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What lies ahead us
and what lies behind us
is nothing compared to
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Résumé
Dans le présent document de thèse, une extension de la méthode de calcul de la dif-

fusion multiple stratifiée est développée en y incluant des structures phononiques à base
de diffuseurs sphériques poroélastiques saturés immergés dans un fluide, en combinant la
théorie de Biot avec le formalisme de diffusion multiple. La méthode est alors appliquée à
une étude théorique, bien au-delà de l’approximation à grandes longueurs d’onde d’un mi-
lieu effectif, de la réponse acoustique d’un milieu granulaire à double porosité saturé, formé
d’un réseau cristallin compact de sphères poreuses rigides ou molles. On montre que la vari-
ation de la taille des pores et/ou celle de la porosité dans une gamme allant du millimètre
au micromètre pour le diamètre des sphères altère d’une façon significative les spectres de
transmission, réflexion, et d’absorption d’une couche plane d’épaisseur finie de ces matéri-
aux. Les spectres présentés sont analysés par référence aux modes acoustiques de sphères
poreuses isolées d’une part, puis par rapport aux diagrammes de dispersion des cristaux
infinis correspondants. Une interprétation cohérente de la physique sous-jacente est don-
née. Ces résultats mettent en évidence l’occurrence de nouveaux modes, localisés dans la
sphère, provenant des ondes longitudinales lentes propres aux milieux poroélastiques. Ces
modes induisent quelques caractéristiques remarquables dans le comportement acoustique
de ces matériaux à double porosité, comme des bandes d’absorption non-dispersive larges
ou étroites en fréquence et/ou des bandes d’arrêt directionnel. Les propriétés acoustiques
de ces structures phononiques à l’échelle sub-micrométrique, i.e. en régime hypersonique
(GHz), peuvent être évaluées expérimentalement par diffusion Brillouin. Dans ce docu-
ment, une approche théorique élasto-optique rigoureuse, basée sur les fonctions de Green,
est proposée afin de décrire la diffusion inélastique de la lumière due aux variations spa-
tiotemporelles de l’indice de réfraction du matériau induites par des phonons. Dans ce
cadre des expressions analytiques de l’intensité d’un faisceau de lumière diffusé par une
particule sphérique dans le vide sont dérivées, permettant ainsi d’améliorer la précision et
rapidité des calculs précédents. Les grandes lignes de ce développement théorique jettent
les bases pour une description rigoureuse de cet effet dans le cas de cristaux phononiques
composés de particules sphériques colloïdales.
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Περίληψη

Στη παρούσα διατριβή αναπτύσσεται μια επέκταση της υπολογιστικής μεθόδου στρωματι-

κής πολλαπλής σκέδασης για φωνονικές δομές από ποροελαστικά σφαιρικά σώματα κορεσμένα

με ρευστό, συνδυάζοντας τη θεωρία του Biot με τεχνικές πολλαπλής σκέδασης. Η μέθοδος
εφαρμόζεται στη θεωρητική μελέτη, πέραν της προσέγγισης ενεργού μέσου σε μεγάλα μήκη

κύματος, της ακουστικής απόκρισης κοκκωδών υλικών με πόρους σε διπλή κλίμακα, εμβαπτι-

σμένων σε υγρό και σε κατάσταση κόρου, που αποτελούνται από σκληρές ή μαλακές πυκνά

διατεταγμένες πορώδεις σφαίρες. Δείχνεται ότι μεταβολές του μεγέθους των πόρων και/ή

του πορώδους σε σφαιρικούς κόκκους διαστάσεων της τάξης του χιλιοστού ή και λιγότερο

τροποποιούν σημαντικά τα φάσματα διέλευσης, ανάκλασης και απορρόφησης πεπερασμένων

πλακιδίων αυτών των υλικών. Τα φάσματα που υπολογίζονται αναλύονται αναφορικά τόσο με

τις καταστάσεις του ακουστικού πεδίου στους πορώδεις σφαιρικούς κόκκους, όσο και με σχε-

τικά διαγράμματα διασποράς αντίστοιχων άπειρων κρυστάλλων, παρουσιάζοντας μια συνεπή

ερμηνεία των υπεύθυνων φυσικών μηχανισμών. Τα αποτελέσματα μας δείχνουν την ύπαρξη

νέων καταστάσεων, εντοπισμένων στις σφαίρες, οι οποίες οφείλονται στα αργά διαμήκη κύματα

που είναι ίδιο χαρακτηριστικό των ποροελαστικών μέσων. Στις καταστάσεις αυτές οφείλονται

κάποια αξιοσημείωτα χαρακτηριστικά της ακουστικής συμπεριφοράς των υπό μελέτη υλικών με

πόρους σε διπλή κλίμακα, όπως ευρείες ή στενές ζώνες απορρόφησης και/ή χάσματα διέλευσης

σε συγκεκριμένες διευθύνσεις. Οι ακουστικές ιδιότητες φωνονικών (υπο)μικροδομών, στην

περιοχή των άπω υπερήχων (GHz), μπορούν να διερευνηθούν, εν γένει, με πειράματα σκέδασης
φωτός Brillouin. Στην παρούσα διατριβή ακολουθούμε μια αυστηρή πλήρως ελαστο-οπτική
θεωρητική αντιμετώπιση της ανελαστικής σκέδασης φωτός λόγω χωρο-χρονικών μεταβολών

του δείκτη διάθλασης του μέσου εξαιτίας των φωνονίων, βασισμένη σε συναρτήσεις Green,
και καταλήγουμε σε αναλυτικές σχέσεις για τις εντάσεις των σκεδαζόμενων δεσμών φωτός

από μεμονωμένα σφαιρικά σωματίδια στο κενό, βελτιώνοντας έτσι την αποτελεσματικότητα

και την ακρίβεια προηγούμενων υπολογισμών. Το πλαίσιο αυτό αποτελεί επίσης τη βάση για

μια αυστηρή περιγραφή του φαινομένου για φωνονικούς κρυστάλλους από κολλοειδή σφαιρικά

σωματίδια.
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Abstract
In the present thesis, an extension of the layer multiple scattering computational

methodology to phononic structures of fluid-saturated poroelastic spherical bodies, com-
bining Biot’s theory with multiple scattering techniques, is developed. The method is
applied to the theoretical study, beyond the long wavelength effective-medium approx-
imation, of the acoustic response of double-porosity liquid-saturated granular materials
consisting of close-packed hard or soft porous spheres. It is shown that variations of
the pore size and/or the porosity within the millimeter and submillimeter-sized spherical
grains significantly alters the transmission, reflection, and absorption spectra of finite slabs
of these materials. The calculated spectra are analyzed by reference to the acoustic modes
of the constituent porous spherical grains as well as to relevant dispersion diagrams of
correspondingly infinite crystals, and a consistent interpretation of the underlying physics
is presented. Our results provide evidence for the occurrence of novel, unprecedented
modes, localized in the sphere, which arise from slow longitudinal waves that are pecu-
liar to poroelastic media. These modes induce some remarkable features in the acoustic
behavior of these double-porosity materials under study, such as broad or narrow disper-
sionless absorption bands and/or directional transmission gaps. The acoustic properties
of phononic (sub)micro structures, in the hypersonic (GHz) regime, can be probed, in
general, by Brillouin light scattering experiments. In the present thesis we undertake a
rigorous full elasto-optic theoretical approach to inelastic light scattering due to phonon-
induced spatiotemporal variations of the refractive index of a medium, based on Green’s
functions, and derive analytical expressions for the intensities of the scattered light beams
by single spherical particles in vacuum, thus improving the computational efficiency and
accuracy of previous calculations. The above framework provides, also, the basis for a
rigorous description of the effect for phononic crystals of colloidal spherical particles.
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Introduction

Phononic crystals are composite materials with elastic coefficients (mass density and elas-
tic moduli or, equivalently, mass density and elastic wave velocities) varying periodically
in space [1,2]. In three dimensions they can be realized, e.g., by a periodic arrangement of
solid or fluid inclusions in an otherwise homogeneous host material (solid or fluid) of dif-
ferent elastic coefficients while various other phononic architectures have been considered,
also in one and two dimensions [3–6]. An interesting aspect of these materials arises from
the possibility of frequency regions, known as absolute phononic band gaps, over which
there can be no propagation of elastic waves in the crystal, whatever the direction of prop-
agation [7–9], but appropriately designed periodic or aperiodic phononic structures can
exhibit a plethora of other interesting physical phenomena, including filtering [10], waveg-
uiding [11–13], sensing [14], negative refraction and focusing [15]. Most of these properties
usually occur at wavelengths commensurate with the size of the unit cell. Nowadays, mod-
ern nanofabrication techniques allow for the realization of hypersonic phononic crystals
operating in the GHz range, an example being colloidal crystals of silica nanospheres in
a water-like liquid. At these frequencies, however, Brillouin light scattering experiments
provide evidence that porosity in the silica particles cannot be neglected [16–18].

The acoustic properties of poroelastic materials, at different length scales, such as
rocks, soil, polymer networks, colloidal particles, biological tissues, attract considerable
interest in various scientific fields, e.g. geophysics, chemistry, materials physics, biomed-
ical sciences [19–21]. Phononic crystals comprising poroelastic materials would offer the
possibility of additional degrees of freedom, such as porosity, pore size, fluid viscosity,
to control the propagation of elastic waves and could exhibit unprecedented, intriguing
properties. However, to the best of our knowledge, apart from one-dimensional layered
structures [22], phononic crystals of poroelastic inclusions in a fluid host medium have not
been considered so far.

In the present thesis we develop an extension of the layer-multiple-scattering (LMS)
method [23, 24] to phononic crystals of poroelastic spheres immersed in a fluid medium.
Following Biot’s theory [25–28] for poroelastic materials, we derive explicit expressions for
the scattering transition T matrix of a submerged fluid-saturated poroelastic sphere, in
the basis of vector spherical waves employed in our formalism. This matrix is a necessary
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2 Introduction

ingredient in the development of the LMS method for phononic crystals of poroelastic
spheres. We demonstrate the applicability of the method on specific examples of close-
packed fcc crystals of meso- and macroporous silica microspheres immersed in water, and
present some novel results originating from the existence of the pores. Moreover, in the
hope of uncovering new interesting properties, we explore other kinds of porous materials
as well. For example, hierarchically porous materials, which contain a network of inter-
connected pores with sizes at different length scales, is a promising class of natural or
synthetic structures offering a large spectrum of functionalities in various application do-
mains [29], and also of interest for a fundamental theoretical understanding. In particular,
hierarchically porous polymeric materials synthesized by various methods attract increas-
ing interest in recent years [30–36] because of their potential applications in different fields,
including catalysis, separation technology, gas storage, and bioengineering. However, the
acoustic properties of such materials have not received considerable attention so far.

Biot’s theory is perfectly appropriate for an effective description of poroelastic media
with a more or less uniform pore distribution, i.e., a single-porosity structure. However, it
fails to describe hierarchically porous materials with pore sizes at different length scales.
Various homogenization methods, beyond Biot’s theory, have been developed for a macro-
scopic description of such media and, in particular, of double-porosity deformable media
characterized by two interconnected networks of fluid-saturated pores of very different sizes
that exhibit very different permeabilities (see, e.g., Ref. [37] and references therein). The
validity of these methods has been examined in a number of theoretical and experimen-
tal studies. Franklin et al. [38] studied acoustic wave propagation in a water-saturated
double-porosity medium, consisting of a random array of parallel identical cylindrical
holes of infinite length, perpendicular to the direction of propagation, in an otherwise
single-porosity material described by Biot’s theory. In this work, two-dimensional (2D)
multiple-scattering calculations in the long-wavelength approximation were compared with
the results of appropriate effective-medium descriptions. Acoustic wave propagation has
also been investigated in periodic composites of two different porous media which occupy
two disjoint subdomains at the mesoscopic scale, in one and two dimensions, through
numerical simulations by the finite-element method in conjunction with relevant homoge-
nization models in both high- and low-permeability-contrast regimes [39]. The predictions
of analytical and semi-analytical effective-medium methods for the acoustic properties
of double-porosity granular materials have been experimentally confirmed on expanded
perlite and activated carbon, revealing stronger low-frequency sound absorption at re-
duced weight (porous grains) compared to a solid-grain granular material with similar
mesoscopic characteristics [40]. Moreover, the observed macroscopic acoustic behavior
of mineral double-porosity foams was also explained by relevant effective-medium mod-
elling [41]. However, all local homogenization methods lose their validity if the size of the
representative elementary volume, which defines the scale of heterogeneity, is not much
smaller than the wavelength [37].
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Focusing our study on the acoustic properties of water-saturated double-porosity ma-
terials with a specific morphology, formed by close-packed poroelastic spheres arranged
in an fcc lattice, we will be restricted to wavelengths much longer than the radius of the
sphere’s pores and the distance between them, so that Biot’s theory is applicable at this
level, but not long enough compared to the interstitial void structure, thus requiring a
rigorous description of acoustic multiple scattering between the spheres beyond a homog-
enization theory. We omit thermal losses since the saturating fluid is a liquid and thus, in
contrast to the case of a gas, the characteristic thermal skin depth is much shorter than
the corresponding viscous length, while viscosity is taken into account only in the fluid
that fills the pores of the spheres [42]. It is worth noting that, though the open pores and
the solid skeletal frame of the individual spheres, as well as the interstitial voids, have the
percolating network topology, this is not the case for the solid material throughout the
structure because neighboring spheres are touching but not consolidated. Therefore, while
according to Biot’s theory, transverse, fast and slow longitudinal waves subsist inside the
spheres, only the common longitudinal waves in the fluid matrix (water) constitute prop-
agating modes of the acoustic field in the double-porosity media under consideration [43].

As noted earlier in the introduction, our motivation to study phononic crystals of
porous materials was triggered by Brillouin Light Scattering (BLS) experiments, i.e., in-
elastic light scattering due to the spatial and temporal variations of the refractive index of
a material. These variations, in our case, are due to collective lattice vibrations (phonons)
in the GHz frequency range, and this is why the development of lasers and the invention of
the multi-pass tandem Fabry-Pérot interferometer were needed in order to use the effect
as a spectroscopic technique. This technique has already been used for the characteri-
zation of the elastic properties of solids and liquids but with the advent of meso-scale
periodic structures, in which the dominant frequencies are in the GHz range, it soon be-
came apparent that the technique could be used, also, for the characterization of phononic
microstructures. In the last decade, a lot of effort has been devoted in order to explain
the Brillouin spectrum of such periodic microstructures of spherical particles [44–48]. The
effort was focused, initially, on indirect explanations either by calculating the eigenmodes,
the scattering cross section and the density of states of the individual particles or the
frequency band structure of the phononic crystal, as well as using group theory. However,
it became clear that only a detailed theoretical study, which takes into account the inter-
action of light with the elastic field, can give the correct relative intensities of the scattered
light. Such a theoretical approach of the BLS by a spherical particle, based on Green’s
functions, is also attempted in the present thesis. We establish the theoretical foundations
for a thorough description of the effect as well as the extension of BLS calculations to
periodic structures.

The remainder of the thesis is structured as follows. In Chapter 1 we review the
necessary elements of the theory of elasticity. In Chapter 2 we deal with elastic waves
propagating in homogeneous elastic and poroelastic media. We review the theory of the
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deformation of a poroelastic solid containing a compressible fluid that has been established
by Biot, providing a brief summary of pertinent results from Biot’s original analysis and
present the corresponding theoretical basis for double-porosity media. In Chapter 3 we
develop a formalism for acoustic wave scattering by isolated spherical elastic or poroelastic
objects immersed in a fluid medium. The LMS method, for such scatterers, is developed
in Chapter 4 and some original applications on phononic crystals of poroelastic spheres
are presented in Chapter 5. Finally Chapter 6 is devoted to BLS by developing a unified
analytical formalism, which can describe the observed BLS experimental spectra from
isolated particles.



Chapter 1

Theory of elasticity

In this chapter we review the basic elements from the theory of elasticity and develop a
formalism, based on tensor analysis, that will facilitate the further development of our
method.

1.1 The strain tensor
Under the action of applied forces, a solid body of density ρ will exhibit deformation,
which is translated into a change in its spacial coordinates, from xi to x′i, i = 1, 2, 3, where
we assume x1 ≡ x, x2 ≡ y, x3 ≡ z. The displacement of this point due to the deformation
is, then, given by the vector u = r′ − r, which is known as the displacement vector. We
can also write: ui = r′i − ri = x′i − xi.

Let us consider two points very close together. If the position vector joining them before
the deformation is dr, the position vector joining the same two points in the deformed
body is dr′, so obviously dui = dx′i − dxi. The distance between the points before the
deformation is dl =

√
dx2i , and dl′ =

√
dx′2i after it 1, so we can write 2

dl′
2

= dx′
2
i = (dxi + dui)

2 =
(
dxi + ui,i′dxi′

)2
= dx2i +

(
ui,i′dxi′

)2
+ 2ui,i′dxidxi′

= dx2i + ui,i′ui,i′′dxi′dxi′′ + 2ui,i′dxidxi′

= dl2 + ui,i′ui,i′′dxi′dxi′′ + 2ui,i′dxidxi′ . (1.1)
1We will use the Einstein notation or Einstein summation convention. According to this convention,

when an index variable appears twice in a single term and is not otherwise defined, it implies summation
of that term over all the values of the index.

2We will also use the comma derivative notation, which is common tensor notation for a derivative with
respect to one of the coordinates. If several indices appear after the comma, they are all taken to be part
of the differentiation.

5



6 CHAPTER 1. THEORY OF ELASTICITY

Using

ui,i′ ui,i′′ dxi′dxi′′ = ui′′,i ui′′,i′ dxidxi′

ui,i′ dxidxi′ = ui′,i dxidxi′ =
1

2
(ui,i′ + ui′,i)dxidxi′ , (1.2)

we finally obtain
dl′

2
= dl2 + 2eii′dxidxi′ , (1.3)

where the tensor eii′ , known as the strain tensor, is defined as

eii′ ≡
1

2

(
ui,i′ + ui′,i + ui′′,i ui′′,i′

)
=

1

2

(
∂ui
∂xi′

+
∂ui′

∂xi
+
∑
i′′

∂ui′′

∂xi

∂ui′′

∂xi′

)
. (1.4)

In almost all cases occurring in practice, the strains are small (meaning small displacements
and small first derivatives of them), so the strain tensor will take the form

eii′ =
1

2

(
ui,i′ + ui′,i

)
. (1.5)

A useful definition will be that of the volumetric strain, e,

e = eii = ui,i =
∑
i

∂ui
∂xi

= ∇ · u . (1.6)

The tensor eii′ , as defined in Eqs. (1.4), (1.5), is dimensionless and symmetric, i.e.

eii′ = ei′i . (1.7)

The above expressions apply for the Cartesian coordinate system, where the indices are
running from 1 to 3. In spherical coordinates, the components of the strain tensor (always
assuming small deformations) are

err =
∂ur
∂r

, eθθ =
1

r

∂uθ
∂θ

+
ur
r
, eφφ =

1

r sin θ

∂uφ
∂φ

+
uθ
r

cot θ +
ur
r
,

2eθφ =
1

r

(
∂uφ
∂θ
− uφ cot θ

)
+

1

r sin θ

∂uθ
∂φ

, 2erθ =
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

,

2eφr =
1

r sin θ

∂ur
∂φ

+
∂uφ
∂r
−
uφ
r
. (1.8)
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Like any symmetric tensor, eii′ can be diagonalized 3 at any given point, which means
that we can choose coordinate axes (the principal axes of the tensor) in such a way that
only the diagonal components are different from zero:

eii′ = u(i)δii′ , (1.9)

so Eq. (1.3) gives
dl′

2 ≡ dx′i
2
=
(
1 + 2u(i)

)
dx2i , (1.10)

from which
dx′i =

(
1 + 2u(i)

)1/2
dxi ∼=

(
1 + u(i)

)
dxi (1.11)

or
dui = dx′i − dxi ∼= u(i)dxi . (1.12)

Thus, to first-order approximation,

dV ′ =
∏
i

dx′i
∼=
∏
i

(
1 + u(i)

)
dxi = dV

∏
i

(
1 + u(i)

)
∼= dV

(
1 +

∑
i

u(i)

)
. (1.13)

The trace of a tensor is invariant under a similarity transformation, so

dV ′ = dV (1 + eii) = dV (1 + e) . (1.14)

We emphasize that the Eqs. (1.11), (1.12), and (1.14) are valid for small deformations.
It is obvious, from Eq. (1.14), that the relative volume change under the deformation is
given by the sum of the diagonal components. If this sum is zero,

e = eii = 0 , (1.15)

then the volume of the body is unchanged by the deformation, only its shape being altered.
Such a deformation is called pure shear, and, indeed e measures the volumetric changes of
the body.

Eq. (1.12) suggests that there exists a coordinate system where the strain in any
volume element may be regarded as composed of independent strains in three mutually
perpendicular directions, namely those of the principal axes of the strain tensor. Each of
these strains is a simple extension (or compression) in the corresponding direction, and
the quantity u(i) is consequently equal to the relative extension along the ith principal
axis. Moreover, if u(i) = constant ≡ U , then the deformation will change the volume of

3A symmetric matrix can always be diagonalized using a unitary similarity transformation. In the
general case of a complex matrix the condition is to be Hermitian [49].
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the body, but not its shape, and such a deformation is called hydrostatic compression. The
tensor is, in this case,

eii′ = Uδii′ , U = constant . (1.16)

It must be noted that if a deformation is pure shear in a specific coordinate system
then it will remain the same in any other system, while if it is hydrostatic compression,
this will hold true for only that particular system.

Any deformation can be represented as the sum of a pure shear one and a hydrostatic
compression. To do so, we need only to use the identity

eii′ = fii′ + gii′ , (1.17)

with
fii′ ≡ eii′ −

1

3
δii′e , gii′ ≡

1

3
δii′e . (1.18)

The first term on the right-hand side of Eq. (1.17), fii′ , corresponds evidently to a pure
shear deformation, since the sum of its diagonal elements is zero, while the second term,
gii′ , corresponds to a hydrostatic compression, since it has the form (constant)× δii′ . To
sum up:
a) In case of pure shear deformation

e = 0⇒ gii′ = 0, fii′ = eii′ and fii = e = 0 . (1.19)

b) In case of hydrostatic compression

eii′ = Uδii′ ⇒ fii′ = 0, gii′ = eii′ ,
∑
ii′

gii′ = e = 3U and
∑
ii′

fii′ = 0 . (1.20)

These deformations are linearly independent, since they rule each other out: if eii′ = Uδii′ ,
then eii = 3U 6= 0 (U 6= 0 in order to have a deformation) and if eii = 0, then the diagonal
elements must have opposite signs, so there is no way that they all have the same value
U .

1.2 The stress tensor
When a deformation occurs, the arrangement of the molecules is changed, causing forces
to arise within the body. These are called internal forces and have a very short range of
action. Hence, it follows that the forces by surrounding parts, exerted on any part of a
given volume δV of the body, act only on the surface of that part.

Let us consider the total force on some portion δV of the body. This total force is
equal to the sum of all the forces on all the volume elements in that portion of the body,
i.e. it can be written as the volume integral FδV =

∫
δV F dV , where F is the total force
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per unit volume acting on an infinitesimal volume dV . However, the internal forces, with
which various parts of the portion δV act on one another, do not contribute in the total
resultant force, since they are canceled by Newton’s third law. The remaining external
forces are those exerted on δV by the portions of the body surrounding it, and as we
noted before they are superficial. Thus, referring to the ith component of the force, we
have FδV ;i =

∮
S σii′ dSi′ , where σii′ is a second order tensor. It has dimensions of pressure

and denotes the ith component of the force per unit area that acts on the surface element
dSi′ , perpendicular to the i′th direction. So, σi′i′ is the force per unit area perpendicular
to dSi′ , whereas σii′ , i 6= i′, are the tangential components of force per unit area on dSi′ .
The tensor σii′ is called the stress tensor.

Using Gauss Theorem we end up with

FδV ;i =

∫
δV
Fi dV =

∮
S
σii′ dSi′ =

∫
δV
σii′,i′ dV , (1.21)

and by comparing the two expressions for FδV we have

Fi = σii′,i′ =
∑
i′

∂σii′

∂xi′
. (1.22)

This expression connects the stress tensor to the force. It can be proven [50] that the
stress tensor is symmetric

σii′ = σi′i . (1.23)
If the stress tensor is both diagonal and isotropic, i.e.,

σii′ = −pδii′ , (1.24)

it corresponds to hydrostatic compression. It must be noted that the negative sign denotes
an inward flow to the surface dSi′ .

1.3 Hooke’s law
Since the tensor eii′ is linked to the displacement due to deformations, and the tensor σii′
is linked to the forces, and given that deformations occur under the action of forces, we
can assume that the two tensors must be connected. Indeed, the infinitesimal work done
per unit volume is δR = Fiδui, consequently the total work, using Eqs. (1.22), (1.23), will
be

W =

∫
FiδuidV =

∫
σii′,i′δuidV =

∫ [
(σii′δui),i′ − σii′(δui),i′

]
dV

=
�������:0∮
S
σii′δuidSi′ −

∫
σii′δui,i′dV

= −1

2

∫
σii′δ

(
ui,i′ + ui′,i

)
dV = −

∫
σii′δeii′dV , (1.25)
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where we assume that, at the limits of the body, the stress is zero. Then, the infinitesimal
work per unit volume is

δR = −σii′δeii′ or dR = −σii′deii′ . (1.26)

For the simple case of hydrostatic compression Eq. (1.24) holds true and with the help of
Eq. (1.14) we obtain: dR = −σii′deii′ = p deii = p dυ, where dυ is the relative volume
change during the deformation deii′ ≡ e′ii′ − eii′ and equals to dυ = dV ′′−dV ′

dV , where
dV ′′ and dV ′ are the volumes caused by the deformations e′ii′ and eii′ respectively. So,
we end up with the expected result for the work: infinitesimal work per unit volume=
(pressure)×(relative volume change).

