, if all customers follow the dn0, θ(n0)e strategy, the expected benefit
for a tagged customer, who finds n customers in the system and decides to
join is Fao(n; dn0, θ(n0)e) > 0 for 0 ≤ n ≤ n0 − 1, Fao(n0; dn0, θ(n0)e) = 0
and Fao(n0 + 1; dn0, θ(n0)e) < 0, from (3.108), (3.114) and (3.117). Thus,
dn0, θ(n0)e is an equilibrium strategy.

Case III : Following the same line of argument as in case I, we now find that
when all customers follow a pure threshold strategy dn0e or a mixed thresh-
old strategy dn0, θe the expected net benefit function is always positive.
Thus, the best response of a customer is always to join the system. There-
fore, the only best response against itself in the class of threshold strategies
is the d∞e strategy.

Note that although pure threshold strategies always exist, it is possible that
genuinely mixed threshold strategies do not. This happens if n−U − 1 < n+L .

Case B:(µ1 − µ2)(ρ1 − ρ2) > 0

In case B, we seek equilibrium strategies in the class of reverse-threshold
strategies. We will exclude strategies bn0c and bn0, θc with n0 ≥ 1. Indeed,
all these strategies prescribe to balk when the customer faces an empty
system. Thus, under such strategy, the system continuously remains empty
after the first service completion. Therefore, in steady state, these strategies
are equivalent to the “always balk” strategy b∞c. Thus, we seek equilibrium
strategies only in the set Sr−t = {b0c, b∞c}∪{b0, θ0c : θ0 ∈ (0, 1)}. We first
introduce several quantities that we will use in the sequel.

Definition 3.3.3. Suppose that

(µ1 − µ2)(ρ1 − ρ2) > 0. (3.121)

We define

mU = inf{n ≥ 0 : S(n, 1) > 0}, (3.122)

mL = inf{n ≥ 0 : S(n, 0) ≥ 0}, (3.123)

m−U = inf{n ≥ 0 : S(n, 1) ≥ 0}, (3.124)

m+
L = inf{n ≥ 0 : S(n, 0) > 0}. (3.125)

Then, we have several properties of mU ,mL,m
−
U ,m

+
L that we summarize

in the following Lemma 3.3.4.

Lemma 3.3.4. Suppose that (3.121) holds. Then, there are three cases:
Case I: HU (0) > 0.
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Then

mU = mL = m−U = m+
L = 0 (3.126)

S(n, θ) > 0, n ≥ 0, θ ∈ [0, 1]. (3.127)

Case II: HU (0) ≤ 0. and limn→∞H
U (n) > 0.

Then

1 ≤ mU <∞ (3.128)

S(n, 1) < 0, 0 ≤ n ≤ mU − 2, (3.129)

S(mU − 1, 1) ≤ 0, (3.130)

S(n, 1) < 0, n ≥ mU . (3.131)

and

0 ≤ mL ≤ mU , (3.132)

S(n, 0) < 0, 0 ≤ n ≤ mL − 1, (3.133)

S(mL, 0) ≥ 0, (3.134)

S(n, 0) > 0, n ≥ mL + 1. (3.135)

Moreover,

m+
L =

{
mL, if S(mL, 0) > 0
mL + 1, if S(mL, 0) = 0

(3.136)

m−U =

{
mU , if S(mU − 1, 1) < 0
mU − 1, if S(mU − 1, 1) = 0

(3.137)

If m+
L = 0 and m−U ≥ 1, then there exists a unique θ(0) ∈ (0, 1) such that

S(0, θ(0)) = 0, (3.138)

S(n, θ(0)) > 0, n ≥ 1. (3.139)

Case III: limn→∞H
U (n) ≤ 0.

Then

mU = mL = m−U = m+
L =∞ (3.140)

S(n, θ) < 0, n ≥ 0, θ ∈ [0, 1]. (3.141)

We omit the proof of Lemma 3.3.4 as it is completely analogous to the proof
of Lemma 3.3.2. We are now in position to prove the existence and unique-
ness of reverse-threshold strategies when (3.121) holds. We present the
results in he following Theorem 3.3.5. The statements about the uniqueness
of the reverse-threshold equilibrium strategies should be interpreted within
the class Sr−t = {b0c, b∞c} ∪ {b0, θ0c : θ0 ∈ (0, 1)} of the reverse threshold
strategies.
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Theorem 3.3.5. In the almost observable model of the stochastic clearing
system in alternating environment where (3.121) holds, equilibrium reverse-
threshold strategies always exist. In particular, in the three cases of Lemma
3.3.4 we have:

Case I : HU (0) > 0
Then there exists a unique equilibrium reverse-threshold strategy, the
b0c strategy (“always to join”).

Case II : HU (0) ≤ 0. and limn→∞H
U (n) > 0.

If m−U = 0, the b0c strategy (“always to join”) is the unique equilibrium
reverse-threshold strategy. If m+

L ≥ 1 then the b∞c strategy “always
to balk” is the unique equilibrium reverse-threshold strategy. Other-
wise, the b0, θ(0)c strategy is the unique equilibrium reverse-threshold
strategy.

Case III : limn→∞H
U (n) ≤ 0.

Then, there is a unique equilibrium reverse-threshold strategy, the b∞c-
strategy (“always to balk”).

Proof. Case I : Consider a tagged customer at his arrival instant that ob-
serves n customers in the system, when all other customers follow the b0c
strategy. Then, the expected net benefit of the tagged customer is given by
(3.81) and since S(n, θ) > 0 for n ≥ 0, θ ∈ [0, 1] by (3.127) and G(n, θ) > 0,
for n ≥ 0, θ ∈ [0, 1] by (3.97), we have that Fao(n; [0]) > 0 for n ≥ 0. Thus,
the tagged customer always prefers to join and her best response against b0c
is b0c.

Similarly, consider a tagged customer at his arrival instant that observes n
customers in the system, when all other customers follow a b0, θ0c strategy,
for some θ0 ∈ (0, 1). Then, the expected net benefit of the tagged customer
is given by (3.88) and by (3.127) we have that Fao(n; [0, θ0]) > 0 for n ≥ 0.
Thus, the tagged customer always prefers to join and her best response
against b0, θ0c is b0c.

If all other customers follow the b∞c strategy, the net benefit of a tagged
customer that enters the system and observes n customers in the system
Fao(n; [∞]) is positive for n ≥ 0 by (3.87) and (3.127). Thus, the tagged
customer always prefers to join and her best response against b∞c is b0c.
So the only reverse-threshold strategy which is best response against itself
is the b0c strategy.

Case II: Assume that m−U = 0. Then S(0, 1) = 0 and mU = 1. Consider
now a tagged customer at her arrival instant and suppose all other customers
follow the b0c strategy. Inequality (3.131) and relation (3.81) imply that her
expected net benefit, when she finds n customers in the system and decides
to join is Fao(n; b0c) ≥ 0 for n ≥ 0. Thus, b0c is a best response against
itself.
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Assume, now, that m+
L ≥ 1. By definition of m+

L is equal to mL or
mL + 1. In the former case, we have that 0 ≤ mL − 1 and (3.133) yields
that S(0, 0) < 0. In the latter case, we have that mL = 0 or mL > 0. If
mL > 0 again by (3.133) we have that S(0, 0) < 0. If mL = 0 then by (3.136)
F (mL, 0) = F (0, 0) = 0. Therefore, if m+

L ≥ 1 we have F (0, 0) ≤ 0. If we
consider a tagged arriving customer and suppose all other customers follow
the b∞c strategy, then the tagged customer, if she observes 0 customers
and decides to join, has expected net benefit Fao(0; b∞c) ≤ 0 due to (3.87).
Thus, b∞c is a best response against itself i.e. it is an equilibrium strategy.
Otherwise, we will have that m+

L = 0. Consider again a tagged customer
and suppose that all other customers follow the b0, θ(0)c strategy. If the
tagged customer at her arrival instant finds n customers in the system and
decides to join, her expected net benefit will be either Fao(0; b0, θ(0)c) = 0
when n = 0 or Fao(n; b0, θ(0)c) ≥ 0 if n ≥ 1 due to (3.88), (3.138), (3.139).
Therefore, the b0, θ(0)c strategy is an equilibrium strategy.

Case III : Following the same line of argument as in case I, we now
conclude that the expected net benefit function is negative. Thus, the best
response to every reverse-threshold strategy is b∞c. Thus the only equilib-
rium reverse-threshold strategy is b∞c

Case C:(µ1 − µ2)(ρ1 − ρ2) = 0

Case C occurs when µ1 = µ2 or λ1
ρ1

= λ2
ρ2

. In this case, the distinction “fast
environmental state” and “slow environmental state” has no sense or the
distinction “more congested environmental state” and “less congested envi-
ronmental state” has no sense. Therefore, we conclude that the information
on the number of customers in the system, does not affect the decision of a
tagged arriving customer. A similar analysis is possible as in the other two
cases and we have the following Theorem 3.3.6.

Theorem 3.3.6. In the almost observable model of the stochastic clearing
system in alternative environment, where

µ1 = µ2 or ρ1 = ρ2, (3.142)

an equilibrium strategy exists within the class of threshold and reverse-threshold
strategies. In particular, we have the following three cases:

Case I : HU (0) < 0
Then the unique equilibrium strategy in the class of threshold and
reverse-threshold strategies is the d0e ≡ b∞c strategy(“always to balk”).

Case II : HU (0) = 0
Then every strategy in the class of threshold and reverse-threshold
strategies is equilibrium strategy.
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Case III : HU (0) > 0.
Then, the unique equilibrium strategy in the class of threshold and
reverse-threshold strategies is the d∞e ≡ b0c-strategy (“always to join”).

Proof. By (3.142) and (3.90) we can see that HU (n) is constant. Therefore,
in case I, HU (n) is always negative. We consider the cases where other cus-
tomers follow d∞e ≡ b0c, dn0e, b0, θc and d0e ≡ b∞c. By (3.81),(3.85),(3.87)
and (3.88) we can see that the expected net benefit in each of those cases,
when a tagged customer observes n customers in the system and joins, is
negative (in the dn0e case we assume n ≤ n0 ) and therefore prefers to balk.
Thus, the only equilibrium strategy is d0e ≡ b∞c(“always to balk”). We do
not need to check dn0, θe strategies because if dn0e is not an equilibrium,
dn0, θe cannot be an equilibrium.

The other two cases are similar. In case II the expected net benefit
is always 0, therefore any strategy is equilibrium, whereas in case III, the
expected benefit is always positive, and customers prefer to “always join”.

This concludes the analysis of customer strategic behaviour in a clear-
ing systems in an alternating environment. We identified four cases with
respect to the information level of information provided to arriving cus-
tomers and derived the equilibrium strategy for each case. It is important
to notice that in each case, we searched for equilibrium strategies within
the appropriate class of strategies. Moreover, in the almost observable
case, which is the most interesting, Theorems 3.3.3, 3.3.5 and 3.3.6 sug-
gest that the equilibrium strategies in the class of threshold and reverse-
threshold strategies are completely characterized by the signs of the quan-
tities (µ1 − µ2)(ρ1 − ρ2), HU (n), limn→∞HU (n) and HL(n). Thus, we can
easily combine these theorems and develop an algorithm for determining
equilibrium strategies.

ATC or FTC?

We must also notice that, in the almost observable case, the two cases A and
B concerning the sign of the quantity (µ1−µ2)(ρ1−ρ2) are quite different. In
case A, there is a general interval of thresholds which constitute equilibrium
strategies. On the other hand, in case B, we have a unique reverse-threshold
equilibrium strategy. As stated in the introduction, multiple equilibria are a
property of the follow the crowd (FTC) behaviour, whereas in the avoid the
crowd (ATC) behaviour, at most one equilibrium is possible. This is indeed
the case here :
Consider case A, where (µ1 − µ2)(ρ1 − ρ2) < 0 and the “fast service” co-

incides with the “less congested” environmental state. We compare two
threshold strategies n and n+1 as follows. Consider a tagged customer who
arrives at the system and observes n customers, while all other customers
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follow an n threshold strategy. Then, she can deduce that at least n cus-
tomers have arrived at the station since the last clearing epoch, since some
customers may have come and balked when they faced n customers. If the
customers follow an n + 1 threshold strategy instead, the tagged customer
knows that exactly n customers arrived at the system since the last clearing
epoch. This gives the customer the sense that the system is less congested
which is a signal that the environmental state is probably the “fast service”
one. Therefore, the customer is more willing to join the system and adopts
a higher threshold. Thus, if the customers adopt a higher threshold, an
arriving customer tends to follow them in adopting a higher threshold and
we have an FTC situation.
On the other hand, consider case B where (µ1 − µ2)(ρ1 − ρ2) > 0 and the

“slow service” coincides with the “less congested” environmental state. In
this case, we deal with reverse-threshold strategies. Also, if the customers
follow a strategy bn0, θc with n0 ≥ 1 and θ ∈ [0, 1] the system remains empty.
Therefore, we will limit our intuitive discussion in the case where customers
follow an b0, θc with θ ∈ [0, 1]. Now, consider a tagged customer who arrives
at the system and observes 0 customers, while all other customers initially
follow an b0, θc reverse-threshold strategy and then move to a b0, θ′c with
θ′ > θ. When the customers follow the b0, θ′c the information of an empty
system means that the system is probably in the the “less congested” envi-
ronmental state, which now coincides with the slow service. Therefore, the
tagged customer becomes less willing to enter the system. Thus, when other
customers enter the system with a higher probability, the tagged customer
tends to decrease the probability of joining the system i.e. we have an ATC
situation.

