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Eicoaywy"

‘Evoc moduli functor F' and pia xatnyopla C — Sets elvon évac cuvaptntic and
o xornyopio (schemes, sheaves, Hop@LOUMY PHETHED TOUE, AVATUPAG TACEWY) O TNV
xatnyoplol 1wV cLVOAWY, WoTe o F' va otéhvel owxoyéveleg avtixelévwy tng C
méve amd pla Bdorn B oe éva ototyelo Tng xAdong LloodUVOidG TWY AVTIXEWEVLY
navew and to B. ‘Eva moduli npéBinua Aéyeton fine 6tav o poduil cuvogtntic
elvon representable, dnhadr 6tav undpyel éva scheme X xou €voc LGOUOPPIOUOS
ouvapTNTOY hx = F. ‘Onov o hx elval 0 cuvapTNTAC TOU GTEAVEL TO AVTIXE(UEVO
T oto obvoho Hom(T, X), twv poppiopcdy T — X tne xotnyoploac C xou tnv
anewoévion f: Ty — Ty oty anewdvion

hx(T2) Sho+rhy =hyo f € hx(Tl)

HECEL TOL BlayEAUUATOS

T1L>X

| A

T

H Omopén evéoc tétolou loogop@lopol, onuaivel 6Tl yio omoladnrote aviixelueva
T;,Tj xon ouvapthoelg fi; : T; — T, undpyel uio ouyBaty ooyévela loouop@L-
oUWV ¢; TETOL OO TE TO oxdAoudo BLdypopua vo petatideton

hx (Tj) —2> B(T;)

hX(fi,j)\L \LF(fi,j)

hx(T;) =" F(T))

‘Eva ond to xhaooixd moduli npoBiiuarta eivon to moduli npdBinua twy xoumuioy
dedouévou yévouc g. Autdg o moduli cuvoaptntric anewxovilel xdde owoyévela
OYETHWY XoUTVAGY X — T ndve and éva ocneue 1, oty xAdon loouopplag Toug,
6mou dlUo owoyéveleg X, Xy elvan loduoppeg dTay LUTHPYEL EVOS LGOUOPPIOUOS @
TETOLOC (G TE TO TOPAXATL DLdypouuo var petatideton

X14>X2

N



X - CONTENTS

lewpeteind, ol xoundieg mdvew and to Speck, émou 1o k elvon ohyeBed xheiotd
owud, avTioTolyoly ot onueia Tou X, agol 1 anewdvion X — Speck avtioTouyel
oe otoelo tou cuvéhou hx(Speck) = Speck, X ), dnhadh oe évo YEWPETEIXS
onuelo touv X. Auvoctuydg, N UToEEN QUTOUOPPLOUMY XAUTUAGY, eumodilel Tov
MOBUAL cuvopTnTn and to va elvon representable. ' mopdderypo av C' elvon pio
ohyeBpuer) xoTOAN UE XATOOV U1 TETPWHEVO QUTOMOPPLOUG ¢, TOTE €YOUUE TO
axéhouto Sudypappa

c—* ¢

L

Speck il Speck

H onoudodtntor Tou mapandve mapadelyuatog €yxeiton 0To OTL 1) anewxoévion id :
Speck — Speck 8ev meplypd@el TNV OMELXOVIOT TV OXOYEVEWWY. ()¢ éva axdua
napdderypo Yo del€ouue 6Tt 0 moduli cuVAETNTAC TWY EARELTTIXGY XAUTUAGY deV
elvon representable. Muo elheimtin xopmOAn néve omd to C etvan pior Aefor mpofo-
Aol xaunOAn E, poll pe éva otadeponomuévo onuceio e € E. Xenolwomoldvtog 1o
Oepenpa Riemann-Roch oe cuvbuacud ye v Yewpla dlagdppuone twv te0od-
pwv onuelwy dinhddwone tne dinhfc emxdhudne E — P unopolpe vo delfoupe
OTL xdde eMhetmTier] xounUAY umopel va tepLypagel and To onuela undeviouol Tou
OUOYEVOUE TOAUWVIUOU

Y2Z - X(X — Z2)(X — \Z),

e autd 1o povtého o xhewoTé onueio e Exel TpoBohxéc ouvtetaypéveg e = [0 :
1:0], xu A € A —{0,1}. To norudvupo awté opllet ot owxoyévelo

E— A" —{0,1},

Téve omb TV TPUTNEVN apxd eudeta, cuvende To A —{0, 1} uropel var Yewpndel
W¢ YWPOS TAPAUETEWY Yo TNV oxoyévela. H avamapdotaom wa xhdong ioouopplag
wc {vo Bev elvon govadixy, umdpyetl yio dpdom TG CUUUETEIXAC ouddac S3 oTo
A —{0, 1} 7 onola napdryeton amd Toug autopop@lopole A — 1/X, A+ 1/(1—N\).
Av 9€houye vo TopopeTENOOVUE ENNELTTIXES XAUUTUAES Ywpic Vo xdmota TpoBohixt
enpiTeEVON TEémeL vo Vewpriooupe to Tnhixo Al — {0,1} npoc tnv dpdomn auth
e S3. O ydpog mov VYo xatehhEoupe elvan 0 SaxTOAOG TwV avohholwTwy Tou
C[AJx(x—1) mou ebvou n j-eudela, ue

jZQS(V —A+1)3
A2(A—1)2

Trdeyer wot avtiotorylor UETaED TV XAACEWY IGOHOPPLEHOV EANELTTIXDY XOUTUADY
Téve omd o C xon v pryadwdy apdpay j € C. Qotéoo 1 agixd eudeio Al
dev amotehel éva fine moduli ympo yia Tic eMetntinég xoumihes. Ipdypatt, éotw
HLot OO YEVEL EMELTTIXGOY XopTUAGY & oplopévn Téve and to Al — {0}, n onola
dtveton and v egicwon

Y?Z = X% —tZ°

TN xdde ¢ dheg ot iveg €xouv otadepr] j-avarholwtn (on pe to 0. 'Eotw 6t 10
Al avarapiotd Tic EANETIXES XOUTOAES, TOTE 1) oAV ooYEveLr Vo Tpénet

, , , 1 1 ,
vo. avtiotolyel otov otaldepd poppiopd (A {0}) — Aj. Opoc n elentind
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xoumOAn Eq 1 Y2Z = X3 — Z3 éye enlong j-avadholotn 0. Tuvende n owxoyévela
Er Vo elvan tetpupévn xau {om pe Ep x (Al —{0}). Qotéo0 auté dev eivon ahndéc,
Téve oné To function field C(t) oL owxoyévetee & xou (A —{0}) yivovtaw 1obpoppee
Téve and TNy enéxtaon C(t1/9).

Trdpyouv BLdpopes TEYVIXEC TOU MO ETUTREMOUY VO XATUC THOOUUE EVOL LODUAL
TpoBAnuo representable, 6mw¢ Yiol TUPAdELYUO 1) ELOAYWYY) TN EVVOLIC TWV oAYE-
Bewwv yhewv xou twv stacks, 1 adidlovtag Ty évvola Tng loopop@luc. Av pag
EMITEEMETOL WAl UTEPATAOUG TEUOY), UTOPOUUE VO TOUKUE TG €Vag TPOTOC VoL Opl-
otolv Ta stacks evog moduli ydeou xaumuiGy elvon va opicoupe TNV xatnyopla
pe avtxelpeva T proper smooth owoyéveilee X — S, twv onolwvy ot tveg elvan
CUVEXTIXEC HOUTIVUAES DEBOUEVOL YEVOUC.

