THE ELLIPSOIDAL HARMONICS

IN SOLVING
INVERSE SCATTERING PROBLEMS

ARKOUDIS IOANNIS -

National and Kapodistrian University of Athens
Department of Mathematics

MSc Thesis in Applied Mathematics

October 30, 2018



Abstract

The main subject of this study is the solution of inverse acoustic and electromagnetic scat-
tering problems for ellipsoids using the ellipsoidal harmonics. The scattering problems of
time-harmonic acoustic and electromagnetic plane waves by an ellipsoidal scatterer for vari-
ous boundary conditions imposed on its surface are considered. The study of the ellipsoidal
coordinate system, leads to the definition of the ellipsoidal harmonics, which enter in the scat-
tering problems via the low-frequency theory. The methodology which leads to the derivation
of low-frequency approximations for ellipsoids is presented. Inverse scattering problems for
acoustic and electromagnetic waves for an ellipsoidal scatterer are described. A finite number
of measurements of far-field data or near-field data leads to the specification of the size and the
orientation of an unknown ellipsoidal scatterer. For the case of penetrable scatterer, physical
parameters of its interior are also obtained. Corresponding results for the cases of the sphere
and the spheroid are derived, considering them as geometrically degenerate cases of the ellipsoid
for appropriate values of its geometrical parameters.

ITepiindn

H napoloa Simhowpotin epyaoior €xel we xevipxd Véua TV emALOT avIoTEOPWY TEOBANUATODY
OXEDUONG OXOUGTIXDY O NAEXTEOUAYVATIXWY XUUATWY Yoo eEMeupoeldy) ue yerorn tov eAieupocet-
0wV apuovixwy cuvapTthoewy. Ilepypdpovion Tor TEOPARUATH OXEBAONC ETUTEDDY OXOUCTIXWY oL
NAEXTEOUAY YNTIXWDY XUPATWY UE opUovixy yeovixt| e€dpTtnom yia eAAELPOEdES oXEdUa TN e Bidpo-
eec ouvoplaxéc ouvifixec. H uerétn tou ehherdoelbolc cuGTAUATOC GUVTETAYUEVWY, 0BNYEL OTOV
0pIoUO TWV EMEUPOEBMY 0pUOVIXGDY, oL oTtoleg uTElépyovTol oTta TEoBrjuata oxéduong PEow TNg
Yewplag yaunAoy cuyvotitev. Iapoucidleton 1 Siadacia Tou axohovdeital Yol TOV UTOAOYIOUO
TWV TPOCEYYIGEWY YoUNADOY GUYVOTHTLY Yia ehherpoetdr|. Tleprypdpovton o avtiotpoga TpoBiruo-
o oxédoong Y ehherpoetdelc oxedaotéc. Ilenepaouévos aprduds HETEHOEMY BEBOUEVKDY HoXEVOD
nediou 1} xovtivol mediou, 0dnyoly GTOV TEOGOLOPLOUO TOL UEYEVOUC Xl TOU TEOGOVATONOUOU €-
VOC oy VOO TOU eMELPoELBOUC oxedaoTY. TNV Teplntwon dlamepatold oxedac T, tpocdiopllovtal
EMTAEOV QUOIXEC TIUEAPETEOL TOU ECMTEELXOL Tou. AvTloTolya amoTEAECUTA VLol TNV TEPIMTMON
e oalpag xaL Tou opoupoetdol UTohoYI{ovTon VewpE®VTIS To OYAUATA QUTA WE YEWUETELXOVUS
EXPUAOHOUC TOU EAAELPOELBOUC VLol XATAAANAES TYES TWV YEWUETELXWY TUPAUUETOWY TOL.
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Chapter 0

Introduction

In 1782 Laplace derived the Laplace equation. The solution of this equation led to the theory
of the harmonic functions starting with the solutions of Legendre and Laplace in 1785, both
of them in spherical geometry which gave rise to the spherical harmonics. When a quantity is
independent of orientation and depends only on the distance, it can be described by a sphere
which also shows isotropy of the space with respect to this quantity. Nevertheless, when there
is dependence on the orientation, then the sphere is replaced by an ellipsoid which shows the
anisotropic character of the space. In 1837, in order to study the thermal equilibrium of an
ellipsoidal body [25], Lamé developed the theory of the ellipsoidal harmonics by introducing
the ellipsoidal coordinate system which was proven really convenient in the study of the ellip-
soids. Many years later, Niven studied the Cartesian form of the ellipsoidal harmonics [29] and
managed to reduce them to the sphero-conal harmonics as the ellipsoid reduces to a sphere at
infinity. A lot of studies about the ellipsoidal harmonics followed after that, since they consist
a really useful tool in the study of potential theory problems in the presence of anisotropy.
Moreover, the ellipsoid is a good approximation of various shapes such as spheres, spheroids,
needles and disks, which makes it appropriate for the mathematical formulation of many physi-
cal problems. Thus, the study of ellipsoidal harmonics can be helpful in various areas of science
and has a lot of significant applications. For the acoustic wave fields, some basic applications
are the sonar and the ultrasound which can be used for the detection of underwater objects and
for medical imaging respectively. For the electromagnetic wave fields, since the shape of the
brain can be approximated by an ellipsoid, two popular applications are the EEG and EMG
in the area of medical imaging and another popular application is the radar for the detection
of underground objects. For the case of the elastic waves, there are also a lot of significant
applications like structural analysis. Moreover, when the thermal factor enters the problems
we have the corresponding applications for the thermoelastic waves. In the present work, we
study inverse scattering problems for ellipsoids by using low-frequency theory which allows the
introduction of ellipsoidal harmonics into the scattering theory. Specifically, we use the theory
of ellipsoidal harmonics in order to calculate the low-frequency approximations which can be
used for the specification of geometrical and physical characteristics of an unknown ellipsoidal
scatterer.

In chapter 1 we study the ellipsoidal coordinate system and its basic properties. Next,
we express the basic differential operators in this system which finally leads to the Laplace
equation. The separation of variables leads to the ordinary differential equation known as the
Lamé equation with solutions known as Lamé functions. After calculating the polynomials that
compose the Lamé functions, we proceed into the definition of the interior and the exterior
ellipsoidal harmonics. Next, we study the surface ellipsoidal harmonics and the orthogonality
relations that they satisfy. These orthogonality relations are the basic tool for the derivation
of the low-frequency approximations for the solutions of the scattering problems for ellipsoidal
scatterers. In the last section we derive the general form of Laplace equation in orthogonal
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curvilinear coordinate systems which allows us to obtain the sphero-conal form of the Laplace
equation as well as the spherical form of the Laplace equation. The sphero-conal coordinate
system is proved to be important in the study of the ellipsoidal coordinate system, since when
the ellipsoid degenerates into a sphere, the ellipsoidal harmonics are reduced into sphero-conal
harmonics instead of spherical. This makes the sphero-conal coordinate system to act as an
intermediate between the spherical and the ellipsoidal coordinate systems. Finally, we men-
tion the basic properties of the spherical harmonics which help in further understanding some
properties of the ellipsoidal harmonics.

In chapter 2 we present the basic acoustic and electromagnetic scattering problems. Next,
in order to derive some approximations for the solutions of these problems, we use the low-
frequency theory which reduces the scattering problems into a sequence of potential theory
problem and allows the usage of the ellipsoidal harmonics for the case of ellipsoidal scatter-
ers. The properties of the ellipsoidal harmonics and mainly the orthogonality of the surface
ellipsoidal harmonics are proved to be convenient into the derivation of the approximations
for the solutions. Finally, we formulate the scattering problems for the case of the ellipsoidal
scatterer and we present the approximations of their solutions that we need in order to solve
the corresponding inverse scattering problems.

In chapter 3 we study inverse scattering problems for ellipsoids. Starting with acoustic
inverse scattering problems, we present the method that was introduced by Dassios [12]. Next,
we proceed to the electromagnetic inverse scattering problems, where we extended Dassios’s
method for a perfectly conductive ellipsoid [17], to the cases of the lossless dielectric, the lossy
dielectric and the impedance ellipsoidal scatterers using far-field data [7]. Finally, we present a
method for solving all these inverse electromagnetic scattering problems for ellipsoidal scatterers
by using near-field data and in the end we sum up the benefits of this method.



Chapter 1

Ellipsoidal Harmonics

1.1 Ellipsoidal Coordinate System

In almost every coordinate system, a point is specified by the intersection of combination of
first and second degree surfaces. For example, in the Cartesian coordinate system it is specified
by the intersection of only first degree surfaces which are the three planes and in the spherical
coordinate system it is specified by the intersection of a plane, a cone and a sphere. The
unique characteristic of the ellipsoidal coordinate system, is that every point is specified by the
intersection of 3 non-degenerate second degree surfaces.

A second degree surface is defined by the general quadratic form

3 3 3
ZZaija:imj +Zblxl+c:() (1]_)
=1

i=1 j=1
with canonical form:
iy 4 poxs 4+ pzrs =1 . (1.2)
Based on the sign of u; for ¢ = 1,2,3 we have the following three cases:
i. For 1 >0, puo >0, u3 > 0, the canonical form defines a triaxial ellipsoid |,
ii. For g1 >0, uo >0, ug < 0, the canonical form defines a hyperboloid of one sheet ,
iii. For g1 >0, po <0, pug < 0, the canonical form defines a hyperboloid of two sheets ,

while every other case leads to a degenerate form. From now on, we will always choose the
Cartesian system that reduces the quadratic to its canonical form. The axes and the planes of
this system are called principal axes and principal planes respectively.

In opposition to the spherical system which is completely specified by choosing the unit sphere,
in the ellipsoidal system the specification of the coordinate system is based on a reference
ellipsoid (which establishes the variations in angular dependence).

The reference ellipsoid is given by:

3
>
n:la

where a1, as, ag its semi-axes. The squares of the semi-focal distances of the reference ellipsoid
are the following:

NS

=1, O0<az<ar<a; <X (1.3)

St

h%:%*% ;o hy=oai—o3 , hy=o]—a; . (1.4)
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It follows that h; < ho and hs < ho but there is no specific relation between h; and hs. The
three semi-focal distances satisfy the following relation

hi—h3+h3=0 , (1.5)

therefore to characterize the ellipsoidal coordinate system we need two independent semi-focal
distances for which we take ho, hg. Since these semi-focal distances specify the ellipsoidal system
it follows that the foci of the system will be at the fixed points:

(£h2,0,0) ) (£hs,0,0) , (0,£h1,0)

Therefore the ellipsoidal system is characterized as con-focal since the foci are located at these
six points.

Based on the values of a parameter A € R we have the following relation which represents the
con-focal family of second degree surfaces:

3 af_ S=1 (1.6)

Specifically:

i. For —0o < A < a3, relation represents a family of con-focal ellipsoids .

ii. For A = a2, it represents the focal ellipse .

iii. For a% < A < a3, it represents a family of con-focal hyperboloids of one sheet (1-hyperboloids).
iv. For A = a% represents the focal hyperbola .

v. For a3 < A < o2, it represents a family of con-focal hyperboiloids of two sheets (2-
hyperboloids) .

vi. For A > a%, it does not represent a real surface.
Based on [20], we have the following proposition.

Proposition 1.1.1. For every point (x1,x2,x3), with xixoxs # 0, the cubic polynomial in A
@) has three real roots A1, Ao, A3, which are ordered as follows:

—00<A3<ai < <as <A <al

Proof. Consider the polynomial function

This function is continuously differentiable and strictly increasing in D = (—o0, a3, )U (a2, a3)U

(a2, a?). Tt can be seen by taking limy_, 2. f(A),limy_, 424 f(A), that the function f has exactly

three roots A1, A2, A3, in the intervals (—oo, a3), (a3, a3) and (a3, a?) respectively. O

This one-to-one correspondence between Ry = {(z1, z2, z3) |z12223 # 0} and P = (—oo, a%) X
(a%, a%) X (a%, a%) allows the parametrization of Ry by the vector (A1, A2, A3). In Geometry and
the Imagination by Hilbert and Cohn-Vossen the ellipsoidal system is described in a geometrical
way as the vector (A1, A2, A3) alters. It can easily be concluded that from every point passes
exactly one ellipsoid, exactly one hyperboloid of one sheet and exactly one hyperboloid of two
sheets as A\ varies from —oo to oo. These three surfaces have the same foci and constitute the
ellipsoidal coordinate system. Note that the three Cartesian planes are singular sets of the
ellipsoidal system and this is the reason they are excluded from Proposition [1.1.1
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Proposition 1.1.2. The confocal ellipsoidal system is orthogonal
Proof. Consider the arbitrary point r = (1,2, z3) and based on let:

3 22
Z _" -1 , forAg€ (—oo,oz%), (1.7)

be the ellipsoid that passes through this point,

3 2
Hy(r) =) anz_q_, for Ay € (a3, 03), (1.8)

2 _
an

n=1
be the hyperboloid of one sheet that passes through this point and

3 2
Z _" , for \ € (a3,0}), (1.9)

be the hyperboloid of two sheets that passes through this point. The normal vectors to each
one of these surfaces are given by their gradients. The corresponding gradients for each one of
these surfaces are:

2.%‘1 2.%2 21‘3
VE(r) = : 1.10
(I‘) <a% — )\3 a% — )\3 a% — )\3) ( )
2l'1 2:132 2:L'3
VH = 1.11
1(1‘) (al)\g a%*)\g ag)\2> ’ ( )
21’1 2562 2333
VH. = 1.12
0= (2 e ) (112)
Therefore since r belongs on the surfaces F of the ellipsoid and H; of the hyperboloid of one
sheet:
2%1 2%2 2373 2%1 2:1?2 2:133
VE(r)-VH =
(I‘) 1(1‘) < )\3 CL2 /\3 a3 )\3) ( )\2 a2 )\2 a3 )\2)
422 422 422
) ; 2 73 2 2 + 2
(of = Xs) (af = A2) (03 —Xs) (@3 —X2) ~ (af — Xs) ( )
_ 4 22Nz +a2 —a2— X))  23(\3+ad —ad—\o) mg()\3+a3
A3 — A2 (a% — )\3) (Oz2 — )\2) (a% - )\3) (a% — )\2) ( 2 — )\2
3 3 2 4
n = 1-1)=0.
)\3—)\2 [T; )\3 ; AQ] >\3—)\2( )=0
Similarly can be shown that VE(r) - VHa(r) = VH(r) - VHy(r) = 0. O

Having introduced the possibility of an orthogonal coordinate system based on non-degenerate
quadratic surfaces we proceed to define this system and its basic characteristics. Using Lamé’s
notation [25], let:

PP=at—X3 , pr=a3—X , VvV =ai-)\ (1.13)

be the ellipsoidal coordinates (p, i, ), which due to the interval of each root A, for n = 1,2, 3,
they satisfy the following relation:

0<ﬂ<@<ﬁ<@<ﬁ<m (1.14)

Therefore, from transformation and relations (1.6),(1.14), the families of the confocal
non-degenerate quadratic surfaces can be written as follows
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i. The family of ellipsoids ((b) in figure ([1.1))):

2 2
Ly L L3 2 2
— + + =1, p°e(hio0) , (1.15)
pe p2—h§ p2—h% (2 )

ii. The family of hyperboloids of one sheet ((c) in figure ((1.1f)):

2 2 2
€T xT x
1 T 2 =1, p’e(h3,n3) , (1.16)

proopt—hi o op? = h3

iii. The family of hyperboloids of two sheets ((d) in figure (|1.1)):

2 2 2
L1 ) L3 2 2

+ + 1, v*e(0,h3) , 1.17

2 V2 — h% V2 — h% ( 3) ( )

oSN
logs

AW
/]

flitiea
iy

(a) —

(d)

Figure 1.1: (a): the confocal ellipsoidal coordinate system, (b): ellipsoid, (c): hyperboloid of
one sheet, (d): hyperboloid of two sheets

From the system of equations (|1.15])-(1.17)) we obtain the following expressions of the squares of
the Cartesian coordinates x%, 3, ¥3 in terms of the squares of the ellipsoidal coordinates p, p, v:

29
h2
2 _ 1 2229

xl_h%h%hgpﬂy )
h,2

a:% = h%h—ghg (,02 — h%) (u2 — h%) (h% — 1/2) , (1.18)

2
W= o (2 1) (B - %) (B —0?)

hh3h3

From relations (1.18)) and (1.14) we can see the covering of the space from the three non-
degenerate quadratic surfaces. For v2 = 0 it follows that z; = 0 and therefore the zox3 plane.
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As 12 increases, the zox3 plane splits into two planes which bend towards the positive and the
negative x1 axis respectively. These two planes form the two sheets of the family of hyperboloid
of two sheets and finally collapse to the exterior of the focal hyperbola at 2 = h2. Next, starting
at p? = hZ, the interior of the focal hyperbola inflates as p? increases forming the family of
hyperboloids of one sheet and finally it collapses to the exterior of the focal ellipse u? = h3.
Finally, at p? = h3, the interior of the focal ellipsoid inflates as p? increases forming the family
of the ellipsoids which gradually deforms to a sphere at infinity.

The expressions show the quadratic symmetry between the Cartesian octants. These
symmetries, when expressed in the principal axes x1, x2, x3, are given by the following maps:

(r1,22,23) — (—x1, T2, T3) , (x1,x2,23) — (21, —22,3) , (1.19)
(z1, 2, 23) — (21, T2, —T3) , (r1,x2,23) — (—x1, —T2,73)

(r1,29,23) — (—21, T2, —T3) (r1,x9,23) — (z1, —T2,—T3)

(r1,x9,23) — (—x1, —T2,—x3) ,

Therefore, in order to specify furthermore in which of the eight octants we refer to, we need to
adapt some convention rules about the ellipsoidal angular variations. Since p is positive these
variations depend mainly on the variations of u, v as well as the positive and negative branches
of \/hZ —v2,\/h% — 12.

Although the expressions of the Cartesian coordinates x1, x2, x3 in terms of the ellipsoidal co-
ordinates p, u, v are easily deduced, the corresponding expressions of the ellipsoidal coordinates
in terms of the Cartesian coordinates are not so easily obtainable. From relations -
we observe that the ellipsoidal coordinates satisfy the same equation:

2 2 2
Ly L L3 2 12
— + =1 0, hz, h5 .
K H—hg Ii—h% K7 2

This equation can be written as a cubic polynomial which has three distinct roots k1, Ko, k3
, each one of them corresponds to the ellipsoidal coordinates with respect to v? < p? < p?.
Therefore, solving this cubic polynomial we can obtain the expressions that give the ellipsoidal
coordinates in terms of the Cartesian coordinates.

1.2 Basic Differential Operators in Ellipsoidal Geometry

Based on the previous section and specifically on relation (|1.18)), the ellipsoidal representation
of any point r € R? is the following:

v 2_h2 2_h2 h2—l/2 2_h2 h2_ 2 h2—l/2
r(p,,u,y) — (p,u \/p 3\/M 3\/ 3 \/p 2\/ 2 T H \/ 2 ) (1.20)

h2 h3 ’ h1 hg ’ hl h2

Taking the partial derivatives r,,r,,r, and using the orthogonality relations that they satisfy
r,-r,=r,-r,=r, -1, =0, we conclude that the ellipsoidal metric has the following form:

(ds)? = h2(dp)? + h(dp)? + hi(dv)® (1.21)

where h,, h,, h, are the metric coefficients given by:

2 _ 2./02 — 2
hp:||rp|:\/p2 MQ\/[; (1.22)
\/,0 —hz\/ﬂ -
2 _ 2. /02 — 2
= eyl = YUV = (1.23)
Vh = 12/ 1?13
VR — 22— 2 Lou
Vh3 —v2\/h2 =12 (1.24)
2 3

v = [lrull =
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Therefore, the local ellipsoidal coordinate system (p, 7, f1) is defined as follows:

3
~ Ty = P Tn o
— — T = — _ X R 125
Al T B Al s A (1.25)
N ry ~ v In N
= T R g (1.26)
r o’ 3 T
~ " T n A
:7:T~r:— —X, ]_27
ol = T = — el al (1.27)

where Tp, T,,, Tvﬂ the dyadics that define the Gaussian map at each point.
This local system is dextral with order p — v — u — p. The identity dyadic in ellipsoidal
coordinates has the form:

I=pRPp+ARA+DRD. (1.28)
Taking an arbitrary position vector r and using relation we get:
r-l=r (POP+AQA+DRD). (1.29)
Using the basic identity a- (b ® c¢) = (a - b)c it follows that:
r= (0 p)pt (v )it (r D). (1.30)

Since the arbitrary r satisfies relation (1.15]) for p € (hg, 00) we obtain,based on ([1.25))-(1.27)),

the relations:

3 2

P x p
p=L _ L 1.31
nr hpnz:;PQ_a%+a% hy’ 31

oo x; p
o hu;l‘z_a%+a% Iy 132

.M 5 z2 v 1

il 30 D s e (1.33)

YV on=1 1 n v

Therefore, the position vector r in ellipsoidal coordinates is given by:

h=}

p BV
_ P s, K v 1.34
W R (1.34)

The gradient operator in ellipsoidal coordinates has the following expression:

po . po 90

V=— — — . 1.35
hp8p+hu8u+hyay ( )

Let F be a vector field with ellipsoidal expression:
F=F-p)p+F -p)p+ (F-0)0=F~p+F'a+ F'D, (1.36)

then from ((1.35) we obtain:
p OF 4o OF © OF

Folfeol . P o + Z 52— 1.37
V® hp®a+hu®au+hy®ay (1.37)
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Since the order of the dextral system is (p,v, u), the curl of the vector field F in ellipsoidal
coordinates is given by:

1
VxF - o (o = o) o+ (o = ) o

hyhyhy 0 ou 0

plip v aﬂ ap (1.38)

Zh,F¥ — —h,F* ) jx

+hy, <6ph 8Vh,) > u]

and the divergence in ellipsoidal coordinates is given by:
1 0 0 0

V.F = huhy FP) 4+ — (hyh,F* hoh, FY)| . 1.39
i Lo (e F?) + 5 (uoF) + 37 () (1.39)

For the Laplacian operator, based on relation A = V - V and the form of the Laplace equation
in general curvilinear coordinates, which is proved in the last section of this chapter (1.266), by
substituting the metric coefficients ([1.22)-(1.24)), we obtain:
A ! (-1 (-1 2 - 2
(p? = p?) (p* —v?) 9p? dp
1
(17 =) (7 =2
1 2 2\ (.2 oy O 2 2 2y 0
b [(V B () v ) |

or equivalently:

A= G (W_W_h%a) (W—W_hg@)
T —ml(u " (W —13y/18 - w5 )(W —13\/1 = ) (1.41)
T —VQ)l(u 2-12) <\/h2 ”2\/h2_”2 ><\/h2_”2\/h2—’/2 )

The study of the Laplacian constitutes the basis of the Ellipsoidal Harmonics since they
arise from the solution of the Laplace equation in the ellipsoidal coordinate system. In [25],
Lamé introduced the ellipsoidal coordinates in order to study the temperature distribution of
an ellipsoid in thermal equilibrium. In order to overcome the difficulties in the solution of the
Laplace equation in ellipsoidal coordinates using separation of variables, Lamé introduced the
thermometric parameters. Specifically, based on the ellipsoidal form of the Laplace equation
(L.41)), he introduced the variables (&,7,¢) as follows:

0 0
— 2 _ K2 2 _ h2
o¢ \/p h?’\/p h2ap ’
0 0
_ 2 _ K2 2 _ 2
an = \/u h3\/h2 L o (1.42)

;C: \/hg—VZ\/h%—VZ%

and used the terminology Thermometric parameters. Using the chain rule, these three relations
transform into ordinary differential equations with solutions:

P dt

_l’_

2
S m) - g - 2 o

= , ha<p<oo |
£(p) i BTN 2 <p
= [ dt hs < <h (1.43)
ny ha \/t2 h2\/h%—t2 ) 3> U= hg o, .
, 0<v<h
/ VhE - t2\/h2—t2 ’
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Therefore, the Laplacian operator has the following expression in terms of (£, 7, ():

N S U S N SR
(p* = 12) (p* =v?) 0~ (p* —p?) (w* —v?)on* ~ (p* —v?) (W —v?)0¢> *
Correspondingly, the Laplace equation in terms of (£,7, () has the form:
0%u 0%u 0%u
2 2 2 _ .2 22 =2=0 . 1.45
W= gz + 0 =) e+ (7" 1) 5 (1.45)

It is clear that (£,7,() are themselves solutions of the Laplace’s equation and thus the nor-
mal solution u = (A1€ + By) (Aan + Bs) (As( + Bs) satisfies equation for appropriate
constants A,,B, , n = 1,2,3,. Since is inseparable, substituting the normal solution
u(p, ,v) = R(p)M ()N (v) where R depends only on variable p, M () depends only on vari-
able u and N(v) depends only on variable v, we obtain:

= v*) PR(p)  (p° —v%) M) (p° —4%) 9*N(n)
R(p)  0¢? M(p)  on? N(v)  0¢?

=0 , (1.46)

which can not be broken up by the usual method of separation of variables. If however we use
the transformation:

L62R(p) _ Zan n 1 82M(:u) _ an’un 1 82N(V) _ chyn

R(p) 0€ M(p) O N(v) 0¢?
(1.47)
and substitute in we get:
(1? —v?) Zanpn + (p* = 1?) Z o™ + (p* — p?) chun =0 |, (1.48)

from which we find that the coefficients are zero for all values of n except n = 0 and n = 2
where ag = —bg = ¢p and ay = —ba = co. Thus, the solutions of ((1.47)) are:

1 9R(p) _
R(p) 9 (0 +026%) R(p)
1 °M(p) _
M(y) o2 (0 + a2%) M (1)
9?’N (v
Nil/) 8gg ) (a0 +azv?) N(v) .

Therefore, equation (1.46]) can be broken up into the three equations:

82;2(2@ + (Ap* +B)R(p) =0 , (1.49)

- 82%&” + (Ap*+B)M(p) =0 (1.50)
9?N (v) B

e + (A’ +B)N(v) =0 , (1.51)

Based on relations ((1.40)),(1.41)) and (1.42) the above three equations can be written as:

(0* = h3) (0* = h3) R"(p) +p (20" —h3 —h3) R'(p) + (Ap*+B)R(p) =0 , (1.52)
(1® = h3) (4° = h3) M"(u) + (26 — b3 — B3) M () + (Ap®> + B) M(p) =0 ,  (1.53)
(1/2 - h%) (1/2 - h%) N'(v) +p (21/2 —h3 — hg) N'(v) + (Au2 +B)N(v) =0 (1.54)
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which are identical with only difference the intervals in which p, u, v belong to. Therefore the
ordinary differential equation that R, M, N satisfy is:

(z® — h3) (z* — h3) B" () + = (22® — h3 — h3) E'(z) + (Az® + B) E(z) =0 (1.55)

for x = p, p, v in the intervals (hg, 00), (hs, ha), (0, hs) respectively.

In order to determine the separation constant A we use the sphero-conal (or conical) system
which is studied in the last section. Applying separation of variables for the conical system
(the same way we did for the ellipsoidal system), it is observed that the radial part is the same
with the radial part of the spherical system while the angular part is the same with the angular
part of the ellipsoidal system (which means the part of M and N). Both these parts contain
the separation constant A. Using the correspondence of the radial of the conical system to the
radial part of spherical system and based on [21], we take A = —n(n+1) which is the separation
constant in the radial part of the spherical system. Hence, can be written as:

(z* — h3) (z° — h3) E"(z) + 2 (22® — h — h3) E'(z) + (B —n(n+ 1)2*) E(z) =0 , (1.56)

and the separation constant B is taken as B = (h3 + h3)p with p left to be determined in the
next section. This equation is called Lamé equations and its solutions are called Lamé functions.

1.3 Lamé Functions

Based on the spherical harmonics which are solutions of the Laplace equation, it can be
seen that P (cosf)cosme and P (cos)sinma are rational functions of uv, /p2 — h3\/h3 — v2
and /h3 — p2\/h% —v2. This leads, after calculations which can be found in [20], to the
separation of Lamé functions into four classes:

e Class K: K = P,(x) ,
e Class L: L= /|z? — h3|P,_1(x) ,
e Class M: M = /|22 — h3|Pp—1(2)

e Class N: N = /|22 — h3|\/|22 — h2|P—a(z) ,

n—2

where P,(z) = agz™ + a1z +..andx=p,u,v .

1.3.1 Lamé Functions of Class K:

Based on the form of Lamé functions of class K ((1.3)), we denote the polynomial P, with K, (x),
which has an expansion of the form:

o0
Kn(z) = apz™ + a12™ 2 + aga™ * + ... = Z ape™ 2 ag#£0 . (1.57)
k=0

This function must satisfy the Lamé equation ([1.55)) which equivalently can be written in fol-
lowing form:

(z* — aa? + B) K(z) + (22° — ax) K} (z) + [ap — n(n + 1)2*] K,(z) =0, (1.58)
where a = h3 + h% , 8 = h3h3 and p the dimensionless parameter via B = (h% + h%) p. Since:

K (z) = Z(n —2k)apz™ " K (z) = Z(n —2k)(n — 2k — Daga™ 272 | (1.59)
k=0 k=0
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by substituting in (1.58)), we obtain the following equation:

(n —2k)(n — 2k — Dapa" 262 — ¢ Z(n —2k)(n — 2k — D)agz"" %

WE

k=0 k=0
o o0
+8) (n—2k)(n — 2k — Daga" 272 42 "(n — 2k)apa” 22 (1.60)
k=0 k=0
o0 o0 oo
-« Z(n — 2k)apz™ " + ozpz a2 —n(n+1 Z g2 —
k=0 k=0 k=0
Turning all the sums into 2"~ 2**2 we obtain:
o0 oo
Z(n — 2k)(n — 2k — D)aga" 22 — ¢ Z n— 2k +2)(n — 2k + 1)aj_ 2" 2F+2
k=0 k=1
[e.e]
+8Y (n—2k+4)(n — 2k + 3)ag_oz™ 2+ 2 Z(n — 2k)apa" 2k t? (1.61)
k=2 k=0
oo [ee] o0
-« Z(n — 2k + 2)ap_ 12" L ap Z ap_12" "2 _n(n+1) Z apz" k2 =0 .
k=1 k=1 k=0

From here it is easily concluded that the above equation can be written as:

o0
> A" =, (1.62)
k=0

where

A = (2k+2)(2n — 2k — Dagy — [p— (n—2k)*| ap — B(n — 2k +2)(n — 2k + V)ag_1,

(1.63)
k=0,1,2, ...

Since the polynomial ((1.62)) is equivalent to 0, therefore, all the coefficients A must be equal

to 0.

For k = 0 : [n(n— 1)ag + 2nag — n(n + 1)ag) x"2 = 0ag = 0. Therefore, we chose
arbitrarily ag = 1.

Fork=1:[(n—2)(n—3)ar —an(n — 1)ag + 2(n — 2)a; — anag + apag — n(n + 1)ai] ="
= 2a1(—2n+ 1) + aag(p —n?) =0 = 2(2n — 1)a; = « (p — nz) agp.

For k=2: 4(2n - 3)az = a [p— (n — 2)*] a1 + Bn(n — 1)ao.

Fork=r:2r2n—2r+1)a, =« [p— (n — 27“—1—2)2} ar—1
+B(n—2r+4)(n—2r+3)a,—2.

Fork =r+1: (2r+2)2n—2r—1)a,+1 = « {p —(n— 27“)2} ar+B(n—2r+2)(n—2r+1)a,_;.

Fork=r+2: 2r+4)2n—2r —3)a,p2 =ap— (n—2r — 2)?| ap41
+ B(n—2r)(n—2r —1)a,
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Therefore the relation that connects the coefficients is the following;:

2%(2n — 2k + Vag = a |p — (n — 2k + 2)2] ap_1 + Bln — 2k + 4)(n — 2k + ag_s,  (1.64)
k=0,1,2,.. .

Choosing;:

g , for n even,
-1

”T . for n odd,

the coefficient of Sa, in the case of kK = r + 2 is vanishing, leaving a relation between a,42 and
ar+1. Therefore, choosing the dimensionless parameter p so that a,+1 = 0, it is concluded that
Gr4+2 = Qr43 = ... = 0 which stops the series of descending in powers of x and leaves us with a
polynomial of degree n. Since the dimensionless parameter is determined so a1 = apg2 = ... =
0, the coefficients ag, a1, ..., a, create a (r + 1) x (r + 1) linear homogeneous system. In order
to find a non trivial solution of the Lamé’s equation ((1.58) we want to determine the values of
the parameter p so that the following system created from the coefficients ag, a1, ..., a, will have
non trivial solutions:

r =

(1.65)

[ K11

Ko

0

ao
Kor Koy Koz 0 0 0 0 0 a;
0 Kz K33 Kzg 0 0 0 0 as
=0, (1.66)
0 0 0 0 0 Kr(rfl) Ky, Kr(r+1)
L 0 0 0 0 0 0 Ky Keinesnd Lor
where
Ki=-alp—(n—2i+2)? , i=123,.,r+1, (1.67)
Kj(j+1) =2j2n—-2j+1), j=1,2,3,..,r, (1.68)
Ky =-BMn—=2j+1)(n—-2j+2), j=1,2,3,.,n (1.69)
Therefore, the following relation must be satisfied:
Ky K2 0 0 0 0 0 0
Ky Ko Koz 0 0 0 0 0
0 Ksz Kis3 Kz 0 0 0 0
=0 (1.70)
0 0 0 0 0 ... Ko K, Ky (r41)

Based on [20] and some straightforward calculations it is concluded that:

e For n = 0 we have r = 0 and based on the relation that connects the coefficients for
k =1 we determine the parameter p such that a; = 0 which leads to p = 0 and gives the

following Lamé function:
Ki(z)=1.

(1.71)

e For n = 1 we have r = 0 and based on the relation that connects the coefficients for
k =1 we determine the parameter p such that a; = 0 which leads to p = 1 and gives the

following Lamé function:

(1.72)
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e For n = 2 we have r = 1 and based on the relations that connect the coefficients for
k = 2 and k = 1, in order to have ao = 0, the paramater takes as values the roots of

S(p—4p+28=0:

p1:2+2\/1—3%andp2:2—2\/1—3£2, (1.73)
a a

which give the following Lamé functions:

Ki(z) =2+ A —a? and K3(z) =22 + A —a? | (1.74)
where
2, p2 /A 1 1252
A=a2 -1 Jgr i Vi _g ey (1.75)
,_ o h3+h3 /i h3h3
A =aj 3 3 . (1.76)

e For n = 3, similarly with the previous steps, we have:

p1:5+2\/4—15% andp2:5—2\/4—15£2, (1.77)
[0 «

which give the following Lamé functions:

Ki(z) =2+ (A1 — a}) x and K3(z) = 2° + (All — a%) x, (1.78)

where
A= a? 2h§5+h§ N \/4h‘115+h§h§ | (1.79)
A} =a? - 203 J5r 25 _ \/W : (1.80)

1.3.2 Lamé Functions of Class L :
Based on ([1.3) the Lamé functions of class L are of the following form:

\/um(fc), (1.81)

where in this subsection we denote the polynomial factor P,_; with L(x). This means that
we need to study the cases of © = p,z = p and = = v separately because of the square root.
Nevertheless, since the polynomial factor of the solution isn’t affected by which one of the three
cases we study we will assume that x = p which leaves us with the form:

Ly(z) =y/2? = h3L(z), n=0,1,2,.., (1.82)

where .
L(x) = apz" '+ a1z 4 a0 4 . = Z apa” L (1.83)
k=0
Ly(@) = L(2) + \J2? — W30/ (a) . (1.84)
x4 — h3

" —h3 L / "
L,(z)= (\/m (3;:2 - h%)) L(z) + <$2—h§> L'(z) 4+ y/2? — h3L" (). (1.85)
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Substituting (1.82)),(1.84) and (1.85) to the Lamé’s equation (1.56) we obtain the following

equation:

_p2 T
) ) | (S | ( v = IOt
37 - 3
+z (227 — b3 — h3) [\/7 + /22 — h3L (x
+ [ap — n(n+1)2%] \/22 — B3L(z) =0, n=0,1,2,...

Dividing with y/2? — h3 and rearranging the terms the above equation can be written as follows:

(x2 — h?) (2 - h%) L' (z) + [z ((z* — h3) + (2* — h%)) + 2z (1‘2 - h%)] L'(z)

(1.86)

(- R 2(2-h) ) (1.87)
[_ @on) @i "¢ tepmnlnt b L) =0
Equivalently:
(z* — az? + B) L (z) + = (42 — o — 2h3) L' (2) (1.588)
+ [ap — h3 — (n—1)(n+ 2)1'2] L(z)=0 '
The derivatives of the polynomial factor L(z) are the following:
=> (n=2k—Daga™ "2 | L'(z)=> (n—2k—1)(n— 2k — 2)apz" 23 (1.89)
k=0 k=0
Substituting (1.83]) and (1.89)) into ([1.88) we obtain:
Z n—2k —1)(n — 2k — 2)apz" " — @ Z n—2k —1)(n — 2k — 2)apz™ 214
k=0 k=0
BZ n—2k —1)(n — 2k — 2)azz" 273 + 42 n — 2k — 1)apa™ 2+
U . (1.90)
-« Z(n — 2k — D)aga" 21 — 213 Z(n — 2k — 1)apz™ 21
k=0
+ O[pzakxnfﬂcfl B h% Zakxnfﬂcfl B (n n +9 Z L2k 0
k=
Turning them all into series of " ~2**1 the equation takes the following form:
S (= 2k — 1)(n — 2k — Dara™ 2 — a3 (0 — 2k +1)(n - 2K)aj_ 2"
k=0 k=1
+ 8 (n—2k+3)(n — 2k + 2)ar_oz" 44 (n — 2k — 1)aga™ !
i~ oo w0 (1.91)
—a) (n—2k+ Dap_q2™ =205 "(n — 2%k + 1)ag_qa" !
k=1 k=1

o

> oo
+ apzak_lxankJrl 2 Z ap 2™y — 1)(n +2) ZakxankJrl —0
k=1 k=1 =0
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From here it is easily concluded that the above equation can be written in the following form:
oo
> Apa =0 (1.92)
k=0

where

Ap = =2k(2n — 2k + Day, + [a (p — (n — 2k + 1)%) — h3(2n — 4k + 3)] a1

(1.93)
+B(n—2k+3)(n—2k+2)ag—o , k=0,1,2,...,
Since the series is equal to 0, the coefficients Ay must be equal to 0 for £k =0,1,2, ... .
e For k=0:
(m=1)(n—=2)+4n—-1)—(n—1)(n+2)]ag =0= 0ag =0 .
Therefore, we chose arbitrarily ag = 1.
e Fork=1:
(n—=3)(n—4)+4(n—3)—(n—1)(n+2)]a
—[a(n=1)(n-2)+a(n—1)+2r3(n — 1) — ap+ h3] ag =0
=22n—1)a1 = [a(p— (n—1)?) — 2n—1)h3] ao .
e For k=2:
4(2n —3)ag = [a (p — (n — 3)?) — (2n —5)h3] a1 + B(n — 1)(n — 2)bo .
e For k=1
2r(2n — 2r + 1)a, = [a (p — (n — 2r + 1)) — (2n — 4r + 3)h3] ar—1
+B(n—2r+3)(n—2r +2)a,_2
e Fork=r+1:
2r+1)(2n = 2r — a4 = [a(p— (n —2r —1)?) — (2n —4r — 1)h3] a
+B(n—2r+1)(n—2r)a,_; .
Therefore the relation that connects the coefficients is the following:
2k(2n — 2k + ag = [o (p— (n — 2k + 1)2) — (2n — 4k + 3)hg] ap_1 (1.94)
+B(n—2k+3)(n—2k+2)aro , k=0,1,2, ... '
Choosing;:
n
5 for n even ( )
"; for 1 odd |

the coefficient of Ba,_; in the case of k = r + 1 is vanishing, leaving a relation between the
coefficients a,4+1 and a,. Therefore, choosing the dimensionless parameter p so that a, = 0, is
is concluded that a,y1 = ar42 = ... = 0 which stops the series from descending in powers of x
and leaves us a polynomial of degree n — 1. Since the dimensionless parameter is determined so
Gr41 = Apyo = ... = 0, the coefficients ag, aq, ..., a, create a r X r linear homogeneous system. In
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order to find a non trivial solution of ((1.88)) we want to determine the values of p so that the
following system will have non trivial solutions:

Ly L 0 0 0 ... 0 0 o
L21 LQQ L23 0 0 . 0 0 al
0 Ls; Ls3 Lsg 0 ... 0 0 as
.| =0, (1.96)
o 0 0 0 0 ... Le—ne-2 ZLe—ve-1 Le-r -
B 0 0 0 0 0 . 0 LT(T*I) LTT 1 LGr—1]
where
Li=-alp—n-2i+1)% +2n—4i+3)h i=12, .1, (1.97)
Kjjiy=2(2n—2j+1), j=1,2,.,7—1, (1.98)
Ly, =—pBn-2j+1)(n—-25), j=12,.,r—1. (1.99)
Therefore, the following relation must be satisfied:
Lyt Lz 0 0 O 0 0
Loy Ly Lgs 0 0 0 0
0 L3z Lsz Laa O 0 0
=0 (1.100)

0 0 0 0 0 L(r—l)(r—2) L(r—l)(r—l) L(’r—l)r
0 0 0 0 0 .. 0 Lig—ty L

Based on [20] and some straightforward calculations it is concluded that:

e For n = 0 we observe from ((1.83]) that there are no Lamé functions of class L. and degree
0.

e For n =1 we have r = 1 and based on relation that connects the coeflicients for the case
k =1 we will determine the parameter p so that a; =0 :

h2
2a1 = (ap — h3) ap = p = 52 , (1.101)

from which it is also concluded that as = a3 = ... =0.
Therefore, based on ([1.83)) the polynomial factor takes the following form:

't =1 (1.102)
which generates the following Lamé function:
Li(z) = /22 — h3 (1.103)

e For n = 2 we have r = 1 and based on relation that connects the coefficients for k = 1 we
determine p so that a; =0 :

h2
6a1 = [a(p — 1) — 3h3] a :>p:3;2+1, (1.104)
from which it is also concluded that as = ag = ... = 0. Therefore, based on (1.82)) and
(1.83]), we have the following Lamé function:
Li(z) = 2\/22 — h3 (1.105)
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e For n = 3 we have » = 2 and based on relations that connect the coefficients for £k = 1
and k = 2 we determine p so that as =0 :

12a3 = (ap — h3)ay + 2Bag and 10a; = [a(p —4) — 5h§] ag , (1.106)
which give:
_ B2 A _ER2
120, = (P h2)(ap10 40 = 5h3)80 4 954y | (1.107)
Therefore, solving
— h3 — 4a — 5h3
(ap 2)(ap10 0 =5h)ao | 9g g, (1.108)
for the parameter p we obtain the solutions:
1
p= [2a+3h3+2 (o + h3)? —5B] , (1.109)
1
p2 = [2a+3h§—2 (a—l—h%)2—5ﬁ] . (1.110)
These lead to the Lamé functions:
Li(z) = /22 — K3 (2* + Ay —af) , (1.111)
L3(z) = /22 — h3 (2* + Ay, —ai) | (1.112)

where

o h3+2h3 N V/3h3 + hi + h3h2

Ay =af - - : (1.113)
: hd+2h3 | \/3hd+ i+ h3h]
Ay =ai— 32 PV 2+51+ 2 (1.114)

and so on using the relations ((1.94) or (1.100)).