Social optimization

Due to the clearing mechanism all customers are removed simultaneously at
the end of a clearing epoch. Therefore, customers do not impose any exter-
nalities on other customers, and by maximizing their expected net benefit,
they also maximize the social benefit. Thus, in the fully observable, fully un-
observable and the almost unobservable case, equilibrium strategies are also
socially optimal. In the almost observable case, equilibrium strategies are
also socially optimal, except from the case where HU (n) is strictly decreas-
ing, HU (n) ≥ 0 and limn→∞H

U (n) < 0. In this case, when customers adopt
an dn0e with n0 ∈ {nL, ..., nU}, joining customers have positive expected net
benefit. Naturally, a social planner would want to have the highest threshold
possible, while the customers’ expected net benefit remains positive. This
means that the unique socially optimal strategy is the dnUe strategy.
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Chapter 4

Strategic behaviour in an
observable fluid queue with
an alternating environment

4.1 The model

We consider a fluid queue that represents a production facility, that alter-
nates between fast and slow periods, which are independent and exponen-
tially distributed with rates q1 and q0 respectively. The state of the machine
is recorded by the 2-state continuous time Markov chain

{
Z(t)

}
, where the

states 1 and 0 correspond respectively to the fast and slow modes. The
input rate of the fluid that represents the arrivals of new customers is λ.
The output rate is µ1, when the machine is in the fast service rate, and µ0
otherwise. We assume that 0 < µ0 < µ1. The case µ0 = 0 is qualitatively
similar, but it is omitted from this presentation, as the various formulas do
change and they should be evaluated by taking appropriate limits (see e.g.
(4.2)). The waiting (buffer) capacity of the facility is infinite. The dynamics
of the process

{
X(t)

}
that records the level of the fluid is given by

dX(t)

dt
=

{
λ− µi if X(t) > 0 andZ(t) = i,

(λ− µi)+ if X(t) = 0 andZ(t) = i,
(4.1)

where (x)+ = max(x, 0). It is easy to see that the bivariate process{
(X(t), Z(t))

}
is Markovian. In what follows, we will use the notational

convention i′ = 1 − i, i = 0, 1. Thus, if i refers to the current state of the
machine, i′ is the opposite state.
The customers are strategic and decide whether to join or balk upon arrival

with the objective of maximizing their expected utility. Every customer
receives a reward of R units for completing service. On the other hand,
he accumulates waiting cost at rate C per time unit in the system. The

65



decisions of the customers are assumed irrevocable. In particular no retrials
of balking customers nor reneging of entering customers are allowed. Since
all customers are indistinguishable and each one tries to maximize his own
benefit by taking into account that the other customers do the same, we can
consider this situation as a symmetric game among them. We are interested
in the computation of the symmetric equilibrium strategies for this game.
These strategies are best responses against themselves, so no customer has
an incentive to deviate from such a strategy unilaterally.
The strategic behaviour of the customers is influenced by the level of in-

formation that they receive upon arrival, before making their decisions. We
will consider the following two cases:

• The fully observable (fo) case: Customers observe (X(t), Z(t))

• The almost observable (ao) case: Customers observe only X(t).

There are two other interesting informational cases:

• The almost unobservable (au) case: Customers observe only Z(t).

• The fully unobservable (fu) case: Customers observe neither X(t) nor
Z(t).

4.2 The fully observable case

Suppose that a customer arrives at the production facility and observes the
state (x, i). Then, to assess its expected utility if he joins, he needs to com-
pute his conditional expected sojourn time in the system, Si(x). Note that
this conditional expected sojourn time does not depend on the strategies of
the other customers, given (x, i). Indeed, future customers do not influence
Si(x) because of the FCFS discipline and past customers do not influence it
either, since reneging is not allowed. We can easily obtain closed formulas
for Si(x). Indeed, we have the following Lemma 4.2.1.

Lemma 4.2.1. The conditional expected sojourn time of a customer in the
system, given that the state of the server is i and the fluid level in front of
him is x is given by the formula

Si(x) =
q0 + q1

q0µ1 + q1µ0
x+

qiµi′(µi′ − µi)
(q0µ1 + q1µ0)2

(4.2)

×
(

1− e−
(
q0
µ0

+
q1
µ1

)
x
)
, x ≥ 0, i = 0, 1.

Proof. To compute Si(x), we condition on the length Ti of the remaining so-
journ time of the machine at state i, which is exponentially distributed with
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rate qi, because of the memoryless property of the exponential distribution.
Then, we obtain

Si(x) =
x

µi
e
−qi xµi +

∫ x
µi

0
(t+ Si′(x− µit))qie−qitdt. (4.3)

Changing the variable of the integration to u = x−µit and using integration
by parts yields

Si(x) =
1

qi
− 1

qi
e
− qi
µi
x

+
qi
µi
e
− qi
µi
x
∫ x

0
Si′(u)e

qi
µi
u
du.

Multiplying by µie
qi
µi
x

and differentiating with respect to x, we obtain the
linear system of ODEs

dSi(x)

dx
= − qi

µi
Si(x) +

qi
µi
Si′(x) +

1

µi
, i = 0, 1,

with initial conditions Si(0) = 0, i = 0, 1. Using the standard theory for
first-order linear systems of ODEs with constant coefficients (see e.g. Braun,
1983, Chapter 3), we obtain the unique solution stated in (4.2).

We can now derive the customer equilibrium strategies in the fo case. We
have the following Theorem 4.2.2.

Theorem 4.2.2. In the fo case, the equilibrium strategies are specified by
two thresholds, that is they prescribe “While arriving at time t, observe
(X(t), Z(t)), join if X(t) < xe(Z(t)) and balk if X(t) > xe(Z(t))”. The thresh-
olds xe(i), i = 0, 1 are given as the unique roots of the equations

q0 + q1
q0µ1 + q1µ0

x+
qiµi′(µi′ − µi)
(q0µ1 + q1µ0)2

×
(

1− e−
(
q0
µ0

+
q1
µ1

)
x
)

=
R

C
, i = 0, 1, (4.4)

with respect to x.

Proof. The expected utility of a customer that observes upon arrival the
system at state (X(t), Z(t)) = (x, i) and decides to join is U (fo)(x, i) =
R− CSi(x). Note that this expected utility does not depend on the strate-
gies followed by the other customers. The customer prefers strictly to join if
U (fo)(x, i) > 0, prefers strictly to balk if U (fo)(x, i) < 0 and he is indifferent
between joining and balking if U (fo)(x, i) = 0. These conditions are equiv-
alent respectively to Si(x) < R

C , Si(x) > R
C and Si(x) = R

C . Differentiation
of (4.2) yields

dSi(x)

dx
=

q0 + q1
q0µ1 + q1µ0

+
qiµi′(µi′ − µi)
(q0µ1 + q1µ0)2

×
(
q0
µ0

+
q1
µ1

)
e
−
(
q0
µ0

+
q1
µ1

)
x
,

x ≥ 0, i = 0, 1, (4.5)

d2Si(x)

dx2
= − qiµi

′(µi′ − µi)
(q0µ1 + q1µ0)2

(
q0
µ0

+
q1
µ1

)2

e
−
(
q0
µ0

+
q1
µ1

)
x
, x ≥ 0, i = 0, 1.

(4.6)
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Figure 4.1: Typical sample path of fluid level for x∗(0) = 3, x∗(1) = 6, λ =
5, µ0 = 2 and µ1 = 4 (corresponding to case I of Lemma 4.2.3).

Therefore dS0(x)
dx > 0, d

2S1(x)
dx2

> 0 and dS1(0)
dx = 1

µ1
> 0 and we conclude that

Si(x) is strictly increasing in [0, ∞) with image the interval [0, ∞). This
shows that there exists a unique root xe(i) of Si(x) = R

C with respect to x
which is exactly Eq. (4.4). Then, a customer that finds the system at state
(x, i) prefers to join for x < xe(i). He is indifferent between joining and
balking if x = xe(i). Finally, he prefers to balk for x > xe(i).

We can see that xe(0) < xe(1), that is a customer finding the system at
the fast service rate affords higher fluid levels in front of him under the
equilibrium strategy than a customer that finds the system at the slow
service state. This is intuitively clear and can be formally shown since
S1(x) < S0(x), x > 0. Indeed

S1(x)− S0(x) =
µ0 − µ1

q0µ1 + q1µ0

(
1− e−

(
q0
µ0

+
q1
µ1

)
x
)
, x ≥ 0.

A subtle point is that an equilibrium strategy should specify necessarily
joining or balking, according to whether X(t) < xe(Z(t)) or not, only for
states (X(t), Z(t)) that are reachable with positive probability, given the
initial state. Indeed, an equilibrium strategy can prescribe anything in states
that are not reachable. For example, suppose that the system is initially
empty and consider a strategy that prescribes joining, whenever (Z(t) = 0
andX(t) ≤ xe(0)) or (Z(t) = 1 and X(t) 6= xe(1)). This is an equilibrium
strategy, because what it does for states (X(t), Z(t)) = (x, 1) withx > xe(1)
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does not matter, since such states are never observed. However we can use
the notion of subgame perfect equilibrium strategy to refine the equilibrium
strategies and to eliminate such “pathological” cases (that occur also in the
standard analysis of the M/M/1 queue - see e.g. Hassin and Haviv (2003)
Remark 2.2 in p.24, or Hassin and Haviv (2002)). Then, the subgame perfect
equilibrium strategies prescribe joining when X(t) < xe(Z(t)), balking when
X(t) > xe(Z(t)) and whatever for X(t) = xe(Z(t)).
Moreover, we note that in a game-theoretical terminology, the equilibrium

strategies in the fo case are dominant strategies. Indeed, such a strategy
is a best response of a tagged customer against any strategy of the other
customers. Thus, we have a very strong equilibrium concept in the fo case.
This does not happen in the other informational case as we will see in the
following section.
We now move to the computation of the expected social benefit function

per time unit, when the customers follow a threshold strategy. In the state-
ment of Theorem 4.2.2, we have not explicitly stated what the customers do
when they observe (X(t), Z(t)) with X(t) = xe(Z(t)). Clearly, an equilibrium
strategy can prescribe anything at such a state. However, for the computa-
tion of the expected social benefit per time unit under a threshold strategy
with threshold-vector (x∗(0), x∗(1)), it is necessary to take into account the
fraction of entering customers, when the fluid level x∗(i) is reached and
the environment is in state i, i = 0, 1. Therefore, for a certain threshold
strategy, we note that when the threshold has been reached, this fraction
stabilizes the fluid level till the next change of the environmental state.
Now, we compute the steady-state distribution of the fluid level, when the
customers follow such a strategy, that is we compute the functions Fi(x)
with

Fi(x) = Pr[X(t) ≤ x, Z(t) = i], x ≥ 0, i = 0, 1 (4.7)

where t is an arbitrary time point, assuming that the process
{

(X(t), Z(t)

}
has achieved stationarity. This is done in Lemma 4.2.3. To facilitate the
reader to follow the proof, we provide some graphs that show the typical
sample paths of X(t) under a strategy specified by two thresholds x∗(0) and
x∗(1). These are given in Figs. 4.1 and 4.2.

Lemma 4.2.3. Suppose that the customers follow a strategy specified by
two thresholds x∗(0) and x∗(1), such that x∗(0) ≤ x∗(1). Then, we have the
following cases.

Case I. λ > µ1.
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Figure 4.2: Typical sample path of fluid level for x∗(0) = 3, x∗(1) = 6, λ =
3, µ0 = 2 andµ1 = 5 (corresponding to case III of Lemma 4.2.3).

