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Summary

We study the convergence of the ergodic averages of the integral of the product of
2F functions and the L?-convergence of the ergodic averages of the product of 2¥ — 1
functions, for £ = 2, 3. These averages are taken along cubes whose sizes tend to
+o00. For each average, we show that it is sufficient to prove the convergence for special
systems, the characteristic factors. From the first convergence result a combinatorial
interpretation can be derived for the arithmetic structure inside a set of integers of

positive upper density.
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IlepiAnyn

E&etdloupe ) oUYKAL0T] TOV £pYOSIKOV PHECHV OP®V TOU OAOKATNPGOIATOS TOU YIVOHEVOU 2k
10 MABog ouvaptioemv Kat Vv L2-cUyKAIon TOV epyodIKOV HECOV Op@V TOU YIVOHIEVOU
2F — 1 10 mAfnBog ouvaptioewy, yia k = 2, 3. @erpoupe Toug ev AOY® HECOUG OPOUS
MAvVe Ao KuBoug, T®V oroimv 1o peyebog teivetl oto anelpo. 'a kabe éva anod toug pécoug
opoug, arodekvuoupe ott apkel va Sei§oupe ) {nrovpevn cUYKALOT Y1d KATIO1A CUCTHATA

€161koU turou, toug characteristic mapdyovieg.






Introduction

In this dissertation we study the convergence of nonconventional ergodic averages over
combinatorial cubes. The averages along cubes are concerned with demonstrating the

existence of some arithmetic structure inside a set of positive upper density (see Def-

inition [2)) as mentioned in Section |Combinatorial Interpretation, by corresponding this

problem to an invertible measure preserving system (see Definition|1.2.2)) and examine
the behaviour of some ergodic averages, using Ergodic Theory.

Let (X, X, u, T) be an invertible measure preserving system and A € X. By using

the method of Characteristic Factors ( see Section |Characteristic Factors|) will show the

following results.

Theorem 1.
The averages over (n,m) € [N, N'] x [M,M'] C Z? of

W(ANT"ANT™ANT™™A)
converge to a limit that is equal or greater than p(A)* as [N, N'], [M, M'] tend to +occ

Theorem 2.
The averages over (n,m,p) € [N, N'] x [M, M'] x [P, P'| C Z3 of

pANTANTANT T MANTPAN T PAN TP AN TP A)
converge to a limit that is equal or greater than u(A)® as [N, N'], [M, M'], [P, P'] tend to
400

We view these averages taken over the combinatorial cubes (0,7n,m, m + n) and
(0,n,m,n +m,p,n + p,m + p,n + m + p) respectively. We actually prove two stronger
statements namely the convergence of averages over n € [N,N'], m € [M,M’] and
p € [P, P'] of the form

/ £1(2) fo(T"2) f3(T™) f(T™ ) dp()

X

vii
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and

/ Fr(@) foT"2) f3(T"x) fa (T 2) f5(TP ) fo (T P) fo (T P ) fo (TP ) dpu()
X

where f; € L>®(p), i =1,...,8.
Furthermore, we will study the convergence in L?(p1) of the product of 3 and 7 func-

tions in L>°(u). To be more precise, we will show the following.

Theorem 3.
The averages over (n,m) € [N, N'] x [M, M'] C Z* of

(T ) fo(T™ ) f3(T" ")
converge in L?(1) when [N, N'], [M, M'] tend to +oo

Theorem 4.
The averages over (n,m,p) € [N, N'] x [M, M'] x [P, P'| C Z3 of

FT™ ) fo(T™) F5(T ) f3(TP2) f5(T™42) fo (T P2) f (T

converge in L?(i1) when [N, N'], [M, M'], [P, P'] tend to +occ

Generalization of Khintchine’s Theorem

Definition 1.

Let G be a discrete abelian group and A C GG. Then A is said to be syndetic if there exist
an € Nand gy,...,g9, € G, so that G = |JI_ (A + ¢;). In particular, if G = Z¢ that
means there exists an integer I > 0 such that A intersects every d-dimensional cube of

size L.
Khintchine proved the following result.

