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ABSTRACT 

Long non-coding RNAs (lncRNAs) are transcribed non-coding RNAs (ncRNAs) that 
are more than 200 nucleotides long. Among their reported functions, their ability to act 
as molecular “sponges” for microRNAs (miRNAs) in several physiological processes 
and pathological conditions has gained attention over the past few years. According to 
the ceRNA hypothesis, by sequestering miRNAs, lncRNAs can reduce the number of 
the available miRNAs that target mRNAs and indirectly prevent target gene repression.  

In order to investigate in what extent lncRNAs reduce the amount of miRNAs available 
to other targets and whether individual lncRNAs can be characterized as “sponges”, a 
mathematical quantitative model of binding site competition was employed. Argonaute 
Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation 
(AGO-PAR-CLIP), RNA-Seq and small RNA-Seq (sRNA-Seq) experiments were used 
to identify targets and quantify target and miRNA abundances for to 2 different tissues. 
Site occupancies (fraction of sites bound by the miRNA) for protein coding targets were 
predicted in the presence and absence of lncRNAs. Increased occupancies of miRNA 
targeted mRNAs, observed in the lack of lncRNAs, lead to potential lncRNA “sponges”.  

This analysis resulted in the identification of 8 lncRNAs acting as potential sponges for 
38 miRNAs. The abundance of most individual targets was insufficient to alter miRNA 
levels and the reported sponges were highly expressed. Two well-studied nuclear 
lncRNAs, XIST and MALAT1, were among them suggesting additional functionalities 
of lncRNAs in certain settings, but also highlighting the need for separate analysis of 
nuclear and cytoplasmic RNAs. 
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ΠΕΡΙΛΗΨΗ 
 
Τα μακρά μη κωδικά RNAs (lncRNAs) είναι μεταγραφόμενα μη κωδικά RNAs (ncRNAs) 
με μήκος πάνω από 200 νουκλεοτίδια. Μεταξύ των αναγνωρισμένων λειτουργιών τους, η 
ικανότητά τους να δρουν σαν μοριακά “σφουγγάρια” για τα microRNAs (miRNAs) σε 
διάφορες φυσιολογικές διεργασίες και παθολογικές καταστάσεις έχει κερδίσει προσοχή 
τα τελευταία χρόνια. Σύμφωνα με την υπόθεση του ceRNA, με την πρόσδεση των 
miRNAs, τα lncRNAs μπορούν να μειώσουν τον αριθμό των διαθέσιμων miRNAs που 
στοχεύουν mRNAs και να αποτρέψουν έμμεσα τη καταστολή του γονιδίου στόχου. 

Για να διερευνηθεί σε ποιο βαθμό τα lncRNAs μειώνουν την ποσότητα των miRNAs που 
είναι διαθέσιμα σε άλλους στόχους και αν μεμονωμένα lncRNAs μπορούν να 
χαρακτηριστούν ως "σφουγγάρια", χρησιμοποιήθηκε ένα μαθηματικό ποσοτικό μοντέλο 
για τον ανταγωνισμό των θέσεων πρόσδεσης. Argonaute Photoactivatable 
Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (AGO-PAR-CLIP), 
RNA-Seq και small RNA-Seq (sRNA-Seq) πειράματα χρησιμοποιήθηκαν για τον 
προσδιορισμό των στόχων και την ποσοτικοποίηση της αφθονίας τόσο των ίδιων όσο και 
των miRNA για 2 διαφορετικούς ιστούς. Το ποσοστό των θέσεων που δεσμεύονται από 
τα miRNA για πρωτεϊνικούς στόχους προβλέφθηκε παρουσία και απουσία των lncRNA. 
Αυξημένα ποσοστά πρόσδεσης των mRNA στόχων, που παρατηρούνται απουσία των 
lncRNA, οδηγούν σε πιθανά lncRNA «σφουγγάρια». 

Η ανάλυση αυτή είχε σαν αποτέλεσμα την ταυτοποίηση 8 lncRNAs με πιθανή λειτουργία 
σφουγγαριού για 38 miRNAs. Η αφθονία των περισσότερων επιμέρους στόχων ήταν 
ανεπαρκής για να μεταβάλει τα επίπεδα του miRNA και τα αναφερθέντα σφουγγάρια 
εκφράζονταν σε μεγάλο βαθμό. Δύο καλά μελετημένα πυρηνικά lncRNAs, το XIST και το 
MALAT1, αναγνωρίστηκαν μεταξύ των άλλων, υποδεικνύοντας επιπλέον λειτουργίες των 
lncRNA σε συγκεκριμένα περιβάλλοντα, αλλά και υπογραμμίζοντας την ανάγκη 
ξεχωριστής ανάλυσης πυρηνικών και κυτταροπλασματικών RNAs. 
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1. INTRODUCTION 

1.1 miRNAs 

microRNAs (miRNAs) are a class of small non-coding RNAs (~22 nucleotides long) that 
regulate their protein coding targets by causing degradation or/and translational 
repression [1, 2] (Figure 1). While translational repression seems to be the predominant 
way of gene regulation in animals, this is not the case in plants where direct cleavage of 
the targets is more common [3]. Short “seed” sequences at the 5′ ends of miRNAs 
(nucleotides 2–8) are most critical for miRNA binding. Mature miRNAs are loaded into a 
protein of the Argonaut family (AGO), a member of the RNA-induced silencing complex 
(RISC), and guide the complex to microRNA response elements (MREs) on targeted 
transcripts. MREs are mainly located on the 3’ untranslated region (3’UTR) of mRNAs but 
functional binding sites have been identified within the 5’ untranslated region (5’UTR) and 
the coding region (CDS) as well [4].  
 
miRNAs are implicated in various developmental processes including differentiation, 
proliferation and apoptosis [1, 3] as well as in stress response [5, 6]. As a consequence 
of their regulatory role in important processes, deregulation of miRNAs often results in 
pathological conditions such as carcinogenesis, metabolic disorders etc. [7, 8]. Their 
implication in a wide range of physiological processes and disease is consistent with the 
fact that more than half of all mRNAs are targets of miRNAs [9]. Each miRNA is predicted 
to regulate up to hundreds of targets and each target can be regulated by multiple 
miRNAs. Thus, miRNAs and their respective targets shape a large regulatory network. 
 
 

 

Figure 1: miRNA functionality.  miRNAs are loaded into AGO and guide the RISC complex to 
complementary sequences on targeted transcripts, causing their degradation or/and translational 

repression [10]. 

 

1.2 lncRNAs 

Less than 2% of the human genome encodes proteins. The vast majority of the 
transcribed genome produces non-coding RNAs. Long noncoding RNAs (lncRNAs) are 
among the various classes of non-coding RNAs and are defined as transcripts more than 
200 nucleotides long with no coding potential, although it has been been demonstrated 
that some transcripts that are annotated as lncRNAs actually encode for small proteins 
[11, 12].  
 
Based on their location with respect to protein coding genes they are mainly classified as 
[13]: 
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 antisense RNAs ( transcripts that intersect any exon of a protein-coding locus on 
the opposite strand) 

  lincRNAs (intergenic transcripts) 

  sense overlapping ( transcripts that contain a coding gene within an intron on the 
same strand) 

  sense intronic (transcripts that reside within introns of a coding gene, but do not 
intersect any exons)  

 processed transcripts (transcripts that do not contain an open reading frame) 

 
Subcellular localization of lncRNAs varies, with transcripts observed in the nucleus, 
cytoplasm or both [14-16]. For example RNA FISH demonstrated that the lncRNA XIST, 
a key regulator of X inactivation [15], accumulates on the inactive X-chromosome [15, 17, 
18], while the lncRNA GAS5 can be found both in the nucleus and at the cytoplasm.[15, 
19]. Localization patterns may be indicative of their molecular role and thus are 
investigated by numerous teams [15, 16, 20-24]. The conventional view of lncRNAs as 
nuclear-enriched, epigenetic regulators [20-22] has been challenged by subsequent 
research showing that the number and importance of cytoplasmic lncRNAs has been 
underestimated [15, 16, 24, 25]. Benoit Bouvrette and colleagues found 75% of lncRNAs 
present in cytoplasmic fractions of human and Drosophila cells [16] and Cabili and 
colleagues reported complex localization of lncRNAs [15], which could be divided into five 
categories: large nuclear foci, large nuclear foci with single molecules scattered through 
the nucleus, predominantly nuclear without foci, cytoplasmic and nuclear, and 
predominantly cytoplasmic [15]. 
 

1.2.1 Functionality of lncRNAs 

Although the majority of lncRNAs have yet uncharacterized functions, there are some 
well-studied examples that offer insights in the various ways lncRNAs operate in the cell. 
As reviewed in [26] based on their function lncRNAs can be broadly classified into two 
categories: Those that  influence the expression and/or chromatin state of nearby genes 
and those that execute an array of functions throughout the cell away from their 
transcription site. 
 
Class 1: Those that influence the expression and/or chromatin state of nearby genes. 
Establishment of repressive or activating chromatin. 
The most well studied example is that of the lncRNA Xist. In female mammals, one of the 
two X chromosomes is transcriptionally silenced for dosage compensation upon 
transcription of Xist from only one X chromosome, which will later become the inactive X 
(Xi). Following its induction, Xist spreads across the entire Xi resulting in the 
transcriptional silencing of almost the entire chromosome [16]. 
 