The fluid level oscillates in [x∗(0), x∗(1)]. In particular

F0(x) =



0

if x < x∗(0)

q1
q0+q1

·
−q1µ0+q0(λ−µ1) exp

{
−
(

q1
λ−µ1

− q0
µ0

)
[x−x∗(0)]

}
−q1µ0+q0(λ−µ1) exp

{
−
(

q1
λ−µ1

− q0
µ0

)
[x∗(1)−x∗(0)]

}
if x∗(0) ≤ x ≤ x∗(1)
q1

q0+q1

if x ≥ x∗(1)

(4.8)

and

F1(x) =



0

if x ≤ x∗(0)

q0
q0+q1

·
−q1µ0

(
1−exp

{
−
(

q1
λ−µ1

− q0
µ0

)
[x−x∗(0)]

})
−q1µ0+q0(λ−µ1) exp

{
−
(

q1
λ−µ1

− q0
µ0

)
[x∗(1)−x∗(0)]

}
if x∗(0) ≤ x ≤ x∗(1)
q0

q0+q1

if x ≥ x∗(1)

(4.9)

In other words, the distribution F0(x) is mixed with a point mass
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p0(x∗(0)) at x∗(0) given by

p0(x∗(0)) =
q1

q0 + q1

· −q1µ0 + q0(λ− µ1)

−q1µ0 + q0(λ− µ1) exp
{
−
(

q1
λ−µ1 −

q0
µ0

)
[x∗(1)− x∗(0)]

}
(4.10)

and probability density f0(x) in (x∗(0), x∗(1)) given by

f0(x) =
q1

q0 + q1

·
q0(λ− µ1)

(
q0
µ0
− q1

λ−µ1

)
exp

{
−
(

q1
λ−µ1 −

q0
µ0

)
[x− x∗(0)]

}
−q1µ0 + q0(λ− µ1) exp

{
−
(

q1
λ−µ1 −

q0
µ0

)
[x∗(1)− x∗(0)]

} ,
x∗(0) < x < x∗(1), (4.11)

while F1(x) is mixed with a point mass p1(x∗(1)) at x∗(1) given by

p1(x∗(1)) =
q0

q0 + q1

·
[q0(λ− µ1)− q1µ0] exp

{
−
(

q1
λ−µ1 −

q0
µ0

)
[x∗(1)− x∗(0)]

}
−q1µ0 + q0(λ− µ1) exp

{
−
(

q1
λ−µ1 −

q0
µ0

)
[x∗(1)− x∗(0)]

}
(4.12)

and probability density f1(x) in (x∗(0), x∗(1)) given by

f1(x) =
q0

q0 + q1

·
q1µ0

(
q0
µ0
− q1

λ−µ1

)
exp

{
−
(

q1
λ−µ1 −

q0
µ0

)
[x− x∗(0)]

}
−q1µ0 + q0(λ− µ1) exp

{
−
(

q1
λ−µ1 −

q0
µ0

)
[x∗(1)− x∗(0)]

} ,
x∗(0) < x < x∗(1). (4.13)

Case II. λ = µ1.

The fluid level stabilizes at x∗(0).

Case III. µ0 < λ < µ1.
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The fluid level oscillates in [0, x∗(0)]. In particular

F0(x) =



0

if x ≤ 0

q1
q0+q1

·
q0(λ−µ1)

(
1−exp

{
−
(

q1
λ−µ1

+
q0

λ−µ0

)
x
})

q0(λ−µ1)+q1(λ−µ0) exp
{
−
(

q1
λ−µ1

+
q0

λ−µ0

)
x∗(0)

}
if 0 ≤ x < x∗(0)
q1

q0+q1

if x ≥ x∗(0)

(4.14)

and

F1(x) =



0

if x < 0

q0
q0+q1

·
q0(λ−µ1)+q1(λ−µ0) exp

{
−
(

q1
λ−µ1

+
q0

λ−µ0

)
x
}

q0(λ−µ1)+q1(λ−µ0) exp
{
−
(

q1
λ−µ1

+
q0

λ−µ0

)
x∗(0)

}
if0 ≤ x ≤ x∗(0)
q0

q0+q1

if x ≥ x∗(0)

(4.15)

In other words, both F0(x) and F1(x) are mixed. The distribution
F0(x) has a point mass p0(x∗(0)) at x∗(0) given by

p0(x∗(0)) =
q1

q0 + q1

·
[q1(λ− µ0) + q0(λ− µ1)] exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

}
q0(λ− µ1) + q1(λ− µ0) exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

}
(4.16)

and probability density f0(x) in (0, x∗(0)) given by

f0(x) =
q0

q0 + q1
·
q0(λ− µ1)

(
q1

λ−µ1 + q0
λ−µ0

)
exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x
}

q0(λ− µ1) + q1(λ− µ0) exp
{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

} ,
0 < x < x∗(0) (4.17)

Regarding F1(x), we can easily see that it has a point mass p1(0) at 0
given by

p1(0) =
q0

q0 + q1
· q0(λ− µ1) + q1(λ− µ0)

q0(λ− µ1) + q1(λ− µ0) exp
{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

}
(4.18)
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and probability density f1(x) in (0, x∗(0)) given by

f1(x) =
q0

q0 + q1
·
q1(λ− µ0)

(
− q1
λ−µ1 −

q0
λ−µ0

)
exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x
}

q0(λ− µ1) + q1(λ− µ0) exp
{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

} ,
0 < x < x∗(0). (4.19)

Case IV. The fluid level stabilizes at 0.

Proof. First, note that in all cases, the fluid level enters in levels smaller
than or equal to x∗(1), because of the threshold strategy and the fact that
x∗(0) ≤ x∗(1).
Cases II and IV are immediate. Indeed, for case II, if the fluid starts from a

level below x∗(0), then during sojourn times in the fast mode it stays at the
same level (since λ− µ1 = 0), while during sojourn times in the slow mode
it grows linearly at rate λ− µ0, until it reaches the level x∗(0). Thereafter,
it stays at this level. If it starts from a level above x∗(0), a similar situation
occurs and the fluid reaches again eventually x∗(0). Case IV is also clear,
as there is a non-positive drift under the slow mode and a strictly negative
drift under the fast mode, so the fluid level decreases (with some possible
constant intervals) till it reaches zero.
For cases I and III, let us consider a fluid queue that alternates between two

environmental states − and +, with exponential sojourn times with rates
q− and q+ respectively, where the fluid drift is η− < 0 for the environmental
state − and η+ > 0 for the environmental state +. If the fluid is constrained
to oscillate in [0, T ] (i.e., the fluid rates become zero when the fluid hits
the boundary states 0 and T ) and F−(x) (respectively F+(x)) denotes the
limiting probability that the fluid level is smaller than or equal to x and the
environment is at state − (respectively +), then we have that F−(x) and
F+(x) are differentiable in (0, T ) and satisfy the linear system of ODEs

η−
dF−(x)

dx
= −q−F−(x) + q+F+(x), (4.20)

η+
dF+(x)

dx
= q−F−(x)− q+F+(x), (4.21)

with boundary conditions

F−(T ) =
q+

q− + q+
, F+(0) = 0 (4.22)

(see e.g. Kulkarni (1997)). Using the standard theory for first-order linear
systems of ODEs with constant coefficients and computing the constants by
the boundary conditions (see e.g. Braun (1983), Chapter 3), we have that
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this system has a unique solution which is given by the relations

F−(x) =


0 if x < 0

q+
q−+q+

·
q+η−+q−η+ exp

{
−
(
q−
η−

+
q+
η+

)
x
}

q+η−+q−η+ exp
{
−
(
q−
η−

+
q+
η+

)
T
} if 0 ≤ x ≤ T

q+
q−+q+

if x ≥ T

(4.23)

and

F+(x) =


0 if x ≤ 0

q−
q−+q+

·
q+η−

(
1−exp

{
−
(
q−
η−

+
q+
η+

)
x
})

q+η−+q−η+ exp
{
−
(
q−
η−

+
q+
η+

)
T
} if 0 ≤ x ≤ T

q+
q−+q+

if x ≥ T

(4.24)

For case I, a moment of reflection shows that the fluid oscillates in [x∗(0),
x∗(1)] with negative drift −µ0 when the machine is in the slow mode and
positive drift λ − µ1 when then machine is in the fast mode. We can then
use the formulas (4.23) and (4.24), substituting x− x∗(0) for x and setting
q− = q0, q+ = q1, η− = −µ0 and η+ = λ− µ1. This yields (4.8) and (4.9).
Similarly, in case III, the fluid is easily seen to oscillate in [0, x∗(0)] and

we use formulas (4.23) and (4.24) with q− = q1, q+ = q0, η− = λ − µ1 and
η+ = λ− µ0 to obtain (4.14) and (4.15).

We are now ready to compute the function of the expected social benefit
per time unit, B(fo)(x∗(0), x∗(1)), when the customers follow a threshold
strategy with thresholds x∗(0) and x∗(1). We have Theorem 4.2.4.

Theorem 4.2.4. Suppose that the customers follow a strategy specified by
two thresholds x∗(0) and x∗(1), such that x∗(0) ≤ x∗(1). Then, we have the
following cases.

Case I. λ > µ1

The expected social benefit per time unit is given by

B(fo)(x∗(0), x∗(1)) =

(
q1

q0 + q1
µ0 +

q0
q0 + q1

µ1

)
R− CE[X], (4.25)

where

E[X] = x∗(0)p0(x∗(0)) +

∫ x∗(1)

x∗(0)
x(f0(x) + f1(x))dx+ x∗(1)p1(x∗(1))

(4.26)
with p0(x∗(0)), f0(x), p1(x∗(1)) and f1(x) given by (4.10)-(4.13).
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Case II. λ = µ1.

The expected social benefit per time unit is given by

B(fo)(x∗(0), x∗(1)) = λ

(
q1

q0 + q1
· µ0
λ

+
q0

q0 + q1

)
R− Cx∗(0). (4.27)

Case III. µ0 < λ < µ1.

The expected social benefit per time unit is given by

B(fo)(x∗(0), x∗(1)) = λ

(∫ x∗(0)

0
f0(x)dx+ p0(x∗(0))

µ0
λ

+
q0

q0 + q1

)
R

− CE[X], (4.28)

where

E[X] = x∗(0)p0(x∗(0)) +

∫ x∗(0)

0
x(f0(x) + f1(x))dx (4.29)

with p0(x∗(0)), f0(x) and f1(x) given by (4.16), (4.17) and (4.19),
respectively.

Case IV. λ ≤ µ0.

The expected social benefit per time unit is given by

B(fo)(x∗(0), x∗(1)) = λR. (4.30)

Proof. In all cases, the expected social benefit per time unit is given as

B(fo)(x∗(0), x∗(1)) = λeffR− CE[X], (4.31)

where λeff is the effective fluid arrival rate, which counts the arrivals of
customers that do enter in the system and E[X] is the expected stationary
fluid level. In case I, the fluid fluctuates in [x∗(0), x∗(1)]. Moreover, the fluid
once at level x∗(0) during an environmental sojourn time at the slow mode,
it stays there till the next environmental change. Therefore, a fraction µ0

λ of
the customers that find the system at the slow mode and the fluid at level
x∗(0) do enter in the system, in order to ensure that the net fluid change
rate is 0. On the other hand, customers that find the system at the slow
mode but the fluid level strictly above x∗(0) do not enter. Similarly, all
customers that find the system at the fast mode and the fluid level strictly
below x∗(1) do enter, whereas only a fraction µ1

λ of the customers that find
the system at the fast mode and the fluid at level x∗(1) enter in the system.
Thus, the effective arrival rate in case I is

λeff = λ

(
p0(x∗(0))

µ0
λ

+

∫ x∗(1)

x∗(0)
f1(x)dx+ p1(x∗(1))

µ1
λ

)
. (4.32)
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The expected stationary fluid level E[X] is computed by (4.26), as the
distribution of the fluid level has point masses p0(x∗(0)) and p1(x∗(1)) at
x∗(0) and x∗(1), given by (4.10) and (4.12), and probably density function
f0(x) + f1(x) with f0(x) and f1(x) given by (4.11) and (4.13). Substitu-
tion of (4.32) and (4.26) in (4.31) yields after some straightforward algebra
(4.25). Another, more intuitive, way to justify (4.25) is to observe that in
case I the server is continuously busy, so the effective arrival rate is equal to
the mean service rate, which is q1

q0+q1
µ0 + q0

q0+q1
µ1.

In the case II, the fluid level stabilizes at x∗(0) so E[X] = x∗(0) and all
customers see upon arrival this state. Therefore, all customers that find the
machine at the fast mode enter, while only a fraction µ0

λ of those that find
the machine at the slow mode do enter. Hence the effective arrival rate is
now

λeff = λ

(
q1

q0 + q1
· µ0
λ

+
q0

q0 + q1

)
(4.33)

and we obtain readily (4.27).
Case III is proved similarly to case I, so we omit the details. Finally, in case

IV, all customers enter and are served immediately without delay. Hence
λeff = λ and E[X] = 0, so we obtain (4.30).

