NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Efficient algorithms and architectures for protein 3-D
structure comparison

Anuj V. Sharma

EDUGATION AND u:mur LEARNING ==rp NSRF

orvesting tn jowéeg m;{;l

=TT

European Union
European Social Fund

Co-financed by Greece and the European Union

ATHENS

DECEMBER 2018

EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAEMIKOINQNIQN

NMPOrPAMMA METANTYXIAKQN ZNMOYAQN

AIAAKTOPIKH AIATPIBH

AAyopi8pol ugnAwv eTTIGOCEWY KAl APXITEKTOVIKEG
UTTOAOYICTWYV YIO TRV CUYKPIOT TTPWTEIVWYV ME BAon TN
doun Toug

Anuj V. Sharma

EDUCATION AND LIFELONG LEARNING -—",: NSRF
,.le_m{zmn 2
: ’ . | [
European Union
ELropesn Sock! Fund Co-financed by Greece and the European Union
AOHNA

AEKEMBPIOZ 2018

PhD THESIS

Efficient algorithms and architectures for protein 3-D structure comparison

Anuj V. Sharma

SUPERVISOR: Elias Manolakosr, Professor UoA

THREE-MEMBER ADVISORY COMMITTEE:
Elias Manolakosr, Professor UoA
loannis Emiris, Professor UoA

George Panayotou, Researcher A B.S.R.C, Fleming

SEVEN-MEMBER EXAMINATION COMMITTEE

Elias Manolakosr, loannis Emiris,

Professor UoA Professor UoA

George Panayotou, Stavros Perantonis,
Researcher A B.S.R.C, Fleming Researcher A DIMOKRITOS
Dimitrios Soudris, Yannis Cotronis,

Assoc. Professor NTUA Assoc. Professor UoA

Evangelia Chrysina,
Assoc. Professor Orebro University

Examination Date: December 19, 2018

AIAAKTOPIKH AIATPIBH

AAy6pIBuol upnAWY eTTIOOCEWV KAl APXITEKTOVIKEG UTTOAOYIOTWYV YIO TNV OUYKPIOT
TTPWTEIVWYV Pe Bdon Tn doun Toug

Anuj V. Sharma

ENIBAENQN KAOHIMHTHZ: HAiag MavwAdkog, Kabnyntng EKIMA

TPIMEAHZ ENITPOIMH NAPAKOAOYOHZHZ:
HAiag MavwAdkog, KaBnyntng EKIMA
lwavvng Epipng, Kabnyntng EKMA
Mewpyiog MavayiwTou, Epsuvntg A° DAEPIVYK

ENTAMEAHZ EZETAZTIKH ENITPOINH

HAiag MavwAdkog, lwavvng Epipng,

Kaényntng EKIMA Kaényntng EKIMA

Mewpylog Mavayiwrou, Ztaupog Mepavrwvng,
Epguvntiig A’ DAépIvyk Epeuvntig A’ AHMOKPITOZ
AnunTpiog ZouvTpng, lwdavvng Kotpwvn,

AvatrA. KaBnyntrig EMIM AvatrA. KaBnyntig EKNMA
EvayyeAia Xpuoiva,

AvatrA. Kadnynti¢ Orebro University

Huepopnvia E§éraong: 19 Aekéupprog 2018

ABSTRACT

Protein Structure Comparison (PSC) is a well developed field of computational proteomics
with active interest since it is widely used in structural biology and drug discovery. Fast
increasing computational demand for all-to-all protein structures comparison is a result of
mainly three factors: rapidly expanding structural proteomics databases, high computa-
tional complexity of pairwise PSC algorithms, and the trend towards using multiple criteria
for comparison and combining their results (MCPSC). Despite the sustained interest in the
field over the past three decades there are still open challenges in large-scale MCPSC.
Firstly, its application using modern many-core and multi-core processor architectures
remains unexplored. Secondly, there are few works that apply MCPSC to develop bi-
ologically relevant clusters and classify proteins. Finally, there is lack of bioinformatics
software tools to support comparative analysis of large protein datasets on commodity
computers.

In order to address these challenges, in this thesis we have developed a software frame-
work that exploits many-core and multi-core CPUs to implement efficient parallel MCPSC
schemes in modern processors based on three popular PSC methods, namely, TMalign,
CE, and USM. We evaluate and compare the performance and efficiency of two parallel
MCPSC implementations using Intel’'s experimental many-core Single-Chip Cloud Com-
puter (SCC) CPU as well as Intel's Core i7 multi-core processor. Further, we have de-
veloped a Python based utility, called pyMCPSC, allowing users to perform MCPSC effi-
ciently, by exploiting the parallelism afforded by the multi-core CPUs of today’s desktop
computers. We show how pyMCPSC, which combines five PSC methods and five differ-
ent consensus scoring schemes, facilitates the analysis of similarities in protein domain
datasets and how it can be easily extended to incorporate more PSC methods in the con-
sensus scoring as they are becoming available.

Experimental results from our analysis, show that the 48-core Intel SCC NoC processor
is more efficient than the latest generation Core i7 CPU, achieving a speedup factor of 42
(efficiency of 0.9), making many-core processors an exciting technology for large-scale
structural proteomics. We compare and contrast the performance of the two processors
on several benchmark datasets and also show that MCPSC outperforms its component
PSC methods in grouping related domains, achieving a high F-measure of 0.91 on the
CK34 dataset. We further demonstrate using the Proteus300 dataset, that consensus
MCPSC scores form a reliable basis for identifying the true classification of a protein do-
main, as evidenced both by ROC analysis as well as Nearest-Neighbor analysis. Struc-
ture similarity based “Phylogenetic Trees” generated by consensus scores provide insight
into functional grouping within the dataset of domains. Furthermore, scatter plots gen-
erated by pyMCPSC reveal the existence of strong correlation between protein domains
belonging to SCOP Class C and loose correlation between those of SCOP Class D within
the Proteus dataset. Such analyses and corresponding visualizations help users quickly
gain insights about their datasets. Finally we demonstrate that even very large datasets

(such as SCOPCATH) can be processed and consensus scores based structural analy-
sis carried out on readily available multi-core processors using our developed methods.
pyMCPSC has been released to the proteomics community through GitHub and can be
accessed at https://github.com/xulesc/pymcpsc.

SUBJECT AREA: Bioinformatics, Protein Structure Comparison

KEYWORDS: Protein, Homology, Machine learning, Sequence comparison, Structure
comparison

NEPIAHWH

H ouykpion TpwrTeivwov pe Baon Tn dopr Toug (protein structure comparison, PSC) atro-
TEAEI TOPEA TNG UTTOAOYIOTIKNG TTPWTEOUIKAG ME EVEPYO EVOIOPEPOV KABOTI XPNOIKOTIOIEI-
Tal eUPEWG 01N OoMIKN BloAoyia Kal TNV avakaAuwn véwv @apudkwy. H Taxeia avénon
TWV UTTOAOYIOTIKWY ATTAITACEWYV YIa TN OUYKPION TTPWTEIVIKWY OOPWV gival ATTOTEAECUA
TPIWV KUPIWG TTAPAYOVTWYV: TaXEIa ETTEKTAOT TWV BACEWY OEOOUEVWV E VEEC DONEG TTPW-
TEIVWV, UWPNAI UTTOAOYIOTIKI) TTOAUTTAOKOTNTA TWV aAYOPIiBUWY oUYKPIoNG dUO TTPWTEIVWV,
Tdon oTov Touéa yia Xpron TTOANATTAWY JEBOBWYV OUYKPIoNG KAl CUVOUACHO TWV OTTOTEAE-
opaTtwy Toug (multicriteria PSC, MCPSC) o€ £éva okop ouvaiveong (consensus methods).
Mapd TNV peydAn Tpoodo, eakoAouBOUV Va UTTAPXOUV AVOIKTEG TTPOKAACEIS OTNV £QOp-
poyr MCPSC texvikwy o€ gupeia kKAipaka. Mpwrtov, n emtaxuvon g Asitoupyiog MCPSC
ME TN XPHoN CUYXPOVWYV APXITEKTOVIKWY ETTECEPYAOTWY TTOAWY TTUPHAVWYV TTAPAPEVEI KATA
TTOAU avegepeuvnTn. AsuTepov, N epappoyr HEBGdwv MCPSC otn Tagivounon vewv do-
MWV TTPWTEIVWV Eival TTEPIOPICHEVN AGYW TOU UTTOAOYIOTIKOU KOGTOUG KAl TNG AVAYKNG XPN-
ONG UTTEPUTTOAOYIOTIKWYV dopwV. TEAOG, uTTApXEl EAAEIPN eAeUBEPa DIOBETIUWY EPYAAEiwWV
BIOTTANPOYOPIKIG TTOU VA UTTOOTNPICOUV TN CUCTNUATIKA CUYKPITIKI avAAuon Kal KaTnyo-
pI0TTOINCN MEYAAWY CUVOAWYV TTPWTEIVWV JUE BAon TN dOWPr TOUG O€ KOIVOUG UTTOAOYIOTEG.

[MpoKEINEVOU VO QVTIUETWTTIOTOUV AUTEG Ol ONUAVTIKEG TTPOKAACEIG, O AuTr) TNV dIaTPIRN
avaTTTUEapE TTAQICIO AOYIOMIKOU TTOU EKUETAAAEUETAI oUyXpovoug eTTeéepyaocTég (CPUs)
yla Tnv atrodoTikr) uAotroinon TTapdAAnAwv MCPSC texvikwv Baciopévwy o€ TPEIG dnuo-
@IAeic ueBddoug PSC, 1ic TMalign, CE ka1 USM. Zuykpivoupue kal ailoAoyoUpe TNV aTro-
doan Kal TV a1rodoTIKATATA dUO TTAPAAANAWY UAOTTOINCEWY, MIA YIO TOV ETTECEPYAOTN ApP-
XITeKTOVIKAG many-core Intel Single Cloud Computer (SCC) pe 48 TTupriveg opyavwuévoug
o€ dikTuo TTAEypaTog (Network on Chip), kai pia kai yia Tov yvwoTo emreéepyaoTh Intel Core
i7 TToAaTTAWV TTUPAVWY (multi-core CPU). EmitTAéov, avatrTuéape Python e@apuoyr), TTou
ovopaletal pyMCPSC, kai eTITPETTEI OTOUG XPrOTESG VA EKTEAOUV EUKOAQ UTTOAOYIOTIKA TTEI-
pauara Baoiopéva oe MCPSC pe peydAa ouvola dedOPEVWY, ALIOTTOILVTAG TOV TTAPAA-
ANAIOG TTOU TTPOCPEPOUV O ETTECEPYAOTEG TTOAAQTTAWY TTUPHVWYV TWV CNPEPIVWV ETTITPO-
TEQIWV utToAoyIoTWwY. Agixvoupe TTwg 10 pyMCPSC, 10 0oT10i0 OUVOUAlEl TTEVTE dNUOYI-
Agig peBddoug PSC yia mn dnuioupyia TTEVTE BIOQOPETIKWY OKOP OUVAIVEONS (consensus
scores), EmMTaXUVEl ONUAVTIKA Kal SIEUKOAUVEI TNV CUYKPITIKA avaAuon HEYGAwWV OuvOAwv
0edOUEVWYV PE BOWPEG TTPWTEIVWV. ETTITTAEOV UTTOPE VO £TTEKTABEI EUKOAQ WOTE VA EVOWHA-
TWVEl OTOUG aAYOpPIBPOUG cuvaiveon Kal vEeg ueBodoug PSC 1Tou pTTopei va Tpotaouv
MEANOVTIKG KABWG 0 Topéag egeAicoeTal.

Ta atmoTeAéoPaT CUYKPITIKAG avaAuon deixvouv o1 o eTTegepyaoTns Intel SCC pe 48 TTupn-
veg (Network on Chip) gival 1o atmodoTIKOG atrd TNV TEAEUTaiag yevidg Core i7 CPU, etTiTuy-
XAvoVTaG OUVTEAEOTH eTITAXUVONG 42 (atmddoon 0,9), Kal KaBIoTWVTAG TOUG ETTEEEPYATTEG
QPXITEKTOVIKNG many-core TeXVoAoyia €TTIAOYAG yIa TV UTTOAOYIOTIKI) OOMIKI) TTPWTEOMIKI)
MEYAANG KAipakag. EmimmAéov, deixvoupe 011 To MCPSC getrepva TIG peBodoug PSC oTig
OTTOiEG OTNPICETAI WG TTPOG TNV ETTITUXIA TNG OPAdOTTOINONG VEWV TTPWTEIVWV, ETTITUYXAVO-

vtag F-measure 0,91 010 oUvoAo dedouévwy avagopds CK34. EmitTAéov, deixvoupeE, UE
TN XPron tou cuvolou dedopévwy Proteus300, 611 o1 Texvikég MCPSC 1Tou avatrtuxon-
Kav BEATIWVOUV TNV KOTNYOPIOTTOINGN TTPWTEIVWYV, OTTWGS auTd aTTOdEIKVUETAI TOOO ATTO
TNV avaAucn ROC 6oo kal atrd Tnv avaAuon KovTIivoTepwy YeITovwy (Nearest-Neighbor).
EmimmAcov. Ta "@uloyeveTika dévTpa” TTou TTpoKUTITouV pE TN Xpnon MCPSC mrapéxouv
XPAOCIMES TTANPOPOPIES KAl OXETIKA UE TN TTIBAVI) AEITOUPYIKOTATA VEWV TTPWTEIVWYV. TEAOG,
N OUYKPITIKH avaAuon avadeikvuel TRV UTTAPEN 1I0XUPNS CUOXETIONG TTPWTEIVIKWY OOPWV
NG katnyopiag SCOP class C kal xaAapr¢ CUCXETIONG METALU EKEIVWV TNG KATNYOPIAG
SCOP class D (Proteus300). TéTol0u €idoug evdeAexeic avaAuoeig eOOPEVWV Kal Ol avTi-
OTOIXEG OTITIKOTTOINCEIG TTOU TIG ouvodeUouUV BonBoUlv Toug XproTEG va eEEpeUVOUV Kal Va
e€ayouv yvwaon atté oUVoAa deOOPEVWY TTOU avaAUuouv, 600 PEYAAa KI av gival autd. A€l
XVOUUE OTI AKOUN KAl 0€ TTOAU JeyAAa oUVOAa dedopévwy, hE XIAiadeG domains (OTTwG TO
SCOPCATH), ytmopei va epapuooTei ammodotikd MCPSC etreepyaoia TTpokeIgévou va die-
peuvnBei N eowTEPIK dOUN TOUG, ALIOTTOIWVTAG TOUG ETTECEPYAOTES TTOAAWY TTUPHVWYV TTOU
UTTAPXOUV O UEPA OTOUG aTouIKoUg uttoAoyioTes. To pyMCPSC 1rou uAoTroiei TrapdAAnAa
OAn Tnv uttoAoyioTIKA porj (pipeline) TTou aglotroiél peBddoug MCPSC o1 otroieg avaTtrTu-
x0nkav o€ autr) Tnv diIdakTOPIKY d1aTPIRA dIATIOETAI EAEUBEPA OTN ETTICTNUOVIKI KOIVOTNTA
o010 oUvdeopo https://github.com/xulesc/pymcpsc.

OEMATIKH NMEPIOXH: BiomrAnpo@opikr, Z0yKkpion SOUwWV TTPWTEIVWV

AEZEIZ KAEIAIA: Mpwrteivn, OpoAoyia, Mnxavikr paénon, Zuykpion aAAnAouxiwy, Z0yKpion
tle]N ()Y}

2YNONTIKH NMNAPOYZIAZH THZ AIAAKTOPIKHZ AIATPIBHZ

2nueio ekkivnong tne dIBAKTOPIKAG dIATPIRNS NTav N evOeAeXG avaokOTTnon TnG PIBAIO-
YPOQIag OXETIKA PE aAyopiBuoug ouykpiong TTpwTeivwv he Bdon Tn TpicdidoTarn (3D)
doun Toug. MpaypaToTroINenke Tagivounon Twv dnuUocieuhévwy HEBOdwY Kal avalitnon
KOIVWV UOTIBwV oToV Touéa TNG oUyKpiong douwyv TTpwTeivwy (PSC). H peAETN €TTEKTABNKE
Kal 0TNV avAAuon UTTOAOYIOTIKWYV TEXVIKWY UYNANG attédoong TToU XPNOIMOTIOIOUVTAl YEVI-
KOTEPA OTO XWPO TNG OUIKAG TTPWTEOMIKAG (structural proteomics) kai Bori@noe va yivouv
KatavonTég o€ BAB0G o1 TTPOKAACEIG TTOU TTapouaIddouv Ta TTPORARUATa autd. Ta aTroTe-
Aéopara £dwaoav I0XUpPA KivnTpa yia TTEPAITEPW EPEUVA KAl CuVOWilovTal TTOPAKATW:

* O1 yéBodol ouykpiong SONWY TTPWTEIVWV TTOU avagEpovtal oTn BIBAIoypagia uTTo-
poUV va Tagivounbouv o€ TEXVIKEG Baoiouéveg o€ ypagoug, Auvauiko MNpoypaupa-
TIopo, Avaktnon MNAnpogopiag (information retrieval), MewueTPIKES TEXVIKES BaOI-
opéveg oe Contact maps, Texvikég MoAuwvupikou Xpovou, Kal TexVikéG Simulated
annealing.

* O1 TTapatrdvw TEXVIKEG XPNOIMOTIOIOUV DIAPOPETIKEG METPIKEG OUOIOTNTAG VIO T OU-
YKpion dopwv TTPwTEIVWYV. OI TTEPICTOTEPES ATTO AUTEG AVIIKOUV 0€ dUO KATNYOPIEG:
QUTEG TTOU OUYKPIVOUV TNV atTOOTOON METAEU avTioTOIXWV CEUYWV aTOPWY OTIG dUO
OOUEG, KOl EKEIVEG TTOU GUYKPIVOUV TIG OXETIKEG BECEIC TWV ATOUWY OTIG UTTEPTIOEUE-
VEG (superimposed) dOUES TTPWTEIVWIV.

* O1 u€BodoI OUYKPIoNG DONWY TTPWTEIVWV PTTOPOUV VA XWPIOTOUV 0€ dUO YEVIKEG KO-
TNyopieg: a) ZeIpIakéS (sequential), 6GTTou dopIkA TTapoOuoIa TUAUATA gival dIATETAY-
Méva oTnv aAAnAouxia Tng TTpwrTeivng, Kal B) un-oeiplakéS (non-sequential), étTou
OOUIKA TTapdpola TuRuata dev gival diateTayuéva otnv aAAnAouxia TG TTPpwWTEivNG.
O1 1m0 oUYXpOVEG PEBODOI ETTIKEVTPWVOVTAI 0T YPOUUIKA EuBuypdupion (sequential
alignment) dopwv TTpwTEiVWY. AUTO OoQeiAeTal OTIC UYPNASTEPES £TIOOCEIC TTOU TTO-
poucIAlouV Ol avTioToIXol AAYOPIBUOI YPOUMIKAG EUBUYPAUMIONG TOOO O€ TaXUTNTA
000 Kal o€ akpifeia. MapdAa autd, eAKOAOUBEI va UTTAPYXEI EVOIAPEPOV KAl VIO OA-
YOPIiOUOUG UN-YPANMIKAG EUBUYPAUMIONG OE OUYKEKPIPMEVES EQAPHOYEG.

* H ouUykpion kai euBuypduuion dopwyv TTpwTteivwy gival TTpoBAnua NP-hard, dpa ol
d1a0éo1ueg péBoDOI gival EUPIOTIKEG, e OIOPOPETIKEG HEBGOOUG va divouv dlapope-
TIKG eV aAAG ouxvd BloAoyika evdiagépovTa atroteAéopara. EmTTAEov, xpnoiuo-
TTOIEITAI TTOIKIAIQ JETPWYV OHOIOTNTAG. ATTOTEAECUA TWV TTAPATTAVW €ival va eVIOXUE-
Tl TTPOCQPATWG N TAON YIO OUYKPION TTPWTEIVWV UE TTEPICTOTEPA TOU EVOG KPITAPIA
(Multi-criteria protein structure comparison - MCPSC). Z10x0¢ auTtrig TnG VEQG TTPO-
ogyyiong gival N TTapaywyr] oOAOKANPpwWPEVNG EIKOVAG WG TTPOG TNV OhoIGTNTA dUO
SOUWV TTPWTEIVWV PE TNV XPRON TTOAAATTAWY YEBGdWYV CUYKPIoNGS KOl TO CUVOUACHO
TEAIKA TWV ATTOTEAETUATWY WOTE va e€axOei Eva TEAIKO OKOp opoPwviag (consensus
score).

* OI TTPOCTIABEIEG ETTITAXUVONG TNG CUYKPIONG DOUWY TTPWTEIVWV ETTIKEVTPWVOVTAI [é-
XPI CHPEPA OTN XPNON KATAVEUNUEVWY CUCTNUATWY, TT.X. YTTOAOYIOTIKWV [MAEYuG-
Twv (Grids) kai ZuoTddwv (Clusters) uttoAoyloTwy. H OXETIKA £pEuva ETTIKEVTPW-
VETQI OTNV ETTITEUEN TNG PEYOAUTEPNG duvaTAg emTAXuvong Pe xpron dlauoipalod-
MEVWV €TTEEEPYAOCTIKWYV OOPWYV PEYAANG KAipakag. Aev €xel yivel 181aitepn épeuva
oTnVv xprnon €mraxuviwyv (accelerators) uAikou, oTTwg 1o FPGAS, 1) povadwv e1Te-
¢epyaoiag ypagikwy (GPUs), A avadudpevwy TTOAUTTUPNVWY ETTECEPYACTWY (multi-
and many-core CPUSs) yia oTaBuoug epyaciag TTpoCwTTIKWY UTTOAoyIoTwV (desktop
workstation PCs) 1Tou cival TAéov eup€wg BIaBETIUOI OTOUG £PEUVNTEG, ME AOYIKO
KOOTOG.

* H yevikA dtroywn TTou €TTIKPATEI OTOV TOUEQ €ival OTI KAMia PHETPIKN Kal Kauia péBodog
ouykpiong v gival OAOKANPWPEVN ATTO MOV TNG. YTTAPXEl avAykn yia avaTtrTugn
OTPATNYIKWY OUYKPIONG OOUWYV TTPWTEIVWV JE OUVOUAOTIKY XPron TTOAATTAWY JE-
860wV kal aglotroinon Twv TToAUTTUPNVWY CPUSs yia uwnA£g eMIOOOEIS XWPIG XPAOoN
UTTOAOYIOTIKWY UTTEPOOUWV.

» Aev uttapyel 01a0€01un Kapia eAeUBepn uAoTTOINON AoyIouIKOU yia Tn Asitoupyia MCP-
SC.

Me Baon Ta TTapaATTAvw, N £peuva TTou dIECAXOn oTa TTAaioIa TG EKTTOVNONG TNG BIOAKTO-
PIKNG d1aTPIBAG £€8€0€ TOUG TTAPOAKATW OTOXOUG TTPOKEINEVOU VA CUPPBAAEI O€ TITUXEG TOU
BEuaTog TToU eV £XOUV ETTAPKWG BIEPEUVNOEI:

* EVTOTONOG dnuo@IAwy peBddwv PSC tTou Ptropei va eTTiTaxuvbouv Pe TV Xpernon
TTapAAANANG eTe€epyaaiag o€ many-core Kal multi core eTegepyacTég TTOU €ival dia-
Béoiuol og oTabuoUg epyaaciag desktop PCs kal xpnoiuoTroiouvTal EUPEWG OE EpYa-
OTAPIA TTPWTEOMIKAG.

* Avarmrtu¢n BiIBAIOBNKwVY aAyopiBuikwy OKEAETWV (skeleton libraries) yia Tn dIEUKO-
Auvon TnG avatmTugng uAotroiocwyv TTapAdAAnNAouU TTpoYyPANPATIOPOU, KAl XPAON TWV
BIBAIOONKWYV auTwv OTNV avaTTuén atrodoTIKWY UAOTTOINOEWV Twv PSC peBodwv
YIQ TIG ETTIAEYPEVEG APXITEKTOVIKEG ETTECEPYATTWV.

* KatdAAnAog ouvduaoudg pebddwv Kal dnuioupyia consensus ATTOTEAECUATOG O€
uwnAng amédoong MCPSC auoTtnua AoyIOPIKOU TO OTT0I0 0 JECOG PN-€10IKOS XPN-
oTnG Ba utropei va xpnoiuotrolgi o€ €va destop PC, xwpig va atraiteital rpooBacn
O€ KOIVOUG KATAVEPNKEVOUG UTTOAOYIOTIKOUG TTOPOUG Yia UWnAr] atrédoon.

* MeAETn ev Tw PABEI TNG ETTEKTACIUOTNTAG KAI TWV XAPAKTNPIOTIKWY ATTOO0TIKOTATAG
(efficiency), emtayxuvong (speedup),atmmoteAecpatikdtntag (structural classification),
Tou cuoTtiuatog MCPSC 1rou Ba avatrtuxBei pe Tnv Xprion PAcewv SOPWY TTPWTEI-
VWV auéavouevng TTOAUTTAOKOTATOG.

* Anuioupyia evog KaAd oxedlacpévou cuaTriuatog MCPSC uywnAng supwaoTiag Kai
amrédoong TTou Ba TTAPEXETAI OTNV ETTICTNUOVIKI KOIVOTNTA WG AVOIXTO AOYIOUIKO YIa
XPron arro Toug evOIaPEPOUEVOUG ETTIOTUOVEG.

» Aokipyacia Tou cuoTriuatog MCPSC 1mou Ba avatrtuxBei o€ avaAUOEIS TIPWTEOWIKAG
MEYAANG KAIHaKAG TTPOKEINEVOU VA £6axB0UV XPACINA CUPTTEPACHUATA WG TTPOG TIG
eMOOCEIC KAl TN XPNOTIKOTNTA TOU.

H €peuva 1Tou 0AOKANPWONKE pE eTITUXia 0OAYNOE OTa aKOAOUBA TTPWTOTUTIA ATTOTEAE-
ouara:

2xediaon kal avarTuén uynAng amédoong MCPSC cuoTAuaTog yia many-core 1Tegepya-
oT1ég Tpeig PSC péBodor uhotroindnkav otov emmeéepyaocTh TnG eTaipiag Intel Single Chip
Cloud Computer (SCC), évav TTelpapaTiKO many-core eTTe¢epyaoTr] BACIOPEVO OE QPXITE-
kToviKf) Network on Chip (NoC), e 48 trupriveg Pentium, opyavwuévoug o€ dikTuo TUTTOU
mesh. Avamtuxonke epapuoyr) TTapaAAnAou AOYIOUIKOU TTOU EVOWMATWVEI TIG HEBOGDdOUG
QUTEG PE duvaTATNTA YIA AEITOUPYiEG OUYKPIONG TTPpWTEIVWY one-to-all, all-to-all MCPSC kai
MeyaAa datasets dopwv TTpwTteivwy. MNa TRV dieukdAuveon TG peTagopdg Twv PSC pebo-
owv o710 Intel SCC avarrtuxbnke BIBAIOOAKN aAyopIOUIKWY "OKEAETWY” TTOU OVOUAOTNKE
rckskel. H BIBAIOBAKN auTr} oxeBIAOTNKE yIa va TTAPEXEI BACIKEG AEITOUPYIES TTOU BIEUKOAU-
VOUV TNV avaTTuén uppIdikwv aTpaTNyIKWYV TTapaAAnAIcuoU, Kal XpNOIJOTTOINBNKE yia TNV
ETMTAXUVON AvATITUENG aAyopiOuwy ouykpiong douwyv TTpwTEiVwY. H xprAon aAyopiBui-
KWV OKEAETWV ETTITPETTEI TNV BIACUVOEON TWV TTUPHVWY Many-core €MECEPYACTWY, OTTWG
Tou SCC, pe dIAQOPETIKOUG TPATTOUG, avAAOYQ WE TIG AVAYKEG TNG EKACTOTE EQAPHOYNAG.
H eueAigia TTou TTapéxel BpEBNKe va gival onuavTikn yia mn Asitoupyia MCPSC, Adyw Twv
d1apopwyv TTOAUTTAOKOTNTAG TWV dlagopeTikKwyv PSC pebBodwyv 1Tou 0dnyei o€ dvion kata-
VOUN TWV ETTECEPYATTIKWYV OTOIXEIWV (TTUPAVWYV). To TEAIKO ATTOTEAECUA Eival JIA EQAPUOYR
TTaPAAANAOU AOYIOUIKOU TTOU EVOWUATWVEI PE TOV BEATIOTO TPOTTO TPEIG HEBBdOUG PSC —
TMalign, CE ka1 USM — yia tnv amodoTikr ektéAeon all-to-all ouykpiong dopwv TTPWTEl-
vwv. H gpapuoyn xpnoigotroiei 6Aoug Toug TTupriveg Tou SCC (tTou €ival diabéaipol) yia
va ekTeAEOEl TTAPAAANAG TTOAAQTTAEG OUYKpioEIg dopwy TTpwTEivwyY ava Ceuyn. H BiAio-
0nkn rckskel gival n TpwTn BIBAIOBKN AAYOPIOUIKWY OKEAETWY TTOU AVATITUXONKE Kal gival
O1aB£01un yIa many-core €TTECEPYAOTEG.

AvdAuon Emrekraoipérntag Kai Emdoéoewv

H uAotroinon Tou MCPSC yia 1o SCC xpnoihoTToidnke o€ o€Ipa TTEIPANATWY E OKOTTO va
MEAETNOOUV Ta XaPOKTNEIOTIKA TNG ETTITAXUVONG (Speedup) TTou PTTOPEI va ETTITEUXOEI 600
augavovTal ol TTUPAVEG Tou £TTEEEPYAOTH many-core. K&Be ouykpion doung (elyoug TTpw-
TEIVWV PE pIa pEBoOO Bewpeital pia epyaacia (job), n otroia gival n HIKPOTEPN UTTOdIAIPEDN
gpyaciag (grain) TTou JTTOPOUNE VA TTETUXOUUE, UE ATTOTEAECHA VA €XOUNE GUVOAIKA N x N
x M gpyacieg o€ pia Asitoupyia all-to-all MCPSC, étrou N gival o apiBuog Twy TTpwTEivV
oTo dataset kai M gival 0 ap1Buog Twv PSC peBo6dwyv TTou Ba ouvduacTouv. ZTIG SOKIUES
TTOU TTPAYMATOTTOINBNKAVY, Ta PAKN TWV TTPWTEIVWY TOUu KABE {eUyoug XpnoihoTtroindnkayv
WG TTAPAYOVTAG EKTINNONG TOU OVAPEVOUEVOU XPOVOU Yia TNV OAOKANpwaon TNG oUYKPI-
ong Tou Ceuyoug. NMpoKaTapKTIKA atroTeAéopaTa e povo n péBodo TMalign €deiEav OTI pe
TNV Xprion Twv 48 truprivwy Tou SCC o€ €va katavepnuévo setting (o master o€ Eexwpl-
OTO TTUPAVA) BEV ETTITUYXAVETAI IKAVOTTOINTIKA aTTO00TIKOTNTA, PE TNV EMTAXUVON VA PNV
gemmepva Tov TTapdayovta 3x. Aidgopa Treipduarta Tou dieENxXnoav OPwS PJE OTPATNYIKES
e€looppdTTNONG UTTOAOYIOTIKOU POpTOU (load balancing) £€d€i€av 611 n duvauikn round robin
avaBeon pyaciwy OTOUG TTUPIVES ATTodiIdElI KAAUTEPA ATTO TNV OTATIKY OIAUEPION TWV EP-

yaolwy (static job partitioning). Napatnpri@nke o11 n epappoyry MCPSC ptropei va TTITUXEI
oXEOOV YPAPUIKA ETTITAXUVON KOBWGS 0 apIBUOG TWV TTUPAVWY QUEAVETAI, KATI TTOU CNai-
VEl OTI PTTOPEI VA TTAPEXEI AUEAVONEVOUG TTAPAYOVTEG ETTITAXUVONG O€ ueyaAuTtepa CPUs
apxlektovikig NoC 1Tou avapéveTal va yivouv d1a0£01ua oTo AUECO UEAAOV.

Mepropiopoi Tou fine-grained TrapaAAnAiopoU kai uhotroifoswyv pe FPGAs
AvatrTuxenkav FPGA uAotroijoeig yia dUo PSC pegbddouc — TMalign kar USM, kai €yive
MEAETN OKOTTINGTNTOG YIa va dIATTIOTWOEI av TETOIEG UAOTTOINCEIG PTTOPEI Va gival aTTod0TI-
KéG. Bdoel TAnpogopiwy TTou eEnxOnoav atrd 1o profiling Tng uAoTToinong AoyIoUIKOU TNG
pMEBOOOoU TMalign, digpeuvnBnke cuoxediaon UAIKoU-Aoyiopikou (hardware-software co-
design) yia Tnv Asiroupyia utrépBeong ivakwy (matrix superposition) Tou TMalign. ETi-
TAE0V, avaAuon TG peBOdou USM £0¢€1Ee OTI 01 TTEPICOOTEPES UTTOPOUTIVEG, EKTOG QUTAG
NG oupTTieong, 6a pTTopoucayv va uAotroinBouv o€ UAIKG. H xprion épws FPGAS yia Tnv
emTaxuvon aAyopiBuwyv PSC Bpédnke va cival avéQIKTn €TTEIONA: A) EITE TA TUAUATA TWV
PSC uebddwyv 1ToU u1TopOoUV va ekTeEAE0B0UV TTapAAANAa atToTEAOUV TTOAU HIKPO TTOCOOTO
NG MEBOOOU, O6TTWG OoTnVv TTEPiTITWOoN Tou TMalign, €ite B) o1 e@apuoyég AoyIouIKOU Eival
NoN BeATioToTTOINUEVEG OE PEYAAO BaBud kal dev uTTOPOUV va £TITEUXOOUV ONUAVTIKA TTE-
PAITEPW OPEAN ATTO UAOTTOINCEIG UAIKOU, OTTWG OTNV TTEPITTTWOoN TNG neBodou USM. Ala-
TMOTWONKE OTI AKOPA KAl JE TO KAAUTEPO EQPAPPOCIUO OXEDIO, Mia oxediaon UAIKOU dev Ba
MTTOpOUCE va TTPOCQEPEI KAAUTEPN atTddoon atmd auTh piag ouyxpovng CPU Adyw Twv
XPOVWYV TTOU aTTaITEl N HETAPOPA dedoUEVWY atrd Kal TTpog To SoC. ATTd Ta TTapaTTavw
oupTtTEpAvape 0TI Bev gival SuvaTdV va TTETUXOUE YIO TO OUYKEKPIMEVO TTPORANUA ETTITA-
xuvoeig pe xprion fine-grained mmapaAAnAiopou kai FPGAs.

20yKpion many-core ge multi-core CPU yia Asitoupyieg MCPSC

EmmimrAéov avatrTuxOnke kai TToAu-vnpartikf (multi-threaded) epapuoyr) Tou Aoyiopikou MC-
PSC. Zxedidotnkav TrelpAuaTa yia va ekTiunBei wg n emegepyacia MCPSC kKAIpakw-
veTal 600 augavetal 0 aplBuOS Twv TTUPHVwY o€ éva ouyxpovo multi-core emeéepyaoTn
Kal va yivel oUyKpion €MITAXUVONG ME TOUG many core eTmeEepyacTEG. H TTOAU-vNuaTIKN
epapuoyn xpnoipotrolei To OpenMP yia Tnv diaxeipion vNUATWY Kal KOIvOXpnoTn UVAKN
(shared memory), avti cucTpaTog aviaAAayng NNVUPATWY TToU XpnoluoTrolEi To rckskel
oTnv many-core epappoyn. Ta Teipduata £01Eav 011 o€ quad-core i7 emegepyaoTtr| (Me 8
hyper-threaded TTupnveg) emiTuyxdaverai emTaxuvon PEXPI Kai Ta 4 threads, aAAd yia TTEpIO-
ooTepa Twv 4 threads TTapatnpErBnkKe TTTWON TNG EMITAXUVONGS (ATTWAEIQ ATTOSOTIKOTNTAG).
H ouykpion atrodoTikdTNTagTwy many-core kail multi-core CPUs pe Baoeig dedopévwy dia-
QOPETIKWV PeEYEBWV, £0€IEE OTI eV O £TTECEPYQOTNG multi-core i7 utrepEXel o€ KaBapoug
XPOVOUG, ETTITUYXAVEI HOVO 4X ATTODOTIKOTNTA (0€ OUYKPIOT CEUYWV OOPWYV TTPWTEIVWV ava
OeuTEPOAETTTO) O€ Ooxéon Ye Tov many-core SCC, TapdAo TTou AgiIToupyei o€ 7.5x Tn ou-
xvortnta Tou SCC.