Transcriptional interference. 
In some cases, the mere transcription of an lncRNA locus is enough to infer expression 
regulation of a neighbor gene independently of the specific lncRNA that is transcribed. 
The transcribed lncRNA may use the same promoter as another protein coding gene [27] 
or it may compete for RNA polymerase II and transcription factors reducing their 
availability for other neighbor genes [28, 29]. 
 
Presence of regulatory DNA elements in the lncRNA loci.  
Genetic analyses of the lincRNA-p21 locus, uncovered that this lncRNA locus actually 
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functions to regulate the gene Cdkn1a in cis [30]. Modulation of gene expression due to 
the regulatory DNA elements in the gene body of the lncRNA was observed even in 
tissues in which lincRNA-p21is not expressed [31]. 
 
Class 2: Those that execute an array of functions throughout the cell away from their 
transcription site.  
Transcription regulation through direct binding or recruitment of protein 
complexes. 
lincRNA-EPS has been reported to interact directly with the promoters of distant genes 
and recuit the hnRNPL(Heterogeneous nuclear ribonucleoprotein L), resulting in the 
transcriptional repression of its targets [18]. Another example is that of the lncRNA 
HOTAIR, that has been proposed to act as a scaffold that recruits chromatin modifying 
complexes to the HOXD locus to establish a repressed chromatin state [32]. 
 
Organization of nuclear architecture 
Some lncRNAs seem to orchestrate transcription, RNA processing or other gene 
expression related functions, through the organization of nuclear architecture. Such an 
example is the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) that 
has been proposed to act as a scaffold for the positioning of nuclear speckles at active 
gene loci [33]. Nuclear speckles are dynamic nuclear compartments  enriched in pre-
mRNA splicing factors such as spliceosomal subunits, small nuclear ribonucleoproteins 
(snRNPs), and serine/arginine-rich proteins that are connected in places by a thin 
fibril [34]. While the involvement of MALAT1 to splicing has been suggested due to its 
association with the nuclear speckles, Malat1-deficient mice do not exhibit measureable 
splicing abnormalities [35], leaving room for alternative hypothesis for its functions. 
 
Interaction with proteins and RNAs 
Another way that lncRNAs may infer regulation is through their binding to other proteins 
or RNAs and the consequent modulation of their activity or abundance. The lncRNA 
NORAD for example, is targeted by the PUMILIO1 (PUM1) and PUMILIO2 (PUM2) 
proteins that normally bind to specific mRNAs and accelerate their decay or inhibit their 
translation [36]. Through this binding, NORAD reduces the amount of the PUMILIO 
proteins that is available to interact with their other mRNA targets. Inactivation of   NORAD 
resulted in PUMILIO hyperactivity and downregulation of PUMILIO target transcripts [37, 
38]. A similar mechanism is proposed for the lncRNA regulation of miRNAs [39]. 
 

1.2.2  lncRNA targeting by microRNAs 

There have been a number of publications identifying lncRNA - miRNA interactions 
through computational and/or experimental approaches. In situ hybridization and confocal 
microscopy revealed MALAT1 targeting in the nucleus by MiR-9 [40]. Negative correlation 
between the expression of two miRNAs (miR-192 and miR-204) and their target lncRNA 
HOTTIP was observed in hepatocellular carcinoma [41]. Extensive evidence of lncRNA - 
miRNA interactions emerge from the analysis of crosslinking experiments, followed by 
sequencing (CLIP-Seq) and several algorithms and databases have been developed to 
predict and catalogue them [42-44]. Databases with lncRNA – miRNA interactions are 
reported below: 
 
DIANA – LncBase v2 [42] 
An extensive database including more than  70.000 miRNA:lncRNA experimentally 
supported interactions, derived from manually curated publications and the analysis of 
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153 AGO CLIP-Seq libraries. It also provides a module for in silico taget prediction with 
the DIANA-microT algorithm.  
 
starBase v2.0 [43] 
A database with comprehensive RNA–RNA and protein–RNA interaction networks in 
normal tissues and cancer cells derived from the analysis of 108 CLIP-Seq experiments. 
By taking into account common miRNA interactions with ncRNAs (lncRNAs, 
pseudogenes, circRNAs) and mRNAs they form ceRNA pairs.  
 
NPInter v3.0 [44] 
A database with experimentally verified interactions between ncRNAs (especially 
lncRNAs) and other biomolecules (proteins, mRNAs, miRNAs and genomic DNAs). 
Interactions derive from manually curated publications, high-throughput technologies and 
in silico predictions supported by AGO CLIP-Seq.  
 

1.2.3  Artificial miRNA sponges 

Reverse genetic approaches that act to inhibit microRNAs were initially developed in 
order to better understand the miRNA functions. These approaches involved introduction 
of antisense oligonucleotides [45, 46] or overexpression of transgenic reporters that 
contain miRNA binding sites [47] to achieve miRNA “sponging” and derepression of its 
targets. The use of artificial antisense RNAs as miRNA sponges is broad in molecular 
research, and progress has been made towards their application as a new class of drug 
[48]. Oligonucleotide miRNA inhibitors (typically small single-stranded RNA) are designed 
to have near perfect complementarity against a miRNA and are chemically modified to 
improve their stability. Nevertheless, despite reaching unphysiologically high 
concentration levels in the cell, artificial miRNA sponges are only capable of partial 
inhibition [49], which in the case of highly expressed miRNAs does not exceed 50% [50]. 
 

1.2.4 Natural miRNA sponges 

The first evidence for natural miRNA sponges was discovered in plants where the non-
coding gene IPS1 (INDUCED BY PHOSPHATE STARVATION1) from Arabidopsis 
thaliana was observed to sequester miR-399 [51]. IPS1 contains a motif with sequence 
complementarity to the phosphate starvation–induced miRNA miR-399, but the pairing is 
interrupted by a mismatched loop at the expected miRNA cleavage site. 
IPS1overexpression leads to increased accumulation of the miR-399 mRNA 
target PHO2. This mechanism of miRNA inhibition was termed as “target mimicry”. 
 

A similar mechanism was observed later in mammals. Mouse cell lines infected with 
murine cytomegalovirus, exhibit rapid post-transcriptional down-regulation of miR-27a 
leading to the hypothesis that miR-27a is inhibited due to the production of a viral or 
endogenous miRNA sponge [52]. 

 
In 2010 a mammalian cellular non-coding RNA was proposed as a miRNA sponge [53].  
PTENP1 is a pseudogene of the tumor suppressor PTEN gene and shares conserved 
miRNA seed target sites with PTEN for the miR-17, miR-21, miR-214, miR-19 and miR-26 
miRNA families in its 3’UTR [53]. In this study they showed that retroviral overexpression 
of the PTENP1 3′ UTR increased expression of PTEN (by 50%) in a Dicer-dependent 
manner and acted as a tumor suppressor. Additionally, knockdown of endogenous 
PTENP1 in prostate cancer cells resulted in a decrease in PTEN mRNA and protein 
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levels. In a similar way as PTENP1 but with different outcome in tumor development, 
overexpression of the 3’UTR of the pseudogene KRAS1P resulted in increased 
abundance of the KRAS mRNA and accelerated cell growth [53].   
 

1.2.5 The ceRNA hypothesis 

Experimental evidence for miRNA inhibition through sponging effects of artificial RNAs 
were present since 2007 [54]. Despite reaching unphysiologically high concentration 
levels these RNAs had mild results in miRNA inhibition [49]. The same year a natural 
(endogenous) non-coding RNA in plants was reported to invoke miRNA inhibition and 
upregulation of its mRNA target [51]. Three years later, in 2010, a mammalian 
pseudogene was shown to upregulate its gene of origin with which it shared miRNA seed 
target sites. Following these findings, the competing endogenous RNA (ceRNA) 
hypothesis was formed [55]. The ceRNA hypothesis proposes a layer of gene regulation 
mediated by transcripts with shared miRNA binding sites where RNAs can impair miRNA 
activity through sequestration, thereby upregulating miRNA target gene expression. 
ceRNAs (RNAs targeted by the same miRNA) exhibit indirect positively correlated 
expression. As one ceRNA increases, it titrates away miRNA from repressing other 
ceRNAs, and increases expression of all ceRNAs in the network [56].  Several classes of 
RNAs have been reported to act as ceRNAs including protein coding mRNAs, lncRNAs, 
pseudogenes, and circular RNAs (circRNAs) as reviewed in [39] (Figure 2) .  

 

Figure 2: Competition for miRNA binding. In the scenario where only a limited amount of mRNAs 
is available for miRNA binding (a), the amount of free regulator (miRNA) is enough to bind all 

sites. Upon expression of additional sites (b) that may belong to mRNAs, lncRNAs, pseudogenes, 
or circRNAs, the free miRNA is sequestered and cannot bind to additional targets. Unbound 

targets are free from miRNA mediated repression and thus upregulated. 

