
Postgraduate Studies Programme
“Theoretical Mathematics”,
Department of Mathematics,
National and Kapodistrian University of Athens

Extremal Graph Theory: Basic
Results

Nefeli Vidali
RN : 140401

Committee:
Thilikos Dimitrios M., Professor,
Department of Mathematics, NKUA.
Kirousis Lefteris M., Professor,
Department of Mathematics, NKUA.
Dracopoulos Michael C., Assistant
Professor, Department of
Mathematics, NKUA.

Advisor:
Thilikos Dimitrios M., Professor,
Department of Mathematics,
NKUA.





Μεταπτυχιακό Πρόγραμμα Ειδίκευσης

«Θεωρητικά Μαθηματικά»,
Τμήμα Μαθηματικών,
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Ακραία Γραφοθεωρία: Βασικά
Αποτελέσματα

Νεφέλη Βιδάλη

ΑΜ : 140401

Τριμελής Επιτροπή:
Θηλυκός Δημήτριος Μ., Καθηγητής,
Τμήμα Μαθηματικών, ΕΚΠΑ.
Κυρούσης Ελευθέριος Μ., Καθηγητής,
Τμήμα Μαθηματικών, ΕΚΠΑ.
Δρακόπουλος Μιχάλης Χ., Επίκουρος
Καθηγητής, Τμήμα Μαθηματικών,
ΕΚΠΑ.

Επιβλέπων:
Θηλυκός Δημήτριος Μ.,
Καθηγητής,
Τμήμα Μαθηματικών,
ΕΚΠΑ.





Η παρούσα Διπλωματική Εργασία

εκπονήθηκε στα πλαίσια των σπουδών

για την απόκτηση του

Μεταπτυχιακού Διπλώματος Ειδίκευσης

«Θεωρητικά Μαθηματικά»

που απονέμει το

Τμήμα Μαθηματικών

του

Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών

Εγκρίθηκε την ........................... από Εξεταστική Επιτροπή

αποτελούμενη από τους:

Ονοματεπώνυμο Βαθμίδα Υπογραφή

1. Θηλυκός
Δημήτριος

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Κυρούσης
Ελευθέριος

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Δρακόπουλος
Μιχάλης

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





Abstract

In this thesis, we take a general overview of extremal graph theory, investigating
common techniques and how they apply to some of the more celebrated results in
the field. The first chapter is an introduction to the subject and some preliminary
definitions and results. The second chapter concerns substructures in dense graphs
and focuses on important results such as Turán’s theorem, Szemerédi’s regularity
lemma and the Erdős-Stone-Simonovits theorem. The third chapter concerns sub-
structures in sparse graphs and investigates conditions which force a graph to contain
a certain minor or topological minor. The fourth and final chapter is an introduction
to the extremal theory of r-uniform hypergraphs and consists of a presentation of
results concerning the conditions which force them to contain a complete r-graph
and a Hamiltonian cycle.
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Σύνοψη

Η παρούσα διπλωματική εργασία έχει σκοπό να παρουσιάσει μία σφαιρική εικόνα της

θεωρίας των ακραίων γραφημάτων, διερευνώντας κοινές τεχνικές και τον τρόπο που
εφαρμόζονται σε κάποια από τα πιο διάσημα αποτελέσματα του τομέα. Το πρώτο κε-
φάλαιο είναι μία εισαγωγή στο θέμα και κάποιοι προαπαιτούμενοι ορισμοί και αποτελέσ-

ματα. Το δεύτερο κεφάλαιο αφορά υποδομές πυκνών γραφημάτων και εστιάζει σε
σημαντικά αποτελέσματα όπως είναι το θεώρημα του Turán, το λήμμα κανονικότητας
του Szemerédi και το θεώρημα των Erdős-Stone-Simonovits. Το τρίτο κεφάλαιο αφορά
υποδομές αραιών γραφημάτων και ερευνά συνθήκες που εξαναγκάζουν ένα γράφημα να

περιέχει ένα δοθέν έλασσον ή τοπολογικό έλασσον. Το τέταρτο και τελευταίο κεφάλαιο
είναι μία εισαγωγή στην θεωρία ακραίων r-ομοιόμορφων υπεργραφημάτων και περιέχει
αποτελέσματα που αφορούν συνθήκες οι οποίες τα εξαναγκάζουν να περιέχουν πλήρη

r-γραφήματα και Χαμιλτονιανούς κύκλους.
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Chapter 1

Introduction

Extremal graph theory, in its
strictest sense, is a branch of
graph theory developed and
loved by Hungarians.

B. Bollobás

1.1 Overview

Extremal graph theory is a branch of graph theory that seeks to explore the
properties of graphs that are in some way extreme, where extremality can be taken
with respect to different graph invariants, such as order, girth, chromatic number
etc. More abstractly, it studies how global parameters of a graph influence its local
substructures. For example, a simple extremal graph theory question is “which
acyclic graphs on n vertices have the maximum number of edges?”. The extremal
graphs for this question are trees on n vertices, which have n − 1 edges. More
generally, a typical question is the following.

Given a graph property P , an invariant u and a set of graphs H, we wish
to find the minimum value of m such that every graph in H which has
u larger than m possesses property P .

A classical extremal graph theoretic result, and the one that started the study
in the field, is Turán’s theorem, proved in 1941, which reveals not only the edge-
density but also the structure of those graphs that are extremal without a complete
subgraph of some fixed size. Another crucial result for the subject appeared in 1975
when Szemerédi proved his regularity lemma, which became a vital tool in attacking
extremal problems.
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1.2. DEFINITIONS CHAPTER 1. INTRODUCTION

The material of this thesis falls into two main parts. The first one concerns
substructures in dense graphs, that is, graphs whose number of edges is about
quadratic in their number of vertices. The number |E(G)|/

(|V (G)|
2

)
, the proportion

of its potential edges that G actually has, is the edge-density of G. The question of
exactly which edge-density is needed to force a given subgraph is a classical graph
problem. We shall concentrate on a few important results, namely, Turán’s theo-
rem, the Erdős-Stone-Simonovits theorem, and Szemerédi’s regularity lemma. Our
main purpose in proving the regularity lemma will be to give a proof of the Erdős-
Stone-Simonovits theorem, although it is worth noting that its use is widespread
throughout extremal graph theory. We shall also consider extremal graphs that do
not contain paths or cycles of a given length.

The second main part concerns substructures in sparse graphs, that is, graphs
whose number of edges is about linear in their number of vertices. In this part we
shall investigate which conditions can force a graph G to contain some given graph
H as a minor or topological minor. We shall also consider Hadwiger’s conjecture,
which is one of the most famous open problems in graph theory.

The final chapter is an introduction to hypergraphs and a brief summary of
results that concern extremal r-uniform hypergraphs.

1.2 Definitions

Before we begin our study of extremal graphs, we will provide the necessary
definitions and notation. All graphs considered in this thesis are finite and simple,
that is, undirected and loop-free with no multiple edges. Given a graph G = (V,E),
we denote by V (G) and E(G) its set of vertices and edges, respectively. We denote
by xy an edge with endpoints x, y ∈ V (G).

Two vertices connected by an edge are called adjacent, and two edges that share
an endpoint are called incident.

A clique is a set of pairwise adjacent vertices, whereas an independent set is a set
of pairwise non-adjacent vertices. A maximum independent set is an independent
set of largest possible size. This size is called the independence number of a graph G,
and denoted by α(G). An independent set of edges, often also called a matching, is
a set of edges no two of which share an endpoint. A perfect matching is a matching
in which every vertex of the graph is incident to exactly one edge of the matching.
A vertex cover of a graph is a set of vertices such that each edge of the graph is
incident to at least one vertex of the set.

If G = (V,E) and G′ = (V ′, E ′) are two graphs, a map φ : V → V ′ is a homo-
morphism from G to G′ if it preserves the adjacency of vertices. If φ is bijective and

2



CHAPTER 1. INTRODUCTION 1.2. DEFINITIONS

its inverse φ−1 is also a homomorphism, then φ is an isomorphism. A class of graphs
that is closed under isomorphism is called a graph property. A map taking graphs as
arguments is called a graph invariant if it assigns equal values to isomorphic graphs.

If G′ = (V ′, E ′) is a graph such that V ′ ⊆ V and E ′ ⊆ E, then G′ is called a
subgraph of G and we write G′ ⊆ G. Given a graph H, a graph G which does not
contain it as a subgraph is called H-free. If G′ ⊆ G and G′ contains all the edges
xy ∈ E with x, y ∈ V ′, then G′ is called an induced subgraph of G; we say that V ′

induces or spans G′ in G and write G′ = G[V ′]. A graph on n vertices induced by
a clique is called a complete graph and is denoted by Kn.

If G = (V,E) and U ⊆ V , we define G\U = G[V \U ], that is, G\U is obtained
from G by removing all the vertices in U and their incident edges. If U = {v}
is a singleton, we simply write G\v. Similarly, if F is a subset of E, we define
G\F = (V,E\F ), and write G\e if F = {e} is a singleton.

The complement G of a graph G = (V,E) is a graph on V with edge set
(
V
2

)
\E.

The line graph L(G) of G is the graph on E in which e, f ∈ E are adjacent as
vertices if and only if they are adjacent as edges in G.

Given an x ∈ V (G), we denote by NG(x) the set of all vertices adjacent to x.
More generally, for U ⊆ V (G), the set of neighbours in V (G)\U of vertices in U is
denoted by NG(U). The size of NG(x) is called the degree of x and is denoted by
dG(x). When the reference is clear, we may drop the index and simply write N(x),
N(U) and d(x), respectively. The number δ(G) = min{d(v) : v ∈ V (G)} is called
the minimum degree of G, the number ∆ = max{d(v) : v ∈ V (G)} is called its
maximum degree, and the number d(G) = 1

|V (G)|
∑

v∈V (G) d(v) is called its average
degree. The ratio |E(G)|

|V (G)| is often denoted by ε(G).

A path is a graph P = (V,E) of the form

V = {x0, x1, . . . , xk} and E = {x0x1, x1x2, . . . , xk−1xk},

where xi 6= xj for every i 6= j. The vertices x0 and xk are the endpoints of the path,
and the vertices xi for 1 6 i 6 k−1 are its inner vertices. The number of edges of a
path is its length and a path of length k is denoted by Pk. We will refer to a path P
by the natural sequence of its vertices, writing, say, P = x0x1 . . . xk and calling P a
path from x0 to xk, or simply an x0− xk path. The distance dG(x, y) (or, as before,
simply d(x, y)) in G of two vertices x and y is the length of a shortest (x, y)-path
in G. Given two sets of vertices A and B, we call P = x0 . . . xk an (A,B)-path if
V (P ) ∩ A = {x0} and V (P ) ∩ B = {xk}. When A = {a} is a singleton, we may
simply speak of an (a,B)-path. Two or more paths are called independent or disjoint

3



1.2. DEFINITIONS CHAPTER 1. INTRODUCTION

if none of them contains an inner vertex of another. A set of (a,B)-paths is called
an (a,B)-fan if any two of the paths have only a in common.

If P = (V,E) is the path x0 . . . xk−1 and k > 3, then the graph C = (V,E ∪
{xk−1, x0}) is called a cycle. As with paths, we will refer to a cycle by its (cyclic)
sequence of vertices, writing x0 . . . xk−1x0. The length of a cycle is the number of its
edges (or vertices). The cycle of length k is called a k-cycle and is denoted by Ck.

The minimum length of a cycle contained in a graph G is the girth of G, denoted
by g(G). An edge which joins two vertices of a cycle but is not itself an edge, is a
chord of the cycle. Thus, an induced cycle in G, that is, a cycle in G forming an
induced subgraph, is one that has no chords.

A graph G = (V,E) is connected if any two of its vertices can be joined by a path
in G. A subgraph-maximal connected subgraph of G is a component of G. Clearly,
the components are induced subgraphs and their vertex sets partition V .

If A,B ⊆ V and X ⊆ V ∪ E are such that every (A,B)-path in G contains a
vertex or an edge from X, we say that X separates the sets A and B in G. We say
that X separates two vertices a, b, if it separates the sets {a} and {b} but a, b /∈ X,
and that X separates G if it separates some two vertices of G. A separating set of
vertices is called a separator.

The unordered pair {A,B} is a separation of G if A∪B = V and G has no edge
between A\B and B\A. if both A\B and B\A are non-empty, the separation is
proper. The number |A ∩ B| is the order of the separation {A,B}, and the sets A
and B are its sides.

Given a positive integer k, a graph G = (V,E) is called k-connected if |V | > k

and G\X is connected for every set X ⊆ V with |X| < k. The greatest integer k
such that G is k-connected is the connectivity of G, denoted by κ(G).

An acyclic graph, that is, a graph that contains no cycles, is called a forest. A
connected forest is called a tree. The vertices of degree 1 in a tree are its leaves, and
the others are its inner vertices.

Let r > 2 be an integer. A graph G = (V,E) is called r-partite if V admits a
partition into r classes such that every edge of G has its ends in different classes:
vertices in the same class must not be adjacent. When r = 2, the graph H is called
bipartite.

An r-partite graph in which every two vertices from different partition classes
are adjacent is called complete. We denote by Kr

s the complete r-partite graph in
which every partition class contains exactly s vertices, and by Ks,t the complete bi-
partite graph in which one partition class contains s vertices and the other contains

4
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t vertices.

A subdivision of a fixed graph X is any graph obtained from X by replacing
some (or all) of its edges with new paths between their ends, so that none of these
paths as an inner vertex in V (X) or on another path. When G is a subdivision of
X, we say that G is a TX. The original vertices of X are the branch vertices of the
TX, while its new vertices are called subdividing vertices. If a graph Y contains a
TX as a subgraph, then X is a topological minor of Y .

A graph G is an IX if its vertex set admits a partition {Vx : x ∈ V (X)} into
connected subsets Vx such that distinct vertices x, y ∈ V (X) are adjacent in X if
and only if G contains a Vx − Vy edge. The sets Vx are the branch sets of the IX.
If a graph Y contains an IX as a subgraph, then X is a minor of Y .

Thus, X is a minor of Y if and only if there is a map φ from a subset of V (Y ) onto
V (X) such that for every vertex x ∈ V (X) its inverse image φ−1(x) is connected in
Y and for every edge xx′ of X there is an edge in Y between the branch sets φ−1(x)

and φ−1(x′) of its ends. If the domain of φ is all of V (Y ) and xx′ ∈ E(X) whenever
x 6= x′ and Y has an edge between φ−1(x) and φ−1(x′) (so that Y is an IX), we call
φ a contraction of Y onto X.

If e = xy ∈ E(G), we denote by G/e the graph obtained from G by contracting
the edge e into a new vertex ve, which becomes adjacent to all the former neighbours
of x and y.

An embedding of G in H is an injective map φ : V (G) → V (H) that preserves
the kind of structure we are interested in. Thus, φ embeds G in H “as a subgraph” if
it preserves the adjacency of vertices, “as an induced subgraph” if it preserves both
adjacency and non-adjacency etc.

A graph is called planar if it can be embedded in the plane, that is, it can be
drawn on the plane in such a way that its edges intersect only at their endpoints.
A planar graph s called maximal if it cannot be extended to a larger planar graph
by adding an edge. A planar graph with n > 3 vertices is maximally planar if and
only if it has 3n− 6 edges.

A face of a plane embedding of a planar graph is a connected component of the
complement of the graph. An outer face is a face with infinite area. Any other face
is an inner face. A plane embedding of a finite planar graph can only have one outer
face.

A vertex colouring of a graph G = (V,H) is a map c : V → S such that
c(v) 6= c(w) whenever v and w are adjacent. The elements of the set S are called

5



1.3. PRELIMINARY RESULTS CHAPTER 1. INTRODUCTION

the available colours. The smallest integer k such that G has a k-colouring, that is,
a vertex colouring c : V → {1, . . . , k}, is called the chromatic number of G and is
denoted by χ(G). If χ(G) = k, then G is called k-chromatic, whereas if χ(G) 6 k,
then it is called k-colourable. A k-colouring is basically a vertex partition into k
independent sets, which we call colour classes ; the non-trivial 2-colourable graphs,
for example, are precisely the bipartite graphs.

An edge-colouring of G = (V,E) is a map c : E → S with c(e) 6= c(f) for any
incident edges e, f . The smallest integer k for which a k-edge-colouring exists, that
is, an edge-colouring c : E → {1, . . . , k} is the edge-chromatic number, or chromatic
index of G, and is denoted by χ′(G).

1.3 Preliminary results

We shall now provide a few basic results that will be useful throughout our dis-
cussion.

Proposition 1.3.1. Every graph G with at least one edge has a subgraph H with
δ(H) > ε(H) > ε(G).

Proof. Let us repeatedly delete a vertex whenever it has degree less than ε. After
each such deletion, the number of vertices decreases by 1 and the number of edges
by at most ε, so the overall ratio ε of edges to vertices will not decrease.

Formally, we construct a sequence G = G0 ⊇ G1 ⊇ . . . of induced subgraphs of
G as follows. If Gi has a vertex vi of degree d(vi) 6 ε(Gi), we let Gi+1 = Gi\vi.
If not, we terminate our sequence and set H = Gi. By the choices of vi, we have
ε(Gi+1) > ε(Gi) for all i and, therefore, ε(H) > ε(G).

Since ε(K1) = 0 < ε(G), none of the graphs in our sequence is trivial, so in
particular H 6= ∅. The fact that H has no vertex suitable for deletion thus implies
δ(H) > ε(H), as claimed.

Proposition 1.3.2. Every graph G contains a path of length δ(G) and a cycle of
length at least δ(G) + 1 (provided that δ(G) > 2).

Proof. Let x0 . . . xk be a longest path in G. Then, all the neighbours of xk lie on
this path. Hence k > d(xk) > δ(G). If i < k is minimal with xixk ∈ E(G), then
xi . . . xkxi is a cycle of length at least δ(G) + 1.

The following proposition states that a large minimum degree implies the exis-
tence of a highly connected subgraph.

6
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Proposition 1.3.3 (Mader’s theorem). Let k ∈ N. Every graph G with d(G) > 4k

has a (k + 1)-connected subgraph H such that ε(H) < ε(G)− k.

Proof. Consider the subgraphs G′ ⊆ G such that

|V (G′)| > 2k and |E(G′)| > ε(G)(|V (G′)| − k) (1)

Such graphs G′ exist since G is one; let H be one of smallest order.
No graph G′ as in (1) can have order exactly 2k, since this would imply that

|E(G′)| > ε(G)k > 2k2 >
(|V (G′)|

2

)
. The minimality of H therefore implies that

δ(H) > ε(G): otherwise we could delete a vertex of degree at most ε(G) and obtain
a graph G′ ( H still satisfying (1). In particular, we have |V (H)| > ε(G). Dividing
the inequality |E(H)| > ε(G)|V (H)| − ε(G)k from (1) by |V (H)| therefore yields
ε(H) > ε(G)− k, as desired.