Theorem 5.
Let (X, X, u, T) be an invertible measure preserving system and A € X . For everye > 0
the set

(neZ: W(ANT"A) > n(A)? — &}

is syndetic.

By Theorem|[I] and Theorem[2] we obtain the following generalizations of Khintchine’s

Theorem.



X

Theorem 6.
Let (X, X, u, T) be an invertible measure presercing system and A € X. For every ¢ > 0
the set

{(n,m)€Z*: W(ANT"ANT™ANT"™A) > u(A)?* — ¢}

is syndetic.

Theorem 7.
Let (X, X, u, T) be an invertible measure preserving system and A € X. For everye > 0
the set

{(n,m,p) € Z> : u(ANT" ANT™ ANT" ™ ANT? ANT™ P ANT™ P ANT™ P A) > pu(A)®—¢}
is syndetic.

Indeed, let for example E be the subset of Z? appearing in Theorem [7| and assume
that E is not syndetic. Then there is a sequence of cubes [N;q, N;(] x [M;o, M;j] %
[Pio, Pi{)], i € N, in Z3, such that the lengths of the intervals tending to oo and

E N [Nio, Nig) x [M;o, Myo) % [Pio, Pip) = @

Applying Theorem [J] gives a contradiction.

Combinatorial Interpretation

Definition 2.
The upper density, d, of a set B C 7 is

d(B) := lim maXBﬂ[M7M+N]
N—+o00o MEZ N

Using Furstenberg’s Correspondence Principle, we obtain the following combinatorial

statement as a corollary of Theorem [7]

Theorem 8.
Let A C N with d(A) > 6 > 0. Then the set

{(n,m,p) € Z®: d(AN(A+n)N(A+m)N(A+n+m)N
(A+p)N(A+n+p)N(A+m+p)N(A+m+n+p)) > 5%
is syndetic.

This theorem is closely related to other combinatorial statements, in particular Sze-

meredi’s Theorem.



Characteristic Factors

The method of characteristic factors is used in order to prove the statements above,
introduced by Furstenberg. This method consists in finding an appropriate factor (see
Definition of the given system, referred to as the characteristic factor, so that
the limit behaviour of the averages remains unchanged when each function is replaced
by its conditional expectation on this factor. Then it suffices to prove the convergence
when this factor is substituted for the original system, which is facilitated when the
factor has a more specific description.

In particular we will show that considering the cases of Theorem [2] and Theorem
[l the characteristic factor is approximated in some sense by another special case
of systems called nilsystems (see Definition and it is sufficient to prove the

convergence for these systems.



Ewcaynyn

Ze aut v gpyaoia egetdloupe ) CUYKALON YEVIKEUHREVOV EPYODIKOV PEOHV 0PV TTAVE
arno “ouvbuacukoug kUBoug” (combinatorial cubes). H pedétn autov tov pécev Opwv
£YKELTAL OTO YEYOVOG OTL NITOPOUV va MEPLypAPouV Karota aptdunuky dopun oe éva oUvolo
pe deukn Gve rukvotnta (Oplopog , OGS avapEéPeTal OT0 UTIOKEPAAA10
KAVOVIAg avuotoiyia pe aviorpéyipa ouctipata mou 81atnpouy 10 PETPo
(Opropdg Kat xpnotponowwviag epyaieia Epyodikng Oswpiag.

'Eote Aowov (X, X, u, T') éva avuotpéyipo ovotpa rou diatnpei 1o pérpokat A € X'
®a aoxoAnBoupe pe ta akoAouba téooepa Jewpnpata kat 9a ta arodeifoupe xprnoornot-

GVtag ) apketd 1oxupr) péBodo tev xapakploukov napayoviev (characteristic factors)

ou meptypdgetat oto uniokepalaio [Medodog tov Xapaktnpiotikov Ilapayoviou

Osnpnpa 1.
Ot péoot dpot mave and ta (m,n) € [N, N'] x [M, M'] C Z? wov

p(ANT"ANT™ANT™ ™ A)

ovykivouv kadwg 1o unKog v dactmudtov [N, N'|, [M, M'] tnyaiver oto dreipo kai 1o

0p10 ToUg lval ueyavtepo 1 ioo amd o p(A)L.

