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ABSTRACT

Graph theory and algorithms offer precious toolboxes for the modelling as well as the analysis
of numerous phenomena in natural sciences. Here a review of the modern bibliography is pre-
sented, divided in four main chapters, giving some indications on how the concepts of these two
disciplines can be used for the study of animal behaviour and neuroscience. As an exception
the premier part of the first chapter provides a short discussion on the applications of graph
theory on molecular biology. This choice made in order to make this work more complete and
give to the readers from various backgrounds an, as much as possible, overall view of the future
potential of such interdisciplinary approaches. The rest two sections of the first chapter deals
with brain networks and central terms of graph theory, such as centrality, in their study. The
second chapter introduces some concepts of animal sociality and refers to studies of animal
cooperation, focusing on evolutionary graph and game theory. Moreover, in the last section of
this chapter the collective motion of animal groups is discussed providing, into the bargain, an
introduction of basic terms for the subsequent third chapter. Interdisciplinary research, aiming
to unite methods from different fields, is vastly used in order to answer biological questions.
Although, as it is presented below, both the fields of algorithms and biology can contribute to
the elaboration of each other. Hence, the third chapter provides information about algorithms
whose design has been inspired by the (collective) behaviour of animals in the nature. Finally,
the fourth chapter deviates anew from the central focus of the previous chapters and makes a
short introduction in the substantial controversial computational nature of cognition and by
extension behaviour. Overall, one can observe that the cooperation of the above mentioned
fields is extensive while the accomplished research opens new questions which can be studied

only in the light of such collaborations.






>YNOYH

H Bewpio ypopnudtov kat ot adydpiBpol tpoc@épovy moAbTipeg epyaheloOnKeg yio Tn povte-
Aomoinon kabdg Kot TV avaAvon ToAvaplOpwV @avopévey oTIg Yuotkég emtotnpes. ES®
TOPOLOLALETOUL Pl VG KOTIN G TG 60YYPpovNG PLpALoypagplag, XwpLopévn o€ TEaoEP KOPLOL
Ke@aloa, divovtag kamoleg evOelelg Yl TO TAOG 0L £€VVOLeg AUTOV TwV d00 KAGSwV Ptopohy
v xpnotpomotnBovv yio T HeAETH TNG CUNTEPLPOPAS TwV {OwWV Ko TNG vevpoemloThpng. Kat
‘e€aipeot), TO TPOTO PEPOG TOV TPADTOL KEPAAXIOL TAPEXEL Lot GOVTOMT GLLNTNOT CXETIKA
pe TG epappoyég tng Bewpiag ypapnuatwy ot poprokr] Proroyic. H emhoyr) avtr] éywve
TPOKELHEVOL VO KaTtaoTel 1) epyaoia avt mAnpéotepn kal va dobel otovg avayvdoteg pe
Srpopeticd vtdPabpo, 660 To Suvatdv TeplocdTEPO, GLVOALKT droym yia T SuvnTiky Xprot-
ROTN T TETOLWV SLETLOTNHOVIKGOV TpoceyYioewv. Tarvtdlouta SV0 TUHATA TOL TPOTOL KEPOL-
Aaiov eoTidlovv Ge SlKTL TOL EYKEPAAOL KoL 0€ KEVTPLKEG EVVOLEG TNG Bewplog YpapnpAT®Y,
OTWG 1) KEVTIPLKOTNTX, 0T HeAETH Tovg. To 8e0Tepo KePAAOLO eLoAyeL HEPLKEG EVVOLESG TNG
KOLVOVLKOTN TG TV {0V KoL avapépeTon oe PeAéTeg TG ovvepyaoiag oto {wikd Pacilelo,
eotialovtag otnv e€eAkTikn Bewpio ypopnuatwy kol maryviov. EmmAéov, otn tedevtaion
EVOTNTO OLLTOL TOL KePoAaiov ovlnrteiton 1) GLAAOYLKT] kiviion opddwv {OwV, TapéXoVTag
EKTOG TWV GAA®V, eloaywYn PactkdV 0pwV yio To emopevo Tpito kepdhato. H Siemiotnpovikn
épevva, pe oTOY0 TNV evomoinot) pefddwv amd Siapopetikods Topeis, AapPdvel ydpo evpéng
ylo v otavtrioet Plodoyiké epotipata. Evrovtolg, 6mwg mapovstdletol Tapakdto, N épeuva
otovg adyopiBpovg kol otn Proroyio propodv v cupfariovv atnv avamtuén n P Tng
AAANG. Qg ek TODTOUV, TO TPITO KEPAAXLO ToPEXEL TANPOPOPLEG GXETIKA pe alyOpLlOpoLS TV
omolwv 0 oXeSLGHOG €XeL EPTVELOTEL 0O TN (GUAAOYLKT) CUUTEPLPOPE TV (DKWY GTO YPUGLKO
neplfdrrov. TEAOG, TO TETAPTO KEPAAOLO ATTOKALVEL EK VEOL QUTTO TO ETIKEVTPO TWV TTPOT]YOUHE-
VOV KEQOAOL®V KoL KAVEL L. GOVTOUN ELCAY®YT) OTO GTHAVTIKO, AN Ko op@LAEYOUEVO,
LITOAOYLOTLKO XOPOKTH PO TNG VOT|OTG KO KALT EMEKTAOT) TNG CUUTEPLPOPAS. ZUVOALKQ, PTopel
KOWVELG VO TTOpALTN PTG EL OTL T) GLVEPYOG IR TV TPOXVRPEPBEVTOV TTediwV eival EKTETAHEVT EVED
1) TPOYHOTOTIOUUEVT) EPELVOL CLVOLYEL VEX EPWTHHOTO TTOL PITOPOVY var peAetnBovv povo vmd

TO PWG TETOLWV JLETLOTIHOVIKOV GUVEPYAOLOV.
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INTRODUCTION

Almost in every field of natural sciences interacting agents play a significant role, forming com-
plex interaction networks, while multiple scientific works have been published using ‘graph
algorithms’ for handling such networks. Here we focus on ‘biological networks’ from an al-
gorithmic and graph theoretical perspective. The present thesis aims to provide a balanced
discussion, so that both readers with a background in biology and mathematics or computer
science will be able to follow its content. The first and the fourth chapter act as prologue and
epilogue respectively, giving some indications of further fundamental (biological) issues that
can be examined in the light of graph theory or/and algorithms, apart from animal (social)
behaviour which constitutes the central subject of the thesis. In particular, the first chapter
deals with the use of graphs in the study of molecular and (nerve) cell biology, two funda-
mental fields of biology, while the fourth chapter contains a trial to approach the ‘mystery of

cognition or consciousness’ and its translation into behaviour, from an algorithmic perspective.

In the present introduction, some basic preliminary knowledge of graph theory and biology is
provided, for readers who are not aware of both fields. Afterwards, a broad view of what could
be considered as a graph or network in biology as well as its potential extent is presented. The
second and the third chapter, the core of this thesis, focus on the structure and the collective
behaviour of animal groups. In particular, the second chapter contains subjects with regard to
sociality and cooperation within animal groups by focusing on evolutionary graph and game
theory as well as coordination of animal groups translated into collective movement such as
flocking. Ultimately, in the third chapter algorithms inspired by the aforementioned animal

behaviours are described.
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0.1 Preliminaries I: Graph theory

Some fundamental concepts of graph theory are presented below, based on the book ‘Graph
theory’ of Diestel [Diestel, 2018], unless noted otherwise. More specific terms referring to
graphs or algorithms and used in later sections, are defined to the corresponding paragraphs.
Approaches that explain techniques of handling big amounts of network data using graph the-
ory can also be found in the increasing number of relative bibliography (e.g. [Eckman and
Brown, 2006]).

A graph, denoted by the letter G, is an ordered pair of sets G = (V(G), E(G)), where the ele-
ments of V(G) are the vertices and the elements of E(G) are the edges of the graph G. More
simple the set of vertices is denoted with the letter V and the set of edges with the letter . The
two basic features of a graph is the number of vertices n = n(G) = |V(G)| and the number
of edges m = m(G) = |E(G)|. The elements of F are two-element subsets of V, namely
E C [V)? while V and F are disjoint (V' N E = ()). e is an edge at a vertex v, or equivalently
a vertex v is incident with an edge e if v € e. The two vertices joint with an edge are called
the edge’s ends, whereas two vertices which are incident with a common edge or two edges
which are incident with a common vertex are called adjacent. Two distinct adjacent vertices
are called neighbours and the set of neighbours of a vertex v in G is denoted by N¢(v). Pair-
wise non-adjacent vertices or edges are called independent, whereas whether all the vertices
of G are pairwise adjacent, then G is called complete. If each edge e of G is associated with a

real number w(e), called its weight, then G is called a weighted graph [Bondy et al., 1976].

IfG = (V(G),E(G)) and G' = (V'(G), E'(G)), while V! C V and E' C FE, then G’ is a
subgraph of G (and G a supergraph of G’). Two graphs G and G’ are isomorphic if there is
a bijection ¢ between the vertex sets of G and G’ such that any two vertices u and v of G
are adjacent in G if and only if ¢(u) and ¢(v) are adjacent in G'. If each vertex of G has the
same degree (number of neighbours) k, then G is k-regular (or simply regular) graph. A cycle
is a (2-regular) graph whose vertices can be arranged in a round sequence in order that two
vertices are adjacent only if they are consecutive in the sequence [Bondy et al., 1976]. A path
is a graph P, = (V, FE) where V' = {xg, z1, ..., 21}, E = {xoz1, 2129, ..., T)-17% } and z; are
all distinct. The distance dg (v, u) of two vertices v and w in the graph G is the length of a
shortest v — u path in G. The largest distance between two vertices of (G is called diameter of
G. If there is no path between two vertices v and u, it is setted dg(z, y) := oo. The Cartesian
product P, X P, of two paths is the (m x n)-grid or lattice (Fig. 1). When the set E of the
edges, contains ordered pairs of vertices which are called directed edges (or arrows), the graph
D = (V(D), E(D)) is called directed. The in-degree d,(v) and the out-degree d};(v) of a
vertex v in D stand for the number of arrows heading to and from v respectively [Bondy et al.,
1976].
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U2 (ulr ,UQ) (U’Q? UQ)
U1 (ulr Ul) (U’Q? Ul)
ULO———O U2 O O S O

(a) (b)

Figure 1: Lattices. (a) The Cartesian product Ks X K5 and (b) the (5 x 4)-grid. Source: Adapted from
[Bondy et al., 1976].

A graph is usually depicted by drawing a point for each vertex and joining two of them by a
line if the two-element set of the corresponding two vertices are in F. Graphical representa-
tion of graphs helps in understanding their properties. Last but not least, provided that the
subjects (or objects) that are represented as vertices in biology appear to have dynamic prop-
erties (destruction/death, alternation in behaviour etc.) the graphs have to follow the changes.
In dynamic graphs some qualities such as set V, set E or the weights of the vertices and/or
edges change over time [Harary and Gupta, 1997]. When a vertex is removed all its incident

edges are removed as well.

0.2 Preliminaries II: Biology

0.2.1 Molecular and Cell biology

Each network-focused study is rooted in the mathematical discipline of graph theory. Such
studies find application in a wide variety of biological networks, the structure of which has
been shown to be non-random [Pavlopoulos et al., 2011]. The first sector of biology that
one meets network structures is molecular biology which mainly refers to DNA and protein
molecule interactions. Genes, proteins or even cells can represent vertices, and potential con-
nection between these components (e.g. chemical reactions) can be regarded as edges. For
instance, metabolic pathways constitute highly complicated networks, and their analysis lead

us increasingly closer to the understanding of the chemical microcosm of the living organisms.
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Therefore, in the premier part of the first chapter, concepts of molecular biology are discussed
even if these are not directly related to neuroscience or animal behaviour.

As mentioned above, the vertices of the examined networks represent chemical molecules,
where largely refer to DNA and proteins. A DNA molecule consists of a double helix of two
coiled strands composed of four ‘structural units’, the nucleotides. Each nucleotide is char-
acterised in relation to one of the following nitrogen-containing (nucleo)bases that embodies:
thymine (T), adenine (A), cytosine (C) or guanine (G). Apart from the nucleo-bases each nu-
cleotide is composed of a sugar (deoxyribose) and a phosphate group. The two strands are
held together by hydrogen bonds existing only between pairs of complementary nucleobases,
that is A-T and C-G. Provided that the two strands are complementary, knowing one of them,
is enough for the reconstruction of the other one [Baker et al., 2003]. On the other hand, a
protein molecule consists of one or more chains of organic compounds called amino acids.
These chains result from the translation of DNA molecules and can fold into a specific three-
dimensional structures that determines their activity [Branden et al., 1999]. The most enzymes

are protein molecules.

Whole brain
1508.91+299.14 g
170.68 + 13.86 B cells

86.06 + 8.12 B neurons
84.61 + 9.83 B non-neur
0.99 non-neur/neurons

Cerebral cortex (GM+WM)
1232.93 £233.68 g
7718 £+ 7.72 B cells

16.34 £ 2.17 B neurons
60.84 +7.02 B non-neur
3.76 non-neur/neurons

Cerebellum
154.02 £ 19.29g
85.08 +6.92 B cells

69.03 + 6.65 B neurons
16.04 £ 2.17 B non-neur
0.23 non-neur/neurons

Rest of brain

117.66 +45.42 g

8.42 + 1.50 B cells
0.69 £ 0.12 B neurons
7.73 £ 1.45 B non-neur
11.35 non-neur/neurons

Figure 2: The human brain in numbers. Absolute mass, numbers of neurons, and numbers of non-
neuronal cells in the entire adult human brain. Each value is the mean =+ the standard deviation and
refers to both hemispheres together. ‘B’ stands for billion. Source: Adapted from [Azevedo et al., 2009].

Neuroscience has also definitely taken advantage of network analysis. There are not many

years that these disciplines cooperate but the results from their combination are already reso-

4
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nant. Graph theory has stimulated new research for the understanding of the brain as a intri-
cate system of interacting components. Neurological and psychiatric disorders are nowadays
studied in the light of network modifications, while the last years, there have been published
several studies focused on brain connectivity using graph theory (e.g. [Sporns, 2003, Mason
and Verwoerd, 2007]). One can find a wide range of fundamental graph theory constructs in
these studies such as cut-vertices and bridges, centrality and density measures, in- and out-
degree and so on. The human brain is believed to be bigger than expected for a mammal of
this size. Adult male brain embodies an average of 86 billion neurons [Azevedo et al., 2009]
without even mentioning the synaptic connections (Fig. 2). Therefore, we can likely imagine

how complex are the networks that graph theory has take on to analyse.

