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1 Introduction

Pulsars (pulsating radio sources) are rotating magnetised neutron stars. In gen-
eral the physical conditions that occur around them are unique and extreme. As a
result pulsars are ideal celestial laboratories for a variety of disciplines: nuclear and
particle physics, condensed-matter physics, general theory of relativity and in par-
ticular high energy radiation and relativistic magneto-hydrodynamics, which will
be the focus of this thesis.

The astrophysical community has been dealing with the observation and study
of pulsars for more than half a century. The progress made in understanding these
objects is substantial, but there are many important questions to be answered.

In the following sections of chapter 1 we will give the profile of a pulsar and
present the fundamentals and preliminaries. In chapter 2 we will discuss the mag-
netosphere of pulsars ... In chapter 3 we will present our model for high energy
emission and in chapter 4 the numerical setup that we used to simulate it. The re-
sults we produced are presented and discussed in chapter 5. Finally in chapter 6 we
will summarise and suggest the next steps.

1.1 Theoretical Prediction

Shortly after the discovery of the neutron by Chadwick (Chadwick, 1932) in 1932,
two astronomers, Baade & Zwicky (Baade and Zwicky, 1934a; Baade and Zwicky,
1934b), proposed that during Supernova explosions small, extremely dense objects
could be created in the centre of the exploding star. They suggested that the enor-
mous pressure occurring in the centre of the explosion would be sufficient to en-
able an "inverse beta-decay" during which electrons and protons are combined to
neutrons and neutrinos. Neutrinos could leave the star to carry away a substantial
amount of energy, leaving behind a very dense object consisting mostly of neutrons.
They called these objects accordingly "neutron stars".

Five years later, Oppenheimer & Volkov (Oppenheimer and Volkoff, 1939) were
the first to calculate the expected size and mass of these newly predicted objects.
Based on quantum mechanical arguments they computed that neutron stars should
have a diameter of about 20 km while containing 1.4 times the mass of the sun.
Given this extremely small size expected for these objects, astronomers therefore
considered it to be impossible to ever detect neutron stars and hence to verify the
predictions by Baade & Zwicky.

1.2 Discovery

The first pulsar was discovered in 1967 by Jocelyn Bell (Hewish et al., 1968). Bell
was then a graduate student at the University of Cambridge conducting her PhD
thesis research under the supervision of Antony Hewish. Her group’s project was
to built and operate a large radio telescope to detect signals coming from the, re-
cently discovered, quasars. Analysing the data she noticed a very fast and incredibly
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steady pulse coming from a certain direction in the sky. After a thorough examina-
tion, all of the known galactic, extra-galactic and human-built radio sources were
eliminated as possible emitters of the radio signal. Bell had discovered a new celes-
tial radio source. In a short period of time, she discovered three more similar signals
from different directions in the sky, which reinforced the legitimacy of the discovery.

Shortly after the publication of the discovery paper, F. Pacini (Pacini, 1967) and T.
Gold (Gold, 1968), in independent works, identified pulsars as rotating magnetised
neutron stars, confirming the prediction of Baade & Zwicky.

1.3 Physical Properties

In this section, we will briefly discuss the basic features and properties of pulsars.

1.3.1 Creation

In a main sequence star, an equilibrium between the gravitational forces and the
pressure generated by the nuclear fusion in the core is established. As soon as the
nuclear fuels deplete, gravity dominates and the star collapses to its centre.

The star’s core primarily consists of iron. As the collapse proceeds, the density,
pressure and temperature of the core increase. This leads to the disintegration of
atomic nuclei to alpha particles and creates the conditions for inverse beta decay to
occur, that is, electrons and protons combine and produce neutrons and neutrinos.

p+ + e− → n + νe (1.1)

Neutrinos escape and carry away a significant portion of the core’s energy. As
the collapse continues, the density in the core becomes equal to the nuclear den-
sity ρ ' 1014 g/cm3 while all the available energy levels are occupied. Neutrons
are fermions and obey the Pauli exclusion principle so at this point they cannot be
further compressed. This so called ’degenerate neutron pressure’ balances out the
gravitational force and stops the collapse of the core1.

The in-falling outer layers are deflected in the core and bounce back, colliding
with the rest in-falling matter. This an overwhelmingly violent event that causes an
explosion known as supernova. Such explosions result in the creation of an expand-
ing, bright nebula, in the centre of which lies the leftover of the explosion, the newly
formatted neutron star.

1.3.2 Rotation and magnetic field

As stated above, pulsars are rapidly rotating, magnetised neutron stars. Their
period of rotation lies typically in the range P ' 10−3 − 101 s, so they are really
fast rotators. They possess enormous magnetic fields, possibly the strongest known
in the universe. The value of the field in the stellar surface is between B ' 108 −
1015 G, with a typical value of 1012 G. The form of the magnetic field is, in a good
approximation, that of a dipole and the magnetic axis has an inclination angle a
with respect to the rotation axis. These two characteristics enable pulsars to operate

1 There are two more possible scenarios except that of the neutron star: a) If the progenitor star is
sufficiently small (Ms ≤ 8M�) the pressure of the degenerate electrons is strong enough to balance
gravity before the formation of neutrons and a white dwarf with mass MWD < 1.4M� is created. b) if
the progenitor star is large (Ms ≥ 20M�), not even the pressure of the degenerate neutrons is enough
to withhold gravity and the entire core collapses to a singularity, forming a black hole.
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as efficient particle accelerators. The particles slowly subtract the stored rotational
energy of the star and radiate it away via various emission mechanisms. As a result
the pulsar slows down and its period of rotation increases with time. The spin-down
rate Ṗ is measurable and falls within the range of 10−22 to 10−9s/s, with the faster
rotating pulsars usually having smaller Ṗ. As a pulsar ages, the rate of rotation will
become too slow to power the radio-emission mechanism, and it can no longer be
detected.

1.3.3 Size, mass and structure

When a stable condition between gravity and degenerate neutron pressure is
reached, the expected radius of the resulting core is very small, r∗ ' 10 km. This is
equivalent to the diameter of a typical city.

The surface temperature of the neutron star, at the time of its creation is about
T ' 1011− 1012K. However the vast number of neutrinos that are generated through
the inverse beta decay carry away most of the thermal energy and the surface tem-
perature sits at T ' 106K shortly after the creation. Blackbody radiation at this
temperature peaks at X-rays and is actually observed by modern day telescopes.

Before we proceed, we can give here a rather crude and qualitative argument for
the extreme values of the rotational period and the magnetic field of pulsars: when a
star of radius r ' 106 km shrinks to a core of radius r ' 10 km its surface decreases by
a factor of 1010. Thus, conservation of angular momentum and magnetic flux imply
that the magnetic field and the angular velocity must correspondingly increase by
a factor of 1010. This skyrockets the values of B and Ω and establishes the unique
situation under which a pulsar operates.

Neutron star masses can be well measured from binary systems. Usually the ob-
served masses have a value close to M = 1.4 M� (see fig. 1.1), the Chandrasekhar
mass limit for white dwarfs. This is the limit below which the pressure of degen-
erate electrons can stop the gravitational collapse before the neutron star is created
(see fn. 1). The aforementioned values correspond to an average mass density of
ρ ' 1014gr/cm3 which is the density of the atomic nucleus. In fact the density in the
interior of the neutron star far exceeds this value. The physical properties of matter
under these extreme conditions can only be studied on the basis of theoretical mod-
els, thus, the maximum and minimum permitted values for the mass of the neutron
star are not precisely determined. Given an Equation of State (EOS), a mass-radius
relation for the neutron star and a corresponding maximum neutron star mass can
be derived. There are several proposed EOSs but little evidence to confirm or ex-
clude them. At the very least, there is an upper limit in the maximum possible mass,
imposed by general relativity at Mmax = 3.2 M�. Currently the neutron star mass is,
generally considered to be in the range 1− 3 M� (Kiziltan et al., 2013).

For similar reasons, the exact internal structure of the neutron star is still unclear.
Current theoretical models divide the star in five basic regions (see figure 1.2):

• The atmosphere, a very thin, due to the immense gravitational forces, layer
consisting of a variety of lighter elements in a fluid/gas state. This is the region
where the thermal component of the pulsar spectrum comes from.

• The outer crust, consisting of a lattice of heavy ions (mainly 56
26Fe) and a sea of

electrons running through it. These are the only regions that will concern us in
the rest of this thesis, as we will show that charges can be extracted from the
surface and fill the pulsar surroundings, forming a magnetosphere.
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FIGURE 1.1: Measured masses of radio pulsars. All error bars indicate
the central 68% confidence limits. Vertical solid lines are the peak
values of the underlying mass distribution for DNS (m = 1.33M) and
NS–WD (m = 1.55M) systems. Systems marked with asterisks are

found in globular clusters (Kiziltan et al., 2013).
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FIGURE 1.2: Schematic structure of a neutron star interior (Nandi and
Bandyopadhyay, 2012).

• The inner crust, where neutron-rich nuclei, free neutrons and free relativistic
electrons co-exist.

• The outer core, where the inverse beta decay occurs and we find mainly su-
perfluid neutrons and small numbers of superconducting protons, relativistic
electrons and muons, all in a degenerate state.

• The inner core, for which we know very little. Some exotic states of matter that
have been proposed are quark-gluon plasma, hyperons, meson condensates,
etc.

1.3.4 Energetics

Pulsars, unlike main sequence stars, do not produce energy . They are bright
stellar corpses that slowly cool down. The total energy reserve is equal to the rota-
tional2energy they acquired after the supernova explosion.