1.3.3 Lamé Functions of Class M :
Based (|1.3)) the Lamé functions of class M are of the following form:

\/mPn_l(x) : (1.115)

and in this subsection the polynomial factor is denoted with M (z). Similarly with the class L
we assume that x = p which leaves us with the form:

M, (x) = /22 —h2M(x), n=0,1,2,.., (1.116)
where
(0.9]
M(x) = apz™ L 4+ a1z" 3 +agx" O + .. = Zakxn_%_l ) (1.117)
k=0

Substituting (1.116]) to the Lamé’s equation 1) and dividing with /22 — h3 we obtain the

following equation for the polynomial M (z):

(z* — az® + B) M"(z) + x (42 — a — 2h3) M'(x)

+lap—hi—(n—1)(n+2)2*] M(z) =0 (1.118)
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Therefore by substituting (1.117)) to the equation above we end up with the following relation
for the coefficients ag, aq, ... :

2k(2n — 2k + Dag = [a (p— (n — 2k + 1)%) — (2n — 4k + 3)h3] ap_1

(1.119)
+B(n—2k+3)(n—2k+2apo , k=012, ...

Similarly with the class L, choosing r based on and the parameter p so that a, = 0,
results to a,41 = ar42 = ... = 0. Therefore, a linear homogeneous system similar to is
obtained for the coefficients ag, ay, ..., a,—1 and we’ll determine the parameter p so that systems
determinant is equal to 0 in order for to not have trivial solutions. Based on [20] and
some straightforward calculations the following Lamé functions are generated:

e For n = 0 ,similarly to the class K, it can be observed that there are no Lamé functions
of class M and degree 0.

e For n = 1 we have r = 1 and from relation (|1.119)) the parameter p in order for a, = 0

takes the following value:
h2
p=—, (1.120)
o

and the Lamé function that is generated is:

Mi () = /22 — h3 (1.121)

e For n = 2 we have r = 1 and from relation (1.119)) the parameter p takes the following
value:

h2
p=3-241 (1.122)
(6

and the Lamé function that is generated is:

M; () = xy/22? — h3 (1.123)

e For n = 3 we have r = 2 and the parameter p is determined by the solution of the following

equation:
— h3 — 4o — 5h3
(ap 2)(ap10 @ =510 gy, (1.124)
This gives us the following values for p:
1
pL=— {2a+3h§+2 (a+h§)2—56] , (1.125)
Q@
1
po = — [204 +3h% — 24/ (o + h2)? — 55] : (1.126)
«@

and the Lamé functions that are generated are:

= y/22 (z* + A3 —ai) (1.127)
\/7

(:r + A, —al) , (1.128)
where
2h2 + h2 h% + h% + h2h2
Az =a? — 3; 2+\/33+51+ 32 (1.129)
2 2 4 4 21,2

and so on using the relation (1.119)) or the determinant of the system that they generate.
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1.3.4 Lamé Functions of Class N:

Based on ([1.3]) the Lamé functions of class N are of the following form:

= a2 — 131\ /122 — B3| Pa(a) (1.131)

and in this subsection the polynomial factor P,_o is denoted with N(z). For the cases of x = p,
z = pand z = v we take /22 — h2\/22 — h2, \/h3 —22\/22 — h3 and \/h% — 22\/h3 — 22
respectively but since the polynomial factor is unaffected by the choice between the variables
p, v and v, similar with the previous cases, we assume that x = p which leaves us with the
following form:

Ny(z) = \/1'2 - h%\/xQ — hiN(z) , (1.132)

where -
N(z) = apz" 2 + a1z" 4 +apa™ S+ ... = Z apx" 2 (1.133)

k=0

Substituting in 1) dividing with \/ x2 — h3 \/ x? — h% and after some straightforward calcu-
lations we obtain the following equation:

(z® —h3)(2*> = h3)N"(z) +3z(22° —a)N'(z)+ [a(p — 1) — (n — 2)(n + 3)z®| N(z) = 0. (1.134)

Substituting the derivatives of N(x):

oo oo
N'(z) = Z(n — 2k — 2)apz™ 3 and N'(z Z (n — 2k — 2)(n — 2k — 3)apz™ 21
k=0 k=0
(1.135)
into the we have:
o0 o
Z(n — 2k —2)(n — 2k — 3)apz" % — « Z(n — 2k —2)(n — 2k — 3)apz" k2
k=0 k=0
oo oo
+p Z n—2k —2)(n — 2k — 3)azz" "1 +6 Z(n — 2k — 2)apaz" "
k=0 k=0
oo oo o
— 3« Z(n — 2k — 2)apz" " 2 4 a(p— 1) Z apz™ k2 — (n — 2)(n + 3) Z a2 =0
k=0 k=0 k=0
(1.136)
Turning all into series of 2 2* we obtain:
oo o0
Z(n — 2k —2)(n — 2k — 3)arz" 2* — Z(n —2k)(n — 2k — Daj_jz" "%
k=0 k=1
o0 oo
—1—5271—2]{74-2 (n—2k+1)ag_o "2k+62n—2k 2)apz" —2k
k=2 k=0
o0 [ee]
- 3a Z(n —2k)ap_12" 2k +a(p—1) Z ap_12" 2k — (n — 2)(n + 3) Z apz" =0,
k=1 k=1 k=0
(1.137)

which equivalently can be written as:

> A =0, (1.138)
k=0
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where

Ap =2k(2n — 2k + V)ag = o [p — (n — 2k + 1)2] ag—1

(1.139)
+B8(n—2k+2)(n—2k+1)ag—o, k=,1,2,3.

Since the polynomial equals to 0, therefore all the coefficients must be equal to 0 which gives
us the following relations:

e For k=0:
Oag = 0. We chose the non-zero constant ag arbitrarily ag = 1.

e Fork=1:
2(2n —Nag =a[p— (n—1)*] ao .

e For k=2:
42n—3)az =ap— (n—3)*] a1 + B(n —2)(n — 3)ao .

o Fork=r:
2r(2n—2r+1l)a, =a[p—(n—2r+ 1) a,4
+B8(n—2r+2)(n—2r+1)a,—2 .
e fork=r+1:
2r+1)(2n—2r — ayy1 =a[p— (n—2r — 1)?] q,
+ B(n—2r)(n—2r —a,_; .

Therefore the relation that connects the coefficients is the following:

2k(2n — 2k + 1)a, = « [p —(n—2k+ 1)2] aj—1

(1.140)
+B(n—2k+2)(n—2k‘+1)ak_2 , k=0,1,2,....
For
n
5 for n even
r= 1 (1.141)
z -~ fornodd,

it is easily observed like the previous classes that in the relation that connects the coefficients
for the case of k = r 4+ 1, the coeflicient of Sa,_; vanishes which leaves us a relation between
the coefficients a,+1 and a,. Hence, if we choose the parameter p so that a, = 0, it is concluded
that a,41 = ar42 = ... = 0 which stops the series from descending in powers of  and leaves
us with a polynomial of degree n — 2. Therefore, the system created by the coefficients a; for
1=20,1,...,r is the following:

[N11  Nio 0 0 0o ... 0 0 1T ag T
Not Noo Naz 0 0 0 0 ai
0 N3z Nzg N3g O 0 0 as
=0, (1.142)
0 0 0 0 0 ... Neiyos Ne—no—n Nene| |
| 0 0 0 0 0o ... 0 Nr(r—l) Ny | [Gr—1]
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where
Ni=—-alp—(n+1-2i)?] , i=12,.,r, (1.143)
Nijginy =2i@2n+1-2j), j=1,2,..,r—1, (1.144)
Ny =—Bn—2j)(n—-2j-1), j=12..r—1. (1.145)

In order for the system to have no trivial solution and hence the Lamé’s equation to have no
trivial solution, we need the determinant of the (r x r) matrix to be equal to 0. From relations
(1.140) and ([1.142) it is easily concluded via straightforward calculations that:

e For n =0 = r =0 and we can easily observe that there are no Lamé functions of class N
and order 0.

e For n =1 = r =0 and we can easily observe that there are no Lamé functions of class N
and order 1.

e For n =2 =-r =1, from relation for the case k = 1 we have:
6a; =alp—1lap=p=1, (1.146)
which based on the polynomial factor takes the following form:
12272 =1, (1.147)

which generates the Lamé function:

N} (2) =/ — h3y[e? — 1. (1.148)

e For n =3 = r =1, from relation for the case k = 1 we have:
10a; = a(p—4)ag =>p=4, (1.149)
which based on the polynomial factor takes the following form:
12572 =z (1.150)

which generates the following Lamé function:

Ni(z) = x\/:zz - h%\/:cQ —h3 (1.151)

and so on for n = 0,1,.... using relations and the determinant of . Since we
saw how the Lamé functions of the four classes are generated, it is important to mention the
following theorem related to the orthogonality that connects them. Next, based on [20], we have
the following theorems related to the orthogonality of Lamé functions as well as the number
of independent Lamé functions of the same class for which the variable p is chosen out of
convenience.

Lemma 1.3.1. Let Ei(p), E%(,u) be two Lamé functions of degree n that belong to the same
class and correspond to two different roots p;, p; of the relative polynomial. Then

e B (W) EL(n)
he /12— h5\/h3 — 2

dp=0. (1.152)
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Proof. For the pairs (pz-, Eﬁl) and <pj, E%) Lamé equation ([1.56)) after dividing with \//ﬂ - h% \/h% — 2
takes the following two forms:

—\/hQ—u \/M —h27E’( )+

ap—n(n-i—l) Ei(,u):O,

VN

_uvhg = /e b iEi(M)
Vid=n3 o Vh =2 !

dp

and

—\/h2—u \/M —hszj( )+
apj‘”(”"‘l)ﬂ
Ve

which equivalently can be written as:

G Vi )+ R <0, (s
3

/b — /i — b 4 g
/,u2—h§ /h%_MQ

QE%(M) =0,

and

(6 —n\n 2 .
{\/u th\/hQ — )] +\/5] hQ(\/;l)_“MQEgL(M):o. (1.155)
3 2

Therefore, multiplying (1.154) with E%, (1.155) with E!  subtracting them and then summing

and subtracting the term /u2 — h%+/h% — ,uQEﬂ; (1)
w

d—Efl(u) we obtain the following relation:
1

o Wi =g = (B0 g B0 - B 4Bl )|
(i — ) Pl BA(R)
Vi = h3hE — g

Since the choice of convenience was the variable u, by integrating over its interval which is
[hs, ho] we have:

[V (B0 2 0 ~ B )]
" BB - e
NG

from which it can be observed that the left part is equal to 0 and since p; # p; from the Lemma’s
hypothesis the above equation leads to relation (|1.152]) which completes the proof. O

(1.156)

:a(pi_ ]

From Lemma [1.3.1] we can immediately see that the separation constant p is real and we
can also conclude to the following Lemma

Lemma 1.3.2. To every separation constant p there corresponds a single independent Lamé
function of the first kind.
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Proof. Let Fq and Es two Lamé functions of the same degree and class which correspond to the
same separation constant p. Then it can be observed that the right hand of (|1.156)) vanishes
from which it is concluded that:

\/u2 - h%\/h% - p? <E1(#)dCLE2(#) - EQ(“)d(iEl(“)) =c, (1.158)

where c is a constant. The expression in the parenthesis is the Wronskian of the two solutions E;
and F5 and it will be a polynomial. Therefore, since we have the product of the two square roots
which are irrational functions and the Wronskian which is a rational function, it is concluded
that ¢ = 0. Because of the interval of u we observe that the Wronskian of F; and Es must
be zero which means that they are linearly dependent. Thus, on a single separation constant p
corresponds only one independent Lamé function of the first kind. O

Finally, we have the following lemma related to the independence of Lamé functions.

Lemma 1.3.3. The set of Lamé functions of the same degree, that belong to the same class,
are linearly independent.

Proof. The proof can be found in ([20], p. 63) O

From Lemmas [1.3.2] and [1.3.3] it is observed that the Lamé functions of the same class
are linearly independent. Taking consideration in the difference between the forms of the four
classes we have that all Lamé functions are linearly independent. Now, assuming that we pick

a degree n which is even. Then, based on (1.65)),(1.95) and (|1.141]) to this degree correspond

5 + 1 independent Lamé functions of class K, 5 independent Lamé functions of class L, 5

independent Lamé functions of class M and § Lamé functions of class N. Therefore, for a
degree n even correspond 2n + 1 independent Lamé functions distributed in the four classes.
Similarly for degree n odd, correspond ”TH independent functions of class K, "TH independent
functions of class L, ”T‘H independent functions of class M and "T_l independent functions of
class N. Hence for degree n odd also correspond 2n + 1 independent Lamé functions distributed
in the four classes. In what follows for Lamé functions we use Lamé’s notation E;*, where
n=20,1,2,... denotes the degree and m = 1,2, ...,2n + 1 denotes the order.

The Lamé functions that we studied in this section are called “interior Lamé functions” or
“Lamé functions of the first kind” and are singular at infinity and regular everywhere else.
More about the study of Lamé functions can be found in [20] and [21].

1.3.5 Lamé Functions of the Second Kind

In this section we will study the solutions of Lamé equation which are independent of the
Lamé functions of the first kind and are regular at infinity. These functions are called “Lamé
functions of the second kind or “exterior Lamé functions”. Since equation (|1.56)) is a second
order linear homogeneous O.D.E; if we know a solution of the equation we can find another
linearly independent solution as follows:

Let the second solution to be of the following form

Fn(x) = \Ijn(l')En(l‘) ) (1'159)

where E,(x) a Lamé function of first kind that was studied in the previous section and it is a
solution of Lamé equation ([1.56)). Therefore, substituting the derivatives:

Fl(x) = U, (2) Bu () + U(2)E, (x) , (1.160)

Fy (1) = U, (X) En(z) + 2V, (2) B, (2) + U (2) B, (2) (1.161)

n
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into ([1.56)), we obtain the following equation:

1

(z* — aa® + )V, (2) En(x) + 2(z* — az? + B)U,, () E, (z) + (z* — az® + B)V,(2)E, (z)
+(22° — )W, (2) By (z) + (22° — az) U, (2) B, (z) + [ap — n(n + 1)2?] ¥, (z) E,(z) = 0,
(1.162)
or equivalently:
{(x4 — az? + B)E, () + (22° — ax) E,(z) + [ap — n(n + 1)2?] En(x)} U, (z)

/7

+ (z* — az® + BV, (2) En(z) + 2(a* — aa® + B)V (2)E, (z) + (22° — ax) ¥, (2)E, () =0,
(1.163)

and since E,(z) is a solution of (1.56)) we have:

’

(z* — az® + B) B, (), (z) + [2(:):4 —az’ + B)E, (x) + (22° — aw)En(m)] U, () =0. (1.164)

NN

equation can be written as:

\/wQ — h3 \/x2 — h2E2(2)W, (z)

and substituting a = h3 + h% and B = h3h? the above

Multiplying with

/72 — W2 oy /72 — Rh2 , (1.165)
+ (/22 = h2\/a2 — B2 (B2 (2)) + V¥ 2 4 3 ) E2(x)| ¥, (z) =0,
or equivalently:
d d
» [Eg(xMﬁ N h%dx\lln(x)} —0. (1.166)
Integrating twice with respect to the variable x, we obtain:
du
v,.(zx)=c +co. 1.167
W= | Ve e (167
Therefore, the second linear independent solution will be:
Fo(@) = 1 Bn() / du (1.168)
T ey (Ba(w)? Ve =3 =1 |

We note that since x = p, i, v the interval of integration will vary depending on the choice of x
with the most interesting case being that of x = p. Specifically, it is proven that even though the
ellipsoid degenerates to a sphere for p — oo, the ellipsoidal harmonics do not reduce to spherical
harmonics but into sphero-conal harmonics which keep characteristics of the ellipsoidal system
[29]. Nevertheless, the radial part of the sphero-conal coincides with the radial part of the
spherical harmonics which due to and , leads to the following normalization

conditions:

lim p "E,(p) =1, (1.169)
pP—00
lim p" " F,(p) =1, (1.170)
pP—00

from which it is concluded that for very large p, we have:

©  du |: u72n71 :|O° _ pfnfl

F = " —_ = " — .
n(P) Clp/p u2n+2 c1p —2”—1,; o+ 1

(1.171)
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Therefore, based on (|1.170]), we have ¢; = 2n + 1, which leads to the normalization of F,(p) at
infinity and the Lamé functions of the second kind are defined as:

du
U )2 \/u2 — h%\/zﬂ — h% ’

In what follows the improper elliptic integral will be denoted as:

p>hy.n=01,2 .., (1.172)

Fulp) = 2+ DE(p) [ T
p

o0 d
L(p) = / “ p>hy, n=0,1,2,.... (1.173)
p

W)’ V= 3\ = by
It is easily concluded based on this section that:

e Forn=0:

Eo(p) = K§(p) = 1 and Fy(p) = [ du

Vu? = h3\/u? —
e Forn=1:

El()_p7E2 \/;0 _h§7E3 \/p _hga

and the correspondlng Lame functions of the second kind and degree 1 Wlll be:

dp /5
F, =3 , ) =3 —hQ/ ,
1() p/,; 2\/p h2\/ 5 h2 1 p \/p —h2\/p h%
Al _3'p_h2/ VP —h2\/p —h3

and so on for higher degree n.

In the previous section we saw that for every degree n correspond 2n + 1 independent Lamé
functions of the first kind. The same goes for the Lamé functions of the second kind since they
depend on those of the first kind. Thus, following Lamé’s notation we have:

du
OV N
where n = 0, 1,2, ... denotes the degree, m = 1,2, ...,2n+1 denotes the order and I;"*(p) denotes
the corresponding improper elliptic integral given by:

du

B = | (Er ) e T 7

p>hy, (1.174)

F ) = 2n+ DEPG) [ T

p>he, n=0,12.., m=12..2n+ 1.
(1.175)

Similarly we can define the cases of F,,(u) and F,(v) for their corresponding intervals.

1.3.6 Relations Between Elliptic Integrals

Some basic relations between the elliptic integrals I7 and I} that that will be used in the last
chapter are the following;:

1
1} (p) + I (p) + I} (p) = : (1.176)
PN P = h5\/p? = I3
9 243 1 p2—0é%
21 (p) + o313 (p) + o313 (p) = I (p) — : L1
L (e) + el (o) + 031 p) = (o) ~ iy s (L177)
4 . a2 —qa? [ dx
L) — H(ag) = -2 Z/ ’ 1178
)= hle)="5" ) Graeradvaraderdera’
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for 7,7 =1,2,3. Relation (1.176) for p = a7 takes the form:
3
> VIH(a)=1. (1.179)
n=1

Moreover, the incomplete elliptic integral of the first kind is defined as:

sing dt

Fé, k) = : 1.180
(@.4) 0o V1—12V/1 - k%2 ( )
or equivalently
F(¢,q) / ’ d0 (1.181)
b a = ) *
0o V1 —sin2asin26
with k = sina and the incomplete elliptic integral of the second kind is defined as:
sing /1 — k212
E(¢,k) = / —dt (1.182)
0 V1 —t2
or equivalently
®
E(p,a) = / V1 — sinasin6 df (1.183)
0
where the amplitude ¢ is defined as:
h
¢ =sin 12 (1.184)
p
and the modular angle « is defined as:
h
a=sin" -2 (1.185)
ha

Then the elliptic integrals I& and I7' can be written in terms of the incomplete elliptic integrals
of the first and of the second kind as follows:

1

I(p) = -F(d,a), (1.186)
1
Ii(p) = ool (F(¢,a) — E(¢,a)) , (1.187)
3
ho 1 1 /p?— K2
I}p) = 55 E ) VP T 11
1 1 /p?— h3
3(,) — 3

1.4 Interior and Exterior Ellipsoidal Harmonics

1.4.1 Interior Ellipsoidal Harmonics

The solution of the Laplace equation in ellipsoidal coordinates will be of the form R(p) M (1) N (v).
Hence, based on the separation of variables that led us to Lamé equation (1.55)), the “Interior
Ellipsoidal Harmonics” are defined as follows:

By (0, s v) = ER' () B () By (v) (1.190)

where n = 0,1,2,... denotes the degree and m = 1,2,...,2n + 1 denotes the order of the
harmonic function. These functions are solutions of the Laplace equation, while E]"(p), E™"(u)
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and E"(v) are the Lamé functions that we studied in the previous section which are solutions
of the Lamé equation in the intervals [ho, 00), [hs, he] and [0, h3] respectively. Based on
the calculations of the Lamé functions from the previous section the ellipsoidal harmonics will
have the following forms:

e Forn=0andm=1":
Ed(p, 1, v) = Eg(p) Eg (1) Ej (v) = Kq(p) Ko (1)Ko (v) = 1. (1.191)
e Forn=1andm=1:

El(p, p.v) = EL(0) BN (1) Bl (v) = K} () K} (WKL (v) = ppv . (1.192)

e Forn=1and m=2:

B (p. 1,v) = B2 () B3 () B3 (v) = L) LY () L) = \[p? — W32 — h3\ /03 — w2,

(1.193)
e Forn=1and m=3:
B (p. 1,v) = B (p) B} () B} (v) = M} (o) M )= \J0? — B3\ /0g — 2\ [ng - 02,
(1.194)
e Forn=2and m=1:
E3(ps 1, v) = E5(p) By (1) Ey (v) = K3 (p) K5 () K3 (v)
2 2\ (2 2\ (, 2 2\ (1.195)
="+ A—ai) (P +A—ai) (v +A—ai)
where A is defined in ([1.75).
e Forn=2and m=2:
E3(p, 1 v) = B3(p) B3 (1) E3 (v) = K3 (p) K3 (1) K3 (v) (1.196)
(PN =) (24N ) (PN =) '
where A’ is defined in ((1.76)).
e Forn=2and m=3:
E3(p, i v) = B3(p) B3 (1) E3 (v) = Ly(p) Ly (1) L3(v) (L.197)
:puv\/pg—hg\/ﬁ—hg\/hg—ﬂ. '
e Forn=2and m=4:
Ex(p, p1,v) = E3(p) By (1) B3 (v) = My (p) My (1) M3 (v) (1.198)
:puu\/;ﬂ—h%\/h%—;ﬂ\/h%—y?. '

e Forn=2and m=>5:
E3(p, 1, v) = B3 (p) B3 (1) B3 (v) = Ny (p)Na (1) N3 (v)

e N e e e
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and so goes on using the Lamé functions of the previous section. Next, the Cartesian forms
of some Ellipsoidal Harmonics are presented. These forms will be used in the boundary value
problems and applications that are studied in chapters 3 and 4 respectively. In order to calculate
these forms we mainly use the relation as well as some straightforward calculations in
order to obtain the following:

e For n =0 and m = 1:

Eg(w1, 2, 73) =1 . (1.200)

e Forn=1and m=1:
E%(l’l,xg,x‘g) = .7)1h2h3 . (1.201)

e Forn=1and m = 2:
E%(l‘l,ZEQ,SEg) == xghlhg . (1202)

e Forn=1and m = 3:
E%((El,xg,xg) = x3h1h2 . (1.203)

Hence, ((1.201))-(|1.203]) can be written as:

xmhlhzhg

., n=123. (1.204)
hom

E’in(xh x2, ‘T3) =

e Forn=2and m = 1:

3 2
E (21,29, 73) = (A —af) (A —a3) (A — a3) (Z Agik 5+ 1) , (1.205)

k=1
where A has been defined in (1.75)).

e For n =2 and m = 2:

3 2
E%(Il,l‘z,fbg) = (A/ _ a%) (A’ _a%) (A/ — a%) (Z Alajf 5 T+ 1) , (1.206)

where A’ has been defined in (|1.76)).

e For n =2 and m = 3:

E%(ﬂcl,acg,xg) = J,‘lxghlhgh% . (1.207)
e For n =2 and m = 4:

E%(.’L’l, 9, xg) = xlmghlh%hg . (1.208)
e Forn=2and m =5:

Eg(xl, 9, .%'3) = .%'Ql‘gh%hgh;; . (1.209)

Hence, (1.207)-(1.209) can be written as:

hy,
Eg_n(l’l,ﬂjg, 1133) = $1x2x3h1h2h3f N n = 1, 2, 3. (1.210)

n

For the Ellipsoidal Harmonics of degree 3 and above in Cartesian and Ellipsoidal coordinates
we refer to [20].
Finally, we note that every Ellipsoidal Harmonic is bounded inside any ellipsoid of the corre-
sponding family.
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1.4.2 Exterior Ellipsoidal Harmonics

The “exterior Ellipsoidal Harmonics” of degree n and order m are defined as:
F7 (o, 1,v) = o) ER () ES (v) (1.211)
or equivalently using relation (1.174)), they can be rewritten as:
F7 (p, . v) = (20 + DIP(0) BN (0) EZ (W ER(v) = 20+ DIP (0)ER (pos,v) , (1.212)

forn=0,1,2,... and m = 1,2, ...,2n + 1 and I/"(p) the elliptic integral defined in (L.I75). As
mentioned in the previous section, as we approach infinity the ellipsoidal harmonics degenerate
to sphero-conal harmonics (or conical), which means that the p part is the same as the radial
part of the spherical harmonics. Thus, from relations and it is concluded that:

1
Frt(p, p,v) =0 <p"+1> , p—00. (1.213)

Hence, the exterior ellipsoidal harmonics are regular at infinity and are used for the exterior
boundary value problems for the Laplace equations.

1.5 Surface Ellipsoidal Harmonics and Orthogonality Relations

1.5.1 Surface Ellipsoidal Harmonics

For the solution of boundary value problems involving ellipsoidal harmonics, it is important
to know the orthogonality relations they satisfy as well as the normalization constants for
which analytic expression exist only up to degree n=3. Since these orthogonality relations are
satisfied over the surface of any confocal ellipsoid, the definition of surface ellipsoidal harmonics
is required.

Similarly with the surface spherical harmonics we want to study the radial and angular
separation of the Laplacian in the ellipsoidal coordinate system. Therefore, we define the
“surface ellipsoidal harmonics” as:

Sy (s v) = ERt(n) ER'(v) (1.214)

forn=0,1,2,...and m = 1,2, ...,2n+1. Next, we define the Beltrami operator in the ellipsoidal
coordinate system. The Laplace-Beltrami operator in the spherical coordinate system is given

by:
1 9 0 1 02
B = — | sinf— — 5 - 1.21
sinb 96 <Sm ae) tin?0 962 (1215)
It can be proven that it in the Hilbert space L2(5?) (g2 |f|*dS < oo) with the inner product:

27 s
< fig>= /0 /0 £(0,6)7(0, ¢)sin0dode

and the norm associated with this inner product:

191 = ([ 106,00 sinvasao) "

the Beltrami operator is a self-adjoint linear operator with respect to this inner product. It
can also be proven that its eigenvectors are the so called spherical harmonics and they form a
complete orthonormal basis of this Hilbert space. More about these properties of the spherical
harmonics can be found in [2]] and they motivate us to define a corresponding Beltrami operator
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of the ellipsoidal coordinate system and extend these properties in this system. From relation
2

0 0
1.40) by separating the first term which contains % and 9.2 from the second and the third
p
terms which contain the same expression for p and v respectively, the Laplacian can be rewritten
in the following form:

1 [ 0? o)
A= p? — h? p2—h2+p2p2—h2—h2+36p} . (1.216
(,02—,u2)(p2—1/2) _( 3)( 2)6[)2 ( 3 2)8[) ( ) ( )
Therefore, the 7 ellipsoidal Beltrami operator” is defined as:
2 2 T 2
p°—v 0 0
Be(p) = gy |7 = 3) (1 = h3) 55 + p (2" — h3 — h3) a}
(V> —p?) | It p (1.217)
—I—M (VQ—hQ)(IJZ—h%)(9—2—i—1/(21/2—h%—h2)2
(u? —v?) 3 ov? 3 0v]

from which it is easily observed that in contrast to the spherical harmonics where the Beltrami
operator is independent of the radial variable r, in the ellipsoidal system the corresponding
ellipsoidal Beltrami operator depends on the radial variable p. Next, in order to study the
eigenspaces of this operator we proceed with the following calculations:

m P2 — v 2 2\/(,,2 2 s 2 2 9 0 m m
Be(p) Sy (u,v) = ~5— 2 (0" = h3) (W — hz)asz + (20" — h3 — hz)afﬂ Ex () By (v)
2 2 2
p—H 2 12 272a 27272g m m
o 07 -0 ) v - 1= ) | ER B )
(1.218)
or equivalently:
. 2 _ 2 . H? 0 m
Be(p) Sy (11, v) = hEn (v) [(u2 — h3)(p® — h%)aTﬂ + p(2p® — b3 — h%)aﬂ] E(w)

P> — i’ 2 2\(,,2 2 O 2 2 9y 0
O TR |02 )02 - ) v 13- 1) | B )
(1.219)
Since E]'(p) and E)"(v) are solutions of equation ([1.56]), they satisfy the relation:
(W2 — 32 — B EL" (@) + (20% — 3 — W3)E (2) = [n(n + 1)a? — aply] E(2) . (1:220)

Using this relation into (1.219)), we obtain the following:

2 p2 _ MQ
[n(n+1)p? — apy'] E7 (1) By (1) [n(n + 1)v? — ap?] B} (v)

p2— 2
(1.221)

p>—v

Be(P)SqT(H’ V) = ETTLYL(V) V2 — MQ

which equivalently can be written as:

2,2 22 2,2 _ 2,2 2_ 2 2 9
B (p)SE (ov) = R GOER0) [+ 1) (P =14 P g (G2 4 )

V2 — 12 12 — 12 22 2= 12
2(,,2 2 2 2
p-(p* —v*) pe—v
=B (WE, (v) [n(n + 1)ﬁ —apy M2:| = EM(wEN (v) [ap) —n(n +1)p%] .

(1.222)
. . _ 2 2 . . .
Therefore, using relation ([1.214f) and o = h3 + hj it is concluded that:

Bo(p)Sy (1, v) = [(h3+ W) — nln + 1)p%] ST (. v) | (1.223)
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on any ellipsoidal surface confocal to the reference ellipsoid. This means that for any fixed
confocal ellipsoidal surface p = constant and any pair (u,v) , the ellipsoidal Beltrami opera-
tor has eigenvalue the quantity [(h% + h3)p™ — n(n + 1)p2] with corresponding eigenvector the
surface ellipsoidal harmonic S)""(u,v). We note that since the parameters p* are different for
every pair (u,v), it follows that all the eigenvalues of B.(p) are simple and the corresponding
eigenspaces are 1-dimensional. Furthermore, the spectrum of B.(p) depends on the ellipsoidal
surface p = constant on which the operator is defined. Next, we proceed with the orthogonality
relations of the surface ellipsoidal harmonics (eigenfunctions of B.(p)).

1.5.2 Orthogonality Properties

In order to proceed with the orthogonality properties of the surface ellipsoidal harmonics S
on a surface of an arbitrary ellipsoid p = constant, first we define the inner product on this
surface as:

< f,g >:/S T, v)g(p, ) (e, v)dpdy (1.224)
P
where [, is the weighting function defined as:
1
lLy(p,v) = .
) VP — 2/ p? =1

Let r(u,v) an arbitrary point on an ellipsoidal surface p = constant. From the definition of the
surface element in an orthogonal curvilinear system, the solid angle element is given by:

(1.225)

Lo(ps ) dSp(p, v) = Lp(p, V) [ X vy || dpdy = 1y (s, l/)\/Hr/uLII?Hrull2 — (v - vy)dpdy
hyuhy

VP — 12/ p? =12

dpdy = dX(p,v)

= Lp(p, V) lrull l[ro || dpdy = Uy (10, v) hyuho dpdy = dpdv (1.226)

p2 — 2

RN RN N

which is independent of the surface p = constant, but since it depends on ho, h3, it depends
on the reference ellipsoid and thats why we denote the complete domain of integration with
respect to dS) with S,,. Therefore, we define the ellipsoidal surface element as:

dS(p,v) = AU, v) =/ p? — 2\ p? — 2, v) (1.227)

1
lp(lu’a V)

and the ellipsoidal volume element as:

2 9\ 2 9
AV (p,1,0) = e x vl el dpdpdy = 22— V) a0, 1) (1.228)

VPR =150 — 13

Based on [20] we have the following theorem for the orthogonality of the surface ellipsoidal
harmonics

Theorem 1.5.1. If S,, denotes the boundary of the reference ellipsoid and S, the surface
ellispoidal harmonics defined in (1.214), then

/ S (1, V)SZ’L/ (1, V) AU, v) = ¥ Oy S (1.229)
Say

for everyn =0,1,2,...., ' =0,1,2,..., m=1,2,...2n+ 1 and m’ = 1,2,....2n" + 1. With "
we denote the normalization constants.
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Proof. Applying the second Green’s identity for the interior ellipsoidal harmonics E7* and EZ?’
to the ellipsoidal domain V), which is bounded by the ellipsoidal surface S, for any p = constant,
we obtain:

/ [E:Ln(p? M, V)A]EZI/’(P’ H, V) - E;ﬂ;, (p? M, V)A]E:?(f% M, Z/):| d‘/'(p7 u, V)
’ 0 9 (1.230)
_ /Sp {E?ﬁ(p,u?u)anw (s ) =B (o, 1 v) 5 B, 1 1/)] dsS,(u,v)

where the normal differentiation on the ellipsoidal surface is given by:

0 g, (PO a0 PO a0 _10
ks N h@ph@uh@y _hp Gp_hp(?p

RV A e > > 9
v R R O

Since E"* and Eff,/ are solutions of the Laplace equation the left hand of (|1.230]) vanishes leavings
us with:

(1.231)

m 9 m’ m’ 9 m
/ |:En (paf%y)aiEn’ (p7,u7 l/) - En’ (,O,M,V)aiEn (pa,ua l/):| dSp(l%”) =0. (1232)
S, n n

Using relations (1.231)) and (1.226)), the equation above can be written as:

0 / 0
/ |:]E (pv M, v )l (Na )%EIZ (paﬂy V) - ]EZI/ (p,u,l/)lp(u,l/)apr?(p,u, V):| dsp(:ua V) =0
0 gy o .
= / NN ,OE n! (ps 1y v) — Ky (P 1y V)%En (ps 11, v) lp(:u’ V)dsp(:uv v)=0

8 / / 0
- / L) 2 o) — B3 (o) B )] ) =0
(1.233)

and by using relation (|1.190)) we obtain:

- [Emp) 8pE@’<p>—E$’<p>§)Ex<p>] [ BB @)EY (0B () =0
= B0y B0~ EF 0 200)| [ Sme) Sy i) —o

(1.234)
a ! I !
We observe that if Eg‘(p)a—pEm (p) — E (p) Em( ) = 0, then EJ* and E]} are linear de-
pendent. Therefore, based on lemmas 3| this quantity vanishes only for m = m/ and

n = n’. This means that for n # n’ and m # m/:

S ) o)) = 0. (1.235)
ay

d
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The ellipsoidal Beltrami operator is self-adjoint with respect to the inner product
and his eigenfunctions which are the surface ellipsoidal harmonics form a complete
orthonormal basis set of the Hilbert space of square-integrable functions, i.e., every smooth
function F' defined on the surface of the ellipsoid p = constant can be expressed as linear
combination of the surface ellipsoidal harmonics as:

oo 2n+1
=> > s (pv) (1.236)
n=0 m=1
The coefficients ¢ are given by:
1
C:zn T F(N’U)SZL(,U’]/)dQ(M, l/) ) (1237)
n a

where v, the normalization constants given by ([1.229)):

= / 1S (1, )2 A9, v) | (1.238)
Say

forn=0,1,2,...and m=1,2,...,2n + 1.

The completeness of the basis and is justified via the completeness of the spherical
harmonics, since every ellipsoidal harmonic can be written in terms of spherical harmonics and
every spherical harmonic can be written in terms of ellipsoidal harmonics. The completeness of
the set {S]"} can also be derived from the corresponding closure relation.

Closure relation

The dirac measure in an orthogonal curvilinear coordinate system which consists of the surfaces
fa(z1, 22, 23) = @1, fal21, 22, 23) = g2 and f3(x1, 72, 73) = g3, is given by:

0(q1 — q1,) 6(q2 — q2,) 6(q3 — q3,)
r—ra) = 1.2
o ) hq, hgy hq; ’ (1.239)

where dg; the metric coefficients for i = 1,2,3. Hence, by (1.22)-(1.24]) the dirac measure in the
ellipsoidal coordinate system is:

5(r — o) = 5(Ph—ppo) 5(#};#0) 5(’/}; V) ’ (1.240)

where r = (p, u, ) and ro = (po, 1o, ¥o). On the surface of the ellipsoid p = pg the dirac measure
becomes:

6(pk — po) 0(v — o)
hy, hy '

Thus, by taking a function F'(u,v) smooth enough on the surface of the ellipsoid p = constant
and from the definition of the Dirac delta function, we have the following relation:

d(r—rg) =

(1.241)

Flu,v) = / F, y')é(“h;”/) 5(”}; ) g0l ') (1.242)

Sp

Taking the expansion of F' in terms of the basis set {S)""} based on relations (1.236) and (|1.237)),
we have:

oo 2n+1 oo 2n+1
=> > S p,v) = [ / F(u' ) ST ) dQ! ') | S (s v)
n=0 m=1 n= Om 1 ’Yn

(1.243)
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Interchanging the sum with the integral we obtain:

oo 2n+1
F(u / [Z > *F (W) <u’,u/>d9<u’,u’>] St (p,v)

nOml

(1.244)
oo 2n+1
/ [Z > SIS )| P/ )
n=0 m= l
From relations (|1.242)) and ([1.244)) it can be observed that:
oo 2n+1
1) (v —1/
SOY s )y = ) (1.245)
n=0 m=1 ’Y;Ln h“ h”

which is the closure relation (or completeness relation) of the basis set of the surface ellipsoidal
harmonics {S]'}.

Next, we present the following three orthogonality theorems whose proofs can be found in
([20], p83-86).