Using Eq. (1.26), and known thermodynamic expressions, we calculate the Helmholtz
free energy per unit volume F 4

dF = −dR− SdT = σii′deii′ − SdT , (1.27)

thus leading to

σii′ =
∂F

∂eii′

∣∣∣∣
T

. (1.28)

Our goal is to link the two tensors σii′ and eii′ using the Helmholtz free energy. We know
that when the stress on a body is zero, then we expect the strain to be zero too, meaning:

σii′ = 0⇒ eii′ = 0 . (1.29)

In order to satisfy this condition and since Eq. (1.28) is true, it follows that there is no
linear term in the expansion of F in powers of eii′ . Also, considering as reference level the
state where the strain of the body is zero and remembering that we always assume small
strains, then we can say that F will be the sum of the squares of all the components eii′ .
So for an isotropic body at some temperature (constant throughout the body), F is

F =
1

2
λe2ii + µe2ii′ , (1.30)

where λ, µ are called Lamé coefficients and so far they are nothing more than coefficients
of proportionality with dimensions of energy density (energy per unit volume). Rewriting
eii′ using Eqs. (1.17), (1.18), (1.19), we obtain

e2ii′ = f2ii′ + g2ii′ + 2fii′gii′

= f2ii′ +
1

9
δ2ii′e

2 +
2

3
δii′fii′e

= f2ii′ +
1

3
e2 +

2

3
fiie

= f2ii′ +
1

3
e2 , (1.31)

4There is no confusion with the ith component of the force Fi, because the component i is missing.
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therefore Eq. (1.30) becomes
F =

K

2
e2 + µf2ii′ , (1.32)

with
K ≡ λ+

2µ

3
. (1.33)

Based on Eqs. (1.32) and (1.19), (1.20) we make a useful observation: a) in case of pure
shear deformation, i.e. eii = 0, then F = µ(fii′)

2 = µ(eii′)
2, and b) in case of hydrostatic

compression, i.e. eii′ = Uδii′ , then F = 9K
2 U

2. Namely:

F =

{
µf2ii′ = µe2ii′ , pure shear deformation
9KU2/2 = Ke2/2 , hydrostatic compression . (1.34)

In a state of thermodynamic equilibrium, the free energy is a minimum. If no external
forces act on the body, then F as a function of uii′ must have a minimum for uii′ = 0.
Minimizing Eq. (1.34) leads to µ > 0 and K > 0 respectively. The quantities K and µ
are called respectively the bulk modulus or modulus of hydrostatic compression and the
shear modulus or modulus of rigidity. Equations (1.30) and (1.32) are equivalent, but
the second one has the advantage, when used in combination with Eq. (1.34) to give a
more clear meaning to K, µ: they are moduli of the Helmholtz free energy in the cases of
hydrostatic compression and pure shear deformation respectively. Moreover, µ is zero for
fluids because they do not support pure shear deformations. K relates to the coefficient
of hydrostatic compression, κT , as we will see here below.

Starting from Eq. (1.28) and differentiating F from Eq. (1.30) we have

σii′ = λe
∂ei′′i′′

∂eii′
+ 2µei′′i′′′

∂ei′′i′′′

∂eii′
(1.35)

and
∂ei′′i′′

∂eii′
= δii′′δi′i′′ = δii′ ,

∂ei′′i′′′

∂eii′
= δii′′δi′i′′′ , (1.36)

so
σii′ = λeδii′ + 2µeii′ , (1.37)

and using K from Eq. (1.33)

σii′ = Ke+ 2µ

(
eii′ −

1

3
eδii′

)
, (1.38)

or from Eq. (1.18)
σii′ = 3Kgii′ + 2µfii′ . (1.39)

Finally, Eqs. (1.37), (1.38), (1.39) are the requested expressions and confirm that the
stress is a linear function of the strain, which is the well known Hooke’s law, valid only for
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small strains. We can also write the stress tensor as a sum of two parts, one that is due
to pure shear deformation and one due to hydrostatic compression, based on Eq. (1.39).

a) In case of pure shear deformation

σii′ = 2µfii′ ⇒ σii = 0 . (1.40)

b) In case of hydrostatic compression

σii′ = 3Kgii′ = Keδii′ = 3KUδii′ , (1.41)

which, compared to Eq. (1.24), gives p = −Ke = −3KU . We can now relate the bulk
modulus K to the coefficient of hydrostatic compression

κT ≡ −
1

V

∂V

∂p

∣∣∣∣
T

. (1.42)

Since the deformations are small, U and p are small quantities, and we can write the ratio
of the relative volume change to the pressure, 3U/p, in the differential form V −1(∂V/∂p)T ,
with the help of Eqs. (1.24), (1.41), (1.42), we have

κT = −e
p
=

1

K
. (1.43)

From Eqs. (1.40), (1.41) it is clear that the properties of eii′ , depending on the kind of
deformation, are depicted in σii′ .

The components i, i′ = 1, 2, 3 in the expressions (1.37), (1.38), (1.39) refer to the
cartesian coordinates x, y, z, but the same expressions apply for the spherical coordinates
as well, if we match the coordinates r, θ, φ to the components i, i′ = 1, 2, 3.

We will complete this section by introducing a new quantity, called the surface trac-
tion τ (r), which is especially useful when dealing with inhomogeneous media, where a
discontinuity exists. The components of the surface traction τ (r) at a given point r of an
interface are defined [51] as

τi(r) = σii′(r)ni′(r) = σi′i(r)ni′(r) , (1.44)

where ni′(r) is the ith Cartesian component of the unitary vector n̂(r) that is perpendicular
to the interface at the point r. So, for example, if the interface is parallel to the xy plane,
then n̂(r) = êz and from Eqs. (1.37), (1.44) we have

τx = σxz = µ

[
∂ux
∂z

+
∂uz
∂x

]
τy = σyz = µ

[
∂uy
∂z

+
∂uz
∂y

]
τz = σzz = λ∇ · u+ 2µ

∂uz
∂z

. (1.45)
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Correspondingly, if the interface is spherical with its center at the origin, then n̂(r) = r̂
and we have

τr = σrr = λ∇ · u+ 2µ
∂ur
∂r

τθ = σrθ = µ

[
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

]
τφ = σrφ = µ

[
1

r sin θ

∂ur
∂φ

+
∂uφ
∂r
−
uφ
r

]
. (1.46)

1.4 The wave equation
We have already related the stress to the force through Eq. (1.22) and the stress σii′ to the
deformation eii′ through Eqs. (1.37), (1.38), (1.39). Therefore, it comes natural to relate
the force to the displacement vector, through eii′ . Indeed, based on Eqs. (1.5), (1.22) and
(1.37) we have

Fi = σii′′,i′′ = δii′′ (λei′i′),i′′ + 2 (µeii′′),i′′

= δii′′
(
λui′,i′

)
,i′′

+
(
µui,i′′ + µui′′,i

)
,i′′

(1.47)

and in vector form

F = (λ+ 2µ)∇(∇ · u)− µ∇×∇× u+ (∇ · u)∇λ
+ (∇µ · ∇)u+∇(u · ∇µ)− u · ∇(∇µ) . (1.48)

This is the expression of the force per unit volume that causes the deformations versus
the displacement vector. In case of equilibrium, the condition is F tot = 0, where F is
included in F tot, along with the rest of the forces applied to the body.

If the body is not in the state of equilibrium, then the equation of motion becomes
F tot = ρα, where α is the acceleration and ρ is the mass density. In order to obtain the
equation of motion for an isotropic elastic medium we will neglect the effect of the rest of
the forces and, based on the above, we have

F = ρα = ρ
∂2u

∂t2
. (1.49)

From Eqs. (1.47), (1.49) we finally obtain

ρ
∂2ui
∂t2

=
[
λδii′′ui′,i′ + µ(ui,i′′ + ui′′,i)

]
,i′′

. (1.50)

It is noted that, in the general case of an inhomogeneous medium, the mass density ρ and
the Lamé coefficients λ, µ are functions of the position and one should use the form of
Eq. (1.48). In the present work we assume that the Lamé coefficients are real (which is
true for media without absorption) and positive quantities, independent of the frequency.
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Chapter 2

Acoustic waves in homogeneous
elastic and poroelastic media

In this chapter we deal with elastic wave propagation in homogeneous elastic and poroe-
lastic media. We review the theory of the deformation of a poroelastic solid containing
a compressible fluid that has been established by Biot [25–28], summarizing pertinent
results from Biot’s original analysis, and present the corresponding theoretical basis for
double-porosity media.

2.1 Elastic homogeneous medium
Let us examine the propagation of elastic waves, of given frequency Ω, in a homogeneous
and isotropic elastic medium of mass density ρ and Lamé coefficients λ, µ [52]. In such a
medium, the elastic parameters ρ, λ and µ do not depend on the position and, assuming
harmonic time dependence u(r, t) = Re[u(r) exp(−iΩt)], the wave equation (1.49) yields

− c2l∇[∇ · u(r)] + c2t∇× [∇× u(r)] = Ω2u(r) , (2.1)

where cl =
√

(λ+ 2µ)/ρ and ct =
√
µ/ρ are the propagation velocities of longitudinal and

transverse waves, respectively. We note again that the Lamé coefficients are real numbers
in a non-absorbing medium but, in the case where dissipation losses are present, they
become complex [53]. It can be proven 1 that the elastic field can be expressed as a sum of
two independent terms, one longitudinal (irrotational, ∇× u(r) = 0) and one transverse
(solenoidal, ∇ · u(r) = 0), so Eq. (2.1) splits in two independent Helmholtz equations

∇2u(r) +Q2
l u(r) = 0, ∇× u(r) = 0, (2.2)

1Following Helmholtz theorem, under the condition that the curl and the divergence of the vector u
become zero at infinity, which is true in our case.

15
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and
∇2u(r) +Q2

tu(r) = 0, ∇ · u = 0 , (2.3)
with Qν = Ω/cν , ν = l, t. We note that in a non-viscous fluid (µ = 0 or equivalently
ct = 0), only longitudinal waves can propagate. Equations (2.2), (2.3) accept plane wave
solutions

u(r) = u0(Qν) exp(iQν · r), (2.4)
with u0(Qν) = u0(Qν)ê, Qν = Qν ê1(Qν), where u0 denotes the magnitude and the unit
vector ê the polarization of the elastic wave.

q 

qx 

qz 

qy 

 

  

  
e3(q) ^ 

 

 

e1(q) ^ 

 
e2(q) ^ 

θ

φ

(Q)

(Q)

(Q)Q

Qz

Qx

Qy

Figure 2.1: Local coordinate system.

For longitudinal waves ê = ê1(Ql), while for transverse waves ê⊥ê1(Qt). There are
two independent transverse waves, which correspond to two independent polarizations,
i.e., ê = ê2(Qt), ê = ê3(Qt). With êp(Q), p = 1, 2, 3, we denote the radial, polar and
azimuthal unit vectors for a specific vector Q (see Fig. 2.1). Therefore, the index p also
denotes the polarization ν of the elastic field.

2.2 Poroelastic homogeneous medium
In the framework of Biot’s theory, a fluid-saturated poroelastic material is considered as
a macroscopically homogeneous and isotropic two-component (solid-fluid) system, which
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can be described in terms of average parameters. Its skeletal frame is made of a solid
material, characterized by mass density ρs, bulk modulus Ks, and shear modulus µs in
its consolidated compact form, while the bare skeletal frame has different elastic moduli,
Kb and µb. The term bare skeletal frame, or else lattice, refers to a drained medium
such that the pores are assumed to be evacuated. The fluid, of mass density ρf and bulk
modulus Kf , fills the whole volume of interconnected pores. The fluid may possess a
nonzero viscosity, and energy absorption by the lattice is introduced by replacing certain
real-valued lattice parameters (Kb and µb) by complex-valued quantities. It should be
noted that sealed pore space is considered as part of the solid frame and the (effective)
porosity f is defined as the volume fraction occupied by the fluid.

Consider a volume of the solid-fluid system represented by a cube of unit size. The
stress tensor is separated into two parts. The force component acting on the solid parts
of each face of the cube is one part. This is denoted as the symmetric tensor, according
to Eq. (1.23), τii′ ≡ σ

(s)
ii′ = σ

(s)
i′i . The forces acting on the fluid part of each face of the

cube are represented by the tensor sii′ ≡ σ
(f)
ii′ = −fpδii′ , according to Eq. (1.24) for the

case of hydrostatic compression. In the present analysis we assume that we are dealing
with a statistically isotropic porous material in such a way that for all cross sections we
always observe the same ratio of fluid to solid area, explaining why the porosity appears
in the definition of the stress tensor of the fluid. Following the same steps as in Chapter 1
to determine the stress-strain relations, we retain the same Eqs. (1.27), (1.28), with the
only difference that now the stress tensor is composed by two parts that are coupled to
each other. Denoting the average macroscopic displacement fields of the solid frame and
the saturating fluid in space-time (r, t) by u and U, respectively, and the corresponding
strain tensors by eii′ and Eii′ , we generalize Eqs. (1.37) and (1.41) to obtain the relevant
effective stress tensors

τii′ = λbeδii′ + 2µbeii′ +QEδii′ , (2.5)
sii′ = Q′eδii′ +REδii′ , (2.6)

where we recall that e = eii = ∇·u, E = Eii = ∇·U are the volumetric strains [Eqs. (1.6)].
Because of the existence of a potential energy the coupling coefficients Q,Q′ must be the
same Q = Q′. Using compact tensor/vector notation, Eqs. (2.5), (2.6) can be written as

←→τ = µb
←→
I ×∇× u+ 2µb∇u+

←→
I (P − 2µb)∇ · u+

←→
I Q∇ ·U

←→s =
←→
I Q∇ · u+

←→
I R∇ ·U , (2.7)

where it is tacitly assumed that the strains associated with these stresses are small and
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the quantities P, Q, R are given by [54]

P = Ks
(1− f)(1− f −Kb/Ks) + fKb/Kf

1− f −Kb/Ks + fKs/Kf
+

4µb
3

Q =
fKs(1− f −Kb/Ks)

1− f −Kb/Ks + fKs/Kf

R =
f2Ks

1− f −Kb/Ks + fKs/Kf
. (2.8)

In order to clarify the significance of these constants, while writing the stress-strain re-
lations in order to find the form of the effective stress tensors for the solid-fluid system,
Biot noticed that P = Kb + 4µb/3, and is a positive quantity. The coefficient R measures
the pressure required on the fluid to force a certain volume of the fluid into the aggregate,
while the total volume remains constant. It is also a positive quantity. The coefficient Q
describes the coupling between the volume change of the solid and of the fluid and it is
also of positive sign. The macroscopic stress tensor,←→σ , and the mean pore fluid pressure,
p, are given by

←→σ =←→τ +←→s (2.9)

and
←→s = −

←→
I fp , (2.10)

respectively. Although the fluid may have a nonzero viscosity, Eq. (2.10) retains the form
of a stress tensor within the small strain limit of nonviscous hydrodynamics.

Biot derived a phenomenological Lagrangian density for a fluid-lattice system, assumed
to be homogeneous for low-frequency wave propagation, firstly in the absence of dissipa-
tion. A unit cube of the aggregate is considered as an element. The element is assumed to
be small relative to the wavelength of the elastic waves and in turn the size of the pores is
assumed small compared to the size of the element. The limitation of frequencies which is
hereby introduced will turn out to be academic for most practical problems. In general,
the kinetic energy of a system can always be written as the sum of three homogeneous
functions of the generalized velocities: a term independent of the velocities, a term linear
in the velocities and a term quadratic in the velocities. If the transformation equations
do not contain the time explicitly, as may occur when the constraints are independent of
time (scleronomous) −which is our case here− then only the last term is nonvanishing and
the kinetic energy T of the system per unit volume always has a homogeneous quadratic
form in the generalized velocities and may be expressed as [55]

2T = ρ11u̇ · u̇+ ρ22U̇ · U̇+ 2ρ12u̇ · U̇ , (2.11)

where overdot denotes partial time derivative. This expression is based on the assumption
that the material is statistically isotropic, hence the directions x, y, z are equivalent and
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uncoupled dynamically. Let us discuss the significance of the expression for the kinetic
energy. The coefficients ρ11, ρ22, ρ12 are mass coefficients which take into account the fact
that the relative fluid flow through the pores is not uniform. Lagrange’s equations will be

∂

∂t

(
∂T

∂u̇i

)
= τij,j , (2.12)

∂

∂t

(
∂T

∂U̇i

)
= sij,j , (2.13)

for i = 1, 2, 3, where the force components on the right-hand side are expressed as stress
gradients. Eqs. (2.12) and (2.13) together with Eq. (2.11) can be combined into(

ρ11 ρ12
ρ12 ρ22

)(
üi
Üi

)
=

(
τij,j
sij,j

)
, (2.14)

showing the coupling between the solid and the fluid. It is interesting to note that, because
of the coupling coefficient, an acceleration of the solid without average motion of the fluid
produces a pressure gradient in the fluid. This is physically caused by an apparent mass
effect of the fluid on the solid.

We will now discuss what happens in the case of dissipation due to viscous drag. Biot
supplemented the Lagrangian density with a dissipation term, which accounts for viscous
drag forces associated with the relative motion within the system, and then Eq. (2.14) can
be generalized in the following form

ρ11ü+ ρ12Ü+ b(u̇− U̇) = ∇ · ←→τ
ρ12ü+ ρ22Ü− b(u̇− U̇) = ∇ · ←→s , (2.15)

where b is a damping coefficient and the last term on the left-hand sides of Eqs. (2.15)
accounts for frictional dissipation associated with relative motion between the fluid and
solid components of the medium. The quantities ρ11, ρ12, ρ22, are related to the fluid’s
density ρf and the solid’s density ρs through

ρ11 = (1− f)ρs + (ξ − 1)fρf

ρ12 = −(ξ − 1)fρf

ρ22 = ξfρf (2.16)

where ρ11 +2ρ12 + ρ22 = ρtot = (1− f)ρs + fρf is the total mass of the system and with ξ
(ξ > 1), the so-called tortuosity2 of the medium, being an intrinsic geometrical property
related to variations in pore shapes and orientations [56–61]. The best value of ξ should
be determined, of course, by the experimental data themselves, i.e., it should furnish the

2Biot refers to the factor ξ as a structural factor.
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best fit for dispersion and attenuation data. In fact, by arguing that the value of ξ is
independent of the saturating fluid, Johnson and Sen determined ξ from fourth-sound
measurements using super-fluid 4He as a pore fluid in various substrates [62]. It is worth
noting here that the term ρ12 describes the inertial (as opposed to viscous) drag that the
fluid exerts on the solid as the latter is accelerated relative to the former and vice-versa.
That is why, instead of tortuosity, ξ is also called the inertial drag parameter. We will see
in the following that two distinct limits exist in this problem. One where the solid and
the fluid are locked due to viscous drag and another where they are locked due to inertial
drag. Intrinsic absorption of the solid frame and the infiltrated fluid can be taken into
account by considering complex elastic constants, as we have already noted.

At low frequencies, assuming that the flow of the fluid relative to the solid through
the pores is of the Poiseuille type, the coefficient b is related to Darcy’s coefficient of
permeability, κD, through the relation b = f2η/κD, where η is the fluid viscosity [25]. The
assumption of Poiseuille flow breaks down at high frequencies and b can be written in a
general form, which encompasses both the low and high frequency ranges, as follows [26]

b =
f2η

κD

iζ2J ′0(
√
iζ)

4
√
iζJ0(

√
iζ) + 8J ′0(

√
iζ)

, (2.17)

where J0 is the zero-order Bessel function of the first kind [63], and the prime denotes first
derivative with respect to the argument of the function. In the simple case of cylindrical
pores parallel to the direction of the flow, ζ = Rp

√
Ωρf/η, where Rp is a characteristic

pore size parameter that takes into account the geometry of the pores. The expression
that multiplies the factor f2η/κD in the right-hand side of Eq. (2.17), considered as a
function of the real dimensionless variable ζ over the entire range 0 ≤ ζ < ∞,

[
F1(ζ) =

iζ2J ′
0(
√
iζ)

4
√
iζJ0(

√
iζ)+8J ′

0(
√
iζ)

]
, behaves similarly to the simple function F2(ζ) =

√
1− i(ζ/4)2, their

absolute relative difference ∆ =

∣∣∣∣ F1(ζ)− F2(ζ)

[F1(ζ) + F2(ζ)]/2

∣∣∣∣ being always less than 10%, as is

shown in Fig. 2.2.
Moreover, the geometrical parameters f, ξ, κD, Rp, which characterize the pores and

are in general unrelated, for a set of non-intersecting canted cylindrical pores are related to
each other by the equation fR2

p = 8ξκD, which leads to the following simple yet effective
form for b [64]

b =
f2η

κD

(
1− i

ξκDρfΩ

2fη

)1/2

. (2.18)

In the case of a poroelastic medium we assume monochromatic time-harmonic solu-
tions of Eqs. (2.15), of angular frequency Ω, in the form u(r, t) = Re[u(r) exp(−iΩt)] and
U(r, t) = Re[U(r) exp(−iΩt)]. Decomposing the general displacement fields into longi-
tudinal and transverse vector components, denoted by a subscript l and t, respectively,



2.2. POROELASTIC HOMOGENEOUS MEDIUM 21

Figure 2.2: ∆ versus ζ.

Eqs. (2.7) and (2.15) lead to two separate systems of linear equations. For the longitudinal
modes we obtain

P∇[∇ · ul(r)] +Q∇[∇ ·Ul(r)] + ρ̃11Ω
2ul(r) + ρ̃12Ω

2Ul(r) = 0 (2.19a)

Q∇[∇ · ul(r)] +R∇[∇ ·Ul(r)] + ρ̃12Ω
2ul(r) + ρ̃22Ω

2Ul(r) = 0 , (2.19b)
where ρ̃11 = ρ11 + ib/Ω, ρ̃12 = ρ12 − ib/Ω, and ρ̃22 = ρ22 + ib/Ω. Equations (2.19)
accept plane-wave solutions [see Eq. (2.4)] of the form ul(r) = ul0 exp(iQ · r) and Ul(r) =
Ul0 exp(iQ · r), where the wavenumber Q satisfies the biquadratic equation

(PR−Q2)Q4 − (ρ̃11R+ ρ̃22P − 2ρ̃12Q)Ω2Q2 + (ρ̃11ρ̃22 − ρ̃212)Ω4 = 0 . (2.20)

The two positive roots of Eq. (2.20), Q1 and Q2, which are physically acceptable, corre-
spond to the so-called fast and slow longitudinal waves, respectively, with Qν = Ω/cν , ν =
1, 2. The corresponding displacement fields are related through Uν = Aνuν , where

Aν = − ρ̃11Ω
2 − PQ2

ν

ρ̃12Ω2 −QQ2
ν

= − ρ̃12Ω
2 −QQ2

ν

ρ̃22Ω2 −RQ2
ν

, ν = 1, 2 . (2.21)

On the other hand, the transverse modes satisfy the equations

µb∇×∇× ut(r)− ρ̃11Ω2ut(r)− ρ̃12Ω2Ut(r) = 0

ρ̃12ut(r) + ρ̃22Ut(r) = 0 , (2.22)

which accept plane wave solutions of the form ut(r) = ut0 exp(iQ3 · r) and Ut(r) =
Ut0 exp(iQ3 · r) with wavenumber

Q3 = Ω

[
ρ̃11
µb

(
1− ρ̃212

ρ̃11ρ̃22

)]1/2
. (2.23)
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As follows directly from the second of Eqs. (2.22),

Ut = −(ρ̃12/ρ̃22)ut ≡ A3ut . (2.24)

An intuitive explanation of the appearance of two longitudinal waves in a poroelastic
medium can be provided by analogy to the formation of bonding and antibonding molec-
ular orbitals from the individual atomic states. In a similar manner, the longitudinal
modes of the solid and fluid components of the poroelastic medium interact and form two
hybrid longitudinal modes with two different propagation velocities. We will attempt to
further clarify this point, following D. L. Johnson and T. J. Plona’s study on the acoustic
properties of water-saturated samples of both fused (i.e., consolidated) and unconsolidated
spherical glass beads [43]. Their experimental results confirm the presence of two longitu-
dinal waves, fast and slow, in the consolidated case, whereas only one longitudinal wave
exist in the unconsolidated sample. The fact that a minor change in microgeometry re-
sulted to such a radical change in acoustic behavior led them to suspect the bare skeletal
frame moduli Kb and µb. Hence they considered two limits in the Biot theory3:

a) stiff-frame limit, where the pore fluid is much more compressible than the frame
Kf � Kb, µb < Ks and, in this limit, Eq. (2.20) provides the two longitudinal velocities

cstiff1 =

(
Pρ22

ρ11ρ22 − ρ212

)1/2

, (2.25)

cstiff2 =

(
Kf

ρfξ

)1/2

. (2.26)

In this stiff-frame limit the fluid and solid motions are largely decoupled. The fast wave
is essentially motion of the solid only, dragging along some of the fluid, whereas the slow
wave is essentially motion of the fluid only. This means that some, but not all, of the fluid
is dragged along by the oscillations of the stiff frame.

b) weak-frame limit, namely that of weak frame moduli Kb, µb � Kf ,Ks. If we
idealize the unconsolidated grains as a suspension, we may take the extreme limit that
Kb = µb = 04. In this case the slow wave speed is identically zero and the fast wave speed
is

cweak
1 =

[
κ̄−1T

f2ρ11 + (1− f)2ρ22 − 2f(1− f)ρ12
ρ11ρ22 − ρ212

]1/2
, (2.27)

cweak
2 = 0 , (2.28)

where κ̄T =
1

K
=

1− f
Ks

+
f

Kf
is the average isothermal compressibility of the system. In

the case where the inertial drag parameter ξ is very large, which corresponds to a perfect
3Assuming we are in the high-frequency limit, limΩ→∞ ρ̃ij(Ω) = ρij , the velocities become nondispersive.
4In this case the quantities P,Q,R satisfy the following equation: PR−Q2 = 0.
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locking of fluid and solid motion together, the fast wave speed formula simplifies greatly
and reduces to Wood’s formula [65]

lim
ξ→∞

c1 =

√
κ̄−1T

ρtot
. (2.29)

We note that, because the fluid and the solid are locked together by viscous forces, this
asymptotic value also applies to the low-frequency limit, which is characterized by viscous
losses, regardless of ξ.

Figure 2.3: Fast and slow longitudinal wave velocities calculated as a function of frame
modulus for water-saturated porous silica spherical particles. The solid lines refer to
Eq. (2.20), while the dashed lines represent the fully consolidated stiff frame values given
by Eqs. (2.25), (2.26). In the limit Kb = µb = 0 the wave speed values are given from
Eqs. (2.27), (2.28).

We consider water-saturated porous silica spherical particles with mass density ρs =
2200 kg m−3 and bulk modulus Ks = 36.9397 GPa for silica; and mass density ρf =
1000 kg m−3 and bulk modulus Kf = 2.1904 GPa for water. For porosity f = 10%
the tortuosity is given by ξ = f−2/3, for a random array of needles [59]. Now we will
consider c1, c2 as continuously varied functions of Kb and µb, while keeping f , ξ fixed,
in order to focus more clearly on the effects of the frame moduli. We have assumed the
proportionality Kb = 1.21µb to be constant (corresponding to a constant Poisson’s ratio)
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and have calculated the fast a slow velocities as a function of (P/Kf )
1/2. The results are

shown in Fig. 2.3. It can be easily seen that starting from the unconsolidated values given
by Eqs. (2.27), (2.28) both of the wave speeds change continuously to the fully consolidated
stiff frame values given by Eqs. (2.25), (2.26), indicated by the dashed lines. A heuristic
interpretation of the dashed lines in Fig. 2.3 is to view the poroelastic medium as a bimodal
system under the influence of some coupling perturbation. This means that the dashed
lines represent the bare speeds of two uncoupled (unhybridized) modes, a fluid mode and
a frame mode, and in the parameter region where the two speeds are comparable, the
modes become mixed (we will have hybridization) and thus the speeds are renormalized
by the mutual interactions.

