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ABSTRACT

The approximate nearest neighbor problem is one of the fundamental problems in
computational geometry and has received much attention during the past decades.
Efficient and practical algorithms are known for data sets of low dimension. However,
modern, high-dimensional data cannot be handled by these algorithms, because of the
so called “curse of dimensionality”. A new theory for approximate nearest neighbors
in high dimensions emerged with an influential paper by Indyk andMotwani, in 1998,
yielding algorithms that depend polynomially on the dimension.
Nevertheless, is has been realized that designing efficient ANN data structures is

closely related with dimension-reducing embeddings. One popular dimension re-
duction technique is randomized projections. Starting with the celebrated Johnson-
Lindenstrauss Lemma, such projections have been studied in depth for the Euclidean
(ℓ2) metric and, much less, for the Manhattan (ℓ1) metric. In 2007, Indyk and Naor,
in the context of approximate nearest neighbors, introduced the notion of nearest
neighbor-preserving embeddings. These are randomized embeddings between two
metric spaces with guaranteed bounded distortion only for the distances between a
query point and a point set. Such embeddings are known to exist for both ℓ2 and ℓ1
metrics, as well as for doubling subsets of ℓ2.
In this thesis, we consider the approximate nearest neighbor problem in doubling

subsets of ℓ1. We exploit the decision-with-witness version, called approximate near
neighbor, which incurs a roughly logarithmic overhead, and we propose a dimension
reducing, near neighbor-preserving embedding for doubling subsets of ℓ1. Our ap-
proach is to represent the point set with a carefully chosen covering set, and then
apply a random linear projection to that covering set, using a matrix of Cauchy ran-
dom variables. We study two cases of covering sets: approximate nets and randomly
shifted grids, and we discuss the differences between them in terms of computing
time, target dimension, as well as their algorithmic implications.

Keywords and phrases Approximate nearest neighbor, dimensionality reduction,
Manhattan metric, randomized embedding





ΣΎΝΟΨΗ

Οι τυχαίες προβολές αποτελούν μια απο τις πιο διαδεδομένες μεθόδους για το
χειρισμό δεδομένων μεγάλης διάστασης. Ξεκινώντας από το περίφημο Johnson-
Lindenstrauss Lemma, τέτοιου είδους προβολές έχουν μελετηθεί αρκετά για την
Ευκλείδια (ℓ2) μετρική, και πολύ λιγότερο για τη μετρική Μανχάταν (ℓ1). Σε
αυτή την εργασία εστιάζουμε στο πρόβλημα του προσεγγιστικού κοντινότερου
γείτονα στη μετρική Μανχάταν, εκμεταλλεύοντας την αποφαντική εκδοχή του
προβλήματος, που λέγεται προσεγγιστικός κοντινός γείτονας και επιβάλει ένα
(περίπου) λογαριθμικό κόστος.
Το 2007, οι Indyk και Naor εισήγαγαν την έννοια των εμβυθίσεων που διατηρούν

τον κοντινότερο γείτονα (nearest neighbor-preserving embeddings). Οι εμβυθίσεις
αυτές είναι τυχαιοκρατικές και εγγυόνται για την αλλοίωση μόνο n αποστάσεων
(μεταξύ ενός σημείου-query και n σημείων), αντί για όλα τις δυνατές O(n2). Τέτοιου
είδους εμβυθίσεις υπάρχουν για τις μετρικές ℓ2 και ℓ1, καθώς και για διπλασιάζοντα
(doubling) υποσύνολα της ℓ2.
Σε αυτή την εργασία παρουσιάζουμε μια συνάρτηση εμβύθισης για την μείωση

διάστασης, η οποία διατηρεί τον κοντινό γείτονα (near neighbor-preserving) για
διπλασιάζοντα υποσύνολα της ℓ1. Η τεχνική που εφαρμόζουμε είναι να προβάλουμε
τυχαία όχι τα ίδια τα σημεία, αλλά ένα σύνολο αντιπροσώπων τους. Μελετούμε
δύο είδη αντιπροσώπων, τα approximate nets και τα randomly shifted grids, και τα
συγκρίνουμε ως προς την νέα διάσταση και το χρόνο υπολογισμού της συνάρτησης
εμβύθισης.
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CHAPTER1
INTRODUCTION

The nearest neighbor problem is defined as follows: Given a set P of n points in a
metric space (X, dX), build a data structure that, given any query point q ∈ X ,
returns its “nearest neighbor” arg minp∈P dX(q, p). A particularly interesting case is
that of geometric spaces, where X = Rd and dX is induced by some norm. The most
popular metrics are the Euclidean (ℓ2) and the Manhattan (ℓ1). This problem, and its
approximate versions, are some of the central problems in computational geometry,
and have a wide range of applications in machine learning, computer vision, data
compression and other fields [SDI06, Dub10, MO15].

A common relaxation is the c-approximate nearest neighbor problem, where the
data structure is allowed to report any p′ ∈ P within distance c · minp∈P dX(q, p);
for some approximation factor c ≥ 1. By known reductions [IM98], one may focus
on the decision-with witness version, which incurs a polylogarithmic overhead:

Definition 1.1 ((c, r)-Approximate Near Neighbor). Let (X, dX) be a metric space.
Given P ⊆ X and reals r > 0, c ≥ 1, build a data structure S that, given a query
point q ∈ X , performs as follows:

• If the nearest neighbor of q lies in distance at most r, then S is allowed to report
any point p∗ ∈ P such that dX(q, p∗) ≤ cr.

• If all points lie at distance more than cr from q, then S should return ⊥.

S is allowed to return either a point at distance ≤ cr or ⊥.

From now on, we shall refer to this problem as c-ANN, or simply ANN. Typically,
the performance of an ANN data structure is measured by three quantities: 1) prepro-
cessing – time to build it, 2) space – amount of memory it occupies and, 3) query time
– time it takes to return an answer, given a query.
Depending on the relation between the dimension d and the number of data points

n, twomain regimes have emerged: low- and high-dimensional. The low-dimensional
regime corresponds to d = o(log n); (hence algorithms can afford to be exponential
in the dimension) and the high-dimensional regime corresponds to d = ω(log n).

1
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1.1 Previous work

In the low-dimensional regime, efficient (1+ε)-ANN algorithms are known for the
Euclidean space. One notable data-structure is the Balanced Box-Decomposition
(BBD) tree, introduced in [Ary+98]. BBD trees achieve query time O(c log n), for
c ≤ d/2⌈1 + 6d/ε⌉d, space O(dn) and preprocessing time O(dn log n), and can also
be used to retrieve the k ≤ 1 approximate nearest neighbors, with an extra O(d log n)
cost per neighbor. They are very practical as well.
Another popular data structure for ℓ2, is the Approximate Voronoi Diagrams

(AVD) [AMM09], where a tradeoff is established between space requirement and
query time. More specifically, for a tradeoff parameter 2 < γ < 1/ε, the query
time is O(log(nγ) + 1/(εγ) d−1

2 ) and space is O(nγd−1 log(1/ε)). This data struc-
ture maintains a hierarchical subdivision of space into cells, each storing a number
of representatives, such that for any query lying in some cell, at least one of the
representatives is an approximate nearest neighbor. Further improvements to the
space-time trade offs for ANN are obtained in [AFM18].
The bucketing method of [HIM12] admits a data structure that supports fast queries

for any ℓp, p ∈ [1, 2], with space and preprocessing time O(1/ε)d × O(n) and query
time O(d). This is done by imposing a grid on the data set, and then storing grid
points which lie close to data points in a hash function.
All the aforementioned methods however, are based on discretization of the in-

put space, and therefore depend exponentially in d, making them unfit for high-
dimensional data.
An important method conceived for high dimensional data is Locality-Sensitive

Hashing (LSH), introduced in [IM98]. It relies on the existence of locality sensitive
hash functions for the input space, which are more likely to map similar objects to the
same bucket 1. In general, LSH requires roughly O(dn1+ρ) space and O(dnρ) query
time for some parameter ρ ∈ (0, 1). Upper bounds of ρ have been established for c-
ANN in ℓ2 and ℓ1 norms; ρ = 1/c2+o(1) for ℓ2 and ρ = 1/c+o(1) for ℓ1 [AI08, IM98],
as well as matching lower bounds [MNP07, OWZ14]. LSH schemes based on p-stable
distributions also exist for ℓp, p ∈ (0, 2] [Dat+04], with ρ ≤ (1+γ) · max (1/cp, 1/c),
for any γ > 0.
Better bounds on ρ can be obtained via data-dependent LSH : random space parti-

tions which depend on the data set. Namely, we get ρ = 1/(2c − 1) + o(1) for ℓ1
and ρ = 1/(2c2 − 1) + o(1) for ℓ2 [And+14, AR15]. These bounds are also known to
be tight in the data-dependent LSH framework [AR16]. Moreover, upper and lower
bounds for time-space tradeoffs have also been studied for both data-dependent and
data-independent LSH [And+17b].
Spaces which are considered to be harder in this context, like ℓ∞, can also be treated

[Ind01, Cha17], and are very interesting since they can be used as host spaces for
various symmetric norms [And+17a] (e.g., top-k and Orlicz norms)
It has become apparent that designing efficient ANN algorithms, at least for high-

dimensional data, is closely related to the task of designing low-distortion embeddings.