0.2.2 Ecology - Behaviour - Sociality

The term of ‘biological networks’ may refer to networks of molecules, cells, individual organ-
isms or even populations and species. This paragraph indicates the complexity that a network
can have in the study of interspecific interactions. In natural communities, certain species are
of high importance due to their links to many others. Each species plays a different role in the
several ecosystems and their maintenance. This role may emerge from the interactions among
species, which can be investigated in the light of network analysis. The most influential species
are found to be located in central positions in networks of interspecific interactions. Jordan
applied network analysis in food webs and suggested a simple method for describing the inter-
action structures in complex networks including three options (Fig. 3) [Jordan, 2009]. The first
option refers to aggregation of several components of the networks in order to make the over-
all networks more manageable. This is not always an easy process, since the aggregation rules
are not universal, although it has already used in ecosystems ecology [Christensen and Pauly,
1992]. The second option has to do with the isolation of only a part of the graph (subgraph),
and examination of the interactions within it, where the main difficulty refers to the external
effects from vertices out of the subgraph. The last option is to detect the central/critical vertices

and to focus on them.

Inter-individual interactions are essential for understanding the dependence of collective be-
haviours (BOX 2.2) on the individuals’ actions. Animal groups such as herds of mammals,
schools of fish, flocks of birds and swarms of insects exhibit a variety of behaviours including
swarming about a food source or migrating over large distances in aligned groups. Group liv-
ing and collective behaviours are often advantageous, regarding the efficiency of harvesting
and foraging, the following of migration routes (and aerodynamic in avian systems), predation
avoiding/defending and so on [Sumpter, 2010]. According to Sumpter, when someone studies

collective animal behaviour, it is essential to determine the algorithmic principles which un-
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(a) (b)

Figure 3: Three ways to efficiently study a complex network. (b) Aggregation to ‘larger’ vertices, (c)
focus on a subgraph and (d) detect and focus on the most central vertices. Source: Adapted from [Jordan,
2009].

derpin these behaviours [Sumpter, 2006]. For the study of these algorithmic principles, one
can make use of graph theory which has already monumentally contribute in the field of soci-
ology. From a biological point of view, animal societies constitute highly useful study systems,

providing better understanding of the social evolution, a fundamental sector of biology.

Individuals with different social roles in animal communities are
examined often in the same way as in regular sociology and by
extension the same ‘tools’ can be used in both fields. As an ex-

ample, social insects (ants, bees etc) have been the subject for

thousands of scientists around the world (see [Gordon, 2010]).
Ants, a well studied organism, form extensive communication or
trail networks. Experiments in the laboratory are commonly on

the scale of centimetres, nonetheless in natural conditions such
Figure 4: Foraging patterns of

) ] an army ant covering some
dobler et al., 1990]. Deneubourg et al. examined the chemically 3,90, Source: Adapted

mediated ant communication and suggested that simulation of from [Deneubourg et al., 1989].

species create trail networks on the scale of kilometres [Holl-
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simple pheromone trail-laying and trail-following behaviour is

sufficient for the creation of the ants’ complex trail networks [Deneubourg et al., 1989]. Figure
4 depicts the foraging pattern of an army ant, indicating the extent which can be reached by
a single individual. The foraging system includes thousands of individuals, which communi-
cate with local chemical and tactile stimuli, and can cover 1000m? per day. The resulting trail

structure is created on a much larger scale than this of a single individual.

Y5, Ce+, Cs- Ce+, Q+, Cs-

Figure 5: Edge (interaction) thickness represents edge’s weight. Individuals (vertices) are represented
by different symbols regarding the assignment to different subgroups. (a) Captive squirrel monkeys,
(b) wild adult male chimpanzees, (c) wild wedge-capped capuchin monkeys, (d) captive long-tailed
macaques, (e) wild bonnet macaques and (f) wild baboons are the six studied species. Symbols + and
— stand for high or low values of the following metrics: edge weight disparity (Y3), network flow
(NF), eigenvector centrality (C'e), community modularity (), strength assortativity (bw), and vertex
strength centralization (C's). For explanation of the metrics, see below as well as the original publica-
tion: Source: Adapted from [Kasper and Voelkl, 2009]

Information flow is a concept that enhances our knowledge of collective behaviours of social
animals. Using fundamental metrics of graph theory, social network analysis has been applied
to the study of such inter-individual interactions and information flow in multiple organisms
(e.g. fishes: [Jones et al., 2010]). Illany and Akcay claimed that the emergence of social structure

has been considered an outcome of social inheritance, for instance, offspring may have more
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chances to create ‘maternal contact’, that is to establish stronger bonds with individuals who
interact with their parents [Ilany and Akcay, 2016]. Lusseau studied a network of dolphins and
created a model of network’s responses to the removal of individual vertices [Lusseau, 2003].
As a result, the network’s diameter was slightly increased even after the removal of up to 30%
of the group members. This suggested the resilience of the dolphin group to membership al-
teration. McCowan et al. investigated the utility of social network analysis for the study of
primates [McCowan et al., 2008] whereas Kasper and Voelkl focused on primate groups with
figure 5 effectually illustrating the interactions (edges) of individuals (vertices) in different
groups as well as the examined metrics in their work [Kasper and Voelkl, 2009]. McCowan et
al. supported that network stability influences the rhesus macaque individuals and the inter-
actions among them [McCowan et al., 2011]. Overall, network analyses are essential for the
investigation of animal communities, while these examples give only some first indications of

the relevant research.

In 2009 four attributes of social network structure which concern behavioural ecologists were
presented [Sih et al., 2009]. Firstly, within an animal group, differences in the social experiences
and links of the members influence group as well as individual processes. Secondly, indirect
links often play an important role. Thirdly, the significance of each animal in the network
is dissimilar. Fourthly, and last, aspects of social networks can carry over across contexts.
Graphs can represent relations referring to mate choice and sexual selection, predator-prey
interactions, male-male competition, cooperation (e.g. anti-predator behaviour), reciprocal al-
truism, eavesdropping, space use (topological studies), kin selection, dominance ranks, social
learning, information flow, foraging tactics, and grooming taking into account the four above
mentioned attributes. Finally, provided that the studied networks depend on individual roles,
one has to consider the interaction networks as series of dynamic events. For instance, death
or removal of an important individual acting as a ‘social bridge’ and located by centrality mea-

sures, can likely result in group division [Flack et al., 2006].




CHAPTER 1

GRAPHS OF MOLECULES AND CELLS

Speaking about cells, maybe it is time to abolish them, or at least put only molecules inside and not beings.

1.1 Macromolecules

1.1.1 Some basic types of networks

Metabolic networks largely refer to biochemical reactions catalysed by enzymes. In terms of
graph theory, enzymes or metabolites stand for vertices and an edge depicts either the connec-
tion of two enzymes that catalyse consecutive stages in a reaction chain, that is the product
of the first reaction is the substrate for the second, or the connection of metabolites that par-
ticipate in the same reaction. Metabolic networks, in general, include much more information
as compared with other types of networks (e.g. cell-signalling and gene-regulatory networks).
The above observations have been largely made in the bacterium Escherichia coli metabolic

network [Edwards et al., 2001].

BOX 1.1

In scale-free networks, the number of edges k of a given vertex exhibits a power law
distribution P (k) k7, where P (k) is the probability that a vertex has an edge in com-
mon with £ other vertices. The probability of linking a given vertex i to a newly added
one is proportional to the number of existing edges k; adjacent to the vertex [Barabasi
and Albert, 1999].
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strong componend condensation

Figure 1.1: E. coli protein reaction network. (a) Illustration of the largest weak component (all vertices
are connected by some path, ignoring direction) of a network, consisting of protein vertices (circles) and
reaction vertices (squares). (b) The procedure of making the strong component graph. (c) The strong
component graph in which, a directed edge (arrow) indicates the existence of a path connecting the two
strong components in the original graph. Source: Adapted from [Ganguly et al., 2009]

Figure 1.1 illustrates the protein reaction network of E. coli, a common biological study organ-
ism. Its network can be depicted as a directed graph with 2846 vertices representing proteins
and 2774 edges representing reactions. The graph consists of many relatively small strong
components (a subgraph in which every vertex is reachable from any other), that is sub-graphs
where there is a directed path between each pair of vertices. Protein-protein interactions (PPI)
are essential for almost all cellular functions. Proteins usually operate through several interac-
tions among them or with other biomolecules forming complex networks. The computational
analysis of these networks is a major challenge. Protein-protein interaction (PPI) networks
[Jeong et al., 2001] as well as metabolic networks [Jeong et al., 2000], part of the numerous bio-
chemical networks in a living organism, often have the properties of scale-free networks (Box
1.1). In these networks, there are vertices of higher and lower significance, referring to the
survival of the organism. Scott et al. introduced efficient (linear-time) algorithms for finding

simple paths and rooted trees in graphs [Scott et al., 2006]. These algorithms were applied to

10
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protein interaction networks finding protein interaction pathways and are capable of recon-

structing signalling pathways as well as of identifying functionally enriched trees.

Regulatory networks (GRNSs) participate in the pro-

cedures of the central dogma of molecular biology replication

(Fig.1.2) which refers to the flow of sequential infor-

D

mation coded in the genetic material [Crick, 1970]

DNA

and states that this information can not be transferred i

back once it has translated to protein. These networks o

_ . . transcription
include molecular regulators that interact with each

other and the genetic material (that stores the genetic
information of an organism and it is either DNA or RNA S
RNA) and control the expression of the genes. The im-

portance of these networks can become perceivable if translation

one considers the accuracy of the molecule concentra-
tions in an organism and that infinitesimal changes in prOtEIn %

the quantity of a protein can affect the cellular differ-

{3

entiation, which is the fundamental process in whicha  Figure 1.2: The central dogma of molec-

cell specialises in a cell type, e.g. gamete or nerve cell ular biology. ~ Black arrows show the
general transfers and grey arrows special

[Slack, 2009]. Overall, since every cell of an organ- ones.

ism has the same genes, it depends on these networks,

which genes will be translated to proteins. The network becomes more complex, if we consider
that some genes may be linked either because their products participate in a common process
or because they tend to be inherited together (e.g. They are located nearby, in the same chro-

mosome).

Gene-regulatory networks can be represented as directed graphs with activation/inhibition
pathways. Transcription factors, usually proteins that have emerged by the translation of a
gene, control the expression of genes which are translated into proteins that potentially act
as transcription factors and so on. Signal transduction networks, that coordinate cellular
responses, can be also represented as directed graphs and the individual paths could be dis-
tinguished in neutral, activating or inhibiting regarding their role. One example is the neural
signals emerging from the nervous system, for the activation/inhibition of muscles. The com-
plex interactions within these networks occur in the interior or the exterior of the cells among
macro- or micro-molecules. Signalling pathways often include patterns, significant for the ac-
complishing of the transduction, such as feedback loops [Bhalla and Iyengar, 1999], which are

overall common in biochemical networks and make them hard manipulable.

A rather lately examined network is that of miRNAs, which are short (~22 nucleotide) se-
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quences of RNA that pair with mRNA molecules controlling their translation into proteins
[Ruvkun, 2001]. mRNA is the usual mediate between a gene and the protein translated by the
gene, namely it is the product of transcription that will be translated into protein. miRNAs
are small non-protein biomolecules that participate in intracellular regulation and have mostly
known sequence, therefore the identification of the interactions’ network (miRNAs-expressed
genome) it is (computationally) feasible [Shalgi et al., 2007]. Finally, the examination of the
miRNAs’ interactions may help to describe the complex regulatory mechanisms in the drug
treatment [Cilek et al., 2017].

1.1.2 Motifs

Biological functions such as gene transcription or translation are regulated by intricate net-
works of proteins (PPI), transcription factors, cells and more. Some motifs, that is, repeatedly
occurring patterns are over-represented in these networks as it has been proved after compar-
isons with random networks. Furthermore, comparisons of regulatory networks of different
organisms could probably unveil interesting evolutionary information referring to conserved
patterns. Motifs can be considered as one more characteristic in (applied) graph theory along
with clustering coefficient (cliquishness) and so on. Nevertheless, it has been shown that track-
ing down a motif is not essentially significant [Lesne, 2006]. In vivo analyses that examine the
role of motifs as a part of large networks are still challenging. It would be a reasonable con-
jecture that each motif has its particular importance. Interestingly, in 2005 it was published
a work claiming that the plethora of the motifs does not have any immediate functional or
evolutionary counterpart [Mazurie et al., 2005]. The authors proposed as an explanation the
presence of the motifs inside a variety of network formations, or more simple, that they share

vertices or edges with the rest of the network.

BOX 1.2

GRAPH ALIGNMENT: Find an one-to-one mapping across the vertices of two (or more)
graphs such that, if two vertices are connected in the first graph, their images are con-
nected in the other graph(s) [Feizi et al., 2016]. We can observe the similarity of the
problem to this of GRaPH IsomorPHISM (BOX 1.4). That being said, a reduction is point-
less, considering that GRAPH ALIGNMENT aims to find the superior (maximum overlap)
mapping with the minimum error if an exact alignment is not feasible (optimization of
a cost function).

In the context of ‘motif studying’ there was developed a noteworthy algorithmic procedure,

relevant to this of sequence alignment, described as GRAPH ALIGNMENT (Box 1.2) [Berg and
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Lassig, 2004]. We know that sequence alignment is well studied and there are platforms, such
as BLAST (Box 1.3), dealing with it adequately (polynomial-time algorithms). Hence, graph
alignment seems to be more challenging as a computational problem, since we do not still
know any suitable polynomial-time algorithm. The above mentioned procedure was using a
scoring function, emerging from a stochastic model, that measures the statistical significance
of motifs. Another innovative question that the same study was dealing with, is the consider-

ation of network evolution as a stochastic process.

BOX 1.3

Basic Local Alignment Search Tool (BLAST) is a bioinformatic tool, based on an al-
gorithm which compares primary biological sequence information, that is amino-acid
sequences (proteins) and nucleotide sequences (DNA and/or RNA). It can compare a
query sequence with one or more sequences’ databases and identify these which re-
semble the query sequence above a specified threshold. The most common comparison
are these of a protein query to a database of proteins or both strands of a DNA query
against a DNA database, however there are many versions combining different features
[Pevsner, 2015].

Detecting network motifs by exhaustively enumerating all subgraphs needs runtime strongly
increasing in relation to the network size. As a response, Kashtan et al. have introduced a
‘random sampling’ algorithm for estimating subgraph concentration/detection with runtime
asymptotically independent of the overall size of the network [Kashtan et al.,, 2004]. This ap-
proach, according to the authors, makes possible the estimation of subgraphs’ concentrations
in larger networks in a higher extent than before. It has further been showed that machine-
learning algorithms along with motif search algorithms perform very well in predicting inter-
acting proteins [Albert and Albert, 2004]. Using the conserved properties of a protein-protein
interaction network, they can succeed rates of 20-40% for predicting the correct interaction

partner of a protein.

The detection of modules, motifs or clusters, in interaction networks, has been concurrently
achieved on multiple graphs. Koyutiirk et al. presented an efficient (computational tractabil-
ity) algorithm for detecting frequently occurring patterns and modules in metabolic pathways
and other biological networks [Koyutiirk et al., 2004]. For more details about motifs in graphs

and networks in biology, see [Mason and Verwoerd, 2007].
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1.1.3 DNA and sequencing

The most non-biologists relate DNA with any research in biology, hence a more detailed discus-
sion about it could not be excluded from the present thesis. There are plenty examples of graph
models, helping the mathematically characterization of DNA sequences. Qi et al. introduced
a method that creates a directed graph for each DNA sequence, and aims to the determination
of sequence similarity, a typical task that biologists face on a daily basis [Qi et al., 2011]. The
credibility of this methods was verified by comparing the results to previous studies, while the
time complexity was shown to be low in comparison to other alignment-free methods. One
further example is the parallel graph decomposition algorithm participating in DNA sequenc-
ing published in 2004 [Bokhari and Sauer, 2004], which was using the output from a nanopore
sequencing device and an Eulerian path (BOX 1.4) approach. In nanopore sequencing devices,
an ionic current passes through a nano-scale hole along with biological molecules and the dif-
ferentiations of the currents are measured. This information can lead to the identification of
the molecules. For further detail on DNA sequencing with nanopores see [Branton et al., 2010]
and [Schneider and Dekker, 2012].