Theorem 1.5.2. For any n,n' = 0,1,2,..., m = 1,2,...,2n + 1 and m’ = 1,2,....2n" + 1 the
following relation holds:

hr BT ETY (1)

h3 \/NQ—hg\/hg_

b 2B (u)EY (1)

d
hs \/M h2\/h2 2 K

(h3+h3) (2 —p') s = (nnYot'+1) |
h

(1. 246)
Therefore, if n =n', but pI* # pf[”/, then
BBy () 0 (1.247)
\/ 2 _ )2 \/hQ _ o )
hs H 3 2
and if n £ n', but p' = pﬁ/, then
" PERWEY (W) (1.248)

d
N/ N

Theorem 1.5.3. If the functions E]" and EZ,‘/ belong to the same Lamé class and the indices
n and n’ are either both even or both odd, then

[ Erw)EY s 2ET(v)ET

(B3+h) o~ COBLY) gy~ ety ) [ L EEOEE ),
o hi—v2/h:—1? 0o VhE—v2/hi-12

(1.249)

Therefore, if n =n', but pI* # p;”/, then
s Ep(v)EN (v)
o /hE—v2\/h}—12?

and if n =n', but pI' # p;",,, then

dv=0, (1.250)

s VERW)Ey (v)
o /h3—v2\/h}—1?

Theorem 1.5.4. If the functions E]" and Em belong to the same Lamé class, the indices n
and n' are either both even or both odd, and n ;é n', pt # pn, , then

dv=0. (1.251)

hs ho ,
| [ srwns v =o, (1.252)
0 h3
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where S}, SZ}, defined in (1.214) and dS) the solid angle element defined in . When
St = Z,‘/ we obtain

hs prho 1
[ [ e aoun = g (1.253)
0 hs

Remarks:

e Theorem states orthogonality of Lamé fucntions in the interval [hs, ho] and theorem
1.5.3| states orthogonality of Lamé functions in the interval [0, h3]

e Theorems [1.5.2] and [1.5.3] are used in order recover orthogonality between surface ellip-
soidal harmonics over an octant of an ellipsoidal surface p = constant in theorem [1.5.4]
This means that because of the symmetry, the integral will have the same value over any
other octant and since states the values of the normalization constants v, over
the complete ellipsoidal surface it follows that these values are 8 times the value of the
integration over one octant.

e The orthogonality relation (|1.229)) is true for any choice of surface ellipsoidal harmonics
but (|1.252)) is true for specific choices of Lamé functions since the integration is over an
octant.

Before we proceed with applications of the ellipsoidal harmonics in scattering theory it is im-
portant to study some basic properties of the spherical harmonics since they are frequently
mentioned and they consist the basis of the theory of the ellipsoidal harmonics.

1.6 Spherical Harmonics

As the ellipsoidal coordinate system is reduced to the spherical system (for r — o0), the
ellipsoidal harmonics do not reduce to the spherical harmonics but instead they reduce to the
sphero-conal harmonics which preserve the ellipsoidal characteristics [29]. For this reason, in
this section we present some basic characteristics of the spherical harmonics as well as the
sphero-conal system which help us to further understand the behavior of ellipsoidal coordinate
system and its harmonics.

1.6.1 Laplace’s Equation in Orthogonal Curvilinear Coordinates

Let
fi(zr, 20, 23) = q1 , fa(x1,22,23) = q2, f3(z1,22,23) =q3 , (1.254)

three families of surfaces. Since the intersection of two out of these three surfaces is a curve in
three-dimensional space which lies on both these surfaces, the two coordinates associated with
the surfaces whose the curves lies on will be constant and the third coordinate will vary. This
third coordinate will vary continuously along the intersection curve. For example, lets assume
that the curve is the intersection of f; = ¢1 and fo = ¢o. This means that ¢; and ¢» are the
constant coordinates while g3 is the variable coordinate. Next, consider a point (¢, g2, ¢3) on
this curve and another point (g1, g2, g3 + ds3) which is distance dss away from the first one.
Then we define the function h3(qi1, g2, q3) as the limit of the ratio % as dgs tends to 0. This

43
relationship in terms of differential can be written as:

d83 - h3(Q17 q2, (IS)d(B . (1255)
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Therefore, with the other two cases we define hy, ho, hg with the following differential forms:

ds1 = hi(q1,q2,93)dq1 ,
dSQ - h2(Q17 q2, q3)dqQ ) (1256)
dss = h3(q1,q2,93)dgs ,

At any point these three curves define in general three directions in space. If these three direc-
tions are mutually orthogonal at every point then the coordinate system is called orthogonal
curvilinear coordinate system. In the present work we study only orthogonal curvilinear coor-
dinate system. Now let P(q1,¢2,q3) be a point and @ be any point in a small distance ds from
P. Because of the orthogonality it is concluded that the elementary length of the line joining
these points is given by:

(ds)® = (ds1)? + (ds2)® + (ds3)® = hidg} + hidqs + hidg3 . (1.257)

For ¢ smooth enough throughout any volume V and Stokes theorem we have:

// A¢drdydz = — 8—qbalS , (1.258)
Vv S on
which means that if A¢ = 0 throughout the volume V' we have:
0
ﬁdS =0. (1.259)
S 8’0

Next, we will apply the above theorem to the elementary volume bounded by six surfaces. For
these surfaces we take the six surfaces ¢ = P; + %dql , o = Py + %dqg and g3 = P3 + %dqg
which bound a small curvilinear parallelepiped about a point with coordinates (P, P, P3)

and we will calculate the surface integral / gZdS over this closed surface. Starting with
S

the face on which ¢ increases from P; — %dql to Py + %dql , 2 increases from Py — %dqg to

Py + %qu and g3 is constant equal to P3 — %dq;; or P + %dq;;. Therefore, the area of this

face is dsidsa = (h1dq1)(hedge) where hy and ho take values at the point (Py, Py, P3 — %dqg) or

(P1, Py, P3+ %dq;g). The normal has the direction which g3 increases from Ps — %dq;g to P3+ %dqg

and the corresponding length element will be ds3 = h3dgs. Hence, the normal derivative on this

1
face will be gqb = hg(ﬁ' Therefore, the contribution of this face to the surface integral of the
n 3 043
curvilinear parallelepiped will be:

10
oy L 90 dondas (1.260)
h3 043 (py Py, Py-+ Ldgs)

Because of direction of the normal derivative if we choose the point
(P1, Py, Py — %dqg), the contribution of the corresponding face to the surface integral will be:

10
- h1h277¢ dqldQQ . (1.261)
h3 943 (py Py, Ps—Ldgs)
Therefore, the two contributions via the total derivative can be summed into:
0 ([ hihy 0¢
— — | | dg1dgodqs . 1.262
[ 305 ( hs Ogs ) | 9rdazdas ( )

Similarly from the other two pairs of faces we take obtain:

[ 0 <h2h3 0¢p

— | —=—=—") | dg1dgod 1.263
g1 Iy 8@)} qiaqaaqs , ( )
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and

0 ([ hihs 8¢>}
—_— —_— dg1dgadags . 1.264
[ 903 < hy 90 q1dqadqs ( )

Hence, the surface integral takes the value:

0 0 ([ hohs O 0 hihs O
ﬁds = [ ( 2 3¢>] dg1dgadqz + { ( . 3¢>] dqidgodqs

s On oq1 \ 1 Oq Oa2 \ h2 0g> (1.265)
4|0 (b2 09N 0 dnd
24 hs Ogs qi1aqz2aqs ,

thisand surface integral must vanish. Hence, it is concluded that the Laplace equation in
curvilinear coordinates is:

0 (hahs 0 0 (hihs 0 0 (hihy 0
(23¢)+<13¢>+<”¢>:0. (1.266)
O \ h1 0q1)  Oq2 \ ha 0q2)  0Og3 \ hs Ogs
Two special cases of orthogonal curvilinear systems are the sphero-conal (or conical) coordinate
system and the spherical system.

e Sphero-conal system:
The sphero-conal (or conical) coordinates (r, s, ) are given by:

2 _ K2 2 _ .2 2 _ 2 2 _ .2
o T :T\/H h’3\/h3 v _ \/h’2 H \/h’2 v (1267)

Tr3 =T

= hohs T2 hihs ’ hiho ’

I

where r € (0,+00) and 0 < v < hg < p < ha. These expressions correspond to the first
octant where all the Cartesian coordinates are positive. For the other seven octants the
expressions are controlled by the appropriate signs of x1, 9, 3, meaning that we take the
appropriate positive or negative branch of the square roots similarly with the ellipsoidal
coordinate system.

In the Cartesian coordinate system every point can be represented by the intersection of
the three planes. The same goes for every orthogonal curvilinear system, meaning that
every point can be represented by the intersection of the three surfaces that form the
system.

In order to see the three surfaces which form this orthogonal curvilinear system we take
the squares of x1, x2, x3:

2 _ 22V 5 o — hE)(hE — V) 22 = g2 (h3 — p?)(h3 — v*)

=g s w0 w3 1209
Summing them and using relation (1.5 we have:
o+ al=1r2. (1.269)

which is the surfaces of a spheres of center (0,0,0) and radii 7. Similarly from (|1.268]) and
(1.5)) we have:

2 2 2
1 ) 3

N2 HQ _ h% h% _ M2

=0, (1.270)

which are the elliptic cones with central axes along the x3 axis and:

2 2 2
! X2 L3
_ — =0 1.271
v:  h3—v?  h3— 12 ’ ( )
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which are the also elliptic cones with their central axes along the x; axis. Next in order
to check the orthogonality of the system we take the partial derivatives:

12 /h2 2 22 /R =12
rT:<MV \/u h\/h v \/h \/h2 I/>7 (1.272)

h2 h3 hl h3 hl h2

I h3 — 1?2 _TH h3 — 12 (1.273)

P\ hahs” hihg/p2 — B2’ hiho/hE— 12 )

N B L AV Tl VAL e L (1.274)
hahs”  hihg\/h3 — 2" hihay/h3 — 12

Therefore, taking their inner products and using relation (1.5 we have:

R ep o) () AR B3 R) + r(h3h3 B3R
SR TR T 21 BT '
(1.275)

Similarly can be shown that r, - r, = 0. Finally, using (1.5):

bty — = B r2uv N r2uy _ r?uv(h? — h3 + h3) _0. (1.276)
h3h3  h3h3  hih3 hih3h3
Hence, the system is orthogonal and based on relations (1.22)-(1.24)), (1.256) and it
is concluded that:

h:=1,
20,2 _ 2
T Gtk N 1.277
YW = h3)(hE - p?) 277)
2
R (o 1.278
G 2
Substituting the above quantities into (1.261))-(1.263]) we obtain:
h hV 2 .2
;(2 83): 2 2 2M2V2 2 2 2§<T2§)’ (1.279)
r r OF Vi = W33 — @2/ 1y — v/l — 2 Or "
0 h, 0 1 0 0
— === — 2 h2\/h2 - 2), 1.280
e Ui on) = T o (Vo -~ —wg (1-250)
0 (hehy 9\ 1 O ( 5 % /a2 50
5 i) = vy (VA=) s

Therefore the Laplace equation in sphero-conal coordinates takes the following form:

9 () S IBVIES D (g e
+\/h2_”2\/h2_”28 (\/h2 v2\/h3 - 8“):0,

(n? —v?)

for u(r, u,v) smooth enough.
A normal solution of ([1.282) will be of the form R(r)M(u)N(v) and by substituting in

and dividing with it we obtain:
10 Vi = h3V/h — i 9 2. /p2
Rar(r ar) M2 — 1) W“ ~ 11— >
2 3 /p2 2
+\/h l/\/h v 8<\/h2 2\/h%_y28)207
v

N(u? —1v?)

(1.282)

(1.283)
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from which we can see that the first term is the only term that contains the variable r.
Hence in order for the equation to be satisfied the following relation must hold:

10 (,0R\

where k = constant. Therefore, we have:
r?R"(r) + 2rR/(r) — 2kR(r) = 0 , (1.285)

which in order to simplify it’s solution similarly to the spherical system we pick based on
[21] the second separation constant to be k = n(n + 1) for n = 0,1,2,.. . The other two
parts that contain the functions M and N are identical with the corresponding parts of
M and N in which means that we will end up with the same two equations
and of the ellipsoidal coordinate system. This shows why we chose A = n(n + 1)
for the case of the ellipsoidal coordinate system.

e Spherical system: The spherical coordinates (r, 6, ¢) are given by:

x1 = rsinfcose (1.286)
9 = rsindsing , (1.287)
x3 = rcosh (1.288)

where 7 € [0,400), § € [0,7] and ¢ € [0,27]. Similarly to the sphero-conal or conical
system by eliminating the two out of the three variables we can obtain the three surfaces
and every point can be represented as the intersection of these three surfaces. These
surfaces are:

By eliminating the variables # and ¢ we obtain for r = constant the equation:

w44 ai=r?, (1.289)

which is the surface of the sphere of radius r. Eliminating the variables r and ¢ we obtain:

1
z= tcm(b”x% + 23, (1.290)

which for ¢ = constant is the equation of the cone pointing either upward or downward.
Eliminating the variables r and 6 we obtain:

y = xtand , (1.291)

which for 8 = constants is the half plane since rsin¢g cannot be negative. For the orthog-
onality we take the partial derivatives:

r, = (sinfcose, sinfsing, cosh) , (1.292)
rg = (rcosfcos¢, rcosfsing, —rsind) , (1.293)
rg = (—rsinfsing, rsinfcosd,0) , (1.294)
and we calculate:
r, - g = rcosfsinfcos’p + rcosfsinfsin’d — rcosfsing = 0 (1.295)
r, Ty = —rsin®Ocospsing + rsin®Ocospsing = 0 (1.296)

ro Ty = —r2coslsinfcospsing + rcosdsinfcospsing = 0 . (1.297)



46 CHAPTER 1. ELLIPSOIDAL HARMONICS

Hence, the system is orthogonal and the metric coefficients are:

h? = ”I‘THQ = sin%0cos®¢ + sin®0sin’p + cos®0 =1, (1.298)
h(% = Hr9H2 = T2cos29(cos2¢ + 8in2¢)) +r25in20 = r? ) (1.299)
h2 = ||r@|]2 = r2$in20(sin2¢5+ 6032¢) = r2sin’0 . (1.300)

Substituting in ([1.266)) we obtain the Laplace’s equation in spherical coordinates:

1 0 [ ,0u 1 0 (. Ou 1 0%u
2 or ( m) * 2ing 06 (“”%a) t sngaer 0 (1.301)

where u(r, 0, ¢) is smooth enough.

Equivalently:
1 0 ( 50u 1
— = —Bu = 1.302
7"287“<r 87“>+7"2 u=90, (1.302)
where )
1 0 ou 1 0%u
= — | sinf— —_— 1.303
"= Sin 09 (Sm 80) T in?0 042 (1.303)

the Beltrami operator (or surface Laplacian) on the sphere S2.

Remark: From these two systems it can be observed that the ellipsoidal coordinate p corre-
sponds to the radial part r of the spherical coordinates and the coordinates p and v correspond
to the angular part 0 and ¢ of the spherical coordinates and this correspondence has been fre-
quently used the previous sections i.e. Lamé functions of the second kind and surface ellipsoidal
harmonics.

1.6.2 Legendre’s Equation

The spherical harmonics arise from the solution of Laplace’s equation in the spherical
coordinate system. Since we want to apply separation of variables we want to find a solution
of the form u(r,0,¢) = R(r)O(0)®($) which is called normal form. Therefore, by substituting
u = RO® in and dividing with RO® we obtain:

9 [ ,0R 1 0 (. 00 1 020
ROr (T 37“) * Osind 06 <Sm089> + Psin20 9¢% 0, (1.304)

where the first term of the equation is the only term that contains the radial variable r. This
means that the first term is either equal to a constant or equal to a function of r. If we assume
that it is a function of r then in order for equation to hold true the other two terms
of the equation would have to depend on variable » which cant be true since both terms dont
contain this variable. Hence the first term has to be equal to constant in order to satisfy the
equation which gives the equation:

E 26U 2 pl! /
—_— — 2 .

where k = constant. This is a second order Euler differential equation which means that the

solution will be of the form r™. Hence, in order to determine the separation constant k we
substitute ™ in ([1.305)) and we obtain:

nn—1r"+2n" —kr"=0<7r"(n(n—1)+2n—k)=0=k=n(n+1). (1.306)
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The same exactly result we have if we choose r"~! meaning we have two independent solutions

of (1.305)) for the same separation constant k& = n(n + 1) for n = 0,1,2,... and the general
solution of ((1.305)) will be of the form:

R(r)=cr" +cr L. (1.307)

The separation constant k = n(n+ 1) is also used in the radial part of the ellipsoidal coordinate
system since the radial part of the conical system which acts as intermediate coincides with the
radial part of the spherical system leading us to take the same separation constant.

Replacing & = n(n+1) in (1.305)), substituting in (1.304) and multiplying with sin?0 we obtain:

sz’nGQ ( 8@) 1 0%®

o a0 sinf— +6W

n(n + 1)sin®0 + 70

=0. (1.308)

It can be observed that similar to the first term of ((1.304)) the third term contains only the
variable ¢ leading us similarly to the radial part to take it equal with a constant m in order for
equation to hold true:

1 9%®

——— =a 1.309
and because the solutions involving the full range of ¢ € [0, 27| must be periodic we choose the
separation variable to be negative , say a = —m? for m integer which gives us the following
equation of ®(¢):

"+ m?d=0, (1.310)
with solutions of the form
®(¢) = cicosme + casinme (1.311)
or more commonly:
() = ame™? (1.312)

where c¢y,co or a,, arbitrary constants and it can be seen that it is a 27 periodic function.

Finally for ©(0) by substituting (1.309)) into (1.308) we have:

9 sind & (. 00\ o
n(n 4+ 1)sin“0 + o 20 <3m0 m* =0

1.313
& 1 d sin@ﬁ + n(n—i—l)—mi2 0=0 ( )
sind df o sin26 -
If we write cosd = x the above equation becomes:
d 9, dO m?
dI[(1—3;)dx]—l—[n(n—l—l)—l_ﬁ}@—o. (1.314)

This equation is known as associated Legendre’s equation and for the specific case of m = 0 it
becomes:

(1—-2%0" - 220" +n(n+1)0 =0, (1.315)

which is known as the classical Legendre’s equation. The solutions for m = 0 will be functions
of x = cosf and specifically polynomials known as Legendre’s polynomials P,,, while for general
m the solutions can be found by differentiating the Legendre polynomials, giving the associated
Legendre polynomials P".
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Legendre polynomials:

Equation (1.315)) can be rewritten in the following form:

2x n(n+1)
" — ! =0 1.316
Y A i e a ; ( )
1
where the functions — d nin+ 1) are analytic at x=0 and singular at x = £1.

122 T g2
2 1

For example 17x2 =2z [1 + 2% + 2t + ] for |z| < 1 and the same goes for n1<n+2) which
J— x J—

means that the power series solutions of the form:
o0
> apat (1.317)
k=0

will also have radii R = 1 and that +1 is regular singular point. Substituting this solution in
(1.315)) and after some straightforward calculation similar to the ones followed in the previous
sections for the Lamé functions we obtain an equation of the form:

> Ak =0, (1.318)
k=0

where Ay = (k+ 1)(k + 2)agr2+ (n — k)(n+ k + 1)ay, for k =0,1,2,... . From this equation it
is concluded that Ay = 0 which gives the following relation between the constants ay:

(n—k)(n+k+1)

Ao = — Gt 1)k +2) ay . (1.319)

separating the odd term of the sum from the even terms, it is concluded that the resulting

solution will be:
O(z) = aoLp(x) + a1 Lg(z) (1.320)

where L, is the even series and L, is the odd series. For every p non-negative integer, one of
the series will terminate while the other remains as an infinite series. Specifically:

e If p is even, then the series L, terminates, resulting an even polynomial of degree p. The
odd series L, remains as an infinite series which converges for |z| < 1 and diverges for
x ==+1 and 22 > 1 and it is a second solution of ([1.315)).

e If p is odd, then the series L, terminates, resulting an odd polynomial of degree q. The
even series L), remains as an infinite series which converges for |z| < 1, diverges for z = £1
and 22 > 1 and it is a second solution of (1.315]).

Based on the above the two independent solutions of Legendre’s equation (1.315) are [21], [20] :

[5]

1 (-Dk@n —2k)! o
P, = — " =0,1,2,... 1.321
which are the Legenre’s polynomials of the first kind and
Q) = Lpsoin 2 5 L pon ) 00 (1.322)
nm—an nl—(L‘ k_0k+1k$ n—k—1\), m=U,L1,2,..., .

which are the Legendre’s polynomials of the second king. The Legendre’s polynomials of the
first kind consist the finite sum of (1.320)) while those of the second kind consist the infinite
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series of ([1.320) which blows up at = +1. The Legendre’s polynomials can be defined in
various ways. One definition is in terms of Rodrigue’s formula:

1 dan
- 2np! dtn

Py (1) (t* —1)", (1.323)

and they are normalized so that P, (1) = 1.

Associated Legendre functions

For the general case of m # 0 it can be observed that by substituting © = (1 — 22) 2 u(z) in
(1.315)) we have:
(1— 2" —2(m+ 1z + (n(n+1) —m(m+1))u=0, (1.324)
and by differentiating with respect to x we obtain:
(1 — 2" —2(m +2)zu” + (n(n+1) — (m+ 1) (m+2))u' = 0. (1.325)

Hence, it can easily be observed that if u is a solution of for a given n and m, then v’ is
a solution of the same equation for n and m + 1. Therefore, if P,(z) is the solution of
for m = 0, then P, (z) is the solution for m = 1 and in general %Pn@) is the solution for a
given n and a general value of m. Hence, the solutions of are of the form:

m

dz™

P () = (1—-a%)%

n

(Pa(z)) (1.326)

forn=0,1,2,... and m = —n,—n+1,...,n—1,n] and P)” =0 for m > n. These functions are
called associated Legendre functions of the first kind. Since @, is also solution of (1.315)), then:

m

Q@) = (1= %)% 2 (Qule)) | (1.321)

are solutions of forn=0,1,2,...., m = —n,n+1,...,n—1,nand Q" = 0 for m > n. These
functions are the associated Legendre functions of the second kind. An associated Legendre
function is not polynomial in general and because of the factor (1 — tQ)%, it is only defined on
the closed interval [—1,1]. Now combining the solutions ™ and r~"~! of (1.305) , the solution
(1.321) of (1.315]), and the solution of the (1.309) we obtain the independent normal
solutions of the Laplace’s equation:

m
2

uy (1,0, ) = r" P (cos)e™? (1.328)
us(r, 0, ¢) = r""LP,(cosh)e™? . (1.329)

Remark: In the present work, z is introduced as the cosine of a real angle and consequently
has values in [—1, 1]. However, more general cases have been studied in [21].

1.6.3 Spherical Harmonics

The spherical harmonics are the angular part of the solution of Laplace’s equation in spherical
coordinates ©(0)®(¢) and are denoted with Y7 (60, ¢) where n is the degree and m is the order.
Thus, based on (1.312)) and (|1.326]) the spherical harmonics of degree n and order m are of the
form:

2 1(n —=m)! . =0,1,2,..
Y0, ) = ntln—m P™(cosh)e™? for 4 07
47 (n+m)! m=-n,—n+1,...n—1,n

(1.330)
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These functions are also known as surface spherical harmonics but based on (Whittaker and
Watson) they are simply called spherical harmonics. If the spherical harmonic of degree n
and order m (or surface spherical harmonic) is multiplied with " the harmonic homogeneous
function 7"Y,"(0, ¢) which is the normal solution (1.328]) of (1.301)) is called solid spherical
harmonic of degree n and order m or simply spherical harmonic of degree n and order m but
in order to avoid confusion when we refer to spherical harmonics we mean the surface spherical
harmonics .

The functions Y, have some nice properties but in order to explain them we need to specify
the structure of the space L*(S?) ([q2 |f|?dS < 00). First we take the inner product on L*(S?)
given by:

< fg>= /fgdS /QW/ £(0,8)g(0, ¢)sinfdods (1.331)

where f,g € L?(S?). With this inner product and the norm associated || f|| = v/< f, f > with
this inner product, L?(S?) is a Hilbert space. The orthogonality of ¥;™ can be obtained by the
orthogonality relations of the associated Legendre functions P/ and e"™?. Hence, based on [21]

we have: . ( .
2 n+m)!

P™(z)P™(z)dz = St 1.332

[ Pr@pn@a = g2t (1.332)

which is an orthogonality relation for the associated Legendre functions of the same order m
but different degrees n. For e"™? we have:

27
/ MM = 26 - (1.333)
0

Hence, be defining the normalized ellipsoidal harmonics of degree n and order m as:

YI0.6) = Y (F) = \/ o lins

) |m]| ime
@ (1.334)

it can easily be concluded that the orthogonality relation of the ellipsoidal harmonics Y, is:

Y (¢ )Ym*( YdS(®) = Gy Smm’, (1.335)
SZ
where dS = sinfdfd¢ and * denotes the complex conjugate.
For the completeness of the spherical harmonics Y,)" we refer to [I1] and we have the following
completeness relations:
For the associated Legendre functions:

1 o) o 9 )
5 mE_OO P, (z)P,(2") = ST 15(1,‘ x') . (1.336)
For the exponential & we have:
1 o0 ) ,
im(p—¢') _ o
or m_E_OO e =d(¢p—9') . (1.337)

For the spherical harmonics the completeness relation is:

SN V@)Y E) = 6(8 — ) = 6(cost — cost)3(¢p — ¢) . (1.338)

n=0m=—n

In general, the completeness of the spherical harmonics {Y;"} can be derived straightforward
from the completeness of {P(cosf)} and {e"™?} which can be derived from Fourier analysis
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and Sturm-Liouville theory respectevily. An alternative way to prove the completeness of the
spherical harmonics is via the Peter-Weyl theorem.

Hence, based on the completeness of Y,™*(#) of the L?(S?) every square-integrable function
defined on S? can be expanded as:

f(#) = i zn: cmy™#), teS?, (1.339)

n=0m=—n

where

G = [ SOV @dSE) (1.340)

The spherical harmonics as well as their orthogonality and the completeness, can also be
derived from the Laplace-Beltrami operator defined in ((1.303)). Specifically, by substituting the
homogeneous solution (or solid spherical harmonic of degree n and order m) r"Y;"*(6, ¢) that
we found in the previous section in , we obtain:

10 [ ,0("f)
r2 Or [r or ]
" n(n+ 1)f +r"PB(f) =0 & " 2 n(n+ 1)f + B(f)] =0,

+ %B(T"f) =0 19 (nr"+1f) + 7" 2B(f) =0

(1.341)

which means that A(r"Y,;") = 0 iff B(Y,") = —n(n + 1)Y,* which means that the spherical
harmonic Y,7* (6, ¢) is eigenfunction of the Beltrami operator for the eigenvalue —n(n+1). The
Laplace-Beltrami operator is self-adjoint with respect to the inner product which gives
the orthogonality of the spherical harmonics. The completeness follows from the fact that
the inverse operator of the Laplace-Beltrami is compact. For further study of the spherical
harmonics and their properties, we refer to [21] and [11].



Chapter 2

Scattering Theory

The scattering theory studies the interaction of a propagating wave (also called an incident
wave) with an obstacle (also called scatterer). The scatterer disturbs the propagating wave and
the result of this disturbance is the scattered wave. The scattering problems are separated in
the two main categories of direct scattering problems and inverse scattering problems. In direct
scattering problems we know the incident wave (or incident field) and physical or geometrical
properties of the scatterer and we try to find the scattered wave (or scattered field). In contrast
to the direct scattering problems, there are a lot of types of problems under the category
of inverse scattering problems. In the present work, we study inverse scattering problems in
which we know the incident field and the scattered field and we try to specify the physical
and geometrical properties of the scatterer. In this chapter we formulate the direct scattering
problems for acoustic and electromagnetic waves and we use the low-frequency theory in order
to find approximations for the solutions of these problems. Moreover, the low-frequency theory
allows us to introduce the ellipsoidal harmonics into the scattering problems, in order to obtain
the corresponding solutions for the case of ellipsoidal scatterers.

A scattering problem can be characterized as a low-frequency problem when ka < 1, where
k the wave number and « the characteristic radius of the scatterer. Lord Rayleigh in 1897 [30]
made the assumption that when the wavelength is way bigger that the size of the scatterer,
the scattering problem can be dealt as a sequence of perturbations of the corresponding static
problem with perturbation parameter the wave number k and when k = 0 the scattering problem
is reduced to a potential theory problem. This assumption was studied strictly in a series of
papers by Stevenson [31] and by Kleinmann [23]. These studies are based on the fact that in the
low-frequency area the wave field is an analytic function of the wave number k and therefore can
be expressed as a Taylor expansion in a neighborhood of k = 0. These series are also known as
Rayleigh series. The radius of convergence of these series is called Rayleigh area and inside that
area the Rayleigh series converge absolutely and uniformly. The specification of the Rayleigh
area has be done for very few scatterers since it is a difficult problem. In the present work we
will mainly focus on the low-frequency approximations of the total field and the far-field pattern
for each one of the scattering problems.

This theory is applied in the acoustic, electromagnetic , elastic and thermoelastic waves,
where for the last two categories of the elastic and thermoelastic waves, the problem becomes
more complicated due to the existence of more than one wave numbers. Moreover, the low-
frequency theory can also be applied in a chiral enviroment, where the electromagnetic waves are
decomposed into right-handed and left-handed wave fields which also propagate with different
wave numbers which are not connected linearly. For further study in the application of the
low-frequency theory in chiral environment, we refer to [33]. Finally, the application of low-
frequency theory into the scattering problems can be extended for the cases of multi-layered
ellipsoidal scatterers [3] and [4].

52
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2.1 Acoustic Scattering Theory

ul v+ us

N

ut =u +us

Figure 2.1: Scattering of acoustic waves.

In the present work, it is assumed that an acoustic wave in an irrotational, homogeneous,
isotropic and compressible fluid medium is characterized by a scalar function u(r,t) which is
called the excess acoustic pressure field. If we denote with V(r,t) the velocity of the acoustic
wave, then the two basic relations which combine v and V, are the following:

0 1

au(r,t) = —;V -V, (2.1)
0

QEV(I', t) = —Vu(r,t) + 0VV - V(r,t) , (2.2)

where v denotes the mean compressibility , 0 denotes the mean mass density and § denotes the
compressional viscocity of the medium which represents losses. Thus, if § = 0 the medium is
considered lossless and if § > 0, the medium is considered lossy. From relations and ,
the following equation is derived for u:

82

1 J 0
ﬁu(r,t) = %Au(r,t) + EA <8tu(r,t)> , (2.3)

which governs the sound wave propagation and it can easily be observed that for lossless medium
of propagation (0 = 0) it is reduced to the classical wave equation:

62

@u(r,t) = ?Au(r,t) (2.4)

where ¢ = ——.

Ve
Time Harmonic Waves:
One of the most important case of time varying acoustic waves is the time harmonic (sinusoidal
or cosinusoidal) time variation where the excitation of the source varies sinusoidally in time
with a single frequency. Specifically, two ways of introducing time harmonic fields are:

e Fourier transform:

u(r,t) ! /00 u(r, w)e whdw (2.5)

:% .

where w = 27 f the angular frequency.
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e Real-value convention:

u(r,t) = Re {u(r)e_iwt} . (2.6)

Hence, by substituting u(r,t) = u(r)e™™" in (2.4)) we have:

3
u(r)(—iw)?e "t = ¢? ; %‘ge—m , (2.7)
where r = (1, 22, 23). Therefore, by dividing with e~ we have:
: > du(r)
— Wu(r)e ™t = 2 ; 87:1312 & —wu(r) = AAu(r) , (2.8)
or equivalently:
Au(r) + K*u(r) =0, (2.9)

with k = @ wy/7vo. Equation 1) is known as Helmholtz’s equation (Hermann Ludwig
c

Ferdinand von Helmholtz 1821— 1894). The constant k is the wave number and its positive, but
in general it can be a complex number with Imk > 0. The constant g is the density defined
previously and -y is the compressibility. The fundamental solution of the Helmholtz’s equation
is:

G(r,v) = e W e, v (2.10)
ke - 4n V) ’
which means that: A
(A + k) G (r,7) = —£5 (r—1) . (2.11)

and it satisfies (2.9)) in R\ {r'}.

2.1.1 Basic Acoustic Scattering Problems

In order to study the scattering phenomenon it is important to impose some boundary conditions
on the surface of the scatterer as well as a radiation condition at infinity. The boundary
conditions prescribe the pressure of the acoustic wave on the surface of the scatterer depending
on its physical characteristics while the radiation condition specifies the appropriate geometric
attenuation of the scattered field and imposes its outgoing character. The radiation condition
also provides a necessary condition for the well-posedness of the scattering problem (exterior
boundary problem) and specifically the uniqueness of the problem. In what follows we assume
that the scatterer is a nonempty bounded open set D = V', not necessarily simply connected,
with boundary 0D = S sufficiently smooth as to allow the applicability of the Gauss-Green
theorems. There are two main categories of scattererers, the penetrable and the impenetrable.
When the scatterer is impenetrable, the acoustic field exists only in R®\ D = V*. When the
scatterer is penetrable the incident acoustic wave enters the scatterer which is considered to be
another homogeneous and isotropic fluid characterized by different parameters ¢ and v than
those that characterize R3\ D = V*.

In general, an incident wave or incident field is denoted by u’ and can be either a plane wave
or a spherical wave. A plane incident wave is defined as:

ui(r) = eihdr (2.12)
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where d the direction of propagation and a spherical incident wave is defined as:

] 6z'k:|r—r0|
un, = — 2.13

ro |I‘ . rO’ ( )
where rg the source point. In the present work we will mainly focus on the case of plane wave
incidence.

The scatterer disturbs the propagation of the incident wave u?, producing the scattered wave

u® which is always a spherical wave. Hence, the total field u™ in VT is the superposition of the
incident wave and the scattered wave:

ut(r) = u'(r) +ui(r), reVius. (2.14)

The scattered field has to satisfy a radiation condition as r — oo, where r = |r|, in order to
ensure the uniqueness of the solutions of the scattering problems. Due to Sommerfeld (1912),
the radiation condition we use is:
. 0 . .
rll)rgor <8Tus(r) - zk‘us(r)> =0, tes?, (2.15)
where S? the surface of the unit ball in R and the convergence is taken to be uniform over all
directions t.

For the boundary conditions of the scattering problems, in the present work, we study the
following four basic cases:

o Dirichlet boundary condition:
Describes an acoustically soft scatterer which offers no resistance to pressure, meaning
that yields in such a way as to maintain zero pressure on its boundary. Hence, u® = —u’
on S which leads to the Dirichlet boundary condition:

ut(r)=0, res. (2.16)

o Neumann boundary condition:
Describes an acoustically hard scatterer which admits no local displacements and therefore
the normal component of the velocity field should vanish. This leads to the Neumann
boundary condition:

%tﬁ(r):ﬁ-vw’(r) =0, res. (2.17)

e Robin boundary condition:
Describes a resistive scatterer which has finite impedance and an intermediate behavior
between the acoustically soft and the acoustically hard scatterer. This leads to the Robin

boundary condition:

9 wot 4

i (r)—l—zﬁ (r)=0, res, (2.18)
where Z% is the acoustic impedance measured in units of pressure per unit of velocity.

The above three cases are under the category of impenetrable scatterers.

e Transmission conditions:
This case belongs to the category of penetrable scatterers. Hence, the incident wave is
transmitted into V'~ which results to a total field u~. The total field u~ satisfies the
Helmholtz equation in V'~ for the corresponding parameters o~ and 7~. The two fluids
meet at the boundary S which lead to the transmission conditions:

ut=u", resS,
out  ou (2.19)
on Pan o TS
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ot
where = Q—_(l —dwy 7).

Combining all the above we have the following four scattering problems with plane wave inci-

dence of the form (2.12)):

1. Acoustically soft scatterer:
Find the solution total field u* € C?*(V*t) N C(V*T U S) which satisfies the following
boundary value problem:

Aut(r) +k*uT(r)=0, reVv?t,
ut(r) =0, res,
ut(r) = ui(r) +u’(r), reVtus, (2.20)

7—00

lim r <8aus(r) - ikus(r)> =0, uniformly for all directions of # € S2.
r

2. Acoustically hard scatterer:
Find the solution total field u™ € C?(V*) N CY(VT U S) which satisfies the following
boundary value problem:

Aut(r) +kuT(r)=0, reV",

%u+(r):0, res,

ut(r) =i (r) +uf(r), reVius, (2.21)

0
lim r (us(r) - ikus(r)) =0, uniformly for all directions of # € S2.
r—00 or

3. Acoustically resistive scatterer:
Find the solution total field ut € C?(V*) N CY(V*t U S) which satisfies the following
boundary value problem:

AuT(r) + k*uT(r) =0, reVt,
+
£u+(r)+iwg ut(r)=0, res,
on oz (2.22)
ut(r) = u'(r) +u’(r) , reVtus,

llm r (aaus(r) - ik:us(r)) =0, uniformly for all directions of # € S2.
r—00 T

4. Penetrable scatterer:
Find the total exterior field ut € C2(VFT) N CY(V*T U S) and the total interior field

u™ € C?*(V7)NCY(V ") which satisfy the following boundary value problem:

AuE(r) + (kF)2ut(r) =0, revE,

ut(r) =u (r), resS

0 0 _

%u“‘(r) = ﬁ%u (r) , res, (2'23)
ut(r) = u'(r) + ui(r) , reVtus,

T—00

lim r (gus(r) - ik:us(r)) =0, uniformly for all directions of & € 52,
r

where k£~ is the wave number in the inner region V.
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Integral Representations

The integral representation of the scattered field u* is given by:

a(r)u’(r) = Zj/s [us(r')(wa+(r,r') - G+(r,r')%us(r') ds(r’) , (2.24)
where On' = On(r’) and
0, reV~™
a(r) = % L res . (2.25)
1, revt

The proof follows by applying Green theorem for the functions u*(r’) and G (r,r’) in the region
(V*)\ B(r,e) where B(r,¢) is a ball with center the point r and radius € and by letting ¢ — 0
and using the radiation condition.

Also, the integral representation of the incident field is given by:

7 _ ﬁ [ i) i + / + / i -y /
(a(r) — 1) u'(r) = 47T/S _u (r )8n’G (r,x') — G (r,r )0n’u (r')| dS(r') . (2.26)
Similarly, the integral representation of the total interior field v~ is given by:
(a(r) —1)u (r) = 2k/ -u_(r’)iG_(r r)—-G (r r’)iu_(r’) dS(r') (2.27)
4t Jg | on’ ’ lon! ' '
Substituting u® = u* — v’ in (2.24)) and using (2.26)) we obtain:
a(r)u’(r) = Zk/ u+(r’)iG+(r r') - Gt (r r/)itﬁ(r’) dS(r') (2.28)
A7 Jg on’ ’ o/ ' '

due to the fact that a plane incident field is a solution of the Helmholtz equation in R3. There-
fore, the integral representation for the total field is given via ([2.28)) by:

a(r)ut(r) =u" + jl? g [u"“(r’);;/G"‘(r, r') - G*(r, r’)aan/u"'(r')} dsS(r') . (2.29)
Depending on the conditions on the boundary S the above integral representation can be sim-
plified.

Far-Field

Using the asymptotic relations:

1
|r—r'|:r—f‘-r'—|—0< ) ,
"

, (2.30)
r—r . 1
—=r4+0| -,
o)
we obtain
G ) = nin) + 0 ()
. 1
VP/G+(r, r’) = —ikpe ikt T h(kr)+ O (7"2> , (2.31)

e 1
V.Gt (r,r') = ikie T h(kr) + O (7“2> .
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Substituting the asymptotic forms of G and VG from (2.31) in the integral representation of
the scattered field ([2.28]) we obtain:

u®(r) = u™(F)h(kr) + O <le) , r—o00, teS?, (2.32)

where the function u®(#) is called the far-field pattern or scattering amplitude of the scattered
field and is given by:
ik 0
Tl —— [

%U’L(r’) + ik (£ - ) u+(r')] e T qS(x) (2.33)

47 S

2.1.2 Low-Frequency Theory in Acoustics
Basic Low-Frequency Theory in Acoustics
Starting with the low-frequency expansions of the acoustic fields, we have:

e Plane incident wave:
The incident field u? because of its exponential form (2.12)) can be written as power series
of the wave number k in a neighborhood of k = 0:

vy =3 I @y = 2.3)
n=0 n=0

where u!, are the low-frequency coefficients of the incident field independent of the wave
number k. This series converges for all points r.

o Total exterior field:
The total exterior field »* in VT, is an analytic function in a neighborhood of k = 0 which
was established by Kleinman [23]. Hence, it can be expressed as power series of the wave
number k of the form:

o (ik)"
+(p) — + +
u™(r) —T;O .y uy(r), reVvr, (2.35)
where u are the low-frequency coefficients of the exterior total field independent of the
wave number k.

e Total interior field:
The total interior field »~ in V', similarly to the exterior, is an analytic function of the
wave number k in a neighborhood of £ = 0. Hence, it can be written as the following
power series:

u (r) = Z (Z:')nu;(r) , reV™ | (2.36)
n=0

where u,, are the low-frequency coeflicients independent of the wave number &.

e Scattered field:
The scattered field ©*, can also be written as power series of the form:

u’(r) = Z (Zk)nus (r), reV™’, (2.37)

| n
= nl
where u;, are the low-frequency coefficients independent of k.