Ocwpnpa 2.
O1 péoot épor ave and ta (m,n,p) € [N, N'] x [M, M'] x [P, P'] C Z3 wov

pANTTANTANT"TANTP N T PANT™ P AN TP A)

ouykAivovv kadag 1o urkog twv sactudtov [N, N'|, [M, M'], [P, P'| mnyaivet oto arepo

Kat 1o 0p1o 1U¢ glvat ueyaiutepo 1 (oo ano 1o M(A)8.

BAémoupe SnAadr) autoug tou PECOUG OPOUG MAVE A0 TOUG ouvduaoTikoug KUBoug
(0,n,m,m + n) xat (0,n,m,n + m,p,n + p,m + p,n + m + p) aviiotorxa. Idaitepa,
9a amodeifoupe 6U0 10xUPOGTIEPa arotedéopata mou oxetidovial He T OUYKALON PEC®V

OP®V OAOKANPOUATOV YIVOREVEV KATIOIWV ouvaptroewv. Andadr) 9a 6ei§oupe ) cUykAon

xi



xii

10V £§g PE0eV 6pev ndve aro ta (m,n) € [N, N'] x [M,M’] C Z? kat ta (m,n,p) €
[N, N'] x [M,M'] x [P, P'] C Z3 avtictoia, tev

/ F1(@) f2o(T") f3(T™x) fa(T™ " x) dpu(z)
X

Kat

/ S1(@) fo(TMx) f3(T™x) fo (T ") f5(TPx) fo (TP ) fr (TP ) fo (T P) dpu(ix)
X

orou f; € L™®(p),i=1,...,8.
Eruméov 9a e§etacoupie 1) ouykAton otov L2 (1) Tou yivopévou 3 kat tou yivopévou 7

ouvaptoeev TIou aviikouv otov L (u). AkpiBéotepa da Sei§oupe ta e§fig anotedéopara,

Ocsmpnpa 3.
Ot péoot dpot mave and ta (m,n) € [N, N']| x [M, M'] C Z? tov

[L(T") fo(T™x) f3 (T ")
ouykAivovv kKadwg 1o unKog twv stactnuatov [N, N'|, [M, M'] mnyaivet oto aneipo.

Ochpnpa 4.
O1 puéoot épor tave and ta (m,n,p) € [N, N'] x [M, M'] x [P, P'] C Z3 wov

AT ) o (T70) Fa(T7 ) fu(T72) ST 7) (T 7)o (T4 7)

ouykAivovv kKadwg¢ 1o urKog twv staotnuatov [N, N'|, [M, M'], [P, P'] nnyaive: oto areipo.

I'evikeuon tou Oswprpatog tou Khintchine

Oplopdg 1.
'Eotw G pia dakpir) aBeAiavr opdada kat A C G. Tdte to A Aédystal GUVBETIKO av UTApXEl
n € Nxgat gi,...,gn € G dote G = J_;(A + g;). Ty nepirmwon émouv G = Z4 avtd

onpatvetl ot untdpyet L > 0 této10 wote 10 A va tépvetl kaOe d-61dotato kuBo, dykou L.
O Khintchine anédeie 1o mapakdt® arotédeopa.

Ocwpnpa 5.
'Eoww (X, X, u, T) éva avuotpewyo ovotnua mou biatnpel 1o uépo kar A € X. INa kade
e > 0 1o ovvofo

(neZ: n(ANT"A) > u(A)? — ¢}

givat ouvSETIKO.



xiii

Ano 1o @swpnpall]kat o @evpnna2naipvoupe, avtiotoxa, ta &g 6o arotedéopata.

Osnpnpa 6.
‘Eoww (X, X, u, T) éva avtuopeyio ovotmua nov btatnpet 1o puépo kat A € X. INa kade

e > 0 1o ovvofo
{(n,m) € Z®: W(ANTPANTTANT"A) > u(A)* — ¢}
givat cuvSETIKO.