All-to-all MCPSC oAU peydAng kAipakag (big-data proteomics)

EmrAéov, TTpayuatotroiiOnke etre¢epyacia MCPSC pe pia ToAU peydAn Baon dedopé-
vwv dopwv TTpwTEIVWV (protein domains dataset) pe 3,213,631 Ceuyn TTPWTEIVWV TTPOG
oUyKpIon, YIa va KaBopIoTOUV Ta XOPAKTNEIOTIKA Tou consensus-based MCPSC. Ta Trel-
pauata oxedidoTnkav va TpEEouv TTapAAANAa povo o€ multi-core eTTeepyaaTn i7 Adyw
TWV TTEPIOPICUWY PVAUNG Tou TreipapaTikou emmegepyaocTh Intel SCC NoC. MoioTikr ava-

Auon pe TV xpHon RoC Texvikwyv £0€1EE OTI OI TEXVIKEG OPOPWVIAG (consensus) UTTopouvV
va dwaoouv oxedov BEATIOTO atroTéAeoua oTav xpnoipotroioupge MCPSC, o€ oxéon Je Tig
empépoug PSC peBddoug Tig ottoieg autd ouvouddel. To atmoTEAeoua auTd TTIRERAILONKE
Kal JE TN XPAoN TNG TEXVIKAS TWV KOVTIVOTEPWV YEITOVWY (nearest neighbor classification)
. 2TA TTEIPAUATa JEYAANG KAipakag tTapatnpeioape ot didgopa OKop oUYKPIoNG CEUywWV
PSC éAeimmav atrd 1a dedopéva, OTTwg ival Aoyikd Adyw eyyevwy TTepIOPIOUWY Twv PSC
MEBODWYV, ocpaAudTwy ota PDB apxeia K.a. ['a 10 Adyo auTd HEAETACANE KAl TOV AVTIKTUTTO
OIaQOPETIKWYV PEBOGdWV cupTTApwong dedouévwy (data imputation methods). Ta atrote-
Aéopata €6€1Eav OTI N CUPTTANPWON OEBOUEVWY BEATIWVEI ONUAVTIKA TNV QEIOTTIOTIA TWV
empépoug PSC pebddwv kai Tou MCPSC. EmimtAéov yia onuavTikn TTapatipenon givai 6Tl
10 MCPSC T¢ivel va akoAouBei Tnv PSC péBodo pe Tnv KaAuTtepn atrédoon, Kal apa givai
atroAuTa aitioAoynuévn n xpron Tou étav dev gival yvwoTo 1o ground-truth (61TW¢ cupBai-
VEI OTN TTPAEN) Kal pe dedopévo OTI Kapia pEBodog ouykpiong dopwyv PSC atrd pévn 1ng
Oev Bewpeital OAOKANPWHEVN i} AVWTEPN TWV UTTOAOITTWV.

Avarrtugn eAeBepou Aoyiopikou yia MCPSC

E@apuoyég diapopwyv emmiuépoug PSC peBddwyv eivar diabéoipeg ato public domain wg
ekTeEAEOIPA binaries. MapoAa auTtd, OTIC TTEPICTOTEPES TTEPITITWOEIG Ol EQAPUOYES QUTEG
gival JOVo-vNUATIKEG KAl OV EKPETAAAEUOVTAI TOV TTAPAAANAICPO TWV CUYXPOVWYV ETTECEP-
yooTwv. To TTapadAAnAo Aoyiopikd 1Tou avatrtuxonke yia MCPSC oTo 1TAaiolo Tng diatpl-
B¢ kai TTapéxetal eAéuBepa o1o GitHub gival To TTpwTo KaI ovadikd TTayKooHiwg TETOI0
AoyIoHIKO TTOU €x€l BeATIoTOTTOINBEI YIa multi-core kai many-core CPUs.

Ta amroteAéopata TnG dIBAKTOPIKNG dIaTpIPrG 0drynoav OTIC TTAPaKATW dnUOCIEUCEIC:

ApBpa ot MNeplodika:

1. Anuj Sharma, Elias S. Manolakos, "Efficient multi-criteria protein structure compar-
ison on modern processor architectures”, BioMed Research International, \Volume
2015 (2015), Article ID 563674, 13 pages, doi:http://dx.doi.org/10.1155/2015/563674.

2. Sharma A, Manolakos ES, "Multi-criteria protein structure comparison and struc-
tural similarities analysis using pyMCPSC.”, PLoS ONE, 2018, 13(10): e0204587.
https://doi.org/10.1371/journal.pone.0204587

ApBpa ot MpakTika Zuvedpiwv pe Kpion MNMARpoug Keipévou:

1. Anuj Sharma, Antonis Papanikolaou, Elias S. Manolakos, "Accelerating all-to-all
protein structure comparison with TMalign using NoC many-cores processor archi-
tecture”, In Proceedings of the IEEE 27th International Symposium on Parallel &
Distributed Processing Workshops, May 2013, pp 510 — 519, Cambridge, MA.

2. Brueffer, C., Antao, T., Cock, P., Talevich, E., Hoon, M. d., Arindrarto, W., Pritchard,
L., Sharma, A., Rasche, E., Rosenfeld, A., Skennerton, C. T., Galardini, M., and
Piotrowski, M. (2016). Biopython project update 2016, Bioinformatics Open Source
Conference 2016, Orlando, USA, Department of Clinical Sciences, Lund University,
DOI:10.7490/f1000research.1112611.1

To the loving memory of my mother

ACKNOWLEDGEMENTS

| would like to take this opportunity to express my gratitude to all the people who made
my PhD years a truly enriching experience. At an academic level, | had the opportunity
to interact with some wonderful scholars. At a personal level, | met wonderful people who
provided support and encouragement during difficult moments.

| am greatly indebted to my advisor, Dr. Elias Manolakos for being a source of constant
inspiration and motivation. Without his guidance this thesis would not have been possible.
| would also like to thank the members of my advisory committee, Dr. loannis Emiris and
Dr. George Panayotou, for their time and valuable feedback.

| would also like to acknowledge the MicroLab - ECE - National Technical University of
Athens, Greece for allowing generous use of their SCC infrastructure. In addition | thank
Mr. Dimitrios Rodopoulos and Dr. Dimitrios Soudris of NTUA for providing comments
and assistance at opportune moments. | would like to acknowledge the European Union
(European Social Fund ESF) and Greek national funds, for the Operational Program "Ed-
ucation and Lifelong Learning” of the National Strategic Reference Framework (NSRF) -
Research Funding Program "Heracleitus II”, through which this work was financially sup-
ported.

| am grateful to our lab members Evangelos Logaras and Elias Kouskoumvekakis for their
insightful feedback on FPGA related aspects of my research work.

Finally, I would like to thank my wife for her constant support and encouragement and my
father, brother and sister for always believing in me.

— Anuj Sharma

CONTENTS

1 INTRODUCTION 33

11 OutlineoftheThesis i i e 39

2 PRELIMINARIES 41

21 ProteinStructure e e e 41

2.2 Similarity Metrics e e 41

2.3 Featuresof Proteins 43

2.4 Representation of ProteinBackbone 43

25 ProblemFormulationo 44

26 Datasets e e e e e 46

3 BACKGROUND AND RELATED WORK 49

3.1 Pairwise protein structure comparison 49

3.1.1 GraphBased Techniques i i i i e e e e 49

3.1.2 Dynamic programming based techniques 50

3.1.3 Information Retrieval based techniques 51

3.14 Geometrictechniques Lo e e 51

3.1.5 Contactmapbasedtechniques 52

3.1.6 Polynomial time approximations e e e 52

3.1.7 Simulated annealing based techniques 53

3.1.8 Techniques with special alignmentscoring 53

3.1.9 Othermethods i i i i e e 53

3.2 Distributed and parallel protein structure comparison 54

3.2.1 Grid and Cluster based approaches 54

3.22 GPUbased approaches« v v v v i e e e e e e 56

3.3 Parallelarchitectures Lo Lo 56

3.4 Reviewingtheopenproblems 0L 58
4 MODELING PARALLEL MULTI-CRITERIA PROTEIN STRUCTURE COMPAR-

ISON 61

41 Analgorithmicview 61

411 Scope for parallelism in protein structure comparison 62

42 Analysisof PSCmethods 64

4.2.1 TMAIIgN . . . e e e e e e e e e e e e e e e e e e e 64

422 Combinatorial Extension e e e e e e 65

4.2.3 Universal Similarity Metric 68

4.3 Characteristics of pairwise PSC 69
4.4 Fine-grained parallelismfor MCPSC 72

441 Parallel TMalign e e e e e e e e e e e 72
4.5 Atheoreticalmodel forMCPSC 75

5 PARALLEL MCPSC FOR A NETWORK-ON-CHIP PROCESSOR ARCHITEC-

TURE 77

51 Thelntel SCC e e e 77
5.1.1 Hardware Architecture e e e e e 79

5.1.2 Software Architecture e e e e e e 80

52 TheRckskellibrary e 81
521 OVEIVIBW . . . o v v e i e e e e e e e e e e e e e e e 81

5.2.2 Operational semantics v i e e e e e e e e e e e e 81

5.2.3 Instantiating rckskel skeletons 83

5.3 Software framework for porting PSCmethods 87
6 OPTIMAL LOAD-BALANCING FOR MCPSC ON THE SCC 89
6.1 Loadbalancingmethods 89
6.1.1 Static partitioning e e e e e 89

6.1.2 Dynamicround robin e e e e e 89

6.2 Experiments e e e e e e e e e 90
6.3 Comparison of load balancing strategies 91

7 PERFORMANCE BENCHMARKING: MULTI- VS MANY-CORE PROCESSOR 95

74 SCCUSAGe o o e e e e e e e e 95
7.2 Comparison with serial implementation 99
7.3 Comparison with multi-core implementation 99
7.4 Qualitativeanalysis 101

8 LARGE SCALE CONSENSUS BASED MCPSC ON MULTI-CORE PROCES-

SOR ARCHITECHTURES 105

81 MCPSConcommodityhardware 105
8.2 Consensusscoresintroduced 106
8.2.1 Dataimputationscheme e e e e e e 106

822 PSCSCOMES. . v v v v v i e e e e e e e e e e e e e e e e e 107

8.2.3 MCPSC consensus scores calculation 107

8.3 pyMCPSC softwaredesign i i it e 109
8.3.1 Architecture e e 109

8.3.2 Dependenciesand Installation 111

8.3.3 Extending pyMCPSC i i i e e e e e e 111

9 PERFORMANCE BENCHMARKING: CONSENSUS MCPSC VS COMPONENT
PSC METHODS 115
9.1 Performing MCPSC on a multi-core processor 115

9.2 MCPSC provides quality consensus scores 117

9.3 MCPSC consensus scores can be used to accurately classify query domains 118
9.4 MCPSC reveals structural relations betweendomains 120
9.5 MCPSC can reveal functional relations between proteindomains 123
9.6 pyMCPSC can handle very largedatasets 123
9.6.1 Dataset e e e e 123
9.6.2 ROCANAIYSIS . . .+« v v i e e e e e e e e e e e e e e 123
9.6.3 Nearest-Neighbor classification. 125
9.6.4 Multidimensional Scaling Scatterplots of protein domains 129
10 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 133
10.1 Fast MCPSC with modern processor architectures 134
10.2 Structured analysis of MCPSC based classification of proteins 135
APPENDICES 136

REFERENCES 158

LIST OF FIGURES

Figure 1.1 : Statistics of protein holdingsinPDB
Figure 1.2 : Moore’s Law and switch to multi-core CPUs

Figure 2.1 : Protein backbone and side-chain
Figure 2.2 : The twenty amino acids that make up proteins
Figure 2.3 : Commonly occurring Secondary Structure Elements
Figure 2.4 : Computer aided protein visualization

Figure 3.1 : Architectures of inter-core communication strategies

Figure4.1: TMalign - maincallgraph
Figure 4.2 : Combinatorial Extension - maincallgraph
Figure 4.3 : Comparison of pairwise PSC processing times.
Figure 4.4 : Comparative performance of QCPSuperimposer to the existing SVD
based BioPython structure superimposer.

Figure5.1: SCC System Overview
Figure 5.2 : SCC Tile Architecture

Figure 6.1 : The 47 partitions created from list of PSC tasks sorted randomly
or by the sum (product) of lengths of pair proteins. Each horizontal line
represents the sum of the normalized lengths of the protein pairs assigned
tothat partition.

Figure 6.2 : Space-time profiling of the partitioning schemes for the CK34 and
RS119 datasets. Each horizontal line represents work performed by an
individual core of the SCC.

Figure 6.3 : Space-time profiling of the round-robin job assignment for the CK34
and RS119 datasets. Each horizontal line represents work performed by
an individual core of the SCC.

Figure 7.1 : Performance comparison of parallel rckAlign with that of distributed
TMalign software (C port) for the Chew-Kedem dataset (CK34) as the
number of slave cores used isincreasing.

Figure 7.2 : Speedup achieved by rckAlign as the number of slave cores is in-
creasing (from 1 to 47) for the Chew-Kedem (CK34) and the Rost-Sanders
(RS119) datasets. The speedup reported is relative to the performance
on a single core of the SCC.

70

73

96

Figure 7.3 : Hierarchical clustering result using the Chew-Kedem dataset and
MCPSC score as distance metric between domains. Each box represents
a cluster and the domains belonging to it. The Average linkage method
was used to build the dendrogram.

Figure 7.4 : Results of Hierarchical clustering using the Chew-Kedem dataset
and the three component PSC methods.

Figure 8.1 : Schematic overview of the architecture of pyMCPSC.
Figure 8.2 : Usage help message print out by pyMCPSC explaining the parame-
ters accepted by the program. o Lo L.

Figure 9.1 : Speedup factor and total processing time for performing all-to-all
MCPSC with increasing number of threads on a Intel Core i7 multicore
CPU using the Proteus 300 dataset.
Figure 9.2 : ROC curves of all PSC methods and the median MCPSC method
using the Imputed dataset of pairwise similarity scores. The ROCs are
generated at the SCOP Superfamily level (Level 3). Panel (a) shows the
results with all five PSC methods and panel (b) with TM-align excluded.
Figure 9.3 : Median MCPSC matches or exceeds the best performing method
(CE) among the remaining four component PSC methods after removing
TM-align from the pool used to derive the MCPSC consensus scores. The
ROCs are generated at the SCOP Superfamily level (Level 3).
Figure 9.4 : MDS scatter plot based on median MCPSC scores. Domains are
colored according to their SCOP class (Level 1).
Figure 9.5 : MDS scatterplots for the five PSC methods generated using distance
matrices and the imputed dataset. The points are colored by the ground-
truth SCOP Level 1 classification of each domain. Blue = SCOP Class A,

117

. 118

Green = SCOP Class B, Red = SCOP Class C and Cyan = SCOP Class D.122

Figure 9.6 : Heatmaps generated for the median MCPSC method using similarity
matrices at the Domain level for the imputed dataset. The domains are
colored according to their ground-truth SCOP classification. Blue = SCOP
Class A, Green = SCOP Class B, Red = SCOP Class C and Cyan = SCOP
Class D. Heatmaps reveal presence of sub-clusters of domains within
each SCOP class evidenced by darker regions of varying sizes along the
main diagonal.

Figure 9.7 : Heatmaps generated for the median MCPSC method using similarity
matrices at the Fold level for the imputed dataset. The folds are colored
according to the ground-truth SCOP classification. Blue = SCOP Class
‘a’, Green = SCOP Class ‘b’, Red = SCOP Class ‘c’ and Cyan = SCOP
Class ‘d’. Heatmaps reveal presence of sub-clusters of folds within each
SCOP class especially for SCOP Class‘c’.

Figure 9.8 : The unrooted Phylogenetic Tree based on median MCPSC consen-
sus scores. Domains are colored according to their SCOP class (Level
1). Domains of the two clades that are marked belong to Class C but
represent different functional groups.o

Figure 9.9 : ROC curves generated by pyMCPSC. The panels are plots for the
component PSC methods and median MCPSC method over the three
variations of the domain pairs SCOP-CATH dataset. The Area Under the
Curve (AUC) is provided in parentheses. The ROCs are generated at the
SCOP Superfamily level (Level 3). 127

Figure 9.10MDS scatter-plots for the five PSC methods generated using distance
matrices and the imputed dataset. The points are colored by the ground-
truth SCOP Level 1 classification of each domain. Blue = SCOP Class A,
Green = SCOP Class B, Red = SCOP Class C and Cyan = SCOP Class
D. Black points are domains belonging to otherclasses. 130

Figure 9.11: MDS scatter-plots for the five MCPSC methods generated using
distance matrices and the imputed dataset. The points are colored by the
ground-truth SCOP Level 1 classification of each domain. Blue = SCOP
Class A, Green = SCOP Class B, Red = SCOP Class C and Cyan = SCOP
Class D. Black points are domains belonging to other classes. 131

LIST OF TABLES

Table 2.1 : Resources for protein structures 44
Table 2.2 : Baseline all-to-all PSC task and MCPSC task processing times 46
Table4.1:Slowest PSCpairs 71
Table 5.1 : Bus vs Network arguments 78
Table 5.2 : Salient features of the SCC ChipbyIntel. 79
Table 6.1 : MCPSC task processing times performance comparison 92
Table 7.1 : Time required for the baseline all-vs-all PSC task using TMalign (C

port) on two different processors and datasets. All times are in seconds. . 96
Table 7.2 : Performance of rckAlign in an all-vs-all PSC task on the CK34 and

RS119datasets. 97

Table 7.3 : Comparison of times required by TMalign and rckAlign for performing
all-vs-all PSC on the CK34 and RS119 datasets. All times are in seconds. 99

Table 7.4 : Baseline all-to-all PSC task and MCPSC task processing times 99
Table 7.5 : Result of multi-core MCPSC 100
Table 7.6 : Result of multi-core MCPSC 101
Table 8.1 : Download links for PSC methods used in pyMCPSC. 110
Table 9.1 : PSC methods coverage for the Proteus dataset. 116

Table 9.2: Time (in seconds) and Speedup (S) for end-to-end all-to-all analysis of
the Proteus_300 dataset using pyMCPSCon a multi-core PC with Intel i7
CPU having 8 cores (16 threads), 32 GB RAM, running at 3.0 GHz, under
Ubuntu 14.04 Linux. GRALIGN already uses all the CPU cores by default. 116
Table 9.3 : Fraction of domains correctly classified at different SCOP hierarchy
levels using a Nearest-Neighbor classifier built with similarity scores pro-
duced by different PSC and MCPSC methods. In the SCOP hierarchy:
Level 1 = Class, Level 2 = Fold, Level 3 = Superfamily and Level 4 = Family. 120
Table 9.4 : Fraction of domains correctly classified at different SCOP hierarchy
levels using a Nearest-Neighbor classifier built with similarity scores pro-
duced by different PSC and MCPSC methods. In the SCOP hierarchy:
Level 1 = Class, Level 2 = Fold, Level 3 = Superfamily and Level 4 = Family. 128

PREFACE

This research has been co-financed by the European Union (European Social Fund-ESF)
and Greek national funds through the Operational Program "Education and Lifelong Learn-
ing” of the National Strategic Reference Framework (NSRF). Research Funding Program:
Heracleitus Il. Investing in knowledge society through the European Social Fund.

Efficient algorithms and architectures for protein 3-D structure comparison

1. INTRODUCTION

For the last three decades the comparison and alignment of protein structures has been
used extensively in computational biology [19], because naturally occurring protein fold in
three dimensional space and the resulting structure has a strong correlation to its function
[63]. Conservation of proteins is known to be much higher at the structure than at the se-
qguence level, therefore structural similarity is essential in assigning functional annotations
to proteins [80]. Function assignment is typically achieved by developing a template of the
functional residues of the proteins and then aligning the template with complete known
structures [101]. Structural comparison approaches are also increasingly employed in
drug repositioning [45]. Protein Structure Comparison (PSC) methods are used to iden-
tify proteins with similar binding sites all of which then become potential targets for the
same ligand [99, 39]. All these important applications require the structure of one or more
proteins (queries) to be compared against a large number of known protein structures
(one-to-all or many-to-many type comparison) to identify protein pairs with high structural
similarity.

Given that proteins can be very long chains of amino acids the problem of aligning two
protein structures has been shown to be NP-Hard [95]. As a result, commonly employed
pairwise PSC methods make use of heuristics [123, 24, 56], generating alignments in addi-
tion to a similarity score in most cases. Over the years many methods have been proposed
for pairwise PSC. These PSC methods vary in algorithmic techniques employed including
but not limited to Graph based techniques [140], Dynamic programming based techniques
[86, 47], Information Retrieval based techniques [36], Geometric techniques [68] and Con-
tact map based techniques [65]. Further, they also vary in terms of the similarity metrics
used and yield different but biologically relevant results [48, 69, 38]. There is therefore no
consensus on a single method that is superior for protein structure comparison [13].

A newly discovered protein structure may be used to classify the protein in order to as-
certain its functional and behavioural characteristics based on properties of other proteins
in its class. While manual curation of the classification is possible this is a slow pro-
cess and cannot keep up with the increase in the number of known proteins [113]. In
such a scenario, the structures of one or more query proteins are compared to those of
database proteins whose function, homology etc. are known (one-to-many and many-to-
many PSC). Based on the comparison scores, structurally similar database proteins can
then be used to determine the properties of a query protein such as drugs that may in-
teract with it. With the advances in high-throughput technologies the number of known
protein structures is growing rapidly [128]. This is reflected in the size of the Protein Data
Bank (PDB), a repository of 3D structural data of proteins [83], as shown in Figure 1.1.
It is clear that the number of protein structures continues to grow exponentially, both in
the Structural Classification of Proteins (SCOP) [67] and CATH [121] databases, while si-
multaneously the number of new protein structures added per year also shows an upward
trend.

Computational demands in PSC are therefore a result of three pertinent features. Firstly,

33 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

10° ¢
| — Overall Structures
S — SCOP Folds
107 Fl — CATH Folds
—— SCOP Superfamilies
10% | CATH Superfamilies

Number of structures (logscale)

1995 2000 2005 2010 2015

Year

1980 1985 1990

Figure 1.1: Statistics of protein holdings in the Protein Data Bank (PDB), data taken from RCSB
PDB. Data for Year 2015 is incomplete.

pairwise PSC has high computational complexity due to the NP-Hard nature of the prob-
lem. Secondly, classification of newly discovered protein structures, for the purposes
of ascertaining functional properties, requires comparison with large and fast expanding
databases [28]. Thirdly, the lack of consensus on a single method has led to a trend in
the domain to provide results from more than one structure comparison method [15]. The
advantage of such an approach, Multi-criteria Protein Structure Comparison (MCPSC), is
that it does not call for determining the superiority of an approach over another, but inte-
gration of several protein structure comparison methods into a unified tool. The approach
banks on the idea that an ensemble of classifiers is likely to yield better performance than
any of the constituent classifiers [61].

In published literature instances of the use of distributed computing platforms, such as
clusters of workstations (COWSs), computer grids and cloud, can be found for meeting this
computational demand [113, 13, 111, 82]. One such implementation, available for use
to the community, the ProCKSI server [13], is an online resource for performing all-to-all
MCPSC experiments. Results of the experiments returned to the user include individual
PSC method scores as well as a consensus MCPSC score. While the ProCKSI server
provides an excellent one stop resource for designing and running all-to-all MCPSC ex-
periments, it is limited in the size of the data (upto 250 protein domains) and is not ex-
tendable with PSC methods of users choice. In general, distributed solutions, specifically
Grids, suffer from problems such as extensibility, maintainability and fault tolerance.

A. Sharma 34

Efficient algorithms and architectures for protein 3-D structure comparison

On the other hand, emerging parallel architectures, such as Graphics Processing Units
(GPUs), Field Programmable Gate Arrays (FPGAs), multi- and many-core Central Pro-
cessing Units (CPUs) have not been extensively used in the domain. Multi-core and
many-core CPUs, as opposed to FPGAs and GPUs, retain backward compatibility to well
established programming models [131] and offer the key advantage of using programming
methods, languages and tools familiar to most developers. Many-core processors differ
from their multi-core counterparts primarily on the communication subsystem. Many-core
CPUs use a Network-on-Chip (NoC) while multi-core CPUs use bus-based structures [17].
While multi-core CPUs are ubiquitous and easily available for parallel processing, due to
the drive from leading chip manufacturers over the past several years [18], many-core
CPUs are not as deeply entrenched or commonly available yet. However, due to archi-
tectural improvements many-core processors have the potential to deliver scalable perfor-
mance by exploiting a larger number of cores at a lower cost of intercore communication
[9].

These parallel processing architectures have become more readily available [94, 10], Fig-
ure 1.2, and instances of their use are beginning to appear in the broader field of bio-
computing [106, 58]. These architectures can in principle be used additively to meet the
ever increasing computational demands of MCPSC by complementing already in use dis-
tributed computing approaches [112]. It is therefore critical that effort be expended to
utilize this desktop scale parallelism [22, 100]. This will allow problems of a scale that
could only be tackled by distributed platforms, to be carried out on commodity hardware
and perhaps even more efficiently [30]. In particular, any optimisation made for utilising
the parallelism of multi-core and many-core CPUs naturally adds to the distributed infras-
tructure which will soon, if not already, be using combinations of multi-core enabled nodes.
Additionally, the familiar shared memory programming model makes it easier to utilize the
parallel processing capability of these processor architectures as compared to Graphics
Processing Units (GPUs) [131].

As established, protein structure comparison is a well developed field of research with a
large body of published literature and active current interest with new techniques being
developed continuously. We point out some of what we believe to be open challenges for
large-scale MCPSC:

« Efficient use of modern parallel architectures: Existing works focus on improving
pairwise PSC or on application of distributed resources to the many-to-many PSC
scenario. However, the parallelism afforded by modern parallel architectures has not
been extensively explored or efficiently utilized especially for many-to-many PSC.

* Biologically Relevant Clustering and Classification: Defining and identifying clas-
sification of different protein structures is still an unresolved problem. Structured
analysis of gain from Multi-criteria PSC towards resolving this problem is needed.

* Leveraging Structure Comparison: Generating large-scale MCPSC results currently
requires large distributed resources. Since a higher amount of computational power
is available locally to researchers, software needs to be made available so that they

35 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T3
Si-Core Core i7

2,600,000,000 siccore xeon 7400, "\ { e10-Core eon weswers£x
Cual-Core Ranium 2 @ £—8-0ote POWERT
1,000,000,000 AMDKI0 lt:§j e Hatium Tubila
' ! ! POWERG® ‘g, *“~-g-Core ¥eon Nehalem-EX
Hansum 2 weih 908 cache & W, Sp-Core Opieron 2400
AMD K10 & Core i7 {Quad)
Coge 2 Dug
Hanium 2 & /tOE
&
100,000,000 - $AMD KE
L ks
Penium 4 @ anan wAMm
. o MDKT
curve shows transistor AMD Ke-ll
= count doubling every AMD K6
% 10,000,000 - two years l{e-u:.f-re.ﬂ:m "
=} .
& AMDEKS
o B Pentum
S
2
0 1,000,000 - 804368,
m rd
c
E 203368
[
0286 @
100,000 -
GE000E
$30186
S0g5® #0388
8085
10,000 4 5800 g @6a03
B0E0- l @Za0
80088 #MOS 6502
2,300 400a® “pes 1a0n
I T T I 1
1971 1980 1990 2000 2011

Date of introduction

Figure 1.2: Transistor counts for integrated circuits plotted against their dates of introduction. The
curve shows Moore’s law - the doubling of transistor counts every two years. Towards the right
end of the curve it can be seen that leading processor manufacturers are shifting to multi-core and
many-core architectures. Taken from [122].

can leverage such results in their every day work. Thus, effort is needed to deliver
high quality easy to use software that can utilize desktop parallelism.

Development of solutions driven by these open issues would benefit research focused on
structure classification systems such as SCOP etc. by enabling large sets of proteins to be
automatically classified and categorised. Another group of researchers who would benefit
are those engaged in determining protein function from structure. If biologically relevant
groupings of proteins can be identified automatically and with high accuracy, researchers
would be able to quickly compare a protein to a large set to determine its function. Fur-
ther, researchers engaged in protein structure prediction and evaluation would benefit

A. Sharma 36

Efficient algorithms and architectures for protein 3-D structure comparison

because of the utility of PSC for validating structure prediction results. Finally, availability
of software that allows maximum utilisation of local computational power, at the disposal
of researchers, will have a broad impact for the community as a whole.

Based on the above observations, with the aim of performing a comprehensive study of
efficient solutions for Multi-criteria Protein Structure Comparison, our research design con-
tained several objectives. Firstly, identify PSC methods conducive to parallel implemen-
tations and architectures suitable for such implementations. Secondly, implement ports
of PSC methods for these architectures and where possible develop reusable libraries.
Thirdly, compare and contrast the performance of these implementations for performing
all-to-all MCPSC. Fourthly, use the implementations to perform large-scale proteomics
experiments and carry out a structured analysis of the qualitative aspects of consensus
based MCPSC. Finally, deliver a well designed suite of parallel MCPSC software for use
by the broader community.

In this work, three PSC methods — TMalign [143], CE [119] and USM [59] — were ported on
the Intel Single-chip Cloud Computer (SCC) [74], a Network on Chip (NoC) based many-
core processor with 48 Pentium cores organized in a mesh network. In order to facilitate
porting PSC methods to the Intel SCC an algorithmic skeleton [20] library called rckskel
was developed. The library was designed to provide basic functions needed for exploring
hybrid parallelization strategies, for speeding up protein structure comparison algorithms.
Use of algorithmic skeletons allows the processing elements of a many-core processor,
such as the SCC, to be connected in arbitrary order as per the requirement of the appli-
cation. This flexibility was found to be important for MCPSC because of differences in
the complexity of PSC methods requiring unequal distribution of the processing elements.
The result was an application that uses the three PSC methods to perform all-to-all protein
structure comparison. The application makes use of all SCC cores (available at run-time)
to run multiple pairwise PSCs concurrently.

The MCPSC implementation for the SCC was used to conduct several experiments to
study its speedup characteristics. Each pairwise PSC with a single method was consid-
ered as a job, which is the most fine-grained work distribution setup that can be achieved,
resulting in N x N x M jobs, where N is the number of proteins and M is the number
PSC methods. In the experimental setup the lengths of the pair of proteins were used as
a factor indicating the expected time complexity of performing pairwise PSC. Preliminary
results, with TMalign alone, showed that using the 48 cores of the SCC in a distributed set-
ting (master running on a separate processor) is not efficient, giving a speedup lower than
a factor of 3x. Several experiments conducted with load balancing strategies revealed
that dynamic round-robin job distribution outperforms static job partitioning schemes. It
was observed that a near linear speedup can be achieved as the number of slave-cores
is increasing, which suggests even higher speedups are possible with bigger NoCs [114].

Prototype FPGA implementations of two PSC methods — TMalign and USM — were also
developed. A feasibility study was conducted to ascertain if such implementations are vi-
able. Based on profiling information obtained from the software implementation of TMalign
a software-hardware co-design was developed with the matrix superposition subroutine
identified for hardware implementation. Analysis of the USM method showed that most

37 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

subroutines, apart from the compression subroutine, could be implemented in hardware.
Using FPGAs for speeding up PSC was not found to be feasible because: a) either the
parallelizable parts of PSC methods are a very small factor of the overall method as in the
case of TMalign, or b) the software implementations are already highly optimized and no
significant gains can be achieved from the hardware implementations, as in the case of
USM. However, even with an optimal implementable design, a hardware implementation
would not provide gains over using a modern CPU because of the data transfer times to
and from the SoC. We therefore concluded that fine-grained parallelism using FPGA is not
feasible for achieving high speedups for all-to-all PSC. A byproduct of our initial experi-
ments into the development of an efficient superposition subroutine for the FPGA, was a
Python module for structure superposition, QCPSuperimposer, which was submitted and
accepted as a module in BioPython v1.66 [29].

A multi-threaded implementation of the MCPSC software was developed for compari-
son with the many-core implementation. Experiments were designed to assess how the
MCPSC problem scales with increasing number of cores on a modern multi-core CPU
and to compare this with the speedup observed on a many-core CPU. The multi-threaded
implementation makes use of OpenMP for introducing threads and uses shared mem-
ory constructs to replace the message-passing communication handled by rckskel in the
many-core implementation. Our experiments showed that, when running on a quad-core
Intel i7 (with 8 hyper-threaded cores), speedup is observed up to the 4 threads configura-
tions thereafter a steep speedup drop (efficiency loss) is observed. This was attributed to
the fact that the work-load placement is not suited to taking advantage of the super-scalar
structure of the CPU which requires varied workloads to deliver higher performance. Com-
parison of the many-core and multi-core CPU throughputs, on several datasets of varied
sizes, showed that while the i7 is superior in raw times it only achieves a 4x throughput (in
terms of pairwise protein structure comparisons per second) as compared to SCC while it
runs at 7.5x the frequency [115].

Finally, experiments with a very large protein domain dataset (3,213,631 protein domain
pairs) using a utility we developed, named pyMCPSC, containing five PSC methods -
TMalign, CE, USM, Fast [147], GRalign [72] - were carried out to determine the char-
acteristics of consensus-based MCPSC. The experiments were designed to run only on
a multi-core CPU due to the memory limitations of the Intel SCC many-core processor.
Qualitative analysis using Receiver Operating Characteristics (RoC) curves revealed that
simple consensus schemes, such as using the average score, resulted in MCPSC per-
forming near-optimally in comparison to its component PSC methods. This was also val-
idated in terms of its structural classification ability using a Nearest Neighbor approach.
In the experiments we observed that several pairwise PSC scores were missing due to
inherent limitations such as errors in PDB files and runtime environment differences (for
binary PSC software). We therefore designed experiments to study the impact of imput-
ing pairwise PSC data. Our experiments show that imputing data can improve the ability
of PSC methods (including MCPSC) for structural classification of domains in a many-
to-many comparison setup. A key observation of these experiments was that MCPSC
closely follows the best performing PSC method, which is of importance in the absence

A. Sharma 38

Efficient algorithms and architectures for protein 3-D structure comparison

of the ground-truth in a domain where no single method is considered to be complete or
superior [116]. Finally, we visualize the dataset in domain and topology spaces and show
that such visualizations reveal interesting information about presence of correlations and
clusters within a large dataset.

Contributions

Following are the main contributions of this work:

» Design and implementation of a parallel computing strategy for the all-to-all MCPSC
problem on many-core CPUs. This work included the development of an algorith-
mic skeletons library rckskel for the Intel SCC Network on chip. To the best of our
knowledge this is first attempt to use many-core CPUs for this task.

+ Scalability analysis of all-to-all MCPSC on the Intel SCC. We compare several load
balancing strategies and find that the dynamic round-robin performs the best. Fur-
ther, it has been shown that a near linear speedup, with respect to number of cores
used, to be achieved for the all-to-all comparison task.

» Design and implementation of a multi-core version of the all-to-all MCPSC software
and comparison to the many-core implementation using several protein structure
datasets of varying sizes. We show that while a modern multi-core CPU outperforms
the many-core CPU on raw speedup times, the latter possesses some very desirable
qualities making it competitive on efficiency.

* Analysis of using consensus based MCPSC score for clustering and classification
of proteins using a very large dataset. We show that MCPSC has near optimal
characteristics with respect to its component methods both for clustering and for
classification. Further, our results with imputed data can form the basis of dealing
with missing data problem to be expected in real world large scale experiments.

+ Visual analysis of large domain dataset using MCPSC score. We show that Mul-
tidimensional Scaling, Heatmaps and ‘Phylogenetic Trees’ can be used to explore
visually the structure of a very large dataset and determine functional correlations
between the dataset domains.

» Development of public domain software for parallel MCPSC on multi- and many-
core CPUs. All the software that we have developed for both these architectures
has been made available via open-source projects including the MCPSC software
repository, the large scale MCPSC utility and a module in BioPython. To the best of
our knowledge there are no other easily accessible software resources for carrying
out large-scale MCPSC experiments available publicly.

39 A. Sharma

https://github.com/xulesc/mp_mcpsc
https://github.com/xulesc/mp_mcpsc
https://github.com/xulesc/pymcpsc
http://biopython.org/DIST/docs/api/Bio.PDB.QCPSuperimposer.QCPSuperimposer-class.html

Efficient algorithms and architectures for protein 3-D structure comparison

1.1 Outline of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 Introduces several concepts necessary for understanding protein structure
comparison. The similarity metrics used, features extracted and representations used
are presented. A formulation of the pairwise, one-to-many and many-to-many PSC is
also presented.

Chapter 3 Gives a detailed account of the techniques currently found in literature for pro-
tein structure comparison. The review includes both serial and distributed implementa-
tions. Modern parallel architectures considered in this work are also discussed.

Chapter 4 Presents an algorithmic view of PSC and discuses the characteristics of pair-
wise PSC and the scope for introducing parallelism. A model for parallel MCPSC is also
developed with the help of specific PSC methods.

Chapter 5 Describes in detail the algorithmic skeletons library and the ports of PSC meth-
ods developed using the library for the Intel SCC. The programmatic API of the library is
described and the overall framework under which multiple PSC methods were ported is
discussed.

Chapter 6 Describes the results of load-balancing experiments carried out on the Intel
SCC.

Chapter 7 Describes the comparative performance of multi- and many-core implementa-
tions for all-to-all MCPSC using several datasets.

Chapter 8 Describes the algorithmic and software architecture of pyMCPSC.

Chapter 9 Describes the results of qualitative analysis of consensus based MCPSC using
a small and a very large dataset

Chapter 10 Presents a brief overview of the work and possible future direction.

A. Sharma 40

Efficient algorithms and architectures for protein 3-D structure comparison

2. PRELIMINARIES

Protein structure comparison is an established research field with a lot of current interest.
As such there are several terms and expressions specific to it. In this section we introduce
these terms. We also present a brief overview of various metrics used by related methods.