The formulas for the expected social benefit per time unit in Theorem 4.2.4
can be further reduced in more explicit expressions, as the relevant integrals
are computable in closed form (indeed, a moment of reflection shows that
only exponential functions are involved). Nevertheless, the formulas are too
complicate and there is no need to be reported. Due to this complexity, the
socially optimal strategies cannot be computed in closed form in all cases.
More concretely, in cases I, II and IV, it is easy to determine the socially
optimal strategies. However, in case III, an explicit solution is not possible,
so we have performed several numerical experiments and we present the
main results.
In cases I and II, the effective arrival rate is independent of the strategy

(x∗(0), x∗(1)) and equals the mean service rate µ = q1
q0+q1

µ0 + q0
q0+q1

µ1, i.e.,

λeff = µ. (4.34)

Indeed, in these two cases, we have that λ ≥ max(µ0, µ1) and consequently
the server uses his maximum service capacity at both environmental states.
So, a strategy is socially optimal, if it minimizes the expected fluid level.
Thus, in case I, the unique socially optimal strategy is the threshold strategy
with threshold vector (0, 0), whereas in case II, every threshold strategy with
threshold vector (0, x), x ≥ 0, is socially optimal.
In case IV, the arrival rate λ is so small that the buffer remains empty under

any strategy. Therefore, the strategy is not relevant for the fluid level. So,
the socially optimal behaviour is always to join as a joining customer receives
the reward from service and has no waiting cost.
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In case III, the expected social benefit per time unit under a threshold
strategy (x∗(0), x∗(1)), with x∗(0) ≤ x∗(1), depends only on the threshold
x∗(0). So, we can write B(fo)(x∗(0)) instead of B(fo)(x∗(0), x∗(1)) for this
case. As the threshold x∗(0) increases, we have a socially favourable effect,
the increase of the effective arrival rate, and a socially unfavourable one, the
increase of the expected fluid level. The effective arrival rate is given as

λeff = λ

(∫ x∗(0)

0
f0(x)dx+ p0(x∗(0))

µ0
λ

+
q0

q0 + q1

)

=
q0(λ− µ1) + q1(λ− µ0)

(
q1µ0
q0+q1

)
exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

}
q0(λ− µ1) + q1(λ− µ0) exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

}
(4.35)

which can be seen to be an increasing and concave function in x∗(0). More-
over,

lim
x∗(0)→∞

λeff = λ (4.36)

The expected fluid level can be computed by evaluating the integrals in
(4.29). After some straightforward algebraic manipulations, it yields

E[X] =
q1(q0 + q1)(λ− µ0)x∗(0) exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

}
q0 + q1)

[
q0(λ− µ1) + q1(λ− µ0) exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

}]
+

q0q1(µ1 − µ0)
[
exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

}
− 1
]

(q0 + q1)
(

q1
λ−µ1 + q0

λ−µ0

) [
q0(λ− µ1) + q1(λ− µ0) exp

{
−
(

q1
λ−µ1 + q0

λ−µ0

)
x∗(0)

}] .
(4.37)

The expected fluid is also an increasing function in x∗(0) but the limit as
x∗(0)→∞ depends on the relative order of the arrival rate λ and the mean
service rate µ when all customers join. In particular, taking x∗(0) → ∞
yields

lim
x∗(0)→∞

E[X] =

{
q1(µ1−µ0)(λ−µ0)

(q0+q1)[q1(µ0−λ)+q0(µ1−λ)] if q1
q0+q1

µ0 + q0
q0+q1

µ1 > λ,

∞ if q1
q0+q1

µ0 + q0
q0+q1

µ1 ≤ λ.
(4.38)

Indeed, if the mean service rate µ exceeds the arrival rate λ, we see that the
mean drift λ− µ of the fluid process is negative and therefore the expected
fluid level should tend to a finite number, as x∗(0) → ∞. In the other
hand, if the mean service rate is smaller than or equal to the arrival rate
λ, the fluid increases beyond any finite number in the long run. From the
above discussion, we realize that the behavior of the function B(fo)(x∗(0)) as

77



Figure 4.3: Expected social benefit B(fo)(x∗(0)) with respect to the thresh-
old x∗(0) for q0 = 2, q1 = 1, λ = 2, µ0 = 1µ1 = 5, R = 10 and C = 1.

Figure 4.4: Expected social benefit B(fo)(x∗(0)) with respect to the thresh-
old x∗(0) for q0 = 2, q1 = 1, λ = 3.4, µ0 = 1µ1 = 5, R = 10 and C = 1.
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Figure 4.5: Expected social benefit B(fo)(x∗(0)) with respect to the thresh-
old x∗(0) for q0 = 2, q1 = 1, λ = 4, µ0 = 1µ1 = 5, R = 10 and C = 1.

x∗(0) increases depends on the trade-off between the increase of the effective
arrival rate and the increase of the expected fluid level.
In Figs. 4.3-4.5, we present the three typical cases for the behavior of

the expected social benefit function B(fo) with respect to x∗(0). We have
considered a basic scenario with rates q0 = 2, q1 = 1, µ0 = 1, µ1 = 5, R =
10 and C = 1. The arrival rate λ varies and takes the values 2, 3.4 and 4
for Figs. 4.3-4.5, respectively.
In Fig.4.3, the arrival rate is small enough so that the mean drift is negative.

The expected social benefit is an increasing function of the threshold x∗(0)
and tends to 19.7333 (taking into account (4.36) and (4.38)). The socially
optimal strategy in this case corresponds to x∗(0) =∞, i.e., it is the ’always
join’ strategy. This case (increasing expected social benefit) occurs generally
when the arrival rate dominates the negative effect on the expected fluid
level.
In Fig. 4.4, the arrival rate is a bit larger, but still the mean drift is

negative. In this case the expected social benefit is a unimodal function
of the threshold x∗(0) that stabilizes as x∗(0) → ∞. In particular, we see
that the expected social benefit is increasing in x∗(0), for x∗(0) ∈ [0, 4.8],
and decreasing in x∗(0), for x∗(0) ∈ [4.8, ∞). As x∗(0) → ∞, we have
that B(fo)(x∗(0))→ 30. So, every threshold strategy with threshold-vector
(x∗(0), x∗(1)), where x∗(0) = 4.8 and x∗(1) ≥ x∗(0) is socially optimal. In
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general, this is the typical case (unimodal expected social benefit with finite
limit) for intermediate values of λ, i.e., when the drift is negative, but λ is
not very close to µ0.
Finally, in Fig. 4.5, the arrival rate is higher and the mean drift becomes

positive so that the expected fluid level tends to infinity as x∗(0) tends to
infinity. The expected social benefit is increasing in x∗(0), for x∗(0) ∈ [0, 24],
and decreasing in x∗(0), for x∗(0) ≥ 2.4. So, every threshold strategy with
threshold vector (x∗(0), x∗(1)), where x∗(0) = 2.4 and x∗(1) ≥ x∗(0) is
socially optimal. This typical case (unimodal expected social benefit with
infinite limit) occurs when the arrival rate is so large that the drift is non-
negative.

4.3 The almost observable case

In this section, we identify the equilibrium customer strategies regarding
the joining/balking dilemma, when the customers observe only the level of
the fluid before making their decisions. We limit ourselves to the class of
threshold strategies, where customers decide to join if they find the fluid
at levels below some threshold x∗, while they decide to balk if the fluid
level exceeds x∗. As in the fo case (see the relevant discussion just before
Lemma 4.2.3), we need to specify the fraction of entering customers when
the fluid level reaches the threshold x∗. Again, when the threshold has been
reached, then the maximum fraction of customers is entered so that the
fluid level does not exceed the threshold. To assess the best response of
a tagged customer, given that the others follow a given threshold strategy
with threshold x∗, we need to compute the steady-state distribution of the
fluid level, that is the distribution functions Fi(x) defined in (4.7). This can
be done using Lemma 4.2.3 for x∗(0) = x∗(1) = x∗. Then, we can obtain the
conditional expected sojourn time of a customer in the system, given that
the fluid level he finds upon arrival is x and the others follow a threshold
strategy x∗. This is done in Lemma 4.3.1.

Lemma 4.3.1. Let S(ao)(x;x∗) denote the conditional expected sojourn time
of a customer in the system , given that the fluid level is x and the other
customers follow a threshold strategy x∗.

Case I. λ ≥ µ1.

S(ao)(x∗;x∗) =
q0 + q1

q0µ1 + q1µ0
x∗

+
q0q1(µ1 − µ0)2

(q0 + q1)(q0µ1 + q1µ0)2

(
1− e−

(
q0
µ0

+
q1
µ1

)
x∗
)
. (4.39)
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Case II. µ0 < λ < µ1.

S(ao)(x;x∗) =



0

if x = 0

q0+q1
q0µ1+q1µ0

x− q1µ0(λ−µ0)+q0µ1(λ−µ1)
(q0µ1+q1µ0)2

(
1− e−

(
q0
µ0

+
q1
µ1

)
x∗
)

if 0 < x < x∗

q0+q1
q0µ1+q1µ0

x∗ − q0µ1(µ0−µ1)
(q0µ1+q1µ0)2

(
1− e−

(
q0
µ0

+
q1
µ1

)
x∗
)

if x = x∗.

(4.40)

Case III. λ ≤ µ0.
S(ao)(0;x∗) = 0. (4.41)

Proof. By conditioning on the (unobservable) state of the machine at the
arrival time of a tagged customer, we have that

S(ao)(x;x∗) = πZ|X(0|x;x∗)S0(x) + πZ|X(1|x;x∗)S1(x), x ≥ 0, (4.42)

where πZ|X(i|x;x∗) is the probability that the tagged customer finds the ma-
chine at mode i, given that he observes fluid level x and the other customers
follow the threshold strategy x∗.
In case I (which corresponds to cases I and II of Lemma 4.2.3), the fluid level

stabilizes at x∗. Therefore, all customers observe this level upon arrival, so
the observation is uninformative. So, in case I, we have πZ|X(0|x;x∗) = q1

q0+q1
and πZ|X(1|x;x∗) = q0

q0+q1
. Using (4.42) and (4.2) we obtain easily (4.39).

In case II (which corresponds to case III of Lemma 4.2.3), the fluid level
oscillates in [0, x∗]. For x∗ > 0, recall that the distributions F0(x) and F1(x)
are given by (4.14) and (4.15), with x∗(0) = x∗. Since F1(x) has a point mass
at 0, while F0(x) has not, we conclude that πZ|X(0|0;x∗) = 0. Similarly,
since F0(x) has a point mass at x∗, while F1(x) has not, we conclude that
πZ|X(0|x∗;x∗) = 1. Finally, for x ∈ (0, x∗), we have that πZ|X(0|x;x∗) =

f0(x)
f0(x)+f1(x)

, with f0(x) and f1(x) given by (4.17) and (4.19) respectively,

with x∗(0) = x∗. This yields, after a few simplifications, πZ|X(0|x;x∗) =
µ1−λ
µ1−µ0 , 0 < x < x∗. Thus in a nutshell,

πZ|X(0|x;x∗) =


0 x = 0
µ1−λ
µ1−µ0 0 < x < x∗,

1 x = x∗

πZ|X(1|x;x∗) =


1 x = 0
λ−µ0
µ1−µ0 0 < x < x∗,

0 x = x∗.

(4.43)
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Using (4.43), (4.42) and (4.2), we obtain easily (4.40), whenever x∗ > 0.
For x∗ = 0, all customers observe fluid level equal to 0 upon arrival, so
S(ao)(0;x∗) = 0 and we can see that (4.40) remains valid. The same argu-
ment yields also (4.41), in case III.

We can now identify all equilibrium threshold strategies in the ao case. We
have Theorem 4.3.2.

Theorem 4.3.2. In the ao case, we have the following cases for the ex-
istence of equilibrium threshold strategies that prescribe “While arriving at
time t, observe X(t), join if X(t) < xe and balk if X(t) > xe”.

Case I. λ ≥ µ1.

There exists a unique equilibrium threshold strategy with threshold xe
which is the unique root of the equation

q0 + q1
q0µ1 + q1µ0

x+
q0q1(µ1 − µ0)2

(q0 + q1)(q0µ1 + q1µ0)2
·
(

1− e−
(
q0
µ0

+
q1
µ1

)
x
)

=
R

C
(4.44)

with respect to x.

Case II. µ0 < λ < µ1.

There exists a unique equilibrium threshold strategy with threshold x′e
which is the unique root of the equation

q0 + q1
q0µ1 + q1µ0

x+
q0µ1(µ1 − µ0)
(q0µ1 + q1µ0)2

·
(

1− e−
(
q0
µ0

+
q1
µ1

)
x∗
)

=
R

C
(4.45)

with respect to x.

Case III. λ ≤ µ0
All threshold strategies are equilibrium strategies.

Proof. Suppose that the customers follow a threshold strategy x∗. The
expected utility of a tagged customer that observes upon arrival the fluid at
level X(t) = x and decides to join is U (ao)(x;x∗) = R− CS(ao)(x;x∗).
In case I, because the fluid level stabilizes at x∗, the tagged customer will

see necessarily this level and so his conditional expected sojourn time in
the system is given by (4.39). The threshold strategy x∗ is a best response
against itself, when U (ao)(x∗;x∗) = 0. Therefore, x∗ is a root of (4.44). Note
that the left side of (4.44) is monotone in x, since it is equal to q1

q0+q1
S0(x)+

q0
q0+q1

S1(x) and both S0(x) and S1(x) are monotone, as we have established
in the proof of Theorem 4.2.2. Therefore, (4.44) has a unique root that gives
the unique equilibrium threshold strategy in this case.
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In case II, a threshold strategy x∗, is a best response against itself, if and
only if U (ao)(x;x∗) ≥ 0 for 0 ≤ x < x∗, and U (ao)(x∗;x∗) = 0. These
conditions are seen to be equivalent to

q0 + q1
q0µ1 + q1µ0

x−q1µ0(λ− µ0) + q0µ1(λ− µ1)
(q0µ1 + q1µ0)2

×
(

1− e−
(
q0
µ0

+
q1
µ1

)
x∗
)
≤ R

C
, 0 ≤ x < x∗

(4.46)
q0 + q1

q0µ1 + q1µ0
x∗ −

q0µ1(µ0 − µ1)
(q0µ1 + q1µ0)2

(
1− e−

(
q0
µ0

+
q1
µ1

)
x∗
)

=
R

C
. (4.47)

Due to the monotonicity of the left side of (4.46) with respect to x (which is
equal to µ1−λ

µ1−µ0S0(x) + λ−µ0
µ1−µ0S1(x)) and the fact that the left side of (4.47)

(which is equal to S0(x∗)) exceeds the left side of (4.46) for x = x∗, we can
easily conclude that the relations are valid if and only if x∗ is the unique
solution x′e of Eq. (4.45).
In case III, any threshold strategy is a best response against itself. Indeed,

whatever threshold the other customers may follow, a tagged customer may
use the same threshold, since he always observes the fluid at state 0 and he
is willing to enter since U (ao)(0;x∗) = R− CS(ao)(0;x∗) = R > 0.