ε =
IΩ2

2
=

2π2 I
P2 (1.2)

where P is the rotational period and I the star’s moment of inertia. Therefore their
luminosity can be estimated as the time derivative of the total stored energy.

dε

dt
= Lrot = −

4π2 IṖ
P3 (1.3)

This is called the pulsar spin-down luminosity. We already mentioned that a pul-
sar can be modelled as a rotating, inclined magnetic dipole. From basic electromag-
netism we know that such a dipole radiates and loses energy at a rate

2This is the most characteristic case but not the only one. The energy reserve of a pulsar can be of a
different form as illustrated in sec. 1.5
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Prad =
2
3

m2
B sin a2Ω4

c3 =
2

3c3 (Br3
∗ sin a)2

(
2π

P

)4

(1.4)

where B is the magnetic field and r∗ is the radius of the star.
Assuming that a pulsar is a perfect magnetic dipole (this is not the actual case,

just a good approximation) and all the spin down luminosity is radiated away in
the form of magnetic dipole radiation we can estimate the surface magnetic field as
function of M, r∗, P, Ṗ

Lrot = Prad ⇒
4π2 IṖ

P3 =
2

3c3 (Br3
∗ sin a)2

(
2π

P

)4

⇒B∗ =

√
3c3MPṖ

20π2Rr
∗ sin a

(1.5)

The corresponding values are B ' 1012 G and were calculated using known and
observable quantities for pulsars.

In addition, we can estimate a characteristic age for pulsars. If the magnetic
dipole moment does not change significantly during the pulsar’s lifetime then from
eq. 1.5 we get

PṖ =
8π2r6

∗(B sin a)2

3c3 I
(1.6)

which is constant. Therefore we have

PṖ = P
dP
dt

= C ⇒
∫ P

P0

PdP = C
∫ τ

0
dt

⇒P2 − P2
0

2
= Cτ

(1.7)

But C = PṖ and in the limit P >> P0 we get

P2

2
= PṖτ ⇒ τ =

P
2Ṗ

(1.8)

where τ is the pulsar age. This is a simplified calculation. Nevertheless if we apply it
to the Crab pulsar, the most famous and well studied pulsar in the entire population,
the result is surprisingly close to its actual age. The Crab pulsar was created in
A.D. 1054 during a massive supernova explosion that was observed and recorded by
Chinese astronomers. Using the period P = 0.033 s and spin down Ṗ = 10−12.4 s/s
of the Crab pulsar we find a characteristic age of τ ' 1300 y which is an acceptable
estimate given the crude assumptions we made.

1.4 Observations

Pulsars were originally detected in radiowaves and their study was considered a
part of radio astronomy. With time and as the instrumentation evolved, observations
in all other bands were carried out. As a result we now have a multiwavelength
picture of pulsars spanning from radiowaves to γ -rays (fig. 1.3), which is crucial in
our effort to understand the underlying physics behind them.
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FIGURE 1.3: The crab nebula, with the crab pulsar in its centre in
different wavelengths. The emission from the nebula is not pulsed as

opposed to that of the pulsar.

1.4.1 Lightcurves

The light curves we obtain from pulsars in all wavelengths consist of very stable
pulses with little to no radiation between them (fig. 1.4). This is a combined result
of the pulsars rotation, the inclination between rotational and magnetic axes and the
highly anisotropic emission and is called the lighthouse effect. For reasons that will
be thoroughly explained in the next chapter, the region above the magnetic poles
has the ability to accelerate particles in relativistic energies up to Γ ' 107. This can
produce synchrotron emission of radiowaves, geometrically confined in a narrow
cone just above the magnetic poles3. With that in mind, let’s delve deeper into the
emission pattern: as the pulsar rotates, the narrow cone circles around the rotational
axis because of the inclination. When the cone crosses our line of sight we detect a
pulse while in all other phases of the pulsar rotation we detect no radiation, similar
to how a lighthouse is seen by a nearby ship. This is illustrated in fig. 1.5. Pulses
in other bands can be explained using the same line of arguments, however the
emission region and mechanisms can differ from those of the radio emission.

1.4.2 Spectrum

The observed spectra of pulsars give us extremely valuable information for their
properties and structure. A typical spectrum covers all bands of electromagnetic
radiation, from radio-waves to TeV γ - rays, but in some cases pulsars are quiet
in certain bands. The lion’s share of the radiated energy is carried by high-energy
photons, namely X - rays and γ - rays with only a small portion going to radio-
waves. In particular the high energy component consists of a power law followed by
an exponential cutoff. The cutoff energies have a value of a few GeV. These features
can be seen in the Crab pulsar spectrum in figure 1.6. The successful reproduction
of the spectrum and light curves is the final judge of the various magnetospheric
models found in literature.

3 This is the general concept of radio emission, rather than a detailed description. There is strong
evidence that the emission is radiated in the form of a cone, but the exact mechanism is still under
investigation.
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FIGURE 1.4: Multiwavelength lightcurves for seven pulsars

1.5 Population

The entirety of the pulsar population can be gathered and depicted in a P − Ṗ
diagram, which has the pulsar period and period derivative as its axes (fig. 1.7). In
this diagram, contours of the spin-down luminosity (or the magnetic field strength)
and the pulsar’s age can be drawn, which gives a general and informative overview
of the known pulsars.

As with all the celestial objects, pulsars can be divided into a variety of categories.
The most important classification depends on the origin of the energy that is radiated
away (Harding, 2013). In this context we have:

1. Rotation-Powered Pulsars (RPP), where the energy comes from the rotation of
the neutron star. They may be lone or in binary systems.

2. Accretion-Powered Pulsars. These are pulsars in binary systems that gain en-
ergy from the accreting matter of their counterpart.

3. Magnetars, pulsars with extremely high magnetic fields (up to 1015G). The
energy source is the stored magnetic field energy.

4. Central Compact Objects (CCO). They are neutron stars located in the centre of
supernova remnants with low magnetic fields. Their emission consist only of
a thermal X-ray component, so they radiate away their stored thermal energy.

5. Isolated Neutron Stars (INS), similar to CCO but without a nebula surrounding
them.

6. Rotating Radio Transients (RRT), a subpopulation of RPP that appear to ’turn
off’ for long periods of time.

All of these categories can be seen in P− Ṗ diagram (fig. 1.7) in different loca-
tions, indicative of their properties. The most important is the first category so it
deserves some further discussion.
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FIGURE 1.5: Graphic illustration of pulsar’s magnetic field and radio
emission
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FIGURE 1.6: Spectral energy distribution of the average emission of
the Crab nebula (blue) and the phase averaged emission of the Crab

pulsar (black) (Bühler and Blandford, 2014).



1.5. Population 11

FIGURE 1.7: Plot of period vs. period derivative for the presently
known rotation-powered pulsars, Isolated Neutron Stars (INS), Com-
pact Central Objects (CCO), Rotating Radio Transients (RRATs)
and magnetars (from http://www.atnf.csiro.au/people/pulsar/
psrcat/). Lines of constant characteristic age, τ, and dipole spin-

down luminosity, Lsd, are superposed (Harding, 2013).

http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/
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RPP can be divided in two main subclasses: normal RPPs and millisecond pul-
sars (MSP). The former can be found in the crowded central area of the P − Ṗ di-
agram and are generally what we have described in this chapter. MSPs cover the
lower left region of the diagram. They are old pulsars (τ ≥ 100 Myr) with short
periods, which is an oddity because pulsars lose energy and slow down with age.
They are probably ’recycled’ old normal RPPs in binary systems. When the pulsar’s
companion star reaches the red giant phase and expands, matter falls into the pulsar,
increases its angular momentum and accelerates it. Thus MSPs have low magnetic
fields and spin-down due to age and short periods due to acceleration. For this
thesis, a typical pulsar is a normal RPP. All the aspects discussed in this and the
following chapters will be applied to this population unless stated otherwise.

Another interesting feature of RPPs is the occasional appearance of a sudden
change in their period, namely a ’glitch’ (fig. 1.8). This is a quick incident and the
normal expected value of the rotational period is restored in a timescale of days or
weeks. The exact cause of glitches is still unknown, but it is believed that is related
to internal processes of the neutron star. Currently the general idea behind glitches
is that the the crust of the neutron star is rotating slower than the superfluid core.
An occasional coupling of the two transfers angular momentum from the core to
the surface causing the glitch. Observing and studying glitches can give us a direct
look to the neutron star interior and help us reveal some of the most elusive areas of
condensed matter physics.

FIGURE 1.8: The ν̇ (where ν is the rotation frequancy) time-evolution
of the Crab pulsar (PSR B0531+21) over more than 40 years (Espinoza,

2013)



1.6. Current Status 13

1.6 Current Status

Presently, several positive developments, both observational and theoretical, have
pushed our understanding of pulsars a bit further.

The Fermi era has really been a blessing for the study of high-energy emission,
as the number of observed γ - ray pulsars has immensely augmented. To give a per-
spective, before the launch of Fermi only 7 pulsars had been confirmed to radiate in
γ -rays while now we have a sample of more than 200. This allowed a statistical pro-
cessing of the data and enforced restrictions to the models. Furthermore the recent
discovery of gravitational waves and the ignition of the multimessenger era, pul-
sars can be seen with new eyes. Neutron stars are important objects in gravitational
wave field because they can emit or used to detect gravitational waves. Although
this does not directly relate with the high energy radiation it is certainly an impor-
tant development with yet to be seen results.

On the theoretical side, the increased computational capacity has provided the
opportunity to perform sophisticated pulsar simulations. Particle in Cell (PIC) sim-
ulations are an example. With this technique an ’ab initio’ simulation can be per-
formed which follows particle trajectories and their effect on the electromagnetic
field until a stable condition is reached. This gives us a good qualitative picture of
the pulsar but the downside is that such simulations are very expensive computa-
tionally and need several approximations to be implemented in order to generalise
the results.
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2 The Magnetosphere

2.1 Definition

The region surrounding an astrophysical object where charged particles inter-
act with the object’s magnetic field is called a magnetosphere. It is a region where
plasma and magnetic field lines coexist and affect each other. Pulsars have extremely
strong magnetic fields so it is only natural that they posses magnetospheres. All the
emission processes (with the exception of thermal emission) take place in this region,
therefore it is the most important and interesting feature of pulsars and the basis of
what is examined in this thesis.

2.2 Formation

A magnetosphere can be created even if the area around a pulsar is initially
empty, meaning that there is no plasma or charged particles, due to the fact that
the electromagnetic forces are far stronger than gravity (Goldreich and Julian, 1969).
This is illustrated below for the case of the aligned rotator.

