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ABSTRACT

A distributed ledger is a database that is spread across several nodes on a peer-to-peer
network. The main characteristic of such system is the lack of central authority: Each
node replicates and saves an identical copy of the ledger. When a node hears a client’s
transaction request, it propagates the request to its peers. Every node on the network
processes every transaction, coming to its own conclusions. When a ledger update hap-
pens, each node constructs a new state of the ledger based on the transactions it has
heard, and then the nodes vote by consensus algorithm on which copy is correct. Once
a consensus has been determined, all nodes update themselves with the new, correct,
copy of the ledger. Distributed ledgers use blockchain protocols as one main means of
implementation.

Nowadays, blockchains and distributed ledgers attract massive attention and trigger mul-
tiple projects in different industries. However, the financial industry is seen as a primary
user of the blockchain concept. This is due to the fact that the technology is primarily
used to verify transactions, within digital currencies. The most well-known application of
this technology is the accounting method for the virtual currency, Bitcoin. Bitcoin is a form
of money that no government or bank can control. Instead, transactions are verified by its
users, eliminating the need for a third party to process or store payments.

However, apart from its benefits, blockchain technology has some significant drawbacks:
low throughput, big latency, security and privacy issues, high energy consumption and
dealing with the ever-growing ledger’s data volume. On the whole, this basically means
that blockchains face scalability problems. Some notable and well-known solutions for the
scalability problem include:

• Usage of different consensus algorithms for the agreement among the nodes (proof-
of-work, proof-of-stake, byzantine agreement).

• Replacement of the underlying chain-structured ledger with a directed acyclic graph.

• Build a payment network over the chain (the off-chain approach) where applications
don’t have to put every single transaction in the blockchain, instead to use the block-
chain as a court system if there is a dispute between the parties.

The purpose of this master thesis is the study and the analysis of the novel blockchain
technology, as well as a proposal of a new approach on its implementation. In particu-
lar, it considers the idea of organizing the blockchain peers into a DHT in order to store
the blockchain data: As blockchains get older, their size gets larger. Currently, Bitcoin
blockchain is over than 190GB. In addition, as long as some of the adove ideas about the
increase of the transaction rate put into practice, blockchain size will grow even faster.
The ever-growing size of the blockchain it is a factor of making the system more cent-
ralized, since too few of the nodes will be able to keep a full replica of the data. After
all, archival nodes with open ports, have little or no incentives to waste their storage and
their bandwidth, in order to keep all the data and serve it to a bootstrapping node. Thus,
it is reasonable to mitigate their load (especially that we call “cold data”, some historical



blocks)  by splitting it  into  a  DHT. The evaluation of  this  proposal  is  achieved through
simulations  of  the  first  and  most  popular  blockchain  network,  the  Bitcoin:  We build  a
simplified DHT that reminds the Chord. We tune our system and we make a system whose
characteristics is similar to Bitcoin. We measure several aspects of our system such as
capacity savings per node compared to the amount of data that a full node stores today,
load  balance,  query  latency,  bandwidth  usage.  We  present  our  results,  we  make
comments on them, and we draw a conclusion.

SUBJECT AREA: Blockchains, Distributed Systems, Peer-to-peer networks

KEYWORDS: Blockchain, Bitcoin, Distributed Hash Table, Chord, Scalability, Storage, 
  Simulation, Markov Chain Monte Carlo



ΠΕΡΙΛΗΨΗ

Ένας κατανεμημένος κατάλογος είναι μια βάση δεδομένων διεσπαρμένη σε διάφορους
κόμβους σε ένα δίκτυο ομότιμων χρηστών. Το κύριο χαρακτηριστικό αυτού του συστήμα-
τος είναι η έλλειψη κεντρικής εξουσίας: Κάθε κόμβος αναπαράγει και αποθηκεύει ένα
πανομοιότυπο αντίγραφο του καταλόγου. Όταν ένας κόμβος ακούει ένα αίτημα συναλλα-
γής ενός πελάτη, μεταδίδει το αίτημα στους ομότιμους του. Κάθε κόμβος στο δίκτυο
επεξεργάζεται κάθε συναλλαγή, καταλήγοντας στα δικά του συμπεράσματα. Όταν συμβαί-
νει μια επικαιροποίηση του καταλόγου, κάθε κόμβος δημιουργεί μια νέα κατάσταση του
καταλόγου με βάση τις συναλλαγές που έχει ακούσει και στη συνέχεια οι κόμβοι ψηφίζουν
με συναινετικό αλγόριθμο για το ποιο αντίγραφο είναι σωστό. Μόλις επέλθει ομοφωνία,
όλοι οι άλλοι κόμβοι ενημερώνονται με το νέο, σωστό, αντίγραφο του καταλόγου. Οι
κατανεμημένοι κατάλογοι χρησιμοποιούν πρωτόκολλα blockchain ως ένα κύριο μέσο υλο-
ποίησής τους.

Στις μέρες μας, τα blockchain και οι κατανεμημένοι κατάλογοι προσελκύουν έντονο ενδια-
φέρον και έχουν αποτελέσει έναυσμα για πληθώρα project σε διαφορετικούς τομείς της
βιομηχανίας. Εντούτοις, η οικονομική βιομηχανία είναι ο βασικός χρήστης της ιδέας του
blockchain. Αυτό συμβαίνει λόγω του ότι η συγκεκριμένη τεχνολογία αρχικά χρησιμοποιή-
θηκε για να επαληθεύσει συναλλαγές ψηφιακών νομισμάτων. Η πιο διάσημη εφαρμογή
αυτής της τεχνολογίας είναι η λογιστική μέθοδος για το εικονικό νόμισμα, το Bitcoin. Το
Bitcoin είναι ένα είδος νομίσματος το οποίο δεν ελέγχεται από καμία κυβέρνηση ή τράπεζα.
Αντ’ αυτού οι συναλλαγές επαληθεύονται από τους χρήστες του, εξαλείφοντας την ανάγκη
για κάποια τρίτη οντότητα η οποία θα επεξεργάζεται ή θα αποθηκεύει τις πληρωμές.

Ωστόσο, εκτός από τα οφέλη της, η τεχνολογία blockchain έχει μερικά σημαντικά μειονεκτή-
ματα: χαμηλή διεκπεραιωτική ικανότητα, μεγάλη καθυστέρηση, θέματα ασφάλειας και
ιδιωτικότητας, υψηλή κατανάλωση ενέργειας και αντιμετώπιση του συνεχώς αυξανόμενου
όγκου δεδομένων του καταλόγου. Αυτό ουσιαστικά σημαίνει ότι τα blockchains αντιμετω-
πίζουν προβλήματα κλιμάκωσης. Ορισμένες αξιοσημείωτες λύσεις για το πρόβλημα της
κλιμάκωσης περιλαμβάνουν:

• Η χρήση διαφορετικών αλγορίθμων οι οποίοι καταλήγουν στην ομοφωνία μεταξύ
των κόμβων (proof-of-work, proof-of-stake, byzantine agreement).

• Η αντικατάσταση της υποκείμενης αλυσιδωτής δομής των μπλοκ με κατευθυνόμενο
άκυκλο γράφο.

• Η χρήση ενός δικτύου πληρωμών δεύτερου επιπέδου όπου οι εφαρμογές δεν θα
χρειάζονται να τοποθετούν κάθε συναλλαγή στο blockchain. Αντ’ αυτού, το block-
chain θα χρησιμοποιείται σαν ένα σύστημα επίλυσης των διενέξεων μεταξύ των
συμβαλλόμενων μελών.

Σκοπός της παρούσας διπλωματικής εργασίας είναι η μελέτη και η ανάλυση της επαναστα-
τικής τεχνολογίας blockchain και η πρόταση μίας νέας προσέγγισης στην υλοποίησή της.
Συγκεκριμένα, εξετάζεται η ιδέα της οργάνωσης των ομότιμων του blockchain σε DHT με
σκοπό την αποθηκεύση των δεδομένων του blockchain: Καθώς τα blockchain γερνάνε,



το  μέγεθός  τους  γίνεται  ολοένα και  μεγαλύτερο.  Αυτή  τη  στιγμή,  το  Bitcoin  blockchain
υπερβαίνει  τα  190GB.  Επιπλέον,  εφόσον  εφαρμοστούν  ορισμένες  από  τις  παραπάνω
ιδέες που αφορούν την αύξηση του ρυθμού των συναλλαγών, το μέγεθος του blockchain
θα αυξάνεται ακόμα πιο γρήγορα. Το συνεχώς αυξανόμενο μέγεθος του blockchain είναι
ένας παράγοντας που καθιστά το σύστημα περισσότερο συγκεντρωτικό, αφού πολύ λίγοι
από  τους  κόμβους  θα  είναι  σε  θέση  να  διατηρήσουν  ένα  πλήρες  αντίγραφο  των
δεδομένων. Εξάλλου, οι αρχειακοί κόμβοι με ανοιχτές θύρες έχουν ελάχιστα ή καθόλου
κίνητρα  για  να  σπαταλήσουν  αποθηκευτικό  χώρο  και  εύρος  ζώνης,  προκειμένου  να
διατηρήσουν όλα τα δεδομένα και να εξυπηρετήσουν έναν νέο κόμβο κατά την εκκίνησή
του. Συνεπώς, είναι  λογικό να θέλουμε να μετριάζεται  το φορτίο τους (ειδικά αυτό που
ονομάζουμε  ”κρύα δεδομένα”,  μερικά ιστορικά μπλοκ),  μοιράζοντάς  το  σε  ένα  DHT. Η
αξιολόγηση αυτής της πρότασης επιτυγχάνεται μέσω προσομοιώσεων του πρώτου και πιο
δημοφιλούς δικτύου blockchain, του Bitcoin: Δημιουργούμε ένα απλοποιημένο DHT που
θυμίζει το Chord. Ρυθμίζουμε το σύστημά μας και δημιουργούμε ένα σύστημα του οποίου
τα χαρακτηριστικά είναι παρόμοια με το Bitcoin. Μετράμε διάφορες πτυχές του συστήματος
μας όπως εξοικονόμηση χωρητικότητας των κόμβων συγκριτικά με την κλασική υλοποίηση,
load balance, query latency, bandwidth usage. Παρουσιάζουμε τα αποτελέσματά μας, τα
σχολιάζουμε, και καταλήγουμε σε συμπεράσματα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Blockchains, Κατανεμημένα Συστήματα, Δίκτυα ομότιμων χρηστών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Blockchain, Bitcoin, Κατανεμημένος Πίνακας Κατακερματισμού, Chord, 
      Κλιμακωσιμότητα, Αποθήκευση, Προσομοίωση, Μαρκοβιανή Αλυσίδα  
         Μόντε Κάρλο
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1. INTRODUCTION

In the information age, we are experiencing a rapid digitization of data and services. The
new trend is the digitization of money. This is an idea that started in late 2008 when
an unknown person, using the name Satoshi Nakamoto, has published a white paper
titled ”Bitcoin: A peer-to-peer electronic cash system” [13]. This system is based on the
pioneering combination of basic cryptography, proof-of-work [7], and peer-to-peer tech-
nology [18]. Bitcoin’s innovation is the proposition of a fully distributed server that can ex-
ecute commands on a global payment system. This new technology later became known
as ”blockchain”. Since its implementation in 2009 and its use by some enthusiastic users,
the system has grown into a global payment system and one of the most talked-about
technological achievements with billions of euros of investment to support it and an entire
industry built on its bases.