H Yewpio napapoppdoewy (Deformation theory) omé v dhkn npoépyetan o-
16 Vv Sovielo Twv Kodaira xou Spencer ndve oe pryodixéc tolhanhotnteg. O
Grothendieck petégepe v dewplo avth oty YAdooa twv Schemes. Mropolye
vou ToVpe 6TL 1) Yewpla mapapoppoeny elvar 1 dSlayelplon evéc moduli  mpofBAir-
HOTOC TOTUXE, OTIOU UEAETOUVTOL OLXOYEVELEC Tvw On6 TO Qoo Touxedv Artin
doxtullowy. Evag Saxtdiiog tou Artin elvon €€ oployol évag doaxtOMog 6Tov o-
nolo xdde @divovoa axoloudio WBewddv tou teppatilel Votepa and MENEPACUEVL
Bhpoto. ‘Eva and to mo anhd napadelypata (tou dev eivon odpa) eivar o Soaxtdiog
kle]/(€%), émou o € amotelel éva amelpoostéd Paduol 2 pe v évvola 6TL €2 = 0.
311 dnuoaoievon tou o Schlessinger pog mopeyel TNV YAOOOA xou To EQYUAEld Vot
YELPLOTOVUE TA AMELPOCTA GOV CTOLYElD TOU ‘EQANTOUEVOU YWEOL™ xat AUVEL TNV
avtioTouyn cuvAdn Swpopiny e€lowon PEow TUTIXWY SUVIUOGELPWY BUXTUALLY.

Yuyxexpiéva oto Kegpdhowo 1 eiodyouye tig xatnyoplec mou Yo yenoiwonolr
coule, Tov Zariski eQantouevo yhpo xaL Twe Vo ToV 0plCOUUE YLl CUVHPTNTES Kol
o Bapopd Kéhler. Yto Kegdhowo 2 opiCoupe v évvour tne small extension
(wxphc emextdong), TNy évvola smoothness xon T€A0¢ T0 XeVTEIX6 AMOTENECUA, TO
Octpnua tou Schlessinger. Yto teheutofo xe@dhalo omodelxvOoUPE UE TNV YT
o1 tou Oewpruatog tou Schlessinger 6t o Picard cuvaptntic xan o cuvaptnTig
napadppraong elval pro-representable.

Adiva Mdptiog 2019.






Introduction

A moduli functor F' from a category C — Sets is a functor from a category
(schemes, sheaves,morphisms between them, representations) to the category of
sets, so that F' it sends families of objects of C over a base B to the element
of equivalence class of objects over B. A moduli problem is called fine when
the moduli functor is representable, that is there is a scheme X and an isomor-
phism of functors hx = F'. The functor hyx is the functor sending T to the set
Hom(T, X), of morphisms of schemes T' — X, and the map f : T3 — T5 to the
map
hx(Tg) Shor—hy=hso f S hx(Tl)

by the diagram
Ty hx

| A

T

The existence of an isomorphism hx = F, means that for every objects T;, T}
and functions f;; : T; — T}, there is a compatible set of isomorphisms ¢; so
that the following diagram is commutative

hx () —2 F(Ty)

hX(fi,j)l \LF(fi.,j)

b
hx(T;) —— F(T;)
One of the classical moduli problems is the moduli problem of curves of genus
g. This moduli functor to any family of relative curves X — T over a scheme
T assigns the isomorphy class of it, where two families X}, X> are isomorphic
when there is an isomorphism ¢ making the following diagram commutative:

Geometrically curves over Speck, where k is an algebraically closed field k,
correspond to points of X, since the structure map X — Speck corresponds to
an element in the set hx (Speck) = Hom(Speck, X) i.e. a geometric point of X.
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Unfortunately, the existence of automorphisms of curves, prevents the mod-
uli functor to be representable. For example if C' is an algebraic curve which
admits a non-trivial automorphism ¢, then we have the diagram

¢

¢ ——C

L

Speck il Speck

The importance of the above example is that the map id : Speck — Speck does
not describe the map of the families.

As an other example we will show that the moduli space of elliptic curves
is not representable. An elliptic curve over C is a smooth projective curve FE,
together with a selected closed point e € E. As an application of Riemann-Roch
theorem we can show that any elliptic curve can be described as the zero locus
of the homogeneous polynomial

Y27 - X(X - Z2)(X — \Z),

using also the theory of configuration of the four ramification points of the two
cover £ — P!, In this model the closed point e has projective coordinates
e=[0:1:0],and A € A! —{0,1}. This polynomial defines a family

£ — A" —{0,1},

over the punctured affine line, so that A' —{0, 1} can be thought as a parameter
space for the family. The representation of an isomorphy class as a fiber is not
unique, there is an action of the symmetric group S3 on A! — {0,1} generated
by the automorphisms A — 1/A; A — 1/(1 — A). If we want to parametrize
abstract elliptic curves without a projective embedding we have to consider the
quotient of A — {0,1} modulo this S3 action. The resulting space is the ring
of invariants of C[A]y(x—1) which is the j-line, where

(A2 = X+1)3

C 28
J N2\ — 1)

There is a bijection between isomorphism classes of elliptic curves over C and
complex numbers j € C. However the affine line A' is not a fine moduli space
for elliptic curves.

Indeed, consider the family of elliptic curves &; defined over the affine line
A' — {0} given by equation

Y2Z = X3 —tZ3.

For all ¢ all fibers have constant j-invariant equal to 0. If A! was a scheme
representing elliptic curves, then the above given family should correspond to
the constant morphism (A'—{0}) — A}. The elliptic curve Ey : Y?Z = X*— 73
also has j-invariant 0. So the family & should be trivial and equal to the fiber
product Epx (A —{0}). However this is not true, over the function field C(t) the
families & and (A! — {0}) become isomorphic over the field extension C(t/6).

There are various techniques which allows us to represent moduli problems,
for instance introducing algebraic spaces or stacks, or by altering the notion of
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equivalence in order to get rid of automorphisms of objects (introducing level
structure) etc. If we are allowed an oversimplification we can say that one of the
ways to define the stack of the moduli spaces of curves is to define a category
whose objects are proper smooth families X — S, whose fibers are connected
curves of given genus.

Deformation theory on the other hand originates from the work of Kodaira
and Spencer on complex analytic manifolds. This work was formalized and
translated into the language of schemes by Grothendieck. We can say that
deformation theory is a local treatment of the moduli functor problem where
families are considered only over spectra of local Artin rings. An Artin ring is
by definition a ring where decreasing sequences of ideals are terminating after
a finite number of steps. One of the easiest examples (which is not a field)
is the ring of dual numbers kle]/(€?). The quantity € in the above example
is an infinitesimal of order 2 in the sense that €2 = 0. The seminal article of
Schlessinger provides us with the language and tools to treat infinitesimals as
elements in the “tangent vector space” and also solve the corresponding ordinary
differential equations in terms of formal powerseries rings.

More precisely in Chapter 1 we introduce the categories that we will work,
the Zariksi tangent space and how to define it for a functor and the Kéhler dif-
ferentials. In Chapter 2 we define the small extension, the notion of smoothness,
and finally the main result, Schlessinger’s Theorem. In the last Chapter we use
Schlessinger’s Theorem to prove that Picard functor and deformation functor
are pro-representable.

Athens March 2019.






Chapter 1

Basic Definitions

1.1 Coefficient-A-algebras

Definition 1.1.1. A Coefficient-ring is a complete, local, Noetherian ring A,
with residue field k = A/my

Definition 1.1.2. A Coefficient-ring homomorphism is a continuous ho-
momorphism ¢ : A’ — A, such that 9~ (ma) = mar and A/my = A’ /ma (2 k),
where A, A" are Coefficient-rings.
Definition 1.1.3. Fiz A a coefficient-ring with residue field k of characteristic
p.
(i) Denote by Ca (A) the category whose objects are coefficient-A-algebras which
are endowed with a coefficient-A-algebra homomorphism to A.

(i4) Denote by Ca(A) the full subcategory of Co(A) whose objects are artinian
coefficient-A-algebras.

(#i1) An A-augmentation is a coefficient-A-algebra homomorphism to A.
Remark 1.1.4. If A is the residue field k we write Cy and Ca instead of Ca(A)
and Cp(A) respectively.
The reason for the “”” notation is that any coefficient-ring A may be written
as the projective limit of Artinian rings.

A = proj.lim.A/(my)".

We call a functor F' from and arbitrary category to sets, representable if
there is an object X such that F is isomorphic to the functor Y — Hom(X,Y).
If we knew that a given functor F' on the larger category Cy is representable,
the representing coefficient-A-algebra, call it R is completely determined by the
restriction of the functor to the smaller category Cp. This is true because,

Hom(R, A) = proj.lim. Hom(R, A/(m4)").
Definition 1.1.5. We call a functor F continuous if:
F(A) = projlim. F(A/(m)"),
for all coefficient-A-algebras A.
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We can see now that a continuous functor is determined by its restriction to

Ca.

