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Hepiinyn

2ty epyocio ovtn PEAETNOOUE dVO KEVIPIKA TPOPANUATO GYETIKE e TNV
EMPPON oTa KOWmVIKA diktva. To mpdTo £ivar To TPOPANUA TNG ETPPONG OTAL
KOW®VIKA diktua Yo 1o omoio mapovsidlovpe v padnuotikn Bepereimon nicw
amd Tovg dVo Pacikdtepovg arlyopifuovg mTov cuvaviovpe ot Pipioypagio Ko-
g Tpoywpovpe Kol 6TV VAoToinon Tovg. Emiong mapovoidlovpe kot dvo Po-
GlKG HOVTEAQ Y10 TNV O14000T TNG EMPPONG, TO HOVIEAO OVEEAPTNTNG S1AO0CNG
KOL TO LOVTEAOL Ypappkoy KatweAiov. H cuvaptnon emppng kot ota Vo ovtd
HovTéLa Tapovctalel TV onuavTikn 1ot ta submodularity To onoio e€acporilet
™V amodotikdTnTe Tov greedy alyopifuov.

To devTepO TPOPANUO TOL pPEAETNCAE ivan TO TPOPANLA TG LAOnong TV
TOOVOTHTOV ETPPONG OO OEOOUEVO TPAYUATIKMOV KOWVOVIK®OV JIKTO®OV. YAOTO1-
noape Tovg alyopibpovg mov mpoteivovrat ot PiPAoypapio Tovg onoiovg ypnot-
LLOTIOUGOLLLE Y10 VO DVTOAOYIGOVLE TNG TOAVOTNTEG EXPPONG KO VOL ATTOTIUTCOVLLE
™V akpifela TpoPAeYNG TV S14POPOV LOVTEA®V. XPEIAOTNKAY UIKPES TPOTOTOL-
NGELS GTOVG OPYLKOVG OAYOPIOLLOVG Y10l TNV TPOGAUPLOYN TOVG GE KATELOVLVOLEVOLS
ypbpovs. Emiong onovpynoape pio Bipiobnkn vAomompévn o€ ruby n omoia
petpatpénet ta dedopéva tov github archive oe KatdAAnin popen| a&iwmomonun
a6 toug aiyopifuovs. Kataokevdoape Aowmdv va KotvoOpylo GOVOAO OEOOE-
VOV KOTAAANAO Y100 GVAALGT TNG EMPPOTG.

TpéEape tovg adlyopiBuovg yio v pabnon g emppons ot dedOUEVO TV
Kowovikov oktoov digg kot github. EmBefoaidoape v amotelespotikotnTa
TOV LOVTEAW®V oTNV TPOPAEYN TG O1ddoong Tev likes/stars péca 610 dikTvo. QoT1060
o€ avtiBeon pe v PipAoypagia dev damotdcape Kdmoo feATimon pe v mpo-
601MKm ToV ¥PAVOL Gav TaPdyoVTa GTNV GLVAPTNON HovTEAOTOINoNG NG TThovo-
mrog emppone. [apampnoape pia pikpn Pertioon oty tpoPreyiuodtto dtav
YPNOUOTOMCAUE LOVO TOVG YPNOTES Y10 TOLG OTOI0VE Elyoe EVOEIEELS EMPPONG
OV oo £voL OEGOUEVO KATMPAL.

Eniong mpoteivovpe pia katvovpylo Tpocéyyion 6Tov VITOAOYIGUO THG TOOVO-
TNTOG ETPPONG EIGAYOVTAG TNV SLOKPLOT] AVALEGO GE KATOIES EVEPYELEG TMV YPN-
OTAOV. AVTIHETOTIGOUE TNV EVEPYELD TNG ONUIOVPYIOG UG ONIOGIELONG GOV KATL
70 01010 B0 £lye SLPOPETIKTN EMIOPAGT GTOVE YPNOTES Al TNV evEPYELa Tov like o€



pio dOnpocicvon. H Bedtioon avtn dev Tav 1d1aitepa ELPAVIG GTO TOC CUTVES TOL
ypnopomrotovvtal oty PAoypagio aALE NTAV APKETA ELPAVIG OTO. precission
recall curves mov Bewpodvtat kaAdTEPES Yo TNV eKkTipnomn ™G anddoong Otav To
dedopéva LLag OeV Elval IGOKOTAVEUNLEVA.



Abstract

In this thesis we explored two main problems regarding influence in social
networks. The one is the influence maximization problem and the main approximation
algorithms that can be found throughout literature. In the same context we also
present two different models for the information/in- fluence diffusion in the social
networks Independent Cascade and Linear Threshold models. Under both of these
models the influence function re- mains submodular which ensures the approximation
efficiency of the greedy algorithm. We provide a robust python implementation
for aforementioned models, the greedy algorithm, as well as an optimized version
(lazy-greedy) which exploits the submodular property of the influence function to
reduce computation steps.

The second problem regarding influence, is how we can learn these influ- ence
probabilities that we take for granted in the first problem, in a real social network.
We proceed in the implementation of the algorithms proposed in the literature
which we use to calculate the influence probabilities and eval- uate the accuracy
of the various proposed models. We have implemented minor modifications to the
algorithms to adapt them to a directed network instead of the undirected initial
implementation. We also create a ruby gem to parse github archive events into
mysql tables, digestible from the learning and evaluating algorithms, producing a
new social network dataset.

Running the learning algorithms over the action logs of both digg and github
social networks we managed to confirm the findings in literature regarding the
predictability of the proposed models. We did not detect any improvement though
using time conscious models , which are a lot more expensive computationally
compared to the static models. We found a minor improvement in the digg social
network when restricting our evaluation only on users with influenceability above
a certain threshold, a finding that is not reproducible on github dataset.

We proposed a novice approach in calculating influence probabilities by distinguishing
the effect of different types of actions. The new model did not exhibit any improvement
in roc curves but there was a significant improve- ment in precision recall curves
which might be a better evaluation method for this specific problem due to the fact
that our dataset is unbalanced.
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Introduction

Online social networks have been around for about 15 years. They gradually
became part of our day to day life, and the extend to which they influence our lives
is beyond doubt nowadays. Social networks are the way we find new friends and
the way we learn news about the world. They also give us the ability to express
our opinion as well as our support or disapproval (like or dislike) on the events
happening in the context of a network.