The features that make Bitcoin attractive as a currency are its decentralized design and the
fact that there is no need for trust between the parties. It is an open systemwhere everyone
can participate both in making transactions as well as in verification of transactions, and
to be paid for his contribution. Bitcoin ledger is not maintained by a trusted central server,
but by a distributed network of collaborating volunteers. Transactions are irreversible and
can be easily and directly executed between any users, eliminating middle men, without
geographical and, for the time being, without legal restrictions.

After Bitcoin, it began a significant technological breakthrough. Blockchain technology
was expanded in many applications, from digital coins, to smart contracts [3] and decent-
ralized voting applications.

However, like any new technology, blockchain is called upon to face some challenges,
related to its practical application, that will determine its future. In particular, the key bot-
tlenecks are the throughput (transactions per second), the delay for adding new data to
the blockchain, and the equipment requirements (computing power and data storage).
These parameters are limiting to blockchain technology because their scaling has not
been achieved so far.

The purpose of this work is to analyze the blockchain technology, to identify and explain
its weaknesses and to present the most interesting proposals studied for the blockchain
escalation. Additionally, there is the goal of contributing to the blockchain community with
a proposal based on DHT usage, which stores the blockchain data, and looking forward
to even more decentralized and affordable blockchains. The assessment of viability and
the evaluation of the proposal will be done through simulations.

In this master thesis, there is an extensive reference to Bitcoin, as the first, largest block-
chain application with most participating users. Chapter 2 analyzes the Bitcoin design and
protocol, features and statistics of its network, and explains the blockchain technology.

Chapter 3 examines the performance and scalability of Bitcoin, the first digital currency to
serve global transaction demand. It defines the weaknesses of the blockchain technology
and refers to the most important proposals that have been discussed and aimed at its
escalation. In addition, we present the proposal of this master thesis, which considers the
idea of organizing the blockchain peers into a DHT in order to store the blockchain data,
aiming to reduce the required storage per node.

E. Kolyvas 1
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The content of Chapter 4 is about peer-to-peer networks. After a short definition of these
networks, reference is made to DHTs, to their properties and structure. At the end of this
chapter we talk about Chord, the DHT system that we try to modify in order to store the
blockchain data.

Finally, Chapter 5 describes how we build a simplified DHT that reminds Chord. We tune
our system and we make a system whose characteristics is similar to Bitcoin. We present
our results, we make comments on them, and we draw a conclusion.
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2. BITCOIN

Bitcoin is a cryptocurrency and a digital payment system proposed by a developer, or
a group of developers, under the name Satoshi Nakamoto. It released as open source
software in 2009. Bitcoin is implemented through a peer-to-peer network, and transactions
take place directly between users without an intermediary. In this chapter we will give a
general description of Bitcoin, as well as some basic technical details. We will focus on
the system and its protocol, describing how the blockchain is built and the technology on
which it is based.

In Bitcoin, information is propagated through two types: transactions and blocks. Transac-
tions are the basic information units and contain all the necessary information to complete
a money transfer, while blocks are groups of transactions and their existence serves to
achieve synchronization of status between the peer-to-peer network nodes.

Unlike traditional currencies such as the Euro, Bitcoin is not based on a central authority
that controls its supply, the distribution of money and confirms the validity of the transac-
tions. Bitcoin relies on a network of ”volunteers” who maintain faithful copies of the ledger.
The ledger contains all the necessary information to infer the balance of each holder of
bitcoins. It is crucial to have consistency between the ledgers of the nodes throughout the
network, since the validity of a transaction is confirmed by them.

2.1 Bitcoin Transactions

As a concept, a transaction is a transfer of bitcoins from one or more source accounts to
one or more destination accounts. In fact, an account is a public/private key pair. The
public key is the account address and serves as an identifier. In order to transfer an
amount of bitcoins to an account, a transaction is created. The destination address of the
transaction is recipient’s public key. To send bitcoins from an account, the transaction
should be signed with the private key of the sender’s account. This method is not the only
one to transfer bitcoins to an account, but it is the most common. As its description is
sufficient for the development of the topic, we will stick with it.

Instead of the classic add-on method for calculating the balance of an account, tracing and
summing transactions that transfer bitcoins (outputs) into the account is used. The outputs
are actually tuples of a numeric value in bitcoins and a condition. Anyone who can satisfy
the cryptographic condition can claim and spend the bitcoins of the output. The balance of
an account is derived from the sum of the arithmetic values of all the unspent transaction
outputs (UTXO) of the account.

Transactions are determined based on the hash value of their serialized representation.
Transactions are composed of inputs and outputs; unspent outputs are the actual bitcoins.
A transaction spends outputs by providing a proof of ownership of these. References to
claimed outputs along with proofs of ownership compose what is called input in a trans-
action. In Figure 1 User A spends 0.0020 BTC: 0.0005 BTC to User C, 0.0013 BTC to
himself and 0.0002 BTC as a miner fee. User B spends 0.0010 BTC: 0.0003 BTC to User
C, 0.0006 BTC to himself and 0.0001 BTC as a miner fee. User C spends 0.0008 BTC.
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Transaction A

in
0.0020 BTC

out
0.0013 BTC

out
0.0005 BTC

Transaction B

in
0.0010 BTC

out
0.0006 BTC

out
0.0003 BTC

0.0002 BTC fee

0.0001 BTC fee

Transaction C

in
0.0005 BTC

out
0.0001 BTC

out
0.0006 BTC

0.0001 BTC fee

in
0.0003 BTC

Figure 1: Transactions inputs and outputs

The outputs are the key information units of the ledger and their status should be consistent
across all copies. For a transaction to be valid, the following restrictions must be met with
respect to the outputs they spend and create:

• An output may be spent at most once.

• New outputs are created only as transaction results.

• The sum of the numerical values of inputs should be equal to or greater than the
sum of output values generated.

As new transactions are transmitted to the network, the status of the ledger of each node
changes. When a node receives a new transaction, it confirms its validity and includes it
in its local copy. It is possible that some instances of inconsistencies occur between the
copies of the ledger on different nodes:

• It is possible that a node takes a transaction that transfers an amount from an ac-
count without having received the transaction that makes this amount available to
the account.

• Two or more transactions can claim the same outputs, trying to spend the respective
amount more than once. This is called a double spending attack.

Double spending attacks have a direct effect on the consistency of the ledger copies.
When a double spending occurs, deliberately or not, two or more transactions attempt to
spend the same output at the same time. A node that receives the first transaction will
confirm it and include it in its ledger. Later on, when it receives the rest, their confirmation
will fail as the output has already been spent. As there is no guarantee that all nodes
will receive these transactions in the same order, the nodes will disagree on the validity
of these conflicting transactions and any other transaction that will be based on them by
spending their outputs. This mismatch is solved through blocks, as will be discussed in
the following section.
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2.2 Bitcoin Blocks

In order to maintain consistency between the copies of the ledger, there must be an agree-
ment between the nodes on the order of transactions. Achieving such an agreement is
not a trivial issue. Bitcoin solves this problem by firstly testing acceptance of the transac-
tions and then synchronizing at regular intervals by transmitting the blocks created by the
nodes. A block b contains a set of transactions Tb, which are the transactions accepted by
the authoring node after the immediately preceding block. This block is distributed across
all network nodes. Every node that receives the bock, reverses the test transactions that
they have accepted and applies those that contain the new block b.

At this point all nodes have agreed on the validity of all transactions within b. b transactions
that had already been included in the ledger do not need to be reapplied. The reversed
transactions will be revalidated and will be tested again in the new ledger status. Trans-
actions that are no longer valid due to collusion with transactions deposited as part of b
will be rejected.

The node that created the block b somehow dictates the change in the status of the ledger
from the previous block based on its own perspective. However, the decisions that the au-
thoring node can take is limited. It can not counterfeit a transaction since the public/private
key cryptosystem is secure. The creator node can only decide on the order in which the
transactions were made and whether and which transactions to include in its block.

To make the selection of the node that will create the next block and dictate the new status
of the ledger, the nodes try to find a solution to a proof-of-work (PoW) [7] cryptographic
problem that has a given degree of difficulty. The proof-of-work is, in fact, the challenge
of finding a binary string called nonce, which, in combination with the block header gives
a hash value Hb such that it has a required number of zero bits at the beginning of it
(target). Because the hash functions are one-way functions, finding a target is done only
by exhaustively searching and testing possible nonces, until one with the desired property
is found. Thus, finding a nonce that provides a solution to the proof-of-work problem is
difficult, however its validation is easily done by computing a result of the hash function.
Nonce is part of the block, so the recipients nodes confirm that the creator really solved
the proof-of-work problem. The Hb value is also used as block identifier. The target is
determined so that the average time of creating a new block from the network in total is
10 minutes and re-adjusted after every 2016 blocks. Figure 21 shows block interval since
2010. The average value of block interval for all these years is 553.18 sec.

Nodes that try to find a solution to the proof-of-work are called miners. For miners to have
an incentive, the node that creates a block gets a reward in the form of newly formed
bitcoins. For example, it can include in the block a transaction that it has no inputs. This
reward is only valid if it occurs within the block and is the only exception to the rule that
the sum of the inputs should be equal to or greater than the sum of the outputs.

1https://charts.bitcoin.com/btc/chart/block-interval
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Figure 2: Block interval since 2010

2.3 Bitcoin Blockchain

One way to set the blockchain is as a distributed database that solves the Byzantine
Generals Problem and the Sybil Attack Problem. In the Byzantine Generals Problem
[11], nodes are asked to agree on the value of a distributed database entry, with the
restriction that nodes are likely to fail randomly (including malicious behavior). The Sybil
Attack Problem [6] arises when one or more nodes find a way to unfairly disproportionately
influence the process of agreeing at the price of an entry. It is the ”clone attack” - a number
of seemingly independent voters who actually work together to trick the system.

Referring to the previous sections on Bitcoin, there is no block element that offers addi-
tional synchronization and serialization in transactions. However, this is achieved when
blocks are linked to chain formation, defining a chronological sequence between them and
hence between transactions.

Blocks are organized into a directed acyclic graph (DAG). Each block contains a reference
to the previous block. When a block b is referred by a block b′ as its predecessor, then block
b is called parent of b′. The root of this DAG is called genesis block and it is hardcoded to
all Bitcoin clients. The genesis block is the ancestor of all blocks. A typical example for a
blockchain is illustrated in Figure 3.

Blockchain is defined as the longer path from any block to the genesis block. The distance
between block b and the genesis block is reported as the height of block hb. The genesis
block has zero height. The block with the highest height is referred to as the blockchain
head and it has height hhead.