It is interesting to notice that the equilibrium threshold does not depend
on the exact value of the arrival rate λ (since the corresponding equations do
not involve λ), but only on its relative order with respect to the service rates
µ0 and µ1. We can now compute the function of the expected social benefit
per time unit, B(ao)(x∗), when the customers follow a threshold strategy
x∗, using Theorem 4.2.4 and setting B(ao)(x∗) = B(fo)(x∗, x∗). We have
Theorem 4.3.3.

Theorem 4.3.3. In the ao case, suppose that the customers follow a thresh-
old strategy x∗. Then, we have the following cases.

Case I. λ ≥ µ1.

The expected social benefit per time unit is given by

B(ao)(x∗) =

(
q1

q0 + q1
µ0 +

q0
q0 + q1

µ1

)
R− Cx∗. (4.48)

Case II. µ0 < λ < µ1. The expected social benefit per time unit is given by

B(ao)(x∗) = λ

(∫ x∗

0
f0(x)dx+ p0(x∗)

µ0
λ

+
q0

q0 + q1

)
×R− CE[X],

(4.49)
where

E[X] = x∗p0(x∗) +

∫ x∗

0
x(f0(x) + f1(x)))dx (4.50)

with p0(x∗), f0(x) and f1(x) given by (4.16), (4.17) and (4.19), re-
spectively.
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Case III. λ ≤ µ0. The expected social benefit per time unit is given by

B(ao)(x∗) = λR. (4.51)

A moment of reflection shows that, in case I, the unique socially opti-
mal strategy is the threshold strategy 0. In case II, a threshold strategy
x∗ is socially optimal in the ao case if and only if the threshold strategies
(x∗, x

′
∗), with x′∗ ≥ x∗, are socially optimal in the fo case. Finally, in case

III, any threshold strategy x∗ is socially optimal as the buffer is always
empty. Thus, in all cases, we have that max(x∗(0),x∗(1))B

(fo)(x∗(0), x∗(1)) =

maxx∗ B
(ao)(x∗), i.e., the optimal expected social benefit in the fo case co-

incides with the optimal expected social benefit in the ao case.

4.4 Numerical results - qualitative insight - dis-
cussion

In this chapter we studied the fo and the ao cases of the fluid queue with
alternating service process. We aimed at determining the equilibrium and
the socially optimal strategies within appropriate sets of strategies for each
level of information. We have the following results in the three cases regard-
ing the relative order of the arrival rate λ with respect to the service rates
µ0 and µ1.

Case I. λ ≥ µ1
In this case that corresponds to case I and II - fo and case I - ao,
we proved that the unique equilibrium threshold strategy, in the fo
case, is the (xe(0), xe(1)) strategy, where xe(i) is the unique root of
Eq. (4.4), i = 0, 1. In the ao case, the unique equilibrium threshold
strategy is the xe strategy, where xe is the unique root of Eq. (4.44).
We have that xe(0) < xe < xe(1).

The socially optimal strategy, in the fo case, is the threshold strategy
(0, 0) and, in the ao case, is the threshold strategy 0. Moreover, the
effective arrival rate under any threshold strategy is equal to the mean
service rate, a the server is never idle. Thus, the effective arrival rate
under any threshold strategy in the fo and ao cases equals q1

q0+q1
µ0 +

q0
q0+q1

µ1. So, the fraction of customers that join under the equilibrium
strategies is equal to the fraction of customers that join under the
socially optimal strategies. Nevertheless, under equilibrium strategies
the customers keep the fluid at high levels, whereas, under socially
optimal strategies the buffer is always empty. This happens because,
in the decentralized version, the arriving customers ignore the waiting
cost they impose to future customers by joining and tend to join even if
the fluid is at high levels. On the other hand, in the centralized version,
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Figure 4.6: Expected social benefits B(fo)(xe(0), xe(1)) and B(ao)(xe) with
respect to the arrival rate λ for q0 = 3, q1 = 2, µ0 = 2, µ1 = 5, R = 5 and
C = 1.
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the central planner takes into account these negative externalities and
keep the fluid level at 0.

Case II. µ0 < λ < µ1.

In this case that corresponds to case III - fo and case II - ao, formulas
(4.14) and (4.15) show that under any threshold strategy (x∗(0), x∗(1)),
with x∗(1) ≥ x∗(0), the fluid oscillates in [0, x∗(0)] and the steady-
state distribution of the fluid level is the same as under the threshold
strategy x∗(0). In the fo case, the unique subgame perfect equilibrium
is the threshold strategy (xe(0), xe(1)), where xe(i) is the unique root
of Eq. (4.4), i = 0, 1. However, any threshold strategy (xe(0), x) with
x ≥ xe(0), is equilibrium as the customers will never find the fluid level
strictly above xe(0). In the ao case, the unique equilibrium thresh-
old strategy is the x′e strategy, where the x′e is the unique root of Eq.
(4.45). So, x′e = xe(0). Thus, the equilibrium strategy x′e in the ao
case yields the equilibrium strategies (x′e, x) for every x ≥ x′e in the fo
case and the expected social benefit under the equilibrium strategies
in both cases is the same. So, B(fo)(x′e, , x) = B(ao)(x′e), for x ≥ x′e.
Thus, in the decentralized version of the model, given that the fluid
level is known, the customers do not benefit not lose by knowing also
the state of the server.

The situation is similar in the centralized version, where, if the thresh-
old strategy x∗ is socially optimal in the ao case, any threshold strategy
(x∗, x) with x ≥ x∗, is socially optimal in the fo case and the expected
social benefit under these socially optimal strategies is the same.

Case III. λ ≤ µ0.
In this case that corresponds to case IV - fo and case III - ao, the fluid
level stabilizes at 0. Thus, any threshold strategy is equilibrium and
socially optimal strategy in the fo case. Also, any threshold strategy is
equilibrium and socially optimal strategy in the ao case. The expected
social benefit under all these strategies is λR. So, as in the previous
case, given that the fluid level is known, the knowledge of the state
of the server does not change the benefit in the decentralized and the
centralized versions.

We would also like to compare the effect of information on the expected
social benefit when the customers decide selfishly and when they make their
decisions so that they maximize the expected social benefit. From above,
it is obvious that the optimal expected social benefits in the fo and ao
cases do coincide. So, if the customers are altruistic/cooperative and want
to maximize the expected social benefit, they are indifferent between the
two levels of information. Also, the expected social benefit under any equi-
librium threshold strategy in the fo case is equal to the expected social
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Figure 4.7: PoA in the fo case with respect to the arrival rate λ for q0 =
1, q1 = 3, µ0 = 2µ1 = 4, R = 5 and C = 1.
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Figure 4.8: PoA in the ao case with respect to the arrival rate λ for q0 =
1, q1 = 3, µ0 = 2µ1 = 4, R = 5 and C = 1.
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benefit under any equilibrium threshold strategy in the ao case except for
the case where λ ≥ µ1. In Fig. 4.6, we present the expected social bene-
fit in equilibrium in the fo case, B(fo)(xe(0), xe(1)), and the expected so-
cial benefit in equilibrium in the ao case, B(ao)(xe), in an example with
q0 = 3, q1 = 2, µ0 = 2, µ1 = 5, R = 5, C = 1, and λ ∈ [5, 10]. We observe
that B(ao)(xe) is a constant function of λ. This is clear because of (4.48)
and the fact that xe does not depend on λ (see relevant comment just after
the proof of Theorem 4.3.2). On the other hand, B(fo)(xe(0), xe(1)) is a
decreasing function of λ, so there exists a critical value λ∗, which is equal
to 6.8 in the present example, such that B(fo)(xe(0), xe(1)) ≥ B(ao)(xe), for
λ ≤ λ∗, while B(fo)(xe(0), xe(1)) ≤ B(ao)(xe), for λ ≥ λ∗. Thus, it is better
to reveal the service mode to selfish customers for values of λ ∈ (µ1, λ∗),
while it is better to conceal it for λ ∈ (λ∗,∞).
Finally, we study the Price of Anarchy (PoA). In the current context, for

the fo case, the PoA is defined as the ratio of the optimal expected social
benefit per time unit over the corresponding equilibrium expected social
benefit per time unit, i.e,

PoA(fo) =
B(fo)(xSOC(0), xSOC(1))

B(fo)(xe(0), xe(1))
, (4.52)

where xe(i) and xSOC(i) denote the equilibrium and socially optimal thresh-
olds respectively, Similarly, in the ao case, we define

PoA(ao) =
B(ao)(xSOC)

B(ao)(xe)
, (4.53)

where xe and xSOC denote the equilibrium and socially optimal thresholds,
respectively.
In the fo case, when the arrival rate is small (up to a bit higher than µ0),

the PoA is equal to 1, as the optimal expected social benefit is equal to the
equilibrium expected social benefit. As the arrival rate increases, the PoA
increases and as λ tends to infinity, the limit of the PoA is

lim
λ→∞

PoA(fo) =

R
(

q1
q0+q1

µ0 + q0
q0+q1

µ1

)
R
(

q1
q0+q1

µ0 + q0
q0+q1

µ1

)
− C

[(q0+q1)q0xe(1)−q1µ0] exp
{
q0
µ0

(xe(1)−xe(0))
}
+q1µ0

(q0+q1)q0 exp
{
q0
µ0

(xe(1)−xe(0))
}

(4.54)

where xe(i) is the unique root of Eq. (4.4), i = 0, 1. So, the PoA in the fo
case is bounded. In Fig. 4.7, we consider the PoA with respect to λ in an
example with q0 = 1, q1 = 3, µ0 = 2, µ1 = 4, R = 5, and C = 1. In this
example, we have that limλ→∞ PoA

(fo) = 393.0964.
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In the ao case, the PoA is equal to 1, for small arrival rates, and, when the
arrival rate is greater than µ1, the PoA becomes constant. We have that

lim
λ→∞

PoA(ao) =
R
(

q1
q0+q1

µ0 + q0
q0+q1

µ1

)
R
(

q1
q0+q1

µ0 + q0
q0+q1

µ1

)
− Cxe

(4.55)

where xe is the unique root of Eq. (4.42). In Fig. 4.8, we have the PoA with
respect to λ in an example with q0 = 1, q1 = 3, µ0 = 2, µ1 = 4, R = 5, and
C = 1.
As a conclusion, the graphs of the PoA as a function of the arrival rate
λ coincide for the two informational cases, for values of λ smaller than the
fast service rate µ1. Both graphs start from the value 1 and keep this value
till a bit higher than the low service rate (which is µ0 = 2 in the considered
scenario). Then, they continue almost linearly till the high service rate
(which is µ1 = 4 in the considered scenario). But after this point, in the fo
case the PoA increases in a continuous way and approaches its limit given
by (4.54), while in the ao case, it has a discontinuity at µ1 and becomes
constant after that point, assuming the value given by (4.55). The limiting
value of the PoA for the fo case exceeds considerably the corresponding
value for the ao case. Therefore, we conclude that for low arrival rates the
socially optimal and the equilibrium thresholds do coincide, while this is not
the case for higher arrival rates.
We close our discussion by referring to two directions that may lead to

interesting generalizations of the results. Both of them were suggested by
an anonymous referee. The first idea is to generalize the analysis in the case
of more complex but yet natural utility functions for the customers. In the
present essay, the utility function of the customers has the form U(x, i) =
R−CSi(x) = R−CE(x,i)[S], where S denotes a sojourn time of a customer in
the system and the subscript (x, i) refers to the state seen upon arrival. An
interesting option would be to consider a utility function that involves the
variance, i.e., U(x, i) = R−C(E(x,i)[S] + αV ar(x,i)[S]). With such a utility
function, a customer may be tempted to balk, if there is a lot of variability in
the sojourn time. However, the computations become much more involved.
For example, we have that V ar(x,i)[S] = E(x,i)[S

2] − (E(x, i)[S])2 and to
compute E(x,i)[S

2], we can condition similarity to (4.3) and we will have
that

Ex,i[S
2] =

(
x

µi

)2

e
−qi xµi +

∫ x
µi

0
(t2+2tE(x−µit,i′)[S]+E(x−µit,i′)[S

2])qie
−qitdt.