 

1.2.6  lncRNAs as competing endogenous RNAs 

lncRNAs have been proposed to be part of the ceRNA(competing endogenous RNA) 
network, titrating miRNAs away from their other mRNA transcripts and are implicated in 
various dieseases and developmental processes (reviewed in [39]).  
 

1.2.6.1 ceRNAs in Development 
linc-MD1: The first evidence of lncRNAs implication in development through sponging 
effects was demonstrated in mouse and human myoblasts where the muscle-specific long 
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noncoding RNA, linc-MD1 was observed to govern the time of muscle differentiation by 
acting as a ceRNA for MAML1 and MEF2C titrating away miR-133 [57].  
 
linc-RoR: Another lncRNA, linc-RoR was identified as a regulator of human embryonic 
stem cell differentiation [58]. Specifically, a direct competition for miR-145 binding occurs 
between linc-RoR and the mRNAs encoding the core TFs transcriptional factors 
(TFs) Oct4, Nanog, and Sox2. 
 
H19: lncRNA H19 contains both canonical and non-canonical binding sites for the let-7 
miRNA family, and has been reported to act as an effective ceRNA for the abundant let-
7 miRNA, hence modulating the expression of other let-7 target transcripts including Dicer 
and Hmga2 [59]. In addition to let – 7 miRNA, H19 has been reported to act a sponge for 
miRNAs of the miR-17-5p family during myoblast differentiation [60]. 
 

1.2.6.2 ceRNAs in Disease 
HULC: Long non-coding RNA HULC, is highly up-regulated in hepatocellular carcinoma 
and plays an important role in tumorigenesis by sponging miR-372 [61]. miR-372 
inhibition by HULC reduces translational repression of its target transcript PRKACB, 
translational repression which through a series of downstream events leads to the 
upregulation of the HULC RNA. 
 
PTCSC3: lncRNA PTCSC3 (Papillary thyroid carcinoma susceptibility candidate 3) is 
heavily downregulated in thyroid cancers and its transfection has been shown to lead to 
a significant decrease in expression levels of the oncogenic miR-574-5p. The significant 
inverse correlation between PTCSC3 and miR-574-5p suggests that PTCSC3 acts as a 
competing endogenous RNA to target miRNAs and in turn regulate cell growth and 
apoptosis in thyroid cancer [62]. 
 

1.3 Predicting ceRNA interactions 

1.3.1  In silico versus AGO-CLIP guided algorithms for identifying ceRNA 
ineractions 

Competition between RNAs depends on the sharing of MREs for the same miRNA. 
Hence, identification of MREs on transcripts is of crucial importance for ceRNA 
interactions. 

In silico target prediction algorithms such as TargetScan [63], miRanda [64], PicTar [65] 
and DIANA microTCDS [66] are widely used and consider a variety of features to identify 
potential miRNA targets, such as sequence complementarity between the miRNA seed 
and the target, position of the MRE on the target, free energy and site accessibility, 
conservation etc. 

As an alternative to in silico prediction strategies, developed high-throughput biochemical 
techniques, which identify endogenous miRNA–target interactions can be used. 
Examples of these experimental methods include high-throughput sequencing of RNA 
isolated by crosslinking immunoprecipitation (HITS-CLIP) [67] and 
photoactivatableribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-
CLIP) [4]. In this context, several computational approaches have been developed to 
analyze AGO-CLIP-Seq datasets and identify miRNA targets (microMUMMIE [68], 
PARma [69], microCLIP [10]). 
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Since expression patterns of RNAs are cell type-, tissue type-, developmental stage and 
disease- specific, interactions between miRNAs and their targets are the same. Both in 
silico and experiment based approaches can identify targets in these different conditions. 
Localization of lncRNAs on the other hand, is not considered by in silico prediction 
models, while AGO-CLIP guided identification provides only relevant interactions. In 
addition, targeting patterns of miRNAs change based on target RNA concentration and 
availability (sponging effects) and in silico models are not sensitive to these parameters. 
Hence, computational methods that analyze AGO-CLIP data may be more appropriate 
when investigating ceRNA interactions.  
 

1.3.2  Methods for identifying ceRNAs and related databases 

Several computational methods have been developed to identify ceRNAs. Correlation of 
expression between the competing RNAs is one characteristic that several approaches 
take into consideration [70-72]. For example, if two RNAs are targeted by the same 
miRNA, then overexpression of one would titrate away miRNA molecules from the other 
resulting in the upregulation of the latter and thus their expression levels would be 
positively correlated. Another approach is to score the ceRNA pairs based on the number 
of shared miRNAs or MREs [43, 73]. By this logic, RNAs with many shared miRNAs or 
MREs would regulate each other the best because overexpression of one would titrate 
away multiple miRNAs from the other.  

These approaches identify possible competing pairs but cannot predict to what extent 
changes on the concentration of a transcript, affect other ceRNAs and whether this can 
amount to a regulatory impact. To address this issue quantitative modeling is needed. 
Several mathematical models that quantify miRNA and target concentration have been 
employed (reviewed in [74]) including a stochastic model [75], a mass action model [76] 
and a model of binding site occupancies [77, 78]. In quantitative models determining the 
number of transcriptomic miRNA-binding sites is crucial for evaluating the potential for 
ceRNA regulation. Differences in this estimation may lead to different conclusions. 

Databases and tools dedicated to ceRNA interactions are described below: 

spongeScan [79] 
spongeScan proposes an approach based on sequence complementarity to identify 
patterns across lncRNAs that could be targeted by miRNAs. Each lncRNA – miRNA pair 
is further scored in order to assess the lncRNAs potential as a ceRNA. 

Each lncRNA - miRNA pair is scored based on three parameters: 

1. A log-odds score that is indicative of how many MREs can be found in the lncRNA 
sequence. 
Multiple MREs would facility the sequestration of miRNAs by the lncRNA. 

2. A dispersion score that is indicative of how evenly distributed the MREs are along 
the transcript. 
Equally distributed MREs are observed in some known ceRNAs and would 
facilitate multiple miRNA binding. 

3. A complexity score to filter out low complexity k-mers that would result in unspecific 
binding. 

SomamiR 2.0 [80] 
SomamiR 2.0 database contains cancer somatic mutations in miRNAs and their targets. 
ceRNAs are considered the mRNA, lncRNA and circRNA targets identified in 21 PAR-
CLIP and 13 HITS-CLIP experiments from starBase. Somatic mutations for these targets 
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were downloaded from the COSMIC database. (The somatic mutations in  the ceRNAs 
are only reported. There is no evidence of how the mutation impacts the interaction). 
Functional impact of somatic mutations are analyzed from miR2GO only for mutations in 
the miRNA sequence. 

starBase v2.0 [43] 
starBase ceRNA network for human and mouse includes computationally predicted 
targets for conserved miRNA families that are supported by CLIP-Seq data (108 datasets 
were analyzed in total from PAR-CLIP, HITS-CLIP, iCLIP and CLASH experiments). The 
biotypes included are mRNAs, lncRNAs, pseudogenes and circular RNAs. Each CLIP-
supported target is paired with every other target and a hypergeometric test is executed 
for each pair separately. Pairs with FDR < 0.05 are imported in the database. The 
hypergeometric is defined by four parameters: i) the total number of miRNAs used to 
predict targets ii) the number of miRNAs that interact with the chosen gene of interest iii) 
the number of miRNAs that interact with the candidate ceRNA of the chosen gene and 
iv) the common miRNA number between these two genes. 

lnCeDB [73] 
The database includes computationally predicted mRNA targets that are supported by 
CLIP-Seq data from starBase. Targets in lncRNAs from miRCode. For more recently 
annotated lncRNAs target sites were computationally predicted with an algorithm similar 
to the miRanda algorithm and then were intersected with the dataset of Jalali et al. 

The cRNA network consists of mRNA-lncRNA pairs. To find out the likelihood of an 
lncRNA-mRNA pair for actually being ceRNA they use two methods: 

1. a ceRNA score is calculated from the ratio of the number of shared MREs between 
the pair with the total number of MREs of the individual candidate gene  

2. by hypergeometric test using the number of shared miRNAs between 
the ceRNA pair against the number of miRNAs interacting with the individual RNAs 
(same as starBase) 

They support that the number of shared MREs would be more appropriate instead of the 
number of shared miRNAs between the ceRNA pair. lnCeDb also incorporates lncRNA 
and mRNA expression data from 22 tissues for viewing the co-expression of each lncRNA 
– mRNA pair. 

miRSponge [81] 
A manually curated database for experimentally supported miRNA-sponge interactions 
and ceRNAs for 11 species. Database classes include endogenously generated 
molecules including coding genes, pseudogenes, lnc RNAs and circular RNAs, along with 
exogenously introduced molecules including viral RNAs and artificial engineered 
sponges. 