We assume that the interior of the neutron star is a perfect conductor, σ → +∞.
From Ohm’s law we get:

JJJ = σ(EEEin +
vvv
c
× BBBin)

⇒ EEEin = −vvv
c
× BBBin

⇒ EEEin = −1
c

ΩΩΩ× rrr× BBBin

(2.1)

where ΩΩΩ is the star’s angular velocity and rrr is the distance from the star’s centre.
This is the ideal magnetohydrodynamics (MHD) condition. The magnetic field in
the interior has a dipole form, which is given in polar coordinates by:

BBBin = B∗
r3
∗

r3

(
2cosθ r̂rr + sin θ θ̂θθ

)
(2.2)

where B∗ is the surface magnetic field at the magnetic equator and r∗ is the star’s
radius. From eq. 2.1 and 2.2 we evaluate the electric field inside of the neutron star
surface:

EEEin =
B∗Ωr3

∗
2cr2

(
sin2 θ r̂rr− 2 cos θ sin θ θ̂θθ

)
(2.3)

and by integrating we get the electric potential inside of the neutron star’s surface:

Vin =
B∗Ωr3

∗
2cr

sin2 θ + C (2.4)
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The total charge of the neutron star must be equal to zero. Applying Gauss’ s law
we find C = − B∗Ωr2

∗
3c

Now we calculate the the electric potential and the electric field outside of the
neutron star by solving the Laplace equation in vacuum with the boundary condi-
tion Vin|r=r∗ = Vout|r=r∗ :

∇2Vout = 0

⇒ Vout =
B∗Ωr5

∗
6cr3 (1− 3 cos2 θ)

⇒ EEEout = ∇Vout =
B∗Ωr5

∗
2cr4

[
(1− 3 cos2 θ) r̂rr− 2 sin θ cos θ θ̂θθ

] (2.5)

It is evident from eq. 2.3 and 2.5 that there is an electric field discontinuity at
r = r∗. This translates in a surface charge density σ = 1

4π (Eout − Ein) . The external
electric field 2.5 exerts a force to these charges that greatly exceeds gravity, despite
the compactness of the neutron star. The ratio of the electrostatic to the gravitational
force is Fel

Fgr
' 109 for a proton, and even greater for an electron. Particles will be

extracted from the surface and start filling the previously vacuum area around the
star.

The strong electric field accelerates the particles in relativistic speeds while the
strong magnetic field forces them to move along the field lines. Under these condi-
tions particles can emit curvature radiation. With the Lorentz factors reaching values
up to Γ = 107 the emitted photons are highly energetic and can be absorbed from
the magnetic field creating electron-positron pairs.

γ + B→ e− + e+ (2.6)

These pairs will then be accelerated from the electric field and emit synchrotron ra-
diation which will be absorbed by the magnetic field and create a new generation
of pairs and the this process will be perpetuated (see fig. 2.1). The result is a cas-
cade of charged particles that will entirely fill the pulsar’s surroundings and form
a magnetosphere. Particles will be distributed through the magnetosphere in a po-
larised fashion, similar to a Faraday disk. In an aligned rotator positive charges will
be gathered near the equator and negative charges will be gathered above the mag-
netic poles. As the charge density increases, the shape of the electromagnetic field
deviates from the vacuum solution and the conductivity of the plasma goes to in-
finity. Gradually the component of the electric field that is parallel to the magnetic
field lines E‖ is screened because eq. 2.1 holds everywhere in the magnetosphere
and not just inside the star. The pair creation efficiency decreases because there is
no parallel electric field to accelerate the new particles to high enough energies. A
stable state will be reached with a determined charge and current density distribu-
tion, electromagnetic field configuration and plasma flow. The dominant force is the
electromagnetic. Gravity, plasma inertia and thermal pressure can all be neglected.
This regime is called Force Free Electrodynamics (FFE).

Plasma in the magnetosphere is frozen in the magnetic field lines. Particles can
only move along them and drift. This means that the magnetosphere rotates as a
rigid body following the pulsar’s rotation. This corotation ceases at a distance R`c
where the plasma tangential speed u = Ωr would be equal to the speed of light c.

R`c =
c
Ω

(2.7)
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FIGURE 2.1: A schematic illustration of the electron-positron pair cas-
cade above the polar cap (Timokhin and Harding, 2015).
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The imaginary cylindrical surface with radius R`c, whose axis coincides with the
rotational axis of the pulsar is called the light cylinder (LC) and is one of the most
important concepts about the magnetosphere.

Because plasma cannot corotate with the star outside of the light cylinder, the
magnetic field lines that would close beyond it must break and bend in a direction
opposite to the pulsar’s rotation. This effect distinguishes two regions in the magne-
tosphere: 1) the closed magnetosphere, which lies entirely inside the LC and where
all the magnetic field lines close without any problems, and 2) the open magneto-
sphere where all the magnetic field lines break and open up to infinity. The border
between these two regions is called the sepraratrix. The region above the magnetic
poles, where we can trace the footpoint of all the open field lines is called the polar
cap.

In the closed magnetosphere (also called the dead zone), the particles are trapped,
the parallel electric field is completely screened and there is no radiation. All the in-
teresting phenomena occur in the open magnetosphere. The particles flow along the
open field lines, cross the light cylinder and escape to infinity. They are then replen-
ished by the e± pairs created in the polar cap (see sec. 2.3 for details). The parallel
electric field is almost everywhere screened, with the exception of certain non ideal
dissipative zones, which will be dealt with thoroughly, in the following sections.

As a final note, we need to clarify that this is not the most probable case. Pulsars
are expected to have a magnetosphere from the beginning due to the fact that they
are born within the particle-rich environment of a supernova explosion. Neverthe-
less the above analysis shows that even in the extreme case of a vacuum environment
a magnetosphere will be created so we can safely assume that every pulsar has one.
Furthermore, because particles flow through open magnetic field lines, the initial
particle composition will be quickly replaced by electron positron pairs. For this
reason it is generally assumed by the community that the magnetosphere consists of
electron-positron plasma but a different composition cannot be excluded.

2.3 Gaps

In a stable magnetospheric condition, the ideal FFE regime dominates. The sim-
plest case we can examine is an ideal, stationary, axisymmetric magnetosphere.

In FFE the total Lorentz force is equal to zero, so

JJJ × BBB
c

+ ρeEEE = 0 (2.8)

where JJJ is the electric current density and ρe is the charge density and they are given
by

JJJ =
c

4π
∇× BBB

ρe =
∇ · EEE
4π

(2.9)

The electric field can be written as

EEE =
RΩ

c
BBBp × φ̂φφ (2.10)

The smartest way to proceed is to express the magnetic field in terms of the flux
function Ψ and use cylindrical coordinates (R, φ, z)
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FIGURE 2.2: Sketch of the ideal force-free magnetosphere of the
aligned pulsar. The main elements are: (i) The closed field line re-
gion (grey, and black field lines) lying between the star surface and
the light cylinder. This zone is dead and does not participate to the
pulsar activity. (ii) The open field line region (red and blue field lines)
extending beyond the light cylinder. The open field-line bundle car-
ries the outflowing electric current, Poynting flux and the relativistic
pulsar wind. (iii) The equatorial current sheet (green) between the
opposite magnetic fluxes in the wind zone. It splits at the light cylin-
der into two separatrix current sheets that go around the closed zone,
between the last open and the first closed field lines (Cerutti and Be-

loborodov, 2017).
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Bp =
∇Ψ× φ̂φφ

R

Bφ =
A(Ψ)

R
.

(2.11)

where A ≡ 2I
c and I is the poloidal electric current. Now we can rewrite eq. 2.8 in

terms of Ψ as

(1− x2)

(
∂2Ψ
∂x2 +

∂2Ψ
∂Z2

)
− 1 + x2

x
∂Ψ
∂x

= −R2
`c A(Ψ)A′ (2.12)

where x = R
R`c

and Z = z
r`c

. This is known as the pulsar equation and was
first derived by (Michel, 1973; Scharlemann and Wagoner, 1973). This equation does
not have an exact general analytical solution. It was first solved numerically by
(Contopoulos, Kazanas, and Fendt, 1999) and thereafter by many other authors.

If the pulsar equation is satisfied, the charge density is given by

ρe =

(
Ω

4πc

)
−2Bz + AA′

1− x2 (2.13)

which is better known as the Goldreich-Julian charge density ρgj. Near the
star’s surface where x � 1 the expression becomes

ρgj ' −
ΩΩΩ · BBB
2πc

(2.14)

This expression was derived by (Goldreich and Julian, 1969)1in their pioneering
work on pulsar magnetospheres. From this expression we can see that there are
regions with positive charge density, where ΩΩΩ · BBB < 0 and regions with negative
charge density, where ΩΩΩ ·BBB > 0, as well as a surface with zero charge density, where
ΩΩΩ · BBB = 0 ⇒ ΩΩΩ ⊥ BBB. This is called the null surface and is the border between the
oppositely charged regions.

If, for any reason, there is a deviation of the local charge density from ρgj the
parallel component of the electric field will not be completely screened. Such regions
are called gaps. Gaps can operate as accelerators and as a result they are regions that
can generate non-thermal emission. The idea of a magnetospheric gap acting as a
particle accelerator was one of the earliest concepts about pulsars. For many years
it was believed that this was the mechanism that channelled the pulsar’ s energy to
the particles and produced the non thermal radiation.

An important example is the polar cap gap (see fig 2.3). It occurs directly above
the polar cap and close to the neutron star’s surface, where a charge deficit is easy
to appear. Charges can be extracted from the surface at a specific rate, depending
on the magnitude of the electromagnetic force. This rate must be high enough to
sustain the Goldreich-Julian charge density by replenishing the charges that flow
through the open field lines. If this is not the case, the ideal MHD condition breaks
and we have the formation of a gap. What stops the gap from extending all the way
to infinity is the eventual screening of the electric field from the pair cascade created
by the primary accelerated particles. At a certain height above the star’s surface,

1The exact relationship that (Goldreich and Julian, 1969) found was ρgj =
−ΩΩΩ·BBB
2πc

1
1−x2 . The difference

is that they did not acount for the poloidal current an assumed that the current density is purely
azimuthial.
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where the cascade is initiated, a pair formation front is developed and marks the
upper boundary of the gap.