(4.56)
These equations can be solved similarly with the methodology of Lemma
4.2.1. However, the corresponding formulas are too involved and do not
allow to continue analytically. Considering an exponential utility function
of the form U(x, i) = R−CE(x,i)[e

αS ] (as it is common in finance/insurance
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models) leads also to computationally intractable expressions. Yet, a nu-
merical investigation of the present model with such utility functions seems
interesting from an economic viewpoint.
Another interesting direction of generalizing the model is to consider the

case where the machine mode process
{
Z(t)

}
has more than two states. The

generalization is not easy since the sample paths of the fluid level assume
very different forms because of the various machine modes and the associated
thresholds. Finally it would be interesting to study a diffusion counterpart
of the process

{
X(t)

}
, i.e., a Brownian motion with drift, also modulated by

a machine mode process
{
Z(t)

}
. This could have an influence in computing

the corresponding expected social benefit in both the fo and ao cases and
their numerical optimization.
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Chapter 5

Summary in Greek -
Περίληψη

Στρατηγική συμπεριφορά σε συστήματα αναμο-

νής σε εναλλασσόμενο περιβάλλον

΄Ενα σύστημα αναμονής ή αλλιώς ουρά, είναι ένα σύστημα στο οποίο πελάτες

εισέρχονται για να δεχθούν κάποια υπηρεσία η οποία έχει κάποια διάρκεια.

΄Οταν ένας πελάτης εισέρχεται στο σύστημα, αν δεν υπάρχει κάποιος υπηρέτης

διαθέσιμος για να ξεκινήσει η εξυπηρέτηση του, ο πελάτης εισέρχεται στον

χώρο αναμονής του συστήματος όπου περιμένει τη σειρά του να εξυπηρετηθεί

και έτσι δημιουργείται μια ουρά αναμονης.

Η οικονομική ανάλυση της συμπεριφοράς των πελατών βασίζεται σε μία δο-

μή αμοιβής-κόστους η οποία εισάγεται στο σύστημα ώστε να αντανακλά την

επιθυμία των πελατών για την υπηρεσία που προσφέρεται, καθώς και την απρο-

θυμία τους να περιμένουν. Στους πελάτες επιτρέπεται να αποφασίσουν για τις

ενέργειές τους μέσα στο σύστημα, π.χ. αποφασίζουν αν θα εισέλθουν ή θα α-

ποχωρήσουν από το σύστημα, αν θα εγκαταλείψουν το σύστημα ενώ βρίσκονται

στο χώρο αναμονής, αν θα αγοράσουν προτεραιότητα κ.α. Οι πελάτες θέλουν

να μεγιστοποιήσουν το καθαρό κέρδος τους γνωρίζοντας ότι και οι άλλοι πε-

λάτες προσπαθούν να κάνουν το ίδιο. Θεωρούμε λοιπόν ότι ένα τέτοιο σύστημα

αποτελεί ένα συμμετρικό παίγνιο ανάμεσα στους πελάτες και για την ανάλυσή

του χρησιμοποιούμε εργαλεία από τη θεωρία ουρών και τη θεωρία παιγνίων.

Στόχος μιας τέτοιας ανάλυσης είναι η εύρεση στρατηγικών ισορροπίας, όπου ο

κάθε πελάτης βελτιστοποιεί την προσωπική του ωφέλεια και η εύρεσ κοινωνικά

βέλτιστων στρατηγικών, που μεγιστοποιούν τη συνολική κοινωνική ωφέλεια,

όταν υιοθετηθούν από τους πελάτες.

Σε αυτή την εργασία μελετάμε τη στρατηγική συμπεριφορά πελατών που φθάνουν

σε ένα σύστημα αναμονης το οποίο εξελίσσεται σε εναλλασσόμενο περιβάλλον,

δηλαδή σε ένα σύστημα που ο ρυθμός άφιξης των πελατών, αλλά και ο ρυθ-

μός εξυπηρέτησης τους μεταβάλλεται. Η στρατηγική που υιοθετούν οι πελάτες
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εξαρτάται και από την πληροφόρηση που δέχονται φτάνοντας στο σύστημα. Ε-

ξετάζουμε λοιπόν τη συμπεριφορά των πελατών στα παρακάτω πιθανά επίπεδα

πληροφόρησης:

• Παρατηρήσιμη περίπτωση, όπου ο πελάτης παρατηρεί το πλήθος των πε-
λατών που βρίσκονται στο σύστημα, αλλά και την κατάσταση του περι-

βάλλοντος του συστήματος.

• Μερικώς παρατηρήσιμη περίπτωση, όπου ο πελάτης παρατηρεί το πλήθος
των πελατών που βρίσκονται στο σύστημα, αλλά δεν γνωρίζει την κα-

τάσταση του περιβάλλοντος του συστήματος.

• Μερικώς μη-παρατηρήσιμη περίπτωση, όπου ο πελάτης δεν παρατηρεί το
πλήθος των πελατών που βρίσκονται στο σύστημα, αλλά παρατηρεί την

κατάσταση του περιβάλλοντος στο οποίο βρίσκεται το σύστημα.

• Μη-παρατηρήσιμη περίπτωση, όπου ο πελάτης δεν παρατηρεί το πλήθος
των πελατών που βρίσκονται στο σύστημα, ούτε την κατάσταση του πε-

ριβάλλοντος του συστήματος.

Συνήθως, αν οι πελάτες εξυπηρετούνται με τη σειρά που φτάσανε στο σύστημα

(FCFS πειθαρχία ουράς), όσο αυξάνεται το πλήθος των πελατών στο σύστημα,
αυξάνεται και ο μέσος χρόνος αναμονής των πελατών, και συνεπώς το κόστος

τους. Αυτό σημαίνει ότι όταν ένας πελάτης παρατηρεί μεγάλο αριθμό πελατών

μπροστά του, είναι λιγότερο πρόθυμος να εισέλθει στο σύστημα. ΄Ετσι λοι-

πόν, στα συστήματα που ένας αφικνούμενος πελάτης μπορεί να παρατηρήσει το

πλήθος των πελατών μπροστά του, καταλήγουμε συνήθως σε στρατηγικές κα-

τωφλίου, όπου ένας πελάτης που ενεργεί σύμφωνα με τη στρατηγική κατωφλίου

(n0), αν παρατηρήσει μέχρι n0 άτομα εισέρχεται στην ουρά, αλλιώς αποχωρεί.
Στην παρούσα εργασία εξετάζουμε 3 συστήματα αναμονής σε εναλλασσόμενο

περιβάλλον και εντοπίζουμε βέλτιστες στρατηγικές των πελατών για το δίλημμα

της εισόδου-αποχώρησης στο σύστημα. Τα συστήματα που εξετάζουμε και τα

άρθρα στα οποία μελετήθηκαν είναι τα παρακάτω :

• M/M/1 ουρά με αναξιόπιστο υπηρέτη (Οικονόμου και Καντά (2008) )

• Σύστημα αναμονής με πλήρη εκκαθάριση σε εναλλασσόμενο περιβάλλον
(Οικονόμου και Μάνου (2013) )

• Σύστημα εξυπηρέτησης ρευστού σε εναλλασσόμενο περιβάλλον
(Οικονόμου και Μάνου (2016) )

Μ/Μ/1 ουρά με αναξιόπιστο υπηρέτη

Θεωρούμε πρώτα μια M/M/1 ουρά με αναξιόπιστο υπηρέτη, ο οποίος εναλ-
λάσσεται ανάμεσα σε ενεργή και ανενεργή κατάσταση, με τη διάρκεια της κάθε
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κατάστασης να ακολουθεί εκθετική κατανομή με ρυθμό ζ και θ ανίστοιχα. Οι
πελάτες φτάνουν στο σύστημα σύμφωνα με μια διαδικασία Poisson με ρυθμό λ.
΄Οταν ο υπηρέτης βρίσκεται στην ενεργή κατάσταση, ο χρόνος εξυπηρέτησης

ακολουθεί την εκθετική κατανομή με ρυθμό µ, ενώ στην ανενεργή κατάσταση
δεν εξυπηρετεί. Οι πελάτες λαμβάνουν R μονάδες ωφέλειας όταν ολοκληρώνε-
ται η εξυπηρέτησή τους και υπόκεινται σε κόστος C ανά μονάδα χρόνου. Οι
πελάτες αποφασίζουν αν θα εισέλθουν ή αν θα αποχωρήσουν τη στιγμη που

φτάνουν στο σύστημα και η απόφασή τους είναι αμετάκλητη. Εξετάζουμε τη

συμπεριφορά των πελατών, όταν βελτιστοποιούν το καθαρό κέρδος τους, σε δύο

διαφορετικά επίπεδα πληροφόρησης, στην παρατηρήσιμη ουρά και στη μερικώς

παρατηρήσιμη ουρά.

Στην παρατηρήσιμη περίπτωση, καταλήγουμε ότι η βέλτιστη στρατηγική

είναι της μορφής (ne(0), ne(1)) που είναι ένα ζεύγος στρατηγικών κατωφλίου.
΄Οταν ένας πελάτης παρατηρεί τον υπηρέτη στην ανενεργή κατάσταση υιοθετεί

ne(0)-στρατηγική κατωφλίου, ενώ όταν παρατηρεί τον υπηρέτη στην ενεργή κα-
τάσταση υιοθετεί ne(1)-στρατηγική κατωφλίου. Η στρατηγική αυτή είναι ασθε-
νώς κυριαρχούσα στρατηγική καθώς είναι βέλτιστη απάντηση έναντι οποιασ-

δήποτε στρατηγικής των άλλων πελατών. Επίσης, ισχύει ότι ne(0) < ne(1),
καθώς όταν ένας αφικνούμενος πελάτης παρατηρεί τον υπηρέτη στην ανενεργή

του κατάσταση, θα υποστεί ένα επιπλέον κόστος αναμονής μέχρι την ενεργο-

ποίησή του.

Για τη μελέτη της μερικώς παρατηρήσιμης περίπτωσης, χρειαζόμαστε τη στάσι-

μη κατανομή του συστήματος. Υποθέτουμε ότι οι πελάτες ακολουθούν μία

στρατηγική κατωφλίου ne και υπολογίζουμε τη στάσιμη κατανομή του συστήμα-
τος μέσω των εξισώσεων ισορροπίας. ΄Επειτα, υπολογίζοντας το αναμενόμενο

καθαρό κέρδος ενός επιλεγμένου πελάτη, ενώ οι υπόλοιποι ακολουθούν μια

ne-στρατηγική κατωφλίου, μελετώντας τις ιδιότητες των συναρτήσεων πληρω-
μής του επιλεγμένου πελάτη, καταλήγουμε ότι η στρατηγική ισορροπίας είναι

οποιαδήποτε στρατηγική κατωφλίου με κατώφλι ne ∈ {nL, nL + 1, ..., nU}, με
τα nL και nU να προκύπτουν από τις ιδιότητες της συνάρτησης πληρωμής. Η
ύπαρξη πολλαπλών στρατηγικών ισορροπίας είναι ένδειξη πως οι πελάτες συμπε-

ριφέρονται σύμφωνα με το πλήθος (ΣΤΠ), δηλαδή όταν οι υπόλοιποι πελάτες

υιοθετούν ένα υψηλότερο ή αντίστοιχα χαμηλότερο κατώφλι, το ίδιο κάνει και

ο επιλεγμένος πελάτης.

Σύστημα αναμονής με πλήρη εκκαθάριση σε εναλλασσόμε-

νο περιβάλλον

Το επόμενο σύστημα που μελετάμε είναι ένα σύστημα αναμονής με εκκαθάριση

σε μεταβαλλόμενο περιβάλλον. Μπορούμε να σκεφτόμαστε ένα τέτοιο σύστημα

σαν έναν σταθμό ενός μεταφορικού μέσου, όπου οι πελάτες εισέρχονται στο

σταθμό και εξυπηρετούνται όλοι μαζί, ταυτόχρονα και ακαριαία, όταν το μέσο

επισκέπτεται το σταθμό. Το περιβάλλον του μέσου μεταφοράς έχει δύο κα-

ταστάσεις : α) στην κατάσταση 1 οι πελάτες φθάνουν στο σταθμό σύμφωνα
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με μία διαδικασία Poisson ρυθμού λ1 και ο χρόνος εξυπηρέτησης ακολουθεί
εκθετική κατανομή με ρυθμο µ1 β) στην κατάσταση 2 οι πελάτες φθανουν με
μία διαδικασία Poisson ρυθμού λ2 και ο χρόνος εξυπηρέτησης ακολουθεί εκθε-
τική κατανομή με ρυθμό µ2. Κατά την ολοκλήρωση της εξυπηρέτησης τους οι
πελάτες λαμβάνουν R μονάδες ωφέλειας και κατά την αναμονή τους υφίστανται
ένα κόστος C μονάδων ανά χρονική μονάδα. Οι πελάτες αποφασίζουν αν θα
εισέλθουν ή θα αποχωρήσουν από το σύστημα κατα την άφιξή τους και αυτές

οι αποφάσεις είναι αμετάκλητες. Αναζητούμε τις στρατηγικές ισορροπίας των

πελατών για το δίλημμα εισόδου-αποχώρησης από το σύστημα στα παρακάτω

επίπεδα πληροφόρησης :α) παρατηρήσιμη περίπτωση, β) μερικώς παρατηρήσι-

μη περίπτωση γ) μερικώς μη παρατηρήσιμη περίπτωση δ) μη παρατηρήσιμη

περίπτωση. Η μεθοδολογία για την εύρεση στρατηγικών ισορροπίας των πε-

ριπτώσεων α), γ), δ) είναι παρόμοια και αυτές τις περιπτώσεις τις εξετάζουμε

μαζί, ενώ η περίπτωση β) που είναι η πιο ενδιαφέρουσα εξετάζεται μόνη της.