Definition 1.2. A bi-Lipschitz embedding between two metric spaces (X, dX) and
(Y, dY ) is a mapping f : X → Y such that for some scaling factor C > 1, and
distortion D ≥ 1, for every p, q ∈ X

C · dX(p, q) ≤ dY (f(p), f(q)) ≤ D · C · dX(p, q).
1See also Section 2.3
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Of particular importance, are low-distortion embeddings that mapRd toRk , where
k is much smaller than d. The idea is to apply such an embedding as a preprocessing
step, and then solve the ANN problem on the new space of lower dimension.
Such dimension-reducing embeddings do exist for the ℓ2 norm if we allow random-

ization, as first shown in the influential paper by Johnson and Lindenstrauss:

Lemma 1.3 ([JL84]). Fix dimension d > 1 and “target” dimension k < d. Let A
be a k×d random matrix where the Aij ’s are independent standard normal random
variables, and define f : Rd → Rk as f(x) = 1√

k
Ax. Then, for any ε ∈ (0, 1) and

any x, y ∈ Rd,

Pr
[
(1 − ε) ∥x − y∥2 ≤ ∥f(x) − f(y)∥2 ≤ (1 + ε) ∥x − y∥2

]
≥ 1 − e−Cε2k,

where C > 0 is a constant (independent of d, k, ε).

Instead of a Gaussian matrix, we can even use a matrix whose entries are indepen-
dent random variables with uniformly distributed values in {−1, +1}, and get the
same guarantees [Ach03].
Applying this lemma for k = O(log n/ε2) to a set P ⊂ ℓd

2 of n points, shows that
the map f has a (1+ε) distortion on P , with probability at least 2/3. Combining such
a projection, (or a relevant variant) with known data structures for ℓ2, yields better
space and query bounds for ANN in high dimensions [AC09, AEP18]. This embedding
has also the property of being oblivious to P . That is, it is well-defined over the whole
space Rd and not just the point set P . This property is crucial because in general, a
query point does not belong to the data set P .
More recently, it has been realized that the approximate nearest neighbor problem

requires embedding properties that are somewhat different from definition 1.2. Apart
from the obliviousness which we already mentioned, the main difference is that the
embedding does not need to preserve all inter-point distances. This idea is captured
by the following definition, introduced by Indyk and Naor in [IN07]:

Definition 1.4 (Nearest-neighbor-preserving embedding). Let (Y, dY ); (Z, dZ) be
metric spaces and X ⊆ Y . We say that a distribution over mappings f : Y → Z
with distortion D ≥ 1 and probability of correctness P ∈ [0, 1], is a D-NN-preserving
embedding, if for every c ≥ 1 and any q ∈ Y the following holds with probability at
least P : if x ∈ X is such that f(x) is a c-approximate nearest neighbor of f(q) in Z ,
then x is a (D · c)-approximate nearest neighbor of q in Y .

This notion is the appropriate generalization of oblivious embeddings à la John-
son and Lindenstrauss: We want f to be defined on the entire space of possible
query points Y , and we require much less than a bi-Lipschitz condition. Clearly,
the Johnson-Lindenstrauss lemma is an example of a NN-preserving embedding.
An analog of the Johnson-Lindenstrauss lemma for the ℓ1 norm is impossible due to

known lower bounds [BC05, LMN05]: there exists a family of data sets of n points in
(Rd, ℓ1) such that any embedding to (Rk, ℓ1)with distortionD requires k = nΩ(1/D2)

dimensions. The lower bound also holds for doubling subsets of ℓ1 with doubling
constant at least 6.

However, the following theorem by Indyk shows that NN-preserving embeddings
allow us to overcome the impossibility results for the stronger notion of bi-Lipschitz
embeddings, while being sufficient for the purpose of the nearest neighbor problem.
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Theorem 1.5 ([Ind06]). For any ε ≤ 1/2, δ > 0, ε > γ > 0 there is a probability
space over linear mappings f : Rd → Rk , where k = (ln (1/δ))1/(ε−γ)/ζ(γ), for a
function ζ(γ) > 0 depending only on γ, such that for any pair of points p, q ∈ ℓd

1

Pr
[

∥f(p) − f(q)∥1 ≤ (1 − ε) ∥p − q∥1

]
≤ δ,

Pr
[

∥f(p) − f(q)∥1 ≥ (1 + ε) ∥p − q∥1

]
≤ 1 + γ

1 + ε
.

Note that the mapping is defined as f(u) = Au/T , where A is a k×d matrix with
each element being an i.i.d. Cauchy random variable. In addition, T is a scaling factor
defined as the expectation of a sum of truncated Cauchy variables, such that T =
Θ(k log (k/ε)) (see Lemma 5 in [Ind06]).
The embedding is randomized but asymmetric: for any pair of points, the probabil-

ity that the distance between the pair gets contracted is very small, while the proba-
bility of the distance being expanded by (1 + ε) is constant. This is all we want for a
NN-preserving embedding: We don’t want some far neighbor of q in the space Rd to
become nearest neighbor in the space Rk . Thus, for δ = 1/n, we get constant prob-
ability of contraction, after a union bound on all the far points. On the other hand,
we want the nearest neighbor of q to remain nearest after the embedding, so the con-
stant probability of expansion in enough so that the whole embedding is correct with
constant probability.
Significant amount of work has also been done for pointsets of low doubling di-

mension, a notion of dimension that measures the “volume growth” of X . 2

Definition 1.6. Let (X, dX) be a metric space and BX(x, r) the ball of radius r > 0
centered at x ∈ X . The doubling constant of X , denoted λX , is the smallest integer
λ ≥ 1 such that for any p ∈ X and r > 0, the ball BX(p, r) can be covered by at
most λX balls of radius r/2, centered at points in X . The doubling dimension of X ,
denoted dim(X), is defined to be log λX .

For any finite metric space X of doubling dimension dim(X), there exists a data
structure [CG06, HM06] with expected preprocessing time O(2dim(X)n log n), space
O(2dim(X)n) and query time O(2dim(X) log n + ε−O(dim(X))). A notable series of
results [Cla99, KR02, KL04, BKL06] concerned arbitrary metrics of bounded expansion
rate (a notion similar to doubling dimension) and provided efficient data structures for
ANN, which can be extended to metric spaces where dim(X) = O(1).
Indyk and Naor showed that for doubling subsets of ℓ2, the Johnson-Lindenstrauss

embedding is (1 + ε)-NN-preserving:

Theorem 1.7 ([IN07]). Let X ⊆ ℓd
2 , ε ∈ (0, 1), δ ∈ (0, 1/2) and f be the Johnson-

Lindenstrauss projection. Then, there exists k = O
(

log λX · log(2/ε)
ε2 · log(1/δ)

)
such that for any q ∈ X with nearest neighbor p∗, with probability at least 1 − δ,

∥f(p∗) − f(q)∥2 ≤ (1 + ε) ∥p∗ − q∥2 ,

∀x : ∥x − q∥2 > (1 + 2ε) ∥p∗ − q∥2 =⇒ ∥f(x) − f(q)∥2 > (1 + ε) ∥p∗ − q∥2 .

Randomized embeddings have also been recently used for doubling subsets of ℓp,
2 < p < ∞, yielding c-ANN data structures, where c depends on the doubling con-
stant and the dimension of the data set [BG19]. Dimension reduction techniques for

2See also Section 2.4
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doubling subsets of ℓp, p ∈ [1, 2], also exist [BG16], but they rely on partition al-
gorithms which require the whole pointset to be known in advance. Moreover, the
guarantees concern only distances up to some scale s > 1, on which the target di-
mension depends. Hence, it is not clear whether these techniques can be used in the
ANN context.
The next table sums up the randomized embeddings we mentioned.