Online social networks enabled the spread of information in a global scale.
Phenomena such as virality became possible and quite interesting from a marketing
as well as a scientific perspective. It is because of the emergence of online social
networks that we are now able to study these phenomena on large datasets of social
network activity.

For the purposes of this thesis we perceive a social network by its mathematical
representation as a graph. Based on the action of a user following another user in
the network we can construct a directed graph. We focus mainly on the phenomenon
of influence, which a field of a very active research in the last 10 years. An example
of influence would be when a user in a network creates a new post and some of
her/his social connections, in a directed network these would be the users following
her/him, like or dislike the post. In this case we may assume that the users that
liked the article were influenced and their action may cascade further through their
connections.

Looking into some examples of social influence we can find in the literature.
A famous study by Christakis and Fowler[[12] was based on the medical records of
12,000 patients. They constructed an offline social network based on these records,
with different types of relationships between the users including friendship, sibling,
spouse etc. Their aim was to detect a correlation between non-infectious health
conditions and the neighbors of a user. Among other results they found that having
an obese friend makes an individual 171% more likely to be obese compared to
a randomly chosen person. This of course may be an effect of homophily rather



than influence.

Another famous example is the Hotmail phenomenon demonstrated by Hugo
and Garnsey [[L3]]. In the early 1990s Hotmail was a relatively small e-mail service
provider. In order to boost their brand they started appending in each mail the
phrase ”Join the world’s largest e-mail service with MSN Hotmail. http://www.hotmail.com”.
The effect of this appended message was that in 18 months Hotmail became the
number one e-mail provider with 8 million users.

There are various applications of the study of information and influence propagation,
the most obvious of which is viral marketing. The goal in such context would be to
identify a small number of nodes in a network that would maximize the spread of
information. This is the field of influence maximization which is very interesting
from algorithmic and mathematical perspective. The main ideas of this field will
be presented in the following chapter.
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Influence maximization

2.1 Introduction

In this chapter we present and examine the literature regarding the problem of
influence maximization. Furthermore we will delve inside the logic of the basic
models and algorithms through which we are able to provide an effective approximate
solution to the problem of influence maximization. The models that we examine
take as granted the monotonous increase of a node’s tendency to activate as it’s
neighbors are. They also focus on the gradual condition where a node may only
be activated and not the opposite. So to put it in simple words: as more of node’s
u in-neighbors are being activated, the activation probability of node u increases,
and in the case of activation the probability that it’s neighbors will be activated
increases as well.

2.2 Information diffusion models

To approach the problem of influence maximization we need to come up with
a model for the information diffusion that will simulate the real life phenomenon.
The two most popular such models are the Independent Cascade model and the
Linear Threshold model.

In both models mentioned the influence probability function holds two important
properties: submodularity and monotonicity. The definition of submodular functions
follows:

Definition 2.2.1. A function f is said to be submodular if the following condition
holds:
F(SU{u}) = f(S) < f(TUw)— f(T), where S CT. 2.1



In the context of graphs and the influence probability function this means that
the smaller the set of activators that are already selected the biggest the contribution
of a newly selected node. This property allows for a good approximation solution
as has been shown by Nemhauser et al.[J].

2.2.1 Independent Cascade model

This model was first introduced by Goldenberg et al. [4,5] to model viral
marketing and the inspiration behind it came from the field of interacting particle
systems. Starting from an initial set of nodes which we name Seed set, every
node in this set has a probability to activate it’s neighboring nodes. The activation
process is stochastic and each attempt is independent from any other. Through this
process new nodes are added in the active set which may activate new nodes.

Definition 2.2.2. Given a graph G(V, F) and a node u, we define as reachable set
XE the set of nodes that it is possible to be reached from node u through the edges
of set F.

Based on this definition we will describe the way independent cascade model
works. We may see the activation process of each user as a coin toss. If the result
is positive we regard the user as activated. And since each activation attempt
is independent from every other attempt we can use the principle of deferred
decisions and perform the coin toss at once. So from the initial graph we can take
the activated graph that will contain only the active subset of the edges.

Definition 2.2.3. Independent Cascade Model

Given a graph G(V, E) and the influence probability for each edge p{e}ccp.
For a set of independent and uniformly distributed random variables in [0, 1],
{U.}cer we define the set of active edges as [ = {e € F : p. > U.}. Independent
Cascade Model for graph G and probabilities p defines for any initial seed set .S
to final set of active nodes as A;(S) = Uyes X!

Set X! can be understood as the influence set of node u in the context of the
random activation of edges /. We consider the set of influence of the seed set .S as
the union of influence sets of all nodes included in S.

What follows is the proof of the important property of submodularity we defined
earlier.

Theorem 1. Submodularity in ICM
The function o(S) that gives total influence for a seed set S is submodular.

Amooeiln. The expression that gives us the total influence is:



a(8) = P(I =) Ai(S)| 22)

iCE
The meaning of the above expression is that the total influence is the sum over
all subsets 7 of the product of the probability to get a specific set I with the number
of activated nodes. It is easy to prove that any linear combination of submodular
functions is also submodular. So we just need to prove that |A;(.S)| is submodular.

fi(SU{u}) — fi(S) = |Ai(S) U X | — [A:(9)]
= | X} — [4:(S) N X[
> | X, — [A(T) N X}
= |Ai(T) U X | — |Ai(T)]|
= fi(T Uu) — fi(T)

We used the formula |A U B| = |A| + |B| — |A N B| and the fact that A;(.S)
1s monotone.
O

2.2.2 Linear Threshold model

In this model each node u in the network is influenced by each in-neighbor w
with a weight b, ,, € [0, 1]. Each node has a threshold 6, in the interval [0, 1]. This
threshold represents the total weight that needs to be imposed in this node in order
to activate.

The diffusion process takes place in discrete steps. In step ¢ every node that
has been activated in the previous step stays activated. New nodes are activated if
the following condition holds:

S buw >0 (2.3)
w—u,w active
The threshold for each node is selected uniformly at random. This is how we
model the lack of knowledge for the threshold. At the end we will need to take the
average price over all the values of the threshold.
The proof that influence function is submodular over this model is based in a
more general version called Triggering Model. We will just provide its definition:

Definition 2.2.4. Triggering Model

Each node in the graph selects a triggering set at random from the set of its
in-neighbors. Initially we set the seed set as activated. For the rest of the nodes if
one of nodes from its triggering set gets activated he gets activated too.