Μη παρατηρήσιμη περίπτωση

Στη μη παρατηρήσιμη περίπτωση, η κυριαρχούσα στρατηγική εξαρτάται από τη

σχέση της τιμής του κλάσματος
R
C με μία κρίσιμη τιμή, η οποία εξαρτάται από

το μέσο χρόνο παραμονής του πελάτη στο σύστημα. Αν η τιμή του
R
C είναι

μικρότερη από τη κρίσιμη τιμή, οι πελάτες πάντα αποχωρούν από το σύστημα,

αν η τιμή του
R
C είναι ίση με τη κρισιμη τιμή είναι αδιάφοροι ως προς το αν θα

εισέλθουν ή όχι και αν η τιμή του
R
C είναι μεγαλύτερη από την κρίσιμη τιμή, οι

πελάτες πάντα εισέρχονται στο σύστημα.

Μερικώς μη παρατηρήσιμη περίπτωση

Στο μερικώς μη παρατηρήσιμο μοντέλο, αν οι χρόνοι εξυπηρέτησης έχουν δια-

φορετικό ρυθμό, δηλαδή µ1 6= µ2, τότε έχουμε μία γρήγορη λειτουργία του
υπηρέτη και μια αργή. Καθώς οι πελάτες παρατηρούν την κατάσταση του υπη-

ρέτη κατά την άφιξή τους, η κυριαρχούσα στρατηγική εξαρτάται απο τη σχετική

τιμή του
R
C ως προς δύο κρίσιμες τιμές που αντιστοιχούν στη γρήγορη και στην

αργή λειτουργία αντίστοιχα. ΄Εχουμε τις παρακάτω περιπτώσεις.

• Αν το R
C είναι μικρότερο από τη μικρότερη κρίσιμη τιμή, τότε ο πελάτης

πάντα αποχωρεί από το σύστημα.

• Αν το RC είναι ίσο με τη μικρότερη κρίσιμη τιμή, τότε ο πελάτης πάντα απο-
χωρεί, αν το σύστημα βρίσκεται στην αργή λειτουργία και είναι αδιάφορος

ως προς το να εισέλθει ή όχι όταν παρατηρεί την γρήγορη λειτουργία.

• Αν το R
C είναι ανάμεσα στις δύο κρίσιμες τιμές, τότε ο πελάτης πάντα

αποχωρεί, αν το σύστημα βρίσκεται στην αργή λειτουργία και πάντα ει-

σέρχεται όταν παρατηρεί την γρήγορη λειτουργία.
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• Αν το R
C είναι ίσο με τη μεγαλύτερη κρίσιμη τιμή, τότε ο πελάτης είναι

αδιάφορος ως προς το αν θα εισέλθει στο σύστημα όταν παρατηρεί τον

υπηρέτη στην αργή λειτουργία και πάντα εισέρχεται στο συστημα όταν

παρατηρεί τον υπηρέτη στη γρήγορη λειτουργία.

• Αν το RC είναι μεγαλύτερο από τη μεγαλύτερη κρίσιμη τιμή, τότε ο πελάτης
πάντα εισέρχεται στο σύστημα.

Αν οι χρόνοι εξυπηρέτησης έχουν ίδιο ρυθμό, τότε οι δυο κρίσιμες τιμές συ-

μπίπτουν και οι στρατηγικές ισορροπίας των πελατών όταν παρατηρούν την

κατάσταση του υπηρέτη είναι παρόμοιες με την μη παρατηρήσιμη περίπτωση.

Παρατηρήσιμη περίπτωση

Στην παρατηρήσιμη περίπτωση, ο χρόνος παραμονής των πελατών εξαρτάται

μόνο από την κατάσταση του υπηρέτη και όχι από το πλήθος των πελατών στο

σύστημα και έτσι το πλήθος των πελατών θεωρείται περιττή πληροφορία και

αγνοείται. Οπότε οι ανάλυση είναι ακριβώς η ίδια με τη μερικώς μη παρατηρήσιμη

περίπτωση.

Μερικώς παρατηρήσιμη περίπτωση

Στην μερικώς παρατηρήσιμη περίπτωση, οι αφικνούμενοι πελάτες παρατηρούν

το πλήθος των πελατών πριν εισέλθουν στο σύστημα. Αν και το πλήθος των

πελατών δεν επηρεάζει τον μέσο χρόνο παραμονής ενός πελάτη στο σύστημα

άμεσα, δίνει κάποια πληροφορία για την κατάσταση του συστήματος. Ορίζουμε

ως ρi = λi
µi
το μέτρο συνωστισμού του συστήματος στην κατάσταση i = 1, 2.

΄Εχουμε τις παρακάτω περιπτώσεις:

• (µ1−µ2)(ρ1−ρ2) < 0, όπου όταν ένας αφικνούμενος πελάτης παρατηρεί
μια συνωστισμένη κατάσταση του συστήματος, αυξάνεται η πιθανότητα

ο υπηρέτης να βρίσκεται στην αργή λειτουργία. Συνεπώς, όταν βλέπει

υψηλό αριθμό πελατών στο σύστημα, ένας επιλεγμένος πελάτης είναι λι-

γότερο διαθετιμένος να εισέλθει, άρα περιμένουμε να ακολουθήσει μια

στρατηγική κατωφλίου.

• (µ1−µ2)(ρ1−ρ2) > 0, όπου όταν ένας αφικνούμενος πελάτης παρατηρεί
μια συνωστισμένη κατάσταση του συστήματος, αυξάνεται η πιθανότητα

ο υπηρέτης να βρίσκεται στην γρήγορη λειτουργία. Σε αυτή την περίπτω-

ση, όταν βλέπει υψηλό αριθμό πελατών στο σύστημα, ένας επιλεγμένος

πελάτης είναι περισσότερο διαθετιμένος να εισέλθει, άρα περιμένουμε να

ακολουθήσει μια στρατηγική αντιστρόφου κατωφλίου, υπό την οποία ένας

παίκτης εισέρχεται στο σύστημα όταν παρατηρεί πάνω από ένα συγκεκρι-

μένο αριθμό πελατών.

• (µ1 − µ2)(ρ1 − ρ2) = 0, όπου δεν έχει νόημα ο διαχωρισμός ανάμεσα σε
λιγότερο ή περισσότερο συνωστισμένη κατάσταση.
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Περίπτωση 1: (µ1 − µ2)(ρ1 − ρ2) < 0

Από τη διαισθητική συζήτηση που έγινε παραπάνω, σε αυτή την περίπτωση α-

ναζητούμε στρατηγικές ισορροπίας στην κλάση των στρατηγικών κατωφλίου.

Υπολογίζοντας τη στάσιμη κατανομή του συστήματος υπό τις πιθανές στρα-

τηγικές κατωφλίου που υποθέτουμε πως ακολουθούν οι υπόλοιποι πελάτες,

βρίσκουμε τη συνάρτηση πληρωμής ενός επιλεγμένου πελάτη ενάντια σε αυ-

τές τις στρατηγικές. Ορίζοντας ως HU (n) τη συνάρτηση πληρωμής ενός επι-
λεγμένου πελάτη όταν οι υπόλοιποι πελάτες ακολουθούν μία μεικτή ή καθαρή

στρατηγική n0-κατωφλίου και ο επιλεγμένος πελάτης παρατηρεί n < n0 πε-
λάτες, αποδεικνύουμε μια σειρά από ιδιότητες για τις συναρτήσεις πληρωμής

υπό οποιαδήποτε στρατηγική κατωφλίου και έχουμε τις παρακάτω περιπτώσεις

:

Περίπτωση Α : HU (0) < 0
Υπάρχει μοναδική στρατηγική ισορροπίας, η d0e στρατηγική(πάντα να
αποχωρεί).

Περίπτωση Β : HU (0) ≥ 0. και limn→∞H
U (n) < 0.

Τότε, υπάρχουν πάντα καθαρές στρατηγικές ισορροπίας. Επιπλέον, οι

στρατηγικές ισορροπίας μέσα στην κλάση όλων των καθαρών στρατηγι-

κών είναι οι στρατηγικές dn0e με n0 ανάμεσα σε δυο ακραίες τιμές nL
και nU . Επίσης, οι στρατηγικές ισορροπίας μέσα στην κλάση των αμιγώς
μικτών στρατηγικών είναι οι στρατηγικές dn0, θ(n0)e με n0 ανάμεσα σε
δύο ακραίες τιμές n+L και n

−
U −1 και θ(n0) η μοναδική τιμή του θ που μη-

δενίζει την αναμενόμενη πληρωμή του πελάτη, όταν παρατηρεί n0 πελάτες
στο συστημα και οι υπόλοιποι πελάτες ακολουθούν μεικτή στρατηγική με

κατώφλι n0.

Περίπτωση Γ : limn→∞H
U (n) ≥ 0.

Τότε, υπάρχει πάντα στρατηγική ισορροπίας, η d∞e-στρατηγική (πάντα
να εισέρχεται).

Περίπτωση 2: (µ1 − µ2)(ρ1 − ρ2) < 0

Σε αυτήν την περίπτωση αναζητούμε στρατηγικές ισορροπίας στην κλάση των

στρατηγικών αντιστρόφου κατωφλίου. Μια καθαρή στρατηγική n0-κατωφλίου
bn0c υπαγορεύει σε έναν πελάτη να εισέρχεται όταν παρατηρεί n ≥ n0 άτομα
στο σύστημα και να αποχωρεί αλλιώς. Μια μικτή στρατηγική κατωφλίου bn0, θc
υπαγορεύει στους πελάτες να εισέρχονται όταν παρατηρούν n > n0, να εισέρ-
χονται με πιθανότητα θ αν παρατηρούν n0 πελάτες και να αποχωρούν αλλιώς.
Ακολουθώντας παρόμοια ανάλυση με την περίπτωση 1, έχουμε τα παρακάτω

αποτελέσματα :

Περίπτωση Α: HU (0) > 0
Τότε, υπάρχει μοναδική στρατηγική ισορροπίας αντιστρόφου κατωφλίου, η
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στρατηγική b0c.
Περίπτωση Β: HU (0) ≤ 0 και limn→∞H

U (n) > 0.
Εδώ, ανάλογα με τις παραμέτρους του συστήματος, υπάρχει μοναδική στρατη-

γική ισορροπίας αντιστρόφου κατωφλίου και μπορεί να είναι της μορφής b0c ,
b∞c ή b0, θ(0)c.
Περίπτωση Γ: limn→∞H

U (n) ≤ 0. Τότε, υπάρχει μοναδική στρατηγική
ισορροπίας αντιστρόφου κατωφλίου, η b∞c στρατηγική.

Περίπτωση 3: (µ1 − µ2)(ρ1 − ρ2) = 0

Στην τελευταία περίπτωση δεν υπάρχει γρηγορότερη ή λιγότερο συνωστισμένη

κατάσταση του συστήματος και η πληροφορία του αριθμού των πελατών που

παρατηρεί ένας αφικνούμενος πελάτης δεν επηρεάζει την απόφαση του. ΄Εχουμε

τις παρακάτω περιπτώσεις:

Περίπτωση Α: HU (0) < 0
Τότε, η μοναδική στρατηγική ισορροπίας μέσα στην κλάση των στρατηγικών

κατωφλίου και αντιστρόφου κατωφλίου είναι η d0e ≡ b∞c (πάντα αποχωρεί)
Περίπτωση Β: HU (0) = 0
Τότε, κάθε στρατηγική στην κλάση των στρατηγικών κατωφλίου και αντίστρο-

φου κατωφλίου είναι στρατηγική ισορροπίας.

Περίπτωση Γ: HU (0) > 0.
Τότε, η μοναδική στρατηγική ισορροπίας μέσα στη κλάση των στρατηγικών

κατωφλίου και αντίστροφου κατωφλίου είναι η d∞e ≡ b0c στρατηγική (πάντα
να εισέρχεται).