2.1 Protein Structure

Proteins are long polymers containing several atoms which create a repetitive backbone
with side-chains attached to each residue, as shown in Figure 2.1. Small portions of a
protein, called active sites, are of importance to the function of the protein [64], while the
rest of the chain participates in creating the geometry of the protein structure. There are
twenty naturally occurring amino acids that make up proteins [54], these are shown in
Figure 2.2. In its natural form a protein adopts a unique three-dimensional shape, also
known as its tertiary structure. The tertiary structure of a protein determines its accessible
active sites, thus determining its functions.

Side chain

' s %

(-NH) L= N
amine group ot -COOH

e — < acid group
o aron
L .

e -

backhone

Figure 2.1: Protein backbone and side-chain. Taken from [64]

In three-dimensions the polypeptide chain folds into a curve determined by the order of
the residues. Several folding patterns exist which share some common structural fea-
tures, including alpha-helices and beta-strands, known as Secondary Structure Elements
(SSEs) [64]. Figure 2.3 shows the three most commonly occurring SSEs. These local
shapes (SSEs), over the entire polypeptide chain, together result in the tertiary structure
of the protein, as shown in Figure 2.4.

2.2 Similarity Metrics

Most similarity metrics can be divided into two types: those that compare the distance
between corresponding pairs of atoms in two structures and those that compare the rel-
ative positions of atoms of two superimposed protein structures [48]. Most commonly
used scoring schemes fall in one of the following three categories: Root Mean Square

41 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Deviation (RMSD) of rigid-body superposition, distance map similarity and Contact Map
Overlap. These methods use the distance between residues to determine similarity of
protein structures. Following is a list of commonly used similarity metrics used in protein
structure comparison:

1.

2.3

RMSD (Root Mean Square Deviation): is a measure of the average distance be-
tween atoms of two superimposed proteins. Methods using backbone comparison
rely on RMSD between proteins followed by objective function minimization. These
methods are typically computationally expensive. Several algorithms [95, 57] can
be found in literature using this measure for protein structure comparison.

. URMS (Unit vector RMS): is a variant of RMSD. URMS captures the difference be-

tween the global orientation of vectors at corresponding alpha-carbons rather than
the difference between the coordinates of the alpha-carbons themselves. It has
been argued that this metric is more robust in finding global matches than RMSD
[141]. In [141] the authors use URMS for protein structure comparison.

AFP (Aligned Fragment Pairs): is a metric based on alignment of fragment pairs.
Protein sequences may be decomposed into small runs of amino-acids forming what
are known as fragments. Each fragment may be an alpha-Carbon or a portion of the
sequence that forms an SSE. In some methods [140, 117] for structure comparison
similarity, metrics are built based on pairs of such fragments —one from each protein
being compared— aligned to reduce RMSD. These aligned fragments are known as
aligned fragment pairs.

Z-score: represents the accuracy of a match between two protein structures. It is
the likelihood of obtaining a similar alignment of a given protein with any random
protein structure with the same composition and length. One of the values returned
by the popularly used DaliLite [46] algorithm for a pair of protein structures being
compared is the Z-score.

TM-score: measures pairwise similarity in topologies of protein structures. TM-score
is biased towards close matches, as opposed to distant structures, hence it is more
sensitive than RMSD for close matching structures. TM-score has been used as an
alternative to RMSD [86].

Phenotypic Plasticity Measure (PPM): models the evolutionary distance of a pair
of proteins at the structural level. It measures the cost of ‘morphing’ one structure
into the other. PPM inherently models the naturally observed structural variance of
proteins while retaining overall topology. The metric was proposed and used in [34].

Features of Proteins

Protein structures can be described by features which fall in the following three categories:
geometric, topological and physico-chemical. Techniques proposed for protein structure

A. Sharma 42

Efficient algorithms and architectures for protein 3-D structure comparison

comparison differ in the feature vectors on which the structures are compared [54]. The
features themselves capture different aspects of the protein structure and as such have
resulted in algorithms with varying degree of success on "complete” structure comparison.
Following is a brief description of the aforementioned feature categories:

» Geometric features: capture the structure of a protein via coordinates, relative posi-
tions of atoms, residues, fragments and SSEs [103].

» Topological features: capture the order of the elements along the backbone of the
protein [93].

* Physico-chemical features: capture the chemical properties of a protein resulting
from its amino-acid sequence. Some methods [34] take advantage of these features
to perform structural comparison.

2.4 Representation of Protein Backbone

An aspect that differentiates structure comparison algorithms is the manner in which the
proteins are represented. The basic units in protein representation vary from atoms of
the chain to "virtual” geometric cells in space. Each representation can only be used with
a subset of the features described in section 2.3. For example consider partitioning the
space in which the protein exists into Voronoi cells [16]. Such a division does not lend itself
to extracting chemical properties to form feature vectors. Protein structure description
methods can be grouped into (a) element based, such as atoms, residues, fragments,
SSEs and (b) space based, dividing the proteins 3D space into cells.

The representation of the protein, the assembly of feature vectors to form the protein,
can determine the type of comparison algorithms that may be feasible. As an example,
a string representation of the structure is more amenable to a string comparison based
algorithm. Following is a list of structural representations that can be found in protein
structure comparison literature:

« List of unit descriptions: Represent the protein as a list of features that describe
position. Techniques in literature can be found that represent the protein as a list of
coordinates of alpha-Carbons [127], a list of mean coordinates of side chains [52],
a list of two pseudo atoms [8], a list of unit-vectors between alpha-Carbons [26] etc.

» Set of unit descriptors: This representation is similar to the list of unit descriptions,
however the ordering of the listis irrelevant. Techniques based on this representation
[4] are capable of finding similarity among proteins which are sequence independent.

» Graphs: Represent the protein as a labeled graph with residues as nodes and edges
representing relations. Residues can be alpha-Carbons, SSEs etc. Several tech-
niques based on graphs can be found in literature [133, 140].

43 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Table 2.1: Public domain resources for protein structure download, visualization and comparison

Resource Description

PDB Repository of protein structures

EMBL-EBIMSD | European repository of protein structures

PDBSum Summary of PDB file structure analysis

SCOP Manually curated classification database derived from PDB
ASTRAL Database derived from SCOP

ModBase Database of 3D protein models generated by comparative modeling
OCA Integrated database of protein structure and function
PDBWiki Annotated knowledge base of biological molecular structures
Proteopedia 3D encyclopedia of proteins and other molecules

ProCKSI Decision support for protein structure comparison

» Contact Maps: They represent the distance between all residue pairs in the protein
structure by a binary two-dimensional matrix. For two residues i and j, the ij element
of the matrix is 1 if the residues are closer than a predetermined threshold, and 0
otherwise. Techniques based on this representation [98] have been shown to be
fast and efficient for protein structure comparison.

» Feature Arrays: Techniques based on this representation [71] make heavy use of
matrix algebra to perform comparisons. Typically each protein is represented by a
row in the array, with the columns forming the dimensions of the feature vector.

» Strings: Represent the protein structure as a string of alpha-Carbon relative posi-
tions. An approach using such a representation can be found in [144].

Several resources for downloading, visualizing and comparing 3-Dimensional structure of
proteins, available in public domain, are listed in Table 2.1.

2.5 Problem Formulation

Pairwise protein structure comparison consists of two distinct steps: aligning the struc-
tures of the proteins to be compared and generating a similarity score to the aligned pair.
Structure alignment can be avoided in some cases where the algorithm is designed gen-
erate only the comparison score.

Aligning the structures of the proteins involves finding all rigid-body transformations of the
protein structures. Many algorithms exist in literature, as will be seen in later chapters, for
performing this step. Generating the similarity score involves finding a correspondence
such that the distance between the two structures is minimized. Since the correspondence
between individual atoms of the proteins is not known a priori, a variety of algorithms and
similarity metrics have been applied to the problem.

A. Sharma 44

http://www.rcsb.org/
http://www.ebi.ac.uk/pdbe/
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum
http://scop.mrc-lmb.cam.ac.uk/scop/
http://astral.berkeley.edu/
http://modbase.compbio.ucsf.edu/
http://oca.weizmann.ac.il/oca-docs/oca-home.html
http://pdbwiki.org/wiki/
http://proteopedia.org/wiki/index.php/
http://www.procksi.net/

Efficient algorithms and architectures for protein 3-D structure comparison

As an example consider RMSD based protein structure comparison. An all versus all
comparison of alpha-Carbons contained in the two proteins must be performed. The result
is a N x M matrix, where N is the number of backbone carbons in the first protein and M
is the number of backbone carbons in the second. Using such a matrix it is possible to
determine the optimal alignment of the two structures, minimizing the distance between
them or maximizing the overlapped carbons. Equation 2.1 shows how coordinate RMSD
is calculated where n is the number of aligned residues between the two proteins (n < N
andn < M)and (z(1),y(1)), ..., (x(n),y(n)) are coordinates of the corresponding residues
from the two proteins.

I, . v

RMSD = J - Zl (2(i) — y(i)) (2.1)
A more common scenario in practice is to find proteins most similar to one or more query
proteins from a database of known proteins based on the structure. Thus in practice re-
searchers are interested in comparing one (or more) protein structure(s) with a database of
protein structures, we call this one-to-many (many-to-many) protein structure comparison.
The term PSC is typically used to imply one of these scenarios. A succinct representation
of this typical scenario is shown in Equation 2.2, where (@ is the set of query proteins, D
is the set of database proteins and F' represents the PSC method being used. The re-
sult is a set of pairwise structural similarity scores which can then be sorted to find highly
structurally related pairs of proteins.

F(g,d) Vv {(¢.d) | ¢€@Q and de D} (2.2)

On occasion a researcher is interested in finding structurally similar clusters within a
dataset. This is a specific case of the many-to-many scenario where all dataset proteins
are compared (pairwise) against each other (¢ = D). We refer to this as all-to-all PSC. It
may be noted that the result set of Equation 2.2 forms the cells of a square matrix, with
each cell representing one pairwise PSC score for the all-to-all PSC scenario. Depending
on the specific requirements it may be sufficient to calculate PSC scores for pairs in the
lower or upper triangular part of the matrix because in general F'(q,d) = F(d,q). In this
work we use both these types of all-to-all structure comparison setups a) where the full
matrix is calculated and b) where only the triangular matrix is calculated. We use case
(a) where we perform comparative study of our solutions in terms of processing time and
case (b) where cluster analysis is performed.

2.6 Datasets

Several datasets, listed in Table 2.2 were used in this work. The table includes statistics
about the length of the protein domains and the distribution of the SCOP [67] classifica-

45 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

tions in each dataset. It can be seen that there is significant variation in the sizes of the
datasets, the lengths of protein domains they contain as well as the distribution of the
SCOP classifications. For each dataset we retained domains where the PDB file could be
downloaded and a classification could be found for the domain in SCOP v1.75. Further,
the scripts available for download with the USM sources were used to extract the con-
tact maps from the PDB files. The Chew-Kedem (CK34) and the Rost-Sander (RS119)
datasets, were used to develop the load balancing schemes for the SCC as well as to
study the Speedup (Throughput) on the i7 processor. Further, all the datasets were used
to compare the performance of the SCC with that of the i7 on all-to-all MCPCS processing.
In all the datasets the structures included, referred to as ‘domains’, are the leaves of the
SCOP hierarchy tree which are structural domains of individual PDB entries.

Table 2.2: Basic statistics of the domains in the datasets used in this work. The table includes the
number of SCOP Families, Superfamilies (SpFams) and Folds as well as the Total number of
domains (No.), the Minimum (Min), Maximum (Max), Median, Mean and Standard Deviation (Std) of
the domain lengths in each dataset.

Dataset No Domain lengths SCOP classifications

" | Min | Max | Median | Mean Std | Families | SpFams | Folds
Skolnick [139] 33| 97| 255 158 | 167.7 | 62.7 5 5 5
Chew-Kedem [27] 34 | 90 | 497 147 | 179.5 | 100.1 10 9 9
Fischer [41] 68 | 62 | 581 181 | 220.6 | 125.6 56 44 40
Rost-Sander [102] | 114 | 21 | 753 167 | 193.2 | 1234 93 85 71
Lancia [21] 269 | 64 72 68 | 67.9 24 79 72 57
Proteus [7] 277 | 64| 728 239 | 2476 | 116.7 53 47 41

The Gold-standard benchmark dataset, introduced in [35] was also used in this work to
carry our very large scale MCPSC experiments. The dataset contains protein domains that
are consistently defined in both SCOP v1.75 and CATH v3.2.0 (i.e.with domain overlap
greater than 80%) and that share less than 50% of sequence identity. Further, the bench-
mark only considers domain pairs that are consistently classified across the SCOP fold
classification and the CATH topology classification. The dataset consists of 6759 unique
domains and defined 3,213,631 domain pairs (similar and non-similar sets combined).
The dataset consists of 11 (4) Classes, 792 (780) Folds and 1348 (1550) Superfamilies
according to the SCOP (CATH) classification databases.

A. Sharma 46

(a) Geometry of an Amino Acid

Efficient algorithms and architectures for protein 3-D structure comparison

by Amino Actd Side-chains:

1Y

Aliphatic
Ala Val
Aromatie
Phe

Hydroxylic % f

Ser Thr
Amidic

Gin Asn
Basic
Lys

¥
M

e,

Len Pro

Trp

Sulphur-
containing

4

war
Acidic ? ":}:'
Asp Gilu

Arg His

Figure 2.2: The twenty amino acids that make up proteins. Taken from [54], (a) An amino acid
consists of a main chain (N, C,, C and O) along with a side-chain R. (b) Classification of side-chain
R based on their chemical properties.

47 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

. antiparallel parallel
a-helty f-sheet f-sheet

Figure 2.3: Commonly occurring Secondary Structure Elements (SSEs). Taken from [54].

Figure 2.4: Computer aided protein visualization.

Computer aided protein visualization. Taken from [54]. (a) Cartoon. This representation
also referred to as the "ribbon” diagram provides a high level view of the proteins
secondary structure elements. (b) Skeletal Model. This model represents bonds
bylines. (c) Space-filling diagram. In this model atoms are represented by balls

centered at the atom with radii equal to van der Waals radii.

A. Sharma 48

Efficient algorithms and architectures for protein 3-D structure comparison

3. BACKGROUND AND RELATED WORK

Several methods have been proposed for performing protein structure comparison. Pro-
posed methods, as can be found in literature, vary vastly in terms of the algorithmic ap-
proach, feature selection and comparison metric used. In this chapter a comprehensive
review of the published material, both for serial and distributed/parallel architectures, is
presented.

3.1 Pairwise protein structure comparison

In this section we present a substantial collection of serial pairwise PSC methods and
categorize them based on the algorithmic approach used to simplify the task of reviewing
the literature. The list of methods included is by no means extensive but rather is intended
to include important contributions in the category.

3.1.1 Graph Based Techniques

In [134] the authors present a method for enhancing the TOPS graph model with structural
and biochemical features. The augmented model is reported to perform better than the
TOPS graph model. The advanced TOPS+ proposed method gives a 6% increase in
accuracy over TOPS and TOPS+ methods on the SCOP dataset. The proposed approach
also achieves 98% accuracy on the Chew-Kedem dataset, which is higher than TOPS,
basic TOPS+ and SSAP methods.

A greedy non-sequential protein structure alignment algorithm, called FlexSnap, is pro-
posed in [105]. A global alignment is assembled from short, well-aligned fragment pairs.
AFPs are generated by pairing alpha-Carbons of the two proteins which satisfy an RMSD
based similarity constraint. A high scoring subset of AFPs is then derived by greedily find-
ing the maximum weighted clique in a graph where the AFPs form the vertices. FlexSnap
shows the highest agreement at 79%, with the curation in the RIPC dataset as compared
to DALLI.

In [147] the authors develop an algorithm, called FAST, in which they formulate optimal
alignment between two protein structures as a problem of finding the maximal clique in a
pair of graphs. Nodes of the graph represent the possible pairings of the alpha-Carbons
between the two structures and the edges denote compatibility between the pairs. An
edge exists if the distance between the paired alpha-Carbons is less than a cutoff value.
To solve the NP-hard problem of finding the maximum clique, a series of empirical rules
are used to reduce the graph until a reasonable approximation is possible. In order to test
the overall accuracy of FAST, its sensitivity and specificity was determined using the SCOP
classification (version 1.61) as the gold standard. FAST achieved higher sensitivities than
DaliLite, CE, and K2 at all specificity levels. FAST was also tested against 1033 manually
curated alignments in the HOMSTRAD database with an overall agreement of 96%.

49 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

A bipartite graph matching framework, for protein structure comparison, is introduced
in [136]. The framework is capable of producing sequence-dependent and sequence-
independent alignments. Each protein structure is represented as one part of the bipartite
graph. The nodes of the graph can be alpha-Carbons or residues or SSEs. Geometric
features of the node form its feature vector and the weight of the edge is determined by a
similarity metric. However, the authors do not provide any results on the performance of
the proposed framework.

3.1.2 Dynamic programming based techniques

In [77] the authors present a dynamic programming based, fragment chaining, global
alignment algorithm for protein structure comparison called Matt. Locally aligned AFPs
are chained together, allowing local transformations to better align the fragments dur-
ing chaining. The algorithm outperforms traditional multiple structure alignment methods.
Matt was tested against MultiProt, Mustang and POSA using the HOMSTRAD and SAB-
mark benchmark datasets. Matt's performance was competitive on HOMSTRAD and it
outperformed the other algorithms on the SABmark dataset.

A fast and flexible, Voronoi-contact based structure comparison algorithm, called Vorolign,
is developed in [16]. A residue of a protein is represented by its neighbors as defined
by Voronoi tessellation. Similarity between two residues is calculated as the similarity of
their corresponding nearest-neighbor sets. Dynamic programming is used to calculate the
optimal pairwise alignment. Vorolign was found to accurately determine the correct family,
super-family or fold of a protein with respect to the SCOP classification. The authors report
that a scan against a database of over 4000 proteins took on an average 1 min per target.
Vorolign was also compared to CE in calculating pairwise and multiple alignments and
found to have a comparable performance.

In [143] the authors propose an algorithm, called TMalign, for identifying the best structural
alignment between proteins using TM-score rotation matrix and dynamic programming.
Three kinds of initial alignments are used: dynamic programming based SSE alignment,
gap less structure matching and dynamic programming alignment using scoring matrices
obtained in the previous two alignments. A heuristic iterative algorithm is applied to the
initial alignments in order to obtain the final one. In a benchmark test of 200 x 199 non-
homologous protein pairs, TMalign was found to be approximately 20 times faster than
SAL with more accurate alignments. TMalign was also found to be faster than CE and
DALI, while returning structure alignments of higher TM-score.

Fr-TM-Align, another TM-score based structure alignment algorithm which is a successor
of TMalign, is presented in [86]. An initial set of equivalent residues is generated using
gapless threading and SSE similarity. Dynamic programming is then used to refine the
initial alignment, maximizing the TM-score. For the assessment of the structural align-
ment quality of Fr-TM-Align, in comparison to other programs such as CE and TMalign,
scores such as PSl and TM-score were used. The assessment showed that the structural
alignment quality of Fr-TM-Align is better than that of CE and TMalign. On average, the

A. Sharma 50

Efficient algorithms and architectures for protein 3-D structure comparison

structural alignments generated using Fr-TM-Align have a higher TM-score and coverage
in comparison to TMalign.

3.1.3 Information Retrieval based techniques

A tableau based approach, called IR Tableau, is presented in [142]. Relative orientation
(angle between axis) of the proteins SSEs are encoded, forming the tableau, and stored on
a database. A protein is represented by a 32 dimensional feature vector. These feature
vectors are used for comparing a query protein structure with the database of protein
structures. Feature vector similarity is assessed using: Cosine similarity, Jaccard Index,
Tanimoto coefficient or Euclidean distance. Experiments on the ASTRAL SCOP protein
structural domain database (a subset of SCOP) demonstrated that IR Tableau achieves
two orders of magnitude speedup over the search times of other tableau based methods.

A two-step methodology is proposed in [36] for fast protein structure comparison. In the
first step, screening of protein structures is performed. The second step involves global
structure alignment of the query structure with the reduced set. The protein structure is
represented as a sequence of local structures. The local structures are codified in a ge-
ometric invariant manner. Global alignment is performed using dynamic programming.
For a typical protein structure, the method is able to reduce the protein data bank to 200
proteins while retaining the structurally closest neighbors, resulting in 30 to 60 fold im-
provement in the execution time.

3.1.4 Geometric techniques

In [66] the authors develop a mathematical framework for protein structure comparison
by treating them as curves in 3D space. The 3D coordinates of the backbone atoms (N,
Ca and C) from the PDB file of a proteins structure are used to derive the curve rep-
resenting a protein in 3D space. Geodisic distance between two such curves can then
be calculated. The approach implicitly makes the structural comparison amino-acid se-
quence dependent. The authors show that the method performs comparably with CE in
protein structure classification on a large manually annotated data set taken from SCOP.

In [76] the authors present a sequence-independent method for aligning protein structures
using 3D Spherical Polar Fourier (SPF) representation. A protein structure is represented
as a 3D density function. In order to compare two structures, one protein is held fixed and a
6D search over the positions of the second protein is performed. The proposed approach
was tested by automatic classification of subsets of the CATH database. Results of the
clustering showed that SPF is able to classify protein structures with high precision and
accuracy with respect to the expert-curated CATH classification.

Two algorithms for protein structure comparison are presented in [68]. Each one of the
two algorithms consists of three steps and the algorithms differ only in the third step. The
first step involves identifying local alignments, in terms of consecutive alpha-Carbon pairs,

51 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

by using the distance matrices of the two backbones. In the second stage the local align-
ment is used to find an initial rigid body transformation using the least square estimation
method. In the third stage dynamic programming (sequential) or maximal matching (non-
sequential) is applied to generate an alignment. It is argued that the increase in speed
for the matching is because the approach does not involve use of alpha-Carbons to find
initial rigid-body transformation. The algorithm is available in public domain supported by
a cluster of 6 computers. Compared to Dali, CE and SSM [60] the proposed algorithms
result in alignments with smaller RMSD and average length of alignment longer than SSM.

3.1.5 Contact map based techniques

In [92] the authors propose a heuristic approach for solving the maximum contact map
overlap (MAX-CMO) problem [5] used in protein structure comparison. A variable neigh-
borhood search (VNS) meta-heuristic is applied with multi-start capability to approximately
solve the MAX-CMO problem. The approach was tested by auto-classification of domains
from SCOP and CATH. The proposed method performed with an error rate of 3.5% on the
Lancia dataset and 1.7% on the Skolknick dataset with respect to the optimum value.

In [72] the authors develop a graphlets based CMO heuristic, GR-align and use it for
database searches. Experiments with small and very large datasets show that proposed
method is several times faster than most of the popularly used PSC methods. The authors
also compare GR-align to other flexible alignment methods and show that the method
generates better alignments than its counterparts.

3.1.6 Polynomial time approximations

An approximate polynomial-time algorithm for protein structure matching is developed in
[57]. Similarity between pairs of proteins is calculated by finding the Euclidean distance be-
tween the structures using RMS as the distance metric. A new scoring function, STRUC-
TAL, is developed and tested on a small set of protein pairs for its viability. The authors
present preliminary experiments studying various features and conclude that it is a well
behaved scoring function.

In [62] a method for protein structure alignment, ProSup, which maximizes the number of
aligned residues is developed. RMSD is used as a constraint in maximizing the number of
aligned residues. The authors show that the approach is able to detect remote structural
similarity by using 10 protein pairs used in the Shindyalov and Bourne dataset [119]. The
results were compared to VAST, DALI and CE. The results show that ProSup performs
most consistently in terms of the RMSD of the aligned structures and out performs VAST
in all cases on the length of the alignment.

A. Sharma 52

Efficient algorithms and architectures for protein 3-D structure comparison

3.1.7 Simulated annealing based techniques

In [25] the authors propose a method for solving protein structure alignment, based on
mean field annealing. They reduce the problem to a mixed integer-programming problem
with the inter-atomic distances between the structures as the objective function. Speed
up is obtained by avoiding combinatorial computation through reducing the problem to a
non-linear continuous optimization. The Shindyalov and Bourne dataset [119] was used
for benchmarking the algorithm against Dali, CE and Lund. The results show that the
algorithm performs comparably to the other methods in terms of RMSD of the aligned
structures.

In [138] a method for protein structure comparison is presented, called Topsalign, where
Simulated Annealing is used to optimize an initial alignment. Initial multiple alignment is
obtained by a pattern matching algorithm that finds equivalent secondary-structures. Top-
salign, was compared with STAMP and DALI and found to be comparable on identifying
structurally related proteins, as defined in CATH.

3.1.8 Techniques with special alignment scoring

A new protein structure similarity metric ‘phenotypic plasticity’ is proposed in [34]. The au-
thors also present a method called phenotypic plasticity method (PPM) for protein structure
comparison. Pairs of core blocks in each of the two proteins structures are compared and
their RMSD is calculated. A PPM graph is generated from the core blocks of the two pro-
teins. The optimal alignment can be found by identifying the subgraph, of the PPM graph,
with the maximal score. PPM performance in detecting similarities between protein struc-
tures was benchmarked using SCOP and CATH. PPM outperformed TMalign and Vorolign
in the benchmarking results.

In [97] the authors develop a neural network ensemble (NNE) that uses negative corre-
lation learning (NCL) to find structurally conserved residues in proteins. The NCL-NNE
method was applied to 6042 structurally conserved residues (SCRs) from 496 protein do-
mains. The method obtained high prediction sensitivity (92.8%) in identification of SCRs.
Further benchmarking using 60 protein domains containing 1657 SCRs showed that the
NCL-NNE can correctly predict SCRs with approximately 90% sensitivity.

3.1.9 Other methods

In [141] the authors present a fast pairwise local structure alignment algorithm combining
both RMS and URMS metrics [26]. URMS is used to find all viable transformations and
then dynamic programming is used to optimize the local alignments using RMS. URMS is
used to identify all pairs of similar fragments between the two protein structures. The pairs
are then clustered based on similar rotations. Each cluster is then searched for the most
viable translation among its members. Finally dynamic programming is used to find the
best structural alignment under the rotation-translation transformations identified, using

53 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

an RMS-based scoring matrix. The method was found to be faster and more accurate
than CE in identifying structures belonging to the same family, using the SCOP dataset.

An approach based on principal component analysis of structural data is presented in
[146]. Symmetric interaction matrices are constructed from secondary elements for the
structures being compared and principal component correlation is applied to compare the
structures. 56 protein structures, grouped into 6 different sets according to CATH, were
used for testing the proposed approach. The results show the approach assigns strong
correlation to structurally related protein pairs.

In [95] the authors rigorously develop a series of algorithms for optimizing protein struc-
ture similarity measures, including those commonly used in protein structure prediction.
The authors also present an algorithm for near-optimal structure alignment. A fast heuris-
tic implementation of the algorithm proposed, called MAX-PAIRS, was developed for the
purpose of providing test results. Testing was performed on a set of 195 pairs of proteins
selected from the SCOP database. Performance of the algorithm was compared with
CASP LGA, TMalign, MAMMOTH and MUSTANG. The results showed that MAX-PAIRS
compares favorably with other algorithms in terms of RMSD of the aligned structures.

CURVE, an algorithm based on representation of the protein as a path in 3D space can
be found in [145]. In CURVE, a "smoothed” representation of a protein structure is used,
retaining only information about the shape of the backbone (straight or curved). The struc-
ture is thus represented as a series of turning angles. CURVE was compared against
CTSS and CE using a set of 100 randomly selected structures. Performance of CURVE
was found to be comparable to that of CTSS, while CE was the most superior algorithm
of the three.

3.2 Distributed and parallel protein structure comparison

3.2.1 Grid and Cluster based approaches

The predominant approach is to make Grid computing available for Bioinformatics re-
searchers. These computing resources provide an on-line environment for performing
protein structure matching. They are supported by large Grid setups that share popularly
used structural comparison algorithms. The working environment, provides the user with
an interface where the datasets can be uploaded and the user can select which ’services’
to run for the structure comparison. ProCKSI [13] enables the user to select among differ-
ent similarity measures to be used while performing the structural comparison. Typically,
these setups use ontologies for defining the work-flows. The execution of these work-flows
uses different structure comparison software in a series, to complete the task. These ap-
plications may reside on different nodes participating in the Grid and are automatically
used without manual specification.

FROG [88], which uses a Genetic Algorithm, and PROuST [31], which combines indexing
and dynamic programming, are two examples of algorithms, for protein structure compari-

A. Sharma 54

Efficient algorithms and architectures for protein 3-D structure comparison

son, designed from scratch keeping in mind parallelism. These algorithms are designed to
easily utilize a distributed environment if it is available. Both approaches provide significant
speed ups when they can take advantage of their parallel processing capabilities. Paral-
lelized FROG was implemented in C on a 16 node Linux cluster running dual Pentium3
1GHz processors. A comparison of FROG with sequence-based alignment methods, us-
ing a subset of the SCOP database, shows it is able to infer phylogenies accurately. In
PROuUST, geometric features of triplets of secondary structures of proteins are extracted
and hashed for fast retrieval. Similar features, extracted from the query protein, are used
to identify a subset of the protein structures stored on the database for which dynamic
programming is used to generate an alignment. A comparison of PROuST with leading
PSC methods showed that it outperforms them in the time taken to generate alignments
with comparable RMSD.

In [113] the authors propose a framework for the design of an algorithm that runs on com-
putational nodes, organized as a cluster/grid for protein structure comparison. A high-
throughput implementation of a system that allows parallel processing of very large protein
structure datasets is developed. Building on ProCKSI the implementation in [14], performs
structure comparison significantly faster than the current ProCKSI implementation, while
retaining similar accuracy. Tests were preformed on a Linux cluster of 64 nodes con-
taining dual Itanium2, 1.4GHz processors with 4GB main memory, using the RS119 and
CK34 datasets, as well as the dataset proposed in [53]. Results of testing on the first two
datasets showed that the distributed algorithm performs 30 times (with RS119 dataset)
and 26 times (with CK34 dataset) faster as compared to its sequential counterpart.

CEPAR [91] is an extension of the CE algorithm [118] that involves massive parallelism
in order to fully take advantage of parallel processing capabilities. The CEPAR algorithm
uses a coarse-grain parallel implementation (master/worker strategy) of the CE algorithm.
Each worker receives a smaller protein comparison problem from the master which it
solves by using the CE algorithm. Further, the algorithm was tailored for the IBM SP par-
allel computer with a total of 1152 Power3 processors, each running at 375 MHz. Experi-
ments performed, with a C++ implementation of the algorithm, showed that the algorithm
does not scale gracefully as the number of processors increases, loosing efficiency as the
number of processors increases beyond 500.

SBLAST [79] is an attempt to incorporate parallel access to databases, for speeding up
protein structure comparison. Triplets of alpha-Carbons, selected from all proteins in a
structure database, are stored on a hash table. Hash table hits, from similar triplets ex-
tracted from the query protein, are recursively extended to find the largest common sub-
structure. A "Master-Worker” paradigm is implemented to parallelize the work done during
the pre-processing and searching phases of structural comparison. The pre-processing
phase involves building a database of known protein structures, against which a query
protein is matched for finding similar structures. The master node controls the division of
the jobs among the slaves and collates the comparison results from the different nodes as
they come in. The final scoring is done by the master node. This configuration makes use
of multiple resources, therefore reducing the load on any individual node. The algorithm
was tested using the ASTRAL subset of SCOP. The pre-processing and search modules

55 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

showed an effective speed up of 70% and 60% for 1000 and 500 processors respectively,
as compared to a single processor implementation. No comparison of the result with other
existing structure comparison techniques was presented.

3.2.2 GPU based approaches

In [124] a tableau-based heuristic protein structure matching algorithm is presented which
uses simulated annealing. The authors develop a fast parallel implementation using the
NVIDIA CUDA programming model. The implementation makes use of global, shared and
constant memories, to allow fast data access for the multiple threads running in parallel.
The authors report a 34 fold speed up, while retaining similar accuracy when compared
to the VNS maximum contact map overlap method [92].

In [87] the authors develop a framework for optimal exploitation of GPUs for PSC methods.
They evaluate implementations for TMalign, Fr-TM-align and Mammoth on an NVIDIA
Tesla C2050 GPU. The framework makes use of a GPU-CPU co-design with the CPU
identifying paired fragment pairs and the GPU performing the structural alignment step.
The authors report a 36 fold speed up for ported TMalign and a 40 fold speed up for
Mammoth while the ported Fr-TM-align achieves a speed up of 65 over the a serial imple-
mentations of these PSC methods running on a 1.8 GHz dual-core AMD Opteron CPU.

In [81] the authors report a GPU-based implementation of the CASSERT algorithm. They
exploit the parallelism inherent in the two phases of the basic algorithm a) SSE alignment
and b) spatial structure alignment. The authors compare the performance of the GPU
implementation running on a GeForce GTX 560Ti (384 cores, 2GB RAM) with that of the
serial implementation of CASSERT running on a Intel Xeon E5620 2.4 GHz quad-core
CPU and report an average speedup of 180-fold.

3.3 Parallel architectures

With the advancement in processor technologies several computer architectures have
emerged for use in high throughput computing. Most popular of these are: Field Pro-
grammable Gate Arrays (FPGAs), Graphics Processing Units (GPUs), multi-core CPUs
and more recently many-core CPUs [125]. In this section we briefly describe these tech-
nologies and compare and contrast them.

FPGAs are made of configurable logic components with programmable interconnections.
The logic components can be programmed to behave as the basic logic functions -AND,
OR, NOT and XOR- as well as emulate circuits of any complexity. By using this ability,
together with the programmable interconnections, very complex circuits can be imple-
mented on an FPGA. Typical applications of FPGAs are signal and image processing,
cryptography, specialized routers etc. Application of FPGA based solutions to Biocom-
puting are also becoming popular, especially for sequence comparison and structure pre-
diction [106].

A. Sharma 56

Efficient algorithms and architectures for protein 3-D structure comparison

A relatively new technology, growing in usage in the scientific community, is the Graphics
Processing Unit (GPU). GPUs are multi-core processors capable of supporting highly par-
allel applications, originally designed to accelerate computer graphics. There is a growing
interest in tapping into the processing capabilities of a GPU for general-purpose compu-
tation [89]. Programming API’s, such as VDPAU etc., have become available for utilizing
the computing power of GPUs, in a plethora of common programming languages. Typi-
cally GPUs find usage in applications that: have large computational requirements, use
algorithms that exhibit high parallelism and applications that favor high throughput over
low latency [84].

Multi-core processors are ubiquitously available and have been around for a while but
there is a lack of good threaded software especially in the proteomics domain. On the
other hand, while very similar to multi-core processors, many-core processors are not
very commonly available but are likely to grow in availability over time. These two ar-
chitecture share several characteristics however they also possess some fundamental
differences. Multi-core processors typically contain two or more independent processing
units integrated in a single chip and typically scale up to 16 cores. On the other hand,
Many-core processors contain a larger number of independent processing units (more
than 16) organized in a grid. These architectures, also have an impact on software tar-
geted at leveraging distributed architectures such as clusters and grids [22]. With multi-
ple cores appearing on a single chip inter-core communication becomes important. Two
broad strategies through which inter-core communication is performed are: a) using a
single communication bus and b) using and interconnection network. Each strategy has
its advantages and disadvantages and comes with an associated programming model, as
shown in Figure 3.1. Single bus communication typically leads to diminished performance
when the number of cores exceeds 32 [109].

Pracessor PlUEﬁbSU[Pruues:ur Processor b | F [] F " F | ™ | & | P | P | Fl Fl P
== - - e
]
g M W Ko o
e e,
eeeee - NP g Mo
IIPIPIPI-IPIPIPI Pl PlP
va‘ § e e

(a) (b) (c)

Figure 3.1: Strategies for implementing inter-core communication in a multi-core and many-core
architecture. (a) Using a single communication bus, resulting in a Shared Memory Model (b) Using
an interconnection network, resulting in a Distributed Memory Model (taken from [109]), and (c)
Mesh network interconnection between tiles that carry one or more computing cores and local
caches. Such Networks on Chip (NoC) are the modern trend in many-core processors (taken from
[42]).

In [23, 43] the authors compare three architectures: FPGAs, Multi-core CPUs and GPUs,
within the per-view of the implementation of a sorting application. The authors conclude
that programming an FPGA requires more command over digital electronics than com-
puter science. Further, synthesis of the hardware from its description is very time con-
suming and the tools used for hardware synthesis are unlikely to get faster, in the opinion

57 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

of the authors. For Multi-core CPUs the authors state that the programming model is close
to C/C++ programming, therefore easy to grasp, though experience in parallel program-
ming is helpful. The authors concluded that for GPUs the programming frameworks are
unstable and vendor specific. Further, while NVIDIA's CUDA is well developed it is hard
to maintain the code produced due to the lack of debugging support. Transfer of data be-
tween CPU and GPU memory is cited as a bottle neck, though the authors state there are
some workarounds. Further, the authors conclude that the flexibility of FPGAs allows de-
velopment of more efficient algorithms, while the implementation cost in terms of time and
skill, is lower for programming the GPU. Both works conclude that the ease of program-
ming multi-core CPUs makes them an excellent target for parallel program development
in general.

By comparison with the other parallel architectures discussed above the many-core pro-
cessors have several features that make them attractive for parallel MCPSC. They provide
a) large number of Processing Elements (PEs), b) the flexibility to combine these elements
into banks of serial and parallel PEs, c) high speed interconnection between the PEs and
d) a familiar programming paradigm. These advantages of MCPSC apply in all cases
except perhaps in comparison with multi-core CPUs. However, due to the technical bot-
tleneck of the bus based architecture the number of PEs on many-core processors will
soon outnumber those on multi-core processors by very large factors, giving the former a
clear edge over the latter.