10



It can be shown for that for any instance of the Triggering Model influence
function is submodular, and also the reduction of Linear Threshold Model into it.

2.2.3 Number of simulations

An important note on the previous sections dedicated to the diffusion models
is the following. Based on Chernoff-Hoeffding bounds theorem we can determine
the number of simulations that we need to run in order the results we get are within
acceptable limits from the real value:

Proposition 1. If the diffusion process with a seed set S is repeated independently
at least

Q(Z—jln(l/é)) (24)

times, then the mean number of activated nodes we get from these repetitions
is a (1 + €)-approximation of ¢(S) with probability at least 1 — 4.

2.3 Hill-climbing algorithm

In the diffusion models we described previously submodularity is an important
property because it can be used to provide a good approximation for the solution of
the Influence maximization problem. More precisely we know that locally optimal
solutions ensure a good final spread, thus starting from an initially empty set in
each iteration we will add in the activated set the node that has the maximum
mean contribution across all simulations.

Algorithm 1 Hill-climbing algorithm

1: procedure hill-climbing(G(V, E), {pe }ecr, k)
2 So=0

3 for : = 0 to k do

4: S; = argmazyes,; [0(S; U{u} — a(S;)]
5 Siy1 = S; U {si}

6 return S,

The term argmaz refers to the node that we need to use in the following term
in order to maximize. What is not determined here is the way in which argmax
will be calculated. This may be approximated using Monte Carlo simulations on
the diffusion models we presented earlier.

11



2.3.1 Efficiency of the Hill-climbing algorithm

In this section we will show that the hill — climbing algorithm ensures that
the seed set it returns will give us influence greater than or equal to the (1 — 1/¢)
of the influence of the optimal set. It is important to note that the term (1 — 1/e)
arises in the limit that seed set’s size goes to infinity. In order to be able to prove
that the hill — climbing algorithm has the efficiency we described earlier we need
to walk through some intermediate steps, and definitions.

Lemma 1. Telescoping
For a submodular function f, and for every set A and B = {by,...,bs} the
following holds:

fLAUB) - f(A) < Z[f(A Ub;) — f(A)] (2.5)

Armdoderén. We initially define the sets By = , By = {b1},...,B; = {b1,...,b;},
or in a recursive formula B; = B;_; U {b;}

k

FAUB) = f(A) =Y [f(AUB;) = f(AUB; ]

=1

— Z[f(A UB, 1 U{b}) — f(AUB;))]

Definition 2.3.1. Marginal Increments
Given a set S;_; marginal increment in step ¢ id defined as

0 = f(Si) — f(Siz1) = max(f(Si1 U{u}) — f(Si-1) (2.6)

Lemma 2. Accretion
Let S; be the set that hill — climbing algorithm is giving us after step ¢, and a
set T" of size k. Then it holds:

1

F(Si) 2 (1= D)F(S) + L A(T) )

12



Amooeiln.

k
< Z 0iy1 = kit

The first step is based on the monotonicity of f. In the last step replacing with

8 = f(Sis1) — f(Si) we get 2.7).
OJ

Now we are able to prove the following theorem.
Theorem 2. Efficiency of approximation .
The hill — climbing algorithm returns a set S for which the following holds:
~ 1
o(3) = (1= =)o (S (2.8)
e

where S* is the optimal seed set.

Andoeiln. First we will show the following:
1..
F(8) = [1= (1= 2)1A(T) 2.9)

We can show this using induction. The following is true f() > 0.

F(Si) 2 (1= D)F(S) + L A(T)
> (1= )1 = (1= D)) + ()
= [1- (1 - )AT)

the first step is based on (2.7), and the second on the assumption of induction.
In the case where ¢ = kK and T' = 5™ we get:

F(80) 2 1= (1= M)

and in the limit £ — oo:

13



2.4 Lazy Evaluation

In the previous sections we have presented the initial approach in the problem
of influence maximization. The algorithms and models presented there are not
easily used in big datasets. Various performance improvements on the greedy algorithm
have come to surface in the years following the publication from Kempe et al.[f].
Improvements have also been presented in the models used by the algorithms.

The lazy greedy algorithm is a well known optimization technique first proposed
by Minoux[[7]. The main idea is to avoid calculations that are not necessary. Let f
be the submodular and monotone function we aim to maximize. Let f(u|S) be the
marginal gain of adding element u to set S, f(u|S) = f(S U {u}) — f(S). In the
i-th iteration of the greedy algorithm, we have selected a set S and the algorithm
evaluated f(w|S) for w € V \ S. Let’s say that in a previous iteration of the
algorithm the selected set is S’ C S and we have evaluated f(z|S’) forx € V' \ S
where f(z|S’) < f(w|S). Then by the submodularity property of function f we
get f(z|S) < f(z|9") < f(w|S). This means that there is no need to evaluate
f(z|S) since we know that this is going to be less or equal to f(w|S).

Algorithm 2 Lazy greedy algorithm

1: procedure LazyGreedy(k, f)

2 initialize S = ; priority queue () = ; iteration = 1
3 for: = 1ton do

4 umg = f(u]);ui=1

5: insert v into () with u.mg as the key
6 while iteration < k do

7 extract max element u of ()

8 if u.i. = iteration then

9 S = S U{u}; iteration + +

10: else

11: u.mg = f(u|S); u.i = iteration
12: re-insert u into ()

13: return S

The lazy-greedy algorithm can be implemented with a priority queue. For each
element we hold two values, u.mg and u.7, the first one designates the marginal
gain we would get if we added the element to our set, and the second is the iteration
that this marginal gain was evaluated. In the first loop the marginal gain for every
element is evaluated for S = . Then in each iteration we get the element with the
maximum marginal gain. If the u.i is equal to iteration we select it as the next
element. If not this means that u.mg has been evaluated in a previous iteration

14



with a different selected set S. So we update the u.mg and we set the u. as the
current iteration.

15



Kepaioro 3

Learning influence probabilities

3.1 Introduction

In the previous section we have described how to maximize influence in a
social network by selecting the correct distinct nodes from the network for a given
number of seeds. The big question that remains unanswered here is: How do we
get these influence probabilities from one node to its out-neighbors. In this section
we describe the algorithms through which we can learn influence probabilities
between social connections. These algorithms rely on the knowledge of the network
on a given time and the actions each user performs. This chapter is mainly based
on the work by Goyal et al.[f]].