LncACTdb 2.0 [72] 
A database that integrates both manually curated and predicted ceRNA interactions for 
23 species and 213 diseases/phenotypes. Database classes include endogenously 
generated molecules including coding genes, pseudogenes, lnc RNAs and circular RNAs, 
along with exogenously introduced molecules including viral RNAs and artificial 
engineered sponges. ceRNA interactions between lncRNAs and mRNAs were predicted 
for several cancer types. Expression data was retrieved from TCGA. lncRNA targets were 
computationally predicted with strict thresholds and then compared with the 
experimentally supported binding sites from 41 AGO-CLIP datasets from starBase. 
miRNA targets were derived from TarBase (v8) and mirTarBase (v18). Every lncRNA and 
mRNA interacting with the same miRNA is considered as a candidate ceRNA triplet 
(lncRNA-miRNA-mRNA). An lncRNA-miRNA-mRNA triplet is considered functional 
ceRNA in a specific cancer type depending on the correlation of their expression values. 
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More specifically the following criteria must be met: i) corr(lncRNA,miRNA) < 0  ii)  
corr(mRNA,miRNA) < 0 iii) corr(lncRNA,mRNA) > 0. 
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2. METHODS 

 

2.1 Data Collection 

To investigate the competition between lncRNAs and mRNAs for miRNA binding with a 
quantitative model, both miRNA and target expression needs to be taken into account. 
Small RNA-seq data was used to identify and quantify miRNA expression, 
photoactivatable ribonucleoside enhanced crosslinking and immunoprecipitation (PAR-
CLIP) experiments [4] were analyzed to retrieve targets for the expressed miRNAs and  
RNA-seq data provided information on the expression of those targets. Analyzed datasets 
from microCLIP [10] for 4 different human cell types, one liver cell line (HEK293) and 3 
lymphoblastoid EBV infected cell lines (LCL-BAC, LCL-BACD1 and LCL-BACD3).  

2.1.1 PAR-CLIP data 

A total of 7 PAR-CLIP datasets (4 HEK293 and 3 lymphoblastoid) were retrieved (Table 

1). They were previously preprocessed and aligned to hg19. 

Table 1: PAR-CLIP datasets 

SRA Authors Cell type/tissue Condition Description 

SRR592687  

 

 

Skalsky et al. 
[82] 

 

LCL-BAC NA LCL infected 
with an EBV 

B95-8 BACmid 

SRR592688 LCL-BAC-D1 miR-BHRF1-1 
mutant virus 

LCL infected 
with an EBV 

B95-8 BACmid 

SRR592689 LCL-BAC-D3 miR-BHRF1-3 
mutant virus 

LCL infected 
with an EBV 

B95-8 BACmid 

SRR189784  

 

 

Kishore et al. 

[83] 

. 

HEK293 T1RNase Embryonic 
Kidney Cells 

SRR189785 HEK293 T1RNase Embryonic 
Kidney Cells 

SRR189786 HEK293 mildMNase Embryonic 
Kidney Cells 

SRR189787 HEK293 mildMNase Embryonic 
Kidney Cells 

2.1.2 RNA-seq data 

RNA seq data had been previously preprocessed, aligned to hg38 and hg19 for the 
HEK293 and lymphoblastoid cell lines respectively, quantified and annotated. Quantified 
transcripts were annotated with ensembl 82 for the HEK293 cell line and ensembl 75 for 
the lymphoblastoid cell lines. 
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Table 2: RNA-seq datasets 

SRA Authors Cell type/tissue Condition Description 

SRR837794  

 

 

 

Majoros et al. 

[68] 

 

LCL-BAC NA LCL infected 
with an EBV 

B95-8 BACmid 

SRR837795 LCL-BAC-D1 miR-BHRF1-1 
mutant virus 

LCL infected 
with an EBV 

B95-8 BACmid 

SRR837796 LCL-BAC-D1 miR-BHRF1-1 
mutant virus 

LCL infected 
with an EBV 

B95-8 BACmid 

SRR837798 LCL-BAC-D3 miR-BHRF1-3 
mutant virus 

LCL infected 
with an EBV 

B95-8 BACmid 

SRR1240811 Conrad et al. 
[84] 

HEK293 NA Embryonic 
Kidney Cells 

2.1.3 Small RNA-seq data 

Small RNA seq data had been previously pre-processed and aligned. Annotation was 
retrieved from miRBase Release 22 [85] and miRBase Release 20 [86] for the HEK293 
and lymphoblastoid cell lines respectively. 

 

Table 3: small RNA-seq datasets 

SRA Authors Cell type/tissue Condition Description 

SRR592692  

 

 

Skalsky et al. 

[82] 

 

LCL-BAC NA LCL infected 
with an EBV 

B95-8 BACmid 

SRR592693 LCL-BAC-D1 miR-BHRF1-1 
mutant virus 

LCL infected 
with an EBV 

B95-8 BACmid 

SRR592694 LCL-BAC-D3 miR-BHRF1-3 
mutant virus 

LCL infected 
with an EBV 

B95-8 BACmid 

SRR1240816  

Conrad et al. 
[84] 

 

HEK293 NA Embryonic 
Kidney Cells 

SRR1240817 HEK293 NA Embryonic 
Kidney Cells 
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2.1.4  Target identification 

In order to examine an adequate number of miRNAs with different expression patterns 
and target pools, the 200 top expressed miRNAs were considered in each dataset. For 
those, targets were retrieved with microCLIP [10], a framework that combines deep 
learning classifiers to identify miRNA – target interactions from PAR-CLIP experiments. 
The algorithm takes into account and analyzes non T-to-C clusters in addition to the 
regular clusters with T-to-C transitions and reports canonical and non-canonical bindings. 
After target identification the four HEK293 libraries were combined into one, keeping all 
the interactions reported in the deepest library and adding the unique interactions from 
the rest. 

2.1.5  Target annotation 

Protein coding transcripts were considered those with “protein coding” gene and 
transcript biotype. 

lncRNA transcripts were considered those with gene and transcript biotype in:  
“3prime overlapping ncrna”, “antisense”, “lincRNA”, “ retained intron”, “macro lncRNA”, 
“processed transcript”, “sense intronic”, “sense overlapping”. 

Pseudogene transcripts were considered those with gene and transcript biotype in: 
“IG_C_pseudogene”, “IG_J_pseudogene”, “IG_V_pseudogene”, 
“processed_pseudogene”, “pseudogene”, “transcribed processed_pseudogene”, 
“transcribed unprocessed pseudogene”, “transcribed unitary pseudogene”, “translated 
unprocessed pseudogene”, “TR_J_pseudogene”, “TR_V_pseudogene”, “unitary 
pseudogene”, “unprocessed pseudogene”. 
 

2.1.6  Target quantification 

Targets identified with microCLIP [10] were intersected with the RNA-seq quantified 
transcripts to gain expression information using BEDTools v2.17.0 [87]. If the same MRE 
overlapped two different elements then it was assigned to the one with the highest priority. 
Priorities (in descending order) were considered as : “CDS”, “UTR3”, “UTR5”, “lincRNA”, 
“sense_intronic”  =  “sense_overlapping”, “antisense”, “retained_intron”, 
“3prime_overlapping_ncRNA”, “processed_transcript”, “pseudogene”. Since HEK293 
RNA-seq reads were aligned to hg38 while PAR-CLIP (target) reads were aligned to 
hg19, coordinate liftover from hg19 to hg38 was performed for the reported targets using 
the ensembl liftover tool. This procedure was not necessary for the lymphoblastoid 
datasets that were aligned to hg19. 
 

2.2 Mathematical model 

2.2.1  Model of binding site occupancies 

The ceRNA hypothesis states that sites that are targeted by the same miRNA compete 
with each other for binding by this miRNA. This way, every binding site reduces the 
amount of free miRNA available to others. Whether this can amount to a regulatory impact 
needs further investigation. miRNAs exert their regulatory role through binding on target 
MREs. For a protein coding transcript miRNA binding may lead to translational repression 
and thus, the number of transcripts that are free from miRNA regulation are important for 
determining mRNA activity. Quantitative models of binding site competition predict the 
changes in binding site occupancy (that is fraction of sites bound by a miRNA) in response 
to changes in target or miRNA concentration. 



A computational approach to identify long non-coding RNAs acting as microRNA sponges 

A.Karavangeli   28 

The model used to investigate the extent of competition between lncRNAs and mRNAs 
is the one described by Jens and Rajewsky [77].Their source code (freely available on 
doRiNA — RNA competition [88]), was downloaded and executed with minor 
modifications concerning the input and output files. 

In this model target site occupancies (that is fraction of sites that are bound by a miRNA) 
change in response to changes in target concentration. Occupancy is measured by the 
binding equation: 

 

Equation 1 

         𝛩𝑖 =  
𝐹

𝐾𝑖 + 𝐹
 

𝛩𝑖 is the fraction of the sites that are bound, 𝐹 is the concentration of the free regulator 

and 𝐾𝑖 is the dissociation constant which quantifies the strength of interaction between 
the binding site and the ligand. At equilibrium, all sites of a given Ki have the same 
occupancy (Θi), which is determined by the amount of free regulator (F) and the binding 
Equation 1.  

Equation 2 

𝐹 = 𝑇𝑜𝑡𝑎𝑙 −  ∑ 𝑐𝑖𝛩𝑖 

𝐹 = 𝑇𝑜𝑡𝑎𝑙 − 𝐵𝑜𝑢𝑛𝑑 

Equation 2 expresses that all regulator (T) is either free or bound (that is, the sum of all 
binding sites, each weighted with its occupancy and concentration. The free regulator is 
equal to the total regulator reduced by the fraction that is bound. 