BOX 1.4

NP (nondeterministic polynomial time) is a complexity class of decision problems.
NP is defined as the class of decision problems which can be solved in polyno-
mial time on a non-deterministic Turing machine. Equivalently, the solutions of
problems in this class can be verified in polynomial time. A decision problem II is
NP-complete if I is in NP and every problem in NP is reducible to IT in polynomial time.

HamirToNiAN PATH: Is it possible to construct a path that visits every vertex exactly
once? (NP-complete)

TRAVELING SALESMAN: Is it possible to find a cycle shorter than £ (total weight) which
visits every vertex exactly once? (Decision version. NP-complete)

EULERIAN PATH: Is it possible to construct a path which visits every edge exactly once?
(not NP-complete)

GrAPH IsoMORPHISM: Are two finite graphs isomorphic? (not known to be NP-
complete)

[Arora and Barak, 2009, Diestel, 2018, Papadimitriou, 2003]

One common methodology for the recognition of the primary DNA structure is sequencing

by hybridization, when oligonucleotides are used as complementaries of the given strand of
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length n. The oligonucleotides of length [ that hybridize with our strand can be used for the
creation of the (supplementary of this) strand. For this last part, back in 1988, there was in-
troduced a method utilizing graph theory, in which the researchers related the problem with
the NP-complete problem of finding a HAMILTONIAN PATH [IuP et al., 1988]. This was realised
by turning each oligonucleotide of the set into a vertex and connecting (with an arc) two ver-
tices if the /-1 rightmost nucleotides of the first vertex/oligonucleotide complement the [-1
leftmost nucleotides of the second one. If one manages to find a HAMILTONIAN PATH in the
created directed graph, then a possible solution has been found. Provided that HAMILTONIAN

PaTtH is a NP-complete problem, there will not be an polynomial time algorithm (BOX 1.4).

‘DNA graphs’ labelled with different values of label length and alphabet’s size «, in which the
label is written, can be compared. Recognition algorithms can look for Hamiltonian or Eule-
rian paths which correspond to large DNA sequences (e.g. genes) [Blazewicz et al., 1999]. In
figure 1.3 there is an example illustrated. The relevant problem of (DNA) sequence similarity
is a typical in the field of computational phylogeny (BOX 1.5). In 2011 a novel and accurate
approach was proposed that induces a weighted directed graph for every DNA sequence [Qi
et al., 2011]. A representative vector is created by the adjacency matrix (A n X n matrix A,
where A;; = 1ifij € F or A; ; = 0 otherwise) of this graph in O(n?) time, for a specific
DNA sequence of length n. The similarity matrix can be obtained in time O(sl?), where s is
the number of the sequences and [ the maximum length. This method uses large amount of
information as long as investigates rearrangements (e.g. mutations), taking into account the

frequency as well as the order of the nucleotides.

BOX 1.5

A typical way to consider evolution is the examination of the conserved features of the
living organisms. Comparisons of different species can possibly lead to reliable phylo-
genetic trees , that can be modelled with the assistance of graph theory (e.g. [David,
1982] and [Brandes and Cornelsen, 2009]). A phylogenetic tree is a ramified diagram
depicting the evolutionary relationships among biological species and it commonly re-
lies on genotypic (genetic material (see GRN)) or phenotypic (‘appearance’) character-
istics, representing branching evolutionary histories [Baum and Smith, 2013]. In terms
of graph theory a phylogenetic tree can be modelled as a tree, usually rooted and con-
nected.

One more work, published in 2016, was focusing on the sequencing and sequence compari-
son from a graph-theoretic perspective [Jafarzadeh and Iranmanesh, 2016]. The researchers,
firstly, studied the problem of ‘Fragment Assembly’, that is: Given a multiset of fragments (sub-

strings), construct the best string (superstring) that contains each of the strings in the multiset. The
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(a) The graph G (b) The graph G’

Figure 1.3: An example with the initial sequence AGTGTCC of length n = 7 is illustrated [Blazewicz
etal., 1999]. (a) If the oligonucleotides are of length [ = 3, after the hybridization, we have the set {AGT,
GTG, GTC, TGT, TCC}. In the graph G we observe that the only Hamiltonian path is AGT — GTG —
TGT — GTC — TCC from which the initial sequence can be read. (b): Since HAMILTONIAN PATH is
NP-complete problem, we need a way to transform it to a problem solvable in polynomial time [Pevzner,
1989]. This can happen by matching each vertex of graph G to an edge of a new graph G, that is, the
set of edges in G’ corresponds to the set of vertices in G. An edge connects two vertices labelled with
the [-1 leftmost and rightmost nucleotides respectively, of the oligonucleotide of the edge. We can now
look for a EULERIAN PATH in G’, which is AG — GT — TG — GT — TC — CC and leads to the
initial sequence as well.

desired superstring has to be of minimal length (shortest common superstring), whereas the
fragments are parts of a given DNA sequence and are used for its reconstruction. There was a
trial to achieve an overlap graph for which the finding of superstring of minimal length is not
NP-complete. The problem can be represented as an overlap graph that contains a vertex for
each string in the multiset and it is identical to HAMILTONIAN PATH. In particular, we have an
instance of the NP complete problem TRAVELING SALESMAN PrROBLEM. However, the problem
can be efficiently solved by using EULERIAN PATH (fragments are represented by edges) in an
overlap graph. Therefore, a new graph has to be constructed, by using strong product (Box 1.6)

of graphs, for comparing and analysing DNA sequences.

BOX 1.6
For the strong product of the graphs G and H, G X H [Bondy et al., 1976], applies:
« the vertex set of G X H is the Cartesian product V(G) =V (H); and
« any two distinct vertices (u, «’) and (v, v’) are adjacent in G X H iff:

— w is adjacent to v and u’ = v’, or
- uw = v and v’ is adjacent to v’, or

— u is adjacent to v and v’ is adjacent to v’
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1.2 The Brain

The nervous system’s structures of organisms such as primates or lower-scale mammals con-
sist of complex networks, organised and mediated by extended interconnections among the
brain regions. The continuous study of the brain, has examined its functioning during a wide
variety of tasks. Graph theoretical analysis has been applied even to the study of fetal brain
connectivity [Thomason et al., 2014], summarizing observations about development of brain
networks prior to birth, or to the analysis of functional brain networks and signals during mo-

tor learning tasks [Huang et al., 2016]

The connectivity in the brain can be discerned in anatomical, functional and effective. The
first one, refers to the structural links, called synapses, between neuronal units. These ‘real’
networks can certainly be dynamic (e.g. Learning tasks may stimulate the creation of new
synapses) albeit at long time scales such as hours to days [Sporns et al., 2004]. The spatial scales
can further vary depending on the contextually function of the connection, which can possi-
bly demand extensive long-distance connections. Functional connectivity refers to temporal
correlations between, often spatially remote, neuronal units [Friston et al., 1993]. This kind
of connectivity is time-dependent, since neurophysiological measurements made in different
brain areas at distinct moments can indicate different correlations. Ultimately, effective con-
nectivity refers to the effect of a neural system over another, including structural parameters
[Friston et al., 1993]. This is also time-dependent as long as pathways and regions’ interac-
tions in the brain are frequently modified. Functional and effective connectivity are practically
different: The notion of effective connectivity contains the causal influences that neural units

exert over another. For further details, see [Friston et al., 1993].

Graph theory can be applied in the study

of complex brain networks, which are ei- 1

ther of structural or of functional impor- BOX1.7

tance. These networks, either inter-neuronal A small-world network is a
or inter-regional, are considerably complex graph, with low average path
with peculiar topological features and re- length, where the distance ({)
veal small-world network (Box 1.7) prop- between two vertices randomly
erties [Bassett and Bullmore, 2006, Achard chosen grows proportionally to
et al., 2006]. Firstly, the neural elements con- the logarithm of the number of
sisting the vertices have to be determined, for vertices in the network (I =
instance as anatomically defined regions or O(logn) as n — 00)

electroencephalography/MEA (Box 1.8) elec-
trodes. Secondly, a continuous measure of

association among them has to be estimated, for instance based on the connection probability
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among the regions (the axonal projections and synapses act as edges). Consequently, there has
to be created an adjacency matrix and estimated the convenient features always in contrast to
these of random graphs. The matrix relies on the connectivity among the vertices, while the

generated graph is de facto directed.

Even if specific characteristics are observed

in distinct points of a network, these occur

BOX 18 on account of the whole network’s function.

A Multi-Electrode Array (MEA) Hence, it is not always easy to come to a con-
is an array of electrodes used clusion regarding the functional networks
for recording electrical signals based on a structure. One way to investigate
of neurons in vitro or in vivo. whether (or how much) a functional network
The recorded electrical activity is based on the structural one, is by examin-
provides a macroscopic view of ing the brain’s resting state [Greicius et al.,
neuronal networks [Spira and 2009]. In such a state, the brain does not per-
Hai, 2013]. form any explicit task, nevertheless remains

watchful. Here has to be noted that ‘indirect

connections’ of a functional nature are presumably hidden in the structural connectivity.

Computational studies have been accomplished looking into the association of dynamic pat-
terns and structural properties [Honey et al., 2007, Galan, 2008]. The general indication is that
the topology of the two categories of networks is highly similar. Nonetheless, the research
results give a complete perception only in the one direction, that is, how functional brain net-
works depend on the structural ones. The opposite direction, regarding the shaping of structure

after functional neuroplasticity (Box 1.9) modifications, is less considered.

BOX 1.9

Neural plasticity can be defined as the ability of the nervous system to adopt a new
functional or structural state in response to alterations in the environment [Ganguly
and Poo, 2013]. A neuron can possibly alternate its functional role in a circuit by altering
how it responds to inputs or influences other neurons. This is may happen by strengthen
or weaken the synapses, changes depended on experience.

Synchronization of an organism’s biological procedures is a cardinal point. The more com-
plex an organism is, its networks has to be more precisely adjusted. Mason and Verwoerd
suggested that brain’s network failure of synchronisation correlates with pathological situa-

tions such as schizophrenia and described the application of Kuramoto model (BOX 1.10) to the
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nervous system [Mason and Verwoerd, 2007]. The properties of a brain network, can lead to
draw a conclusion about pathological situation. This way of diagnosis indicates another field of
application for graph theory, that of medicine and curative strategies. Differences between pa-
tients’ and healthy individuals’ networks, pointed out, for instance, by fMRI or structural MRI
experiments, have been shown in situations like traumatic brain injury [Sharp et al., 2014],
schizophrenia [Liu et al., 2008], depression [Gong and He, 2015], epilepsy [Bernhardt et al.,
2015], Parkinson’s disease [Olde Dubbelink et al., 2013], dementia (Alzheimer) [Stam et al.,
2006] and others. The, ultimately cited, work of Stam et al. at 2006, was innovative in correlat-

ing graph theory with disease-related differences in brain network topology.

BOX 1.10

Kuramoto model is a fundamental mathematical model used for the description of syn-
chronization phenomena [Kuramoto, 2012]. The model portrays the coordinated be-
haviour of chemical and biological oscillators systems and it has been applied on a large
scale in neuroscience. Usage of Kuramoto model for the study of neuronal synchro-
nisation in the brain has also been accomplished in former studies (e.g. [Cumin and
Unsworth, 2007]), focusing on the adaptive nature of neurons in the brain.

Except of studies which approach brain as a whole, there are attempts to come to conclusions
about specific regions of the brain. Mears and Pollard have recently published a review fo-
cusing, through graph theory, on amygdala [Mears and Pollard, 2016], a brain region essential
for the processing of memory, decision-making and emotional responses [Amunts et al., 2005].
Their conclusions support the importance of this region in normal brain function, mental illness
and emotional processing tasks. Moreover, seems that depression correlates with ‘an enhanced
influence of the amygdala in resting brain networks’. Neural networks that are functionally
connected during brain resting state and the alternations to these connections due to experi-

ence reveal fundamental questions that can be investigated in the light of graph theory.

One more technique that takes advantage of the computational analyses in neural networks,
applies intervention. As an example, deleting of a vertex can help in understanding the way
that a specific network carries out its tasks. The intervention can be either targeted or random
whereas by collation of the two networks’ behaviour, before and after the intervention, help-
ful conclusions may be extracted [Honey and Sporns, 2008]. It has been recently developed a
MatLab-based software called BRAPH (BRain Analysis using graPH theory) that analyses the
connectivity of brain networks. The software uses information collected with techniques as the
above mentioned and has the potential of visualizing the results. It can give output in form of

undirected binary and weighted brain connectivity graphs. Assessments or comparisons of the
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brain graphs are also possible with the aid of further algorithms [Mijalkov et al., 2017]. Some
additional (graph) programs or tools designed for the study of brain networks are the Brain
Connectivity Toolbox, the Graph Theory GLM (GTG) MATLAB Toolbox and the GraphVar.

The idea of matching index is another concept of graph theory used for the inspection of sim-
ilarity of vertices in brain networks [Pavlopoulos et al., 2011], and depends on the common
neighbours of the examined vertices. Let ¢ and j be the two vertices of our interest, then their

matching index, as defined by [Pavlopoulos et al., 2011], is

Moo — >~ CommonNeighbours
“ 3" TotalNeighbours

One example of matching index application is in the prediction of the connectivity of cerebral
cortical networks [Costa et al., 2007]. The cerebral cortex is a region of the brain that plays
a central role in cognition, memory, attention, perception, awareness, consciousness and so
forth. It is divided into left and right cerebral hemispheres while contains an amount of the

gray matter [Kandel et al., 2000].

1.3 Centrality measures

As in many types of networks, in biological ones, there are vertices of higher importance play-
ing a central role, for example as mediators, and they are often fundamental for the network’s
topology. It has to be noted that a ‘biological network’ or part of it can participate in more
than one functions, hence, the role of a vertex could probably change depending on the con-
textually action. Moreover, it has been shown as a standard that the intracellular networks
form modules [Rives and Galitski, 2003] and a popular methodology for their identification
uses network clustering algorithms [Emmons et al., 2016]. Network clustering includes simple
methods, including the shortest path length and the number of shared neighbours as distance
measures [Rives and Galitski, 2003] or more complicated such as betweenness centrality clus-
tering [Girvan and Newman, 2002]. In this last section of the first chapter, a short discussion

referring to the idea of centrality in (brain) networks is presented.