3.2 Problem description and general approach

In order to learn the influence probabilities among the user in a social network
we will need to have some records of their actions, in order to be able to determine
whether a user has been influenced by its neighbors. This is what we will call
action_log. So in order to proceed we will need to have knowledge about the
network as well as an action_log.

We will use various probabilistic models of influence, which will need to be
compatible with the assumptions we have described previously, such as submodularity
and incrementality.

In this chapter, apart from the learning algorithms, we will also describe evaluation
algorithms to test the efficiency of our models. These models not only predict that
a user will or will not perform an action but also predict the time in which the
action will occur.

16



3.2.1 Formal problem definition

We have an undirected graph G = (V, E, T') that represents the social network.
V' is the set of users, an edge € E represents the social connection between the
users and 7' : ¥ — N is a label on each edge with the timestamp at which these
users where connected. We also have an action log which contains tuples of the
form (u, a, t,,), which means that user u performed action a at time ¢,,. We assume
that all users in the action log are present in the social graph, and that each user
performs an action only once.

We denote with A, the number of actions performed by user u, with A, the
actions that both users u and v performed, with A, the actions that either one
of them performs. Moreover A5, denotes the number of actions that we believe
propagated from user u to v. As propagation we define:

Definition 3.2.1. Action propagation

We will say that an action a € A propagates from user u; to u; i f f:

(1) (ui,uj) S E,

(it) I(w;, a, t;), (uj, a,t;) € Actions where t; < t;,

(iil) 7'(u;, uj) < t;. When these conditions hold we write prop(a, u;, u;, At)
where At =t; —t,.

As we can see in the previous definition there must exist a social tie between
two users that perform an action before either one of them performed the action in
order to consider it as a propagated action.

Definition 3.2.2. Propagation graph

For each action a, we define a propagation graph PG(a) = (V' (a), E(a)).
V(a) = {v|3t: (v,a,t) € Actions}; there is a directed edge v; — v; € E(a) if
prop(a, u;, u;, At).

The propagation graph is a directed graph, with edges that connect the users in
the direction of propagation as indicated by the time constraints. Also the propagation
graph is a directed acyclic graph and may contain disconnected components.

3.3 Mathematical background

The algorithms and the models we aim to discuss here are based on the General
Threshold Model. In this model at a given moment a user is either active or inactive.
Each users tendency to activate increases monotonically as more neighbors become
active. As time unfolds more neighbors of user « may activate until user v activates
too. Each node has a monotone activation function from the set of its neighbors

17



to [0, 1], and an activation threshold 6,. A node becomes active at time ¢ + 1 if
fu(S) > 6, where S is the set of active neighbors at the time.

Let’s assume that we have an inactive user u and its active neighbors S. Also
let’s assume that each neighbors v € S of u became active after v and u were
connected. In order to predict whether u will become active we need to estimate
the joint influence probability of S towards w. If p,(S) > 6, where 0, is the
activation threshold of u, then we can say that u will activate.

We will assume that the probability with which each of the neighbors of «
influences u is independent of one another. So we can define the joint influence
probability as:

pu(S) =11 = po) 3.1)
veS
In order to be able to evaluate a learned model we need to be able to update
the influence probability towards a user on the fly. We should be able to compute
pu(S U {w}) incrementally using only p,(.S) and py, .

Theorem 3. Monotonicity, Submodularity, Incrementality

The joint influence probability as defined in Eq. (B.1]) is monotone and submodular.
Besides it can be updated incrementally if the individual influence probabilities
Dy, are static.

Amooeiln. Let S be the set of active neighbors of © and suppose an new neighbor
w of u gets activated. The new joint influence probability p,(S U {w}) can be
computed incrementally from p,(S) as follows:

pu(SU{w}) =1— (1= puu) * H(l — Pou)

vES
=1-(1 _pw,U) * (1= pu(9))
= pu(S) + (1 - pu(S)) * Pw,u (32)

The monotonicity can be seen from Eq. (3.2).
Pu(S U{w}) = pu(S) = (L = pu(S)) * Puo

So as can be seen the effect of adding a new node in the active set is always
greater or equal to zero.
And we can also show that submodularity holds:

pu(S U {w}> —pu(S) —pu(T'U {w}) + pu(T)
= (pu(T) = pu(5)) * puu =0

18



since p, (1) > p,(S) because of monotonicity.
]

Influenceability. There can be many reasons for which a user performs an
action. In order to be able to distinguish between users that are being influenced
and users that are driven by external factors we will define an influenceability
score. This score is going to be ratio of actions for which we have evidence that
the action of the user was influenced by its local network, over the total number
of actions performed by the user. To formulate this mathematically:

_a|3u, Atz prop(a, v, u, At) N0 <AL < T,

n fl 33
infl(u) T (33)
In the equation above 7, ,, may be defined as the average time delay:

tula) — Ty
— 2 acaltula) — tu(a)) (3.4)

Av?u

where ¢, (a) is the time when u performs action a and A the set of actions in
the training set.
In a similar manner we may define action influenceability.

_|u[3u, At prop(a, v, u, At) A0 <AL T
N number of users per forming a

infl(a)

This metric is important and we will use it in evaluating the models. We would
expect that actions with higher influenceability value will be easier to be predicted
by our models and thus we will get higher precision and recall values compared to
other actions.

(3.5)

3.4 Models

We will present three different kind of models. The first class of models assumes
that influence probabilities are static and do not change over time. The second
class of models sees probabilities as continuous functions of time. The third type
of models are essentially a computationally efficient approximation of the second
class of models.

3.4.1 Static models

Bernoulli. In this model we consider an active user v which at any given time
tries to activate its neighbor u, and has a fixed probability to achieve it. Each

19



attempt can be viewed as a Bernoulli trial thus influence probability of v on u
is given by:

(3.6)

We should remark here that the previous definition as well as the following
definitions, avoid to incorporate the fact that not all of the actions of user v should
be included in the calculations. Formally we should only include the actions performed
by user v after the creation of the social link v — w.

Jaccard index. This is used to measure the similarity between sample sets. It
is defined as the fraction of the size of intersection over the size of union of the
sample sets.