Definition 1.1.6. Schiessinger call a functor on the category Cy pro-representable,
when is represented by objects of the larger category Cy.

But we will discuss about representability later.

Definition 1.1.7. Let A, B,C be rings and let « : A — C and 8 : B — C
be ring maps. The fiber product is a ring denoted by A x¢ B along with two
morphisms w4 : AXc B — A and ng : A X¢c B — B, where aws = Bnpg, such
that given any ring W with morphisms to fa : W — A and fp: W — B, with
afa = Bfp, these morphisms factor through some unique W — A x¢o B.

This is the categorical definition, in the case of rings, the fiber product is
the subset of A x B

Axcb={(a,b) € Ax B|a(a)=p5()}.

One of the reasons that we will use the “smaller” category Cy, is that unlike
the category éA, fiber products always exists in Cy, i.e. for A, A; and As in Cp
and morphisms A; — A and As — A in Cy, the fiber product Ay X 4 As lies in
Ca. Indeed, the ring Ay x 4 Ao is A-algebra via the map A — A1 x4 As induced
by the maps A — A; and A — A;. It is a local ring with maximal ideal

ma, X, Mo, = ker(A1 XA A2 — k) (1.1)

Note that, since the residue field of A is k, the map (1.1) is surjective. Finally,
both A; and As are Artin rings and so have finite length as A-modules. Hence
the ring A; X As has finite length as A-module and this hold for the A-submodule
A1 XA AQ, i.e. A1 XA A2 is Artin ring.

Example 1.1.8. If A = k[[z,y]| and B = k with morphisms to C = k[[z]], then
the fiber product A X B doesn’t exist in Cy.

AXxc B —— K[[z,y]]

| I

Indeed we can check that the fiber product is given by the subring k®yk[[z, y]] in
k[[z,y]], the mazimal ideal is yk[[z,y]] and the Zariski tangent space (Definition
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1.2.2) identified with the k-vector space k[[x]] which is infinite dimensional, i.e.
the A xc B is not Noetherian.

Remark 1.1.9. Furthermore, if we require that the morphisms of the fiber prod-
uct are surjective, we can conclude that the fiber product exists in our category
(i.e. the fiber product is Noetherian).

Proposition 1.1.10. If A, B are Noetherian rings, with surjective morphisms
to ring C,
A Xc B % A

. e
%341&»(]

then the fiber product A x¢ B is a Noetherian ring.

Proof. First we will prove that both w4 and 7p are surjectives. Indeed if ag € A
then ¢(ap) € C and because v is surjective there is by € B such that ¢(ag) =
¥ (bo). Hence (ag,by) € A x¢ B and m4(ag,by) = ag. Now we can easily check
that

kerma Nkerm, = {0}.

Finally we claim that if R is ring and I1,...,I, C R are ideals such that
Ln---nI,={0}, (1.2)

and R/I; is Noetherian for all ¢ = 1,...,n, then R is Noetherian too. Indeed,
each R/I; is Noetherian R-module and so R/I; X --- x R/I, is Notherian R-
module. But the morphism

R— R/I; x -+ x R/I,,
is injective because of the (1.2) and so the R is Noetherian R-module, i.e. R is
Noetherian ring. O
1.2 Zariski Tangent Space

Definition 1.2.1. Fiz A a coefficient-ring and R a coefficient-A-algebra. We
define ty, = t}/A the Zariski cotangent space,

t*R = mR/((mR)2 +my - R)
Definition 1.2.2. So now we define the Zariski tangent space as,
tp == Homk_v.s(mR/(m% + mpy - R), k)

Remark 1.2.3. Since R is Noetherian, t% is a finite dimensional k-vector
space.

Remark 1.2.4. By k[e] we mean the ring in which €2 = 0. So it is obvious
that,
kle] =2 k @ ek.



4 - BASIC DEFINITIONS

Proposition 1.2.5. There is a natural isomorphism of k-vector spaces,
Homy_, 5. (mp/ (m% +my - R), k) = Homp _ayy. (R, kle]) -
Proof. Since the maximal ideal of k[e] has square zero, there is a bijection
Homp_qyg. (R/ (m% +myp - R) , k[e]) =~ Homp _ayy. (R, kle]) . (1.3)
The short exact sequence
0—>mr—R— R/mp — 0,
induces the short exact sequence
0—mp/ (m% +my - R) = R/ (m% +mp-R) — R/mp — 0

Since these are k-vector spaces, the sequence splits, and we have a decomposition
of A-algebras,

R/ (m} +mp-R) =k@®mp/(m} +mp - R).

Hence
HomA,alg_(kGBmR/ (m%—f—m,\-R) k@ ek) = (1.4)
Homy_, . (mR/ (m?% +mpy - R) ,k‘) . ’
(1.3) and (1.4), gives the result. O

Definition 1.2.6. Let F': Cy — Sets be any covariant functor such that, F(k)
consists of a single element. Then the Zariski tangent space of F, (denoted tg),
is the set F'(k[e]).

In this generality, we can not have a natural k-vector space structure.
Remark 1.2.7. The idea is that we have an “addition” on,
kle] xp kle] == kle]
(@Y1 -e,xDyz-€) — D (y1+y2) €

Definition 1.2.8. We say that F' satisfies the “Tangent space Hypothesis” (or
Just (Ty)) when the mapping,

h: F(kle] xi, kle]) = F(k[e]) x F(k[e])
is a bijection (1-1).

Remark 1.2.9. If F satisfies the (T}) we define "vector-addition” in Zariski
tangent space tr,

F(k[e]) x F(kld) = F(kle] x kle]) =% F(k[d])

) ;

tp X tp tp
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Now we will define more generally the Zariski tangent A-module. We can
make the analogous definitions but this time we will have A-module instead of
k-vector space.

Definition 1.2.10. Let F' : CA(A) — Sets be any contravariant functor such
that, F'(A) consists of a single element. Then we define the Zariski tangent
space as,

tp a4 = F(Ale]).

(Ale] = A® €A is as previously a free A-module of rank 2, where € = 0.)
In this generality the previous ” Tangent space Hypothesis” is now,

Definition 1.2.11. (Tangent space Hypothesis)
We say that D satisfies the ” Tangent space Hypothesis” (or just (T'4)) when the
mapping,

h: F(Ale] x4 Ale]) — F(Ale]) x F(Ale])

is a bijection (1 —1).

1.3 Kahler Differentials

Definition 1.3.1. (Kdhler differentials)
Consider the homomorphism

¢: Rx R— R

Z (ri @ si) = Zﬁsi,

)

and I = ker¢. The Kdihler differentials is the pair (Qgr/a,d), where Qp/n = I/1?
and a map

d:R—)QR/A
r—-1®r)—(rel).

There is a second definition for the Kéahler differentials, that will be very
useful.

Second Definition 1.3.2. We define the module Qg to be the free R-module
F generated by the symbols {dr, r € R}, quotient with the R-submodule gener-
ated by all expressions of the form:

(1) dA, for A € A.
(i) d(r1 +reo) —dry —dre, forri,me € R,
(ZZZ) d(?”‘l’f‘g) — 7’1d7’2 — ngrl, fOT’ 1,72 € R,

The derivation
d:R— QR/A7

is defined by sending r to dr.

Definition 1.3.3. If M is an R-module, a A-derivation is an A-module ho-
momorphism d : R — M which satisfies the following conditions,
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(1) d(A) =0, for A€ A

(#9) d(rire) = rid(re) —red(ry), forri,m2 € R

The collection of A-derivations of R into an R-module M is denoted by Derp (R, M).
It is easy to check that Dery (R, M) is an R-submodule of Homp _,04(R, M)

Proposition 1.3.4. The module of Kdhler differentials of R over A has the
following universal property. For any R-module M, and for any A-derivation,
d : R — M, there exists a unique R-module homomorphism f : Qr/n — M,
that makes the above diagram commutative,

R —%— Qp/p

d/
\ Jf
M

The proof of the Proposition 1.3.4 by using the Second Definition 1.3.2 is left
to the reader. For a proof with the Definition 1.3.1 and hence the equivalence
of two definitions, see [5].