 

2.2.2 Target site concentration 

Each binding site is as abundant as its harbouring RNA. RNA concentration was 
estimated as follows: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑀𝑜𝑙𝑒𝑠

𝑉𝑜𝑙𝑢𝑚𝑒
=  

𝐶𝑜𝑝𝑖𝑒𝑠
𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟

𝑉𝑜𝑙𝑢𝑚𝑒
 

Cell volume was approximated by a sphere of 6.5 μm radius (r) and is calculated by the 
equation: 

𝑉𝑜𝑙𝑢𝑚𝑒 =  
4

3
 𝜋 𝑟3 

To estimate absolute copy numbers of mRNAs, the assumption that 250.000 mRNA 
molecules are present in the cell was made. The same assumption was made by [77] and 
was based on reported measurements [89]. The 250.000 molecules correspond to the 
total TPM values (or any other type of normalization value) of protein coding transcripts 
as they derive from the quantification of the RNA-seq experiment. Hence, transcript 
copies equal its TPM value multiplied by the scaling factor: 

𝑇𝑟𝑎𝑛𝑐𝑟𝑖𝑝𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 = 𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑇𝑃𝑀 ∗  
250.000

𝑇𝑜𝑡𝑎𝑙 𝑚𝑅𝑁𝐴 𝑇𝑃𝑀
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2.2.3 miRNA concentration 

miRNA concentration was calculated with the same method, under the assumptions that 
miRNA read count is proportional to abundance, all miRNAs are loaded and the total 
amount of AGO/RISC complexes is constant and known (150000/cell) [77, 90]. Hence, 
miRNA copies equal its count multiplied by the scaling factor: 

𝑚𝑖𝑅𝑁𝐴 𝑐𝑜𝑝𝑖𝑒𝑠 = 𝑚𝑖𝑅𝑁𝐴 𝑐𝑜𝑢𝑛𝑡𝑠 ∗  
150.000

𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑅𝑁𝐴 𝑐𝑜𝑢𝑛𝑡𝑠
 

2.2.4 Dissociation constant (𝑲𝒅) calculation 

Dissociation constants (𝐾𝑑) that quantify the strength of binding between the miRNA and 
its target were calculated by the approximate energy model for mammalian AGO binding 
as proposed by Jens and Rajewsky [77]. In brief, each nucleotide contributes to the 

stability of the miRNA-target complex and 𝐾𝑑 is calculated by taking into account the 
base-pairing between the miRNA and the target. The model is described below. 

Dissociation constant (𝐾𝑑) measures the propensity of a complex to dissociate in smaller 
components. For the general reaction: 

𝐴 + 𝐵 ⇋ 𝐴𝐵 

In which A and B come together to form complex AB and reversibly AB breaks down to A 
and B, the dissociation constant is defined: 

𝐾𝑑 =  
[𝐴][𝐵]

[𝐴𝐵]
 

Where [A] is the concentration of component A, [B] is the concentration of component B 

and [AB] is the concentration of complex AB. Small 𝐾𝑑 value means that the complex is 
favored in comparison to the separate components. Thus, the strength of binding between 
the miRNA and its target (miRNA- target complex) can be estimated by calculating the 

𝐾𝑑. 

The binding energy directly determines the dissociation constant (𝐾𝑑), and vice versa: 

𝐾𝑑 =  𝑒
𝐸

𝐾𝐵𝑇⁄
 

Where E is the binding energy of the regulator bound to the site, KB is the Boltzmann 
constant and T is the temperature in Kelvin. 

 

2.2.5 An approximate energy model for AGO binding 

Jens and Rajewsky [77] built an approximate energy model for mouse AGO binding 
where total binding energy is calculated by the base pairing between the guide miRNA 
and the target. Each position of the guide miRNA contributes to the total energy of the 
binding (Figure 3, Figure 4).  
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Figure 3. Each nucleotide contributes to the total binding energy independently. The binding 
energy directly determines the dissociation constant, and vice versa. In this mammalian AGO 

binding model binding to the seed region (miRNA nucleotides positions 2-7) contributes the most 
to the stability of the miRNA – target complex (smaller energy means greater stability). 

 

Figure 4: Kd values calculated by the approximate energy model of Jens and Rajewsky. a) Binding 
to the seed region (position 2-7) leads to stable binding. b) Mismatch in the seed region reduces 

dramatically the strength of binding. c) Pairing that extends the seed match up to position 9 of the 
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miRNA and supplementary base-pairing of the 3ʹ part of the miRNA (around positions 13–16) can 
further stabilize binding. 

 

To build this model they used data published by [88]. In this study they systematically 
altered the sequence that corresponds to the let-7 miRNA, in order to determine how the 
pairing affects fly-AGO function. For each position in the guide RNA they measured the 
Michaelis-Menten constant (Km) in two cases: 

A) If  the nucleotide (or dinucleotide) in this position was matched perfectly to the 
target 

B) If  the nucleotide (or dinucleotide) in this position was mismatched (after sequence 
alteration) 

Jens and Rajewsky reasoned that the log-ratios of perfect and mismatched Km should 
be proportional to the change in binding energy introduced by the mutation. 

The steps that they followed were: 

1. Take perfect and mismatched Km values experimentally measured for fly 
AGO  
 

2. Calculate energy in each position of the guide RNA (by calculating the log ratio 
of the perfect and mismatched Km for each nucleotide or dinucleotide) 

a. Assign to each nucleotide (ex. g1) or dinucleotide (ex. g1-g2) the log ratio 

of the km values( −log (
Km match

Km mismatch
)) 

b. Evaluate the energy (meaning the calculated ratio) in each position by 
averaging the available data (ex. For the position g2 there is data for the 
dinuclotide g1-g2 and the dinucleotide g2-g3. So the energy for position g2 
is calculated as (Energy[g1-g2]/2 + Energy[ g2-g3]/2)/2 ) 

c. Scale these energies such that their sum corresponds to the best reported 
binding (3.7 pM at 25 °C). New energy = old energy *(best energy/sum(old 
energies)) 
 

3. Estimate mouse AGO energies by scaling appropriately the fly AGO energies 
For mammalian (mouse) Argonaute (AGO), three distinct modes of binding were 
measured (best match , seed match, perfect match) [91]. These data were used 
to scale the fly Ago energies in each of the three described guide RNA segments 
to arrive at an approximate energy model for mammalian AGO. 

Scaling: 

a. Calculate energies from Kd values for each of the 3 categories. This results 
to energies for segments, but not for each position separately like before.  

b. Each position must be scaled according to the segment that it belongs. 
 

4. Estimate total energy of the base-pairing between a miRNA and its target 
Having estimated the energy each position contributes calculate total energy of 
the predicted base-pairing between miRNA and target by summing all energies in 
the matched positions.  

5. Calculate 𝑲𝒅 value from the total energy value. 𝑲𝒅 =  𝒆
𝑬

𝑲𝑩𝑻⁄
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2.2.6 Sponge identification 

2.2.6.1 Brief overview of the procedure 

The steps followed in order to measure the ability of each lncRNA to act a sponge and 
reduce the amount of miRNA available to other targets are presented in brief below: 

1. Target identification and quantification of miRNAs and reported targets 
2. Employment of the mathematical model to predict protein coding site occupancies 

for each miRNA in two cases: 
a. All lncRNAs that are co-targeted are excluded from the target pool 
b. Target pool includes all protein coding and lncRNA sites 

3. A suitable threshold is applied for the observed changes in site occupancies 
4. Employment of the mathematical model again (only for the miRNAs passing the 

aforementioned threshold) to predict protein coding site occupancies in two cases: 
a. Each and every lncRNA is excluded by turn from the target pool 
b. Target pool includes all protein coding and lncRNA sites 

This step is needed to estimate if the observed changes in occupancies from step 
2 are due to the exclusion of all lcRNAs or if there is an lncRNA more responsible 
than others 

5. The same threshold as before is applied. If the changes in the occupancies of 
protein coding sites pass the threshold, then the lncRNA is considered a sponge 
for the miRNA. 
 

2.2.6.2 Threshold for changes in site occupancies 

The threshold for assessing the importance of site occupancy changes upon lncRNA 
exclusion includes 2 conditions: 

1. The most affected targets (those with the largest difference in occupancies before 
and after lncRNA exclusion) should have at least a 5% change in their 
occupancies. 

2. Mean occupancy of targets when the whole target pool is considered (protein 
coding and lncRNA) should be less than 95%. 

The first condition ensures that the targets will be occupied more than 5%. Smaller 
occupancy percentage would probably mean that the target is not regulated by the 
miRNA. For example, even if the occupancy of a site increases from 0,001% to 1% in the 
absence of lncRNAs, the consequences of increased miRNA binding will be negligible. 
This first condition also ensures that the change will be somewhat measurable and avoids 
reporting very small differences.  

The second condition ensures that the miRNA is not expressed at levels that would allow 
it to highly occupy all of its targets, since this would mean that it is not effectively sponged 
by a single target. 
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3. RESULTS 

3.1 miRNA expression 

For all cell types, absolute quantification of the 200 most expressed miRNAs was 
performed by transforming their reported counts to copy numbers. The most expressed 
miRNAs (regardless of the dataset) were found at approximately 20,000 copies, while the 
least expressed were as low as 6 to 12 copies (Table 4) 

More than 75% of miRNAs were expressed at levels below 250 copies (this was observed 
for all 4 datasets) and although, the 3 datasets from lymphoblastoid cell lines seemed to 
have very similar miRNA expression patterns, the differences between them were 
statistically important (Figure 5, Table 5).  