Av2u
Au|v

Partial Credits (PC). When a user in a network performs and action this could
mean that he has been influenced by several of his friends/neighbors. So it would
be logical to attribute this event evenly to its previously activated neighbors. So if
the set of previously activated neighbors of  is of size |S| = d we should attribute
an equal credit 1/d to all those neighbors.

Doy = 3.7)

1
Y owes L(tw(a) < ty(a))

Function [ is an indicator action, meaning it returns 1 if the condition holds
and 0 otherwise. With partial credits we could be using either Bernoulli or Jaccard
as the base model. So Bernoulli with partial credits would be:

credit, ,(a) = (3.8)

Y aea Credit, ,(a)
Do = A 1 (3.9)
And the Jaccard model with partial credits:
Pow = Loea Td“”’“(“) (3.10)
ulv

3.4.2 Continuous Time Models (CT)

In the previous models we made the assumption that the influence probability
is not changing with time. But in reality we would assume that when our local
network starts to activate around us it would be more probable to be influenced by
it. In contrast if time passes since the last activation of any or our neighbors we
would expect that it is not very probable for us to activate. This phenomenon has
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been validated by observations on flickr network by Goya et al. []. This study also
showed that influence decays exponentially with time. We may define probability
that user v influences user v in time ¢:

Pl = Py e T o (3.11)

The initial influence probability p{ , may be calculated in a similar manner as
described in static models. The parameter 7, ,, is called mean life time. It denotes
the expected time delay between user v performing an action and this propagates
to u. The joint influence probability from all activated neighbors of u becomes:

pl(8) =1-T[0-pl.) (3.12)
veS

Since this function is dependent from time and the activated neighbors we are
not able to compute incrementally its value when a new neighbor is activated since
the influence probabilities of any previously activated neighbor will be different.
Since each influence probability is maximum when the neighbor first performs
the action we expect that joint influence probability function will have as many
local maxima as the number of active neighbors. If maz{p’,(.)} > 6, then user u

activates.

3.4.3 Discrete Time Models (DT)

The continuous time model as we explained earlier is not incremental. This also
means that is computationally expensive and not scalable. In order to overcome
this deficiency we will use an approximation that will guaranty us incrementality
property.

In Discrete Time Models we say that the influence of an active user remains
constant at the maximum value for a time window of 7, ,,. When this time is over
it drops to 0. So we assume that user v is contagious in the interval [t,,t, +
T, ). Hence when an active neighbor becomes non-contagious we need to update
influence probability:

Pu S — Pw,u
pu(S\w) = i)— (3.13)
— Pw,u
For the combination of partial credits with discrete time model we would modify
the definition:

1
difT _ 3.14
redilou (@) ZUES 10 < ty(a) —ty(a) < Tpu) ( :
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3.5 Learning algorithms

We will present two algorithms for learning influence probabilities. What these
algorithms do is to learn the parameters needed to work with all of the models we
described in the previous section. The input to these algorithms is a social graph
and an action log. With the algorithms presented here we are able to learn all of
the parameters necessary for the models we described in the previous section with
no more than two scans of the action log.

Algorithm 3 Learning algorithm - Phase 1

1: procedure learning phasel(Graph, action _log)

2 for each distinct action a in action_log do

3 current_table =

4 for each tuple < u, a, t, > in chronological order do
5: increment A,

6 parents =

7 for each user v : (v, a,t,) € current_table && (v,u) € E™ do
8 if t, > t, then

9: increment A,
10: update 7, ,,
11: insert v in parents
12: increment A, g,
13: for each parent v € parents do
14: update credit, ,
15: add (u, a,t,) to current_table

So we loop through all distinct actions in the action log, having them split
in a train and a test set. For each of these actions we loop through each user that
performed this action and we eventually add this user in the current_table the data
structure with which we track the users that already performed action a. For each
user in the current table, which means for each user that performed the action
before our current user, if there is an edge between the current user and the user
we got from the current table, that was created before current user performed
the action a then we assume that the action propagated and we update the related
model parameters.

Regarding the update of 7, , we just need to keep a sum of time delays (¢, —%,).
When we need to calculate the actual value of 7, , we will just divide the sum of
delays by A,2,.

The second phase of the learning algorithm loops through the action_log for
a second time. In order to learn the parameters for the discrete time model as well
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Algorithm 4 Learning algorithm - Phase 2

1: procedure learning phase2(Graph, action_log)

2 for each distinct action a in action_log do

3 current_table =

4 for each tuple < u, a, t, > in chronological order do

5: parents =

6 for each user v : (v, a,t,) € current_table && (v,u) € E™ do
7 if 0 <, —1t, <7, then

8 increment Ao,

9 insert v in parents

10: for each parent v € parents do
11: update credit,’:"

12 if parents! = then

13 update in fl(u)

14: add (u, a,t,) to current_table

as to calculate user influenceability in fI(u) we need first to obtain the value for
7 which is learned by the first phase of the algorithm. The essential difference in
the second run of the algorithm is the fact that the requirement in order to consider
that an action propagated from user v to the user « is not solely based on the fact
that ¢, > t, but we also demand that the delay is smaller than the average delay
for the connection (v, u).

In the previous algorithms E* denotes the edges (out-edges if we have a
directed graph) that user v had at time ¢,,. The algorithms presented in this section
can be easily modified to run on a directed graph.

3.6 Evaluation algorithms

Following the logic of the learning process in the evaluation algorithm we will
use a data structure (results_table) with entries of the form < w, p,,, per form,, >.
The flag per f orm,, denotes whether the user u has performed the action. The value
0 means the user never performed the action but at least one of its neighbor did,
1 means that the user performed the action and at least one of its neighbors did
it before, and 2 means that the user was the first one to perform the action in its
neighborhood. The results table contains all the activated users for a specific
action up to a specific time.

As we loop through the action log and we read a new tuple < v, a,t, > we
add user v and all of its neighbors to results_table with the appropriate influence

23



probability (the influence probability as calculated by the learning process through
the edge < v, neighbor >) and per form_flag = 0 for v and all of its neighbors.
If user v is already in the results table this means that another neighbor of v has
already performed the same action, so we should update per form, = 1. If node v
is not present in the results_table this means that he performed the action without
being influenced by any of'its neighborsﬂ] so we consider it the initiator of the action
for its neighborhood and we set per form, = 2. Also some of v’s neighbors might
already be present in the result table so we incrementally update their probability
to perform the action. When all action tuples are read the results table should
include all users that performed the action and all the users that are neighbors to
at least one user that performed the action.