Proposition 1.3.5. There is a canonical R-module isomorphism
Hompg —mod(Q2r/a, M) = Derp (R, M),

Proof. The isomorphism, is the map,
(¢:Qra — M) (pod: R— M),

with inverse, the map who sending a 1 € Derp (R, M) to the unique R-module
homomorphism, that given from the universal property of the Kéahler differen-
tials (Proposition 1.3.4). O

Corollary 1.3.6. The functor from the category of modules over R to the cat-
egory of sets, which maps every R-module M to Derp(R, M) is representable by
the module of Kahler differentials

Example 1.3.7. For P = Al[z1,...,x,]], the module of Kahler differentials is
given by
QP/A = @?:1]3 -dx;.

Using the Second Definition 1.3.2, if 6 : P — M is a A-derivation, it is easy to
see that the unique homomorphism is the f: Qp/n — M with f(dx;) = 6(x;).

Example 1.3.8. Let I C P be an ideal of P = Al[x1,...,2,]]. The ring P is
Noetherian and hence there are f1,..., fm € P such that I = (f1,..., fm). Now
the Kdhler differentials of R = P/I is,

Qrya = (S R -dwi) [(dfys - dfim)-

We can check this easily, by using the universal property of the Kahler differen-
tials.
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Proposition 1.3.9. If R is a coefficient-A-algebra, we will show that Qp/y@rk
18 isomorphic as k-vector space with the

thia = mp/(m% +my - R).

Proof. We define ¢ : mrp — Qr/p ® k, the morphsim that sends m € mp to
d(m) ® 1y, where d : R — Qp/, is the universal A-derivation). It suffices to
prove that the next sequence is a short exact sequence of k-vector spaces.

O—)m%+mA-RfZ—>mR£>QR/A®Rk—>O.

¢ is surjective. Indeed, for an arbitrary (d(r) ® k) € Qp/p ®rk, with 7 € R and
Kk € k, there are Ay, Ao € A and m € mp such that r = A1z +m, kK = Aa21y.

d(r) @ k = (Md(1g) + d(m)) @ Aol = Aad(m) @ 1 = d(Aom) @ 1y,

and \am € mg.

¢ is 1-1. Indeed, for my,ms € mg pu € mp and r € R, d(mimsg) = d(mq)ms +
d(mg)my and d(ur) = d(r)u. Hence

(d(ml)mg + d(mg)ml) ® 1 =

d(my) ® maly + d(mse) @ myl, =0,

and
P(pr) = d(r)p @ 1 = d(r) @ ply = 0.

Finally for any x € m%erNR, there are m; 1,mi2 €Emp, t =1,...,n, g €My
and r € R such that
T = Zmi,lmi,Q + pr,

Thus ¢(x) = Y. ¢(miimiz2) + ¢(ur) = 0, i.e. m% +my - R C kerg. The next
lemma completes the proof. O

Lemma 1.3.10. For an arbitrary mg € mR\m%—&—mA -R there is a A-derivation
D : R — k, such that D(mg) is non zero.

Proof. First we will see that it suffices to define the derivation, for the elements
of the maximal ideal mp of R. Indeed, for an arbitrary r € R there is A € A
such that mg(r) = ma(A), and the next diagram commutes,

A—> R

ie. mr(r) = mr(A1lRg). It follows that there is m € mg, such that r = Alg +m,
and hence for any A-derivation 4,

0(r) = 8(A1R) + d(m) = 6(m).
Since R is Artinian there are z1,...,xs € mp, such that

mp/ (m% +my - R) = (Z1,...,Ts),
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and Ti,...,%Ts are independent over k. There are also y1,...,ys € m%z + my,
such that

mp = (x17'-~,$sayl7"'7y€)'
Hence there are a;,b; € R such that mg = > a;x; + > by, and since mg ¢
m% + my, there is i, such that a;, is invertible.
D(mo) = Z D(aizi) + ZD(biyi) = ZD(aifEi)
It is obvious, that it suffices to define the derivation D only for the x;, and from
the independence of the x; we can choose arbitrary image for them.

We define D(z;,) =1 and D(x;) = 0 for j # iy, and D(mg) = @;, which is non
zero, since a;, is invertible. The proof is complete. O

Remark 1.3.11. Note that any R in Ca is generated, as A-module, by the A
and the maximal ideal mgr. We have already prove this in the last proof.

Remark 1.3.12. We can easily check that the tangent space tp 4 is just the sub-
set of Hompa_q4. (R, Ale]) consisting of those A-algebra homomorphisms whose
composition with the projection Ale] — A is equal to p.

Proposition 1.3.13. Let F' be a pro-representable functor. Let A € Ca and
p: R — A a coefficient-A-algebra homomorphism which induces to A a structure
of R-algebra. Then we have a natural isomorphism of A-modules,

Homa—mod. (Qr/a®RA, A) = tp 4.
Proof. We have the ismorphisms,

HomA—modA(QR/A(gRAa A) = Homg—mod. (QR/Aa A)

1.5
Homemod. (QR/A7 A) = DerA(R? A) ( )

Moreover there is a natural injection
v : Derp (R, A) — Homp _q14. (R, Ale]),

which sends a derivation ¢ to the homomorphism

ps : R — Alel
r— p(r)®e-o(r)
The injection ¢ identifies Ders (R, A) with the subset of Homa_q4. (R, Ale]),

consisting of the homomorphisms such that composition with the projection
Ale] —» A yields p: R — A. O

Remark 1.3.14. The proposition 1.3.9 is clearly a special case of the last propo-
sition.



Chapter 2

Schlessinger’s
Representability Theorem

2.1

Small Extensions

We start with a useful lemma, and then we will introduce the very useful notion
and some properties of the small extension.

Lemma 2.1.1. A morphism B — A in Ca is surjective if and only if the induced
map ty — th is surjective.

Proof. (<) If the morphism B — A is surjection, then obviously the induced

(=)

map on cotangent spaces is surjective.

Conversely, we have the commutative diagram with exact rows,

0 —— mp-A/(miNmy-A) — mu/my —— 5 —— 0

g o
0 —— my-B/(myNmy-B) — mp/my —— ¢t —— 0
Since « and ~ are surjections, 3 is also surjection. We need to prove that

Im (B — A) = A, by the Nakayama's Lemma (since B is Artinian mp
is nilpotent) it suffices to show that

A:Im(B%A)erB'A.

From the Remark 1.3.11, it suffices to prove that the map mp-A — m4 is
surjection. Using once more Nakayama's Lemma we have to show that
the map

mpA/mpmy — my/m?%

is surjection. We know that the next diagram is commutative,

N

mp/m%4 —— mp - A/mpmy —— my/m?.
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Since [ is surjection, the proof is complete. O

Definition 2.1.2. Let p: B — A be a surjection in Cy,

e p is a small extension if kerp is a nonzero principal ideal (t) such that
mp -t = (0).

e p is essential if for any morphism q : C — B in Cp such that pq is
surjective, it follows that q is surjective.

Lemma 2.1.3. Let f: B — A be a surjective morphism in Cx. Then f can be
factored as a composition of small extensions.

Proof. The maximal ideal mp of B is nilpotent since B is Artin ring, say m% = 0.
First we get a factorization

B — B/ker(f)my ' — .- — B/ker(f) = A

of f into a composition of surjections whose kernels are annihilated by the
maximal ideal. Thus it suffices to prove the lemma when f itself is such a map.
In this case ker(f) is a k-vektor space, which has finite dimension. Take a basis
t1,...,t, of ker(f) as a k-vector space to get a factorization

B— B/(t1) = -+ —= B/(t1,...,t,) =2 A

of f into a composition of small extensions. O

Lemma 2.1.4. Let p: B — A be a surjection in Cp. Then

(2) p is essential if and only if the induced map p. : th — t% is an isomor-
phism.

(i) If p is a small extension, the p is not essential if and only if p has a
section, i.e. a homomorphism

s:A— B, withps=14

Proof. (i) If p, is an isomorphism, then by Lemma 2.1.1, p is essential. Con-
versely let iy, ..., ¢, be a basis of t%, and lift the ¢;, back to elements ¢; in
B. Set

C=Alt,...,t] C B.

Then p induces a surjection from C to A, since p is essential, C = B.
Thus dimy t5 < r = dimy %, and hence t5 = 7.