In graph theory the term of centrality refers to the identification of vertices with the ‘higher
significance’, for instance influential individuals in social networks, species in food-webs or
hubs in the brain. There are plenty mathematical measures of centrality, whereas the most
common of them can be found below. Betweenness centrality is based on shortest paths and it
is computed for each vertex as the number of the shortest paths in the graph that pass through
the vertex [Freeman, 1977]. This method can also assist in the discovery of clusters by detecting

their links. Degree Centrality, corresponds to the number of the edges connected to a vertex and
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shows the number of interactions the vertex is involved in [Freeman, 1978]. Considering that
all the neighbours of a vertex are not equivalent, led to the definition of Eigenvector Central-
ity, that shows a vertex importance according to the importance of its neighbours [Freeman,
1978]. Closeness Centrality ranks as more significant vertices those with low mean distance to
all others [Joyce et al., 2010]. Finally, one not so common centrality measure is Subgraph Cen-
trality [Estrada and Rodriguez-Velazquez, 2005] that characterizes the vertices being depended
on the number of subgraphs of network in which they participate. There is paid more atten-
tion to small subgraphs, making this method suitable for studying network motifs. It has been
additionally shown that in protein interaction networks, subgraph centrality is more related
with the lethality (when individual proteins are removed), than the number of edges per vertex

[Estrada and Rodriguez-Velazquez, 2005].

In 2010, there was defined a new centrality metric called Leverage Centrality which, in order to
evaluate the role of individual vertex in a brain network, takes into account the connectivity of
its immediate neighbours and the information exchange among them [Joyce et al., 2010]. This
metric was used in the analysis of functional magnetic resonance imaging (fMRI) data but it has
also been applied later to real-world networks [Li et al., 2015]. The concept of leverage central-
ity may seem similar to this of eigenvector centrality but the authors compared all the degree,
betweenness, eigenvector and leverage centrality on functional (healthy) brain networks gen-
erated, and underlined their differences. The distinction of leverage and eigenvector centrality
was proven experimentally by the fact that one group of vertices of high values of eigenvector
centrality had lower leverage, while another group with lower values of eigenvector had higher
leverage centrality. Moreover, as compared to betweenness or eigenvector, leverage centrality
was proved to be more accurate at locating vertices of high degree. It was proposed that this
metric could possibly detect with precision vertices of high importance within the network,
since it was showed that uses information not included in the concepts of degree, betweenness
or eigenvector centrality. The four centrality metrics were shown to be positively correlated,
while leverage and eigenvector both contained information not apparent from the other two
metrics. The uniqueness of leverage in comparison to existing centrality methods consists of
the allowing of parallel (and no serial) processing, as this is accomplished in the brain. More
formally, leverage centrality measures the relationship between the degree of a given vertex
(v) and the degree of each of its neighbours (v;), averaged over all neighbours (NN,), and is
defined as:

1 deg(v) — deg(u)
b= Geg@) 2= deg(v) T degle)

Some years afterwards the publication of the aforementioned study, Vargas et al. investigated
the leverage centrality from a mathematical perspective [Vargas Jr et al., 2017] and it is worth

to mention some of their interesting results.
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Proposition. For any graph G,> ., 1, <0

veG

Proof. For a regular graph G, there is [, = 0, Vv € G and thus ) _ [, = 0. For a non-regular

graph G, there will be two connected vertices v and u such that deg(u) > deg(v) and the

1 deg(v)—deg(u)
9) (deg(v)+deg<u)) -

contribution of each edge vu to the sum of leverage centralities is

1 <deg(u)—deg(v)
deg() \ deg(v) T deg(u)

> < 0. Concluding, we have that the sum of leverage centralities is

_ 1 ( deg(u)—deg(v) 1 (deg(u)—deg(v)
ZUEG ly = Z(u,v)GG deg(v) (deg(v)ereg(u)) " deg(u) (deg(v)+deg(u))’ =

The fact that leverage centrality is negative comes to light by considering that each edge be-
tween two vertices of different degrees contributes a negative amount to the sum of the lever-
age centralities. It is further proved that the maximum number of vertices with positive lever-
age centrality is n—1, while there are graphs with n — 1 vertices of negative leverage centrality
(eg. the star graph K ,,-1). A proved bound for any vertex v is |[,,| < 1—%. Ultimately, there
exist graphs where the leverage centrality of all vertices is distinct (Fig. 1.4). Further details,

including the connection between the number of distinct leverage centralities in the Cartesian

product of paths and the triangle numbers, can be found in the original paper [Vargas Jr et al.,
2017].

Apart from brain networks, the study of
more of the above and below mentioned cat-
egories of ‘biological networks’ makes use
of the idea of centrality. For instance, as
we have already seen, centrality measures
can be used for clustering purposes and a re-
cent automated method finds clusters of in-
terconnected proteins in PPIs. The proposed

algorithm divides the network into clusters

by subtracting the edges of uppermost be-
tweenness centrality, then recalculating and
repeating until a fixed number of edges have
been subtracted [Dunn et al., 2005]. The term

Figure 1.4: Graph G with distinct leverage central- of centrality is also shortly included in the
ity of each vertex. Source: Adapted from [Vargas Jr
et al., 2017].

next chapter referring to social animal net-
works. Ultimately, for formal definitions,
further details and extra centrality measures (e.g. Katz centrality), the book of Newman is

an excellent manual [Newman, 2018].

22



CHAPTER 2

ANIMAL BEHAVIOUR

I tried to exclude human behaviour, even if it is an animal, because I do not like its behaviour.

2.1 An introduction to Animal Sociality

Mutual aid, mutual support and sociability in animal kingdom has been suggested to be a fea-
ture of utmost importance for the maintenance of life, the preservation of each species and its
further evolution [Kropotkin, 1922]. Social organization indicates how community features are
influenced by individual patterns of social interaction. Alternation in the social structures or
the effect of environmental factors can possibly predicted, diverse social networks can be com-
pared and individuals with key roles in information flow can be detected [Makagon et al., 2012].
Below there are presented the five major principles of social network analysis as they were de-

scribed by Makagon et al., from which the first three are essential for animal behaviourists:

« Prominence (dominance) - Centrality measures
« Individual’s network range - Number of vertices within a specified distance (diameter)
+ Cohesion (group internal strong relationships) - Clustering coefficient and Assortativity

« Structural equivalence (similarity to the social environment)

Brokerage (bridging)

Social behaviour of animals, including humans, is a well studied field nowadays. The concept
of animal social networks was firstly introduced by Wilson in 1975 [Wilson, 2000] and since

then animal sociality is attracting the attention of hundreds of scientists. From social insects,
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such as ants, to highly evolved mammals, such as primates or dolphins, the social structures

form excellent study systems which eventually resemble primitive human societies. Informa-

tion flow regarding simple communication for mating, disease vulnerability, resources access,

social stability and social learning (BOX 2.1) can be modelled using the precious toolbox of

graph theory.

Social interactions is a broad term describing
a wide range of processes, from dyad com-
munication to collective behaviour (BOX 2.2)
of whole groups. In social animals, learning
[Coussi-Korbel and Fragaszy, 1995], preda-
tor recognition [Vilhunen et al., 2005], mate
choice [Amy et al., 2008] and many more
processes are ‘transmitted” through social in-
teractions and highly affected by group dy-
namics which change through time while
the members of the groups carry different

services. Inter-individual interactions may

BOX 2.1

Social learning is a cognitive
process accomplished in a so-
cial context and suggests that
new social behaviour can be ac-
quired by observing and imitat-
ing others [Bandura and Wal-
ters, 1963].

shape the phenotype of the interacting sides and Montiglio et al. suggested that social struc-

ture has an impact on social plasticity regarding the mean phenotype expressed in a group,

the extent of phenotypic variation available for selection and the group potential to respond to

selective pressures [Montiglio et al., 2018].

BOX 2.2

Collective behaviour refers to
a form of social coordinated
These

phenomena are often sponta-

behaviour of groups.

neous and do not reflect exist-
ing social structure (laws and
conventions). Animal groups
such as shoal of fish and bird
flocks navigate without leaders
but they are still coordinated
[Blumer, 1951].

Provided that we deal with real animal so-
cieties, some characteristics may vary due
to migration or births/deaths. Even small
changes could seriously affect the function of
the network always depending on the social
role of the ‘removed’ individuals. One rele-
vant social organisation, studied in the light
of behavioural ecology, is the fission-fusion
society. The term ‘fission-fusion’ was intro-
duced to describe the social system of some
species, such as elephants, dolphins or pri-
mates, that change the size of their groups
according to the availability or distribution of
resources as well as their activity. In particu-
lar, fission-fusion dynamics refer to the vari-

ation in inter-individual dispersion and ani-
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mal subgroup size or/and composition [Aureli et al., 2008]. These group dynamics influence
subgroup size, dispersion and composition, while they are advantageous in exploiting food
resources. One relevant example of the importance and complexity of the animal social struc-
tures is the ‘cohabitation’ of the dolphins in the gulf of Corinth (Greece, Mediterranean Sea),
where three species of dolphins into the gulf form permanent mixed associations [Frantzis and
Herzing, 2002]. The cohabitation of these species can be compared, according to Frantzis, to
the coexisting of humans, gorillas and chimpanzees, which show similar genetic differences.
Other unusual social systems, include cooperatively breeding traits, where group members
help to rear offspring which are not their own. This is rather challenging for the evolutionary
theory because of its contrast with the expected selfish behaviour, often promoted by natural
selection. Overall, we can see that sociality in animal kingdom shows features that are not
(currently) present in human societies and thus the study of these systems is essential, inter
alia, for the understanding of human social evolution. For this purpose, graph/network theory

constitutes a significant toolbox.

Graph theory metrics have been widely used in the recent behavioural literature [Wey et al.,
2008]. The network modelling of animal communities can, except of the identifying of struc-
tural patterns, detect the flow of information. The pathways that this flow follows can be stud-
ied further for the understanding of other incidents such as pathogen transmission [Krause
et al., 2007], which has already been studied in the light of graph theory [Ganguly et al., 2009].
Studying the role of each individual of the community can lead to conclusions about its in-
fluence in the transfer of pathological conditions and studies of such context have repeatedly
materialized in mammals (e.g. [Corner et al., 2003] and [Guimaraes Jr et al., 2007]). It has been
long since proposed that some individuals in animal networks may be prominent in the access
to resources and information [Coussi-Korbel and Fragaszy, 1995]. Vital and Martins used com-
puter simulation in order to distinguish the significance of several graph/network metrics in
the study of ‘central’ individuals in social animal groups [Vital and Martins, 2009]. As a result,
they concluded that the most metrics are highly related to the amount of sampling and the
group size. They further confirmed that these metrics can be used for dealing with small social
groups typical in behavioural studies. The study was focused on the ‘Gatekeepers’, which are
individuals with powerful influence on the behaviour of the group as a whole, due to the fact
that they control the access to certain resources. One can imagine examples of such individu-
als considering that many social animals follow tiered structures leaded by dominants [Flack
et al., 2006], while other individuals, located at the boundaries between communities, under-
take to carry out communication among groups of the same species [Lusseau and Newman,
2004]. Figure 2.1 depicts a schematic representation of a network with four communities, in
which, the vertices adjacent to red edges could be regarded as ‘individuals in the boundaries’.
The authors proposed that different social roles, affected by both strain and sex, influence the

process of group learning. In conclusion, some individuals transfer information, to others in
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a community, more efficiently and in this way, they play central role, for instance in foraging
[Reebs, 2000].

Figure 2.1: Network community structure. Four communities of densely connected, with black edges,
vertices. Red edges represent connections among individuals of different communities.

In respect to centrality measures, Freeman has, in early times, shown that betweenness per-
forms better than degree and closeness centrality in identifying important individuals in a
social group [Freeman, 1978]. Lusseau and Newman used two graph theory metrics, between-
ness centrality and assortativity, in the study of animal social groups to identify individual roles
[Lusseau and Newman, 2004]. Both of these metrics provide information about the structure
of the network as well as its dynamic behaviour. Broadly speaking, assortativity represents to
what extent a vertex is linked to neighbours of ‘similar’ properties with itself. This ‘similarity’
was firstly referring to the vertices’ degree (number of neighbours), although it has been fur-
ther correlated with other vertices’ features such as weight, k" level vertex degree (number
of vertices that are in distance no more than k) and more, as well as with non-topological fea-
tures (in social networks), such as language, race, sex and age [Quayle et al., 2006]. The formal
(original) definition of this graph metric was given by Newman for unweighted, undirected
networks and needs multiple pre-definitions [Newman, 2002]. Lastly, a network is called as-

sortative when vertices of high degree are, on average, connected to other vertices of high
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degree and vice versa.

The idea of clustering coefficient has further been used for the analysis of patterns of social
interactions in animal populations [Pike et al., 2008]. Clustering coefficient measures the ten-
dency of a graph’s vertices to cluster together [Saraméki et al., 2007]. When Flack et al. re-
moved ‘conciliator’ (individuals who were intervening in the conflicts) subjects from a group
of macaques, there was a reduction in clustering coefficient and more aggressive encounters
were risking society consistency [Flack et al., 2006]. A relative network property to clustering,
is the ‘community structure’. Communities can be considered as subsets of vertices with dense
connections (edges) within the subsets and relatively sparse connections among the subsets
(Fig. 2.1). Girvan and Newman introduced a new methodology for locating communities, fo-
cusing on the edges among the communities instead of the ‘central’ ones [Girvan and Newman,
2002]. In their study, the proposed algorithm was not applied in animal social networks but in
several food webs and social networks. The term of betweenness centrality was generalised to
edges, so that the edge betweenness refers to the number of shortest paths between vertices in
which this edge participates. For a network G = (V, E), the betweennesses is calculated for

all m edges in time O(mn). One simplified version of the proposed algorithm is the following:

Algorithm COMMUNITY TRACKING

—_

: Calculate the betweenness of all the edges of the network
2: Remove the edge with the highest betweenness
3: Recalculate betweennesses for all edges affected by the removal

4: Repeat from step 2 until no edges remain

Provided that the algorithm proceeds to a calculation after each edge removal, the total run-
ning time is O(m?n). Notwithstanding, this time is a worst case scenario, as long as only some
paths/edges (at most these in the same component) are affected in each step, and therefore the
algorithm usually runs faster. The iterations of edge removal are essential for the efficacy of the
algorithm, because in the case of multiple edges among pairs of communities, the betweenness

of all these are not necessarily high.

Social network analysis and graph theory can, furthermore, provide a deeper view on social
relationships of animals and contribute to their husbandry and welfare [Rose and Croft, 2015].
Coleing used social network analysis as a tool in the management of captive animals whose so-
cial lives may differ from the social (widespread) structures found in the wild [Coleing, 2009].
For this study the simultaneous monitoring, via video camera, of all individuals in the ex-
amined group, including their interactions was essential. There was studied a group of ten

elephants at Chester Zoo and in particular social interactions of playing (mostly juvenile indi-
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viduals), dominance, greeting body contact etc. An innovative characteristic of this study was
the combination of all the aforementioned aspects in a single network. Complex attributes of
the social behaviour can further be investigated with a combination of social networks. With
various operations using matrix arithmetic, different matrices can be combined [Aldous and
Wilson, 2003]. If A is a set representing ‘aggressive encounters’ and B represents family bonds,
the operation A \ (A N B) represents the aggressive encounters among individuals from di-
verse families. As an example, figure 2.2 presents a directed graph including information for
every prosocial behaviour (benefits other individuals [Eisenberg et al., 2015]) of the group of
ten elephants (greeting body contact, close proximity and following networks) [Coleing, 2009].