This algorithm is used to produce the confusion matrix for this model. First
of all we ignore the cases where non of the user’s friends is active. We consider
as T'P the cases where a user performs an action and at least one of its neighbors
performs the action before it and the model predicts that the user performs the
action and soon for T'N, FP, F'N.

The next algorithm evaluates the models in which the joint influence probability
is time dependent. Whenever a new neighbor performs the action, the joint influence
probability towards a user shows a sharp increase and then starts decreasing. So if a
user has d (in-)neighbors who performed an action, then the influence probability
would have d local maxima. If any of these maxima is above the threshold for
the user 6, we conclude that the user will activate. So in order to calculate the
probability for a ’parent” user p _current we need to to re-evaluate the probabilities
for all the previous “parent” users with a timelapse from the time each of these
parents activated until the time p_current activated.

!This is might introduce inconsistencies when we run the algorithm on github data that we have
a partial knowledge of the graph.
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Algorithm 5 Evaluate-Basic

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

16:

17:
18:
19:
20:
21:
22:
23:
24:
25:

procedure evaluate(Graph, action log)
for each distinct action a in action_log do

results_table =
for each tuple < v, a, t, > in chronological order do
if v € results table then
per form, =1
else
add v to results_table
py = 0 and per form, = 2
for each user v : (v,u) € E* do
if u € results_table then
update p,, incrementally
else
add u to results table
P, probability estimated based on the model
per form, =0
for each entry < w, p,, per form, > in results_table do
if per form, == 1 && p, > 6, then

TP+ =1

else if per form, == 1 && p, < 6, then
FN+=1

else if per form, == 0 && p, > 6, then
FP+ =1

elseper form, == 0 && p, < 0,
TN+ =1
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Algorithm 6 Evaluate-Complex

1: procedure evaluate(Graph, action log)
2 for each distinct action a in action_log do
3 results table =
4 for each tuple < u, a, t,, > in chronological order do
5: if v € results_table then
6 per form, =1
7 else
8 add v to results_table
9 p» = 0 and per form,, = 2
10: for each user u : (v,u) € E™ do
11: if u & results _table then
12: add v in results_table with
13: p», = 0 and per form, =0
14: sorted_parents =
15: for each entry < u, p,, per form, > in results_table do
16: for each user v : per form,! =0, (v,u) € E™ do
17: add v to sorted_parents
18: for each neighbor v; € sorted parents do
19: compute p,(t,,) at time t,, for u; to u;
20: if p.(tu,) > p. then
21: update p,,
22: for each entry < u, p,, per form, > in results_table do
23: if per form, == 1 && p, > 0, then
24: TP+ =1
25: else if per form, == 1 && p, < 0, then
26: FN+ =1
27: else if per form, == 0 && p, > 6, then
28: FP+ =1
29: elseper form, == 0 && p, < 0,
30: TN+ =1
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Kepaiaro 4

Experimental evalutation of
learning algorithms

4.1 Introduction

In the following chapter we will present our findings while using real data
which we acquired from various sources. The datasets we are used were both
previously used in research and were already in an easily digestible format and
in somehow raw data we got from github archive and flickr open api.

One subtle thing that we need to keep in mind in our discussion regarding
directed social graphs is the direction of the edges. In the datasets we acquired
either from the sources we reference or by mining online sources on our own the
common notion was the ’following” edge. This would mean if a user u is following
user v we would represent this as an egde from u to v. Regarding information flow
though we would need to have a graph with the inverse relations among users
denoting not the ”following” notion of an edge but the information flow, which is
in this kind of directed social networks flows from the followed to the following
user.

4.2 Digg

Digg is a news aggregator. In this dataset we have data regarding stories and
their votes that made it to front page of Digg over a period of a month in 2009. In
this dataset we have records for users relations in order to be able to reconstruct the
social graph. The link from user u to user v means that the start user is following the
user at the end of the edge. This means that the information flows in the opposite
direction from user v to user u.

This dataset is composed of two tables. One votes table which contains approximately
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3 milion votes on 3553 stories performed by 139,409 distinct users. The first vote
for each story is not actually a vote but the creation act from the submitter of the
story. In the following figures we can have an overview of the characteristics of

the digg dataset [[L0].
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Xynua 4.1: Votes per user
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Yynua 4.2: Votes per action
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YyMuoa 4.3: Social link distribution

4.2.1 Statistics regarding learning probability

In this section we will present some statistics that are created through the
learning influence probability algorithm. In the first phase of the algorithm [J]
we learn some characteristics of the graph based on which we can calculate the
probability for the various models.

One of the characteristics we learn in phase 1 is the number of propagated
actions for each edge of the graph. Lets assume that user u follows user v. If the
connection between those two users was present before any of the users performed
the action, and if user v performed the action before user u (we remind the reader
that the flow of information is from the user being followed towards the follower)
then we assume that the action propagated from user v to user u. Of course with
this definition it is possible that an action may propagate through various edges
towards one user.

30



107 4

Number of edges

0 200 400 600 800 1000 1200 1400
Number of propagated actions

Yymua 4.4: Digg’s propagated actions in phase 1 of the learning algorithm.

In phase 1 we keep track of the time it takes for an action to propagated from
one user to the other. In this manner we are able to compute the average time it
takes for an action to propagate through each edge. In phase two we consider as
propagated actions only those whose propagation took less than this average time
delay. So the following diagram displays a similar but reduced distribution.
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ymua 4.5: Digg’s propagated actions phase 2, filtered with average time delay.

The average time delay distribution is displayed in the following diagram.

32



Number of edges

0.00 0.25 0.50 0.75 1.00 1.25 1.50 L75 2.00
Average time delay for action propagation le6

Yymua 4.6: Average time delay

The influenceability dignifies the amount of actions for which we have evidence
that the user was influence by its neighbors. We would expect that filtering out
the users with small influenceability we would get better predictions since our
calculations would gain a better statistical significance.
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Yymua 4.7: Influenceability

The last component learned by phase 1 of the learning algorithm is the partial
credits for each edge. The partial credit values are generated by attributing to all
active incoming edges for an activated user the same weight.
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Yymua 4.8: Partial Credits

Based on the data learned on phase 1 of the algorithm for the digg dataset we
run the evaluator algorithm that produces the confusion matrix. With the confusion
matrix we can produce the roc curve for different thresholds for the probability.
The following diagram is the basic bernoulli probability [B.6], evaluated on approximately
5 % 10° actions.