Σύστημα εξυπηρέτησης ρευστού σε εναλλασσόμε-

νο περιβάλλον

Το τελευταίο σύστημα που μελετάμε είναι ένα σύστημα εξυπηρέτησης ρευστού

σε εναλλασσόμενο περιβάλλον. ΄Ενα σύστημα εξυπηρέτησης ρευστού (ή ουρά

ρευστού) είναι ένα σύστημα εισόδου-εξόδου, όπου οι πελάτες μοντελοποιούνται

ως ένα ρευστό που εισέρχεται και εξέρχεται από το χώρο εξυπηρέτησης. Θεω-

ρούμε ότι ο υπηρέτης εναλλάσσεται μεταξύ δυο καταστάσεων i, μιας γρήγορης
(i = 1) και μιας αργής (i = 0), με ρυθμό q1 και q0 αντίστοιχα. Ο ρυθμός
εισόδου του ρευστού είναι λ και ο ρυθμός εξόδου είναι µ1 στη γρήγορη κα-
τάσταση και µ0 αλλιώς. Θεωρούμε ότι 0 < µ0 < µ1. Η ολοκλήρωση της
εξυπηρέτησης ενός πελάτη αξίζει R μονάδες ωφέλειας και το κόστος αναμο-
νής είναι C ανά μονάδα χρόνου. Εξετάζουμε δυο επίπεδα πληροφόρησης, την
παρατηρήσιμη περίπτωση και τη μερικώς παρατηρήσιμη περίπτωση.
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Παρατηρήσιμη περίπτωση

Στρατηγικές ισορροπίας

Σε αυτή την περίπτωση, ένας αφικνούμενος πελάτης παρατηρεί και το επίπεδο

του ρευστού x και την κατάσταση του υπηρέτη i. Θέλουμε να υπολογίσουμε το
αναμενόμενο καθαρό κέρδος ενός επιλεγμένου πελάτη U = R− CSi(x), όπου
με Si(x) ορίζουμε το μέσο χρόνο παραμονής ενός πελάτη στο σύστημα όταν
αυτός παρατηρεί τη στάθμη του ρευστού στο επίπεδο x και τον υπηρέτη στην
κατάσταση i, κατά την άφιξή του. Για να υπολογίσουμε λοιπόν το αναμενόμε-
νο κέρδος ενός επιλεγμένου πελάτη, πρέπει να υπολογίσουμε το μέσο χρόνο

παραμονής του στο σύστημα, το οποίο το κάνουμε δεσμεύοντας ως προς τον

χρόνο παραμονής του υπηρέτη στην κατάσταση i. ΄Ενας επιλεγμένος πελάτης
εισέρχεται στο σύστημα όταν Si(x) > R

C , αποχωρεί όταν Si(x) < R
C και είναι

αδιάφορος ως προς την είσοδο ή αποχώρηση από το σύστημα αν Si(x) = R
C .

Παρατηρώντας ότι η Si(x) είναι αύξουσα συνάρτηση στο [0,∞) και έχει εικόνα
το διάστημα [0,∞), η εξίσωση Si(x) = R

C έχει μοναδική λύση xe(i). ΄Αρα η
στρατηγική ισορροπίας ορίζεται απο τα δύο κατώφλια (xe(0), xe(1)).

Κοινωνική βελτιστοποίηση

Συνεχίζουμε στον υπολογισμό των κοινωνικά βέλτιστων στρατηγικών. Αρχι-

κά, παρατηρούμε ότι αν η στάθμη του ρευστού x(t) είναι xe(i) όταν ο υπηρέτης
βρίσκεται στην κατάσταση i, οποιαδήποτε στρατηγική είναι βέλτιστη. Για τον
υπολογισμό της μέσης κοινωνικής ωφέλειας θα υποθέσουμε ότι στην κατάστα-

ση (xe(i), i) ένα ποσοστό min{1, µiλ } των αφικνούμενων πελατών εισέρχεται
στο σύστημα, δηλαδή εισέρχεται τέτοιο ποσοστό ώστε η στάθμη του ρευστού

να παραμένει στο επίπεδο xe(i). Ξεκινάμε υπολογίζοντας τη στάσιμη κατανο-
μή του συστήματος όταν οι πελάτες ακολουθούν μια στρατηγική κατωφλίου

(x∗(0), x∗(1)), όπου x∗(0) < x∗(1). Καταλήγουμε στις παρακάτω περιπτώσεις:

1. λ > µ1: Το ρευστό ταλαντεύεται στο διάστημα [x∗(0), x∗(1)].

2. λ = µ1: Το ρευστό σταθεροποιείται στο x∗(0).

3. µ2 < λ < µ1: Το ρευστό ταλαντεύεται στο διάστημα [0, x∗(0)].

4. λ ≤ µ2: Το ρευστό σταθεροποιείται στο 0.

΄Εχοντας υπολογίσει τη στάσιμη κατανομή, υπολογίζουμε το μέσο κοινωνικό

όφελος ανα χρονική μονάδα το οποίο δίνεται για κάθε μια από τις παραπάνω

περιπτώσεις από τη σχέση λeffR− CE(x), όπου το λeff είναι ο πραγματικός
ρυθμός εισόδου των πελατών που εισέρχεται στο σύστημα υπό τη στρατηγική

(x∗(0), x∗(1)) και E(x) είναι η μέση στάθμη του ρευστού υπό τη στρατηγική
(x∗(0), x∗(1)).
Στις περιπτώσεις (1) και (2), ο πραγματικός ρυθμός άφιξης πελατών είναι

ανεξάρτητος από τη στρατηγική (x∗(0), x∗(1)) και ισούται με το μέσο ρυθμό
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εξυπηρέτησης µ, καθώς ο υπηρέτης εξυπηρετεί στη μέγιστη δυνατότητά του και
στις δυο καταστάσεις, αφού ο ρυθμός άφιξης του ρευστού είναι μεγαλύτερος

και από τους δυο ρυθμούς εξυπηρέτησης. ΄Αρα, στην περίπτωση (1), η κοινω-

νικά βέλτιστη στρατηγική είναι η (0, 0), ενώ στην περίπτωση (2), η κοινωνικά
βέλτιστη στρατηγική είναι οποιαδήποτε στρατηγική (0, x) με x ≥ 0.
Στην περίπτωση (4), ο ρυθμός άφιξης των πελατών είναι μικρός σε σχέση

με τους ρυθμούς εξυπηρέτησης και οι πελάτες παρατηρούν το ρευστό πάντα

στο επίπεδο 0. Συνεπώς, η κοινωνικά βέλτιστη στρατηγική είναι να εισέρχεται

πάντα ένας αφικνούμενος πελάτης, αφού λαμβάνει το κέρδοςR και έχει μηδενικό
κόστος αναμονής.

Στην περίπτωση (3), παρατηρούμε ότι η μέση κοινωνική ωφέλεια είναι ανε-

ξάρτητη του x∗(1). Καθώς το x∗(0) αυξάνεται έχουμε ένα κοινωνικά θετικό
αποτέλεσμα, την αύξηση του πραγματικού ρυθμού εισόδου του ρευστού στο

σύστημα, και ένα κοινωνικά αρνητικό αποτέλεσμα που είναι η αύξηση της μέσης

στάθμης του ρευστού. Συνεπώς η συμπεριφορά της συνάρτησης της μέσης κοι-

νωνικής ωφέλειας εξαρτάται από το βαθμό που επηρεάζονται αυτές οι ποσότη-

τες.

Η μερικώς παρατηρήσιμη περίπτωση

Στρατηγικές ισορροπίας

Σε αυτό το κομμάτι εντοπίζουμε τις στρατηγικές ισορροπίας των πελατών που

φτάνουν στο σύστημα και παρατηρούν τη στάθμη του ρευστού χωρίς να παρα-

τηρούν την κατάσταση του υπηρέτη. Η στρατηγική ισορροπίας εδώ είναι ένα

κατώφλι xe , δηλαδή οι πελάτες εισέρχονται όταν παρατηρούν τη στάθμη του
ρευστού κάτω από το xe, αποχωρούν όταν η στάθμη του ρευστού είναι πάνω
από το xe και όταν παρατηρούν τη στάθμη του ρευστού στο επίπεδο xe εισέρ-
χεται ένα ποσοστό πελατών έτσι ώστε η στάθμη να παραμένη σταθερή. Για να

υπολογίσουμε το κατώφλι xe πρέπει να υπολογίσουμε πρώτα το μέσο χρόνο πα-
ραμονής ενός πελάτη στο σύστημα, όταν παρατηρεί το ρευστό στη στάθμη x και
οι υπόλοιποι πελάτες ακολουθούν στρατηγική κατωφλίου x∗. Υπολογίζουμε τη
στάσιμη κατανομή του ρευστού και δεσμεύοντας ως προς την κατάσταση του

ρευστού όταν παρατηρούμε στάθμη x έχουμε ότι ο μέσος χρόνος παραμονής
ενός πελάτη είναι

S(x;x∗) =

i=1∑
i=0

π(i|x;x∗)Si(x),

όπου π(i|x;x∗) είναι η πιθανότητα ο υπηρέτης να είναι στην κατάσταση i ενώ
ένας αφικνούμενος πελάτης παρατηρεί στάθμη x υπό τη στρατηγική κατωφλίου
x∗ και Si(x) ο μέσος χρόνος παραμονής του πελάτη στο σύστημα ενώ ο υπη-
ρέτης βρίσκεται στην κατάσταση i και η στάθμη του ρευστού είναι στο επίπεδο
x. Η στάσιμη κατανομή της στάθμης του ρευστού στη μερικώς παρατηρήσιμη
περίπτωση ταυτίζεται με τη στάσιμη κατανομή της παρατηρήσιμης περίπτωσης

όταν θέσουμε x∗(0) = x∗(1) = x∗.
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Η συνάρτηση κέρδους ενός πελάτη δίνεται από τη σχέση R − CS(x;x∗). ΄Ο-
ταν ο ρυθμός λ είναι μεγαλύτερος από το ρυθμό γρήγορης εξυπηρέτησης µ1,
το ρευστό ισορροπεί στη στάθμη x∗. Συνεπώς, κάθε αφικνούμενος πελάτης
παρατηρεί το ρευστό στη στάθμη x∗ και έτσι δεν του δίνεται κάποια πληρο-
φορία για την κατάσταση του υπηρέτη. Το κατώφλι δίνεται από τη λύση της

εξίσωσης R− CS(x;x∗) = 0. Στην περίπτωση όπου ο ρυθμός άφιξης των πε-
λατών βρίσκεται ανάμεσα στους ρυθμούς εξυπηρέτησης µ0, µ1, αποδεικνύουμε
ότι υπάρχει μοναδική λύση στην εξίσωση R−CS(x;x∗) = 0 η οποία αποτελεί
το κατώφλι x∗. Τέλος, αν ο ρυθμός λ είναι μικρότερος του ρυθμού µ0, το
σύστημα παραμένει πάντα στη στάθμη 0 και οι πελάτες πάντα εισέρχονται.

Κοινωνική βελτιστοποίηση

Για να υπολογίσουμε τη μέση κοινωνική ωφέλεια ανά χρονική μονάδα, χρησι-

μοποιούμε τη συνάρτηση κοινωνικής ωφέλειας της παρατηρήσιμης περίπτωσης

θέτοντας x∗(0) = x∗(1) = x∗. Καταλήγουμε λοιπόν ότι στην περίπτωση που
ο ρυθμός λ είναι μεγαλύτερος από το ρυθμό γρήγορης εξυπηρέτησης µ1, η
κοινωνικά βέλτιστη στρατηγική είναι το κατώφλι 0. ΄Οταν ο ρυθμός άφιξης

των πελατών βρίσκεται ανάμεσα στους ρυθμούς εξυπηρέτησης µ0, µ1 η κάθε
στρατηγική x∗ είναι κοινωνικά βέλτιστη στη μερικώς παρατηρήσιμη περίπτωση
αν και μόνο αν η στρατηγική (x∗, x

′
∗) με x

′
∗ > x∗ είναι κοινωνικά βέλτιστη

στην παρατηρήσιμη περίπτωση. Τέλος, αν ο ρυθμός λ είναι μικρότερος του
ρυθμού µ0 κάθε στρατηγική κατωφλίου x∗ είναι κοινωνικά βέλτιστη. Παρατη-
ρούμε ότι οι κοινωνικά βέλτιστες στρατηγικές συμπίπτουν και στα δυο επίπεδα

πληροφόρησης.

Τιμή της αναρχίας

Η τιμή της αναρχίας ποσοτικοποιεί την απόκλιση των στρατηγικών ισορρο-

πίας από τις κοινωνικά βέλτιστες στρατηγικές. Στην παρατηρήσιμη περίπτωση

ορίζεται ως το κλάσμα

PoA =
B(x∗(0), x∗(1))

B(xe(0), xe(1))
,

δηλαδή το κλάσμα με αριθμητή την μέση κοινωνική ωφέλεια ανα χρονική μο-

νάδα υπό κοινωνικά βέλτιστες στρατηγικές προς την μέση κοινωνική ωφέλεια

ανά χρονική μονάδα υπό στρατηγικές ισορροπίας. Αντίστοιχα, στη μερικώς πα-

ρατηρήσιμη περίπτωση η τιμή της αναρχίας δίνεται από το κλάσμα PoA = B(x∗)
B(xe)

.

Εξετάζοντας αυτά τα κλάσματα σε σχέση με το ρυθμό άφιξης λ καταλήγουμε
ότι η τιμή της αναρχίας είναι 1 για μικρές τιμές του λ και πέρνοντας το όριο
καθώς το λ τείνει στο άπειρο τη τιμή της αναρχίας φράσεται από κάποιον αριθμό.
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