Remarks:
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e We note that with £ we denote the wave number at the outer region of the scatterer,
meaning that k* = k.

e For the case of the total interior field the wave number should be £~ but in order to

have uniformity for convenience in calculations, the relation k= = nk is used, where
— /2 - o - the relative index of refraction. The absorption of n from the low-frequency
yre

coefficients leads to the expansion in terms of k.

Substituting the low-frequency expansion of the total field (2.35) in the Helmholtz equation

1) , we have:

)+ k2 Z R ey =0 i (Zs')n Auf (x) — (ik)? i ) =0

n!

|
n=0 n=0 ’ n=0 TL.
R o SRR L QR S k)
@nzo o Au, (r) —7;) . u, (r)=0%& 7;) . Au, (r) —nZQ = 2)!un_2(r) =0.
(2.38)
Therefore by equating to 0 the coefficients of (ik)", we have:
Auf(r)y=nn—1Dul ,(r), reVT n=01,... (2.39)

For the transmission problems, the low-frequency coefficients of the interior total field = will
satisfy the Helmholtz equation in the interior V'~ for wave number k= = nk.

Substituting the low-frequency expansion of the total interior field v~ into the Helmholtz equa-
tion gives:

m _ — (ik™) = (k)™ o (ik)"
AZ :0<:>Zo(n!) Aun(r)—UQ(zk:)QZO(n!) u, (r)=0
> (k)" > zk n+2 > (R)" ) (zk)”
> ~ Z (r)=0& ) - Z L,(r)=0,
n=0 n=0
(2.40)
and by equating the coefficients of (ik)"™ we obtain:
Au, (r) =n(n—1)n?u, ,(r), reV™, n=01,... (2.41)

Remarks:

i. Relation ([2.39)) will also be satisfied by the low-frequency coefficients of the incident field
u' and the scattered field u® since they are also solutions of the Helmholtz equation.

ii. Thus, the Helmholtz equation is reduced to a sequence of equations for the low-frequency
coefficients. Specifically, it can be observed that for n = 0 and n = 1 the low-frequency
coefficients satisfy the Laplace equation and for n > 2 they satisfy a Poisson equation with
the non-homogeneous part being known from the previous terms of the sequence of the
low-frequency coefficients.

For the boundary conditions we have the following relations:

e Dirchlet boundary condition:
Substituting the low-frequency expansion of the total field in the Dirichlet boundary
condition u™ = 0 and equating the coefficients to 0, we obtain:

Z(Zk> uf(r)=0suf(r)=0, reS, n=0,1,... (2.42)

nl "
n=0
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e Neumann boundary condition:

Substituting the low-frequency expansion of the total field in the Neumann boundary

.. +
condition %Ln = 0, we have:

& o= (k)" @k L o 4. .
3717;) ol un(r)—0<:)7;) ol %un(r)—oﬁ—nu (r)=0, resS, (243)

for n=0,1,... and On = In(r).

e Robin boundary condition:
Again by substituting the low-frequency expansion of the total field to the Robin boundary
condition a%u+ +ikRut = 0 with R = Z% %, we obtain:

c1.\n+1

> (ik)" %u;(r) +ikRY (“;,)nuZ(r) =0e ) o %ui(r) D3 .
2 ' n=0

n! 'r)L! u:(r) =0

n=0 ) n=0

(2.44)

Therefore, by equating the coefficients of (ik)™ we obtain the corresponding boundary
condition for the low-frequency coefficients:

aiu;(r) +nRuf (r)=0, reS,n=12... (2.45)

o Transmission conditions:
Similarly with the previous boundary conditions, we have:

ut () = iy (x)

b o ., res. (2.46)
() = B (r)

Next, for the asymptotic behavior of the low-frequency coefficients the expansion of the fun-
damental solution is needed. Because of its exponential form, the fundamental solution of the
Helmholtz equation in V' can be written as:

ik|lr—r'| 1 oo (Zk‘)n o0 (Zk)n
: + _¢ _ n __ n—1
ikGT (r,v) = ] N ] EO - r—r'|" = gg n! v —r/|"", (2.47)

where the superscript + indicates the wave number k = k™.
For the transmission problems the fundamental solution of the Helmholtz equation in V'~ has
the expansion:

etk r—1’| 1

ik G~ (r,r') =

0o 4. 0o .

(ik)" (ik)™ 3

|I'—r’| - ‘rfr/‘ Z n! 77”|r—1°/|n = § Tﬁ”h‘—r/’n 1 , (2.48)
n=0

n=0

where £k~ = nk. Thus, by substituting the low-frequency expansions of the total fields as well as
the expansion of the fundamental solution in V' (2.47) into the integral representation (2.29)
and rearrange the terms via the Cauchy formula:

o] . o] bn o0 1 n
POEDIEEDIDD (Z) @b 249
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leads to the following form:

o) > Pty = 30 W
n=0 n=0

1 (ik)" . n + N O 1m—1 im—1 O + / ’
i %(m)/g[“”m(”aw'r“”' T e ()| dS(E)
(2.50)

where On’ = dn(r’). For reasons that will be clear later, by isolating the terms u; (taking out
the case m = 0 from the double sum) we have:

e SRR SRR Lo () N A T B R "
> e =3 e+ 15 O { et w1 == k@) dste)

. 0 0
+ Z (Z) /5 [“:{m(r/>8n,|P —/" e - r,\m_lan,u;«tm(r/)] dS(r’)} :
m=1
Equating the coefficients of (ik)™ gives:

@t ) = £+ o [ e = e L] dse) . s

where

, 1 < /n 0 0
+ — ot . + N Y e Wm—=1_ .. Jm—-1_Y _+ / / >
0 = 30 () (gl =<1 e 0] s, s

(2.53)
and f&“ = uf). It can be observed that f, is dependent of uar , uf, ...,u;ll and independent of
u,l. Hence, from (2.52)) we obtain the decomposition:

uwl(v) = fie)+vf(x), rev’, (2.54)

(2.51)

where . 5 5
v:(r) = 477/5 [u:(r')anlh — r'|_1 —|r— r'\_lwuﬁ(r’) ds(r’) . (2.55)

The function v, is the combination of a single layer potential and a double layer potential which
are solutions of the Laplace equation. Hence, v, is also a solution of Laplace equation in V'
with the asymptotic form:

vi(r)=0 (1) , T —00. (2.56)

From the asymptotic behavior of v it is concluded that the asymptotic form of the low-
frequency coefficients of the exterior total field is:

1
uy (r) = fo (r) + O (T) , T 00, (2.57)
and since fo+ = ug, we have:
1
ug (r) :1+O<r) , T —00, (2.58)

for plane wave incidence. The non-vanishing part f,I of the asymptotic form of !, is proven to
be a particular solution of (2.39)). Specifically, since v;" is regular at infinity it has the integral
representation:

a(r)v(r) = 417T/S [v:{(r');ﬂ\r —rt—r— r’]lailv;{(r’) dS(r') . (2.59)
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Hence, returning to relation (2.52)) and subtracting by parts with (2.59)), we have:

A @) = 1)+ 3 [ [ = w1 = xS - )| asee)

(2.60)

Therefore, from (2.54)), we obtain the integral representation of f,I:

(@) =150 = = [ |06 =2 == | as@) (2o

for r € R3. This leads to the fact that f;/ satisfies equation (2.39) as well as the equation:
Aff(r)=0, reV . (2.62)

Based on the above, it can be observed that for every n = 0,1, 2, ... in the sequence of problems
satisfied by the low-frequency coefficients, f,I is dependable on the solutions uf, B szl which
means that for every step n it is a known function from the previous steps 0,1, 2, ...,n—1. Thus,
u,} depends only on the potential function v;'.

Finally, for the low-frequency expansion of the scattering amplitude (far-field pattern), by

substituting the low-frequency expansion of the exterior total field «™ and relation:

otk _ i (ik)n(_f- ", (2.63)

|
n:
n=0

in the far field pattern (2.33)) as well as using (2.49)) to rearrange terms, we have [19] :

@)= = 3 S (MYt [ D@ il 0] 6 ase).

m

(2.64)
which can also be written as u*(¥; El) to show the dependence on the direction of incidence d.
Keeping Dassios’s notation and separating the even terms (real part) from the odd terms (imag-
inary part), we have:

Re{ (#d) } Zk‘2nA2n (2.65)

Im {UOO(f; a)} - Z K24 Ay (#:d) (2.66)
n=0

In what follows we refer to the low-frequency coefficients of the total field and scattered field
as “near-field data” and to the low-frequency expansion of the scattering amplitude and its
coefficients as “far-field data”. Based on relations (2.39),(2.36), (2.42)-(2.46) and (2-54)-(2.57),
to every scattering problem corresponds a sequence of potential theory problems for the low-
frequency coefficients.

Acoustically soft scatterer

Based on ([2.39)) and ([2.42)) we have the following sequence of exterior boundary value problems
for the low-frequency coeflicients:

Auf(r)=n(n—1Du ,(r), reVT,

n

uf(r)=0, res,

(2.67)
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The specification of the low-frequency coefficients u.", as mentioned in the previous section, can
be helped via the decomposition (2.54)). Specifically, it is sufficient enough to calculate only v;',
where the potential v will satisfy the following boundary value problem:

Avi(r)=0, reVt,

n

U+(I‘)i—f,::_, I‘GS,

n

U;(r):o(1> L ro o

r

(2.68)

For the f,7, by replacing the Dirichlet boundary condition into (2.53), we obtain:

fn()—%(r)—* ( ) [irrm szl (260

Therefore, the first three terms are:

fof () = upy (2.70)
s 1 0

fi(x) = ui(r) - o /S %uar(r')dS(r’) , (2.71)
i (r) = uy(r) - 1/ iu+(1")d5(1f') . e 0 ug (r')dS(x') . (2.72)

2 2 2 S on' 1 4 S on , '
For uf) and u} it can be proven via Divergence theorem in VT and their asymptotic forms that:
0 ub(r)dS(r') = 9 i (r')dS(r') =0 (2.73)

8n g on' o ’

Hence, from relations 1’ 1) and f(T = ué, we have:

[ i wist) = [ S5 a5 was)+ [ Sharaist) = [ Sl ast) . )

Before we proceed, it is necessary to introduce a standard potential function which is known
as the conductor potential ¢¢(r") [32]. This function is defined as the solution of the following
potential problem:

AgS(r)=0 reV*t,
¢C(r):17 I'ES,

. (2.75)
gzﬁc(r):O() , T —00.
T
The capacity C of S in terms of ¢¢ is defined as:
1 0
C=—— < on “(r)dS(r) . (2.76)

Having introduced the conductor potential ¢¢, by returning to relation (2.74)) and using the
boundary condition of 1} the following relations are derived which connect u('f to the ca-
pacity C:

a /

which by using Green’s second identity, relation and the fact that on the boundary S we
have UO = — f0 = uf), it is concluded that:

[ 60 i @1asw) = [ 5o aase) = - [ u)y owiasa) (279

0 / ¢“(r (r)dS(r') , (2.77)
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For plane wave incidence, since uf) = 1, from relation ([2.75) follows that:
0 ( NdS(x'") = iqbc(r’)dS(r’) =4nC (2.79)
Gn g on’ ’ ’

Finally, since ¢¢ is the solution of (2.75)), it can be observed that —¢¢ will be a solution of (2.68)
for n = 0 since fJ = 1. Thus, due to uniqueness of the solution, we have:

v (r) = —¢°(r), reV’. (2.80)

Based on relation (2.54)), the zeroth low-frequency coefficient of the exterior total field is given
by:
ug (r) = 1—¢°, (2.81)

where ¢¢ the conductor potential defined as the solution of .

For the specification of uf another basic potential function is needed and specifically a vector
valued potential ®(r) = (¢1, 2, ¢3) known as polarization potential, which is the solution of the
following potential theory problem:

B>

®(r)=0, rcVh,
=r+c, res,

1
@z(’)( 2) , T —00,
r

where ¢ = (¢1, ¢2,c3) is a constant vector chosen so that the following relation is satisfied:

0
From Gauss Theorem, we have:

0= [ o) e (r)ds(r) = / B(r) o (r)as(r)

(2.82)

(2.84)
:/(r—i—c) / S(r) —4nCc ,
S
which leads to the constant vector ¢ in terms of the conductor potential ¢°:
1 0
=— —¢“(r)d . 2.
— /S v g (r)as (r) (2.85)
For the first coefficient, from relations and -, we have:
fi ) = /MO JdS(') = (@ 1) C . (2.86)
This means that the potential v takes the value C' — (r - d) on the boundary (since v;” = — f;"
on S). Moreover, since ¢¢ =1 and ® =r + c on S, we have the following relation:
¢C(r)(0+&-c)—&-‘I)(r):C—a-r, (2.87)

Hence, since ¢° is the solution of (2.75|) and ® is the solution of (2.82)), then based on the above
relation we have that ¢¢(r) (C +d —d - ®(r) is the solution of (2.68) for n = 1, which due

to uniqueness, gives:

uf (r) = ¢°(r) (c +d. c) —d-®(r), revt. (2.88)
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Therefore, based on the above and the decomposition ([2.54]), the first order low-frequency
approximation of the exterior total field is given by:

uf (r) = C(¢°(r) = 1) +d- (r + cd(r) — B(r)) (2.89)

Far-field data:
For the scattering amplitude by substituting the Dirichlet boundary condition in (2.64) we
obtain:

. = (k)" = [n
u®(,d) = 4;20 ( k’i! > <m>(—1)m+1 /S (f-r')m%u;,m(r')dsa') . (2.90)

m=0

It can be easily observed that the scattering amplitude is of the form:
u™®(#,d) = ikAy(F,d) + k2 Ao (£, d) + ik Az(,d) + O(K*) . (2.91)

Similarly to the near-field data, the main idea is to express Aj, Az, As in terms of ¢¢, ® and
C.
Thus, for n =m = 0 in (2.90), the coefficient of ik is:

- 1 [0
AyE:d) = - /S Aud (1)as () = =0, (2.92)

where C' is the capacity defined in (2.76)).
For n =1 in (2.90), the coefficient of k? is:

Aol ) = - [ St as) - - [ @ gmuaase) . o)

where using the calculated ua“ and uf from ([2.81) and (2.89)) as well as the definitions of the
capacity (2.76]) and of the constant vector ¢ (2.85)), leads to the form:

Ay(#;d)=—-C?—Cd-c+ / (r)dS(r') = —C* + C(F —d) -c. (2.94)
For n = 2 in (2.90)), the coefficient of ik? is:

A(a)1{a 9 9

o () = 20 1)t () () el () dS(Y) . (2.95)

For the expression of A3 in terms of the capacity C, the constant vector ¢ and a potential
function, it is necessary to introduce two basic quantities. Specifically, the following integral in
terms of the potential ® defined in (2.82) (Schiffer and Szego 1949):

~ 0
=— —®(r)dS 2.96
Q= [rog-ewist). (2.96)
is known as the polarization tensor and the tensor given by:
P=Q+|V|I, (2.97)

where |V | is the volume of domain V| is known as the electric polarzzabzlzty tensor (Keller
1972). With the two necessary quantities Q P defined, by splitting (2 into three integrals
11, I, I3 the calculations can be more convenient. Starting with the ﬁrst 1ntegral I, we have:

Li=o ; ai 7 (r)dsS(r') = ;wamr)dS(r’Hlﬂ Sivi(r)dS(rﬂ- (2.98)
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For the ]"2+ , assuming plane wave incidence and based on (2.72)) as well as the capacity definition

(2.76) and the definition of ¢ (2.85)), we get:
ff@x)=(@d-r) +/|r—r|¢c NdS(r') +2C% +2Cd - c . (2.99)

From Gauss theorem on the integral of f;r , we obtain:

/311 [ +41/SI‘— |8 —¢°(r )] (r’):/DAr, [(a,r/)2+41ﬁ/s’r_r‘a ] e
B /D [H 4177/3,142/3”,,¢C( r")dS(r ”)} av(r')

(2.100)

From Green’s identity and the fact that ¢¢ and |r — r’|~! are solutions of Laplace equation as
well as the boundary condition of ¢¢ =1 on 5, we get:

%f;(r’)dS(r’) = 2/ [1 + = / ¢°(r r/|dS(r")} dv (r')
1 (2.101)
_ - " /
= 2/D {1 + in /S p |r—r’|dS(r )] av(r') ,
which from Gauss theorem vanishes, leaving:
1 0
=5 /S %v;(r')dS(r’) . (2.102)
Again using the boundary conditions ¢¢ = 1,1)2+ = - f;r on S and Green’s theorem in V71 we
have:
1 1
—/w?@mwmz/@maﬂmwm
8T Js on (2.103)

:—/g o (x)as ()

Substituting the form of f;r in terms of conductor potential and capacity 1D and relation

(2.79), we have:

I = —8% [a ) +/\ a ,,¢C( r")dS(r ”)+202+2(Jd c ;W&(r')dsu')
_ _i 3 )2 9 c 1" 0 / /
g @RS + gy [ W a0 S ) 5 S )

+C*+C%d-c, (2.104)

which is an expression only in terms of the conductor potential ¢¢, the capacity C' and the
constant vector ¢ defined in .

For the second integral Iy by replacing the low-frequency coeflicient uf with its formula
(2.89) which is in terms of the capacity C and the potential functions ¢¢,®, leads to:

1 . ’ 8 1 ~ / 8 c A / I / /
==y |6 uf (a8 = — 1 [ ()55 (04 A o) +dr' - d- ()| ds(r)
- [[(era ) gorghet) - @ r) @) - Gor)ds e ase

(2.105)
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In order to proceed the following relations are needed:

0 A

%(d-r/):ﬁ/ﬁ, r' €S (2.106)

/(f r)aa (d-r)dSE)=|V|E-d) =V I:dot, (2.107)
S

1 1

E (f' . r/)@ch(r,)dS(r/) = EZLWCC T = C(C . f') s (2108)

/(f ') (c‘l. ‘3,<1>(r/)> dS(r'y=-Q:d®+. (2.109)
S an

where the two last relations are derived directly from the definitions of ¢ (2.85)) and electric
polarization tensor Q respectively as well as the double dot product. Substituting these relations

in (2.105)) leads to:
[2:—<C+a.c>C(c-f)—Q:&@f—\V*ﬁ:&@f, (2.110)

which based on the definition of polarizability tensor can be rewritten as:

n=—(0+d-c)ole r)—%f’ dot, (2.111)
Wheref’:a@)r:a-f’-f‘
For the third integral Is we have:
1 9 1 9
L= )2l )ase) = /(f )? —( — ¢o())dS(r)
87 Jg on 87 1 on/ (2.112)
_ / /
o [Er s

Having the expressions of the three integrals in terms of the capacity C, the vector constant
¢, the conductor potential ¢¢ and the polarizability tensor P by substituting into , we
obtain:

Ag(f;&) = —8% s [(a . f./)2 + (f. . r/)2} aan/ °(r')dS(r)
- 32171_2 /5‘/3 v’ — I'“|ai//¢ (r")dS(x' )aa/gb (r')dS(r) (2.113)

+C*+0%d-1)- c—C’(f-c)(&-c)—Ef’:&@)f.

Thus, we have the first three coefficients of the scattering amplitude u®(F; Ei) in terms of

C’ C7 ¢C7 ﬁ

Acoustically hard scatterer

Based on ([2.39)) and ([2.43|) we have the following sequence of exterior boundary value problems
for the low-frequency coeflicients:

Au;f(r) =n(n— 1)u:{_2(r) , reVvt,

—ut(r)=0, resS,

wi(r) = fHr)+ 0 (i) . roo.

(2.114)
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Working similarly to the case of the acoustically soft scatterer, by using the decomposition
(2.54)), the low-frequency coefficients of the exterior total field u;} are specified for every n from
the terms v;| of the decomposition. By replacing the Neumann boundary condition into (2.55|)

and (2.59) we have:

n

1 n ’ 0 m— /
fif(r) = ()+47rmz:2<m>/su+ ()3 Jr—r|"dS(x), n=2,reR®, (2.115)

1 0
+ - e AN I T | / +
v (r)—47r/3vn(r)an,!r r|TdsS(), revy, (2.116)

where far =} and ;" = ul.
The function v;" is a double layer potential and solution of Laplace equation which decays
as %2 as r — oo. Thus, the functions v, for n = 0,1, ... are specified as the unique solutions of

the following sequence of potential theory problems:

Avi(r)=0, reVt,

D) =i, res, 2117)
vﬁ(r)—(’)(é) , T — 00 .
By Green’s theorem in V* we obtain:
o) = g [ xS = o [ eer s . i)
ar Jg on/ 8 !
Thus, for n = 0 and plane wave incidence we have %vg (r) = —%ué(r) = 0 on S. This

means that we have an exterior Neumann boundary valued problem which is satisfied from
any constant function. From the asymptotic forms it is derived v{f = 0. Hence, the zeroth
low-frequency coefficient of the exterior total field is:

ug(r)=1, reV*tus. (2.119)

For the first low-frequency coeflicient uf, a vector valued potential is needed like ® but for
the Neumann boundary condition. Hence, this vector valued potential known as wvirtual mass
potential, is defined as the unique solution of the potential theory problem:

A¥(r)=0, reVt,

and is used to define the quantity:
W= / Av(r)ds(r) , (2.121)
S

which is known as the virtual mass tensor (Taylor 1928, Schiffer and Szegd 1949). From this
tensor another quantity is defined from the formula:

M=W+|V-I, (2.122)

which is known as the magnetic polarizability tensor (Keller 1972).
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Having defined the necessary quantities, by using the boundary condition of (2.117)), we
have that:
o 0 0

5,01 (r):—%ff(r)—%(a-r):—ﬁ-&, €s. (2.123)

It can be seen that since ¥ is the solution of (2.120)), hence —d - ¥ is a solution of (2.117) for
n = 1, which due to uniqueness leads to the fact that:
v (r)=-d - ®(r), revt, (2.124)
Substituting v;” and f; in (2.54), gives the first coefficient of the low-frequency expansion of
the total field in terms of the vector valued potential W:
uf (r) = ff () +of(r)=d-r—d-¥(r), revVt. (2.125)

Far-field data:
For the acoustically hard scatterer, by substituting into ([2.64]) the Neumann boundary relation,
the scattering amplitude becomes:

(k)" <N n
u”(f):;;(k)ﬂ m;)( >(—1)m+1 /S (&) (#- )™t (r)dS(r') . (2.126)

Since for n = 0 we start with the coefficient of k? which is the Ay, we assume that the coefficient
of ik is A1 = 0.
For n =0 =m in (2.126)) and the decomposition (2.54)), we have:

Ag(#;d) = —i(ik)Q / (# - & )ud (r')dS(x))
147T S X (2.127)
= P /S (¢ ) (x)aS () + 1K /S - &) (2)dS () .

For plane wave incidence it is clear from divergence theorem that the first integral vanishes since
ué = 1. For the second integral it was shown above that var = 0. Thus, both integrals vanish
in (2.127)), which leads to Ao = 0. Therefore, since A1 = As = 0, the scattering amplitude for
the acoustically hard scatterer has the following form:

u™®(?) = ik3As(f;d) + O(kY) . (2.128)

What'’s left is to calculate the leading order coefficient As in terms of the quantities W, W, M

.Forn=1in , we have:
Ayl d) = /S (@ - B)uf ()dS(x) — - /S (@ - 8)(F - )ug ()dS() (2.129)

4
Substituting (2.119) and (2.125) into (2.129) leads to:
~ 1 N ~ 1
A3 d) = / (& - F) [(d.r/) —d- ql(r’)} ds(r') — — / (& - 8)(F-r)dS(r') . (2.130)
ar i Jg
In order to simplify this formula, the following relations are needed:
B )
d-r')d )d - r')d ! d-r')d )|V
[@en@vise) = [ Ghun@-ase) = [ 655 @ s = @ v
(2.131)
/(ﬁ/ B)(d-TE)dSE) =W :d® (2.132)
S

where for the second relation the double dot product has been used. From these relations and
the definition of virtual mass M ([2.122]), we have:

~ 1 1— =
Ag(f,d):E[M:d®f~—|V_| , (2.133)

which is an expression in terms of the magnetic polarizability tensor.
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The Acoustic Impedance

In the present work we won’t study the general solution of the acoustic impedance since the
corresponding inverse scattering problem for the ellipsoids is not been studied. Nevertheless,
the steps followed are similar to the previous cases and the results obtained are ([19], p. 90-93):

ug (r) = f (x) +ovf(r)=1, revV’, (2.134)
uf(r)=d-r— Ry°(r) —d-¥(r), (2.135)

where ¥ the virtual mass potential defined in (2.120) and ¢ is a basic potential function )¢
defined as the solution of the following boundary value problem:

AYe(r) =0, reVh,

;wc(” =1, ref, (2.136)
w(r):o(i)  rooo.
Far-field data:
Ai(f;d) =0, (2.137)
Ag(#;d) = —i'f' : (2.138)

where |S] is the surface area of the boundary S.

Transmission problem

Based on ([2.39),(2.41) and (2.46)) we have the following sequence of transmission problems for
the low-frequency coefficients:

Auf(r) =n(n—Lu H(r), reVt,
Auy, (r) =n(n—1D)n*u, ,(r), reV ™,
ul(r) =u, (r), res,

2.139
D) =), res, ()
ul(r) = J(r)—i—@(i) , r — 00

In order to study the transmission problem, a decomposition for the low-frequency coefficients
of the interior total field w,, is needed, similarly to . Specifically, by substituting the
low-frequency expansion of u~ and the expansion of the fundamental solution of Helmholtz
operator in V'~ into and following the same process with the exterior total field

(2.47)-(2.54)), which is to rearrange the terms of the sums using the Cauchy formula (2.49|) and
equate the coefficients of (ik)™ , leads to the following relation for the low-frequency coefficients
u,, [19].

(@lr) = ) = 0+ - [ i) e =27 = e L) ds@) . 0

where
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for n > 1 and f, = 0. Thus , since for r € V~ we have «o(r) = 0, it is concluded that that
relation (2.140)) can be rewritten in the following form:

U, (r) = —fr (r) + v, (r) (2.142)
where

9 d
- -1 Y- = Y -1 ;
o /S [\r rl o' () =t (r )5n/|r |7 dS(r) . (2.143)

It is clear that v, is a combination of single and double layer potentials. Therefore, it is a
solution of Laplace equation in V'~ which means that it satisfies an interior boundary problem
for the Laplace equation and does not have an asymptotic form since its regular only in V. It
can be observed that for every step n the term f, of is independent of u,; which means
that the specification of u,, depends only on the specification of v,, .

For k — 0 the following identity is obtained [19]:

(@)= Do) = - [ Jont) e v = e )] dse) .

for r € R3. Subtracting this formula from (2.140) and using the decomposition (2.142)), leads
to the integral representation of f,; as follows:

ar)f, (r) = 41/5 [fn_(r')ailh —r|7 - r - r’|_lai/fn_(r')] ds(r’) . (2.145)

™

Therefore, based on decomposition (2.142) and the integral representation (2.145)), f, satisfies
the following equations:

Af (r)=0, reV™®, (2.146)
Af (r)=-nn—-1nf ,, reV . (2.147)
For the lossless transmission problem where the compressional viscocity 0~ = 0 in V~, we have
the following sequence of boundary conditions for the low-frequency coefficients:
ul(r) = u, (r) 21L+(I') = Bgu_(r) , resS (2.148)
n n Y an n an n )

where 8 = g—f and fn? = YT; Based on the decomposition (2.142f) and relations (2.141]) and
(2.143)) as well as the corresponding relations of the exterior field (2.53)),(2.59) and (2.54]), the
specification of 1> can be obtained by solving the following transmission problem:

Avi(r)=0, reVt,
Av,(r)=0, reV ™,
vy (1) =0, (1) = (fy (1) + f7 (r)), rES,

o (2.149)

0 0 0
St 1) = B ®) — (B g )+ 5o070)) L xes,

1
v,‘f(r)-(’)() , T =00 .
r

Hence, for every step n, since f are independent of u , the specification of 1, is reduced to the
specification of v;" which are solutions of (2.149)). Nevertheless, for the transmission problems
there is an alternate way of calculating u. Specifically, for the potential v, by substituting
the transmission conditions ([2.148) into the integral representation of v, (2.55)), we get:

1-— o1 0 ., ’
vi(r) =—f. (r)+ 4775/5’1‘_1" 1wun(r)dS(r), reVv’. (2.150)
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Similarly, for v;, (r), we have:

v, (r) = /| 8 S, (r NdS(x')y, reV~. (2.151)
Thus, the decompositions ([2.54] m ) take the following forms:
uy (r) = ff (t) = fr () + (1 = Puy (xr) , reVh, (2.152)
Uy (r) = £ (6) = fr () + (1= Puy (xr), reV™, (2.153)
with
wE( 47T/ Ir — a —u, (f)dS(x'), reVvVE. (2.154)

It can be observed that for 3 = 1 the terms with w;" vanish. This leaves the determination of u;"
to the determination of fni which does not require the solutions of potential theory problems.

For B # 1, the specification of the coefficients u;¥ depends on the specification of w;" which
is a solution of Laplace equation. Specifically, based on (2.152)) and (2.153)), w; is the solution
of the following potential theory problem:

Aw+():0 reVvt,

Aw, (r) =0, reV™,

wy (r) = (), res, 2,155
0 d _ 0 _ :
5 0n (1) + o= (fo (0) = [ (¥)) = B w, (r), TES,
w(r) = (’)(i), r— 00 .

Thus, the calculation of uf is reduced either in the calculation of vff via the sequence of potential
theory problems , either in the calculation of w via the sequence of potential theory
problems .

Again the main idea is the expressions of the low-frequency coefficients in terms of basic
potential functions. In what follows, it is assumed that we have plane wave incidence.

For n =0, from and ( m, we have:

fi@)=uj(x)=1, revt, (2.156)
fi®)=0, rev-. (2.157)

Therefore, it is concluded that:
ug(r)=1, revt, (2.158)
uy(r)=1, reV . (2.159)

For n =1 in (2.53)), we have:
i () dr—/u0 )dS(r') = dr—— Auf (r)dS(r') =d-r=ui(r), reV’.
on’ v+

(2.160)

For n =1 in (2.141]), we obtain:
/ B, g (r')dS(r)) = —— Auo (YdV(x')=0, reV-. (2.161)
The above relations lead to the following forms:

uf(r)=d-r4+ovf(r)=d-r+ (1 - pBuw(r), revt, (2.162)
uy(r)=v;(r)=d-r+(1-Buw (r), reV ", (2.163)
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where vf and wi are the solutions of the problems and (2.155) for n = 1. What’s
left is to express the coefficients uf: in terms of basic potential functions. For this reason, it is
necessary to introduce the generalized polarization potentials. Specifically, the vector fields v*
associated with the general polarizability tensor, are the solutions of the following transmission
problem:

Avi(r;3)=0, reVt,
Av (r;)=0, reV™,
virp) =v (r;8) +r, res,

o _ J _ (2.164)
5,V T =PBg-v (;f)+ha, res,

1
vt(r;8) =0 (7“2) , T —00
Based on this vector field, the general polarizability tensor is defined as:
X(8) = (1-8) / a® v (r;3)dS(r) . (2.165)
S

Based on [19] the vector fields vt and v~ are decomposed into the following forms in V* and
V'~ respectively:

vi(r;8) = @5 (r:f) + ¥ (r:8), reVh, (2.166)
V(i 8) =@ () + ¥ (r8), reVo, (2.167)

2.168
%@*(r;ﬁ) ZB%@_(RB) , res, e
<I>+(r,,6)—(’)<:2>, T — 00,

AT 8) =0, reVvt,

AP (r;5)=0, reV ™,

F(r;8) =P (r;8), res,

) N o A (2.169)
oY (50) =05 ¥ (r;f)+n, res,

\I’Jr(r;ﬂ):(’)(?i), r— 00 .

As it can be observed, the reason for this decomposition is to separate the two non-homogeneous
transmission conditions of (2.164]) into two different problems of one non-homogeneous trans-

mission condition (2.168) and (2.120)).

In order to express the general polarizability tensor X in terms of ® and W the following
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relations are needed:

/S adS(r) = |V7IT, (2.170)

/Sﬁ®<I>+(r;ﬁ) = —ﬁ/ A® ¥t (r;8)dS(r) , (2.171)

/Sr®aal1’+( . B)dS(r) = ; ®3<1>+( . B)dS(r) | (2.172)
which lead to the following expression:

X(5) = (1= ) [ B @ waise) - 1=V, (2173)

X(B) = (1_55)2/ ®£1<1>+( : 8)dS(r) — 1_5ﬁ\V|T. (2.174)

Having defined the necessary potentials, the next step is to express u1i in terms of these po-
tentials. Starting with vf:, it was shown that f{” =d-r and f{ = 0 on S, which leads to the
transmission conditions of (2.149) to take the form:

0

%vf(r) =f—v(r)—d-a, res. (2.175)

on

Hence, since v* are the solutions of (2.164)), this means that —d - v* are solutions of (2.149))
for n = 1, which due to uniqueness leads to the conclusion that:

vE(r) = —d - vE(r;8), rev®E. (2.176)
.. + g . .. .. .
Similarly for the wi-, for n = 1 in (2.155)), we have the following transmission conditions:

Ewf(r) =B

anw;(r)—ﬁ-él, res. (2.177)

Thus, since ¥ is the solution of (2.169), then —d - W= (r; 8) is the solution of (2.155) for n = 1,
which due to uniqueness of the solution, leads to:

wi(r)=—-d-¥E(r;8), rev*E. (2.178)

Therefore, by substituting vli or wf into (2.162) and (2.163) respectively, we obtain the first
low-frequency coefficients of the exterior and the interior total fields in terms of the generalized
potentials:

uf(r)=d-r—(1-p8)d -¥%(r;8), rev*, (2.179)

or
uj(r)=d-r—d-vi(r), rev’t, (2.180)
uj(r)=—-d-v(r), reV-. (2.181)

Far-field data:
The scattering amplitude (2.64]), by substituting the transmission conditions (2.46|), takes the
following form [19]:

©(f;d) = Z[kQ"“AQ o(F a)+z‘k2n+3A2n+3(f~;a)} , (2.182)
n=0
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where
Agpya(#;d) { Uy (r)dV(r)
el +1 m+1 + / ! / + / /
D ) / [ ) (o)), 0] a0
(2.183)
and
Awnra®:d) = Lo+ s [, v ()
’ 4 (2n + 1)! v
= (2n +1 m+1 (F-r)™t 9 + / A alN(a o \m, + / '
+ Z ( > 1) /S |:Tn+16n/u2n+1m(r)_ (B-0)(F 1) us, gy (T )] as(r’) ¢,
(2.184)
Therefore, for n = 0 in (2.183]), we have:
L1 . N
As(#;d) = i / [(r A )ud (¥) - (B r’)anlua'(r/)} ds(r') . (2.185)
From the transmission conditions and relation %(f’ ) =11, we get:
Ay(#:d) = ! / u’(r’)i(f r') — (¢ r’)ﬁiu (r')| dS(r') , (2.186)
4m 0N Ton/ on' 0 '
From Green’s theorem in V'~ we have:
5 6 / no_
As(#;d) ug (r')dS(r") =0, (2.187)

where the vanishing to 0 is derived from the value of uy; = 1 in V. Therefore, the scattering
amplitude is of the form: A A
u™®(i;d) = ik3Az(#; d) + O(kY) . (2.188)

For the coefficient As, by substituting n = 0 into (2.184]) we obtain:

aalesd) = 55 [ v+ L [ i wur ) - o) Lot () ase)

) )2 8 (2.189)
t-r FENUUNIN
b [ E 5 ) - e x| s
which can be simplified even further using the following relations:
/ av)y=1|v-|, (2.190)
V-
/ (#-2)(@ )dS)as() = [V T: F @ d) (2.191)
s
/(r ) (d-vT(r)dS() = ¢ - /(ﬁ'v—)dS(r') d=X:f0d, (2.192)
s s

where for the last relation, the double dot product for dyadics has been used, as well as the
definition of the general polarizability tensor X (2.165]). Thus, the coefficient A3 can be rewritten
as:

Q.

A3 Zla-ppvei e X@)-d] . (2.193)

):_477
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Remark:The transmission problems are separated into lossless transmission problems (com-
pressional viscocity 6~ = 0) and lossy transmission problem (compressional viscocity d~ > 0.
For the lossless transmission case the constants 5 and 7 are given by:

+ —
0 2 7
f=-—, Bn°=—, (2.194)
0 vt
where v* the compressibility in V*.
For the lossy transmission case the constants are given by:

-1
+ 0y~ o~ 0y~
p=2 -k ), =l (1)
Thus, there are no significant differences in the low-frequency coefficients calculated above,
except for the values of 8 and 7.

(2.195)

2.2 Electromagnetic Scattering Theory

V+
(Ei,Hi) (ES, H)

“

S
(E*,H*) = (EL H') + (ES, HY)

Figure 2.2: Scattering of electromagnetic waves.

The basic fields in electromagnetic theory are the electric field £ measured in units of force per
unit charge, the electric displacement D measured in units of charge per unit area, the magnetic
field H measured in units of charge per unit length per unit time and the magnetic induction
B measured in units of mass per unit charge per unit time. These fields are connected via the
Maxwell equations:

VXsmw:—mﬁfﬁ
(2.196)
Voten) = P00 4 g

where J is the conduction current density measured in units of charge per unit area per unit

time. Equations (2.196|) are the differential forms of the Faraday’s law and the Maxwell-Amber

law respectively. Assuming time-harmonic dependence of the form:
E(r,t) =E(r)e ™ | H(r,t) = H(r)e ™!

B(r,t) = B(I')e_iwt , D(r,t) = D(r)e_i“’t , J(r,t) = J(r)e—z‘wt : (2.197)



2.2. ELECTROMAGNETIC SCATTERING THEORY 7

with w the angular frequency and substituting (2.197) in (2.196]) we obtain the corresponding
spatial form of Maxwell’s equations:

V x E(r) = iwB(r) ,

V x H(r) = —iwD(r) + J(r) . (2.198)

For a linear, homogeneous and isotropic medium, such as the media in our work, the following
constitutive relations are valid:

D(r) =¢E(r), B(r) = pH(r) , J(r) = ¢E(r) , (2.199)

where € is the electric permittivity measured in capacity per unit length, p is the magnetic
permeability measured in inductance per unit length and o is the conductivity measured in
capacity per unit length per unit time. A medium with o € (0,00) is called dielectric, a
medium with ¢ = 0 is called non-conductive or lossless and a mediun with ¢ — oo is called a
perfect conductor. Substituting (2.199)) in (2.198)) we obtain the equations:

V x E(r) = iwpH(r) ,

2.200
V x H(r) = (—iwe + o) E(r) , ( )

from which we obtain that both the electric and magnetic fields are solenoidal:
V-E=V-H=0. (2.201)

since the divergence of the curl of any vector field is always zero.
Taking the curl operator on each one of the equations (2.200) and using the other one as well,
we obtain:

V x V x E(r) = (cuw?® +ipow) E(r) |

, (2.202)
V x V xH(r) = (epw?® + ipow) H(r) .
A plane incident electromagnetic wave (E¢, H') is of the form:
Ei(r) = petdT | (2.203)
Hi(r) = Y*gethdr (2.204)

where k is the wave number, d is the direction of propagation, p is the electric polarization and
g is the magnetic polarization (withd-p=d-g=p-§q=0).
The constant Y+ is the characteristic admittance of V* and is given by:

1 T 02 - it
Yi:—i:\/g’“‘w;““’w, (2.205)
Z prw

where Z% is the characteristic impedance of V*, measured in inductance per unit length and

is given by:
pHw

Z* = . (2.206)
Vefptw? +iptotw
The square root chosen, implies that Im(Z*) < 0 and Im(Y*) > 0.
Substitution of (2.203) in (2.202) leads to:
B =etptw? +iptotw . (2.207)

Therefore, we define the wave number k as:

k=+etptw? +iptotw, (2.208)
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where the branch of the square root with Im(k) > 0 has been chosen.
Substituting (2.208]) in ([2.202)) and using the identity V x Vx = V(V:) — A as well as (2.201)
we obtain:

AE(r) + k*E(r) =0 ,

AH(r) + k*H(r) =0 . (2.209)

Therefore, the fields E and H satisfy the vector Helmholtz equation with wave number k£ given
by , which means that all Cartesian components of E and H satisfy the scalar Helmholtz
equation with wave number k.