2.3 Double-porosity homogeneous medium
J. G. Berryman and H. F. Wang formulated a phenomenological theory for the poroelas-
tic behavior of a double-porosity medium by extending Biot’s theory, and identified the
coefficients in these linear equations [66, 67]. The generalization from the single porosity
model increases the number of independent coefficients from three to six for an isotropic
applied stress.

Figure 2.4: Schematic representation of a double-porosity medium.

As originally formulated, Biot’s theory applies to a homogeneous porous medium.
However, porosity and permeability often occur on several distinct spatial cases. Thus, the
need arises for more general models incorporating qualitatively different types of porosity.
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Berryman and Wang considered the elements of a double-porosity model to be: porous
matrix intersected by fractures. In such a structure, though, the same fluid is assumed
to fill the pores and the fractures, there are two different types of porosity, characterized
by different scales and environments. First, the system of small porous within the solid
frame (region I in Fig. 2.4), with porosity f (1) and volume fraction of the porous matrix
υ(1), saturated by the fluid; the displacement of the fluid in that scale is denoted by U(1).
Second the system of the fractures (region II in Fig. 2.4) saturated by the fluid which is
now in contact with the porous matrix I, and its displacement is denoted by U(2). The
fracture porosity is denoted by f (2) and the volume fraction of the fractures by υ(2). Of
course υ(1) + υ(2) = 1. In this description, we put f (2) = 1 in order to account correctly
for the void space.

In each of these two distinct systems an internal fluid pore pressure is present, p(k), k =
1, 2, generating in an analogous to the simple poroelasticity [Eq. (2.10)] manner a macro-
scopic fluid pressure across interfaces:

s
(k)
ij = −v(k)f (k)p(k)δij . (2.30)

The solid is characterized by its displacement u, as usually, related to the corresponding
stress tensor τij . The presence of these two distinct pore fluid systems introduces a new set
of equations in order to account correctly for the interaction between these components.
Instead of two, we have three equations describing

• the elastic behavior of the solid

• the elastic and fluid flow behavior of the pore matrix fluid (region I) interacting with
the fractures and the solid

• the elastic and fluid flow behavior of the fracture fluid (region II) interacting with
the pore matrix fluid and the solid.

In all the above equations coupling terms are considered to account correctly for all possible
interactions. For the purpose of our subsequent analysis, we will neglect the dissipation
due to viscous loss mechanisms. Then, Lagrange’s equations read

∂

∂t

(
∂T

∂u̇i

)
= τij,j , for i = 1, 2, 3, (2.31)

∂

∂t

(
∂T

∂U̇
(k)
i

)
= s

(k)
ij,j , for i = 1, 2, 3 and k = 1, 2 , (2.32)

where T is the kinetic energy for the systems of two fluids. We generalize Biot’s approach
[Eq. (2.11)] by including coupling terms describing the interactions between the different
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constituents

2T = ρ11u̇ · u̇+ ρ22U̇
(1) · U̇(1) + ρ33U̇

(2) · U̇(2)

+ 2ρ12u̇ · U̇(1) + 2ρ13u̇ · U̇(2) + 2ρ23U̇
(1) · U̇(2) , (2.33)

with ρij being mass density coefficients that take into account the fact that the relative
flow of fluid through the pores is not uniform, and that oscillations of solid mass in the
presence of fluid leads to induced mass effects.

In summary, Eqs. (2.31), (2.32) and (2.33) can be combined intoρ11 ρ12 ρ13
ρ12 ρ22 ρ23
ρ13 ρ23 ρ33


 üi

Ü
(1)
i

Ü
(2)
i

 =

τij,js
(1)
ij,j

s
(2)
ij,j

 , (2.34)

showing the coupling between the solid and both types of fluid components. The mass
density coefficients ρij are given by the following relations

ρ11 = (1− f)ρs + (ξ − 1)fρf , (2.35)
ρ22 = ξ(1)v(1)f (1)ρf , (2.36)
ρ33 = ξ(2)v(2)f (2)ρf , (2.37)

2ρ12/ρf = (ξ(2) − 1)v(2)f (2) − (ξ(1) − 1)v(1)f (1) − (ξ − 1)f , (2.38)
2ρ13/ρf = (ξ(1) − 1)v(1)f (1) − (ξ(2) − 1)v(2)f (2) − (ξ − 1)f , (2.39)
2ρ23/ρf = (ξ − 1)f − (ξ(1) − 1)v(1)f (1) − (ξ(2) − 1)v(2)f (2) , (2.40)

where f = v(1)f (1) + v(2)f (2) = v(1)f (1) + v(2) is the total porosity and ξ, ξ(1), ξ(2) are the
total, pore matrix, and fracture tortuosity, respectively. Berryman [57] has shown that

ξ(i) = 1 + r

(
1

f (i)
− 1

)
, (2.41)

where the factor r depends on micro-geometry and is expected to lie in the range 0 ≤ r ≤ 1,
with r =

1

2
for spherical grains. Because f (2) = 1 by assumption, note that ξ(2) = 1, for

the fracture porosity. Though it is more difficult to estimate the overall tortuosity ξ, it
can be shown [68,69] that it will lie between the values ξ± given by the formula

1

f/ξ± + 2/Fm
=

v(1)

f (1)/ξ(1) + 2/Fm
+

v(2)

1 + 2/Fm
, (2.42)

where 1/Fm = f (2)/ξ(2) = 1 for ξ− and 1/Fm = f (1)/ξ(1) for ξ+. If we assume that the
overall tortuosity of the fractured double-porosity medium is dominated by the fractures,
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which is valid for situations in which v(2) � 1, then we can use the lower limit for the
overall tortuosity, meaning ξ = ξ−. The bounds in (2.42) should generally be used for
applications to media in which such assumption is not valid.

Since we have dealt with the left-hand side of Lagrange’s equation, we must now find
the expressions for the stress elements τij and s(k)ij . Without any loss of generality, we can
choose three independent variables to be the external confining pressure pc, and the fluid
pressures in the porous matrix p(1), and in the fractures p(2). The dependent variables
are chosen to be the volumetric strain, e, and Biot’s increment of fluid content (fluid
volume accumulation per unit bulk volume) in the porous matrix, ζ(1), and fractures,
ζ(2), separately. These quantities are related to the displacements by ζ(k) = −v(k)f (k)∇ ·
(U(k)−u), k = 1, 2. Then the phenomenological approach relates each dependent variable
linearly to the independent variables. The double-porosity theory with six independent
coefficients, aij , is a straightforward generalization of Biot’s original equations [66] (see
Appendix D)  e

−ζ(1)
−ζ(2)

 =

a11 a12 a13
a12 a22 a23
a13 a23 a33

 −pc−p(1)
−p(2)

 . (2.43)

The six coefficients occur in three classes, corresponding to the original Biot coefficients.
The coefficient a11 = 1/K is an effective compressibility of the combined fracture-matrix
system, the coefficients a12 and a13 are generalized poroelastic expansion coefficients, i.e.,
the ratio of bulk strain to porous matrix pressure and fracture pressure, respectively. The
terms a22, a23 and a33 are generalized storage coefficients, i.e., aij is the volume of fluid
that flows into a control volume (normalized by the control volume) of phase i− 1 due to
a unit increase in fluid pressure in phase j − 1.

Parameter Formula
(GPa−1)
a11 1/K

a12 −α(1)K
(1)
s /K(1)Ks

a13 −α/K − a12
a22 v(1)α(1)/B(1)K(1)

a23 v(1)α(1)/K(1) − a12
a33 v(2)/Kf + v(1)/K(1) − (1− 2α)/K + 2a12
ā33 a33 − v(2)/Kf

Table 2.1: Stress-strain parameters in double-porosity modeling as derived by Berryman
and Wang [67]

In Table 2.1 we summarize a list of formulas relating these parameters to properties
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of the constituents. The input parameters are defined as: K and K(1) 5 are the (jacketed)
frame bulk moduli of the whole and the porous matrix, respectively, Ks and K

(1)
s are

the unjacketed bulk moduli for the whole and the porous matrix, α = 1 − K/Ks and
α(1) = 1 − K(1)/K

(1)
s are the corresponding Biot-Willis parameters [54], Kf is the pore

fluid bulk modulus, ν(1) is the Poisson’s ratio of the porous matrix, and B(1) is Skempton’s
pore-pressure buildup coefficient [70] for the matrix. Note that the existence of a second
pore pressure and increment of fluid content, in the case of double-porosity model, leads
to the definition of several Skempton-like or Biot-Willis-like coefficients.

Using the constitutive relations in (2.43), plus the usual relations of linear elasticity,
we express the vector on the right-hand side of (2.31) in terms of macroscopic variables
and, assuming isotropic media, we derive the following relations6

τij,j = (λ+ µ)e, i + µui,jj − 3K[β(1)p
(1)
, i + β(2)p

(2)
, i ] , (2.44)

−3K[β(1)p
(1)
, i + β(2)p

(2)
, i ] = −pc, i −Ke, i , (2.45)

p
(1)
, i = −ã12e, i + ã22ζ

(1)
, i + ã23ζ

(2)
, i , (2.46)

p
(2)
, i = −ã13e, i + ã23ζ

(1)
, i + ã33ζ

(2)
, i , (2.47)

where we denote with tilded elements ãij the elements of the inverse matrix of Eq. (2.43).
From the condition of hydrostatic external stress, we identify the parameters β(1), β(2)
and λ, µ. We have −3β(1) = a12, −3β(2) = a13, a11 = 3(s̄11 + 2s̄12) =

1
K with s̄11 = 1

E
and s̄12 = − ν

E , where E, ν, K, λ, µ are all parameters for the drained medium, Young’s
modulus, Poisson’s ratio, bulk modulus and Lamé coefficients, respectively 7. Substituting
Eqs. (2.46),(2.47) into (2.44) leads to

τij,j = (Ku + 1
3µ)e, i + µui,jj −Ku[B

(1)ζ
(1)
, i +B(2)ζ

(2)
, i ] , (2.48)

where Ku = K(1−a12ã12−a13ã13), is the undrained bulk modulus for the double-porosity
medium, and the Skempton’s coefficient for the matrix and fractures respectively are given
by: B(1) = −a12a33−a13a23

a22a33−a223
, B(2) = −a13a22−a12a23

a22a33−a223
.

It was observed by Berryman and Wang [66] that the fluid-fluid coupling term a23
was small or negligible for the examples considered, so we can extract and evaluate a
somewhat simplified version of these formulas, from the more general analysis presented
so far, we will therefore make the approximation a23 ≡ 0 in the remainder of this chapter.

5K(1) corresponds to Kb of the Biot theory for the single porosity.
6Analogous expressions for single-porosity with and without elastic anisotropy are given in Berry-

man [71].
7It is important to use the compliances s̄ij , rather than using the inverse relation in terms of the

stiffnesses, because they are simply related to the drained constants. Also we used the overlined symbol
to avoid confusion with the stress tensor elements sij .



2.3. DOUBLE-POROSITY HOMOGENEOUS MEDIUM 29

Eqs. (2.44), (2.45) will remain unchanged, but (2.46) and (2.47) will both be replaced by
a single equation

− 3[β(1)p
(1)
, i + β(2)p

(2)
, i ] = B(1)[−ζ(1), i − 3β(1)pc, i] +B(2)[−ζ(2), i − 3β(2)pc, i] , (2.49)

also the main equation (2.48) will preserve the same form, but the new Ku will be given
from the equation: Ku = K

1−3K[β(1)B(1)+β(2)B(2)]
. To obtain the expression we need, we

combine (2.48) with (2.43) and take the divergence,τij, ji−p(1), ii

−p(2), ii

 =

Ku + 4
3µ B(1)Ku B(2)Ku

ã12 ã22 ã23
ã13 ã23 ã33


 e, ii

−ζ(1), ii

−ζ(2), ii

 . (2.50)

Assuming a harmonic time dependence of the form exp(−iΩt), Eq. (2.34) takes the form

− Ω2

ρ11 ρ12 ρ13
ρ12 ρ22 ρ23
ρ13 ρ23 ρ33


 ui

U
(1)
i

U
(2)
i

 =

τij,js
(1)
ij,j

s
(2)
ij,j

 , (2.51)

and it is also convenient to notice that

∂

∂xi

 ui

U
(1)
i

U
(2)
i

 =

 e

U
(1)
i, i

U
(2)
i, i

 =

1 0 0
1 1

v(1)f (1) 0

1 0 1
v(2)f (2)


 e

−ζ(1)
−ζ(2)

 ≡ V

 e

−ζ(1)
−ζ(2)

 , (2.52)

which allows us to write the final equation in terms of the macroscopic strain and fluid
contents e, ζ(1) and ζ(2). Note that the final equality in (2.52) defines the matrix V, which
we will need again later in the analysis.

Taking the divergence8 of (2.51), then substituting (2.52) and (2.50), and finally taking
the spatial Fourier transform (having wavenumber k), we obtain the eigenvalue problem
associated with wave propagation:Ku + 4

3µ B(1)Ku B(2)Ku

ã12 ã22 ã23
ã13 ã23 ã33

 e

−ζ(1)
−ζ(2)

 = c2

1 0 0
0 1

v(1)f (1) 0

0 0 1
v(2)f (2)


ρ11 ρ12 ρ13
ρ12 ρ22 ρ23
ρ13 ρ23 ρ33



×

1 0 0
1 1

v(1)f (1) 0

1 0 1
v(2)f (2)


 e

−ζ(1)
−ζ(2)

 , (2.53)

8Applying the divergence provides the longitudinal solutions, while the curl would provide the transverse
solution.
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where the eigenvalue c2 = Ω2/k2 is a real quantity in our case, because we assumed no
viscous dissipation losses, it is independent of the frequency Ω but has the general physical
significance of being the square of the complex wave velocity. With obvious definitions for
the matrices A, P, and R, while V was previously defined in (2.52), Eq. (2.53) becomes

A

 e

−ζ(1)
−ζ(2)

 = c2PRV

 e

−ζ(1)
−ζ(2)

 , (2.54)

and then, the dispersion relation determining c2 is

det(A− c2PRV) = 0 , (2.55)

The solution of the dispersion relation (2.55) will give the three values of the velocities
of the three longitudinal waves that propagate inside a double-porosity medium. Indeed,
we expect three hybrid longitudinal waves to appear, that arise from the corresponding
propagating modes in the three components of this double-porosity model (solid skeletal
frame, matrix pores, and adjacent fractures), interacting between them.

2.4 Multipole expansion of the elastic field
The plane wave solutions (2.4) of Eqs. (2.2), (2.3), although commonly employed, are not
always the most appropriate when one wants to study more complex structures than the
homogeneous medium. Consequently, in systems with spherical symmetry (like those we
shall consider in our study), it is convenient to express the solutions (2.4) as multipole
expansions in a spherical wave basis. A complete basis of such solutions for Eq. (2.2),
known as irrotational vector spherical waves, are given by [72]

JL`m(r) =
1

Ql
∇ [j`(Qlr)Y`m(r̂)] , HL`m(r) =

1

Ql
∇
[
h+` (Qlr)Y`m(r̂)

]
, (2.56)

where j`(Qlr) and h+` (Qlr) are the spherical Bessel and Hankel functions, respectively
(see Appendix A), and Y`m(r̂) the usual spherical harmonics (see Appendix B), with r̂
denoting the angular variables (θ, φ) of r in a spherical coordinate system. On the other
hand, a complete basis of spherical wave solutions of Eq. (2.3) are [72]

JM`m(r) = j`(Qtr)X`m(r̂) , HM`m(r) = h+` (Qtr)X`m(r̂) (2.57)

and

JN`m(r) =
i

Qt
∇× j`(Qtr)X`m(r̂) =

i

Qt
∇× JM`m(r) ,

HN`m(r) =
i

Qt
∇× h+` (Qtr)X`m(r̂) =

i

Qt
∇×HM`m(r) , (2.58)
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which are known as solenoidal vector spherical waves. The expressions of those solutions
are based on the vector spherical harmonics, X`m(r̂) (see Appendix B). Each of the spher-
ical wave solutions (2.56), (2.57), (2.58) is characterized, for a given frequency, from the
angular momentum indices `, m, and the index P = L,M,N . We note that the solutions
JP`m(r) exhibit a regular behavior at every point, unlike HP`m(r) that diverge at the
origin and have the form of outgoing spherical waves at r → ∞. Their physical meaning
will become clearer in the next chapter. The solutions JP`m(r) also obey the following
orthonormality relation∫

d3rJ∗P`m;Q(r) · JP ′`′m′;Q′(r) =
π

2Q2
δ(Q−Q′)δPP ′δ``′δmm′ , (2.59)

where the dependence of the regular vector spherical waves on Q(Q′) is explicitly denoted
in the subscripts.

In the general case, the elastic field in a homogeneous medium, at given frequency Ω,
can be written as a linear combination of JP`m(r) and HP`m(r)

u(r) =
∑
P`m

[
a0P`mJP`m(r) + a+P`mHP`m(r)

]
, (2.60)

where the coefficients a0L, a+L are to be determined. Suppose, now, that we want to expand
a plane, longitudinal (ν = l) elastic wave of the form (2.4) with wavevector Qν = Qlê1(Ql)
in the spherical wave basis. Since a plane wave is finite everywhere, its multipole expansion,
according to (2.56), (2.57), (2.58), can only contain j`(Qlr). So, a longitudinal wave of
the form (2.4) will be written as

u(r) =
∑
`m

a0L`mJL`m(r) . (2.61)

Using the mathematical identity exp(iQl · r) = 4π
∑

`m i`j`(Qlr)Y`m(r̂)Y ∗`m(Q̂l), it can be
readily shown that the coefficients a0L`m are

a0L`m = 4πi`+1(−1)m+1Y`−m(Q̂l) ê1(Ql) · u0(Ql) . (2.62)

The elastic field in a fluid-saturated poroelastic medium, at given frequency Ω, can
be expanded into longitudinal and transverse vector spherical waves of appropriate wave
number, as follows [23,24]

u(r) =
∑
`m

{
a1L`mJL`m(r) + a2L`mJL`m(r) + aM`mJM`m(r) + aN`mJN`m(r)

}
, (2.63)

describing the displacement field of the solid. The first term in Eq. (2.63) describes fast
longitudinal waves, the second slow longitudinal waves, which are unique to poroelastic
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media, and the last two terms correspond to transverse waves. A similar to Eq. (2.63)
expression holds for U(r), the displacement field for the saturated fluid, with expansion
coefficients A1a1L`m, A2a2L`m, A3aM`m, and A3aN`m instead of a1L`m, a2L`m, aM`m, and
aN`m, respectively, where the coefficients A1, A2, A3 are given by (2.21) and (2.24).



Chapter 3

Scattering by a spherical object

In this chapter we will deal with the scattering of acoustic waves by a single scatterer
(elastic or poroelastic), immersed in a homogeneous fluid. This problem is essentially
reduced to that of calculating the scattering T matrix that connects the amplitude of the
scattered wave to that of the incident wave. We derive useful relations for the scattering
cross section and the density of states induced by a single sphere, and demonstrate the
applicability of the formalism on a simple example.

3.1 Scattering matrix of an elastic sphere in fluid

We shall examine the scattering of acoustic waves by a sphere of radius S, mass density
ρs and propagation velocities of longitudinal and transverse waves cl, ct respectively, that
is embedded in a fluid host with corresponding parameters ρh, ch. We must calculate the
scattered wave and the wave inside the sphere. As shown in section 2.4, elastic waves with
longitudinal and transverse components, in general, can be expanded into a spherical wave
basis. Therefore the incident wave will have the form

u0(r) =
∑
`m

a0L`m
1

Qh
∇ [j`(Qhr)Y`m(r̂)] , (3.1)

i.e. Eq. (2.61), using JL`m(r), vector spherical waves containing spherical Bessel functions,
since the incident wave must be finite in all space. By a0L`m we denote the incident wave
coefficients [see Eq. (2.62)], obtained by projection of a plane wave onto the longitudinal
vector spherical wave basis as described in § 2.4. In the fluid host, it exists, in addition to
the incident wave, the scattered wave, expanded in the same way, with different expansion
coefficients a+L`m (that have to be determined) and where the radial part uses spherical
Hankel functions of the first kind, because these asymptotically describe an outgoing

33
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spherical wave: h+` (x) ' (−i)` exp(ix)/(ix) as x→∞,

usc(r) =
∑
`m

a+L`m
1

Qh
∇
[
h+` (Qhr)Y`m(r̂)

]
. (3.2)

Both of those waves propagate in the same fluid host medium with Qh =
Ω

ch
= Ω

√
ρh
λh

thus, the total wave field in the host region is written as

uh(r) = u0(r) + usc(r) . (3.3)

Inside the sphere both longitudinal and transverse waves exist, with different coefficients.
Only spherical Bessel functions are used, since they are finite at r = 0. We write

u(r) =
∑
`m

{
aL`m

1

Ql
∇ [j`(Qlr)Y`m(r̂)] + aM`mj`(Qtr)X`m(r̂)+

+aN`m
i

Qt
∇× [j`(Qtr)X`m(r̂)]

}
, r ≤ S, (3.4)

where Qν =
Ω

cν
, ν = l, t and cl =

√
λs + 2µs

ρs
, ct =

√
µs
ρs

and aP`m are appropriate

coefficients to be determined. In general, in a linear scattering problem, the partial wave
amplitudes of the scattered field and of the field inside the scatterer depend linearly on
the corresponding amplitudes of the incident field

a+L`m =
∑
`′m′

TL`m;L`′m′a0L`′m′ , (3.5)

aP`m =
∑
`′m′

RP`m;L`′m′a0L`′m′ , P = L,M,N . (3.6)

where we defined the scattering T matrix and the corresponding R matrix for the partial
wave amplitudes inside the sphere. In order to calculate the matrix elements we must apply
appropriate boundary conditions on the surface of the sphere. These require continuity of
two quantities: the displacement vector u and the surface traction τ , given by (1.46). The
components of τ depend on the field u so their form will change depending on the kind
of waves propagating in the sphere and the host. In case of a solid sphere in a fluid host,
both longitudinal and transverse waves exist inside the sphere, while only longitudinal
waves can propagate in the host. This means that ct = 0 and µ = 0 and as a result the
surface traction components τθ, τφ vanish.

A tangential displacement, with respect to the interface, in the solid cannot be con-
nected with the corresponding in the fluid, because in fluids pure shear deformation does
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not exist, and it is for this reason that we do not require continuity for the angular com-
ponents of the elastic field at the interface, when at least one of the two media in contact
is fluid. In this case, the boundary conditions are

ur|r=S = uhr

∣∣∣
r=S

τr|r=S = τhr

∣∣∣
r=S

τθ|r=S = 0

τφ|r=S = 0

(3.7)

The expression for the field in the fluid host is given by Eqs. (3.1)-(3.3) and inside the
sphere by (3.4). With the help of Appendix C, the expressions for the coefficients B(i)`m

are simplified greatly in the case of fluid host (see Eq. C.4), because the coefficients of the
transverse waves are eliminated. So the continuity of ur results in

a+L`mh
+′

` (xh) + aN`m

√
`(`+ 1)

j`(xt)

xt
− aL`mj′`(xl) = −a0L`mj′`(xh). (3.8)

From the continuity of τr we obtain

−a+L`m
x2t
2xh

ρh
ρs
h+` (xh) + aN`m

√
`(`+ 1)

xtj
′
`(xt)− j`(xt)

xt
−

− aL`m

[
`(`+ 1)− x2t /2

]
j`(xl)− 2xlj

′
`(xl)

xl
= a0L`m

x2t
2xh

ρh
ρs
j`(xh). (3.9)

In the above expressions we introduced the notation xh = QhS, xl = QlS, xt = QtS. For
the boundary condition concerning the angular components of τ we obtain, with the help
of (C.2) and (B.27), the following vector

τ − τ r = τθθ̂ + τφφ̂ =
∑
`m

[
B(4)`mX`m(r̂) + B(5)`mr̂×X`m(r̂)

]
. (3.10)

The advantage of this expression is that if we apply the boundary condition of continuity
for the corresponding vectors inside and outside the sphere we will result in an expression
of the form (B.37). This means that the difference of the coefficients B(i)`m, i = 4, 5, inside
and outside the sphere, must be zero. We obtain

aL`m
√
`(`+ 1)

xlj
′
`(xl)− j`(xl)

xl
+ aN`m

xtj
′
`(xt)− [`(`+ 1)− 1− x2t /2]j`(xt)

xt
= 0 , (3.11)

aM`m[xtj
′
`(xt)− j`(xt)] = 0 . (3.12)
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From Eq. (3.8), (3.9), (3.11) and (3.12) it can be clearly seen that the T and R matrices,
defined from (3.5), (3.6) are diagonal in {`,m} and independent of m, i.e.

TL`m;L`′m′ = TLL;`δ``′δmm′

RP`m;L`′m′ = RPL;`δ``′δmm′ .
(3.13)

Moreover, Eq. (3.12), which involves only transverse M modes, is uncoupled from the rest
[Eqs. (3.8), (3.9) and (3.11)] and leads to

RML;` = 0 or xtj
′
`(xt)− j`(xt) = 0. (3.14)

The first from these two equations means that an incident L wave will not excite internal
M waves within the sphere, i.e., the two subspaces {L,N} and M are decoupled. The
second one, when solved, will provide the so-called torsional eigenmodes [73]. These modes
are localized in the sphere and cannot be excited by an externally incident acoustic wave.
The sphere is oscillating, without change in its volume. The dimensionless eigenfrequencies
[xt]`n, which arise as solutions n = 1, 2, 3, ... of Eq. (3.14) for a given ` = 1, 2, ..., are given
in Table 3.1 for the first few values of n and `. These are calculated by solving numerically
the second of Eqs. (3.14) using bisection method, and are in agreement with the known
values from the literature [73].

`\n 1 2 3 4

1 5.76346 9.09501 12.3229 15.5146
2 2.50113 7.13601 10.5146 13.7717
3 3.86470 8.44492 11.8817 15.1754
4 5.09462 9.71250 13.2109 16.5445
5 6.26577 10.9506 14.5108 17.8858
6 7.40360 12.1664 15.7876 19.2042

Table 3.1: Dimensionless eigenfrequencies of torsional eigenstates.