Norm Ref. Target dimension (k) Guarantee

ℓ2
Lem 1.3 O

(
log n/ε2) (1 + ε)-bi-Lipschitz

Thm 1.7 O
(

log λX · log(2/ε)
ε2 · log(1/δ)

)
(1 + ε)-NN-preserving

ℓ1 Thm 1.5 (ln n)1/(ε−γ)
/ζ(γ) (1 + ε)-NN-preserving

1.2 Contribution
We present two non-linear near neighbor-preserving embeddings for doubling sub-
sets of ℓd

1 , with distortion (1 + O(ε)) and probability of correctness Ω(ε). Our defini-
tion is essentially a modified version of Definition 1.4.

Definition 1.8 (Near neighbor-preserving embedding). Let (Y, dY ), (Z, dZ) be metric
spaces and X ⊆ Y . A distribution over mappings f : Y → Z is a near-neighbor
preserving embedding with range r, distortion D ≥ 1 and probability of correctness
P ∈ [0, 1] if, ∀ε ≥ 0 and ∀q ∈ Y , with probability at least P , when x ∈ X is such
that dZ(f(x), f(q)) ≤ (1 + ε)r, then dY (x, q) ≤ D · (1 + ε)r.

Our approach is to represent the point set with a carefully chosen covering set, and
then apply the random projection of Theorem 1.5 to that covering set. We study two
cases of covering sets: c-approximate r-nets and randomly shifted grids. Our results
concern ℓk

1 as the target space, where k depends on the doubling dimension. Using
nets, k depends also on some trade-off parameter which affects the preprocessing time
needed in order to embed the dataset. In the case of grids, k depends on the dimension
of the original space (d).
On the low-preprocessing-time extreme, one can embed the dataset in linear time,

but the target dimension is polynomial in log log n. To compare with, the analogous
result of Indyk [Ind06] provides with target dimension which is polynomial in log n,
without any assumption for the doubling dimension of the dataset. On the other
hand, one can obtain preprocessing time of n1+δ for any constant δ ∈ (0, 1), and
target dimension which depends solely on the doubling dimension.
Another key observation here is that given an r-net in a space X of bounded diam-

eter ∆, one can directly employ Theorem 1.5: The number of net points can be upper
bounded by a function of λX , r, and ∆, and hence the new dimension depends only
on these parameters. Finally, by setting r = Θ(ε), one can reduce ANN in ℓd

1 to ANN
in ℓk

1 , where k := k(λX , ε).
The main contribution of this paper is to prove better bounds on the target dimen-

sion than the ones ofTheorem 1.5, for doubling subsets of ℓd
1 , without any assumption

on the diameter of the dataset.





CHAPTER2
PRELIMINARIES

In this chapter, we provide the necessary notation, definitions, as well as some tools
that will come in handy in Chapter 3.

2.1 Metric spaces

Definition 2.1. Let X be a set and dX : X×X → R+ a distance function. The pair
(X, dX) is called a metric space if for any x, y, z ∈ X , dX satisfies

• dX(x, x) = 0,

• dX(x, y) > 0, iff x ̸= y,

• dX(x, y) = dX(y, x),

• dX(x, y) + dX(y, z) ≤ dX(x, z).

Metrics can be defined on completely arbitrary sets, and specify distances for pairs
of points. A norm is defined only on a vector space, and for each point it specifies its
distance from the origin.
By definition, a norm on a real vector space Z is a mapping ∥·∥ : Z → R+ so that:

• ∥x∥ = 0 iff x = 0,

• ∥αx∥ = |α| · ∥x∥, for all α ∈ R,

• ∥x + y∥ ≤ ∥x∥ + ∥y∥ (sub-additivity).

Every norm ∥x∥ on Z defines a metric, in which the distance of points x, y equals
∥x − y∥. However, not all metrics derive from norms.
The unit ball {x ∈ Z : ∥x∥ ≤ 1} of any norm is a closed convex set K , that is

symmetric around the origin 0 and contains 0 in the interior. Conversely, any K ⊂ Z
with these properties is the unit ball of a uniquely determined norm. Therefore, norms
and symmetric convex sets can be considered as different views of the same objects.

7
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The ℓp norm. For a point x = (x1, . . . , xd) ∈ Rd and for p ∈ [1, ∞), the ℓp norm
is defined as

∥x∥p :=

(
d∑

i=1
|xi|p

)1/p

. (2.1)

We denote by ℓd
p the normed space (Rd, ∥·∥p).

The most popular norms in this family are the Euclidean (ℓ2), the Manhattan (ℓ1),
and the maximum norm (ℓ∞). The ℓ∞ norm is given by ∥x∥∞ = maxi |xi| which is
the limit of (2.1) as p → ∞. To get some intuition about these norms, take a look at
their unit balls in the plane, in Figure 2.1.

p = 1

p = ∞

p = 2

Figure 2.1: Unit balls of ℓ1, ℓ2 and ℓ∞ norms.

Notice that all three are indeed closed convex bodies. For p = 2, we have the
ordinary disk. As p decreases to 1, the unit ball shrinks towards the rhombus. For
p ≥ 2, the unit ball expands towards the square, as p → ∞. Note that, only the unit
balls of ℓ1 and ℓ∞ have sharp corners – for any p > 1 the unit ball is differentiable
everywhere.
For p ∈ (0, 1), the mapping (2.1) still defines a metric on Rd, which may be useful

for some applications, but it no longer defines a norm – the sub-additive property no
longer holds. Consequently, the unit ball is not a convex set, as Figure 2.2 demon-
strates.

Figure 2.2: The unit ball for p = 2/3.

The next claim provides a connection between ℓp metrics.
Claim 2.2. For any vector x ∈ Rd and p > q > 0

∥x∥p ≤ ∥x∥q ≤ d1/q−1/p ∥x∥p .

Proof. Appendix A.
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2.2 Concentration bounds and stable distributions

Α simple, yet fundamental and tremendously useful inequality in probability theory,
is the union bound, also known as Boole’s inequality: For any events A1. . . . , An we
have

Pr
[

n∪
i=1

Ai

]
≤

n∑
i=1

Pr[Ai].

The equality holds only if the events are pairwise mutually disjoint.

Concentration inequalities

Concentration inequalities provide bounds on how a random variable deviates from
some value, typically its expected value. The laws of large numbers of classical prob-
ability theory states that sums of independent random variables are, under very mild
conditions, close to their expectation with a large probability. Such sums are the most
basic examples of random variables concentrated around their mean.
Markov’s inequality gives an upper bound for the probability that a non-negative

random variable is greater than or equal to some positive constant.

Theorem 2.3 (Markov’s inequality). Let X be a real-valued non-negative random
variable. Then for all α > 0

Pr[X ≥ α] ≤ E[X]
α

.

Setting α = α̃E[X], for some α̃ > 0, one can rewrite

Pr[X ≥ α̃E[X]] ≤ 1
α̃

.

Another popular concentration inequality is the Chernoff bound, which gives ex-
ponentially decreasing bounds on tail distributions of sums of independent random
variables. Although it is a sharper bound than Markov’s inequality, the Chernoff
bound requires that the variables be independent – a condition that is not required
for Markov’s inequality.
The generic Chernoff bound is derived using the moment generating function:

Definition 2.4. The moment-generating function of a random variable X is

MX(t) = E[etX ], t ∈ R,

whenever this expectation exists.

Theorem 2.5 (Generic Chernoff bound). Let S be the sum of n independent random
variables, X1, . . . , Xn and α ∈ R. Then, for every t > 0

Pr[S ≥ α] ≤ e−tα ·
n∏

i=1
E[etXi ],

Pr[S ≤ α] ≤ etα ·
n∏

i=1
E[e−tXi ].
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Proof. By Markov’s inequality, and since Xi’s are independent:

Pr[S ≥ α] = Pr[etS ≥ etα] ≤ E[etS ]
etα

= e−tα · E

[
n∏

i=1
etXi

]
= e−tα ·

n∏
i=1

E[etXi ].

The second inequality is proved similarly. ■

Notice that with the Chernoff bound, one can derive a concentration inequality for
a sum of independent random variables, by using a bound on the moment generating
function.

Stable distributions

Stable distributions [Zol86] are defined as limits of normalized sums of independent
identically distributed variables (an alternate definition follows). The most known
example of a stable distribution is Gaussian distribution. However, the class is much
wider; for example, it includes heavy-tailed distributions.