In the present work, it assumed that the medium of propagation is lossless and thus o™ = 0.

Using ([2.208)), (2.206) and (2.205)) the Maxwell equations (2.200)) can be written as:
V x E(r) =ikZTH(r) , V x H(r) = —ikY TE(r) . (2.210)

The fundamental dyadic solution of the vector Helmholtz equation, is given by:

_ 1 . 1 ~ ik|lr—r’|
n_ L 2 N L ) £ 2.211
G(r.r) = (vr®vr+k I) Glr,r) = 5 (vr®vr+k I) e (2.211)
where I is the identity dyadic in R? and G is given by |) This means that:
Vi x (Vi x Gle.x)) G (r.x) = ‘%5@ _ )i (2.212)
i

In eletromagnetic scattering, the scatterer disturbs the propagation of the incident electromag-
netic wave (E',H') producing the scattered field (ES,HS). The total field (ET,H") is the
superposition of the incident and the scattered field:

Ef(r)=E(r)+E(r) , H (@) =H(@) +H®), revius. (2.213)

Similarly to the acoustic scattering, the scatterers are separated into penetrable scatterers and
impenetrable scatterers.

For the case of an impenetrable scatterer the following boundary conditions can be imposed on
the surface of the scatterer:

e Perfectly conductive surface:
Describes a scatterer where the normal component of the magnetic field and the tangential
component of the electric field vanish on S:

AxEf(r)=0,a-H (r)=0, res. (2.214)
e Impedance surface:
Ax (AxE"(r)=-ZZ"(axH(r)), res (2.215)
or equivalently
AxEf(r)=ZZax (axHY(r)), res, (2.216)

where Z, denotes the surface impedance relative to the characteristic impedance Z* of
the medium.

For the case of a penetrable scatterer the following transmission conditions that secure
the continuity of the tangential component of the electric field and the continuity of the
normal component of the displacement field can be imposed on the surface of the scatterer:
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o Transmission conditions:

AxEf(r)=axE (r), res,

N C e (2.217)
YT -ET(r)=nY A-E (r), res,

where 7 is the relative index of refraction given by n = k*/k~ . Equivalently, the above

conditions of continuity can be replaced by the following conditions:

AxHY(r)=axH (r), recs,

I P (2.218)
ZTh-H(r)=nZ a-H (r), res.

Also, the scattered field satisfies the Silver-Miiller radiation conditions at infinity (Miiller 1948,

Silver 1949):

lim [r x (V x E® 4+ ikrE®)] =0,
rree , (2.219)
lim [r x (V x H® 4+ ikrH®)] =0,

r—00

uniformly for all directions # € S2. The radiation conditions ([2.219)) can also be written as:

1
71§ x HS+ES:0<> :
"
(2.220)

1
Y+fxES—HS:o(> )
T

2.2.1 Basic Electromagnetic Scattering Problems

Combining the field equations, the conditions on the boundary and the radiation conditions we
are now in position to formulate the basic three electromegnetic scattering problems for plane
wave incidence:

1. Perfect Conductor :
For given El H' and w, et, pt (hence Z*, Y+ and k) find the total fields E¥, H* ¢
CH(VT)NnC (VT US) that solve the following boundary value problem:

VxE"(r)=diwpt™H (r) , VxH(r)=—iwe™E*(r), reVt,

AxEf(r)=0 |, n-H(r)=0, resS,
Ef(r)=Ei(r) +E5(r) , H'(r)=H(r)+Hr), rcVtus, (2.221)
Z+f><HS+ES—o<1>, Y+f~xES—HS—o(1>,

r T

uniformly for all directions & € S? .

2. Impedance scatterer :
For given E}, H! and w, e*, ut (hence Z*, YT and k) find the total fields E*, HT € C' (V)N
C (V1T US) that solve the following boundary value problem:

VXxE'(r) =iwg™ HT(r) , VxH"(r)=—iwe™ET(r), recV™’,

Ax (AxE"(r)=-ZZ(axH (1), res,

+ i s + _ i s +
E'(r)=E'(r)+E*r) , H'(r)=H'(r)+Hr), reVTuUSs, (2.222)
Z+f><HS—|—ES:o<1>, Y+f~><ES—Hszo<1),

r T

uniformly for all directions # € S? .
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3. Penetrable Scatterer :
For given EY, HY w, e, uT, e, u=, 0~ (hence Z*, YT, k, Z~, Y™, k™, ) find the total exterior

fields E*, H* € C1 (VH)NC (V* U S) and the total interior fields E-, H- € C1(V-)NC <V )
that solve the following boundary value problem:

VxE"(r)=iwp™ *(r) , VxH'(r)=—iwe"E"(r), reVvt,

VXE (r)=iwp H (r), VxH (r)=(—iwe" 40 )E(r), reV
AXxET(r)=aAxE (r) , YA -E'(r)=nY 0 -E (r), res,

AxH (r)=axH (r) , ZTA-H'(r)=7nZ 0 -H (r), res, (2.223)
ET(r) =Eir)+E5(r) , HT(r)=H(r)+H), reVtus,
Z+f'XHS+ES:0<i> , Y"'f‘XES—HS:o(i),

uniformly for all directions & € S .

2.2.2 Integral Representations

The Stratton-Chu integral representation of the scattered electromagnetic field (E®, H?) is given
by [19]:

s _ ik . VAN s/ / / S(y!
(0B (r) = /S{zkzﬂﬁ(r,r )0 x H (1)) + (VG (r,1) (0 - B(r')) (2.224)

— (VoG (r,1')) x (n' x E3(r'))} dS(r') ,

ik YA S(w! / / S(y/
a(r)HS(r) = E /S{—ikY+G+(r,r )(n x E (I‘ )) + (vr’G+(r7r )) (Il ‘H (I‘ )) (2225)

— (VoG (r,1")) x (0 x H3(r'))} dS(r') ,

for r € R3, with a(r) given by (2.25). Also, the integral representation of the interior electro-
magnetic field (E~,H™) is given by:

(a(r) —1)E (r) = T—; /S{ik:ZG(r, r')(n' x H (1) + (VoG (r,r')) (0’ - E~ (1))

— (Vr/G_(r,r')) X (n’ X E_(r’))} ds(r') ,
(2.226)

(a(r) —1)H (r) = Zf—; /S{—ik:_Y_G_ (r,r)(0' x E~(r')) + (VoG (r,7')) (n-H (1))

— (VoG (r,r')) x (' x H™ (1))} dS(r') ,
(2.227)

for r € R3. Similarly, the integral representation of the incident field (Ei, H) is given by:

(a(r) — 1) Ei(r) = % /S (ikZ* G (r,Y) (0 x Hi(r')) + (Vo GF (r,1')) (n' : Ei(r'))

— (Ve GH(r, 1)) x (n' x Ei(r’))} ds(r')
(2.228)
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(a(r) — 1) Hi(r) = _ /{ kY TG (r,v)(n' x E\(r))) + (VoG (r,r)) (0’ - H™(¥))

— (VoG (r,1)) x (n' x Hi(r/)>} s’y
(2.229)

for r € R3. Therefore, from (2.224)-(2.228) and ([2.225))-(2.229) the integral representation of
the total exterior electromagnetic field (E*, H") is given by:

a(r)Et(r) = Ei(r) + % /S{ikZ"'G"'(r,r’)(n' x H"(r')) + (VoG (r,r')) (n' - ET(x))
— (Vr/G+(r, r’)) X (n’ X E+(r’))} ds(r') ,
(2.230)
a(r)HT (r) = Hi(r) + % /S{—ik:Y+G+(r,r')(n’ x EY () + (Ve GT(r, 1)) (n'- H (1))

— (Vr1G+(r,r’)) X (n’ X H+(r’))} ds(r') |
(2.231)

for r € R3. Taking the curl operator in (2.226)-(2.227) and (2.230)-(2.231) and using the
Maxwell equations we obtain:

(a(r) —1)E~( ZkVX/G r,v')(n' x E7(r')) ds(r')
(2.232)
- %V X [V X /SG_(I‘, ') (n' x H™ (1)) dS(r’)] ,
(a(r) —1)H (r) = Zk"_v /G r,r')(n' x H™(r')) ds(r)
(2.233)
- Z—WV X {V X /SG(I',I") (n x E~(r')) dS(r')} ,
as well as
a(r)Et(r) = Ei(r) + %V X / Gt (r,r')(n' x ET(r)) ds(r')
N 5 (2.234)
— Z—V X [V x [ G*(r,r) (n' x H* (1)) dS(r’)] ,
4 S
a(r)H' (r) = Hi(r) + %V X / GT(r,v)(n’ x HT (")) ds(r))
N o (2.235)
- Z—WV X [V X /SG‘L(r,r') (n' x ET(r)) dS(r’)] ,
forr ¢ R3\ S.

2.2.3 Far-Field

Substituting the asymptotic forms of G and VG in the integral representations of the scattered

field (2.234)) and (2.235)) we obtain:

ES(r) = E®(#)h(kr) + O (;) , T =00, €S, (2.236)
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1

H®(r) = H*®(¢)h(kr) + O <2> , T =00, tES?, (2.237)
r

where the functions E*°(#) and H* (%) are the electric far-field pattern or electric scattering

amplitude and the magnetic far-field pattern or magnetic scattering amplitude respectively,

given by:

2
E> () = % /S [~Z* (&' x HY () + (- ET(r))) & — £ x (&' x ET(r)))] ™™ dS(#) ,
(2.238)
k2 S
H>™ () = 47r/5 YT (&' xET () + (- -H () - x (& x H ()] e dS(¢) .
(2.239)

For the low-frequency study, the following forms of the scattering amplitudes are proved to be
more convinient [19]:

-1.3 o
E>(#) = P [f X / [—ZT%- (2 x HY(¢))) + &' - ET(v/)] r'e T dS(r’)]
S

47

— ——fx / [ (8 x EX (') + ZTa’ - HY ()] v'e ™™ dS(r) (2.240)
S

-1.3 o,
H®(F) = — 5§ x [f X / (V8- (8 x ET () + 8- HT (/)] r'e *Fr dS(r’)}
S
— —Fx / [#- (0 x H"(r')) - Y*a' - E"(r)] e T 4 (x) (2.241)
S

2.2.4 Low-Frequency Theory in Electromagnetics
The low-frequency expansions for the electromagnetic waves are:

e Plane incident wave:
Since in the present work we mainly study the case of plane wave incidence, the incident
fields (2.203) and (2.204)) because of their exponential forms can be written as power series
of the wave number k as follows:

E'(r) = i (zs‘)" Ei(r), reR?, (2.242)
n=0 :

Hi(r) = i (if;')nH;(r) , TcR?, (2.243)
n=0 )

where E! and H?, the low-frequency coefficients independent of the wave number .

o Total exterior electromagnetic field:
The total exterior electromagnetic field it is an analytic function in a neighborhood of
k = 0 which was established by Kleinmann [23]. Therefore, it can be written as power
series of the wave number k in a neighborhood of £ = 0:

Ef(r) = i (ZZ)" Ef(r), reVv', (2.244)
n=0 :
+(p) — S (k)" oy +
Hf(r)=)_ —HI(r), revh, (2.245)
n=0 ’

where E;" and H,' the low-frequency coefficients independent of the wave number k.
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o Total interior electromagnetic field:
For the transmission problems, the total interior electromagnetic field, similarly to the
total exterior electromagnetic field, has the following low-frequency expansion:

o0 . n

=y (R ) rev-, (2.246)

“(r), rev-, (2.247)

where E and H,, the low-frequency coefficients independent of the wave number k.

o FElectromagnetic scattered field:
Similarly to the total field and the incident field, the electromagnetic scattered field can
also be written as power series of the wave number k in a neighborhood of £ = 0:

E(r) = i (i:')nEfl(r) L revt, (2.248)
n=0 ’
HY (r) = i GR) fs () re v+ (2.249)
n! n ) ) *
n=0

where E and H,, the low-frequency coefficients independent of &.

Substituting the low-frequency expansion of the exterior total electromagnetic field into the

Maxwell equations ([2.210]), we obtain:

Zk) n+1

Z+Z H(r)

> ’L
—zt
Z<

! n!
(2.250)
and
o (ik)" N N e (ik)”+1 N
n=0 n=0 n=0
. (ik
(r) = Yyt zjl (n‘) E:_l(r) , reVvt
(2.251)
Also
> (ik)"
V-Z(n!) Ef(r)=0, reV*t,
(2.252)

n=0
VZ =0, rev’t.

Therefore, equating the coefficients of (ik)™ leads to the following sequence of equations:
VxEl(r)=nZtH' [(r), reV*,
VxH!(r)=-nYTE' (r), reVT, (2.253)
V-Efr)=V -Hi(r)=0, reV’,
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forn=20,1,2,....
Remark: The scattered electromagnetic field ET, HT satisfy the Silver-Miiller radiation con-
dition as r — oo uniformly for all directions of ¥ which ensures the well-posedness of
the problem.

For the transmission problems, the total interior electromagnetic field E=, H™ in V—,
satisfies the Maxwell equations:

VXE (r)=ik Z H (r), reV”

VxH (r)=—ik Y " E (r), reV™ (2.254)
V-E (r)=V-E (r), reV
where
_ . 0
- 1 e 1+i—— - =
77 = 5—_—_, Y™ = _5 @ , kT =nk=k Z+i+ 1+i76i7w_
1+i7€f _ VH
w

(2.255)
After some straightforward calculations, the Maxwell equations in terms of k, Y+ and ZT
become:

— B _ _
V xE (r)zszZ+H (r)y, reV.,

. o
V x H™(r) :—z‘k%YJF <1+ i

(2.256)

Z+> E(r), reV

e
V-E(r)=V-E (r)=0, reV

which by substituting the low-frequency expansions and equating the coefficients of (ik)™, simi-
larly with the Maxwell equations in the exterior, we obtain the following sequence of equations
for the low-frequency coefficients:

_ o _ _
V x E, (r) :nﬂjZ+Hn_l(r), reV

_ e — R _
Van(r):—n;Y+En_1(r)+0 E,, reV,
V-E,(r)=V-H, (r)=0, reV

(2.257)

From Gauss theorem we also have:
/ﬁ-Ejf:/ﬁ.H,f:o, (2.258)
S S

which will be used frequently in what follows. For the boundary conditions we have the following
relations:

e Perfect conductor:
Substituting the low-frequency expansion of the total electromagnetic field into the bound-
ary conditions i x ET =0, Ai- H" = 0, we have:

R (1) N o (k)"
nxz_% g En(r)—0©;) AxE[(r)=0, res,

o= . (2.259)
ﬁ.z(ik)nH+(r)—0@ZMﬁ~H+(r)—O resS

— nl " B — nl nAas ’
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Equating the coefficients of (ik)™ to 0, leads to the following boundary conditions for the
low-frequency coefficients:

AxEf(r)=0 , aA-Hi(r)=0, res. (2.260)
forn=0,1,....

e Impedance boundary conditions:
Substituting the low-frequency expansion of the total field in the impedance boundary
condition i x (h x ET) = —Z,ZTh x HT, we obtain:

fi x (ﬁ > (i) E:(r)> = ZZTAx Y (Z:!)H;(r) . res,
n=0 (2.261)
@i(ik "4 x (ﬁxE+(r)):—i(ik)nZ ZthAxH(r), reS
" nl F naa '

n=0 ’ n=0

Equating the coefficients of (ik)™ leads to the following boundary conditions for the low-
frequency coefficients:

Ax (AxE!(r)=-ZZ"AxH}(r), res. (2.262)

o Transmission conditions:
Substituting the low-frequency expansions of the total electromagnetic field into the trans-
mission conditions and equating the coefficients of ik, we have similarly with the previous
boundary conditions:

AxEf(r)=n
Y*h-Ef(r)

E, (r) , A x H(r)=h xH,(r)

X
’ recS, (2.263
WYOREL(r) . Z%A-Hi(r)=nZ 8 H,(r) (2268)

which equivalently after some calculations can be rewritten as:

E,(r),

n

(r)> e s, (2.264)

The main idea, similarly to the acoustic problems, is to find a decomposition for ET, H™
similar to with one part depending only on the previous steps of the sequence of
the problems for the low-frequency coefficients and the other part to be a solution of a
potential theory problem. This reduces the sequence of problems for the low-frequency
coefficients into corresponding potential theory problems.

Substituting the low-frequency expansion of the total electromagnetic field and the ex-
pansion of the fundamental solution (2.47) into the Stratton-Chu integral representations

(2.230)), (2.231]) and using the Cauchy formula (2.49) to rearrange terms as well as rela-

tion Apr —r'| = 2|r — /|71, leads to the following decompositions for the low-frequency
coefficients E;} and H;':

a(r)E; (r) = Ff,(r) + U, (r) (2.265)
a(r)H (r) =F} (r)+ Ul (r), (2.266)

n
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— (n 2.267
+ Z <m> |3 [(r—1) x (A x Ef_ () ( )
m=2
—(r—1) (8- E;_,(r")]dS(x')
N
Fon(r) =H}(r) - % ( ) /|r |2 (8 < B (1) dS(r)
SN =) [ st (B () (2.268)
3 (o) 5 /Sr P ) (¢ ()
(r—r') (ﬁ' X H;{fm(r'))] ds(r’) ,
A’ x EF A - Ef(r
UL (r) = %v Y /Sy?ﬁ/(\) v/ |rE_ Jrhasa . (26)
and
114 T(r
Ul ( v / f; EI’;f’ ) V/ ’r_r,’ ds(r’) , (2.270)
with the convention: .
Y ()=0, ifg<p, (2.271)
which leads to:
F/y(r) = Ey(r) , (2.272)
Fro(r) = Hi(r) . (2.273)

It can be seen that Ul U} are vector valued functions associated with single layer
potentials, which means that the determination of these functions leads to potential theory
problems: From all the above, it is concluded that the asymptotic forms for the low-

frequency coefficients E;7 and H;} based on (2.265) and (2.266)), are of the form:
1
E, (r) =F.,(r)+ 0O <> , T 00, (2.274)
r
1
H (r)=F},(r)+ 0O <> , T —00. (2.275)
r

This decomposition, similarly to the decomposition of acoustics, is useful due to the
fact that on every step n the vector fields F{, and F;  depend only on the low-frequency
coefficients Eg - E+ , and H0 ) e H:Lr , respectively and they are independent of E;
and H; similarly to f Fin the case of acoustics. Therefore the specification of E;, H; for
every step n = 0, 1,2, ... depends only on the specification of the vector valued functlons
U/, and U}, ,. For the transmission problems where the calculation of the low-frequency
coefficients of the total interior electromagnetic field is needed, working with the Straton-
Chu integral representation of the interior electromagnetic field —, the same
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way to the total exterior electromagnetic field, leads to a corresponding decomposition of

E” and H™:
(a(r) -1 E, (r)=F_, (r)+ U, (r), (2.276)
(0(8) — 1) iy (1) = B (1) + Up (1) (2.277)
where
Fonlr) = o 30 ()™ [ w7 (0 B 00 s
m=1
L - (" m—1n" [ r—1"3[r-1 i’ r (2.278)
g 2 (o) oo e (5B 0)
(1) (8 By, ()] dS()
o) =~ 30 (™ [ B 1) dS()
i 3 n m — m r—1r|m3(r ¢ i r (2'279)
g 30 () e (B )
—(r—1') (n' x H, m(r'))] ds(r’) ,
U v / A v/ s (2.280)
and

V / |r .y V/ |r vl ds(r') , (2.281)

and based on the convention , we have:
F,=F ,=0. (2.282)
Finally, based on [19] , for the calculation of low-frequency expansion of the scattering
amplitude, the most convenient forms are and , since with these forms it

becomes clear that the lowest terms are of order k3. Therefore, substituting the low-
frequency expansions of ET and HT into (2.240)) and (2.241)) respectively, we obtain:

PSS @TW

n=0

Z —) 6 s (e >}

i3 > iK™ > iK™ o —ik\n
—ﬁrfx/slf- (ﬁ’xz_:(s!) E,t(ﬂ)) +Z+ﬁ’-z(s!) Hg(r’)] r’Z( n]f) (& - v')"dS(r')

n=0 n=0
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or equivalently:

1.3
B2 d) = 5 {f ></
4 S

+A/ Z(Zk") Ez(r/)Z(Zzl) (_1)n(A /)n r/ds(r/)}
n=0 n=0
7 3 00 A 00 A
+ (4]{;2 "X/S T (A/an_o(,rk;l) E;Lr(r/)%(f;') (_1)n<f, r/)ﬂ)
sz My U e >] Cas(e!)
n=0 ' n=0 ’

Applying Cauchy formula (2.49) it becomes:

NN ) N /
E>(f;d) =
(t;d) T Ex :

- O S (B

m=0

L ] [ (ﬁf S (0BG r'>m)

(2.285)

R i n+3 n
p(red) = - Y S (M) e e [ B0
778 (B < H_,,(¢)] Y/ (# - v)mdS ()] (2.286)
+# x / (Zt@ |1, )+ @ xE!_ (r')] r’(f‘-r’)mdS(r’)} .
S

Similarly we work for H* and obtain:

H>(#;d) = % i (ik?)f?’ f: <:1>(—1)m {f X [f X /S A Hi_ ()

n=0 m

+YrE (8 X Ef (0)] : r)mdS(r')] (2.287)

+# x / -Y*T@-E/_, () +# @ xH!_ )] E- r’)mdS(r’)} ,
S
and they satisfy the following relations ([19], p. 58):

=0, (2.288)
;d) (2.289)
=Y+ x EX(#;d) (2.290)
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Remark: Even though we used the integral representations (2.240) and (2.241]) out of conve-
nience, it can be proven [19] that all the integral representations are equivalent.

Similarly to the acoustic problems, the main idea is to express the low-frequency coefficients
of the total exterior and interior electromagnetic field (near-field data) and the coefficients of
the low-frequency expansion of the scattering amplitude (far-field data) in terms of the basic
potential functions that we defined during the study of acoustic problems.

Perfect Conductor

Based on (2.253)) and ([2.260)) we have the following sequence of exterior boundary value problems
for the low-frequency coefficients:

V x EZ(r) = nZJrH;f_l(r) , VX H,f(r) = —nY*ETf_l(r) , reVt,
V-Ef(r)=0 , V-Hi(r)=0, reV’,
AxEf(r)=0 , a-Hf(r)=0, res, (2.291)

E;(r):an(r)JrO(i) : H;(r):F+()+O<T), r— oo .

Substituting the boundary conditions into (2.267) and (2.268)) leads to the forms:

FLr) = B0+ S () [ @, 00) dste)

L (2.292)
—Mﬂ;<m)<m—1>|f [ (8B () (¢ - ) ()
and
Fiou(r) = H, (1)
(2.293)

+ % mzn: C;L) (m—1) /S v — /"3 — 1) x (& x Hy_,,(r')) dS(r') .

The potentials UJ, and U, via the boundary conditions of the perfect conductor (2.260)),
take the following forms:

1 o - Ef(r)
+ - _ = = n ) /
U], (r) = 47Tv/5 Py as(r’) , (2.294)
+
UL ( v / i f; i/ as(r’) . (2.295)

As mentioned previously, the determination of the coefficients Ef and H, for every step
n = 0,1,2,... depends completely on the determination of functions U}, U;,rm. Thus, in
order to determme these functions, we define the scalar functions ¢, and ¢,,,,. Specifically:

e Scalar function ¢J,, and coefficients U,

From the definitions of it can be easily observed that it can be written as the gradient
of a scalar function which will be shown later that it is a potential function. Thus, the scalar
function ¢, is defined as:

ot (1) = — / BN oy reR (2.296)
S

4 lr —r/|

Due to of the asymptotic form of |r —r/|:

1
|r—r’]:r—f'-r’+(’)<r>, r— 00, (2.297)
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the asymptotic form of E; (2.274)) and relation (2.258)), it can be concluded that the asymptotic
form of ¢7, is:

en() =0 <:2) , T 00 . (2.298)

It can be seen that ¢, is a single layer potential of density fi-E;} which is a solution of Laplace
equation in VT, and from Divergence theorem we have:

[g;w S ()dS(r')=0. (2.299)
From the jump relation of single layer potentials we also have:
9 .+ " 9 st
[M¢e(n1)(r)] - |:8n/¢e(nl)(r):| =-0-E; (r), (2.300)
where [ |* denotes the limits from V* and V~ respectively.

Hence, from the definition (2.269) and (2.296]), the decomposition of E;} in V' takes the
following form:

E:(I’) = F(Jirn(r) - véjn(r) , e V+ : (2301)
Moreover, from (2.258) and ([2.299) we obtain:

/ i -Fl(r)dS(r') =0. (2.302)
S

Based on the above properties of ¢, and the decomposition (2.301)), for every step n the
determination of E; is reduced to the determination of the unique solution of the potential
theory problem:

Apl(r)=0, reVT,
Ax Vel (r)=axF} (r), res,

(2.303)
¢e+n(r)=(9(:2>  rooo.

e Scalar functionw ¢, and coefficients U} -
In contrast to U}, , the coefficients U = can not be expressed as the gradient of a scalar potential
function. This obstacle can be overcome [19], [31] using the idea of Stevenson of adding and
subtracting a known auxiliary function hi, with the difference U}, — h;}! being expressible
as the gradient of a scalar potential. Based on this idea, the scalar potential function ¢, is

defined as the solution of the following boundary value problem for the Laplace equation:

Agbr_nn(r) =0, reV,

o o (2.304)
a—nqun(r) =-—nY n-E' (r), resS.
From the jump relation (2.300) the boundary condition can be rewritten as:
0 s )= v+ [ | Lot ’ 0 4t ) S 2.305
%¢mn(r> =n %¢e(n71)(r) - %ée(n,n(r> , TE ) ( . )

and also based on relation (2.258) we have:

[ gt = v [ 8 B eyt <0, 2.306)
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which leads to the fact that the interior Neumann boundary problem for the Laplace equation
is satisfied for every constant function.

With the scalar function ¢, defined, what is left based on Stevenson’s idea, is the definition
of the auxiliary function h;. Based on [19] , this auxiliary function can be defined as:

1 — AY-Y}
ht(r) = EV X /SWdS(r’) , TeVv?t, (2.307)

v — |

and we have the following Lemma [19] :
1

Lemma 2.2.1. There exists a potential function ¢, (r) in V' which decays as Sasr — oo,
such that

U}, (r) —hf(r)=-V¢l, (r), reV’. (2.308)
Proof. The proof can be found in ([I9] p. 109) O

Thus, the decomposition after the introduction of the auxiliary function h;" and the Lemma
takes the following forms:

Hi(r)=F}, (r)+hi(r)+ U} (r)-hi(r), reVt, (2.309)

n

or

H!(r)=F,, () +h!(r) - Ve (r), reVt. (2.310)
Taking the inner product fi- on both parts of (2.310f), integrating over the surface S and using
relation ([2.258)), leads to the following boundary condition for ¢ :
0 R .
%qﬁﬁm(r) =d-F! (r)+#d-hi(r), res. (2.311)
Thus, the scalar function ¢ is the solution of the exterior boundary value problem for Laplace
equation:

A¢l (r)=0, reVt,

0 . .
%(ﬁ;n(r) =n- F;rm(r) +n- hz(r) , rTes, (2312)
o) =0 (1) r oo

Based on all the above, from the decomposition (2.265)), the determination of E;" depends on
the solution of the scalar problem (2.303) and based on the decomposition ([2.310)) and the

definition of auxiliary function (2.307)), the determination of H; depends on the solutions of

the two scalar problems (2.304: and (2.312)).
For n = 0 and relations ([2.272]), (2.273|) we have:

Fi(r) =Ej(r)=p=V(P-r)=V[p-(r+c)], (2.313)
Fro(r) =Hj(r) =Y"q, (2.314)

where ¢ a constant vector. The potential function gbjo is determined as the unique solution of
the following exterior boundary value problem:

A¢ply(r) =0, reVt,
$h(r)=p-(r+c), res,
0
/ o H(r)dS(r) = / i Fly(r)dS(r) = / n-pdS(r)=0, res, (2.315)
s on S S

1

t—;)(r):(/)<)7 T — 00,
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where the boundary conditions are derived from relations (2.258), (2.296), (2.301) and (2-303).
What’s left is to determine qﬁjo in terms of basic potential functions we defined in the previous
section of acoustic problems. Thus, returning to the vector valued potential ® defined in the
previous section as the unique solution of the potential theory problem , it is concluded
that p - @ will be a solution of . Therefore, because of the uniqueness of the solution for

(2.315) we have:

Oh(x) =p-®(x), reVt. (2.316)

Thus, the zeroth low-frequency coeflicient of the exterior total electric field Ear , based on rela-

tions (2.301)), (2.272) and (2.316|), is given by:
Ef(r)=p-V(PH-®), reV’, (2.317)

where ® the vector valued potential defined as the solution of . For the determination
of Hy, based on the decomposition (2.266) or (2.310) and the relation , we have that
Fj;lo = H}, = Y14, leaving only the determination of har and the determination of the scalar
function ¢ .

The auxiliary function har, based on its definition , is depending on the specification
of the potential function ¢, ,. This potential function is the solution of the interior Neumann
boundary value problem for the Laplace equation 1} for n = 0. This means that ¢, , equals
a constant and since h is not uniquely defined, the constant can be chosen to be equal to 0

which leads to hg = 0. Hence the decomposition (2.310) becomes:

Hi(r)=Y"§— Ve ,(r), reVt. (2.318)

Finally, the scalar potential qﬁ;O, for n = 0 in (2.312)), is defined as the solution of the potential
theory problem:

Apto(r)=0, reV’,

%qs;o(r):ﬁ-ﬂg(r):ym-q, res,

(2.319)
1
;O(r):(’)(> , T —o00.
r
From Divergence theorem on VT, we have:
/ i/(ﬁ:;o(r’)dS(r') =YY" / ' -qdsS(r') =0, (2.320)
s on s
which shows rapid decay of gb%o and leads to the asymptotic form:
n 1
bro(r) =0 2) s oo (2.321)

Hence, returning to the vector valued potential ¥ defined in the previous section as the solution
of the potential theory problem , it is concluded that Y+ - W is the solution of
with the asymptotic form of . Due to the asymptotic forms, it is concluded that the
scalar potential qﬁ:;O is given by:

Gro() =Y a4 (), rev’. (2.322)

Based on relations (2.318) and (2.322)), the zeroth low-frequency coeflicient of the exterior
magnetic total field H{ is of the following form:

Hi(r)=Y"q-Y"V(q-¥(r), reV'. (2.323)
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With this relation both E(J)r and HS“ are expressed in terms of basic potential functions associ-
ated with the electric polarizability tensor P and the magnetic polarizability tensor M. Far- field
data:

For the scattering amplitude, the idea is again to express both E* and H* in terms of ba-
sic potential functions defined in the previous section of acoustic problems. Substituting the
boundary conditions (2.260) into (2.286]) and (2.287)), leads to the following forms:

E*(#;d) = 4i i_o: i zn: (Z)(—l)mf’ X {f“ B /S [0 B () (2.324)

m=0

—ZT8- (0 xH}_, ()] E-)"dSE")}

and from relation (2.290) H® = Y £ x E>®. It can be observed that the leading order coefficient
of E* is the As. Therefore, for n = 0 in (2.324]), we have:

As(#;d) = ¢ x {r X /S [0 -Ef () - 2% (2’ x Hf (r))] r’dS(r’)} : (2.325)
Thus, by substituting the coefficients Ear and Har from relations (2.317)) and (2.323]), we obtain:

Ag(f;a):fx{fx/s[ﬁ’-ﬁ—” V(D 2(r))

(2.326)
—ZTF (YT x g - YT x V (q-¥()))] r'dS(r)} .
which can be simplified even further using the relations:
[ @ pirasa) =pivl (2.327)
S
/ AV (p- @) rdS(r) = / % (b-®(r))r'dS(r)=-p-Q. (2.328)
S S
(2.329)

Thus, from the definitions of electric polarizability tensor (2.97)) and of magnetic polarizability
tensor ([2.122)) , A3 takes the following form:

Ag(f;a):fx<fxf’-f)—ﬁ-q) , (2.330)

and together with (2.290)), we have the leading order terms of E* and H* expressed in terms
of the electric and the magnetic polarizabilty tensors.

Impedance Problem

Based on (2.253)) and ([2.262)) we have the following sequence of exterior boundary value problems
for the low-frequency coefficients:

VxEf(r)=nZTH (r) , VxH!(r)=-nYTE' (r), reV",
V-Ef(r)=0 , V-Hi(r)=0, reVv’t,
ix (AxE!(r)=-ZZ axH(r), res, (2.331)

El(r)=F} (r)+0 (i) , Hi(r)=F}! (r)+0 <i> , T —00.

In the case of the impedance problem the functions U}, defined in (2.269) and U, defined
in (2.270) can not be reduced to the solution of scalar potentials. Nevertheless, the zeroth
low-frequency coefficients E{ (r) and H (r) can be obtained [19], [20]
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Transmission Problem

Based on (2.253)),(2.257)) and (2.263)) we have the following sequence of exterior boundary value

problems for the low-frequency coefficients:

VxE!(r)=nZtH! |(r) , VxH!(r)=-nYTE!l |(r), reVT,

— w _ _ € _ —— _
V xE,(r) = n/FZ+Hn_1(r) , VxH, (r)= —n6—+Y+En_1(r) +0 E,(r), reV,

V-Ef(r)=0 , V-Hi(r)=0, reVt,
VE’;(I‘):O ) VH;(F):Oa reV,
AxEf(r)=axE, (r) , axH(r)=dxH,(r), res,
YTa-Ef(r)=nY a-E, (r) , Z'a-Hi(r)=nZ H -H,(r), res,

Bi =FL0+0(1) L HIW-FLm+0(3) . roc.

(2.332)

The transmission problems for electromagnetic waves, depending on the values of conductivity
o~ , are separated in the two categories of lossless and lossy transmission problems. For ¢~ =0
we have a lossless transmission problem, while for 0~ > 0 we have a lossy transmission problem
which as ¢~ — oo the problem coincides with the case of the perfect conductor. Moreover, it
will be shown later in this subsection, that the zeroth low-frequency coefficient E(J)r for o= # 0,
is independent of the conductivity ¢~ which makes the coefficient to coincide with that of the
perfect conductor. More details about the conductivity and how it affects the low-frequency
coefficients of electromagnetic field, can be found in [19] . For the transmission problems, the
Stratton-Chu integral representations — need some rearrangements in order to take
a more convenient form before substituting the low-frequency expansions in order to derive
the relations between the low-frequency coefficients. Thus, by substituting the transmission
conditions into the Straton-Chu integral representations of E* and H* (2.230)),(2-231)
and adding and subtracting terms ([I9], p. 146) the integral representations take the following
forms:

a(r)ET(r) = B(r) + jlljr/ lik™Z=G"(r,r') (' x H (r')) + (Ve GT(r,1)) (8- E~ (1))
S

— (Ve GT(r, 1)) x (&' x E~(r'))] dS(x") + % (ikz*t —ik=Z7) /S Gt(r,x') (' x H (1)) dS(r')

+ ka (nY=Z* —1) / (VoG (xr,r')) (A" -E~ () dS(r') ,
™ S

(2.333)

and

a(r)HT (r) = H'(r) + Z;/ [ik"Y "Gt (r,x’) (A x E7(r))) + (Vo GT(r, 1)) (A" - H ()

S
L (VeGHrr) x (8 x H- ()] dS(r') + % (kY™ — kY /S GHr,r) (8 x E~(r')) dS(r)
+ ka (nzZ=Y* —1) / (VoG (r,x')) (8" -H (r')) dS(r') ,
™ S

(2.334)
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Using the vector Helmholtz equations satisfied by E~ and H™ (2.209)) together with V-E* =0
and V- HT = 0 leads to the following relation ([19] p. 146):

% (Gt (r,r) (&' x (Vy x u(r')) + Vo GT(r,r') (A" - u(r'))
_ + / N / N _ _ (Zk)s .2 INNacs / /
Ve G (r,r') x (&' x u(r’))] dS(r') = (afr) — u(r) + g (1—n%) u(r' )G (r,r)dV(r') ,
V-

(2.335)

where u(r) = E*, HT. Thus, by subtracting (2.335) to (2.333]) and (2.334)) leads to the forms:

OB () + (1 — a(e)B-(r) = Bi(r) + D1 | B mrave)
+ i—k (ikz*t —ik~Z~ /S G (r,r') (' x H™(1")) dS(r') (2.336)
+ i—k (ny=2* - /S VoG (r,r') (8- E7(r')) dS(r)
and
a(r)H* (1) + (1 — a(r))H(r) = Hi(r) + (Tj (=) [ H @06 w)av)
- % (ikY ™ —ikY™) /S Gt (r,r') (A’ x E~(r)) dS(r') (2.337)
A /S VoG () (8 - H (1)) dS(r') .

These forms are proved more convenient for the further substitution of the low-frequency
expansions and the derivation of the relations for the low-frequency coefficients E and HY.

e Lossless transmission problem:

For the lossless case, we have 0~ = 0 which leads to:
2 _ M E - _ & v+ —_ P
Uy ny = gY . nZ = FZ : (2.338)

Hence, the transmission conditions for the low-frequency coefficients (2.263)) become:

res. (2.339)

Thus by substituting these quantities to (2.336)) and (2.337)) as well as (2.338)) and k= = nk, we
obtain:

4 ik)3 —c—
QB 1)+ (1= a()E () =B + (5 (1= [ B et ranav)

< >Z+/G+rr)(an (r')) dS(r')
47T<1 i)/v G (r,x) (8- B () dS(r)

(2.340)
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and

5) /V CH ()G (rx)dV ()

ptet

_ @YJF <1 _ ;) /SG+(r,r’) (' x E~(r')) dS(r')

A k)3
a(r)H*(r) + (1 - a(r))H (r) = H'(r) + o (1 -

47

I (1 - l’;) /S VoG (r, ') (8 H (1)) dS(r)

(2.341)

Substituting the low-frequency expansions (2.246)), (2.247) and the expansion of G (r, ') (2.47),
using the Cauchy formula (2.49)) to rearrange terms and then equating the coefficients of (ik)",
gives the following relations for the low-frequency coeflicients:

a(r)Ef (r) + (1 - a(r)E, (r) = E,(r)

+ i (1 - Z;;) mznjg :;)m( - 1)/V_ v —¢|" 3B (2)dV(r)
. <1—Z+> +m:< > /|r Y2 (8 x H, L, (1) dS(r) (2.542)
_417T<1_5+> no ;)/vu Yl (8B, () dS()

and

a(r)H (r) + (1 - a(r)H;, (r) = H, (r)

woe" ~ (n /m—3¢y— / /
1-— -1 — H av
H+E+)m:2 ()t —1) [ o= St @have)

"
(
_417T(1_i> n ( > /‘r VIR (8 B () dS () (2.343)
(1‘) ( ) [ Tl @ 0) dst).