Otwpnpa 7.
‘Eoww (X, X, u, T) éva avuorpeyio ovotmua nov iatnpet 1o puépo kat A € X. INa kade

€ > 0 1o ovvofo
{(n,m,p) VAR u(AﬂT"AﬂTmAﬂT’”mAﬂTpAﬂT"erAﬂTerpAﬂT”er“’A) > M(A)B—a}
elvair ouvOETIKO.

paypatt, éote F 1o urtootvodo tou Z2, éreg oto ®sd)pr]pa YroBétoupe 6t o E Hev
elvat ouvBetik6. Autd onpaivet 6Tt unapxet pia akodoubia kuBwv [N;o, Nig] X [M;o, M) X

[Pio, Pij], i € N, pnéoa oto Z3 dote 10 Prjkog Tov S1a0TpdTev va Tyaivel oto oo Kat
E N [Nyo, Nig] x [Mio, Mip] % [Pio, Pig] = @

Egpappodoviag, opng, 1o @smpnpua |2 £xoupe dtorto.

Zuvduaotikn Eppnveia

Oplopog 2.

H dve nukvotnta, d, evog cuvorou B C Z opiletatl wg £Eng

- BNn|M,M+ N
d(B):= lim max NIM, M+ N]
N—+o00 MEZ N

Xpnowonowwviag v Apxn Avtiotoryiag tou Furstenberg €xoupie 10 Tiapakdtem ouvdua-

OTIKO ATIOTEAEOA ®G TIOPIoPA TOU Bermprjiatog

Ocspnpa 8.
'Eotw A C N pe d(A) > & > 0. Tote 10 ovvofo

{(n,m,p) € Z*®: d(AN(A+n)N(A+m)N(A+n+m)Nn
(A+p)N(A+n+p)N(A+m+p)N(A+m+n+p) > &%}

givatl ouvSETIKO.
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M£Bo06og twv Xapakrtnplotikedv IIapayoviwv

H 1p€06060g tov Xapaxtnpiotikev [Tapayoviev, mou e1or)x0n anod to Furstenberg, naidet ke-
VIPIKO poAo oto va anodeifoupe ta mpoavapepBévia {nrovpeva arotedéopata. H pébodog
auty anaptidetatl anod my eUpeon KAMO10U KataAAniou napadyovia (Opiopog ToU
800£vVIog apX1KOU CUOCTIATOG, OTIOU AVAPEPETAL BG XAPAKTINPIOTIKOG MAPAYOVIAS, MOTE 1
OP1UKI] CUHPIEPIPOPA TV HECKV OPKOV VA HNV eMnpedaletal av KABe ouvaptnon avikata-
otaBet pe v conditional expecteation autrig, wg Pog autov Tov apayovia. Tote apket
va anodetyBel 11 oUYKALON TOV PEOCHOV OP®V, AV AVIIKATAOT|COUHE TO APXKO cuotnpa pe
autov ToV Imapayovia.

I6waitepa Sa 6eifoupe 6T oy mepinmwon U Oewprjpuatog Kal 10U @empnpatog
XPeladeTal mepaltép® aAvay®yr o€ KATola cuotnpata £€81kou tunou, ta nilsystems

(Opropdg|1.11.11]) kat arodeikvioupe ot pag apkel va anodeifoupe v eKAOTOTE OUYKAL-
on yla autd ta cuotnpartd.
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Chapter 1

Preliminaries

In this chapter we establish some notation and terminology that is used in the next
Chapters. Furthermore we list some probabilistic, functional and measure theoretic
tools used in Ergodic Theory. Lastly we describe a special case of Ergodic systems,
known as nilsystems, that play a key role in obtaining the desired results.

We omit some of the proofs of the results mentioned in this chapter as most of them
are standard facts that may be found in the literature and their inclusion would increase
the length of this dissertation substantially, without them being the main focus of this

dissertation.

1.1 Polish Spaces, Polish Groups, Standard Borel and Lebesgue

Spaces

Definition 1.1.1.
A separable completely metrizable topological space is called a Polish space. A topolog-

ical group that is a Polish space, is called Polish group.

Proposition 1.1.2.
The product of countably many Polish spaces, endowed with the product topology, is itself

a Polish space.