The three remaining equations (3.8), (3.9) and (3.11) constitute a linear system for
the unknowns TLL;`, RLL;`, and RNL;`, which can be written as

d11 d12 d13
d21 d22 d23
d31 d32 d33

 TLL;`
RNL;`

RLL;`

 =

 b1
b2
b3

 , (3.15)
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where

d11 = h+′` (xh) (3.16)

d12 =
√
`(`+ 1)

j`(xt)

xt
(3.17)

d13 = −j′`(xl) (3.18)
d21 = 0 (3.19)

d22 =
xtj

′
`(xt)− [`(`+ 1)− 1− x2t /2]j`(xt)

xt
(3.20)

d23 =
√
`(`+ 1)

xlj
′
`(xl)− j`(xl)

xl
(3.21)

d31 = − x2t
2xh

ρh
ρs
h+` (xh) (3.22)

d32 =
√
`(`+ 1)

xtj
′
`(xt)− j`(xt)

xt
(3.23)

d33 = −
[`(`+ 1)− x2t /2]j`(xl)− 2xlj

′
`(xl)

xl
(3.24)

b1 = −j′`(xh) (3.25)
b2 = 0 (3.26)

b3 =
x2t
2xh

ρh
ρs
j`(xh). (3.27)

Solving this 3×3 system, we obtain the second kind of modes, so-called spheroidal, which
are not bound but, as we will see in the example later in this chapter, they can be resonant
with long lifetime (virtual bound states).

To summarize, the matrices T , R have the following properties:

1. they are diagonal with respect to `, which means that the angular momentum is
preserved,

2. they are independent of m, since the problem has azimuthal symmetry,

3. the subspace M is decoupled and provides the bound torsional eigenstates of the
sphere, while the L,N subspaces are coupled. This means that an incident L wave
will create scattered L waves in the fluid host and a linear combination of L and N
waves inside the sphere (continuous spheroidal states).
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3.2 Scattering matrix of a poroelastic sphere in fluid
We now consider a fluid-saturated poroelastic sphere of radius S, centered at the origin
of coordinates, immersed in a fluid host medium characterized by mass density ρh and
bulk modulus Kh = λh. A plane acoustic wave, of angular frequency Ω, incident on that
sphere, gives rise to a scattered wave and the total displacement field outside the sphere,
expanded into longitudinal spherical waves [23,24], has a form similar to Eq. (3.3),

uh(r) =
∑
`m

{
a0L`m

1

Qh
∇[j`(Qhr)Y`m(r̂)] + a+L`m

1

Qh
∇[h+` (Qhr)Y`m(r̂)]

}
, (3.28)

where a0L`m and a+L`m are the amplitudes of the spherical-wave components of the incident
and scattered fields, respectively, Qh = Ω

√
ρh/Kh is the wave number in the fluid host at

given frequency. The associated (diagonal) stress tensor [see Eq. (1.24)]

←→σ h =
←→
I Kh∇ ·Uh ≡ −

←→
I ph (3.29)

defines the pressure, ph, in the fluid host. As we already explained in § 2.2 the displacement
field inside a poroelastic sphere has two components, u(r) and U(r) for the solid and fluid
component, respectively. These can be expanded into longitudinal and transverse vector
spherical waves according to Eq. (2.63) with appropriate expansion coefficients

u(r) =
∑
`m

{
a1L`m

1

Q1
∇[j`(Q1r)Y`m(r̂)] + a2L`m

1

Q2
∇[j`(Q2r)Y`m(r̂)]

+ aM`mj`(Q3r)X`m(r̂) + aN`m
i

Q3
∇× [j`(Q3r)X`m(r̂)]

}
, (3.30)

U(r) =
∑
`m

{
A1a1L`m

1

Q1
∇[j`(Q1r)Y`m(r̂)] +A2a2L`m

1

Q2
∇[j`(Q2r)Y`m(r̂)]

+A3aM`mj`(Q3r)X`m(r̂) +A3aN`m
i

Q3
∇× [j`(Q3r)X`m(r̂)]

}
, (3.31)

whereQ1, Q2 are the solutions of Eq. (2.20), Q3 is given by Eq. (2.23), A1, A2 are calculated
in Eq. (2.21) and A3 in Eq. (2.24).

The expansion coefficients in Eqs. (3.28), (3.30) and (3.31) are determined from those
of the incident wave, a0L`m, uniquely from the following boundary conditions at the surface
of the sphere [74].

(a): Continuity of the radial, azimuthal, and polar components of the surface traction

←→σ r̂ =←→σ hr̂ . (3.32)
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(b): Continuity of the normal component of the filtration velocity

f(U̇r − u̇r) = u̇hr − u̇r , (3.33)

that ensures conservation of fluid mass.
(c): Consistency of the fluid pressure drop and the normal component of the filtration

velocity (Darcy’s law)
f(U̇r − u̇r) = −κs(ph − p) , (3.34)

where κs is a parameter that measures interface permeability. For a sealed interface,
κs = 0, and, for an open interface, κs =∞.

From the continuity of the radial component of the surface traction we obtain

d12a1L`m + d13a2L`m + d14aN`m = b1a
0
L`m − d11a+L`m , (3.35)

where

d11 = −xhh+` (xh)
d12 = {j`(x1)[x21(λ1 + 2µb)/Kh − 2`(`+ 1)(µb/Kh)] + 4x1j

′
`(x1)(µb/Kh)}/x1

d13 = {j`(x2)[x22(λ2 + 2µb)/Kh − 2`(`+ 1)(µb/Kh)] + 4x2j
′
`(x2)(µb/Kh)}/x2

d14 = 2
√
`(`+ 1)[x3j

′
`(x3)− j`(x3)](µb/Kh)/x3

b1 = xhj`(xh) , (3.36)

with xν = QνS, ν = 1, 2, 3, xh = QhS, and λν = P − 2µb + Q + Aν(Q + R), ν = 1, 2.
Continuity of the tangential components of the surface traction yields

[x3j
′
`(x3)− j`(x3)]aM`m = 0 (3.37)

and
d22a1L`m + d23a2L`m + d24aN`m = 0 , (3.38)

where

d22 =
√
`(`+ 1)[x1j

′
`(x1)− j`(x1)]/x1

d23 =
√
`(`+ 1)[x2j

′
`(x2)− j`(x2)]/x2

d24 = [(1 + x23/2− `(`+ 1)]j`(x3) + x3j
′
`(x3)]/x3 . (3.39)

From Eq. (3.33) we obtain

d32a1L`m + d33a2L`m + d34aN`m = b3a
0
L`m − d31a+L`m , (3.40)
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where

d31 = −h+′` (xh)

d32 = j′`(x1)[1 + f(A1 − 1)]

d33 = j′`(x2)[1 + f(A2 − 1)]

d34 = −
√
`(`+ 1)j`(x3)[1 + f(A3 − 1)]/x3

b3 = j′`(xh) . (3.41)

Finally, Eq. (3.34), in the case of an open interface (κs =∞⇒ p = ph) that will concern
us here, gives

d42a1L`m + d43a2L`m = b4a
0
L`m − d41a+L`m , (3.42)

where

d41 = −xhh+` (xh)
d42 = x1j`(x1)[1−Kb/Ks + f(A1 − 1)]R/(f2Kh)

d43 = x2j`(x2)[1−Kb/Ks + f(A2 − 1)]R/(f2Kh)

b4 = xhj`(xh) . (3.43)

Alternatively, for a finite value of κs, from Eq. (3.34) we obtain

d42a1L`m + d43a2L`m + d44aN`m = b4a
0
L`m − d41a+L`m , (3.44)

where

d41 = κsxhh
+
` (xh)

d42 = ixhj
′
`(x1)f(1−A1)− κsx1j`(x1)[1−Kb/Ks + f(A1 − 1)]R/(f2Kh)

d43 = ixhj
′
`(x2)f(1−A2)− κsx2j`(x2)[1−Kb/Ks + f(A2 − 1)]R/(f2Kh)

d44 = −i
√
`(`+ 1)xhj`(x3)f(1−A3)/x3

b4 = −κsxhj`(xh) , (3.45)

with κs = κs
√
Khρh = κsρhch being a dimensionless interface permeability parameter.

For the fluid saturated poroelastic sphere, we define the T and R matrices as in the case
of the elastic sphere [Eqs. (3.5), (3.6)] with the only difference that the polarization index
for the internal (within the sphere) waves must include both slow and fast longitudinal
waves, i.e. P = 1L, 2L,M,N . In analogy with what described in § 3.1 torsional modes,
solutions of Eq. (3.37), are decoupled from the rest of the modes [Eqs. (3.35), (3.36),
(3.38) - (3.40)]. These equations constitute a linear system for the unknowns TLL;`, R1LL;`,
R2LL;`, and RNL;`, which can be written as

d11 d12 d13 d14
d21 d22 d23 d24
d31 d32 d33 d34
d41 d42 d43 d44




TLL;`
R1LL;`

R2LL;`

RNL;`

 =


b1
b2
b3
b4

 , (3.46)
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where the various nonzero coefficients are given by Eqs. (3.36), (3.39), (3.41), and (3.43)
or (3.45). Similar formulas for the scattering T matrix of the submerged fluid-saturated
poroelastic sphere have also been reported by others [42, 75, 76], however, the explicit
expressions derived here correspond to the specific basis of vector spherical waves used in
our layer-multiple-scattering method [23,24].

3.3 Scattering cross section and density of states

The usual definition [77] of the total scattering cross section σ is the integral
∫
dr̂σsc(r̂)

where σsc(r̂)dr̂ is the ratio of the number of particles scattered per unit time inside the
solid angle dr̂, to the number of incident particles per time and surface unit. In case of
scattering of elastic waves we do not refer to particles anymore and we replace it with the
wave energy. For a plane wave incident on a spherical scatterer, along the z direction, we
have

σsc = lim
r→∞

∫
S

dr̂r2
〈P sc

r 〉
〈P 0

z 〉
(3.47)

The brackets denote time average in a period and Pα is the α-component of the Poynting
vector, P. For elastic waves we have [51]

P = −υ←→σ = −u̇←→σ (3.48)

where υ is the wave velocity 1 and ←→σ is the stress tensor. Assuming a monochromatic
wave, u(r, t) = Re{u(r)e−iΩt}, we have

←→σ (r, t) = Re{←→σ (r)e−iΩt} (3.49)

and finally
〈P〉 = 〈−υ←→σ 〉 = 〈−Re{−iΩu(r)e−iΩt}Re{←→σ (r)e−iΩt}〉

= 〈−Ω Im{u(r)e−iΩt}Re{←→σ (r)e−iΩt}〉 .
(3.50)

With the help of: 〈cosx sinx〉 = 0, 〈cos2 x〉 = 〈sin2 x〉 = 1

2
, we end up to

〈P〉 = Ω

2
Im{u∗(r)←→σ (r)}. (3.51)

We will now calculate the Poynting vector for a longitudinal plane wave of the form
u0(r) = u0ẑe

iQlz (as already stated the direction of propagation is ẑ). The stress tensor is
1υ = u̇ is valid only if we assume perfect crystal with a single atom per lattice point and with no atoms

in the interstitial space. The above equity denotes that we ignore phenomena associated with defects.



42 CHAPTER 3. SCATTERING BY A SPHERICAL OBJECT

given by (1.37), where for a fluid medium (µ = 0) it will be diagonal and more specifically
σ = λe = λ∇ · u. We obtain

〈P 0
z 〉 =

Ω

2
Im{ẑ · [u∗0(r)

←→σ (r)]}

=
Ω

2
Im{u∗0e−iQlzλ∇ · u}

=
Ω

2
Qlλ|u0|2.

(3.52)

The Poynting vector of the longitudinal scattered wave, which has the form of Eq. (3.2),
i.e., usc(r) =

∑
`m a

+
L`m

1

Ql
∇
[
h+` (Qlr)Y`m(r̂)

]
, is

〈P sc
r 〉 =

Ω

2
Im{r̂ · [u∗sc(r)

←→σ (r)]}

=
Ω

2
Im{u∗sc;rτr + u∗sc;θτθ + u∗sc;φτφ}

=
Ω

2
Im{u∗sc;rτr},

(3.53)

since, we recall, that τθ = τφ = 0 for a fluid host. Using Eqs. (C.1), (C.2) into Eq. (3.53)
and integrating over the solid angle dr̂, with use of the orthonormality of the spherical
harmonics [see Eq. (B.8)], we obtain∫

dr̂r2〈P sc
r 〉 =

Ω

2
Im{

∑
`m

|a+L`m|
2λ(−Ql)h

−′
` (Qlr)h

+
` (Qlr)r

2} (3.54)

In the limit r →∞, the asymptotic forms of the spherical Hankel functions from (A.13),
(A.14) lead to the following final expression∫

dr̂r2〈P sc
r 〉 =

Ω

2

λ

Ql

∑
`m

|a+L`m|
2. (3.55)

Replacing Eqs. (3.52), (3.55) into (3.47) leads to

σsc =
1

Q2
l

∑
`m

|a+L`m|
2

|u0|2
=

1

Q2
l

∑
`m

|TLL;`|2
|a0L`m|2

|u0|2
. (3.56)

Making use of Eq. (2.62) we express the expansion coefficient a0L`m with respect to the
plane wave amplitude u0, a0L`m = −4πi`+1Y ∗`m(Q̂l)u0, and we can write∑

m

|a0L`m|2

|u0|2
= 16π2

∑
m

|Y`m(Q̂l)|2 = 4π(2`+ 1). (3.57)
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Replacing Eq. (3.57) into (3.56) we finally obtain the total scattering cross section of the
sphere, normalized to the geometric cross section πS2

σsc
πS2

=
4

x2l

∑
`

(2`+ 1)|TLL;`|2. (3.58)

Two other useful quantities are the extinction and absorption cross sections, given by the
following expressions, that are shown in a straightforward manner, following a similar
analysis,

σext
πS2

= − 4

x2l

∑
`

(2`+ 1)Re{TLL;`} , (3.59)

σabs = σext − σsc . (3.60)

Another useful quantity, that can be directly calculated with the help of T matrix, is
the change in the number of states of the acoustic field, up to an angular frequency Ω,
induced by a single poroelastic sphere in an infinite host medium, and is given from the
expression

∆N(Ω) =
1

π

∑
`

(2`+ 1)Im ln [1 + TLL;`(Ω)] . (3.61)

Of more interest is the corresponding density of states induced by the sphere and given
by ∆n(Ω) = d∆N(Ω)/dΩ.

3.4 Example
We will close this chapter with an example where we apply the previously developed
theoretical tools in two cases: a solid homogeneous spherical scatterer and a fluid-saturated
poroelastic spherical scatterer, both immersed in fluid host. First, we choose a solid
homogeneous polystyrene sphere of mass density ρs = 1050 kg m−3, longitudinal wave
velocity cl = 2350 m s−1 and transverse wave velocity ct = 1200 m s−1, immersed in
water [mass density ρh = 1000 kg m−3 and (longitudinal) wave velocity ch = 1480 m s−1].
Figure 3.1 depicts the dimensionless scattering cross section σsc/πS2 and the dimensionless
change in the density of states ∆nch/S. We note that two characteristic scattering peaks
appear, one at ΩS/ch = 3.076, corresponding to angular momentum ` = 2 and the second
with lower intensity at ΩS/ch = 4.492, corresponding to angular momentum ` = 3. These
resonant states manifest themselves as Lorentzian peaks at the same frequency in the
change in the density of states, as expected. An important comment has to be made at
this point: the lorentzian-shaped curves in the density of states correspond to an area
∆N(ω) of 5 and 7 states for the individual modes ` = 2 and ` = 3 respectively. This
confirms that every single ` mode is (2`+ 1)-degenerated due to the azimuthal symmetry
of the spherical particle, in accordance with the factor (2` + 1) appearing in Eq. (3.61).
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Figure 3.1: (a) Reduced scattering cross section of an acoustic plane wave incident on
a homogeneous polystyrene sphere of radius S immersed in water and (b) change in the
density of states of the acoustic field induced by this sphere.

It is, also, worth noting that our results, in the way they are presented, do not depend
explicitly on the radius S of the particle and apply to any radius as long as the different
quantities (Ω, σsc,∆n) are appropriately scaled.

In the second case, we consider a water-saturated polystyrene porous sphere immersed
in water. The elastic parameters for the solid component of the sphere are identical to those
of the solid homogeneous polystyrene; the elastic parameters for the fluid inside the porous
and in the host region are those of water. We need in addition the values of the elastic
moduli of the bare skeletal frame of the porous polystyrene sphere, Kb and µb, which are
evaluated using Berryman’s self-consistent effective medium theory for a polystyrene/void
elastic composite, assuming that the pores are modeled by randomly distributed needles, as
appropriate for the low-porosity limit that will concern us here [78,79]. For f = 10% that
we will consider in our study, we find Kb = 2.602 GPa and µb = 1.186 GPa. Accordingly,
the tortuosity is given by ξ = f−2/3, for a random array of needles [59].

In Biot’s theory [25,26], by which we describe the individual porous spheres, there are
two distinct limits. When the viscous skin depth, δ =

√
2η/(Ωρf ), is much larger than

the radius, Rp, of the (cylindrical) pores, viscous drag prevents the efficient formation
of slow longitudinal waves, which are associated with an out-of-phase relative motion of
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Figure 3.2: (a),(c) Reduced scattering cross section of an acoustic plane wave incident on
a water-saturated porous polystyrene sphere of radius S immersed in water, and, (b),(d)
change in the density of states of the acoustic field induced by this sphere treated as
effectively homogeneous (left panel) and in the limit of η = 0 (right panel). The slow
waves are manifested as very sharp resonances.

the solid frame and infiltrated liquid. In this so-called viscous-coupling limit, the porous
material behaves as an effective homogeneous medium, the elastic parameters of which
can be evaluated, e.g., by the self-consistent homogenization method of Berryman [78,79],
while dissipative losses are quite small and can be neglected [42]. On the other hand, when
δ � Rp, we are in the so-called inertial-coupling limit where all three bulk acoustic modes
in the porous material (transverse, fast and slow longitudinal) become nondispersive and
attenuation free, as one would have in the absence of viscous losses (η = 0). In Fig. 3.2,
we present two cases corresponding to those two limits. In the case δ � Rp [left panel in
Fig. 3.2] we treat the porous sphere as effectively homogeneous, with elastic parameters
ρeffs = 1045 kg m−3, ceffl = 2222 m s−1, and, cefft = 1073 m s−1, lower than those of
the corresponding homogeneous sphere, calculated by the self-consistent homogenization
method of Berryman [78, 79]. We observe the same peaks appearing as in the case of the
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homogeneous solid sphere, except that they are sharper and red-shifted [at ΩS/ch = 2.807
and ΩS/ch = 4.124 for the modes ` = 2 and ` = 3, respectively]. In the case δ � Rp [right
panel in Fig. 3.2] we treat the sphere as poroelastic, using the results of § 3.2, considering
the limit η = 0. Here, additional very sharp resonances appear that originate from the
manifestation of the slow waves in the absence of viscous losses.



Chapter 4

Layer Multiple Scattering

Among the methods developed for the theoretical study of periodic phononic structures,
the LMS method is especially attractive because it provides many advantages, such as
being fast and numerically accurate. It combines the expansion into spherical waves for
the description of scattering by single particles and 2D structures with the expansion into
plane waves for the scattering between such consecutive layers. The only restriction is that
the layers must have the same 2D periodicity. This method calculates the reflectance and
transmittance of finite slabs and also the complex band structure of an infinite crystal. In
this chapter we describe in a concise but rigorous manner our LMS method [23,24], which
we recently extended to include porous fluid-saturated scatterers [80, 81], by adapting it
in the case of interest, i.e., for acoustic scattering.

4.1 Scattering by a plane of spheres

In our study we will deal with structures consisting of consecutive layers, say perpendicular
to the z direction. Whether these structures are finite or infinite in this direction, the basic
component is a composite slab, consisting, in general, of one or more layers, each of them
containing spherical non-overlapping scatterers arranged in a 2D lattice, parallel to the
xy plane. The layers can be displaced (slided), parallel to the xy plane, and/or along z
direction, the only restriction being to keep the same 2D periodicity throughout the slab.
The 2D lattice defined by the vectors

Rn = n1a1 + n2a2 , (4.1)

where n1, n2 = 0,±1,±2,±3, . . ., and a1, a2 are the primitive lattice vectors in the xy
plane. Next, we define the corresponding 2D reciprocal lattice as follows

g = m1b1 +m2b2 , (4.2)

47
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with m1,m2 = 0,±1,±2,±3, . . . and the primitive vectors of the reciprocal lattice b1, b2,
defined from

bi · aj = 2πδij , i, j = 1, 2 . (4.3)
Since the structures under study present 2D periodicity perpendicular to the z direction,
we write the parallel to the xy plane component of the wave vector of an incident plane
wave as follows

q‖ = k‖ + g′ , (4.4)
where k‖ is the reduced wave vector inside the Surface Brillouin Zone (SBZ) of the 2D
lattice and g′ an appropriate vector of the reciprocal lattice (4.2), so that for a given q‖,
the vector q‖ − g′ will lie within the SBZ, after successive subtractions of vectors of the
reciprocal space. From Eqs. (4.3) and (4.4) it follows immediately that exp(iq‖ ·Rn) =
exp(ik‖ ·Rn).

We now consider at z = 0 a plane of nonoverlapping submerged fluid-saturated poroe-
lastic spheres, which are centered on the sites Rn of a given 2D lattice. The wavevector
of the incident wave, using Eq. (4.4), has the form

K±g′ = k‖ + g′ ± ẑ[Q2
h − (k‖ + g′)2]1/2 (4.5)

where Qh = Ω
√
ρh/Kh is the wavenumber in the medium surrounding the scatterers (host

medium) and the + or − sign refers to incidence from the left (z < 0) or from the right
(z > 0), respectively. The corresponding displacement field is written as

u±in(r) = [uin]
±
g′ exp(iK

±
g′ · r)K̂±g′ (4.6)

and the coefficients in the respective spherical wave expansion, according to Eq. (2.62),
are a0L`m = 4πi`+1(−1)m+1Y`−m(K̂±g′)[uin]

±
g′ .

Because of the 2D periodicity of the array of spheres, the wave scattered by it, when
the wave given by Eq. (4.6) is incident upon it, has the following form

usc(r) =
∑
Rn

exp(ik‖ ·Rn)
∑
`m

b+L`m
1

Qh
∇[h+` (Qhrn)Y`m(r̂n)] , (4.7)

where rn = r−Rn and the coefficients b+L`m are obtained by solving the following system
of linear equations [23]∑

`′m′

(δ``′δmm′ − TLL;` Z`m
`′m′)b+L`′m′ = TLL;` a

0
L`m , (4.8)

with
Z`′m′
`m = 4π

∑
Rn 6=0

exp(ik‖ ·Rn)
∑
`′′m′′

(−1)(`−`′−`′′)/2(−1)m′+m′′
h+`′′(QhRn)Y`′′−m′′(−R̂n)

×
∫
dr̂Y`m(r̂)Y`′−m′(r̂)Y`′′m′′(r̂) .

(4.9)
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Since Ω and k‖ are conserved quantities in the scattering process, the scattered field,
given by Eq. (4.7), will consist of a series of plane waves with wave vectors

K±g = k‖ + g ± ẑ[Q2
h − (k‖ + g)2]1/2 , ∀g . (4.10)

Indeed, with the help of the mathematical identity

∑
Rn

exp(ik‖ ·Rn)h
+
` (Qhrn)Y`m(r̂n) =

∑
g

2π(−i)`

QhA0K
+
gz
Y`m(K̂s

g) exp(iK
s
g · r) , (4.11)

where A0 is the area of the unit cell of the 2D lattice and s = + or − corresponds to z > 0
or z < 0, respectively, it is straightforward to show that

usc(r) =
∑
g

[usc]
s
g exp(iK

s
g · r)K̂s

g , (4.12)

with
[usc]

s
g =

∑
`m

∆L`m(Ks
g)b

+
L`m ,

where

∆L`m(Ks
g) =

2π(−i)`−1

QhA0K
+
gz
Y`m(K̂s

g) .

It is worth noting that, though the scattered field consists, in general, of a number of
diffracted beams corresponding to different 2D reciprocal lattice vectors g, only beams for
which Ks

gz is real constitute propagating waves. When (k‖ + g)2 > Q2
h the corresponding

wave decays to the right for s = +, and to the left for s = −. We also note that [usc]
s
g

depend on the incident plane wave through the coefficients b+L`m, which are evaluated from
Eqs. (4.8) for a given plane wave component of wavevector Ks′

g′ . For example, when a plane
wave given by Eq. (4.6) is incident on the plane of spheres from the left, the transmitted
wave (incident+scattered) on the right of the plane is given by

u+
tr(r) =

∑
g

[utr]
+
g exp(iK+

g · r)K̂+
g , z > 0 , (4.13)

with
[utr]

+
g = [uin]

+
g′δgg′ + [usc]

+
g ≡ S++

gg′ [uin]
+
g′ ,

and the reflected wave on the left of the plane by

u−rf (r) =
∑
g

[urf ]
−
g exp(iK−g · r)K̂−g , z < 0 , (4.14)
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Figure 4.1: Transmittance and reflectance matrices for a plane of spheres.

with
[urf ]

−
g = [usc]

−
g ≡ S−+gg′ [uin]

+
g′ .

Similarly we can define the transmission matrix elements S−−gg′ and the reflection matrix
elements S+−

gg′ for a plane wave incident on the plane of spheres from the right. Using
Eq. (4.12) we obtain

Sss′
gg′ = δss′δgg′ +

∑
`m

∆L`m(Ks
g)b

+
L`m(Ks′

g′)([uin]
s′
g′)−1 , (4.15)

where we explicitly denoted the dependence of b+L`m on Ks′
g′ . We note that the matrix

elements Sss′
gg′ obey the symmetry relation S−s−s

′

gg′ = Sss′
gg′ . The physical meaning of these

matrices is depicted in Fig. 4.1.
The difference in the number of states up to a given frequency Ω, between the system

under consideration (a plane of particles in a homogeneous medium) and that of the host
medium extending over all space is given by

∆N(Ω) =
N

A

∫ ∫
SBZ

d2k‖∆N(Ω,k‖) , (4.16)

where N is the number of surface unit cells of the plane particles and A the area of
the SBZ. The k‖-resolved change in the number of states is given, in the spherical-wave
representation, by [82]

∆N(Ω,k‖) =
1

π
Im ln det(I+T)− 1

π
Im ln det(I−TZ) , (4.17)
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where I is the unit matrix, Z is the matrix whose elements are defined by Eq. (4.9), and
in the plane wave representation by

∆N(Ω,k‖) =
1

2π
Im ln det S , (4.18)

where
S =

(
S++ S+−

S−+ S−−

)
. (4.19)

We note that the S matrix is defined in the basis of those reciprocal-lattice vectors which
correspond to propagating beams and that the resulting ∆N(Ω,k‖), contrary to that
obtained through Eq. (4.17), does not include possible bound states of the system. The
corresponding k‖-resolved change in the density of states is obtained through ∆n(Ω,k‖) =
∂∆N(Ω,k‖)/∂Ω .