From these two forms the following decompositions are derived:

a(®E!(r) + (1 —a(r)E, (r) = Feu(r) + Vo (r) , (2.344)
a(r)H (r) + (1 — a(r)H, (r) = Fpun(r) + Vi, (r) , (2.345)
where
Fou = B ) + <1 ZIZ) > (;)nu 0 [ xR v )
1 H r—r|"" 2 n ! r’
+47T(1 e < ) /\ d x H,_,. (") dS(r') (2.346)

\_/,.p
/—\SM

)/wr—rrm (& Ep ) dS()
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Fon — HE (r) + ﬁ <1 - Z;;) mz; (Z) m(m — 1) /V e, ()Y ()
— % (1 — ;) y+ mzn:l (:Dm . v —r'|"? (&' x E,_,,(r) dS(r) (2.347)

_;TO_j;>§2<g>évmh—HW“Wﬂ-H;mﬁwdﬂf%

bu(r) = ﬁ <1 - ;) /5 e[ (8B () dS() | (2.348)

and
V(1) = % (1 - Z;) /S r—r/|71 (8- H, () dS(x') . (2.349)

The functions F,,, F,,, are continuous in R? but not continuous differentiable on S and based

on the convention ([2.271]) we have:

Feo(r) = EB(I’) =D, (2.350)
Foo(r) =Hj(r)=Y"q. (2.351)

The main idea behind this decomposition is to separate and into a part which on
every step n = 0, 1, ... depends on the low-frequency coefficients of the previous steps ( meaning
the terms F,,, and F,,,) and one term depending on the low-frequency coefficients of the step
n (meaning the terms ¢, and 1,). It can also be observed that ¢, and v, are single layer
potentials, meaning that they satisfy the Laplace equation and with relation , they have
the following asymptotic forms:

Pn(r) =0 (é) , T 00, (2.352)
Yn(r) =0 (:2) , r—o00. (2.353)

Based on the values of a(r) in V* and S, corresponding decompositions for EX and HE can
be derived from (2.342)) and ([2.343)):

E;(r) =F.,(r) + Vér(r), reV*, (2.354)
H; (r) = F,,,(r) + Vi, (r), reV*®. (2.355)
Thus, the determination of the low-frequency coefficients of total electromagnetic field is de-

pending on the determination of the scalar potentials ¢ and 1 which based on the above,
are the solutions of the following transmission problems:

Agi(r)=0, reV?t,

A¢;(r):07 reV-,

BV (6H(0) 6 (1) =0, res,

9 B - (2.356)
St = S ) == (1- 5 )2 Ful), res,
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and
AYy(r)=0, reV®,
A, (r)=0, reV™,
AV (U () (1) =0, res
) pma N\ (2.357)
St = ) = = (1= 5 ) 8 ), res,
wn(r)—(’)<:2>, r— 00 ,

where F., = F6 and F,,, = an since F,,n, Fen are continuous in R?. The conditions
on the boundary S are derived from the decompositions ([2.354))-(2.355)) and the transmission

conditions ([2.339)).
For n = 0 the potential theory problems (2.356)) and ([2.357)), based on (2.272)) and (2.273)),

have the following boundary conditions:
ﬁwim>—¢a>w: res,
0 4 e\ . . (2.358)
%¢o() €+8n¢0() (1—E+>P'n, res,

and

B o (2.359)
anq’bo(r)_lﬁand}o(r):_<1_Z+>Y+(q n), I'GS,

Thus, returning to the general polarizability potential ¥+ defined in the previous section as the

solution of (2.169), it is straightforward that — <1 - €+> p-OF and —Y+ (1 - "+> q- o+
e m

for . = i—; and 3, = Z—;, are solutions of (2.356)) and ([2.357)) respectively for n = 0 (it can be

observed from ([2.358)) and (2.359))). Hence, we have:

¢ (r) = <1— j) ‘I'i< r; ;) , (2.360)

B M
Yo (r) =Y <1 - ;ﬁ> q- o ( M) : (2.361)
Therefore, based on relations (2.272)), (2.273)) and the decompositions ([2.354)-(2.355)) we have:
N e N
Eét(r)—p—(l—ﬁ)v[p ‘I'i< ; +)] ) (2.362)
Hir) =y da-(1-*\vl|q ot (n (2.363)
0 - q M_;’_ q ) M+ . .

Far-field data:
Substituting the transmission conditions (2.339) into the low-frequency expansion of the scat-

tering amplitudes E* (12.286]) and H*> ([2.287)), we have:

A ik)3 g™
E~(¢;d) = (4]‘2 i x [ﬁf-x/s(ﬁ’-Eo(r’)) r'dS(x) — +r></s - (A" x Hy (r')) r'dS(r')
+Z+'Z—+ (A x Hy (r')) v'dS(r') + /Sf- (A" x Ej (1)) r'dS(r')] + O(kY)

(2.364)
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Thus, by substituting the low-frequency coefficients E; from (2.362)) and H, from (2.363), the
leading order coefficient A3 becomes:

. 3 — —
As(#;d) = (Zf) £ x {f ></ {;ﬁ’.p—f. (8 xq)] r'dS(r') —i—/ [Mﬁ’-q—i-f-- (A" x p)| r'dS(x')
a S S
— Z—I_ (1 — Z;) T x / A -V, (I‘)JII_ (r’; ;)) r'dS(r)
S
+ (1 — ZJF) Fx /Sf'- [ﬁ’ X Vi (q\Il <r';5+>>} r'dS(r')

(2.365)

or equivalently:

which can be simplified even further. Starting with the terms that contain p, we have the
following relations:

/S(ﬁ’. p)r'dS(x’) =p|V |, (2.366)

v’ (A’ x p)r'dS(r) = —F x p|V |, (2.367)
5 [ Lo (r'; i) rdS(r')=p- | <r’; 5) 9 vasw) (2.368)
3 S mn
and from identity ([19], p. 190) we have also the following relation:

/S . [ﬁ’ X Vo (p Sy <r'; ;))] rds(r') = /S <f) - (r’; ;) ﬁ’> ds(r') . (2.369)

Using the above relations the same way for the terms with q, the coefficient A3 can be rewritten

as:
Gk e\ i N [ w5 N
As(t;d) = 1. EXEx |- 1—6—+ VoI + 1—6—Jr Sn®\If s ds()| -p
_ N2 _
ol =~ 1% N — ;M ’ ~
+ |=-(1=—]|V I+<1—> /n®‘I’ <r;>d$r .
( u*) v uwt) Js pt )| -a
(2.370)
Finally, from the following identity for the general polarizability tensor:
X(5) = (1= 5°) [ a9 (rs8)as() — (1= AV, (2371)

the leading order coefficient A3 becomes:

Ag(F; ) = (T;T)g [r x (f « X <;)> y (f x X <Z;>> .q] , (2.372)
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The leading order coefficient of H> can be obtained in terms of the general polarizability tensor
X from relation (2.290)).

e Lossy transmission problem:

For the lossy transmission case the conductivity o~ is positive and as it tends to infinity, the
problem coincides to the case of the perfect conductor in which we have infinite conductivity. In
contrast to the acoustic case, where the cases of lossless and lossy transmission problems were
not studied separately, for electromagnetic waves a different approach is needed for the lossy
case than what was followed for the lossless case.

Near-field data:

Substituting in the integral representations ([2.336f) and the relations that connect ZT
and Z~ as well as 7% and Y~ ([2.206)-([2.205)) in order to show the dependence on the conduc-
tivity o~ (which shows the clearly the effect of the losses) and the wave number k = k*, the
integral representations can be rewritten as:

, ik)3 e
a(®)Et(r)+ (1 —a(r))E™(r) = E(r) + (42 <1 _k > /V E ()Gt (r,r)dV (¥
ik)? -
n (4"2 (1 ~ Z+> Z+/SG+(1~,I~’) (8 x H™(r')) dS(r)
ik o N, —d /
i <1 — ) / Ve Gt(r, ) (2" -E~(r')) dS(r')

+J_Z+[(Z4k72 = / B ()G (r )V () - - /S VoGt ) (3 - E-()) dS()) |
(2.373)

and

. 7 3
a(r)H*(r) + (1 - a(r))H (r) = Hi(r) + (42 <

>/ H- ()G (r, )V ()

et
Jiﬁf <1_E+>Y+/G+rr)(n < E~(r') dS(r')
_z(1_>/vr,a (r.') (8 - H-(r')) dS(r)

too {UW Pzt [ B @)at(,r)dv(r) - % /S G*(r,r) (B x E7(r')) dS(r')

dr ot e
(2.374)

Based on the Maxwell equations satisfied by the low-frequency coefficients (2.256|), we have the
following relations for n = 0:

VxEj(r)=0, reV (2.375)
which is derived from the convention (2.271) and shows that E; is irrotational and therefore
there is a scalar functions f such that E; = Vf. From the transmission conditions for the
low-frequency coefficients ([2.264]) , it is derived that:

n-Ej(r)=n-Vf(r)=0, res. (2.376)

Applying the divergence theorem in V', shows that f is a potential function in V~. Thus,
having an interior Neumann boundary value problem for the Laplace equation satisfied by f,
leads to the conclusion that f equals to a constant in V', Therefore, the coefficient E, vanishes
in V'~ as the gradient of a constant function. From the transmission conditions we have:

AxEl(r)=axE;(r)=0, res, (2.377)
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which leads to the fact that E in VT for the lossy case (6~ > 0) coincides with that of the
perfect conductor. The vanishing of E; can also be used to derive a convenient decomposition
similar to the lossless case. Specifically, we have:

/ Ve GT(r,r') (8- E~(¢')) dS(x')

Substituting the above into the integral representations (2.373)) and (2.374)) leads to the following
decompositions:

(2.378)

a(r)ES (r) + (1 — a(r)E; () = Fen(r) + 0~ Gen(r) + Vo(r) | (2.379)
(®)H, (1) + (1 = a(t)H, (r) = Fun(r) + 0~ Goan(r) + Vb (r) | (2.380)

where F., and F,,, are defined the same as (2.346)) and (2.347)) respectively and
+ Im—2x— / ’
Gen( 471' M_,_ Z Z < ) / — T ’ En—m(r )dV(I‘ )
m—1 —
A +Z< >n+1— Vel = @B ) dS)

(2.381)

Gon(r) = 4M+ +Z<> / v —v/|™2H,,_,, (r')dV (r')
Ly ( ) [l B ) dste).

out) = = (1= %) [ B as) - 172 [ e B (st

m(n+ 1
(2.383)

(2.382)

and
U (r) = ﬁ (1 — Z+> /S]r — |71 H, ()dS(Y) . (2.384)

It is noted that F.,, is continuous in R? and G, is continuous differentiable in R3 which together
with the values of a(r) in V¥, leads to the following forms of the decompositions (2.379)) and

(2-330):

Ef(r)=Ff(r)+0 GE +Ve:, rev® (2.385)
H:(r)=F (r)+0 GE + vﬁ reVE (2.386)

For every step n = 0,1,2,... in the sequence of transmission problems for the low-frequency
coefficients, the functions Fi and Ff,[m are dependent on terms of the previous steps up to
n — 1. Moreover, it will be shown that GE, and G, are functions also considered known on
every step n. Thus, the determination of the low-frequency coefficients of the total exterior
and total interior electromagnetic field EF, H is reduced to the determination of the scalar
potential functions ¢;- and 1;f. Starting with the electric field, based on the convention ,
we have that G.9 = 0 and for n = 1 it can be observed that the second term of Gg vanishes

which means that on every step n it depends only on the low-frequency coefficients Ej, ..., E__;
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and not on E,. Therefore, what’s left for the determination of EX, is the determination of ¢;-.
The scalar function ¢; (¢, in V) is a single layer potential which means that it satisfies the
Laplace equation with asymptotic form:

¢ (r) = O (:2) : (2.387)

Based on the continuity of F.,, and GZ, on the boundary S as well as the transmission conditions

(2.263)), we have the following boundary condition from ([2.385]) and ([2.258]):

/S [a-Ef(r)—n-E,(r)]dS(r) = / f-V(¢f(r) — ¢y (r)dS') =0, reS, (2.388)

S

/S A xE!(r)—AxE,(r)]dS(r)= / AxV(gh(r)—¢,(r)dSx)=0, res, (2.389)

S

which leads to the fact that ¢, = ¢,, +c where c is a constant. From the transmission conditions

(2.264)) and relation (2.385)) it is concluded that:

g 9

n-Ve¢, (r)=—-n-F_ (r)—oc n-G_,(r)+ E_YJr <€+ﬁ -E_(r)—n- Ej{_l(r)> . (2.390)

From divergence theorem we have that [¢ ¢, dS = [ A¢, dV = 0 which together with (2.258))

leads to relations:

/S [n TP (r) + 07R - G, () - Y <;n ‘E,_,(r)—#- Egl(r)ﬂ dS(r) =0 . (2.391)

o

Thus, we have an interior Neumann boundary value problem for ¢, which has a solution in
V~. This together with the relation (2.388)) and the divergence theorem leads to:

) 9
Sa—ngb;(r) :/Saqb;(r) —0, res, (2.392)

which ensures the asymptotic form (2.387)) of ¢;}. From the above relations it is concluded that
the potentials ¢ satisfy the following problems:

A¢,(r)=0, reV

O . o e no (€ o oo A

ainqbn (I') =—n- Fen(r) —0 n- Gen(r) + FY <€+1’1 : Enfl(r) —n- Enl(r)> , reE S 5
(2.393)

and

Apt(r)=0, rev?®,
G (r) =¢,(r) +c, res,

o =0(;) -

Hence, the determination of E§ depends on the solution of (2.393) and (2.394)) for n = 0. The
boundary conditions of these two problems for n = 0 are:

(2.394)

¢ (r)=-h-p, res (2.395)

and
g(r)=-p-r+c res. (2.396)
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It is straightforward that the solution of the interior Neumann problem in V'~ ([2.393) for n = 0,
0
is ¢, = —P - r since 8—(13-1') =1n-p.
n
For qﬁg , returning to the basic vector valued potential function ® defined in the previous

section as the solution of (2.82)), it can be observed that —p - @ is the solution of (2.394)) for
c=—pPp-candn = O where c is defined in . This leads to the fact that qbo = —p-P. Thus,

based on @ and the fact that GeO = 0 from convention l) the low-frequency
0

coefficients in terms of the vector valued potential ® are given by:
Ej(r)=p—-V(Pp-r)=0, reV (2.397)
Ef(r)=p-V( &), revt, (2.398)

where Esr is the same with the case of the perfect conductor and confirms that the zeroth
coefficient of the electric total field is independent of the conductivity ¢~. For the low-frequency
coefficients Ha[, it is clear from (2.271)) that Gin = 0. Moreover, since Fio are defined the

same as the lossless case. Thus, from relation (2.273)), we get from (2.386)):
Hi(r) =Y q+Vyi(r), rev*, (2.399)

which is exactly the same with the lossless case since ¢ and F,,, are the same by their
definition. Thus, the low-frequency coefficients Hac are given by (2.363)):

H§(r):y+{ <1—Z+>v[q ot <r /’;)]} . revE, (2.400)

where ¥ is the general polarizability potential defined as the solution of .

Far-field data:

For the leading order term As of the scattering amplitude E® given in for n = 0, by
substituting and working similarly with the lossy case, we obtain:

.3\ (Zk)g,\ ~ . i 2/ / i / ~
As(#;d) = 4 EX B X 1— VI + 1—(€+ g '@ &~ g as(r’)| -p
1\ 2 >
+ 1P Y- I+<1> /ﬁ’@\IJ‘(r’;)dSr’ qy .
( pt ) V-l pwt) Js wt )| -a
(2.401)
which due to the definition of (2.96)), (2.97) and (2.173) and the identities:
/ n® ®*(r; 3)dS(r) = —5/ A Y (r;3)dS(r) , (2.402)
S
d . 1 0 -4
r®—‘I’ (r; 5)dS(r) = ®—<I> (r; 5)dS(r) , (2.403)
on B
As can be rewritten as:
oAy (k) S\ s e (BT A
As(t;d) = o [T (rxP) p+rxX " -q| (2.404)

which is an expression in terms of the general polarizability tensor X and the electric polariz-
ability tensor P.
The leading order term of H™ in terms of the polarizibility tensors can be obtain easily

from relation (2.290)).
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2.3 The Ellipsoidal Harmonics in the Low-frequency Problems

Based on the previous sections of this chapter, it is concluded that via low-frequency theory, the
scattering problems can be reduced to potential theory problems which leads to the introduction
of harmonic functions. Moreover, for ellipsoidal scatterers, it is convenient to introduce the
ellipsoidal harmonic functions into our problems. In this section, the main purpose is to derive
the low-frequency coefficients of the total field and the scattering amplitude in terms of the
ellipsoidal harmonics. This may seem complicated, but due to the fact that all the low-frequency
coefficients were expressed in terms of basic potential functions and the quantities related to
them, it suffices to express these potentials and the corresponding quantities in terms of the
ellipsoidal harmonics.

2.3.1 Conductor Potential

The conductor potential ¢¢ defined in (2.75)), satisfies the following boundary valued problem
in terms of the ellipsoidal coordinates:

A (p,psv) =0, p>ar,
¢c(p’ My l/) =1, p=a, (2405)
¢(r):(’)<1), r— 00 .

r

Since it is an exterior boundary valued problem for the Laplce, the solution can be expressed
in terms of the exterior ellipsoidal harmonics as follows:

oo 2n+1 oo 2n+1
O (o) =3 S ATE (o pr) = 3 S AT @0+ DI (0) B () EL () EL (v) , (2.406)
n=0 m=1 n=0 m=1

which on the boundary satisfies the relation:

oo 2n+1 oo 2n+1
L= ArCn+ DI (a) B () EF (W ET(v) = > > A@n+ 1)1 (1) By (o) Sy (s, v) |
n=0 m=1 n=0 m=1
(2.407)
From relation (to anaptygma twn epifaneiakwn pou dinei ton syntelesth), we have:
1
Al = ST, )dQp, v) 2.408
= S DB Jo, 0005 (2405
where
A = / (ST (p, )2 dQp, ), n=0,1,2,..., m=1,2,....2n+ 1. (2.409)
Say
From relation ([2.408)), since S& = 1, we have that:
1
A S v) S (41,1)d2 i, v) (2.410)

TAm2n 4 DI (en) Ean) s,

which means that due to the orthogonality of the surface ellipsoidal harmonics the only non
vanishing coefficient A} is for n = 0 and m = 1. which from relation (|1.237)), takes the following
value:

Al = . (2.411)
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Returning to the expansion (2.406f), for n = 0 and m = 1 we have:

(oo ,0) = ALL(p) = 000) (2.412)
I5(an)
The capacity C' of the ellipsoidal conductor, due to relation (2.76), is given by:
1 0 .
. ¢ (ah,uv V)dS(MaV) ) (2413)
7 Sal on

where (1.231) and E}(p) = 1:

9 3 ( Iy(p)
—¢°(an, p, v )—fsbc(p i, v) < : >
o ¥ oy O \I}an))|
3
= ey (V= B = 1))
p=an (2.414)
—1 1
= p? — h3\/ p* = h3l,(p,v)
1§ (an) <\/ o - (B&()* Vo2 =h3/p* =13 )| ..
:_lal(:uvy)
I (o)
Thus, the capacity C takes the following form:
1 1
— Loy (pt, )dS (1, v) = . 2.415
e /. a8 (00) = g (2.415)

2.3.2 Polarization Potential
The vector valued potential defined in (2.82)), satisfies the following boundary value problem:

A®(p,u,v)=0, p>ay,
q’(PaM7V):1'+C7 p=aq,

(2.416)
®(p,p,v)=0 <r12> , =00,
where the constant c is chosen such that:
/ i<IJ(p,,u, v)dS(u,v) =0, (2.417)
Sa, on

which ensures the well-posedness of the problem. Moreover, based on relation (2.85)), the con-
stant vector c in terms of the conductor potential ¢° is given by the following relation:

c= 47TC/ “(p, p, v)dS(p,v) . (2.418)

Hence, based on (2.414)) and (2.415)), we have:

1

1
c=— rlo, (u,v)dS(p,v) = / rdQ(u,v) . (2.419)
47 Sal 41 Sal

Using the following relation:

_ Sm 2.420
Tlp=a; = Z h1h2h3 Ma ) ) ( )
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we have:
~ amhm
: = — ST (p, v) Sy (s, v)dQ2(p,v) =0 . 2.421
¢+ Run = o [ S ) S (1)) (2421)
Returning to the exterior potential theory problem ([2.416f), we take the solution as an expansion
of exterior ellipsoidal harmonics [F}":

oo 2n+1 oo 2n+1
B(p,p,v) =D Y ATF (o v) =D AR a4+ VLM )EN (p, pv),  (2.422)
n=1 m=1 n=1 m=1

where the sum of n starts from n = 1 instead of n = 0 because of the asymptotic form of
®. Since the vector coefficient ¢ vanishes for the ellipsoidal scatterer, the boundary condition
becomes ® = r. Thus on the surface p = a1, we have:

oo 2n+1

r=3" 3" AT+ DI ) B (an) ST () | (2.423)

n=1 m=1

from which it can be observed that the properties of the vector are transfered into the coefficients
A,
Due to orthogonality, we have:

1

Ay = S (@n £ DI (an ) B () /S . rSy (1, v)dSU(p, v) (2.424)

Hence, by taking the inner product Xy, (the projection over the axis z,,) for m = 1,2,3, we
have:

- 1 o pv
A%y = / Sy, v)dQUp,v) 2.425
LS S DI Bpan) Js., ok 0 A0 Y) (2:420)
‘ ! azy/p? — h3/hg — v?
Al %p = / Sy, v)dQUp,v) ,  (2.426
? = S+ V(e B an) Js,, s 1)) 5 (2.426)
. 1 ag\/h2—/ﬂ\/h2—1/2
A" %3 = / 2 2 S, v)dQUp,v) . (2.427
T pen+ DIl Eplan Js, e (V) v) - (2420

Since S} = pv, S} = /2 — h3\/h3 — 12 and S} = \/h3 — p2\/h3 — v2 (1.214)), due to orthog-
onality of surface ellipsoidal harmonics S)""(u, ), we have that the above projections do not
vanish only for n =1 and m =1,2,3 in — respectively.

Thus, we have:

o

 m=123. 2.428
hihohs3I™ (o) ET () ( )

AT Ry =

and it can easily observed that due to orthogonality of S, we have AY" - Xy, = 0, for m # m/.
Returning to (2.416)), for n = 1, we have:

®(p, i, v) = ATSIT (p)ET (p, p, v) = AL (p)EL (p, p1, v) + AIBIT(p)EF (p, 1, v) + A3 (0)ES (p, 1, v)
= Ai3I4 (p)ppv + A?3112(p)\//>2 - hg\/ﬂz - h%\/f% —vit Azi”ff’(p)\/p2 - h%\/@ - Mz\/h% — V2

_ <111(p) ppvor  If(p) /p* — h3\/p? — 3/l — 2 I{(p) \/pQ—h%\/hg—MQ\/hg—ﬂ)

Y

111(041) h2h3 7[%(&1) h1h3 ’[%(Oq) h1h2
(2.429)
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which can be rewritten as:

3
n m
B(p,p,v) =1 ) 1(p)xm®>‘<m:§ 1(p)a:m®§<m, (2.430)
1
m

0 0
where r = (21, 22, x3). From this relation and — = agasla, (1, u)a—, we obtain:
p

8n

3
0 -
o 00| = esarten() 3 g ( (I} (o) m>) fm (2:431)
p=aq
Hence, for m = 1, the first component becomes:
az03la, (1, V) ( 9 10 >
—————— 11 (p) + [ (p) =1
Ill(al) ap 1( ) 1( )ap o
2030 (1, ) ( " L
= - +L(p)—— (2.432)
Il 2 _ p2 2 _ 2 1 hoh
1 (Ozl) hghgp\/p h2\/p h3 2143 —ay

042043[&1(% V) (Il( N 1 ) Sll(:u7 V)
1 Oq) )

111(041) 1003 h2h3

and working similarly for m = 2 and m = 3 we can obtain the other two components. Moreover,
the vector r = (x1, z2,x3) on the surface of the ellipsoid S,,, takes the following form:

Flo=er = (aW VT AV C“S“h%_ﬂwh%_yj
p=oq —

hghg ’ h1h3 ’ h1h2
(2.433)

h B a1
S Lt L 5 Xm -

Thus, based on the above, the polarization tensor Q for ellipsoidal scatterers of surface S,,
can be derived by substituting (2.430]) into (2.96|) and using the above relations to obtain:

0
_ /Sal re 8—n<1>(p,,u,l/)d5(,u, V)

Q

Q10203

3

him 1
- e L ST (11, V)T @ RendQ(p, v
hihahs Zam (041052043[?(@1) > Sa 1" (1 v) md(p, V)

m=1

3
_ 10003 Z K2, <1(1) — 1) /a (ST (15 1)) Kn ® Knd Uy, /) (2.434)

27252 m
hihshs = arasaszl™ (o Sa,

3
Q100 9 1 s .
- S (——— -1
h3h3h3 m <a1a20¢3[{“(a1) ) 1 ¥m €9 Xm
m=1

4 5 1 1) 20 @ %
= —aiaon —_——1)% Xm »
3 172 3m:1 alagagf{”(al) m m
where 77" the normalization constant defined in (1.253),(1.229) which is proven to be [20]
4mh3h3h3
WT:ngormzl 2,3.

Finally, the electric polarizability tensor defined in , for ellipsoidal scatterers, takes
the following form based on (2.434):

3
~ 47 1
P=-""Y . 2.435

3 I{”(al)xm © Xm (2.435)

m=1
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2.3.3 Virtual Mass Potential

The virtual mass potential defined in (2.121]), satisfies the following boundary value problem in
terms of ellipsoidal coordinates:

A‘I’(P“UaV):O» p=>ay,

0 R
8—\1:(;),#, v)=p, p=ai, (2.436)

pwn-a(t).

Similarly to the previous cases, the potential for this exterior problem can be expressed in terms
of the exterior ellipsoidal harmonics:

oo 2n+1 co 2n+1

o, mv) =Y > ATEMpmv) =Y ATn+ DI (p)E(p,p,v) (2.437)
n=1 m=1 n=1 m=1
Based on relation % = agasly, (1, 1/)8%, on the surface p = ay, we have:
9 oo 2n+1 9
p=5-Tp.u, )p:a1 = psla, (1,0) Y Y ATST (v (m)fy’?(p)EqT(p)>| ,
n=1 m=1 =
(2.438)
where [, (1, v \/7 the weighting function defined in ([1.225)).
Based on relation ;1 25; and (2.433)), we also have:
3
N oo Ty a0 h ST
o = —X X 3 2.439
Plomes JaZ — 2o — 12 e a2 T a2 ol — 12 2 hihahgom, ™™ (2439)

Based on the above and the relation a% = agasly, (1, I/)a@p, the boundary relation ([2.438|) can

be rewritten as:

oo 2n+1

Q10003 hn ST . o
m = 3 ATST (v I™(p)E™ , 2.440
Inhahs Z X agaggn; <6p n () B (p) p (2.440)

=
where
1002003 3 hmn ST

Ap = 5 dQ &m (2441
" jz;f/;x hihahzcom Sy (s v)dQ(p, V)R ( )

0
spasas (LI IE()

p=01
Due to orthogonality of the surface ellipsoidal harmonics, the only non vanishing coefficients

are A" for m = 1, 2,3 which are given by:

AP = 10203 [ ST a0t (2.412)

0
3" aeaszhihahzou, <apI{”(p)E{”(p)> Say

p=aq

which after the calculation of the partial derivative and since 7" = [ (S7)2dQ), can be
a1

rewritten as:
arapazhy,

fm, m=1,23. 9.443
3hihahs (ciasasl]™ (o) — 1) ( )

AP =
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Hence, the virtual mass potential for the ellipsoid, based on (|1.201))-(1.203)), is given by:

3 3
arazash, 317 (p)EV (p, i, v) alagagll P)Tm .
¥ = . 2.444
(p’ Hs V) Z 3h1h2h3 (a1a2aglm(a1 - 1 X Z:: 041042043[ ) — 1Xm ( )

Finally, the virtual mass tensor W defined in (2.121)), for the case of the ellipsoid, is given by:

3 3
2 : araoashy, 3[7”( )Em(pnu’v )A 011052043[{”([))$m / o
- ds
3hihahs (cnagasli™(ar) — 1)Xm Z::l arazaslt(ag) —1 Sal Tmp & XmdS (1, v)

> aaal( draladal I7"(aq)
Z 172 31 / V ® 2mXmdV (p, p,v) = 1 2 32 171 Xm ® X

ajagosl]? 1 — ajanazl™(aq)
=1 h2<p<a1
(2.445)
for m = 1,2, 3 and the magnetic polarizability tensor M defined in (2.122)), is given by:
i & 100
r 1002003 N N
M=— . 2.446
3 mzzl 1—a1a2a3[{”(a1)xm®xm ( )

2.3.4 Generalized polarization potentials

The vector fields v* associated with the general polarizability tensor, for the case of the ellip-
soidal scatterer, the problem ([2.164) is written as:

AV+(p”LL,V;ﬁ):O, p>ag,
AV—(PaHW?B):Oa p<ai,

vi(p, v B)=v (p,pv;B)+r, p=or,

P P (2.447)
—v(p, 1,5 8) = BV (p, i, v; B) + P ,p =1
anv ) M ) 8n M ) b ) M

The vector fields ®*, ¥+ introduced from the decompositions (2.166]) and (2.167) of v*, for case
of the ellipsoid, based on (2.168]) and (2.169)), they are solutions of the following transmission
problems:

A‘I’+(p7Uay;/8):0’ p>aq,
AR (p,p,v;8) =0, p<ai,

St (p,p,v;B8) =¥ (pp,v;B)+r, p=a1,
5 (2.448)

0
—_— + N = —_— - N =
aTL@ (p),UﬂVHB) ﬁaTl@ (P7H7V7/B) y P ag o,

1
cinen-o(L) o
T
and
A‘I'+(p7,u7l/;/8):07 p>ar,
AY~ (p,p,v; ) =0, p<a,
‘I’+(PaM7V;5):‘I’_(PaM,V;B)a p=0a1,

) o .
8?7,(I. (pvlu”/?ﬁ)_ﬁ%@ (PaN>V75)+PaP—ala

1
‘I’+(p7u)7/76):0<ﬂ> ) r— 00 .

(2.449)
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Starting with the vector potentials ®*, the potential &~ can be expanded in terms of the
interior ellipsoidal harmonics and the potential @7 in terms of the exterior ellipsoidal harmonics
as follows:

oo 2n+1
S (p, pu,v; B) = Z Z ATF (pyyv) , p>aq, (2.450)

n=1 m=1
oo 2n+1

D (p,p,v;B) = ZZBmEmp,u, v), p<ag, (2.451)

n=0 m=1

where the exterior potential starts from n = 1 because of its asymptotic form.
Hence, based on relation % = agasl) Sy, (1, 1/)8% and (12.433)), the transmission conditions
take the following forms:

oo 2n+1 oo 2n+1 3 h Em(al)

m m m m mt1 m ~
ZZAF a1)S, ZZBE 1) Sy (1, )+ZW (s v)&m
n=1 m=1 n=0 m=1 m=1

(2.452)
oo 2n+1 8 oo 2n+1 a
SN ATS ) (5= F(p) =8> > BrS(uv " (p)
ap 8p
n=1 m=1 p=ay n=0 m=1 p=aq
(2.453)

From the second transmission condition, it can easily be observed that the sum on the right
hand of the equation start from n = 0, while the sum on the left hand starts from n = 1, which
due to the orthogonality of the surface ellipsoidal harmonics, leads to the fact that B(l) =0.

For n = 1 the system of equations (2.452)) and ([2.453|) becomes:

AP FY (1) ST (1,v) = BB} (01) ST (11, v) + —— B (01) ST (11, )51 (2.454)

1
—F
hahs

— B (4, ) (ng;“(p))‘ , (2.455)

p=ai

ATSP(u) (P70

p=aq

for m = 1,2, 3. From the orthogonality of the surface ellipsoidal harmonics, it is concluded that
A" and BT are given from the following system:

AT F"(a1) = BT EY" (on) +

AT (o)

for m = 1,2,3. This system of the components can be written in matrix form as follows:

_m_pm m 2.4
o h2 T (a1)%k (2.456)

= BB (;pE{”(p)> ; (2.457)

p=a1

p=ai

Fi (o) —E7 () h

A™ . 7mEm(a1)
0 0 oo | = | hihohs (2.458)
Fmp> _B (Emp> |:Bm5\(m:| 174213 3
(o) s (gmw)| |l 0
or equivalently:
Bam I (o) —ay, ) o,
AT .x
1 I Xm| _ .
3 <al]’{”(a1) — > _Bﬂ [BT . im:| hihshs | (2.459)
Qm Q2003 Om
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with solution given by:

ajaoasBhpy,
AT gm] 3hihohs [1+ (8 — 1)aragas i (a1)]

- : (2.460)
hm [0510420&3]{”(041) — 1]
h1h2h3 [1 + (ﬁ — 1)0&10&20&3[{”(&1)]

B X

and it can be observed that AT - X,y = BT - Xy = 0 for m # m/.
For n > 2, the last term of the first transmission condition (E]*ST") vanishes due to orthog-
onality, leaving us with:

AL E (01) Sy (s, v) = By B (an) Sy (s, v) (2.461)

AT (i) (5500 )

p=a1

0
=B ) (5B ‘ , (2.462)
p=an

form=1,2,...,2n + 1. This system is a homogeneous system with non-vanishing determinant
which leads to A" = B> =0 for n = 2,3,... and m = 1,2,...,2n + 1. Thus , the only non-
vanishing coefficients are for n = 1 and m = 1,2,3. Substituting the coefficients (2.460]) into

(2.450) and (|2.451)) correspondingly, leads to:

Baiazasl™(p)

]«

&t (p,u,v;B)=r- Rm @Km, p>oap, 2.463
(P " B) 1 1 + (ﬁ — 1)0&10[20[3]{”(0[1) m m P ! ( )
& ( B) S owoenlion) 1 ® R < (2.464)
vy p) =1 X Xm aq . .
s — 1+ (ﬁ - 1)0[10[20[3[{”(0&1) " " P !

Working exactly the same way for ¥+ we obtain the following solutions [20] :

o azasli(p)
1+ (ﬁ — 1)&10&20&3[{”(0&1)

NE

lII+(p7 K, V5 B) =-r: Xm @ Xm , p>a, (2465)

m=1

w

ajagasl(™(aq) . N
Ot (p,p,v:f) =—r- Xm @ Xm , <aj . 2.466

m=

Substituting (2.463))-([2.466|) into (2.166)) and (2.167)) correspondingly, we have:

3
. ( - 1 ()[10[20[3[1 ( ) N
vi(p,p,v;B8) =r- Zl—i— 5= Darazas(ar) Xm @Xm , p>ar, (2.467)
> 1
v (p,p,v;B) =—r- Z TF (-1 a1a2a3]m(al)xm RXm, p<ai. (2.468)

=1

Thus, based on relation (2.165]), the general polarizability tensor X for the ellipsoid is given by:

3
= 1
X=(B-1 pRrdS(u,v) - Xm © Xm
(8 )/Sal p (k,v) mZ::l 14 (B — 1)arazas(aq)

3
1
=(B-1 VerdV(p,p,v) - Xm ® Xm 2.469
(B-1) p<an (P p1,v) Z 14+ (8 —1)aragasI™ (o) ( )

—_

m=

Xm @ Xm -

ar S (B —1Darazas
Z 1 + (,8 — 1)041&20(3[{”(&1)
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With all the basic potentials calculated for the case of the ellipsoid of surface p = ay, it
is now possible to calculate the low-frequency coeflicients of the total fields and the scattering
amplitudes for each scattering problems we studied in this chapter, but for the case of ellipsoidal
scatterer, since all the low-frequency coefficients have been expressed in terms of these basic
potential functions.

2.4 Low-Frequency Formulas for Ellipsoids

In this section, we calculate the basic potential functions for the ellipsoidal coordinate system
and from them we derive the low-frequency coefficients for the ellipsoidal scatterers.
Acoustically soft ellipsoid

The zeroth-low frequency coefficient of the total field uar for the case of the ellipsoid, based on

and (2112

Il
wbr)=1—¢¢=1- I&O(Z)) L p>ail (2.470)

The first low-frequency coefficient of the total field uf, based on, 2.415|) and (|2.430) is
given by:

ul(r) = 1 I&(p) _ : _ 17 (p) d- % K ' T «
1()_fé(al) (I&(oq) 1)+;(1 1?(a1))d n®%Xn-r, p>op.  (2471)

For the scattering amplitude, based on (2.92)),(2.94]), (2.415)) and the fact that ¢ defined in (2.85))
vanishes for the ellipsoid, we have:

u>®(#;d) = —ik

2 ? 3
T (I&(a1)> +OKY, k=0, (2.472)

Acoustically hard ellipsoid:

Based on (2.119)), (2.125)), (2.444)) and (2.133)) , we have:

ug(r)=1, p>ay, (2.473)
5 araas I (p)
uf(x)=d-r=V()=r- (1+ L );(n@;(n.a, > a1, 2.474
1() [ ()] ; 1—061(12053]]7_1(041) P 1 ( )
sy [ d- Ry @ Ry - B
*(#;d) = ik®A3(#;d) + O(kY) = ik* —— TR 1+ Ok, k—0.
u (I‘, ) ¢ 3(1‘, )+ ( ) ¢ 3 [;1_0410[2043]—?(&1) + ( ) ) -
(2.475)
Ellipsoidal acoustic impedance:
Based on (2.134)) and (2.135]), we obtain:
ug(r)=1, p>ay, (2.476)
uf (1) =d-[r— ¥(r)] - RY“(r)
3 araeasI(p)
=nI- 1 L An An ’ a - ¢ ) ’ 2.4
r T;( +1—a1a2a3[{l(a1)>x ® X Ry p> o (2.477)

where ¢ defined as the solution of (2.136[) which is not trivial. The scattering amplitude, based
on (2.138)), is given by:
- _ kQ@

k—0. 2.4
e =0 (2.478)
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Acoustic transmission problem for the ellipsoid

Based on relations (2.158]), (2.159)), (2.179)), (2.465]) and (2.466]), we obtain:

ug(r)=1, p>ay, (2.479)
uy (r)=1, ha<p<aq, (2.480)
3
— 1)a1aga3I1 (p) . A

=r- 1-— Xn ®Xp -d >, 2.481
nzl [ 1 + — Doajagasli (o) " n p ! ( )

3 ~

d XnQ@Xp - T

, ha<p<a, 2.482
71221 1 + — 1 04104205311 (al) 2 P ! ( )

The scattering amplitude, based on (2.193)) and (2.469)), we get:

w5 8) = ik [ BV |48 X(9) -]

., 21003 2 X, ®Xn - a
S —(B-1)
i [(ﬁn ) 50

okY, k—0.
3 —10&10&20&3[( ) + ( )’ -

n=1

(2.483)

The only changes to the low-frequency coefficients given above, between the lossless and the
lossy transmission problems, are the values of 8 and 7 based on (2.194]) and ([2.195]).

Ellipsoidal perfect conductor:

Based on relations (2.317)), (2.323]), (2.416]), (2.444]):

3
x
E+ Il n Xn ® ﬁ s
z:: ? [ (ol a2 - B
(2.484)
3
Hi(r)=Ytq+7Y"q- 219295 I (p)%n ® % 2.485
O(r) a-+ q9 Z 1 — ajomasI(ay) 1(p)%n ® Xn ( )
n=1 1
n fn @ p| . (2.486)
— Xn® p| )
(P2 =} +a2)/p? — 2/ =7
for p > 1. The scattering amplitude based on (2.330]), becomes:
a1asas < 1
E(§) — k3410203 a o ne o\ (e &
(f) k= Z —alagagf?(al)r X (X Xpn) (Xn - D)
1
— I X Xp) (Xn - § O(k® k—0.
1-&1&2&3[?(0[1) (I‘XXn) (Xn q):| + ( ) ’
(2.487)
3
1
H (3 = g3 10203 4 C e e N
(T) i 3 z:: = alagaglf(al)r X (X Xp) (Xn - Q)

1
aropazli (o
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The impedance problem for the ellipsoid:

The impendance problem as mentioned in the theory does not have a general solution. Never-
theless the zeroth low-frequency coefficient can can be found [19]:

3
X
Ef(r IT(p)kn ® % = Xn®p| ,
z:: ? [ (-} eV — 2R
(2.489)
3 1 T
Hi(r)=Y" q+Y"q [I{‘(p)fcn@)xn . Xn @ P
;[{L(al) (02 = af + a2)\/p? — 2/ p? — 2

i1
Eoo(f‘):_ Z [f‘x(f‘Xin)(f{n'ﬁ)"_(inn)(f{n‘Q)]"i_O(kA)’ k_>07

3~ ()
(2.491)
) B .
H>(#) = —Y™* [(FXXpn)(Xn D) —FX (FXXpn)(Xn-qQ|+0OK"), k—0..
3 &)
(2.492)
Lossless transmission problem for the ellipsoid:
Based on relations (2.362)), (2.363]), (2.465]) and (2.466|), we have:
: T — T )araza
El (r - 17203 IM(p)&n @ %
z:: H+7} — po)onagasl (o) +p | (020 ® X
on Xn @ P >
- X Pl > P aq
(P2 =} +a2)/p? — 2/ =7
(2.493)
3 -
E,(r)=p- Xn®Xn, hh<p<a, 2.494
H+(I') Y+€1+Y+q i (:u+ —,ui)OqOCQOég In( )A ® X
_ ) Xn ® X
’ ey = (it — p)aragaslf(ag) | LR
On Xn @ P >
- n®p|, p>w
(P2 — a3+ a2)/p? — 2P =2
(2.495)
3 +
Xn @®Xp , ho < p<ajg. (2.496)

Hy(r)=Y*g- > K

— pt = (pt = pT)oaaasli(on)
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The scattering amplitude based on (2.372)), for the case of the ellipsoid can be rewritten as:

3 2 —
N 3010003 (wrn® —p) N
E®(f) = k3 219293 :
)=~ 3 2 [(WWQ —i)amazlian) f o (% %n) (%n - )
pt—p s s 4
+(M+ — u*)alo@agln( = (T X Xp) (Xn - q)} +O(%, k—0. (2.497)
H™(f) = ik3 2By Z (" = ) (£ X %n) (Rn - D)
3 (wtn? — p~)araasl(ar) + p~
pt —p S e (e 4
i — i ) moasli(an) = H+r X (F X Xp) (Xn - q)] +0O(k%), k—0. (2.498)
1
(2.499)
Lossy transmission problem for the ellipsoid:
Based on (2.399),(2-397), (2.400), ([£.404), (2.416), (2.465) and (2.466), we get:
x
Ej(r)=p—p- I (p)%kn ® % " Xn © P
;I{L RN NN
(2.500)
Ea(r) =0, h<p<a, (2.501)
3 .
Hi(r)=Y+tq+Y*g- (W7 = p)arazas I"(p)%n ® Kn—
i nz—:l pt = (ut — p)onagasI(an) | (p)%n & %o
n &0 @ P 2.502
N TN/ i (2502
3 M+
H, =Y*q- X X ho < p < . 2.503
e T Yl (2:50%
The scattering amplitude is given by (2.404)) and (2.469)):
3
. 3010203 1 i in s A A
E®(t) = —ik® :
(T) i 3 Z [alazagf?(al)r X (F X Xp) (Xn - D)
pt = 4
+ —— — —— (B X %Xn) (Rn-@)| +O(K"), k—0. (2.504)
(wt = p~)anagasli(on) — pt
1
3
o 3010003 1 PN
H>®(f) = ik’ —=—=Y T - - .
() = ik ——=V" ) [alamﬁal) (F % %n) (%n - P)

B pt —p”
(pt = p-)anazasli(an) — pt

# % (£ X %p) (Xn - Q)] +O(Y, k—=0. (2.505)

Remark: The sphere, the spheroid, the needle and the disk can be considered as geometrically
degenerate forms of the ellipsoid for appropriate values of a1, as, 3. Specifically, for the case
of the sphere, the corresponding formulas can easily be obtained from the above formulas by
substituting the corresponding forms of the elliptic integrals that are given as follows:

Sphere

1 1
ap=ay=a3 , ho=h3=0, I}(p)=-, I{‘(p):3—3, n=1273. (2.506)
p p

5 P>041,



Chapter 3

Inverse Scattering Problems for
Ellipsoids

In this chapter we will study a type of inverse scattering problems in which the incident field
(plane wave incidence assumed) and the scattered field are known and we try to determine the
size and the orientation of the ellipsoidal scatterer as well as physical parameters of the interior of
the ellipsoidal scatterer for the case of the transmission scattering problems. In order to solve
these problems we use the low-frequency approximations calculated in the previous sections
which are separated in near-field data (exterior total field ) and the far-field data (scattering
amplitude).