Definition 1.1.3.
Let (X, X) be a measurable space, where X is a topological space and X is its Borel

o-algebra. Then (X, X) is called standard Borel space if there is a Borel isomorphism E]

"Let (X, B(X)) and (Y, B(Y)) two topological spaces endowed with their respective Borel s-algebra. A
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to a Polish space endowed with its Borel o-algebra.
A standard Borel space (X, X') equipped with a probability measure p is called a
Lebesgue probability space (X, X, u).

Notation. Let (X, X') be a standard Borel space. The space of Borel probability mea-
sures on (X, X) is denoted by M (X, X) or simply M(X).

Proposition 1.1.4.
Let X be a Polish space and X its Borel o-algebra. Then every Borel probability measure
on X is Radon. This means thatVu € M(X, X),

w(A) =sup{u(F): FC A, closed} = inf{u(U): ACU, open} VAec X .

Equivalently, if u € M(X, X), then for every A € X and every € > 0, there exist F C X,
closed and U C X, open with F C ACU and (U \ F) < e.

Theorem 1.1.5.
Let X be a Polish space that has an uncountable number of points and let X be its Borel

c-algebra. Then there exist a Borel isomorphism from (X, X) to ([0, 1], B([0, 1])).

Theorem 1.1.6.
Let X be a separable metric space, X be its Borel o-algebra and p. be a Borel probability
measure on (X, X). Then there exists a unique closed subset C,, of X satisfying the

following,
@) N(CM) =1
(i) if D is any other closed subset of X such that (D) = 1 thenC,, € D

(iii) C,, is the set of all points x € X having the property that w(U) > 0 for each open

subset U of X containing x.

Theorem 1.1.7.
Let (X, X) be a standard Borel space. Then

(i) The o-algebra X is countably generated (and thus every sub-c-algebra of X is
countably generated). Furthermore there exists a countable family of bounded X -
measurable functions on X that is dense in LP () for every p € [1,+00) and every
measure n € M(X, X).

In particular L*(11) is separable for every i € M(X, X).

function ¢ : X — Y that is invertible and both ¢, ¢! are measurable is called a Borel isomorphism
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(ii) There exists a o-algebra M on M (X, X) such that (M (X, X), M) is a standard
Borel space and the map i — f fdu is a Borel function for every bounded Borel
function f on X.

Lemma 1.1.8.
Let H be a closed normal subgroup of the Polish group G. If H and G/H are locally
compact groups, then G is locally compact. If H and G/H are compact groups, then G is

compact.

1.2 Measure Preserving Systems, Ergodicity, Ergodic Theo-

rems

Definition 1.2.1.
Let (X, X, 1) be a probability space and 7' : X — X be a measurable map. The system
(X, X, n,T) (or (X, u, T)) is called a measure preserving system if

w(T71A) = pu(4)
for every A € X.

Notation. For a function f : X — X, let f,u denote the measure defined by f.u(A) =
p(ftA). VA € X.

Definition 1.2.2.
A system (X, X,u,T) is an invertible measure preserving system if it is a measure

preserving system with 7" invertible and 7! : X — X X-measurable.

Definition 1.2.3.
A measure preserving system (X, X, u, T) is ergodic if for every A € Awith T~(A) = A,
we have p(A) =0or pu(A) = 1.

Proposition 1.2.4.

Let (X, X, u, T) be a measure preserving system. Then the following are equivalent.
(i) The system is ergodic.
(i) p(A)€{0,1} forall A € X withpu(AAT1A) =0

(iii) For every A € X with p(A) > 0, p( Un>1 T-1(4)) = 1.
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Theorem 1.2.5.

Let (X, u, T') be a measure preserving system.

(i) Ifthe systemis ergodic then every measurable function f on X with foT = f u-a.e.

is equal to a constant p-a.e.

(i) Ifevery f € L>®(u) with foT = f p-a.e. is equal to a constant p-a.e., then the

system is ergodic.

Theorem 1.2.6. (Von Neumann’s Mean Ergodic Theorem)
Let (X, X, i, T) be a measure preserving system, p € [1,400) and f € LP(u). Then there
exist an f € LP(y) such that,

andf L) fo T.