3.4 Reviewing the open problems

From the survey of the field of protein structure comparison it is clear that there are three
orthogonal dimensions that contribute to the complexity of the methods - size of struc-
ture databases, need to support multiple comparison algorithms and complexity of the
pair-wise comparison algorithms used. Efforts have been made to harness the comput-
ing capabilities of distributed computing systems (clusters and grids) for the task but this
tackles only the first two of the three dimensions mentioned above. Due to the diversity
of techniques that are used in the field the level of granularity at which parallel implemen-
tations can be introduced is specific to the technique. Therefore independent analysis of
each technique is required to assess the best way to parallelize it. While at the same
time it is crucial to identify common reusable components that can benefit multiple PSC
methods as well as simplify targeting MCPSC.

Efficient solutions for MCPSC must focus on using modern processor architectures. The
architecture of the platform used for introducing parallelism must provide flexibility in us-
age of computational elements. Need for flexibility at the platform level is required to find
the optimal way of using computational elements to cater both to the algorithmic paral-
lelism as well as multi-method processing. This need for flexibility extends to the software
developed in order to allow need based integration of processing elements. The solution
developed must allow simultaneous instances of these methods to be available for use.
These factors make FPGA, many- and multi-core processors interesting target platforms.

A. Sharma 58

Efficient algorithms and architectures for protein 3-D structure comparison

Further, solutions developed must be able to scale to very-large datasets to be of practical
use in real world scenarios where researchers are interested in comparing and classifying
thousands of protein structures. Of the parallel architectures discussed most are suit-
able for use with this constraint, given an appropriate implementation can be developed.
Such implementations require identification of established, well respected and portable
PSC methods. It is readily evident that CPU based solutions are more likely to be suitable
for this purpose because current software already makes use of them even if not very
efficiently. Finally, in order to aid researchers in leveraging PSC results the solutions de-
veloped must be easily accessibly, deployable and usable. These constraints imply that
solutions developed should target commodity hardware rather than rely on some esoteric
hardware that is unlikely to be available to the community at large. Further, the solutions
developed should be made available to the community via mechanisms that make them
accessible and usable for the largest possible segment.

With these considerations as guiding principels, in Chapters 5 and 8 of this thesis we
present solutions for speeding up MCPSC that target multi- and many-core CPUs. De-
tailed performance comparison and benchmarking of the solutions developed is presented
in Chapter 6 and 7. We also present analysis of development of FPGA based hardware-
software codesign for accelerating specific FPGA methods with method specific imple-
mentations. We find however that the latter is not a viable solution due to the nature of
PSC as discussed in Chapter 4.

59 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

A. Sharma 60

Efficient algorithms and architectures for protein 3-D structure comparison

4. MODELING PARALLEL MULTI-CRITERIA PROTEIN STRUCTURE
COMPARISON

In this chapter we take a close look at the algorithmic model of pairwise Protein Structure
Comparison. We identify and discuss levels of parallelism as applicable to PSC (one-to-
many etc.) and study the characteristics of pairwise PSC, which will form the basis if load
balancing strategies compared in Chapter 6.

In the latter half of this chapter we discuss three specific PSC methods and highlight scope
for parallelism in these methods. In Section 4.4, we take a look at fine-grained parallelism
for PSC using FPGAs. We analyze the short comings of the approach and establish why
it is unlikely to yield good results for PSC in general. Finally, in the last section we present
the model for MCPSC which is used for developing solutions presented later in this thesis.

4.1 An algorithmic view

Algorithm 1, shows a high level view of the comparison of the structure of a protein with
a database of known structures. A query protein structure ¢ is compared to each protein
structure p, in the database D. For each pair of protein structures the best alignment of
the structures must be identified. Once all structure pairs have been processed a ranked
list alignments, of protein structures is generated.

Four functions appear in Algorithm 1: fragment, align, bestSubset and sort. The function
fragment, partitions a protein into its fragments. The fragments generated could vary
from backbone residues to blocks of residues in the protein, such as SSEs, triplets etc.,
depending on the algorithm. The function sort, accepts a list of protein structures with the
similarity scores and sorts them from most similar to least similar.

The key functions in the algorithm are: align and bestSubset. The function align, finds
the optimal alignment of a pair of fragments, one from each protein structure. Similarity
metrics, such as RMSD, cRMSD etc., are used for determining the optimal alignment.
The task of finding all alignments has a complexity proportional to Nz M, where N is the
number of fragments of p and M is the number of fragments of . However, finding the
optimal alignment of a fragment pair is computationally intensive, because the atoms mak-
ing up the residues can take an infinite number of orientations in 3D space. The function
bestSubset, finds the best set of fragment alignments and determines the global alignment
of the two protein structures. Definition of the best alignment depends on the algorithm
and is determined by metrics such as: RMSD, TM-Score etc. For sequential structure
alignment techniques, feasible alignments are limited by the order in which residues ap-
pear in the protein structure and the cost of introducing gaps in the alignment.

61 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Data: q: structure of query protein, D: database of known protein structures
Result: alignments: list of protein structures ranked by similarity to q
alignments = [];
fq := fragment(q);
for pin D do
fp := fragment(p);
paligns := [];
for fpa in fp do

for fqa in fq do

\ add(paligns, align(fpa, fqa));

end
end
add(alignments, bestSubset(paligns));
end
sort(alignments);

Algorithm 1: A general algorithm for protein structure comparison

The loop starting at line 3 in Algorithm 1 explains the growing need for computing power in
protein structure comparison as the size of the database grows. This loop also explains the
success of distributed processing approaches as each iteration is virtually independent of
the next. The nested loops at line 6 and 7 indicate that any increase in speed of generating
optimal pairwise fragment alignment is likely to have a significant impact on the overall
time requirements. Since the align function executed in each iteration of the nested loop
scores the pairwise alignments using a metric, as explained above, faster calculation of
metrics should improve the performance times. A third significant aspect is the alignment
generated by the bestSubset function. Several algorithms, such as dynamic programming,
bipartite graph matching etc., are used to perform the step. Speeding up the alignment
process should also have a significant impact on the overall query processing times.

It must be highlighted that Algorithm 1, presents a very simplistic template of algorithms for
protein structure comparison. While key operations represented by the four functions must
be performed, existing methods for protein structure comparison may not perform them
in the order shown in the algorithm or may avoid performing them online. For example,
fragments of known structures can be extracted in an offline step and proteins can be
indexed by them, thus avoiding time spent on extracting these during query processing.
Similarly performing pairwise fragment alignment, between protein pairs, may be avoided
by representing protein structures as Contact Maps.

4.1.1 Scope for parallelism in protein structure comparison

Methods used for parallelizing a problem can be classified by the level at which the paral-
lelism is introduced. Based on the discussion of Algorithm 1, presented above, there are

A. Sharma 62

Efficient algorithms and architectures for protein 3-D structure comparison

the following categories of methods that can be used for introducing parallelism in protein
structure comparison:

Sharding

Methods belonging to this category are similar to Database Sharding, a technique that
is popularly used in Information Retrieval where large databases are involved. Given the
computational, resources it is possible to split the database into several smaller databases
(shards), which taken together contain the complete data. The splitting is performed such
that the index is distributed across the shards. Suppose N computational nodes are avail-
able, the database can then be split into IV shards. The overall query time, since each
of these node can work independently, is reduced to 7'/N, where T is the original time
to compare the query to the entire database. Clearly this form of parallel processing is
tailor made for the Master-Slave computational model. Some evidence can be found in
literature of the use of this technique to speedup protein structure comparison [110].

Algorithm specific parallelism

A variety of methods have been used for protein structure comparison. Each class of
methods essentially shares a similar algorithmic approach. A more fine grained level of
parallelism can be achieved by analyzing these algorithms from first principles. It is easy
to see that methods belonging to this category are likely to be algorithm specific.

Maijor classes of algorithms, such as: dynamic programming, maximum clique finding etc.,
can each have a parallel implementation, which is likely to be specific to the algorithm
class. Attempts have been made to develop a parallel implementation of the Geometric
Hashing algorithm, as stated in this thesis. However, more work is required in this direc-
tion to develop viable parallel implementations for the other major classes of algorithms.
Published literature can be found on independent parallel implementations of some of
these algorithm classes . While these parallel implementation have not been utilized in
structure comparison, it should be possible to do so.

Parallelizing similarity comparison

The finest level of parallelism can be achieved by parallelizing the similarity metric calcu-
lation task of protein comparison algorithms. Several different metrics are used in protein
structure comparison. The similarity is calculated between 'units’ of each protein (the units
can be alpha-Carbons, SSEs, AFPs etc). By developing parallel techniques for calculating
these similarity metrics a great amount of time can be saved in the pairwise comparison
of protein structures.

63 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

4.2 Analysis of PSC methods

4.2.1 TMAlign

Summary

In [143] the authors propose an algorithm, called TMalign, for identifying the best structural
alignment between proteins using TM-score rotation matrix and dynamic programming.
Three kinds of initial alignments are used: dynamic programming based SSE alignment,
gap less structure matching and dynamic programming alignment using scoring matrices
obtained in the previous two alignments. A heuristic iterative algorithm is applied to the
initial alignments in order to obtain the final one. In the original publication an average
alignment time of 0.5 seconds using an Intel Pentium Il (1.26 Ghz) was reported.

Implementation Analysis

The TMalign algorithm consists of programs written in C++. An analysis of the program,
generated using SLOCCount software, revealed that it consists of 2,554 lines of code.
The sources are organized as a set of four files, with one main program and no third party
dependencies (apart from the standard C library). Further, the makefile supplied in the
download does not suggest any specific compiler flag requirements except for the 'fast-
math’ flag. The call graph for the main program in the implementation of the method is
shown in Figure 4.1. Generated using the Doxygen the figure shows that the implemen-
tation of TMalign has very few dependencies. The program is organized in a set of 4
self-sufficient files with dependencies only the standard C library.

Exploitable Aspects

Based on a preliminary analysis of the algorithm and its implementation, the tasks of a)
generating fragment pairs for the two protein structures and b) calculating the similarity
matrix for the fragment pairs could be performed in parallel. This would involve distribut-
ing the protein into multiple nodes, and calculating the pair-wise similarity of different frag-
ments simultaneously. Subsequently, the similarity scores can be collected to create the
similarity matrix which is used in generating the final alignment. The work described can
be performed using the standard Map-and-Reduce tasks used in MPI programming.

A. Sharma 64

Efficient algorithms and architectures for protein 3-D structure comparison

TMalign.cpp

TMalign.h

| basic_fun.h NW.h Kabsch.h

sl DN

stio.h stellib.h math.h time.h string mallee.h estring sstream iostream fstream vector iterator algorithm

Figure 4.1: TMalign - main call graph

4.2.2 Combinatorial Extension
Summary

In the Combinatorial Extension (CE) algorithm [119] structural alignment of two proteins
A and B, of lengths N, and N, respectively, is the longest continuous path P of Aligned
Fragment Pairs (AFPs) of size m in a similarity matrix S, of size (N, — m) * (N, — m), rep-
resenting pairwise structural similarity score of all AFPs. The algorithm allows generation
of gapped sequential alignments of protein structures. Using the similarity matrix S, em-
pirically determined value of m (default value is 8) and distance based heuristic similarity
evaluation and path extension formulas, pairwise structural alignments of proteins can be
performed. In the original publication an average alignment time of 20 seconds, using a
Sun Microsystems Inc. Ultra Sparc Il processor (248 Mhz), was reported.

Implementation Analysis

The CE algorithm consists of programs written in C++. An analysis of the program, gen-
erated using SLOCCount, revealed that it consists of 13,856 lines of code. The sources
are organized as the main program and a library on which it depends with no third party
dependencies (apart from the standard C library). Further, the makefile supplied in the
download does not suggest any specific compiler optimization flag requirement. The call
graph for the main program in the implementation of the method is presented in Figure 4.2.
Generated using Doxygen, the figure highlights the dependency of the main program on
a library which is also included in the download package. The core functions in the main
program as well as the library depend only on the standard C libraries including the math
library.

Exploitable Aspects

Based on a preliminary analysis of the algorithm and its implementation, the dynamic
programming (DP) steps can be performed in a distributed manner. This would involve
distributing the similarity matrix over the multiple compute nodes, and performing the DP in
a parallel instead of the serial implementation that is currently used. Since DP is performed
twice during the program execution, for every pairwise structure comparison, a significant

65 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

speed-up could be achieved by introducing parallelism.

A. Sharma 66

Efficient algorithms and architectures for protein 3-D structure comparison

A. Sharma

67

ydeab [jes ulew - uoisualxy [eliojeuIquio) :Zy ainbi4

yolplis yqips ypisiun ewyshs oy |y 'eounosel/shs yBuwys yrew y'sadfysks U wedip '1eis/shs

y [1inosiw wod; | wod wod; "

e

y'wesed/sis ysawiyss

= e

Efficient algorithms and architectures for protein 3-D structure comparison

4.2.3 Universal Similarity Metric
Summary

In [59] a method inspired by information theory, Universal Similarity Metric (USM), is ap-
plied to assess similarity between a pair of protein structures. USM relies on the Kol-
mogorov complexity [55], K (.) of an object o, defined by the length of the shortest pro-
gram of a Universal Turing Machine U needed to output o, described in Equation (4.1).
Two related formulas pertinent to the derivation of the USM are provided in Equation (4.2)
and Equation (4.3). Equation (4.2) shows the calculation of the conditional Kolmogorov
complexity of an object o; given object o, it is a measure of the information required to
produce object 1 if object 2 is given i.e. transforming one protein structure into another.
The information distance between the two objects then is defined by Equation (4.3).

K (o) = min{|P|, P aprogramandU(P) = o} 4.1)
K(01]09) = min{|P|, P aprogramandU (P, 0y) = 01} (4.2)
ID(01,09) = max{K(01]|0s), K(02|01)} (4.3)

The Universal Similarity Metric for a pair of objects, protein structures in this case, is then
defined by Equation (4.4) below,

maz{ K (01]05), K(0s|07)}

d(o1,02) = maz{K (o), K(02)}

(4.4)

where o7(0}) indicates the shortest program for o, (or 0;). The protein structures of each
of the two proteins are converted to contact maps. Using the contact map representation
of the protein structures along with Equation (4.4) a similarity value for the two structures
is produced.

Implementation Analysis

The USM algorithm consists of programs written in Java. An analysis of the program,
generated using SLOCCount, revealed that it consists of 686 lines of code. The sources
are organized as a set of three files.

A. Sharma 68

Efficient algorithms and architectures for protein 3-D structure comparison

Exploitable Aspects

Based on a preliminary analysis of the algorithm, the comparison of the contact maps rep-
resenting the protein structures can be performed in a distributed manner. The calculation
of Equation (4.4), which yields the similarity value for the given structures, is performed
over two square matrices, each one representing one contact map. The comparison at
each individual cell is independent of the others and the result is later combined to pro-
duce a similarity value and alignment. The task could be distributed among multiple cores
in order to be performed quicker.

4.3 Characteristics of pairwise PSC

We studied the variation in the pairwise PSC processing times with respect to the sum
of the lengths and product of the lengths of the pair proteins. The analysis was carried
out using processing times recorded on the PC. Figure 4.3, shows the processing times
for the pairwise PSC tasks as the normalized sum of lengths and the normalized sum of
product of lengths of pair proteins are varied from 0 to 1. The USM PSC method was
excluded from this analysis due to the extremely small pairwise processing times. The
dotted line in the figures shows the best fit quadratic curve for the observed data points.
The figure clearly highlights the processing time requirement differences between CE and
TMalign.

A study of the variation of pairwise PSC times with respect to combination of lengths of
pair proteins reveals an interesting trend. The time required for completing a pairwise
PSC task is clearly a function of the lengths of both proteins forming the pair as can be
seen in Figure 4.3. The best fit achieved with the product of lengths of the pair proteins
is better than that achieved with the sum of lengths. The relative speed for completing a
pairwise PSC task, given a list of pairwise PSC tasks, depends on the properties of the
pairs participating rather than the specific PSC method being used. This is also evident
from the similarity in slowest pairs for different algorithms as shown in Table 4.1. However,
the absolute time required for completing a pairwise PSC task depends on the complexity
of the method used. Since the complexity of one PSC method as compared to another
cannot be known a-priori, it cannot be used as a factor in the partitioning scheme. Based
on the above analysis product of lengths and sum of lengths of the pair of proteins were
used individually as parameters for developing load balancing schemes for the ported
algorithms. Further the need for balancing across multiple algorithms, in the MCPSC
setup, is met by jobs of each algorithm individually across all processing elements.

Table 4.1 lists the 10 slowest pairwise PSC tasks per algorithm and it can be seen that
the lengths of the pairs in each case is very high. We performed a statistical analysis us-
ing SecStANT [70] of the proteins participating in the 10 slowest pairwise PSC tasks and
the 10 fastest. The parameters on which SecStAnT compares proteins are secondary
structure characteristics - Bond Angle, Dihedral Angle, Theta and Psi. Results of the 1-
parameter and 2-parameter statistical analysis, distributions and correlations, performed

69 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

CK34 dataset RS119 dataset
9 T T T T T) 25 T T T T T T T T T
8 - : - o
7 20 - J
—~ 6 .
\g 5 i g 15
5
E L _ QL
£ 4 o E 10k
3k O .
2+ o - 51
1| g O 2
‘ _ X ISK o =
o1 02 03 04 05 06 07 08 09 1 0 0l 02 03 04 05 06 07 08 09 1
Sum of lengths of pair proteins Sum of lengths of pair proteins
o CE O CE
X TMalign X TMalign
CK34 dataset RS119 dataset
9 T T | T T) 25 T T T T I — I — T
81 v i (0]
7+ 0 ‘_ 20 .
6 - o
2 9
2 5F _ 2
E 4 o 7 QE)
= osr o i =
2+ o _
. ® o
1 BFO [0) X -
3 - XX
0 s K<~ 7O~ KX ! !
0 01 02 03 04 05 06 07 08 09 1 0.1 0.2
Product of lengths of pair proteins Product of lengths of pair proteins
o CE o CE
X TMalign X TMalign

Figure 4.3: Comparison of pairwise PSC processing times using TMalign and CE, with respect to
the normalized sum of lengths and normalized product of lengths of pair proteins. The dotted lines
show the quadratic best-fit for the data.

A. Sharma 70

Efficient algorithms and architectures for protein 3-D structure comparison

Table 4.1: The table lists pairs of proteins (prot) and their lengths (len). The protein pairs included
in the table are those that perform slowest in the PSC experiments with both TMalign and CE
algorithms. The pairs that are slowest for both algorithms from the two datasets are consistent
indicating that the relative speed of pairwise PSC, in a given dataset, depends largely on the pair
being compared rather than the method used.

TMalign CK34 TMalign RS119
prot1 | prot2 [len1 | len2 | prot1 | prot2 | len1 | len 2
1ct9 4enl 553 | 436 | 6acn | 6acn 754 | 754
4enl 1ct9 436 | 553 | 6acn | 2gls 754 | 469
2mnr | 1ct9 357 | 553 | 2qls 6acn | 469 | 754
1ct9 2mnr | 553 | 357 | 6acn 1lap 754 | 487
6xia 1ct9 387 | 553 1lap 6acn | 487 | 754
1chr 1ct9 370 | 553 | 7icd Gacn | 416 | 754
1ct9 6xia 553 | 387 | 6acn | 7icd 754 | 416
1ct9 1chr 553 | 370 | 2aat 6acn 396 | 754
1ct9 1ct9 553 | 553 | 6acn | 2aat 754 | 396
2mnr | 4enl 357 | 436 | 6cets 6acn | 433 | 754
CE CK34 CE RS119
prot1 | prot2 [len1 | len2 | prot1 | prot2 | len1 | len 2
1ct9 6xia 553 | 387 | 6acn | 2gls 754 | 469
1ct9 4enl 553 | 436 | 6acn 1lap 754 | 487
4enl 1ct9 436 | 553 | 6acn | 6cpp | 754 | 414
6xia 1ct9 387 553 6acn 2phh | 754 394
1ct9 1chr 553 | 370 | 2gls Gacn | 469 | 754
1ct9 2mnr | 553 | 357 | 6acn | 6cts 754 | 433
2mnr | 1ct9 357 | 553 | 1lap G6acn | 487 | 754
1chr 1ct9 370 | 553 |6cpp |Bacn | 414 | 754
1ct9 1ct9 553 | 553 | 6acn |4cms | 754 323
4enl 6xia 436 | 387 | 2phh | 6acn | 394 | 754

71

A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

did not show any significant statistical difference between the two datasets (slowest PSC
domains and fastest PSC domains). However, it was observed that the slowest pairs con-
tained the HIx310Alpha super secondary structure while this was absent from the fastest
pairs. The 310-helix is known to occur rarely in protein domains, because the tight pack-
ing of the backbone atoms makes it energetically unstable. This structural characteristic
might explain the increased structure alignment times for some domains. Further, com-
paring the proteins using there UniPort entries we observed that most of the domains in
the slowest set are Cytoplasmic while the fastest domains are Membrane proteins.

4.4 Fine-grained parallelism for MCPSC

In this section we present fine-grained parallelism solutions for specific PSC methods. We
use the proposed solutions to carry out an analysis of the gain from implementing such
solutions with an FPGA.

441 Parallel TMalign
QCPSuperimposer

During the course of our analysis of TMalign, the residue superimposition was identified
as the key parallelizable section, therefore, we looked at fast algorithms for performing
this operation. Current implementation of TMalign makes use of Singular Value Decom-
position (SVD) to find the best rotation and translation for put two point sets on top of each
other i.e. minimize the Root Mean Square Distance (RMSD) between the point sets. The
superposition of two sets of 3-dimensional points is equivalent to finding the orthogonal
rotation and translation that minimizes the squared Euclidean distance between the rows
of two matrices corresponding to the two structures being compared.

The Quaternion Characteristic Polynomial (QCP) based method is the fastest method
known for determining the minimum RMSD between two structures and for determining
the optimal least-squares rotation matrix [129]. In the QCP method, the RMSD is first
evaluated by solving for the most positive eigenvalue of the 4 x 4 key matrix using a
Newton-Raphson algorithm that quickly finds the largest root (eigenvalue) from the char-
acteristic polynomial. The minimum RMSD is then calculated from the largest eigenvalue.
The best rotation is given by the corresponding eigenvector, which is calculated from a
row of the adjoint matrix. The method has several advantages: a) the time required to cal-
culate the rotation matrix is independent of the system size after a special 3 x 3 matrix is
constructed from the coordinates, b) no special cases need to be handled separately, and
c) the approach is extremely fast, straightforward, and robust, since there is no expensive
matrix inversion or decomposition.

We therefore used QCP as the basis of our hardware design for the superimposer in the
TMalign SoC. Prior to its implementation we developed a Python-C implementation to

A. Sharma 72

Efficient algorithms and architectures for protein 3-D structure comparison

SVD vs QCP for superimposing structures
0.3 . : : : ; : : ; ;

025

015

Time (msec)

01 ¢

005

0 1 1 1 1 1 1 1
0 10 20 30 40 50 &0 70 80 a0 100

Length of residue

Figure 4.4: Comparative performance of QCPSuperimposer to the existing SVD based BioPython
structure superimposer.

study its characteristics with respect to the more standard SVD based implementations.
In our implementation, accepted for release in BioPython v 1.66, the most computation-
ally intensive step is implemented in C language. The QCPSuperimposer, that we devel-
oped, has three major steps a) centering coordinates of structures being compared, b)
calculating the inner product of the centered matrices, and c) finding optimal rotation and
translation. We implemented Steps a and b via the fast NumPy Python library and Step c
was implemented in pure C with bindings to make it callable from Python.

We compared the performance of our implementation with that of the existing implemen-
tation in BioPython. Using randomly selected pair of domains from the Chew-Kedem
(CK34) dataset the time for superimposing different length sub-structures was recorded.
The length of sub-structures was varied from 10 to 100. Figure 4.4, shows the compar-
ative performance of the two implementations. As can be seen QCPSuperimposer is
consistently faster than the existing implementation by a factor of 2.

73 A. Sharma

http://biopython.open-bio.org/SRC/biopython/NEWS

Efficient algorithms and architectures for protein 3-D structure comparison

TMASoC

We developed a software-hardware co-design for parallelism TMalign with the help of
an FPGA. Our analysis was based on profiling results obtained for pairwise PSC using
TMalign carried out on a PC. Our analysis showed that majority of the processing time in
pairwise PSC using TMalign, is spent in superimposing sets of residues from the struc-
tures of the pair of proteins. Implementation of a fast routine (QCProt) that performs this
function was undertaken and found to be very resource intensive, even for large FPGAs
such as the Kintex-7. However, assuming the availability of sufficient resources, such an
implementation would still get limited by Amdahl’s law, to a speedup of 1.31 since the par-
allel part of the algorithm forms 24% of the overall. The typical approach to overcoming
this situation is to identify other parts that may be parallelizable, however our analysis did
not show any other parts of TMalign to be amenable to parallel implementation.

Parallel USM

We also studied the USM PSC method for speedup using fine-grained parallelism. Ouir,
analysis of the method revealed that it is composed of three major parts a) self-residue
distance calculation for each protein, b) extraction of contacts for each protein and c)
calculation of similarity metric using compression. The first part can be calculated by
N x N processing elements (PE) in unit time given each PE has coordinates of two alpha-
carbons of the protein structure. The output from each of these PEs, distance between the
alpha-carbons, can then be used to generate a list of 0 or 1 value corresponding to each
PE, with a 1 indicating a output higher than some threshold. These two steps can happen
in 1 cycle each, given sufficient parallel hardware. Subsequently, four compression values
need to be generated to calculate the similarity score. This is the most complex part of the
system and requires implementation of a compression algorithm in hardware. Using any
such implementation would allow the USM method to be fully implemented in hardware.
However, we found that even a very efficient implementation (assuming infinite resources
to allow maximum parallelization) provides unreasonably low speedup.

Let us assume a data transfer rate of 40 MB/sec between the PC and the FPGA and a
compression rate of the LZA implementation 198.4 MB/sec. Further, we assume that the
average length of a protein is 400 alpha-carbons, which gives a total transferable data
per protein of 5 KB, corresponding to a data transfer time of 0.25 msec for two protein
structures between the PC and the FPGA. The size of contacts data to compress, absence
of contact represented by 0 and presence by 1 (step 1 and 2), will correspond to 2 KB per
protein giving a total time of 0.06 msec for 4 compressions (one for each protein and one
for each ordered combination). Thus the minimum time, assuming fully parallelized parts
1 and 2, for an average pairwise PSC using USM with the hardware implementation will be
0.3 msec. A modern PC running at 3 GHz requires an average pairwise PSC time for USM
of 0.53 msec, which results in our optimal FPGA implementation returning a speedup of
1.8.

A. Sharma 74

Efficient algorithms and architectures for protein 3-D structure comparison

While parallel implementation for TMalign suffers from a very small parallel portion, the
USM implementation suffers from cost of data transfer. Typical, PSC methods make use
of heuristic iterations with optimal rotation calculation as in TMalign or contact map gener-
ation followed by some method for their comparison. Our parallel implementations there-
fore represent common shortcomings likely to be encountered in introducing fine-grained
parallelism for general PSC methods, rendering it a futile exercise.

4.5 A theoretical model for MCPSC

In [113], the authors developed a framework for high-throughput MCPSC using a cluster of
computers. In their work they investigated strategies for distributing PSC jobs over multiple
PEs. Given a set of PEs P, P, ..., P, (assumed to be homogeneous for simplicity) and
the number of pairwise PSC tasks being) x D x M, where (Q = number of query protein
structures, D = number of database protein structures and M = number of PSC methods
to be computed, some of the possible partitioning schemes are:

1. Each pairwise PSC per method is treated as a separate job. Thisresultsin Q x D x M
jobs.

2. Each pairwise PSC is treated as a job. This results in QQ x D jobs.
3. All pairwise PSC per method are treaded as a job. This results in M jobs.

4. Comparison of a subset of pairs of proteins with a set/subset of methods to create
a balanced number of jobs.

Options 1 and 2 are discarded as being too fine-grained and option 3 as being too coarse-
grained [113]. They investigated option 4, developing strategies for optimal performance.
The solution developed delivers a high speedup at a high efficiency on a cluster of 64
computers. A key factor in determining which strategy to use is the interprocess commu-
nication cost which is high in the case of a standard network of computers. This problem
is highly suited to parallelization using NoC based many-core processors, discussed in
detail in Chapter 5, due to the low cost of inter core communication and the large number
of processing elements.

The low cost of inter-core communication in both multi- and many-core CPUs and the
low cost of development (programming effort) for these architectures, makes them ideal
candidates for developing accessible solutions for fast MCPSC. On such architectures
the most fine-grained job distribution strategy is perhaps ideal to capitalize on their ad-
vantages. The focus of the solution developed, therefore, shifts to effective utilization of
the processing elements by carrying out load balancing and avoiding costly memory copy
operations as much as possible. At the hardware level these architectures provide the
flexibility of combining processing elements as needed, which is a much desired feature
as discussed in Chapter 3. Solutions developed for these architectures must therefore

75 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

enable this flexibility to percolate to the software as well. The applications and libraries
developed in this work, described in Chapters 5 and 8, are built around this as a basic
principle.

A. Sharma 76

Efficient algorithms and architectures for protein 3-D structure comparison

5. PARALLEL MCPSC FOR A NETWORK-ON-CHIP PROCESSOR
ARCHITECTURE

In this chapter we discuss in detail the Intel SCC many-core processor. The software and
hardware architecture associated with the processor is discussed. We describe in detail
the MCPSC application developed in this work including the algorithmic skeleton library
developed.

5.1 The Intel SCC

The "Single-chip Cloud Computer” (SCC) , is an experimental Intel architecture research
microprocessor containing 48 cores integrated on a silicon CPU chip [74]. It has multiple
dual x86 core tiles arranged in a 6x4 grid, memory controllers and 24-router mesh network,
depicted in Figure 5.1. The technology used is intended to scale many-core processors
to 100 cores and beyond, forming an on-chip network. The novel many-core architecture
includes innovations for scalability in terms of energy-efficiency, core-core communication
and techniques that enable software to dynamically configure voltage and frequency. The
cores on the chip can run separate operating systems acting like independent computa-
tional nodes that communicate with other nodes over a packet-based network.

JTAG

Iv0 <<:‘I‘596§(>

SCC die

4] Management Console PC

Figure 5.1: Intel SCC System Overview [74].

Networks on Chip
Network on Chip (NoC) is a method to design the communication subsystem between

many cores residing on a single System-on-Chip (SoC). NoCs can span synchronous
and asynchronous clock domains or use unclocked asynchronous logic [17]. Networking

77 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Table 5.1: Bus-versus-Network Arguments (taken from [17])

Bus Pros & Cons

Network Pros & Cons

Every unit attached adds parasitic capacitance,
therefore electrical performance degrades with
growth.

Only point-to-point one-way wires are used, for
all network sizes, thus local performance is not
degraded when scaling.

Bus timing is difficult in a deep submicron pro-
cess.

Network wires can be pipelined because links are
point-to-point.

Bus arbitration can become a bottleneck. The ar-
bitration delay grows with the number of masters.

Routing decisions are distributed, if the network
protocol is made non-central.

The bus arbiter is instance-specific.

The same router may be re-instantiated, for all
network sizes.

Bus testability is problematic and slow.

Locally placed dedicated BIST is fast and offers
good test coverage.

Bandwidth is limited and shared by all units at-
tached.

Aggregated bandwidth scales with the network
size.

Bus latency is wire-speed once arbiter has
granted control.

Internal network contention may cause a latency.

Any bus is almost directly compatible with most
available [IPs, including software running on
CPUs.

Bus-oriented IPs need smart wrappers. Software
needs clean synchronization in multiprocessor
systems.

The concepts are simple and well understood.

System designers need reeducation for new con-

cepts.

theory and methods of on-chip communication are employed in NoC designs to improve
communication capabilities for SoCs. These methods have typically yielded significant im-
provements over conventional bus and crossbar interconnections as the number of cores
increases [108]. Further, NoCs also improves the scalability and power efficiency of SoCs.
Several leading processor manufacturers such as Intel, IBM etc., have developed proces-
sors containing tens of cores on a single chip using networking for inter-core communica-
tion [109, 108]. Table 5.1, lists the Pros and Cons of the two main strategies for inter core
communication and highlights the benefits of NoCs.

A NoC typically consists of multiple point-to-point data links interconnected by routers.
This allows messages to be relayed from any source module to any destination module
using the data links [12]. Routing decisions, for data flow, is made at the routers [49].
Thus a NoC is similar to a modern telecommunications network, using packet switching
over multiplexed links.

A key aspect in using NoCs to improve performance of programs is understanding the
memory hierarchy of the specific chip for which the program is being targeted. References,
such as [108], discuss the issue in more detail and present unified models of memory
hierarchies found in common NoC based many-core processors.

Attempts have been made to utilize many-core architectures in Bioinformatics application
and also in the subdomain of structural proteomics. The majority of the applications at-
tempted belong to pairwise or multiple sequence comparison category. NoCs, however,
have not yet been extensively exploited in Bioinformatics [107]. The NoC based imple-
mentation of the sequence alignment algorithm, Needleman and Wunsch, developed in
[107] which shows significant speedup potential.

A. Sharma 78

Efficient algorithms and architectures for protein 3-D structure comparison

5.1.1 Hardware Architecture

Essentially the SCC resembles a cluster of computer nodes capable of communicating
with each other in much the same way as a cluster of independent machines. Salient
features of the SCC hardware architecture relevant to programming the chip are listed in
Table 5.2. The SCC is considered an excellent example of a cloud data center and a very
interesting platform due to the following features:

+ High-speed network
* Improved communication between cores
* Enhanced performance

» Energy efficiency

Intelligent data movement between cores

Table 5.2: Salient features of the SCC Chip by Intel.

Core architecture | 6x4 mesh, 2 Pentium P54c (x86) cores per tile
Local cache 256KB L2 Cache, 16KB shared MPB per tile
Main memory 4 iMCs, 16-64 GB total memory

Figure (5.2), shows details of individual tiles on the SCC many-core processor. Each core
of the SCC has L1 and L2 caches. In the SCC architecture, the L1 caches (16KB each)
are on the core while the L2 caches (256KB each) are on the tile next to the core with
each tile carrying 2 cores. Further, each tile also has a small message passing buffer
(MPB), of 16KB, and is shared among all the cores on the chip. Hence, with 24 tiles,
the SCC provides a message passing buffer of size 384KB. The SCC therefore provides
a hierarchy of memories usable by application programs for different purposes including
processing and communication.

PSAC | [sam Tile
(16
wach L1 L2 :n"'“
I
Mesh|
I/F
PS4C
[16KB zsaum '“"“I_I
each |_

Figure 5.2: Each of the 24 tiles in the SCC processor contains 2 cores with L1 and L2 caches and a
message passing buffer (MPB) [74].

A message-passing program sends a message from one core to another by placing the
data in the message passing buffers. The SCC also has a Traffic Generator, which is a unit

79 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

used primarily to test the performance capabilities of the mesh. This is done by injecting
and checking traffic patterns and may not be used in normal operation by application
programs. The Mesh Interface Unit (MIU), connecting the tiles to the mesh, build packets
from data to put it in the mesh and unpacks data coming in from the mesh. It controls the
flow of data on the mesh with a credit-based protocol and uses the round-robin scheme
to arbitrate between the two cores on the tile [74].

5.1.2 Software Architecture

From a programmers perspective the SCC provides a super computing environment where
the paradigm shift from standard programming is small. Programming a standard x86 core
and using Message Passing Interface for fast message exchange between processes is
currently employed widely for cluster programming. In order to facilitate development, a
minimal programming library RCCE, a compact, lightweight communication environment
written in C, is available with a basic API for MPI [2]. The main features of the RCCE
library are:

* RCCE supports message passing APIs and allows mapping tasks onto many-core
chips.

+ RCCE usage requires parallel programming experience with an understanding of
the underlying SCC hardware.

With the help of RCCE it is possible to build full scale application programs for the SCC
chip. The simple message passing environment provided by the RCCE makes it easy to
build communication systems with one-sided communication, such as is sufficient for inter-
task communication for parallelizing algorithms. Software for the SCC can be compiled
using the Intel C/C++ compiler or the GNU C/C++ compiler (gcc). Since the cores on the
SCC are x86 type the compilation must be performed for a 32 bit system.

An important aspect of programming the SCC, is the way the system memory is mapped
into a core’s address space. On the SCC the physical address space (32-bit) of each core
is divided into 256, 16 MB, chunks, which are mapped through a look-up table (LUT) to a
34-bit system address and the destination coordinate in the mesh [75]. The core address
starts off at 32 bits. The top 8 bits go to the LUT, which puts out 22 bits. The lower 24
bits pass through. Of those 22 bits coming from the LUT, the lower 10 bits are perpended
to the 24 bits that passed through, resulting in a 34-bit address. This is the address sent
to the memory controller. Each memory controller can address up to 16GB, hence the
34 bits. The LUT configuration determines whether a physical address refers to off-chip
DDR3 memory or on-die message passing buffer memory. Coherence between cores
must be managed by the programmer. A test-and-set register is provided for each core,
which can be used by application programs that require such coordination.