The polar cap gap is the prime candidate for the source of the pulsar’s radio
emission. Unabsorbed synchrotron radiation coming from a narrow region above
the magnetic poles can explain all the observational features of pulsed radio signals.
On the other hand the observed high energy radiation cannot originate from the
polar cap for two reasons: Firstly, the radio and the high energy component of the
signal arrive at the observer with a phase delay between them. This implies that the
location from which each component is emitted must be different. Secondly, with
the launch of the Fermi LAT and the significantly increased number of pulsars ob-
served, it was concluded that the high energy spectrum has a simple exponential
cutoff in γ - rays. This is contradicting with emission from the polar cap because the
strong magnetic field near the surface would absorb the high energy photons, re-
sulting in a super exponential cutoff. This last point is important because it strongly
constraints the topology of the high energy emission. It places its source in the outer
magnetosphere, in the vicinity the LC or beyond.

Other gap examples are the outer gap, which can be formed in the region be-
tween the null surface and the light cylinder and the slot gap which is a narrow slice
directly above the separatrix and extends from the polar cap to the outer magneto-
sphere (see fig 2.3). These gaps are compatible with the simple exponential spectral
cutoff and were traditionally considered to host the high energy emission. However
this idea is becoming less popular in recent years for a number of reasons. Gap mod-
els have failed to adequately reproduce the observational features and in addition
suffer from theoretical inconsistencies about the formation and location of the gap.
The modern picture of the magnetosphere favours another type of accelerator, based
on magnetic dissipation. Overall, the existence of some or all forms of gaps cannot
be decisively excluded, but it is highly unlikely that they are behind the high energy
radiation.

2.4 Current Closure

One final issue regarding the magnetosphere is the need for current closure. The
current that leaves the neutron star, carried by the particles that flow from the polar
cap, must return back to the star. The magnetosphere is a large scale electric circuit,
fed by the star and it is necessary that this circuit somehow closes in order to keep
the pulsar neutral.

In the first successful simulation of an aligned, axisymmetric pulsar’s magneto-
sphere Contopoulos, Kazanas and Fendt (Contopoulos, Kazanas, and Fendt, 1999)
showed that only a small portion of the total polar cap current closes inside the polar
cap itself. The bulk of the current returns to the star in the form current sheets.

Current sheets develop where there is a discontinuity in the magnetic field. In
particular, there are two such regions in the magnetosphere. The first is along the
magnetic equator, where the azimuthial magnetic field changes sign. The electric
field is perpendicular to the magnetic field and points away from the current sheet.
Therefore this equatorial current sheet (ECS) must be positively charged and the
particles must move outwards. The second is a separatrix current sheet (SCS), be-
cause in the closed magnetosphere the magnetic field is purely poloidal while in
the open magnetosphere has both a poloidal and an azimuthial component. We can
quantify this by using the electromagnetic pressure. At the separatrix, the pressure
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FIGURE 2.3: A sketch of a pulsar’s magnetosphere with the possible
locations of gaps (E et al., 2008).
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in the closed magnetosphere must be equal to the pressure in the open magneto-
sphere

B2
in − E2

in = B2
out − E2

out

⇒B2
pol,in − E2

pol,in = B2
pol,out + B2

φ,out − E2
pol,out

(2.15)

Here the subscript ’in’ means in the closed magnetosphere. From Ohm’s law the
poloidal electric field is simply Epol = r sin θ

R`c
Bpol = R

R`c
Bpol = xBpol , R being the

cylindrical radius, so the above equation becomes

(1− x2
in)B2

pol,in = (1− x2
out)B2

pol,out + B2
φ,out (2.16)

But xin ' xout and therefore Bpol,in 6= Bpol,out. If we solve for the electric fields we get

E2
pol,in − E2

pol,out =
x2B2

φ

1− x2 (2.17)

This implies that the poloidal electric field is not continuous at the separatrix and
the total electric field points towards the separatrix current sheet. There is a negative
surface charge density that supports the discontinuity. In order to conform with the
needed direction of the current, particles must move inwards at the speed of light.

The intersection point of the two current sheets is expected to be at or at least
close to the light cylinder and is called the Y-point (see fig 2.2). An this point the
current sheet surface charge density is expected to be equal to zero in order to permit
the transition from a negative SCS to a positive ECS.

Current closure is a very important aspect of the theory of pulsar magnetosphere.
We will show next that satisfying this constrain gives rise to a bunch of interesting
concepts and ideas that go hand in hand with the high energy emission.
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3 The ’Ring of Fire’ Model for
High Energy Emission

3.1 Motivation

As it was briefly mentioned in section 1.6, the latest methods in determining
the magnetospheric structure involve global PIC simulations. In these simulations
individual particles are followed as opposed to MHD simulations where a fluid is
considered. The electromagnetic field configuration and the distribution of charge
and current density are calculated in conjunction with each other. Regions of mag-
netic dissipation and particle acceleration naturally emerge and this pinpoints the
origin of high energy emission. Furthermore, because the particle trajectories are
known, it is possible to calculate high energy spectra and light curves and compare
with the observations.

The problem with PIC simulations is the computational resources they require.
Even the most advanced supercomputers are unable to reach the desired resolution
and particle number. Limited resolution leads to numerical dissipation that cannot
always be distinguished from the physical magnetic dissipation. Limited number of
particles forces the use of super-particles with unrealistically high mass and charge
and low Lorentz factors and multiplicities. Meanwhile, it is generally assumed that
magnetic dissipation and particle acceleration only take place at the current sheets
and the rest of the magnetosphere is force-free. A force free magnetosphere can be
very easily reproduced by an MHD simulation. The only areas that should be of
interest are the non-ideal current sheets and all the computational effort should be
concentrated there.

On the other hand, in section 2.4 we emphasised that the current sheets are the
links that ensure current closure in the pulsar magnetosphere. Their charge and cur-
rent densities are determined by the needs of the global solution. The open question
then is, what is the origin of these charge carriers. Numerical simulations cannot
give us an adequate answer because particles are freely provided according to the
needs of the solution. There is no limit on the number of available particles and no
restrictions on the place of origin, therefore there is not a direct physical association
between the reserve of charged particles and their distribution in the current sheets.

The semi-analytical model that will be described in this chapter attempts to solve
simultaneously and with the minimum number of assumptions both issues:

1. The particle acceleration and high energy emission mechanism.

2. The source of the charge carriers that form the current sheets and the return
current.

It is essentially a local study of the behaviour of charged particles in the vicinity of
the magnetospheric Y-point. The aim of this approach is to build a general, self-
consistent and theoretically robust picture of the magnetosphere before investing in
global simulations.
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FIGURE 3.1: A schematic illustration of the dissipation zone. Cen-
tral sphere: neutron star. Dashed line: light cylinder. Grey region:
closed field lines. White region: open field lines. Striped region: field
lines that originate in the rim of the polar cap and close in an equa-
torial dissipation zone (thick grey line) just outside the light cylinder.
Thick black line: Return current sheet on the surface of and outside

the striped region(Contopoulos, 2019)

3.2 Model Description

3.2.1 The dissipation zone

Our model relies heavily on the the ideas presented in (Contopoulos, 2019). We
consider the magnetosphere to be everywhere ideal and force-free, apart from two
regions: the gap above the polar cap where pairs are created and a narrow dissipa-
tion zone (DZ) on the ECS just outside the LC. The polar cap gap has already been
explained on sec. 2.3 so we will elaborate on the the dissipation zone, which is our
main concern.

By the term dissipation we mean conversion of magnetic field energy to parti-
cle energy through magnetic reconnection. Dissipative regions are by definition non
ideal, therefore eq. 2.1 is not valid, the particles are not forced to move along mag-
netic field lines and the parallel electric field is not completely screened. As a result
a portion of the field lines that originate from the polar cap are able to enter the ECS
and close even in distances greater than R`c (see fig. 3.1). The footpoints of these
lines are located in polar cap rim. The exact percentage of the open field lines that
enter the ECS and the resulting width of the DZ depends on the multiplicity k, that
is the number of particles created from each primary particle in the polar cap pair
cascade.

The total electric current that flows from the polar cap is
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Ipc = ρgjcπR2
pc (3.1)

where

Rpc '
(

r3
∗

R`c

)1/2

(3.2)

is the polar cap radius and r∗ is the radius of the star. The bulk of this current returns
to the star through the separatrix current sheet, with just a small portion returning
inside the polar cap rim. The current circuit of the pulsar can be written as

Ipc = Irim + Isep (3.3)

Suppose that the polar cap rim is a ring in the edge of the polar cap of radius
Rpc − δ < R < Rpc . The magnetic field lines that originate from the rim carry a total
pair flux of F = 2πRpcδkρgjc/e. These pairs enter the dissipation zone and they are
accelerated by the parallel electric field. Electrons are accelerated inwards, towards
the Y-point and then enter the separatrix current sheet. Positrons are accelerated
outwards and fill the equatorial current sheet. The particle flux from the polar cap
rim is channelled to the current sheets and supports the return current. A relation
between the width of the rim and the pair multiplicity directly emerges:

δ =
Isep

kRpcΩB∗
(3.4)

where B∗ is the magnetic field strength near the surface of the star. This is the width
that the polar cap needs to have in order to provide the necessary amount of charge
carriers to the current sheet given a specific multiplicity. In young, energetic pulsars
the pair creation efficiency is expected to be very high so k � 1 and consequently
δ� Rpc and Ipc ' Isep. We may consider that the current closes entirely through the
separatrix. By substituting the last relation in eq. 3.4 we get

δ '
Rpc

2k
(3.5)

The magnetic flux that flows from the polar cap rim is conserved up to the dissi-
pation zone so

B∗π[R2
pc − (Rpc − δ)2] = B`cπ[R2

`c − (R`c − ∆)2]

⇒B∗(2Rpcδ− δ2) = 2B∗

(
r∗
R`c

)3

(2R`c∆− ∆2)

⇒Rpcδ ' 2R`c∆
(

r∗
R`c

)3

⇒∆ ' R`c

2k

(3.6)

where ∆ is the the width of the DZ. In the above calculation we used eq. 3.2, 3.5, we
neglected the squared terms because they are considered small and we assumed that
the magnetic field always has a dipole form. Equation 3.6 is very important because
it determines the DZ width as a function of the multiplicity, which is a free parameter
in our model. Furthermore it shows that ∆ is inversely proportional to k. This a
reasonable result because the higher the multiplicity, the closer the magnetosphere
is to the ideal FFE solution so the dissipation region is expected to be small. We will
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focus on high multiplicities k ∼ 103 corresponding to young and active pulsars. For
this reason we name our model the ’Ring of Fire’ (Contopoulos and Stefanou, 2019).