Definition 2.6. A distribution D over R is called p-stable, if there exists p > 0 such
that for any d real numbers v1, . . . , vd and i.i.d. variables X1, . . . , Xd with distribu-
tion D, the random variable

∑
i viXi has the same distribution as X · (

∑
i |vi|p)1/p,

where X ∼ D.

Stable distributions are known to exist for any p ∈ (0, 2]. In particular:

• The Gaussian distribution (DG), with density g(x) = 1√
2π

e−x2/2, is 2-stable.

• The Cauchy distribution (DC), with density c(x) = 1
π

1
1+x2 , is 1-stable.

From a practical point of view, despite the lack of closed form density and distribu-
tion functions, it is known [CMS76] that one can generate a p-stable random variable
X by taking

X = sin (pθ)
cos1/p θ

(
cos (θ(1 − p))

− ln r

)(1−p)/p

,

where θ is uniform on [−π/2, π/2] and r is uniform on [0, 1]. Stable distributions have
found numerous applications in various fields [Nol18]. In computer science, they are
used for sketching and dimension reduction.
Themain property of p-stable distributions directly translates into a sketching tech-

nique. For example, let 0 < k < d and f : Rd → Rk , such that for any v ∈ Rd,
f(v) = A · v, where A is a random k×d matrix, with each entry being an i.i.d. vari-
able from a p-stable distribution. Let Aj , j ∈ [k] be the j-th row of A. Then, f(v) is
a tuple of k dot products:

f(v) = (⟨A1, v⟩, . . . , ⟨Ak, v⟩).

By the p-stability property, f(v) is distributed as

(Y1 · ∥v∥p , . . . , Yk · ∥v∥p) = ∥v∥p · (Y1, . . . , Yk),

where the Yj ’s are i.i.d. with p-stable distribution.
Now, one can use f(v), which is termed as the sketch of v, to analyze ∥v∥p. In

addition, the map f defines a randomized projection of Rd to Rk .
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2.3 Locality-Sensitive Hashing
The main idea behind LSH, as mentioned in Section 1.1, is random space partitions,
which have the property that a pair of close points (at distance at most r) is more
likely to belong to the same part than a pair of far points (at distance more than cr).
Given such a partition, the data structure splits the dataset P accordingly, and, given
a query, retrieves all the data points which belong to the same part as the query.
Definition 2.7 (Locality-Sensitive Hashing). Fix a metric space (X, dX), r > 0, ap-
proximation c > 1, and a set U . Then a distribution H over maps h : X → U is
(r, cr, p1, p2)-sensitive if for any x, y ∈ X

dX(x, y) ≤ r =⇒ Pr
h∼H

[h(x) = h(y)] ≥ p1,

dX(x, y) ≥ cr =⇒ Pr
h∼H

[h(x) = h(y)] ≤ p2.

The distribution H is called LSH family and has quality ρ = ρ(H) = log (1/p1)
log (1/p2) .

An LSH family is meaningful when p1 > p2, and therefore ρ < 1. Notice that LSH
mappings are oblivious: they are well-defined over the whole metric space. Hence,
data structures based on LSH can naturally work in an online setting with insertions
and deletions.
Theorem 2.8 ([IM98]). Let P ⊂ (X, dX), |P | = n, and let H be an (r, cr, p1, p2)-
sensitive LSH family for (X, dX) with quality ρ. Then there exists a fully dynamic
data structure for (c, r)-ANN with space and preprocessing time O(n1+ρ + dn) and
query time O(dnρ). The data structure is correct with constant probability.
Theorem 2.9 ([IM98]). There exist an (r, cr, p1, p2)-sensitive LSH family for the Ham-
ming space with quality ρ = 1/c.
The distribution H is simply defined as projections on random coordinates: H =

{hi : hi(x) = xi, i = 1, . . . , d}. This family is (r, cr, 1 − r/d, 1 − cr/d)-sensitive and
therefore, ρ ≤ 1/c. Note that this LSH family can be extended to the Manhattan (ℓ1).
Theorem 2.10 ([AI08]). There exist an (r, cr, p1, p2)-sensitive LSH family for the Eu-
clidean metric with quality ρ = 1/c2 + o(1).
This LSH family partitions the space into Euclidean balls. It proceeds in two steps:

first it performs a random dimension reduction to dimension t, where t is a parameter,
and then partitions Rt into balls.

2.4 Doubling sets and covering nets

Doubling dimension

Let’s restate the definition in a more rigorous way:
Definition. Let (X, dX) be a metric space and BX(x, r) = {y ∈ X : dX(x, y) ≤ r}.
The doubling constant of X , denoted λX , is the smallest integer λ ≥ 1 such that for
any p ∈ X and r > 0, there exist a set S ⊆ X of cardinality at most λX , such that

BX(p, r) ⊆
∪
s∈S

BX(s, r/2).

The doubling dimension of X is defined as dim(X) = log λX .
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The following properties demonstrate that dim(X) is a robust and meaningful no-
tion.

1. If |X| = n, then dim(X) ≤ log n.
2. For X = Rd equipped with any norm, dim(X) = Θ(d).
3. If S ⊆ X , then dim(S) ≤ dim(X).
4. dim(X1 ∪ . . . ∪ Xm) ≤ maxi{dim(Xi)} + log m.

Motivation. Doubling metrics often occur naturally in practical applications, where
the data set P is contained in the union of low-dimensional manifolds lying in some
very high-dimensional space Rd, and the distance function is some norm of Rd. In
such cases, algorithms that exploit the doubling dimension of the data set might be
superior to algorithms which consider only the structure of the high dimensional host
space.

Exact and approximate r-nets

Nets play an important role in the study of embeddings, as well as in designing ef-
ficient data structures for doubling spaces. The formal definition is followed by an
illustration.

Definition 2.11 (r-net). Let (X, dX) be a metric space and r > 0. A subset N ⊆ X
is called an r-net if it satisfies the following properties:

• r-Packing: For every s, s′ ∈ N , dX(s, s′) > r.
• r-Covering: For every x ∈ X , there exists s ∈ N such that dX(x, s) ≤ r.

Figure 2.3: An r-net of a pointset P ⊂ R2. Net points are depicted as squares. The
small disks have radius r/2 and the large disks have radius r. Observe that by the
packing property, the small disks are disjoint, and by the covering property, the large
disks cover all points of P .

Nets are “sparse” representative sets that try to capture the geometry of a metric
space. The following lemma demonstrates why doubling spaces and r-nets are closely
related.

Lemma 2.12. Let (X, dX) be a metric space of bounded diameter ∆ and doubling
constant λX . Let also N ⊆ X be an r-net of X . Then

|N | ≤ λ
⌈log (2∆/r)⌉
X .
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Proof. For some s ∈ N and R > 0, let BN (s, R) := {s′ ∈ N : dV (s, s′) ≤ R}. Since
N is a subset of X , by the definition of λX , there exists a set S1 ⊆ N of cardinality
at most λX , such that for every s ∈ N ,

N = BN (s, ∆) ⊆
∪

s′∈S1

BN (s′, ∆/2).

Applying the definition k times in a recursive fashion, yields a set Sk ⊆ N of cardi-
nality at most λk

X , such that for every s ∈ N ,

N ⊆
∪

s′∈Sk

BN (s′, ∆/2k).

Therefore,
|N | ≤

∑
s′∈Sk

|BN (s′, ∆/2k)|.

By the packing property of the r-net, for every s ∈ N , BN (s, r/2) = {s}. Hence, for
k = ⌈log (2∆/r)⌉,

|N | ≤
∑

s′∈Sk

|BN (s′, r/2)| ≤ λ
⌈log (2∆/r)⌉
X . ■

For set P of n points in some metric space (X, dX) and r > 0, an r-net can be
computed in O(n2) time by a greedy algorithm: Pick an arbitrary ordering of the
points, p1, . . . , pn. Set N = {p1} and cover all points that are at distance at most
r from p1. Continue with p2; if it is covered, proceed to p3, else, add p2 to N and
cover all points within distance r from it. Continue until all points are processed or
covered, and return N .
In [EHS15], the notion of r-nets was extended to c-approximate r-nets, where the

covering property is relaxed. Notice that Lemma 2.12 applies to c-approximate r-nets
as well, since only the covering property has changed.