A program written using RCCE is typically expected to belong to the Single program mul-
tiple data (SPMD) computing model. From the programmers view each instance of the

A. Sharma 80

Efficient algorithms and architectures for protein 3-D structure comparison

program runs on a different core of the SCC. Each process receives a different data input
resulting in parallel processing being achieved. Message passing is employed, using the
RCCE, in order to synchronize the processes. RCCE also provides the programmer with
constructs for creating a shared memory space such that multiple cores can access it.
These constructs provide a useful method for sharing large data between multiple cores
while avoiding the cost of clogging the network with messages.

5.2 The Rckskel library

5.2.1 Overview

In order to facilitate development of PSC algorithms targeted for the SCC, we built a small
C library, called rckskel (rck Skeleton Library). We found that higher level constructs which
hide the details of the inter-process communication, e.g. polling and waiting, would sim-
plify introducing parallelism in PSC algorithms. To retain the flexibility offered by RCCE,
in combining processes running on different cores to form a pipeline or to perform parallel
execution, we decided to use algorithmic skeletons for building the library.

Rckskel implements algorithmic skeletons in addition to providing wrappers for common
RCCE related tasks. The library provides convenient wrappers for common operations,
such as environment initialization, testing how many cores are available to the program,
setting debug levels and finalization, performed by all applications built with the RCCE.

5.2.2 Operational semantics

The rckskel library provides a programmer with both task and data parallel skeletons.
The skeletons process a stream of input tasks and produce a stream of output results.
Furthermore, the skeletons are stateless and fully nestable.

« SEQ: This is a task sequencing construct where a list of tasks, which may contain
sub-tasks, are assigned to a set of processing elements but will be executed only
in the order in which they were given. This construct is typically useful for defining
the leaf node operations in a hierarchy of operations. Parameters to the function
include, ue_count (the number of processing elements), ue_ids (the specific pro-
cessing elements), check ready (function to be used for checking if a processing
element has been initialized) and task_count (the number of sub-tasks). The dots at
the end of the function definition denote a variable argument list of tasks. This con-
struct runs the jobs on the corresponding processing elements sequentially. Once
the last batch of jobs is submitted it returns to the calling code, without waiting for
them to complete.

void SEQ(int ue count, int *ue_ids,

81 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

int (*check_ready) (int),
int task _count,...);

* PAR: This is a task mapping construct where each task, which may contain sub-
tasks, is assigned a set of processing elements and the sub-tasks are processed in
parallel. This construct assigns the jobs to the corresponding processing elements
and returns to the calling code, without blocking till the jobs are completed. The
calling code will need to call the COLLECT construct if it needs to wait for the jobs
to finish.

void PAR(int ue count, int *ue_ids,
int (*check_ready) (int),
int task_count, ...)

* COLLECT: This is a task collection construct where a list of processing elements
is polled, till all elements return the results of their processing. The function to be
applied to the data returned can be specified and may perform operations on the
returned data, e.g. storing in an array for later use. The function does not block
waiting on processing elements in order but rather performs a busy round-robin loop.

void COLLECT(int ue_count,
int *ue_ids, int (*collector) (int));

* FARM: This is a master-slaves task execution construct. A controlling task is cre-
ated which ensures the execution of the tasks given until they complete. The master
process in this setup runs on one of the cores of the SCC. This is the highest level
construct currently implemented and takes care of ensuring that all processing ele-
ments are available before starting the processing and that all processing is com-
pleted when it returns. A task tree is generated from the parameters of the function
depending on the sub-tasks. If no tasks have been specified FARM works as a PAR
followed by a COLLECT. The tasks in the tree are processed as specified, in parallel
or in sequence, using the PAR, SEQ and COLLECT constructs described above.

void FARM(int ue count, int *ue_ ids,
int (*check_ready) (int),
int task_count, ...);

A. Sharma 82

Efficient algorithms and architectures for protein 3-D structure comparison

5.2.3 Instantiating rckskel skeletons

In order to describe working with the rckskel library we will consider the problem of adding
a vector of numbers and discuss implementations of the problem using rckskel skeletons.
The user must define the basic task, which in this case is addition of a given set of input
numbers.

An example of using the seq operation to add the first one-thousand integers is show in
Listing 5.1. The master node prepares the vector of data and passes it to a processing
node to add. The processing node blocks, waiting from data from the master, and on
receiving the data performs the addition and returns the results.

It can be noted that no parallelism is exploited in the seq code in case more than one
processing elements are available. To demonstrate parallel addition of the same set of
numbers we recreate the scenario with the map function. In order to use the map operation
the user must define the split and a merge functions. The main program using the map
operation would then be as shown in listing 5.2.

As can be seen from the listing, the change in complexity of the code in order to use
multiple cores is small. The number of cores utilized by the map operation depends on the
split function supplied by the user and the available cores. In the example described above
the split function creates three subsets from the data, if three processing elements are
available all three subsets will be processed simultaneously. However, if fewer processing
elements are available the parallelism achieved will be smaller. The dynamic allocation of
available processing elements is transparently handled by the library.

To conclude we will present an example of instantiating a Master-slaves setup using
rckskel operations. A template for a master-slaves implementation utilizing rckskel is
shown in Listing 5.3. The function name RCCE_APRP is the entry point for applications
built with RCCE. The division of master and slave related code, after the common vari-
able declaration and environment initializations, is highlighted by the if block, as typical for
SPMD-style code. The MASTER_ID is defined globally with a default value of 0, which im-
plies that the first core available to the program will be used to run the master process. The
master processing starts with creation of a FARM task where application specific methods,
master_send_job and master_receive_result, are supplied. These are application specific
because the data structure used by different applications vary.

The jobs to be processed, as well as the SCC cores on which the jobs should be run (uve_-
ids) are also specified in the task definition. The jobs are run using the FARM execution
construct. The check ready method supplied is used to start distribution of a job to a
slave when the slave becomes ready. The slave processing proceeds by waiting in a busy
loop, receiving data from the master process and returning results once the processing is
complete, until it receives a terminate message.

The client_receive_job method contains a blocking wait on the master and application

83 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Listing 5.1: An example of using the Seq operation. The controlling node prepares a job with some
integers and passes it to a client which returns a sum of the integers. Assume two client cores are
available

int main(int argc, char **argv) {
/!l variable declaration & environment setup

task t *task1, *task2;
if (ue_id == MASTER ID) {
task1 = create_task (MAP_rckskel, ’'0’,
&master_send_job, &master_receive result,
number_to_add1, ue_ids1);
task2 = create_task(MAP_rckskel, ’'0’,
&master_send_job, &master_receive_result,
number_to_add2, ue_ids2);
SEQ(ue_count, ue_ids, &check_ready, 2, task1, task2);
} else {
Il local initializations

while (TRUE) {
/!l get and process job or terminate
if (client_receive_job () == TRUE_) break;
/] return sum
RCCE_send((char *) &result,
sizeof (RESULT _BLOCK), MASTER ID);

A. Sharma 84

Efficient algorithms and architectures for protein 3-D structure comparison

Listing 5.2: An example of using the Map operation to add a set of integers. Each chunk is sent to
a different processing element and the sum’s returned by these are collected by the master
process using the user defined collector function.

int main(int argc, char **argv) {
/Il variable declaration & environment setup
task t *task;
if (ue_id == MASTER_ID) {
task = create_task (MAP_rckskel, ’'0’,

&master_send_job, &master_receive _result,
number_to_add, ue_ids);
MAP(ue_count, ue_ids, &check_ready,
COLLECT(ue_count,
} else {

1, task);
ue_ids, &collector);

// local initializations

while (TRUE) {
/1l get and process job or terminate

if (client_receive_job () == TRUE_) break;
// return sum

RCCE_send((char *) &result,
sizeof (RESULT_BLOCK), MASTER ID);
}

85 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

specific processing of data. The results are returned to the master in an application specific
data structure of type RESULT_BLOCK.

Listing 5.3: An example of using the Farm operation to perform all-vs-all pairwise PSC. User
defined functions are used for loading data and saving results. The Farm operation ensures all
available cores of the SCC are utilized for processing different pairs of structure comparisons in
parallel.

int main(int argc, char **argv) {
/!l variable declaration & environment setup

task _t *task;
if (ue_id == MASTER ID) {
task = create_task(MAP_rckskel, ’0’,
&master_send_job, &master_receive_result,
job_indexes, ue_ids);
FARM(ue_count, ue_ids, &check ready, 1, task);
} else {
/1l local initializations

while (TRUE) {
/!l get and process job or terminate
if (client_receive_job () == TRUE_) break;
RCCE_send((char *) &result,
sizeof (RESULT_BLOCK), MASTER ID);

}

int clien_receive_job () {
// wait to receive instruction from master
RCCE_recv((char *) &client_in_data,

sizeof (MasterToClientTransferBlock), MASTER ID);
Il early exit if master is asking to leave
if (client_in_data.die == TRUE_) return TRUE_;
/!l do PSC and store results in appropriate structures

return FALSE_;

A. Sharma 86

Efficient algorithms and architectures for protein 3-D structure comparison

5.3 Software framework for porting PSC methods

In this section we present the framework we used for porting a PSC methods, to many-
cores processor technology. Typically PSC involves one-to-all or all-to-all comparisons
of protein structures. Each pairwise structure comparison is an independent unit oper-
ation. Several pairwise comparison operations can therefore be performed in parallel if
the computing resources are available. Many-core processors provide several computing
elements, connected by a high speed network allowing distribution of jobs.

We propose the use of a master-slaves parallel implementation of the PSC algorithm,
where the master process is responsible for loading the structures to be compared and
distributing the pairwise comparison jobs to the slave processes. In a many-core pro-
cessor system, where the cores are connected by a high speed interconnection network,
the data transfer overhead is relatively small. By limiting data loading to a single pro-
cess we avoid bottlenecks, created due to multiple processes accessing the same data
concurrently. The slave processes perform pairwise structure comparison on structure
data received from the master and return results of processing to the master. The slave
processes continue the cycle until they receive a terminate signal from the master. This
simple strategy, where the master process polls the slave processes in a round-robin man-
ner, allows efficient use of the computing resources available to perform pairwise protein
structure comparisons.

We used the framework to port a TMalign and CE, to the master-slaves model. Additionally
we developed a C++ port of the USM PSC method in order to include it in all-vs-all MCPSC
processing. We made use of the rckskel library to combine serial processing of the USM
PSC tasks and parallel processing of CE and TMalign PSC tasks, generated for all-vs-all
comparison of protein 3D structure.

In order to develop the parallel implementation, we first ported TMalign software to a pure
C implementation. The Fortran code of TMalign was converted to C using an F2C con-
verter. The resulting code had a dependency on the F2C library and was therefore cleaned
up manually to remove all dependencies. This required altering the data types, as well
as implementing four basic math functions: max, min, dabs and abs. Additionally, the I/O
operations were changed to use C functions. We compared the output of the C imple-
mentation with that of the Fortran implementation and found matching results.

In order to develop the parallel implementation of CE we used the C++ sources as the
base code. The C++ implementation of CE uses a small structure manipulation library
as an external binary. This library was modified in order to link it to the main CE code
and deprecate the need for the program to run a binary. A master-slaves parallel imple-
mentation of the C/C++ code, using the rckskel library was then generated similar to the
master-slaves port developed for TMalign in [114]. A C++ implementation of the USM
method was also developed. The implementation makes use of C++ gzip compression
routines to compare the protein structures by the compression ratio of their contact maps.

The parallel algorithm developed makes use of the master-slaves implementation pro-
vided by the rckskel library. The implementation contains a single master process which

87 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Data: (): query protein structures, D: database of known protein structures
// sequential process
calc_usm_dist(Q, D)
/I parallel process
for min [CE, TMalign] do
for q in Q do

for din D do

| jobs.add(in n, using method m, protein pair [q, d])

end
end
end
par_calc_psc_dist(jobs)
Algorithm 2: A pseudo-code of the MCPSC computation implemented in this work. The USM jobs are processed sequentially,

while CE and TMalign pairwise computations are parallelized. Each node n performs a pairwise comparison of proteins (g, d) using one
of the methods (m). par_calc_psc_dist assigns each pairwise task to a unique processing node. If n is specified the jobs assignment

is done to the specific node otherwise an available node is used.

generates a list of jobs, each involving a single pairwise protein structure comparison us-
ing a given PSC method. The USM jobs are processed sequentially by the master due to
the fast processing speed for these jobs as shown in the results section. CE and TMalign
pairwise PSC jobs are then processed in parallel by distributing them to the slave pro-
cesses available to the master. The first core supplied to the program is used to run the
master process and all subsequent cores are used to run slave processes. A pseudo-code
of the process implemented by the application is listed in Algorithm 2.

The pseudo-code listed in Algorithm 2 covers the general case of comparing a set of query
proteins with a set of database proteins using the three methods ported in this work. When
the set of query proteins is the same as the set of database proteins the pseudo-code
covers the all-vs-all comparison. Benchmarking of the performance of various strategies
for job distribution in this work were carried out by measuring the time for completion of all-
vs-all comparisons of proteins. When the query proteins are different from the database
proteins the pseudo-code covers the many-to-many comparison which was used in this
work for comparing the performance of MCPSC with its component PSC methods.

A. Sharma 88

Efficient algorithms and architectures for protein 3-D structure comparison

6. OPTIMAL LOAD-BALANCING FOR MCPSC ON THE SCC

In this chapter we look at the load balancing methods implemented to distribute PSC jobs
to the multiple processing elements of the SCC. In this chapter we discuss the basis that
was used for developing load balancing strategies. Experiments designed to compare the
load balancing strategies in terms of time to perform all-to-all MCPSC are presented and
the results of the experiments discussed.

6.1 Load balancing methods

The ability to dynamically adapt an unstructured mesh consisting of processing elements
(PE) is necessary for solving computational problems with evolving physical features. An
efficient parallel implementation using such a mesh requires load balancing. Dynamic
load balancing aims to balance workloads across the PEs at runtime while attempting to
minimize the communication. A problem is therefore load balanced when the PEs have
nearly equal loads. The objective, of course, is to assign work to the PEs so that the total
runtime is minimized.

6.1.1 Static partitioning

Partitioning is a static load balancing method in which the master determines the jobs
to be assigned to each slave before the job distribution commences. Determining this
assignment (job-to-core mapping) is equivalent to constructing N equal partitions for a list
of elements, which is an NP-hard problem [78]. In our case N is the number of cores equal
to 47 when all SCC cores are used. We investigated methods for PSC jobs partitioning
based on the sum and the product of the lengths of the two proteins to be compared.

6.1.2 Dynamic round robin

Round-robin [120] is a dynamic load balancing method in which the master process main-
tains a list of jobs and hands the next job in the list to the next free slave process. Itis worth
noting that if the list is presorted based on attributes that are known to be proportional to
the processing time this would naturally result in little to no idle times for the slave pro-
cesses. However, in such a scheme the master may become a bottleneck as the number
of slaves increases.

89 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

6.2 Experiments

We have statically partitioned the PSC jobs using as attribute the sum of lengths (product
of lengths) of the paired proteins to be compared. The partitions are generated using the
Longest Processing Time (LPT) algorithm: The jobs are sorted in descending order by
sum of lengths (product of lengths) and then assigned to the partition with the smallest
total running sum. These partitions will be referred to as “Greedy” partitions from now
on. Since the job partitions are processed on different cores this strategy is expected to
balance the processing times by reducing idle times.

Figure 6.1 shows the partitions generated using a random partitioning and a greedy par-
titioning scheme based on the sum of lengths and the product of lengths as attributes.
Partitions created with the random scheme, with equal number of pair proteins per parti-
tion, vary greatly in terms of the total normalized sum of the sum (or product) of the pair
protein lengths. The size of this normalized sum is expected to be proportional to the
overall processing time each partition will require when assigned to a core. Therefore, if
each partition of PSC tasks created with the random scheme is processed on a different
core, several cores will have significant idle times at the end. On the contrary, partitions
created with the greedy scheme are almost equal as to the normalized sum of the sum
(or product) of the pair protein lengths. Hence, if each partition of PSC tasks created by
the greedy scheme is processed on a different processing element (PE), idle times are
expected to be minimized.

Random split CK34 Dataset Random split RS119 Dataset
p= p=]
© ©]
o o .
o o]
0
0 2 4 6 8 10 12 0 10 20 30 40 50 60 70 80 90 100
Greedy (sum) split CK34 Dataset Greedy (sum) split RS119 Dataset

Core Id
N
Core Id

o

05 1 15 2 25 3 35 4

Greedy (prod) split CK34 Dataset

Core Id
Core Id

Figure 6.1: The 47 partitions created from list of PSC tasks sorted randomly or by the sum
(product) of lengths of pair proteins. Each horizontal line represents the sum of the normalized
lengths of the protein pairs assigned to that partition.

A. Sharma 90

Efficient algorithms and architectures for protein 3-D structure comparison

6.3 Comparison of load balancing strategies

Figures 6.2 and 6.3 show the space-time parallel execution profiles under different job
assignment schemes. In Figure 6.2 the space-time execution profiles of the random and
greedy static partitioning schemes are compared. For random partitioning the jobs are
randomly partitioned into 47 sets, one set per slave, while in the greedy partitioning the
partitions created using the LPT algorithm with the product of lengths of paired proteins
as an attribute. In Figure 6.3 the space-time execution profiles of dynamic round-robin
job distribution schemes are compared. In the simple round-robin strategy the global job
list maintained by the master is filled with jobs randomly, while in the sorted round-robin
strategy the list is filled with jobs and then sorted according to the sum (product) of lengths
of paired proteins.

Space-time profiling of job partitioning
on the SCC for the MCPSC task

Random partitioning for CK34 Dataset Random partitioning for RS119 Dataset
50 T T T T 50 T T
40 - e 40 e
= = —
= 30 4 = 30 g
2 —_———— 2 e
o - o u
§ 2 g § 2
10 g 10 — g
o 1 1 1 o 1
0 100 200 300 400 500 0 1500 3000 4500
Time (seconds) Time (seconds)
Greedy partitioning for CK34 Dataset Greedy partitioning for RS119 Dataset
50 T T T T 50 T T
40 g 40 g
= =
Y 1 3 g
5 —_— 5
o _————— . o .
§ § =
10 s 10 B s
0 —_—— s 1 1 0 == _—
0 100 200 300 400 500 0 1500 3000 4500
Time (seconds) Time (seconds)

Figure 6.2: Space-time profiling of the partitioning schemes for the CK34 and RS119 datasets.
Each horizontal line represents work performed by an individual core of the SCC.

In Table 6.1 we compare the performance of the master-slaves setup, with one master and
47 slaves, to that of a single core of the SCC and show the speedup and the efficiency
achieved using the CK34 and RS119 datasets. TMalign and CE jobs were run under the
master-slaves model, while USM jobs were processed by the master due to the negligible
time required by these jobs.

The greedy static partitioning scheme improves on the performance of the random par-
titioning scheme, but is inadequate for the SCC where the cost of data transfer between
cores is low. This scheme would be of interest in computer clusters where interconnec-
tion networks are slow. The greedy partitioning scheme could also be beneficial on larger
many-core processors, where the master may become a bottleneck, making off-line cre-

91 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Space-time profiling of Round-robin
job asignment on the SCC for the MCPSC task

Random job assignment (CK34) Random job assignment (RS119)

2 ' o 2
2 ° 3
3 3 1
0 50 100 150 200 250 300 0 900 1800 2700 3600
Time (seconds) Time (seconds)
Sum sorted job assignment (CK34) Sum sorted job assignment (RS119)
= ' 4 =
o 1 @ |
o T o |
O] O |
0 50 100 150 200 250 300 0 900 1800 2700 3600
Time (seconds) Time (seconds)

Product sorted job assignment (CK34) Product sorted job assignment (RS119)
= 2 —] = nE]
o 1 e
3 1 81

0 50 100 150 200 250 300 0 900 1800 2700 3600
Time (seconds) Time (seconds)

Figure 6.3: Space-time profiling of the round-robin job assignment for the CK34 and RS119
datasets. Each horizontal line represents work performed by an individual core of the SCC.

Table 6.1: Comparison of speedup and efficiency achieved by the load balancing schemes in
processing the all-to-all MCPSC task vis-a-vie the single core (SCC) processing times. The
efficiency is calculated assuming 47 processing elements (one PE serves as master). All times are

in seconds.

Load Balancing scheme - Dataset CK34. . . Dataset RS119 —

Time | Speedup | Efficiency Time | Speedup | Efficiency
Serial (1 SCC core) 9698 - - | 166000 - -
Random 479 20 0.43 4765 35 0.74
Greedy Partitioning (sum) 409 24 0.50 4300 39 0.82
Greedy Partitioning (product) 396 28 0.59 4433 38 0.80
Round Robin (sum sorted) 239 41 0.86 3930 42 0.90
Round Robin (product sorted) | 238 41 0.86 3930 42 0.90

ation of batches of PSC tasks essential. In such a scenario however, other techniques
such as work-stealing, would need to be assessed before selecting the most appropriate
method.

The round-robin dynamic job assignment strategy outperforms the best offline partitioning
scheme. Furthermore, the sorted round-robin flawlessly balances out the cores process-
ing times on both datasets, making it the best approach for distributing jobs to the cores
of the SCC. In this approach, the protein pairs are sorted in descending order of product
(or sum) of pair protein lengths. Specifically, for the one-to-many PSC case, we simply re-
trieve the database proteins in descending order of length and create pairwise PSC tasks
with the query protein. For the many-to-many PSC case however, we need to determine

A. Sharma 92

Efficient algorithms and architectures for protein 3-D structure comparison

the correct order of the proteins when the query proteins are received.

The sorted round-robin strategy distributes the jobs most efficiently for the proposed master-
slaves setup on the Intel SCC with 47 slaves. This setup achieves a 42 fold (40 fold)
speedup for the RS119 (CK34) dataset as compared to a single core of the SCC. The
speedup is almost linear, which suggests that high efficiency can be achieved even when
the many-core processor has more nodes. A bigger many-core processor, however, may
require using a hierarchy of masters to avoid a bottleneck on a single master node. In
such a scenario, a combination of partitioning schemes and round-robin job assignment
could be used to distribute jobs and minimize idle times. For instance, on larger NoC pro-
cessors a well balanced solution may require the use of clusters of processing elements,
concurrently processing PSC jobs with different methods. All PEs computing jobs of a
PSC method would receive jobs from a specific submaster.

93 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

A. Sharma 94

Efficient algorithms and architectures for protein 3-D structure comparison

7. PERFORMANCE BENCHMARKING: MULTI- VS MANY-CORE
PROCESSOR

In this chapter we compare the performances of the Intel SCC and the Intel i7 for all-to-all
MCPSC. In the first section we discuss the results of using the SCC in a master-slaves
setup to using it in a distributed setup. Comparison of the two setups is carried out by
performing all-to-all PSC using TMalign in the distributed setup and its master-slaves port
rckAlign.

In subsequent sections we present results of comparing the performance of the Intel SCC
with that of the Intel i7 using several protein structure datasets of varying sizes. Finally, in
the last section we present a qualitative comparison of MCPSC with its component PSC
methods.

7.1 SCC Usage

We compared rckAlign running on the SCC and the existing TMalign software used in
a distributed manner, to perform all-vs-all comparison for the CK34 dataset. In the dis-
tributed TMalign version, a controlling master process is run on the SCC host machine
(MCPC). The host process creates a list of jobs and distributes them to individual cores of
the SCC. Each process is responsible for loading its own structure data. Issuing a job to a
core is performed using the pssh remote execution command available on the MCPC. On
the other hand, when using rckAlign the data is loaded by the master process and slave
processes receive the data for pairwise structure comparison from the master process
using the SCC network. Results of the experiment are shown Figure 7.1.

As observed in Figure 7.1, rckAlign achieves faster processing times than when the mas-
ter process is running on the MCPC. There are two main reasons for this behavior: (a)
disk access through the Network File System (NFS) creates a bottleneck when multiple
processes are trying to access the data, and (b) high environment setup costs incurred
while issuing remote processing. The SCC-MCPC setup provides NFS access to disks
installed in the MCPC for the Linux system running on each individual core. When pro-
cesses running on several cores try to access the data stored in the shared partition of
the MCPC disk a bottleneck is created, by the MCPC disk controller, resulting in overall
increase in processing time. This situation is not encountered when all the protein related
data is loaded by a single process as is the case for rckAlign. Further, the master process
running on the MCPC starts a new process for each pairwise comparison, which has its
environment setup cost, thus increasing further the total processing time. Results of the
comparison thus validate the superiority of the approach where the master process runs
on one of the SCC cores rather than on the host PC machine. Additional overhead cost
is also avoided in rckAlign because all processes, master and slaves, are initialized once
for a given number of slaves.

95 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

led T T T T T T T T T
- TM-align ——]
D i rckAlign -------]
'S " 1
@
e -]
S I i
) - i
n
£ le2 F =
Q - .
g []
= :]
1el | | | | | | | | |

O 5 10 15 20 25 30 35 40 45 50
Number of cores

Figure 7.1: Performance comparison of parallel rckAlign with that of distributed TMalign software
(C port) for the Chew-Kedem dataset (CK34) as the number of slave cores used is increasing.

Table 7.1: Time required for the baseline all-vs-all PSC task using TMalign (C port) on two different
processors and datasets. All times are in seconds.

Processor Datasets
CK34 | RS119
AMD Athlon Il X2 250 2.4 GHz | 406 7298
Intel P54C Pentium 533 MHz 2029 | 28597

The times required for performing the all-vs-all comparisons for the two datasets using
the serial implementation of TMalign were measured, both for the AMD Athlon |l X2 250
2.4 GHz processor and for the P54C Intel Pentium SCC Core at 533 MHz. The times
obtained for the SCC core were used as the baseline for calculating the speedup achieved
by rckAlign running in parallel on the SCC. For running on a single SCC core, the TMalign
program was modified slightly, to load all the protein structures to be compared at the
start in order to be equivalent to the way rckAlign works. Results of the experiment are
presented in Table 7.1. When comparing baselines performance (using one core) the
faster AMD CPU outperforms as expected the much slower Intel P54C core.

The speedup achieved by the parallel rckAlign implementation on the SCC was mea-

A. Sharma 96

Efficient algorithms and architectures for protein 3-D structure comparison

Table 7.2: Performance of rckAlign in an all-vs-all PSC task on the CK34 and RS119 datasets.

Slave Cores CK34 RS119
Speedup | Time (sec) | Speedup | Time (sec)

1 1 2029 1 28597
3 2.94 689 2.96 9654
5 4.82 420 4.91 5818
7 6.66 305 6.95 4114
9 8.52 238 8.94 3195
11 10.34 196 10.97 2605
13 12.09 168 12.95 2208
15 13.74 148 14.88 1921
17 15.36 132 16.76 1705
19 16.89 120 18.64 1534
21 18.53 109 20.59 1389
23 20.03 101 22.52 1270
25 21.56 94 24.52 1166
27 23.02 88 26.49 1079
29 24.52 83 28.45 1005
31 25.72 79 30.37 941
33 27.68 73 32.32 885
35 28.43 71 34.21 836
37 29.75 68 36.14 791
39 30.97 65 38.01 752
41 32.60 62 39.74 719
43 33.59 60 41.49 689
45 34.45 59 43.40 659
47 36.17 56 44.78 640

sured for both datasets CK34 and RS119. This experiment was designed to measure the
speedup achieved as a function of the number of slave processes used as well as the size
of the datasets. The master process loads all the domains to be processed and creates
a list of jobs with all pairs (all-vs-all). The master process then distributes N jobs among
the N slaves and the results are gathered by polling the slaves in a round-robin manner.
The distribution of jobs and collection of results is carried out until all jobs have finished.
Communication between the master and the slaves is carried out using functions available
in the rckskel API. The number of active slaves was varied from 1 to 47 in order to assess
the impact of increasing the number of cores available for parallel processing. Results of
the experiment are shown in Figure 7.2 with detailed values presented in Table 7.2.

Figure 7.2 shows that the speedup achieved by rckAlign is increasing almost linearly with
the number of cores available for running slave processes. This is a result of the low
cost of exchanging data between processes running on cores connected by a high speed
interconnection network. If the data transfer times were high, the master process would

97 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Speedup Factor

O 5 10 15 20 25 30 35 40 45 50
Number of cores

Figure 7.2: Speedup achieved by rckAlign as the number of slave cores is increasing (from 1 to 47)
for the Chew-Kedem (CK34) and the Rost-Sanders (RS119) datasets. The speedup reported is
relative to the performance on a single core of the SCC.

become a bottleneck and core utilization would be reduced, resulting in larger overall pro-
cessing times. Since an almost linear speedup is observed, the simple master-slaves
implementation appears sufficient to exploit the parallelism offered by many-core proces-
sors to this problem. This observation suggests that further speedup can be achieved on
many-core processors with a greater number of cores. It should be mentioned that no
load balancing was applied to the allocation of jobs to slaves in our implementation. It
has been suggested that good load balancing approaches can improve the performance
of all-vs-all PSC [113].

From the results in Table 7.3 we observed that rckAlign running in the SCC at 533 MHz
achieves an 11 fold speedup over the AMD 2.4GHz processor and a 44 fold speedup
over a single Intel P54C 533 MHz processor when using the RS119 dataset. We also ob-
serve that the larger the dataset the higher the speedup observed. These results suggest
that many-core NoCs with fast interconnection networks and faster processor cores than
the SCC will be ideal candidates for delivering high performance for all-to-all PSC tasks
applied to large size protein databases, as needed for combinatorial drug design.

Comparison of the performance of rckAlign with the serial implementations run on a sin-

A. Sharma 98

Efficient algorithms and architectures for protein 3-D structure comparison

Table 7.3: Comparison of times required by TMalign and rckAlign for performing all-vs-all PSC on
the CK34 and RS119 datasets. All times are in seconds.

Dataset | TMalign AMD@2.4GHz | TMalign Intel@533MHz | rckSkel SCC(all cores)
CK34 406 2029 56
RS119 | 7298 28597 640

gle core of the SCC and the use of the faster processor, suggest that there is scope for
achieving higher overall speedups, if the many-core processor provides faster cores. It is
possible that the single master strategy would become the bottleneck, if slave processes
were running on faster cores or faster network. However, this can be tackled by imple-
menting a hierarchy of master processes such that a master does not become a bottleneck
for the slaves it controls.

7.2 Comparison with serial implementation

Table 7.4 provides the times taken to perform all-to-all comparison on the PC and on a
single core of the SCC, with the CK34 and RS119 datasets. The software took longer
to load data and process jobs on a single core of the SCC as compared to the PC. The
longer data loading times are due to the need for network 1/O, since the data is stored
on the Management Console PC (MCPC) and accessed by the SCC via NFS. In long
running services, however, data is loaded once and used when needed, therefore, this
time is disregarded in our performance comparisons. The differences in processing times
is due to the architecture difference of the processor cores (x86-64 vs. x86) and their
operating frequencies (3GHz vs. 533MHz) on the PC and a single SCC core respectively.

Table 7.4: Time required for the baseline all-to-all PSC task using the TMalign, CE and USM PSC
methods on the PC and a single core of the SCC. The table also shows the time required for the
all-to-all MCPSC task (where all three PSC methods are used). All times are in seconds.

Ported software on PC Ported software on SCC 1 core
Method CK34 RS119 CK34 RS119
Load | Processing | Load | Processing | Load | Processing | Load | Processing
TMalign | 0.01 127 | 0.05 1725 | 0.30 2514 1 33452
CE 0.80 374 3 6459 14 7152 50 132205
USM 0.01 0.60 | 0.04 71 0.70 30 2 345
All 0.80 502 3 8191 15 9697 53 166000

7.3 Comparison with multi-core implementation

The MCPSC implementation running on the SCC with 47-slaves achieves a speedup of 42
(41) with an efficiency of 0.9 (0.86) on the RS119 (CK34) datasets as shown in Table 6.1.
In order to perform this experiment the MCPSC software framework was re-targeted to

99 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

the Intel Core i7 multi-core processor, using openmp to implement multi-threading. This
experiment allowed us to assess how the MCPSC problem scales with increasing number
of cores on a modern multi-core CPU readily available for scientists and engineers. This
multi-core software version uses shared memory to replace the RCCE based message
passing (recv and send) calls used in the many-core version developed for the Intel SCC.
As shown in Table 7.5 we observe speedup on this multi-core processor when running
all-to-all MCPSC with the CK34 and RS119 datasets up to the 4 threads configurations.
Thereafter a steep speedup drop (efficiency loss) is observed.

Table 7.5: Speedup, Efficiency and Throughput in pairwise-PSC tasks per second for performing
MCPSC on a Intel Core i7 multi-core CPU using the CK34 and RS119 datasets.

Threads Dat_as_et CK34 Date_as_et RS119

Speedup | Efficiency | Throughput | Speedup | Efficiency | Throughput
1 1.00 1.00 4.92 1.00 1.00 3.49
2 1.88 0.94 9.27 1.46 0.73 5.09
3 2.04 0.68 10.01 1.98 0.66 6.90
4 2.54 0.63 12.47 2.60 0.65 9.08
5 2.70 0.54 13.25 2.70 0.54 9.42
6 2.71 0.45 13.32 2.71 0.45 9.45
7 2.74 0.39 13.47 2.69 0.38 9.38
8 2.64 0.33 12.98 2.67 0.33 9.31

This is attributed to the fact that this is a quad-core processor that implements Hyper
Threading (HT) [104]. Since all threads operate on exactly the same type of instructions
workload (SPMD) it cannot take advantage of each core’s super scalar architecture that
needs varied workload placement (e.g. integer and floating point arithmetic at the same
time) to show performance advantages when utilizing more threads than cores. Further,
an SMP Operating System (O/S) - like the one we run on our test system - uses all system
cores as resources for swapping threads in and out. A thread executing on core PFE; for
some number of cycles, may get swapped out and later resume execution on core PEs;.
Thus the thread cache on core PFE; becomes useless and it gets a lot of cache misses
when restarting on PFE,. This O/S behavior impacts cache performance and reduces the
overall application performance. In terms of pairwise-PSC tasks per second (pps) the
Intel Core i7 achieves a throughput of 13.47 pps (9.45 pps) on the CK34 (RS119) dataset
as compared to 5.53 pps (3.63 pps) achieved by the SCC. This is due to the fact that
the multi-core CPU contains latest generation cores, featuring a highly superior, out-of-
order micro-architecture and clocked at almost 7.5x the frequency of the SCC. We believe
that even more performance can be exploited from next generation multi-core processors,
should they start introducing hardware memory structures like the Message Passing Buffer
(MPB) of the SCC NoC processor alongside their cores, for increased communication
efficiency among them, without resorting to shared memory and its unavoidable locks or
cache-coherency protocol overheads.

Finally, Table 7.6 shows the comparative performance of the SCC (with 48 cores) and the
i7 (running 7 threads) on all-to-all MCPSC using several datasets. It can be seen that
the i7 outperforms the SCC consistently in terms of Throughput. The two larger datasets
- Lancia and Proteus - were not processed on the SCC because of the limited per-core
memory (512 MB) which was not sufficient to load the domain structure data for the full

A. Sharma 100

Efficient algorithms and architectures for protein 3-D structure comparison

Table 7.6: Comparison of the SCC and i7 CPU in terms of throughput delivered on all-to-all MCPSC.

Dataset Pairs | SCC Throughput | i7 Throughput | Ratio
Skolnick 1089 6.05 2792 | 4.62
Chew-Kedem | 1156 5.03 13.29 | 2.64
Fischer 4624 1.98 9.37 | 4.74
Rost-Sander | 12996 3.30 9.38 | 2.85
Lancia 72361 - 222.65 -
Proteus 76729 - 6.77 -

dataset. A decrease in Throughput was observed as the size of the dataset increases
with some exceptions. Both the SCC and the i7 deliver lower than expected Throughput
(based on its size) on the Fischer dataset which we believe is due to the higher complexity
of the dataset. The Fischer dataset has domains belonging to 5 times more SCOP Super
Families as compared to CK34 and also has the second highest median length of protein
domains among all the datasets used in this work. Conversely, the Throughput delivered
by the i7 on the Lancia dataset is significantly higher than that delivered for the similar size
(in terms of number of domains) Proteus dataset. We attribute this difference to the large
difference between the mean lengths of domains in each dataset.

7.4 Qualitative analysis

The acceleration capabilities offered by modern processors (many-core and multi-core)
enables performing all-to-all PSC using different methods on large scale datasets and
compare results. For example, it becomes easy to perform a qualitative analysis on a
set of protein domains and use consensus score (GP’S) to explore relation between the
protein domains, categorize them into biologically relevant clusters [134] and automate
generation of databases such as Structural Classification of Proteins (SCOP).

The MCPSC comparison method outperforms the component PSC methods (TMalign, CE
and USM) and groups 34 representative proteins from five-fold families into biologically
significant clusters. In Figure 7.3 each protein domain is using the format "domainName_-
foldFamilies”. The tags of the "foldFamilies” belong to one of: i) tb = TIM barrel, ii) g =
Globins, iii) ab = alpha beta, iv) b = all beta and v) a = all alpha protein families. The
clusters obtained from the MCPSC method show that most domains are grouped cor-
rectly according to their structural fold. Figure 7.4, shows similar clusters generated by
the three component PSC methods used in this work. In comparison all the component
PSC methods produce clusters in which there are many wrongly grouped domains. Mis-
classification of domains is the highest in USM. While CE performs better, TMalign is the
best performing PSC methods. However, it can be seen that the TMalign based score
results in misclassification of the TIM barrel and Alpha beta containing protein domains.
This is not entirely incorrect because tb domains are considered as a type of ab domains
but containing a specific topological structure known as toroid. However, MCPSC score

101 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

based clustering is able to uncover this underlying dissimilarity, which was an interesting
observation from these results. The quantitative analysis evaluating the Recall vs. Pre-
cision tradeoff based on the F-measure [44], results in a value of F=0.91 for the MCPSC
method, which is higher than TMalign (F=0.82), CE (F=0.71) and USM (F=0.62).