Lastly, a detailed discussion needs to be done for the thickness of the DZ and
the current sheets in general. We will do this in terms of the half height h. Math-
ematically, current sheets are completely laminar, they represent an infinitely small
discontinuity. In reality they must posses some thickness in order to secure a steep
but smooth change in the magnetic field. The half height of the current sheet is de-
termined by the orbit of the charge carriers. We will show, in sec. 5.1 that in the DZ
the particles follow so called "Speiser orbits", i.e. gyrating orbits that become more
and more stretched and compressed towards the equatorial plane. A good approxi-
mation is to consider as half-height the mean value of the gyroradius of particles at
the moment of their injection to DZ. After their injection the compression of the orbit
is very fast and the particles are confined near the equatorial plane so h is completely
determined by the newly injected particles. If we consider a steady flow of particles
with a steady mean gyroradius then we can safely estimate the DZ half-height as

h =
〈Γinj〉mc2

eB`c
(3.7)

where Blc is the magnetic field in the light cylinder. For distances R > R`c + ∆ out
of the DZ the current sheet is expected to be significantly thinner.

We note that the implementation of the correct value of h is very important be-
cause it affects the overall trajectory and the emission from the particles. A self
consistent calculation can be done by statistically adding all the particle orbits that
enter it at all radii. This is beyond the purposes of this work for which we find the
approximation 3.7 adequate.

3.2.2 The local E/M field

The DZ is on the equatorial plane, very close to the LC and relatively small in
size. We are interested in a local analysis so we will focus on an imaginary box
around the DZ. There are three separate regions where the E/M field has different
configuration (Contopoulos and Stefanou, 2019). We will describe these regions us-
ing cylindrical coordinates.

The first and most important is the DZ which is defined as the region in the
interval R`c < R < R`c + ∆. The electromagnetic field is:

Bz = −B`c

Bφ =

{
− z

h B`c , z ≤ |h|
−sign(z)B`c , z > |h|

ER = |Bz|
R

R`c

BR = Ez = Eφ = 0

(3.8)

For simplicity we consider that the field lines penetrate the DZ perpendicularly,
so the poloidal field has only a z - component and that Bz is constant along the
DZ and of the order of B`c. The azimuthial component of the magnetic field must
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gradually change sign in the ECS - we chose linear function but another monotonous
function can be chosen - but everywhere else is constant and of the order of B`c. The
electric field that accelerates the particles has only a radial component given by the
well-known force free expression.

Outside of the right boundary of the DZ, where R > R`c +∆, lies the dissipation-
less ECS. In this region the azimuthial magnetic field dominates so

Bφ =

{
− z

h B`c , z ≤ |h|
−sign(z) B`c , z > |h|

BR = Bz = ER = Ez = Eφ = 0

(3.9)

Outside of the boundary between the DZ and the closed magnetosphere (or inside
the closed magnetosphere), where R < R`c, there is no azimuthial magnetic field.
The poloidal field though is significantly augmented because of compressed mag-
netic flux. This abrupt increase is a relativistic feature related to the presence of the
separatrix electric current near the light cylinder where |ER| → |Bz|, and involves
only a rearrangement of the magnetic flux at the tip of the closed magnetosphere.
Therefore we have

Bz � B`c

ER = Bz
R

R`c

BR = Bφ = Ez = Eφ = 0

(3.10)

Now that we have drawn he picture of the local E/M field we are in a position
to construct the equations that describe the motion of charged particles.

3.3 Equations of Motion

In order to determine the particle trajectories we need to solve the relativistic
momentum equation in tree dimensions using cylindrical coordinates. Cylindrical
coordinates are the most suitable for an axisymmetric problem such as the one we are
studying here. We will write down the equations in terms of the spacial component
of the 4-velocity

uuu = Γvvv (3.11)

in order to avoid numerical setbacks that appear when 3-velocities approach the
speed of light. The forces that act on the particles are the E/M Lorentz force

FFFEM = e
(

EEE +
vvv
c
× BBB

)
= e

(
EEE +

uuu
Γc
× BBB

)
(3.12)

and the radiation reaction force, which is the recoil exerted on the particles when
they emit radiation

FFFrad =
Prad

c2 vvv =
Prad

Γc2 uuu (3.13)

where Prad is the power radiated by particles that follow a curved trajectory
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Prad =
2e2cΓ4

3R3
c

(3.14)

and Rc is the radius of curvature of the particle trajectory

Rc =
|vvv|3∣∣∣vvv× dvvv

dt

∣∣∣ (3.15)

in terms of the 3-velocity and 3-acceleration. We chose the general expression of
curvature radiation because the orbit is rather complicated and we cannot predict
which part will dominate. In that sense we do not distinguish between synchrotron
and curvature radiation.

We must note here that eq. 3.13 is not trivial. The full expression of the rela-
tivistic radiation reaction force is not the one we use here. The correct formula is
an open issue with no definite answer found in the literature as of today. There are
various problems, such as the dependence of the force on the derivative of the accel-
eration and the resulting appearance of runaway solutions, and one needs to seek
approximate solutions. In our case, the motion of the particles happens in the ex-
treme relativistic limit Γ� 1 where eq. 3.13 in adequate but still needs to be treated
carefully numerical-wise (see sec. 4.4).

Taking all the above into account, the system of differential equations to be solved
is the following:


duuu
dt

=
e

me

(
EEE +

uuu
Γc
× BBB

)
− Prad

meΓc2 uuu

drrr
dt

=
uuu
Γ

⇒


u̇R =
e

me

(
ER +

uφBz − uzBφ

Γc

)
+

u2
φ

ΓR
− Prad

meΓc2 uR

u̇φ =
e

me

(
−uRBz

Γc

)
−

uφuR

ΓR
− Prad

meΓc2 uφ

u̇z =
e

me

(
uRBφ

Γc

)
− Prad

meΓc2 uz

Ṙ =
uR

Γ

φ̇ =
uφ

ΓR
ż =

uz

Γ



(3.16)

Here, rrr is the position vector (R, φ, z) in cylindrical coordinates and we have also

used the fact that Eφ = Ez = BR = 0 everywhere in our problem. The terms
u2

φ

ΓR and
uφuR
ΓR that appear in the first two equations are centrifugal terms that come from the

differentiation in cylindrical coordinates.
In order to solve the system we need initial conditions. We assume that the par-

ticles are injected in the upper boundary of the dissipation zone , in various radial
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positions. The choice of the initial azimuth is arbitrary because of the axisymmetry.
In total we have 

zinj = +h

Rinj = R`c + w∆, where 0 < w < 1

φinj = 0

 . (3.17)

The velocity of the particles at the injection point has two components: one par-
allel to the magnetic field u‖ inj because particles follow field lines from the polar cap
to the DZ and a drift component ud inj which is perpendicular to the magnetic field.
The latter is given by

uuud inj = Γc
EEE× BBB

BBB2 = Γc
ERBφφ̂φφ− ERBφẑzz

B2
φ + B2

z
(3.18)

with

ud inj =
E2

R
B2

φ + B2
z

. (3.19)

ring of fire pulsar
The parallel component is calculated in terms of the value of the Lorentz factor

at the injection point and the drift velocity as

u2
‖ inj + u2

d inj = c(Γ2
inj − 1)⇒

u‖ inj = c

Γ2
inj

(
1− E2

R
B2

φ + B2
z

)
− 1

1/2

.
(3.20)

Combining these we can find the components of the initial velocity in terms of the
field values and the injection Lorentz factor, which is a free parameter and depends
on the energy that the particles acquired in the polar cap

uR inj = 0

uφ inj =
u‖ inj|Bφ| − ud inj|Bz|

(B2
φ + B2

z)
1/2

uz inj =
−u‖ inj|Bz| − ud inj|Bφ|

(B2
φ + B2

z)
1/2


(3.21)

In the next section we present the numerical setup we used to solve the system 3.16
with the boundary conditions 3.17 and 3.21
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4 Numerical Setup

4.1 The Numerical Code

We have developed an extensive numerical code that routinely calculates rel-
ativistic particle orbits with radiation losses and the resulting high energy spectra.
The code is written in the Python 3.7 programming language (https://www.python.
org/). In particular we use the NumPy package for the calculations and data man-
agement. The differential equation system 3.16 is solved using the Odeint function
of the scipy.integrate package. All the figures and plots produced by the code are
handled by the Matplotplib library. In addition, a variety of secondary packages
and modules were used in order to produce and process the results apart from the
aforementioned three.

4.2 Nondimensionalisation

In order to handle the equation system 3.16 numerically we need to write it in a
dimensionless form. We assume characteristic scales for the physical quantities that
participate in the equations and then express all other values in terms of these units.

We start with the trivial selection of c as the unit for velocity so u′ = u
c . Another

easy and obvious choice is to measure the magnetic field in terms of its value at the
LC, B′ = B

B`c
. The same unit is used for the electric field as well because they are of

the same order of magnitude, E′ = E
B`c

. Next we consider the cyclotron frequency

of an electron gyrating in the characteristic magnetic field ωB = eB`c
mec as the order of

magnitude for time, therefore t′ = ωBt. From here on the units are straightforward.
Distances are measured in terms of the cyclotron Larmor radius rL = Γmec2

eB`c
. Energy

is measured in terms of the electron rest mass mec2 and power has the unit ecB`c.
One final detail, although it is not related to nondimensionalisation is that every-

where in the code we calculate the Lorentz factor immediately form the 4-velocity
through the relationship1

u2 = Γ2 − 1⇒ Γ =
√

u2
R + u2

φ + u2
z + 1. (4.1)

The system becomes immediately dimensionless if we divide the first three equa-
tions of 3.16 by the factor cωB and the last three equations by the factor c. Ev-
ery quantity in the code, either directly calculated by the integration or by post-
processing, is expressed in the above units. However in all outputs we apply the
transformations needed to present the results in cgs units.