 

Table 4: miRNA abundance in each cell type. Copy numbers estimated for the 200 miRNAs, vary 
greatly from tens of thousands to less than ten. Copies were estimated from small RNA-seq data 

assuming that 150000 AGO/RISC complexes are present in the cell. 

Cell type Max copy number Min copy number Mean copy 

number 

HEK293 26280 6 747 

LCL-BAC 20060 12 745 

LCL-BACD1 17530 10 746 

LCL-BACD3 20330 11 746 
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Figure 5: miRNA expression patterns per dataset (miRNAs with more than 1000 copies are not 
shown in this plot). Copies were estimated from small RNA-seq data assuming that 150000 

AGO/RISC complexes are present in the cell. For all datasets, 75% of miRNAs are expressed at 
levels below 250 copies. 

 

Table 5: Statistical importance of miRNA expression differences between cell types. Kruskal-
Wallis test and Dunn’s post-hoc test for multiple comparisons were performed. Bonferroni 

adjusted p-values are presented. 

 HEK293 LCLBAC LCLBACD1 LCLBACD3 

HEK293 _ _ _ _ 

LCLBAC 0 _ _ _ 

LCLBACD1 0 5.1625E-021 _ _ 

LCLBACD3 0 0.0011 2.2941E-007 _ 

 

3.2 Identified targets for the most expressed miRNAs 

After the identification of the most expressed miRNAs in each dataset, their targets across 
Ensembl annotated 3’UTR, CDS, 5’UTR, lncRNAd and pseudogenes were retrieved from 
PAR-CLIP data with microCLIP. More extensive targeting was observed in the HEK293 
cell line where approximately 7000 genes were reported as targets (Table 6, Figure 6). 
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Table 6: Number of targeted MREs and corresponding transcripts and genes in each cell type. 
MREs were identified with microCLIP from PAR-CLIP data. 

Cell type MREs Transcripts Genes 

HEK293 167883 13687 7132 

LCL-BAC 34566 5234 2704 

LCL-BACD1 52306 8240 3918 

LCL-BACD3 27268 4527 2429 

 

The majority of MREs were located in the 3’UTR of protein coding transcripts, while 
lncRNA MREs make up approximately 2% of the total. Pseudogene targets were almost 
non-existent in the lymphoblastoid cell lines and make up only 0.3% of the total MREs in 
the HEK293 cell line (Figure 6, Figure 7). 
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Figure 6: Number of MREs, transcripts and genes reported in each cell type, grouped according to 
their biotype. More targets are identified in the HEK293 cell line compared to the lymphoblastoid 

cell lines. The majority of MREs are located in protein coding transcripts. 
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Figure 7: Target pool composition. Figure shows the percentage of MREs located in 3’UTR, CDS, 
5’UTR, lncRNAs and pseudogenes for every dataset (column 1). For the targeted lncRNAs, the 

percentage of MREs per biotype is also shown (column 2). 
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3.3 Target expression  

Absolute quantification was also performed for the reported targets, by transforming their 
TPM values to copies per cell. Protein coding targets were more abundant and more 
highly expressed in every dataset (Figure 8, Table 7).  

For every miRNA, the expression (in number of copies) of each transcript they target was 
added together to form the total target pool. This resulted in target pool estimates varying 
from more than 70000 copies to less than 20 (Table 8). Larger target pools were observed 
for miRNAs in the HEK293 cell line, in accordance with the higher number of targeted 
transcripts in this dataset, while in the lymphoblastoid cell lines LCL-BAC and LCL-
BACD3 target pools were of similar magnitude (Table 8, Figure 9, Table 9). 

The majority of miRNAs were expressed at levels lower than their target pool, leading to 
miRNA:target ratios < 1. This phenomenon was observed even for highly expressed 
miRNAs like miR-101-3p, the third most expressed miRNA in the HEK293 cell line (Table 
10).  
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Figure 8: Concentration of targets per biotype. Concentration is calculated as ((copies/Avogadro 
number)/cell volume). Cell volume is approximated by a sphere of 6.5 μm radius. In all datasets 
protein coding targets have higher concentration meaning they are more expressed/abundant. 
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Table 7: Statistical importance of expression differences between biotypes for every cell type. 
Kruskal-Wallis test and Dunn’s post-hoc test for multiple comparisons were performed for each 

cell type. Bonferroni adjusted p-values are presented. 

HEK293 

  protein coding lncRNA pseudogene 

protein coding _ _ _ 

lncRNA 2.99E-06 _ _ 

pseudogene 6.85E-82 8.32E-48 _ 

          

    protein coding lncRNA pseudogene 

LCLBAC 

protein coding _  _ _  

lncRNA 2.67E-35 _  _ 

pseudogene 4.08E-108 1.44E-21 _ 

          

    protein coding lncRNA pseudogene 

LCLBACD1 

protein coding _ _ _ 

lncRNA 1.97E-31 _  _ 

pseudogene 2.31E-113 2.78E-27 _ 

          

    protein coding lncRNA pseudogene 

LCLBACD3 

protein coding _  _  _ 

lncRNA 1.25E-29 _ _  

pseudogene 1.31E-104 1.01E-24 _ 

 

 

Table 8: Target pool size. For every miRNA, the expression (in number of copies) of each 
transcript they target was added together to form the total target pool. The table presents the 

larger, smaller and average target pool per dataset. 

Dataset Max target pool 

size 

(in copies) 

Min target pool 

size 

(in copies) 

Mean target pool 

size 

(in copies) 

HEK293 73370 349 16730 

LCL-BAC 12550 14 2294 

LCL-BACD1 17120 24 3124 

LCL-BACD3 12330 19 1896 
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Figure 9: Target pool size for the 200 miRNAs tested per dataset. For every miRNA, the expression 
(in number of copies) of each transcript they target was added together to form the total target 

pool. 

 

Table 9: Statistical importance of target pool expression differences across cell types. Kruskal-
Wallis test and Dunn’s post-hoc test for multiple comparisons were performed. Bonferroni 

adjusted p-values are presented. Differences that are not significant (>0.05) are highlighted. 

 

Table 10: Top 5 expressed miRNAs in each dataset. Calculated copies per cell for the miRNAs and 
their corresponding target pools are shown. miRNA:target ratio is calculated by dividing miRNA 

copies by total target copies. Total target copies (also referred to as target pool size) is estimated 
for every miRNA by adding together the expression (in number of copies) of each transcript they 

target. Even some highly expressed miRNAs are expressed at levels below their target pool, 
resulting in miRNA:target ratios < 1. 

Dataset miRNA 
miRNA 
Copies 

Total Target 
Copies 

miRNA:target 
ratio 

HEK293 

hsa-miR-30a-5p 26281 15343 1.71289839 

hsa-miR-192-5p 22977 2395 9.593736952 

hsa-miR-101-3p 10500 16750 0.626865672 

hsa-let-7a-5p 8876 37869 0.234386966 

  HEK293 LCLBAC LCLBACD1 LCLBACD3 

HEK293 _ _ _ _ 

LCLBAC 9.96E-38 _ _ _ 

LCLBACD1 6.47E-24 3.95E-02 _ _ 

LCLBACD3 2.67E-46 9.10E-01 1.98E-04 _ 
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hsa-let-7f-5p 8842 30583 0.289114868 

LCL-BAC 

hsa-miR-21-5p 20059 2840 7.063028169 

hsa-miR-155-5p 17372 6875 2.526836364 

hsa-miR-142-3p 11338 6501 1.744039379 

hsa-miR-103a-3p 6413 4464 1.436603943 

hsa-let-7a-5p 5868 11649 0.503734226 

LCL-BACD1 

hsa-miR-21-5p 17525 2893 6.057725544 

hsa-miR-155-5p 13768 7727 1.781804064 

hsa-miR-16-5p 12145 4129 2.941390167 

hsa-miR-103a-3p 10784 5029 2.144362696 

hsa-miR-142-3p 9451 7153 1.321263805 

LCL-BACD3 

hsa-miR-21-5p 20333 4687 4.338169405 

hsa-miR-142-3p 14440 6004 2.405063291 

hsa-miR-155-5p 14185 6041 2.348121172 

hsa-miR-103a-3p 10777 3820 2.821204188 

hsa-miR-16-5p 8437 2550 3.308627451 
 

3.4 Target binding types  

microCLIP reports a wide variety of binding types based on the base pairing between the 
miRNA and the MRE. The most common binding type seems to be “8mer nonCanonical” 
which is described as base pairing in positions 1-9 with mismatch or miRNA bulge and/or 
a target bulge and/or a GU wobble pair (Figure 10). The main classes that include those 
binding types are the canonical class (bindings with perfect complementarity with the 
miRNA seed region) and the non-canonical class (bindings with imperfect 
complementarity with the miRNA seed region). The vast majority of sites in all datasets 
represent non canonical bindings, regardless of their biotype (Figure 11). To further 
investigate the abundance of canonical and non-canonical bindings, each site was 
weighted by the expression of its harbouring transcript. Non canonical sites seem to be 
more abundant than canonical sites, meaning that the transcripts with non-canonical sites 
are more highly expressed (Figure 12, Table 11). 
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Figure 10: Figure shows the average number of MREs with a specific binding type per miRNA. For 
example, miRNAs in the LCL-BACD3 cell line have on average five 6mer MREs, two 6mer.3prime 

MREs, twenty five 8mer.Noncanonical MREs etc. 
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Figure 11: Distribution of canonical and non-canonical sites (MREs) per biotype.  The highest 
percentage of sites is bound non-canonically regardless of their biotype. 
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Figure 12: Concentration of targets per binding type. Concentration is calculated as 
((copies/Avogadro number)/cell volume). Cell volume is approximated by a sphere of 6.5 μm 

radius. The concentration of every site (canonical or non-canonical) equals the concentration of 
its harbouring transcript. Hence, the differences between canonical and non-canonical sites 
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depict differences in the concentration of the transcripts. Transcripts with non-canonical sites 
seem to be more highly expressed. 