It remains to show that H is (k + 1)-connected. If not, then H has a proper
separation {U1, U2} of order at most k; put H[Ui] =: Hi. Since any vertex v ∈ U1\U2

has all its d(v) > δ(H) > ε(G) neighbours from H in H1, we have |V (H1)| > ε(G) >

2k. Similarly, |V (H2)| > 2k. As by the minimality of H neither H1 nor H2 satisfies
(1), we further have

|E(H1)| 6 ε(G)(|V (Hi)|0− k)

for i = 1, 2. But then

|E(H)| 6 |E(H1)|+ |E(H2)|
6 ε(G)(|V (H1)|+ |V (H2)| − 2k)

6 ε(G)(|V (H)| − k) (as |V (H1) ∩ V (H2)| 6 k),

which contradicts (1) for H.

The following theorem is one of the most fundamental results in graph theory.

Theorem 1.3.4 (Menger’s theorem). Let G = (V,E) be a graph and A,B ⊆ V .
Then the minimum number of vertices separating A from B in G is equal to the
maximum number of disjoint (A,B)-paths in G.

Proof. We shall denote by k the minimum number of vertices separating A from
B. Clearly, G cannot contain more than k disjoint (A,B)-paths, so our task is to
show that such k paths exist. If e ∈ E, we denote by G/e the graph obtained by
contracting the edge e, and by ve the resulting new vertex.

We apply induction on |E|. If G has no edge, then |A ∩ B| = k and we have k
trivial (A,B)-paths. So we assume that G has an edge e = xy. If G has no k disjoint
(A,B)-paths, then neither does G/e; here, we count the contracted ve as an element

7



1.3. PRELIMINARY RESULTS CHAPTER 1. INTRODUCTION

of A (respectively B) in G/e if in G at least one of x, y lies in A (respectively B).
By the induction hypothesis, G/e contains an A − B separator Y of fewer than k
vertices. Among these must be the vertex ve, since otherwise Y ⊆ V would be an
A− B separator in G. Then X = (Y \{ve}) ∪ {x, y} is an A− B separator in G of
exactly k vertices.

We now consider the graph G\e = (V,E\{e}). Since x, y ∈ X, every A − X

separator in G\e is also an A − B separator in G and hence contains at least k
vertices. So by induction there are k disjoint (A,X)-paths in G\e, and similarly
there are k disjoint (X,B)-paths in G\e. As X separates A from B, these two path
systems do not meet outside X, and can thus be combined to k disjoint (A,B)-
paths.

When mentioning Menger’s theorem, what is often meant is its following corol-
lary, which is sometimes referred to as the global version of Menger’s theorem.

Theorem 1.3.5 (Global version of Menger’s theorem). A graph is k-connected if
and only if it contains k independent paths between any two vertices.

Proof. If a graph G contains k independent paths between any two vertices, then
|V (G)| > k and G cannot be separated by fewer than k vertices; thus G is k-
connected.

Conversely, suppose that G is k-connected (and, in particular, has more than k
vertices) but contains vertices a, b not joined by k independent paths. Note that,by
applying Menger’s theorem to G\{a, b} with A = NG(a) and B = NG(b), we have
that the minimum number of vertices separating a from b is equal to the maximum
number of independent (a, b) paths in G. We can, therefore, conclude that a and b
are adjacent. Indeed, let G′ = G\ab. Then G′ contains at most k − 2 independent
(a, b)-paths. Again, we can separate a and b in G′ by a set X of at most k − 2

vertices. As |V (G)| > k, there is at least one further vertex v /∈ X ∪ {a, b} in G.
Now X separates v in G′ from either a or b, say from a. But then X ∪{b} is a set of
at most k − 1 vertices separating v from a in G, contradicting the k-connectedness
of G.

Proposition 1.3.6. Every graph G with m edges contains a bipartite subgraph with⌈
m
2

⌉
edges.

Proof. Let A ∪ B be a bipartition of V (G) with the maximum number of edges
between A and B. Any vertex a ∈ A has at least as many neighbours in B as in A
(otherwise, we could move v to B, thereby increasing the number of edges between
A and B). The same holds for the vertices in B. Therefore, the number of edges
between A and B is at least m

2
. Deleting the extra edges between A and B yields

the desired result.

8
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The following result is known as Hall’s theorem, often also called Hall’s mar-
riage theorem, and gives us a sufficient condition for a graph to contain a perfect
matching1.

Theorem 1.3.7 (Hall’s theorem). Let G be a bipartite graph with partition sets A
and B of equal size. If, for every U ⊆ A, |NG(U)| > |U |, then G contains a perfect
matching.

Proof. Let |A| = |B| = n. We will proceed by induction on n. Clearly, the result is
true for n = 1. We therefore assume that it is true for n− 1 and prove it for n.

If |NG(U)| > |U |+ 1 for every non-empty proper subset U of A, pick an edge ab
of G and consider the graph G′ = G\ab. Then, every non-empty subset U of A\{a}
satisfies

|NG′(U)| > |NG(U)| − 1 > |U |.

Therefore, there is a perfect matching between A\{a} and B\{b}. Adding the edge
from a to b gives the full matching.

Suppose, on the other hand, that there is some non-empty proper subset U of A
for which |NG(U)| = |U |, and let V = NG(U). By induction, since Hall’s condition
holds for every subset of U , there is a matching between U and V . But Hall’s
condition also holds between A\U and B\V . If this weren’t the case, there would
be someW in A\U with fewer than |W | neighbours in B\V . ThenW ∪U would be a
subset of A with fewer than |W ∪U | neighbours in B, contradicting our assumption.
Therefore, there is a perfect matching between A\U and B\V . Putting the two
matchings together completes the proof.

Proposition 1.3.8. If H is a minor of G such that ∆(H) 6 3, then H is a topo-
logical minor of G.

Proof. In order to show that H is a topological minor of G, we need to show that
there is a subdivision of H that is isomorphic to a subgraph of G. This means that
H can be obtained from G by a sequence of deletions of vertices and edges, and
then contractions of edges of the form uv where one of the vertices u or v has degree
exactly 2.

When forming H from G as a minor, we can do this so as to perform all deletions
of vertices and edges first, which leaves us with a graph G′. Note that while we might
want to later contract an edge uv where one of u or v have degree 1, we can convert
this operation to just deleting the degree 1 vertex, so we do this here instead.

1The theorem has many other interesting “non-marital” applications as well. For example, take
a standard deck of cards, and deal them out into 13 piles of 4 cards each. Then, using the marriage
theorem, we can prove that it is always possible to select exactly 1 card from each pile, such that
the 13 selected cards contain exactly one card of each rank (Ace, 2, 3, etc.).

9



1.3. PRELIMINARY RESULTS CHAPTER 1. INTRODUCTION

In other words, we first construct a graph G′ by deletions of vertices and edges
that contains H as a minor, such that H is obtained from G′ by contracting edges
uv both of whose endpoints have degree at least 2.

If G′ = H, we are done. Otherwise, we need to perform some edge contractions.
Since ∆(H) 6 3, we can never contract an edge whose endpoints both have degree
3. This is because otherwise we would create a vertex of degree 4 at this step, and
since we are only now contracting edges joining two vertices of degree at least 2, H
would have a vertex of degree 4.

Therefore, in forming H from G′, we are only contracting edges joining two
vertices at least one of which has degree 2. Thus H is a topological minor of G.

Moving on to planar graphs, it is worth noting that this theory contains a mul-
titude of interesting and beautiful results but, as this thesis is not concerned with
them, we shall only provide what is arguably the most important ones, that is, their
characterization in terms of forbidden graphs.

The first such theorem was proved by Kuratowski [37], who characterized planar
graphs in terms of forbidden topological minors.

Theorem 1.3.9 (Kuratowski 1930). A graph is planar if and only if its topological
minors include neither K5 nor K3,3

Wagner [61], on the other hand, characterized planar graphs in terms of minors.
Before we state Wagner’s theorem, we will prove the following simple results.

Lemma 1.3.10. If a planar graph G is 2-connected, then every face is bounded by
a cycle.

Proof. Assume there is a face F not bounded by a cycle. Choose a vertex v so that
the boundary walk of F passes through v twice. Then we may draw a closed curve
starting and ending at v with interior contained in F . This curve separates the plane
into two components, each of which must contain a vertex of G, so we conclude that
v is a cut vertex of G, that is, a vertex whose removal disconnects G. Thus, G is
not 2-connected, a contradiction.

Lemma 1.3.11. Let C be a cycle and let X, Y ⊆ V (C). Then one of the following
holds.

(i) |X| 6 1 or |Y | 6 1;

(ii) X = Y ;

10
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(iii) there exists x1, x2 ∈ X and y1, y2 ∈ Y so that x1, y1, x2, y2 are distinct and
occur in C in this order;

(iv) there exist u, v ∈ V (C) so that if P and Q are the two paths of C between u

and v, then X ⊆ V (P ) and Y ⊆ V (Q).

Proof. We assume that |X|, |Y | > 2 and that X 6= Y , as otherwise one of (i) or (ii)
holds. By possibly switching X and Y , we may assume that X\Y 6= ∅ and choose
x1 ∈ X\Y . Let y1 and y2 be the first vertices in Y clockwise and counter-clockwise,
respectively, from x1. Since |Y | > 2, we have that y1 6= y2. Let P and Q be the two
paths of C between y1 and y2 and assume that x1 lies on P . If X ⊆ V (P ), then (iv)
holds, otherwise (iii) holds.

Theorem 1.3.12 (Wagner 1937). A graph is planar if and only of its minors include
neither K5 nor K3,3.

Proof. It is easy to see that if a graph is planar then the removing of any edge or
vertex or the contraction of any edge results in a graph that is again planar. It is
also easy to check that neither K5 nor K3,3 are planar. Thus, if a graph is planar
then it contains neither K5 nor K3,3 as a minor.

For the converse, let G be a graph with no K5 or K3,3 minor. We will proceed by
induction on |V (G)|+ |E(G)|. If G is not connected then, by applying the induction
hypothesis to each component, we obtain a plane embedding of each component and,
by combining these, we get a plane embedding of G. We may, therefore, assume
that G is connected.

If G is not 2-connected, then we may choose a separation {H1, H2} of G (unless
|V (G)| 6 2, in which case the result is trivial). Since H1 and H2 have no K5 or
K3,3 minor, by applying the induction hypothesis we may embed them in the plane.
Combining these we obtain a plane embedding of G. We may, therefore, further
assume that G is 2-connected.

If G is not 3-connected, then we may choose a separation {H1, H2} of G where
V (H1) ∩ V (H2) = {u, v} (unless |V (G)| 6 3, in which case the result is trivial).
Add a new edge uv to H1 and H2 to form the graphs H ′1 and H ′2. Choose vertices
z1 ∈ V (H1)\V (H2) and z2 ∈ V (H2)\V (H1) and apply Menger’s theorem to choose
two internally disjoint paths from z1 to z2. It follows that H ′1 is a minor of G; to
see this, delete all vertices and edges of H2 not in the two paths chosen above and
then contract all but one of the edges in H2 that remain. Similarly, H ′2 is a minor of
G. This means that H ′1 and H ′2 have no K5 or K3,3 minor so, by induction, we may
choose plane embeddings of them. By combining these on the edge uv and then
removing it, we obtain a plane embedding of G. We may, therefore, further assume
that G is 3-connected.

11
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Lastly, let us assume that G has an edge uv so that G\{u, v} is not 2-connected.
Choose a separation {H1, H2} of G\uv where V (H1) ∩ V (H2) = {u, v, w}. For
i = 1, 2, let H ′i be the graph obtained from Hi by adding a new vertex adjacent
to u, v and w. Then choose vertices z1 ∈ V (H1)\V (H2) and z2 ∈ V (H2)\V (H1)

and apply Menger’s theorem to find three internally disjoint paths from z1 to z2. It
follows that H ′1 is a minor of G; to see this, delete all vertices and edges of H2 not
on the three paths chosen above, and then contract all edges in H2 except for one on
each of these paths. Similarly, H ′2 is a minor of G. It follows that H ′1 and H ′2 have
no K5 or K3,3 minor so, by induction, we may choose plane embeddings of them.
By combining these, we obtain a plane embedding of G. Thus, we may assume that
G has no such edge uv.

We now have sufficient connectivity in order to proceed. Choose an edge e = xy

of G and let G′ = G/e. Let x be the vertex we obtain by contracting xy and let
G′′ = G\{x, y} = G\z. Now, G′ has no K5 or K3,3 minor so, by induction, we may
choose a plane embedding of it. Furthermore, it follows from our assumptions that
G′′ is 2-connected so, by Lemma 1.3.10, the face of G′′ that contains z is bounded
by a cycle C. Thus, all neighbours of x and y in G lie on C. We will now embed G′′

on the plane and try to extend this to a plane embedding of G. Note that NG(x)

and NG(y) are subsets of V (C).
We now apply Lemma 1.3.11 to C for X = NG(x) and Y = NG(y). If either

(i) or (ii) holds and |X| = |Y | = 2, then we may extend our plane embedding of
G′′ to one of G. If (ii) holds with |X| = |Y | > 3, then G contains a K5 minor,
contradicting our assumption. If (iii) holds, then G contains a K3,3 minor, again
contradicting our assumption. Lastly, if (iv) holds, then we may again extend our
plane embedding of G′′ to one of G, thus proving the desired result.

The following theorem is one of the most well-known results in graph theory.

Theorem 1.3.13 (Four Colour Theorem). Every planar graph is 4-colourable.

Lastly, we shall prove a couple of results concerning vertex and edge colourings.

Proposition 1.3.14. Every k-chromatic graph has a k-chromatic subgraph of min-
imum degree at least k − 1.

Proof. Given G with χ(G) = k, let H ⊆ G be minimal with χ(H) = k. If H had
a vertex v of degree dH(v) 6 k − 2, we could extend a (k − 1)-colouring of H\v to
one of H, contradicting the choice of H.

Theorem 1.3.15 (Vizing). For any finite, simple graph G,

∆(G) 6 χ′(G) 6 ∆(G) + 1.

12
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Proof. The lower bound is trivial since, if G has a vertex u of degree d, at least d
edges have u as an endpoint and cannot be coloured with fewer than d colours.

For the upper bound, we proceed by induction on |E(G)|. The result clearly
holds when |E(G)| = 0, so suppose that |E(G)| > 0 and that a proper (∆+1)-edge-
colouring exists for all G\xy, where xy ∈ E(G) and ∆ = ∆(G).

We say that a colour α ∈ {1, . . . ,∆ + 1} is absent at a vertex x with respect to a
proper (∆ + 1)-edge-colouring c, if c(xy) 6= α for all y ∈ N(X). Let α/β-path from
x denote the unique maximal path which starts from x with an α-coloured edge and
alternates colours of edges (the second edge has colour β, the third has colour α,
and so on). Note that if c is a proper (∆ + 1)-edge-colouring of G, then every vertex
has an absent colour with respect to c.

Suppose, towards a contradiction, that no proper (∆ + 1)-edge-colouring of G
exists. This is equivalent to the following statement.

Let xy ∈ E(G) and c be an arbitrary proper (∆+1)-edge-colouring of G\xy
and suppose that α is absent in x and β is absent in y with respect to c.
Then the α/β-path from y ends in x.

(1)

This is equivalent because if (1) doesn’t hold, then we can interchange the colours
α and β on the α/β-path and set the colour of xy to be α, thus creating a proper
(∆ + 1)-edge-colouring of G from c. Conversely, if a proper (∆ + 1)-edge-colouring
exists, then we can delete an edge, restrict the colouring and (1) won’t hold either.

Now, let xy0 ∈ E(G) and let c0 be a proper (∆ + 1)-edge-colouring of G\xy0

and suppose that α is absent in x with respect to c0. We define y0, . . . , yk to be a
maximal sequence of neighbours of x such that c0(xyi) is absent in yi−1 with respect
to c0 for all 0 < i 6 k. We also define a sequence of colours c1, . . . , ck such that
ci(xyj) = c0(xyj+1) for all 0 6 j < i, ci(xyi) is not defined, and ci(e) = c0(e)

otherwise.
Then ci is a proper (∆ + 1)-edge-colouring of G\xyi due to the definition of

y0, . . . , yk. Note that the absent colours in x are the same with respect to ci, for all
0 6 i 6 k.

Let β be the absent colour in yk with respect to c0. Then β is also absent in Y −k
as well, with respect to Ci, for all 0 6 i 6 k. Note that β cannot be absent in x,
otherwise we could easily extend ck; therefore, an edge with colour β is incident to
x for all cj. From the maximality of k, there exists 1 6 i < k such that c0(xyi) = β.
From the definition of c1, . . . , ck, we have that c0(xyi) = ci−1(xyi) = ck(xyi−1) = β.

Let p be the α/β-path from Yk with respect to ck. From (1), P has to end in x.
But α is absent in x, so it has to end with an edge of colour β. Therefore, the last
edge of P is yi−1x. Now let P ′ be the α/β-path from Yi−1 with respect to ci−1. Since
P ′ is uniquely determined and the inner edges of P are not changed in c0, . . . , ck, the

13



1.3. PRELIMINARY RESULTS CHAPTER 1. INTRODUCTION

pathP ′ uses the same edges as P in reverse order and visits Yk. The edge leading to
yk clearly has colour α. But β is missing in yk, so P ′ ends in yk, which contradicts
(1), thus completing the proof.

14



Chapter 2

Subgraphs

2.1 Turán graphs

We now start systematically investigating the local structure of graphs. Local
structure refers to the intrinsic relations that hold between the answers to the ques-
tions “which subgraphs appear in a graph G?” and “how many of them are there?”.
The first serious result of this kind was proved by Mantel [42] in 1907, in which he
studies the maximum number of edges that a graph on n vertices can have without
containing a triangle as a subgraph.

Theorem 2.1.1 (Mantel). If a graph G on n vertices contains no triangles, then it
has at most n2

4
edges.

Proof. Let A be the largest independent set in G. Since G contains no triangles,
the neighbourhood of every vertex x is an independent set. Therefore, for every
x ∈ V (G), we have that d(x) 6 |A|. Let B be the complement of A. Every edge in
G must meet a vertex of B. Therefore, the number of edges in G satisfies

|E(G)| 6
∑
x∈B

d(x) 6 |A||B| 6
(
|A|+ |B|

2

)2

=
n2

4
.

Suppose that n is even. Then, equality holds if and only if |A| = |B| = n
2
, d(x) = |A|

for every x ∈ B and B has no internal edges. This easily implies that the unique
structure with n2

4
edges is a bipartite graph with equal partition sets. For n odd, the

number of edges is maximised when |A| =
⌈
n
2

⌉
and |B| =

⌊
n
2

⌋
. Again, this yields a

unique bipartite structure.

This proof tells us that not only is
⌊
n2

4

⌋
the maximum number of edges in a

triangle-free graph, but also that any triangle-free graph with this number of edges
is bipartite with partition sets of almost equal size.

15
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The natural generalisation of Mantel’s theorem to complete graphs of size r is
the following, proved by Turán [59] in 1941.