Coleing moreover explained the term of two-

Gre m‘b step relationships, where the interactions
Sy 7 among some individuals influence the re-
lationships among different ones [Coleing,
2009]. According to that study, two-step ef-

S\tiarm \

Tl].l)

R — ﬁ’ﬁ ; interactions, we obtain the incidents among

fects can be assessed with the tools of matrix

algebra. By squaring the matrix of the direct

individuals of distance two. Indirect links

play in important role in many networks and

Maya Jangoli
certainly in social ones as well. The metrics
Figure 2.2: Directed graph with information of

a combination of prosocial behaviour. Source:
Adapted from [Coleing, 2009]. of distance two) and the clustering coefficient

of the central individual’s (CI) reach (vertices

are useful in that direction. Along with these
two, Sih et al. introduced ‘exclusivity’, an indirect social network metric which characterises
the relationships of a CI with its partners, whereas it is equal to the reverse of their degree [Sih
et al,, 2009]. In particular, if the CI has a link with individual ¢ who has n more neighbours,
then it has an exclusivity value %_H for this relationship. An example of what application this
term can have is found in sexual selection (BOX 2.3). If a male individual mates with female in-

dividuals who mate as well with many partners (low exclusivity), has decreased mating success.

BOX 2.3

Sexual selection is a form of natural selection which refers to reproductive success.
Some individuals have better success because of their sexual attractiveness or the se-
lection of ‘efficient’ partners. Hence sexual selection is divided to intersexual where
members of the one sex select their partners, and intrasexual where members of the one
sex compete among them for access to partners of a different sex [Andersson, 1994].
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2.2 Cooperation, competition and a view of game theory

Graph theory constitutes a considerably con-
venient framework for the investigation of
social structures influenced by the evolu-

tion of cooperation and competition. Along

with evolutionary game theory can help in
the design of realistic simulations in hetero-
geneous populations [Santos and Pacheco,
2005]. Evolutionary game theory (EGT)
pertains to the application of game theory
(BOX 2.5) to the theory of evolution and the
‘survival of the fittest’. It applies, in big

timescales, to organisms that interact repeat-

edly and offers the opportunity to examine

reward and punishment evolutionary strate- Figure 2.3: Social networks of adult rhesus
macaques interactions. Grooming (a, b), aggression
(c, d), and spatial proximity (e, f). 2010 (a, c, e) and
evolutionary stable strategies (ESS) whichre- 2911 (b, d, f). Squares stand for females and circles
fer to situations that all the individuals of a for males. Colour intensity represent dominance
rank, with darker colors representing higher rank.
Edge width represents the interaction’s frequency.
different strategies (mutant phenotypes) do Source: Adapted from [Brent et al., 2013].

not invade and substitute the ESS [Cowden,

gies. In the same context, one can observe

population adopt the same strategy, whereas

2012]. Moreover, animal social interactions including cooperation, altruism and competition,
have been studied in the genetic basis of sociality. Brent et al. suggested the heritability of so-
ciality in macaques [Brent et al., 2013], where the tendency to aggressive or friendly behaviours
was found to have a heritable component. In figure 2.3 there are presented six graphs, part of
the analysis from this study. Overall we can infer that the application of graph along with

game theory is essential for the modelling of animal cooperation.

2.2.1 ‘Coopetition’

In natural or artificial systems, competition and cooperation may coexist. Brandenburger and
Nalebuff conceived the term ‘coopetition’ in order to describe this coexistence in the strate-
gic management [Brandenburger and Nalebuff, 1997]. Through such interactions, agents form
subgroups with cooperating individuals within and opposing between the subgroups. Hu and
Zheng, in order to describe coopetition networks, used directed signed graphs (Box 2.4), in
which the positive and negative labels on the edges were representing cooperation and com-

petition respectively (Fig. 2.4) [Hu and Zheng, 2014].
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Hu and Zheng proposed a neighbour-based LT T TN PR
multi-agent system in which each agent in- /,”, O‘;\ \‘\\ //9’ \‘g\
teracts only with its neighbours for the /*O 0_2_“_ R & 7\
decision-making referring to its next action. | \ T(_’Z_ S :\_ - %’Ok }
The structural balance (Box 2.4) was essential “\ SO Oﬁ‘lf’ “““““ L\\']OO—,>O I /
for this study, since a structurally unbalanced NN . B /7

network can not be split into fractions. Fur-

thermore it is considered an assumption ac- Figure 2.4: Coopetition network G. Network G is a
signed graph with solid blue edges represent posi-
tive and dashed red edges represent negative inter-
a subgraph that has at least one root vertex ,ctions. The edges are positive within and negative

which influences directly or indirectly all the between the two subgraphs A and B of Gi. Source:
others. It has to be clarified that the interac- Adapted form [Hu and Zheng, 2014].

cording to which, coopetition networks have

tions among the individuals in these networks may be more complicated. Depending on the
circumstances, two individuals could be cooperators and opponents respectively. Therefore, it
could be more appropriate each edge to be weighted with a vector (wg, w,) where w, < 0 and
wp > 0 referring to competition and cooperation respectively, though in (signed) graph theory
an edge’s weight has to be a real number. Lastly, two more disciplines that could contribute
to the study of the aforementioned collective dynamics, are game theory as well as overlay

networking.

BOX 2.4

Directed signed graph is a directed graph G* = (V, E/, A) where A is an adjacency ma-
trix describing the edge information of a positive or negative sign [Hu and Zheng, 2014].

A signed graph is balanced if the product of edge signs around every cycle is positive
(all its cycles are positive) [Harary et al., 1953].

2.2.2 Game theory

Social interactions can be perceived as games among players who fight for their survival and
prosperity, hence game theory is a fitting discipline for their modelling. Suzuki and Akiyama
examined the evolution of cooperation in social dilemmas played in sizeable groups [Suzuki
and Akiyama, 2005]. In their proposed model, each individual had its own strategy of decision-
making depended on the group members’ reputations which are determined by previous be-
haviours. An image score that ranges from —5 to 5 and changes by one unit upwards and
downwards if the player cooperates or not respectively, represents reputation which is ini-

tialised to zero. A number k € (—5, 6) stands for the strategy, whereas the individual cooper-
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ates if the average image score of other members of the group is at least k. The algorithm of

the simulation is illustrated below:

Algorithm Basic GAME

1: An initial population of n individuals is created

2: Their strategies are distributed randomly from —5 to 6
3: g individuals are chosen randomly from the population
4: These g individuals play a game

5: Steps (2) and (3) are repeated m times

6: Individuals leave offspring depending on their fitness

7: Image scores are reset to zero

8: Repeat steps (2)-(6)

In evolutionary biology, costs and benefits are measured in terms of fitness. This game was
simulated as a selection/reproduction process that increases good performing strategies. In
each round g (g > 2) out of the n group members are randomly chosen to play the game. Each
individual either contributes c or declines to do it and has a relative payoff. The payoff matrix
corresponds to the ‘g-person Prisoner’s Dilemma game’ (BOX 2.5), where g > 2. At the end
of each generation, the individuals leave offspring according to their fitness that is determined
by all the m rounds. For the selection of the individuals there was used a ‘binary tournament

selection’ procedure as follows:

1. Two candidates are selected randomly as parents
2. The one with higher fitness is picked to be the parent with probability 0.9
3. A copy of the parent is added to the population for the next generation

4. The selection process is repeated n times

The overall conclusion of multiple studies was that the evolution of cooperation is more diffi-
cult as the group size increases even if the ‘reputation effect’ is included [Joshi, 1987, Boyd and
Richerson, 1988, Suzuki and Akiyama, 2005]. Further details follow in the BOX 2.5.

BOX 2.5

Game theory is the study of mathematical models of strategic interaction between ratio-
nal decision-makers [Myerson, 2013]. In other words, a mathematical approach dealing
with strategic interactions, regarding costs and benefits, among individuals [Myerson,
1991].
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One example of a game analysed in its terms is the Prisoner’s Dilemma which appears
in multiple forms. Its name derives from the story Albert W. Tucker told to illustrate it,
which was representing the players of the game as two prisoners [Poundstone, 1993].

An ‘original’ form and some generalisations are described below [Kreps et al., 1982]:

Prisoner’s Dilemma: Let there be two players
A and B, and each of them chooses either to B
‘Cooperate’ or to ‘Defect’. If both A and B A

cooperate, they receive a reward R and if both R T

defect, they receive a punishment P. If B defects R S

while A cooperates, then B receives a temptation S P

T whereas A receives a sucker’s payoff S, and D T p

vice versa. The condition 7" > R > P > S must

Payoff matrix of the original Pris-

hold for the payoffs, that is mutual cooperation is o
oner’s Dilemma.

superior to mutual defection as well as defection
is the dominant strategy for both players. Alternatively, there are four possible
combinations of the choices, that is CC, CD, DC and DD.

Social dilemmas in natural communities may involve more than two enmeshed indi-
viduals which furthermore take into account previous behaviours of their partner(s) in
the game. Therefore, it follows the description of a generalised version, the ‘g-person

iterated Prisoner’s Dilemma’, where g > 2 [Joshi, 1987]:

If the game is played more than once in succession and the players remember previ-
ous actions in order to change their strategy accordingly, the game is called ‘iterated
prisoner’s dilemma’. This version demands also the condition 2R > S + T, to prevent
alternating cooperation and defection giving a greater reward than mutual cooperation.
If furthermore, the game is played by n individuals, each participant faces n — 1 others
and its payoffs depend on the strategies of all of them. Let k of the partners of a player
choose C (and the rest, n — 1 —k, choose D), the payoffs depending on the players choice

are given by the function:

_nCC+ (n—1-k)CD

n—1

~ nDC+(n—1-Fk)DD
a n—1

f(C)

Finally, the total payoff is the average payoff which would have been collected from two-
person games played with each partner separately. The ‘g-person prisoner’s dilemma’
demands also that [Boyd and Richerson, 1988]:
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individuals’ costs of cooperating.

1. Defecting is the ‘dominant strategy’ for each player (no matter how the player’s

partners may play), that is altruistic behaviour is costly?
2. Switching of an individual from D to C benefits its partners.

3. The average payoff of the group members increases if someone switches from D

to C, that is the benefit from cooperation to the group as a whole exceeds the

4. If all players choose D, the outcome is worse than if each player had chosen C.

af the individuals are chosen randomly and interact only once, this ‘rule’ guarantees that cooperative
behaviour can not thrive [Nunney, 1985].

What I do

What you do
C D
REWARD SUCKER’S PAYOFF
I get blood on my I pay the cost of saving

unlucky nights, which
saves me from starving. I
have to give blood on my
lucky nights, which
doesn’t cost me too much

your life on my good
night. But on my bad
night you don’t feed me
and I run a real risk of
starving to death.

TEMPTATION
You save my life on my
poor night. But then I
get the added benefit of
not having to pay the
slight cost of feeding you
on my good night.

PUNISHMENT
I don’t have to pay the
slight costs of feeding
you on my good nights.
But I run a real risk of
starving on my poor
nights.

Figure 2.6: Vampire bat blood-donor scheme. CC-Reward: Fairly good, DC-Temptation: Very good,
CD-Sucker’s Payoff: Very bad, DD-Punishment: Fairly bad. Source: Adapted from [Dawkins, 1976].

Abramson and Kuperman studied an evolutionary version of Prisoner’s Dilemma, where play-

ers were placed in a small-world network while they were able to modify their strategy in order

to imitate the one of the most accomplished neighbour [Abramson and Kuperman, 2001]. The

topology of the community, from regular lattices to random graphs, appeared to lead to diverse

behaviours. In terms of the Prisoner’s Dilemma, as this is described above, we can perceive the

cooperative behaviour of many animals, while its iterated version is likely more suitable for

the study of such behaviour since animals often engage in long term partnerships. Dawkins
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presented some relevant examples and two of them are mentioned below [Dawkins, 1976]. The
first example refers to the bird behaviour of removing ticks from each other’s feathers. It is
essential for a bird to pull off the ticks from itself, although it is not able to reach the top of
its head alone and if a companion assists, this means that it will spend time and energy. The
idea of the iterated Prisoner’s Dilemma game is that the bird has to help its companion too (or
maybe not?). The second example pertains to reciprocal food exchange of vampire bats (Fig.
2.6). The blood/food exchange rate depends upon how starved is the bat [Wilkinson, 1984]. The
blood that the donor bat provides is less valuable to it than to the starving companion, while
when a bat is starving it is a great profit to get fed by its companions (who were previously
fed by it [Wilkinson, 1990]). When one is ‘full of blood’, the benefit from refusing to share is

relatively insignificant.

2.2.3 Evolutionary graph theory

Evolutionary graph theory studies how

topology affects evolutionary dynamics and

it has applications in many fields of biol- BOX 2.6

ogy, such as ecology (or multi-cellular or- Genetic drift is a mechanism
ganization [Lieberman et al., 2005]). Once of evolution in which the fre-
more, vertices stand for individuals while quency of an existing gene
the edge’s weight w;; denotes the probability variant (allele) of a population
that individual/vertex ¢ places its offspring changes due to random sam-
into vertex j, that is weighted edges denote pling of organisms over gener-
reproductive rates. If w;; = wj;; = 0 then ations [Masel, 2011].

there is no edge between the two vertices. An
example of the adjacency matrix W = [w;;]
which determines the graph’s structure is illustrated in figure 2.7. Graph structure can highly
affect the fixation probability of a mutant, that is the suppression/amplification of selection or
random drift (BOX 2.6). A wide variety of graphs, determined by the isothermal theorem, show
a balance between selection and drift [Lieberman et al., 2005]. In its terms, the vertex’s temper-
ature is equal to the sum of the weights of all incoming edges, indicating the frequency of the
vertex’s replacement, where the hottest the vertex is, the more often is replaced. Isothermality
can be alternatively expressed as a requirement that W is doubly stochastic, that is each row

and column sums to one.

Additionally, in a homogeneous population of size n, consisting of residents and mutants,
which corresponds to a fully connected graph, the dynamics of selection and random drift

is traditionally studied by the Moran process. At each step of this process, an individual is
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chosen to leave an offspring (duplicated) depending on its fitness and a randomly chosen indi-
vidual is replaced by the offspring. Moran process describes the stochastic evolution in a finite

population and it follows that the population size is preserved [Moran, 1958].

Figure 2.7: Model of evolution in evolutionary graph theory. In the stochastic matrix W, w;; stands for
the probability the vertex j to be replaced by the offspring of i. Alternatively, a generalisation would
select an edge ij depending on its weight and the fitness of its ends. If the weights are identical and the
graph is complete, the Moran process is obtained. Source: Adapted from [Lieberman et al., 2005].