 

Table 11. Statistical importance of expression differences between canonical and non-canonical 
sites for the different cell types. Wilcoxon rank sum test was performed. 

 

 

 

 

3.5 Target binding strength  

Strength of binding between the miRNA and its target can be measured in terms of 𝐾𝑑 
value (dissociation constant). Jens and Rajewsky built an approximate energy model to 

calculate mouse 𝐾𝑑 values based on experimental measurements of fly AGO binding 
strength reported by [92]. Since the AGO protein is conserved in mammals, this 

approximate model is expected to give reasonable 𝐾𝑑 estimates for human miRNA-target 

interactions. The distribution of 𝐾𝑑 values for canonical and non-canonical sites is shown 
in Figure 13. As expected, canonical sites have mostly small 𝐾𝑑 values (increased binding 
strength). Non canonical sites have a comparable distribution to that of canonical but 

large 𝐾𝑑 values characterize only non-canonical bindings. Overall, these observations do 
not provide a reason to reject the approximate energy model for human miRNA-target 

interactions. The distribution of 𝐾𝑑 values across the different transcript types (protein 
coding, lncRNAs and pseudogenes) suggests that binding strength is independent of the 

biotype (Figure 13). 𝐾𝑑 distribution seems to differ between the 4 cell types (Table 12).  

  canonical - non canonical 

HEK293 2.20E-16 

LCLBAC 2.20E-16 

LCLBACD1 2.20E-16 

LCLBACD3 2.20E-16 
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Figure 13: Kd (dissociation constant) distribution of MREs per binding class (column 1) and 
biotype (column 2). Kd depicts the strength of binding, with smaller values corresponding to 

stronger binding. 
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Table 12: Statistical importance of difference between the distributions of Kd values of all cell 
types. Two-sided Kolmogorov-Smirnov test was performed. P-values were FDR corrected. 

  HEK293 LCLBAC LCLBACD1 LCLBACD3 

HEK293 _ _ _ _ 

LCLBAC 0.00E+00 _ _ _ 

LCLBACD1 0.00E+00 1.34E-05 _ _ 

LCLBACD3 0.00E+00 2.69E-03 2.20E-12 _ 

 

3.6 Employment of the mathematical model of binding site competition to identify 
miRNA sponges  

Having estimated the abundance and affinity of all target sites for every miRNA (both 
canonical and non-canonical sites were included), the quantitative model was employed 
to predict the occupancy of protein coding targets in two cases: 

1. When the whole target pool was taken into account (protein coding and lncRNA 
targets) 

2. When all lncRNA sites were excluded  

This analysis aimed to measure in what extent lncRNA sites titrate miRNAs away from 
the other protein coding targets. 

 

3.6.1 Changes in mRNA occupancies upon lncRNA exclusion 

After excluding lncRNA sites from the target pool of every miRNA, protein coding sites 
showed a variety of changes for different miRNAs (Figure 14, Figure 15). Targets of miR-
200a-3p did not seem to be affected and were bound at similar levels as before. On the 
other hand, miR-199a-5p targets were occupied more highly after lncRNA exclusion. The 
same pattern was observed for let-7d-5p and its targets. The difference between miR-
199a and let-7d is the absolute value of site occupancy after the exclusion of lncRNAs. 
For miR-199a even though the differences were profound, final target site occupancy did 
not exceed 0.02 (2%), meaning that only 2% of the most affected site was occupied. For 
let-7d, the differences were observed in a more relevant window with occupancies shifting 
from 20% to 35% for some sites. Changes in the regulatory effect of miRNAs are more 
likely to be observed for targets occupied in a relevant window from 5% to 95%. Thus, in 
order for lncRNAs to effectively alter the fate of other competing mRNAs, occupancy 
changes of protein coding sites should be in that relevant window. Following this 
reasoning, an appropriate threshold was defined to distinguish between miRNAs with 
potential lncRNA sponges and miRNAs where lncRNA expression is not able to 
meaningfully affect other targets (see 2.2.6.2).  
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Figure 14: Altered occupancies of protein coding sites when all lncRNA targets are excluded from 
the target pool. The figure depicts the occupancy of every protein coding site (that is the fraction 

of the site bound by the miRNA), when lncRNAs are considered as part of the target pool and 
when they are excluded. Red line is a reference line representing the occupancies if there was no 

change. For miR-200a, exclusion of lncRNAs does not affect the occupancy of protein coding 
sites. On the other hand, exclusion of lncRNAs from the miR-199-5p and let-7d-5p target pools 

leads to increased binding of protein coding sites. Data from the HEK293 dataset. Differences for 
all three miRNAs were statistically important (Wilcoxon signed rank test <2.2e-11) 
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Figure 15: Every miRNA occupies to some extent its targets. For every miRNA, mean occupancy 
of all targets is plotted in the absence and presence of lncRNAs. Red dotted line is a reference 

line representing the mean occupancy of the miRNA targets if there is no change. miRNAs in the 
HEK293 dataset seem to be more affected by the lncRNA exclusion and some of them occupy 
their targets more upon lncRNA loss.  Differences for all cell types were statistically important 

(Wilcoxon signed rank test <2.2e-16) 

 

 

3.6.2 lncRNA sponges 

For miRNAs with altered protein coding site occupancies upon exclusion of the whole 
lncRNA target pool, the potential of each and every lncRNA to contribute to these 
changes was evaluated separately. Occupancies of protein coding sites were calculated 
first by taking into account the whole target pool (all lncRNAs and mRNAs, same as 
before) and then by taking into account the whole target pool (again lncRNAs and 
mRNAs) except sites of the lncRNA gene of interest. Upon exclusion of a specific lncRNA, 
protein coding sites were either unaffected or more highly occupied (Figure 16). By 
applying the same threshold as before, following the reasoning that occupancy changes 
should be in a relevant window between 5% and 95% to be measurable and meaningful, 
lncRNAs that caused changes of that magnitude were deemed as miRNA sponges.  

This analysis resulted in the identification of 8 lncRNAs that can act as sponges for a total 
of 38 miRNAs (Figure 17, Figure 18). Among the reported sponges, XIST and MALAT1 
are two well-studied lncRNAs with implications in chromosome X inactivation [16] and 
splicing [33] respectively. Their identification as miRNA sponges is somewhat 
controversial due to their localization on the nucleus. Regulation through competition for 
miRNA binding presupposes co-localization of the competitors. Nevertheless, these 
findings are supported by recent reports on the sponging capabilities of both XIST and 
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MALAT1 (Table 13). Overall, 6 out of the 8 lncRNAs have already been reported as 
sponges (Table 13).  

XIST, MALAT1 and RMRP can sponge multiple miRNAs from different miRNA families 
(Figure 18). In the case of XIST, 12 miRNAs are sponged corresponding to miR-101, let-
7, miR-191, miR-26, miR-30 and miR-23 families in the HEK293 cell line.  

The majority of lncRNAs were unable to alter the fraction of protein coding sites that were 
bound by their shared miRNA and only highly expressed lncRNAs could function as 
sponges (Figure 19). 

Highly expressed miRNAs like miR-101-3p and miRNAs of the let-7 family were 
susceptible to sponging effects by one or more lncRNAs, indicating that high expression 
is not enough for stable control over their targets. On the other hand, the relative 
abundance between the miRNA and its target pool (miRNA:target ratio) seems to be a 
better predictor for miRNA resistance to sponging effects, since none of the miRNAs that 
were expressed at levels above their target pool has lncRNA sponges (Figure 20). 

 

 

Figure 16: Altered occupancies of protein coding sites when only one lncRNA gene is excluded 
from the target pool. The figure depicts the occupancy of every protein coding site (that is the 

fraction of the site bound by the miRNA), when all sites of an lncRNA gene (meaning sites in all 
transcripts) are considered as part of the target pool and when they are excluded. Red line is a 
reference line representing the occupancies if there was no change. For let-7d-5p, exclusion of 

SNHG16 or TUG1 sites does not lead to increased binding of the protein coding sites but 
exclusion of XIST does. Data from HEK293 dataset. Differences for the three miRNAs were 

statistically important (Wilcoxon signed rank test < 2.2e-16) 

 



A computational approach to identify long non-coding RNAs acting as microRNA sponges 

A.Karavangeli   52 

 

Figure 17: Identified sponges. Some of them are observed as sponges for multiple miRNAs. 