(#i) If p has a section s, then s is not surjective, an so p is not essential. If p
is not essential, then the subring C constructed above, is proper subring
of B. Since length(B) = length (A) + 1, C is isomorphic to A. The
isomorphism C ~ A yields the section.

O
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2.2 Functors of Artin rings

A functor of Artin rings is a covariant functor
F :Cp — Sets.

Definition 2.2.1. Assuming that F' is a covariant functor, a couple for F is a
pair (A,§), where A € Cp and £ € F(A). A morphism of couples u : (A, &) —
(A", &) is a morphism u: A — A’ in Cy such that F(u)(&) =¢'.

We are trying to find lifts, so suppose that we have a surjection B — A and
a functor F' : Cp — Sets. Let a be an element of F(A) and suppose that we
want a lift of o in F(B). If there is a morphism of functors u : F' — G, we have
the next commutative diagram.

If in addition, ¢ is surjection, it suffices to have lifts from G(A) to G(B). Indeed,
we first map « to u(A)(a) € G(A), then lift the u(A)(a) to an element 8 € G(B).
Now, the pair (a, 3) is in F'(A) X ¢(4)G(B), and by using that the ¢ is surjection,
we get an element ¢ € F(B) such that, ¢(¢) = («, ). Clearly ( is a lift of «.

Definition 2.2.2. A morphism of functors F' — G is smooth if for any sur-
jection B — A in Cp, the morphism

F(B) = F(A) x(a) G(B),
18 surjective.

Remark 2.2.3. If F' — G is a smooth morphism of functors, and a surjection
B — A, for a lift from F(A) to F(B) it suffices to have lifts from G(A) to
G(B).

We remind that a pro-representable functor, is a functor I : Cy — k such
that, there exists a ring R in Cy with

F(A) = HOInA_alg.(R, A)
Clearly any representable functor is a trivial example of pro-representable.

Example 2.2.4. For any ring R in ob(Cy), we define the (pro-representable)
functor of Arting rings,
hr(A) = Hom(R, A).

When A is fived, we will write hg instead of hp /.
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Proposition 2.2.5. Let R — S be a morphism in Ca. Then hg — hg is smooth
if and only if S is a power series ring over R.

Proof. (=) Suppose hg — hp is smooth, pick z1,...,z, € S, which induce a
basis of t§, . If we set 7' = R[[X1, ..., Xy]], we get a morphism uy : § —
T/(m%+mp-T) of local R-algebras, obtained by mapping x; on the residue
class of X;. By smoothness u; lifts to uz : S — T/mZ. Indeed, we can
map the u; in to an element @; € hr(m%+mp-T), obviously there is a lift
v1 € hr(T/m2%) and finally by the smoothness, a lift of u; in hg(T/m32.).
Thence up lifts to uz : S — T/m3. (Figure 2.2.6), ... etc. Thus we get a
uw : S — T which, by choice of u;, induce an isomorphism of £% /R with
t /R SO that u is surjection by the Lemma 2.1.1. Furthermore, if we choose

y; € S such that u(y;) = X; and produce a local morphism v : T'— S of

R-algebras such that uv = 1p; in particular v is an injection. Clearly v

induces a bijection on the cotangent spaces, so again by the Lemma 2.1.1

v is surjection. It follows that v is an isomorphism of T' = R[[X7, ..., X,]]

with S.

(<) If S is a power series ring over R, then it is clear that hgp — hg is smooth.
O

Figure 2.2.6.

=7 hs(T/m3)

T

hr(T/m3)

/

hr(T/m%)

s
’
7
’
’

-~ hg(T/m3

h

/\

hS(t*T/R)

A\

rR(t7/p
Proposition 2.2.7. (i) If F — G and G — H are smooth, then the compo-

sition F' — H is smooth.

(it) Ifu: F — G and v : G — H are morphisms such that u is surjective and
vu 18 smooth, then v is smooth.

(#it) If F — G and H — G are morphism such that F — G is smooth, then
F xqg H — H is smooth.

The proof of this proposition is completely formal and left to the reader.

2.3 Universal Elements

Assume we have an R in ob(Cy). An element @& € F(R), is called a formal
element of F. By definition 4 can be represented as a system of elements
Unt1 € F(R/m™T1) such that for every n > 1, the map

F(R/m"*') — F(R/m")
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induced by the projection R/m"*! — R/m, sends 11 + uy,.

Lemma 2.3.1. Let R € ob(Cy). There is a 1—1 correspondence between F(R)
and the set of morphism of functors {hgr — F'}.

Proof. Each formal element 4 € a (R) defined as, 4 = proj.lim.u,,, where u,, €
F(R/m™). Yoneda’s Lemma gives a morphism of functors

hR/mn — F,
for each u,. The next commutative diagram

F(R/m") ——— {hp/mn — F}

F(R/m”“) — {hR/mn+1 — F}
induce a new commutative diagram

hR/mn — hR/mn+1

]

hR/mn (A) — hR/mn«l»l (A) 5

Since for each A € ob(Cy)

is a bijection for all but finitely many n, we may define hr(A) — F(A) as,
lim [hg/mn(A) = F(A)].

n—-+oo

Conversely, each morphism hr — F defines a formal element @ € F(R), where
u, € F(R/m™) is the image of the projection R — R/m™ via the map

hr(R/m™) — F(R/m"™1)
O

Definition 2.3.2. If R is in ob(Ca) and @ € F(R), we call (R,4) a formal
couple for F.

Definition 2.3.3. The differential

tR/A —tip

of the morphism hr — F defined by U is called the characteristic map of i
(or of the formal couple (R,4)) and denoted by da.

Definition 2.3.4. If (R,4) is such that the induced morphism
hR — F

is an isomorphism, then F is pro-representable, and we also say that F is pro-
represented by the formal couple (R,4). In this case 4 is called a universal
formal element for F', and (R,4) is a universal formal couple.
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A universal formal couple seldom exists, we will therefore need to introduce
some weaker properties of a formal couple. We will now introduce the notions
of “verslity” and “semiversality”, which are slightly weaker that universality,
based on the notion of smooth functor.

Definition 2.3.5. Let I’ be a functor of Artin rings and R in ob(éA). A formal
element 4 € F(R) is called versal, if the morphism hr — F defined by 4, is
smooth.

Definition 2.3.6. The formal element 4 is called semiuniversal if it is versal
and moreover, the differential tgr/n — tp is bijective. Schlessinger calls the
formal couple (R, 1) a (pro-representable) hull of F.

It is clear by the definitions that

4 universal = 4 semiuniversal = 4 versal

2.4 Schlessinger’s Theorem

Suppose now that we have F a functor of Artin rings, A, A, A” € ob(C,) and a
diagram
A/ A//

\ / (2.1)

This diagram induces a new diagram

Finally we get a map

a: F(A" x4 A") = F(A") xpay F(A"). (2.3)
So we have some properties that we seek for the map «. Namely,
(Hy) For k = R/mpg, F(k) consists of one element.

(Hy) For every diagram (2.1), where A” — A is a small extension, the morphism
a in (2.3) is a surjection.

(Hz) For every diagram (2.1), where A = k, A” = k[e], the morphism « in (2.3)
is bijection.
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(Hs3) The set F(k[e]) has a structure of finite dimensional k-vector space.

(Hy) For every diagram (2.1), where A’ = A” and A’ — A and A” — A are
equal and small extensions, the morphism « in (2.3) is a bijection.

(Hy) For every diagram (2.1), the morphism « in (2.3) is bijection.

Proposition 2.4.1. A pro-representable functor F satisfies the conditions (Hp),
(Hg) and (Hg)

Proof. (Hy) The set Hom(R, R/mp) contains only the caconical quotient map
R— R/mR

(H3) In the first chapter we have seen that
F(k[e]) = Homp _q14.(R, k[e]) = Derpy(R, k) = tga.

So is the relative tangent space of R over A. Since R is Noetherian ring,
the tangent space is finite dimensional.

(H;) The proof is simple and left to the reader.
O

Remark 2.4.2. Note that (H,), (Hz) and (Hy) are special cases of the condition
(He)-

Corollary 2.4.3. A pro-representable functor F' = hg satisfies the conditions
(Hi1), (Hz2) and (Ha).

The next Lemma is just the Remark 1.2.9.