Definition 2.13 (c-approximate r-net). For c ≥ 1, r > 0 and metric space (X, dX), a
c-approximate r-net of X is a subset N ⊆ X that satisfies

• r-Packing: For every s, s′ ∈ N , dX(s, s′) > r.
• cr-Covering: For every x ∈ X , there exists s ∈ N such that dX(x, s) ≤ cr.

Theorem 2.14 ([EHS15]). Let P ⊂ ℓd
2 such that |P | = n. Then, for any r > 0,

ε > 0, one can compute a (1 + ε)-approximate r-net of P in expected running time
O(ε−2n1+1/(1+ε)2+o(1)). The result is correct with high probability.

The algorithm consists of a Johnson-Lindenstrauss projection as a preprocessing
step, and a combination of the greedy algorithm with the LSH family of Theorem
2.10. We use this technique in Section 3.2 to compute approximate nets for the ℓ1
norm.

2.5 Randomly shifted grids
Let w > 0 and t be chosen uniformly at random from the interval [0, w]. The function

hw,t(x) =
⌊

x − t

w

⌋
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induces a random partition of the real line into segments of length w. Hence, the
function

gw(x) = (hw,t1(x1), ..., hw,td
(xd)),

for t1, . . . , td independent uniform random variables in the interval [0, w), induces a
randomly shifted grid in Rd. For a set X ⊆ Rd, we denote by gw(X), the image of X
on the randomly shifted grid points defined by gw .

Figure 2.4: A pointset P (circles) and gw(P ) (squares). Each point of P is mapped
onto the bottom left point of the cell in which it lies.

The next claim concerns the expected number of grid points that are contained in
some closed interval.
Claim 2.15. Let [a, b] ⊂ R be an interval of length L > 0 and w > 0. Then

E[|[a, b] ∩ hw,t(R)|] = L/w.

Proof. Let M = |[a, b] ∩ hw,t(R)| and assume wlog that [a, b] = [0, L]. Think of the
case where t = 0, and then observe how M changes as t → w.

L

αw−α w

Figure 2.5

Increasing t corresponds to moving the interval to the left by t. Therefore, there
exists a threshold α > 0, such that

M =

{
⌊L/w⌋ + 1, if t ∈ [0, α]
⌊L/w⌋, if t ∈ (α, w).

As we can see in figure 2.5, α = L−⌊L/w⌋w. Moreover, since we choose t uniformly
in [0, w),

E[M ] = α

w

(⌊
L

w

⌋
+ 1
)

+ (w − α)
w

⌊
L

w

⌋
=
⌊

L

w

⌋
+ α

w
= L

w
. ■

Let B1(x, r) denote the ℓ1-ball of radius r > 0 around a point x ∈ Rd. The next
lemma, provides a bound on the expected number of grid points that the ball contains.
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Lemma 2.16. For any x ∈ Rd and r > 0, we have

E[|B1(x, r) ∩ gw(Rd)|] ≤ (1 + 2r/w)d.

Proof. Let M := |B1(x, r) ∩ gw(Rd)| and C be the total number of grid cells inter-
secting B1(x, r). Each grid point corresponds to a grid cell, hence M is bounded by
C. Now, let Ci denote the number of grid cells that B1(x, r) intersects in the axis i.
Obviously, C ≤

∏
i∈[d] Ci (see Figure 2.6). Therefore,

E[M ] ≤ E[C] ≤ E

[
d∏

i=1
Ci

]
.

By Claim 2.15, we have that E[Ci] = 1 + 2r/w. Recall that the random shift ti is
independent per axis and so the Ci’s are also independent. Consequently,

E[M ] ≤ E

[
d∏

i=1
Ci

]
=

d∏
i=1

E[Ci] = (1 + 2r/w)d. ■

Figure 2.6: Grid cells intersecting an ℓ1 ball.

Notice that the bound of Lemma 2.16 also holds for any ℓp ball of radius r, as the
arguments in the proof apply for the ℓ∞ ball as well.





CHAPTER3
RANDOMIZED EMBEDDINGS FOR DOUBLING

SUBSETS OF ℓ1

3.1 A concentration bound for sums of Cauchyvariables
In this section, we present a concentration inequality for sums of Cauchy variables,
which serves as one of main tools for the analysis.
Recall the Cauchy distribution, denoted DC , with density

c(x) = 1
π

1
1 + x2 .

Unlike the Gaussian distribution, the Cauchy distribution has no mean, variance, and
moment generating function. However, for 0 < q < 1, the mean of the qth power of
the absolute value of a Cauchy random variable can be defined. More specifically, for
some X ∼ DC we have

E
[
|X|1/2

]
= 2

π

∫ ∞

0

√
x

1 + x2 dx = 2
π

π√
2

=
√

2.

The following lemma provides a bound for the moment-generating function of
|X|1/2.
Lemma 3.1. Let X ∼ DC . Then for any β > 1:

E
[
exp (−β|X|1/2)

]
≤ 2

β
.

Proof. For any constant β > 0, we have 1∫ 1

0
e−βx1/2

dx = 2
β2

(
1 − β + 1

eβ

)
. (3.1)

Moreover,

e−βx1/2
≤ e−β , ∀x ≥ 1, β > 0,

1
1 + x

≤ 1, ∀x ∈ [0, 1].

1See Appendix B for the proof of (3.1).

17
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Hence, for any β > 1,

E
[
exp (−β|X|1/2)

]
=
∫ ∞

−∞
e−β|x|1/2

· c(x) dx

= 2
π

∫ ∞

0
e−βx1/2

· 1
1 + x2 dx

= 2
π

∫ 1

0
e−βx1/2

· 1
1 + x2 dx + 2

π

∫ ∞

1
e−βx1/2

· 1
1 + x2 dx

≤ 2
π

∫ 1

0
e−βx1/2

dx + 2
π

∫ ∞

1
e−β · 1

1 + x2 dx

= 2
π

· 2
β2

(
1 − β + 1

eβ

)
+ 1

2eβ

≤ 4
πβ2 + 1

2eβ

≤ 3
2β2 + 1

2eβ

≤ 2
β

. ■

Now, consider a collection of k i.i.d. Cauchy variables, X1, . . . , Xk , and let S :=∑k
j=1 |Xj |. The non-existence of mean and moment generating function of the

Cauchy distribution makes it difficult to prove concentration bounds for S. There-
fore, we study the sum S̃ :=

∑k
j=1 |Xj |1/2 instead:

Lemma 3.2. For any t > 0,

Pr[S ≤ t] ≤ Pr[S̃ ≤
√

tk].

Proof. Set x = (X1, . . . , Xk) and observe that S = ∥x∥1 and S̃ = ∥x∥1/2
1/2. Hence, by

Claim 2.2 for p = 1 and q = 1/2,

S ≤ S̃2 ≤ k · S.

Recall that S and S̃ are random variables. Therefore, for any t > 0,

(S ≤ t =⇒ S̃ ≤
√

tk) =⇒ Pr[S ≤ t] ≤ Pr[S̃ ≤
√

tk]. ■

We use the bound on the moment-generating function, to prove a Chernoff-type
concentration bound for S̃, which by Lemma 3.2 translates directly into a concentra-
tion bound for S.

Lemma 3.3. For every D > 1,

Pr
[
S̃ ≤ E[S̃]

D

]
≤
(

10
D

)k

.

Proof. Since Xj ’s are independent, E[S] =
√

2k. Then, by Lemma 3.1 and Markov’s



CHAPTER 3. RANDOMIZED EMBEDDINGS FOR DOUBLING SUBSETS OF ℓ1 19

inequality, for any β > 1,

Pr
[
S̃ ≤ E[S̃]

D

]
= Pr

[
−βS̃ ≥ −β · E[S̃]

D

]
= Pr

[
exp(−βS̃) ≥ exp

(
−β · E[S̃]

D

)]
≤ E[exp(−βS̃)]

exp(−β E[S̃]/D)

= E[exp(−β|Xj |1/2)]k

exp(−β
√

2k/D)

≤
(

2
β

)k

· e
√

2βk/D.

Setting β = D completes the proof. ■

3.2 Computing approximate nets in ℓ1

One of our two embeddings requires the computation of an approximate r-net. We
follow the same idea as inTheorem 2.14, combining the greedy algorithmwith an LSH
family for the Hamming space.

Theorem 3.4. Let P ⊂ ℓd
1 such that |P | = n. Then, for any c > 0, r > 0, one

can compute a c-approximate r-net of P in time Õ(dn1+1/c′), where c′ = Ω(c). The
result is correct with high probability. The algorithm also returns the assignment of
each point to one point of the net, which covers it.