1The only exception is in the initial conditions where we give the initial Lorentz factor Γinj and
determine the initial velocities from eq. 3.21.

 https://www.python.org/
 https://www.python.org/
https://www.numpy.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
https://matplotlib.org/
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4.3 Parameters

We consider physical parameters relevant to the Crab pulsar:

P = 3.34× 10−2 s

R`c =
c
Ω

= 1.59× 108 cm

B∗ = 3.79× 1012 G

B`c =

(
R`c

r∗

)3

B∗ = 1.58× 106 G

(4.2)

In our model we have two free parameters: the multiplicity k and the initial
Lorentz factor Γinj which depends on the energy of the particles when they escape
the polar cap. Crab is a young and energetic pulsar so k should be � 1 but not
too high because then the magnetosphere would be almost ideal. Furthermore the
particles are not mono-energetic, so the values of Γinj must follow a distribution.
We arbitrarily chose a mean value and a Maxwell distribution around it because the
exact type is not too important. Ideally a more careful approach or an adoption of a
distribution from a polar cap model is required in a future, more detailed work. The
values of the free parameters that best serve the purposes of this study are

k = 500
〈Γinj〉 = 500

(4.3)

Now from eq. 3.6, 3.7, the boundaries of the DZ are

∆ =
R`c

k
= 3.2× 105 cm

h =
〈Γinj〉mc2

eB`c
= 6× 10−1 cm, R < R`c + ∆.

(4.4)

Out of the DZ where there is no injection of fresh particles h must be significantly
smaller because the ECS is supported by particle orbits that have been flattened to
the equator. We implement this effect by hand

hECS =
1
10
〈Γinj〉mc2

eB`c
= 6× 10−2 cm, R > R`c + ∆. (4.5)

Of course in reality the decrease of the ECS height is gradual and maybe more
steep than our assumption but we found that all the relevant effects on the particle
trajectories and emission are still evident.

We inject both electrons and positrons coming only from the north pole in vari-
ous positions. Each particle has a different initial Lorentz factor, randomly selected
from a sample that follows the aforementioned Maxwell distribution. We integrate
for a time interval T large enough to allow particles to travel a few times (not more
because we want keep the problem local) the width of the DZ. We will explain in
chapter 5 why we want to do this, but we stress here that this time interval is signif-
icantly larger than the simple estimate T ∼ c

∆ due to the fact that the particles are
deflected to the azimuthial direction by the presence of Bz.
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4.4 Treatment of Radiation Losses

The problem would be very well defined and straightforward to solve if the ra-
diation reaction force was absent. The reason why this term imposes complications
for the numerical treatment is the dependence of eq. 3.13 on acceleration through
eq. 3.15. The integrator (odeint) that we use to solve the system works only for first
order differential equations and does not have an internal method to cope with such
terms (notice that we have converted system 3.16 to six first order equations instead
of three second order equations for this reason). The way that the acceleration finds
its path in the radiation term makes it virtually impossible to disengage it and pass
it to the left-hand side. The differential equation of each one of the spacial compo-
nents of the 4-velocity depends on the total 3-acceleration in the denominator of the
radiation term. Of course radiation reaction is a key element in our model so we
need a different strategy to bypass this obstacle.

The course of action we chose is to calculate the radius of curvature inside the
integration loop at each time step. At some time tn we use the value of Rc from
the previous time step tn−1. The integrator takes the system of equations, the initial
conditions and a set of time points as input and gives the values of the functions in
these time points as an output. However it does not keep track of the derivative and
any intermediate time points that it uses for the calculations. These values are only
’alive’ during each loop of the integration and this is why we need to calculate Rc
inside the loop. In order to do this we must express Rc in terms of the 4-velocity uuu
and its derivative duuu

dt . We start from eq. 3.15 and we replace the 3-velocity so

Rc =

∣∣uuu
Γ

∣∣3∣∣∣uuu
Γ ×

d
dt (Γuuu)

∣∣∣ = u3

Γ2
∣∣∣uuu× (uuu dΓ

dt + Γ duuu
dt

)∣∣∣ . (4.6)

We calculate dΓ
dt differentiating eq. 4.1

u
du
dt

= Γ
dΓ
dt
⇒ dΓ

dt
=

u
Γ

du
dt

(4.7)

Now the Rc is only a function of uuu and duuu
dt and we can determine its value and there-

fore the radiation reaction force in every time step. The radius of curvature should
change very little from one point of the orbit to the next, especially if the time reso-
lution is high, so we expect only small errors from this trick. We performed various
tests of this method to differential equations with known analytical solutions and
compared the results. The verdict is that there is no important deviation from the
correct solution given that the term that depends on the acceleration is sufficiently
small.

4.5 Treatment of Spectral Energy Distribution

The accelerated particles follow curved gyrating trajectories and emit high-energy
radiation along the instantaneous direction of their motion. The radiation spectrum
emitted at every point of the orbit depends on the instantaneous Lorentz factor Γ and
radius of curvature Rc. We assume for simplicity that the single particle spectrum is
a δ - function around the instantaneous critical energy

εcrit =
6πh̄cΓ3

eRc
(4.8)
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and the energy radiated is equal to

dε = dtPrad = dt
2e2cΓ4

3R3
c

(4.9)

where dt = tn − tn−1.
To build the spectral energy distribution (SED) we need to proceed with the

following steps:

• We create a binned energy space. The best choice is a logarithmic binning
because the range of energies is fairly big.

• For each point of the trajectory of each particle we calculate the critical energy.
If it falls in the range εN+1 − εN we add the energy contribution (eq. 4.9) and
divide the total energy collected in each bin EN by the width of the bin ∆ε.

• Our code is able to handle a few hundreds of particles at each run, so we need
to rescale the number to match the real electron-positron flow through the DZ.
At an interval dt a total number density of 2kρgj/e enters the DZ - which has
a total surface of 2πR`c∆ - at the speed of light. The rescaling is then done by
multiplying EN by the factor 2kB`c∆cdt/e.

• We want to have units corresponding to luminosity in the vertical axis so we
need to further multiply EN by the mean energy of the bin εN and divide by
the time interval dt.

In the next chapter we will present particle orbits and high energy spectra that
we were able to produce with our code and discuss the insight they provide us in
understanding the pulsar high energy emission.
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5 Results

5.1 Particle Trajectories

5.1.1 Type

The particles that enter the DZ follow relativistic Speiser orbits (Speiser, 1965;
Uzdensky, Cerutti, and Begelman, 2011). This type of orbit occurs in recconection
layers where both a reversal of the magnetic field and an accelerating electric field is
present. It has some similarities with the well known synchrotron motion, but has
very interesting and unique features which we will highlight below for the particular
case of the ’ring of fire’ model.

A particle, say a positron, enters the DZ with a velocity almost perpendicular
to the equatorial plane and with Γinj � 1. In this region there are three dominant
components of the E/M field: ER, Bφ and Bz (see eq. 3.8). Each one of them has
a contribution to the shape of the orbit. When the particle is injected it is forced to
gyrate around Bφ. If the initial Larmor radius is smaller than the local thickness of
the current sheet, the orbit will be completely confined inside the reconnection layer.
On the other hand if rL > h the positron will get in and out of the reconnection layer.
In either the particle will experience the presence of the accelerating electric field ER.
The electric field increases the energy of the particle and as a result rL also increases.
This means that the particle’s orbit would get closer to the equatorial plane in each
cycle. When the particle crosses the equatorial plane it is forced to gyrate in the
opposite direction because of the change in the sign of Bφ, so it again moves towards
the equatorial plane. In combination, the particle follows a meandering path which
gradually shrinks towards the centre of the current sheet and stretches towards the
direction of ER (or to the opposite direction for an electron). A sketch of a Speiser
orbit can be seen in fig. 5.1 (note that the coordinate system in the figure is different
from the one we use in our model) . The trajectory would entirely lie in the poloidal
plane if there was no Bz. However, its presence causes the overall motion of the
particle to deflected in the azimuthial direction (see fig. 5.3, 5.7).

We indeed observe all these features in the orbits we calculate. Positrons and
electrons follow similar orbits inside the DZ but in different directions. Things be-
come interesting when the particles reach the ends of the DZ and enter the separatrix
and equatorial current sheets. We will examine the behaviour of each type of parti-
cles separately.

5.1.2 Positrons

A typical example of the 3D trajectory of positrons calculated from our code is the
one presented in fig. 5.2, 5.3. In this case we inject the positron with initial Lorentz
factor Γinj = 500 at the inner boundary to see the full extent of the phenomenon.
The detail on fig. 5.2 shows that, indeed, the positron moves along a Speiser orbit.
A careful look at the detail reveals the stretching of the orbit. The shrinkage of the
trajectory is very fast, the positron very quickly has its Larmor radius increased and
approaches the equatorial plane. Notice that the scale of the vertical axis is extremely
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FIGURE 5.1: A sketch of a relativistic Speiser orbit, i.e., the trajectory
of a charged particle (here a positron) moving back and forth across
the reconnection layer of some thickness 2h. The particle is accel-
erated along the z-direction by the accelerating electric field, E. The
initial reconnecting magnetic field is along the ±x-directions (±B`c),

and reverses across the equatorial plane (Cerutti et al., 2013).

smaller than the scale of the horizontal axis. This means that the orbit is, in reality,
almost straight. When the positron reaches the end of the DZ and enters the dissi-
pationless ECS, the stretching and shrinking stop due to the disappearance of the
parallel electric field, but other than that the orbit remains the same. In fig 5.3 we
see the deflection of the orbit to the azimuthial direction, following the rotation of
the pulsar. Contrary to the first impression the deflection does not follow a straight
line but a curved one inside the DZ. Outside of the DZ there is no deflection because
there is no Bz. This is an important component of the overall motion of the positron
because it produces non negligible curvature radiation. The deflection effect is also
crucial for the calculation of accurate lightcurves and phase resolved spectra, albeit
we did not include such calculations in our study.

To better understand the motion of the positron and to delve deeper into the
radiation it produces, we show at fig. 5.4 and 5.5 the evolution of the positron’s
Lorentz factor and the orbit’s radius of curvature with time.

The important thing to notice in fig. 5.4 is that the positron radiates a very small
amount of its energy inside the DZ1. It takes a few more widths for the particle to
radiate a significant portion (30-40%) of its kinetic energy. In a sense, high energy
photons are emitted all along the ECS. We arrive, thus, at the conclusion that the
dissipation zone, where the energy of the magnetic field is transformed to particle
kinetic energy, does not coincide with the radiation zone, where the particle kinetic
energy is transformed to high energy radiation.