Theorem 2.1.2 (Turán). If a graph G on n vertices contains no copy of Kr+1, then
it contains at most

(
1− 1

r

)
n2

2
edges.

First proof. We will prove the claim by induction on n. The theorem is trivially
true for n = 1, . . . , r. We will therefore assume that it is true for all values less than
n and prove it for n. Let G be a graph on n vertices which contains no Kr+1 and has
the maximum possible number of edges. Then G contains copies of Kr, otherwise
we could add edges to G, contradicting maximality.

Let A be a clique of size r and let B be its complement. Since B has size n− r
and contains no Kr+1, there are at most

(
1− 1

r

)
(n−r)2

2
edges in B. Moreover, since

every vertex in B can have at most r − 1 neighbours in A, the number of edges
between A and B is at most (r − 1)(n− r). Summing, we see that

|E(G)| = |E(A)|+ |E(A,B)|+ |E(B)|

6

(
r

2

)
+ (r − 1)(n− r) +

(
1− 1

r

)
(n− r)2

2

=

(
1− 1

r

)
n2

2
,

thus completing the proof.

Second proof. We again assume that G is edge-maximal without containing Kr+1

as a subgraph. We will begin by proving that if xy /∈ E(G) and yz /∈ E(G), then
xz /∈ E(G).

Suppose, towards a contradiction, that xy /∈ E(G) and yz /∈ E(G), but xz ∈
E(G). If d(y) < d(x), then we may construct a new Kr+1-free graph G′ by deleting
y and creating a new copy of the vertex x, say x′, which we join to exactly the
neighbours of x (but not to x itself). Since any clique in G′ can contain at most one
of x, x′, we see that G′ is Kr+1-free. Moreover,

|E(G′)| = |E(G)| − d(y) + d(x) > |E(G)|,

contradicting the maximality of G. A similar conclusion holds if d(y) < d(z). We
may therefore assume that d(y) > d(x) and d(y) > d(z). We create a new graph G′′

by deleting x and z and creating two extra copies of the vertex y which, again, we
join to exactly the neighbours of y. As before, G′′ contains no Kr+1 and

|E(G′′)| = |E(G)| − (d(x) + d(z)− 1) + 2d(y) > |E(G)|,
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so, again, we arrive at a contradiction.
Hence, the vertices of G can be partitioned into equivalence classes where vertices

in the same class are non-adjacent and vertices in different classes are adjacent.
Therefore, the graph is a complete multipartite graph and, clearly, it can have at
most r parts. We will show that the number of edges is maximised when all of these
parts have sizes which differ by at most 1. Indeed, if there are two parts A and
B with |A| > |B| + 1, we could increase the number of edges in G by moving one
vertex from A to B. We would lose |B| edges by doing so, but gain |A|−1. Overall,
we would gain |A| − 1− |B| > 1 edges, thus proving our claim.

The second proof, as did the one of Mantel’s theorem, determines the structure
of the extremal graph, that is, it must be r-partite with all parts having size as
close as possible. In particular, if n = pr + q, then G has q partition sets of size
p + 1 and r − q partition sets of size p. The unique complete r-partite graphs on
n > r vertices whose partition sets differ in size by at most 1 are called Turán graphs
and are denoted by T r(n). The number of edges of the Turán graph T r(n) is often
denoted by tr(n).

Figure 2.1: The Turán graph T 3(8)

By the pigeonhole principle, every set of r + 1 vertices in T r(n) includes two
vertices in the same partition set. Therefore, T r(n) does not contain aKr+1. Turán’s
theorem states that T r(n) is edge-maximal among all Kr+1-free graphs on n vertices.

2.2 Szemerédi’s regularity lemma

Our next aim is to prove Szemerédi’s regularity lemma, which was developed
by Szemerédi [56] in his work of what is now known as Szemerédi’s theorem. This
theorem states that for any δ > 0 and k > 3 there exists a n0 ∈ N such that, for
n > n0, any subset of {1, . . . , n} with at least δn elements must contain an arithmetic
progression of length k. The particular case where k = 3 had been proven earlier by
Roth [48] and is accordingly known as Roth’s theorem.
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Roughly speaking, Szemerédi’s regularity lemma says that any graph may be
partitioned into a finite number of sets such that most of the bipartite graphs be-
tween different sets are random-like. In order to be precise, we shall need some
notation and a few definitions.

Let G be a graph and let A and B be subsets of V (G). The density of edges
between A and B is given by

d(A,B) =
|E(A,B)|
|A||B|

.

Given some ε > 0, the pair (A,B) ia said to be ε-regular if, for every A′ ⊆ A

and B′ ⊆ B with |A′| > ε|A| and |B′| > ε|B|, we have that

|d(A′, B′)− d(A,B)| 6 ε.

We say that a partition {X1, . . . , Xk} of V (G) is ε-regular if

∑ |Xi||Xj|
n2

6 ε,

where the sum is taken over all pairs (Xi, Xj) which are not ε-regular.
That is, a bipartite graph is ε-regular if all small induced subgraphs have ap-

proximately the same density as the full graph, and a partition of the vertex set of
a graph G into smaller sets is ε-regular if almost every pair forms a bipartite graph
which is ε-regular. We are now ready to state the regularity lemma.

Theorem 2.2.1 (Szemerédi’s regularity lemma). For every ε > 0 there exists an M
such that, for every graph G, there is an ε-regular partition of the vertex set of G
with at most M pieces.

Given a partition {X1, . . . , Xk} of V (G), themean square density of this partition
is given by ∑

16i,j6k

|Xi||Xj|
n2

d(Xi, Xj)
2.

Lemma 2.2.2. For every partition of the vertex set of a graph G, the mean square
density lies between 0 and 1.

Proof. Since
∑

16i,j6k
|Xi||Xj |
n2 = 1 and 0 6 d(Xi, Xj) 6 1, the mean square density

also lies between 0 and 1.

Another important property of the mean square density is that it cannot decrease
under refinement of a partition. That is, we have the following.
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Lemma 2.2.3. Let G be a graph. If {X1, . . . , Xk} is a partition of V (G) and
{Y1, . . . , Yl} is a refinement of {X1, . . . , Xk}, then the mean square density of {Y1, . . . , Yl}
is at least the mean square density of {X1, . . . , Xk}.

Proof. Since {Y1, . . . , Yl} is a refinement of {X1, . . . , Xk}, every Xi may be rewritten
as a disjoint union Xi1 ∪ · · · ∪Xiai , where each Xiai

= Yj for some j. Now, by the
Cauchy-Schwarz inequality, we have

d(Xi, Xj)
2 =

(∑
s,t

|Xis||Xjt|
|Xi||Xj|

d(Xis, Xjt)

)2

6

(∑
s,t

|Xis||Xjt|
|Xi||Xj|

)(∑
s,t

|Xis||Xjt|
|Xi||Xj|

d(Xis, Xjt)
2

)
=
∑
s,t

|Xis||Xjt|
|Xi||Xj|

d(Xis, Xjt)
2.

Therefore,

|Xi||Xj|
n2

d(Xi, Xj)
2 6

∑
s,t

|Xis||Xjt|
n2

d(Xis, Xjt)
2.

Adding over all values of i and j implies the lemma.

An analogous result also holds for bipartite graphs. That is, if G is a bipartite
graph with partition sets X and Y ,

⋃
iXi and

⋃
i Yi are partitions of X and Y , and⋃

i Zi and
⋃
iWi refine these partitions, then

∑
i,j

|Xi||Yj|
n2

d(Xi, Yj)
2 6

∑
i,j

|Zi||Wj|
n2

d(Zi,Wj)
2.

We will now show that if X and Y are two sets of vertices and the graph between
them is not ε-regular then there is a partition of each of X and Y for which the
mean square density increases.

Lemma 2.2.4. Let G be a graph and suppose X and Y are subsets of V (G). If
d(X, Y ) = a and the graph between X and Y is not ε-regular, then there are parti-
tions X = X1 ∪X2 and Y = Y1 ∪ Y2 such that

∑
16i,j62

|Xi||Yj|
|X||Y |

d(Xi, Yj)
2 > a2 + ε4.

Proof. Since the graph between X and Y is not ε-regular, there must be two subsets
X1 and Y1 of X and Y respectively, with |X1| > ε|X|, |Y1| > ε|Y | and |d(X1, Y1)−

19



2.2. SZEMERÉDI’S REGULARITY LEMMA CHAPTER 2. SUBGRAPHS

a| > ε. Let X2 = X\X1, Y2 = Y \Y1 and u(Xi, Yj) = d(Xi, Yj)− a. Then

ε4 6
∑

16i,j62

|Xi||Yj|
|X||Y |

u(Xi, Yj)
2

=
∑

16i,j62

|Xi||Yj|
|X||Y |

d(Xi, Yj)
2 − 2a

∑
16i,j62

|Xi||Yj|
|X||Y |

d(Xi, Yj) + a2
∑

16i,j62

|Xi||Yj|
|X||Y |

=
∑

16i,j62

|Xi||Yj|
|X||Y |

d(Xi, Yj)
2 − a2.

Note that the second equality holds since∑
16i,j62

|Xi||Yj|
|X||Y |

d(Xi, Yj) = d(X, Y ) = a.

The result follows.

In order to complete the proof of the regularity lemma, we need to prove that if
a partition is not ε-regular there is a refinement of this partition which has a higher
mean square density. This is taken care of in the following lemma.

Lemma 2.2.5. Let G be a graph and let {X1, . . . , Xk} be a partition of its ver-
tex set which is not ε-regular. Then there is a refinement of {X1, . . . , Xk}, say
{X11, . . . , X1a1 , . . . , Xk1, . . . , Xkak}, such that ai 6 22k, for every 1 6 i 6 k, and
the mean square density of the refinement is at least ε5 larger than the one of the
original partition.

Proof. Let I = {(i, j) : (Xi, Xj) is not ε -regular}. Let a2 be the mean square density
of {X1, . . . , Xk}.

For each (i, j) ∈ I, the previous lemma gives us partitions Xi = Aij1 ∪ A
ij
2 and

Xj = Bij
1 ∪B

ij
2 for which

∑
16p,q62

|Aijp ||Bij
q |

|Xi||Xj|
d(Aijp , B

ij
q )2 > d(Xi, Xj)

2 + ε4.

For each i, let {Xi1, . . . , Xiai} be the partition of Xi which refines all partitions
that arise from splitting Xi or Xj into Ai’s or Bi’s. Note that this partition has at
most 22k pieces, that is, ai 6 22k. Moreover, since refining bipartite partitions does
not decrease the mean square density, we have

ai∑
p=1

aj∑
q=1

|Xip||Xjq|
|Xi||Xj|

d(Xip, Xjq)
2 > d(Xi, Xj)

2 + ε4,
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for all (i, j) ∈ I. Multiplying both sides of the inequality by |Xi||Xj |
n2 and summing

over all (i, j), we have

∑
16i,j6k

ai∑
p=1

aj∑
q=1

|Xip||Xjq|
n2

d(Xip, Xjq)
2 >

∑
16i,j6k

|Xi||Xj|
n2

d(Xi, Xj)
2 + ε4

∑
(i,j)∈I

|Xi||Xj|
n2

>

a2 + ε5.

The result follows.

We now have all the ingredients necessary to prove the regularity lemma.

Proof of Szemerédi’s regularity lemma. Let us start with a trivial partition into one
set. If it is ε-regular we are done. Otherwise, there is a partition into at most 4 sets
where the mean square density increases by ε5.

If, at stage i, we have a partition into k pieces and this partition is not ε-regular,
there is a partition into at most k22k 6 22k pieces whose mean square density is at
least ε5 greater. Since the mean square density is bounded above by 1, this process
must end after at most ε−5 steps. The number of pieces in the final partition is at
most a tower of 2’s of height 2ε−5.

The tower function ti(x) is defined recursively by t0(x) = x and, for i > 0,
ti+1(x) = 2ti(x). The bound in the proof of the regularity lemma is t2ε5(2), which
is clearly enormous. Surprisingly, Gowers [26] proved that there are graphs where,
in order to get an ε-regular partition, one need roughly that many pieces in the
partition, thus putting the hopes of finding a better bound to rest.

2.3 Consequences

One of the interesting consequences of the regularity lemma is the triangle re-
moval lemma, from which we shall deduce Roth’s theorem. The triangle removal
lemma states that, if a graph contains very few triangles, then one may remove all
of them by removing very few edges. We begin with what is known as a counting
lemma, which states that if a tri-partite graph is pairwise “dense” and regular, then
it contains a positive portion of triangles .

Lemma 2.3.1. Let G be a graph and let X, Y, Z be subsets of V (G). Suppose that
(X, Y ), (Y, Z) and (Z,X) are ε-regular and that d(X, Y ) = α, d(Y, Z) = β and
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d(Z,X) = γ. Then, provided α, β, γ > 2ε, the number of triangles xyz with x ∈ X,
y ∈ Y and z ∈ Z is at least

(1− 2ε)(α− ε)(β − ε)(γ − ε)|X||Y ||Z|.

Proof. For every x, let dY (x) and dZ(x) denote the number of neighbours of x in
Y and Z, respectively. Then the number of x ∈ X with dY (x) < (α − ε)|Y | is
at most ε|X|; otherwise, there would be a subset X ′ of X of size at least ε|X|
such that the density of edges between X ′ and Y is less than α − ε, contradicting
regularity. We may similarly show that there are at most ε|X| values of x for which
dZ(x) < (γ − ε)|Z|. If dY (x) > (α − ε)|Y | and dZ(x) > (γ − ε)|Z|, the number of
edges between N(x) ∩ Y and N(x) ∩ Z and, consequently, the number of triangles
containing x, is at least

(α− ε)(β − ε)(γ − ε)|Y ||Z|.

Summing over all x ∈ X, we get the desired result.

Theorem 2.3.2 (Triangle removal lemma). For every ε > 0 there exists δ > 0 such
that any graph G on n vertices with at most δn3 triangles may be made triangle-free
by removing at most εn2 edges.

Proof. Let {X1, . . . XM} be an ε
4
-regular partition of V (G). We remove an edge xy

from G if

1. (x, y) ∈ Xi ×Xj, where (Xi, Xj) is not an ε
4
-regular pair;

2. (x, y) ∈ Xi ×Xj, where d(Xi, Xj) <
ε
2
;

3. x ∈ Xi, where |Xi| 6 ε
4M
n.

Let I = {(i, j) : (Xi, Xj) is not ε
4
-regular}. The number of edges removed by

condition (1) is at most ∑
(i,j)∈I

|Xi||Xj| 6
ε

4
n2.

The number removed by condition (2) is clearly at most ε
2
n2. Finally, the number

removed by condition (3) is at most

Mn
ε

4M
n =

ε

4
n2.

Overall, we have removed at most εn2 edges.
Suppose that some triangle remains in the graph, say xyz, where x ∈ Xi, y ∈ Xj

and z ∈ Xk. Then the pairs (Xi, Xj), (Xj, Xk) and (Xk, Xi) are all ε
4
-regular with
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density at least ε
2
. Therefore, since |Xi|, |Xj|, |Xk| > ε

4M
n, the counting lemma

implies that the number of triangles is at least(
1− ε

2

)(
ε

4

)3(
ε

4M

)3

n3.

Taking δ = ε6

220M3 yields a contradiction.

We will now use the triangle removal lemma in order to prove Roth’s theorem.
We are actually going to prove the following stronger result.

Theorem 2.3.3. For any δ > 0 there exists n0 ∈ N such that, for n > n0, any
A ⊆ [n]2 with at least δn2 elements must contain a triple of the form (x, y), (x +

d, y), (x, y + d) with d > 0.

Proof. The set A + A = {x + y : x, y ∈ A} is contained in [2n]2. There must,
therefore, be some z which is represented as x+ y in at least

(δn2)2

(2n)2
=
δ2n2

4

different ways. Pick such a z and let A′ = A∩ (z−A) and δ′ = δ2

4
. Then |A′| > δ′n2

and if A′ contains a triple of the form (x, y), (x+ d, y), (x, y + d) for d < 0, then so
does z − A. Therefore, A will contain such a triple with d > 0. That being so, we
may forget about the constraint that d > 0 and try to find some non-trivial triple
with d 6= 0.

Consider the tripartite graph on vertex sets X, Y and Z, where X = Y = [n]

and Z = [2n]. The set X will correspond to vertical lines through A, the set Y to
horizontal lines and the set Z to diagonal lines with constant values of x + y. We
form a graph G by joining x ∈ X to y ∈ Y if and only if (x, y) ∈ A. We also join
x ∈ X and z ∈ Z if and only if (x, z − x) ∈ A and y ∈ Y and z ∈ Z if and only if
(z − y, y) ∈ A.

If there is a triangle xyz in G, then (x, y), (x, y+(z−x−y)) and (x+(z−x−y), y)

will all be in A and thus we will have the required triple unless z = x+y. This means
that there are at most n2 = 1

64n
(4n)3 triangles in G. By the triangle removal lemma,

for n sufficiently large, one may remove δ
2
n2 edges and make the graph triangle-free.

But every point in A determines a degenerate triangle. Hence, there are at least δn2

degenerate triangles, all of which are edge disjoint. We cannot, therefore, remove
them all by removing δ

2
n2 edges. This contradiction implies the required result.

This implies Roth’s theorem as follows.
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Theorem 2.3.4 (Roth). For all δ > 0 there exists n0 ∈ N such that, for n > n0,
any A ⊆ [n] with at least δn elements contains an arithmetic progression of length
3.

Proof. Let B ⊆ [2n]2 be the set {(x, y) : x− y ∈ A}. Then |B| > δn2 = δ
4
(2n)2, so

we have a triple (x, y), (x+d, y), (x, y+d) in B. This translates back to tell us that
x− y − d, x− y and x− y + d are in A, as required.

2.4 Erdős-Stone-Simonovits theorem

For general graphs H, we are interested in the function ex(n,H), defined as

ex(n,H) = max{|E(G)| : |V (G)| = n, H * G}.

Turán’s theorem itself tells us that

ex(n,Kr+1) 6

(
1− 1

r

)
n2

2
.

We are now going to deal with the general case. We will show that the behaviour
of the extremal function ex(n,H) is tied intimately to the chromatic number of the
graph H.

The fundamental result which we shall prove is known as the Erdős-Stone-
Simonovits theorem. Although the theorem is named after the three mathemati-
cians, Erdős, Stone and Simonovits never actually wrote a paper together. Erdős
and Stone [21] proved the result when H is a complete multipartite graph, and Erdős
and Simonovits [22] then proved it for general H.

Theorem 2.4.1 (Erdős-Stone-Simonovits). For every H, r and ε > 0, such that
χ(H) = r, there exists an n0 = n0(r,H, ε) so that, for any n > n0,(

1− 1

r − 1
− ε
)
n2

2
6 ex(n,H) 6

(
1− 1

r − 1
+ ε

)
n2

2
.

For the complete graph Kr, the chromatic number is r, so in this case the Erdős-
Stone-Simonovits theorem reduces to an approximate version of Turán’s theorem.
For bipartite H, it gives ex(n,H) 6 εn2, for all ε > 0.