Proof. First, we assume r = 1, since we are able to re-scale the point set. Now, we
consider a randomly shifted grid with side-length 2. The probability that two points
p, q ∈ P fall into the same grid cell, is greater than 1 − ∥p − q∥1/2. For each non-
empty grid cell we snap points to a grid: each coordinate is rounded to the nearest
multiple of δ = 1/10dc. Then, coordinates are multiplied by 1/δ and each point
x = (x1, . . . , xd) ∈ [2δ]d is mapped to {0, 1}2d/δ by a function G as

G(x) = (g(x1), . . . , g(xd)),

where g(z) is a binary string of z ones followed by 2/δ − z zeros. For any two points
p, q in the same grid cell, let f(p),f(q) be the two binary strings which are obtained
by the above procedure. Notice that,

∥f(p) − f(q)∥1 ∈
(

2
δ

)
· ∥p − q∥1 ± 1.

Hence,

∥p − q∥1 ≤ 1 =⇒ ∥f(p) − f(q)∥1 ≤
(

2
δ

)
+ 1,

∥p − q∥1 ≥ c =⇒ ∥f(p) − f(q)∥1 ≥
(

2
δ

)
· c − 1.
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Now, we employ the LSH family of [HIM12], for the Hamming space. After stan-
dard concatenation, we can assume that the family is (ρ, c′ρ, n−1/c′

, n−1)-sensitive,
where ρ = (2/δ) + 1 and c′ = Ω(c).
Notice that for the above two-level hashing table we obtain the following guaran-

tees. Any two points p, q ∈ P , such that ∥p − q∥1 ≤ 1, fall into the same bucket with
probability at least p1/2. Any two points p, q ∈ P , such that ∥p − q∥1 ≥ c, fall into
the same bucket with probability at most p2.

Finally, we independently build k = Θ(n1/c′ log n) hashtables as above, where the
random hash function is defined as a concatenation of the function whichmaps points
to their grid cell id and one LSH function. We pick an arbitrary ordering p1, . . . , pn

of the points, and compute the approximate net in a greedy fashion. We start with p1,
and we add it to the net. We mark all (unmarked) points which fall at the same bucket
with p1, in one of the k hashtables, and are at distance ≤ cr. Then, we proceed with
p2. If p2 is unmarked, then we repeat the above. Otherwise, we proceed with p3. The
above iteration stops when all points have been marked. During the procedure, we
are able to store one pointer for each point, indicating the center which covered it.
Correctness. The probability that a good pair p, q does not fall into the same bucket

for any of the k hashtables is ≤ (1 − p1/2)k ≤ n−10. Hence, the packing property
holds, and the covering property holds because the above algorithm stops when all
points are marked.
Running time. The time to build the k hashtables is k · n = Õ(n1+1/c′). Then,

at most n queries are performed: for each query, we investigate k buckets and the
expected number of false positives is ≤ k · n2 · p2 = Õ(n1+1/c′). Hence, if we stop
after having seen a sufficient amount of false positives, we obtain time complexity
Õ(n1+1/c′) and the covering property holds with constant probability. We can repeat
the above procedure O(log n) times to obtain high probability of success. ■

3.3 Dimension reduction via approximate nets

In this section we describe the dimension reduction mapping for the ℓ1 norm via r-
nets. Let P ⊂ ℓd

1 be a set of n points with doubling constant λP . For some point
x ∈ Rd and r > 0, we denote with B1(x, r) the ℓ1-ball of radius r around x. The
embedding is non-linear and is carried out in two steps: Given P , ε > 0 and c ≥ 1,

1. we compute a c-approximate (ε/c)-net of P with the algorithm ofTheorem 3.4.
Let N be the output of the algorithm. In every iteration, a subset Ps ⊆ P is
covered by some point s ∈ N . Let g : P → N be the function that maps every
point of Ps to s.

2. Then, for every s ∈ N and any query point q ∈ ℓd
1 , we apply the linear map of

Theorem 1.5. That is, f(s) = As/T , whereA is a k×dmatrix with each element
being an i.i.d. Cauchy random variable. Recall that T is a scaling factor such
that T = Θ(k log (k/ε)).

We define the embedding to be h = f ◦g. We apply h for every point in P , and only
f for any query q. It is clear from the properties of the net that g incurs an additive
error of ε on the distances between q and P , so it suffices to study the distortion of
f . By the 1-stability property of the Cauchy distribution, the j-th coordinate of f(s)
is distributed as ∥s∥1 Yj , for some i.i.d. Yj ∼ DC . Hence, ∥f(s)∥1 = ∥s∥1 · S where
S :=

∑
j∈[k] |Yj |.
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Our analysis consists of studying separately the following disjoint subsets of N :
Points that lie at distance at most D0 from the query and points that lie at distance at
least D0, for some D0 > 1 chosen appropriately. For the former set, we can directly
apply Theorem 1.5, as it has bounded diameter.

Handling far points. The next lemma guarantees the low distortion for the points
of the latter set, i.e. those that are sufficiently far from the query. We consider the
sum of the square roots of each |Yj |, i.e., S̃ =

∑
j |Yj |1/2, in order to utilize the tools

of section 3.

Lemma 3.5. Fix a query point q ∈ ℓd
1 . For any ε ∈ (0, 1/2), c ≥ 1, δ ∈ (0, 1), there

exists D0 = O(log(k/ε)) such that for k = Θ
(
log2 λP · log(c/ε) + log(1/δ)

)
, with

probability at least 1 − δ,

∀s ∈ N : ∥s − q∥1 ≥ D0 =⇒ ∥f(s) − f(q)∥1 ≥ 4.

Proof. Let D0 > 1 and assume wlog that the query point lies at the origin (q = 0).
We define the following subsets of N :

Ni = {s ∈ N | Di ≤ ∥s∥1 < Di+1}, Di = 22iD0, i = 0, 1, 2, . . .

Notice that Ni ⊆ B1(q, Di+1) ∩ N . Then, by Lemma 2.12 for r = ε/c, |Ni| is at most
λ

⌈log(4cDi+1/ε)⌉
P ≤ λ

4 log(cDi+1/ε)
P . Therefore, by the union bound, and Lemma 3.2

Pr
[
∃i∃s ∈ Ni

∣∣∣∣ ∥f(s)∥1 ≤
4 ∥s∥1

Di

]
= Pr

[
∃i∃s ∈ Ni

∣∣∣∣S ≤ 4T

Di

]
≤

∞∑
i=0

|Ni| Pr
[

S̃ ≤
√

4kT√
Di

]

=
∞∑

i=0
|Ni| Pr

[
S̃ ≤ E[S̃] ·

√
2T

k22iD0

]
For D0 = ⌈800T/k⌉ = Θ(log(k/ε)) and k > 4 · log λP · log(cD0/ε) + 2 log(2λP /δ),
by Lemma 3.3:

∞∑
i=0

|Ni| Pr
[
S̃ ≤ E[S̃]

10 · 2i+1

]
≤

∞∑
i=0

λ
4 log (cDi+1/ε)
P

(
1

2i+1

)k

=
∞∑

i=0

2log(λP )(4 log (cD0/ε)+2i+2)

2k(i+1)

≤
∞∑

i=0

2log(λP )·4 log (cD0/ε) · 22 log(λP )(i+1)

2(4·log λP ·log(cD0/ε))(i+1) · 22 log(2λP /δ))(i+1)

≤
∞∑

i=0
2−2 log(2/δ))(i+1)

=
∞∑

i=0

(
δ2

4

)i

− 1

= δ2

4 − δ2

≤ δ.
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Finally, for some large enough constant C , we demand

4 · log λP · log(cD0/ε) + 2 log(2λP /δ) < 4(log λP · log(cD0/ε) + log(λP /δ))
< 8(log λP · log(cD0/ε) + log(1/δ))
< C(log λP · log(c log k/ε) + log(1/δ))
< k.

which is satisfied for k = Θ
(
log2 λP · log(c/ε) + log(1/δ)

)
. ■

Now that we handled the (very) far neighbors, we can prove that the mapping
satisfies the desirable conditions for a near neighbor-preserving embedding.