Lemma 2.4.4. If F is a functor of Artin rings satisfying (Ho) and (Hz) then
the set F(k[e]) has a structure of k-vector space in a factorial way.

Grothendieck’s Theorem 2.4.5. Let F': Cy — Sets be a covariant functor.
Then F' is pro-representable if and only if F' satisfies the conditions (Hp), (Hs)
and (Hy).

A proof can be found in [6].

In contrast to this theorem, which requires the property (Hy) i.e. check all
diagrams of the form (2.1), the theorem of Schlessinger artfully cuts down the
number of diagrams for which one must check.

Lemma 2.4.6. Let F is a functor of Artin rings satisfying (Hy), (H1) and
(H2) and 7w : A" — A a small extension with kerm = (t). Then the map

Bty x F(A') 2 F(kld x A) 205 F(A x4 A') — F(A') xpea) F(A')

induced by the map

vikle] xpg A" — A" x4 A
(z +ye,d’) = (d' +yt,a’)

is surjective. If in addition F satisfying (Ha), B is bijection.
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Proof. (Hs) gives that « : F(kle] X A’) — tp x F(A’) is bijection and hence we
have the inverse map a~!. Since 7 is small extension, « is bijection and so is the
F(v). Finally, F(A’ x4 A") — F(A’ x4 A’) is surjection by the (Hy). For the
case that (Hy) is satisfied just notice that F(A" x4 A") = F(A") xpa) F'(A') is
bijection. O

Remark 2.4.7. Furthermore, B induces a transitive group action of the vector

space tp on the set F(m)~1(n), where n € F(A). First notice the commutative
diagram

where the vertical arrow is the “right” projection. Hence the above diagram is
commutative too.

F(k[e]) x F(A)

F(k[e] xx A) \
o
F(A x4 AY) /

F(A") X F(A) F(A")

ie. ifvetp andn' € F(A') then
Blo,n') = (v, n'),7)-

The action is given by the map T and it is transitive by the surjectivity of B. If
in addition F satisfyies (Hy) the action is free.

Schlessinger’s Theorem 2.4.8. Let F : Cy — Sets be a functor of Artin rings
satisfying condition (Hy) (i.e. F(k) is singleton). Let A" — A and A” — A be
homomorphisms in Cp and let

a: F(A" x4 A") = F(A") xpay F(A") (2.4)
be the natural map. Then

(i) F has a semiuniversal formal element if and only if it satisfies the condi-
tions: (Hy), (H2) and (Hs)

(it) F has a universal element if and only if it also satisfies the additional
condition (Hy).
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Proof. (i) Let’s assume that I has a semiuniversal formal element (R, ). Con-
sider a homomorphism f : A’ — A and a small extension m : A” — A,
both in Cp, and let

(5/,5”) c F(A/) X p(a) F(A//)

such that
§=TF(f)() =F(m)(¢"), £ € F(A).
By the versality of (R, @) the maps

hR(AI) — F(A/)
hr(A”) = hr(A) X pa) F(A") (2.5)

are surjections. Therefore there are
g € hr(A") and ¢" € hr(A")
such that F'(¢')(a) = ¢ and ¢” — (fg¢',€") under the map (2.5), i.e.

mg" = fg' and F(g")(ii) = ¢".

Consequently
hr(A"y —— F(A") g ———— ¢
hr(A) —— F(A) ng’ = fg —— F(fg')(a) = ¢

F(rg")(2) = €. Using now the morphism
g xg'":R— A x A"

we obtain an element ¢ := F(g' x g") € F(A’ x4 A”) , which by construc-
tion is () = (¢/,&"”), where « is the map (2.4). This proves that the map
a in (2.4) is surjection, i.e. (R, %) satisfying (Hy).

If A” = k[e] and A = k, obviously A” — A is a small extension and « in
(2.4) surjective. Let (1,(s € F(A’ x}, k[e]) such that

a(G) = a(Ge) = (€,¢"). (2.6)
Since (R, ) is semiuniversal
tr/a = hr(kle) — F(kle]) = tr (2.7)
is bijective. By smoothness applied to the projection A’ xj, k[e] — A’,
hr(A" xi kle]) = hr(A") X peany F(A" xy kle])
is surjective. Choose now ¢’ as before, F'(¢')(i) = &, since (2.6) both
(9',¢1),(g',¢2) belong to hr(A") xpeary F(A" X k[e]). Hence we obtain

two morphisms
g xgi: R— A xpkle],i=1,2
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such that Fi(g x g;)(4) = ¢, i = 1,2. Tt follows that F(g;)(a) = &”,
i = 1,2. By the bijectivity of (2.7), g1 = g2 and hence (; = (s, i.e. the
map « in 2.4 is bijective, and so (R, i) satisfying (Ha).

Condition (H3) satisfied because the differential 5,5 — tp is linear and
is a bijection by semiuniversality.

Conversely, let’s assume that F satisfies (H), (Hz), (Hs). We will con-
struct a couple (R, @) by a projective system

{Rn ‘ Prn41 : Rn+1 — Rn}nzo

of A-algebras in Cy, a sequence {u,, € F'(R,)}n>0 such that

F(p’rn+1)(u’ﬂ+1) = Un, N > 07

and we will show that is a semiuniversal formal couple.

We take Ry = k and up € F(k) the unique element. Let r = dimg(tp),
{t1,...,t,} a basis of tp and S = A[[T1,...,T;]] with maximal ideal mg,
we set

Ry = S/(m% +myS).

Since we have Ry = k[e] X -+ X k[e], v times, by (Hz) we deduce
that F(Ry) = tp X -++ X tp, (r times), hence there exists u; € F(Ry),
which induces a bijection between tg,/y and tr. Suppose we have found
(Rg—1,uq—1), where Rq_; = S/J,_1. In order to construct (Ry,uq), we
consider the family 7 of all ideal J C S such that,

(a) (mg)Jy—1 € J C Jyq
(b) thereisu € F(S/J) with u +— uy_1 via the map F'(S/J) = F(Rq-1).

7 is nonempty because J,_1 € Z. We will choose J; to be the minimal
element of Z, therefore we need to prove that Z has a minimal element.
Since the set Z corresponds to a collection of finite vector subspaces of
Jg—1/((mg)Jy—1), it suffices to show that Z is closed with respect to finite
intersections. Let J, K € 7 and K = I N J. Clearly J N K satisfies the
condition (a). We may enlarge J, if necessary, so that J + K = J,_1,
without changing the intersection J N K. Then

S/(JNK)— S/J xg, S/K,
is an isomorphism. By (H;) the map
a: F(S/K) — F(S/I) xpr,_,) F(S/J)

is surjective (see Remark 2.1.3), therefore there exists v € F(S/K) such
that w — ug_1, i.e. JNK satisfies condition (b) as well, hence JNK € Z.
We take R, = S/J, and u, € F(R,) an element which is mapped to ug—1.
By induction we have constructed a formal couple (R, %). We now show
that is a semiuniversal formal couple for F. First notice that tp = tg by
choice of R;. Therefore we only have to prove versality. If m: A" — A is
a small extension, we will show that the map

’lAJ,ﬂ— : hR(AI) — hR(A) XF(A) F(A’),
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is surjective. Let (f,£') € hr(A) xpay F(A'), ie. E(f)(a) = F(m)(&).
We must find f' € hg(A’) such that 4,(f") = (f,£'). Let’s consider the

commutative diagram

hR(k[e]) X hR(A/) —— tp X F(AI)

lﬁl ijz (2.8)

hR(A/) XhR(A) hR(A/) —_— F(A/) XF(A) F(Al)

where 7 is bijection and S surjection by the lemma (2.4.6). Assume
that we have f’ satisfying condition mf" = f, then f’ and & have the
same image in F(A) and so, if ' := F(f")(@),

(&,n') € F(A") xpay F(A).

Hence there is v € tp such that B2(v,n’) = (&,7/). It follows that for
some [ € hr(A).

(U’f/) E— (U»ﬁ/)

| |

(flla f/) — (5/7 77/)
Clearly 7f” = f, since f’ and f” have the same image in hr(A), hence
ar(f") = (f,€).