The lower bound is easy; the Turán graph T r−1(n) is (r − 1)-colourable, hence
H-free, and it is easy to check that tr−1(n) >

(
1− 1

r−1
− o(1)

)
n2

2
.

For the upper bound, it is sufficient to prove that the bound holds for the t-
blowup1 of Kr, since if χ(H) = r, then H is a subgraph of Kt

r for t = |V (H)|.
1The t-blowup of a graph K, denoted by Kt, is the graph obtained by replacing every vertex x

of K by an independent set Ix of size t, and replacing every edge xy by a complete bipartite graph
between Ix and Iy.
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This, however, is not the proof we shall present. Instead, our proof will rely on
the regularity lemma in an attempt to illustrate how powerful a tool it is. To begin,
we shall need another counting lemma which generalises the one given earlier for
triangles.

Lemma 2.4.2. Let ε > 0 and let G be a graph. Suppose that V1, . . . , Vr are subsets
of V (G) such that |Vi| > 2ε−∆t for each 1 6 i 6 r and the graph between Vi and
Vj has density d(Vi, Vj) > 2ε and is 1

2
ε∆∆−1-regular for all 1 6 i < j 6 r. Then G

contains a copy of any graph H on t vertices with chromatic number at most r and
maximum degree ∆.

Proof. Since the chromatic number of H is at most r, we may split V (H) into r
independent sets U1, . . . , Ur. We will give an embedding f of H into G so that
f(Ui) ⊆ Vi for all 1 6 i 6 r.

Let the vertices of H be u1, . . . , ut. For each 1 6 h 6 t, let Lh = {u1, . . . , uh}.
For each y ∈ Uj\Lh, let T hy be the set of vertices in Vj which are adjacent to all
already embedded neighbours of y. That is, letting Nh(y) = N(y)∩Lh, T hy is the set
of vertices in Vj adjacent to every element of f(Nh(y)). We will find, by induction,
an embedding of Lh such that, for each y ∈ V (H)\Lh, |T hy | > ε|Nh(y)||Vj|.

For h = 0 there is nothing to prove. We may, therefore, assume that Lh has
been embedded consistent with the induction hypothesis and attempt to embed
u = uh+1 ∈ Uk into an appropriate v ∈ T hu . Let Y be the set of neighbours of
u which are not yet embedded. We wish to find an element v ∈ T hu \f(Lh) such
that,for all y ∈ Y , |N(v) ∩ T hy | > ε|T hy |. If such a vertex v exists, taking f(u) = v

and T h+1
y = N(v) ∩ T hy will complete the proof.

Let By be the set of vertices in T hu such that |N(v)∩ T hy | < ε|T hy |. Note that, by
induction, if y ∈ Ul, then |T hy | > ε∆|Vl|. Therefore, we must have |By| < 1

2
ε∆∆−1|Vk|,

for otherwise the density between By and T hy would be less than ε, contradicting the
regularity assumption on G. Hence, since |Vk| > 2ε∆t, we have∣∣∣∣T hu \⋃

y∈Y

By

∣∣∣∣ > ε∆|Vk| −∆
1

2
ε∆∆−1|Vk| > t.

Since at most t− 1 vertices have already been embedded, an appropriate choice for
f(u) exists.

In fact, there are at least 1
2
ε∆|Vk| − t choices for each vertex u. Therefore, if H

had di vertices in Ui, the lemma tells us that, for |Vi| � 2ε−∆t, we have at least

cH(ε)
r∏
i=1

|Vi|dr
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copies of H, where cH(ε) is the appropriate constant. Like the triangle counting
lemma, we could make the constant cH(ε) reflect the densities between the various
Vi, but we simply wanted to note that the graph G contained a positive proportion
of the total number of possible copies of H.

We are now ready to give the proof of the Erdős-Stone-Simonovits theorem.

Proof of Erdős-Stone-Simonovits. As we mentioned after the statement of the the-
orem, the lower bound is easy to prove. We shall therefore only consider the upper
bound.

Let H be a graph with t vertices, chromatic number r and maximum degree ∆.
Suppose that G is a graph on n vertices with at least (1− 1

r−1
+ ε)n

2

2
edges. We will

show how to embed H in G.
Let {X1, . . . , XM} be a 1

2
( ε

8
)∆∆−1-regular partition of V (G). We remove edges

as in the triangle removal lemma, removing an edge xy if

1. (x, y) ∈ Xi ×Xj, where (Xi, Xj) is not 1
2
( ε

8
)∆∆−1-regular;

2. (x, y) ∈ Xi ×Xj, where d(Xi, Xj) <
ε
4
;

3. x ∈ Xi, where |Xi| < ε
16M

n.

The total number of edges removed by condition (1) is at most ε
16
n2, since if I is

the set of (i, j) corresponding to non-regular pairs (Xi, Xj), we have

∑
(i,j)∈I

|Xi||Xj| 6
1

2

(
ε

8

)∆

∆−1n2 6
ε

16
n2.

The total number of edges removed by condition (2) is clearly at most ε
4
n2 and the

total number removed by condition (3) is at most ε
16
n2.

Overall, we have removed at most 3ε
8
n2 edges. Hence, the graph G′ that remains

after all these edges have been removed has density at least 1 − 1
r−1

+ ε
8
. It must,

therefore, contain a copy ofKr. We may suppose that this lies between sets V1, . . . , Vr

(some of which may be equal). Because of our removal process, |Vj| > ε
16M

n, and the
graph between Vi and Vj has density at least ε

4
and is 1

2
( ε

8
)∆∆−1-regular. Therefore,

if
ε

16M
n > 2

(
ε

8

)−∆

t,

an application of the previous lemma with ε
8
implies that G contains a copy ofH.
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Because of the observation made after the previous lemma we know that, for n
sufficiently large, G not only contains one copy of any given r-chromatic graph H, it
must contain cn|V (H)| copies. This phenomenon, that once one passes the extremal
density one gets a very large number of copies rather than a single one, is known as
supersaturation.

2.5 Bipartite graphs

The Zarankiewicz problem, an unsolved problem in extremal graph theory, asks
for the largest possible number of edges in a bipartite graph that has a given number
of vertices but has no complete bipartite subgraphs of a given size. It is named
after Kazimierz Zarankiewicz, who proposed several special cases of the problem in
1951 [62]. We have already seen that if H is a bipartite graph, then ex(n,H) 6 εn2

for any ε > 0. We will now prove a much stronger result, which was first shown by
Kővári, Sós and Turán [33] in 1954.

Theorem 2.5.1 (Kővári-Sós-Turán). For any s, t ∈ N with s 6 t, there exists a
constant c such that

ex(n,Ks,t) 6 cn2− 1
s .

Proof. Suppose that G is a graph on n vertices with at least cn2− 1
s edges. We will

count the pairs (v, S) consisting of a vertex v and a set S ⊆ N(v) of size s. The
number of such pairs is∑

v

(
d(v)

s

)
> n

(
1
n

∑
v d(v)

s

)
> n

(
2cn1− 1

s

s

)
> n

csns−1

s!
= cs

ns

s!
,

for n sufficiently large. If cs > t − 1, then there exists a set S that is counted at
least t times in the equation above. This gives a copy of Ks,t in G.

An interesting example is H = K2,2. The following K2,2-free construction, due
to Erdős, Rényi and Sós [20], allows us to show that ex(n,K2,2) ≈ 1

2
n

3
2 .

Construction of a K2,2-free graph. Let p be a prime number and consider the graph
on n = p2−1 vertices whose vertex set is Zp×Zp\{(0, 0)} and where (x, y) is joined
to (a, b) if and only if ax+ by = 1.

For a fixed (x, y), there are exactly p solutions (a, b) to ax+ by = 1. To see this,
we must split into some subcases. If x = 0, then there is a unique non-zero solution
for b and anything works for a. Similarly, if y = 0, then a is uniquely determined
and b may be anything. If both x and y are non-zero, it is elementary to see that
any choice of b gives rise to a unique choice of a, that is, a = x−1(1− by).
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Therefore, (x, y) has degree at least p− 1 (one of the solutions could be (a, b) =

(x, y), which we ignore) and the graph has at least 1
2
n(p−1) ≈ 1

2
n

3
2 edges. Moreover,

the graph does not contain a K2,2; suppose otherwise and that (a, b), (x, y), (a′, b′),
(x′, y′) is aK2,2. Then the set of simultaneous equations ux+vy = 1 and ux′+vy′ = 1

would have two solutions, (u, v) = (a, b) and (a′, b′), which is clearly impossible, since
any two distinct lines meet at at most one point.

There is also a construction, due to Brown [8], which gives a lower bound
ex(n,K3,3) > c′n

5
3 . Roughly speaking, take a prime p ≡ (3 mod 4) and consider

the graph on p3 vertices whose vertex set is Z3
p, where (x, y, z) is joined to (a, b, c) if

and only if (a− x)2 + (b− y)2 + (c− z)2 = 1. For any given (x, y, z), there will be
on the order of p2 elements (a, b, c) to which it is connected. There are, therefore,
approximately c′n

5
3 edges in the graph. Moreover, the unit spheres around the three

distinct points (x, y, z), (x′, y′, z′) and (x′′, y′′, z′′) cannot meet in more than two
points, so the graph does not contain a K3,3. The result for all n follows from an
argument similar to the above.

Almost the best known lower bound is a result of a random construction, but
before we can present it we need to dip our toes in the theory of random graphs.

Let V be a fixed set of n elements, say V = {0, . . . , n− 1}. We want to turn the
set G of all graphs on V into a probability space. Intuitively, given a set G ∈ G, we
should be able to generate it randomly as follows. For each e ∈ [V ]2 we decide by
some random experiment whether or not e shall be an edge of G; these experiments
are performed independently, and for each the probability of success, that is, of
accepting e as an edge for G, is equal to some fixed number p ∈ [0, 1]. Then, if
G0 is some fixed graph on V , with m edges say, the elementary event {G0} has
a probability of pmq(

n
2)−m, where q = 1 − p. With this probability, our randomly

generated graph G is this particular graph G0. (The probability that G is isomorphic
to G0 will usually be greater.) But if the probabilities of all the elementary events
are thus determined, then so is the entire probability measure of our desired space G.
Hence, all that remains to be checked is that such a probability measure on G, one
for which all individual edges occur independently with probability p, does indeed
exists.

In order to construct such a measure on G formally, we start by defining for
every potential edge e ∈ [V ]2 its own little probability space Ωe := {0e, 1e}, choosing
P({1e}) := p and P({0e}) := q as the probabilities of its two elementary events. As
our desired probability space G = G(n, p), we then take the product space

Ω :=
∏
e∈[V ]2

Ωe.
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Thus, formally, an element of Ω is a map ω assigning to every e ∈ [V ]2 either 0e

or 1e, and the probability measure P on Ω is the product measure of all the measures
Pe. In practice, of course, we identify ω with the graph G on V whose edge set is

E(G) = {e : ω(e) = 1e}

and call G a random graph on V with edge probability p.
Following standard probabilistic terminology, we may now call any set of graphs

on V an event in G(n, p). In particular, for every e ∈ [V ]2, the set

Ae := {ω : ω(e) = 1e}

of all graphs G on V with e ∈ E(G) is an event: the event that e is an edge of G.
The events Ae are independent and occur with probability p.

In the context of random graphs, each of the familiar graph invariants (like
average degree, girth, chromatic number etc.) may be interpreted as a non-negative
random variable on G(n, p), a function

X : G(n, p)→ [0,∞).

The mean or expected value of X is the number

E(X) :=
∑

G∈G(n,p)

P({G}) ·X(G).

If X takes integers as values, we can compute E(X) alternatively by summing over
these values k:

E(X) =
∑
k>1

P[X > k] =
∑
k>1

k · P[X = k].

Note that the operator E, the expectation, is linear.
Lastly, we note that, if p = p(n) is a fixed function (possibly constant), and P is

a graph property, we may ask how the probability P[G ∈ P ] behaves for G ∈ G(n, p)

as n → ∞. If this probability tends to 1, we say that G ∈ P for almost all (or
almost every) G ∈ G(n, p), or that G ∈ P almost surely.

We are now able to present the random construction that provides us with al-
most the best lower bound for ex(n,Ks,t).

Theorem 2.5.2. For any s, t > 2, there exists a constant c′ such that

ex(n,Ks,t) > c′n2− s+t−2
st−1 .
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Proof. Choose each edge in the graph randomly with probability p = 1
2
n−

s+t−2
st−1 . The

expected number of copies of Ks,t is

pst
(
n

s

)(
n

t

)
6 pstns+t.

Phrased differently, if J is the random variable counting copies of Ks,t, then E(J) 6

pstns+t. On the other hand, the expected number of edges in the graph is p
(
n
2

)
>

1
4
pn2. Again, if I is the random variable counting the number of edges in the graph,

then E(I) > 1
4
pn2. By linearity of expectation, we have that

E(I − J) = E(I)− E(J) >
1

4
pn2 − pstns+1 >

1

8
pn2 =

1

16
n2− s+t−2

st−1 .

The final inequality follows from the fact that pstns+t 6 1
8
pn2. This, in turn, follows

from

pst−1ns+t−2 6

(
1

2

)st−1

6
1

8
.

Therefore, there exists some graph G on n vertices for which I − J > 1
16
n2− s+t−2

st−1 .
We may therefore remove one edge from each of the Ks,t, removing all copies of Ks,t

and still be left with a graph containing 1
16
n2− s+t−2

st−1 edges.

Our next aim is to prove that if a bipartite graph H has one side whose maximum
degree is ∆, then ex(n,H) 6 c(H)n2− 1

∆ . This clearly generalises our previous result
that ex(n,Ks,t) 6 n2− 1

s when s 6 t. Before we prove it we shall need the following
lemmas, the first of which is a typical result proved by dependent random choice
and demonstrates that every dense graph contains a large vertex subset U such that
all small subsets of U have large common neighbourhood.

Lemma 2.5.3. Let α, m and r be positive integers and let G be a graph on n vertices
and average degree d. If there is a positive integer t such that

dt

nt−1
−
(
n

r

)(
m

n

)t
> α,

then G contains a subset U of at least α vertices such that every r vertices in U have
at least m common neighbours.

Proof. Pick a set T of t vertices of V (G) uniformly at random with repetition. Let
I be the random variable counting the size of N(T ). By linearity of expectation, we
have that

E(I) =
∑

v∈V (G)

(
|N(v)|
n

)t
= n−t

∑
v∈V (G)

|N(v)|t

>n1−t
(∑

v∈V (G)|N(v)|
n

)t
=

dt

nt−1
,
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where the last inequality is by convexity of the function xt.
Let J be the random variable counting the number of subsets S ⊆ N(T ) of size

r with fewer than m common neighbours. For a given such S, the probability that
it is a subset of N(T ) equals

( |N(S)|
n

)t. Since there are at most
(
n
r

)
subsets S of size

r for which |N(S)| < m, it follows that

E(J) <

(
n

r

)(
m

n

)t
> α.

Hence, there exists a choice of T for which N(T ) satisfies I − J > α. Delete one
vertex from each subset S of N(T ) of size r with fewer than m neighbours and let
U be the remaining subset of N(T ). The set U has at least I − J > α vertices and
all of its subsets of size r have at least m common neighbours.

Lemma 2.5.4. Let H be a bipartite graph with partition sets A and B, where the
vertices of B have degree at most ∆. If G is a graph with a vertex subset U such
that all subsets of U of size ∆ have at least |A| + |B| common neighbours, then H

is a subgraph of G.

Proof. We want to find an embedding ofH in G given by an injection A∪B → V (G).
Let us start by defining an injection f : A → V (G) arbitrarily. Suppose that the
current vertex to embed is vi ∈ B. Let Ni ⊆ A be those vertices in H adjacent to
vi, so that |Ni| 6 ∆. Since f(Ni) is a subset of U of cardinality at most ∆, there
are at least |A|+ |B| vertices adjacent to all vertices in f(Ni). As the total number
of vertices already embedded is less than |A| + |B|, there is a vertex w ∈ V (G)

which is not yet used in the embedding and is adjacent to all vertices in f(Ni). Set
f(vi) = w.

It is immediate from the above description that f provides an embedding of H
in G.

Theorem 2.5.5. If H be a bipartite graph with partition sets A and B in which
the vertices in B have degree at most ∆, then there exists a constant c such that
ex(n,H) 6 cn2− 1

∆ .

Proof. Suppose G is a graph on n vertices with at least cn2− 1
∆ edges. Then the

average degree d of G satisfies d > cn1− 1
∆ . Let c = max

{
|A|1/∆, 3(|A|+|B|)

∆

}
. Then,

using the fact that r! > ( r
e
)r, it is easy to check that

d∆

n∆−1
−
(
n

∆

)(
|A|+ |B|

n

)∆

> (2c)∆ − n∆

∆!

(
|A|+ |B|

n

)∆

> (2c)∆ −
(
e(|A|+ |B|)

∆

)∆

> c∆ > |A|.
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Therefore, we can use Lemma 2.5.3 (with t = ∆ = r, m = |A|+ |B| and α = |A|) to
find a vertex subset U of G with |U | = |A| such that al subsets of U of size ∆ have
at least |A| + |B| common neighbours. The previous embedding lemma completes
the proof.

A graph is said to be d-degenerate if every subgraph contains a vertex of degree
at most d. Equivalently, H is d-degenerate if there is an ordering {v1, . . . , vt} of
the vertices, such that any vj has at most d neighbours vi with i < j. An old
conjecture of Burr and Erdős [9] states that if a bipartite graph H is d-degenerate,
then ex(n,H) 6 cn2− 1

d . This would be strictly stronger than the result we proved
above. The best result currently known, due to Alon, Krivelevich and Sudakov [2],
is that ex(n,H) 6 cn2− 1

4d .

2.6 Paths and cycles

The problem of determining the maximum number of edges in a graph on n

vertices if it contains no path with k + 1 vertices was first considered by Erdős and
Gallai [19]. In the following, given two graphs G and H, we denote by G ∪H their
disjoint union, and by G+H their union together with al the edges between them.

Theorem 2.6.1 (Erdős-Gallai). For every k > 1, ex(n, Pk) 6 k−1
2
n, with equality if

and only of n = kt, in which case the extremal graph is
⋃t
i=1Kk.

This bound is not difficult to come by. Indeed, consider a graph G with n

vertices and more than k−1
2
n edges. By successively removing any vertex v with

degree d(v) < k−1
2
, we are left with a non-empty graph G′ with n′ vertices and more

than k−1
2
n′ edges, where every vertex u has degree d(u) > k−1

2
.

We will find a path of length k in G′. Without loss of generality, assume that G′

is connected (otherwise we can focus on any connected component of G′ with the
largest ratio of edges to vertices).

Consider a maximum length path v0 . . . vt in G′. If t > k, then G′, and hence G,
contains a Pk. Otherwise, t 6 k − 1. By maximality of the path, all the neighbours
of v0 and all the neighbours of vt lie on the path.