Theorem 3.6. Let P ⊂ ℓd
1 such that |P | = n. For any ε < 1/2 and c ≥ 1, there

is a non-linear randomized embedding h = f ◦ g : ℓd
1 → ℓk

1 with target dimension
k = (log λP · log(c/ε))Θ(1/ε)

/ζ(ε), for a function ζ(ε) > 0 depending only on ε,
such that for any q ∈ ℓd

1 , if there exists p∗ ∈ P such that ∥p∗ − q∥1 ≤ 1, then with
probability Ω(ε),

∥h(p∗) − f(q)∥1 ≤ 1 + 3ε,

∀p ∈ P : ∥p − q∥1 > 1 + 9ε =⇒ ∥h(p) − f(q)∥1 > 1 + 3ε.

The set P can be embedded in time Õ(dn1+1/Ω(c)), and any query q ∈ ℓd
1 can be

embedded in time O(dk).

Proof. Let D0 = Θ(log(k/ε)) and assume for simplicity (wlog) that q = 0. Then, by
Lemma 3.5 for k = Θ

(
log2 λP · log(c/ε)

)
, with probability at least 1 − ε/5

∀p ∈ P : ∥p − q∥1 ≥ D0 + ε =⇒ ∥h(p) − f(q)∥1 ≥ 4.

By Theorem 1.5 for γ = ε/10 and δ = ε/(5λ
8 log (cD0/ε)
P ), with probability at least

1 − ε/5

∀p ∈ P : ∥p − q∥1 ∈ (1 + 9ε, D0 + ε) =⇒ ∥h(p) − f(q)∥1 ≥ (1 + 8ε)(1 − ε)
> 1 + 3ε.

Moreover,

Pr
[

∥h(p∗) − f(q)∥1 ≤ 1 + 3ε
]

≥ 1 − 1 + ε/10
1 + ε

≥ 1 − (1 − ε/2).

The target dimension then, needs to satisfy

k ≥
(

ln (5λ
8 log (cD0/ε)
P /ε)

)2/ε

ζ(ε)
=
(
Θ(log log k · log λP + log λP · ln(c/ε))

)2/ε

ζ(ε)

Hence, for k = (log λP · log(c/ε))Θ(1/ε)
/ζ(ε) we achieve total probability of success

Ω(ε), which completes the proof. ■
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3.4 Dimension reduction via randomly shifted grids

In this section, we present a simplified embedding which grids instead of nets. Recall
the randomly shifted grid function

gw(x) =
(⌊

x1 − t1

w

⌋
, ...,

⌊
xd − td

w

⌋)
,

where t1, . . . , td independent uniform random variables in the interval [0, w]. induces
a randomly shifted grid in Rd.

Now, let P ⊂ ℓd
1 be a set of n points with doubling constant λP , q ∈ ℓd

1 a query
point, and ε > 0. The embedding is similar as before: First, we computeG := gε/d(P ),
and then we randomly project G and q with f , as in Theorem 1.5.
By choosing side lengthw = ε/d, we have that the ℓ1-diameter of each cell is ε, and

therefore G is an ε-covering set of P . That is, every point p ∈ P lies within distance
ε from some point in G.

Properties of G.
We can bound the number of points of G that lie inside a bounded ball around the
query, using the doubling constant:

Lemma 3.7. Let R > 1 and P ′ := B1(q, R) ∩ P . Then, for w = ε/d

E [|gw(P ′)|] ≤ 8λ
2 log(dR/ε)
P .

Proof. By the doubling constant, there exists a set of balls of radius ε/d2 centered at
points in P ′, of cardinality at most λ

2 log(dR/ε)
P which covers P ′. By Lemma 2.16, the

expected number of grid points contained in each ball is at most(
1 + 2(ε/d2)/(ε/d)

)d = (1 + 2/d)d ≤ e2.

Hence, the proof follows by linearity of expectation. ■

The next lemma shows that with constant probability, the growth on the number
of representatives, as we move away from q, is bounded.

Lemma 3.8. Let {Di}i∈N be a sequence of radii such that for any i: Di+1 = 4 · Di,
and let Ai be the points of gw(P ) within distance Di+1 = 22(i+1)D0 from q. Then,
with probability at least 1/3,

∀i ∈ {−1, 0, . . .} : |Ai| ≤ 4i+3λ
2 log(2dDi+1/ε)
P .

Proof. By Lemma 3.7, E[|Ai|] ≤ 8λ
2 log(2dDi+1/ε)
P for every i ∈ {−1, 0, . . .}. Then, a

union bound followed by Markov’s inequality yields

Pr
[
∃i ∈ {0, 1, . . .} : |Ai| ≥ 4i+1 E[|Ai|]

]
≤ 1/3.

In addition,
Pr [|A−1| ≥ 4E[|Ai|]] ≤ 1/4. ■
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Embedding analysis
The analysis is the same as with approximate nets; first we handle the representatives
the lie sufficiently far from the query, and we invoke Theorem 1.5 for the rest.
The next lemma is analogous to Lemma 3.5.

Lemma 3.9. Fix a query point q ∈ ℓd
1 . For any ε < 1/2, c ≥ 1, δ ∈ (0, 1), there

exists D0 = O(log(k/ε)) such that for k = Θ
(
log2 λP · log(d/ε) + log(1/δ)

)
, with

probability at least 1 − δ,

∀s ∈ G : ∥s − q∥1 ≥ D0 =⇒ ∥f(s) − f(q))∥1 ≥ 4.

Proof. Let D0 > 1 and assume wlog that the query point lies at the origin (q = 0).
We define the following subsets of N :

Gi = {s ∈ G | Di ≤ ∥s∥1 < Di+1}, Di = 22iD0, i = 0, 1, 2, . . .

Notice that Gi ⊆ B1(q, Di+1) ∩ G. Then, by Lemma 3.8, with constant probability,

∀i : |Gi| ≤ 4i+3λ
2 log(2dDi+1/ε)
P .

Therefore, by the union bound, and Lemma 3.2

Pr
[
∃i∃s ∈ Gi

∣∣∣∣ ∥f(s)∥1 ≤
4 ∥s∥1

Di

]
= Pr

[
∃i∃s ∈ Gi

∣∣∣∣S ≤ 4T

Di

]
≤

∞∑
i=0

|Gi| Pr
[

S̃ ≤
√

4kT√
Di

]

=
∞∑

i=0
|Gi| Pr

[
S̃ ≤ E[S̃] ·

√
2T

k22iD0

]

For k > 2 log λP · log(2dD0/ε) + 4 log(2λP /δ) + 6 and D0 = ⌈800T/k⌉ =
Θ(log(k/ε)), by Lemma 3.3:

∞∑
i=0

|Gi| Pr
[
S̃ ≤ E[S̃]

10 · 2i+1

]
≤

∞∑
i=0

4i+3λ
2 log(2dDi+1/ε)
P

(
1

2i+1

)k

.

=
∞∑

i=0

22 log(λP )(log (2dD0/ε)+2i+2)+2i+6

2k(i+1)

≤
∞∑

i=0

22 log(λP )·log (2dD0/ε) · 24 log(λP )(i+1) · 22i+6

2[log(λP )·log (2dD0/ε)+4 log(2λP /δ)+6](i+1)

≤
∞∑

i=0
2−2 log(4/δ)(i+1)

=
∞∑

i=0

(
δ4

16

)i

− 1

= δ4

16 − δ4

≤ δ.
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For some large enough constant C , we demand

2 log λP · log(2dD0/ε) + 4 log(2λP /δ) + 6 < 8[log λP · log(dD0/ε) + log(λP /δ)]
< 16[log λP · log(dD0/ε) + log(1/δ)]
< C[log λP · log(d log k/ε) + log(1/δ)]
< k.

which is satisfied for k = Θ
(
log2 λP · log(d/ε) + log(1/δ)

)
. ■

Finally, we prove that the embedding is (1+O(ε))-Near neighbor-preserving, with
probability of correctness Ω(ε). We follow the same reasoning as in the proof of
Theorem 3.6.

Theorem 3.10. Let P ⊂ ℓd
1 such that |P | = n. For any ε < 1/2, there is a non-linear

randomized embedding h′ : ℓd
1 → ℓk

1 , where k = (log λP · log(d/ε))Θ(1/ε)
/ζ(ε), for

a function ζ(ε) > 0 depending only on ε, such that for any q ∈ ℓd
1 , if there exists

p∗ ∈ P such that ∥p∗ − q∥1 ≤ 1, then with probability Ω(ε),

∥h′(p∗) − f(q)∥1 ≤ 1 + 3ε,

∀p ∈ P : ∥p − q∥1 > 1 + 9ε =⇒ ∥h′(p) − f(q)∥1 > 1 + 3ε.