It follows that it suffices to find f' € hr(A’) with 7f’ = f. Since A is
Artin ring there is ¢ such that f factor as

R/R\

Then f’ exists if and only if there exists ¢ which makes the following
diagram commutative,

l k (2.9)

In order to create a morphism A[[z]] — A’, choose arbitrary y; € 7= (p(T5))
for each ¢ = 1,...,7, where p is the composition of maps

A[[Tl, ey TR]] — Rq+1 and Rq+1 — A.

We get a morphism given by 7; + y;. This morphism induce the commu-
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tative diagram

A[Ty,.... 1]

Rq+1 XA A
Rq+1 > A
R, \ A

First notice that, since 7 is small extension, 7’ is small extension too.
If 7’ is essential, then g must be surjective and hence

Ryp1 xa A= ATy, ..., T,]]/1,

for some I C A[[T4,...,T;]]. Obviously I C J,11 and since 7’ is small
extension mgJyy1 € I. Moreover the map

F(Rq+1 XA A/) — F(Rq+1) XF(A) F(A,),

is surjective by (Hp) and hence there is u € F(Ry41 x4 A’) inducing
Ugt1 € F(Rg41), which inducing u, € F(R,). it follows that I € Z, and
by the minimality of J,41 in Z, Jy41 C I. But 7’ is a small extension and
has non zero kernel, hence I C J,41 which is a contradiction.

So 7’ is not essential and by the lemma 2.1.4 (43), 7’ has a section

S Rq+1 — Rq+1 XA A

It follows that the map R,4; — Ry41 x4 A" — A’ makes the diagram
(2.9) commutative and proves that the (R, @) is semiuniversal.

(#i) If F is pro-representable then, as already proved, satisfies conditions (H),
(H2), (H3) and (Hy).
Conversely, suppose F' satisfies (H;) through (H4). By the first part of
the theorem we have that (R, ) is a semiuniversal formal couple of F.
We will prove that is universal by showing that for every A in Cy the map

induced by @ is bijective. We will proceed by induction on dimg(A).
Let m : A’ — A be a small extension. The inductive hypothesis gives,
hr(A) =2 F(A). By the veraslity, the map

U hr(A") = hr(A) xpa) F(A") = F(A),
is surjective. Assume uf,u) € hg such that

(W) =1 € F(A), i=1,2. (2.10)
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and we will prove that v} = u}. By (2.10) and the commutative diagram

hp(A) —— F(4)

| |

hr(4) —=— F(A)

it follows that both wu},u} have the same image via the map hr(A’) —
hr(A). Hence there is x € tg such that 7(z,u)) = u) (see 2.4.7) and
clearly there is y € tp such that 7(y,u}) = uj. The pairs (z,u}) and
(y,uh) fit in diagram (2.8) as follows,

(#,u1) —— (z,7) (v, ur) —— (y,7')
s |5 s |
(ug, uy) —— (', ') (uy, wy) —— (', 1)

Note that tp =t by semiuniversality. The maps (1, 82 are both bijective
by the lemma 2.4.6, consequently = = y and finally v} = uj.
O

Remark 2.4.9. In other words, in Schlessinger’s language, a functor of Artin
rings such that F (k) consists of a single element, has a hull if and only if
satisfying (Hy), (Hz2), (Hs). Furthermore F is pro-representable if and only if
it also satisfying (Hy).






Chapter 3

Examples

3.1 The Picard functor

We remind that, for a scheme X, Pic(X) = H!(X,O%) the group of isomor-
phism classes of invertible sheaves on X. Now suppose X is a scheme over
SpecA. For an A in Cp we define,

XA =X X SpecA SpecA.

We fix g € Pic(X}) and let P(A) be the set of of those 7 in Pic(A) such that
n®ak =mno. We claim that P is pro-representable under suitable conditions.
We will first prove two lemmas on flatness, following Schlessinger.

Lemma 3.1.1. Let A be a ring, J a nilpotent ideal in A and
u:M— N,

o

a homomorphism of A-modules, with N flat over A. Ifu: M/JM — N/JN
s an isomorphism, then f is also an isomorphsim.

Proof. Let K = coker u and tensor the exact sequence
M—-N—K—0,

with A/J. Then K/JK = 0 and Nakayama’s lemma for nilpotent ideals implies
that K = 0. Now let K’ = ker u and tensor the exact sequence

0K - M-—-N—=0
with A/J. By the flatness of N we get K’ = 0, so that « is an isomorphism. [

Lemma 3.1.2. Consider a commutative diagram

xﬁ
’

M’ - M

1"

N p M

A/I

NN
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of compatible ring and module homomorphsims, where
B=A" x4 A" and N=M' xpy M".

Suppose
(1) M’ is free over A" and M" is free over A",

(1) A”/)J =4 A is an isomorphism, where J is a nilpotent ideal of A",
(#i1) u' induces an isomorphism M' ® 41 A =5 M, and similarly for u”.

Then N is flat over B and p' induces an isomorphsim N ®p A’ —» M', respec-
tively p”" an isomorphism N @p A" — M".

Remark 3.1.3. Over an Artin local ring, flat modules are free (Lemma A.0.5),
so the lemma above it suffices for our purposes.

Proof. First choose a basis {z; };cr for M’. We can now see, using the (ii7), that
{w(z;) }ier form a basis for M, and so is free. Choosing =/ € (u”)~1(u/(z;)),
ie. u’(zf) = u/(x}), we get a homomorphism > A”z) — M" of A”-modules,
whose reduction modulo the ideal J is an isomorphism. By the Lemma 3.1.1
it follows that M" is free on generators ;. Finally it is easily to check that
N is free on generators z; x x/, and that the projections on the factors induce

isomorphsims. O

Corollary 3.1.4. With the same notations as above, let L be a B-module with
a commutative diagram

/\
\/

where ¢’ induces L @p A’ =4 M. Then the canonical morphism ¢ x ¢ is an
isomorphism.

Let A and B be two rings, we call a homomorphism ¢ : A — B flat, if ¢
makes the B a flat A-module. Let X and Y be two schemes and f: X — Y a
morphism of schemes. We say that f is flat if the induced homomorphism on
every stalk is a flat homomorphism. If X is a scheme over SpecA we say that
X is flat over A if the morphism between them is flat.

Proposition 3.1.5. Let X be a scheme over SpecA and assume that
(1) X is flat over A,
(17) A = H(X4,0x,) is isomorphism for each A in Cy,

(Z’LZ) dimkHl(Xk,OXk) < 00.
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Then P is pro-representable by a pro-couple (R, &).

Proof. Let v’ : (A",n) — (A,n), «” : (A",n") — (A,n) be morphisms of
couples, where u” is a surjection. Let L,L’,L"” be corresponding invertible
sheaves on Y = X4, X' = X4 and X" = X4. Then we have morphisms

p L' - Landp’:L" — L, (3.1)

of sheaves on the sp(Xj), compatible with Ox, — Oy, Ox» — Oy. The
morphsims in (3.1) induce isomorphisms

Loy A=sLand " @4 A —> L.

Let B=A" x4 A” and let Z = Xp, then we have a commutative diagram
Oz
Ox
Oy

of sheaves on sp(Xy). Thus there is a canonical isomorphism

OX”

Oz i) OX/ X0Ox Ol)/(

Hence N = L’ xp L" is a sheaf on Z which is invertible, and by the Lemma
3.1.2, the projections of N on L' and L” induce isomorphisms

NogA = and Nog A" =5 1.
If now M is another invertible sheaf on Z for which there exist isomorphisms
Mg A =5 L and M @g A" =5 L",

we have morphisms ¢’ : M — L' and ¢ : M — L”, which induce the isomor-
phisms and thus a commutative diagram

M

/ \

L/ L//
L .7

Where 0 is the automorphism of L given by the composition

o~

LS eosAsMegA— L' @4 A— L.
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By hypothesis (i7), 8 is multiplication by some unit a € A. Lifting a back to a”
in A”, we can take a”¢"” instead of ¢”, so the diagram changing to

SN
NS

It follows that M — N is an isomorphism. We have therefore proved that
P(A" x4 A") =2 P(A") xpay P(A”), for any surjection A” — A in C.
Finally, if Y = X}, we have Oy = Ox, ® €Ox,, so there is an exact sequence

L/

0—O0x, =0y = 0%, — 1
where the morphism Ox, = Oj maps f +— 1+ ¢f. Hence
P(k[e]) = ker (H'(Xo,0%) = H'(Xo,0%,)) = H' (X0, 0x,)

which has finite dimension by (7). O

3.2 Deformations of curves

A deformation of a smooth curve X over the spectrum of a local ring Spec(R)
is a proper flat morphism ¢ : X — Spec(R) together with an isomorphism of X
with the scheme theoretic fiber of X' over the maximal ideal m of R, that is

X XO =X ®SpecR SpeC(R/m)

Definition 3.2.1. A morphism of finite type ¢ : X — S between Noetherian
schemes is proper when for every discrete valuation ring R with fraction field
k and every square of morphisms

Spec(k) —— X
| ¢
Spec(R) —— S

there is a unique morphism Spec(R) — X fitting into the diagram.