© _
© |
|

o

ﬂ-_ l

o

@

o

N

o

-

o

o |

e s olcoocooocoolococoocglooodpoooooo DD OO0
Fe o S e s s smE==m b O G A A T L T T =
o wotowso | I |1 | 1./ dogooccooagsccocog
S CBESE2oRn b EEE S5 8E8EEETEES

— —

1—01_1—1_1—1—1—'_(UO'O?O_Q_Q'V—E‘_C\IW—FNCO‘—F(\IFV—E EF(D
AR —O+~"Tuw N o AR

Figure 7.3: Hierarchical clustering result using the Chew-Kedem dataset and MCPSC score as
distance metric between domains. Each box represents a cluster and the domains belonging to it.
The Average linkage method was used to build the dendrogram.

A. Sharma 102

Efficient algorithms and architectures for protein 3-D structure comparison

CE

TMalign

q 6L

6 ypse
6wyt
67qut
6 uqug
6714w
6 quiz
6 unt
67dy,
equil
b6 yse|
6 eos|

q_qpo}
q oy
q nauj
q78poL
— q_6eby

L— qjuyy

® duo|

——— o7 Juwg

L—— gy

q)_juey
q1 eixg

qe eibp
qe dub|
qe”|zdg

qe”gbg
L qe”gee|

80

90 0

<
=)

(b) Classification with CE

(a) Classification with TMalign

usm

G| zdg
_|TH qieiby
—dub|

I —
\‘ qg”Lgbg
K«‘ qe geE|

qTnsu

q Juwg
qJsoL

B61Aw |

beoa|

67bayz

67dy;

q) juey
_|~|H eT6yl)
6Taquaz

6y

6 upsg

blequi|

6Tzu

67qeqy

6wyt

67aut
aj eixg
q]eebL

B Tuqug

6lauie

qjoby

T @ el
L efdugy

qalgpol

qJapoL

— g# oL

bTyse|

qfyuyl

80

90

0

20

00

(c) Classification with USM

Figure 7.4: Results of Hierarchical clustering using the Chew-Kedem dataset and the three

component PSC methods.

A. Sharma

103

Efficient algorithms and architectures for protein 3-D structure comparison

A. Sharma 104

Efficient algorithms and architectures for protein 3-D structure comparison

8. LARGE SCALE CONSENSUS BASED MCPSC ON MULTI-CORE
PROCESSOR ARCHITECHTURES

With the growing size of protein databases, structural analysis in real world scenario re-
quires comparison of structures against large datasets. Tools and utilities to handle such
large scale MCPSC must therefore make efficient use of commodity hardware. In this
chapter we present the design of one such utility, developed during the course of our
work, which allows efficient use of multi-core CPUs for large scale MCPSC. The utility is
easy to extend and packaged for ease of installation and use. To the best of our knowledge
this is the first utility of its kind that is made openly available to the scientific community
[116].

8.1 MCPSC on commodity hardware

One-to-many, many-to-many and all-to-all PSC jobs with one or more PSC methods can
be distributed in multiple ways depending on the unit of work sent to the processing ele-
ments [113]. On a multi-core machine with shared memory the cost of transferring data is
negligible hence it is the ideal architecture for using fine grained job distribution. If there
are N pairwise comparisons to be made and M is the number of PSC methods then the
total number of fine grained PSC jobs are N x M.

To this end, a useful cluster computing shared resource available to the community is the
ProCKSI server [13]. Given a dataset of protein domains, it supports all-to-all MCPSC
experiments, returning to the user individual PSC method scores as well as a consen-
sus average score. While ProCKSI is an one-stop resource, it is limited in the size of the
data that a user is allowed to submit (upto 250 protein domains). Moreover, the users
cannot add new PSC or MCPSC methods of their choice. In general, distributed solu-
tions, implemented using shared resources, suffer from limitations such as extensibility
and maintainability.

We developed a utility, called pyMCPSC which we have created using the popular Python
programming language [132] and make available to the community. pyMCPSC generates
pairwise structure comparison and consensus scores using multiple PSC and MCPSC
methods. In addition, the resulting similarity scores are used to generate multiple insight-
ful visualizations that can help a) compare and contrast the structure comparison meth-
ods, and b) assess structural relationships in the analyzed dataset. Such comprehensive
analysis allows researchers to gain quick visual insights about structural similarities ex-
isting in their protein datasets, simply by exploiting the power of multi-core CPUs of their
computers.

pyMCPSC allows pairwise structure comparison tasks to be distributed over the multiple
cores of the CPU and provides a simple Command Line Interface (CLI) for setting up and
running all-to-all MCPSC experiments in a standard PC. Our utility wraps available exe-
cutable PSC method binaries with a user specified class, thus making it easy to incorporate

105 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

new PSC methods in MCPSC analysis while hiding the details of parallel job distribution
from the user. As distributed today, pyMCPSC contains wrappers for the executable bi-
naries of five well known PSC methods: CE [119], TM-align [143], FAST [147], GRALIGN
[73] and USM [1]. These implementations can also serve as examples of how to quickly
extend the utility with new PSC methods as soon as their binaries become available to the
community. In addition, pyMCPSC generates consensus (MCPSC) scores using multiple
(five) alternative schemes. Finally, pyMCPSC uses the computed similarity scores (PSC
and MCPSC) to generate several insightful visualizations.

8.2 Consensus scores introduced

Given a set of protein domains, we generate similarity scores using the supported PSC
methods, for all protein pairs (all-to-all) that can be formed using the dataset. One-to-
many, many-to-many and all-to-all PSC jobs with one or more PSC methods can be
distributed in multiple ways depending on the unit of work sent to the processing ele-
ments [113]. If there are P pairwise comparisons to be made and M PSC methods to
be used, the total number of fine grained pairwise PSC jobs is P x M. By default pyM-
CPSC creates a list of pairwise comparisons (P) corresponding to the all-to-all setup (all
pairs of domains in the specified dataset). Pairwise similarity scores are then generated
by calling third party external binaries for each of the supported PSC methods. The pair-
wise PSC processing is distributed over p threads (a configurable parameter), equal to
the number of cores in the processor. The user may include specific pairs of interest in
the ground-truth data (one-to-many or many-to-many setups) to limit the pairwise com-
parison results used in consensus calculations and performance analysis. Once all the
pairwise similarity scores have been generated, the MCPSC consensus scores are also
computed for the domain pairs. The consensus scores calculation involves several steps,
as indicated in Fig 8.1.

8.2.1 Data imputation scheme

A “local average fill” scheme is used to compensate for potentially missing data for each
PSC method. Missing PSC score for pairs of domains can be a result of PSC method exe-
cutable or PDB file errors and can be problematic for classification/clustering analysis that
rely on these values. Assuming that pairwise PSC scores were successfully generated
for s domain pairs (out of the total P pairs in a dataset), the number of missing pairwise
scores is P — s, with the value of s being different for different PSC methods. To impute
the missing data for each PSC method, the following steps are repeated for all domain
pairs (d; , d;) with a missing score:

« find the set of PSC scores where d; is the first domain in the pair

» find the set of PSC scores where d; is the second domain in the pair

A. Sharma 106

Efficient algorithms and architectures for protein 3-D structure comparison

* merge the two sets and use the mean value of scores in the set union as the PSC
score for that domain pair

+ if the two aforementioned sets are empty then use the global average of scores for
that PSC method to supply the missing score’s value.

8.2.2 PSC Scores

Base PSC scores calculation Pairwise scores for all PSC methods are first converted
to dissimilarities (with value higher when domains in the pair are more different).

PSC scores scaling A Logistic Sigmoid scheme is used to scale scores to ensure equal
contribution of PSC methods towards the consensus MCPSC scores calculation. Given
the base dissimilarity score (X') for a PSC method, its scaled version () is obtained using
Equation (8.1) below, where 1 and o are the mean and standard deviation respectively
over all scores X for that method. Effectively, the dissimilarity scores are first autoscaled
(to make the different PSC method scores comparable) and then the logistic sigmoid is
applied. As a result, at the end we obtain similarity scores () in the range 0 to 1.

l+e "o

8.2.3 MCPSC consensus scores calculation
We have introduced five different MCPSC consensus scores as discussed below:

* M1 - It is the Generalized Mean of the available PSC scores and is computed as
shown in Equation (8.2) below, where m is the number of non-null PSC method
scores available for a given domains pair. In the current implementation ¢ = 1,
hence M1 is essentially the average of the available PSC scores for the pair.

1 — i
M1 =(— ;2 2
G2 5) 8.2)
* M2 - It is a weighted average of the PSC scores of the different methods. For each
domain pair we weight the available PSC method scores by the percentage of pairs
successfully processed by each PSC method in the whole dataset (coverage based
weighting).

* M3 - Similar to M2, but here we also allow domain expert knowledge to play a role
in the method’s relative weighting e.g. we lower USM method’s weight to one half
since it is a domain agnostic method (domain expert knowledge based weighting).

107 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

* M4 - For each domain pair, we weight each PSC method by the mean RMS distance
of its scores from those of the other PSC method scores, as shown in Equations
(8.3), (8.4) and (8.5) below, where S! is the scaled PSC score for the k™ domain
pair (k = 1,2,..., P) and the i"* PSC method (i = 1,2...,... M). If scores S} or
Si are missing, the corresponding & term is excluded from the summation in (3)
(divergence driven weighting).

P
1 i 2

RMSD;; = J F; (Si — S (8.3)

1 M
i = MZ RMSDy;, i,j € {1,2,..., M} (8.4)

j=1

T .

wi—m,le {1,2,,M} (85)

* M5 - For each domain pair, we weight the PSC methods by user supplied relative
weights.

For a domain pair with m available PSC method scores, where in general m <= M
(M = 5 currently), the m weights are first normalized to sum up to one and the
consensus score (for schemes M2-M5) is then calculated as the weighted average
of the available m scores. MCPSC schemes M1-M4 leverage different properties of
their component PSC methods, while weighting them in different ways to generate
a consensus score. Finally, a median MCPSC score per domain pair is generated
using the M1-M5 scores. As pyMCPSCsources are made available, it is also entirely
possible for the user of the utility to experiment with new consensus score generation
schemes.

Supervised learning of weights

In order to learn the weights for the supported PSC methods using supervised learn-
ing a Logistic Regression scheme can be used as follows:

— Read pairwise PSC scores generated by M = 5 PSC methods for all domain
pairs. Each pair is represented by a feature vector containing all PSC method
scores.

— Each pair is categorized as belonging to Class 1 - meaning pairs from the same
SCORP classification - or Class 0 - meaning pairs belonging to different SCOP
classification.

— Perform 10-fold cross-validation with Unimputed (intersection) and Imputed datasets
evaluating the performance of a binary (0/1) Logistic Regression (LR) model.

A. Sharma 108

Efficient algorithms and architectures for protein 3-D structure comparison

— 3 metrics - Sensitivity (Recall), Specificity and Precision are recorded at each
iteration (10 in all).

This cross validation procedure was repeated several times, each time using a dif-
ferent percentage (varied from 1% to 100%) of the full data used to learn the coef-
ficients. The lowest percentage for which the learnt model performed well on the 3
metrics for the Proteus domains dataset was 10%.

8.3 pyMCPSC software design

8.3.1 Architecture

As a software architecture, pyMCPSC is organized into several modules called in se-
quence by the main entry point. An overview of the processing sequence is shown in
Fig 8.1. The modules are functionally independent and the interface between them is via
files. Each module receives a set of parameters, including the files used to read data
and write the output results. In a typical scenario, the user sets up an experiment, using
command line parameters for supplying information such as the location of protein do-
main structures data and ground-truth classification (if available). The ground-truth data
required by pyMCPSC to perform the analysis steps is the SCOP/CATH [37] classification
of the domains in the dataset being analysed. The information is expected to be provided
to the utility in a specific format. pyMCPSC first generates pairwise similarity scores for all
domain pairs, using the supplied PSC methods and the implemented MCPSC methods,
and then generates results to facilitate structure based comparison and analysis.

pyMCPSC is organized into several modules, each one implementing a specific function-
ality. The main entry point of the utility drives the sequence of activities shown. Similarity
scores are generated for all protein pairs using the executable binaries of the included
PSC methods. Subsequently the scores are scaled, missing data (similarity scores) are
imputed and consensus MCPSC scores are calculated for all domain pairs. If the user has
supplied ground-truth domain classification information, then comparative analysis results
are also generated based on the similarity scores. The modules where the respective
functionalities are implemented are specified in parenthesis.

Supported PSC methods

The current version of pyMCPSC contains wrappers for five well known pairwise Protein
Structure Comparison (PSC) methods: a) CE [119], b) TM-align [143], c) FAST [147], d)
GRALIGN [73] and e) USM [1]. These implementations can serve as examples of how
to quickly extend the utility with more PSC methods, as their binaries become available
in the future. Download links for software corresponding to these methods are listed in
Table A. USM is not included in the Table because, the program is not available for down-

109 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

User configuration, Protein These steps are executed only when the ground-truth
Structure Data, classification of domains is provided
Ground-truth classificatio (\]

Scores generation +— 4{ Dataset analysis }7
Y

Generate pairwise
similarity Scores | | fesmds External PSC b Receiver Operating
(pymecpsc.run T binaries 2 Characteristic (ROC) ROC Charts
o analysis figures [
%'E‘ IMC R [OCALC e] _‘__-_._—'__.,.—'—'—'—\—.._
25
2E
h gl .
79 Nearest Neighbour (NN) NN classifier
Scale similarity scores o E classification —1—™ accuracies
(pymcpsc. postprocessing) % (pymcpsc.nnclassify) ..-‘-—_-I;F‘f____‘“
-..
>
Multi Dimensional Scaling
) (MDS) visualization _?ca::t-erpl?ltls
Impute missing data LPYMEPSC visualizes) —
ymcpsc.imput
Heatmaps
Heatmaps figures eatm
{pymcpsc. heatmap) foutdir eatmal vl
—
h 4
Generate consensus Scores PhyloTrees
(pymepsc.mcpsc) Phylogenetic Trees (figure free
- ({pymcpsc.phylo) [outdir endro®)
""-n-._.--l'""—'-__‘_-‘-

Figure 8.1: Schematic overview of the architecture of pyMCPSC.

load, the contact map generation binary of GRALIGN is reused and the standard Python
compression libraries are used for generating the similarity scores.

Table 8.1: Download links for PSC methods used in pyMCPSC.

PSC Method | Download URL

CE http://source.rcsb.org/jfatcatserver/ceHome.jsp

TM-align http://zhanglab.ccmb.med.umich.edu/TM-align/
GRALIGN http://www0.cs.ucl.ac.uk/staff/natasa/GR-Align/index.html
FAST https://biowulf.bu.edu/FAST/download.htm

The user may use the scripts/psc_get.sh script packaged with pyMCPSC to download the
source and binaries of the default PSC methods. Where sources are available, the script
downloads and builds the sources on the user’s machine. We note that sources for all
the programs are not available - FAST and GRALIGN are available only in Binary formats.
The script uses several standard Linux tools and requires various compilers during the
process. As as a first step the script checks for availability of the dependencies and exits
if a dependency is missing. It is beyond the scope of these instructions to direct the user
on how the missing dependency may be resolved. The final binaries of the PSC methods
are placed in the programs folder created where the script is executed.

A. Sharma 110

Efficient algorithms and architectures for protein 3-D structure comparison

usage: run-pymcpsc [-h] [-e PDBEXTN] [-d DATADIR] [-g GTIN] [-t THREADS]
[-w WEIGHTS] [-p PROGDIR]

Run pyMCPSC.

optional arguments:
-h, --help show this help message and exit
-e PDBEXTN, --pdbextn PD
Ex
-d DATADIR, --datadir

-g GTIN, --gtin GTIN
-t THREADS, --threads THREADS

Number of threads to use (default: 6)
-w WEIGHTS, --weights

-p PROGDIR, --progdir

packed)

Figure 8.2: Usage help message print out by pyMCPSC explaining the parameters accepted by the
program.

8.3.2 Dependencies and Installation

pyMCPSC relies on extensively used scientific packages such as: Pandas [3], Scikit [90],
Numpy [135], Seaborn [137], dendropy [126], Ete3 [50] and Matplotlib [51]. Binaries for
the five default PSC methods are pre-packaged in pyMCPSC, however currently they
are available only on machines running 64-Bit Linux O/S (limiting factor is GRALIGN).
However, a docker container of pyMCPSC can be built and run on any operating system.
pyMCPSC has been tested on Python 2 (version 2.7) and Python 3 (version 3.5).

The current implementation of pyMCPSC has been built and tested on a machine run-
ning 64-bit Linux. We also provide a pre-built docker image (available for download from
http://bit.ly/2IRj7xD) which has been tested on multiple operating systems (including Mac
OS and Windows). Detailed build and usage instructions can be found in the documenta-
tion of pyMCPSC (available for download from http://bit.ly/2xdP21j). The documentation
can be generated from source on any system with the Make toolchain and Sphinx setup.
The program parameters can be specified on the CLI (Figure 8.2). pyMCPSC provides
a set of sensible default fallback values for the optional arguments. Descriptions and de-
fault values for all CLI arguments are provided in pyMCPSC documentation. If no values
are specified by the user pyMCPSC runs the experiment described in this paper. Results
(including figures) generated by pyMCPSC are placed in directories located in the current
working directory (CWD), i.e. the one from where the program is launched.

8.3.3 Extending pyMCPSC

The functionality of pyMCPSC can be extended by including more PSC methods in the
analysis as described below. In order to introduce a new PSC method into the processing
pipeline, a new Class must be added to the utility. The Classes provide functionality to run
the external PSC binary and provide a text level interface, between the utility and the PSC

111 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

binary, to read the output generated by the PSC method. Once this key implementation
has been written, minor edits to other sections of the code are sufficient to include the
method into the processing. The implementations of the 5 PSC wrapper classes included
in pyMCPSC by default provide examples of how a new wrapper class may be written.
It must be noted that the pyMCPSC does not implement PSC methods itself, but rather
expects to be provided with executable binaries (one per component PSC method partic-
ipating in the MCPSC scores calculation). A wrapper class must be written to allow the
external binary to be usable in pyMCPSC.

Template for adding new PSC method wrappers

Extending pyMCPSC to incorporate a new PSC method requires implementing a class
that follows the template shown in Listing 1 below. The key aspects of the template are:
a) the path to the binary must be passed at instantiation time, and b) the results of pair-
wise comparison must be returned for each pair so that they can be used in pyMCPSC.
Examples of implementing this template for a PSC method can be found in the file run.py
in pyMCPSC sources.

The following steps must be followed in order to introduce a new PSC method to pyM-
CPSC and make its processing results for available for the consensus scores calculation:

* Implement a class based on the template to handle the input and output of the PSC
method

* Instantiate the class and pass it to the doMulti method defined in run.py (see line
476 for an example)

* Add the method entry to the name lists psc_methods, psc_method names defined
in run_mcpsc.py

+ Add the output file generated by the execution of the PSC method to the infiles list
defined in the file postprocessing.py and update the column names for the output
file generated by the module

+ Add the method weight for consensus scores calculation by updating the value of
__def WEIGHTS__ in run_pymcpsc.py

A. Sharma 112

Efficient algorithms and architectures for protein 3-D structure comparison

class PSC HANDLER:
def __init__(self, path_to_binary):
store path in class instance and
perform any additional house keeping

def process_pair(self, domain1, domain2):
execute external binary with domains

read execution output

collect results of pairwise processing

return results

Listing 8.1: Template of Class that needs to be added to our command-line utility to introduce
processing for a new PSC method. An instance of this class can then be passed to a thread pool
for distributed processing of a list of pairwise PSC jobs.

113 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

A. Sharma 114

Efficient algorithms and architectures for protein 3-D structure comparison

9. PERFORMANCE BENCHMARKING: CONSENSUS MCPSC VS
COMPONENT PSC METHODS

In this chapter we report the results of benchmarking the consensus MCPSC methods
performance as compared to its component PSC methods. First, we present the perfor-
mance of pyMCPSC on a multi-core processor and then present the results of qualitative
analysis of consensus MCPSC on the Proteus 300 dataset. Lastly, we present the results
of MCPSC analysis of the very large SCOPCATH dataset.

We will demonstrate the use of pyMCPSC using protein pairs obtained from the Proteus
dataset [6]. PSC scores were obtained for these pairs and analyzed as discussed in the
paper. The number of pairwise PSC jobs processed per PSC method is actually one half of
this value because of the symmetry of the PSC scores matrix, however the post process-
ing and performance calculations are performed with the full matrix. The PDB files, the
ground-truth SCOP classification and the pairwise domain list as well as the experimental
setup are included in the test folder of the downloadable sources. pyMCPSC generates
performance results for three sets of domain pairs, defined as follows:

* Original Dataset: It includes the similarity scores for the domain pairs defined in the
original dataset, but with missing values. The number of missing values may vary
depending on the PSC method as explained above.

» Common Subset: It consists of the subset of domain pairs taken from the Original
dataset for which scores have been generated by all PSC methods. In the case of
the Proteus dataset, this corresponds to 27312 domain pairs, which is less than half
of the total number of pairs processed.

* Imputed Dataset: It consists of the Original dataset with the missing scores filled
using data imputation The total number of domain pairs for the Proteus dataset is
P =172630.

9.1 Performing MCPSC on a multi-core processor

Using pyMCPSC we generated pairwise similarity scores (all-to-all) based on the 5 PSC
methods and the 5 MCPSC schemes (M1 - M5) included in the utility by default, as well as
the pairwise median MCPSC scheme. Experiments were carried out using multi-threaded
processing on an Intel Core i7- 5960X “Haswel” 8-Core (16 Threads) CPU running at
3.0 GHz with 32 GB of RAM and an SSD running Linux. The Core i7 CPU features highly
optimized out-of-order execution and HT (Hyper Threading), Intel’s flavor of Simultaneous
Multi-Threading (SMT).

The number of domain pairs for which scores were successfully generated varies among
the PSC methods (Table 9.1), with GRALIGN and FAST having the lowest coverage. This
is attributed to differences between the build and runtime environments, the thresholds

115 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

built into the PSC method programs and errors in the structure files downloaded from the
PDB. A speedup factor of 9.13 is achieved for end-to-end processing of the Proteus 300
dataset using pyMCPSC when p = 16 threads are used (Table 2).

Table 9.1 provides the number and percentage of pairs (coverage) successfully processed
by each PSC method. Table 9.2 shows the time pyMCPSC needs to process the pairwise
PSC tasks for the Proteus_300 dataset when using an increasing number of threads (from
1 to 16). GRALIGN is not run in parallel by pyMCPSC because its binary is already opti-
mized to use all the available cores of the CPU. The table shows the time taken by the five
PSC methods and the consensus scores calculation (Scale similarity scores, Impute miss-
ing data, Generate consensus scores). In addition to the end-to-end computation time we
also provide in Table 9.2 the total times for the Scores Generation and the Dataset Anal-
ysis blocks. We believe that the superlinear speedup observed in parallel pairwise PSC
processing is due to PDB structure data caching which allows multi-threaded runs reuse
the cached files.

Table 9.1: PSC methods coverage for the Proteus dataset.

PSC Method | # Domain pairs processed | Coverage
CE [119] 64964 89%
FAST [147] 39604 55%
GRALIGN [73] | 56406 78%
TM-align [143] | 72630 100%
USM [1] 72630 100%

Table 9.2: Time (in seconds) and Speedup (S) for end-to-end all-to-all analysis of the Proteus_300
dataset using pyMCPSCon a multi-core PC with Intel i7 CPU having 8 cores (16 threads), 32 GB
RAM, running at 3.0 GHz, under Ubuntu 14.04 Linux. GRALIGN already uses all the CPU cores by

default.

1 Thread | 4 Threads 8 Threads 12 Threads 16 Threads

Time Time [S Time | S Time [S Time [S
Pairwise scores generation
GRALIGN 86 86 1.00 | 86 1.00 | 86 1.00 86 1.00
USM 139 46 3.02 | 20 6.95 | 17 8.18 15 9.27
FAST 4100 1035 | 3.96 | 412 9.95 | 329 12.46 | 313 13.10
TM-align 3601 1032 | 3.49 | 423 8.51 | 333 10.81 | 299 12.04
CE 16776 4022 | 4.17 | 1858 | 9.03 | 1420 | 11.81 1213 | 13.83
Consensus scores | 28 28 1.00 | 28 1.00 | 28 1.00 28 1.00
Block level
Scores Generation | 24730 6249 | 3.96 | 2827 | 8.75 | 2213 | 11.17 | 1954 | 12.66
Dataset Analysis 843 849 0.99 | 844 1.00 | 846 1.00 847 1.00
End to End
End to End [25573 [7098 [3.60 [3671 [6.97 [3059 [8.36 [2801 [9.13

In Figure 9.1 we show the speedup factor achieved and the total processing time as the
number of threads increases from 1 to 16. Nearly linear speedup is observed till the
number of threads reaches the number of available cores of the CPU (8). The speedup
continues to grow with the number of cores even beyond that point, albeit at a slower rate.
This analysis suggests that the emerging many-core processors with more than 16 cores
could also be exploited by pyMCPSCto analyze very large datasets.

A. Sharma 116

Efficient algorithms and architectures for protein 3-D structure comparison

N 30000
9
" - 25000
8 4 \
\
U B L 20000
Q \ °
3 °7 —e— Speedup 2
® : N — 15000
b4 5 (Ratio of processing times) g
‘3. -B Tlime =
4 4 (Processing time for performing|_ 10000
all-to-all MCPSC)
3
~ — 5000
2 e |
1 I I | | T T I 0

0 2 4 6 8 10 12 14 16
Number of Threads

Figure 9.1: Speedup factor and total processing time for performing all-to-all MCPSC with
increasing number of threads on a Intel Core i7 multicore CPU using the Proteus 300 dataset.

9.2 MCPSC provides quality consensus scores

Receiver Operating Characteristics (ROC) analysis can be used to compare the classifi-
cation performance of MCPSC with that of the component PSC methods. pyMCPSCuses
ROCs and corresponding Area Under the Curve (AUC) values for performance bench-
marking if ground truth data is available.

The following procedure is used to create the ROC curves: a) Vary a similarity threshold
from 1 down to 0, moving from maximum to minimum similarity; b) For each threshold
value record the number of True Positives (TP), False Positives (FP), False Negatives (FN)
and True Negatives (TN). In this context, TPs (FPs) are domain pairs with similarity scores
greater than the set threshold in which the two domains in the pair have the same (different)
classification at the SCOP hierarchy [67] level considered respectively. Similarly, FNs
(TNs) are domain pairs with similarity score less than the threshold having same (different)
domain classifications respectively. Having calculated the TPs, FPs, FNs and TNs for a
threshold value, we can compute the True Positive Rate and False Negative Rate values
as shown in [96].

In Figure 9.2 (a), we see that for this dataset TM-align achieves the highest AUC among
the five supported PSC methods. Moreover using the median MCPSC score matches or

117 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

exceeds the AUC performance of the best component method. This actually remains the
case even if we remove TM-align from the pool of the PSC methods and repeat the same
analysis with the four remaining methods Figure 9.2 (b). In reality, we do not expect to
know which PSC method will perform the best for any given dataset. So as the results
suggest, combining PSC methods to obtain MCPSC scores and then using their median
as the final consensus score to assess similarities is an effective strategy.

08

o
o

o
=~

—— MEDIAN MCPSC (0.97)
—— TMALIGN (0.96)

True Positive Rate
True Positive Rate

< —— MEDIAN MCPSC (0.94)

— CE (0.89) ~ — CE (0.89)
0.2 — GRALIGN (0.84) 0.2 e —— GRALIGN (0.84)
= FAST (0.72) L7 g — FAST (0.72)
USM (0.69) - —— USM (0.69)
00 = 0.0
0.0 02 04 06 08 1.0 00 02 04 06 08 1.0
False Positive Rate False Positive Rate

(a) (b)

Figure 9.2: ROC curves of all PSC methods and the median MCPSC method using the Imputed
dataset of pairwise similarity scores. The ROCs are generated at the SCOP Superfamily level (Level
3). Panel (a) shows the results with all five PSC methods and panel (b) with TM-align excluded.

In Figure 9.3 we provide the ROC curves and corresponding AUC values for all PSC and
the Median MCPSC method for all three datasets of domain pairs as defined previoysly.
In general, the closer a ROC curve follows the left-side border and then the top border
of the ROC space, the better the classification performance of the corresponding PSC
method, because it indicates that high PSC scores (i.e. high similarity) are assigned to
domain pairs where both domains belong to the same SCOP Superfamily (Scop Level
3). The results show that for this dataset TM-align happens to be the best performing
PSC method. However, the median MCPSC matches or exceeds the AUC of the best
component PSC method in all cases.

9.3 MCPSC consensus scores can be used to accurately classify query domains

Nearest-neighbor (NN) auto-classification [32] can be used to assess how well PSC meth-
ods can classify a query domain, given pairwise PSC scores and the structural classifica-
tion of other domains. When a new protein structure is determined, it is typically compared
with the structures of proteins with known SCOP classifications. Therefore, the accuracy
of the PSC and MCPSC based NN-classifiers effectively reflects their ability to be used
for automatic protein domain classification.

A. Sharma 118

Efficient algorithms and architectures for protein 3-D structure comparison

True Positive Rate
True Positive Rate

P —— MEDIAN MCPSC (0.94) e —— MEDIAN MCPSC (1.00)
A< — CE (0.94) & — CE(0.97)
02 o —— GRALIGN (0.93) 02 o —— GRALIGN (1.00)
L e —— FAST (0.86) L ‘ —— FAST (0.85)
. —— USM (0.69) . —— USM (0.85)
0.0 0.0
0.0 02 04 06 08 10 0.0 02 0.4 06 038 1.0
False Positive Rate False Positive Rate
(a) Original Dataset (b) Common Dataset

1.0

08

06

04

True Positive Rate

e —— MEDIAN MCPSC (0.94)
g —— CE(0.89)
02 - —— GRALIGN (0.84)
’/ —— FAST(0.72)
. —— USM (0.69)
00
00 02 04 06 08 10

False Positive Rate

(c) Imputed Dataset

Figure 9.3: Median MCPSC matches or exceeds the best performing method (CE) among the
remaining four component PSC methods after removing TM-align from the pool used to derive the
MCPSC consensus scores. The ROCs are generated at the SCOP Superfamily level (Level 3).

Distance matrices based on the PSC and MCPSC scores are used by pyMCPSCto per-
form NN domain classification. The following process is repeated for each supported PSC
and MCPSC method:

« Each domain is considered as a query and assigned the class label of its Nearest-
neighbor using the pairwise scores as distances. This leave-one-out class label
assignment is repeated for every domain and the predicted classes are recorded.

» The percentage of domains correctly classified is then calculated.

* A domain is correctly classified if the predicted and actual (ground truth) class labels
match.

MCPSC based NN-classification matches or exceeds the performance of the best PSC
method at all SCOP hierarchy levels, with and without data imputation Table 9.3. More-
over, whereas the classification performance of the five supported PSC component meth-
ods varies considerably for the same SCOP level, the performance of the five different

119 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

MCPSC methods is consistent. This suggests that using pyMCPSC to implement different
MCPSC methods and then using their median score in conjunction with NN classification
can provide trustworthy query domain auto-classification results. These results also high-
light that in the absence of ground truth information and/or lack of prior knowledge as to
the best PSC method for a dataset, MCPSC can be employed to accurately auto-classify
new domains. For more details see Appendix 10.2.

Table 9.3: Fraction of domains correctly classified at different SCOP hierarchy levels using a
Nearest-Neighbor classifier built with similarity scores produced by different PSC and MCPSC
methods. In the SCOP hierarchy: Level 1 = Class, Level 2 = Fold, Level 3 = Superfamily and Level 4

= Family.
Original dataset Common subset Imputed dataset

SCOP Level 1 2 3 4 1 2 3 4 1 2 3 4

TM-align 1.00 | 1.00 | 0.99 | 0.99 | 0.74 | 0.57 | 0.57 | 0.57 | 1.00 | 1.00 | 0.99 | 0.99
CE 0.78 | 0.61 | 0.61 | 0.60 | 0.63 | 0.47 | 0.47 | 0.47 | 0.76 | 0.60 | 0.60 | 0.58
GRALIGN 1.00 | 1.00 | 1.00 | 1.00 | 0.74 | 0.57 | 0.57 | 0.57 | 0.89 | 0.89 | 0.89 | 0.88
FAST 0.20 | 0.08 | 0.08 | 0.08 | 0.19 | 0.07 | 0.07 | 0.07 | 0.20 | 0.08 | 0.08 | 0.08
USM 0.84 | 0.72 | 067 | 0.65 | 0.65 | 0.51 | 049 | 049 | 0.84 | 0.72 | 0.67 | 0.65
M1 099 | 098 | 098 | 0.98 | 0.73 | 0.57 | 0.56 | 0.56 | 0.99 | 0.99 | 0.98 | 0.98
M2 099 | 098 | 098 | 0.98 | 0.75 | 0.57 | 0.56 | 0.56 | 0.99 | 0.98 | 0.97 | 0.97
M3 1.00 | 1.00 | 1.00 | 1.00 | 0.74 | 0.57 | 0.57 | 0.57 | 1.00 | 1.00 | 1.00 | 1.00
M4 099 | 099 | 099 | 099 | 0.72 | 0.57 | 0.57 | 0.57 | 0.99 | 0.99 | 0.99 | 0.99
M5 1.00 | 1.00 | 1.00 | 1.00 | 0.74 | 0.57 | 0.57 | 0.57 | 1.00 | 1.00 | 1.00 | 1.00
Median MCPSC | 0.99 | 099 | 099 | 099 | 0.74 | 0.57 | 0.57 | 0.57 | 0.99 | 0.99 | 0.99 | 0.99

The results show that the best MCPSC method matches the performance of the best
component method and the Median MCPCS based classification is almost always opti-
mal, which makes median MCPSC a good choice for classifying query domains when
prior knowledge about the best PSC method is not available. Moreover, the performance
differences of the MCPSC methods are minor, suggesting that they are all quite robust
to significant variations on the performance of their component PSC methods. The lower
performance observed for all methods on the Common subset is probably a result of the
small percentage of domain pairs for which similarity scores are available by all methods
(less than 50%).

9.4 MCPSC reveals structural relations between domains

pyMCPSC uses PSC/MCPSC based distance matrices in conjunction with Multi-Dimensional
Scaling (MDS) [33] to generate insightful scatterplots of protein domain organization in the
structural space. An N x N, distance matrix D is constructed, with N being the number
of unique domains in the dataset. Matrix element D,; corresponds to 1 - .S;;, the pairwise
scaled dissimilarity score of domains d; and d;, where 7,5 < N, are drawn from the im-
puted data set. Missing values (N? — P) are set to 1. The value of 1 (max dissimilarity) is
selected so that all domains appearing close in the visualization are in fact close to each
other based on the selected method’s score.

pyMCPSC uses matrix D as the basis for MDS to produce scatterplots of domains. This
effectively assigns a 2-Dimensional coordinate to each protein domain constrained by the

A. Sharma 120

Efficient algorithms and architectures for protein 3-D structure comparison

pairwise domain distances specified in matrix D. The resulting scatterplots can be used
to visually explore a domains dataset, revealing existing correlations. Figure 9.4 shows
the layout of the domains of the imputed dataset in 2-D space resulting from MDS using
the median MCPSC scores. Such a visualization produced by pyMCPSC suggests that
for the given dataset the SCOP Class C domains (red color) exhibit higher interdomain
similarity. This is in stark contrast to the domains of SCOP Class D (cyan color) which are
diffused across the scatterplot.

® o
0.41 “ ii..;' :: o® .
'::' 1% "o *-'.:. .- . .
0.2] o’ .o. .':.; e & o o
¢ 0. .g... .
0 0_ -...l *% 0w Vg ° ’ ®
. .Y "e®3 e o % iu' :
,' ° ® 0 g0%n° ° ® _%
_02' ™] ‘-’:. .".... ° .- ..l
P o o% 0 ') "
® .0: O.0® o .)
—0.4- AL

—0.25 0.00 0.25 0.50

Figure 9.4: MDS scatter plot based on median MCPSC scores. Domains are colored according to
their SCOP class (Level 1).

In Figure 9.5 we provide the Multi-dimensional Scaling based scatterplot visualizations
generated using distance matrices based on the scaled dissimilarity scores of the different
PSC methods. The scatter plots of the PSC methods differ significantly.