4.2 Scattering by a slab

In order to describe scattering by multilayers of particles with the same 2D periodicity, it
is convenient to express the waves on the left of a given layer with respect to an origin,
Al, on the left of the layer at −dl from its center and the waves on the right of this layer
with respect to an origin, Ar, on the right of the layer at dr from its center, i.e., a plane
wave on the left of the layer will be written as usg exp[iKs

g · (r−Al)]K̂
s
g and a plane wave

on the right of the layer will be written as usg exp[iKs
g · (r − Ar)]K̂

s
g . With the above

choice of origins the transmission (reflection) matrix elements of a layer become

QI
gg′ = S++

gg′ exp [i(K
+
g · dr +K+

g′ · dl)]

QII
gg′ = S+−

gg′ exp [i(K
+
g · dr −K−g′ · dr)]

QIII
gg′ = S−+gg′ exp [−i(K−g · dl −K+

g′ · dl)]

QIV
gg′ = S−−gg′ exp [−i(K−g · dl +K−g′ · dr)] .

(4.20)

The transmission (reflection) matrices for a multilayer slab are obtained from the corre-
sponding matrices of the individual layers.

A composite slab may consist of a finite number of elements, where each element can
be a plane of scatterers, a planar interface, or a homogeneous slab. We remind that if two
consecutive layers are immersed in different hosts, separated by a planar interface, then
this interface should be considered as an extra element that will cause scattering. The
reflection and transmission matrices, Q, for a pair of consecutive elements, let us denote
them ‘1’ and ‘2’, are calculated by combining the matrices Q(1) and Q(2) of the two
elements as shown in Fig. 4.2. Here it must be noted that, even though the choice of dl
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Figure 4.2: Transmittance and reflectance matrices for a multilayer slab.

and dr is somehow arbitrary, it must respect the matching between consecutive elements,
i.e., Ar(1) = Al(2). It is easy to prove, after taking into consideration all the processes of
multiple scattering, described schematically in Fig. 4.2, that

QI = QI(2)[1−QII(1)QIII(2)]−1QI(1)

QII = QII(2) +QI(2)QII(1)[1−QIII(2)QII(1)]−1QIV(2)

QIII = QIII(1) +QIV(1)QIII(2)[1−QII(1)QIII(2)]−1QI(1)

QIV = QIV(1)[1−QIII(2)QII(1)]−1QIV(2) . (4.21)

All the matrices refer to the same Ω and k‖. We remind that the waves on the left and the
right of the pair of elements are expanded with respect to the point defined by the position
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vector −dl(1, 2) = −dl(1) from the center of the left element and dr(1, 2) = dr(2) from
the center of the right element, respectively. The same procedure can, obviously, be used
to calculate the transmission and reflection matrices from three consecutive elements, by
combining the matrices of the pair of two elements with those of the third. In this way,
we can find the scattering matrices of a composite slab consisting by any (finite) number
of elements.

For a finite slab of a phononic crystal, consisting of a large number of repeating iden-
tical composite unit slabs, a technique can be used to double consecutively the size of the
system, that allows the fast and effective calculation of the scattering matrices character-
izing the whole system. Let us assume that we have 2M (M = 0, 1, 2, ...) consecutive unit
slabs. Having calculated the Q matrices of a unit slab, the corresponding matrices for a
pair of such slabs are calculated by the way described in Eqs. (4.21). Next, using as units
the Q matrices of the pair, those of four consecutive unit slabs can be deduced, and so on;
by doubling the number of the unit slabs in each step, we finally obtain the Q matrices
for the whole slab of the crystal. If this slab is immersed in a different homogeneous host,
without absorption, the scattering on the left and right side must be taken into consider-
ation by handling these surfaces as extra elements contributing to the multiple scattering.
It is worth noting that the (semi-infinite) medium on the left of the slab of the crystal can
be different from that at its right.

For a plane wave [uin]
+
g′ exp[iK

+
g′ · (r−AL)]K̂

+
g′ , incident on the slab from the left, we

finally obtain a reflected wave
∑
g

[urf ]
−
g exp[iK−g · (r−AL)]K̂

−
g on the left of the slab and

a transmitted wave
∑
g

[utr]
+
g exp[iK+

g · (r −AR)]K̂
+
g on the right of the slab, where AL

(AR) is the position vector of the appropriate origin at the left (right) interface of the
slab. We have

[utr]
+
g = QI

gg′ [uin]
+
g′ (4.22)

and

[urf ]
−
g = QIII

gg′ [uin]
+
g′ , (4.23)

where QI and QIII are the appropriate transmission and reflection matrices of the whole
slab. After calculating the transmitted and reflected waves on the right and left of the slab,
we can obtain the corresponding transmittance T (Ω,k‖+g′) and reflectance R(Ω,k‖+g′)
from Eqs. (4.24) and (4.25), respectively.

These are defined as the ratio of the transmitted, respectively the reflected, energy
flux to the energy flux associated with the incident wave. Assuming, e.g., incidence from
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the left we obtain with the help of Eq. (3.52)

T =

∑
g

|[utr]+g |2K+
gz

|[uin]+g′ |2K+
g′z

(4.24)

and

R =

∑
g

|[urf ]−g |2K+
gz

|[uin]+g′ |2K+
g′z

. (4.25)

The above expressions are valid for the case of a slab having the same (semi-infinite)
medium at its left and at its right. We remember that only propagating beams (those
with K+

gz real) enter the numerators of the above equations. Finally we note that if
absorption is present it can be calculated from the requirement of energy conservation,
A = 1− T −R .

On the other hand, the change in the number of states between the slab and the
homogeneous host medium extending all over the space can be calculated from Eqs. (4.16)
and (4.18), where the elements of the S matrix in the plane-wave representation are given
by

S++
gg′ = exp [−i(K+

g ·AR −K+
g′ ·AL)]Q

I
gg′

S+−
gg′ = exp [−i(K+

g ·AR −K−g′ ·AR)]Q
II
gg′

S−+gg′ = exp [−i(K−g ·AL −K+
g′ ·AL)]Q

III
gg′

S−−gg′ = exp [−i(K−g ·AL −K−g′ ·AR)]Q
IV
gg′ ,

(4.26)

for the given Ω and k‖. The phase factors in Eq. (4.26) arise from the need to refer
all waves to a common origin. The possible eigenmodes of the slab are obtained by
requiring existence of a wave field localized within the slab in the absence of incident
wave. Dividing the slab into a left and a right part, described by reflection matrices QII

1

and QIII
2 , respectively, this requirement leads to the secular equation

det[I−QII
1 Q

III
2 ] = 0 . (4.27)

4.3 Complex band structure of an infinite crystal
For a three-dimensional crystal consisting of an infinite periodic sequence of layers stacked
along the z-direction, the wave field in the host region between the n-th and the (n+1)-th
unit slabs has the form

u(r) =
∑
g

{u+gn exp[iK+
g · (r−An)]K̂

+
g + u−gn exp[iK

−
g · (r−An)]K̂

−
g } , (4.28)
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Figure 4.3: Q matrices for an infinite periodic phononic structure.

where An is an appropriate origin between the n-th and the (n + 1)-th unit slabs (see
Fig. 4.3). The coefficients u±gn are obviously related to u±gn+1 through the Q matrices of
the unit slab as follows

u+gn+1 =
∑
g′

[QI
gg′u+g′n +QII

gg′u−g′n+1] ,

u−gn =
∑
g′

[QIII
gg′u+g′n +QIV

gg′u−g′n+1] .
(4.29)

On the other hand Bloch’s theorem implies that u±gn+1 = exp(ik · a3)u±gn, where k =
(k‖, kz(Ω,k‖)) and a3 is a vector which connects a point in the n-th slab to an equivalent
point in the (n + 1)-th slab (Fig. 4.3). For given Ω and k‖ one can obtain kz from the
following eigenvalue equation(

QI QII

−[QIV]−1QIIIQI [QIV]−1[I−QIIIQII]

)(
u+
n

u−n+1

)
= exp(ik·a3)

(
u+
n

u−n+1

)
, (4.30)

which follows directly from Eq. (4.29) and Bloch’s theorem. Alternatively, one can formu-
late an eigenvalue equation for the transfer matrix(

QI −QII[QIV]−1QIII QII[QIV]−1

−[QIV]−1QIII [QIV]−1

)(
u+
n

u−n

)
= exp(ik · a3)

(
u+
n

u−n

)
. (4.31)
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The solutions kz(Ω,k‖) resulting from Eq. (4.30) or, equivalently, Eq. (4.31), looked upon
as functions of real Ω, define for each k‖ lines in the complex kz plane, which all together
constitute the complex band structure of the infinite crystal associated with the given
crystallographic plane. It is worth noting that the band structure exhibits periodicity
in the reciprocal space since replacing k‖ with k‖ + g renames the coefficients without
changing the form of the wave function. Moreover, because the eigenvalues of Eq. (4.30) are
of the form exp(ik ·a3), values of kz that differ by an integer multiple of 2π/a3z correspond
to the same Bloch wave. We can choose, as a result, the reduced band of k in the reciprocal
space as following: (k‖,Rekz) with k‖ = (kx, ky) extending over all the surface Brillouin
zone (SBZ) of the given crystallographic plane, and with −|b3|/2 < Rekz ≤ |b3|/2, where
b3 = 2π(a1×a2)/[a1 · (a2×a3)] = 2π/a3zẑ, while |a1| ≡ a0 (see Fig. 4.4). Here we should
also note that when a plane of mirror symmetry, associated with the crystallographic
plane under study, exists then the solutions (Bloch waves) of Eq. (4.30) appear in pairs:
kz(Ω;k‖) and kz(Ω;−k‖). A line of given k‖ may be real (in the sense that kz is real) over
certain frequency regions, and be complex (in the sense that kz is complex) for Ω outside
these regions. It turns out that, for given k‖ and Ω, out of the solutions kz(Ω,k‖), none
or, at best, a few are real and the corresponding eigenvectors represent propagating modes
of the acoustic field in the given infinite crystal. The remaining solutions kz(Ω,k‖) are
complex and the corresponding eigenvectors represent evanescent waves. These have an
amplitude which increases exponentially in the positive or negative z-direction and, unlike
the propagating waves, do not exist as physical entities in the infinite crystal. However,
they are an essential part of the physical solutions of the acoustic field in the case of a
surface or a slab of finite thickness. A region of frequency where propagating waves do
not exist, for given k‖, constitutes a frequency gap of the acoustic field for the given k‖.
If over a frequency region no propagating wave exists whatever the value of k‖, then this
region constitutes an absolute frequency gap.

Finally, for the sake of completeness, we note that the transfer matrix on the left hand
side of Eq. (4.31) can also provide the reflection matrix, R∞, of the corresponding semi-
infinite crystal and, through R∞, one can find the surface states of the crystal, if such
exist. In order to obtain R∞, the eigenvectors of the transfer matrix need to be arranged
in a matrix F which projects the space of forward and backward Bloch eigenmodes, V+

and V−, onto the original plane-wave basis, as follows [83,84](
u+
0

u−0

)
=

(
F++ F+−

F−+ F−−

)(
V+

V−

)
. (4.32)

By definition, each eigenmode propagates through the crystal without changing its state
and, on the other hand, for a semi-infinite crystal, there is no rear surface to reflect the
forward into backward Bloch waves. Therefore, the appropriate boundary condition for
the scattering problem of an acoustic wave incident on a semi-infinite phononic crystal
from the homogeneous host material that extends to infinity is V− = 0 [84]. Therefore
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Figure 4.4: The reduced k zone associated with the fcc (111) crystallographic plane (left
panel) and the corresponding SBZ (right panel). The (bulk) fcc Brillouin zone (shaded
tetradecahedron) is also shown for comparison.

Eq. (4.32) yields
u−0 = F−+[F++]−1u+

0 ≡ R∞u+
0 . (4.33)

On the other hand, the condition for the occurrence of surface states translates to the
existence of non-zero forward Bloch modes (V+ 6= 0) in the absence of incoming field
(u+

0 = 0) [85, 86]. Then Eq. (4.32) gives F++V+ ≡ u+
0 = 0, which is satisfied when

det[F++] = 0.
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Chapter 5

Phononic crystals of poroelastic
spheres

In this chapter we demonstrate the applicability of the LMS method for phononic crystals
of poroelastic spheres on two specific examples, namely close-packed fcc crystals of porous
silica [80] and polymer spheres immersed in water [81]. From another point of view,
and indeed in a different perspective, these crystals can be considered as double-porosity
granular materials.

5.1 Close-packed periodic structures of porous silica spheres

In the present section, we shall consider water-saturated porous silica as poroelastic ma-
terial, in which case the values of the relevant parameters of the solid (denoted by an
index s) and fluid (denoted by an index f), which coincides with the host (denoted by
an index h), materials involved are: mass density ρs = 2200 kg m−3, longitudinal wave
velocity cl =

√
(Ks + 4µs/3) /ρs = 5970 m s−1, transverse wave velocity ct =

√
µs/ρs =

3760 m s−1, for silica; and mass density ρf = 1000 kg m−3, (longitudinal) wave veloc-
ity cf =

√
Kf/ρf = 1480 m s−1, and fluid viscosity η = 10−3 Pa s, for water. The

elastic moduli of the bare skeletal frame, Kb and µb, can be experimentally measured
independently. However, since there are no experimental data available, following Kargl
and Lim [42], we evaluate them using Berryman’s self-consistent effective medium theory
for a silica-void elastic composite, assuming that the pores are modeled by randomly dis-
tributed needles, as appropriate for the low-porosity limit that will concern us here [78].
For f = 10% we find Kb = 28.9 GPa and µb = 23.8 GPa. Accordingly, the tortuosity is
given by ξ = f−2/3, for a random array of needles [59].

We consider an fcc structure, with lattice constant a, of close-packed porous silica
spheres immersed in water and view the crystal structure as a sequence of (111) crystallo-

59
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graphic planes. In each plane, the spheres are arranged on an hexagonal lattice with lattice
constant a0 = a

√
2/2 while consecutive planes are separated by a distance d = a0

√
6/3.

We assume that the spheres have a radius S = a0/2 = 2.5 µm. Such mesoporous and
macroporous microspheres can be easily synthesized in the laboratory and are promis-
ing candidates for diverse applications in many areas ranging from chromatography and
catalysis to biology, drug delivery, and medicine [87–95].

We study the acoustic response and phononic eigenmodes of this crystal by means of
full elastodynamic calculations using the LMS method, developed in Chapter 4, which
is ideally suited for the case under consideration. Besides the complex phononic band
structure of the infinite crystal [see Eq. (4.31)], the method allows one to calculate, also,
the transmittance (T ), reflectance (R), and absorbance (A = 1− T −R) of a finite slab
of the crystal at any angle of incidence [see Eqs. (4.24), (4.25)] and, in this respect, it can
describe an actual acoustic transmission experiment. Another advantage of the method is
that it solves the elastodynamic equations in the frequency domain and, therefore, it can
treat dispersion and viscous losses, which naturally occur in poroelastic materials, in a
straightforward manner. The properties of the individual poroelastic scatterers enter only
through the corresponding T matrix, explicit expression for which are derived in Chapter
3. We recall that, a region of frequency where propagating waves do not exist, for given
k‖, constitutes a frequency gap of the acoustic field, for this k‖. If over a frequency
region no propagating wave exists whatever the value of k‖, then this region constitutes
an absolute frequency gap. In order to ensure good convergence in our calculations, it is
sufficient to truncate the spherical-wave expansions at `max = 8 and take into account 37
two-dimensional reciprocal lattice vectors in the relevant plane-wave expansions [24], in
all cases we examine here.

In Fig. 5.1, we display the calculated transmission and absorption spectra of an eight-
layers-thick (111) slab of the crystal under consideration, at normal incidence, for given
porosity f = 10% but different pore sizes. As we already mentioned in § 3.4, in Biot’s
theory there are two distinct limits. In the small pore-size limit with respect to the viscous
skin depth δ =

√
2η/(Ωρf ) [see Fig. 5.1(a)], within the considered range of frequencies,

Poiseuille flow occurs. Locking of fluid and solid motion arises from the fluid viscosity and
results in propagation of a fast wave while the out-of-phase relative motion of the solid
frame and infiltrated liquid, required for slow wave propagation, cannot be efficiently real-
ized. In this regime, the porous material behaves as a homogeneous medium with effective
elastic parameters that can be calculated using the self-consistent effective-medium the-
ory of Berryman for elastic composites [78]. Nevertheless, also in this case, the absorptive
losses are associated with the slow wave modes and cannot be accounted for by effective-
medium theory, even when retaining the energy dissipation mechanism by attributing a
shear modulus µf = −iΩη to the fluid component. Since there is no significant difference
to the final results of the effective-medium calculations with and without losses in the
frequency range studied, we neglect, for convenience, the viscosity of water so all effective
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Ω

Figure 5.1: Transmittance and absorbance of an acoustic plane wave incident normally
on a slab consisting of eight fcc (111) planes of submerged water-saturated close-packed
porous silica spheres of radius S = 2.5 µm, with porosity f = 10%, for different pore sizes:
Rp = 10 nm (a), Rp = 30 nm (b), Rp = 100 nm (c), and Rp = 500 nm (d). The dotted lines
in diagrams (a) and (d) display the corresponding transmission spectra for crystals made
of homogeneous spheres with elastic parameters calculated using self-consistent effective-
medium theory for (lossless) composite elastic media [78] and of water-saturated porous
spheres neglecting viscous losses (η = 0), respectively.

material parameters are dispersionless and real valued. We obtain: ρ = 2080 kg m−3,
cl = 5449 m s−1, ct = 3389 m s−1. It is interesting to note that frictional dissipation due
to the slow waves is in this case much larger than in the corresponding single sphere (σabs is
very small) due to multiple-scattering effects. As the pore size increases, the out-of-phase
relative motion of the solid and fluid is not impeded by viscous drag so that the slow waves
can propagate, giving rise to enhanced absorptive losses and consequent drastic drop of
the transmittance [see Figs. 5.1(b) and (c)]. On the other hand, for very large pores, if the
viscous skin depth is negligible with respect to the pore size, the three density parameters
in Eqs. (2.20) and (2.23) become real and all three bulk modes become nondispersive and
attenuation free, as one would have in the absence of viscous losses (η = 0). This trend
can be clearly seen in Fig. 5.1(d). In this regime Poiseuille flow is not established and fast
wave propagation is driven by inertial coupling which locks the solid and fluid components
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Ωa0 /ch

Figure 5.2: The same as in Fig. 5.1(d) for spheres of porosity f = 10% but of radius
S = 2.5 mm and pore radius Rp = 500 µm.

together. It becomes clear from the above that porous silica nanoparticles, immersed in a
water-like liquid, at hypersonic (GHz) frequencies are in the viscous coupling regime. This
explains why, treating such particles as effectively homogeneous with elastic parameters
smaller than those of pure solid silica, one can successfully explain BLS experiments on
corresponding colloidal crystals [18].

We can approach more closely the inertial coupling limit if we increase all characteristic
length parameters of the system by a factor of t, i.e. Rp → tRp, S → tS, a→ ta, in which
case the viscous-length-to-porous-size ratio decreases by a factor of

√
t ( δ

Rp
→ 1√

t
δ
Rp

) in
the same region of reduced frequency Ωa0/ch. For example, it can be seen in Fig. 5.2 that
for submerged water-saturated close-packed porous silica spheres of radius S = 2.5 mm,
porosity f = 10%, and pore radius Rp = 500 µm, the transmission spectrum is very
similar to that of the corresponding lossless case (η = 0) while the absorbance is overall
strongly suppressed and exhibits sharp peaks only at the resonances where the wavefield
is predominantly localized at the spheres.

The transmission spectra of the reference lossless structures in the viscous and inertial
coupling regimes, shown by dotted lines in Fig. 5.1(a), (d) and replotted in Figs. 5.3(c) and
5.4(c), can be interpreted in conjunction with relevant dispersion diagrams for the corre-
sponding infinite crystals, depicted in Figs. 5.3(b) and 5.4(b), respectively. We note that in
these lossless cases there is no characteristic length scale in the problem, the results apply
to different regions of frequency provided that the dimensions of the structural units are
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Figure 5.3: (a) Change in the density of states of the acoustic field induced by a submerged
water-saturated porous silica sphere with porosity f = 10%, treated as a lossless homo-
geneous sphere with elastic parameters calculated using self-consistent effective-medium
theory for composite elastic media [78]. (b) The phononic band structure of an fcc crystal
of such close-packed homogeneous spheres, in water, along the [111] direction. Solid (dot-
ted) lines refer to nondegenerate (doubly degenerate) bands of Λ1 (Λ3) symmetry. The
shaded areas mark the Bragg (B) and hybridization (H) gaps. (c) Transmittance of an
acoustic plane wave incident normally on a (111) slab of this crystal, eight-layers thick.

scaled accordingly. That is why we choose to represent our results using Ωa0/ch as dimen-
sionless frequency. It can be seen that the transmittance exhibits Fabry-Perot oscillations
in regions of acoustically active bands, due to multiple reflections at the surfaces of the
slab, and drops down to small values outside these regions. The phononic band structure
of these crystals can be understood as follows. An extended acoustic band, that would be
in a corresponding effective homogeneous medium, is folded within the first Brillouin zone
as a result of structure periodicity and Bragg gaps open up at the zone boundaries. In ad-
dition, there are narrow bands originating from localized modes of the individual spheres,
weakly interacting between them. These modes are manifested as resonance peaks in the
corresponding density of states, as shown in Figs. 5.3(a) and 5.4(a). When bands of the
same symmetry cross each other, a band gap, so-called hybridization gap, opens up about
the crossing point due to level repulsion. The bands along the fcc [111] direction have the
symmetry of the irreducible representations of the C3v point group [96]. Therefore they
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Figure 5.4: The same as Fig. 5.3 but for submerged water-saturated porous silica spheres
described by Biot’s theory, ignoring viscous losses (η = 0). The peaks in (a) correspond
to resonances of given multipole order ` denoted in the diagram.

are either nondegenerate, if they have the Λ1 or the Λ2 symmetry, or doubly degenerate
if they have the Λ3 symmetry. Only the Λ1 bands are acoustically active in the sense
that they can be excited by an acoustic plane wave with appropriate frequency incident
normally on a (111) slab of the crystal because they have the proper symmetry [97]. It
is expected that strong absorption will appear in band regions with large admixture of
modes localized in and about the spheres when the dissipation mechanism triggered by the
slow waves in the porous material is switched on. It can be seen that this is the case, for
example, in the flat band regions originating from the multipole resonances of the spheres
(see Fig. 5.4), where high absorption is attained as shown in Fig. 5.1(d).

The above porous-based phononic crystal exhibits interesting absorptive properties
and can be used as an efficient filter through an appropriate selection not only of the pore
size, but also of the porosity level. In Fig. 5.5 we show the transmittance, absorbance,
and reflectance of an acoustic plane wave incident normally on a slab of this crystal,
consisting of eight fcc (111) layers, for different pore sizes Rp, as a function of the porosity
f . Broadband high-level absorbance can be attained for rather intermediate values of the
ratioRp/δ (Rp = 100 nm) and relatively low porosity values, varying from f = 10% to 25%.
The porosity f , as an additional degree of freedom, can be chosen to achieve for rather
moderate Rp/δ the appearance of regions of frequency where both the transmittance and
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Figure 5.5: Transmittance, absorbance and reflectance of an acoustic plane wave incident
normally on a slab consisting of eight fcc (111) planes of submerged water-saturated close-
packed porous silica spheres, of radius S = 2.5 µm, versus the porosity f , for different
pore sizes. Pore radius (from top to bottom): Rp = 10, 30, and 100 nm.

reflectance practically vanish, leading to A ' 1. It is interesting to note that broadband
acoustic isolation occurs not only for waves incident normally but also at an angle on a slab
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Figure 5.6: Transmittance, absorbance, and reflectance of an acoustic plane wave incident
on a slab consisting of eight fcc (111) planes of submerged water-saturated close-packed
porous silica spheres (S = 2.5 µm, f = 10%, and Rp = 100 nm) with k‖ along high
symmetry lines of the fcc (111) surface Brillouin zone, shown in the inset. Γ: k‖ = 2π

a0
(0, 0),

K: k‖ =
2π
a0

(
2
3 , 0
)
, M: k‖ =

2π
a0

(
1
2 ,
√
3
6

)
.

of the material. This is shown in Fig. 5.6, which displays the variation of the transmission
spectra of an eight-layers-thick fcc (111) slab of submerged water-saturated close-packed
porous silica spheres, with S = 2.5 µm, f = 10%, and Rp = 100 nm, for different k‖ along
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high symmetry lines of the fcc (111) surface Brillouin zone. The direction of incidence is
specified by the corresponding polar and azimuthal angles, θ = arccos

(√
1− c2hk2‖/Ω2

)
and φ = arctan(ky/kx), respectively. Obviously, at given k‖, propagating incident waves
exist above an angular frequency threshold Ωinf = ch|k‖| (delimiting the hatched area in
Fig. 5.6). It can be seen (and we verified it for other arbitrary points k‖ within the surface
Brillouin zone as well) that, above Ωa0/ch ' 2, the transmittance practically vanishes,
whatever the direction of incidence.

In summary, we applied the LMS method for phononic crystals of poroelastic spheres
immersed in a fluid medium to close-packed fcc crystals of submerged water-saturated
meso- and macroporous silica microspheres, encompassing the viscous and inertial coupling
regimes. It is worth noting that our formalism remains invariant under a transformation
Ω → ξΩ and Rp → Rp/ξ, S → S/ξ, a → a/ξ, η → η/ξ, where ξ is an arbitrary con-
stant factor. Therefore, the results obtained here apply to different regions of frequency of
the acoustic field, provided that all size parameters as well as the viscosity coefficient are
scaled accordingly. Our results are analyzed by reference to phononic dispersion diagrams,
appropriate to the viscous and inertial coupling limits, in conjunction with correspond-
ing transmission spectra, providing a consistent interpretation of the underlying physics.
For intermediate pore sizes, it is shown that, with increasing porosity, strong absorption
leads to negligible transmission over an extended frequency range, which might be useful
for broadband acoustic shielding applications. Our results corroborate that these novel
phononic crystals of porous building units exhibit unprecedented properties driven by the
slow longitudinal waves, which are unique to poroelastic materials, and multiple scattering
effects. These structures cannot be described by treating the poroelastic material as an
effective homogeneous medium and rigorous methods based on Biot’s theory, such as that
developed in the present thesis, are required.