We can consider the deformation functor Def x of curves with automorphisms
from the category of local Artin algebras to the category of sets:

Def x (A) = {deformations of X over A/isomorphisms},

where two deformations X; — SpecA, i = 1,2 are considered to be isomorphic
if they fit in a commutative diagramm

N

SpecA

IR |

Xy X
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Given a deformation ¥ — Spec(A4) and a morphism A — B, then we can
define the induced deformation Y Xg,ec(a) Spec(B) — Spec(B) in terms of the
commutative diagram

Y Xspec(a) Spec(B) Y

| |

Spec(B) ——— Spec(A)

In this way a notion of morphisms of deformations can be defined.

Theorem 3.2.2. For any curve X the functor Def x satisfy Hy, Ho, Hs, Hy of
Schlessinger theorem.

Proof. Consider the morphisms of couples (A',n) — (A,n) and (4”,7") —
(A,n), where A” — A is a surjection. Let X', Y, X" be deformations in the
equivalence class of 17/, 1, 1" respectively and consider the diagram

X/ X/I

Then there is a prescheme Z, flat over A’ x 4 A”, the sum of X’ and X" under
Y, in the category of preschemes. The closed immersions X — Y — Z give Z a
structure of deformation of X over A’ x 4 A" such that the following commutative
diagram of deformations

This proves that
Defx(A/ XA AN) — Defx(Al) XDef x (A) Defx(A//)

is surjective, for every surjection A” — A. Therefore the condition H; is satis-
fied.

Suppose that W is a deformation over B, inducing the deformations X’ and
X". There is a commutative diagram of deformations,

w "
q q
XI / \ XI/
o . A

Y ~————
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where 6 is the composition

Y Y

-y 4

X' ®Spcc(A’) SpeC(A) —W ®Spcc(B) SpeC(A) — X" ®Spcc(A’) SpeC(A)

If 6 can be lifted to an automorphism of 6’ of X', such that 6’v’ = u'6 then ¢’
can be replaced with ¢’6" and then W = Z. For the special case A=k, Y = X,
6 = Id this lifting 6’ exists and condition (Hy) is satisfied.

For the condition Hy: consider a morphism of couples p : (4",1') — (A, n),
where p is a small extension. For a morphism B — A, let Def’} (B) denote the
set of ¢ € Def x(B) such that ( @ g A = n. Select a deformation Y’ in the class
of n’. We will prove that the following are equivalent:

(i) Def (A’ x 4 A’) = Def", (A’) x Def', (A")

(ii) Every automorphism of the deformation Y = Y’ ® 4+ A is induced by an
automorphism of the deformation Y.

We first prove that (i) = (i¢). Consider the induced morphism of deformations
u:Y — Y’ If  is an automorphism of Y, then we can construct deformations
Z,W over A’ x4 A’ to give “sum diagrams” of deformations.

/\ /\
\/ \/

The deformations Z, W have isomorphic projections on both factors, there is an

isomorphism p : Z = W, which induces automorphisms 61,6, of Y’ and an
automorphism ¢ of Y such that

O1ub = ug, Ou = up.

Therefore, uf = 67 *62u and 07 16, induces 6.

Now we will prove (i7) = (¢). From (i7) for I = kerp follows that tp ® I
acts freely on 7/, that is (n')” = 1’ implies ¢ = 0. Since the action of tp ® I
on Def’} (A’) is transitive, the space Def’} (A’) is a principal homogeneous space
under tr ® I, which is equivalent to (7).

We will now prove the finiteness condition Hsz. Since X is smooth over k
one can prove using Chech cohomology [4] that

tDefx = Hl(X7@)7

where © is the tangent sheaf of the curve X and by Serre-Duality and Riemann-
Roch theorem has dimension equal to

dimy, H'(X,0) = dim H°(X,Q%%) = 3(g — 1).
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Flat Modules

Definition A.0.1. An R-module M is called flat if for every short exact sequece
0— Ny —» Ny — N3 — 0,
the induced sequence
0> M@rNi - M®r No - M ®&r N3 — 0,
is also exact.

We call a functor F' between categories of modules left exact if for every
exact sequence 0 — N3 — No — N3 the sequence 0 — F(N;) — F(N2) —
F(N3), similarly right exact and exact when is both right and left exact. So
the above definition is that the functor Fj; which sends an R-module N to the
R-module Fyy(N) = M ®p N is exact. Since the F)s is always right exact (for
a proof see [1]), flatness is actually that Fjs is left exact, i.e. a way to say that
for every injection N7 — N3 the induced homomorphism M @z N7 — M Qg No
is an injection.

Remark A.0.2. (i) Note thatif M, N are two R-modules and S an R-submodule
of N, in general M ®g S is not a submodule of M @z N. You can check
this for example by taking M = Z/27Z, N = Q and S = Z.

(i) Similarly, if ¢ : N — N’ is an R-module homomorphism, we can guarantee
a surjection

Im Id ® Im¢ — Im(Id ® ¢) € M’ @p N’

but not always a bijection. So in general we cannot identify Im Id ® g Im¢
with Im(Id ® ¢).

Nevertheless if we require that F); maps injections to injections, i.e. M ®g
S — M ®g N is an injection whenever S — N is an injection, it is immediate
that we do not have “strange” situations as above.

Proposition A.0.3. An R-module M is flat if and only if for every injection
N — N’ the map M @gr N — M ®r N' is an injection.
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Proof. The “only if” is obvious. For the “if” let
0— N1 u—1> N2 u—2) Ng,

be an exact sequence. First notice that u; is monomorphism and hence the
induced homomorphism Id ® uy : M ® g Ny — M ®pg N> is an injection. Thus it
remains to show that Im(Id ® u;) = ker(Id @ uz). Let m®uq(a) be an arbitrary
element of Im(Id ® uy), where a € Ny, then

(Id ® ug)(m @ uz(a)) = m @ uz(u1(a)) =m0,
ie. m®ui(a) is in ker(Id ® ug). Using again the hypothesis we conclude that
M ®pg (Ng/ker(’uQ)) — M ®g N3,

is an injection. Since M ®p (Na/ker(us)) = (M ®g N2) / (M ®g ker(uz)), it
follows that ker(Id ® ug) C M ®@p ker(ug) = M @gIm(uy) =Im(Id ® uy). O

Example A.0.4. (i) Free modules are flat. Indeed suppose M is a free R-
module, i.e. M = @,c;R. Let N — N' be a monomorphism of R-
modules and we want to prove that M @gr N — M ®r N’ Note first that
M®N=@,.;Ror N =&,.; N, so we want to prove that

pyN-pN

iel i€l
18 monomorphism, but this is clear when N — N’ is monomorphism.

(i) Projective modules are flat. Indeed let P be a projective module and recall
that tensor products commute with direct sums. It follows that a module is
flat if and only if each summand s flat. Since any projective module is a
direct summand of a free module (you can check this immediate using the
universal property of projective modules) every projective module is flat.

Lemma A.0.5. Let R be an Artin local ring and let M be an R-module. Then
M s flat over R if and only if R is a free R-module.

Proof. Assume that M is a flat module. Since M/mM is an R/m-module, i.e.
a vector space, we can choose m; € M for all i € I, such that the elements
m; € M/mM forms a basis over the residue field. Let F' = @, ; R a free
R-module. It is clear that the induced homomorphism M/mM — F/mF is a
bijection. Finally using that R is Artin ring we conclude that m is nilpotent
and Lemma 3.1.1 completes the proof. O
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