To make a reference to a block as a parent, the block’s ID (its hash value) should be
known. So, the child block should be created after the parent block was created. This
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Figure 3: An example of blockchain which consists of a continuous sequence of blocks

chain formation is used to define a chronological order between transactions: transactions
in blocks of lower height have been confirmed before these blocks of a higher height.

Only the blocks that are included in the longest branch are rewarded with newly formed
coins that are user-acceptable. So miners will attempt to create blocks on the blockchain
head. Creating a block in other place than the head, would require this path to get a longer
length than hhead in order to be rewarded.

Having explained the function of the blockchain, the answer about the usefulness of proof-
of-work is obvious: Proof-of-work serves the safety of the blockchain. In order for a block
to be considered valid, it must meet the requirements of the target, indicating that time,
computational power and energy have been spent on its creation. As blocks are organized
into chain formation, falsification of a block implies rebuilding of all its subsequent. In this
way, blocks are confirmed: as many blocks follow a certain block in the chain, it is more
unlikely for that particular block to get out of the blockchain.

2.4 Blockchain Forks

From the blockchain definition it’s possible to have multiple blockchains heads at any time.
This is called blockchain fork. In the case of a blockchain fork there is a disagreement
between the nodes of the network as to which block is the blockchain head.

When a node, whose blockchain head bh is at a height h, receives a block bh′ with a height
h′ > h, it defines it as a blockchain head. The new block bh′ may belong either to the same
tree branch, i.e. bh′ to be descendant of bh, or to belong to a different branch.

If block bh′ belongs to the same branch as bh, then the node will find all the intermediate
blocks of the branch and will gradually apply all the changes that they define. Otherwise,
where bh′ belongs to a different branch, so bh is not his ancestor and a common ancestor
is searched. Once detected, the node will reverse all the necessary changes from block
bh until the common ancestor and it will apply those which defined in the branch of bh′.

A blockchain fork can be extended to longer than one block length as a continuation of
conflicting blocks. In the end, however, only one branch will prevail by acquiring a longer
length than the rest. The nodes supporting different branches will adopt it. At this point
the blockchain fork is resolved and all the copies of the ledger get coherent accepting the
same blockchain head. The blocks finally discarded by the blockchain are called orphan
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blocks. Figure 4 illustrates an example: The main chain (blue) consists of the longest
branch of blocks from the genesis block (green) to the current block. Orphan blocks (red)
exist outside of the main chain.

Figure 4: Blockchain forks

For this reason it is obvious that Bitcoin never records a transaction permanently. Every
blockchain transaction can be canceled if a longer path is created that does not include it,
i.e. it starts from a point in the tree that is earlier than the one containing the transaction.
If an attacker wants to reverse a transaction included in block bh, he should create a new
transaction that would counter the original and include it in a block bh′, where h′ < h. Then,
the attacker should create blocks by continuing the branch of bh′ until it overtakes the
original blockchain length. This would be feasible for someone who would control the
majority of the hashing power, since it would create blocks at a higher rate than the rest
of the network, and could therefore reverse any transaction.

The close relationship between the blocks and the validity of a transaction not only slows
down the confirmation time of a transaction, but also limits its confirmation to a probabilistic
method.

2.5 Bitcoin Clients

A Bitcoin client stores all the necessary information for a user to deal with bitcoins. Al-
though Bitcoin clients are often referred to as ”bitcoin storage”, they are in fact inseparably
linked to the blockchain ledger. A more accurate description of a client would be a means
of storing digital credentials for bithoins owned by someone and making it accessible. As
Bitcoin uses public-private key cryptography, the content of a client is basically such a key
pair.

In addition to storing the necessary credentials to confirm the ownership of their bitcoins,
Bitcoin clients are connected to the network and allow for transactions. Bitcoin clients are
divided into two main categories:

• Full nodes, which are nodes that confirm transactions by maintaining a local copy
of the blockchain. Full nodes maintain a complete and up-to-date copy of the Bit-
coin blockchain with all the transactions, which they independently build and verify,
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starting with the very first block (genesis block) and building up to the latest known
block in the network. A full node can independently and authoritatively verify any
transaction without recourse or reliance on any other node or source of information.
Due to the size of the blockchain (190GB, February 2019) and its processing require-
ments, most of the nodes can not support such a function, so they retain a subset of
the blockchain. These nodes are synchronized to Bitcoin blockchain as they down-
load the whole blockchain at the begining, in order to be sure of the blockchain’s
correctness. Once the validity of a block is confirmed, its content is unnecessary.

• Not all nodes have the ability to store the full blockchain. Many bitcoin clients are
designed to run on space- and power-constrained devices, such as smartphones,
tablets, or embedded systems. For such devices, a simplified payment verification
(SPV) method is used to allow them to operate without storing the full blockchain.
These types of clients are called Lightweight clients or Simple Payment Verific-
ation clients (SPV clients). SPV nodes download only the block headers and do
not download the transactions included in each block. The resulting chain of blocks,
without transactions, is 1,000 times smaller than the full blockchain. SPV nodes
cannot construct a full picture of all the UTXOs that are available for spending be-
cause they do not know about all the transactions on the network. SPV nodes verify
transactions using a slightly different methodology that relies on peers to provide
partial views of relevant parts of the blockchain on demand. SPV nodes consult full
nodes to confirm transactions as they do not keep a copy of the blockchain. Thus,
by making use of a lightweight client, the user should trust his provider, who can not
steal bitcoins, but may provide false indications / affirmations. This user can have
strong evidence for his transactions, but he can never be sure of them, as the only
way for absolute certainty is to keep a local copy of the blockchain (full node).

2.6 Decentralization

The most important parameters of Bitcoin at this time are trust, security and privacy. Full
nodes are able to check that all of Bitcoin’s rules are being followed. Rules such as the
inflation schedule, no spending the same coin twice, no spending of coins that don’t belong
to the holder of the private key and all the other rules required to make Bitcoin to work. Full
nodes are the ones that give Bitcoin users the ability to be sure about the proper operation
of the system, without trusting anyone else (trustless). There is no need to trust in any
financial institution (bank, paypal). Everyone knows the proper functioning and integrity of
the blockchain he maintains on his personal computer and that is enough. Whether each
Bitcoin user will retain his own full node to use it as a wallet, is at his discretion.

Trust: Running a full node and using it as a wallet is the only way to knowwith certainty that
no Bitcoin rule has been violated. Any other type of wallet requires trust in an intermediary
server. Thus, through personal full node is the only way to verify the bitcoins that each
person holds, while any third party information contains a dose of uncertainty.

Security: All validity checks by full nodes increase the security. There are many attacks
against lightweight client wallets that do not affect full node wallets.

Privacy: Full node wallets are so far the best way to keep one’s privacy, as no one has
the information to link the Bitcoin public key to the person who owns the private key. Each
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use of lightweight wallet leaks information about which addresses are assigned to the
individual user as they send requests to intermediate servers. Maintaining a full node is
the only way to keep your privacy.

Governments are good at cutting off the heads of a
centrally controlled networks like Napster, but pure P2P
networks like Gnutella and Tor seem to be holding their

own.

Satoshi Nakamoto [12]

In order for a Bitcoin user to obtain information about the blockchain, e.g. for a transaction
that concerns him, he either has to check himself in the blockchain, or trust a third party.
The fact of trust in a third person reduces locality, i.e. cancels the essence of a peer-to-
peer existence. In order to maintain a peer-to-peer network, users should participate as
peers, which for Bitcoin means to maintain a full node.

The cost of maintaining a full node is high. However, in a system where the counterfeit
risk is always measurable, a full node is the only means of confirming that the bitcoins are
correctly distributed, strictly following all the rules defined by the Bitcoin protocol.

The only node that matters is the one you use.

Peter Todd [21]

The significance of the above-mentioned phrase, that one can use his own information
(a blockchain copy) to prove the validity of a transaction, leads to a critical conclusion:
Bitcoin’s degree of decentralization is directly determined by the number of full nodes, so
in essence, by the cost required to maintain a full node.

If we think about it, one extreme is that this cost would be zero. Then anyone would
be able to confirm whether or not a transaction took place and, by extension, the whole
Bitcoin blockchain about its correctness, without relying on a third party. At the other end,
if the cost of a full node was so high that there was only one node, then the administrator
of that node would control the entire network: complete centralization.
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2.7 Bitcoin Network

The precise number of Bitcoin’s full nodes is unknown. All measurements are referred to
the available full nodes, i.e. those with open ports that are accessible. However, many
nodes are behind firewalls or configured to prevent connection requests. The main reason
for such a decision is probably due to the use of the network, since network bandwidth
costs. Thus, nobody knows the exact number of full nodes and it is very likely that nodes
with closed ports are several thousands. In other words, just because open-port-nodes
can only be measured and closed-port-nodes cannot, some members of the Bitcoin com-
munity have been mistaken into believing that open-port-nodes represent the full count.

According to the measurements [2], there are 10,500 available full nodes. Assuming they
are all using default Bitcoin Core settings, they will each provide 117 TCP/IP connec-
tion slots to the network (125 available minus 8 for their own use). SPV nodes typically
use 4 connection slots and full nodes typically use 8. So the network can support up
to 1,228,500 connections, translated to a maximum of around 153,562 non-listening full
nodes, or 307,125 SPV nodes at one time. This is roughly the upper limit for the number
of wallets that are online and connected to the Bitcoin network at any one time. (If there
were more people online at once than that, people would start seeing various issues.)
This doesn’t include wallets that don’t actually connect to the Bitcoin network, of course.

According to the metrics [19] on a long-running listening full node, the TCP/IP incoming
connections are averaged: 110 with other full nodes and 15 with SPV nodes. Given
the 110 TCP/IP connections for uploading to full nodes, and the 15 TCP/IP connections
with the SPV nodes, we can rough guess that there are at this moment (10,500*110)/8 =
144,375 full nodes (10,500 listening) and (10,500*15)/4 = 39,375 SPV nodes connected
to the network.

Nodes with open ports are useful to the Bitcoin network as they help bootstrap new nodes
by uploading historical blocks - they are a measure of the number of redundant copies
of the blockchain available for synchronizing with. For the time being, there has been
no shortage of bandwidth capacity for simply syncing wallets from the available nodes.
Bitcoin community thinks that only trust, security, and privacy are what matters right now.
Therefore, if there were shortage of bandwidth, they think that bandwidth might be added
by renting cloud servers, but that would lead to a even more centralized system. Figure
52 shows the number of reachable nodes during the last 730 days (2 years), from Feb 11,
2017 (5873 nodes), to Feb 11, 2019 (10510 nodes). Figure 63 shows the concentration
of reachable Bitcoin nodes found in countries around the world.