 

 

Figure 18: Identified sponges and their corresponding miRNAs. Some lncRNAs may act as 
sponges for multiple miRNAs and some miRNAs may have multiple sponges. 
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Table 13: 6 out of the 8 identified sponges have been previously reported as miRNA sponges in 
different disease settings. Table shows the lncRNA sponge, the miRNA that it titrates (if it is 

specified) and the publication that reports the interaction. 

lncRNA miRNA publication 

RPPH1 
miR-326-3p 

[93] 
miR-330-5p 

miR-155HG miR-185 [94] 

LRRC75A-AS1  [95] 

XIST 

miR-181a [96] 

miR-133a [97] 

miR-137 [98] 

miR-194-5p [99] 

MALAT1 

miR-34a [100] 

miR-200c 
[101] 

[102] 

miR-211 [103] 

miR-30a-5p [104] 

RMRP miR-206 [105] 
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Figure 19: Concentration of all lncRNAs identified as sponges compared to the concentration of 
the rest targeted lncRNAs. Sponges are more highly expressed. Wilcoxon rank sum test p-value = 

8.199e-16. 
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Figure 20: miRNAs with lncRNA targets are devided in two categories based on whether they are 
expressed above their target pool (are in excess of their targets) or not. Expressed above their 

target pool means that the miRNA copies are more than the total copies of all targeted transcripts. 
Those categories are subdivided based on whether they contain a miRNA with a sponge. miRNAs 

that are in excess of their targets do not have sponges. 

 

3.7 Repeating the analysis for HEK293 cell line by considering only canonical 
sites 

When modeling competition, several teams have relied only on canonical bindings to 
estimate target pools or have restricted their targets to computationally predicted, 
conserved sites on 3’UTRS [77, 78, 106]. Non canonical interactions would not generally 
be identified by target prediction programs, which are biased toward canonical seed 
interactions [107]. On the other hand, microCLIP [10] provides a wide range of non-
canonical bindings which constitute the majority of targeted MREs and were all included 
in the estimation of miRNA target pools. To investigate whether target pools should 
include non-canonical sites or canonical sites are enough to model competition, the 
analysis for sponge identification was repeated using only the reported canonical sites for 
the HEK293 dataset.  

This resulted in extensive changes on the reported pairs of miRNA – lncRNA sponge. 58 
miRNA-sponge pairs were identified when only canonical sites where considered 
compared to 28 when mixed targets were included in the target pool (Figure 21).  From 
those pairs only 6 were common and 15 additional lncRNAs were reported as sponges. 
Those changes may be attributed to the increased concentration ratio of specific lncRNAs 
and the rest of the targets. For example, if an lncRNA constitutes 5% of the total target 
pool in terms of expressed copies, and after excluding all non-canonical sites it constitutes 
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25% of the total target pool, then it is more likely to cause changes in the binding of other 
sites when excluded (Figure 22). 

Overall, the model becomes more sensitive to sponging effects when only canonical sites 
are included. In the context of a biological network, this scenario is less likely to occur. 
Regulation by the sponging activity of a single gene is not observed in that extent in 
nature.  

Based on these findings, an appealing emerging hypothesis is that non-canonical sites 
contribute to the robustness of the regulatory network by reducing the ability of a single 
gene to act as sponge and alter the occupancy of other targets. 

 

 

Figure 21: Identified miRNA-sponge pairs when all sites (canonical and non-canonical) are 
considered to be part of the target pool compared to identified miRNA-sponge pairs when only 

canonical sites are considered. 
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Figure 22: For every lncRNA that is targeted by a specific miRNA, the % ratio of its concentration 
to the concentration of the other targets is plotted in two cases: first when the target pool 

includes both canonical and non-canonical sites (mixed targets) and second when the target pool 
includes only canonical sites. When only canonical sites are considered, the majority of lncRNAs 

seem to have increased concentration ratios, meaning they make up a bigger part of the target 
pool than before. 
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4. DISCUSSION 

Computational methodologies that rely on sequence characteristics or number of shared 
miRNAs and MREs to score the interaction between a potential sponge and an affected 
transcript, cannot account for the cell type-, tissue type-, developmental stage and 
disease-specific changes in expression patterns of competing RNAs. Thus, they are not 
dynamic and cannot predict in what extent changes in the concentration of a transcript 
can affect other targets. The same problem arises in approaches that rely on correlation 
of expression between the potential sponge and the other co-targeted transcripts. An 
additional disadvantage of those approaches is that correlation of expression is an 
indirect way to assess the sponging potential of a transcript since it does not prove that 
the outcome is due to increased binding of the miRNA to the sponge. 

Quantitative models that predict the fraction of sites that are bound by a specific miRNA 
can address these issues and have been used to explore the competition between 
targets. However they have not been used to identify endogenously expressed sponges.  

Here, a computational approach for identifying lncRNAs that act as miRNA sponges was 
presented. By employing a mathematical model of target site occupancies and integrating 
small RNA-seq, RNA-seq and PAR-CLIP data the ability of lncRNAs to titrate miRNAs 
away from other protein coding targets was assessed. This analysis was performed for 4 
different cell lines (HEK293, LCL-BACD1, LCL-BACD2, LCL-BACD3) and 200 miRNAs 
in each were examined.  

Overall, 8 lncRNAs were identified as sponges. 6 out of 8 had been previously reported 
as sponges in different disease settings (Table 13). Nuclear lncRNAs, XIST and MALAT1 
were among the identified sponges and even though their sponging potential has been 
observed, further investigation is needed. 

A previous study that used quantitative measurements of target and miRNA abundance 
to assess the ceRNA hypothesis, concluded that highly expressed miRNAs are not 
affected by physiological changes in ceRNA expression [106]. Here, it was shown that 
even for highly expressed miRNAs like miR-101-3p and miRNAs of the let-7 family, 
expression of an lncRNA at its endogenous levels was sufficient to cause measurable 
changes on the occupancies of other protein coding targets (Table 10, Figure 18). Thus, 
it can be concluded that it is not only a matter of how highly a miRNA is expressed but 
also a matter of its abundance compared to that of its targets (miRNA:target ratio). The 
susceptibility of miRNAs to competition effects (like sponging) depending on 
miRNA:target ratios has been demonstrated by another study where they used single cell 
measurment of miRNA activity for different target abundances [78].  

Although some lncRNAs displayed sponge functionality, the abundance of most individual 
targets was insufficient to alter free miRNA levels and only highly expressed lncRNAs 
were identified as sponges. This observation is in line with the predictions of other 
quantitative models [77, 106]. 

Several teams estimated target pools by taking into account only canonical or 
computationally predicted, conserved sites [77, 78, 106]. Reported interactions from 
microCLIP provide evidence that the majority of binding sites are non-canonical (Figure 
11). Widespread non-canonical bindings have been reported for miR-155 in T-cells where 
40% of Argonaute binding occurs at sites without perfect seed matches. These non-
canonical sites were estimated to confer regulation of gene expression, however less 
potently than canonical sites [108]. Analysis of CLASH data also reported extensive non 
canonical binding (around 60% of seed interactions were non-canonical) [107], further 
supporting the idea that target pools without non-canonical sites are underestimated and 
not very representative. When the quantitative, mathematical model was employed with 
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target pool estimates relying only on canonical bindings, a large number of additional 
sponges was reported. The increased sensitivity of the model to sponging effects is less 
likely to be biologically relevant, since such extensive regulation by sponges has not been 
observed (at least not yet) in nature. These observations lead to the hypothesis that non-
canonical sites contribute to the robustness of the regulatory network and thus they 
should be taken into account when estimating miRNA target pools. 

 

4.1 Future directions 

1. Separate analysis of nuclear and cytoplasmic RNAs is needed to accurately 
estimate interacting miRNA and target pool abundance. 
 

2. Model extension. The same way each miRNA target reduces the amount of the 
miRNA available to other sites, each miRNA reduces the amount of free target 
RNA available to other miRNAs.  Currently, the model examines one miRNA 
species at a time and reduction of targeted RNAs due to miRNA –miRNA 
competition is not taken into account. This may lead to overestimated target 
abundance and subsequent underestimation of the miRNA:target ratio and miRNA 
regulatory capacity. Interactions between miRNAs and RNAs form a complex 
regulatory network where each miRNA regulates up to hundreds of targets and 
each target can be regulated by multiple miRNAs. To capture this complexity, the 
current model should be expanded to account for miRNA competition too. Figure 
23 and Figure 24 demonstrate how the model “sees” the network currently and 
how it should treat it after the extension.  

 

 

Figure 23: With the current model each miRNA is examined separately.   miR-101-3p binds XIST 
but does not decrease the  amount of XIST available to let-7c. Image created with cytoscapeV3.7.1 

[109] 
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Figure 24:  miRNAs and their targets form a network. Each miRNA reduces the amount of shared 
targets available to the other. Image created with cytoscape V3.7.1 
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