If v0vt ∈ E(G′), then v0 . . . vtv0 is a cycle, and hence vivi+1 . . . vtv0 . . . vi−1 is also
a path of maximum length, and therefore we deduce that all the neighbours of vi
are also on the path. Thus, v0, . . . , vt are all the vertices of G′, so |E(G′)| =

(
t+1

2

)
6

k−1
2
n′, a contradiction.
Thus, assume that v0 is not adjacent to vt. Since v0 and vt both have degree at

least k−1
2

and all their neighbours are amongst v1, . . . , vt−1, there must exist some
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vi, vi+1 such that vi is adjacent to vt and vi+1 is adjacent to v0. This gives us a
cycle v0v1 . . . vivtvt−1 . . . vi+1v0. We thus conclude, as before, that v0, . . . , vt are all
the vertices of G′, and get a contradiction. Therefore t > k, completing the proof.

In 1975, this result was improved by Faudree and Schelp [23], determining
ex(n, Pk) for all n > k > 0 as well as the corresponding extremal graphs.

Theorem 2.6.2 (Faudree and Schelp). If G is a graph with |V (G)| = kt + r,
0 6 r < k, containing no Pk, then |E(G)| 6 t

(
k
2

)
+
(
r
2

)
, with equality if and only

if G is either
⋃t
i=1 Kk or

(⋃t−l−1
i=1 Kk

)
∪
(
K k−1

2
+ K k+1

2
+lk+r

)
, for some l such that

0 6 l < t, when k is odd, t > 0, and r = k±1
2
.

Finally, Balister, Győri, Lehel and Schelp [5] considered the problem over all
connected graphs and determined the extremal numbers as well as the corresponding
extremal graphs. These extremal graphs are particular examples of graphs of the
form Gn,k,s which, for n > k > 2s > 0 are defined as Gn,k,s = Kk−2s ∪Kn−k+s. Note
that |E(Gn,k,s)| =

(
k−s

2

)
+ s(n− k + s) and, since k > 2s, Gn,k,s contains no Pk.

In particular, they proved the following.

Theorem 2.6.3. Let G be a connected graph on n vertices that contains no Pk, for
n > k > 3. Then

|E(G)| 6 max

{(
k − 1

2

)
+ n− k + 1,

(⌈
k+1

2

⌉
2

)
+

⌊
k − 1

2

⌋(
n−

⌈
k + 1

2

⌉)}
.

If equality occurs, then G is either Gn,k,1 or G
n,k,
⌊

k−1
2

⌋.
Our next objective is to consider the extremal problem for cycles of even lengths.

Our main result is that ex(n,C2k) 6 cn1+ 1
k , proved by Bondy and Simonovits [7] in

1974. For k =2, 3 and 5, that is, for C4, C6 and C10, this is known to be sharp.
A quick probabilistic argument, similar to that used earlier for complete bipartite
graphs, gives the general lower bound.

Theorem 2.6.4. There exists a constant c such that

ex(n,C2k) > cn1+ 1
2k−1 .

There is also an explicit construction, due to Lazebnik, Ustimenko andWoldar [38],
which does better giving ex(n,C2k) > cn1+ 2

3k−3 .
In order to prove the Bondy-Simonovits theorem, we will need two preliminary

lemmas, both of which concern cycles with an extra chord.

33



2.6. PATHS AND CYCLES CHAPTER 2. SUBGRAPHS

Lemma 2.6.5. Let H be a cycle with an extra chord. Let (A,B) be a non-trivial
partition of V (H). Then, unless H is bipartite with partition sets A and B, it
contains paths of every length l < |V (H)| which begin in A and end in B.

Proof. Label the vertices of H as 0, 1, . . . , t− 1, where t = |V (H)|. Suppose that H
does not contain paths which start in A and end in B for every possible length l < t.
We will focus on a particular class of path, saying that a path is good if it begins in
A and ends in B and does not use the chord of H. Let s be the smallest integer such
that there is no good path of length s. Then s > 1, since there is at least one edge
between A and B (as we have assumed that (A,B) is a non-trivial partition). If this
edge is a chord, it will automatically imply that there is some other edge across this
partition. We also have that s 6 t

2
. This is because, by symmetry, the existence of

a good path of length j implies the existence of a good path of length t− j.
Let χ be the characteristic function of A. Then, for any j, we have that χ(j+s) =

χ(j), where addition is taken modulo t. Let d = hcf(s, t). Then there are p and
q such that ps + qt = d and, therefore, χ(j) = χ(j + d), for all j. But then there
is no good path of length d. Therefore, since s was the smallest number with this
property, d = s and s divides t. This also implies that for every i which is not a
multiple of s, there will be good paths of length i.

We will now find paths of all remaining lengths is, where 1 6 i 6 t
s
− 1, by

using the chord. Suppose first that the chord joins two vertices at distance r, where
1 < r 6 s, say 0 and r. We know from above that there are good paths of length
s + r − 1. In particular, there is some j such that χ(j) 6= χ(j + s + r − 1). By
shifting, we may assume that −s < j 6 0. Therefore, since j + s + r − 1 > r and
χ(j) 6= χ(j+ is+r−1), the path j, j+1, . . . , 0, r, r+1, . . . , j+ is+r−1 is a path of
length is beginning in A and ending in B. We need to verify that j+is+r−1 < t+j,
that is, that it doesn’t loop all the way around, but this follows easily for i 6 t

s
− 1.

We therefore assume that the chord is 0r, where s < r < t− s. Let −s < j < 0

and consider the paths j, j + 1, . . . , 0, r, r − 1, . . . , r − j − s + 1 and s + j, s + j −
1, . . . , 0, r, r + 1, . . . , r − j − 1, each of length s. If either of them is a path starting
in A and ending in B, we may extend it to produce a well-behaved path of length is
until the number of unused vertices in the two arcs defined by the chord is less than
s in both arcs. At this point, is+1 > t−2(s−1) and, since s divides t, is = t−s, so
we already have everything. Similarly, if either of the paths 0, r, r− 1, . . . , r− s+ 1

or 0, r, r + 1, . . . , r + s− 1 begin in A and end in B, then H contains well-behaved
paths of all lengths less than t.

We may, therefore, assume that, for −s < j < 0,

χ(r − j + 1) = χ(r − j − s+ 1) = χ(j) = χ(s+ j) = χ(r − j − 1).

34



CHAPTER 2. SUBGRAPHS 2.6. PATHS AND CYCLES

The first and third equalities are by shifting. The second and fourth follow from
the fact that the paths j, j + 1, . . . , 0, r, r − 1, . . . , r − j − s + 1 and s + j, s + j −
1, . . . , 0, r, r + 1, . . . , r − j − 1 must each have both endpoints in one of A or B.
Similarly, we may assume that χ(r + s + 1) = χ(r + s − 1). This implies that
χ(i) = χ(i+ 2) for every vertex i. Therefore, s = 2.

Thus, we may conclude that t is even and that the vertices of the cycle alternate
between A and B. It is easy now to see that if the chord is contained in one of A and
B, then the graph contains paths of all length less than t which start in A and end
in B. Hence, the chord goes between A and B and H is bipartite, as required.

The second lemma we need is a condition for a graph to contain a cycle with an
extra chord.

Lemma 2.6.6. Any bipartite graph G with minimum degree d > 3 contains a cycle
of length at least 2d with an extra chord.

Proof. Let P be a longest path in G, visiting vertices x1, . . . , xp in that order. The
vertex x1 has d > 3 neighbours in G and, by maximality of P , they all lie in P .
Suppose that they are xi1 , . . . , xid with i1 < · · · < id. Every two neighbours of x1

must have distance at least 2, since G is bipartite. Therefore, since i1 > 2, we must
have that id > 2d. The required cycle with chord is formed by taking the path from
x1 to xid and adding the edges x1xi1 and x1xid .

We are now ready to prove the Bondy-Simonovits theorem.

Theorem 2.6.7 (Bondy-Simonovits). For any natural number k > 2, there exists
a constant c such that

ex(n,C2k) 6 cn1+ 1
k .

Proof. Suppose that G is a C2k-free graph on n vertices with at least cn1+ 1
k edges.

Then the average degree of G is at least 2cn
1
k so, reminding ourselves that every

graph contains a subgraph whose minimum degree is at least half the average degree
of the graph, there exists some subgraph H for which the minimum degree is at least
cn

1
k .
Fix an arbitrary vertex x of H. Let i > 0 and let Vi be the set of vertices that

are at distance i from x with respect to the graph H. In particular, V0 = {x} and
V1 = N(x). Let vi = |Vi| and let Hi be the bipartite subgraph H[Vi−1, Vi] induced
by the disjoin sets Vi=1 and Vi.

35



2.6. PATHS AND CYCLES CHAPTER 2. SUBGRAPHS

We claim that, for 1 6 i 6 k − 1, none of the graphs H[Vi] or Hi+1 contain a
bipartite cycle of length at least 2k with a chord; suppose otherwise and let F be
such a cycle, contained in H[Vi]. Let Y ∪ Z be the bipartition of V (F ).

Let T ⊆ H be a breadth-first search tree beginning at x. That is, we begin at the
root vertex x. The first layer will consist of the neighbourhood of x, labelling them
as we uncover them. At the j-th step, we look at layer j − 1. For the first vertex in
the ordering, we look at its neighbours that have not yet occurred and label them
as they occur. Then we do the same in order for every vertex in the (j− 1)-st level.
This will give us the j-th level with all vertices labelled.

Let y be the vertex which is farthest from x in the tree T and which still domi-
nates the set Y , that is, every vertex in Y is a descendant of y.

Clearly, the paths leading from y to Y must branch at y. Pick one such branch
(leading to a non-trivial subset of Y ), defined by some child z of y and let A be the
set of descendants of z which lie in Y . Let B = (Y ∪ Z)\A. Since Y \A 6= ∅, B is
not an independent set of F .

Let l be the distance between x and y. Then l < i and 2k−2i+2l < 2k 6 |V (F )|.
By Lemma 2.6.5, since F is not bipartite with respect to the partition into A and
B, we can find a path P in F of length 2k−2i+2l which starts in a ∈ A and ends in
b ∈ B. Since the path has even length and the partition into Y and Z is bipartite,
b must be in Y . Let Pa and Pb be the unique paths in T that connect y to a and
b, respectively. These intersect only at y, since a is a descendant of z and b is not.
Also, they each have length i − l. Therefore, the union of the paths P , Pa and Pb
forms a C2k in H, which contradicts our assumption. The proof follows similarly
for Hi+1 if we take Y = V (F ) ∩ Vi, thus proving our claim that, for 1 6 i 6 k − 1,
none of the graphs H[Vi] or Hi+1 contain a bipartite cycle of length at least 2k with
a chord.

We also know, by Lemma 2.6.6, that if a bipartite graph has minimum degree
d > 3, then it contains a cycle of length at least 2d with an extra chord. We may,
therefore, assume that, for 1 6 i 6 k − 1, the average degrees d(H[Vi]) and d(Hi+1)

of H[Vi] and Hi+1, respectively, satisfy

d(H[Vi]) 6 4k − 4 and d(Hi+1) 6 2k − 2.

For example, if H[Vi] had average degree greater than 4k − 4, it would contain a
bipartite subgraph with average degree greater than 2k−2 and, therefore, a bipartite
subgraph with minimum degree greater than k− 1. This would then imply that the
graph contained a bipartite cycle of length at least 2k with a chord, which would
contradict the claim. The bound for d(Hi+1) follows similarly.
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We will now show inductively that, provided n is sufficiently large,

|Hi+1|
vi+1

6 2k

for every 0 6 i 6 k − 1. For i = 0, this is true since every edge in V1 is connected
to x by only one edge. Suppose that we want to prove it for some i > 0. Then, by
the induction hypothesis and the bound on d(H[Vi]),

|E(Hi+1)| =
∑
y∈Vi

dVi+1
(y) >

(
δ(H)− 4k − 4

2
− 2k

)
vi

>(cn
1
k − 4k + 2)vi >

c

2
n

1
k vi > 2kvi.

In particular, Vi+1 6= ∅ and the average degree of vertices of Vi with respect to Hi+1

is at least 2k. But since d(Hi+1) 6 2k − 2, we must have that the average degree
of Vi+1 with respect to Hi+1 is at most 2k − 2, that is, |E(Hi+1)| 6 (2k − 2)vi+1,
implying the required bound.

Note now that we have

c

2
n

1
k vi 6 |E(Hi+1)| 6 2kvi+1.

Therefore,
vi+1

vi
>

c

4k
n

1
k .

This, in turn, implies that

vk >

(
c

4k

)k
n.

This is a contradiction if c > 4k, completing the proof.

Our next aim is to consider the extremal number for odd cycles. We already
know, by the Erdős-Stone-Simonovits theorem, that ex(n,C2k+1) ≈ n2

4
. Here,

we will use the so-called stability approach to prove that, for n sufficiently large,
ex(n,C2k+1) =

⌊
n2

4

⌋
.

The idea behind the stability approach is to show that a C2k+1-free graph with
roughly the maximal number of edges is approximately bipartite. Then one uses
this approximate structural information to prove an exact result.

Lemma 2.6.8. For every natural number k > 2 and ε > 0, there exists δ > 0 and
a natural number n0 such that, if G is a C2k+1-free graph on n > n0 vertices with at
least (1

4
− δ)n2 edges, then G may be made bipartite by removing at most εn2 edges.
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Proof. We will prove the result for δ = ε2

100
and n sufficiently large. We begin by

finding a subgraph G′ of G with large minimum degree. We do this by deleting
vertices one at a time, forming graphs G = G0, G1, . . . , Gl, at each stage removing
a vertex with degree less than 1

2
(1 − 4δ

1
2 )|V (Gl)|, should it exist. By doing so, we

delete at most 4δ
1
2n vertices. Otherwise, we would have a C2k+1-free graph G′ on

n′ = (1− aδ 1
2 )n vertices with at least

|E(G′)| > |E(G)| −
n∑

i=n′+1

1

2
(1− 4δ

1
2 )i

>

(
1

4
− δ
)
n2 − 1

2
(1− 4δ

1
2 )

((
n+ 1

2

)
−
(
n′ + 1

2

))
>
n′2

4
+ 2δ

1
2n2 − 4δn2 − δn2 − 1

2
(1− 4δ

1
2 )(n− n′)n

=
n′2

4
+ 2δ

1
2n2 − 5δn2 − 2δ

1
2n2 + 8δn2

>
n′2

4
(1 + δ)

edges. But, by the Erdős-Stone-Simonovits theorem, for n sufficiently large, G′

contains a copy of C2k+1, so we have reached a contradiction. We therefore have a
subgraph G′ with n′ > (1−4δ

1
2 )n vertices and minimum degree at least 1

2
(1−4δ

1
2 )n′.

Since ex(n,C2k+1) = o(n2), we know that for n (and therefore n′) sufficiently
large, the graph G′ will contain a cycle of length 2k. Let a1a2 . . . a2k be such a cycle.
Note that N(a1) and N(a2) cannot intersect, for otherwise there would be a cycle
of length 2k + 1. Moreover, each of the two neighbourhoods must contain a small
number of edges. Indeed, if N(a1) contained more than 4kn′ edges, then Lemma
would imply that there was a path of length 2k in N(a1). But then the endpoints
could be joined to a1 to give a cycle of length 2k + 1. Therefore, we have two large
disjoint sets N(a1) and N(a2), each of size at least 1

2
(1−4δ

1
2 )n′ > 1

2
(1−8δ

1
2 )n, such

that each contains at most 4kn′ edges. We can make the graph bipartite by deleting
all the edges between N(a1) and N(a2) and all of the edges which have one end in
the complement of these two sets. In total, this is at most

8kn′ + 8δ
1
2n2

edges. Hence, for n sufficiently large and δ = ε2

100
, we wil have deleted at most εn2

edges, which gives the required result.

We showed that a C2k+1-free graph with roughly n2

4
edges must be approximately

bipartite. We will now refine this structure to prove that the graph must be exactly
bipartite for C2k+1-free graphs of maximum size.
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Theorem 2.6.9. For n sufficiently large,

ex(n,C2k+1) =

⌊
n2

4

⌋
.

Proof. Let G be a C2k+1-free graph on n vertices with the maximum number of
edges. Then G has at least

⌊
n2

4

⌋
edges. Note that it suffices to prove the result in

the case where G has minimum degree at least 1
2
(1 − 4ε

1
2 )n. For suppose that we

knew the result under this assumption for all n > n0. As in the previous lemma, we
form a sequence of graphs G = G0, G1, . . . , Gl. If there is a vertex in Gl of degree at
least 1

2
(1− 4ε

1
2 )|V (Gl)|, we remove it, forming Gl+1. This process must stop before

we reach a graph G′ with n′ = (1 − 4ε
1
2 )n vertices. Otherwise, we would have a

graph with n′ vertices and more than (1 − ε)n
′2

4
edges. It would, therefore, for n

sufficiently large, contain a copy of C2k+1, which would be a contradiction. When
we reach the required graph, we will have a graph with n′ > (1 − 4ε

1
2 )n vertices,

minimum degree at least 1
2
(1− 4ε

1
2 )n′ and more than

⌊
n′2

4

⌋
edges, so we will have a

contradiction if the removal process begins at all. Hence, we may assume that the
minimum degree of G is at least 1

2
(1− 4ε

1
2 )n.

By the previous lemma, we know that G is approximately bipartite between two
sets of size roughly n

2
. Consider a bipartition V (G) = A∪B such that |E(A)|+|E(B)|

is minimised. Then |E(A)|+ |E(B)| < εn2, where ε may be taken to be arbitrarily
small provided that n is sufficiently large. We may assume that A and B have size
(1

2
± ε 1

2 )n. Otherwise, |E(G)| < |A||B| + εn2 < n2

4
, contradicting the choice of G

as having maximum size. Let dA(x) = |A ∩N(x)| and dB(x) = |B ∩N(x)| for any
vertex x. Note that for any a ∈ A, dA(a) 6 dB(a). Otherwise, we could improve the
partition by moving vertex a to B. Similarly, dB(b) 6 dA(b) for any b ∈ B.

Let c = 2ε
1
2 . We claim that there are no vertices a ∈ A with dA(a) > cn.If

dA(a) > cn, then dB(a) > cn as well. Moreover, A ∩ N(a) and B ∩ N(a) span a
bipartite graph with no path of length 2k − 1 and, therefore, there are at most 4kn

edges between them. For n sufficiently large, this gives (cn)2−4kn > |E(A)|+|E(B)|
missing edges between A and B. Hence, |E(G)| < |A||B| 6 n2

4
,a contradiction.

Similarly, there no vertices b ∈ B with dB(b) > cn.
Now suppose that there is an edge in A, say aa′. Then

|NB(a) ∩NB(a′)| > d(a)− cn+ d(a′)− cn− |B| >
(

1

2
− 9ε

1
2

)
n.