If the system is in addition ergodic, then

f:!fmiﬂﬂ&

Theorem 1.2.7. (Birkhoff’s Pointwise Ergodic Theorem)
Let (X,X,u,T) be a measure preserving system, f € L'(u). Then there exists an
f e L*(p) such that,

N-1
1 .
N Z foT™(x) — f(x)  forpu-almosteveryx € X.
n=0
Furthermore f = fo T, u-a.e.,

A€ X suchthat A =T 1 A.

If the system is in addition ergodic then,

1Fllziey < 1l and [, fdu= [, f du. for every

f:!fmiﬂﬂa

1.3 Eigenfunctions

Definition 1.3.1.
Let (X, X', u, T) be a measure preserving system and p € [1,4oc|. Define Up : LP(u) —
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LP(p) by
Ur(f)=foT

for every f € LP(u).
Remarks 1.3.2.
(i) The operator Ur is an isometry on LP(u), for every p € [1, +0o0].
(ii) If the system (X, i, T) is invertible then Uz is a unitary operator on L?(1).

Definition 1.3.3.
Let (X, X, u, T) be a measure preserving system. An eigenfunction of Uy (or of X) with

eigenvalue A\ € C, is a function f € L?(u) where f is not identically zero function and
Urf=X-f, uae.
Remarks 1.3.4.

(i) A =1 is always an eigenvalue with eigenfunction f = 1x (which is an element of

L?(u) since pu(X) < +00).

(ii) Since every Ur is an isometry on L?(u), for every eigenvalue A € C, we have
Al = 1.

Proposition 1.3.5.
Let (X, u,T) be a measure preserving system. Then eigenfunctions corresponding to

different eigenvalues are orthogonal to each other in L? ().

Corollary 1.3.6.
The eigenvalues of Ur : L?(11) — L*(u1) are at most countably many.

Theorem 1.3.7.
Let (X, 1, T') be an ergodic measure preserving system and consider Uy : L? () — L?(u).

Then
L2 ()
() IfUrf = \f for some f € L?(u) with f # 0 then,

everywhere, for some constant ¢ € C\ {0}.

A =1and |f| = ¢, p-almost

(i) If f,g € L? (1) are two eigenfunctions of Ur corresponding to the same eigenvalue

A\, then

for some constant ¢ € C.
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(iii) The eigenvalues of Ur form a countable subgroup of S'.

Remark 1.3.8.
Let (X, X,u,T) be an ergodic measure preserving system. By Theorem we
have that LQ(M) is separable. Combining Proposition and Theorem we
have that each eigenspace is of dimension 1 and subspaces corresponding to different
eigenvalues are orthogonal (as subspaces of LQ(,u)). There

By Theorem we can consider the set of eigenfunctions of X normalized so
that | f(z)| = 1, for p-almost every x € X. Observe that this set contains exactly one
eigenfunction for each eigenvalue or equivalently, it contains exaclty one function from

each eigenspace. Combining all the above we obtain that this set is countable.

1.4 Factors

Definition 1.4.1.

Let (X, X, u, T), (Y,V,v,S) be two measure preserving systems. The system (Y, ), v, S)
is called factor of (X, X', u, T) if there exists a measurable function 7 : X — Y such
that myp =vand mol = Sor p-a.e.

The function 7 is called factor map.

Remark 1.4.2.
If (X,X,pn,T) is ergodic then (Y, )Y, v, S) is also ergodic.

Definition 1.4.3.

Let (X, X, \) be a measure space and A, B C X" be two sub-c-algebras then A = B
mody if for every A € A, 3B € B such that y(A/A B) =0and forevery Be 3,34 € A
such that u(BA A) =0

Proposition 1.4.4.

Let (X, X, u,T) be a measure preserving system, (Y,),v,S) be an invertible measure
preserving systems and 7 : X — Y a factor map. Let 7~ '()) = A. Then T 'A = A
modji.

Theorem 1.4.5.