Heatmaps provide further evidence for the grouping of Class domains observed in the
MDS based scatter plots. pyMCPSC uses similarity score based distance matrices in
conjunction with Heatmaps. An N x N matrix, S, is generated where S,; is the pairwise
similarity score of domains d; and d;, i, j < N, using the imputed data set. This similarity
matrix is used to generate the Domain level heatmaps as shown in Figure 9.6 for median
MCPSC scores. Similarly, a T' x T" matrix, F can be constructed for a selected method,

121 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

0.41 o o 20 CECIRPCR T
. %.‘F‘..; ot’e 0.4 e d .-‘ 'o:'..'.'o: . .
1 oy @ O . Y % ® o%ee Y o o vew .
KA AR T 02| [e wi R0
0.01 .. . ‘.:.. ®e o ..:.. ﬂ.. ‘ﬂ'.:... ..:":. ':...f‘.
’ o’“ H L] '\'. l.). N ° 00_ ..' ."o £ ‘:. ‘ o:.. *°
£ 50 ooy oo s TA e S
_ | E o % * . ™ oe Bos * °e S
0.2 o o % @ ° e —0.21 %o o ..‘ LA e @
[} e e, .e ' 0g0 0: oo°°'-
—0.4] :. . ‘.....o R * 9 0] o.:. % & é° ..ooﬁ‘
oP o *mecpuas om oraec ' e s
-0.25 0.00 0.25 0.50 -0.50 -0.25 0.00 0.25 0.50
(a) CE (b) FAST
0, * * . o®td
LI: ® " . L Y % .C
0.2 * 4 ". ...r"l‘.‘ Iy b 0.2 ¢ ‘o.. L] 0....'%.; ‘;‘ *.
o * ° : .‘..::0.. : .:.....t 00 -: ,.;. .
0.0{ fpargus, o 0% T : A3 g
oF o0 © o 0y, _ | .0. ® o °
—0.21 Vew .-.-:..' oo 8% PO * 0.2 .; '.o." :." .go. \
. . o ®e LI I AL ® ¥ § [l
> op ‘.|~“ s —0.4 . o .‘ pCi g
_0 4, ‘.d - sc.op.cmg'A.‘. SCOP Class C :. ’. -.sccacwass: SCOP Class €
. o kOP Class B SCOP Class D L] * SCOP Class B SCOP Class D
‘ ‘ : . . -0.61 ‘ : ‘ :
—0.50 -0.25 0.00 0.25 0.50 -0.4 -0.2 0.0 0.2 0.4
(c) TM-align (d) GRALIGN
0.4 PP K
e ® oo e Py °
0.2 :ﬂo . oo t.-‘ Py
-’ ‘l:'.' ..f... o:.
0.0{ 500, Fufte solt o o
... @ o o %. %
| o!:' ..: (:
02 .:..:’. '..' : O...
o © @ °e0° o o°
_0.4 | .‘ f-. chcl.asiA. SCOP Class C

-0.50 —0.25 0.00 0.25 0.50
(e) USM
Figure 9.5: MDS scatterplots for the five PSC methods generated using distance matrices and the
imputed dataset. The points are colored by the ground-truth SCOP Level 1 classification of each

domain. Blue = SCOP Class A, Green = SCOP Class B, Red = SCOP Class C and Cyan = SCOP
Class D.

with T" being the number of unique SCOP Folds in the dataset. Element F,; of this matrix
corresponds to the mean pairwise scaled similarity score of domains belonging to folds
t; and t;, where 4,5 < T. Each element of this matrix therefore effectively represents

A. Sharma 122

Efficient algorithms and architectures for protein 3-D structure comparison

the similarity between folds as an average of the similarity between their domains. This
similarity matrix is used to generate the Fold level heatmaps as shown in Figure 9.7 for
median MCPSC scores. pyMCPSC saves the heatmap matrices to the outdir as CSV files
allowing the visualization to be generated using other third-party tools if needed. When the
size of the matrices S or F is larger than 300 x 300, pyMCPSC disables image generation
to avoid potentially creating huge files.

9.5 MCPSC can reveal functional relations between protein domains

pyMCPSC uses similarity score based distance matrices (D) in “Phylogenetic Trees” [85]
to provide functional grouping of domains. pyMCPSC uses a Neighbor-joining algorithm
from dendropy [126] to create dendrograms and uses them to generate unrooted circular
layout “Phylogenetic Trees”. The goal is to create trees where the domains are separated
into clades based on their function [11].

In Figure 1 we have marked two groups of domains belonging to different clades in the
tree. The most common keyword for Group 1 is ‘GTP-Binding’ while for Group 2 it is
‘Phosphoprotein’ (see details in Appendix 10.2). The clades of the Phylogenetic Tree
generated by pyMCPSC could therefore be used by a researcher to identify groups of
domains (within the same SCOP class as in this example) that are functionally different.

9.6 pyMCPSC can handle very large datasets

9.6.1 Dataset

The Gold-standard benchmark dataset introduced in [35] was used in this work. The
dataset contains protein domains that are consistently defined in both SCOP v1.75 and
CATH v3.2.0 (i.e. with domain overlap greater than 80%) and that share less than 50% of
sequence identity. Further, the benchmark only considers domain pairs that are consis-
tently classified across the SCOP fold classification and the CATH topology classification.
The dataset consists of N = 6759 unique domains and defines P = 3,213,631 domain
pairs (similar and non-similar sets combined) [35]. Further, the 6759 domains are classi-
fied into 11 (4) Classes, 792 (780) Folds and 1348 (1550) Superfamilies according to the
SCOP (CATH) classification databases respectively.

9.6.2 ROC Analysis

Figure 9.9 shows the Receiver Operating Characteristic (ROC) curves [40] for the PSC
methods and the median MCPSC taken over the entire dataset of domain pairs (3,213,631).
It can be seen that the Median MCPSC performs as well its component PSC methods in
the scenario where PSC scores from all methods are available for all domain pairs. In gen-

123 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

. '-!:ll:"n.-l I.'.;riiil.ll. ¥ .
o iR R i

Figure 9.6: Heatmaps generated for the median MCPSC method using similarity matrices at the
Domain level for the imputed dataset. The domains are colored according to their ground-truth
SCOP classification. Blue = SCOP Class A, Green = SCOP Class B, Red = SCOP Class C and Cyan
= SCOP Class D. Heatmaps reveal presence of sub-clusters of domains within each SCOP class
evidenced by darker regions of varying sizes along the main diagonal.

eral, the closer the curve follows the left-hand border and then the top border of the ROC
space, the better the performance of the PSC method because it indicates that low PSC
scores (i.e. low dissimilarity) are assigned to domain pairs where both domains belong to
the same CATH class.

A. Sharma 124

Efficient algorithms and architectures for protein 3-D structure comparison

a.25 - 0.8

cl - 0.7

€23 -
c.37 -
C.67 -
c.93 -
c.94 -
d.108 -
d.131 -
d.144 - -05
d.15 - B
d.153 -
d.162 -
d.169 -
d.54 - -04
d.58 -

foldl

- 0.6

a.l -
a.104 -
a.l23 -
a.25 -
a.45 -

b.1 -
b.36 -
b.69 -

cl -

c.2 -
.23 -

fold2

HEl SCOP Class A EEm SCOPClass B EEl SCOP Class C I SCOP Class D

Figure 9.7: Heatmaps generated for the median MCPSC method using similarity matrices at the
Fold level for the imputed dataset. The folds are colored according to the ground-truth SCOP
classification. Blue = SCOP Class ‘a’, Green = SCOP Class ‘b’, Red = SCOP Class ‘c’ and Cyan =
SCOP Class ‘d’. Heatmaps reveal presence of sub-clusters of folds within each SCOP class
especially for SCOP Class ‘c’.

9.6.3 Nearest-Neighbor classification

The performance of Nearest-Neighbor classifiers built using the pairwise similarity scores
are summarized in Table 9.4. The table shows the performance of the Nearest-Neighbor
(NN) classification with the three datasets. The results show that the best MCPSC method
(M5) matches the performance of the best component method. This is likely because in M5
(user defined weights) the individual PSC method weights were assigned by supervised
training. As suggested also by the ROC curves, Median MCPSC based classification is
performing consistently very well, which makes median MCPSC a good choice for clas-
sifying query domains when prior knowledge about the best performing PSC method is
not available, as usually the case. It must be noted that the Median MCPSC classification
performance is not the median of the five MCPSC methods, but rather the performance
of the NN-classifier built using the median of the MCPSC pairwise similarity scores.

125 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

M’”’fyag

Group 1 Wik,
(GTP-Binding proteins)

Group 2
(Phosphoproteins)

d1knyg

Figure 9.8: The unrooted Phylogenetic Tree based on median MCPSC consensus scores. Domains
are colored according to their SCOP class (Level 1). Domains of the two clades that are marked
belong to Class C but represent different functional groups.

A. Sharma 126

True Positive Rate

1.0 1.0
0.8 0.8
2
&
0.6 o 0.6
=
.E
0.4 m== MEDIAN MCPSC (0.93) a 0.4 === MEDIAN MCPSC (0.97)
e m=m TMALIGN (0.94) g e === TMALIGN {0.97)
i w== CE (0.90) [P w== CE (0.93)
0.2 e == GRALIGN (0.87) H 0.2 e m== GRALIGN (0.89) H
=== FAST (0.78) -7 me= FAST (0.78)
USM (0.53) USM (0.66)
00 L L T T 00 I L T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Efficient algorithms and architectures for protein 3-D structure comparison

False Positive Rate

(a) Original Dataset

True Positive Rate

False Positive Rate

(b) Common Dataset

1.0
0.8
0.6
0.4 === MEDIAN MCPSC (0.94)
L == TMALIGN (0.94)
P m= CE (0.88)

0.2 /e === GRALIGN (0.70) H

me FAST (0.71)

USM (0.51)
00 | | I I
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(c) Imputed Dataset

1.0

Figure 9.9: ROC curves generated by pyMCPSC. The panels are plots for the component PSC
methods and median MCPSC method over the three variations of the domain pairs SCOP-CATH
dataset. The Area Under the Curve (AUC) is provided in parentheses. The ROCs are generated at

the SCOP Superfamily level (Level 3).

127

A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

190|620 280001 [6v0]990/520]/001L[690]980] 60001 [0SdON Ueipain
99'0 | €80 | 060|001 |6v0]290]520]|001]920] 160860001 S
650 | 220]580 /001 |[6v0[990]|520]|001[890]980] 60001 I
290|620/ 280|001 |[6v0[990]|520]|001]020]880]|960] 001 EN
09°0[820/980 /001 |8y0[990]|520]|001[890]980] 60001 ZI
650 220/5680/00L[6v/0[990]520]/001[890]|980] 60001 LA
220 | 620/9¢0|001L|820]880|9Y0|00L | %20 LEO |60 007 SN
80°0|0L0] 1L0 |00 |200]600]0L0|00L]600]0L0]LL0]00L 1Sv4
/£0| 0] 950|001L | 2p0][290]020]001]290]¥80] 160001 NOITVHO
2v'0] 150250001 20| ¥r0|6v0] 001 | 9v0] 950|290 001 30
120 | ¥80 | 060|001 [870|990 +20|001L][220/ 160860001 uBije-iN1
v e |z L vy e |z) v e |z] [9A97 dODS
josejep pajnduwi }9SqNs uowwio) josejep |eulbLiO

‘Allwed = p |9Aa] pue Ajjwepadng
= € |[9A9T ‘PIO4 = Z [9A97 ‘SSB|D = | |[9AdT :Ayduelaly dODS dY} U] ‘spoyldaw 9SdIIN PUe 9Sd Juatapip Aq paosnpoid saloas Ajuejiwis
yim }Ing Jayisse|d JoqybiaN-}saleaN e Buisn sjaaa] Ayouesaly dOHS Juatapyip je payisse|d A[30al1109 sulewop Jo uoljdeld 6 a|qel

128

A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

9.6.4 Multidimensional Scaling Scatterplots of protein domains

In Figures 9.10 and 9.11 we provide the Multi-dimensional Scaling [130] based scatterplot
visualizations generated using distance matrices based on the scaled dissimilarity scores
of the different PSC methods and MCPSC methods. The figure depicts the domains col-
ored by SCOP class to which they belong. The figures highlight the difference between
the spatial arrangements of the different classes and the fairly clear separation between
them for the bigger SCOP classes. Domains belonging to Class C («/3) are split into two
major subclusters. This points towards an inherent grouping of domains belonging to this
class and is potentially a reflection of the presence of two large Fold levels (SCOP level 2)
in Class C in this dataset. Analysis of the domains belonging to the two main sub-clusters
of Class C revealed that this is in fact the case. One of the sub-clusters has a dominat-
ing presence of domains belonging to Architecture level (CATH) 3-Layer (aba) Sandwhich
(64%) while the other is dominated by domains belonging to the Architecture level 2-Layer
Sandwhich (50%). These two Arcitecture levels contribute nearly 1000 domains each to
the Class, while the remaining Architectures in the class (13 in all) are significantly smaller.
It is also interesting to note from the figure that Class D (« +) domains tend to appear
at spatial points dominated by points of other Classes. Class D is spread over the entire
structural space in general, indicating close structural similarities between members of
this Class with those of other SCOP classes.

129 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

1095 —05 0.0 0.5 1.0 1095

(c) TM-align (d) GRALIGN

1.0

(e) USM

Figure 9.10: MDS scatter-plots for the five PSC methods generated using distance matrices and
the imputed dataset. The points are colored by the ground-truth SCOP Level 1 classification of
each domain. Blue = SCOP Class A, Green = SCOP Class B, Red = SCOP Class C and Cyan =
SCOP Class D. Black points are domains belonging to other classes.

A. Sharma 130

Efficient algorithms and architectures for protein 3-D structure comparison

1.0
0.5}
0.0}
-0.5
_1§1,0 i 55 ;05 Eiiﬁiiiii;o _191.0 —— 55 ;05 Eiiﬁ:il:iiilo
(a) M1 (b) M2
1.0
0.5}
0.0}
-0.5
_191,0 i - ;05 Eiiﬁiiiii;o _191.0 —— 55 ;05 Eiiﬁ:il:iiilo
(c) M3 (d) M3
1.0
0.5}
0.0}
—0.5}
_1910 i - ;05 Eiiﬁiiiii;o _191.0 —— 5 ;05 Eiiﬁ:il:iiilo

(e) M5 (f) Median

Figure 9.11: MDS scatter-plots for the five MCPSC methods generated using distance matrices and
the imputed dataset. The points are colored by the ground-truth SCOP Level 1 classification of
each domain. Blue = SCOP Class A, Green = SCOP Class B, Red = SCOP Class C and Cyan =
SCOP Class D. Black points are domains belonging to other classes.

131 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

A. Sharma 132

Efficient algorithms and architectures for protein 3-D structure comparison

10. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

As the number of protein structures grows we are faced with the important but complex
task of assigning function to proteins as well as classifying them into biologically perti-
nent groups. The faster these tasks can be performed, the faster biologists and medical
researchers can determine possible applications for the protein. The main focus of this
thesis was on developing computational methods which facilitate fast and efficient Multi-
criteria Protein Structure Comparison (MCPSC).

In the near future, we will see a continued increase in the amount of cores integrated
on a single chip as well as increased availability of commodity many-core processors.
This trend is already visible today in that off-the-shelf PCs contain processors with up to
8 cores, server grade machines often contain multiple processors with up to 32 cores,
and multi-core processors are even appearing in average grade mobile devices. Further,
the success of GPUs, Tilera’s architecture and Intel’s initiative for integrating more and
more cores on a single chip also attest to this trend. The ubiquity and the advanced core
architectures employed by multi-core CPUs make it imperative to build software that can
efficiently utilize their processing power. Our experiments, presented in Chapter 7, show
that a modern Core i7 is able to deliver high throughput for all-to-all MCPSC. Utilizing
the performance gain delivered by multi-core CPUs becomes especially important when
considered in combination with distributed setups, such as clusters, which may already
contain nodes with multiple cores.

Scalability limitations of the bus-based architecture, coupled with the greater potential of
Network-on-Chip based processors to deliver efficiency and high performance, implies
that NoCs are likely to be used extensively in future many-core processors. It is there-
fore important to start developing software frameworks and solutions that capitalize on
this parallel architecture to meet the increasing computational demands in structural pro-
teomics and bioinformatics in general. Our experimental results, presented in Chapter 6,
make it clear that Intel’s Single-chip Cloud Computer (SCC) Network-on-Chip (NoC) pro-
cessor matches the speedup and efficiency achieved by a cluster of faster workstations
[113]. However, a market ready NoC CPU will have a much better per watt performance
as compared to a cluster while also saving in space and infrastructure management costs.
Additionally any savings in watts consumed also reflects in savings in cooling infrastruc-
ture required for the hardware. Furthermore, with the per watt performance being in focus
for processor manufacturers, such as Intel and Tilera, this gap is set to expand even fur-
ther. As this study demonstrates, the likely increase in the availability and ubiquitousness
of many-core processors, the near linear speedup in tackling the MCPSC scenario and
the ease of porting new PSC methods to NoC based processors, make many-core pro-
cessors of great interest for the high performance structural proteomics and bioinformatics
communities in general.

Here we summarize our contributions and directions for future research.

133 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

10.1 Fast MCPSC with modern processor architectures

Using many-core CPUs

In Chapter 5, we discussed in detail the solution developed for utilizing the parallelism
offered by the Intel SCC for all-to-all MCPSC. We presented the design of an algorithmic
skeleton library which we used for porting PSC methods to the SCC. The source code for
this work has been made publicly available and can be used by researchers with access
to such hardware to improve efficiency of their PSC related tasks.

With the number of many-core CPUs available in the market on the rise, due to efforts from
Tilera and Intel e.g. Intel Xeon Phi, it would be of interest to port rckskel to these new archi-
tectures. For this purpose, the library should be re-factored to isolate the communication
sub-system, which currently relies on RCCE, such that porting it to other architectures
becomes equivalent to replacing the underlying communications library. Such an effort
could help generalize the task of porting PSC methods to different architectures so that
new hardware can be quickly experimented with as and when it becomes available.

Further, studying the energy efficiency of many-core CPUs with respect to multi-core is
an interesting direction in which work could be carried out especially as the NoCs get big-
ger. On future larger NoC processors optimal solutions may require the use of clusters of
cores, concurrently processing PSC jobs with different methods. Using the rckskel library
would facilitate the software development, for such more complicated scenarios, hiding
low level details from the users. To this end it would be useful to introduce communication
controls that will allow true blocking implementations of ’'send’ and 'recv’ regardless of the
communication library used (RCCE for example provides busy-wait loops for blocking) as
well as energy management routines (currently not enabled). Such an implementation
would increase the energy efficiency of applications built using the library.

Using multi-core CPUs

The ubiquity of multi-core CPUs makes them a very attractive option for speeding-up ap-
plications. In this work we developed two types of applications for the multi-core architec-
tures a) using a master-slaves strategy to study efficiency of a multi-core CPU compared
to a many-core CPU and b) a utility for performing large scale MCPSC, in Chapter 8. Both
our solutions have been provided publicly so that researchers can take advantage of them.

The large-scale MCPSC utility makes it possible to run experiments with very large datasets
on a local workstation through an easy to use GUI. We believe that this utility should prove
useful across the domain and help researchers that are not very comfortable with IT pro-
cesses to leverage MCPSC in their work. Further, because the utility is easy to extend
(with additional PSC methods), it should enable more IT savy researchers to quickly carry
out PSC experiments, using PSC methods of their choice, in order to compare and con-
trast them with existing methods.

A. Sharma 134

Efficient algorithms and architectures for protein 3-D structure comparison

In the long run, availability of such utilities is essential for the broader Bioinformatics com-
munity to leverage PSC data in their day to day tasks. This includes researchers in do-
mains ranging from those involved with classification of proteins to those involved in de-
termining functions of proteins. A formal API may be developed for such utilities allowing
a standardization of PSC software to make it more amenable towards building plug-and-
play software, allowing researchers to add/remove PSC methods with little to no need for
programming expertize.

Both multi- and many-core architectures lend themselves to the popular and powerful
MapReduce parallel programming model. If the underlying communication libraries - typ-
ically built on top of Message Passing Interface (MPI) - are available, this highly popular
approach can be applied to large scale MCPSC in a manner similar to its application in
other domains of Bioinformatics [148]. While some implementation of MapReduce are
available for multi-core machines, it must be noted that no MapReduce framework im-
plementations are available for the SCC. One possible approach for using MapReduce in
MCPSC would be to a) determine pairwise PSC to be performed on each PE (pre-Map), b)
run all PSC methods on all pairs on each PE in parallel (Map), c) collect PSC scores from
all PEs to a designated PE (shuffle) and d) combine and generate final MCPSC scores
(Reduce). Movement of data for task distribution (pre-Map), intermediate data transfer
performed by the ’shuffle’ mechanism and collection of results, if required by the Reduce
step, would benefit from low cost of inter-PE communication. Load balancing methods
similar to those discussed in this work could be useful in determining effective strategies
for the distribution of PSC tasks (pre-Map). Analysis of MCPSC performance on multi-
and many-core processors with MapReduce would be required to understand the design
trade-offs that would lead to efficient designs.

10.2 Structured analysis of MCPSC based classification of proteins

Large-scale MCPSC is the norm with the huge database sizes and the need for multi-
criteria, it is therefore important to carry out structured analysis of large-scale MCPSC
results. The rate of deposition of complex and non-globular structures in the PDB is on the
rise and is likely to continue to increase. Thus both the number and variety of recorded
structures will increase making characterizing the function of known structures a major
challenge [19]. This challenge not only calls for the use of fast techniques for dealing
with such large data but also for structured analysis of the structural space. In this work
we used the solutions developed for efficient all-to-all MCPSC to carry out a systematic
analysis of classifying and clustering protein domains from a very large dataset, using
consensus based MCPSC scores.

In Chapter 8, we present a detailed analysis of results obtained from large-scale MCPSC,
showing that MCPSC delivers near optimal performance in terms of classification and clus-
tering of proteins. This is largely because MCPSC scores tend to trace the best performing
component PSC method. We believe that this is an interesting result because in the ab-
sence of the ground-truth data it is not evident which PSC methods is performing the best.

135 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Consensus based MCPSC scores can therefore be used to analyze existence of clusters
within datasets of biological importance as well as to auto-classify protein (domains) into
categories similar to SCOP/CATH.

Real-world data problems, such as missing data, analyzed in this work are likely to plague
any large-scale MCPSC analysis. Due to a variety of factors, such as a) runtime environ-
mental, b) PSC method limitations and c) errors in PDB files, there is likely to be a lot of
unprocessed protein pairs in the PSC scores datasets. We analyzed multiple imputation
techniques and identify methods that works well. This result is of direct use to leveraging
PSC results in applications such as classification/clustering because of the high likelihood
of missing data issues. Such systematic analysis of dealing with a problem that is likely
to get worse as the sparsity of protein-protein PSC score matrices gets bigger (due to
increasing number of known protein structures) is crucial and our work can form the basis
for research in this direction.

Finally, more effort is needed to study further the complete structure space by carrying
out even larger-scale experiments (with all the PDB for instance). Understanding the
nature of the complete structure space can be catalytic in defining and identifying unique
structural units that are recurrent between protein structures. Such a finding could help
design better structure alignment metrics, as well as improve the ability of existing methods
to categorize proteins in a biologically relevant manner. Currently, domains are considered
evolutionary units because they show similar activity even when extracted from a protein
chain all together. Thus proteins with similar domains or with similar arrangements of
domains are considered similar. However, the sequence diversity with the domains as
recurring structural units is still huge and certainly worth exploring both for causes and
consequences.

A. Sharma 136

Efficient algorithms and architectures for protein 3-D structure comparison

APPENDIX | - INSTALLING PYMCPSC

This appendix describes the process for installing the pyMCPSCutility on a users machine.
The pyMCPSC Project is a utility for performing large-scale Multi-criteria Protein Structure
Comparison (MCPSC) on a multi-core CPU with an easy to extend API for adding and
removing PSC methods. It makes use of several relevant python tools to perform typical
associated tasks.

Installation

From Docker Image
First, make sure you have installed Docker on your machine following instructions provided
at https://docs.docker.com/install/. Once Docker is installed check it by running 'docker —

version’ to ensure it is in your path. Note that Windows users with older versions (before
10) will need to follow the install path for Docker-toolbox.

Locate the docker image of pyMCPSC that you have built or downloaded and load it (the
daemon should be running) as follows::

docker load -i [path_to_docker_image.tar]

Assuming that the name of the docker image is pymcpsc you should now be able to see
the image in the docker list by issuing the following command::

docker images
Test if pyMCPSC can be executed in the image by issuing the following command::
docker run pymcpsc /usr/src/app/scripts/docker-launch-pymcpsc.sh -h

Executing this command should print the usage help message of pyMCPSC with com-
mand line arguments it accepts.

Building a Docker Image
Assuming the requisite Docker tools are installed it is possible to build the docker image

for pyMCPSC. Navigate to the location where you downloaded pyMCPSC (or cloned it)
and issue the following command::

137 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

docker build -t pymcpsc .
This process will take a little time, depending on your local machine and network con-

nections, but once successfully completed the pyMCPSC image will appear in the docker
images list.

Native installation

This installation mode is relevant to developers who wish to extend pyMCPSC and works
only on Linux based systems. Before pyMCPSC is installed the dependencies of pyM-
CPSC must be made available. The suggested route is to use the Anaconda/Miniconda
platform which has a higher success rate across Linux systems, however, it is certainly
possible to install the dependencies independently of the platform. We currently recom-

mend using Python 2.7, Python 3.5 or Python 3.6 as we have only tested with these
versions of Python.

With Miniconda

First, Download and install Miniconda 4.0.5 (https://www.continuum.io/archives).

Python 2 users on Linux may use::

wget https://repo.continuum.io/miniconda/Miniconda2-4.0.5-Linux-x86_64.sh
Python 3 users on Linux may use::

wget https://repo.continuum.io/miniconda/Miniconda3-4.0.5-Linux-x86_64.sh

Once Miniconda has been installed and is in the user path install the dependencies as
follows::

conda install pyqt=4.11 numpy matplotlib pandas scikit-learn scipy seaborn

Without Anaconda

This requires installation of all the dependencies individually. You will need admin / sudo
rights on your system depending on how you choose to install the dependencies. On a
Ubuntu / Debian based system the users should run the following commands to install the
required packages::

sudo apt install python-pyqt4 python-lxml python-numpy \
python—-scipy python-matplotlib python-seaborn

A. Sharma 138

Efficient algorithms and architectures for protein 3-D structure comparison
Finally, navigate to the location where you have downloaded pyMCPSC source and exe-
cute the following commands::

python setup.py build
python setup.py install

Test if pyMCPSC has installed correctly by issuing the following command::
run-pymcpsc -—h

The output should be the help message showing the arguments accepted by the utility.

139 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

A. Sharma 140

Efficient algorithms and architectures for protein 3-D structure comparison

APPENDIX Il - EXPERIMENTAL SETUP WITH PYMCPSC

pyMCPSC supports multiple usage modes. For those that are only interested in running
the utility a Docker image may be the best place to start. For those interested in ’natively’
deploying the utility it is also possible to do so, however, this route will work only on Linux
based systems.

Configuring an experiment

Preparing the dataset

In order to run pyMCPSC the user must have protein (domain) structure files available
locally on the machine where pyMCPSC will be run. A useful script to download structure
files from the PDB has been included scripts/download.sh. The script creates a directory
pdb files in the CWD and downloads the structure files into this directory. pyMCPSC
includes structure files for the Chew Kedem dataset in tests/chew kedem dataset/pdb
files.

Preparing the ground truth file

The next step is to prepare the ground truth file which provides the list of protein domain
pairs to be included in the PSC and their SCOP/CATH classification. The ground truth
file is a tab separated value file with 4 columns: protein 1, protein 2, classification of
protein 1 and classification of protein 2. A sample ground truth file included in pyMCPSC
is tests/chew kedem dataset/ground truth ck. A useful script to prepare the ground truth
file from a listing of domains and their classifications is included scripts/prepare ground
truth.py. The script writes out the ground truth file in the CWD.

Setting up the experiment

pyMCPSC supports several parameters to control the experiment these are as follows

* DATADIR: The value should be the full path to the directory with the PDB structure
files.

* GTIN: The value should be the full path to the ground-truth data file

» PDBEXTN: The value should be the extension of the PDB structure files

141 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

» THREADS: The value should be the number of threads pyMCPSC is allowed to
launch.

* WEIGHTS: The value should be a comma separated string with weights for the PSC
methods (in order - ce,fast,gralign,TM-align,usm).

* PROGDIR: The value should be the full path to the directory with the PSC binaries.

Typically the user will not supply this value unless the PSC binaries have been compiled to
some custom location. The program parameters can be specified on the CLI. pyMCPSC
provides a set of sensible default fallback values for the optional arguments. If no value
is specified for the Datadir, the pre-packaged proteus dataset is automatically selected. If
no value is specified for Progdir, the default set of five PSC methods is used. If no value
is specified for the Gtin and the proteus dataset is used, the default ground truth data is
automatically selected. Note that if the proteus dataset is not used then then the user
must provide a ground truth file for the performance benchmarking to be performed. If no
values are specified by the user pyMCPSC runs the experiment described in the original
paper.

Running an experiment

A key aspect of pyMCPSC that is relevant to the experimental setup is that pyMCPSC
generates several output Figures and data files (that the user may wish to analyze with
other tools). The outputs are written to subfolders in the CWD it is therefore important to
ensure this is a writeable location especially when running in Docker mode.

From Docker

The simplest way to run an experiment with pyMCPSC (recreating the results of the original
paper on Proteus_300 dataset) is to issue the following command::

docker run -v [absolute_path]:/usr/shared pymcpsc:latest \
/usr/src/app/scripts/docker-launch-pymcpsc.sh

Note that we are mounting a path on the local filesystem to a specfic location in the docker
which is where pyMCPSC expects to write its output. This path must be absolute and not
relative.

In order to use your own dataset of domains and ground truth (see previous sections on
how to generate this data) the user must place these in the same directory that will be
mounted to /usr/shared. For instance, create a subdirectory data in the ’absolute path’
and place the PDB files (with pdb extension) in the directory and place the correspond-
ing ground truth data in a file 'ground_truth’. Then issue the following command to run
pyMCPSC with the custom data::

A. Sharma 142

Efficient algorithms and architectures for protein 3-D structure comparison

docker run -v [absolute_path]:/usr/shared pymcpsc:latest \
/usr/src/app/scripts/docker-launch-pymcpsc.sh \
-e pdb -d /usr/shared/data \
-g /usr/shared/ground_truth

Note that both, directory data and file ground_truth, reside at [absolute_path] on the lo-
cal filesystem but are passed to pyMCPSC as arguments in the location where they are
expected to be found in the Docker.

We have included a small dataset (Chew-Kedem) dataset in pyMCPSC sources (test-
s/chew_kedem_dataset).

From native installation

To run a MCPSC experiment with pyMCPSC create a directory, TEST_DIR, where the
experiment outputs will be written. We refer to the location where pyMCPSC was cloned
(unpacked from zip) as CLONE_DIR. Running pyMCPSC is as easy as invoking the run-
pymcpsc command with the appropriate parameters::

cd $TEST DIR$
run-pymcpsc [-h] [-e PDBEXTN] [-d DATADIR] [-g GTIN] [-t THREADS]
[-w WEIGHTS] [-p PROGDIR]

Results generated by pyMCPSC are placed in the work and outdir directories located in
the current working directory (CWD), i.e. the one from where the program is launched.
Moreover, figures generated by pyMCPSC are placed in the figures directory in the CWD.
To run pyMCPSC with the Proteus 300 dataset (prepacked) and generate the results
reported in the original paper use the command::

cd $TEST DIR$
run-pymcpsc

Sample dataset for experiment

We include in pyMCPSC the Chew-Kedem dataset and associated ground truth file as a
test dataset. To configure pyMCPSC to run with this dataset point pyMCPSC to run with
with the tests/chew kedem dataset/pdb files folder (as DATADIR) and tests/chew kedem
dataset/ground truth ck (as GTIN). The parameter PDBEXTN should be set as PDB. A
minimal commnand for using this dataset is listed below (INSTALL_DIR is the location
where pyMCPSC was extracted)::

cd $TEST DIR$

143 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

run-pymcpsc —e pdb \
—-d $INSTALL_DIR$/pymcpsc/tests/chew_kedem_dataset/pdb_files \
-g $INSTALL_DIR$/pymcpsc/tests/chew_kedem dataset/groundtruth_ck

A. Sharma 144

Efficient algorithms and architectures for protein 3-D structure comparison

APPENDIX lll - EXTENDED NEAREST-NEIGHBOR CLASSIFICATION
ANALYSIS

Using the data generated by pyMCPSC (stored in file processed.imputed.mcpsc.csv) a
break down of the performance of the different PSC and Median MCPSC method was gen-
erated, as shown in Table B below. In addition to the data generated by pyMCPSCfunctional
annotation of the SCOP families were obtained from (http://scop.berkeley.edu) in order to
assess if there is a correlation between the classification performance and the domain
SCOP families. It is interesting to observe that there is no component method that is
uniformly best on all families. Moreover, the consensus Median MCPSC classifier per-
forms best for most families, with TM-align exceeding its performance on very few cases,
however there is no pattern to these families. Interestingly, purely RMSD based methods
(CE and Fast) are the least effective for most Folds. Further, we compared the domains
misclassified by the different PCS/MCPSC method however there appeared to be no cor-
relation between the misclassified domains.

145 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

Table 1: Fraction of domains correctly classified at SCOP family level using a Nearest-Neighbor
classifier built with similarity scores produced by different PSC and MCPSC methods.

Median | TM-align | CE FAST | GRALIGN | USM | # Domains | SCOP Functional Annotation

MCPSC Family

1.00 1.00 0.13 | 0.00 1.00 0.63 | 8 c.67.1.1 AAT-like

1.00 0.89 0.22 | 0.00 1.00 0.1 9 c.1.10.1 Class | aldolase

1.00 1.00 0.50 | 0.10 0.90 0.80 10 d.131.1.2 | DNA polymerase processivity
factor

1.00 1.00 0.40 | 0.00 1.00 1.00 10 a.45.1.1 Glutathione S-transferase
(GST), C-terminal domain

1.00 1.00 0.50 | 0.00 0.90 0.50 10 c.94.1.1 Phosphate binding protein-like

1.00 1.00 1.00 | 0.10 0.90 0.90 10 a.25.1.1 Ferritin

1.00 1.00 1.00 | 0.00 1.00 0.86 | 7 b.36.1.1 PDZ domain

0.89 1.00 0.33 | 0.00 0.89 0.78 9 d.54.1.1 Enolase N-terminal domain-like

1.00 1.00 0.56 | 0.00 0.89 0.78 9 d.108.1.1 | N-acetyl transferase, NAT

1.00 1.00 0.88 | 0.00 1.00 0.88 | 8 d.15.1.1 Ubiquitin-related

0.90 1.00 0.30 | 0.00 0.90 0.80 10 d.144.1.7 | Protein kinases, catalytic subunit

1.00 1.00 0.14 | 0.00 1.00 0.71 7 a.104.1.1 | Cytochrome P450

1.00 1.00 0.00 | 0.00 1.00 0.30 10 c.1.8.3 beta-glycanases

1.00 1.00 0.11 | 0.00 1.00 0.78 9 c.93.1.1 L-arabinose binding protein-like

1.00 1.00 1.00 | 0.11 0.89 1.00 | 9 d.162.1.1 | Lactate and malate
dehydrogenases, C-terminal
domain

1.00 1.00 0.60 | 0.00 0.90 0.60 10 ¢.37.1.20 | Extended AAA-ATPase

1.00 1.00 0.60 | 0.80 1.00 1.00 10 c.2.1.5 LDH N-terminal domain-like

1.00 1.00 1.00 | 0.13 0.88 0.75 | 8 c.23.1.1 CheY-related

1.00 1.00 0.80 | 0.00 0.20 0.00 10 d.153.1.4 | Proteasome subunits

1.00 1.00 0.56 | 0.00 1.00 0.44 9 c21.2 Tyrosine-dependent
oxidoreductases

0.89 1.00 0.89 | 0.22 0.89 0.78 | 9 d.58.7.1 Canonical RBD

1.00 1.00 0.80 | 0.30 0.70 0.70 10 d.169.1.1 | C-type lectin domain

1.00 1.00 0.78 | 0.00 0.78 0.78 | 9 a.1.1.2 Globins

1.00 1.00 0.83 | 0.50 1.00 1.00 6 d.58.17.1 | HMA, heavy metal-associated

1.00 1.00 0.63 | 0.00 0.50 0.50 | 8 b.1.2.1 Fibronectin type IlI

1.00 1.00 0.90 | 0.00 0.70 0.40 10 b.69.4.1 WD40-repeat

1.00 1.00 0.50 | 0.40 1.00 0.60 10 c.37.1.8 G proteins

1.00 1.00 0.90 | 0.00 0.40 0.50 10 b.1.1.2 C1 set domains (antibody
constant domain-like)

0.89 1.00 0.00 | 0.00 0.89 0.44 9 a.123.1.1 | Nuclear receptor
ligand-binding domain

0.86 0.86 0.71 | 0.00 0.71 029 |7 b.1.1.4 | set domains

A. Sharma 146

Efficient algorithms and architectures for protein 3-D structure comparison

APPENDIX IV - SIMILARITY BASED UNROOTED PHYLOGENETIC
TREES

We can use pyMCPSC to generate an unrooted ‘Phylogenetic Tree’ visualization of the
dataset domains. A small part of an unrooted Phylogenetic tree constructed is shown
in Fig 5 of the manuscript (the complete Tree shown in Fig 1 below). Two Clades were
selected for comparison that are at the same level in the tree and contain domains from the
same SCOP Class. The goal was to assess the potential difference between the domains
in the two clades in terms of their biological function. In order to obtain information about
the function of the domains the following process was repeated:

* Download pdb-to-swissprot data from: http://www.uniprot.org/docs/pdbtosp
» Download uniprot descriptions from: http://uniprot.org

» Find keywords applicable to each domain (pdb - swissprot number - keyword)

At the end of this process we have obtained all keywords associated with each domain
of the dataset. The most frequent keyword occurring in the domains of each clade was
then determined. Clade 1 consists of 9 domains: d1wf3a1, d1r2qa_, d3raba_, dictqa_-
, d1r8sa_, d1svia_, d1mkya2, d1kk1a3, d1i2ma_ and Clade 2 consists of 4 domains:
d1a04a2, d1w25a1, d1gkka_, d1w25a2 (domains for which no keywords were found were
excluded). Table 2 lists the frequencies of the keywords for both clades. As can be seen
domains of Clade 1 are G-protein regulators while Clade 2 domains are Phosphoproteins.