Let A′ = A\{a, a′} and B′ = NB(a) ∩NB(a′). There is no path of length 2k − 1

of the form b1a1b2a2 . . . bk−1ak−1bk between A′ and B′. But this implies that there
is no path of any type of length 2k (remember that, since the graph is bipartite, a
path must alternate sides). This implies that the number of edges between A′ and
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B′ is at most 4kn. This, in turn, implies that the number of edges in the graph is
at most

|E(A′, B′)|+ |E(A\A′, V (G))|+ |E(V (G), B\B′)| 6 4kn+ 2n+ 10ε
1
2n2,

a contradiction for n large.

More generally, there is a result of Simonovits [54] which shows that if H is a
graph with χ(H) = t and χ(H\e) < t, for some edge e, then ex(n,H) = ex(n,Kt)

for n sufficiently large. We say that such graphs are colour-critical and it is easy to
verify that odd cycles are colour-critical.

Let G be a graph of order n. A Hamiltonian path is a path that visits each
vertex of G exactly once. Similarly, a Hamiltonian cycle is a cycle that visits each
vertex of G exactly once. The graph G is said to be Hamiltonian if it contains
a Hamiltonian cycle. As opposed to the previous results concerning cycles, the
question “what is the maximum number of edges in a graph so that it does not
contain a Hamiltonian cycle?” is not particularly interesting, as the answer is close
to the maximum possible number of edges. Consider the following graph G. Take
a Kn−1 together with an isolated vertex v, and add one edge between Kn−1 and v.
Then G contains Hamiltonian cycle, since d(v) = 1 and no cycle can go through v.
On the other hand

|E(G)| =
(
n− 1

2

)
+ 1 =

(
n

2

)
− (n− 2)

Thus, the edge density of G is

|E(G)|(
n
2

) = 1− 2(n− 2)

n(n− 1)
→ 1,

as n→∞. This means that even if the graph contains almost all the possible edges,
it could still be non-Hamiltonian.

Note that the degrees of the example we constructed above are distributed fairly
unevenly. There are n − 1 vertices with degree at least n − 2 and one vertex with
degree 1. Thus, a more interesting question is “how can we guarantee the existence
of Hamiltonian cycles by lower bounding the minimum degree of the graph?”. The
answer is given in the following theorem, which was proved by Dirac [17] in 1952.

Theorem 2.6.10 (Dirac). Let G is a graph of order n > 3 and δ(G) > n
2
, then G

is Hamiltonian.
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Proof. We claim that G is connected. Suppose otherwise and pick one of the smallest
components of G. This must contain at most n

2
vertices. Hence, any vertex in this

component has degree at most n
2
− 1, a contradiction.

Now suppose that G is not Hamiltonian. Consider a maximal path P with length
l 6 n − 1. That is, P = x0x1 . . . xl, where xixi+1 ∈ E(G) for all 0 6 i 6 l − 1.
Since P os maximal, the neighbours of x0 and the neighbours of Xl must all lie on
P . Let A = N(x1) and B = {xi+1 : xi ∈ N(xl)}. Since δ(G) > n

2
, we have that

|A|, |B| > n
2
. On the other hand, it is easy to see that x0 /∈ A and x0 /∈ B. Hence,

A ∪ B ⊆ {x1, . . . , xl}. Thus, |A ∪ B| 6 l 6 n− 1. This implies that A ∩ B 6= ∅, as
otherwise we would have that |A ∪B| > n

2
+ n

2
= n.

Suppose xt ∈ A ∪B for some t. Then consider the cycle

C = x1xtxt+1 . . . xl−1xlxt−1xt−2 . . . x2x1.

If l = n, then C is a Hamiltonian cycle, contradicting our assumption.
If l < n, there exists at least one vertex v /∈ C. However, G is connected, hence

there exists a path from v to some vertex xr in C. We construct a path P ′ as follows.
We start from v, to xr, and then traverse C to xr−1. The length of P ′ is at least
l + 1, contradicting the maximality of P .

Thus, G is Hamiltonian.

The following generalisation was obtained by Ore [46] in 1960.

Theorem 2.6.11 (Ore). Let G be a graph on n > 3 vertices. If d(x) + d(y) > n for
each pair of non-adjacent vertices x and y, then G is Hamiltonian.

Proof. Suppose, towards a contradiction, that G is not Hamiltonian. Choose any
two non-adjacent vertices in G and add an edge between them. We keep doing so
until we obtain a graph H which is Hamiltonian.

Let G′ be the graph obtained immediately before H in the process of adding
edges, and suppose that xy is the edge added to G′ in order to obtain H. Let
z1 . . . znz1 be the Hamiltonian cycle in H. This must use the edge xy at some
point, otherwise G′ would be Hamiltonian and the process of adding edges would
stop before we reached H. If znz1 = xy, then z1 . . . zn is a Hamiltonian path in
G′. Otherwise, there is some r such that 1 6 r < n, zr = x and zr+1 = y. Now,
zr+1 . . . znz1 . . . zr is a Hamiltonian path in G′. Note that, either way, all the edges
used in this path appear in G′; it is only xy that appears in H but not in G′. Relabel
the vertices so that this path is x1 . . . xn.

Suppose we could find a vertex xi such that x is adjacent to xi, and y is adjacent
to xi−1. Then, xxi . . . xn−1yxi−1 . . . x would be a Hamiltonian cycle on G′, which
would contradict our assumption.
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It remains to show that there must be such a vertex xi. Note that since G′ is
obtain from G by adding edges, it still satisfies the hypotheses of the theorem. As
x and y are not adjacent in G′, we have that d(x) + d(y) > n. Hence, NG′(x) and
NG′(y) are subsets of {2, . . . , n} containing at least n elements between them. It
follows that they must intersect non-trivially, thus providing us with the desired
vertex xi which can be any vertex in NG′(x) ∩NG′(y).

The following result, which associates the existence of a Hamiltonian cycle with
the connectivity and independence number ofG, was proved by Chvátal and Erdős [12]
in 1972.

Theorem 2.6.12 (Chvátal-Erdős). If G is a graph on n > 3 vertices such that
α(G) 6 κ(G), then G is Hamiltonian.

Proof. Let κ(G) = k and let C = v1 . . . vtv1 be a longest cycle in G. Let us assume,
towards a contradiction, that C is not a Hamiltonian cycle. Pick a vertex v ∈
V (G)\C and a v − C fan F = {Pi : i ∈ I} in G, where I ⊆ [n] and each Pi ends in
vi. Let F be chosen with maximum cardinality; then vvj /∈ E(G) for any j /∈ I, and
by Menger’s theorem

|F| > min{k, |C|}. (1)

For every i ∈ I, we have that i+ 1 /∈ I, otherwise (C ∪Pi ∪Pi+1)− vivi+1 would
be a longer cycle than C. Thus, |F| < |C| and hence |I| = |CF | > k by (1).

Furthermore, vi+1vj+1 /∈ E(G) for all i, j ∈ I, as otherwise (C ∪ Pi ∪ Pj) +

vi+1vj+1−vivi+1−vjvj+1 would be a cycle longer than C. Hence, {vi+1 : i ∈ I}∪{v}
is a set of k + 1 or more independent vertices in G, contradicting α(G) 6 k.
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Chapter 3

Minors

3.1 Minors

In this section, we consider the analogue of Turán’s theorem for graph minors,
that is, how many edges on n vertices can force a graph to contain a Kp minor. The
answer is that, unlike for Kp subgraphs, a number of edges linear in n is enough; it
suffices to assume that the graph has large enough average degree (depending on p).

Proposition 3.1.1. Every graph of average degree at least 2p−2 has a Kp minor,
for all integers p > 2.

Proof. We apply induction on p. For p 6 2 the assertion is trivial. For the induction
step let p ≥ 3, and let G be any graph of average degree at least 2p−2. Then
ε(G) ≥ 2p−3. Let H be a minimal minor of G with ε(H) ≥ 2p−3 and pick a vertex
x ∈ V (H). By the minimality of H, x is not isolated and each of its neighbours
y has at least 2p−3 common neighbours with x; otherwise, by contracting the edge
xy, we would lose one vertex and at most 2p−3 edges, yielding a smaller minor H ′

with ε(H ′) ≥ 2p−3. The subgraph induced in H by the neighbours of x, therefore,
has minimum degree at least 2p−3 and hence has a Kp−1 minor by the induction
hypothesis. Together with x, this yields the desired Kp minor of G.

Mader [40] was the first one to prove the existence of a constant cp 6 d2cp−1e
such that ex(n, IKp) 6 cpn, for each p > 2. Later, the same author showed that
cp 6 8p log(p). De la Vega [16] and Thomason [57], by using random graphs, ad-
vanced in the study of cp proving that cp > 1

4

√
log(p). The study was improved

by Kostochka [32], who showed that this is the correct order of magnitude for cp,
and Thomason [57], who proved that cp 6 2,68p

√
log(p). Finally, Thomason [58]

completed the problem by showing that cp = (α + o(1))t
√

log t, where α = 0,319...

is an explicit constant.
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All of the above provide us with interesting upper bounds for the extremal num-
ber ex(n, IKp) in an asymptotical way, that is, when p is a fixed integer and n

is much larger than p. Regarding the lower bounds, by considering the graph
G = Kp−1 +Kn−p+2, we obtain

ex(n, IKp) > (p− 2)n−
(
p− 1

2

)
. (1)

However, inequality (1) is an equality only for small values of p. Dirac [18] proved
that equality holds for p 6 5, and Mader [41] proved it for p 6 7. Jørgensen [29]
obtained the exact value

ex(n, IKp) =

6n− 20, if 5 divides n

6n− 21, otherwise.

for p = 8.
Cera et al. [10] found a lower bound that improves (1) and is best possible for

infinitely many values of n and p. This lower bound also allows us to prove that
every Turán graph T r(n) contains Kp as a minor for all n > 2p − 2. Their proof
goes as follows.

Let us first relate the minimum cardinality of a vertex cover of a certain graph
with the minimum number of edge contractions that are necessary in a graph in
order to get a complete graph.

Lemma 3.1.2. Let G be a graph and let U = {v1, . . . , vp} be a subset of V (G).
Let us denote by s 6 p the minimum cardinality of a vertex cover of H = G[U ].
If G is contractible to a Kp with vertex set U , then the minimum number of edge
contractions that are necessary to obtain Kp is at least s.

Proof. If H has no edges, then the result holds trivially. We therefore assume that
E(H) 6= ∅. Let W = {w1, . . . , ws} ⊆ U be a vertex cover of H with minimum
cardinality. Suppose that there exists a set of edges E ′ = {e1, . . . , er} ⊆ E(G), with
r < s, such that the graph obtained from G by contracting these edges contains a
complete Kp with vertex set U . Then, there exists at least one vertex wj such that
none of the edges of E ′ is contracted in wj. But since G is contractible to a Kp with
vertex set U , we have that

NH(wj) ⊆
s⋃

i=1,i 6=j

NH(wi).

Hence, W\{wj} is a vertex cover of H with cardinality s − 1, contradicting the
minimality of W .

44



CHAPTER 3. MINORS 3.1. MINORS

Lemma 3.1.2 allows us to deduce a sufficient condition in order to show that a
graph G is contractible to a complete graph Kp, as is stated in the following result.

Proposition 3.1.3. Let n, p be positive integers with n > p, and let G be a graph
on n vertices. If, for each subset U of V (G), the minimum cardinality of a vertex
cover of G[U ] is s > n− p, then G does not contain Kp as a minor.

Proposition 3.1.3 permits us to split the region of pairs (n, p), with n > p, into
two parts separated by the curve n = 2p − 3. On the one hand, there exist Turán
graphs on n vertices not containing Kp as a minor, if p 6 n 6 2p− 3. On the other
hand, every Turán graph on n vertices contains Kp as a minor, if n > 2p− 2.

Theorem 3.1.4. Let n, p, r be positive integers such that p 6 n 6 2p − 3 and
2 6 r 6 2p− n− 1. Then, the Turán graph T r(n) is not contractible to Kp.

Proof. Let us denote by Ci, with i ∈ {1, . . . , r}, the partition sets of the vertices of
T r(n). Let U = {v1, . . . , vp} be any vertex set of T r(n) and H = T r(n)[U ]. Finally,
let ri = |U ∩ Ci|, for i = 1, . . . , r, and consider the set I = {j ∈ {1, . . . , r} : rj > 1}.

Observe that H =
⋃
i∈I Kri . Then, if we denote by s the minimum degree

cardinality of a vertex cover of H, it is clear that

s =
∑
i∈I

(ri − 1) =
∑
i∈I

ri − |I| > p− r > p− (2p− n− 1) > n− p.

Thus, by applying Proposition 3.1.3, T r(n) is not contractible to Kp.

As an immediate consequence of Theorem 3.1.4, we have the following.

Corollary 3.1.5. Let p, n be positive integers such that p 6 n 6 2p− 3. Then,

ex(n, IKp) > t2p−n−1(n).

Finally, we shall prove that the pairs of values of n and p described in Theorem
3.1.4 are the only ones for which there are Turán graphs not containing Kp as a
minor.

Theorem 3.1.6. Let n, p, r be positive integers such that n > 2p − 2 and r > 2.
Then, every Turán graph T r(n) contains Kp as a minor.
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Proof. If r > p, the result clearly holds. We can therefore assume that 2 6 r 6 p−1.
Let us denote by Ci, with i ∈ {1, . . . , r}, the partition sets of vertices of T r(n).
Let U be a vertex set of T r(n) chosen in such a way that |U ∩ Ci| =

⌈
p
r

⌉
, for

i ∈ {1, . . . , p − r
⌊
p
r

⌋
}, and |U ∩ Ci| =

⌊
p
r

⌋
, for i ∈ {p − r

⌊
p
r

⌋
+ 1, . . . , r}. Clearly,

|U | = p and T r(n)[U ] is a Turán graph T r(p). Therefore, if H = T r(n)[U ], we
deduce that H is a graph on p vertices formed by r disjoint copies of complete
graphs. Some of them are copies of K⌈ p

r

⌉ and the rest of them are copies of K⌊ p
r

⌋.
Thus, the minimum cardinality of a vertex cover of H is

s = p− r 6 p− 2 = (2p− 2)− p 6 n− p.

Notice that the edges of H are the necessary ones in T r(n)[U ] to be a complete graph
Kp, so we need to contract some edges in T r(n) in order to obtain a Kp with vertex
set U . Let W = {w + 1, . . . , ws} be a vertex cover of H with minimum cardinality
and consider the bipartite graph B whose vertex classes areW and Z = V (T r(n))\U
defined in such a way that a vertex wi is adjacent to vj in B if wivj ∈ E(T r(n)).

If B has a perfect matching M , then it suffices to contract in T r(n) the edges of
M to obtain a new graph T r(n)/M containing a copy of Kp with vertex set U . Let
us see that a perfect matching in B does, indeed, exist.

Let A be a subset of W . If there exist w,w′ ∈ A such that w ∈ U ∩ Cj and
w′ ∈ U ∩ Ck, with j 6= k, then N(A) = Z, because N({w}) = Z\(Z ∩ Cj) and
N({w′}) = Z\(Z ∩ Ck). Then, |N(A)| = |Z| = n− p > s = |W | > |A|.

For each fixed j ∈ {1, . . . , r}, we have

r∑
i=1,i 6=j

|Z ∩ Ci| = n− p− |Z ∩ Cj|

= (n− p− |Cj|+ 1) + (|Cj| − 1− |Z ∩ Cj|)
= (n− p− |Cj|+ 1) + |W ∩ Cj|

>

(
n− p−

⌈n
r

⌉
+ 1

)
+ |W ∩ Cj|

>

(
n− p−

⌈n
2

⌉
+ 1

)
+ |W ∩ Cj|

=

⌊
n− 2p+ 2

2

⌋
+ |W ∩ Cj|

> |W ∩ Cj|,

because n > 2p− 2. Thus, by Hall’s theorem, there exists a perfect matching in the
graph B and, therefore, T r(n) contains Kp as a minor.

So far, we have seen that we can force a graph to contain Kp as a minor by
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raising its average degree, that is, we have the following.

Theorem 3.1.7. There exists a constant c ∈ R such that, for every n ∈ N, every
graph G of average degree d(G) > cp

√
log p contains Kp as a minor. Up to the value

of c, this bound is best possible as a function of p.

Another interesting result is that we can force a Kp minor in a graph simply
by raising its girth. This may seem questionable as a result, but it seems more
believable if, rather than trying to force a Kp minor directly, we instead try to force
a minor just of large minimum or average degree -which suffices, by Theorem 3.1.7.
For if the girth g of a graph is large then the ball

{
v : d(x, v) <

⌊
g
2

⌋}
around a vertex

x induces a tree with many leaves, each of which sends all but one of its incident
edges away from the tree. Contracting enough disjoint such trees, we can thus hope
to obtain a minor of large average degree, which in turn will have a large complete
minor.

The following lemma realizes this idea.

Lemma 3.1.8. Let d, k ∈ N with d > 3, and let G be a graph of minimum degree
δ(G) > d and girth g(G) > 8k + 3. Then G has a minor H of minimum degree
δ(H) > d(d− 1)k.

Proof. Let X ⊆ V (G) be maximal with d(x, y) > 2k for all distinct x, y ∈ X. Foe
each x ∈ X put T 0

x := {x}. Given i < 2k, assume that we have defined disjoint
trees T ix ⊆ G (one for each x ∈ X) whose vertices together are precisely the vertices
at distance at most i from X in G. Joining each vertex at distance i + 1 from X

to a neighbour at distance i, we obtain a similar set of disjoint trees T i+1
x . As every

vertex of G has distance at most 2k from X (by the maximality of X), the trees
Tx := T 2k

x obtained this way partition the entire vertex set of G. Let H be the minor
of G obtained by contracting every Tx.

To prove that d(H) > d(d− 1)k, note first that the Tx are induced subgraphs of
G, because diam(Tx) 6 4k and g(G) > 4k + 1. Similarly, there is most one edge in
G between any two trees Tx and Ty: two such edges, together with the paths joining
their ends in Tx and Ty, would form a cycle of length at most 8k+ 2 < g(G). So all
the edges leaving Tx are preserved in the contraction.

It remains to count how many such edges there are. Note that, for every vertex
u ∈ T k−1

x , all its dG(u) > d neighbours v also lie in Tx: since d(v, x) 6 k and
d(x, y) > 2k for every other y ∈ X, we have d(v, y) > k > d(v, x), so v was added to
Tx rather than to Ty when those trees were defined. Therefore T kx , and hence also
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Tx has at least d(d − 1)k−1 leaves. But every leaf of Tx sends at least d − 1 edges
away from Tx, so Tx sends at least d(d− 1)k edges to (distinct) other threes Ty.

Lemma 3.1.8 provides Theorem 3.1.7 with the following corollary.

Theorem 3.1.9. There exists a function f : N → N such that every graph of
minimum degree at least 3 and girth at least f(r) has a Kp minor, for all p ∈ N.