A fundamental raising question refers to the fixation probability of a randomly placed mutant
or alternatively the probability for a single mutant to take over the whole population. The
natural selection is more powerful if the mutant’s fitness is highly correlated with its proba-
bility of fixation. If all residents are identical with fitness 1 and the newly introduced mutant
has fitness r, the fixation probability of the mutant is p = (1 — %) / ( 1-— %n) The isothermal
theorem dictates that isothermal graphs (e.g. all regular lattices) have fixation probability p if

and only if all vertices have the same temperature.

It is moreover feasible to create graphs (population structures) which amplify selection and
avoid random drift. Figure 2.8 depicts a super-star which along with related structures have
the property that for large n, the fixation probability of any advantageous mutant tends to one,
whereas if the mutant is disadvantageous the probability tends to zero. Therefore, the fixation
of the advantageous mutants is independent of the selective advantage. Nevertheless, this am-
plification is ‘costly’ since as it increases, the average fixation time goes to infinity. Finally, it
has been proven that if £ stands for the maximum path between any two vertices and n is large
enough, then there is p = (1 — %)/(1 — r%n)

As it is mentioned above, in unstructured populations, where the members do not have per-
manent interactions, natural selection seems to favour defectors over cooperators. Ohtsuki et

al. suggested the simple rule that evolutionary dynamics (natural selection) on graphs favours
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cooperation only if the benefit b that brings upon, divided by the induced cost ¢, exceeds the
average number of neighbours (connectivity) k in the network [Ohtsuki et al., 2006]. In several
animal societies the social structures are complicated and possibly affect the level of coopera-
tion in a way that according to the researchers, the fewer the connections, the easier it is the
promotion of cooperation. In the proposed model of an evolutionary game, the vertices of a
graph stand for the players and edges for links in terms of game dynamical interaction and

biological reproduction.

Let n individuals form a population where
cooperators help all their neighbours. Whether
for the neighbours of the cooperator A
there is Ny = k and ¢ of them are also
cooperators, the payoff for A is bi — ck
(b: benefit, c: cost), whereas if the defec-
tor B has j adjacent cooperators, its pay-
off is bj. The overall fitness of a player
is the sum of its baseline fitness (constant
value) increased by the total payoff from
the game. When the payoff is small in
comparison to the baseline fitness the se-

lection is weak, otherwise the selection is

strong. Hence, the game is one of the

Figure 2.8: The super-star. Its symmetric properties S€VET al factors that affect the overall fit-

imply that as the number of ‘flower petals’ and the ness.

number of vertices in each flower petal increases, its

role as a ‘selection amplifier’ raises the fitness of ad-

vantageous mutants. On an amplifier of parameter Firstly there was examined a concept where
k a mutant of fitness r bears up as one of fitness r*
in the Moran process. Here k = 3 but it can be ex-
tended in arbitrarily large values. Source: Adapted domly, and its former neighbours in relation

from [Lieberman et al., 2005]. to their fitness were competing for the evacu-
ated site (Fig. 2.9). The idea behind this con-
cept is that when a group member is dying, its position is occupied by the offspring of the

in each step an individual was dying ran-

fittest neighbour (“death-birth’ updating’). The question if cooperation can be favoured on cer-

tain graphs was translated into the probability the whole population to turn into cooperators
1

by a single cooperator. The cooperation was found to be favoured if this probability is over .
In natural communities, cooperators and defectors may coexist and the authors represented

such a population with a complete graph. In terms of evolutionary game theory, the ones who

benefit from these circumstances are the defectors. However, this is just an occasion and below
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Figure 2.9: The rules of the game. Each cooperator (blue) pays a cost ¢ per neighbour to provide it with
a benefit b, whereas defectors only receive benefits. The individual’s fitness is equal to 1 — w + wP,
where w is a measure of the selection’s intensity and w = 1 stands for strong whereas w << 1 stands
for weak selection. Here the vertex marked with the question-mark will change from a defector to a
cooperator with a probability %, while the total fitness of all the neighbouring cooperators and
defectors is respectively Fo = 4(1 — w) + (100 — 16¢)w and Fp = 4(1 — w) 4 3bw. Source: Adapted
from [Ohtsuki et al., 2006]

there are some more mentioned. Cycle: The group of defectors which turned into cooperators
from the same ‘root-cooperator’ form an uninterrupted cluster. It was found that, if the popu-
lation’s size is large and the selection is weak, selection favours cooperation if % > 2. Regular
graphs: (cycles, spatial lattices, random regular graphs) The calculation of a fixed probability

is impossible, since pretty complicated patterns may occur with the interference of a defector.

In another examined update mechanisms, at each step a randomly chosen individual update its
strategy. Either carries on with the former one or espouses one of its neighbours’ (depending
on their fitness). It was found that cooperators are favoured if % > k + 2. This way of updating
appears if loops to every vertex, in the first update mechanism, are included. If the connec-
tivity k of any vertex stands for its adjacent edges (loop counts twice), the rule % > 2 applies
in both updating rules. Furthermore, depending on the update mechanisms, cooperation may
be never favoured. If at each step an individual in relation to its fitness is leaving an offspring
who takes the place of a randomly chosen neighbour, it is taken into account only the payoff
of individuals at the boundary between cooperators and defectors, where cooperators are at a

disadvantage.

Regarding the initial invasion of cooperators, in the model of Van Baalen and Rand there was
introduced another condition under which (provided that migration events do not occur) a few
cooperators can invade a population of defectors effectively, if g > kk—_Zl [Van Baalen and Rand,
1998]. Altruism can be favoured if groups with many cooperators become essentially larger
than groups with few. In natural conditions, an individual may have plenty links although

only certain are significant. Therefore, the ‘significant link’ average degree k' is smaller than
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the degree k used in the above described studies where all edges were weighted equally. In

conclusion, the favouring of cooperation might remain potent.

The results of the aforementioned study [Ohtsuki et al., 2006] are in accordance with Hamilton’s
rule [Hamilton, 1964, Grafen, 2007] which is one of the most commonly accepted explanation of
the evolution of altruism and collates the benefit (b) with the cost (c) of the assisting behaviour.
The rule suggests that the altruists will reinforce their assisting behaviour if ab—c > 0 where a
stands for the frequency to which the benefits of altruism accrue to fellow altruists rather than
to other group members. When interactions are determined by the social (network) structure,
natural selection may favour cooperation and it, finally, follows that increased benefits of al-
truism in a given structure (cycles, spatial lattices, other regular graphs, random and scale-free

networks) will favour the prosperity of cooperators [Ohtsuki et al., 2006].

BOX 2.7

Inclusive fitness theory suggests that an individual’s success depends on the coopera-
tive and altruistic behaviour while combines the individual’s survival and reproduction
(direct fitness) with the effect of the individual’s behaviour on the survival and repro-
duction of its relatives (indirect fitness). Kin selection theory is based on the concept
of inclusive fitness and describes an evolutionary strategy which favours the success of
an individual’s relatives, even at a cost to it’s own success [Hamilton, 1964].

Lehmann et al. suggested that evolutionary graph theory models can be translated into clas-
sical kin selection models (BOX 2.7), emphasizing the importance of the spatial subdivision
of populations [Lehmann et al., 2007]. They created (isothermal regular) graphs with vertices
containing more than one individual and allowed interactions to vary with the distance be-
tween vertices. Therefore, the evolution of further assisting as well as harmful behaviours on

graphs examined based on a broader inclusive fitness (BOX 2.7) model.

2.3 Collective motion

Collective behaviours help animal groups move harmoniously and abruptly change direction
synchronised. A rather representative example is the swirling of the schools of fishes, shaping
a vortex, under the pressure of a predator. A consequent question is how the common decision
is reached and scientists have tried to answer by categorizing the emergent collective motions
as functions of the system’s parameters [Couzin et al., 2002]. The research of collective be-

haviour has made use of several tools of modern science from technological to theoretical such
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as algorithms and theoretical mathematics. For instance, Nikodem introduced an approach of
modelling the collective animal behaviour based on set theory and relations [Nikodem, 2013].
It was suggested that simple behavioural rules can potentially lead to complex behavioural pat-
terns depended on set cardinality. Using relations, allows the researcher to consider distance
as a topological property and the proposed relational model approaches sufficiently well the

collective behaviours of many animal groups/species, but not all.

Bode et al. described a model of collective animal motion, considering preferential social in-
teractions of the individuals, and presented the potential influence of the social network on
it [Bode et al., 2011]. The social structure was shown to affect three aspects of the animal
groups, the cohesion, the individual spatial position and the hierarchical dynamics. In partic-
ular, three hypotheses were examined. The first hypothesis was referring to the correlation of
strong social preferences of the group members with the enhancement of the group cohesion.
Secondly it was tested if group members with multiple strong connections within the social
network tend to be nearby to the centre of the group contrary to members with fewer strong
connections. The third and last hypothesis was pertaining to the hierarchical dynamics and

their exclusive derivation from the social network.

According to the above mentioned model, collective behaviour relies on local alignment, re-
pulsion and attraction between individuals. The assumption that the response to the environ-
mental changes of every group member is under an identical stochastic rate, is essential. In the
proposed approach, each group member receive information only from the individuals within
a zone of radius r4 around it, which is called sensory zone. The researchers generated the
following five different social network structures of 100 individuals, in order to investigate the
potential influence of network structure on group cohesion and alignment: A fully connected
network (no structure) where all connections were equal (Fig. 2.10a), a network with two (Fig.
2.10b) and a network with three (Fig. 2.10d) components respectively, a network with a key
individual (hub) strongly connected to all others (Fig. 2.10e) and a network with randomly
created strong connections (Fig. 2.10c) based on Erd6s-Rényi model for generating random
graphs (BOX 2.8).

The hypothesis referring to the group cohesion is the one more relevant to the present study.
The results from its examination indicated that strong pairwise social preferences between
group members do not always improve group cohesion, while social networks consisting of
two components (Fig. 2.10d), do not lead in higher cohesion in comparison to the control case
(without social structure). It was additionally tested, by three different network structures
(with two, one or no ‘key individuals’), which features of the network affect group fragmenta-

tion. The group cohesion and alignment appeared to increase after the removal of key individ-
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Figure 2.10: Five different social networks referring to collective motion. Each network consists of
N = 10 vertices/individuals, whereas in the accomplished simulations the networks were scaled up to
N = 100. The weak connections are represented by grey edges and the strong connections with black.
(a) Control case: all connections are equal (either weak or strong). (b) Two separate components. (c)
Random network with edge probability 0.1. (d) Three separate components. (e) A key individual, with
strong connections to all the others. Source: Adapted from [Bode et al., 2011]

uals and hence, one can draw the conclusion that strong preferences may be disadvantageous
to group cohesion while homogeneous networks favours it. Regarding the second hypothesis,
it was predicted that animals with many social links are located nearby to the centre of the
moving group, that is the position within the social network can be associated with the spatial
position. Last but not least, purely social preferences can lead to hierarchical group dynamics,

although these may not be translated into the expected social structure.

BOX 2.8

A random graph is created by successively placing edges at random within a set of
n isolated vertices. One common question using these graphs is whether a particular
graph property is likely to emerge [Bollobas, 1998]. In a mathematical context, a random
graph usually pertains to the Erdés-Rényi model in which strong edges are indepen-
dently added to the graph from the set of all potential edges with a fixed probability
[Erdos and Rényi, 1960].

40



OAPY Nikos Smit

2.3.1 Flocking

“Flocking is a form of collective behaviour of large number of interacting agents with a common
group objective” [Olfati-Saber, 2006]. A flock of collectively moving organisms (or dynamic
systems etc.) can be represented by a dynamic network, in which the interaction between two
unites/vertices of the network correspondents to an edge. In this design, two units which are
topologically closer have more possibilities to affect the motion of each other. Provided that
the flock is moving, the positions and the environmental factors change, therefore the network
is modified relatively. There are many studies focusing on flocking and make use of graph the-
ory for its analyses (e.g. [Ben-Asher et al., 2008]). Williams and Sukhatme described a spatial
model in a proximity-limited system, subject to network non-local topology constraints, which
could be formalized by a representation as a dynamic graph [Williams and Sukhatme, 2013].

Some further relative studies are presented below.

In 1987, there was published the first work using flocking computer simulation [Reynolds,
1987]. The flock’s members were represented by particles, forming a particle system-flock
while the approach was simulating the behaviour of each member independently. The individ-
uals were trying to remain united and simultaneously to avoid collisions with each other or
other obstacles. The author described the following three heuristic (behaviour) rules, in order

to build a simulated flock:

1. Collision Avoidance: avoid collisions with nearby flockmates
2. Velocity Matching: attempt to match velocity with nearby flockmates

3. Flock Centering: attempt to stay close to nearby flockmates

Flocks in the nature have not been observed to get overloaded depending on the number of
the participating members, but function equally regardless the cardinality of the set-flock. An
individual might stay on the lookout for itself and its two or three nearest neighbours, while
pays only a little attention on the rest of the flock. Therefore, individuals in the nature can
flock in constant time. However, the described ‘flocking algorithm’ appeared to have complex-
ity O(n?), where n is the flock’s size. This problem partially originates from the fact that the
simulation is running on a single computer, whereas in the natural flocks the processing is

distributed to the flock members.

Based on field studies, Ballerini et al. suggested that the interactions among the individuals
within a flock do not depend on metric distances, but rather on the topological distance [Bal-
lerini et al., 2008]. Each bird appeared not to interact with all its neighbours within a metric
distance but only with a fixed number of them, while Nagy et al. claimed that the place of the
individual in the hierarchy is related to its spatial position within the flock [Nagy et al., 2010].
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In 2006, there was introduced an approach for the determination of interaction rules that result
in collective behaviour development [Olfati-Saber, 2006]. In particular, there were described
three flocking algorithms, two for free-flocking and one for constrained flocking, related to
network structures. The ‘problem’ could be described as a process in which a set of agents
‘reach of a common decision’ about a quantity of interest, such as turning direction. The infor-
mation exchange among the agents was depending on an interaction rule which was charac-
terized as ‘consensus algorithm’. The design can be considered as a graph G = (V, E'), where
V =1{1,2,3,...,n} are the vertices/agents and (the set of) a pair of them belongs to F if and
only if the two corresponding agents interact with each other. The common decision is reached
when a1 = @y = a3 = -+ = ay,, where «; is the state of the ' agent that refers to the specific

quantity.