1Given our model parameters the particle does reach or even comes close to reach the radiation
reaction limit, where the radiation reaction force balances the acceleration from ER. We calculated the
evolution of Γ for a particle without radiation losses and the maximum Γ acquired inside the DZ was
slightly greater than the Γ shown in fig. 5.4 because the acceleration term dominates in the equation of
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FIGURE 5.2: Projection of a 3D positron trajectory at the (r, z) plane
with detail of the Speiser orbit. The positron is injected at the inner
edge of the equatorial reconnection layer with Γinj = 500 (blue line).
Shown also various characteristic positions of the orbit. Notice the
smallness of the z-scale. The positrons are accelerated outwards by
the radial electric field. After they exit the reconnection layer, they
enter and support the positively charged dissipationless equatorial
current-sheet (ECS) where they experience no further acceleration,

and radiate away their energy.
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FIGURE 5.3: Projection of 3D positron trajectory in the equatorial
(r, φ) plane (reconnection layer shown from above). The positron is
injected at the inner edge of the equatorial reconnection layer with
Γinj = 500 (blue line). Shown also various characteristic positions of
the orbit. The positrons are deflected in the φ direction away from the

star.
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FIGURE 5.4: Evolution of the Lorentz factor Γ with time along the
positron orbit. Time is in units of the dissipation layer radial light-
crossing time ∆

c . Yellow time interval: time inside the dissipation
layer.
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FIGURE 5.5: Evolution of the instantaneous radius of curvature Rc
with time along the positron orbit. Rc is in units of R`c. Time is in
units of the dissipation layer radial light-crossing time ∆

c . Yellow time
interval: time inside the dissipation layer. The detail corresponds to

the detail of figure 5.2.
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The radius of curvature of the positron trajectory inside the DZ never surpasses
R`c. Its lower limit follows the deflection of the orbit. The detail of the plot reflects
the sinusoidal-looking Speiser orbit. The radius of curvature reaches its lower limit
every time the positron reaches the maximum height above the equatorial plane
and goes to ’infinite’ every time the particles crosses the equatorial plane. Once
the positron gets out of the DZ there is neither an upper nor a lower limit for Rcurv
because the stretching as well as the deflection are absent. The trajectory simply
adjusts to the new height hECS = 0.1h and is completely dictated by Bφ and by the
radiation losses.

5.1.3 Electrons

Following the same recipe we did for the positron, we present in fig. 5.6, 5.7 a
3D orbit for an electron. We inject it at the outer boundary of the DZ because it is
accelerated inwards with Γinj = 500. As expected the orbit of the electron inside
the DZ is a Speiser orbit, exactly the same as the positron. The stretching of the
orbit is more intense in the case of the electron because the electric field is stronger
at the injection point, ER = R

R`c
Bz. The similarities end when the electron reaches

the inner end of the DZ. At that point the electron enters a region with significantly
stronger magnetic field and electric field. It is immediately forced to gyrate around
Bz and move along it, getting in and out of the DZ. The electron, thus, leaves the
equatorial plane and supports the SCS. This is a motion with different characteristics
in relation to the motion of the positron so it produces a different emission pattern.
We will explain more on this in the next section. As far as the azimuthial deflection
is concerned, it is smoother than the deflection of the positron and to the opposite
direction. The electron ends up sticking at the inner boundary of the DZ where it
follows the magnetic field all the way back to the star.

In fig. 5.8 and 5.9 we clearly see the effects of the second part of trajectory. Inside
the dissipation zone the electron Lorentz factor increases much like the positron.
Notice the difference in the curvature of the line which is caused by the fact that the
electron moves along a decreasing ER while the positron moves along an increasing
ER. When the electron leaves the DZ it successively enters the closed line region
with ER much greater than that of the DZ where ER = R

R`c
Bz. This is because ER is

directly proportional to Bz. This results in the formation of the tips in the line Γ(t).
Simultaneously the particle loses energy due to radiation so Γ decreases with time.
Correspondingly the evolution of the instantaneous radius of curvature with time
outside of the DZ shows the increased scale of the orbit due to increased magnetic
field.

5.2 High-Energy Spectra

All the particles, regardless of their injection position and the initial Lorentz fac-
tor, follow the trajectories described in the above sections. The only features that
depend on the initial conditions are the amount of energy that the particle acquires
inside the DZ and whether the orbit lies entirely between the upper and lower limit
of the DZ and the ECS. Both of these features affect the emission we receive from the
particle, particularly the second. A particle that spends most of its travel time out of
the region where the reversal of the magnetic field takes place (or equivalently their

motion. This means that the total power radiated inside the DZ is negligible compared to the power
radiated in the ECS.
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FIGURE 5.6: Projection of a 3D electron trajectory at the (r, z) plane
with detail of the Speiser orbit. The electron is injected at the outer
edge of the equatorial reconnection layer with Γinj = 500 (red line).
Shown also various characteristic positions of the orbit. Notice the
smallness of the z-scale. The electrons are accelerated inwards by
the radial electric field. After they exit the reconnection layer, they
enter and support the negatively charged dissipationless separatrix
current-sheet (SCS) where they follow the magnetic field back to the

star, and radiate away their energy.
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FIGURE 5.7: Projection of 3D electron trajectory in the equatorial
(r, φ) plane (reconnection layer shown from above). The electron is
injected at the outer edge of the equatorial reconnection layer with
Γinj = 500 (red line). Shown also various characteristic positions of
the orbit. The electrons are deflected in the φ direction towards the

star.
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FIGURE 5.8: Evolution of the Lorentz factor Γ with time along the
electron orbit. Time is in units of the dissipation layer radial light-
crossing time ∆

c . Yellow time interval: time inside the dissipation
layer.
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FIGURE 5.9: Evolution of the instantaneous radius of curvature Rc
with time along the electron orbit. Rc is in units of R`c. Time is in
units of the dissipation layer radial light-crossing time ∆

c . Yellow time
interval: time inside the dissipation layer. The detail corresponds to

the detail of figure 5.6.
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FIGURE 5.10: Calculated high-energy Spectral Energy Distribution
(SED) νLν in erg

s . Blue line: positron contribution. Red line: electron
contribution. Black line: total SED. The very high energy component
that extends to the TeV range is due to the positrons that radiate away
most of their energy along the equatorial current sheet. The electrons
must travel a large distance along the separatrix return current sheet
before they radiate away most of their energy, possibly in a different

part of the spectrum.

Larmor radius is greater than h) suffers from strong losses because it deals with an
intense magnetic field. On the contrary a particle whose orbit is flattened and con-
fined in the equatorial plane travels in a region with almost negligible magnetic field
and therefore the radiation losses are small. For this reason it is important to inject
particles with a variety of Γinj which is the parameter that determines the height of
the orbit.

On the other hand, the radial position at which the particles are injected regu-
lates the total amount of energy that is transported to them from the electromag-
netic field. Particles that enter at the radial boundaries of the DZ and travel its full
length take advantage of all the potential drop and gain all the available energy. It
is not too problematic to assume that the greatest contribution to the high energy
spectrum comes from the population of positrons and electrons that enter the DZ
from the inner and outer boundaries, respectively. There is no need to spent com-
putational effort in calculation particles that enter the DZ in intermediate positions.
This way we are able to calculate orbits with a more diverse sample of Γinj. Indeed
our calculations show that the main characteristics of the spectrum depend on these
populations and are weakly affected from the rest of the particles.

In fig. 5.10 we show the SED that our code produced by integrating∼ 100 orbits,
following the steps of sec. 4.5 and taking under consideration the above arguments.
We see that each particle species contributes to the spectrum in a different way, an
expected result due to their behaviour outside of the DZ.

We acknowledge that there are some important limitations of our analysis. Firstly,
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we are not allowed to integrate particle orbits very far from the ring-of-fire where
the electric and magnetic fields begin to diverge from the simple expressions of eqs.
3.8, 3.9, 3.10. More precisely, within the calculated part of their trajectory, the out-
ward moving positrons managed to radiate away the largest part of the energy they
gained in the DZ, and their contribution to the high-energy SED is shown in fig. 5.10.
On the contrary, within the same integration time, the electrons radiated away only a
very small fraction of their energy. This suggests that they will need to travel a large
distance along the separatrix return current sheet before they radiate away most of
their energy. The conditions in the SCS are very different from those in the ECS,
and therefore, the electron contribution to the high-energy SED is expected to be
very different from that of the positrons (it may, for example,account for the part of
the SED that peaks around a few hundred keV). Secondly we completely ignore the
geometry and the direction of emission. Instead we choose to count every photon
emitted by each particle and add them to build the SED. These limitations prevent
us from obtaining an SED comparable with the observations and only allow us to
get an insightful qualitative picture.

.
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6 Conclusions

6.1 Summary

In this thesis we proposed and investigated the ’Ring of Fire’ model for the par-
ticle acceleration and high energy emission in the pulsar’s magnetosphere. The key
points of this model are its simplicity, its reliance on analytical assumptions to ease
the numerical calculations and its ability to explain both the high energy emission
and the global distribution of the charge and current density in the magnetosphere,
simultaneously. The core element of the model is the development of a non-ideal
narrow dissipation zone near the LC where particle acceleration takes place. Its
width ∆ depends on the pair production efficiency of the pulsar through the pair
multiplicity k, a basic parameter in our model. We were able to calculate realistic
particle orbits and illustrate them in their actual orders of magnitude without the
need of scaling prescriptions. This gave us a direct insight into the conditions near
the Y-point and the LC. It helped us understand the nature of the motion of the par-
ticles and the way they are redistributed into the magnetosphere. From the particle
orbits we were able to obtain high energy spectra which qualitatively resemble the
observations. Our results show that positrons and electrons contribute differently in
the total spectrum. Despite the simplifications and the limitations we were able to
reproduce, with acceptable accuracy, the maximum Lorentz factors and γ-ray ener-
gies that can be attained (108 and 1 TeV respectively), which encourages us to stay
in this path, implementing the necessary improvements.