2https://bitnodes.earn.com/dashboard/?days=730
3https://bitnodes.earn.com/
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Figure 5: The number of reachable nodes during the last 730 days

Figure 6: Concentration of reachable Bitcoin nodes around the world
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3. BITCOIN SCALABILITY

3.1 Scalability Problem

The ever-growing adoption of some cryptocurrencies as ameans of payment has begun to
raise concerns about the ability to scale their technology. Since Bitcoin is a self-managed
systemwhich creates blocks at approximately constant time intervals, the maximum trans-
action rate is limited and is equal to the ratio of the maximum number of transactions that
a block may contain divided by the block interval.

Cryptocurrency community continuously discuss how to improve blockchain scalability,
with many interesting suggestions, but no proposal seems to be capable of solving the
problem in its entirety. For example, in Bitcoin, Segregated Witness (SegWit) [23] which
was activated in August 2017. SegWit suggests to segregate the digital signature from the
transactions data. Digital signature accounts for 65% of the space in a given transaction.
SegWit attempts to ignore the data attached to a signature by stripping off the signature
from within the input and moving it to a structure towards the end of a transaction. This
would increase the 1 MB limit for block sizes to a little under 4 MB.

Of course, SegWit, as well as supporters, has also faced some critics who rejected the
update decided by the vast majority of the Bitcoin community. Αlthough the protocol up-
grade was adopted by the 96.49% of the miners (by hash power), a small group of mostly
China-based Bitcoin miners - programmers refused to follow and set up their own new
cryptocurrency, called Bitcoin Cash [9]. Today (Feb 5, 2019), 99.10% [5] of the Bitcoin
nodes, are Bitcoin Core nodes. This example of partitioning between the community is
indicative of the inability to define a clear strategy to tackle the problem of blockchain
scalability. Note that SegWit may allow Bitcoin to increase its transaction rate, but it is not
a long-term or medium-term solution to Bitcoin scalability problem.

In order to have an overview of Bitcoin’s current capabilities, let’s calculate the number
of transactions per second: Figure 74 shows the number of daily transactions since 2017
(the last ~2 years). The average value for this time period is 255820 transactions per
day. That means 255820 (txs/day) / 86400 (sec/day) = 2.96 transactions per sec (in prac-
tice). In theory this number is a little bit higher (~7 transactions per second [4]), while a
transaction typically takes several minutes or even hours to be confirmed. In comparison,
a mainstream payment processor such as Visa credit card confirms a transaction within
seconds, handles on average around 2,000 transactions per second (tps) and it has a
peak capacity of around 56,000 transactions per second [22]. Clearly, a large gap exists
between where Bitcoin is today, and the scalability of a mainstream payment processor.

Throughput (tps) can theoretically be parameterized, either by increasing the block size
limit, or by reducing the block interval. But both of these solutions pose risks to block-
chain consensus and transaction security. In particular, block interval reduction means
easier / faster creation of new blocks, and impairment of proof-of-work security, as ex-
plained in Sections 2.3 and 2.4. In addition, increasing the block size will lead to delay
in the spread of new blocks, i.e. lower levels of consensus, as the effective throughput
decreases. Effective throughput refers to the percentage of nodes that are synchronized

4https://charts.bitcoin.com/btc/chart/daily-transactions
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Figure 7: Daily Transactions since 2017

with the blockchain, despite the network delays and the speeds supported by their con-
nections. Therefore, the transaction rate is a parameter that is difficult to customize based
on Bitcoin’s current state.

A second point in which Bitcoin is inferior to other payment methods is latency (confirma-
tion time of a single transaction). A transaction that has been included in the blockchain,
theoretically, is never 100% assured (permanent). This is explained in detail in Section
2.4 on blockchain forks. However, the ”deeper” a block is, in terms of blockchain’s height,
the less likely is to reject it. By convention, a block is considered finalized in the blockchain
after it has succeeded by at least 6 blocks. Thus, a transaction requires at least one hour
to be considered finalized, without counting the time it takes to deposit it into a blockchain
block.

An additional constraint parameter is that of storage capacity. Currently (February 2019),
the size of the Bitcoin blockchain is 190GB and exhibits an exponential increase in time
(Figure 85). This is due to the increase in the use of Bitcoin as a means of payment;
stabilizing transactions rate in the unit of time will also entail stabilizing the growth rate of
the blockchain.

To clear things up, it is not necessary for a Bitcoin node to keep the whole blockchain file
on its disk. Satoshi’s white paper [13] describes the process of ”pruning”, in which unne-
cessary data on fully spent transactions is deleted. This reduces the volume of required
data for a node that performs a transaction verification. All the unspent transactions are
called Unspent Transaction Output set (UTXO-set). In case of Bitcoin, they are about
64MB (February 2019, Figure 96) and is all the information that one verifier needs. Keep-

5https://charts.bitcoin.com/btc/chart/blockchain-size
6https://charts.bitcoin.com/btc/chart/utxo-set-size
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Figure 8: Blockchain Size

ing the whole blockchain may not be required for the mining or verifying operations, but,
in general, its preservation is necessary for the operation of a blockchain. One reason is
that in a blockchain, by definition, it should be possible to prove the validity of any inform-
ation by providing its entire history since the genesis block. In addition, the blockchain
file, as a whole, needs for bootstrapping new nodes, a process that repeats the whole
blockchain history in order for the new node to verify the correctness of the current state
of the blockchain, i.e. the UTXO-set.

To sum up, although the entire blockchain is not necessary for every validating node, its
maintenance is essential. A number of archival nodes need to store the full chain going
back to the genesis block. These nodes can be used to bootstrap new validating nodes
from scratch. On the other hand, while the size of the UTXO-set is less than 100MB, which
is small enough to easily fit in RAM for even quite old computers, is not a problem.

Today (February 2019), the minimum requirements [1] to run a Bitcoin full node are:

• Desktop or laptop hardware running recent versions of Windows, Mac OS X, or
Linux.

• 200 gigabytes of free disk space, accessible at a minimum read/write speed of 100
MB/s.

• 2 gigabytes of memory (RAM)

• A broadband Internet connection with upload speeds of at least 400 kilobits (50 kilo-
bytes) per second

• An unmetered connection, a connection with high upload limits, or a connection you
regularly monitor to ensure it doesn’t exceed its upload limits. It’s common for full
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Figure 9: UTXO Set Size

nodes on high-speed connections to use 200 gigabytes upload or more a month.
Download usage is around 20 gigabytes a month, plus around an additional 195
gigabytes the first time you start your node.

• 6 hours a day that your full node can be left running. (You can do other things with
your computer while running a full node.) More hours would be better, and best of
all would be if you can run your node continuously.

3.2 Scaling Suggestions

Before delving into the scaling solutions proposed by the community, it is important to
understand the tradeoffs (or Scalability Trilemma) that comes along when we talk about
scalability.

There are generally 3 main attributes that must be considered when developing block-
chains:

1. Security: A distributed network should be resistant to a wide variety of attacks or
hacks such as 51% attacks, Distributed Denial-of-Service (DDoS) attacks and Sybil
attacks. More importantly, blockchains should be fault-tolerant, meaning that the
system will continue to operate even if a component of the network fails.

2. Decentralization: Perhaps the core tenant of Blockchain technology, open source
decentralization allows for a censorship-resistant, inclusive network that enables
anyone to participate without prejudice.

E. Kolyvas 16



Reduce Blockchain Nodes Storage Requirements by using Distributed Hash Table.

3. Scalability: This refers to the capacity of blockchains in processing transactions in
the network. A scalable system is able to cater to more transaction and activity in
the network without suffering from network stress.

A blockchain can only choose 2 attributes and perhaps sacrifice an attribute. For instance,
Bitcoin and Ethereum [3] were designed to focus on decentralization and network security:
In both blockchain protocols each node stores the entire state and processes all transac-
tions. This provides a large amount of security, but greatly limits scalability: a blockchain
cannot process more transactions than a single node can. In large part because of this,
Bitcoin is limited to 3–7 transactions per second and Ethereum to 7–15.

However, this poses a question: Are there ways to create a new mechanism, where only
a small subset of nodes verifies each transaction? As long as there are sufficiently many
nodes verifying each transaction that the system is still highly secure, but a sufficiently
small percentage of the total validator set that the system can process many transactions
in parallel, could we not split up transaction processing between smaller groups of nodes
to greatly increase a blockchain’s total throughput?

3.2.1 Sharding

The basic idea behind sharding is to split the state and history of a blockchain up into
K = O(N/c) partitions that we call “shards”. For example, a sharding scheme might put
all addresses starting with 0x00 into one shard, all addresses starting with 0x01 into an-
other shard, etc. In the simplest form of sharding, each shard also has its own transaction
history, and the effect of transactions in some shard k are limited to the state of shard
k. One simple example would be a multi-asset blockchain, where there are K shards
and each shard stores the balances and processes the transactions associated with one
particular asset. In more advanced forms of sharding, some form of cross-shard commu-
nication capability, where transactions on one shard can trigger events on other shards,
is also included.

Sharding is proposed to be implemented once Ethereummoves to a Proof-of-Stakemodel.
A basic design of a sharded blockchain is as follows:

There exists a set of validator nodes, who randomly get assigned the right to create shard
blocks. During each time slot, for each shard a random validator gets selected, and given
the right to create a block on that shard. Also, for each shard, a set of validators get
selected as attesters. The header of a block together with at least 2/3 of the attesting
signatures can be published as an object that gets included in the ”main chain” (also
called a beacon chain).
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3.2.2 Private Channels

Bitcoin transactions can get slow and expensive. Transactions are confirmed only once
every 10 minutes on average and if you didn’t attach a high enough fee, it could take even
days to get confirmed. Unfortunately, this becomes a real issue with day-to-day micro
transactions. One of the main arguments of why Bitcoin can’t be used as a medium of
exchange is due to how slowly it works and how expensive it is to send small payments
through the network.

So, wouldn’t be great if we could have instant and ”feeless” transactions? This is where
the Lightning Network [15] comes in. The key idea behind the Lightning Network is that
small, everyday transactions don’t have to be stored on the main blockchain. This avoids
the 7 transactions per second limit and is also called the off-chain approach. Let’s take a
look at an example to understand how does it work:

Every morning Bob buys a cup of coffee on his way to work. Creating a transaction on the
blockchain for a simple coffee is really overkill. He might end up paying more fees than the
actual price of his coffee. However, with the Lightning Network Bob can setup a payment
channel with the coffee shop. To do that, both the coffee shop and Bob deposit a certain
amount of Bitcoin in what is called a multi-signature address. Let’s assume that Bob
deposits 0.05 BTC and the coffee shop deposits nothing, because they don’t offer refunds.
This multi-signature address is basically like a safe that can only be opened when both
parties agree. When we open the payment channel we also make a balance sheet that
says how the funds in the address should be distributed. So right now it says: ”Bob will get
0.05 BTC and the coffee shop will get 0 BTC”, the same as they deposited. Opening the
payment channel happens on the main blockchain so that there is full transparency. The
coffee shop owner can see that Bob has deposited 0.05 BTC and they can rest assured
that they will get their money once the channel closes.