In a series of papers starting with [12], Dassios and his colleagues studied solved these inverse
problems using far-field data. Specifically, for the acoustic waves, they used the low-frequency
expansions of the scattering amplitude in order to find the size and the orientation of the
acoustically soft [I2], the acoustically hard [24] and the penetrable [16] ellipsoidal scatterers.
Later, in collaboration with R. Lucas they solved the corresponding electromagnetic inverse
scattering problem for the perfectly conductive ellipsoidal scatterer [17] using far-field data. In
2017, C. E. Athanasiadis, E. S. Athanasiadou, S. Zoi and I. Arkoudis extended this method for
the lossless and the lossy dielectric ellipsoids [7]. Moreover, we suggested a method for solving
this type of inverse scattering problems using near-field data. A simplification of this method
was applied the same year in [8] for the case of an acoustic two-layered ellipsoid.

The inverse scattering problems, in general, are nonlinear and not well posed due to the fact
that small pertrubations can lead to big errors in the results. The nonlinearity enters in our
problems via the Euler angles as well as the elliptic integrals which connect the exterior with
the interior ellipsoidal harmonics. Nevertheless, there is some kind of uniqueness, in the sense
that if the scattering amplitudes of two scatterers coincide for all directions and polarizations
of incidence, then the two scatterers are identical. Moreover, the a-priori knowledge of the
ellipsoidal shape of the scatterer in our problems can secure the well posedness of our problems
[16], since we can use the ellipsoidal formulas that are derived in the last section of chapter 2.
By taking measurements of far-field data or near-field data and by constructing a measurement
matrix via them, we can use its eigenvectors to specify the orientation of the ellipsoid and its
eigenvalues to obtain the semi-axes of the scatterer and theferore its size. Specifically, since the
measurement matrix is real and symmetric, its eigenvalues depend continuously on the elements
of the matrix, which means that small perturbations on the elements (measured data) result
small perturbations on the eigenvalues (Wilkinson). Then by the implicit function theorem we
obtain that the perturbations on the semi-axes will be small as well. The perturbations on the
eigenvectors of the measurement matrix depend on the perturbation on the elements as well
as to the spacing of the eigenvalues. Since we have already seen that the perturbations on the
eigenvalues are small, we obtain that the perturbation on the eigenvectors will be small too
which means that the perturbations on the Euler angles and therefore on the orientation of
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the ellipsoidal scatterer will stay small [I7]. For further study of the well-posedness of inverse
scattering problems, we refer to [10], [11], [22] and [27].

3.1 Inverse Scattering Problems for Acoustic Waves

In this section we present the method followed by Dassios and Lucas for the solution of the in-
verse problems for the acoustically soft, acoustically hard and acoustically penetrable ellipsoids,
using far-field data.

]

v+

n

¥ =
[

T

Let V' be the exterior and V™ be the interior region of an ellipsoidal scatterer of surface S
with equation:

3 332
Z_:loz%:l’ (3.1)

where a1 > a9 > ag > 0 are the semi-axes of the ellipsoidal scatterer and i the outward unit
normal vector on S. The superscripts 4+, — will denote parameters or functions in the regions
VT, V™ respectively. In the ellipsoidal coordinate system the surface S is defined by p = ay,
the exterior by p > a; and the interior by \/a4 — a3 < p < ay. The purpose of this section is
to determine the size and the orientation of this ellipsoid using far-field data or near-field data,
assuming that we know the center of the scatterer.

In what follows, with the superscripts (D), (N),(T) we will denote the acoustically soft

(2.67)) , acoustically hard (2.114)) and acoustically penetrable (2.139) cases respectively.

3.1.1 Acoustically Soft Ellipsoid

The scattering amplitude for the case of the acoustically soft ellipsoid is given by (2.472)). Letting
t = d and taking the real part of the low frequency approximation of the far-field pattern for
the acoustically soft ellipsoid we obtain [12] :

1
(1)

Re {uP)(@,)} = K2tk [T— 202 1 203 + 202) | +0) , k>0, (3.2)

s
3(I5)?
where

1 D 2 2 2 2 471 472 473
+ a5 + - I7 + as5li 4+ asl 3.3
(16)4 9(1(%)2 (al Qo 0‘3) 3([&)3 (041 1 T GQoly T O3 1) (3.3)
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and d = (i1,12,13). We will use the AgD) and Ale) leading two coefficients of lj that can be

written as:

AgD) (f‘v a) = - 2 (34)
(7o)
a A 1 - ~
AP@E dy = |17- dTAd)| , 3.5
@ q) S (a74q) (3.5)
with
A = diag (An) , A= 04121 ) (36)

forn = 1,2,3. We consider two Cartesian systems with the same origin and their corresponding
orthonormal bases {X1,%X2,%3} and {X},X5,X45}. The system {X1,%X2,%X3} coincides with the
principal directions of the unknown ellipsoid while the system {X},%5,%5} is a known reference
system. In order to specify the orientation and the size of the ellipsoid we will transform the x;
system to the x;. To achieve this transformation we will use an orthogonal rotation matrix P
whose elements are given in terms of the Euler angles («, 3,7) as follows [28§] :

cosa cosy — cosP sina siny  sina cosy + cosf cosa siny  sinf3 siny
P = | —cosa siny — cosf sina cosy —sina siny + cosf cosa cosy  sinf3 cosy (3.7)
sinf sina —sinf cosa cosf

Therefore, the vector d satisfies the rotation relation:
d=Pd . (3.8)

Applying rotation (3.8)) in (3.5 we obtain:

1
3 (o)

. (&’TPTAP&’> : (3.9)

We take one measurement of —Ay for any direction d and six measurements of —A4 for six
directions as follows:

dy =%, , dy=%p , ds==%}
&;=\2(>‘<’1+i’2) = () (Ailﬁz\%(f('2+§<§) (3.10)
that can also be written as:
d; =%, , for i=1,2,3,
&;+j+1:\2(i;+}23> L for i,j=1,2,3 , with i#;. (8.11)
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Therefore, the measurements are the following:

Ny 1
mOZ_AgD)O'ad): N2’
(o)
m = —A{L(&,dy) = T — ZCPT AP,
my = — AP/}, dy) =T — ?P;APz ,
(D)/ar 3¢ mo 1
ms = —A ) =7 - "O0plap,
4 ( 3 3) ni’ 13 (312)
D ~ ~
my = — AP (d), dy) :T—?O§ (P1T+P;)A(P1+P2)
—T— % (PIAP1 1 2P AP, + P;Apz) ,
ms = —AP) @y, dy) =T - % (PIAP1 +2P] AP + P;AP3> ,

mg = —AP\ (L, dL) =T — % (P;AP2 + 2P AP + PgAPg,) ,

where P; = Pf(g is the i-th column of matrix P and P;r = “gTPT is the i-th row of matrix P
and where the relation
T T
for i,j = 1,2, 3, due to the fact that A is a diagonal matrix, has been used.
We construct a measurement matrix M(P) = (Mi(jD)) for 4,7 = 1,2, 3, with elements of the form:

D 3T
Relation ({3.14) due to (3.13)) can be written in matrix form as follows:
3T 3T
MP) = pT <A - I> P sPMPIPT A7 . (3.15)
mo mo
Therefore, the measurement matrix M(?) can be given in terms of mq, ..., mg as follows:
3 —2myq (m1 + mo — 2m4) (m1 + ms3 — 2m5)
MP) = p— (my 4+ mg — 2my) —2mp (mg + mg — 2mg) (3.16)
0 (m1 + ms3 — 2m5) (MQ +m3 — 2m6) —2ms3

where the orthogonality of P has been used (i.e. PiTPi =1 and PiTPj = 0 for i # j).
Since M(P) is real and symmetric it has three real eigenvalues )\gD), /\gD), )\:(J)D) and three or-
thonormal eigenvectors v (), vo(P) v3(P) Therefore, due to the orthogonal similarity relation

(3.15)) we obtain:

AP — A, — 3T , (3.17)
mo
Va'P) = (Pa1, Pag, Pu3)?) (3.18)

for n = 1,2,3, where Py,1, P,2, Po3 are the elements of the nt" row of the rotation matrix P and
the superscript (D) denotes the acoustically soft case that we study in this subsection. From
the system of equations that connect the eigenevectors of matrix M with the elements
of matrix P, we obtain the elements of matrix P and therefore we can specify the Euler angles
by using the following relations [2§], [20], [2§] :

P. P,
T | 31 T | ) T | 13
a = sin — ] , B=sin \/1—P. , Y = Sin —_— ] . 3.19
(Vl_P323> ’ < 33) ! (Vl_PSZi%) ( )
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These angles show the orientation of the ellipsoid.
From the system of equations ([3.17)) that connect the eigenvalues of matrix M with the diagonal
elements of matrix A — —1I we obtain:
mo
3T 3T
AP =2 -2 o 2 =2D) (3.20)

my " " mo

for n = 1,2,3. Therefore, in order to specify the semi-axes «, of the ellipsoid we need to
calculate T'. Substituting in the definition of I} (1.175]), the semi-axes a, from (3.20)) and using
the mg measurement of (3.12)) we obtain:

dzx 2

/ = . (3.21)
3T 3T 3T VM
0 \/x+A§D)+\/x+>\§D)+\/x+>\§D)+ °
mo mo mo
Using the transformation
A =N oy 3T
relation (3.21) can be written in its canonical form:
singog dt )\(D) o )\(D)
F(¢o, ag) = =4/ 3 3.23
(90, 20) /0 V1 =121 — 2sin2ay mo ( )
where F'(¢g, ag) is the imcomplete elliptic integral of the first kind (1.180)),(1.181]), with
AP D)
¢o = sin~! | — (3.24)
3T
N
mo
AD) (D)
-1 | M 2
ap = sin —_— . (3.25)
)\gD) . )\:())D)
From ((3.24]) we obtain T as follows:
1
T = Zmo [(A§D> — AP cot? g — Aqu . (3.26)
Therefore, having found 7" we obtain the semi-axes a,, for n = 1,2, 3 from ([3.20) as follows:
a2 = (AP — AP eot2g + (Agm - AgD)) , (3.27)
a2 = (AP = AP eot2gq + (Agm - AgD)) , (3.28)
a? = (AP = AP cot2ey, (3.29)

and therefore we obtain the size of the ellipsoid .

For the geometrically degenerate case of the spheroid, assuming as = a3, we only need
to determine the two semi-axes 1,9 as well as the two Euler angles «, 5. Letting v = 0
and denoting the corresponding rotation matrix with P we obtain from the measurements
m1,ma, m3, the following relations from the elements M;; = PiEB)APi(O), for 1 = 1,2,3, by
replacing P with Fg:

3
adcos’a + adsin*a = —(T —my) , (3.30)
mo
3
odsin*a + a3cos’a = —(T —my) , (3.31)
mo
3
s = —(T —ms) . (3.32)



3.1. INVERSE SCATTERING PROBLEMS FOR ACOUSTIC WAVES 121

From this system we obtain the semi-axes a1, as in terms of T as well as the Euler angle a:

3
o2 = —(T —my —my +m3) , (3.33)

mo

3
5=—(T- 3.34
o = (T =m3), (3.34)
sina = (m3 = ms) . (3.35)

(m1 + mo — 2m3)

In order to obtain the second Euler angle 5 we proceed as follows. Letting v = T and denoting
the corresponding rotation matrix with P /o), since the measurement m; is independent of this
rotation, we obtain from Py ) AP1(g) = P19y AP1(r/2) and (3.30):

3
adcos®Bsin*a + a3(coslasin®Bsina) = — (T — my) (3.36)
mo

and therefore using (3.33))-(3.35)), we obtain the Euler angle £:

cos?f = L8 (3.37)

ma —ms

In order to specify T, from my = 1/([&)2 we obtain:

1
ﬁcos’h*1 (?) , Q1> Qo
aF — o 2
I} = L o (3.38)
ﬁcos_1 <> , a1 < as
a; — Qaf a2
and
[((5 -+ 1)m3 —mi1 — m2]
T = 0=1) , (3.39)
with
IYma — _
cosh? \/3( m3 —m1 — mo) , Q1> Qo
5= o (3.40)
3 —2 '
cos? <\/ ('m1 +ms mS)) , a1 < g
mo

Having found 7" we obtain the semi-axes from ({3.33))-(3.34]).
For the geometrically degenerate case of the sphere oy = ao = a3 there is no need to specify

the orientation due to the symmetry of the sphere and we only need to determine the radius of
the sphere . From the measurement mg = 1/ (13)2 we can directly specify the radius a; since

1
I} = — for the case of the sphere.

o

Therefére, for the case of the spheroid only four out of the seven measurements are needed for
the specification of its size and orientation and for the case of the sphere only one measurement
is needed for the specification of its size. Nevertheless, if there is no a-priori knowledge of
the actual shape of the scatterer we need to take all seven measurements, construct the mea-
surement matrix M(P) and find its eigenvalues in order to see whether there are two or three
equal eigenvalues that will lead to the conclusion that the scatterer is a spheroid or a sphere
respectively.
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3.1.2 Acoustically Hard Ellipsoid

The low-frequency expansion of the far-field pattern has the form . For the acoustically
hard (rigid) ellipsoid, the coefficients AgN) and AgN) are equal to zero. We will use the leading
order coefficient of the imaginary part of the low-frequency expansion which is the coefficient
AéN) . Letting # = d in , the leading order coefficient becomes:

AN @, a) = % [—1 +d"Ha } : (3.41)

where V' = aqgasas and H = diag(H,,) for n = 1,2,3 with

1

n — ) .42
1-VIT (342)

with I7 = I7(aq). Similarly to the acoustically soft case we consider two Cartesian systems and
use the orthogonal matrix P given by (3.7) to transform the known system x; to the unknown
system x;. Therefore, using the rotation relation (3.8]) in (3.41) we obtain:

AN @, a) = g [—1 +dTPTHP ] . (3.43)

We take six measurements of AéN)(Ei’ ,d’ ) for six directions of propagation d’ as follows:

/

d; =%, , for i=1,2,3,

1
. 1/, . o L 3.44)
di+j+1zﬁ(xg+xj‘> , for 4,7=1,2,3 , with ¢#j. (
Therefore, the measurements are the following:
al Al Vr 1
my :Al(’)N)(dladl) :g _1+P—II—HP1 )
Al Al Vr 1
m2 = A:(%N)(dzadz) -3 ~1+P3HP| |
Al Al V i T
m3:A§N)(d3ad3) =3 ~1+P3HP3)| ,
Al A VI 1 ] 3.45
my = ANM(d),d}y) = 3| 1+s (PIHP1 +2P] HP, + P;HPZ) , (3.45)
o V1 :
ms = AN (dy, dy) = T l-1+5 (PIHP1 +92P] HP; + PgHP3) ,
o VL1 :
ms = AN (dg, dg) = S -1+ <P§HP2 2Pl HP; + PQHPg) ,
where the relation
P/ HP; = P HP; (3.46)
1 J J 15 .

due to H being a diagonal matrix has been used. We construct a measurement matrix M) =
(Ml(jN)) for i,7 = 1,2, 3, with elements of the form:

v

N
MM = P (H-DP; . (3.47)
Relation (3.47)) due to (3.46) can be written in matrix form as follows:
Wy _ Vpr wpr YV
MO =P (H-D)P & PMMPT = Z(H-1) . (3.48)
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Therefore, the measurement matrix M can be given in terms of m1, ..., mg as follows:

1 2m1 (2777,4 —mi — mg) (2m5 —mi — mg)
MM = B (2myg — myq — mg) 2ma (2mg — mo — m3) (3.49)
(2m5 —mi1 — Tng) (2m6 — mo — m3) 27713

where the orthogonality of P has been used (i.e. P{P; =1 and PiTPj = 0 for i # j).
Since M is real and symmetric it has three real eigenvalues /\gN), )\gN), )\éN) and three orthonor-
mal eigenvectors vi V), vo V) v3 (V) Therefore, due to the orthogonal similarity relation 1)

we obtain:

AN = (1) (3.50)
Vn(N) - (Pnb Pn27 PTL3)(N) 3 (351)

for n = 1,2,3, where Py,1, P,2, Pn3 are the elements of the nt" row of the rotation matrix P and
the superscript (V) denotes the acoustically hard case that we study in this subsection. From
the system of equations that connect the eigenevectors of matrix M (N) with the elements
of matrix P, we obtain the elements of matrix P and therefore we can specify the Euler angles
by using the relations These angles show the orientation of the ellipsoid.

From the system of equations that connect the eigenvalues of matrix M@) with the
diagonal elements of matrix H — I we obtain:

\%4 1
AN == 3.52
" 3 (1 -VIp > ( )
(3.53)
for n = 1,2, 3, which after simple calculations can also be written as:
AN
3\, '+ V
for n =1,2,3. At this point both V' and I are unknown. Using the identity:
3
Y v=1, (3.55)
n=1
we obtain via (3.54]):
AN AW AW
SA; 34 33 =1 (3.56)

DMy aMyy My y

The left hand side of is a function of V' which will be denoted with f(V'). The function
f(V) from the value f(0) = 3 decreases monotonically to zero, therefore it has one root that can
be found numerically or by solving a cubic equation of V' in terms of known formulas. Therefore,
after finding V', we obtain the elliptic integrals I, for n = 1,2, 3, from . Next, we denote
the right hand side of as M, for n = 1,2, 3 respectively (which are known quantities from
this point forward). In the case that the eigenvalues of the measurement matrix are distinct
A1 # A2 # A3 we obtain via that a1 # as # az. We write the elliptic integrals I
in terms of the canonical elliptic integrals (1.175)), (1.186[)-(1.189) and obtain from the
following relations [24] :

T [F(0,m) — E(0,m)] = M
1 msinfcosd
ity | E0m) (= m)P(0m) — R (3.57)

1
—_— 1—msin?0 — F =M
i ] [tan@ msin“0 (H,m)} 3,
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where

O REST = NO S CENES
S = a? g/ m_a%—ag \hy ) o \y1s V13

(3.58)
The system can be simplified by using M7 + My + M3 = 1 which is valid due to (3.54]).

Therefore, adding equations (3.57)) and solving for [ we obtain:
1 j A
= —— <tan9\/ 1 — msin?0 — sinfeost ) = . (3.59)
1—-m V1 —msin?0

Then eliminating [ from (3.57)) via (3.59) we obtain:

1—m 1 msinfcosd

FO,m)— E0,m)] = —_— ],
MlAm[ ( ) ( ) MyAm Vv1-— msin29> (3.60)

1-m 1

F(0,m) — E(0, :—( 1— '2—E,).

MlAm[ (0,m) (0,m)] LA tan® msin26 (0,m)

which can be solved numerically (Matlab) for ,m. Then [ is obtained from (3.59)). Denoting
by 6o, mg,lo the solution of system (3.57) (or respectively of (3.60) and (3.59)) the semi-axes
are given by:

<E(0,m) —(1=m)F(@,m) —

a1 = (I0)Y3sinbo] , g = a1v/1 —mesin26y , a3 = a|costy| - (3.61)

We note that in the case that )\EN) = )\éN) = )\:(SN) we obtain a1 = as = a3 due to relation
(1.178) and therefore the ellipsoid is a sphere of radius a; = V3. In the case that two out
(N)

of the three eigenvalues A, ’ are equal then we can proceed as follows: Assume without loss
: (N) (N) _ (V) : _

of generality that A\; "~ # Ay Az 7 which means that a1 # as = a3 due to (1.178)). Set

g =aj/as. Then ¢ > 1 or g < 1 for My > My or My < My respectively. From (3.54)) we obtain:

1 gcos g 1 .. My
1-— =M for - < My <1, if — >1 3.62
1—q2< ﬂ) 1, or3< 1<1,1 M2> , (3.62)

1 gcosh™q 1 . M
—1)=M;, forO< M <, if — <1, 3.63
q2_1<\/q27_1 L. o L=3 " (363)

where equation (3.62) or (3.63) can be solved numerically for g. If gy is the solution then the
semi-axes are given by:

1/3
Q1 = ((I(Z]V)l/g y 2 = Q3 = (:];) . (364)

3.1.3 Acoustically Penetrable Ellipsoid

In the penetrable case it is possible to specify physical parameters of the interior of the ellipsoid

additionally to the specification of the orientation and the size of the ellipsoid.
WehaveB:B—l,C:C—l,withB:Z—t,C:anzz—tandn:]’:—fwherepi, v, kT
the mass densities, the compressibilities and the wave numbers in V* respectively. The low-

frequency expansion of the far-field pattern for the penetrable ellipsoid, for either the lossless

or the lossy transmission problem, is given by formula (2.483)). In this case as mentioned in the

)

previous chapter, the coefficients AgT) and AgT are equal to zero. We will use the leading order

coefficient of the imaginary part of the low-frequency expansion which is the coefficient AgT)

that for the acoustically penetrable ellipsoid has the form:

3

A Vv 10)
AD 3 §) = = _BE _nn .

n=1
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where T = (01,02,03), d = (i1,42,i3) and V = ajagas. Relation li can be written in matrix
form as:

~ V ~
AD (&, d) = N [C - BdTAf} , (3.66)
with A = diag(Ay) for n =1,2,3 with
Ay = — (3.67)
"1+ BVIP '

Similarly to the previous cases of the soft and the hard ellipsoids, we consider two Cartesian
systems and use the orthogonal matrix P given by to transform the known system x! to
the unknown system x;. Therefore, using the rotation relation for d and the corresponding
rotation relation for ¥ in ({3.66|) we obtain:

A &) = % [C - B&’TPTAPf’} . (3.68)
Letting # = —d’, we will take six measurements of A:(J,T)(—El’ ,d’) for six directions as follows:
d; =%} , for i=1,2,3,
N 1 o(o . . L (3.69)
di+j+1:ﬁ(xg+x3> , for i,7=1,2,3 , with i#j.

as well as one additional measurement for an opposite direction. Therefore, the measurements
are the following:

Al Al Vr 1
my = Ay (~dy.dy) = 5 [C+ BP{APy|
Al Al Vr )
my = AP (—dy, dy) = 5 |C+ BPJAPy
Al Al V [ ]
my = Ay (~dy.d3) = 5 [C+ BP3 AP | |
-~/ Al I 1 i
my = A (~d), d)) = % C+ 5B (P] APy +2P] AP, + P APy )| (3.70)
o P ]
ms = A (~dy, dy) = % C+3B (PIAP1 +2P] APg + P?TAP:,,) ,
o VL1 ]
mg = A (—dg, dy) = S|0+5B (P;Am + 2P AP; + P;APS) ,
Al oAl Vr
mr = AL(’)T)(dludl) = 3 _C - BPIAPJ J
where the relation
P/ AP; = P AP; (3.71)

due to A being a diagonal matrix has been used. From the measurements m and my; we obtain:

V = %(ml + m7) . (3.72)

We construct a measurement matrix M (1) = (MZ(]T)) for i,j = 1,2, 3, with elements of the form:
T

M = VP (BA+CI)P;. (3.73)

Relation (3.73)) due to (3.46]) can be written in matrix form as follows:

MDD =yvPT (BA+CcI)P < PMTDPT =V(BA+CI) . (3.74)
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Therefore, the measurement matrix M can be given in terms of m1, ..., mg as follows:

3 2mq (2myg —m1 —mg)  (2ms —my —mg)
M(T) = 5 (2m4 —my — mg) 2m2 (2m6 — mo — mg) (3.75)
(2ms — my — m3) (2mg — mg — m3) 2ms

where the orthogonality of P has been used (i.e. PiTPi =1 and PiTPj =0 for i # j).
Since M is real and symmetric it has three real eigenvalues )\gT), )\éT)’ )\éT) and three orthonormal
eigenvectors viD), v vg (M) Therefore, due to the orthogonal similarity relation 1} we

obtain:

AT — V(BA, +C) , (3.76)
VD) = (Pa1, Paz, Pa3) ™), (3.77)

for n = 1,2,3, where Py,1, Pya, P,3 are the elements of the n'* row of the rotation matrix P and
the superscript (7') denotes the acoustically penetrable case that we study in this subsection.
From the system of equations that connect the eigenevectors of matrix M) with the
elements of matrix P, we obtain the elements of matrix P and therefore we can specify the
Euler angles by using the relations ([3.19)) These angles show the orientation of the ellipsoid.
From the system of equations at connect the eigenvalues of matrix M) with the
diagonal elements of matrix BA + C'I we obtain:

1
(T) _ o
AT =y <B1 s C) (3.78)

for n = 1,2, 3, which after simple calculations can also be written as:

n v 1
v B -
for n =1,2,3. Using the identity:
3

vip=1, (3.80)

n=1
we obtain via (3.79)):

3

1 B+3
ZA@—VC_ B (3.81)

n=1

At this point we have equations (3.72)), (3.79)), (3.81)) to specify the semi-axes a1, ag, ag as well
as one of B or C'. We assume that one of the parameters B or C is known and proceed as

follows: If C' is known, then from @ we obtain V and then via we obtain B. If B is
known, then (since V'C' is known from (3.79)) we obtain V from and then from (3.79) we
obtain C.

Therefore, since now B,C,V and I' for n = 1,2,3 are known we can find the semi-axes ay,
(for n = 1,2,3) and therefore the size of the ellipsoid by following the same process as in the
previous section for the acoustically hard ellipsoid where in this case the known quantities M,

(for n = 1,2, 3) are given by the right hand side of (3.79)) for n = 1,2, 3 respectively.
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3.2 Electromagnetic Waves

Let VT be the exterior and V™~ be the interior region of an ellipsoidal scatterer of surface S
with equation:

%

3
Yo tnog, (3.82)
[0
n=1

where a1 > a9 > a3 > 0 are the semi-axes of the ellipsoidal scatterer and f the outward unit
normal vector on S. The superscripts 4+, — will denote parameters or functions in the regions
VT, V™ respectively. In the ellipsoidal coordinate system the surface S is defined by p = ay,
the exterior by p > a; and the interior by \/af — ag < p<aj. (figure .

3N

Figure 3.1: Ellipsoid of surface S.

The purpose of this section is to determine the size and the orientation of this ellipsoid using
far-field data or near-field data, assuming that we know the center of the scatterer.

3.2.1 Far-Field Method

We will study the inverse scattering problems of electromagnetic waves from an impedance, a
lossless dielectric and a lossy dielectric ellipsoid. The case of a perfectly conductive ellipsoid has
been studied in [I7]. In what follows the superscript (I), (D), (L) will refer to the impedance
2.331)), the lossless dielectric (¢~ = 0) and the lossy (o~ > 0) dielectric ellipsoid respectively
2.332). Moreover, the superscript (B) will denote all the above mentioned cases, therefore
B =1,D, L. The low-frequency expansion of the electric far-field patterns for the impedance,
the lossless dielectric and the lossy dielectric ellipsoids respectively for k& — 0 are given by

E100). 2157) and (E500):

3
E~B)(#;d,p) = —ik?’% > [W,&E’)f X (X %n) (kn - D) + TP (£ x %n) (kn - q)] +O(k")

n=1
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for B=1,D, L with

pwhn? — 1

N I 12 T M 354
7P = (L) = (= n) 70 = L (3.85)

(ut —p ) VI —pt 7"V

where V' = ajagag, n the relative index of refraction and I the elliptic integral of degree 1 and

order n = 1,2, 3, given in (1.175)):

. 1 [ du
m= - . - (3.86)
2Jo (u+a)Vu+ai/u+ad/u+ o}

with )
L+ 1+ = v (3.87)
The far-field patterns for £ — 0 can be written as:
E*()(#d,p) = ik* 1P (£,d,) + O (k') (3.88)
for B =1, D, L, with the leading-order coefficients given by:
£(B) (f;&,f)) _ %f x [(W<B>p) ¥ f— TP (a X f))] , (3.89)
where
WB) = diag (W}Lf”)) , TB) = diag <T7§B)> (3.90)
for B=1,D,L.

Next, we consider two cartesian systems with the same origin and their corresponding or-
thonormal bases {X1,%X2,%X3} and {X),%5,%X5}. The system {X1,X2,%X3} coincides with the
principal directions of the unknown ellipsoid while the system {X}, %5, X5} is a known reference
system. In order to specify the orientation and the size of the ellipsoid we transform the x|
system to the x; with the use of the orthogonal rotation matrix P whose elements are given in
terms of the Euler angles («, 3,7) as follows [28], [20]:

cosa cosy — cosf sina siny  Sina cosy + cosf cosa siny  sinf siny
P = | —cosa siny — cosfB sina cosy —sina siny + cosf cosa cosy  sinf cosy (3.91)
sinf sina —sinf cosa cosf3

Figure 3.2: Euler angles.
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Therefore, vectors r, ¥, El, p satisfy the following rotation relations:
r=Pr , t=P¢ , d=Pd , p=Pp . (3.92)

Inserting the above relations for the directions in the coefficient £(5) we transform them from the
x} system to the x;. Then by multiplying f (B) with PT, we go back to the reference system x|
where we will take the measurements. The superscript T denotes transposition and PT = P~!

since P is orthogonal. Therefore, let g(B) for (B) = (I), (D), (L) given by:

g(B) (f’;a’,p’) — pTe® (Pf’;Pa/,Pf)’) — pTe® (f;&,ﬁ) . (3.93)
Then
V ~
g(B) (A’ Q. A’) =< PT {Pf’ x [W<B>Pp’ x P/ — T(®) (Pd’ x Pf)’)” . (3.94)
Letting the directions
M=euxe , d=% , p= 3 , (3.95)
where €5, the permutation symbol with e;;, = €1 = epij = 1 and g5 = €jir = €xjs = —1, for

1<14,75,k <3 with 4, j, k distinct, we get:

Y i, x [p W PR x g%l — PTTEP (% x ’)} . (3.96)

g(B) (Szﬂcxkax XJ) = 3 J

After calculations we obtain:

(B) sl ol V T1a7(B) (B)
g (5ijxk,x xJ) =3 [(P W7 P; —i—eka TP > (3.97)

%!
(PTW<B>P — ey Py T8 Pk> }

where P; = Pf("i the j-th column of matrix P and P;— = AgTPT the j-th row of matrix PT.

Since W) are diagonal we obtain the following relations for 1 <i,j < 3 :
PlwBP; =P/ WPHpP; . (3.98)

We take measurements of the vectors g(®) for direction combinations along the axes x;’. Specif-
ically we use 6 direction combinations to solve for PiTW(B)PJ-, for B=1,D,L as follows:

—PJ-TW(B)PJ- = {g(B) (eijr%i X1, X5) + g®) (Ekjifig;f(i(a%{)} %S (3.99)
—PIw®Pp; = [2g(B) (eijni X5, %)) — 87 (gjnkics %), %1) + 8P (5kijij§§<iu§(§)} X
(B)

al. ol &l Al
(€kjl‘xi, Xk’ Xj) . Xj

(3.100)

= [2g(B) (ejinie %5, %5) — 8P (ki %1, %)) + &

We construct the measurement matrices M (P) for the impedance, the lossless dielectric and the
lossy dielectric cases respectively as follows:

M® =Py M =PI wPp; (3.101)

ij
for 1 <14,5 < 3. The above set of equations can be written in matrix form as:

2V

MP) = BPTW(B) : (3.102)
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or since the rotation matrix P is orthogonal:

2V

PMBIPT = 2
3

w®B (3.103)
which is an orthogonal similarity relation between the measurement matrices M) and the
diagonal matrices W) for B =1, D, L.

The measurement matrices M) are real and symmetric and each has three real eigenvalues
)\gB), )\éB), )\gB) and three corresponding orthonormal eigenvectors vgB), véB),vgB) respectively.
Therefore based on the orthogonal similarity relation, we conclude that for n =1,2,3 :

2V
AB) — 2y (B) 104
v ®) = (Po1, P, Ps)?) | (3.105)

forn =1,2,3and B = I, D, L, where P,1, Py, P,3 are the elements of the n row of the rotation
matrix P and the superscript (B) on the right hand side of denotes the elements of the
rotation matrix P corresponding to the cases B = I, D, L respectively. From the elements
of the three orthogonal eigenvectors VEB),vgB),v:(,)B) we obtain the elements of matrix P for
B =1, D, L respectively and therefore we can specify the Euler angles by using the following

relations [20], [28§]:

P P

T | 31 T | 2 T | 13

a = sin — | , B=sin 1-P. , Y= sin e 3.106
<v1—P323) ’ < 33) ! (Vl_P:%Z?)) (:100)

These angles show the orientation of the ellipsoid in the impedance, the lossless and the lossy
cases respectively.

From the system of equations ([3.104]) that connect the eigenvalues )\%B) with the elements Wy(LB)
for n = 1,2, 3 we obtain via @D

2
AL = = (3.107)
3
2V phtn® —
AD) = 2 3.108
" 3 [(u*nz—u‘)Vf?Jru‘ ’ (3.108)
2
AL = = (3.109)
3

From these equations we can specify the semi-axes a1, a9, a3 and therefore we can specify the
size of the ellipsoid for the impedance, the lossless dielectric and the lossy dielectric cases re-
spectively. Specifically, for the case of the lossless dielectric ellipsoid, using relation and
solving relation for V(D) we obtain:

3(utn? + 2 ) AP AN

VP = : (3.110)
2t n? = ) AN AN
which gives the relation:
w20 20 (AP AN AP
K=—m - (D) (D) (D) (3.111)
3An 3(utn? +2u7 )N Ay Ay

For the cases of the impedance and the lossy dielectric ellipsoid, we obtain I7* from (3.107)) and
(13.109) respectively as follows:

9
m=__ (3.112)
g0
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n 2
Iy = CR (3.113)
for n = 1,2, 3, and therefore using relation (3.87) we obtain:
-1
1 1 1 1
v — = 2( mt+t-ot (1)> , (3.114)
(Zn:l I{L) )\1 )\2 )\3

-1
1 3 1 1 1
v — - ( + + ) (3.115)
D D D ’
(Sm) 2

Having found V) and I ' for the impedance, the lossless and the lossy dielectric cases respec-
tively, we can specify the semi-axes «,,, for n = 1,2, 3, as follows:
We denote with M,SB) the quantities :

VB = MP) (3.116)

n

for n = 1,2, 3, which are now known.

If the eigenvalues )\7(1 ) are distinct then we obtain 041 75 a2 ;é a ) from (1.178)). We write
the elliptic integrals I7* in terms of the canonical elliptic integrals (]1.175|), (1.186)-(1.189)) and
obtain:

1 B
T [F(0,m) — E(0,m)] = M
1 msinfcosd (B)

— | E(0, —(1—m)F(6, - | = M. ) A1

Im (1 —m) [ (8,m) = (1L =m)F(8,m) Vv1-— msin%} 2 (3.117)

a—m) {tan&x/ 1 —msin26 — E(6,m) ] = MSEB) ,
where

3/2
sin29:a%_a§: @ ? m:a%—a%: @ ? [ — al 2_ as 2
a? ar) a? — o hy) y(®B)1/3 VB3 ’
(3.118)

for B=1I,D, L. In order to solve the system (3.117) numerically, we make use of the relation
M + My + M3 = 1 which is valid from (3.87) and (3.116)). Specifically, by adding the three
equations and solving for [ we obtain:

infcost A

l= (tanﬁx/ 1 — msin20 — —— COS‘ ) = : (3.119)
1-m V1 — msin20 1

Then eliminating ! from (3.117)) via ([3.119)), dividing each of the three equations with its corre-

sponding right hand and then equating the resulted first with the resulted second equation and

the resulted first with the resulted third equation, we obtain the system of equations:

1-m 1 msinfcost
N Am [F'(8,m) — E(0,m)] = Vo Am <E(9,m) —(1=m)F(0,m) — m) ,

1-m
— n20 —
N, Am (tan@ 1 — msin?0 E(O,m)) :

1
F
(F(0,m) — E(0.m)] = 7
(3.120)
which can be solved numerically (Matlab) for , m. Then [ is obtained from ({3.119). Denoting
by 6o, mo, lp the solution of system ([3.117)) (or respectively of (3.120)) and (3.119) the semi-axes
are given by:

o) = (l0)1/3|5in90| , oo =a1V1—mgsin?6y , a3z = ay|cosby| . (3.121)
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If )\gB) = )\gB) = )\gB) then a; = ag = a3 due to (1.178)) and therefore the ellipsoid is a sphere

of radius aq = (V(B))l/ s for the impedance, the lossless dielectric and the lossy dielectric cases
respectively.

If two out of the three eigenvalues )\%B) are equal then we can proceed as follows: We assume
without loss of generality that )\gB) #* /\éB) = )\éB) which means that oy # as = ag due to
and we set ¢ = o /arg. Then ¢ > 1 or ¢ < 1 for )\gB) > )\gB) or )\gB) < )\gB) respectively.
From (3.116]):

_ B

! <1 - qcoslq> =MP® | for é <MP) <1, if M, >1 (3.122)

1—¢? V1-¢ P
1 gcosh™q . (B) B _ 1 . MI(B)
21 <\/q27_1 —1|=M;", for0<M; <§, if MQ(B) <1, (3.123)

where equation (3.122) or (3.123) can be solved numerically for ¢q. If o is the solution then the
semi-axes are given by:

21/(B) 13 v v
o) = (qu > , Q=3 = . (3.124)

q0

for B =1, D, L for the impedance, the lossless dielectric and the lossy dielectric cases respec-
tively.