6.2 Discussion

In this work, our main purpose was to test simple ideas which will help us under-
stand the behaviour of the particles and the conditions under which the high energy
emission is produced. We pinpointed the various limitations of our model and gath-
ered important knowledge to attempt to bypass them. In order to produce a more
accurate, detailed, phase resolved SED we need to take into account features such as
a 3D inclined pulsar magnetosphere, global distribution of E/M field, photon travel
time, self consistent calculation of the DZ height h, etc. Despite these setbacks, our
analysis shows that the idea of a narrow dissipation zone being the origin of particle
acceleration is valid. On the other hand, during this process we managed to high-
light the fundamental aspects of dissipation in the magnetosphere and acquired the
technical know-how for calculating relativistic particle orbits which can be put in
use in future, more sophisticated simulations.

6.3 Future Steps

The model presented in this thesis draws the basic picture of a realistic magneto-
sphere. The next step is to reduce the number of parameters that were imported to
the model ’by hand’ such as h and Γinj. This can be done either by self consistently
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calculating them by some iteration method or by adopting them from some other
successful model. This will fix some of the inaccuracies of our model and clear the
way for global solution. In the same spirit a refinement of the theoretical assump-
tions for the E/M field and the charge and current densities will assist in reducing
the computational needs. These are modifications that apply directly to our model
and improve it

The ultimate target, which our analysis attempts to lead the way to, is the de-
velopment of a hybrid ideal FFE-PIC numerical code. It was argued in sec. 3.1
that the region of interest is where the acceleration and the emission takes place.
This is what we study here semi-analytically and what we hope can be studied self-
consistently. A numerical method that uses PIC to calculate what happens in the
current sheets and then sets them as boundary conditions for a global ideal MHD
simulation can successfully channel all the available computational resources where
they are needed and create very accurate, high resolution results.



53

Bibliography

Baade, W. and F. Zwicky (1934a). “Cosmic Rays from Super-novae”. In: Proceedings
of the National Academy of Science 20, pp. 259–263. DOI: 10.1073/pnas.20.5.259.

— (1934b). “On Super-novae”. In: Proceedings of the National Academy of Science 20,
pp. 254–259. DOI: 10.1073/pnas.20.5.254.

Bühler, R. and R. Blandford (2014). “The surprising Crab pulsar and its nebula: a
review”. In: Reports on Progress in Physics 77.6, 066901, p. 066901. DOI: 10.1088/
0034-4885/77/6/066901. arXiv: 1309.7046 [astro-ph.HE].

Cerutti, B. et al. (2013). “Simulations of Particle Acceleration beyond the Classical
Synchrotron Burnoff Limit in Magnetic Reconnection: An Explanation of the
Crab Flares”. In: 770.2, 147, p. 147. DOI: 10.1088/0004-637X/770/2/147. arXiv:
1302.6247 [astro-ph.HE].

Cerutti, Benoît and Andrei M. Beloborodov (2017). “Electrodynamics of Pulsar Mag-
netospheres”. In: 207.1-4, pp. 111–136. DOI: 10.1007/s11214-016-0315-7. arXiv:
1611.04331 [astro-ph.HE].

Chadwick, J. (1932). “Possible Existence of a Neutron”. In: 129, p. 312. DOI: 10.1038/
129312a0.

Contopoulos, I. (2019). “Current closure in the pulsar magnetosphere”. In: 482.1,
pp. L50–L54. DOI: 10.1093/mnrasl/sly183. arXiv: 1809.09064 [astro-ph.HE].

Contopoulos, Ioannis, Demosthenes Kazanas, and Christian Fendt (1999). “The Ax-
isymmetric Pulsar Magnetosphere”. In: The Astrophysical Journal 511.1, pp. 351–
358. DOI: 10.1086/306652. URL: https://doi.org/10.1086%2F306652.

Contopoulos, Ioannis and Petros Stefanou (2019). “A ring-of-fire in the pulsar mag-
netosphere”. In: arXiv e-prints, arXiv:1903.08501, arXiv:1903.08501. arXiv: 1903.
08501 [astro-ph.HE].

E, ALIU et al. (2008). “Observation of Pulsed gamma-Rays Above 25 GeV from the
Crab Pulsar with MAGIC”. In: SCIENCE 322, pp. 1221–1224.

Espinoza, C. M. (2013). “The spin evolution of young pulsars”. In: Neutron Stars and
Pulsars: Challenges and Opportunities after 80 years. Ed. by J. van Leeuwen. Vol. 291.
IAU Symposium, pp. 195–198. DOI: 10.1017/S1743921312023629. arXiv: 1211.
5276 [astro-ph.HE].

Gold, T. (1968). “Rotating Neutron Stars as the Origin of the Pulsating Radio Sources”.
In: 218, pp. 731–732. DOI: 10.1038/218731a0.

Goldreich, P. and W. H. Julian (1969). “Pulsar Electrodynamics”. In: 157, p. 869. DOI:
10.1086/150119.

Harding, Alice K. (2013). “The neutron star zoo”. In: Frontiers of Physics 8, pp. 679–
692. DOI: 10.1007/s11467-013-0285-0. arXiv: 1302.0869 [astro-ph.HE].

Hewish, A. et al. (1968). “Observation of a Rapidly Pulsating Radio Source”. In: 217,
pp. 709–713. DOI: 10.1038/217709a0.

Kiziltan, Bülent et al. (2013). “THE NEUTRON STAR MASS DISTRIBUTION”. In:
The Astrophysical Journal 778.1, p. 66. DOI: 10.1088/0004-637x/778/1/66. URL:
https://doi.org/10.1088%2F0004-637x%2F778%2F1%2F66.

Michel, F. C. (1973). “Rotating Magnetospheres: an Exact 3-D Solution”. In: 180,
p. L133. DOI: 10.1086/181169.

http://dx.doi.org/10.1073/pnas.20.5.259
http://dx.doi.org/10.1073/pnas.20.5.254
http://dx.doi.org/10.1088/0034-4885/77/6/066901
http://dx.doi.org/10.1088/0034-4885/77/6/066901
http://arxiv.org/abs/1309.7046
http://dx.doi.org/10.1088/0004-637X/770/2/147
http://arxiv.org/abs/1302.6247
http://dx.doi.org/10.1007/s11214-016-0315-7
http://arxiv.org/abs/1611.04331
http://dx.doi.org/10.1038/129312a0
http://dx.doi.org/10.1038/129312a0
http://dx.doi.org/10.1093/mnrasl/sly183
http://arxiv.org/abs/1809.09064
http://dx.doi.org/10.1086/306652
https://doi.org/10.1086%2F306652
http://arxiv.org/abs/1903.08501
http://arxiv.org/abs/1903.08501
http://dx.doi.org/10.1017/S1743921312023629
http://arxiv.org/abs/1211.5276
http://arxiv.org/abs/1211.5276
http://dx.doi.org/10.1038/218731a0
http://dx.doi.org/10.1086/150119
http://dx.doi.org/10.1007/s11467-013-0285-0
http://arxiv.org/abs/1302.0869
http://dx.doi.org/10.1038/217709a0
http://dx.doi.org/10.1088/0004-637x/778/1/66
https://doi.org/10.1088%2F0004-637x%2F778%2F1%2F66
http://dx.doi.org/10.1086/181169


54 BIBLIOGRAPHY

Nandi, Rana and Debades Bandyopadhyay (2012). “Magnetised Neutron Star Crusts
and Torsional Shear Modes of Magnetars”. In: Journal of Physics Conference Series
420. DOI: 10.1088/1742-6596/420/1/012144.

Oppenheimer, J. R. and G. M. Volkoff (1939). “On Massive Neutron Cores”. In: Phys-
ical Review 55, pp. 374–381. DOI: 10.1103/PhysRev.55.374.

Pacini, F. (1967). “Energy Emission from a Neutron Star”. In: 216, pp. 567–568. DOI:
10.1038/216567a0.

Scharlemann, E. T. and R. V. Wagoner (1973). “Aligned Rotating Magnetospheres.
General Analysis”. In: 182, pp. 951–960. DOI: 10.1086/152195.

Speiser, T. W. (1965). “Particle Trajectories in Model Current Sheets, 1, Analytical
Solutions”. In: 70, pp. 4219–4226. DOI: 10.1029/JZ070i017p04219.

Timokhin, A. N. and A. K. Harding (2015). “On the Polar Cap Cascade Pair Multi-
plicity of Young Pulsars”. In: 810.2, 144, p. 144. DOI: 10.1088/0004-637X/810/2/
144. arXiv: 1504.02194 [astro-ph.HE].

Uzdensky, Dmitri A., Benoît Cerutti, and Mitchell C. Begelman (2011). “Reconnection-
powered Linear Accelerator and Gamma-Ray Flares in the Crab Nebula”. In:
737.2, L40, p. L40. DOI: 10.1088/2041- 8205/737/2/L40. arXiv: 1105.0942
[astro-ph.HE].

http://dx.doi.org/10.1088/1742-6596/420/1/012144
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1038/216567a0
http://dx.doi.org/10.1086/152195
http://dx.doi.org/10.1029/JZ070i017p04219
http://dx.doi.org/10.1088/0004-637X/810/2/144
http://dx.doi.org/10.1088/0004-637X/810/2/144
http://arxiv.org/abs/1504.02194
http://dx.doi.org/10.1088/2041-8205/737/2/L40
http://arxiv.org/abs/1105.0942
http://arxiv.org/abs/1105.0942

	Abstract
	Acknowledgements
	Introduction
	Theoretical Prediction
	Discovery
	Physical Properties
	Creation
	Rotation and magnetic field
	Size, mass and structure
	Energetics

	Observations
	Lightcurves
	Spectrum

	Population
	Current Status

	The Magnetosphere
	Definition
	Formation
	Gaps
	Current Closure

	The 'Ring of Fire' Model for High Energy Emission
	Motivation
	Model Description
	The dissipation zone
	The local E/M field

	Equations of Motion

	Numerical Setup
	The Numerical Code
	Nondimensionalisation
	Parameters
	Treatment of Radiation Losses
	Treatment of Spectral Energy Distribution

	Results
	Particle Trajectories
	Type
	Positrons
	Electrons

	High-Energy Spectra

	Conclusions
	Summary
	Discussion
	Future Steps

	Bibliography