Proof. We prove the theorem with f(p) := 8 log p+ 4 log log p+ c, for some constant
c ∈ R. Let k = k(p) ∈ N be minimal with 3 · 2k > c′p

√
log p, where c′ ∈ R

is the constant from Theorem 3.1.7. Then, for a suitable constant c ∈ R, we have
8k+3 6 8 log p+4 log p log p+c, and the result follows by Lemma 3.1.8 and Theorem
3.1.7.

3.2 Topological minors

In the previous section, we saw that we need an average degree of 2p−2 in order
to force a Kp minor. Forcing a topological Kp minor is slightly harder. We shall fix
its branch vertices in advance and then construct its subdivided edges inductively,
which requires an average degree of 2(p

2) to start with.

Proposition 3.2.1. Every graph of average degree at least 2(p
2) has a topological Kp

minor, for every integer p ≥ 2.

Proof. The assertion is clear for p = 2, so let us assume that p ≥ 3. We shall show
by induction on m = p, . . . ,

(
p
2

)
that every graph G of average degree d(G) ≥ 2m has

a topological minor X with p vertices and m edges.
If m = p then, by Propositions 1.3.1 and 1.3.2, G contains a cycle of length at

least ε(G) + 1 ≥ 2p−1 + 1 ≥ p− 1 and the assertion follows with X = Cr.
Now let r < m 6

(
p
2

)
and assume the assertion holds for smaller m. Let G

with d(G) ≥ 2m be given; thus, ε(G) ≥ 2m−1. Since G has a component C with
ε(C) ≥ ε(G), we may assume thatG is connected. Consider a maximal set U ⊆ V (G)

such that U is connected in G and ε(G\U) ≥ 2m−1. Such a set U exists because G
itself has the form G\U with |U | = 1. Since G is connected, we have N(U) 6= ∅.

Let H := G[N(U)]. If H has a vertex v of degree dH(v) < 2m−1, we may add it
to U and obtain a contradiction to the maximality of U ; when we contract the edge
vU in G\U , we lose one vertex and dH(v) + 1 6 2m−1 edges, so ε will still be at least
2m−1. Therefore d(H) ≥ δ(H) ≥ 2m−1. By the induction hypothesis, H contains a
topological minor Y with |V (Y )| = r and |E(Y )| = m − 1. Let x, y be two branch
vertices of this Y that are non-adjacent in Y . Since x and y lie in N(U) and U is
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connected in G, G contains an (x, y)-path whose inner vertices lie in U . Adding this
path to Y , we obtain de desired X.

In order to prove our next result we shall need a definition and a theorem con-
cerning graph connectivity, whose proof we shall omit for the sake of brevity.

Let G be a graph and let X ⊆ V (G) be a set of vertices. We call X linked in G if
for any distinct vertices s1, . . . , sl, t1, . . . , tl in X there exist disjoint paths P1, . . . , Pl

in G such that each Pi links si to ti and has no inner vertices in X. Thus, unlike
Menger’s theorem, we are not merely asking for disjoint paths between two sets of
vertices, but insist that each of these paths link a specific pair of endpoints.

If |V (G)| ≥ 2k and every set of at most 2k vertices is linked in G, then G is
k-linked. As is easily checked, this is equivalent to requesting that disjoint paths
Pi = [si, . . . , ti] exist for every choice of exactly 2k vertices s1, . . . , sk, t1, . . . , tk.

Theorem 3.2.2. Let G be a graph and let k ∈ N. If G is 2k-connected and ε(G) ≥
8k, then G is k-linked.

We are now going to use Theorem 3.2.2 in order to reduce the bound in Proposi-
tion 3.2.1 from exponential to quadratic, which is best possible up to a multiplicative
constant.

Theorem 3.2.3. There is a constant c ∈ R such that, for every p ∈ N, every graph
G of average degree d(G) > cp2 contains Kp as a topological minor.

Proof. We prove the theorem with c = 10. Let G with d(G) > 10p2 be given. By
Mader’s theorem, for k = p2, G has a subgraph H with κ(H) > p2 and ε(H) >

ε(G)−p2 > 4p2. For a topological Kp minor in H, pick a set X of r vertices in H as
branch vertices, and a set Y of p(p− 1) neighbours of X in H, p− 1 for each vertex
in X, as initial subdividing vertices. These are p2 vertices altogether and they can
be chosen distinct since δ(H) > κ(H) > p2.

It remains to link up the vertices of Y in pairs, by disjoint paths in H ′ := H−X
corresponding to the edges of Kp. This can be done if Y is linked in H ′. We show
more generally that H ′ is 1

2
p(p− 1)-linked, by checking that H ′ satisfies the premise

of Theorem 7.2 for k = 1
2
p(p − 1). We have κ(H ′) > κ(H) − p > p(p − 1) = 2k.

And as H ′ was obtained from H by deleting at most r|V (H)| edges (as well as some
vertices), we also have ε(H ′) > ε(H)− p > 4p(p− 1) = 8k.

As with minors, large girths can also be used to force a topological Kp minor.
We now need some vertices of degree at least p − 1 to serve as branch vertices,
but if we assume a minimum degree of p − 1 to secure these, we can even get by
with a girth bound that is independent of p, as was shown by Kühn and Osthus [34]:
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Theorem 3.2.4. There exists a constant g such that G contains Kp as a topological
minor for every graph G satisfying δ(G) > p− 1 and g(G) > g.

3.3 Hadwiger’s conjecture

As we saw in the previous two sections, an average degree of cp
√

log p suffices to
force an arbitrary graph to have a Kp minor, and an average degree of cp2 forces it
to contain a topological Kp minor. If we replace “average degree” with “chromatic
number” then, with almost the same constants c, the two assertions remain true:
this is because every graph with chromatic number k has a subgraph of minimum
-and thus average- degree at least k − 1.

Although both functions above, cp
√

log p and cp2, are best possible (up to the
value of c) for the said implications with respect to the average degree, the question
arises of whether they are best possible with respect to the chromatic number,
or whether some slower growing function would do in that case. The underlying
significance of this question has to do with the nature of the invariant χ and the
structural effect it may have on a graph.

This question is, unsurprisingly, somewhat related to the four colour theorem,
whose proof has been deemed unsatisfactory, requiring as it does the extensive use
of a computer. Since this is the case, it may be said that we do not know the
real reason the four colour theorem is true, that is, the exact reason why planarity
implies that four colours suffice. In order to answer this question, several attempts
have been made to reduce the hypotheses of the theorem to a minimum core, in the
hope of achieving a better understanding of the situation. Although this question
has not yet been answered, it has given rise to some interesting problems. Of these,
the most famous is Hadwiger’s conjecture.

As we have seen before, planar graphs are precisely the graphs that do not con-
tain K5 or K3,3 as a minor, so the four colour theorem states that every graph with
no K5 or K3,3 minor is 4-colourable. Searching for the exact reason behind the four
colour theorem, it is natural to exclude K5, since it is not 4-colourable, but the
same cannot be said about K3,3. The question arises of whether all graphs without
a K5 minor are 4-colourable, and a natural generalisation is an analogous statement
about graphs with no Kp minor, for any integer p. Hadwiger conjectured that this
question has a positive answer, although the problem remains open.

Conjecture 3.3.1 (Hadwiger 1943). For every integer p > 0, every graph with no
Kp minor is (p− 1)-colourable.

When Hadwiger introduced his conjecture, he proved it for p 6 4. Wagner [61]

50



CHAPTER 3. MINORS 3.3. HADWIGER’S CONJECTURE

had already shown in 1937 that the case p = 5 is equivalent to the four colour
theorem, and so this case was finally proved in 1976 by Appel and Haken [3, 4]. In
1993, Robertson, Thomas and Seymour [47] proved the conjecture for p = 6. For
p > 7, the conjecture remains open, but it is true for line graphs, a result easily
obtained as a consequence of Vizing’s theorem. Bollobás, Catlin and Erdős [6]
proved that, rephrased as “G contains a Kχ(G)”, Hadwiger’s conjecture is true for
almost all graphs.

Hadwiger’s conjecture raises the question of what the graphs without a Kp minor
look like: any sufficiently detailed structural description of those graphs should
enable us to decide whether or not they can be (p− 1)-colourable.

The cases p = 1 and p = 2 are trivial. For p = 3, the graphs without a K3 minor
are precisely the forests, and those are indeed 2-colourable. For p = 4 there is also
a simple structural characterization of the graphs without a Kp minor. Before we
state it, we shall need a definition and a lemma.

If G is a graph with induced subgraphs G1, G2 and S, such that G = G1 ∪ G2

and S = G1 ∩ G2, we say that G arises from G1 and G2 by pasting these graphs
together along S.

Lemma 3.3.2. Let X be a set of 3-connected graphs. Let G be a graph with a proper
separation {V1, V2} of order κ(G) 6 2. If G is edge-maximal without a topological
minor in X , then so are G1 := G[V1] and G2 := G[V2], and G1 ∩G2 = K2.

Proof. Note first that every vertex v ∈ S := V1 ∩ V2 has a neighbour in every
component of Gi = S, i = 1, 2; otherwise S\{v} would separate G, contradicting
|S| = κ(G). By the maximality of G, every edge e added to G lies in a TX ⊆ G+ e

with X ∈ X , For all the choices of e considered below, the 3-connectedness of X
will imply that the branch vertices of this TX all lie in the same Vi, say in V1.
(The position of e will always be symmetrical with respect to V1 and V2, so this
assumption entails no loss of generality.) Then the TX meets V2 at most in a path
P corresponding to an edge of X.

If S = ∅, we obtain an immediate contradiction by choosing e with one end in V1

and the other in V2. If S = {v} is a singleton, let e join a neighbour v1 of v in V1\S
to a neighbour v2 of v in V2\S, as shown in the figure below. Then P contains both
v and the edge e = {v1, v2}; replacing its segment vPv2v1 with the edge {v, v1} we
obtain a TX in G1 ⊆ G, a contradiction.

So |S| = 2, say S = {x, y}. If {x, y} /∈ E(G), let e := {x, y}, and in the arising
TX replace e by an (x, y)-path through G2. This yields a TX in G, a contradiction.
Hence {x, y} ∈ E(G), and G[S] = K2 as claimed.
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TX

G1 G2

v

v2v1

P

e

Figure 3.1: If G+ e contains a TX, then so does G1 or G2

It remains to show that G1 and G2 are edge-maximal without a topological minor
in X . So let e′ be an additional edge for G1, say. Replacing xPy with the edge {x, y}
if necessary, we obtain a TX either in G1 + e′ (which shows the edge-maximality of
G1, as desired), or in G2 (which contradicts G2 ⊆ G).

Proposition 3.3.3. Let G be an edge-maximal graph without a K4 minor. If
|V (G)| > 3, then G can be constructed recursively from triangles by pasting along
K2’s.

Proof. Recall first that if K4 is a minor of a graph G, then it is also a topological
minor of G, because ∆(K4) = 3; the graphs without a K4 minor, thus, coincide with
those without a topological K4 minor.

We will use induction on |V (G)|. Let G be given, edge-maximal without a K4

minor. If |V (G)| = 3, then G itself is a triangle, so let |V (G)| > 4 for the induction
step. Then G is not complete; let S ⊆ V (G) be a separator of size κ(G), and let C1,
C2 be distinct components of G\S. Since S is a maximal separator, every vertex in
S has a neighbour in C1 and another in C2. If |S| > 3, this implies that G contains
three independent paths P1, P2, P3 between a vertex v1 ∈ C1 and a vertex v2 ∈ C2.
Since κ(G) = |S| > 3, the graph G\{v1, v2} is connected and contains a (shortest)
path P between two different Pi. Then P ∪ P1 ∪ P2 ∪ P3 is a subdivision of K4, a
contradiction.

Hence κ(G) 6 2, and the assertion follows from Lemma 3.3.2 and the induction
hypothesis.

One of the interesting consequences of Proposition 3.3.3 is that all the edge-
maximal graphs without a K4 minor have the same number of edges, and thus are
all extremal.

Corollary 3.3.4. Every edge-maximal graph G without a K4 minor has 2|V (G)|−3

edges.

Corollary 3.3.5. Hadwiger’s conjecture holds for p = 4.
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Proof. If G arises from G1 and G2 by pasting along a complete graph, then χ(G) =

max{χ(G1), χ(G2)}. Hence, Proposition 3.3.3 implies by induction on |V (G)| that
all edge-maximal (and hence all) graphs without a K4 minor can be 3-coloured.

It is also possible to prove Corollary 3.3.5 by a direct argument which, though
simple, does not give us the structural insight that the proof above does. The proof
is by induction on the order of G; If G has fewer than 4 vertices, we have at least
one colour per vertex. If G has no cycles then it is a forest and thus 2-colourable;
otherwise, let C be a minimum cycle in G. Since a chord would create a smaller
cycle, C has no chords. Therefore, C is an induced cycle, so it is possible to 3-
colour G[V (C)] by travelling around the cycle alternating between two colours and
colouring the last vertex with the third colour, if C has odd length. Fix such a
colouring of C. If G = C we are done. Otherwise, G\C is non empty.

Let S1, . . . , Sk be the components of G\C. Each has order strictly smaller than
G, and does not contain K4 as a minor. For any 1 6 i 6 k, the component Si has at
most two neighbours in C; otherwise, contracting Si to one vertex and contracting
C to remove all vertices of C except three neighbours, forms a K4.

If Si has no neighbours in C we get a colouring of Si from the induction hypothesis
and need not modify it. If Si has only one neighbour in C, or two neighbours that
both receive the same colour in the colouring of C, take G[V (C) ∪ V (Si)] and
contract C to a single vertex vC to get a graph that does not contain K4 as a minor
and has smaller order, so is 3-colourable by the induction hypothesis. Take a 3-
colouring of this graph and exchange colours so that vC receives the same colour as
the neighbour(s) of Si did in the colouring of C. The result is a 3-colouring of Si
that is proper on Si but also proper with respect to the colouring of C that was
fixed.

Otherwise, Si has neighbours x and y in C that received different colours. In this
case, take G[V (C) ∪ V (Si)] and contract C until only x and y remain from C. The
result is again a graph that does not contain K4 as a minor and is of smaller order,
so is 3-colourable. Take a 3-colouring of this graph and permute colours so that x
and y get the same colour they had in the fixed colouring of C. This is possible
because x and y were adjacent in the original colouring, so they received different
colours, just as they do in the colouring of C. The result is again a 3-colouring of
Si that is proper with respect to the colouring of C.

Be performing the above for each Si, we obtain a 3-colouring of the entire graph
G that is proper, thus completing the proof.

Hadwiger’s conjecture for p = 5 follows from another structural theorem for
graphs without a K5 minor, just as it follows from Proposition 3.3.3 for p = 4.
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The proof of the following theorem is similar to that of Proposition 3.3.3, although
considerably longer. We therefore state the theorem without proof.

Theorem 3.3.6 (Wagner). Let G be an edge-maximal graph without a K5 minor.
If |V (G)| > 4, then G can be constructed recursively by pasting along triangles and
K2’s from plane triangulations and copies of the Wagner graph W .

Figure 3.2: The Wagner graph W .

Using the fact that every maximally planar graph with n vertices has 3n − 6

edges, one can easily compute which of the graphs constructed as in Theorem 3.3.6
have the most edges. It turns out that these extremal graphs without a K5 minor
have no more edges than the maximal planar graphs:

Corollary 3.3.7. A graph with n vertices and no K5 minor has at most 3n − 6

edges.

Since χ(W ) = 3, Theorem 3.3.6 and the four colour theorem imply Hadwiger’s
conjecture for p = 5:

Corollary 3.3.8. Hadwiger’s conjecture holds for p = 5.

Hadwiger’s conjecture for p = 6 is substantially more difficult than the case p = 5

and, again, it relies on the four colour theorem. Suppose that the conjecture does
not hold for p = 6 and consider a smallest counterexample G. Robertson, Thomas
and Seymour [47] showed, without using a computer and without assuming the four
colour theorem, that G must be an apex graph, that is, there exists a vertex whose
deletion makes G planar. Therefore, since the four colour theorem implies that the
planar part of G is 4-colourable, we still have a colour left for the vertex we deleted,
so G is not a counterexample after all.
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The proof that G is apex is, very roughly, as follows. One can show that G is
6-connected and, in particular, all vertices have degree at least 6; and vertices of
degree 6 belong to K4 subgraphs, and it follows that there are not many of them(in
fact at most two), or else we could piece together all these K4’s to make a K6 minor.
On the other hand, a theorem of Mader states that the average degree of G is less
than 8, and we cannot make the average degree bigger than 8 even if we cleverly
contract edges. This implies that there are edges that are in several triangles or
squares. If, say, there is an edge uv in four triangles, then there is a K4 minor of
G\{u, v} on the four surviving vertices of the triangles (since G has no K6 minor),
and graphs with this property are well-understood; basically they have to be planar
with the four special vertices on the infinite region. So G\{u, v} is planar and a
little more thought shows that one of G\u, G\v is planar. Hence G is apex.

Proving that graphs with no K7 minor are 6-colourable is thus the first case of
Hadwiger’s conjecture that is still open. Albar and Gonçalves [1] proved the follow-
ing result.

Theorem 3.3.9. Every graph with no K7 minor is 8-colourable, and every graph
with no K8 minor is 10-colourable.

As mentioned earlier, the challenge posed by Hadwiger’s conjecture is to devise
a proof technique that makes better use of the assumption χ > r than just using
its consequence δ > r− 1 in a suitable subgraph, which we know cannot force a Kp

minor (Theorem 3.1.7). So far, no such technique is known.
If we resign ourselves to using just δ > r − 1, we can still ask what additional

assumptions might help in making this force a Kp minor. Theorem 3.2.4 says that
an assumption of large girth has this effect. In fact, a much weaker assumption
suffices: for any fixed s ∈ N and all large enough d depending only on s, the graphs
G + Ks,s of average degree at least d can be shown to have Kr minors for r consid-
erably larger than d. For Hadwiger’s conjecture, this implies the following.

Theorem 3.3.10 (Kühn and Osthus [35]). For every integer s there exists an integer
ps such that Hadwiger’s conjecture holds for all graphs G + Ks,s and p > ps.

The strengthening of Hadwiger’s conjecture that graphs of chromatic number at
least p contain Kp as a topological minor has become known as Hajos’ conjecture.
It is false in general, but Theorem 3.2.4 implies it for graphs of large girth:

Theorem 3.3.11. There is a constant g such that for any graph G of girth at least
g, if χ(G) > p, then G contains Kp as a topological minor, for all p.
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Proof. Let g be the constant from Theorem 3.2.4. If χ(G) > p thenG has a subgraph
H of minimum degree δ(H) > p − 1. As g(H) > g(G) > g, Theorem 3.2.4 implies
that H, and thus G, contains a topological Kp minor.

The following weakening of the assertion of Hadwiger’s conjecture is true.