5.2 Double porosity granular polymers

In this section we report a thorough theoretical study of the acoustic properties of a
specific water-saturated double-porosity granular polymeric structure consisting of close-
packed porous polystyrene spheres, with porosity f and radius S = a0/2 = 2.5 mm, in the
[111] fcc stacking. This is the same geometry as that described in section 5.1. We recall
that a0 = a

√
2/2 is the lattice constant and d = a0

√
6/3 the distance between consecutive

lattice planes. The values of the relevant parameters of the solid material (polystyrene) are:
ρs = 1050 kg m−3, cl =

√
(Ks + 4µs/3) /ρs = 2350 m s−1, ct =

√
µs/ρs = 1200 m s−1,

and we use the same values as in section 5.1 for water. We calculate the elastic moduli
of the bare skeletal frame in the same way as in the previous section, using Berryman’s
self-consistent effective medium theory for a polystyrene/void elastic composite, and for
f = 10% that we will consider in our study, and find Kb = 2.602 GPa and µb = 1.186 GPa.
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Figure 5.7: (Upper diagrams) Change in the density of states of the acoustic field
[Eq. (3.61)] induced by a submerged water-saturated porous polystyrene sphere, with
porosity f = 10%, (a) treated as a lossless homogeneous sphere with elastic parameters
evaluated using self-consistent effective-medium theory for composite elastic media [58,78]
and (b) described by Biot’s theory, ignoring viscous losses (η = 0). The peaks in (a) and
(b) correspond to resonances of given multipole order, `, denoted in the diagrams. (Lower
diagrams) Transmittance of an acoustic plane wave [Eq. (4.24)] incident normally on an
hexagonal array, i.e, a single fcc (111) plane, of the above spheres. In (c) and (d) the
spheres are described as in (a) and (b), respectively.

Accordingly, the tortuosity is given by ξ = f−2/3, for a random array of needles [59].
Our numerical calculations are carried out by the LMS method, where we truncated the
spherical-wave expansions at `max = 7 and took into account 43 2D reciprocal lattice
vectors in the relevant plane-wave expansions, thus ensuring good convergence in all cases
examined.

The change in the density of states of the acoustic field induced by a submerged
water-saturated porous polystyrene sphere and the acoustic transmission spectrum of a 2D
hexagonal array of such close-packed spheres, at normal incidence, in the two distinct limits
(δ � Rp and δ � Rp) discussed in the previous section are depicted in Fig. 5.7. It can be
seen that resonance peaks appear in the density of states. Their presence is explained as
follows. The eigenmodes of the acoustic field in the case of a single sphere, i.e., solutions of
Eq. (3.5) in the absence of an incident field, are obtained at the poles of the scattering T
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matrix. Besides the torsional bound states with real eigenfrequencies, which are confined
in the sphere and cannot be excited by an externally incident wave [see Eq. (3.37)], there
are resonant modes at the poles of the T matrix in the lower complex frequency half-plane,
near the real axis, at z` = Ω` − iγ`; Ω` is the eigenfrequency while γ` denotes the inverse
of the lifetime of the respective 2`-pole resonant mode. The corresponding change in the
density of states can be deduced from Eq. (3.61) through a Laurent expansion in the
vicinity of z` on the real axis, which yields ∆n`(Ω) ' (2`+1)

π γ`/[(Ω − Ω`)
2 + γ2` ], i.e., the

change of the partial density of states, ∆n`(Ω), is a lorentzian centered at Ω` with a half
width at half maximum equal to γ`. These resonant modes, when the spheres are assembled
in a 2D lattice, form bands Ων(k‖), ν = 1, 2, . . . of corresponding collective modes of the
plane. In our case, at k‖ = 0, the hexagonal symmetry of the structure implies that
there will be a partial lift of the (2` + 1)-fold degeneracy of the resonant modes of the
individual spheres and the corresponding modes of the plane will have the symmetry of
the irreducible representations of the C6v point group: L1, L1′ , L2, L2′ (one-dimensional)
and L3, L3′ (two-dimensional) [96]. Therefore they will be either nondegenerate or doubly
degenerate, respectively. We note that only the L1 modes are acoustically active in the
sense that they can be excited by an acoustic plane wave with appropriate frequency
incident normally on the given plane, because they have the proper symmetry [97], and
manifest themselves as resonance structures in the corresponding transmission spectrum.
The acoustically inactive, so-called deaf, modes are bound states with infinite lifetime,
confined in the plane, and cannot be excited by an externally incident wave. However, for
k‖ 6= 0 a general non-high-symmetry point, all modes belong to the identity representation
of the trivial group and, therefore, are acoustically active.

O(3) ` = 0 ` = 1 ` = 2 ` = 3

C6v L1 L1 L3′ L1 L3 L3′ L1 L2 L2′ L3 L3′

C3v Λ1 Λ1 Λ3′ Λ1 Λ3 Λ3′ Λ1 Λ2 Λ2′ Λ3 Λ3′

Table 5.1: Compatibility relations between irreducible representations of the O(3), C6v,
and C3v point symmetry groups.

As shown in Figs. 5.7(a) and (c), in the viscous-coupling limit, we obtain the typical
acoustic response of non-porous polymer spheres characterized by well-formed resonances,
which originate from the spheroidal modes of the individual particles [see Eq. (3.46)]
and move to lower frequencies with increasing porosity. On the contrary, in the inertial-
coupling limit, interestingly, additional very sharp resonances appear in the transmis-
sion spectrum of an hexagonal array, i.e., a single fcc (111) plane, of submerged water-
saturated close-packed porous polystyrene spheres, with porosity f = 10%, as can be
seen in Fig. 5.7(d). These resonances stem from corresponding single-particle modes [see
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Fig. 5.7(b)] with a very long lifetime, which are strongly localized in the spheres and have
a predominant character of slow longitudinal waves. Therefore these modes, which are
pushed up to higher frequencies with increasing porosity, should be unambiguously as-
cribed to the existence of slow longitudinal waves in the poroelastic particles. As expected
from a group-theory analysis [96], each sphere mode of ` = 0, 1, 2, 3 gives one acoustically
active L1 mode of the given planar array for k‖ = 0, as can be seen in Fig. 5.7. In ad-
dition, there are acoustically inactive plane modes of different symmetry, as implied from
the appropriate compatibility relations (see Table 5.1).

Figure 5.8: Transmittance of an acoustic plane wave incident normally on a bilayer of
consecutive fcc (111) planes of submerged water-saturated close-packed porous polystyrene
spheres, with porosity f = 10%, (a) treated as lossless homogeneous spheres with elastic
parameters calculated using self-consistent effective-medium theory for composite elastic
media [78, 79] and (b) described by Biot’s theory, ignoring viscous losses (η = 0). The
dotted lines in (a) and (b) display the corresponding transmission spectra for a single fcc
(111) plane of such spheres. The inset to (b) shows an enlarged view about the sharp
resonances in the low frequency part of the spectrum, in logarithmic scale.

In the case of a pair of two consecutive fcc (111) planes of the spheres under consid-
eration, for given k‖, each plane mode gives rise to two modes due to interlayer coupling,
by analogy to the formation of bonding and antibonding orbitals of a diatomic molecule
from the corresponding electronic states of the individual atoms, as depicted in Fig. 5.8
for k‖ = 0. By the same token, stacking consecutive hexagonal arrays so as to grow an
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Figure 5.9: (Left-hand diagram) Phononic dispersion diagram of an fcc crystal of sub-
merged water-saturated close-packed porous polystyrene spheres, with porosity f = 10%,
described by Biot’s theory without viscous losses (η = 0), along the [111] direction. (Right-
hand diagram) Transmittance of an acoustic plane wave incident on a (111) slab of this
crystal, eight-layer-thick, with k‖ along the high-symmetry lines of the corresponding
SBZ, shown in the inset. Γ : k‖ = 2π

a0
(0, 0), K : k‖ = 2π

a0
(23 , 0), M : k‖ = 2π

a0
(12 ,
√
3
6 ).

The direction of incidence is specified by the corresponding polar and azimuthal angles,
θ = arccos

(√
1− c2hk2‖/Ω2

)
and φ = arctan(ky/kx), respectively. Obviously, at given

k‖, propagating incident waves exist above an angular frequency threshold Ωinf = ch|k‖|
(hatched area).

infinite fcc crystal of submerged water-saturated close-packed porous polystyrene spheres,
the modes of the individual planes will form corresponding bands. These are the narrow
bands appearing in the left-hand diagram of Fig. 5.9. For k‖ = 0 the bands have the
symmetry of the irreducible representations of the C3v point group [96]. Therefore they
are either nondegenerate, if they have the Λ1 or the Λ2 symmetry, or doubly degenerate
if they have the Λ3 symmetry. We note that only the Λ1 bands are acoustically active in
the sense that they can be excited by an acoustic plane wave with appropriate frequency
incident normally on a (111) slab of the crystal, which is then transmitted through the
slab, because they have the proper symmetry [97]. In addition to the above relatively
narrow bands, there is an extended acoustic band, of Λ1 symmetry, which would be in a
corresponding effective homogeneous medium, folded within the first Brillouin zone be-
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Figure 5.10: An enlarged view of the left-hand diagram of Fig. 5.9 in the long-wavelength
limit (symbols). The solid line shows the linear dispersion curve with slope c calculated
by Eq. (E.10).

cause of structure periodicity, with Bragg gaps appearing at the zone boundaries, as we
already mentioned in § 5.1. Besides the Bragg gaps, when the extended acoustic band
crosses a narrow band of the same symmetry, level repulsion leads, also, to the opening
of a frequency gap about the crossing point, so-called hybridization gap. Such a relatively
wide hybridization gap appears, e.g., in the dispersion diagram, obtained by solving the
eigenvalue problem (4.31), displayed in Fig. 5.9 about Ωa0/ch = 2 for k‖ = 0. However,
as can be seen in Fig. 5.9, this gap is not omnidirectional. It progressively shrinks as we
deviate from k‖ = 0 and finally closes thus allowing for acoustic transmission through a
finite slab of the crystal.

It is worth noting that specific features of the phononic band structure depicted in
Fig. 5.9, such as anisotropy, flat bands and frequency gaps driven by coherent multiple scat-
tering, cannot be accounted for by any local effective-medium theory for double-porosity
media. These theories are valid when the wavelength is much longer than the size of the
representative elementary volume and describe the composite medium in terms of effec-
tive quantities. For example, the model of Berryman and Wang [66,67], in the absence of
viscous losses (η = 0) as appropriate for the case under consideration in Fig. 5.9, predicts
the existence of one transverse and three longitudinal acoustic waves with frequency-
independent propagation velocities. This model assumes a fluid-saturated double-porosity
medium consisting of a porous matrix with fractures, where each of the three components,
i.e., solid skeletal frame, matrix pores, and adjacent fractures, forms a percolating net-
work. Therefore, there are indeed one transverse wave propagating in the solid frame and
three hybrid longitudinal waves, which arise from the corresponding propagating modes
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Figure 5.11: Transmittance and absorbance of an acoustic plane wave incident nor-
mally on bilayer of consecutive fcc (111) planes of submerged water-saturated close-packed
porous polystyrene spheres of radius S = 2.5 mm, with porosity f = 10%, for different
pore sizes: Rp = 500 nm (a), Rp = 5 µm (b), Rp = 50 µm (c), and Rp = 500 µm (d).
The dotted lines in (a) and (d) display the corresponding transmission spectra for homo-
geneous spheres with elastic parameters calculated using self-consistent effective-medium
theory for (lossless) composite elastic media [78,79] and for water-saturated porous spheres
described by Biot’s theory, neglecting viscous losses (η = 0), respectively.

in the above three components interacting between them. In our case of unconsolidated
porous polymer grains, the continuous network topology of the solid frame and the matrix
pores is broken, and thus only the longitudinal acoustic wave propagating in the fluid-filled
fractures will survive. The propagation velocity, c, of this wave in the particular morphol-
ogy of the granular double-porosity medium that concerns us here (and corresponds to
vanishing elastic moduli of the solid skeletal frame [43]) can be deduced from the model
of Berryman and Wang [66, 67] (see Appendix E). As shown in Fig. 5.10, c, evaluated by
Eq. (E.10), is in excellent agreement with the slope of the dispersion curve obtained by
our LMS calculations in the long-wavelength limit.

Viscous losses are described by Biot’s theory [25,26], which properly combines both me-
chanical and hydrodynamic properties of a composite comprising a porous elastic medium
filled with a viscous fluid. Strong absorption is expected in frequency regions where
resonant modes localized in the spheres exist, especially if these modes have strong ad-
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mixture of slow longitudinal waves, which correspond to an out-of-phase relative motion
of the solid frame and infiltrated liquid in the porous material. As a typical example,
in Fig. 5.11 we display the evolution of the absorption spectrum of a bilayer of con-
secutive fcc (111) planes of submerged water-saturated close-packed porous polystyrene
spheres of radius S = 2.5 mm, with porosity f = 10%, for different pore sizes, in the
frequency region of the first resonant modes. For narrow pores (Rp = 500 nm), we are in
the viscous-coupling regime where slow longitudinal waves are not efficiently excited and
thus a very weak absorption band is observed at the resonance which originates from the
quadrupole spheroidal-like particle modes [see Fig. 5.11(a)]. As the pore radius increases,
the slow-wave component of these modes is clearly manifested in a stronger absorption
peak, which becomes prominent at Rp = 5 µm [see Fig. 5.11(b)]. By further increasing
the pore radius well beyond the viscous length, which is about 2 µm in the frequency re-
gion under consideration, the losses associated with the spheroidal-like particle modes are
gradually suppressed. At the same time, the sharp particle modes, which have an almost

Figure 5.12: Absorbance of an acoustic plane wave incident on a slab consisting of eight
fcc (111) planes of submerged water-saturated close-packed porous polystyrene spheres
(S = 2.5 mm, f = 10%, and Rp = 500 µm) with k‖ along the high-symmetry lines of the
corresponding SBZ, shown in the inset. Γ : k‖ =

2π
a0
(0, 0), K : k‖ =

2π
a0
(23 , 0), M : k‖ =

2π
a0
(12 ,
√
3
6 ). The direction of incidence is specified by the corresponding polar and azimuthal

angles, θ = arccos
(√

1− c2hk2‖/Ω2
)

and φ = arctan(ky/kx), respectively. Obviously, at
given k‖, propagating incident waves exist above an angular frequency threshold Ωinf =
ch|k‖| (hatched area).
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exclusively slow-wave character in the spheres, are developed and manifest themselves as
strong peaks in the absorption spectrum, as shown in Figs. 5.11(c) and (d) for the lowest
monopole mode of this type in the range of frequencies considered. For wide pores, in
the inertial-coupling regime, we obtain very narrow and dispersionless bands of strong
absorption at the frequencies of these modes in the double-porosity polymeric material
under consideration, as shown in Fig. 5.12.

In summary, we reported a thorough theoretical study of the acoustic response of a
particular class of double-porosity liquid-saturated granular polymeric material, formed by
close-packed porous polymer spheres assembled in an fcc lattice, by means of numerical
calculations using our LMS method. Calculated transmission and absorption spectra
of finite slabs of these materials are analyzed by reference to the acoustic modes of the
constituent spheres as well as to the dispersion diagrams of corresponding infinite crystals,
providing a consistent interpretation of the observed features. In particular, our results
reveal the existence of unprecedented resonant modes with very long lifetime, localized in
the spheres, in the inertial-coupling regime, i.e., when the radius of the spheres’ pores is
much larger than the viscous length. These modes, which can be easily tuned in frequency
by adjusting the intrinsic porosity of the spheres, induce narrow dispersionless absorption
bands as well as directional gaps in the transmission spectrum of finite slabs of the double-
porosity material.
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Chapter 6

Brillouin Light Scattering

In this chapter we review some of the basic principles of BLS by lattice vibrations and
present a formalism for the calculation of the BLS intensities. Our theoretical formal-
ism, which provides the basis for a rigorous description of the BLS by colloidal phononic
crystals, is applied in two cases: a homogeneous fluid and an isolated solid sphere.

6.1 Basic principles of Brillouin light scattering

The spontaneous BLS method is an efficient non-destructive experimental technique to
study acoustic phonons in micro- and nanostructures, in the region of upper ultrasounds
(frequencies in GHz range). It is based on the interaction of the photons of an incident
monochromatic laser beam with the thermally excited acoustic phonons in the structure,
which propagate in a specific direction chosen from the scattering geometry. The scattering
vector q = ks − ki is defined from the wavevectors of the scattered (ks) and the incident
(ki) photon.

In case of homogeneous and isotropic materials, the law of conservation of momentum
dictates the wave number of the phonon, Q, to be equal to the scattering vector q. So the
BLS spectrum, for given q, exhibits pairs of peaks originating from the inelastic photon
scattering, that change their frequency by ±clQ or ±ctQ, where cl, ct are the propagation
velocities of longitudinal and transverse elastic waves, respectively, in the material (see
Fig. 6.1). The peaks corresponding to an increase in the photon frequency originate from
absorption of one phonon of frequency Ων(Q) = cνQ, ν = l, t, and wave vector Q (anti-
Stokes processes), while the peaks corresponding to a decrease in the photon frequency
originate from emission of one phonon (Stokes processes). In macroscopic structures of
micro- or nanoparticles, the acoustic phonon states exhibit, in general, complicated dis-
persion relations, which can be identified through BLS experiments.

The physical mechanism causing BLS is the photoelastic effect, which relates the me-

77
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Figure 6.1: Schematic representation of a general BLS experimental setup. An incident
laser beam of polarization ni, frequency ωi and wave number ki is scattered towards
all directions. Only scattered light of wave vector ks and polarization ns arrives at the
detector. The scattering vector q = ks − ki is defined by the geometry. The right-hand
diagram shows some typical examples of BLS spectra for homogeneous fluids and for
polystyrene recorded at q = 0.017 nm−1 [45].

chanical deformations eik(r, t), which are formed in a material due to thermally excited
elastic waves (phonons), to changes of the dielectric function. In general, for small de-
formations, we can express the change in the component of the dielectric tensor δεik(r, t)
linearly with respect to the components of the strain tensor [99]

δεik(r, t) =
∑
jl

kikjlejl(r, t). (6.1)

The photoelastic coefficients kikjl are related to the Pockels elasto-optic coefficients pikjl,
defined from

[δε−1]ik ≡ [ε−1]ik − [ε−1r ]ik =
∑
jl

pikjlejl, (6.2)

where←→ε and←→εr are the dielectric tensors of the material under mechanical stress and free
of stress (reference medium), respectively. Differentiating the tensor identity←→εr −1←→εr =

←→
I

we get δ←→ε −1←→εr +←→εr −1δ←→ε = 0 and, multiplying from the left with ←→εr , we can write
δ←→ε = −←→εr δ←→ε −1←→εr . Therefore, using Eq. (6.2), we obtain

δεik = −
∑
µν

[εr]iµ[δε
−1]µν [εr]νk

= −
∑
µνjl

[εr]iµpµνjlejl[εr]νk .
(6.3)
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Comparing Eqs. (6.1) and (6.3), we have

kikjl = −
∑
µν

[εr]iµpµνjl[εr]νk . (6.4)

By making use of tensor inversion operations we obtain

∑
ik

[ε−1r ]αikikjl[ε
−1
r ]kβ = −

∑
ik

∑
µν

[ε−1r ]αi[εr]iµpµνjl[εr]νk[ε
−1
r ]kβ

= −
∑
µν

δαµpµνjlδνβ

⇒ pαβjl =−
∑
ik

[ε−1r ]αikikjl[ε
−1
r ]kβ .

(6.5)

For isotropic materials, [εr]ik = δikεr and Eqs. (6.4) and (6.5) reduce to the simpler form

kikjl = −ε2rpikjl, pikjl = −
kikjl
ε2r

. (6.6)

It can be shown that the elasto-optic coefficients obey the general permutation symmetry
relations

pikjl = pkijl, and pikjl = piklj , (6.7)

therefore, the notation can be shortened by introducing new collective indices: 1 = (11),
2 = (22), 3 = (33), 4 = (23) = (32), 5 = (13) = (31), 6 = (12) = (21). For isotropic mate-
rials, like polycrystalline or amorphous solids and fluids, there are only two independent
such coefficients and the tensor ←→p takes the form

←→p =



p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0

0 0 0
p11 − p12

2
0 0

0 0 0 0
p11 − p12

2
0

0 0 0 0 0
p11 − p12

2


. (6.8)
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Therefore, Eq. (6.1), with the help of Eqs. (6.6), (6.8), becomes

δ←→ε = −ε2r



p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 (p11 − p12)/2 0 0
0 0 0 0 (p11 − p12)/2 0
0 0 0 0 0 (p11 − p12)/2





e11
e22
e33
e23
e13
e12



= −ε2r



p11e11 + p12e22 + p12e33
p12e11 + p11e22 + p12e33
p12e11 + p12e22 + p11e33

p11 − p12
2

e23
p11 − p12

2
e13

p11 − p12
2

e12


or, equivalently, in 3× 3 matrix form

δ←→ε = −ε2r


p11e11 + p12e22 + p12e33

p11 − p12
2

e12
p11 − p12

2
e13

p11 − p12
2

e12 p12e11 + p11e22 + p12e33
p11 − p12

2
e23

p11 − p12
2

e13
p11 − p12

2
e23 p12e11 + p12e22 + p11e33

 .

In our study we assume, for simplicity, p11 ∼= p12 ≡ p and the tensor δ←→ε reduces to a
scalar

δεik(r, t) = −ε2rp∇ · u(r, t)δik . (6.9)

6.2 Calculation of Brillouin light scattering intensities
According to Maxwell equations, the electric field of an electromagnetic wave (EM), in
absence of macroscopic currents, satisfies the vector differential equation

∇× [∇×E(r, t)] =
−µ
c2

∂2

∂t2
←→ε (r, t)E(r, t) , (6.10)

where c is the velocity of light in vacuum and we assumed a constant magnetic permeability
µ, that we set equal to unity in the following, because we shall be concerned with non-
magnetic materials. Since the time variation of εik(r, t) is relatively slow (it lies in the
acoustic phonon range), we can ignore this variation compared to that of the EM field1.

1The propagation velocity of the EM wave is much greater than that of the elastic wave (phonons), so
the time variation of the elastic field is slow and can be considered constant.
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This allows us, by setting εik(r, t) = εr(r)+δεik(r, t) with εr(r) being the dielectric constant
of the static reference system and δεik(r, t) the dynamical change induced by the phonons,
to rewrite Eq. (6.10) as follows

∑
j

Lij(r, t)Ej(r, t) =
1

c2

∑
k

δεik(r, t)
∂2

∂t2
Ek(r, t) , (6.11)

where
Lij(r, t) = −[∇×∇×]ij − δij

εr(r)

c2
∂2

∂t2
. (6.12)

The inhomogeneous differential equation (6.11) can be solved using a Green’s function
technique. Introducing the (tensor) Green’s function through∑

j

Lij(r, t)Gjk(r, t; r
′, t′) = −δikδ(r− r′)δ(t− t′) , (6.13)

it is straightforward to show that the solution of Eq. (6.11) can be written in the form

Ei(r, t) = Er;i(r, t)−
1

c2

∑
kj

∫
d3r′

∫
dt′Gik(r, t; r

′, t′)δεkj(r
′, t′)

∂2

∂t′2
Ej(r

′, t′) , (6.14)

where Er(r, t) is the solution of the corresponding homogeneous equation. Eq. (6.14) has
the form of the Lippmann-Schwinger equation.

We shall deal with inelastic light scattering which involves absorption or emission of
only one phonon by a photon. Therefore, we proceed in solving Eq. (6.14) to the first-order
Born approximation. This approximation yields an expression for the scattered field to
first order with respect to the relevant operators of the phonon field, and thus describes
scattering of radiation with the participation of only one phonon. The expression for the
scattered field is

Es(r, t) ≡ E(r, t)−Er(r, t) , (6.15)

thus, from Eq. (6.14) we write

Es;i(r, t) = −
1

c2

∑
kj

∫
d3r′

∫
dt′Gik(r, t; r

′, t′)δεkj(r
′, t′)

∂2

∂t′2
Er;j(r

′, t′) . (6.16)

Assuming that the initial field is a monochromatic wave with harmonic time dependence
exp(−iωit), Eq. (6.16) takes the form

Es;i(r, t) =
ω2
i

c2

∑
kj

∫
d3r′

∫
dt′Gik(r, t; r

′, t′)δεkj(r
′, t′)Er;j(r

′, t′) . (6.17)
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or
Es(r, t) =

ω2
i

c2

∫
d3r′

∫
dt′
←→
G (r, t; r′, t′)δ←→ε (r′, t′)Er(r

′, t′) . (6.18)

It can be shown that the time-dependent Green’s function
←→
G (r, t; r′, t′) is the inverse

Fourier transform of the corresponding time-independent Green’s function,

←→
G (r, t; r′, t′) =

1

2π

∫ ∞
−∞

dω
←→
G (r, r′;ω)e−iω(t−t

′) , (6.19)

which satisfies the equation[
−∇×∇×+

εr(r)ω
2

c2
←→
I

]
←→
G (r, r′;ω) = −

←→
I δ(r− r′) . (6.20)

We shall consider the simplest case where the reference system is optically homogeneous,
i.e., εr(r) = εr is constant in space. This can be achieved if, for example, in an assembly
of particles we fill the intermediate space with some liquid which has the same refractive
index as that of the particles. In this case, by setting k =

√
εrω/c, the Green’s function is

given by
←→
G (r, r′;ω) =

[
←→
I +

1

k2
∇r′∇r′

]
eik|r−r

′|

4π|r− r′|
, (6.21)

where for the tensor ∇r′∇r′ we used dyadic notation2 and ∇r′ denotes differentiation
with respect to x′i. At distances far away from the source, r � r′, we have

|r− r′| = (r2 + r′2 − 2r · r′)1/2 = r

(
1− 2r̂ · r

′

r
+
r′2

r2

)1/2

,

thus
eik|r−r

′|

|r− r′|
' 1

r
eikre−i(kr̂)·r

′ (6.22)

and Eq. (6.21) becomes

←→
G (r, r′;ω) ' eikr

4πr

[
←→
I +

1

k2
∇r′∇r′

]
e−ik·r

′
=
eikr

4πr
e−ik·r

′
[←→
I − k̂k̂

]
, (6.23)

where k = kr̂. It is straightforward to prove that
[←→
I − k̂k̂

]
A ≡ −k̂× (k̂×A) and thus

Eq. (6.23) can be written as

←→
G (r, r′;ω) ' − e

ikr

4πr
e−ik·r

′
k̂× k̂× . (6.24)

2In dyadic form
←→
C = AB is equivalent to Cij = AiBj .
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Replacing Eq. (6.19) into Eq. (6.18) and considering as initial field an incident plane wave
Er(r

′, t′) = n̂iE0e
i(ki·r′−ωit

′) we have

Es(r, t) =
ω2
i

c2

∫
d3r′

∫
dt′
∫
dω

2π

←→
G (r, r′;ω)e−iω(t−t

′)δ←→ε (r′, t′)n̂iE0e
i(ki·r′−ωit

′) . (6.25)

In the limit r � r′ we substitute Eq. (6.24) into Eq. (6.25) and obtain

Es(r, t) =
−ω2

i

c2
E0

4πr

∫
d3r′

∫
dt′
∫
dω

2π
eikre−i(k−ki)·r′

k̂× k̂×
[
δ←→ε (r′, t′)n̂i

]
e−iωtei(ω−ωi)t

′
.