Now that the channel is open, Bob can order his morning coffee. Let’s say that a coffee
costs 0.001 BTC. To pay for it, Bob simply changes the balance sheet. He subtracts the
cost of the coffee from his balance, and adds it to the coffee shop’s balance. So now it
says: ”Bob will get 0.049 BTC and the coffee shop will get 0.001 BTC”. Bob and the coffee
shop now sign the updated balance sheet with their private keys, they then each keep a
copy of it, but they don’t do anything else with it. Bob can keep ordering coffees for as
long as he has a balance in the payment channel. Both of them can make hundreds of
thousands of transactions between them. There is really no limit because this happens
away from the main blockchain.

The payment channel can be closed at anytime by either Bob or the coffee shop. All
they have to do is take the latest balance sheet, which was signed by both parties and
broadcast it to the Bitcoin network. Miners will then validate the signatures on the balance
sheet and - if everything checks out - release the funds according to the balance sheet.
This will create a single transaction on the Bitcoin blockchain. So the Lightning Network
can significantly reduce the load on the main blockchain. It only requires two transactions
on the blockchain: one to open the payment channel and another one to close it.

Moreover, in the Lightning Network you don’t need to open a direct payment channel with
everyone you want to send bitcoins to. You can simply use the network to pass your coins
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around. For example, suppose Alice has exchanged money on the Lightning Network with
Bob before, so they have an active payment channel. Now let’s say that Alice wants to
buy a coffee. Instead of opening a direct channel to the coffee shop, she can transfer the
money to Bob, who will then transfer it to the coffee shop. So there is no need to create
a payment channel with everyone. In the Lightning Network, your payment tries to find a
route from person A to person B and it tries to do this with the least amount of intermediates
and the least amount of fees. This further reduces the strain on the blockchain but it
requires the intermediates to have enough money in the payment channels.

Ethereum’s equivalent to Bitcoin’s Lightning Network is called Raiden Network [17].

3.2.3 Consensus Algorithms

One of the main drawbacks of cryptocurrencies, like Bitcoin, is that they use enormous
amounts of energy to secure their networks. This is because mining new coins takes a lot
of computing power due to the proof-of-work algorithm. As described in Section 2.2, the
proof-of-work algorithm works by having all nodes solve a cryptographic puzzle. The only
way to solve this puzzle is by exhaustively searching and testing all possible solutions,
consuming huge amount of electric power. Today (February 2019), Bitcoin miners alone
use about 47.100TWh of electricity per year, enough to power the entire country of Greece
for about 11 months. While, in its peak period (August - November 2018), Bitcoin miners
were using 73.121TWh per year, enough to power Greece for about 17 months [8]. Figure
107 shows the global mining energy consumption during the last 2 years.
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Figure 10: Global mining energy consumption during the last 2 years

7https://digiconomist.net/bitcoin-energy-consumption

E. Kolyvas 19

https://digiconomist.net/bitcoin-energy-consumption


Reduce Blockchain Nodes Storage Requirements by using Distributed Hash Table.

But it doesn’t stop there. Proof-of-work gives more rewards to people with better and more
equipment. The higher your hash rate is, the higher the chance that you’ll get to create the
next block, and receive the mining reward, is. To increase chances even further, miners
have come together in what’s called ”mining pools”. They combine their hashing power
and distribute the reward evenly across everyone in the pool. Figure 118 shows the current
Bitcoin mining pool distribution. So to sum it up: proof-of-work is causing miners to use
massive amounts of energy and it encourages the use of mining pools, which makes the
blockchain more centralized as opposed to decentralized. So, to solve these issues, we
have to find a new consensus algorithm.

Figure 11: Bitcoin mining pools

In 2011 a new technique was proposed, called ”proof-of-stake” (PoS) [16]. The basic idea
is that letting everyone compete against each other with mining is wasteful. So instead
proof-of-stake uses an election process in which one node is randomly chosen to validate
the next block. A small difference in terminology here: PoS has no miners, but instead
has ”validators” and it doesn’t let people mine new blocks but instead ”mint” or ”forge” new
blocks. Validators aren’t chosen completely randomly. To become a validator, a node has
to deposit a certain amount of coins into the network as stake. You can think of this as a
security deposit. The size of the stake determines the chances of a validator to be chosen
to forge the next block. It’s a linear correlation: if someone, for example, holds 1% of the
coins of the network, he will end up forge 1% of the blocks.

If a node is chosen to validate the next block, he’ll check if all the transactions within it
are indeed valid. If everything checks out, the node signs off on the block and adds it to
the blockchain. In case validators approve fraudulent transactions, they will lose a part of

8https://btc.com/stats/pool
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their stake. As long as the stake is higher than what the validator gets from the transaction
fees, we can trust them to correctly do their job. Because if not, they lose more money
than they gain, it’s basically a financial motivator. If a node stops being a validator, his
stake plus all the transaction fees that he got will be released after a certain period of time.
Not straight away because the network still needs to be able to punish you, should they
discover that some of your blocks where fraudulent.

So the differences between PoW and PoS are quite significant. PoS doesn’t let everyone
mine for new blocks and therefore uses considerably less energy. It’s also more decent-
ralized. In PoWwe have these mining pools which now control large portions of the Bitcoin
blockchain. They centralize the mining process and that’s dangerous. As Figure 11 indic-
ates, if the four biggest mining pools would merge together, they would have a majority
stake in the network and could start approving fraudulent transactions.

Another important advantage is that setting up a node for a PoS based blockchain is a
lot less expensive compared to a PoW based one. You don’t need expensive mining
equipment and thus PoS encourages more people to set up a node, making the network
more decentralized and also more secure.

Moreover, PoS offers higher security guarantee against the 51% attack than the PoW.
In PoW, if a single miner or group of miners can obtain 51% of the hasing power, they
can effectively control the blockchain. PoS on the other hand makes this attack very
impractical, depending on the value of a cryptocurrency. If Bitcoin would be converted to
PoS, acquiring 51% of all the coins would set you back a whopping 32.80 billion dollars9.
So the 51% attack is actually less likely to happen with PoS.

The main challenge in a PoS algorithm is how it selects the next validator. It can’t be
completely random because the size of the stake has to be factored in. But at the same
time the stake alone isn’t enough because that will favor rich people, who will get chosen
more frequently, will collect more transaction fees, become even richer, and thus increase
their chances of being chosen as validator even further. There are a number of proposals
to deal with this; so, in fact, there are many ”flavors” of proof of stake.

So, PoS is not just a single algorithm, is a category of consensus algorithms that depend
on a validator’s economic stake in the network. From an algorithmic perspective, there are
two major categories: chain-based and Byzantine Fault Tolerant (BFT). In chain-based
PoS, the algorithm pseudo-randomly selects a validator during each time slot, and assigns
that validator the right to create a single block. In BFT-style PoS, the act of suggesting
the next block and creating the next block are seperated. So validators that suggest the
next block are selected randomly. Then a multi-round voting process takes place. At the
end of the process all (honest and online) validators permanently agree on whether or not
any given block is part of the chain. Unlike chain-based PoS, BFT-style PoS consensus
on a block can come within one block, and does not depend on the length or size of the
chain after it.

91BTC = $3,667.76, Market Cap = $64.31B, 51%×Market Cap = $32.80B, https://markets.bitcoin.com/
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3.2.4 Directed Acyclic Graphs

Directed Acyclic Graphs (DAGs) is an exciting new development of distributed ledger tech-
nology that do not use the data structure of traditional blockchains. BlockDAG protocols
increasing throughput by replacing the underlying chain-structured ledger with DAG struc-
tures. Transactions in the DAG run asynchronously, which means that transactions op-
erate independently and do not conform to a particular process. Forks are acceptable in
these protocols, so a blockDAG distributed ledger can have multiple heads in the same
time. Moreover, there is a algorithm which traverses the DAG and resolves the conflicts
of these forks. In case of a conflict transaction in two or more blocks, the block that the
algorithm visited first is the valid one and the rest of the blocks are invalid. In other words,
topological ordering between the blocks of a DAG, leads to event ordering between the
transactions. A big advantage of DAGs is that its data structure theoretically allows infinite
number of transactions to be processed. On the other hand, the main drawback of DAGs
is that it is hard to be used in a general purpose decentralized platform, like Ethereum,
where total ordering of events matters. Therefore, these protocols are focusing on simpler
applications, like decentralized money e.g. Bitcoin.

3.3 What’s the novelty of this master thesis

In this master thesis we consider the idea of organizing the blockchain peers into a DHT
in order to store the blockchain data. As we discussed in Section 3.1, storage capacity
is the primary limiting factor to maintain an archival node. As blockchains get older, their
size gets larger. Currently, Bitcoin blockchain is over than 190GB. In addition, as long as
some of the adove ideas about scalability put into practice, blockchain size will grow even
faster. The ever-growing size of the blockchain it might be a factor of making the system
more centralized, since too few of the nodes will be able to keep a full replica of the data.

In addition, archival nodes with open ports, have little or no incentives to waste their stor-
age and their bandwidth, in order to keep all the data and serve it to a bootstrapping node.
Besides, archival nodes not only serve bootstrapping nodes, but also they serve historical
full blocks to every other node that has been offline for a while. So, their usefulness is
huge. The more archival nodes there are, the healthier the system is. Thus, it is reason-
able to mitigate their load (especially that we call “cold data”, some historical blocks) by
splitting it into a DHT.

DHT is a structured peer-to-peer network that provides a lookup service by sharing the
data across all participating nodes. Peer-to-peer networks, in particular DHTs, will be
discussed in Chapter 4.
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4. PEER-TO-PEER NETWORKS

4.1 Peer-to-peer Architecture

Peer-to-peer (P2P) computing or networking is a distributed application architecture that
partitions tasks or workloads between peers. Peers make a portion of their resources,
such as processing power, disk storage or network bandwidth, directly available to other
network participants, without the need for central coordination by servers. A peer-to-peer
network is designed around the notion of equal peer nodes simultaneously functioning
as both ”clients” and ”servers” to the other nodes on the network. This model of network
arrangement differs from the client-server model where communication is usually to and
from a central server.

Peer-to-peer networks generally implement some form of virtual overlay network on top of
the physical network topology, where the nodes in the overlay form a subset of the nodes
in the physical network. Data is exchanged indirectly over the underlying TCP/IP network,
but at the application layer peers are able to communicate with each other directly, via the
logical overlay links. Overlays are used for indexing and peer discovery, and make the
P2P system independent from the physical network topology. Based on how the nodes
are linked to each other within the overlay network, and how resources are indexed and
located, we can classify networks as unstructured or structured.

4.1.1 Unstructured Peer-to-peer Networks

Unstructured peer-to-peer networks (Figure 12) do not impose a particular structure on the
overlay network by design, but rather are formed by nodes that randomly form connections
to each other. Because there is no structure globally imposed upon them, unstructured
networks are easy to build and allow for localized optimizations to different regions of
the overlay. Also, because the role of all peers in the network is the same, unstructured
networks are highly robust in the face of high rates of ”churn”-that is, when large numbers
of peers are frequently joining and leaving the network.