This plot shows the predictive strength of the proposed model. Our plot is
quite far from the diagonal. We don’t seem to get the same results as displayed
in the original paper. The time consious models do not display any significant
improvement when compared to the static models.
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YyMua 4.9: Roc curves for Digg dataset. These are produced running the evaluation
algorithm over 50000 actions.

The following plot shows the roc curves for the static bernoulli model for
different values of influenceability. We can see that filtering out the less influenceable
nodes gives us a slightly better model. The evaluation was done over 1.8 * 10°
actions.
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YyMua 4.10: Roc curves produced by the evaluation algorithm for different values

of influenceability.

4.2.2 Utilize the different type of actions

Thinking of how the influence is spread within a social network there is a
possibility that some types of action influence differently each user. The action of
someone creating/publishing an article in a social network will have a different
effect on his/hers social connections from the action of upvoting an article from
the same user. By modifying the algorithm of phase 1 slightly we can attribute
different probabilities in the ’create” to "like” action and to "like” to ”like” action.

In the following plot we can see that there is no obvious improvement when
comparing the static Bernoulli model and a static Bernoulli model which attributes

different probabilities in different types of actions.
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Yyiua 4.11: Roc curves comparing Bernoulli model and Bernoulli for different
types of action.

A note that we need to make here is the fact that roc curves might not be the
ideal when evaluating unbalanced datasets. In our case the number of negative
examples are far greater than the positive. The reason for this is that for each
user that performs an action we scan all of his/her neighbors to check whether
they performed the action themselves. In the following plot we are displaying the
precision-recall curve for the same evaluation. We can see that there is a clear
improvement when distinguishing the influence probabilities for the different types
of actions. Another conclusion we may draw from this plot is that there is quite big
room for improvement something that is not quite obvious from the roc curves.
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YyMua 4.12: Precision recall curves comparing Bernoulli model and Bernoulli for
different types of action.

4.3 Github archive

Through the github archive site we can freely download the events that happened
every hour from 12/02/2011. Among these events exists a "FollowEvent” which
gives us information regarding the connections in the social graph. There are many
reasons that limit our knowledge of the graph though. The first and most obvious
is that we do not have the events from the initial release of github. The second is
that we don’t have information regarding the breaking of a connection between
users. And the third is that in the dataset provided by the github archive we can
find following events until the 11/12/2013.

Except for the social-graph the second dataset we must somehow acquire, in
order to be able to learn the influence probabilities, is the action log. The actions we
used in order to construct the action log were the ”CreateEvent” and ”"WatchEvent”
which represent the creation of a new repository and the action of giving a star to
a repository. In github though there are many create events that are not followed
by any watch/star event. So we excluded these create events from our action log.
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We stored these events in two mysql tables, one regarding the connections
between users along with the date on which the events happened, and a second
table to hold the create and watch actions. Regarding the social graph we ended up
with 3 * 10° connections and 8.5 * 10° nodes. In the action log we ended up with
12 % 10® watch events and 6.8 * 10° related create events.

In the following figure we can see the number of votes distribution over the
number of repositories.
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Zynua 4.13: Votes distribution from github archive dataset
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As we can see in the following histogram the github social graph exhibits a
very clear power law degree distribution which is found in social networks and
other ”’scale-free” [[L1]] networks, as these are commonly referred to through the
literature.
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Yynua 4.14: Social link distribution in github network
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In the following histogram picturing the propagated actions found in the first
phase of the learning algorithm we can see that we have a somewhat worse action
log, when compared to the digg network. Even though we have a quite larger action
log it is a lot sparser when we look at the amount of propagated actions. Of course
we expect this to have an effect on the predictive power of our algorithm. The
reason for this could be either something we overlooked in the preprocessing of our
dataset or simply the fact that the technical and scientific nature of this networks
users makes them quite less prone to peer influence!
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Yymua 4.15: Propagated actions found in phase 1 of the learning algorithm in
github
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Yymua 4.16: Propagated actions found in phase 2 of the learning algorithm, filtered
with average time delay
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As would expect from the propagated actions diagram the influenceability in
github network is somewhat diminished. We remind the reader that influenceability
represents the amount of actions for which we have an indication that a user was
influenced by one or more of its neighbors.
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Zynuo 4.18: Influenceability in github.
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Yymua 4.19: Partial credits in github
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The result of the evaluation algoritms is depicting the fact that influence is not
so strong in this network. The various models here also do not exhibit any different
behavior. The predictability of all the models is almost equal in contradiction to
the results of the original paper.
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Zynua 4.20: Roc curves for github archive
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In the following plots we can see the roc curves produced by the evaluation
algorithm for different values of influenceability. There is not obvious improvement
in the github social network.
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Yymua 4.21: Roc curves for github archive for different influenceceability values
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4.4 Flickr Api

Another source of data that I explored in the context of my thesis was flickr
api, a description of which can be found here https://www.flickr.com/
services/api/. The size of the flickr social graph is enormous, having more
users than the population of earth. The amount of users I found in my first tries
where more than 20 billion. To acquire this number I started from a randomly
selected user with a large amount of public contacts, and crawled though the graph
following the contacts relationship.

The problem with this approach was that for each of the contacts a separate api
request was required. Taking into consideration that the flickr api has limitations
for the amount of requests it allows from a specific user, the approach of having
a complete knowledge of the public contacts graph was not possible in a logical
amount of time. The other limitation was that the contacts endpoint did not provide
us with the time that the connection among the users was created, which is a
requirement for the learning process in order to be able to determine whether an
action propagated over a social edge. Nonetheless we could restrict our calculations
on actions performed after reconstructing the social graph.

Of course not all of these users were active flickr users. Meaning they don’t
actively participate in creating social connections, creating new content or performing
the action of upvoting a new photo. So I came up with another approach that I
started but not completed since this would also require a fair amount of time to get
a good portion of the active flickr social graph and performed actions.