Any point can be embedded in time O(dk).

Proof. Let h′ = f ◦ gε/d, where f is the randomized linear map defined in section
4. As before, we apply h′ for every point in P , and only f for queries. Note that the
randomly shifted grid incurs an additive error of ε in the distances between q and P .
Let D0 = Θ(log(k/ε)) and assume for simplicity (wlog) that q = 0. Then, by

Lemma 3.9, for k = Θ
(
log2 λP · log(d/ε)

)
, with probability at least 1 − ε/5

∀p ∈ P : ∥p − q∥1 ≥ D0 + ε =⇒ ∥h(p) − f(q)∥1 ≥ 4.

Now, we are able to useTheorem 1.5 for points which are at distance at most D0 +ε
from q, and the near neighbor. By Lemma 3.8, with constant probability, the number
of grid points at distance ≤ D0 + ε, is at most 32 · λ

4 log(dD0/ε)
P . Hence, by Theorem

1.5 for γ = ε/10 and δ = ε/(160λ
4 log (dD0/ε)
P ), with probability at least 1 − ε/5

∀p ∈ P : ∥p − q∥1 ∈ (1 + 9ε, D0 + ε) =⇒ ∥h(p) − f(q)∥1 > 1 + 3ε.

Moreover, with probability at least ε/2

∥h′(p∗) − f(q)∥1 ≤ 1 + 3ε.

As in Theorem 3.6, the target dimension needs to satisfy

k ≥
(

ln (160λ
4 log (dD0/ε)
P /ε)

)2/ε

ζ(ε)
=
(
Θ(log log k · log λP + log λP · ln(d/ε))

)2/ε

ζ(ε)

Hence, for k = (log λP · log(d/ε))Θ(1/ε)
/ζ(ε)we achieve total probability of success

Ω(ε). ■





CHAPTER4
CONCLUSION

Discussion on results

The results in this thesis show that efficient dimensionality reduction for doubling
subsets of ℓ1 is possible, in the context of ANN searching. We presented two versions
of a non-linear, randomized embedding. In each version, we represent the pointset
with a covering set, and then randomly project this set and any query. The embedding
is (1 + O(ε))-near neighbor-preserving, with probability of correctness Ω(ε). In the
first version–Theorem 3.6–we used approximate nets as the representative set, while
the second version–Theorem 3.10–considers randomly shifted grids instead. The fol-
lowing table compares target dimension and computation time.

Embedding Target dimension Computation time
Theorem 3.6 k = (log λP · log(c/ε))Θ(1/ε)

/ζ(ε) Õ(dn1+1/Ω(c))

Theorem 3.10 k = (log λP · log(d/ε))Θ(1/ε)
/ζ(ε) O(dkn)

Theorem 3.6 provides with a trade-off between the preprocessing time required
and the target dimension, via the parameter c > 1. For example, for c = O(1), target
dimension depends only on log λP and ε, and preprocessing time is Õ(dn1+ρ), for
ρ < 1. Setting, c = log n, reduces the preprocess to near linear, Õ(dn1+o(1)), but k
becomes polynomial in log log n.
On the other hand, Theorem 3.10 has the advantage of fast preprocessing; any

point can be embedded in O(dk) time. In addition, the embedding is oblivious to the
pointset, as it is well defined on the grid, and may also be of practical interest since it
is very easy to implement. However, the target dimension now depends on log d in-
stead of log c. For near-linear preprocessing, Theorem 3.10 is obviously stronger than
Theorem 3.6 when d = polylog(n), as we can achieve the same target dimension with
exact linear preprocessing time.
Notice that any potential improvements toTheorem 1.5 could lead to improvements

ofTheorems 3.6 and 3.10. The target dimension in both theorems derives from a direct
application of Theorem 1.5 to the representative points which lie inside a bounding
ball centered at the query.

27
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Algorithmic implications
Our embedding can be combined with the bucketing method of [HIM12] for the
(1+ε)-ANN problem in ℓd

1 , admitting better space bounds, while preserving the
support of fast queries. This data structure requires preprocessing time and space
O(n)×O(1/ε)d and has query time O(d). Space and preprocessing bounds can be
improved to nO(log(1/ε)/ε2), with slightly slower O(d · log n/ε2) query time, for gen-
eral subsets of ℓ1. This is done via a JL-like dimension reduction, where the points
are first mapped to the Hamming space, which is isometric to ℓ2.
However, for subsets of ℓ1 of fixed doubling dimension, one can combine the gen-

eral bucketing data structure with the embedding of Theorem 3.6, improving upon
the bounds obtained by the JL-like embedding, both in space and query time. The
following table sums up the comparison.

JL Thm 3.6 (c= log n) Thm 3.6 (c=O(1))
Preprocess nO(log( 1

ε )/ε2) Õ(dn1+o(1)) Õ(dn1+1/c)

Space nO(log( 1
ε )/ε2) n1+o(1) n1+o(1)

Query O(d · log n/ε2) O(d)×(log log n)O(1/ε) O(d)×(log( 1
ε ))O(1/ε)

OpenQuestions
An immediate open question is whether better bounds on the target dimension can be
proved for the embedding of Theorem 1.5. As already mentioned, a positive answer
would imply better bounds for Theorems 3.6 and 3.10 as well. Moreover, an analysis
of our embedding which does not rely on the employment of Theorem 1.5, might also
be of interest.
Stable distributions have been used in designing LSH families and non-linear range

embeddings for ℓp norms, with provable guarantees. An interesting open problem
then is whether the linear mapping à la Johnson-Lindenstrauss can be proven to be
NN-preserving for general (or even doubling) subsets of ℓp, p ∈ (0, 2], by substituting
the Gaussian matrix with a matrix whose elements are i.i.d. p-stable variables.



APPENDICES

A Proof of Claim 2.2

Claim. For any vector x ∈ Rd and p > q > 0

∥x∥p ≤ ∥x∥q ≤ d1/q−1/p ∥x∥p .

Proof. We start with the left part of the inequality by showing that ∥x∥p ≤ ∥x∥q . If
x = 0, its obviously true. Otherwise, let yi = |xi|/ ∥x∥p ≤ 1, for every i ∈ [d].
Therefore,

∀i ∈ [d] : yp
i ≤ yq

i =⇒ 1 ≤ ∥y∥q =⇒ ∥x∥p ≤ ∥x∥q .

For the right part of the inequality, we invoke Hölder’s Inequality: Let r ∈ [1, ∞).
Then for any a, b ∈ Rd

d∑
i=1

|aibi| ≤

(
d∑

i=1
|ai|r

)1/r ( d∑
i=1

|bi|
r

r−1

)1−1/r

.

Now, set r = p/q > 1, a = (|x1|q, . . . , |xd|q) and b = 1. Then,

d∑
i=1

|aibi| ≤

(
d∑

i=1
|ai|r

)1/r ( d∑
i=1

|bi|
r

r−1

)1−1/r

,

d∑
i=1

|xi|q ≤

(
d∑

i=1
|xi|p

)q/p

d1−q/p,

(
d∑

i=1
|xi|q

)1/q

≤

( d∑
i=1

|xi|p
)q/p

d1−q/p

1/q

.

Subsequently,
∥x∥q ≤ d1/q−1/p ∥x∥p . ■
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30 B. PROOF OF EQUALITY (3.1)

B Proof of Equality (3.1)
Claim. For any t > 0 ∫ 1

0
e−tx1/2

dx = 2
t2

(
1 − t + 1

et

)
.

Proof. We have

∫ 1

0
e−tx1/2

dx =
∫ 1

0

e−tx1/2

x1/2 · x1/2 dx =
∫ 1

0

(
−2e−tx1/2

t

)′

· x1/2 dx.

Integration by parts yields

∫ 1

0

(
−2e−tx1/2

t

)′

· x1/2 dx =

[
−2e−tx1/2

t
· x1/2

]1

0

−
∫ 1

0

−2e−tx1/2

t
· (x1/2)′ dx

= −2e−t

t
+
∫ 1

0

e−tx1/2

tx1/2 dx.

Set u = tx1/2, which implies

2
t

du = 1
x1/2 dx.

Therefore,

−2e−t

t
+
∫ 1

0

e−tx1/2

tx1/2 = −2e−t

t
+ 2

t2

∫ t

0
e−u du.

= −2te−t

t2 + 2
t2 (1 − e−t)

= 2
t2

(
1 − t + 1

et

)
. ■
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