The researchers, furthermore took
1 into account the existence of ob-
stacles, that could possibly imi-
tate predators. They studied lim-
ited obstacles such as (infinite) rect-
angles and spheres, formally de-
scribed as connected convex areas
in R™ with smooth manifolds for

borders. Overall, they presented

consecutive snapshots of the prox-
imity structure during 2-D or 3-
3 D flocking in free or constrained
space. Depending on the initial
Figure 2.11: Fragmentation phenomenon. Source: Adapted states and the number of the agents,
from [Olfati-Saber, 2006] the first algorithm failed to produce

flocking behaviour, as it is demon-
strated in figure 2.11, along with the consequential regular fragmentation. However, the other
two algorithms resulted in flocking, with the third one having obstacle avoidance capabil-
ities through ‘transitional fragmentation’ (splitting), essential for predator evasion. When
obstacles-predators are presented among the initial and the (intended) final flock position, the
agents need to split in subgroups in order to avoid the obstacles and to rejoin afterwards. Sim-
ilarly, the squeezing maneuver, for moving through narrow spaces between nearby placed
obstacles, was examined. Figure 2.12 illustrates the consecutive snapshots of the split/rejoin
maneuver of n = 150 agents avoiding o = 6 predators-obstacles. The initial velocities were
set to zero and the initial states were chosen randomly, from a Gaussian distribution, in R2 for
2-D and in R? for 3-D flocking. There was shown that after some (finite) time, the agents form

and preserve connected a flock.
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Figure 2.12: Split/rejoin maneuver. n = 150 agents form flocking after the evasion of o = 6 predators-
obstacles. It was proven that no agent passed from the obstacles’ positions during its course, while one
can observe the switching topology of the network. Source: Adapted from [Olfati-Saber, 2006].
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BOX 2.9

A Voronoi partition is a par-
titioning of a plane into re-
gions (Voronoi cells), based on
the distance of each plane’s
point from previously specified
points called seeds. Each cell
corresponds to a seed and con-
sists of all the plane’s points
closer to that seed than to any
other [Aurenhammer, 1991].

Ultimately, Lindhé et al. introduced a flock-
ing algorithm, based on Voronoi partitions
(BOX 2.9), leading to collision-free flock-
ing in environments with obstacles of gen-
eral shape [Lindhé et al, 2005]. The algo-
rithm was distributed and each agent’s ac-
tions were based only on the position of its
neighbouring ones. Relative distance and
orientation information were used at each
time-step, while collision avoidance was al-
ways guaranteed. If the given optimisation
problem is feasible, the agents will tend to the
goal and if the above mentioned criteria are

met the agents will form a flock.
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CHAPTER 3

LALGORITHMS INSPIRED BY ANIMAL BEHAVIOUR: FOUR
EXAMPLES

Every algorithm is inspired by animal behaviour, since algorithms are products of thinking and thinking is

a behaviour.

One would expect that the synergy of animal behaviour along with algorithms would stand for
the application of algorithms on the analysis of animal behaviour. Nevertheless, the linking
of the two disciplines is ‘undirected’, that is there are approaches in the field of algorithms,
inspired by animal behaviour. In the following paragraphs, some (optimization) techniques

inspired by animal behaviour are presented.

3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm [Kennedy and Eberhart, 1995] is a method that
is iteratively improving a prospective solution with regard to a given measure. It moves the
particles (prospective solutions) in the search-space according to mathematical operations over
the particle’s position and velocity. The movements depend on the best known positions of the
particles, and aim to the best known positions in the search-space. In each round the positions
are updated as better ones are found by other particles. This is expected to move the ‘swarm of
particles’ towards the best solutions. The idea behind the algorithm lies in the social behaviour
of bird flocking or fish schooling. The collective motion of such organisms is coordinated by
interactions among neighbouring individuals [Vicsek and Zafeiris, 2012]. PSO has been shown

to be a flourishing metaheuristic technique (BOX 3.1) with hundreds of papers investigating
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its application. Poli aimed to categorise a large number of publications referring to PSO ap-
plications in metallurgy, biomedical, robotics, communication, entertainment and others [Polj,
2007].

BOX 3.1

In computer science and mathematical optimization, a heuristic technique trades opti-
mality, completeness, accuracy or precision for speed. It is designed for (approximately)
solving a problem more quickly when other methods are too slow or fail to find any exact
solution. A metaheuristic is an approximate algorithm aiming to provide a sufficiently
good solution to an optimization problem, combining heuristic methods for exploring
a search space [Blum and Roli, 2003].

3.2 Collective Animal Behaviour

A second algorithm inspired by animal be-

haviour is the metaheuristic algorithm Col- f )
lective Animal Behaviour (CAB) for global BOX 3.2
optimization (Box 3.2) [Cuevas et al., 2012]. Global optimization refers to a
As it has formerly been mentioned, a wide collection of algorithms used to
range of (gregarious) animals from swarms of statistically sample a space of
locusts to herds of mammals such as wilde- parameters or variables to op-
beests, exhibit collective behaviours includ- timize a system, though it is
ing migrating, swarming etc in orderly ar- further often used to sample a
ranged groups. The cooperation offers mul- huge space for information [In-
tiple advantages to the group members re- gber, 2009]. More simple, it is
garding the defending effectiveness (preda- an attempt to find a global op-
tion avoidance), improvement of aerodynam- timum of an objective function
ics and others. In CAB, the searcher agents defined in a given search space.

emulate an animal group, in which the in-
teractions among the individuals depend on
simple behavioural regulations, modelled as mathematical operators. The concept of CAB is,
by simulating the behaviour of the animals, to ‘remember’ and store the best solutions. The
memory is divided into one part for storing the best locations at each generation and another
one for the best overall positions during the complete evolutionary process. After the com-
parison to other known optimization algorithms, CAB has shown high performance. It firstly

considers a set of operations that represent the rules of the interaction. Each solution of the
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search space corresponds to an animal position and each animal is characterised by a ‘fitness
value’ that is its ascendancy in the group. When two animals confront each other, the most

‘mighty’ prevails. CAB is an iterative process:

Algorithm CAB

1: Initialise random solutions (positions)

2: Keep the position of the best individuals
3: Move from or to nearby neighbours (local attraction and repulsion)
4: Move randomly

5. Compete for the space within a determined distance (update according to the ascendancy)

3.3 Ant Colony Optimization and Artificial Bee Colony

Another well-known algorithm has been inspired by the ant colony behaviour. During their
exploration for a path between their colony and a source of food, ants lay down pheromone
trails in order to direct the other members of the colony to resources that they have possibly
located. If an ant finds such a trail, instead of randomly wander, follows the trail, whereas
reinforce it with additional pheromone in case of successful resource locating. Ant Colony
Optimization (ACO) algorithm [Dorigo et al., 1991] refers to a probabilistic technique which
can be reduced in finding paths in graphs. The ants are represented by simulation-agents which
locate optimal solutions by moving through a parameter space representing all possible solu-
tions. The agents record their positions and the quality of their solutions, so that in the next
iteration more individuals will find better solutions. The algorithm is based on greedy search,

positive feedback as well as distributed computation.

Algorithm BEES ALGORITHM

1: Initialise population with random solutions

2: Evaluate fitness of the population

3: while stopping criterion not met do

4: Form new population

5: Select sites for neighbourhood search

6: Recruit bees for selected sites and evaluate fitnesses

Select the fittest bee from each patch

Assign remaining bees to search randomly and evaluate their fitnesses

9: end while
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One variation of the aforementioned technique relates to the behaviour of another social insect,
the bee. Inspired by honey bees’ foraging behaviour, Pham et al. introduced an optimisation
method called the Bees Algorithm. The basic steps of this algorithm can be found above and a
similar algorithm that helps in the comprehension of the steps of the Bees Algorithm [Pham
et al., 2006] is described below.

The honey bee swarm foraging behaviour has been also simulated by the Artificial Bee Colony
(ABC) algorithm which solves optimisation problems [Karaboga, 2005]. The bees colony is par-
titioned in three groups who carry out the two major processes/behaviours of the recruitment
to a nectar source and its abandonment: the employed bees, the onlookers and scouts. The
employed bees are associated with a specific food source which they are currently exploiting,
whereas they transfer and share, with a certain probability, information about its efficiency,
direction or distance from the hive. Scouts are looking for food sources in the surrounding en-
vironment of the hive, while onlookers are anticipating in the hive until they get information
from the employed bees in order to establish a food source. One employed bee corresponds
to each food source, and when the food source of an employed bee is depleted, it turns into a

scout. The following are the principal steps of the algorithm.

Algorithm ABC

1: Send the scouts onto the initial food sources

2: while stopping criterion not met do

3: Send the employed bees to determine the food sources’ nectar amounts

4: Calculate the probability value with which sources are preferred by the onlookers
5 Stop the exploitation process of the sources abandoned by the bees

6: Send the scouts in the search area for discovering new sources, randomly

7: Memorize the best food source found so far

8: end while

The positions of the food sources correspond to possible solutions of the optimisation prob-
lem, whereas the nectar amount represents the quality of the solution. As the nectar amount
increases, the probability for the onlookers to select the corresponding food source increases
as well. The recruitment rate refers to how promptly the colony locates the new food. This
process can be translated into the swiftness with which the optimal or feasible solutions can
be discovered. ABC is very simple and it is shown to be robust, applied for solving numerical

optimization problems.
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3.4 Hunting Search

The Hunting Search (HuS) algorithm [Oftadeh et al., 2010] refers to one more metaheuristic ap-
proach inspired by the group hunting of predators such as wolves or dolphins. The algorithm
simulates hunters as search positions and preys as potential solutions. In natural conditions,
hunters act as below: Encircle the prey and gradually tighten their ring until at least one of the
predators catch the prey. The individual predators adjust their positions in accordance with
the position of other members. In case that the prey escapes, the predators rearrange the group
in order to attack anew. Following this method, predators can catch preys that possibly move
(run or swim) faster than them. Terrestrial hunters are also taking into account further factors,
such as avoiding to have the wind on their back (Direction from the predator to the prey) in
order not to be detected (smelled). HuS relates this with the ‘forbidden areas’ of the search
space, while each predator stands for a solution and the prey for the optimum point in our
work. Particularly, in constrained optimization problems, ‘solution-hunters’ can be orientated
in the design space (movement toward leader), avoiding the forbidden areas and locating the
feasible ones. The leader is the hunter with the best position at the current stage, that is the
optimum solution. If any hunter finds a better ‘place’ than the one of the current leader, it

becomes leader in the next stage. Figure 3.1 displays the procedure.

Step 1

Step 2

Initialize the Hunting Group ([{G)

Randomly generate the solution vector ,
calculate objective function for each solution
veetor (in amount of hunters)

Tnitialize an optimization problem and paramerers of the algorithm
Number of decision variables, Range of decision variables, Number of
hunters-Hunting  Group  Size(HGS),  Maximum  Movement  toward
LeaderfMML), HG consideration rate{HGCR), Number of Epochs(EN),
Distance Radius(Ra), & and § -parameters of reorganization, termination
criterion-maximum number of search

Termination
criterion satisfied?

Hunters are too
close each other?

Correct positions (cooperation
between members)

based on:

Giroup considering,

Local { Environmental) search

Reorganize the hunting group

Figure 3.1: Optimization procedure of HuS algorithm. MML stands for maximum movement toward
the leader and HGCR for hunting group consideration rate. Both parameters are used to improvise the
hunter position defined in the third and forth step. Source: Adapted from [Oftadeh et al., 2010].

Depending on the prey’s position, there is a possibility for each hunter to catch it. In HuS,
the value of the objective function depends on the value of each decision variable. Last but
not least, HuS is a metaheuristic algorithm using stochastic searches and does not demand ini-
tial value settings of the decision variables, while addresses continuous optimization problems

(Box 3.3). It has been shown that a generalisation of this algorithm can be used in some combi-
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natorial optimization problems such as the TRAVELLING SALESMAN. The steps of the algorithm

are presented below.

Algorithm HuS

1:

a

Specify the optimization problem and parameters of the algorithm
Initialize the hunting group (HG)

Move toward the leader

Correct the positions (cooperation between members)

Reorganize the hunting group

Repeat Steps 3, 4 and 5 until the termination criterion is satisfied
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CHAPTER 4

CAN COGNITION AND BEHAVIOUR BE (PARTIALLY) PERCEIVED
AS ALGORITHMIC PROCEDURES?

If algorithmic procedures are a result of cognition but cognition is an algorithmic procedure, seems like... If
algorithmic procedures are a result of cognition but cognition is an algorithmic procedure, seems like... If

algorithmic procedures are a result of cognition but cognition is an algorithmic procedure, seems like...O

While examining the link between the brain and behaviour, Krakauer et al. suggested a more
pluralistic notion of neuroscience [Krakauer et al., 2017]. The behavioural research aims at
understanding, while neural activity shows the causality. Comparing the brain-behaviour re-
lationship with a computer science analogy, they considered the example of software (what?)
and hardware (how?). The investigation of behaviour helps discovering component processes
and their underlying algorithms. In this chapter, algorithms are roughly non-symbolic and
consist of explicit series of steps or/and rules for answering some question, solving a prob-
lem or performing a task. They provide instructions prescribing how to proceed at each step.
These algorithms could be innate, learned or even complex, that is, combining both categories.
Furthermore, given that the brain mainly participates in information processing, Ruffini ap-
proached consciousness, based on neurophysiological or neuroimaging data, from an algorith-
mic information theory perspective, that is a combination of information and computation
theory [Ruffini, 2017]. The mystery of the mind’s function has led to hypotheses which link it
to computational/algorithmic processes and in this chapter the potential computational nature

of thought and behaviour from different perspectives is discussed.
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4.1 A mathematical perspective

In 1961, Lucas introduced an argument,
claiming that Goédel’s first incompleteness
theorem is opposed to the idea that human
mind is a computer (or equivalently a Tur-
ing machine) [Lucas, 1961]. This argument
found many rivals who supported the Com-
putational Theory of Mind (CTM) and Arti-
ficial General Intelligence (Box 4.1), stating
that the mind is an information processing
system where consciousness and cognition
represent computation. Three decades later,
Roger Penrose with his two books, [Penrose
and Mermin, 1990, Penrose, 1994] argued
that Godel’s incompleteness theorem poses
problems for the aspect that the mind is a
computer. There has been extensive debate
on the aforementioned arguments, and sev-

eral objections have been expressed. In any

BOX 4.1

Artificial General Intelligence
is the stance that it is pos-
sible to create a machine ca-
pable of successfully perform
any cognitive task of the hu-
man mind. As an example, we
can refer to the famous ‘Tur-
ing Test’ [Turing, 2009] that
is: “write a computer program
that can simulate a human in
a text-based conversational in-
terchange” [Goertzel and Pen-
nachin, 2007].

case, these discussions deviate and exceed the purviews of the present thesis, getting involved

in disciplines such as quantum physics.

BOX 4.2

“A system that consists of only
finitely many states and tran-
sitions among them is called
a finite-state transition system.
We model these abstractly by a
mathematical model called a fi-

nite automaton” [Kozen, 2012].

Plentiful lines have been written about the
computational features of the mind (e.g.
[Jackendoff, 1987]) and many conjectures
have been done, including the aforemen-
tioned. Multiple physical and biological pro-
cesses can be likened to algorithmic proce-
dures in a rather abstract way, although there
are evidences to believe that some problems
that human’s mind can consider and possibly
‘solve’, are not formally computable. How-
ever, until the mystery of cognition is com-

pletely clarified, such comparisons will not

be avoided. In the next paragraph a study that aimed to practically investigate the brain from

mathematical point of view is presented.