Clade 1 Clade 2
Function | Count Function | Count
GTP-binding 9 Phosphoprotein 4
Nucleotide-binding 9 Nucleotide-binding 4
Complete proteome 9 Complete proteome 4
3D-structure 9 | Two-component regulatory system. 4
Reference proteome 8 3D-structure 4
Membrane 5 Cytoplasm 3
Cytoplasm 5 Transcription 2
Cell membrane 5 Transferase 2
Lipoprotein 4 Reference proteome 2
Protein transport 4 Activator 2
Transport. 3 GTP-binding 2
Direct protein sequencing 3 Repeat 2
Prenylation 3 Transcription regulation 2
Acetylation 3 DNA-binding 2
Golgi apparatus 2 Cell cycle 2
Cell division 2 Metal-binding 2
Alternative splicing 2 ATP-binding 2
Phosphoprotein 2 Magnesium 2
Nucleus 2 Differentiation 2
Cell cycle 2 Transducer 2
Methylation 2 Nitrate assimilation 1
Polymorphism 1 Plasmid 1
Cytoplasmic vesicle 1 Repressor 1

147 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

ER-Golgi transport
Disease mutation
Septation.

Cell inner membrane
Ribosome biogenesis
Metal-binding
rRNA-binding.
Proto-oncogene

Ubl conjugation.
Exocytosis
Host-virus interaction
Synaptosome
Synapse

Initiation factor
Endocytosis
S-nitrosylation.
Magnesium

Protein biosynthesis.
Postsynaptic cell membrane
RNA-binding
Endosome
Phagocytosis
Myristate

Palmitate

Isopeptide bond
Mitosis

Repeat

Cell projection

Cell junction
Transport

Al alalalalalalalalal] al alalalalalalalal a2l sl alaal =

Table 2: Frequency of functional keywords obtained for the domains of the two Clades identified
on the Phylogenetic Tree. Keywords are obtained from Uniprot by matching the domain names
with corresponding Uniprot Ids.

A. Sharma 148

01

Efficient algorithms and architectures for protein 3-D structure comparison

Figure 1: The unrooted ‘Phylogenetic Tree’ based on median MCPSC consensus scores. Domains
are colored according to their SCOP class (Level 1). Domains of both clades circled belong to
Class C but represent different functional groups.

149 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

A. Sharma 150

Efficient algorithms and architectures for protein 3-D structure comparison

REFERENCES

[1] Measuring the Similarity of Protein Structures by Means of the Universal Similarity Metric (Auxiliary
Programs and Scripts). URL:http://www.cs.nott.ac.uk/~nxk/USM/protocol.html.

[2] RCCE: a small library for Many-Core communication. URL:http://techresearch.intel.com/spaw2/
uploads/files//RCCE_Specification.pdf.

[3] pandas: Python Data Analysis Library. Online, 2012.
[4] N. N. Alexandrov. SARFing the PDB. Protein Engineering, 9:727—732, 1996.

[5] Rumen Andonov, Noél Malod-Dognin, and Nicola Yanev. Maximum contact map overlap revisited.
Journal of Computational Biology, 18(1):27—-41, January 2011.

[6] Rumen Andonov, Nicola Yanev, and Noél Malod-Dognin. An Efficient Lagrangian Relaxation for the
Contact Map Overlap Problem, pages 162—173. Springer, 2008.

[71 Rumen Andonov, Nicola Yanev, and Noél Malod-Dognin. An Efficient Lagrangian Relaxation for the
Contact Map Overlap Problem. In Keith A. Crandall and Jens Lagergren, editors, WABI, volume 5251
of Lecture Notes in Computer Science, pages 162—173. Springer, 2008.

[8] P.J. Artymiuk, A. R. Poirrette, H. M. Grindley, D. W. Rice, and P. Willett. A graph-theoretic approach to
the identification of three-dimensional patterns of amino acid side-chains in protein structures. Journal
of molecular biology, 243(2):327-344, October 1994.

[9] David Atienza, Federico Angiolini, Srinivasan Murali, Antonio Pullini, Luca Benini, and Giovanni
De Micheli. Network-On-Chip Design and Synthesis Outlook. INTEGRATION, vol. 41, n. 2:1 — 35,
2008. [ARTICOLO].

[10] M. Azimi, N. Cherukuri, D. Jayashima, A. Kumar, P. Kundu, S. Park, I. Schoinas, and A. Vaidya. Inte-
gration Challenges and Tradeoffs for Tera-scale Architectures. Intel Technology Journal, 11:173-184,
2007.

[11] S. Balaji and N. Srinivasan. Comparison of sequence-based and structure-based phylogenetic trees
of homologous proteins: Inferences on protein evolution. Journal of Biosciences, 32(1):83—-96, 2007.

[12] Aydin O. Balkan, Gang Qu, and Uzi Vishkin. A Mesh-of-Trees Interconnection Network for Single-Chip
Parallel Processing. In Proceedings of the IEEE 17th International Conference on Application-specific
Systems, Architectures and Processors, ASAP '06, pages 73—-80, Washington, DC, USA, 2006. IEEE
Computer Society.

[13] D. Barthel, J.D. Hirst, J. Blacewicz, and N.Krasnogor. ProCKSi: a Metaserver for Protein Comparison
Using Kolmogorov and Other Similarity Measures. BMC Bioinformatics, 8:416, 2007.

[14] Daniel Barthel, Jonathan D Hirst, Jacek Bewicz, Edmund K Burke, and Natalio Krasnogor. ProCKSI:
a decision support system for Protein (Structure) Comparison, Knowledge, Similarity and Information.
BMC Bioinformatics, 8:416, 2007.

[15] Daniel Barthel, Jonathan D. Hirst, Jacek Blazewicz, Edmund K. Burke, and Natalio Krasnogor.
ProCKSI: a decision support system for protein (structure) comparison, knowledge, similarity and in-
formation. BMC Bioinformatics, 8:416, October 2007.

[16] F. Birzele, J. E. Gewehr, G. Csaba, and R. Zimmer. Vorolign—fast structural alignment using Voronoi
contacts. Bioinformatics, 23(2), January 2007.

[17] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of Network-on-chip.
ACM Comput. Surv., 38(1), June 2006.

151 A. Sharma

URL:http://www.cs.nott.ac.uk/~nxk/USM/protocol.html
 URL:http://techresearch.intel.com/spaw2/uploads/files//RCCE_Specification.pdf
 URL:http://techresearch.intel.com/spaw2/uploads/files//RCCE_Specification.pdf

Efficient algorithms and architectures for protein 3-D structure comparison

[18] G. Blake, R. G. Dreslinski, and T. Mudge. A survey of multicore processors. Signal Processing Mag-
azine, IEEE, 26(6):26—-37, November 2009.

[19] Philip E. Bourne and llya N. Shindyalov. Structure Comparison and Alignment, pages 321-337. John
Wiley and Sons, Inc., 2005.

[20] Duncan K. G. Campbell. Towards the Classification of Algorithmic Skeletons. Technical Report YCS
276, University of York, 1996.

[21] Alberto Caprara, Robert D. Carr, Sorin Istrail, Giuseppe Lancia, and Brian Walenz. 1001 Optimal PDB
Structure Alignments: Integer Programming Methods for Finding the Maximum Contact Map Overlap.
Journal of Computational Biology, 11(1):27-52, 2004.

[22] Lei Chai, Qi Gao, and Dhabaleswar K. Panda. Understanding the Impact of Multi-Core Architecture in
Cluster Computing: A Case Study with Intel Dual-Core System. In Proceedings of the Seventh IEEE In-
ternational Symposium on Cluster Computing and the Grid, CCGRID ’07, pages 471-478, Washington,
DC, USA, 2007. IEEE Computer Society.

[23] Shuai Che, Jie Li, J W Sheaffer, Kevin Skadron, and John Lach. Accelerating compute-intensive
applications with GPUs and FPGAs. 2008 Symposium on Application Specific Processors, pages 101—
107, June 2008.

[24] Luonan Chen, LingYun Wu, Yong Wang, Shihua Zhang, and Xiang-Sun Zhang. Revealing divergent
evolution, identifying circular permutations and detecting active-sites by protein structure comparison.
BMC Structural Biology, 6:18, September 2006.

[25] Luonan Chen, Tianshou Zhou, and Yun Tang. Protein structure alignment by deterministic annealing.
Bioinformatics, 21(1):51-62, 2005.

[26] L. P. Chew, D. D. Huttenlocher, K. Kedem, and Jon M. Kleinberg. Fast detection of common geometric
substructure in proteins. In Proc. 3rd Annual Conference on Research in Computational Molecular
Biology (RECOMB), pages 104—114, 1999.

[27] L. Paul Chew and Klara Kedem. Finding the consensus shape for a protein family (extended abstract).
In 18th ACM Symposium on Computational Geometry, pages 64—73, 2002.

[28] PinHao Chi. Efficient protein tertiary structure retrievals and classifications using content based com-
parison algorithms. PhD thesis, University of Missouri at Columbia, Columbia, MO, USA, 2007.

[29] Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox, Andrew Dalke, Iddo
Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, and Michiel J. L. de Hoon. Biopython:
freely available python tools for computational molecular biology and bioinformatics. Bioinformatics,
25(11):1422-1423, 2009.

[30] Maxime Colmant, Romain Rouvoy, and Lionel Seinturier. Improving the energy efficiency of software
systems for multi-core architectures. In Proceedings of the 11th Middleware Doctoral Symposium, MDS
14, pages 1:1-1:4, New York, NY, USA, 2014. ACM.

[31] Matteo Comin, Concettina Guerra, and Giuseppe Zanotti. PROuUST: A comparison method of three-
dimensional structures of proteins using indexing techniques. Journal of Computational Biology,
11(6):1061-1072, 2004.

[32] T. Cover and P. Hart. Nearest neighbor pattern classification. |IEEE Trans. Inf. Theor., 13(1):21-27,
September 2006.

[33] Trevor F. Cox and M.A.A. Cox. Multidimensional Scaling, Second Edition. Chapman and Hall/CRC, 2
edition, 2000.

[34] G. Csaba, F. Birzele, and R. Zimmer. Protein structure alignment considering phenotypic plasticity.
Bioinformatics, 24(16):98—104, August 2008.

[35] Gergely Csaba, Fabian Birzele, and Ralf Zimmer. Systematic Comparison of SCOP and CATH: A new
Gold Standard for Protein Structure Analysis. BMC Structural Biology, 9(23), 2009.

A. Sharma 152

Efficient algorithms and architectures for protein 3-D structure comparison

[36] Aniket Dalal, Sandeep Deshmukh, and Pramod P Wangika. Protein structure classification using ge-
ometric invariants and dynamic programming. Protein and Peptide Letters, 14(7):658—664, 2007.

[37] Natalie L. Dawson, Tony E. Lewis, Sayoni Das, Jonathan G. Lees, David Lee, Paul Ashford, Christine A.
Orengo, and lan Sillitoe. Cath: an expanded resource to predict protein function through structure and
sequence. Nucleic Acids Research, 45(D1):D289-D295, 2017.

[38] D F Ding, J Qian, and Z K Feng. A differential geometric treatment of protein structure comparison.
Bulletin of Mathematical Biology, 56(5):923-943, 1994,

[39] Miquel Duran-Frigola, Lydia Siragusa, Eytan Ruppin, Xavier Barril, Gabriele Cruciani, and Patrick Aloy.
Detecting similar binding pockets to enable systems polypharmacology. PLOS Computational Biology,
13(6):1-18, 06 2017.

[40] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861-874, June 2006.

[41] D. Fischer, A. Elofsson, D. Rice, and D. Eisenberg. Assessing the performance of fold recognition
methods by means of a comprehensive benchmark. Pacific Symposium on Biocomputing, pages 300—
318, 1996.

[42] Peter Glaskowsky. Tilera’s balancing act: 100 cores vs. market realities. http://news.cnet.com/
8301-13512_3-10388025-23.html, 2009.

[43] Cristian Grozea, Zorana Bankovic, and Pavel Laskov. FPGA vs. Multi-core CPUs vs. GPUs: Hands-On
Experience with a Sorting Application. Computing, pages 1-12, 2011.

[44] Julia Handl, Joshua D. Knowles, and Douglas B. Kell. Computational cluster validation in post-genomic
data analysis. Bioinformatics, 21(15):3201-3212, 2005.

[45] V. Joachim Haupt, Simone Daminelli, and Michael Schroeder. Drug promiscuity in pdb: Protein binding
site similarity is key. PLOS ONE, 8(6):1-15, 06 2013.

[46] L. Holm and J. Park. DaliLite workbench for protein structure comparison. Bioinformatics, 16(6):566—
567, June 2000.

[47] L. Holm and C. Sander. Protein structure comparison by alignment of distance matrices. Journal of
Molecular Biology, 233(1):123—-138, September 1993.

[48] L Holm and C Sander. Protein structure comparison by alignment of distance matrices. Journal of
Molecular Biology, 233(1):123-138, 1993.

[49] Jingcao Hu and Radu Marculescu. DyAD: smart routing for networks-on-chip. In Sharad Malik, Limor
Fix, and Andrew B. Kahng, editors, Proceedings of the 41th Design Automation Conference, DAC 2004,
San Diego, CA, USA, June 7-11, 2004, pages 260-263. ACM, 2004.

[50] Jaime Huerta-Cepas, Francois Serra, and Peer Bork. Ete 3: Reconstruction, analysis, and visualization
of phylogenomic data. Molecular Biology and Evolution, 33(6):1635, 2016.

[51] J.D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science & Engineering, 9(3):90-95,
2007.

[52] 1. Jonassen, |. Eidhammer, and W. R. Taylor. Discovery of local packing motifs in protein structures.
Proteins, 34:206-219, 1999.

[53] A. R. Kinjo, K. Horimoto, and K. Nishikawa. Predicting absolute contact numbers of native protein
structure from amino acid sequence. Proteins, 58(1):158—-165, January 2005.

[54] Patrice Koehl. Protein Structure Classification, pages 1-55. John Wiley & Sons, Inc., 2006.

[55] Andrey N. Kolmogorov. Three approaches to the quantitative definition of information. Problems in
Information Transmission, 1:1-7, 1965.

153 A. Sharma

http://news.cnet.com/8301-13512_3-10388025-23.html
http://news.cnet.com/8301-13512_3-10388025-23.html

Efficient algorithms and architectures for protein 3-D structure comparison

[56] R. Kolodny, D. Petrey, and B. Honig. Protein structure comparison: implications for the nature of fold
space’, and structure and function prediction. Current Opinion in Structural Biology, 16(3):393-398,
June 2006.

[57] Rachel Kolodny and Nathan Linial. Approximate protein structural alignment in polynomial time. Pro-
ceedings of the National Academy of Sciences of the United States of America, 101(33):12201-12206,
2004.

[58] Elias Kouskoumvekakis, Dimitrios Soudris, and E. S. Manolakos. Many-core CPUs can deliver scal-
able performance to stochastic simulations of large-scale biochemical reaction networks. International
Conference on High Performance Computing & Simulation, Accepted for publication, 2015.

[59] N. Krasnogor and D. A. Pelta. Measuring the similarity of protein structures by means of the universal
similarity metric. Bioinformatics, 20(7):1015-1021, May 2004.

[60] E. Krissinel and K. Henrick. Secondary-structure matching (SSM), a new tool for fast protein structure
alignment in three dimensions. Acta crystallographica. Section D, Biological crystallography, 60(Pt 12
Pt 1):2256-2268, December 2004.

[61] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classifier ensembles. Ma-
chine Learning, 51(2), 2000.

[62] P Lackner, W A Koppensteiner, M J Sippl, and F S Domingues. ProSup: a refined tool for protein
structure alignment. Protein Engineering, 13(11):745-752, 2000.

[63] R. A. Laskowski, J. D. Watson, and J. M. Thornton. ProFunc: a server for predicting protein function
from 3D structure. Nucleic Acids Research, 33:89-93, 2005.

[64] Arthur M. Lesk. Introduction to Bioinformatics, pages 40—42. Oxford University Press, 2005.

[65] GongHua Li and Jing-Fei Huang. CMASA: an accurate algorithm for detecting local protein structural
similarity and its application to enzyme catalytic site annotation. BMC Bioinformatics, 11(1):439, 2010.

[66] Wei Liu, Anuj Srivastava, and Jinfeng Zhang. A mathematical framework for protein structure compar-
ison. PLoS Computational Biology, 7(2):189, February 2011.

[67] Loredana Lo Conte, Bart Ailey, Tim J. P. Hubbard, Steven E. Brenner, Alexey G. Murzin, and Cyrus
Chothia. SCOP: a Structural Classification of Proteins database. Nucleic Acids Research, 28(1):257—-
259, 2000.

[68] Zaixin Lu, Zhiyu Zhao, and Bin Fu. Efficient protein alignment algorithm for protein search. BMC
Bioinformatics, 11(Suppl 1):34, 2010.

[69] Y Luo, L Lai, X Xu, and Y Tang. Defining topological equivalences in protein structures by means of a
dynamic programming algorithm. Protein Engineering, 6(4):373-376, 1993.

[70] Giuseppe Maccari, Giulia L B Spampinato, and Valentina Tozzini. Secstant: Secondary structure
analysis tool for data selection, statistics and models building. Bioinformatics, 2013.

[71] M. S. Madhusudhan, Benjamin M. Webb, Marc A. Marti-Renom, Narayanan Eswar, and Andrej Sali.
Alignment of multiple protein structures based on sequence and structure features. Protein Engineering,
Design and Selection, 22(9):540-574, July 2009.

[72] Noél Malod-Dognin and Nata$a Przulj. GR-Align: fast and flexible alignment of protein 3D structures
using graphlet degree similarity. Bioinformatics, 30(9):1259-1265, May 2014.

[73] Noel Malod-Dognin and Natasa Przulj. Gr-align: fast and flexible alignment of protein 3d structures
using graphlet degree similarity. Bioinformatics, 30(9):1259-1265, 2014.

[74] Bryan Marker, Ernie Chan, Jack Poulson, Robert Geijn, Rob Wijngaart, Timothy Mattson, and Theodore
Kubaska5. Programming many-core architectures - a case study: dense matrix computations on the
Intel SCC processor. Concurrency And Computation: Practice And Experience, pages 1-18, 2011.

A. Sharma 154

Efficient algorithms and architectures for protein 3-D structure comparison

[75] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas, Patrick Kennedy, Ja-
son Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, and Saurabh Dighe. The 48-core SCC Processor:
the Programmer’s View. In Proceedings of the 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’10, pages 1-11, Washington, DC, USA,
2010. IEEE Computer Society.

[76] Lazaros Mavridis and David Ritchie, W. 3D-blast: 3D protein structure alignment, comparison, and
classification using spherical polar Fourier correlations. In Pacific Symposium on Biocomputing 2010,
pages 281-292, Hawaii, United States, Jan 2010. World Scientific Publishing.

[77]1 Matthew Menke, Bonnie Berger, and Lenore Cowen. Matt: Local flexibility aids protein multiple struc-
ture alignment. PLoS Comput Biol, 4(1):10, January 2008.

[78] Stephan Mertens. The easiest hard problem: Number partitioning. In A.G. Percus, G. Istrate, and
C. Moore, editors, Computational Complexity and Statistical Physics, pages 125-139, New York, 2006.
Oxford University Press.

[79] Tom Milledge, Gaolin Zheng, Tim Mullins, and Giri Narasimhan. SBLAST: Structural basic local align-
ment searching tools using geometric hashing. In Bioinformatics and Bioengineering, pages 1343-1347,
2007.

[80] Caitlyn L. Mills, Penny J. Beuning, and Mary Jo Ondrechen. Biochemical functional predictions for pro-
tein structures of unknown or uncertain function. Computational and Structural Biotechnology Journal,
13:182 — 191, 2015.

[81] Dariusz Mrozek, Mitosz Brozek, and Bozena Matysiak-Mrozek. Parallel implementation of 3d protein
structure similarity searches using a gpu and the cuda. Journal of Molecular Modeling, 20(2):1-17, 2014.
This work was supported by the European Union through the European Social Fund (grant agreement
number: UDA-POKL.04.01.01-00-106/09).

[82] Dariusz Mrozek, Bozena Malysiak-Mrozek, and Artur Klapcinski. Cloud4Psi: cloud computing for 3D
protein structure similarity searching. Bioinformatics, 30(19):2822—-2825, 2014.

[83] H. Nakamura, Berman H. M., and Henrick K. Announcing the worldwide protein data bank. Nature
Structural Biology, 10:98, 2003.

[84] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and James C Phillips. GPU
computing. Proceedings of the IEEE, 96(5):879-899, 2008.

[85] Roderic D.M. Page. Space, time, form: viewing the tree of life. Trends in Ecology & Evolution, 27:113
— 120, Jan-02-2012 2012.

[86] Shashi B. Pandit and Jeffrey Skolnick. Fr-TM-align: A new protein structural alignment method based
on fragment alignments and the TM-score. BMC Bioinformatics, 9(1):531, December 2008.

[87] Bin Pang, Nan Zhao, Michela Becchi, Dimitry Korkin, and Chi-Ren Shyu. Accelerating large-scale
protein structure alignments with graphics processing units. BMC Research Notes, 5, 2011.

[88] J Park, S and M Yamamura. FROG (fitted rotation and orientation of protein structure by means of
real-coded genetic algorithm): Asynchronous parallelizing for protein structure-based comparison on
the basis of geometrical similarity. Genome Informatics, 13:344—45, 2002.

[89] Bryson R. Payne, G. Scott Owen, Irene Weber, Ying Zhu, and Ping Liu. A portable, reusable framework
for scientific computing on gpus. In ACM SIGGRAPH 2004 Posters, SIGGRAPH '04, page 93, 2004.

[90] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830,
2011.

[91] D Pekurovsky, I N Shindyalov, and P E Bourne. A case study of high-throughput biological data pro-
cessing on parallel platforms. Bioinformatics, 20(12):1940-1947, 2004.

155 A. Sharma

Efficient algorithms and architectures for protein 3-D structure comparison

[92] David A. Pelta, Juan R. Gonzalez, and Marcos M. Vega. A simple and fast heuristic for protein structure
comparison. BMC Bioinformatics, 9:161, March 2008.

[93] Robert Clark Penner, Michael Knudsen, Carsten Wiuf, and Jgrgen Ellegaard Andersen. An algebro-
topological description of protein domain structure. PLoS ONE, 6(5):196, 2011.

[94] Matt Pharr and Randima Fernando. Gpu gems 2: programming techniques for high-performance
graphics and general-purpose computation. Addison-Wesley Professional, first edition, 2005.

[95] Aleksandar Poleksic. Algorithms for optimal protein structure alignment. Bioinformatics, 25(21):2751—
2756, November 20089.

[96] D. M. W. Powers. Evaluation: From precision, recall and f-measure to roc., informedness, markedness
& correlation. Journal of Machine Learning Technologies, 2(1):37-63, 2011.

[97] Ganesan Pugalenthi, Ke Tang, Pn Suganthan, and Saikat Chakrabarti. Identification of structurally
conserved residues of proteins in absence of structural homologs using neural network ensemble. Bioin-
formatics, page 618, November 2008.

[98] V. Pulim, B. Berger, and J. Bienkowska. Optimal contact map alignment of protein-protein interfaces.
Bioinformatics, 24(20):2324—-2328, October 2008.

[99] Stéphanie Pérot, Olivier Sperandio, Maria A. Miteva, Anne-Claude Camproux, and Bruno O. Villoutreix.
Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug
Discovery Today, 15(15):656 — 667, 2010.

[100] Thomas Rauber and Gudula Runger. Parallel Programming - for Multicore and Cluster Systems.
Springer, 2010.

[101] Oliver C. Redfern, Benoit H. Dessailly, Timothy J. Dallman, lan Sillitoe, and Christine A. Orengo. Flora:
A novel method to predict protein function from structure in diverse superfamilies. PLOS Computational
Biology, 5(8):1-12, 08 2009.

[102] B Rost and Sander C. Prediction of protein secondary structure at better than 70% accuracy. Journal
of Molecular Biology, 253:584-599, 1993.

[103] S Rufino and T Blundell. Structure-based identification and clustering of protein families and super-
families. Computer Aided Mol. Design, 8:5-27, 1994.

[104] Subhash Saini, Haoqgiang Jin, Robert Hood, David Barker, Piyush Mehrotra, and Rupak Biswas.
The impact of hyper-threading on processor resource utilization in production applications. In 18th
International Conference on High Performance Computing, HiPC 2011, Bengaluru, India, December
18-21, 2011, pages 1-10, 2011.

[105] Saeed Salem, Mohammed J. Zaki, and Chris Bystroff. FlexSnap: flexible non-sequential protein
structure alignment. Algorithms for molecular biology : AMB, 5:12, January 2010.

[106] S. Sarkar, T. Majumder, A. Kalyanaraman, and P.P. Pande. Hardware accelerators for biocomputing:
A survey. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,
pages 3789-3792. IEEE, August 2010.

[107] Souradip Sarkar, Gaurav Ramesh Kulkarni, Partha Pratim Pande, and Ananth Kalyanaraman.
Network-on-Chip Hardware Accelerators for Biological Sequence Alignment. IEEE Transaction on Com-
pututation, 59(1):29-41, January 2010.

[108] John E. Savage and Mohammad Zubair. A unified model for multicore architectures. In Proceedings
of the 1st international forum on Next-generation multicore/manycore technologies, IFMT ’08, pages
9:1-9:12, New York, NY, USA, 2008. ACM.

[109] Bryan Schauer. Multicore processors - A necessity. URL:www.csa.com/discoveryguides/multicore/
review.pdf, 2008.

A. Sharma 156

URL:www.csa.com/discoveryguides/multicore/review.pdf
URL:www.csa.com/discoveryguides/multicore/review.pdf

Efficient algorithms and architectures for protein 3-D structure comparison

[110] A. A. Shah, G. Folino, and N. Krasnogor. Toward high-throughput, multicriteria protein-structure com-
parison and analysis. IEEE Transactions on NanoBioscience, 9(2):144—-155, June 2010.

[111] Azhar Ali Shah. Studies on distributed approaches for large scale multi-criteria protein structure com-
parison and analysis. Doctoral Thesis, March 2011.

[112] Azhar Ali Shah, Daniel Barthel, and Natalio Krasnogor. Grid and distributed public computing schemes
for structural proteomics : A short overview. Frontiers of High Performance Computing and Networking
ISPA 2007 Workshops, 4743:424-434, 2007.

[113] Azhar Ali Shah, Gianluigi Folino, and Natalio Krasnogor. Toward high-throughput, multicriteria protein-
structure comparison and analysis. IEEE Transactions on NanoBioscience, 9(2):144—-155, 2010.

[114] A. Sharma, A. Papanikolaou, and E.S. Manolakos. Accelerating all-to-all protein structures compari-
son with tmalign using a noc many-cores processor architecture. In Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2013 IEEE 27th International, pages 510-519, May 2013.

[115] Anuj Sharma and Elias S. Manolakos. Efficient multi-criteria protein structure comparison on modern
processor architectures. BioMed Research International, 2015:13, 2015. Article ID 563674.

[116] Anuj Sharma and Elias S. Manolakos. Multi-criteria protein structure comparison and structural simi-
larities analysis using pymcpsc. PLOS ONE, 13(10):1-15, 10 2018.

[117] Maxim Shatsky, Ruth Nussinov, Haim J. Wolfson, and Sackler Insti. FlexProt: alignment of flexible
protein structures without a predefinition of hinge regions. Journal of Computational Biology, 11:83—106,
2004.

[118] I. N Shindyalov and P. E Bourne. Protein data representation and query using optimized data decom-
position. CABIOS, 13:487-496, 1998.

[119] I N Shindyalov and P E Bourne. Protein structure alignment by incremental combinatorial extension
(CE) of the optimal path. Protein Engineering, 11(9):739-747, 1998.

[120] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Concepts. Wiley
Publishing, John Wiley & Sons, 8 edition, 2008.

[121] lan Sillitoe, Tony E. Lewis, Alison Cuff, Sayoni Das, Paul Ashford, Natalie L. Dawson, Nicholas Furn-
ham, Roman A. Laskowski, David Lee, Jonathan G. Lees, Sonja Lehtinen, Romain A. Studer, Janet
Thornton, and Christine A. Orengo. CATH: comprehensive structural and functional annotations for
genome sequences. Nucleic Acids Research, 43(D1):D376-D381, January 2015.

[122] W Simon. Transistor Count and Moore’s Law. URL:http://en.wikipedia.org/wiki/File%3ATransistor_
Count_and_Moore’27s_Law_-_2011.svg, 2011.

[123] Manfred J. Sippl and Markus Wiederstein. A note on difficult structure alignment problems. Bioinfor-
matics, 24(3):426—427, February 2008.

[124] Alex D Stivala, Peter J Stuckey, and Anthony | Wirth. Fast and accurate protein substructure searching
with simulated annealing and GPUs. BMC Bioinformatics, 11(1):446, 2010.

[125] Michael L Stokes. A brieflook at FPGAs, GPUs and Cell Processors. International Test and Evaluation
Association (ITEA) Journal, (7):9-11, 2007.

[126] Jeet Sukumaran and Mark T. Holder. Dendropy: a python library for phylogenetic computing. Bioin-
formatics, 26(12):1569, 2010.

[127] W R Taylor. A flexible method to align large numbers of biological sequences. Journal of Molecular
Evolution, 28(1-2):161-169, 1998.

[128] Ella Teplitsky, Karan Joshi, Daniel L. Ericson, Alexander Scalia, Jeffrey D. Mullen, Robert M. Sweet,
and Alexei S. Soares. High throughput screening using acoustic droplet ejection to combine protein
crystals and chemical libraries on crystallization plates at high density. Journal of Structural Biology,
(0):—, 2015.

157 A. Sharma

 URL:http://en.wikipedia.org/wiki/File%3ATransistor_Count_and_Moore'27s_Law_-_201 1.svg
 URL:http://en.wikipedia.org/wiki/File%3ATransistor_Count_and_Moore'27s_Law_-_201 1.svg

Efficient algorithms and architectures for protein 3-D structure comparison

[129] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polyno-
mial. Acta Crystallographica Section A, 61(4):478—480, July 2005.

[130] W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17:401-419, 1952.

[131] Ehsan Totoni, Babak Behzad, Swapnil Ghike, and Josep Torrellas. Comparing the power and perfor-
mance of intel's scc to state-of-the-art cpus and gpus. In Rajeev Balasubramonian and Vijayalakshmi
Srinivasan, editors, ISPASS, pages 78-87. IEEE, 2012.

[132] Guido Van Rossum. Python tutorial, Technical Report CS-R9526. Technical report, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, May 1995.

[133] Mallika Veeramalai and David Gilbert. A novel method for comparing topological models of protein
structures enhanced with ligand information. Bioinformatics, 24:2698-2705, December 2008.

[134] Mallika Veeramalai, David Gilbert, and Gabriel Valiente. An optimized TOPS+ comparison method
for enhanced TOPS models. BMC Bioinformatics, 11(1):138, 2010.

[135] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy array: A structure for efficient
numerical computation. Computing in Science and Engg., 13(2):22—-30, March 2011.

[136] Yuhang Wang, Fillia Makedon, James Ford, and Heng Huang. A bipartite graph matching framework
for finding correspondences between structural elements in two proteins. Proceedings of the Interna-
tional Conference of IEEE Engineering in Medicine and Biology Society, 4:2972-2975, 2004.

[137] Michael Waskom, Olga Botvinnik, Paul Hobson, John B. Cole, Yaroslav Halchenko, Stephan Hoyer,
Alistair Miles, Tom Augspurger, Tal Yarkoni, Tobias Megies, Luis Pedro Coelho, Daniel Wehner, cynddl,
Erik Ziegler, diego0020, Yury V. Zaytsev, Travis Hoppe, Skipper Seabold, Phillip Cloud, Miikka Koskinen,
Kyle Meyer, Adel Qalieh, and Dan Allan. seaborn: v0.5.0 (november 2014), November 2014.

[138] A Williams, D Gilbert, and D R Westhead. Multiple structural alignment for distantly related all beta
structures using TOPS pattern discovery and simulated annealing. Protein Engineering, 16(12):913—
923, 2009.

[139] W. Xie and N. V. Sahinidis. A reduction-based exact algorithm for the contact map overlap problem.
Journal of computational biology : a journal of computational molecular cell biology, 14(5):637—654,
June 2007.

[140] Yuzhen Ye and Adam Godzik. Multiple flexible structure alignment using partial order graphs. Bioin-
formatics, 21(10):2362—-2369, 2005.

[141] Golan Yona and Klara Kedem. The URMS-RMS hybrid algorithm for fast and sensitive local protein
structure alignment. Journal of Computational Biology, 12(1):12-32, 2005.

[142] Lei Zhang, James Bailey, Arun S. Konagurthu, and Kotagiri Ramamohanarao. A fast indexing ap-
proach for protein structure comparison. BMC Bioinformatics, 11 Suppl 1:46, 2010.

[143] Yang Zhang and Jeffrey Skolnick. TM-align: a protein structure alignment algorithm based on the
TM-score. Nucleic Acids Research, 33(7):2302—-2309, 2005.

[144] Zhiyu Zhao, Bin Fu, Francisco J Alanis, and Christopher M Summa. Feedback algorithm and web-
server for protein structure alignment. Computational Systems Bioinformatics Life Sciences Society
Computational Systems Bioinformatics Conference, 7:109-120, 2008.

[145] Degui Zhi, S Sri Krishna, Haibo Cao, Pavel Pevzner, and Adam Godzik. Representing and comparing
protein structures as paths in three-dimensional space. BMC Bioinformatics, 7:460, 2006.

[146] Xiaobo Zhou, James Chou, and Stephen Tc Wong. Protein structure similarity from principle compo-
nent correlation analysis. BMC Bioinformatics, 7(1):40, 2006.

[147] Jianhua Zhu and Zhiping Weng. FAST: a novel protein structure alignment algorithm. Proteins,
58(3):618-627, 2005.

[148] Quan Zou, Xu-Bin Li, Wen-Rui Jiang, Zi-Yu Lin, Gui-Lin Li, and Ke Chen. Survey of MapReduce
frame operation in bioinformatics. Briefings in Bioinformatics, 2013.

A. Sharma 158

	CONTENTS
	Introduction
	Outline of the Thesis

	Preliminaries
	Protein Structure
	Similarity Metrics
	Features of Proteins
	Representation of Protein Backbone
	Problem Formulation
	Datasets

	Background and Related Work
	Pairwise protein structure comparison
	Graph Based Techniques
	Dynamic programming based techniques
	Information Retrieval based techniques
	Geometric techniques
	Contact map based techniques
	Polynomial time approximations
	Simulated annealing based techniques
	Techniques with special alignment scoring
	Other methods

	Distributed and parallel protein structure comparison
	Grid and Cluster based approaches
	GPU based approaches

	Parallel architectures
	Reviewing the open problems

	Modeling Parallel Multi-Criteria Protein Structure Comparison
	An algorithmic view
	Scope for parallelism in protein structure comparison

	Analysis of PSC methods
	TMAlign
	Combinatorial Extension
	Universal Similarity Metric

	Characteristics of pairwise PSC
	Fine-grained parallelism for MCPSC
	Parallel TMalign

	A theoretical model for MCPSC

	Parallel MCPSC for a Network-on-Chip Processor Architecture
	The Intel SCC
	Hardware Architecture
	Software Architecture

	The Rckskel library
	Overview
	Operational semantics
	Instantiating rckskel skeletons

	Software framework for porting PSC methods

	Optimal Load-Balancing for MCPSC on the SCC
	Load balancing methods
	Static partitioning
	Dynamic round robin

	Experiments
	Comparison of load balancing strategies

	Performance Benchmarking: Multi- vs Many-core Processor
	SCC Usage
	Comparison with serial implementation
	Comparison with multi-core implementation
	Qualitative analysis

	Large Scale Consensus Based MCPSC on Multi-core Processor Architechtures
	MCPSC on commodity hardware
	Consensus scores introduced
	Data imputation scheme
	PSC Scores
	MCPSC consensus scores calculation

	pyMCPSC software design
	Architecture
	Dependencies and Installation
	Extending pyMCPSC

	Performance Benchmarking: Consensus MCPSC vs Component PSC Methods
	Performing MCPSC on a multi-core processor
	MCPSC provides quality consensus scores
	MCPSC consensus scores can be used to accurately classify query domains
	MCPSC reveals structural relations between domains
	MCPSC can reveal functional relations between protein domains
	pyMCPSC can handle very large datasets
	Dataset
	ROC Analysis
	Nearest-Neighbor classification
	Multidimensional Scaling Scatterplots of protein domains

	Conclusions and Future Research Directions
	Fast MCPSC with modern processor architectures
	Structured analysis of MCPSC based classification of proteins

	APPENDICES
	REFERENCES