Let (X, X, u,T) be a measure preserving system and A C X be a sub-c-algebra such
that T~' A = A, modulo p. Then there exists a measure preserving system (Y, Y, v, 5)
and a factor map ™ : X — Y such that 7~ 1(Y) = A. If in addition (X, X,u,T) is an

invertible m.p.s. then (Y, Y, v, S) is also invertible m.p.s.
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1.5 Conditional Expectation and Conditional Measures

Proposition 1.5.1.
Let (X, X, ) be a probability space. Let A be a sub-o-algebra of X and p € [1,4+00).
There exists a function E( - | A) : LY(X, X, u) — LY(X, A, p) such that:

(i) Forevery f € L'(X, X, pn),
o E(f | A) is A-measurable and
. I{f du :ZE(f | A) dy. for every A € A.
(i) E(-|.A) is a positive linear operator of norm 1.
(iii) For f € LY(X,X,u) and g € L™(X, A, ),
E(fg|A)=gE(f|A) pae
(iv) If B C A is a sub-o-algebra, thenif f € L' (X, X, u)

E(E(f|A)|B)=E(f|B) pae.

™) Iff € LYX, A, u) thenE(f | A) = f, p-a.e.
(vi) Forany f € LX(X, X, ), [E(f | A)l < E(f|| A). p-ae.
Remarks 1.5.2.

e The two properties in (i), characterize the conditional expectation of a given func-

tion, uniquely up to sets of measure zero.

e E( -] A) can be considered as an operator from L?*(X, X, 1) to L?(X, A, 1) where
for each f € L?(X, X, ), E(f | A) is the projection of f on the closed subspace
L*(X, A, p) of L*(X, X, ).

e Let (X, X, u,T) be a measure preserving system and .4 a sub-c-algebra of X.
Then

E(foT |T7'A)=E(f | A)oT

If A is in addition such that 7! 4 = A then

E(foT|A) =E(f[A)oT
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With the notion of conditional expectation in hand we can give the following refor-
mulation of Theorem [I.2.6] and Theorem [[.2.7] respectively.

Notation. Let (X, X', 4, T') be a measure preserving system. Consider the set
I(T):={Aec X T_l(A) = A}.

Then Z(T) is a sub-c-algebra of X’ and is referred as the invariant o-algebra of the
system (X, X, u, T).

Theorem 1.5.3.
Let (X, X, u,T) be a measure preserving system, p € [1,4+o00) and f € LP(u). Then,

N-1
1 LP ()
N > for W E(f 1 T(T))
n=0
. If the system is in addition ergodic, then

E(f|Z(T)) = /f dp  p-almost everywhere
X

Theorem 1.5.4.
Let (X, X, u, T) be a measure preserving system, f € L*(p). Then,

N-1
% Z foT™x) — E(f|Z(T))(x)  for p-almosteveryx € X .
n=0

If the system is in addition ergodic then,

E(f|Z(T)) = /f dp  p-almost everywhere
X

Theorem 1.5.5.

Let (X, X, ), (Y, ), v) be two Lebesgue probability spaces and w : X — Y a measurable
map. Let B denote the sub-o-algebra, 7= 1(Y) of X. Then, for every f € L>(u) there
exist a Y-measurable function E(f | Y) : Y — C, such that

E(f|B)=E(f|n YY) = E(f|Y)onr, p-almost everywhere.
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Remark 1.5.6.
Let (X, X, u), (Y,),v) be two Lebesgue probability spaces, (X, X,u,T), (Y,V,v,S)
and 7 : (X, X, u,T) = (Y,)V,r,S), is a factor map. Assume further that (Y, ), v, S) is

an invertible measure preserving system. then
E(foT|Y)=E(f|Y)oS, v-almost everywhere,

for any f € L'(u).

1.6 Disintegration of a measure

Theorem 1.6.1. (disintegration with respect to a sub-c-algebra)

Let (X, X, 1) be a Lebesgue probability space and A C X a sub-o-algebra. Then there
exists a X' € A with u(X') = 1 and a set of Borel probability measures, {2 : = € X'}
with the following properties

(i) Foreveryzr € X/, uﬁ is a Borel probability measure on X, with

B(f | A)( /f ) dyid(y

Jorevery f € LY (X, X, ).

(i) Forxz € X let[x]4 := (N gc4. sen A be the atom of A containing x. If A is countably

generated, then

e The set [z] 4 is an element of A
o Ifx,y € X', with [x] 4 = [y| 4, then p;' = ;@4.
(iii) The fisrt property uniquely determines the measure uf, foreveryxz € X'.