However, the primary limitations of unstructured networks also arise from this lack of struc-
ture. In particular, when a peer wants to find a desired piece of data in the network, the
search query must be flooded through the network to find as many peers as possible that
share the data. Flooding causes a very high amount of signaling traffic in the network
and uses more CPU / memory (by requiring every peer to process all search queries).
Furthermore, since there is no correlation between a peer and the content managed by
it, there is no guarantee that flooding will find a peer that has the desired data. Popular
content is likely to be available at several peers and any peer searching for it is likely to
find the same thing. But if a peer is looking for rare data shared by only a few other peers,
then it is highly unlikely that search will be successful.
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4.1.2 Structured Peer-to-peer Networks

In structured peer-to-peer networks (Figure 13) the overlay is organized into a specific
topology, and the protocol ensures that any node can efficiently search the network for a
file / resource, even if the resource is extremely rare. The most common type of structured
P2P networks implement a distributed hash table (DHT), in which a variant of consistent
hashing [10] is used to assign ownership of each file to a particular peer. This enables
peers to search for resources on the network using a hash table: that is, (key, value)
pairs are stored in the DHT, and any participating node can efficiently retrieve the value
associated with a given key.

Figure 12: Unstructured P2P network Figure 13: Structured P2P network

4.2 Distributed Hash Tables

A distributed hash table (DHT) is a class of a decentralized distributed system that provides
a lookup service similar to a hash table: (key, value) pairs are stored in a DHT, and any
participating node can efficiently retrieve the value associated with a given key. Keys
are unique identifiers which map to particular values, which in turn can be anything from
addresses, to documents, to arbitrary data. Responsibility for maintaining the mapping
from keys to values is distributed among the nodes, in such a way that a change in the
set of participants causes a minimal amount of disruption. This allows a DHT to scale to
extremely large numbers of nodes and to handle continual node arrivals, departures, and
failures.

4.2.1 Properties

DHTs characteristically emphasize the following properties:

• Autonomy and decentralization: the nodes collectively form the system without any
central coordination.

• Fault tolerance: the system should be reliable even with nodes continuously joining,
leaving, and failing.
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• Scalability: the system should function efficiently even with thousands or millions of
nodes.

A key technique used to achieve these goals is that any one node needs to coordinate
with only a few other nodes in the system - most commonly, O(log N) of theN participants
- so that only a limited amount of work needs to be done for each change in membership.
DHTs must deal with more traditional distributed systems issues such as load balancing,
data integrity, and performance (in particular, ensuring that operations such as routing
and data storage or retrieval complete quickly).

4.2.2 Structure

The structure of a DHT can be decomposed into several main components. The found-
ation is an abstract keyspace, such as the set of 160-bit strings. A keyspace partitioning
scheme splits ownership of this keyspace among the participating nodes. An overlay net-
work then connects the nodes, allowing them to find the owner of any given key in the
keyspace.

Once these components are in place, a typical use of the DHT for storage and retrieval
might proceed as follows. Suppose the keyspace is the set of 160-bit strings. To in-
dex a file with given filename and data in the DHT, the SHA-1 [14] hash of filename is
generated, producing a 160-bit key k, and a message put(k, data) is sent to any node par-
ticipating in the DHT. The message is forwarded from node to node through the overlay
network until it reaches the single node responsible for key k as specified by the keyspace
partitioning. That node then stores the key and the data. Any other client can then retrieve
the contents of the file by again hashing filename to produce k and asking any DHT node
to find the data associated with k with a message get(k). Themessage will again be routed
through the overlay to the node responsible for k, which will reply with the stored data.

4.3 Chord

Chord [20] is a protocol and algorithm for a peer-to-peer distributed hash table. Like every
DHT, it stores key-value pairs by assigning keys to different nodes; a node will store the
values for all the keys for which it is responsible. Chord specifies how keys are assigned
to nodes, and how a node can discover the value for a given key by first locating the node
responsible for that key.

Nodes and keys are assigned an m-bit identifier using consistent hashing. Consistent
hashing is integral to the robustness and performance of Chord because both keys and
nodes are uniformly distributed in the same identifier space with a negligible possibility of
collision. Thus, it also allows nodes to join and leave the network without disruption.

Using the Chord lookup protocol, nodes and keys are arranged in an identifier circle that
has at most 2m nodes, ranging from 0 to 2m−1. Some of these nodes will map to machines
or keys while others will be empty.
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Each node has a successor and a predecessor. The successor to a node is the next node
in the identifier circle in a clockwise direction. The predecessor is counter-clockwise. If
there is a node for each possible ID, the successor of node 0 is node 1, and the prede-
cessor of node 0 is node 2m−1; however, normally there are ”holes” in the sequence. For
example, the successor of node 48 may be node 61 (nodes from 49 to 60 do not exist); in
this case, the predecessor of node 61 will be node 48.

The concept of successor can be used for keys as well. The successor node of a key
k is the first node whose ID equals to k or follows k in the identifier circle, denoted by
successor(k). Every key is assigned to (stored at) its successor node, so looking up a key
k is to query successor(k).

Since the successor (or predecessor) of a node may disappear from the network (because
of failure or departure), each node records a whole segment of the circle adjacent to it, i.e.,
the r nodes preceding it and the r nodes following it. This list results in a high probability
that a node is able to correctly locate its successor or predecessor, even if the network in
question suffers from a high failure rate.

4.3.1 Query Key

The core usage of the Chord protocol is to query a key from a client, i.e. to find successor(k).
The basic approach is to pass the query to a node’s successor, if it cannot find the key
locally. This will lead to a O(N) query time where N is the number of machines in the ring.

To avoid the linear search, Chord implements a faster search method by requiring each
node to keep a finger table (Figure 14) containing up to m entries, recall that m is the
number of bits in the hash key. The ith entry of node nwill contain successor((n+2i−1) mod
2m. The first entry of finger table is actually the node’s immediate successor. Every time
a node wants to look up a key k, it will pass the query to the closest successor of k in its
finger table (the ”largest” one on the circle whose ID is smaller than k), until a node finds
out the key is stored in its immediate successor (Figure 15). With such a finger table, the
number of nodes that must be contacted to find a successor in an N-node network is O(log
N).

4.3.2 Node Join

Whenever a new node joins, three invariants should be maintained (the first two ensure
correctness and the last one keeps querying fast):

1. Each node’s successor points to its immediate successor correctly.

2. Each key is stored in successor(k).

3. Each node’s finger table should be correct.

To satisfy these invariants, a predecessor field is maintained for each node. The following
tasks should be done for a newly joined node n:
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1. Initialize node n (the predecessor and the finger table).

2. Notify other nodes to update their predecessors and finger tables.

3. The new node takes over its responsible keys from its successor.

The predecessor of n can be easily obtained from the predecessor of successor(n) (in
the previous circle). As for its finger table, there are various initialization methods. The
simplest one is to execute find successor queries for allm entries, resulting in O(m log N)
initialization time.

Figure 14: The ”fingers” of one of the nodes Figure 15: Routing path between nodes A and B
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5. BITCOIN BLOCKCHAIN IN CHORD DHT

Based on what has been said about Bitcoin’s decentralization, we consider the idea of
organizing the Bitcoin peers into a DHT in order to store the Bitcoin data. Such an option is
to enable users with lower-end machines to participate in the Bitcoin network by validating
transactions and, in general, the correctness of the Bitcoin blockchain by themselves,
without having large disk space. This will be achieved as each participating node of the
DHT will store locally, on its disk, only a portion of the total volume of the blockchain data.
A second and even more important advantage of having a blockchain distributed over a
DHT is its contribution to a more decentralized Bitcoin network.

However, a DHT can not ensure that there will be no data loss. Therefore, implementing
a DHT to store the blockchain data is neither intended nor can succeed in replacing full
nodes. As long as Bitcoin exists and people trade through it, there will be incentives to
maintain a full node. This master thesis suggests the creation of a DHT where a part of
current Bitcoin nodes and new ones, will have their conventional machine, contributing to
a network (that of the DHT overlay), based on simple users and in an attempt to preserve
it decentralization of Bitcoin.

The way to maintain Bitcoin’s decentralization will be based on DHT scalability. Given
the continuous and constant increase in blockchain data volume, it is increasingly costly
to send chaindata to a bootstrapper node. Plus, a full node has no immediate benefit or
incentive to serve a bootstrapper. These issues solve a DHT as its scaling is a compens-
ating factor for the increasing volume of data, while it is also beneficial to the bootstrapping
node service.

The participating nodes of the DHT will be members of the Bitcoin network. Specifically,
based on what has been mentioned in Section 2.7 about Bitcoin’s full nodes, DHT’s nodes
will maintain links to other nodes in the network to receive and transmit new transactions
and blocks. At the same time, compliance with the DHT protocol is necessary, e.g. com-
munication with neighboring nodes and answering queries, functions that have additional
resource requirements. It is also important to define the depth in the blockchain that a
block should have to be considered as confirmed and assigned to the DHT. Therefore,
the Bitcoin network will be a network layer on top of the DHT network.

A DHT system has some important operating parameters and implications for the use of
its node resources. Thus, simulations will be carried out and an assessment will be made
as to whether such an implementation is feasible, given the requirements of the Bitcoin
protocol.
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5.1 DHT-Distributed-Blockchain Base Protocol

The protocol specifies how to find the locations of keys, how new nodes join the system,
and how to recover from the failure of existing nodes. This section describes a simplified
version of the protocol that does not handle concurrent joins or failures. However, as we
will see later on, this kind of joins and failures are very unlikely to happen, because the
number of nodes in the Bitcoin network are relative stable through time.

• Consistent Hashing:

At its heart, our DHT provides fast distributed computation of a hash function map-
ping keys to nodes responsible for them. It uses consistent hashing, which has
several good properties. With high probability the hash function balances load (all
nodes receive roughly the same number of keys). Also with high probability, when
an N th node joins (or leaves) the network, only an O(1/N) fraction of the keys are
moved to a different location - this is clearly the minimum necessary to maintain a
balanced load. The consistent hash function assigns each node and key an m-bit
identifier using the base hash function SHA-1.

• Hash Chain:

Like every DHT, our DHT stores key-value pairs by assigning keys to different nodes;
a node will store the values for all the keys for which it is responsible. In our case
keys are blocks’ hash values, while values are blocks’ data.

However, unlike to other kinds of data, blockchain data have a certain property: Each
block contains a reference to the previous block (i.e. the hash value of the previous
block). To set the hash value which needed for the first block to be constructed, we
hash an arbitrary string:

hash(”This is a random string”), data0︸ ︷︷ ︸
block0(genesisblock)

, . . .

Every block after the genesis block, includes the hash value of the previous block:

. . . , hash(blocki−2), datai−1︸ ︷︷ ︸
blocki−1

, hash(blocki−1), datai︸ ︷︷ ︸
blocki

, hash(blocki), datai+1︸ ︷︷ ︸
blocki+1

, . . .