Theorem 3.3.12 (Halin [28]). Every graph of chromatic number α > ℵ0 contains
every Kβ with β < α as a minor, as well as a topological minor.
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Chapter 4

Hypergraphs

We will now turn our attention to hypergraphs. A hypergraph is a generalisation
of a graph in which an edge can join any number of vertices. Formally, a hypergraph
G is a pair (V,E) where X is a set of elements and E is a set of non-empty subsets of
X, that is, E ⊆ P(V )\{∅}. As before, the elements of the set V are called vertices
of G, whereas the elements of the set E are called hyperedges (or, when there is no
fear of confusion, simply edges) of G.

An r-uniform hypergraph, which we sometimes call an r-graph, is a hypergraph
such that all its hyperedges have cardinality r. The complete r-uniform hypergraph
K

(r)
n is a hypergraph on n vertices where every r-element subset of the vertex set is

an edge.
For X ⊆ V , the induced subhypergraph G[X] has vertex set X and edge set all

edges of G that are contained in X. We often abbreviate “subhypergraph” to “sub-
graph”. By a k-set, we mean a set with cardinality k.

The extremal number ex(n,F) is, as before, the maximum number of edges in
an F free r-graph on n vertices.

4.1 Complete r-graphs

Developing some understanding of extremal numbers for general r-graphs F is a
long-standing open problem in extremal graph theory. By contrast with the graph
case, there is comparatively little understanding of the hypergraph case. Having
solved the problem for F = Kn for graphs, Turán posed the question of determining
ex(n,F) when F = K

(r)
n is a complete r-graph on n vertices. To date, no case

with t > r > 2 of this question has been solved, even asymptotically. Our goal is
to outline the ideas behind known some bounds, summarise the rest of them and
mention a few recent developments.
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For the purpose of this section it is convenient to change to the “complementary”
notation that was preferred by many early writers on extremal numbers. They define
the Turán number T (n, k, r) to be the minimum number of edges in an r-graph G
on n vertices such that any subset of k vertices contains at least one edge of G. Note
that G has this property if and only if the “complementary” r-graph of r-sets that
are non edges of G is K(r)

k -free. Thus,

T (n, k, r) + ex(n,K
(r)
k ) =

(
n

r

)
.

They also define the density t(k, r) = lim
n→∞

(
n
r

)−1
T (n, k, r). Thus,

t(k, r) + π(K
(r)
k ) = 1.

We start with the lower bound on t(k, r), which is equivalent to an upper bound
on π

(
K

(r)
k

)
. A trivial averaging argument gives t(k, r) >

(
k
r

)−1
. In general, the best

known bound is

t(k, r) >

(
k − 1

r − 1

)−1

,

due to de Caen [13]. This follows from his exact bound on

T (n, k, r) >
n− k + 1

n− r + 1

(
k − 1

r − 1

)−1(
n

r

)
.

This, in turn, is deduced from a hypergraph generalisation of a theorem of Moon and
Moser [45] that relates the number of cliques of various sizes in a graph. Suppose
that G is an r-graph on n vertices and let Nk be the number of copies of K(r)

k in G.
Then the inequality is

Nk+1 >
k2Nk

(k − r + 1)(k + 1)

(
Nk

Nk−1

− (r − 1)(n− k) + k

k2

)
, (1)

provided that Nk−1 6= 0. Given this inequality, the bound on T (n, k, r) follows from
some involved calculations; the main step is to show by induction on k that

Nk > Nk−1

r2
(
k
r

)
k2
(
n
r−1

)(|E(G)| − F (n, k, r)),

where

F (n, k, r) = (r−1(n− r + 1)−
(
k − 1

r − 1

)−1

(n− k + 1))

(
n

r − 1

)
.

Inequality (1) is proved by the following double counting argument. Let P be the
number of pairs (S, T ) where S and T are each sets of k vertices, such that S spans
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a K
(r)
k , T does not span one, and |S ∩ T | = k − 1. For an upper bound on P ,

enumerate the Nk−1 copies of K(r)
k−1 and let ai be the number of K(r)

k ’s containing
the i-th copy. Since,

∑Nk−1

i=1 ai = kNk, we have

P =

Nk−1∑
i=1

ai(n− k + 1− ai) 6 (n− k + 1)kNk −N−1
k−1k

2N2
k .

For a lower bound, enumerate the copies of K(r)
k as B1, . . . , BNk

and let bi be the
number of K(r)

k+1’s containing the i-th copy. For each Bj, there are n− k − bj ways
to choose an x /∈ Bj such that Bj ∪ {x} does not span a K(r)

k+1. Given such an x,
there is some C ⊆ Bj of size k− 1 such that C ∪ {x} is not an edge. Then, for each
y ∈ Bj\C, the pair (Bj, Bj ∪ x\y) is counted by P . This gives

P >
Nk∑
j=1

(n− k − bj)(k − r − 1) = (k − r − 1)((n− k)Nk − (k + 1)Nk+1).

Combining with the lower bound and rearranging provides us with the required in-
equality.

We consider next the upper bound on t(k, r), which is equivalent to a lower bound
on π(K

(r)
k ). The best general construction is due to Sidorenko [52] and implies the

bound

t(k, r) 6

(
r − 1

k − 1

)r−1

.

For comparison with the lower bound, notice that(
r − 1

k − 1

)r−1(
k − 1

r − 1

)
=
∏
i=1

r − 1
k − 1

k − 1

r − 1

r − i
.

If k is large enough, compared to r, then the ratio of the bounds is approximately
(r − 1)r−1((r − 1)!)−1, which is exponential in r but independent of k. In order to
explain the construction, we shall rephrase it using the following, simple to follow,
fact.

Suppose there is a lorry driver who needs to follow a certain closed route. There
are several petrol stations along the route, and the total amount of fuel in these
stations is sufficient for the route. Then there exists some starting point from which
the route can be completed. Indeed, imagine that the driver starts with enough fuel
to drive around the route and consider the journey starting from an arbitrary point,
in which she still picks up all the fuel at any station, even though she doesn’t need
it. Then the point at which the fuel reserves are lowest during this route can be
used as a starting point for another route which satisfies the requirements.
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The construction is to divide n vertices into k−1 roughly equal partsA1, . . . , Ak−1,
and say that a set B of size r is an edge of G if there is some j such that

s∑
i=1

|B ∩ Aj+1| > s+ 1

for each 1 6 s 6 r− 1 (taking addition modulo k− 1 in the subscript). To interpret
this in the lorry driver framework, consider any set K of size k, imagine that each
element of K represents a unit of fuel, and that it takes k

k−1
units of fuel to drive

from Ai to Ai+1. Then K contains enough fuel for a complete circuit, so the lorry
driver puzzle tells us that there is some starting point from which a complete circuit
is possible. Let B be the set of the first r elements of K that are encountered on
this circuit (breaking ties arbitrarily). Since r > (r − 1) k

k−1
, the lorry can advance

distance r − 1 using just the fuel from B. This implies that B is an edge, as⌈
s k
k−1

⌉
= s + 1 for 1 6 s 6 r − 1. Thus, any set of size k contains an edge, as

required.
It is not so obvious how to estimate the number of edges in the construction

without tedious calculations, so we will give a simple combinatorial argument here.
It is convenient to count edges together with an order of the vertices in each edge,
thus counting each edge r! times. We can form an ordered edge B = x1, . . . , xr using
the following three steps:

1. choose the starting index j;

2. assign each xl to one of the parts Aj+1, for 1 6 i 6 r − 1;

3. choose a vertex for each xl within its assigned part.

Clearly there are k − 1 choices in step (1) and
(

n
k−1

)r
+ O(nr−1) choices in step

(3). In step (2) there are (r− 1)r ways to assign the parts if we ignore the required
inequalities on the intersection sizes (that is, that there should be enough fuel for the
lorry). We claim that, given any assignment, there is exactly one cyclic permutation
that satisfies the required inequalities. More precisely, if we assign bi of the xl’s to
Aj+1 for 1 6 i 6 r − 1 where, as before, each of the xl’s is a unit of fuel, but now
it takes one unit of fuel to advance from Ai to Ai+1, and the lorry is required to
always have a spare unit of fuel. A valid starting point for the lorry is equivalent
to a shifted sequence satisfying the required inequalities. As in the solution to the
original puzzle, we imagine that the driver starts with enough fuel to drive around
the route and consider the journey starting from any arbitrary point. Then the
point at which the fuel reserves are lowest during this route is a starting point
for a route where there is always one spare unit of fuel. Furthermore, this is the
unique point at which the fuel reserves are lowest, and so it gives the unique cyclic
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permutation satisfying the required inequalities. We deduce that there are (r−1)r−1

valid assignments in step (2). Putting everything together, the number of edges is

(r!)−1(k − 1)(r − 1)r−1

(
1 +O

( 1

n

))( n

k − 1

)r
∼
(
r − 1

k − 1

)r−1(
n

r

)
,

as required.

Having discussed the general case, we will now summarise some better bounds
that have been found in specific cases. One natural case to focus on is t(r + 1, r) =

1 − π
(
K

(r)
r+1

)
. For large r, a construction of Sidorenko [53] gives the best known

upper bound, which is
t(r + 1, r) 6 (1 + o(1))

log r
2r .

Other known bounds are effective for small r; these are

t(r + 1, r) 6
1 + 2 ln r

r

by Kim and Roush [31], and

t(2s+ 1, 2s) 6
1

4
+ 2−2s

by de Caen, Kreher and Wiseman [14].
On the other hand, the known lower bounds are very close to the bound t(r1, r) >

1
r
discussed above in the general case. Improvements to the second order term were

given by Chung and Lu [11], who showed that

t(r + 1, r) >
1

r
+

1

r(r + 3)
+O(r−3)

when r is odd, and by Lu and Zhao [39], who obtained some improvements when r
is even, the best of which is

t(r + 1, r) >
1

r
+

1

2r3
+O(r−4)

when r is of the form 6k+4. Thus, the known upper and lower bounds are separated
by a factor of

(
1
2

+ o(1)
)

log r. As a first step towards closing this gap, de Caen [15]
conjectured that r · t(r + 1, r)→∞ as r →∞.

For K(3)
4 , we only know that

5

9
6 ex(n,K

(3)
4 ) 6 0.561666.

The lower bound is not particularly hard to come by; take three vertex sets V1, V2

and V3, each of size n
3
. We let an edge uvw be in G if uv ∈ Vi and w ∈ Vi+1, for
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i = 1, 2, or if u ∈ V1, v ∈ V2 and w ∈ V3. It is straightforward to check that this
contains no K(3)

4 and that its Turán density is 5
9
. The upper bound, on the other

hand, is much more difficult to obtain, using a combinatorial technique known as
flag algebras.

For K(4)
5 the following construction is due to Giraud [24]. Suppose M is an

m × m matrix with entries equal to 0 or 1. We define a 4-graph G on n = 2m

vertices corresponding to the rows and columns of M . Any 4-set of rows or 4-set
of columns is an edge. Also, any 4-set of 2 rows and 2 columns inducing a 2 × 2

submatrix with even sum is an edge. We claim that any 5-set of vertices of G
contains an edge. This is clear if we have at least 4 rows or at least 4 columns, so
suppose without loss of generality that we have 3 rows and 2 columns. Then, in the
induced 3 × 2 submatrix, we can choose 2 rows whose sums have the same parity,
that is, a 2 × 2 submatrix with even sum, which is an edge. To count edges in G ,
note first that we have 2

(
m
4

)
from 4-sets of rows and 4-sets of columns. Also, for any

pair i, j of columns, we can divide the rows into two classes Oij and Eij according
to whether the entries in columns i and j have odd or even sum. Then, the number
of 2× 2 submatrices using columns i and j with even sums is(

|Oij|
2

)
+

(
|Eij|

2

)
>

(
m
2

2

)
.

Furthermore, for some values of m, there is a construction that achieves equality for
every pair i, j: take a Hadamard matrix, that is, a matrix with entries equal to 1 or
−1, in which every pair of columns is orthogonal, then replace the −1 entries with
0.

This shows that

t(5, 4) 6 lim
m→∞

(
2m

4

)−1(
2

(
m

4

)
+ 2

(
m
2

2

)(
m

2

))
=

5

16
;

equivalently

π(K
(4)
5 ) >

11

16
= 0.6875.

Sidorenko [53] conjectured that equality holds.

Markström [43] gave an upper bound

π(K
(4)
5 ) 6

1753

2380
= 0.73655 . . .

This was achieved by extensive computer search to find all extremal 4-graphs for
n 6 16.
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4.2 Hamiltonian cycles

Let H be an r-graph. An l-tight Hamiltonian cycle in H, where 0 6 l 6 r − 1

and (k− l) | |V (H)|, is a spanning subgraph whose vertices can be cyclically order in
such a way that the edges are segments of that ordering and every two consecutive
edges intersect in exactly l vertices. More formally, it is a graph ([n], E) with

E =

{{
i(r − l) + 1, i(r − l) + 2, . . . , i(r − l) + r

}
: 0 6 i <

n

r − l

}
,

where addition is made modulo n. We denote an l-tight Hamiltonian cycle in a
r-graph H on n vertices by C(r,l)

n , and call it tight if it is (r − 1)-tight.
A natural question that arises in the study of Hamiltonian cycles is the estimation

of their extremal number in r-graphs. Katona and Kierstead [30] were the first to
study sufficient conditions for the appearance of a C(r,r−1)

n in r-graphs. They showed
that for all integers r and n with r > 2 and r − 1 6 n, the inequality

ex
(
n,C(r,r−1)

n

)
>

(
n− 1

r

)
+

(
n− 2

r − 2

)
holds. In the same paper, they proved that the bound is not tight for r = 3 by
showing that for all integers n and q with q > 2 and n = 3q + 1,

ex
(
n,C(3,2)

n

)
>

(
n− 1

3

)
+ n− 1.

A few years later, Tuza [60] gave a construction for general r and tight Hamiltonian
cycles, improving the lower bound to

ex
(
n,C(r,r−1)

n

)
>

(
n− 1

r

)
+

(
n− 1

r − 2

)
,

if a Steiner system S(r − 2, 2r − 3, n − 1) exists, where a Steiner system S(t, b, v)

is a b-graph on v vertices such that every t-element vertex subset is contained in
precisely one edge.

An interesting approach to forbid Hamiltonian cycles in hypergraphs is to pro-
hibit certain substructures in the link of a fixed vertex. For a vertex v in an r-graph
H = (V,E), we define the link of v in H to be the (r−1)-graph H(v) = (V \{v}, Ev),
where {x1, . . . , xr−1} ∈ Ev if and only if {v, x1, . . . , xr−1} ∈ E. The structure of in-
terest in this case is a generalisation of a path for hypergraphs.

An l-tight r-uniform t-path, denoted by P (r,l)
t , is an r-graph on t vertices, where

(r − l) | (t − l), such that there exists an ordering of the vertices, say {x1, . . . , xt},
so that the edges are segments of that ordering and every two consecutive edges
intersect in exactly l vertices. Observe that a P (r,l)

t has t−l
r−l edges.
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For arbitrary r and l, Glebov, Person and Weps [25] gave the exact extremal
number and the extremal graphs of l-tight Hamiltonian cycles, which rely on the
extremal number and graphs of P (r, l) = P

(r−1,l−1)⌊
r

r−l

⌋
(r−l)+l−1

. In particular, the proved

the following result.

Theorem 4.2.1. For any r > 2 and l ∈ {0, . . . , r− 1}, there exists an n0 such that
for any n > n0 and (r − l) | n,

ex
(
n,C(r,l)

n

)
=

(
n− 1

r

)
+ ex(n− 1, P (r, l))

holds. Furthermore, any extremal graph on n vertices contains an (n−1)-clique and
a vertex whose link is P (r, l)-free.

For r = 3 and l = 1, Theorem 4.2.1 states that
(
n−1

3

)
+ 1 hyperedges ensure the

existence of a 1-tight Hamiltonian cycle C(3,1)
n for n large enough.

In the same paper, Glebov et al. proved an even stronger statement, namely, that
with one more edge we find a Hamiltonian cycle that is l-tight in the neighbourhood
of one vertex and is (r − 1)-tight on the rest.

Using a result by Győri, Katona and Lemons [27] stating that

(1 + o(1))

(
n− 1

r − 2

)
6 ex

(
n− 1, P

(r−1,r−2)
2r−2

)
6 (r − 1)

(
n− 1

r − 2

)
,

they obtained lower and upper bounds for l = r − 1, showing that(
n− 1

r

)
+ (1 + o(1))

(
n− 1

r − 2

)
6 ex

(
n,C(r,l)

n

)
6

(
n− 1

r

)
+ (r − l)

(
n− 1

r − 2

)
.

The upper bound actually holds for l 6= r − 1 as well.

Aside from the above result, which depends only on the extremal number of a
certain path, there are also results which rely solely on the minimum vertex degree
of a hypergraph, much like Dirac’s theorem does for graphs.

The degree of {x1, . . . , xi}, 1 6 i 6 r−1, in an r-graph H is the number of edges
the set is contained in, and is senoted by deg(x1, . . . , xi). Let

δd(H) = min{deg(x1, . . . , xd) : {x1, . . . , xd} ⊆ V (H)},

for 0 6 d 6 r−1. The number δ1(H) is the minimum vertex degree of H. Note that
δ0(H) = |E(H)|.

For every d, r, l and n with 0 6 d 6 r − 1 and (r − l) | n, we define the
number hld(r, n) to be the smallest integer h such that every r-graph H on n vertices
satisfying δd(H) > h contains an l-tight Hamiltonian cycle. Note that

hl0(r, n) = ex
(
n,C(r,l)

n

)
+ 1.
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Katona and Kierstead [30] showed that

hr−1
r−1(r, n) >

⌊
n− r + 3

2

⌋
by giving an extremal construction. Rödl, Ruciński and Szemerédi [49] proved that
this bound is tight for r = 3. For r > 4, the same authors [50] showed that

hr−1
r−1(r, n) ∼ 1

2
n.

Generalising the result, Markström and Ruciński [44] proved that

hlr−1(r, n) ∼ 1

2
n

if (r − l) | r, n. Kühn, Mycroft and Osthus [36] proved that

hlr−1(r, n) ∼ n⌈
r
r−l

⌉
(r − l)

if (r − l) - r and (r − l) | n. Rödl and Ruciński [51] gave the bounds(
5

9
+ o(1)

)(
n− 1

2

)
6 h2

1(3, n) 6

(
11

12
+ o(1)

)(
n− 1

2

)
.

Finally, Glebov, Person and Weps [25] proved the following result.

Theorem 4.2.2. For any r ∈ N there exists an n0 such that every r-graph H on
n > n0 vertices with

δ1(H) >

(
1− 1

22(1280r3)

)(
n− 1

r − 1

)
contains a tight Hamiltonian cycle.

Note that Theorem 4.2.2 implies that

hld(r, n) 6

(
1− 1

22(1280r3)

)(
n− d
r − d

)
for all l ∈ {0, . . . , r − 1} and all 1 6 d 6 r − 1. This, in turn, implies the existence
of a constant c < 1 such that, for all l and d, the inequality

hld(r, n) 6 c

(
n− d
r − d

)
holds, although this constant is probably far from the best possible.
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