The logic I used was getting newly uploaded photos through get Recent endpointl
as well as their owner. I would then filter out the photos by using only the ones that
get an amount of likes above a certain threshold for a given timeframe. For each of
those photos we would proceed and perform some requests to collect both a part
of the active social network and the action log for the flickr platform. The next
step would be to get the public list of the owners contacts through get PublicList
endpointg. The get PublicList endpoint however returns a list of the users that the
user for whom we performed the request follows. Currently there is not endpoint to
easily get the followers of a user in flickr api. We would then proceed on monitoring
the favorites performed for the specific photo. For each of the favorites we would
add it to the action log. Each favorite contains the id of the user that performed
the action as well as the time that the action happened. For each of the users that
performed the action we would add the users she/he follows, assuming that the
connection between them was created at least at the time the photo was created.

'"https://www.flickr.com/services/api/flickr.photos.getRecent.
html

https://www.flickr.com/services/api/flickr.contacts.
getPublicList.html
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Note that crawl Photo() method can be spawned into an independent non blocking
process. The step of adding the contacts of the owner of the photo also may be
avoided.

Algorithm 7 Flickr crawler

1: procedure crawl(threshold)

2 while crawlingPeriod > elapsedTime do

3: recentPhotos = flickr.photos.getRecent()

4: for photo in recentPhotos do

5 favorites = flickr.photos.getFavorites(photo)

6 if favorites[’total’] > threshold then

7 crawlPhoto(photo, timeframe, photo[’createdAt’])

Algorithm 8 Crawl photo

1: procedure crawlPhoto(photo, timeframe, photoCreatedAt)
2 contacts = flickr.contacts.getPublicList(photo[’owner’])
3 for contact in contacts do

4: add edge (contact, photo[’owner’]) to graph

5: edge[’time’] = photoCreated At

6 sleep(timeframe)

7 favorites = flickr.photos.getFavorites(photo)

8 for action in favorites do

9 add action to actionLog

10: contacts = flickr.contacts.getPublicList(action[ username’])
11: for contact in contacts do

12: add edge (contact, action[ username’]) to graph
13: edge[’time’] = photoCreated At
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Kepaiaro 5

Experimental evaluation of
influence maximization algorithms

In order to run the influence maximization algorithm we need to somehow
acquire a social graph and influence probabilities for each of the edges. This can
be done using either a real social graph with learned probabilities, a real social
graph with artificial probabilities, or a constructed random graph. In the following
sections we will present some of these approaches and our results.

5.1 Influence maximization on random graphs

The most obvious approach when constructing a random graph would be to
start totally at random. Add a number of nodes into the graph and for each of the
pairs connect or not depending on some predefined probability. Depending on the
threshold we could result to a completely unconnected graph, a graph with multiple
components or a fully connected graph. The degree distribution in this case would
be a normal distribution around the mean value being connection probability
number of nodes.
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with 500 nodes and 10? edges.
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pa 5.1: Directed random graph

Zm

which displays a degree distribution much closer to a
real network dynamics. This is generated by a preferential attachment logic. Each

9

The second approach

new node added to the network has a greater probability to attach to ’popular”
nodes. This probability is proportional to the degree of the node, £; in the following

equation represents the degree of node j.

(5.1)
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Yymua 5.2: Random graph degree distribution. In this example the link probability
was 0.03 and the number of nodes is 10*

In the following image we can see a Barabasi — Albert graph with 1000 nodes
and 2000 edges. The different structure of the two graphs is visible. The size of each
node represents the degree and the thickness of each edge represent the assigned
probability.
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Tynuo 5.3: Barabasi Albert graph. This graph consists of 5 * 10* nodes.

In the following plots we are demonstrating the execution time for different
number of seed nodes for the lazy greedy algorithm. The graph we are running
the algorithm upon is created by the barabasi albert algorithm with 500 nodes and
randomly assigned probabilities.
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2yMua 5.4: Barabasi Albert graph.

5.2 Digg and Gihub social graphs

Based on the learning process we described on a chapter 4 we were able to
calculate the influence probabilities for big portion of the social graph’s edges. In
digg’s social graph which consists of 1.7 10° edges we got influence probabilities
greater that zero for 2.9 * 105 edges. The github graph we have constructed based
on the follow events of the github archive dataset consists of 3.1 * 10° edges
with 2.2 * 10° of them with non zero probability. In order to be able to run the
influence maximization algorithm in a reasonable amount of time we would need
to further reduce the size of the graph as we have seen through the various runs on
the artificial graphs in the previous section.
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Zynua 5.6: Influence for the seeds that are returned from the Lazy greedy

algorithm on the same graph, calculated with simulations over linear threshold
model.
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Kepalaro 6

Discussion

In this thesis we explored two main problems regarding influence in social
networks. The one is the influence maximization problem and the main approximation
algorithms that can be found throughout the literature. In the same context we
also present two different models for the information/influence diffusion in the
social networks Independent Cascade and Linear Threshold models. Under both
of these models the influence function remains submodular which ensures the
approximation efficiency of the greedy algorithm. We provide a robust python
implementation for aforementioned models, the greedy algorithm, as well as an
optimized version (lazy-greedy) which exploits the submodular property of the
influence function to reduce computation steps.

The second problem regarding influence, is how we can learn these influence
probabilities that we take for granted in the first problem, in a real social network.
We proceed in the implementation of the algorithms proposed in the literature
which we use to calculate the influence probabilities and evaluate the accuracy
of the various proposed models. We have implemented minor modifications to the
algorithms to adapt them to a directed network instead of the undirected initial
implementation. We also create a ruby gem to parse github archive events into
mysql tables, digestible from the learning and evaluating algorithms, producing a
new social network dataset.

Running the learning algorithms over the action logs of both digg and github
social networks we managed to confirm the findings in literature regarding the
predictability of the proposed models. We did not detect any improvement though
using time conscious models, which are a lot more expensive computationally
compared to the static models. We found a minor improvement in the digg social
network when restricting our evaluation only on users with influenceability above
a certain threshold, a finding that is not reproducible on github dataset.

We proposed a novice approach in calculating influence probabilities by distinguishing
the effect of different types of actions. The new model did not exhibit any improvement
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in roc curves but there was a significant improvement in precision recall curves
which might be a better evaluation method for this specific problem due to the fact
that our dataset is unbalanced.

Regarding the influence maximization we managed to run the algorithms on
randomly generated graphs with randomly assigned probabilities. The size our real
social graphs is quite big to run this algorithms over them. We would probably need
a performance improvement on our models for influence diffusion like maximum
influence in-arborescence, since with our existing models we need to go through
the whole network to get an estimation of the influence.
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