• Block Handling:

Similarly to the Bitcoin network, mined blocks are broadcast in regular interval in
our system.

Although the number of full nodes can fluctuate in the Bitcoin network, our DHT
nodes should be a fixed size, i.e. 2m. Then, we divide the size of the network to this
number. As a result, each DHT node is a set of full nodes. The nodes among the
same set maintain the same data with respect to the DHT.
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Every node maintains a list (stack) in which it stores all the blocks that is heard of.
Every new mined block is pushed to the stack. That is, the blocks within the stack
are in chronological order: the oldest block is at the bottom of the stack, while the
newest block is at the top of the stack.

Although a node saves all the mined blocks in the list, not all blocks can stay in the
list forever. Every node stores some hot data, plus a small portion of the rest of the
blocks (the blocks which is responsible for).

With the term hot data we mean the data that have a demand much higher than
the average. In the case of a blockchain, we already know that such data exists
and is the most recent one. It is a common practice, when a transaction is made,
both by the sender and the recipient to check for its confirmation. This check, for a
lightweight client, is a query to one or more full nodes and concerns the most recent
blocks of the blockchain. Usually, it takes at least 6 confirmations for a transaction to
be consider as permanent. Bitcoin itself has a rule: The miner can not reclaim and
use the mined bitcoins (block reward) until 100 blocks have passed. That is to say,
because it may be some forks, the miner have to wait until 100 blocks have passed
in order to be sure that the block he had mined is part of the main blockchain. So, to
avoid congestion at specific points in the DHT and to enhance that rule, each node
will keep the blocks added to the blockchain within the last 24 hours. In this way, the
majority of the queries will be answered by the recipient of the question, without the
need to pass the query in another node of the DHT. Bitcoin generates an average of
144 blocks per 24 hours (one block every 10 minutes), so each node will hold about
144 MB extra. For the simulations, it will be assumed that 50% of the total queries
refer to blocks created in the last 24 hours, made by lightweight clients.

The blocks that a node is responsible to keep lie into two categories:

1. The genesis block is stored in node 0 by default. Every other block uses some
(m) bits of the hash of the previous block to determine its position in the DHT.
Let’s assume that it uses the last m bits of the hash of the previous block (the
first m bits of the hash is almost always zero). E.g.: In a 256-node-DHT, block
i has a 0x5A suffix in its hash. So, the node number 90 (0x5A) should maintain
the next block (block i+ 1). (primary blocks)

2. Replica blocks (primary blocks of other nodes) that has to be kept due to the
replication policy.

For our replication policy we divide our DHT into k segments (k should be a power
of 2). Each segment is a full copy of the blockchain data. Blocks are the same every
2m/k nodes. Figure 16 shows a 32-node-DHT split in 4 segments. In this case, it’s
like a 32-node-DHT where each node sends all of its primary blocks to its 4th finger.
If one’s 4th finger departs, the node sends its blocks to the next node in the ring (new
successor). If a 4th finger joins, the node sends its blocks to the new successor and
asks from the old successor to delete these blocks. Each node that holds a replica
block can answer a query, although the query does not refer to its primary blocks.

So, every node stores the most recent 144 blocks (hot data), and every older block
of the same color (as the node’s color). Figure 17 shows red’s node block list.
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Figure 16: A 32-node-DHT split in 4 segments
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Figure 17: Red’s node block list
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Figure 18: DHT pointers before and after a node’s departure

• Node Departs:

Our DHT improves the scalability by avoiding the requirement that every node know
about every other node. A DHT node needs only a small amount of “routing” inform-
ation about other nodes. Because this information is distributed, a node resolves the
hash function by communicating with a few other nodes. In our network, each node
maintains information only to 1 + log2(2

m/k) other nodes (less than O(log N)), and
a lookup requires up to log2(2

m/k) messages.

Figure 18 shows node pointers before and after a node departure in 8-node-segment
DHT. On the top (before departure) red block has pointers to orange, yellow, dark
green and next red block (red arrows). While, at the same time, it receives a pointer
from pink, dark blue, dark green and previous red block. On the bottom (after de-
parture), all pointers that were showing to red node, now show to the orange node
(red’s primary successor). Moreover, the leftmost red node fills up with its data the
new successor. The orange node holds both orange and red blocks.

• Node Joins:

In a dynamic network, nodes can join at any time. When a node n joins the net-
work, it must initialize its predecessor and its fingers, and download all the blocks
that where mined as long as it was missing.

For the initialization process, node n learns its predecessor (p) by asking a random
node to look it up. Then, node n asks p for a copy of its complete finger table. n use
the contents of that table to find the correct values for its own table. n’s ith finger
will be the immediate successor of p’s ith finger. That leads to a constant execution
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time, since messages to the fingers of p can be done in parallel. For example, let’s
assume that in a 32-node-segment DHT, n = 6. The finger table of p (node 5), looks
like:

Table 1: Finger table of the predecessor of a new joining node

node5.f inger[i] node
node5.f inger[0] 5 + 20 = �6 7 (node 6 missing)
node5.f inger[1] 5 + 21 = 7
node5.f inger[2] 5 + 22 = 9
node5.f inger[3] 5 + 23 = 13
node5.f inger[4] 5 + 24 = 21
node5.f inger[5] 5 + 25 = 37

So the finger table of node 6 will be like:

Table 2: Finger table of the new joining node

node6.finger[i] node
node6.finger[0] node5.finger[0] = 7
node6.finger[1] node5.finger[1].finger[0] = 7 + 20 = 8
node6.finger[2] node5.finger[2].finger[0] = 9 + 20 = 10
node6.finger[3] node5.finger[3].finger[0] = 13 + 20 = 14
node6.finger[4] node5.finger[4].finger[0] = 21 + 20 = 22
node6.finger[5] node5.finger[5].finger[0] = 37 + 20 = 38

For the downloading process, node n investigates the suffix of the last block it was
able to download. In that way, the node knows exactly which other node stores the
first missing block, so it downloads it from that node. Node n asks from the other
node the first block that is younger than the block it already possesses. The other
node uses binary search (O(log n)) on its (chronological) ordered list of blocks and
sends the required block. Node n repeats this procedure until it reaches the current
height. At the same time, it verifies every block, and keeps only these blocks that is
responsible for.

5.2 Simulation Parameters

Having mentioned possible safety hazards of a DHT, an appropriate selection of paramet-
ers should be made, to ensure that the system to be studied works smoothly. In addition,
involving a machine in a DHT entails additional functions and resources, e.g. bandwidth.

The study will be done using a DHT Chord simulator written in Java. Also, the following
considerations will be made for the Bitcoin network, based on actual measurements of a
full node:
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• Considering the top 10 countries with their respective number of reachable nodes10,
and the average Internet connection speed per country in Q1 201711:

Table 3: Top 10 countries with their respective number of reachable nodes

Rank Country Nodes Average connection speed
1 United States 24.88 % 18.7 Mb/s
2 Germany 19.15 % 15.3 Mb/s
3 France 6.85 % 10.8 Mb/s
4 Netherlands 5.14 % 17.4 Mb/s
5 Canada 3.81 % 16.2 Mb/s
6 China 3.75 % 7.6 Mb/s
7 United Kingdom 3.46 % 16.9 Mb/s
8 Singapore 3.09 % 20.3 Mb/s
9 Russian Federation 2.80 % 11.8 Mb/s
10 Japan 2.37 % 20.2 Mb/s
1-10 Top 10 countries 75.30 % 16.1 Mb/s

Bitcoin nodes average Internet connection speed is that of 16.1 Mb/s12.

• Bitcoin network latency (Figure 1913):
lower average = 6 msec, median average = 126 msec, upper average = 308 sec

• Delay until an unexpected departure is confirmed: Bitcoin uses a ping message
to check that the connection is still online. Figure 2014 shows the number of ping
messages per second received by a full node the last 30 days. The minimum value
(the worst case scenario) is 0.81 messages per second. Assuming that at least
3 missing replies needed for a connection to be considered as closed (so at least
3.70 sec), we set this parameter to 5 sec. (In the simulations, all departures will be
considered as unexpected)

• Incoming bandwidth usage (Figure 2115): avg = 95 Kb/s, max = 192 Kb/s

• Outgoing bandwidth usage (Figure 21): avg = 1.6 Mb/s, max = 21 Mb/s

• Average time to validate (check and accept) a block (Figure 2216):
CheckBlock() + AcceptBlock() = 33 msec + 13 msec = 46 msec

10https://bitnodes.earn.com/
11https://en.wikipedia.org/wiki/List_of_countries_by_Internet_connection_speeds
12 24.88×18.7+19.15×15.3+6.85×10.8+5.14×17.4+3.81×16.2+3.75×7.6+3.46×16.9+3.09×20.3+2.80×11.8+2.37×20.2

24.88+19.15+6.85+5.14+3.81+3.75+3.46+3.09+2.80+2.37 = 16.1

13https://statoshi.info/dashboard/db/peers
14https://statoshi.info/dashboard/db/p2p-messages
15https://statoshi.info/dashboard/db/bandwidth-usage
16https://statoshi.info/dashboard/db/function-timings
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Figure 19: Bitcoin network latency the last 30 days
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Figure 20: Ping messages per second received by a full node the last 30 days
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Figure 21: Incoming & Outgoing bandwidth usage per second the last 30 days
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Figure 22: Average time to check and accept a block the last 30 days
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Depending on the calculations that have been made on the number of Bitcoin nodes in
Section 2.7, it is assumed that the number of Bitcoin full nodes is 144,375, of which 10,500
are listening full nodes. The 133,875 no-listening full nodes can be either archival nodes
or not. However, given the cost of maintaining a full copy of Bitcoin blockchain, while
keeping your ports closed hence not serving the blockchain to other peers, it is obvious
that most of these nodes should be non-archival nodes.

Non-archival full nodes are the ones who will be most motivated to participate in DHT, as
most of them will fit into the profile that has been described about DHT participants: users
with low-capacity machines who want to maintain Bitcoin’s decentralization. For the DHT
system simulations to be made, DHT nodes will be considered as the set of the full nodes
(archival or not).

In our simulations we set the number of the full nodes to 216 and the number of the DHT
nodes to 28. So, if we divide the size of the network (216) with the size of the DHT (28),
each DHT node is a set of 28 full nodes. The nodes among the same set maintain the
same data with respect to the DHT. Moreover, our DHT is divided into 8 segments, and
every segment is a full copy of the blockchain data. This means that blocks are the same
every 28/8 = 32 nodes.

The use of bandwidth for uploading in Bitcoin protocol results from sending data to syn-
chronized network nodes, bootstrapping new nodes and serving lightweight clients. This
service is currently offered by the listening full nodes. An inherent part of the DHT func-
tionality is the response to queries about its data, so DHT nodes must also take part
of the upload service. In the simulations, DHT nodes will take over all the uploads that
Bitcoin is supposed to serve, and it will be assumed that each uploading query corres-
ponds to the sending of a block, that is 1 MB. We calculate the query rate as follows:
(Uploading bandwidth (bytes/sec) × number of nodes)/(bytes per query), so there are up
to (1.6/8)(MB/sec)×216

1(MB/query)
= 0.2× 216qps.