(6.26)

We now expand δ←→ε (r′, t′) in the basis of eigenstates, p, of the elastic field

δ←→ε (r′, t′) =
∑
p

δ←→εp (r′)e−iΩpt′ (6.27)

and perform the integration over t′ in Eq. (6.26), which yields

Es(r, t) =
−ω2

i

c2
E0

4πr

∑
p

∫
d3r′

∫
dωeikre−i(k−ki)·r′ k̂× k̂×

[δ←→ε p(r
′)n̂i]e

−iωtδ(ω − ωi − Ωp)

(6.28)

and, integrating over ω, we recall k = k(ω), we finally obtain

Es(r, t) =
−ω2

i

c2
E0

4πr

∫
d3r′eikf re−i(kf−ki)·r′ k̂f × k̂f ×

∑
p

δ←→εp (r′)e−iΩpt

︸ ︷︷ ︸
δ←→ε (r′,t)

n̂ie
−iωit , (6.29)

where kf =
√
er(ωi + Ωp)/c ' ki, kf = kf k̂f (= kf r̂). Defining the scattering vector

q = kf − ki and using the Fourier transform

δ←→ε (q, t) =

∫
d3r′δ←→ε (r′, t)e−iq·r

′
, (6.30)

Eq. (6.29) takes the form

Es(r, t) =
−ω2

i

c2
E0

4πr
ei(kf r−ωit)k̂f × k̂f × [δ←→ε (q, t)n̂i] . (6.31)

Projecting on a specific polarization direction n̂f we have

Es(r, t) = n̂f ·Es(r, t) =
−ω2

i

c2
E0

4πr
ei(kf r−ωit)n̂f · {k̂f × k̂f × [δ←→ε (q, t)n̂i]} (6.32)
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and, using the identity A × (B ×C) = B(A ·C) −C(A ·B) and the fact that n̂f ⊥ k̂f

for transverse waves, we obtain

Es(r, t) =
ω2
i

c2
E0

4πr
ei(kf r−ωit) n̂f · [δ←→ε (q, t)n̂i]︸ ︷︷ ︸

δεif (q,t)

. (6.33)

Since in the present study, as noted above, the tensor δ←→ε reduces to a scalar [see Eq. (6.9)],
the polarization of the incident beam does not change because the elements δεif (q, t) are
zero if the initial and the final polarization states are orthogonal. Therefore we will
consider n̂f = n̂i and δεif (q, t) = δεii(q, t) = δε(q, t) where we have omitted the indices
for simplicity. Also, k2i = εrω

2
i /c

2 ' k2f , and thus Eq. (6.33) becomes

Es(r, t) =
E0k

2
f

4πεrr
ei(kf r−ωit)δε(q, t) . (6.34)

The spectral density of light scattered into the detector positioned at a large distance
R along the direction r is given by the Fourier transform of the correlation function of the
electric field [100]

I(q, ωf ) ≡
1

2π

∫
dteiωf t < E∗s (Rr̂, 0)Es(Rr̂, t) >

=
|E0|2k4f
32π3ε2rR

2

∫
dt < δε∗(q, 0)δε(q, t) > ei(ωf−ωi)t .

(6.35)

The time-correlation function is defined by

< δε∗(q, 0)δε(q, t) >= lim
T→∞

1

T

∫ +T/2

−T/2
dt′δε∗(q, t′)δε(q, t′ + t) , (6.36)

thus, substituting into Eq. (6.35) and introducing the new variable ω = ωf − ωi we have

I(q, ω) =
|E0|2k4f
32π3ε2rR

2

∫
dt < δε∗(q, 0)δε(q, t) > eiωt

=
|E0|2k4f
32π3ε2rR

2

∫
dteiωt lim

T→∞

1

T

∫ +T/2

−T/2
dt′
∑
p

δε∗p(q)e
iΩpt′

∑
p′

δεp′(q)e
−iΩp′ (t

′+t)

=
|E0|2k4f
32π3ε2rR

2

∫
dteiωt

∑
p,p′

δε∗p(q)δεp′(q)e
−iΩp′ t lim

T→∞

1

T

∫ +T/2

−T/2
dt′ei(Ωp−Ωp′ )t

′

︸ ︷︷ ︸
δΩpΩp′

=
|E0|2k4f
16π2ε2rR

2

∑
p

δε∗p(q)
∑
p′

δεp′(q)δ(ω − Ωp′)δΩpΩp′ ,

(6.37)
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where δεp(q) is the time-independent part of Eq. (6.30) if we make use of Eq. (6.27), and
by introducing Eq. (6.9) we can easily show that

δεp(q) = −ε2rp
∫
d3re−iq·r∇ · up(r) (6.38)

or, alternatively, using again the Fourier transform up(r) =
1

(2π)3
∫
dq′3up(q

′)eiq
′·r we

write
δεp(q) = −iε2rpq · up(q) = −iε2rp

∫
d3re−iq·rq · up(r) . (6.39)

Substituting Eq. (6.38) or Eq. (6.39) into Eq. (6.37) we obtain two equivalent expressions
for the intensity of the scattered radiation

I(q, ω) =
|E0|2k4f ε2rp2

16π2R2

∑
p,p′

∫
d3r

[
e−iq·r∇ · up(r)

]∗ ∫
d3re−iq·r∇ · up′(r)δ(ω − Ωp′)δΩpΩp′ ,

(6.40)
and

I(q, ω) =
|E0|2k4f ε2rp2

16π2R2

∑
p,p′

∫
d3r

[
e−iq·rq · up(r)

]∗ ∫
d3re−iq·rq · up′(r)δ(ω − Ωp′)δΩpΩp′ .

(6.41)
We should note that these equations describe absorption processes of only one phonon by
a photon (ω = ωf − ωi = Ωp) and they manifest as delta functions (anti-Stokes peaks).
The corresponding emission processes of a phonon (Stokes) result from the conjugate
expression of Eq. (6.27), which arises from the definition of the displacement field, as
u(r, t) = Re[u(r) exp(−iΩt)].

6.3 Homogeneous fluid

The displacement field associated with an acoustic wave propagating in a homogeneous
fluid medium, of density ρ, can be written, in general, in the plane wave basis as3

u(r, t) =
∑
Q

Re{CQQ̂ei(Q·r−ΩQt)} =
∑
Q

1

2
[CQQ̂ei(Q·r−ΩQt) + C∗QQ̂e−i(Q·r−ΩQt)] (6.42)

where CQ are complex expansion coefficients and ΩQ = cQ, c being the propagation
velocity in the fluid. Assuming a large rectangular volume V = LxLyLz and periodic

3The actual displacement field is the real part of the complex field.
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boundary conditions, we obtain in the limit V →∞

u(r, t) =
V

8π3

∫
dQQ2

∫
dQ̂

1

2
[CQ Q̂ei(Q·r−ΩQt)︸ ︷︷ ︸

−i
Q
∇eiQ·re−iΩQt

+C∗QQ̂e−i(Q·r−ΩQt)] (6.43)

and, using the mathematical identity

eiQ·r = 4π
∑
`m

i`j`(Qr)Y`m(r̂)Y ∗`m(Q̂) , (6.44)

we obtain

u(r, t) =
2V

π

∑
`m

∫
dQQ2 1

2Q
{a`mQ∇[j`(Qr)Y`m(r̂)]e−iΩQt + a∗`mQ∇[j`(Qr)Y

∗
`m(r̂)]eiΩQt}

(6.45)
in the spherical wave representation, with corresponding field amplitudes

a`mQ =
1

4π

∫
dQ̂i`−1Y ∗`m(Q̂)CQ . (6.46)

We need to calculate the phonon population. The time average of the total oscillation
energy of the wave field is given from the equipartition theorem for harmonic oscillators

〈E〉t = 2〈T 〉t = 2 · 1
2
〈
∫
V
d3rρu̇2(r, t)〉t . (6.47)

We have from (6.43)

u̇(r, t) =
V

8π3

∫
d3Q

1

2

[
−iΩQCQe

i(Q·r−ΩQt)Q̂+ iΩQC
∗
Qe
−i(Q·r−ΩQt)Q̂

]
, (6.48)

so that

〈E〉t =
ρ

4

∫
V
d3r

1

T

∫ T

0
dt

V

8π3

∫
d3Q

[
−iΩQCQe

i(Q·r−ΩQt)Q̂+ iΩQC
∗
Qe
−i(Q·r−ΩQt)Q̂

]
· V
8π3

∫
d3Q′

[
−iΩQ′CQ′ei(Q

′·r−ΩQ′ t)Q̂′ + iΩQ′C∗Q′e−i(Q
′·r−ΩQ′ t)Q̂′

]
.

(6.49)
Integration with respect to r gives

∫
V d

3rei(Q−Q
′)·r = V δQQ′ while the integrals over a

time period eliminate the time-dependent terms because
∫ T
0 dte±i2ΩQt = 0. Finally, we

obtain
〈E〉t =

V

8π3

∫
d3Q

ρV

2
Ω2
Q|CQ|2 ≡

∑
Q

〈EQ〉 , (6.50)
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where we note that the magnitudes CQ are the components of the normal oscillation modes
of the lattice. Defining 〈EQ〉 as the average thermal energy of each normal mode we have

〈EQ〉 =
[
〈nQ〉+

1

2

]
~ΩQ =

 1

e
~ΩQ
kBT − 1

+
1

2

 ~ΩQ ' kBT , (6.51)

since ~ΩQ � kBT
4. From (6.50), (6.51) it turns out

|CQ|2 =
2kBT

ρV Ω2
Q

, (6.52)

which, we note, is independent of Q̂. From (6.46) and (6.52) and with the help of com-
pleteness relation (B.9) we obtain

∑
`m

|a`mQ|2 =
1

4π

2kBT

ρV Ω2
Q

. (6.53)

Alternatively substituting into Eq. (6.47) the displacement field from Eq. (6.45) and fol-
lowing the same procedure in the spherical wave representation we derive exactly the same
relation

〈E〉t = ρ

(
2V

π

)2∑
`m

∫
dQQ2π

4
Ω2
Q|a`mQ|2 =

V

8π3

∫
d3QkBT ⇒

∑
`m

|a`mQ|2 =
1

4π

2kBT

ρV Ω2
Q

.

(6.54)
The BLS spectral density is obtained, in general, through Eq. (6.37)

I(q, ω) ∝
∑
p

δε∗p(q)
∑
p′

δεp′(q)δ(ω − Ωp′)δΩpΩp′ (6.55)

In the specific case of an isotropic homogeneous fluid medium the subscript p denotes
either the index Q (in the plane wave representation) or the discrete angular momentum
indices `m and the continuum index Q (in the spherical wave representation) and we have
already noted that Ωp = ΩQ = cQ. Therefore we should be careful in handling (6.55) and
the correct formula for the BLS spectral density is

I(q, ω) ∝
∑
p

δε∗p(q)
∑
p′

δεp′(q)δ(ω − ΩQ′)δQQ′ (6.56)

4Indeed at room temperature (T = 300 K) kBT = 0.02585 eV while ~ΩQ ∼ 10−6 eV in the range of
GHz.
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In the plane wave basis (
∑

p = V
8π3

∫
d3Q) and by using the second of Eqs. (6.39), (we

omit the constant factor
|E0|2k4f ε2rp2

16π2R2
for simplicity) we obtain

I(q, ω) ∝
(
V

8π3

)2 ∫
d3Q

∫
d3re−iq·rq · CQQ̂eiQ·r

∫
d3Q′

∫
d3reiq·rq · C∗Q′Q̂′e−iQ

′·r ×

× δ(ω − ΩQ′)δQQ′

=

(
V

8π3

)2 ∫
d3Q8π3δ(q−Q)q · Q̂CQ

∫
d3Q′8π3δ(q−Q′)q · Q̂′C∗Q′

× δ(ω − ΩQ′)δQQ′

= V 2q2|Cq|2δ(ω − Ωq)

=
2kBTV

ρc2
δ(ω − Ωq) . (6.57)

Correspondingly, in the spherical wave basis (
∑

p =
2V
π

∑
`m

∫
dQQ2) and by using Eq. (6.38)

we obtain

I(q, ω) ∝ 2V

π

∑
`m

∫
dQQ2

∫
d3re−iq·r∇ · {a`mQ

1

Q
∇[j`(Qr)Y`m(r̂)]}

× 2V

π

∑
`′m′

∫
dQ′Q′2

∫
d3reiq·r∇ · {a∗`′m′Q′

1

Q′
∇[j`′(Q

′r)Y ∗`′m′(r̂)]}

× δ(ω − ΩQ′)δQQ′ . (6.58)

Using the identities (6.44), (B.8), (A.22) and substituting the coefficient a`mQ from Eq. (6.46),
Eq. (6.58) becomes

I(q, ω) ∝ 2V

π

∑
`m

∫
dQQ2(−i)`4π π

2qQ
δ(q −Q)(−Q)Y`m(q̂)

1

4π

∫
dQ̂i`−1Y ∗`m(Q̂)CQ

× 2V

π

∑
`′m′

∫
dQ′Q′2i`

′
4π

π

2qQ′
δ(q −Q′)(−Q′)Y ∗`′m′(q̂)

1

4π

∫
dQ̂′(−i)`′−1Y`′m′(Q̂′)C∗Q′

× δ(ω − ΩQ′)δQQ′ . (6.59)

Now using the identities
∑

`m Y`m(r̂)Y ∗`m(r̂′) = δ(r̂ − r̂′), δ(r − r′) = 1
r2
δ(r − r′)δ(r̂ − r̂′),
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Eq. (6.59) reduces to

I(q, ω) ∝ 2V

π

∫
d3Q

π

2
qδ(q−Q)CQ

2V

π

∫
d3Q′

π

2
qδ(q−Q′)C∗Q′δ(ω − ΩQ′)δQQ′

=

(
2V

π

)2 (π
2

)2
q2|Cq|2δ(ω − Ωq)δqq

= V 2q2|Cq|2δ(ω − Ωq)

=
2kBTV

ρc2
δ(ω − Ωq) . (6.60)

which is identical to (6.57).
To summarize, the intensity of the scattered radiation for an isotropic fluid medium

will be, from (6.41), incorporating (6.57), (6.60)

I(q, ω) =
|E0|2k4f ε2rp2kBTV

8π2R2ρc2
δ(ω − cq) . (6.61)

We note that the BLS spectrum will exhibit a characteristic peak (delta function) at
frequency equal to ωf = ωi + cq, which means that a phonon was absorbed (anti-Stokes),
while a respective peak will appear also at frequency ωf = ωi− cq (Stokes). The intensity
of the peak will be proportional to the temperature and the scattering volume.

6.4 A solid sphere in vacuum
As a particular case, let us now study a solid sphere of radius S in vacuum [101]. The
displacement field u(r) inside the sphere is given by Eq. (3.4) and the appropriate boundary
conditions now are τr|r=S = τθ|r=S = τφ|r=S = 0, because the surface traction vanishes
in vacuum. The boundary conditions for the angular components of τ are the same as
in the case of a solid sphere in a fluid host. Therefore Eqs. (3.11), (3.12) still hold. The
boundary condition concerning the radial part, τr|r=S = 0, leads to

aN`m

√
`(`+ 1)

xtj
′
`(xt)− j`(xt)

xt
− aL`m

[
`(`+ 1)− x2t /2

]
j`(xl)− 2xlj

′
`(xl)

xl
= 0 , (6.62)

From Eqs. (3.11) and (6.62) we obtain

`(`+ 1)
xtj
′
`(xt)− j`(xt)

xtj′`(xt)− [`(`+ 1)− 1− x2t /2]j`(xt)
=

[
`(`+ 1)− x2t /2

]
j`(xl)− 2xlj

′
`(xl)

xlj
′
`(xl)− j`(xl)

.

(6.63)
Eq. (6.63), for a given `, provides the discrete set of eigenfrequencies of the spheroidal
modes, Ωn`, n = 1, 2, 3, . . ., which appear in addition to the torsional eigenmodes given
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by Eq. (3.11). As we shall see below, the torsional modes do not contribute to the BLS
intensity, therefore we will have to deal only with the spheroidal eigenmodes. We recall
that Qν = Ωn`/cν , and xν = QνS ν = l, t, omitting, for simplicity, the indices n` in
the wavenumbers Qν (and xν) associated with a given eigenmode. The subscript p in
Eq. (6.37) is a collective index which denotes the eigenmodes, and in the present case
p = n`m.

Two quantities are necessary in order to calculate the BLS intensity, δεp(q) and |aLp|2.
From on Eq. (6.38), we obtain 5

δεp(q) ∝
∫
d3re−iq·r∇ · [up(r)Θ(S − r)]

=

∫
d3re−iq·r[∇ · up(r)Θ(S − r)− up(r) · r̂δ(S − r)]⇒

δεp(q) ∝ 4π(−i)`Y`m(q̂)aLn`mWn`(S, q,Ql, Qt) (6.64)

where up(r) is the displacement field [see Eq. (3.4)] associated with the given eigenmode
and the function Wn`(S, q,Ql, Qt) is defined as

Wn`(S, q,Ql, Qt) =
S2

q2 −Q2
l

[q2j`(qS)j
′
`(xl)−qQlj

′
`(qS)j`(xl)]+C

√
`(`+ 1)S2 j`(qS)j`(xt)

xt
(6.65)

and C is calculated by rewriting Eq. (3.11) as aN`m = −aL`mC. It can be readily seen
that the torsional (M) modes are not active in this case.

To calculate the phonon population, or else the elastic field amplitude |aLp|2, we follow
the same steps as in the case of the homogeneous fluid, by distributing equally thermal
energy kBT to each normal oscillation mode. Thus, for a body of temperature T in
vacuum, the stored time-average thermal energy of a normal oscillation mode (i.e., an
eigenmode p = n`m) is, according to Bose-Einstein distribution,

1

2
ρΩ2

n`

∫
d3r|up(r)|2 =

[
n(Ωn`) +

1

2

]
~Ωn` (6.66)

where n(Ωn`) = 1/[exp(~Ωn`/kBT )− 1]. For spheres with dimensions in the range of µm,
like those we will study here, the eigenfrequencies lie in the GHz range so ~Ωn` ∼ 10−6 eV.
At room temperature kBT ∼ 0.02585 eV. So, ~Ωn`/kBT � 1⇒ n(Ωn`) ' kBT/~Ωn` and
Eq. (6.66) becomes ∫

d3r|up(r)|2 =
2kBT

ρΩ2
n`

(6.67)

5We use the Heaviside step function Θ, because in this case the elastic field is confined inside the sphere.
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With the help of Appendix C and Eqs. (B.8), (B.35), we calculate∫
d3r|up(r)|2 =

∫
d3r
[
B(0)`mY`m(r̂)r̂− B(2)`mX`m(r̂)× r̂

]
·
[
B(0)∗`′m′Y

∗
`′m′(r̂)r̂− B(2)∗`′m′X

∗
`′m′(r̂)× r̂

]
=

∫
drr2

∫
dr̂{B(0)`mB

(0)∗
`′m′Y`m(r̂)Y ∗`′m′(r̂) + B(2)`mB

(2)∗
`′m′X`m(r̂) ·X∗`′m′(r̂)}

=

∫ S

0
drr2{|B(0)`m|

2 + |B(2)`m|
2}

= |aL`m|2Γn` , (6.68)

where Γn` can be evaluated analytically [see Appendix A]

Γn`/S
3 = Γ̄n` =

j`(xl)j
′
`(xl)

xl
+

1

2
[j2` (xl)− j`−1(xl)j`+1(xl)]

+ C2

{
j2` (xt)

x2t
+
j`(xt)j

′
`(xt)

xt
+

1

2
[j2` (xt)− j`−1(xt)j`+1(xt)]

}
+ 2C

√
`(`+ 1)

[
j`(xl)j`(xt)

xlxt

]
.

(6.69)

Combining Eq. (6.67) and Eq. (6.68) we obtain

|aLn`m|2 =
2kBT

ρΩ2
n`

1

Γn`
(6.70)

For the BLS spectral density we start again from the general formula (6.55) and using
Eq. (6.64) we have for the case of a solid sphere in vacuum

I(q, ω) ∝
∑
n`m

4π(−i)`Y`m(q̂)aL`mWn`(S, q,Ql, Qt)

×
∑

n′`′m′

4πi`
′
Y ∗`′m′(q̂)a∗L`′m′Wn′`′(S, q,Ql, Qt)δ(ω − Ωn′`′)δnn′δ``′

I(q, ω) ∝
∑
n`m

(4π)2W2
n`(S, q,Ql, Qt)δ(ω − Ωn`)

∑
m′

Y`m(q̂)Y ∗`m′(q̂)aL`ma
∗
L`m′(6.71)

In order to carry out the sum over m′, two different possibilities exist. Both of them
are based on the fact that the spherical symmetry of the problem will impose isotropy of
space. Precisely, we can either multiply Eq. (6.71) by the factor 1

4π

∫
dq̂ or, by choosing

the direction of the wavenumber q along the z axis, q = qẑ, in the same equation. We
result in the following two equations, respectively,

I(q, ω) ∝ 4π
∑
n`m

|aL`m|2W2
n`(S, q,Ql, Qt)δ(ω − Ωn`) (6.72)
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where we used the identity
∫
dq̂Y`m(q̂)Y ∗`m′(q̂) = δmm′ , and

I(q, ω) ∝ 4π
∑
n`

(2`+ 1)|aL`0|2W2
n`(S, q,Ql, Qt)δ(ω − Ωn`) (6.73)

where we used Eq. (B.7). The two expressions for the BLS intensity [Eqs. (6.72), (6.73)]
coincide, because the magnitude of the coefficient aL`m is independent of the value of m,
|aL`m|2 = |aL`0|2, and so the sum over m on a quantity independent of m just produces a
factor of (2`+ 1),

∑
m |aL`m|2 = (2`+ 1)|aL`0|2.

The Brillouin intensity of the fundamental (n = 1) vibrational eigenmodes of a free
vibrating polystyrene elastic sphere as a function of the product of scattering wavevector
q and radius S are shown in Fig. 6.2. The missing (1, 1) mode is the zero frequency
translational mode of a free particle. Still et al. [98] calculated the BLS intensity for a
solid sphere in vacuum numerically from Eq. (6.41), and arrived at the same result. Not
only our results matched but we performed the calculations much faster and with greater
accuracy, since the errors due to numerical integration are eliminated.

Figure 6.2: Brillouin intensity in arbitrary units for a free polystyrene sphere as a function
of product of the wavevector q and the radius S. We depict the intensities for n = 1 and
from ` = 0 to 7, except from ` = 1.

In an actual experimental setup it is not possible to measure the Brillouin intensity
from a single isolated particle. Instead, phononic crystals are constructed from colloidal
suspensions of spherical nanoparticles, e.g. polymer, which are deposited on a glass sub-
strate and self-organize into crystal structures, usually followed by infiltration of appro-
priate fluid with refractive index almost equal to that of the polymer, in order to have
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optical homogeneity as we already mentioned in § 6.2. As shown experimentally by Still
et al. [98], a possible q dependence for the Brillouin intensity is lost because all scattering
angles between θ = 0◦ (q = 0) and 180◦ (qmax = 4πnr/λ with refractive index nr) con-
tribute to the spectra. Therefore, the theoretical BLS intensity at a given eigenfrequency
must be obtained by integration of Eq. (6.73) over all possible qS values. The black ver-
tical lines in Fig. 6.3 show the relative intensity values at the different eigenfrequencies
(n, `), resulting from the integration. We note that the relative intensities are in very
good agreement with the experiment, despite the simplifications we considered to solve
the theoretical problem. Because air exists between the spheres in the sample, they can-
not interact strongly so the spectrum is greatly shaped by the eigenstates of the isolated
sphere. However, the small interaction between the spheres causes the conversion from
the discrete spectrum to continuous. A useful way to produce the continuous spectrum
beginning from the isolated sphere is to broaden it, using a Gauss-Lorentz function given
by the following expression [44,102]

I(ω) =

∫
dxA(x)

Γ(x)

[ω − Ωp(x)]2 − Γ2(x)

e−
(x−d)2

2σ2

√
2πσ

(6.74)

where x is the diameter of the particle with σ = 0.03d [98] being its standard deviation and
d its mean value, the experimental linewidth Γ(x) = 0.28 GHz [98], Ωp(x) = 2πfpd/x with
fp given in GHz, and A(x) is a value proportional to the intensity of the eigenfrequency
of the isolated particle which we want to broaden. Finally, the total broadened intensity
will be the

∑
p I(ω) over all the eigenfrequencies, which we represent by the green line

depicted in Fig. 6.3. Our results compare well with the experimental data, as well as with
the fully-numerical results of Still et al. [98].

An important remark needs to be made here: in order to fit the experimental data we
did not use the real values for the velocities of silica particles, but values that were slightly
smaller (see caption of Fig. 6.3). This is an indication that, at this scale, the silica spheres
must be porous and can be treated as effectively homogeneous.
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Figure 6.3: Brillouin intensity, in arbitrary units, from spherical silica particles with cl =
4226 m/s and ct = 2530 m/s, as a function of the frequency of the incident light. The black
curve displays the experimental data [98], while the black vertical lines show the relative
intensity values from the different eigenfrequencies (n, `) that we calculated by integrating
Eq. (6.73) over all possible qS values. The blue curve represents the broadening of the
discrete spectrum performed by Still et al. [98], while the green curve is the result of our
calculation.



Summary and perspectives

In summary, we generalized the LMS method to phononic crystals of poroelastic spheres
immersed in a fluid medium, by combining Biot’s theory with (multiple) scattering tech-
niques. Specific applications of the method are presented for close-packed fcc crystals of
submerged water-saturated porous silica and polymer spheres, encompassing the viscous
and inertial coupling regimes. These structures can be viewed, also, as a particular class
of double-porosity liquid-saturated granular materials. Calculated transmission and ab-
sorption spectra of finite slabs of these materials are analyzed by reference to the acoustic
modes of the constituent spheres as well as to the dispersion diagrams of corresponding
infinite crystals, providing a consistent interpretation of the observed features. For the
elastically hard (silica) spheres with intermediate pore sizes, it is shown that, with increas-
ing porosity, strong absorption leads to negligible transmission over an extended frequency
range, which might be useful for broadband acoustic shielding applications. On the other
hand, in the case of the elastically soft (polymer) spheres, our results reveal the existence
of resonant modes with very long lifetime, localized in the spheres, in the inertial-coupling
regime, i.e., when the radius of the spheres’ pores is much larger than the viscous length.
These modes, which can be easily tuned in frequency by adjusting the intrinsic porosity of
the spheres, induce narrow dispersionless absorption bands as well as directional gaps in
the transmission spectrum of finite slabs of the double-porosity material. This work paves
the way towards a new class of phononic structures that exhibit unprecedented proper-
ties driven by the slow longitudinal waves, which are unique to poroelastic materials, and
multiple-scattering effects. We note that these structures cannot be described by treating
the poroelastic material as an effective homogeneous medium, and rigorous methods based
on Biot’s theory, such as that developed in the present thesis, are required.