Research on the brain areas involved in a specific cognitive task is quite advanced, locating
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these which respond to distinct stimulus. However, the processed information in each cog-
nitive function is not easy to detect. Having this in mind, one wonders what information is
transferred and distributed throughout the different brain areas. Schyns et al. tried to translate
brain activity to a set of particular information processing states [Schyns et al., 2009]. Brain’s
cognitive states, being responses to specific stimulations, are coordinated by an information
processing system. The transitions among information processing states were correlated, by
the researchers, to the operation of a finite automaton (Box 4.2), which suppose to be (generally
a Turing machine) competent of computing any ‘intuitively computable function’. In terms of
the ‘Church’s thesis’ (Church-Turing thesis [Enderton, 2001]), the cognitive procedures were
speculated to be cognitive algorithms, specifically a finite set of information processing states
and a transition table. This table, acting as a transition function [Sipser, 2006] with a sensory
input, defines the rules for proceeding from one state to the next one in order, ultimately, to
result in behavioural responses. The identification of the information used or processed in each

state and the transition among the states are the two essential parts of the cognitive algorithm.

4.2 A philosophical point of view

Many decades now, there is an ongoing debate on how cognition relates to the brain, from a
particular philosophical perspective. A mechanistic explanation of behaviour is provided by
computationalism, a family of theories about the mechanisms of cognition, supporting that
‘cognition is computation’. In 2009 there was published an enlightening review making the
distinction among different approaches in the context of computationalism [Piccinini, 2009].
There has been supported that computationalism is rooted in Church-Turing thesis (e.g. [Baum,
2004]), however, these arguments seem not to take into account that Church-Turing thesis per-
tains to what can be computed by algorithms. The link with cognition could be likely accepted

provided the conjecture that all cognitive processes are algorithmic procedures.

One former theory was perceiving cognition as the manipulation of linguistic, or sentence-
like structures, while the brain function (how it works) and computationalism are at ‘different
levels’. In this context is essential to mention two basic concepts, the classicism (‘cognition is
computation over linguistic structures’) and connectionism (‘cognition is what neural networks
do’). The original connectionism supports that behaviour can be explained by the connections
among neurons which are translated into stimulus-responses relations [Hebb, 1949] and a sim-
ilar idea is the associationism, which though do not include the biological mechanism in order
to explain the associations. Contemporary connectionism suggests that behaviour is a trans-
lation of neural network activity, however, provided that brain is the organism’s component
which underlies cognition, and the networks formed by brain cells perform the cognitive func-

tions, this view is trivial. In conclusion, the study of the organisation of nervous system could
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likely provide us with more knowledge supporting the one theory over the other (Fig. 4.1).

Generic Connectionism

Connectionist
Computationalism

Connectionist Associationism

Connectionist
Anti-computationalism

Figure 4.1: Theories about cognition. Classicists support that cognition depends on neural networks
which act as manipulators of linguistic structures. Non-classicist connectionists support that cognition
depends on non-classical neural network computation. Anti-computationalist connectionists support
that cognition depends on neural networks which do not refer to computation. Source: Adapted from
[Piccinini, 2009]

Here a short discussion of the already expressed arguments in the aforementioned context is in-
cluded. The idea that cognition involves something beyond computation is further developed
(possibly by a version of computationalism) in the idea that involves (hyper-)computations
more powerful than what a Turing machine can accomplish [Bringsjord and Arkoudas, 2006].
However there is no evidence indicating that a genuinely Turing-uncomputable problem (such
as HALTING PROBLEM [Sipser, 2006]) can be solved by human cognition. Moreover, compu-
tation is lacking the aspect of consciousness, which is (controversially) involved in cognition
and there are various approaches trying to describe consciousness in computational terms (e.g.
[Dennett, 1993]) and determine whether cognition indeed involves consciousness. Although,
even if consciousness involves something beyond computation, there is still possible to play an
important role in the cognition procedures. Additionally, Van Gelder supported that cognition
is not computation since cognition does not manipulates representations as computational-
ism presupposes [Van Gelder, 1995]. Thompson proposed that cognition is not computation
because in comparison to cognition, the computation is disembodied and unembedded (un-

coupled with body and environment) [Thompson, 2010], although computation needs not be
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disembodied and unembedded. Last but not least, cognitive states refer to certain issues, or in
other words involves intentionality, whereas computation does not involve such feature and

thus one wonders how it could simulate cognition [Searle, 1980].

4.3 Primates

In this section by means of some examples of the contemporary literature, there is presented,
how primate, including human, cognition has been linked to algorithmic procedures. In 2005,
Cantlon and Brannon trained monkeys (Macaca mulatta) to sort arrays in relation to the num-
ber of their elements and be able to pick the ‘bigger’ or ‘smaller’ array depending on a color
mark [Cantlon and Brannon, 2005]. The goal of the study was to investigate if monkeys show
a semantic congruity effect (BOX 4.3) during numerical comparisons as well as if they use the
same comparison algorithm for their decision-making. In that case, the semantic congruity
effect could not be attributed to linguistic processes. Monkeys revealed an analogous semantic
congruity effect to the human one, influencing decision time. This result of qualitative sim-
ilarity in response patterns, supports the idea of an evolutionarily primitive size-comparison

algorithm shared to primates, including human.

BOX 4.3

Semantic congruity effect: Appears when comparing two stimuli and you have to de-
cide which is smaller (or larger), in relation to a specific dimension. When the stimuli
are both large, humans tend to pick the larger one faster, whereas when both stimuli
are small, they tend to pick faster the smaller one. Therefore, the direction (‘choose
larger’ or ‘choose smaller’) of the comparison is crucial for this congruity effect [Shaki
and Algom, 2002].

Jordan and Brannon showed that human infants (7 months old) are capable to discriminate vi-
sual (faces they see) and auditory (voices they hear) stimuli exclusively depended on numerical
representations [Jordan and Brannon, 2006]. In particular, the infants pay attention preferably
to visualisation of adults which include the same number of voices and talking individuals. This
finding suggests a common cognitive process, regarding numerical representations, in nonver-
bal animals and preverbal humans. In 2006 it was proposed that the above mentioned decision
process represents an ‘If-Then rule’ that could form, along with other aspects, the steps of an
algorithm [Yildirim and Beachell, 2006]. The researchers of this last study, further presented
an example of summing two multi-digit numbers, supporting that sum calculation (of large

numbers) is a steps’ sequence, similar to those of a computational approach. The process is
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explained in text as follows:

Algorithm PRIMATES

1: Read the numbers

2: Add their appropriate digit and any carry

3: Save the result as the appropriate digit of the sum

4: If there is a carry for the possible summation of the next digit, save it

5: If there are more digits to add, go to Step 2

6: Save the carry as the most significant digit of the sum

4.4 Ants: The social insects

Sumpter suggested that when studying col-
lective behaviour one has to identify the
‘behavioural algorithms’ of each individ-
ual and the way that information flow fol-
lows among them [Sumpter, 2006]. It is
well known that artificial intelligence (Al)
and cognitive science aim to design algo-
rithms which model or represent the pro-
cesses of the mind. On the other hand,
as shown in the previous chapter, the be-
havioural algorithms could possibly con-
tribute to the design of mathematical mod-
els for broader problem solving.  The
study of social insects and particularly ants
has provided the scientists with plenti-
ful insights on all the above mentioned
fields.

Detrain and Deneubourg studied the problem
solving and information processing of social
insects, in a complex environment [Detrain
and Deneubourg, 2002]. Different conditions

often influence the same decision rule to lead

Prey
discovery

e

Weak
trail laying
y
Strong Weak
trail laying [* ] recruitment
Strong Individual
recruitment , , retrieval
Majors' action +
v 4
Cutting and

Collective
retrieval

Y

sucking the prey

v

<“«— <+ <4 <

Figure 4.2: Algorithm I of foraging. Decision-
making process of ants while forage for prey.
Source: Adapted from [Detrain and Deneubourg,

1997]

to diversified behaviours and foraging patterns. Each member of an ant colony who acts as

foraging scouter is crucial for the behaviour of the whole colony. It is responsible to decide

whether to create or reinforce a pheromone trail which leads to a food source [Ho6lldobler et al.,
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1990]. Figure 4.2 illustrates the decisions made during foraging process, in relation to the prey
size. Different foraging patterns emerge both of individual (when the prey is small enough)
and cooperative (when the prey is larger) revisit of the food source. The second situation is
characterised by a well-defined foraging trail which depends on the pheromone trail-laying.
The traction resistance of the prey, was shown to affect the forager’s decision to ‘ask’ (or not)
the help of the other members of the colony. When the researchers prevented the transfer of
the prey, the trail pheromone concentration was increased to a value such the one observed
in large prey collecting. Weak or intense trail-laying depends on the success in prey carrying,
while weak but frequent pheromone laying is accomplished when small food objects are abun-
dant and can be carried by the explorer solely. If the carrying of the prey remains ineffective,
even after the assembly of more colony members, the next step is the dissection and sucking

of the prey’s hemolymph.

Figure 4.3 represents the actions of the

foragers when exploiting liquid sources

[Mailleux et al., 2000]. When the source’s

volume exceeds the amount that the present

food ?
/ foragers can carry, the 90% of them rein-
YES

Food ingestion
//\
Able to ingest
desired volum

“Return without
- traillaying

force the trail with pheromone. Contrar-

ily, plenty individuals return ‘empty-handed’

when the volume is small. The number of

trail-layers depends on the source’s volume,
but the pheromone deposition of each trail-

layer is consistent. Each individual, in order

Ret‘urn‘ with

e W to decide if it will reinforce the trail, relies on
trail laying -

its ability to ingest a intended food volume -

Figure 4.3: Algorithm II of foraging. Decision- threshold (not fixed for each forager), If the
making process of ants while make use of a lig-
uid food source. Drawn from results of [Mailleux
et al.,, 2000]. Source: Adapted from [Detrain and tends to, as a result of crowding, low source

Deneubourg, 2002] volume or running out of the source, it will

subject is not able to ingest as much as it in-

carry on foraging and possibly return empty-
handed. The above threshold decision rule helps further the determination of individuals which
participate in honeydew production of aphid colonies. Therefore, the food source volume in-
fluences the colony as a whole, by means of the fraction of trail-laying individuals over the

number of the members return.

Two more examples from social insect behaviour, which resemble algorithmic procedures are

displayed. Figure 4.4 depicts an ant colony’s selection of a new nest as an algorithmic form of
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Figure 4.4: Emigration behaviour of Temnothorax ants. If one considers the depiction as a graph, the
vertices/boxes represent behavioural states and the edges/arrows transitions among them. The labels
indicate measured probabilities for each transition. Each individual begins at the exploration level (blue),
searching for potential nest location. When it locates a promising site continues in the assessment phase
(red), evaluating this site. Afterwards, in canvassing phase (yellow), accepts the site temporarily and
leads collective runs along with other nest-mates who further assess the site. Ultimately, the individual
completely commits the site by promptly transporting passive adults and broods, in the committed phase
(green). Subscript 7 declares the location that is currently being assessed by the ant, whereas subscript
f declares the initial nest from which ants are recruited. Source: Adapted from [Pratt et al., 2005]
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the collective decision-making mechanism. Each ant corresponds to a distinct agent and their
behaviour is represented as a states’ network connected by transition probabilities. Overall,
it is shown how the individual data lead to the determination of an algorithmic form for the
emigration. Figure 4.5 depicts the ‘life history of a (bee) forager’. For further details on informa-
tion processing in social insects, foraging strategies of ants and so on, see [Detrain et al., 1999].
Additionally, an interesting consideration of the ‘neuron-like’ behaviour of ants can be found
in ‘Box 2’ of [Couzin, 2009]. Ant colonies, similarly to neuronal systems, can be regarded as
systems of parallel information-processing which perform complex collective decision-making

pertain to moving, foraging and other behaviours.

externally

internally prer
riven

driven

4 sanrches a lﬂllrﬂ',
Ml using external information

finaly
pencer
sourve

s colony
'

forager
(loading)

FIELD FIELD

Figure 4.5: Behaviour control structure of a bee forager. Seven behavioural categories are observed,
on the left internally driven and on the right externally driven. The transitions among the categories
and the information on which these transitions are based are also illustrated. When/if a rich source
is located the searching forager turns into an employed but if the source is poor or absent turns into
unemployed by its returning to the hive. Source: Adapted from [Biesmeijer and de Vries, 2001]
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CONCLUSIONS AND FUTURE PROSPECTS

This thesis provides a review of the collaboration between biology and concepts of algorithms
as well as graph theory, focusing on animal behaviour and neuroscience. Apart from the pre-
sented, in these terms, further mathematical applications can be developed. Graph theory is
the mathematical discipline which underpins the study of complex biological networks whose
structure seems to be linked to function and not to randomness. In the first chapter a discussion
of molecular and cell biology is included. The analysis of cellular and (bio-)molecular processes
needs the design of highly dynamic models due to their switching network topology, while it is
essential to identify the genetic and environmental factors which influence network features.
Moreover, plentiful measures of graph theory are applied to the study of complex networks
in the brain. They can be used in order to explain the structure-function relationships in the
context of anatomical and neurophysiological studies, that is to investigate the functional role
of brain network connectivity in the information processing. Synchronization processes, net-
work comparisons and responses to stimuli, including damage, as well as the plasticity of brain
networks can be possibly modelled with graph theory. In the future, the optimal way of com-
bining data from diverse sources (e.g. fMRI or MEA) and converting to graphs for expression
of the microstructure has to be verified, whereas the properties of the graphs which indicate

or predict cognitive disturbances have to be determined.

A range of examples for the use of graph theory and algorithms in the study of networks in
the behavioural sciences was also provided. Such approaches can help us identify patterns of
social organisation and by extension to compare social structures of different populations or
species. Social network analysis based on graph theory is capable to identify vertices of indi-
viduals or subgroups whose role is crucial to the network function and stability. Analysis of
collected representative data provides an excellent framework for testing hypotheses about so-
cial behaviour, following the information flow through groups and evaluating the significance

of indirect social links as well as the effects of social structure on the group and individual

61



Nikos Smit OAPY

welfare.

Observational studies could reveal how network structure affects the level of cooperation,
while graphs with vertices of coexisting competition and cooperation relationships have to
be developed for the modelling of more general coopetition networks. Future studies have to
explain how collective decision-making emerge from interactions among (selfish) individuals
in these graphs and how well mathematical models can describe the dynamics of collective be-
haviour in nature. Furthermore, game theory models along with the methods of neuroscience
can enrich the study of social decision-making by exploring adaptive partner choices which
may depend on features such as cooperativeness, health, aggressiveness, sex and more. Lastly,
the determination of the algorithms that produce the collective animal behaviour can elucidate
the way that natural selection has promoted their evolutionary origin. On the contrary, coor-

dinated animal behaviour can inspire the design of (optimisation) algorithms.

The adaptive collective behaviours in self-organized systems based on environmental param-
eters and simple decision rules shape the dynamics of information transfer in the nature and
can contribute to the modelling of problem-solving. Algorithms inspired by animal behaviour
include metaheuristic, optimisation and further techniques. Compared to other well-known
methods, these algorithms have been shown to perform efficiently for dealing with optimiza-
tion problems while they may impose fewer mathematical requirements. Future development

of similar techniques is still needed to solve more complex and real optimization problems.

Approaches which aim to explain functions of cognition with algorithms have been published
in the course of the last decades. Algorithmic and computational perspectives of neuroscience
explore the neural circuits and causal manipulation in order to determine what information is
computed and how. For the understanding of the brain as a (Turing) machine which processes
information, we have to relate stimulus to behaviour through the dynamics and transitions of

information processing states.
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