In bandwidth usage will also be included uploading / downloading due to DHT protocol,
which is primarily a copy data transfer as a result of node departure. To define the aver-
age rate of arrivals or departures per day, we average the standard deviation of the daily
number of nodes from January 15, 2019 to February 15, 2019. We set this number at the
+0.5% of the population of the nodes per day.

Currently, Bitcoin blockchain size is over than 190GB and block height is over than 563K
blocks. This means, if blockchain size was evenly splitted between all blocks, each block
would be around 354KB on average. However, not every block has the same size. There
are some parameters that effect the size of each block e.g. the number of transactions
in each block and the number of inputs and outputs in each transaction. In the early
days of Bitcoin, blocks had too few transactions (~10 on average the first 3 years), while
now blocks have much more (~1800 on average the last 3 years). In the simulations, we
set every block to 1MB and block height up to 563344 blocks. So, a single copy of the
generated blockchain is over than 550GB. This means, in the end of the simulations, if
blocks are evenly splitted among the nodes of the DHT, each node will have: 2200 blocks
as its primary blocks, 144 blocks as hot data, and 7 × 2200 = 15400 blocks as replicas.

In order for the blocks to be evenly splitted, we need to use consistent hashing. So we
use the SHA-1 hash function to generate the hash values of the blocks.
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Table 4 summarizes the simulation parameters:

Table 4: Simulation Parameters

Parameter Value
Internet speed 16.1 Mb/s
Network latency 126 msec

Delay until an unexpected departure is confirmed 5 sec
Incoming bandwidth usage 95 Kb/s
Outgoing bandwidth usage 1.6 Mb/s
Time to validate a block 46 msec

Query rate 0.2× 216 qps
Arrivals/Departures per day +0.5% of the population

# full nodes 216

# DHT nodes 28

Replication factor 8
Block size 1 MB
Block height 563344 blocks
Block interval 10 min
Hot data 144 latest blocks

Queries @ Hot data 50%
Hash function SHA− 1
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5.3 Simulations

It is worthwhile to study the operation of the DHT at levels of mobility and query service
well above the average, as the behavior of both peer-to-peer nodes and query users is
unpredictable and may fluctuate considerably. The purpose of these simulations is to
observe and evaluate metrics such as capacity savings per node compared to the amount
of data that a full node stores today, load balance, query latency, bandwidth usage. To
achieve this, we use the Markov Chain Monte Carlo (MCMC) methodology. Each node
joins or leaves the network under a certain probability. This probability depends only upon
the present state of the system, not on the sequence of events that preceded it (Markov
property). As to Monte Carlo method, we run our program 100 times and we average the
results.

• Capacity Savings:

Figure 23 shows the gains in capacity that a DHT node has, as a percentage of
the volume of data that a full node stores today.
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Figure 23: Capacity savings per node

The graph shows a sharp escalation in the capacity savings. In the beginning, the
number nodes is less than the replication factor, so each node have to maintain the
whole blockchain. As nodes joining our system, capacity saving per node increase,
up until there is at least one node at each DHT position. Increasing the number of
nodes even further, does not result in further scaling with respect to the capacity
savings. However, as we will see later on, it enhances security because the system
becomes fault-tolerant, meaning that it can continue to operate even if a component
of the network fails. As demonstrated by the graph, the average case of the capacity
savings, is very close to the optimal. As for the curve, it is explained by taking into
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account that the data volume of a DHT blockchain node occurs as the sum of:

(chaindata−hot data)×8
28

+ UTXO-set+ hot data

where chaindata is the size of the blockchain, 8 is the replication factor, UTXO-
set is the size of the unspent transaction outputs, and hot data is the size of blocks
deposited in the blockchain up to 24 hours before.

Consequently, there is a complete scaling in the blockchain volume. Each node,
stores its portion of the blockchain data, plus a fixed volume of data, that of the
UTXO-set and the hot data. UTXO-set size is almost negligible. UTXO-set depends
on the number of active Bitcoin addresses in the network and the number of bitcoins
in circulation. Hot data volume is 100% stable under a certain assumption. It can
only change by changing the block size.

• Load Balance / Congestion:

Figure 24 shows how the blocks are distributed among the nodes in each segment.
The distribution of the blocks is the same in every segment (there is a replica every
32 nodes). As demonstrated by the graph, the average number of blocks per node,
is very close to the optimal (that of a perfect split between the nodes). Hence, there
is a (almost) perfect load balance between the nodes of the DHT. In addition, the
congestion is minimal beacause each node that holds a block (primary or replica)
can answer a query.
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Figure 24: Blocks per node

E. Kolyvas 40



Reduce Blockchain Nodes Storage Requirements by using Distributed Hash Table.

• Data Losses:

Figure 25 shows the minimum departure rate that has to be achieved in order to
have data loss. The minimum departure rate is bounded by the average Internet
speed of the network and the amount of data that has to be transferred at a given
time. We assume that the Internet speed is constant throughout the years and its
value equals to the current one, 16.1 Mb/s.

As demonstrated by the graph, data losses are in inverse proportion to the number of
blocks. The more blocks a node has, the bigger amount of data has to be transferred
to its successor in order to keep the same replication factor on the node’s departure.
The bigger amount of data has to be transferred, the slower it is for the transfer to
be finished. In any case, the rate of data transfer between two given nodes in the
network can’t overtake the average Internet speed. In the current state of the system
(2200 primary blocks per node), it must depart at least the 30% of the nodes in a
day in order to have data loss. By the way, as it has been mentioned in Section 5.2,
the number of the full nodes increasing (not decreasing) through time.
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Figure 25: Minimum departure rate for data loss
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• Query Latency:

Figure 26 shows the average query latency under the average query rate, in two
cases: 32 nodes per segment and 256 nodes per segment. We measure the delays
of routing the queries into DHT ring until the right successor to be found. Extra delays
due to node failures are not taken into account.
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Figure 26: Query latency

In the simulations, we examined the query latency for various distributions of queries
between the hot and the cold data. Recall that with the term ”hot data” we refer to the
blocks that were created in the last 24 hours. As each node keeps this information
locally stored, the corresponding queries are served without the need of forwarding
and routing them within the DHT.

32-node-case delays are smaller than 256-node-case delays. This is due to the fact
that each node that holds a replica block can answer a query, although the query
does not refer to its primary blocks. So, the smaller the segment is, the more blocks a
node has. The more blocks a node has, the less likely is for a query to be answered
and make another hop. In both cases, the average delay of a query is in the few
hundreds of msec and all the samples are so close to the average value. We expect
a greater spread of the samples as the segment grows. In the 32-node-case, the
maximum number of hops that a query has to do until to be answered is 5. While in
the 256-node-case, is 8. Both bounds seem to be low enough in order for the spread
of the samples to be significant.
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• Bandwidth Usage:

A very important factor is the bandwidth required by a node to participate in the sys-
tem under study. The total bandwidth used by a node is the result of sending and
receiving data for both the Bitcoin and the DHT protocol. In Figure 27, the bandwidth
for answering queries (on behalf of the Bitcoin protocol) is not considered. We only
measure the bandwidth usage on behalf of the DHT protocol. For instance, data that
have to be replicated due to nodes’ departure, rearranging keys between the nodes,
etc.
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Figure 27: Bandwidth usage per node on behalf of the DHT protocol

As we see, the bandwidth required to keep copies on behalf of the DHT protocol is
relative small compared to the average Internet connection speed in Bitcoin network.
In fact, it is relatively small even compared to the bandwidth used by a current Bitcoin
full node. The average bandwidth for answering queries at Bitcoin network is cur-
rently 1.6 Mb/s and the maximum is up to 21 Mb/s. The average Internet connection
speed is about 16.1 Mb/s.

Moreover, since the number of the participating full nodes in the network can not
be predicted, we use seven different network sizes so we can get a picture of both
small and large networks. The graph shows that, although the amount of chain data
remains the same in all cases, by increasing the number of nodes in the network,
we have less amount of data needed to be transferred due to the DHT protocol.
This means that the increase in the number of nodes in the network, it enhances
security since each DHT node is replicated to multiple full nodes. That makes the
system even more fault-tolerant, meaning that it can continue to operate with higher
probability even if a component of the network fails.
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5.4 Evaluation of the DHT Blockchain

Measurements made on critical metrics that determine the function of a participating node
in a DHT, indicate that such an application could work efficiently. This means that the
user of a common machine, to which this proposal refers to, would be able to participate
in a ”decentralized full node” without high resource requirements. In particular, making
as realistic assumptions as possible based on a current Bitcoin full node and the Bitcoin
network, the following conclusions are drawn:

• A significant percentage of capacity savings per node appears even with a small
number of participating nodes in our DHT. The capacity savings can easily exceed
95% of the volume of data that a full node stores today.

• Keys (blocks) are evenly distributed among the participating nodes, because of the
consistent hashing. Hence, there is an almost perfect load balance between the
nodes of the DHT.

• There is no substantial risk of data loss from the DHT, if the replication factor is se-
lected appropriately and the necessary security measures against malicious nodes
are taken. In addition, replication helps with congestion, beacause each node that
holds a block (primary or replica) can answer a query.

• The query latency in the system is relatively low and predictable. The maximum
number of hops that a query can make until to be served is too low, due to DHT’s
amazing scalability.

• The resulting bandwidth usage per node, as overhead due to DHT, is relatively low
and declines as the number of the participating nodes increases. More full nodes
per DHT node means that the DHT node becomes more robust, so it is less likely to
fail.

• By imposing storing blocks created in the last 24 hours, in every DHT node, no
congestion is observed. Meaning that nodes are not disproportionately burdensome,
and the system can provide high data availability.
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6. CONCLUSION

6.1 Concluding Remarks

This master thesis has extensively referred to the blockchain, analyzing its technology,
referring to its escalation problem and the main solutions proposed so far. In addition, a
new proposal was introduced to store the blockchain in a DHT, which aims to reduce the
amount of data stored by the nodes of a blockchain network. This suggestion was eval-
uated based on simulations that were made using a Java-developed tool that involves
storing the Bitcoin blockchain in a Chord DHT. The results show that such an implement-
ation is possible, as critical metrics of the nodes of such a system, such as bandwidth and
congestion, range in normal levels and escalate by increasing nodes. In fact, according
to the study, it is possible to allocate the blockchain into a DHT with significant levels of
capacity savings, of 98%.

6.2 Future Work

Regarding future work that can evolve our system, we propose the following:

• Properly evaluate the system’s scalability using a cluster of nodes, namely the cre-
ation of a DHT Chord. Thus, to be possible to study the scaling achieved for a
variable number of nodes and track replica losses of the DHT in real sizes.

• Investigate the ability to combine the logic the ”decentralized full node”, with other
scaling solutions like sharding. Can we organize shards of a blockchain in a DHT
manner in order to create a global history?
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