Porosity naturally occurs in micro- and nanoparticles and the acoustic response of col-
loidal assemblies of such particles, in the hypersonic (GHz) regime, can be probed by BLS
experiments. This is a powerful non-destructive characterization technique, which utilizes
inelastic light scattering due to phonon-induced spatiotemporal variations of the refractive
index of a material in order to monitor its frequency response. In this thesis, we developed
a rigorous full elasto-optic theoretical formulation of BLS by single spherical particles in
vacuum, based on Green’s function techniques, and derived analytical expressions for the
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BLS intensities, thus improving the computational efficiency and accuracy of previous
calculations. Our formalism can be extended to the case of a solid particle embedded in
an index-matching liquid which, though more difficult to treat, is of interest because the
acoustic field is not exclusively confined inside the particle, thus leading to a continuous
spectrum and not to a discrete one as for the particle in vacuum. The formalism provides,
also, the theoretical basis for a rigorous interpretation of BLS experiments on periodic
structures (hypersonic phononic crystals) beyond indirect explanations, e.g., in terms of
the eigenmodes, the scattering cross section and the density of states of the individual
particles or the frequency band structure of the colloidal crystal, solely in the framework
of an elastodynamic description.



Appendix A

The Helmholtz equation for scalar fields, ∇2F (r) + q2F (r) = 0, has solutions of the
form F (r) =

∑
`m f`(qr)Y`m(r̂), where Y`m(r̂) are the spherical harmonics, r̂ denoting the

dependence on the angles θ, φ of the vector r in the spherical coordinates and f`(qr) is
the radial part of the solution of Helmholtz equation

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+ q2 − `(`+ 1)

r2

]
f`(qr) = 0 , (A.1)

or equivalently

f ′′` (x) +
2

x
f ′`(x) +

[
1− `(`+ 1)

x2

]
f`(x) = 0, x = qr, (A.2)

if ∇2 is expressed in spherical coordinates. Eq. (A.2) has, for a specific value of `, two
linearly independent solutions. Known forms of those solutions are the spherical Bessel,
Neumann or Hankel of the 1st or 2nd kind functions, that are given by the following
expressions

j`(x) =

√
π

2x
J`+1/2(x) = (2x)`

∞∑
s=0

(−1)s(s+ `)!

s!(2s+ 2`+ 1)!
x2s (A.3)

n`(x) =

√
π

2x
N`+1/2(x) = 2(−2x)−`−1

∞∑
s=0

(−1)s(s− `)!
s!(2s− 2`)!

x2s (A.4)

h+` (x) = j`(x) + in`(x) (A.5)
h−` (x) = j`(x)− in`(x) . (A.6)
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We note that only the spherical Bessel function is regular at x = 0. In the following we
list some useful recurrence relations that spherical functions obey

xf ′`(x) = `f`(x)− xf`+1(x) (A.7)
(2`+ 1)f`(x) = xf`−1(x) + xf`+1(x) (A.8)
xf`−1(x) = xf ′`(x) + (`+ 1)f`(x) (A.9)
(2`+ 1)f ′`(x) = `f`−1(x)− (`+ 1)f`+1(x) . (A.10)

Their asymptotic behavior (x� 1) is

j`(x� 1) ∼ 1

x
sin

(
x− `π

2

)
(A.11)

n`(x� 1) ∼ −1

x
cos

(
x− `π

2

)
(A.12)

h+` (x� 1) ∼ (−i)`+1 e
ix

x
(A.13)

h−` (x� 1) ∼ i`+1 e
−ix

x
, (A.14)

while for small arguments (x� 1) the next apply

j`(x� 1) ∼ x`

(2`+ 1)!!
(A.15)

n`(x� 1) ∼ −(2`− 1)!!

x`+1
. (A.16)

With the help of (A.2) and (A.7) it can be shown that∫
drr2f`(qr)g`(q

′r) =
r2

q′2 − q2
[qf ′`(qr)g`(q

′r)− q′g′`(q′r)f`(qr)] , (A.17)

and ∫
drr2[f ′`(qr)g

′
`(q
′r) + `(`+ 1)

f`(qr)

qr

g`(q
′r)

q′r
] = (A.18)

=
r2

q′
f ′`(qr)g`(q

′r) +
q

q′

∫
drr2f`(qr)g`(q

′r)] (A.19)

=
r2

q′2 − q2
[q′f ′`(qr)g`(q

′r)− qg′`(q′r)f`(qr)] , (A.20)

where f`, g` can be any linear combination of the solutions of Bessel’s differential equa-
tion (A.2). In the special case where f`(qr) = g`(qr) = j`(qr), Eq. (A.17) for q′ → q
yields ∫

drr2j2` (qr) =
r3

2
[j2` (qr)− j`−1(qr)j`+1(qr)] , (A.21)
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while integration in Eqs. (A.17) and (A.21) over the entire radial space leads to∫ ∞
0

drr2[j′`(qr)j
′
`(q
′r) + `(`+ 1)

j`(qr)

qr

j`(q
′r)

q′r
] =

∫ ∞
0

drr2j`(qr)j`(q
′r) =

π

2q2
δ(q − q′) .

(A.22)
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Appendix B

The spherical harmonics Y`m(r̂) are the angular part of the solution of the Helmholtz
equation and they satisfy the following differential equation

∇2Y`m(r̂) =

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

r2

]
Y`m(r̂)

= −L2

r2
Y`m(r̂) = −`(`+ 1)

r2
Y`m(r̂) , (B.1)

where L is the angular momentum operator and the argument r̂ denotes the dependence
on the angles θ, φ of the vector r in the spherical coordinates. The spherical harmonics
Y`m(r̂) are given from the expression

Y`m(r̂) = (−1)m
√

2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos θ)eimφ , (B.2)

with ` = 0, 1, 2, · · · , m = −`,−`+1, · · · , `−1, ` and Pm
` (cos θ) are the associated Legendre

polynomials

Pm
` (x) =

1

2``!
(1− x2)m/2 d

`+m

dx`+m
(x2 − 1)` , x = cos θ , for m > 0, (B.3)

while for m < 0 they are given from

P−m` (x) = (−1)m (`−m)!

(`+m)!
Pm
` (x) . (B.4)

The above relations result in

Y ∗`m(r̂) = (−1)mY`−m(r̂) , (B.5)

and

Y`m(−r̂) = (−1)`Y`m(r̂) (B.6)

Y`m(θ = 0, φ) =

√
2`+ 1

4π
δm0 . (B.7)
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Y`m(r̂) satisfy a series of important relations, like the orthonormality and completeness
relations ∫

dr̂ Y`m(r̂)Y ∗`′m′(r̂) = δ``′δmm′ (B.8)∑
`m

Y`m(r̂)Y ∗`m(r̂′) = δ(r̂− r̂′) , (B.9)

or the following relations that connect spherical harmonics of different order

cos θY`m(r̂) = ζm`+1Y`+1m(r̂) + ζm` Y`−1m(r̂) (B.10)
eiφ sin θY`m(r̂) = 2

(
γ−m` Y`−1m+1(r̂)− γm+1

`+1 Y`+1m+1(r̂)
)

(B.11)
e−iφ sin θY`m(r̂) = 2

(
γ−m+1
`+1 Y`+1m−1(r̂)− γm` Y`−1m−1(r̂)

)
(B.12)

m cot θY`m(r̂) = −
[
αm
` e
−iφY`m+1(r̂) + α−m` eiφY`m−1(r̂)

]
, (B.13)

and even the following

∂Y`m(r̂)

∂θ
= αm

` e
−iφY`m+1(r̂)− α−m` eiφY`m−1(r̂) (B.14)

= iψ`X`m,φ(r̂) (B.15)
∂Y`m(r̂)

∂φ
= imY`m(r̂) (B.16)

= −iψ` sin θX`m,θ(r̂) . (B.17)

Finally, it applies

∇ [f`(qr)Y`m(r̂)] = f`(qr)∇Y`m(r̂) + qf ′`(qr)Y`m(r̂)r̂

= iψ`
f`(qr)

r

(
X`m,φ(r̂)θ̂ −X`m,θ(r̂)φ̂

)
+ qf ′`(qr)Y`m(r̂)r̂ . (B.18)

In the above expressions ψ`, αm
` , γm` , ζm` are given from

ψ` =
√
`(`+ 1) (B.19)

αm
` =

1

2
[(`−m)(`+m+ 1)]1/2 (B.20)

γm` =
1

2
[(`+m)(`+m− 1)]1/2 / [(2`− 1)(2`+ 1)]1/2 (B.21)

ζm` = [(`+m)(`−m)]1/2/[(2`− 1)(2`+ 1)]1/2 , (B.22)
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and X`m,θ(r̂), X`m,φ(r̂) are the components of the vector spherical harmonic functions
X`m(r̂), that are defined as

ψ`X`m(r̂) = LY`m(r̂) ≡ −ir×∇Y`m(r̂) . (B.23)

We note that here we adopt the usual notation r, θ, φ for the unitary vectors and the
corresponding vector components in spherical coordinates, instead of the indices 1, 2, 3,
that we usually follow. By definition X00(r̂) = 0, while for ` ≥ 1 we have

ψ`X`m(r̂) =
[
α−m` cos θ eiφ Y`m−1(r̂)−m sin θ Y`m(r̂)

+ αm
` cos θ e−iφ Y`m+1(r̂)

]
θ̂

+ i
[
α−m` eiφ Y`m−1(r̂)− αm

` e−iφ Y`m+1(r̂)
]
φ̂ (B.24)

= α−m` Y`m−1(r̂) (êx + iêy) +m Y`m(r̂) êz

+ αm
` Y`m+1(r̂) (êx − iêy) . (B.25)

From L2Y`m = `(`+1)Y`m and L2L = LL2 it will apply that L2X`m(r̂) = `(`+1)X`m(r̂).
From (B.23) we derive

X∗`m(r̂) = (−1)m+1X`−m(r̂) , (B.26)
and also

X`m(r̂)× r̂ = X`m,φ(r̂)θ̂ −X`m,θ(r̂)φ̂ =
−ir∇Y`m

ψ`
(B.27)

and
r̂× (X`m(r̂)× r̂) = X`m(r̂) . (B.28)

The following relations describe the action of the operators ∇× and ∇· on X`m(r̂)

∇×X`m(r̂) =
1

r

[
iψ`Y`m(r̂)r̂−X`m,φ(r̂)θ̂ +X`m,θ(r̂)φ̂

]
=

1

r
[iψ`Y`m(r̂)r̂−X`m(r̂)× r̂]

=
i

ψ`

[
ψ2
`

r
Y`m(r̂)r̂+∇Y`m(r̂)

]
(B.29)

and
∇ ·X`m(r̂) = 0, (B.30)

while with their help we obtain

∇× f`(x)X`m(r̂) = q

{
iψ`

f`(x)

x
Y`m(r̂)r̂−

[
f ′`(x) +

f`(x)

x

]
X`m(r̂)× r̂

}
(B.31)

∇ · [f`(x)X`m(r̂)] = 0 (B.32)
∇2 [f`(x)X`m(r̂)] = −∇× [∇× f`(x)X`m(r̂)] = −q2f`(x)X`m(r̂) (B.33)
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with x = qr. For the last one we used the relation

∇{∇ · [f`(x)X`m(r̂)]} = ∇ [∇f`(x) ·X`m(r̂) + f`(x)∇ ·X`m(r̂)]

= ∇ [∇f`(x) ·X`m(r̂)] = 0 . (B.34)

The vector spherical harmonics satisfy the following orthonormality relation∫
dr̂a X`m(r̂) ·X∗`′m′(r̂) = δ``′δmm′ (B.35)∫
dr̂ X`m(r̂) · [̂r×X∗`′m′(r̂)] = 0 , (B.36)

resulting in ∑
`m

{
A(1)

`m(r)X`m(r̂) +A(2)
`m(r) [̂r×X`m(r̂)]

}
= 0

⇒ A(1)
`m(r) = 0 = A(2)

`m(r) . (B.37)

At last, it can be shown that∫
dr̂ X`m(r̂) · ∇ × [f(r)X∗`′m′(r̂)] = 0 , (B.38)

and, with the help of (B.8), (B.25), that∫
dr̂ Y`m(r̂)X∗`′m′(r̂) =

δ``′

ψ`

[
δm+1m′α−m

′

`′ (êx − iêy)

+ δmm′mêz + δm−1m′αm′
`′ (êx + iêy)

]
, (B.39)

∫
dr̂ Y`m(r̂)Y ∗`′m′(r̂) r̂ = δm+1m′

(
−γm+1

`+1 δ`+1`′ + γ−m` δ`−1`′
)
(êx − iêy)

+ δm−1m′
(
γ−m+1
`+1 δ`+1`′ − γm` δ`−1`′

)
(êx + iêy)

+ δmm′
(
ζm`+1δ`+1`′ + ζm` δ`−1`′

)
êz , (B.40)

and∫
dr̂ Y`m(r̂)X∗`′m′(r̂)× r̂ =

iδm′m+1

ψ`′

[
−(`′ + 1)γm

′
`′ δ`′`+1 − `′γ−m

′+1
`′+1 δ`′`−1

]
(êx − iêy)

+
iδm′m−1
ψ`′

[
(`′ + 1)γ−m

′

`′ δ`′`+1 + `′γm
′+1

`′+1 δ`′`−1

]
(êx + iêy)

+
iδm′m

ψ`′

[
(`′ + 1)ζm

′
`′ δ`′`+1 − `′ζm

′
`′+1δ`′`−1

]
êz . (B.41)
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By defining the quantities

χ` =

√
(`− 1)(`+ 1)

`2
(B.42)

ξm` =
1

2(`+ 1)

√
`(`+ 2)(`+m+ 1)(`+m+ 2)

(2`+ 1)(2`+ 3)
, (B.43)

we evaluate the following integrals∫
dr̂ cos θX`m(r̂) ·X∗`′m′(r̂) =

[
χ`ζ

m
` δ`′`−1 + χ`+1ζ

m
`+1δ`′`+1

]
δm′m (B.44)∫

dr̂ cos θX`m(r̂) · [̂r×X∗`′m′(r̂)] =
im

ψ2
`

δ`′`δm′m (B.45)∫
dr̂ sin θ sinφX`m(r̂) ·X∗`′m′(r̂) = i

[
ξm` δ`′`+1 − ξ−m−1`−1 δ`′`−1

]
δm′m+1 (B.46)

+ i
[
ξ−m` δ`′`+1 − ξm−1`−1 δ`′`−1

]
δm′m−1 (B.47)∫

dr̂ sin θ sinφX`m(r̂) · [̂r×X∗`′m′(r̂)] =
δ`′`
ψ2
`

[
αm
` δm′m+1 − α−m` δm′m−1

]
(B.48)∫

dr̂ sin θ cosφX`m(r̂) ·X∗`′m′(r̂) =
[
−ξm` δ`′`+1 + ξ−m−1`−1 δ`′`−1

]
δm′m+1 (B.49)

+
[
ξ−m` δ`′`+1 − ξm−1`−1 δ`′`−1

]
δm′m−1 (B.50)∫

dr̂ sin θ cosφX`m(r̂) · [̂r×X∗`′m′(r̂)] =
iδ`′`
ψ2
`

[
αm
` δm′m+1 + α−m` δm′m−1

]
. (B.51)

It is useful to note here that in the more general case three vector spherical harmonics
can be defined [104]

X
(1)
`m(r̂) ≡ Y`m(r̂)r̂ , (B.52)

X
(2)
`m(r̂) ≡ − i

ψ`
r×∇Y`m(r̂) , (B.53)

X
(3)
`m(r̂) ≡ r

ψ`
∇Y`m(r̂) , (B.54)

forming a complete set and orthonormal basis in the sense∑
`mσ

X
(σ)
`m(r̂)X

(σ)∗
`m (r̂′) = 1δ(r̂− r̂′) , (B.55)∫

dr̂ X
(σ)
`m(r̂) ·X(σ′)∗

`′m′ (r̂) = δ``′δmm′δσσ′ , (B.56)
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where the first is written in dyadic notation and σ is meant to assume the values 1, 2, 3.
Then it is easy to express the vector spherical waves (2.56), (2.57) and (2.58) in the vector
spherical harmonic basis, using also (B.18), (B.31),

JL`m(r) = j′`(qlr)X
(1)
`m(r̂) +

j`(qlr)

qlr
ψ`X

(3)
`m(r̂) , (B.57)

JN`m(r) = −j`(qtr)
qtr

ψ`X
(1)
`m(r̂)−

[
j′`(qtr) +

j`(qtr)

qtr

]
X

(3)
`m(r̂) , (B.58)

JM`m(r) = j`(qtr)X
(2)
`m(r̂) . (B.59)

We note that everytime the superscript is omitted, we tacitly assume that X`m(r̂) ≡
X

(2)
`m(r̂).



Appendix C

Writing, in the general case, the elastic field u(r) as a linear combination of (2.56), (2.57)
and (2.58), with appropriate coefficients aP`m, P = L,M,N , we can express u(r) in
spherical coordinates

ur =
∑
`m

B(0)`mY`m(r̂)

uθ =
∑
`m

[
B(1)`mX`m;θ(r̂)− B

(2)
`mX`m;φ(r̂)

]
uφ =

∑
`m

[
B(2)`mX`m;θ(r̂) + B

(1)
`mX`m;φ(r̂)

]
. (C.1)

Accordingly, we can find, after a relatively easy algebraic manipulation, the corresponding
relations for the surface traction τ (r) in spherical coordinates [Eq. (1.46)] using the above
general form (C.1) for the elastic field u(r)

τr =
∑
`m

B(3)`mY`m(r̂)

τθ =
∑
`m

[
B(4)`mX`m;θ(r̂)− B

(5)
`mX`m;φ(r̂)

]
τφ =

∑
`m

[
B(5)`mX`m;θ(r̂) + B

(4)
`mX`m;φ(r̂)

]
, (C.2)
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where

B(0)`m = aL`mf
′
`(xl)− aN`mψ`

f`(xt)

xt

B(1)`m = aM`mf`(xt)

B(2)`m = i

[
−aL`mψ`

f`(xl)

xl
+ aN`m

xtf
′
`(xt) + f`(xt)

xt

]
B(3)`m = −aL`mρql

[
c2l f`(xl) + 2c2t

2xlf
′
`(xl)− ψ2

` f`(xl)

x2l

]
−aN`m2ρc2t qtψ`

xtf
′
`(xt)− f`(xt)

x2t

B(4)`m = aM`mρc
2
t qt

xtf
′
`(xt)− f`(xt)

xt

B(5)`m = −2iρc2t
{
aL`mψ`ql

xlf
′
`(xl)− f`(xl)

x2l

+aN`mqt
f`(xt)

[
1 + x2t /2− ψ2

`

]
+ xtf

′
`(xt)

x2t

}
(C.3)

and xν = qνr, ν = l, t. The above expressions apply in the case of elastic media that
allow the propagation of both longitudinal and transverse waves. Although, in the case
of non-viscous fluids, where only longitudinal waves can propagate, the expressions (C.3)
are replaced by

B(0)`m = aL`mf
′
`(xl)

B(1)`m = 0

B(2)`m = −iaL`mψ`
f`(xl)

xl

B(3)`m = −aL`mρqlc2l f`(xl)

B(4)`m = 0

B(5)`m = 0 . (C.4)



Appendix D

Double porosity models must reduce to single porosity models in the appropriate limit. It
is, therefore, necessary to remind ourselves of the basic results for single porosity models
in poroelasticity. The results presented in this appendix apply specifically to the single
porosity models, or else, to the properties characteristic of the matrix material in double
porosity.

For isotropic materials and hydrostatic pressure variations, the two independent vari-
ables in linear mechanics of porous media are the confining (external) pressure pc and the
fluid (pore) pressure p. The differential pressure pd ≡ pc− p is often used to eliminate the
confining pressure. The equations of the fundamental dilatations are then

−δV
V

=
δpd
K

+
δp

Ks
for the total volume V , (D.1)

−
δVφ
Vφ

=
δpd
Kp

+
δp

Kφ
for the pore volume Vφ = φV , and (D.2)

−
δVf
Vf

=
δp

Kf
for the fluid volume Vf , (D.3)

where K is the drained frame bulk modulus1, Ks is the unjacketed bulk modulus for the
composite frame, Kp is the jacketed pore modulus, Kφ is the unjacketed pore modulus
and Kf the bulk modulus of the pore fluid.

We define the dependent variables e ≡ δV
V and ζ ≡ δVφ−δVf

V , both of which are positive
on expansion, and which are respectively the total volume dilatation and the increment
of fluid content. Then, it follows directly(

e
−ζ

)
=

(
1/K 1/Ks − 1/K
−φ/Kp φ(1/Kp + 1/Kf − 1/Kφ)

)(
−pc
−p

)
. (D.4)

We can define now the Skempton’s pore-pressure buildup coefficient B to be

B ≡ ∂p

∂pc

∣∣∣
ζ=0

, (D.5)

1K ≡ Kb, φ ≡ f the porosity
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and is therefore given by
B =

1

1 +Kp(1/Kf − 1/Kφ)
. (D.6)

It follows immediately from this definition that the undrained modulus Ku is determined
by

Ku ≡ −
1

V

∂V

∂pc

∣∣∣
ζ=0

=
K

1− αB
. (D.7)

where we introduced the Biot-Willis parameter α = 1 − K
Ks

. Finally we condense the
general relations together with the reciprocity relations [103] into symmetric form as(

e
−ζ

)
=

(
1/K −α/K
−α/K α/BK

)(
−pc
−p

)
. (D.8)

A storage compressibility can be defined as

S ≡ δζ

δp

∣∣∣
δpc=0

=
α

BK
. (D.9)

This storage compressibility is the change in increment of fluid content per unit change in
the fluid pressure, defined for a condition of no change in external pressure. Finally note
that Kp = φK/α.

The total strain energy functional (including shear) for this problem may be written
in the form

2E = δτijδεij + δpfδζ , (D.10)

where δεij is the change in the average strain, with δεii = e being the dilatation, δτij being
the change in the average stress tensor for the saturated porous medium with 1

3δτii = −δpc.
[From [66], pp. 24614,5]



Appendix E

The double-porosity water-saturated polymer structure under study can be viewed as a
special case of the model presented in Refs. [66, 67], whose terminology and notation we
adopt here to facilitate comparison. Our unconsolidated fluid-saturated polymer spheres
correspond to the porous matrix (called “phase 1” in Ref. [66]) and the interstitial void
space filled by water corresponds to the water-filled fractures (called “phase 2” in Ref. [66]),
occupying, respectively, fractional volumes v(1) ≡ v and v(2) ≡ 1 − v. We shall derive
the expression for the effective-medium velocity for such a crystal, in the case where
viscous losses are neglected. The condition of perfect locking in the motion between the
solid and the two fluid components, valid in the long-wavelength regime that interests
us here, implies u = U(k) for the corresponding displacement fields of the solid and two
fluids (k = 1 for the fluid in the matrix pores and k = 2 for the fluid in the fractures).
Thus the total kinetic energy of the system is written as T = 1

2ρtotu̇ · u̇, where ρtot =
v(1−f)ρs+[1−v(1−f)]ρf the total inertia of the system, and use of Lagrange’s equation
leads to the following expression for the stress tensor (a e−iΩt dependence is assumed)

τij,j = ∂t∂u̇iT = −Ω2ρtotui . (E.1)

On the other hand the weak-frame approximation (K,µ → 0), valid for unconsolidated
grains, yields [see Eqs. (2.44), (2.45)]

τij,j = −pc,i, (E.2)

with pc being the confining pressure applied to the boundaries of the whole structure.
Combining Eqs. (E.1) and (E.2) and since, by definition, the dilatational strain e = ui,i,
and, pc,ii = −k2pc, with k being the wavenumber, we obtain the effective-medium velocity

c2 = lim
Ω→0

(
Ω

k

)2

= −pc
e

1

ρtot
. (E.3)

The initial condition u = U(k), or, equivalently, ζ(k) = 0, k = 1, 2, for the two fluid
contents, arising from the long-wavelength regime, leads to a simplified form for the stress-
strain phenomenological linear system, described by Eq. (2.43), which, in the general case
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of the unconsolidated-grain limit, is written as −pc
−p(1)
−p(2)

 =

 ã11 ã12 ã11
ã12 ã22 ã12
ã11 ã12 ã11

 e

−ζ(1)
−ζ(2)

 . (E.4)

In the above expression, ãij are the inverse-matrix elements of the matrix defined in
Eq. (2.43), and p(k) are the pressures in the fluids of each phase k. Indeed, Eq. (E.4)
reduces to the form  −pc

−p(1)
−p(2)

 =

 ã11
ã12
ã11

 e , (E.5)

from which pc = p(2) = −ã11e (being naturally expected, since, in the unconsolidated-grain
limit, “phase 2” completely surrounds “phase 1”) and p(1) = pc

ã12
ã11

. Explicit expressions
for ã11, ã12 can be found to be [see Table ??]

ã11 ≡ D−1(a22a33 − a223) =
ã12

B(1)
, (E.6)

ã12 ≡ D−1(a13a23 − a12a33) =

= B(1)

[
1− v
Kf

+
v

K
(1)
u

]−1
, (E.7)

with D = a11a22a33 + 2a12a13a23 − a11a223 − a22a213 − a33a212,

1

K
(1)
u

=
1− α(1)B(1)

K(1)
, (E.8)

the inverse undrained modulus for “phase 1”, and, α(1) and B(1), the corresponding Biot-
Willis and Skempton coefficients, respectively. Combining the above expressions (E.5)-
(E.8) we find p(1) = pcB

(1) and

− pc
e

= ã11 =

[
1− v
Kf

+
v

K
(1)
u

]−1
. (E.9)

After substitution of Eq. (E.9) in (E.3) we finally obtain the effective-medium velocity at
the long wavelength regime for the double-porosity medium in the unconsolidated-grain
limit as

c2 = lim
Ω→0

(
Ω

k

)2

=
Keff

ρeff
, (E.10)
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where the effective elastic parameters are defined by

1

Keff
≡ 1− v

Kf
+

v

K
(1)
u

, (E.11)

ρeff ≡ ρtot . (E.12)

The quantity K−1eff has a clear physical meaning, being an average-law contribution
of the two phases: that of the host fluid (fractures) and that of the porous water-
saturated undrained spheres (porous matrix). In the case of close-packed (v = 0.74)
polystyrene spheres immersed in water we obtain: ρeff = 1.0333ρf , Keff = 1.397Kf and
c = 1721 m s−1, the latter being in excellent agreement with the value deduced from our
multiple-scattering calculations, c = 1717 m s−1.
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