We note here that the inverse problem can also be solved using directions of observation in
the forward and backward directions of propagation instead of the directions of magnetic po-
larization as in the method described above. In this case, letting

s ! : _ 3 3! ~/ ol
F=ck (withe=+1) , d=% , p=% ,

(3.125)
for 1 <i,j <3, we take:
1%
g (5%, %) = KPJTW(B)PJ- + cPIIT(B>Pk> %)+ (PIIW(B)Pj - chTT(B)Pk> i{{} .
(3.126)

We take measurements for direction combinations similarly to the previous method and solve
for PIW(B)PJ- (for B =1, D, L respectively) as follows:

%PJTW(B)PJ- = {g(B) (X5 %5, %5) + g® (_gg;gg,gj)} %] (3.127)
%P[W(B)Pj = [g(B) (%5 %, %)) + g (—Xi;fci,fcg)} .
= [g(B) (%5 %, %) + g (—ié;ig,x;{)} R (3.128)
We construct the measurement matrices:
M = Py MY =plw P, (3.129)

for B = I, D, L and use their eigenvalues and eigenvectors to specify the orientation and the
size of the impedance, the lossless and the lossy dielectric ellipsoid respectively as previously.
Furthermore, the inverse problem can also be solved using directions of observation in the
directions of electric polarization. In this case, letting

>

af Y sl N
r , d=%x , D

—~

(3.130)

— 3/
-
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we take:

g (%]: %4, %) =

ol

[(PTW(B)P —i—cPTT(B)Pk) %)+ (P Ww®BP, — Pl TPk) ;(}
(3.1

We take measurements for direction combinations similarly to the previous method and solve
for P; ' T(B)Py. as follows:

ZPLTIR = [ (3:%,%) — g (%5 %60 %) - ¥

= [g® (%%}, %)) — g® (ﬁé;iiﬁii)} % (3.132)
2;/PTT(B) - :Qg(B) (&) %4, %}) — g®) (&3;&;,&3)] %

— [26® (%} %},%}) — g® (&3;&;(,&3)] % (3.133)

We construct the measurement matrices:

B B B T(B
M® = (MPy MP = PIT®)P, (3.134)
and use their eigenvalues and eigenvectors to specify the orientation and the size of the lossless
and the lossy dielectric ellipsoid respectively as previously.

3.2.2 Near-Field Method

In this subsection we present a method for solving the inverse electromagnetic scattering prob-
lems for the cases of the perfectly conductive, the impedance, the lossless dielectric and the
lossy dielectric ellipsoids, using near-filed data. Next, we suggest a method to determine the
electric permitivity e~ and the magnetic permeability =~ of V'~ for the cases of lossless and lossy
dielectric ellispoids. Moreover, we study the cases of the sphere and spheroid as geometrically
degenerate cases of the ellipsoid and we present a way to predict when the scatterer belongs to
one of these geometrically degenerate cases from the first three measurements. This can help
us reduce the number of needed measurements and can prevent unneeded calculations. Finally,
we present an alternative option for the set of measured near-field data and we comment on the
advantages and the disadvantages of this option. Finally, we summarize the near-field method
presented in this section in an algorithm and we make some remarks.

Notation

In what follows, the superscript (C), (1), (D), (L) will refer to the perfectly conductive, the
impedance, the lossless dielectric (6~ = 0) and the lossy (o~ > 0) dielectric ellipsoid respec-
tively. Moreover, the superscript (K) will denote all cases except of the lossless dielectric one
and the superscript (A) will denote all four cases. Therefore K = C,I,L and A = K, D.

Based on relations ES = E} — E/, and H = H;Y — H!, as well as relations (2.484), (2.489),
and , the zeroth low-frequency approximation of the electric scattered field is
given by:

3
o . 1 . . Tn . o
B D) -0 Y 1 [0 ot aep| ()
n=1"1 nip
The zeroth low-frequency approximation for the lossless dielectric ellipsoid is given by:

3 ) _
A — 1% T
By (r;d,p)=-p- (e — 1) [I”pfcn@fcn—" xn®ﬁ}, 3.136
o ) < (wtn? = pm)VIT + p 1(r) Jn(p) ( )

n—=
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where ® denotes dyadic product, r = (z1, 2, x3) is the observation vector and p is the outward
unit normal vector which plays the role of radial vector in ellipsoidal coordinates and is given
by:

3 . .
“ 1% Xn ® Xn
p=LS"_FnZXn (3.137)
hp;(p2 a%—l—a%)
with
2 2 /32
p? — p2\/p? —v
o = eyl = VEZ 12V, (3.138)

NN

be the ellipsoidal metric coefficient and

Tn(p) = (p° — oF + o) Vp? — P/ p? =12 (3.139)

Also, I is the elliptic integral of degree 1 and order n = 1,2, 3, where:

I (p) = 1/00 du (3.140)
T2 et (wr o) Vutatvaragvutad '
with
o)+ Bp) + B(p) = — e e (3.141)
pVP? = h3\/p? = h3
and I7" = I7"(a1) with
1
O+B+0=— (3.142)

V )
where V = ajasas.

Taking into account that k™ = wy/putet and k= = wy/p—e /1 + ioi— with k= be the wave
€

w
= — =

number in V7, the relative index of refraction 7 is given by n = P j‘% 1+ iaf.
nre g w

Inverse Problem

We study the inverse problems of electromagnetic scattering from a perfectly conducting, an
impedance, a lossless dielectric and a lossy dielectric ellipsoid by using near-field data. We sug-
gest a method in order to determine the semi-axes as well as the orientation of the ellipsoid in
each case. For this method, we use eight measurements of the zeroth low-frequency approxima-
tion of the electric scattered field. We consider two cartesian systems with the same origin and
their corresponding orthonormal bases {X1,%2,%3} and {X],%5,%5}. The system {%X1, %2, X3}
coincides with the principal directions of the unknown ellipsoid while the system {X],%5, %5

is a known reference system. In order to specify the orientation and the size of the ellipsoid we
transform the x| system to the x; with the use of an orthogonal 3 x 3 rotation matrix P whose

elements are given in terms of the Euler angles a, 3,7 as follows [20], [28]

cosa cosy — cosf sina siny  sina cosy + cosf cosa siny  sinf3 siny
P = | —cosa siny — cosf sina cosy —sina siny + cosf3 cosa cosy  sinf cosy (3.143)
sinf sina —sinf cosa cosf
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Figure 3.3: Euler angles.

Therefore, the vectors r, a, P, 4, p satisfy the rotation relations:
r=Pr , d=Pd , p=Pp , a=Pq , p=Prp . (3.144)

The zeroth low-frequency approximation of the electric scattered field can be written from
(13.135)) and (3.136)) equivalently as a 3 x 1 column vector in the form:

ESW(r;d,p) = WP + (rT Z(A)I")> p o, (3.145)

where WA = dz’ag(W,(LA)) and Z(4) = diag(Zr(LA)) forn =1,2,3 and A = K, D, are diagonal
3 x 3 matrices with diagonal elements given by:

1 (Wr? =)V
17 PR — . WD) = K , 3.146
1 (Wrn* —p )V
zK) = —— | z{P) = : 3.147
It Jn(p) [(wtn? — p=)VIP + p~] Ju(p) ( )

and the superscript T denotes transposition. Using the rotation relations (3.144) for r,d, p, p
we transform them from the x} system to the x;. Inserting them in Ef)(A) and then multiplying
the result with P, we go back to the reference system x; where we will take the measurements.
Let

s d,p) = PTESW (Pr; Pd, Pp') = P TE§W (r;d,p) . (3.148)

Then

SO d,p) = PTWAW Py + (r’TPTZ(A>Pp’) i (3.149)
where the relation PT = P~! due to P being an orthogonal matrix has been used.

Our method starts by taking a point rj = (2}, 2%, 2%) with ellipsoidal coordinates (po, po, 1),
with a1 < pg < oo and 2, # 0, n =1,2,3. Also, we consider the points:

I‘/2 = (—.1'/1, .27/2, xé) ’ r.{3 = (xllﬁ _$/27 ZL’%) ) ril = (xll’ '%JQ’ —ZC%) ’ (3150)

which belong on the surface of the ellipsoid (p = po):

72 13/22 xéQ
Oy + =1, (3.151)
pe Py —hi o pf— I3
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since they are symmetric to r} over the principal planes of the reference system. We take three
measurements of the zeroth low-frequency approximation of the electric scattered field in the
reference system at r for electric polarization p’ along the axes X/, %5, X5 respectively, three
measurements at r% for electric polarization §<’1,§c’2,§<g respectively and two measurements at
1, for electric polarization X}, X4 respectively. Note that the direction of propagation does not
appear in the formulas and and therefore for any electric polarization along an
axis in each measurement there are two possible directions of propagation along the axes such
that d’ - p’ = 0. Let the measured electric near-field data be taken as follows:

S(A)(rlvf{g’will) ’ S(A)( /1 X17X2) ’ S(A)(rll;i/% Aé’.) ’
S(A)(r37i/37i€l) ’ S(A)< {3: X17X2) ’ S(A)(r37§(/27§(£’>) ) (3'152)
S(A)(rzlviéhill) ) S(A)<r4,§(’2,§(g)

Taking the inner product of S() with the axis %! we obtain from (3.150) and (3.137) the
following scalar quantity:

/
RS d,p) = P WA pp! P TPz pp! 3.153
Xl (I‘, 7p) 1 p +hp<p2_a%+a12>(r p) Y ( )

for i = 1,2,3, with P = (Pfcg)T be the i'" row of PT and z/ be the i** coordinate of the
observation vector r’. From (3.150) and (3.153)), after some calculations, we obtain:

!0
2pox; Ty

Pl zWpp 3.154
po(P0? — a1? + o;?) K p ( )

& (SWry:dp) - S (rf:d ) =

for i,k =1,2,3 with i # k.
From ([3.154) and three measurements taken for the same polarization, one at r}, one at rj and

h3
one at ry, we can calculate 2 2 and =2 as follows :
po’ po ha
& A (e - q A/)i A)I‘ d/ A/ .T
h2>2 X1 (S (I‘l, P 35
— ) =1- - , (3.155)
(= % (SW0y:dLp) - S (g d ) ) a)
<h3> , N (80%:dp) — SV (x ' ))h (3.156)
Po X5 - (S(A)(rll;a/,f)/) r47d’ p )x 7 '

2
From ((3.155))-(3.156)) we obtain the quantity

2
Therefore, from the near-field data 1’ we can calculate the quantity hs/po using the two

measurements SV (r); %5, %,) and S (rh; %5, %)) and then calculate the quantities h3/po and

hs/ho using additionally the measurement S (r/;; Xj5,%]). Note that the three measurements
in (3.152)) with electric polarization X5 taken from the same three points would also work. We

denote:

ho hs hs
yi=— , @Qi=— , Ki=_—

00 £0 ha

The quantities y, ¢ and x can directly categorize the ellipsoid to its geometrically degenerate
forms of the sphere, the prolate spheroid and the oblate spheroid. More details about this are

presented in section 5. Using relation (3.157)) in (3.151]), we solve for pg and obtain:

(3.157)

72 72

/2 Ty T3
= . 3.158
P0o \/:cl + 1= + 1= 2 ( )
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Therefore, ho = ypg and hs = ¢pg are now also known.
Next, in order to determine the Euler angles and the semi-axes of the ellipsoid we take the inner
product of S with the observation vector r’ and obtain the following scalar quantity:

S d p) =1 PT (W(A) + ;Z(A)> rp (3.159)
p
where the relation r’ - p/ = L has been used (|1.25) .
Therefore, from and tphe measured near-field data we obtain:
=y S35, %) = (+iP] + P + Py (W4 22 )y
=y S35, %) = (+iP] + P + P (W4 22 )y
m{ =) - SW (] %, %) = (+21P] + 2hP] + 24P]) <W<A> + hp;ZW) Ps,
m{Y =y S (ry; 5, %)) = (+24P] — 24P + 24P3) <W<A> + ]f;oZW) Py,

3.160
méA) =1y - SW(r}; %), %) = (+21P] — 24Pg + 24 PJ) <W(A) + hp;OZ(A)> P2, | |
i xS a4 85.54) = (101 PT — 5P + i) (W4 2220 )y,

mi =1, . S (x): %5, %)) = (+2,P] + 2,P] — 24PJ) <W<A) + }Z?O Z<A>> Py,
m{ = vy S (ry; %y, &y) = (+2\P] + 2hPg — 24P3) (W<A> + ff;Z(A)) Ps,

with P; = PX] be the ith column of matrix P. Now, we construct the 3 x 3 measurement matrix

M@ = (MZ-(]A)) for i,j = 1,2, 3, with elements as follows:
MY =pf (W( )4 L0 g4 >> P (3.161)
hipo
Since W + PO 7(4) s 4 diagonal matrix we obtain:
PO
Pl (WA 4+ 2z p, = pT (WA 4 2z p, (3.162)
hPO ! hpo

fori,j =1,2,3. From

M@ can be given by:

(4)
M

J°

MW =

3.150

and

3.161f)-

3.162

/N

I'/1 : S( )(rlvd/ A,)

<I‘1 S(A) (I‘l, d/ AI) I'j+1 ° S(

riy - st

the elements Mi(jA) of the measurement matrix

%)/

/ A/
1+1’d )

(r}g;d, (3.163)

(3.164)

for 4,5 = 1,2,3, with d’ such that d’ - % = 01in |) and d’ - )"(3 = 0 in (3.164). These

elements can also be obtained by other comblnatlons of measurements due to the relation

/
rlf

(xh + 15+ 1) = 0.
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Specifically, due to the measured near-field data (3.152)) and therefore the quantities (38), the

measurement matrix M) can be given in terms of mlA), e méA) by:
'mgA) + mgA) mgA) . mSLA) mgA) . mgA)'
2z 24, 22
A A A A A A
MA — mg ) —mfl : mg )—mé : mi(S )—mé ) ) (3.165)
242, 24, 22,
mgA) . mgA) m;())A) . méA) m:(gA) . méA)
L 22 24, 224 ]

The set of equations (3.161|) can be written in matrix form as:

A — pT <W<A> i Z(A)> P, (3.166)
PO

or since the rotation matrix P is orthogonal:

PM@PT — ) 4 PO 74 (3.167)

hpo ’
which is an orthogonal similarity relation between the measurement matrix M) and the di-
agonal matrix W) + P20 Z4), Since M) is real and symmetric it has three real eigenval-

ues )\gA), )\gA), )\gA) and three corresponding orthonormal eigenvectors vy . vo@ v respec-

tively. Therefore, based on the orthogonal similarity relation, we conclude that :

(4)

AW — gl PO S (3.168)
hpo
v = (Pu1, Pag, Pu3)® | (3.169)

forn=1,2,3 and A = K, D, where Py, P,2, Py3 are the elements of the n'" row of the rotation
matrix P and the superscript (A) on the right hand side of denotes the elements of the
rotation matrix P corresponding to the cases A = K, D. By the system of equations ,
from the elements of the three orthogonal eigenvectors we obtain the elements of matrix P and
therefore we can specify the Euler angles by using the following relations [20], [28§]

P. P
.1 31 | 2 | 13
a = sin — | , B =sin 1-P , Y = Sin — | . 3.170
<v1—P323> ’ ( 33) ! <V1_P323> 170

Therefore, for Pl(éq ), P?ff) and P3(§4 ) from (3.169) we obtain the Euler angles o4, 849 and ~(4)
from (3.170)) for each case. These angles show the orientation of the ellipsoid.

From the system of equations (3.168|) that connect the eigenvalues )\%A) with the diagonal

elements of the diagonal matrix W(4) + L (4) we obtain from ([3.146)-(3.147) for the cases

of the perfectly conductive, the impedance and the lossy dielectric ellipsoid:

1 Po
AU = — ( — I™(po ) , 3.171
Iy hpan(PO) i'(po) ( )
for n = 1, 2,3 and similarly for the lossless dielectric ellipsoid:
P —uT)V p
AP = (™ — o ( 0 T7(po > , 3.172
(wtn? = p )VIE + 5= \hpgdulpo) () (3172
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for n = 1,2,3. Solving each equation of system (3.171) or (3.172)) for the corresponding I,
summing all three of them, multiplying both sides with V' and using relation (3.142)), we get
the following for the cases of the perfectly conductive, the impedance and the lossy dielectric
ellipsoid :

1
(K) — _—
Vv 763 (3.173)
and similarly for the case of the lossless dielectric ellipsoid:
3
b pt nzu B
(D) — —
Vi = D) , (3.174)
with \
1 Po
LW .= ( - I"(p0)> , (3.175)
nzz:l A\ gy Jn(po) '

be the index of electric measured data, for A = K, D. In order to calculate the right hand side

of (3.173)) or (3.174)), we calculate #0() — I7"(po) making use of the relations:
poYn\ L0
x/12h§h§ = p*u?? (3.176)
3
Z R22 2 4 22422 + B3NS = p*u® + pP? + V2% (3.177)
n=1

as well as the relations that connect I with the standard elliptic integrals of the first (E) and
the second kind (F') ([20] p.381) and obtain the following:

2 2 2 2
Po poV Py — haVpg — h
77[11(%): \/0 2\/0 3

2
2 4 3. 12402 4 900252 | p2p2 295/1 h%h%
P | Po — On=1 haxy,”™ +221°hs + hhg) + 5

Po
F(y7 H) B E(y”i)
- ] | (3.178)
3
200 pov/ 5 — P3N/ g — 13
()T = At
(8 = 3) | b = (Cim By + 20103 + hghi) + 2=
0
haB(y, %) | F(y,r) Vg — 3 (3.179)
R R Y TR Py

L_IB(W): pov/'po — M3/ pg — 13
hpoJs(po) . ) o 2h3h3
(05 = h3) | po — (e W3 + 22 °h3 + h3h3) + 2 p
0

+ E(yv K) B \% pg — h% (3180)
(5= 1k~ (13— )/} 1

where x},, po, y, k, he, hy are known. Therefore, we can calculate V from relation (3.173]) or
(3.174) for each case respectively. Finally, writing V as follows:

V = ajasag = al\/oz% — h%\/a% —h3 (3.181)

or equivalently:
ol — (R + hd)al + (h3h3)ad - V2 =0 (3.182)
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we can solve for a; and obtain the size of the ellipsoid for each case respectively since ag =

Vai —h3 and az = \/af — h3.

We note that this method can be similarly applied using the zeroth coefficient of the low
frequency expansion of the magnetic scattered field instead of the electric scattered field.

Physical Parameters

Previously, the orientation as well as the size of the ellipsoid were determined. For the case of the
lossless dielectric ellipsoid based on relation , in order to determine V and therefore oy
we need to know the physical parameters p+, 4~ and 7. In this subsubsection we additionally
use the leading order term of the low-frequency expansion of the magnetic scattered field in
order to additionally determine physical parameters of the interior of the ellipsoid. Relation

(3.181)) from (3.174] can be written as:
3u~

2 2 /2 2 t prn? —p~
ay/ad —hj\fa? — 3 = e (3.183)

Solving this polynomial equation, we obtain «y according to the physical parameters pu™, ™
and 1. The zeroth low-frequency approximation of the magnetic scattered field, based on
H: = H — HY, as well as the relations (2.485)),(2.490)),(2.495)) and (2.502)), can be written as:

H; P (r;d,4) = Qg+ ¢ BPq)p (3.184)
where Q(P) = diag(Q,(lD)) and BP) = diag(B,(lD)) for n = 1,2,3 are diagonal 3 x 3 matrices
with diagonal elements given by:

+ —
p—p)V n
QD) — y+ . _( = M)_)wn ) (3.185)
1

(wr —p )V
[t = (ut = p=)VIT] Jn(p)
Using the rotation relations ((3.144)) for the vectors r,d, P, p we transform them from the x|

system to the x;. Inserting them in H?)(D ) and then by multiplying the result with PT we go
back to the reference system x{ where we will take the measured near-field data. Let

BP) = _y+ (3.186)

NO(:d,q) .= PTH;P) (Pr; PA’, Py) = P TH P (r:d,q) . (3.187)
Then
NO G &, §) = PTQP Py + (r’TPTB(D>Pq’) i (3.188)

Taking measurements at the same points of observation as we did for the electric scattered field
in the previous section, we construct a measurement matrix using the magnetic near-field data
as follows:
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The 3 x 3 measurement matrix M) = (./\/lgf)>, for i,j = 1,2,3 with elements:

MP) =p] <Q( ) + ﬂB( >> P; | (3.190)

is given in terms of ng), ) from 19 , exactly like the measurement matrix
M®) was given in terms of m1 , 16 The set of equations (3.190) can be
written in matrix form as:

M) _ pT (Q< )4 20 g0 )) P (3.191)
0

and therefore we have an orthogonal similarity relation between the matrices MP) and QWD) 4
PO D), et n; ) for n = 1,2,3, be the eigenvalues of the measurement matrix M), Then

o
similarly to the previous section the system of the eigenvalues for the case of the lossless dielectric
ellipsoid is given by:

D Y (u — K )V ( £0 )
(D) — I'(po) — ——— 3.192
Ky, - . .

pt = (pt —pm)VI t{eo) hpan(PO) ( )

From the systems of equations (3.172)) and (3.192)), using relation (??), we can obtain two

relations, one by suppressing I{* and one by suppressing #

n(po)

— YN (et - u’)ﬁﬁD))

— I (po), as follows:

=Z(

, (3.193)
n=1 (W2 —p7)(pt —p7) (K&%D) —Y+>\51D)>
VAL (uhn? — pm)(2pt + o) '
with
3
1
LD .— ( P m(py ) 3.195
;K;) hpoJ(pO) 1( ) ( )

be the index of magnetic measured data. The system of equations — can be solved
for 4~ and 7 using matlab. By finding these two physical parameters, we specify a; from
and therefore the size of the ellipsoid in the lossless dielectric case.

We note here that for the case of the lossy dielectric ellipsoid, the zeroth order coefficient Ear is
independent of 0~ and is identical to that of the perfect conductor. Therefore, we can specify
V from relation as well as the size of the ellipsoid without the need of knowing the
physical parameter p~ that appears in the zeroth approximation of the magnetic scattered
field. Nevertheless, we can apply the method described in this section to specify p~ for this
case similarly and obtain:

3 /‘67(1L)
po=pt 1) Oy (3.196)

— Y+

(L)

with kp, be the eigenvalues of the corresponding M) measurement matrix whose formula is

given by (3 with the superscript (D) be replaced by (L) and where the matrices Q") and
BW) are 1dentlcal to the ones of the lossless dielectric case 1 .495 m
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Geometrically Degenerate Forms

In this subsubsection we will study the cases of spheroids and spheres as geometrically degen-
erate forms of the ellipsoid. Specifically, for a sphere we have the following relations:

1
ar=ay=a3 , ho=h3=pu=v=0 , I{‘(p):3—3 , n=1,2,3. (3.197)
P
For a spheroid we have the following relations:
prolate spheroid: a1 > as =a3 , ho =hsg |, (3.198)
oblate spheroid: a1 =as >a3 , h3=0 . (3.199)

Based on relations — we can categorize the unknown ellipsoid to one of these forms
using three measurements. Specifically, start by taking two measurements at rj,rfy with the
same polarization and calculate y = hy/pg from relation . For y = 0, then hy = 0
and therefore from relation it is concluded that hz = 0 and the ellipsoid deforms into a
sphere. If y # 0 then continue by taking additionally one measurement at r), with the same
polarization as the previous two measurements and calculate ¢ = hs/pg from relation .
For ¢ = 0 then hs = 0 and therefore the ellipsoid deforms into an oblate spheroid. If ¢ # 0 then
continue by finding k = hg/hy. For k = 1 the ellipsoid deforms into a prolate spheroid. Note
here that since near-field data are used, it is assumed that py < co. For p — oo it is known
that r := |r| = p.

For the case of the sphere we only need to determine the size and specifically the radius ;.
There is no need to determine the orientation because of the symmetry of the sphere. Also,
for the sphere it is known that p = r as well as p = t. Therefore, the zeroth low-frequency

approximation of the electric scattered field can be written from (3.145))-(3.147)) and ([3.197)) as

follows: .
B (r,d,p) = WDp + (rTz(A)f)>f- , (3.200)
with
3 3 + 42 -
K)_ o py_ o (W —p7)
wE) — _7?3[ . w® = BT ae) (3.201)
3 3 3 3 +,2 _ -
A S :OQWI : (3.202)
r rt (W 4 2u7)

be diagonal 3 x 3 matrices and I = diag(1) be the 3 x 3 identity matrix. Using the rotation
relations (??) for the vectors r, #, d, p we transform them from the x! system to the x;. Inserting
them into EZ(A) and then multiplying the result with P we go back to the reference system.

From relations (3.148]) and (3.200))-(3.202]) we obtain:
SW. &, p) = WA + (r’TZ(A)f)’) & (3.203)

for A = K, D. Therefore, from it is seen that S() is independent of the rotation matrix
P and there is no need to specify the orientation in the case of the sphere. Next, taking the
inner product of S with %! we obtain for the perfectly conductive, the impedance and the
lossy dielectric sphere:

3
;-8 d,p') = % (i(r’ -p')z; —p2> (3.204)

and similarly for the lossless dielectric sphere:

R 3 +,,2 —) 3
o gD d e LW =) (3 2
e (r;d’,p) = 5 (22 (D — ; (3.205)
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for i = 1,2, 3, with p} be the i’ coordinate of the electric polarization p’. Therefore, the radius
a1 can be specified from one measurement as follows. From (3.204)) the radius for the perfectly
conductive, the impedance and the lossy dielectic sphere is given by:

1/3

) — (3.206)

and similarly from (|3.205)) the radius for the lossless dielectric sphere is given by:

1/3
(%8P d, p))
e R : (3.207)
U™ =n7) 13 . et —
(n? +2u7) [\ 72 o
where 7 := |r| = || = 322 _, 2’2 from rotation relation (3.144) since P is orthogonal.

Consequently, for the case of the sphere the measurements are reduced to two. We start by tak-
ing the two measurements included in in order to calculate ha/po and after categorizing
the ellipsoid into a sphere, we use one of these two measurements again in order to specify the
radius a1 from relation (3.206)) or (3.207). We note that the method using all eight measure-
ments of described previously can also be applied for the case of the sphere. Specifically,

for the eigenvalues of the measurement matrix MY it is valid that A = )\gA) = )\:())A) from
(3.197)).

(3.168) and (3.201)-(3.202) as well as oy = V/3 from (3.181) and

For the case of the spheroid we need to specify two of the semi-axes in order to determine
the size. Also, due to its rotational symmetry we need to specify two of the Euler angles in
order to determine the orientation. Specifically, for the case of the prolate spheroid we need to
specify the two semi-axes aq, as and the two Euler angles «, 5. The axis of the spheroid that
is fixed by the angles «, 8 is independent to any rotation by the Euler angle . Letting v =0
in , the orthogonal rotation matrix takes the form:

cosQ sino 0
Py = |—cosp sina cosf cosa  sinf3 (3.208)
sinB sina  —sinf cosa  cosp

Therefore, taking additionally to the three measurements that were used for the categorization,

the three measurements that are used for mgA), mgA) and méA) in (3.160[), we obtain from

the elements PiT <W(A) + pOZ(A)> P; for i = 1,2,3, by replacing P with P, the following

hPo
system:
(4) (4)
matmr Wl(A) + ﬂZfA) cos*a + WQ(A) + ﬂZz(A) sin’a, (3.209)
2} Bpe Ry
A _ (4
u = Wl(A) + &ZEA) sina + WQ(A) + &ZéA) cos?a, (3.210)
2:1;2 h’pU hp[)
mz(;A) _ W(A) n &Z(A) (3 211)
Ig 2 hPo 2 '
where the relation WQ(A) + ;—OZQA) = W?EA) + ;—OZP()A) due to (3.198) has been used. Solving
PO £0

the system ([3.209))-(3.211)) we obtain the quantities WéA) + &ZT(ZA), n =1,2,3, as well as the

hpo




144 CHAPTER 3. INVERSE SCATTERING PROBLEMS FOR ELLIPSOIDS

Euler angle a:

A A A A A
W(A)—I—&Z(A):m‘(l)—i_m(?) g)—mé)_mé) (3212)
! hpy 22 21}, zy '
(A) | PO (A) (A) | PO (A) miY
Wy + =2 =Wy =2y = 2 (3.213)
hpo P T3
mgA) — méA) _ 2m§A)
1 at x
sinald) = — 2 3 : (3.214)
2 mflA) + mgA) mgA) mgA) _ 2mgA)
22 24, zl

where the superscript (A) on the left hand side of (3.214]) denotes the Euler angle corresponding
to the cases A = K, D.

Next, letting v = m/2 the rotation matrix P takes the form:

—cosf sina cosf cosa  sinf
Py = —cosa —sina 0 . (3.215)
sinf sina  —sinf cosa  cosf

Since the values of miA), m(7A) are still the same, we obtain the following relation:

T A PO (A T A PO (A
P s (W( >+h—poz< >> P12 =P{ <W< )+h702( >> P10

or equivalently

<W1(A) 4 Po ZﬁA)) cos? B sin®a + <W2(A> L Po ZQ(A)) (cos®a + sin?f sina)

hpo hpq
- (Wf"" + £ Z{A)) cos®a + (W§A> + £ ZQ(A)) sina. (3.216)
hpo hpq
Solving for 8 we obtain:
miA) + mgA) _ 2mgA)
/ /
2(4) _ Ty T3
cos“ Y = (3.217)
A) A) A)
my ~ — mg _ 2m:(,) )

where relation (3.214)) has been used and where the superscript (A) on the left hand side of
(3.2171 denotes the Euler angle corresponding to the cases A = K, D. Therefore, from (3.214))
and (3.217)) the orientation of the prolate spheroid is specified. Next, using relation (3.146)) or

3.147)) for the known due to (3.212))-(3.213|) quantities CT(LA) = W,sA) + }Lp—OZ,SA), solving each

0]
equation for the corresponding /7', summing all three of them, multiplying both sides with V'
and using relation (?7), we obtain for the perfectly conductive, the impedance and the lossy
dielectric prolate spheroid:

1
VK = — o (3.218)
_ —In
e (it~ o))
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and similarly for the case of the lossless dielectric prolate spheroid:

3~
1+
v = : L ”p £ : (3.219)
3 0
- - I7
T o1 (i ~ )
where IA < po — If(p0)> = 1A < Po — If(pg)), for A = K, D, due to relation
C; ) hpOJQ(po) C.g() ) hpo']?)(pO)
3.198)). In order to calculate the right hand side of (3.218]) or (3.219)), we calculate S —
hPOJn(pO)

I7(po) making use of (3.176[)-(3.177) and the formulas of the I7'(p) for the prolate spheroid and
obtain:

2 2
Po po—h
hpoJ1(po) 1(po) = 02 2 2hd
m(%—ha%f+w¥+x§%46+2122>
Po
1 po + h2> 1
——In + , 3.220
2h3 <P0 — ha h3p0 ( )
L0 2(po) = P

1274
z'1hy
2

oy — (204" + @y - ay®) — 2=
0

+L I [P0t ha\ Po
4h3  \po—ha)  2h3(p5 —h3)

(3.221)

where z},, pg and hg are known. Therefore, we can calculate V' from ((3.218)) or (3.219) for each
case respectively. Finally, writing V' as in (3.181)) and using (3.198]) we obtain:

o —2h3a] + hiat -V?=0 |, (3.222)

which can be solved for oy and therefore we can specify the size of the prolate spheroid for each
case respectively since ag = a3 = \/a? — h3.

Consequently, for the case of the prolate spheroid the measurements are reduced to six. We
start by taking the three measurements included in - in order to calculate hsy/po,
hs/po and hs/he and after categorizing the ellipsoid into a prolate spheroid we take additionally

the three measurements used for mgA), méA), méA) in (3.160]) in order to specify its size and

orientation from (3.212))-(3.214)) and ((3.217)-(3.222). We note that the method using all eight
measurements of (3.152)) described previously can also be applied for the case of the prolate

spheroid. Specifically, for the eigenvalues of the measurement matrix M) it is valid that
AW = AW from (3.168) and (3.213).

Similarly we work for the case of the oblate spheroid, where after calculating ho and V we
solve for o the equation:

o8 —hiat-Vi=0 . (3.223)

Note that if the scatterer is a priori known to be a sphere then one measurement suffice to spec-
ify its radius a; from (3.206|) or (3.207)). Also, if the scatterer is a priori known to be a spheroid
then the measurements are reduced to five since the measurement St (r; %5, %)) used for the
categorization in — is not being used for the specification of its size and orientation.




146 CHAPTER 3. INVERSE SCATTERING PROBLEMS FOR ELLIPSOIDS

Measurement Reduction

In this subsubsection we suggest an alternative option for the set of the measured near-field
data needed in order to specify the orientation and the size of the ellipsoid. This option has
the advantage of reducing the number of needed measurements from eight to six but has the
disadvantage of increasing the number of points from which we take the measurements from
three to six as well as the disadvantage that the additional three points used are dependent on
the first three measurements and are found after calculating the quantities pg, he, hs.
Similarly, we start by taking a point rj = (2], x5, 2%5) with ellipsoidal coordinates (po, o, v0),
with aq < pg < oo and 2, #0, n =1,2,3. Also, we consider the points rj, r); given in .
From these points we take the following three measurements:

SWryixh, %), SWhixp %)), SW(r)i%4,%)) (3.224)

and use them to to calculate the quantities y, ¢, k from relations (3.155))-(3.157)) as well as the
quantities pg, ho, hs via (3.157))-(3.158]). Next, we consider the points:

y& = (PO, 070) ) y/2 = (07 \/ P% - hgvo) ) y/3 = (0’07 \/ P% - h%) ) (3'225)

which can be written equivalently as yi = (/p2 —af + a? %! for i = 1,2,3 respectively and
which belong on the surface Sy of the ellipsoid (p = pg) given by (3.151)). From the three new
points ([3.225) we take the following three measurements:

S (yh; %5, %) , SW (yh; &5, %,) , SW(yh; &), %)) - (3.226)

From ((3.153)) and the measured near-field data (3.226)) we obtain the quantities:

m{Y =%y SW (v %5, %5) = PW WP |

st = % - SW (v %, %5) = PRW WP,

i =%y - SW (yh: Ry, %)) = PIWWP, (3.227)
) = % SO(yh: %4, %4) = PFWOUR, |
g = 28U (v %, %) = PIWWP,

i = %y - 8 (v4: %4, %) = PIW P,

Therefore, from the three measurements ([3.226) we can construct the 3 x 3 real and symmetric
measurement matrix M) = PTW(A) P with elements Mi(jA) given by:

(A
M =pPlwWp; (3.228)
in terms of m§A>, s rhéA) as follows:
ﬁlgA) mgA) mELA)
M(A) — m(A) méA) Tth)
(4 ~(4) ~(4
oo

Next, we find the eigenvalues and the corresponding eigenvectors of the measurement matrix
M) and the process from this point forward continues following the exact same steps described
in the Inverse Problem subsubsection that we presented the near-field method, in order to specify
the orientation and the size of the ellipsoid.
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Specifically, from the eigenvalues S\%A) of the measurement matrix M©) we obtain for the

perfectly conductive, the impedance and the lossy dielectric ellipsoid:
1

and similarly for the lossless dielectric ellipsoid:
14+ 3p~
VD) _ _pm = pt?
et sy )

n

and therefore after calculating V' in each case, we can specify the size of the corresponding
ellipsoid by solving equation ([3.182]).

Conclusion

In this subsubsection we make some remarks referring to the variety of possible combinations
for the needed near-field data. Moreover, we summarize the near-field method presented in this
section in an algorithm and we give the corresponding flow chart.

We note that the calculation of the quantities y = ha/po, ¢ = hs/po and kK = hz/hg, that
are used for the calculation of the quantities pg, ha, hs as well as for the categorization of the
ellipsoidal scattered to a sphere, a prolate spheroid or an oblate spheroid, can be made using
a variety of possible combinations of electric near-field data. This can be seen from relations
—, where three measurements taken for the same electric polarization, one at rf,
one at r5 and one at r)y, suffice. Moreover, if we consider the points:

I'/5 = (xlla _$/27 —.Z‘g) ) I',6 = (_xlhxéa —$é) ) I‘{7 = (_xllv _$,27xg) ’ (3'229)

which belong on the surface of the ellipsoid p = pg since they are symmetric to rj over the
principal axes of the reference system, we note that the measurement taken from rj could be
replaced by a measurement taken from rg and the measurement taken from r/y could be replaced
by a measurement taken from rr, providing that the electric polarization is the same for all the
three used measurements. Also, we note that these quantities could also be calculated using

magnetic near-field data in a similar way.
(A)

Moreover, the measurement matrix MY with elements MZ-(]TA) given by (|3.161f) whose eigenvalues
and eigenvectors are used for the specification of the orientation and the size of the ellipsoid,
can be constructed using a variety of possible combinations of electric near-field data. Some of

these possible combinations are given in (3.163))-(3.164]) as well as in the following relations:

MY = MY = (v - SO (el &%) + g - SW (xf 43, ) ) / (22) (3.230)
= (rh - S A &) + iy SWL A K)) / (20) . (3231)

for 4,5 = 1,2,3, with d’ such that d’ - %{ = 0 in (3.230) and d’ - )”(3 = 0 in (3.231). These
elements can also be obtained using other combinations of measurements due to the relation
ry — (v +r5+ry) =r) + (r5 +rg +1r7) =0. )

Furthermore, after calculating the quantities pg, ha, h3, the measurement matrix M with ele-

ments M Z-(JA) given by (13.228]) can be obtained from a variety of possible combinations of electric
near-field data as follows:

o7 (A) (A _ o

M;; ji §- S (. d' %)) (3.232)

=% - SW(y},d, %)) (3.233)
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for 4,7,k = 1,2,3 with k # j and d’ such that d’ - %} = 0 in (3.232) and with k # i and d’ such
that d'- &} = 0 in (3.233).

Next, we present an algorithm that summarizes the method described in this section.

Step 1: Choose a point rj = (2}, 24, z%) with ellipsoidal coordinates (po, o, 10), with a1 < pp <
oo and ], # 0, n =1,2,3. Based on r} consider the points rj, rj, r} given by or the
points rf, rg, ry given by (3.229). Continue to Step 2.

Step 2: Take two measurements, one at rj and one at rj (or rg), for the same electric polariza-
tion and use them to calculate the quantity y = ha/po from (3.155). If y = 0 then categorize the
scatterer into a sphere and go directly to Step 4a. If y # 0, take additionally one measurement
at 1)y (or rr) for the same electric polarization as the previous two measurements and calculate
the quantities ¢ = hs/py and k = hg/hy from (8.156)-(3.157). If ¢ = 0 then categorize the
scatterer into an oblate spheroid. If ¢ # 0 and k¥ = 1 then categorize the scatterer into a prolate
spheroid. If the scatterer is categorized into a spheroid continue to Step 3 and then continue to
Step 4b or to Step 4c. If the scatterer is an ellipsoid continue to Step 3 and then continue to
Step 4d or to Step 4e.

Step 3: Using the known from the previous step quantities y, ¢, k, calculate pg from .
Then calculate the semi-interfocal distances ho and hs from .

Step 4a: Use one of the first two measurements taken in Step 2, to calculate the sphere’s radius
from relation (3.206)) or (3.207]).

Step 4b: Take three more measurements from an appropriate combination of the points r}, ..., r%
and electric polarizations along the axes and use them along with the three measurements taken
in Step 2, to specify the semi-axe « and therefore the size of the spheroid as well as its orien-
tation from — and —.

Step 4c: Consider the points y),y5,y5 given by . Take three measurements from an
appropriate combination of these points and electric polarizations along the axes and use them
to specify the semi-axe o1 and therefore the size of the spheroid as well as its orientation.
Step 4d: Take five more measurements from an appropriate combination of the points rf, ..., r%
and electric polarizations along the axes and use them along with the three measurements taken
in Step 2 in order to construct the measurement matrix M4 with elements given by .
Continue to Step 5.

Step 4e: Consider the points y},y5,y5 given by . Take three measurements from an
appropriate combination of these points and electric polarizations along the axes and use them
in order to construct the measurement matrix M) with elements given by 1} Continue
to Step 5.

Step 5: Find the eigenvalues and the corresponding orthonormal eigenvectors of the measure-
ment matrix M) due to Step 4d (or of the measurement matrix M) due to Step 4e). Continue
to Step 6.

Step 6: From the eigenvectors and the relations and find the Euler angles and
therefore the orientation of the ellipsoid. Continue to Step 7.

Step 7: From the eigenvalues and the known (due to Step 2 and Step 3) quantities y, k, po, he,
hs, calculate V. Next, Specify the semi-axe a; from relation and therefore specify the
size of the ellipsoid.

The above algorithm is depicted in a flow chart in the last page.

In conclusion, the near-field method presented in this section gives us the opportunity to use
measurements taken from convenient points of observation and for convenient directions of prop-
agation and polarization along the axes. Moreover, it allows us to categorize the ellipsoid to its
geometrically degenerate forms of the sphere, the prolate spheroid and the oblate spheroid using
two measurements for the case of the sphere or three measurements for the case of the spheroid.
The possibility of categorizing the ellipsoidal scatterer to one of these geometrically degenerate
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forms gives us the opportunity to reduce the amount of measurements needed to find the size
and the orientation. Furthermore, this method allows us to specify the orientation and the size
of the lossy dielectric ellipsoid using electric near-field data without the need of knowing the
physical parameters of the ellipsoid. Finally, it gives us the opportunity to specify additionally
physical parameters of the ellipsoid using both the electric and the magnetic near-field data in
the lossless and the lossy dielectric cases.
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