(v) If A’ is any sub-o-algebra with A = A’ modyu, then p2t = X', for u-almost every
reX

Remark 1.6.2.
The mapping = — 2! from X to M (X, X) is A-measurable, when M (X, X) is equipped
with the o-algebra of Theorem [I.1.7] (ii).

*We are forced to work with .#* since uf may be singular to p.
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Theorem 1.6.3.
Let (X, X, 1) be a Lebesgue probability space and A C X a sub-o-algebra. Suppose that
there exist an X' € X such that u(X') =1 and a set {v, : = € X'} of Borel probability

measures with the following properties,

e =+ v, is measurable and for any f € £ (), x — [ fdv, is measurable.
o If [x]4 = [y]a. for somex,y € X' thenv, = 1.
o v([z]g) =1, forany xz € X'.

o Forany f € Z°°(pn), [ fdu = [ [ fdvy du(z).
Then v, = u;;l Sor p-almost every z € X.

Remark 1.6.4.
Theorem basically says that if (X, X', i) is a Lebesgue probability space and A C X
is a sub-o-algebra, then there exist a Borel measurable map (defined almost everywhere)

x>y X = M(X,X), such that for any f € L°°(u) and every A € A,

A/fdu=A/<!fdux> dpu(z)

In the same Theorem, property (ii) can be rephrased as follows,
for p-almost every x € X, iz = piy, [iz-almost everywhere

Theorem [I.6.3] says that this decomposition is essentially unique.

Proposition 1.6.5.

Let (X, X, ), (Y,),v) be two Lebesgue probability spaces and w : X — Y a factor map.
Let B denote the sub-o-algebra, 7=1())) of X. Then there exist a )-measurable map
Yy s Y = M(X, X), such that for every A € ) and every f € L>(u),

/ fdu—/</fduy> dp(y)
) A X

T~ 1(A
In addition,

E(f|Y)(y) = /f dpy ,  forv-almosteveryy € Y
X

where E(f | Y) is defined as in Theorem We call the above disintegration of the
measure (i, disintegration with respect to 7 or disintegration over the factorY .

It follows that jiz = fir (s, fOr p-almost every x € X.
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Remark 1.6.6.

If (X, X, u, T) is a measure preserving system, where (X, X, 11) is a Lebesgue probability
space and A a sub-c-algebra of X, such that "' A = A, then pip ;) = Tipty, for p-
almost every x € X.

Let m: (X, X, 1, T) = (Y,),v,S) be a factor map. Consider the disintegration y — p,
of 11 with respect to . Then

Bs(y) = Tipry

for v-almost every y € Y.
Now, if A = 71(}),

Hz = Hx(x)

for y-almost every € X. That means that the disintegration with respect to A coincides

with the disintegration with respect to 7.

1.7 Ergodic Decomposition

Theorem 1.7.1.
Let (X, X, u, T) be a measure preserving system, where (X, X', 1) is a Lebesgue probabil-
ity space. Consider the disintegration of the measure . over the sub-o-algebraZ(T) C X,

(T) (T)

T — ,ug . Then for p-almost every x € X, the measure ug is T-invariant and the

system (X, X ug(T) ,T) is ergodic.

Definition 1.7.2.

The disintegration over Z(7') is called ergodic decomposition of the measure .

Note. (alternate presentation of the ergodic decomposition)

Letm: (X, X, 1, T) — (2,0, P, S) be the factor map associated to the invariant sub-o-
algebra Z(T') of X. This means that Z(T) = 7~1(O), modulo . Then for pi-almost every
v e X, gy = () (Where ji; is as above), where the map w — ., is the disintegration
of the measure p over P. The map w — (., is also called ergodic decomposition of ;1 and

we have that
p= /Q p;, dP(w)

We refer to this disintegration as alternate presentation of the ergodic decomposition.
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1.8 Joinings

Definition 1.8.1.

Let (X;, i, T;), © = 1,2 be two measure preserving systems. A joining of these two
systems is a probability measure p on (X; X Xo, A1 ® X») such that p(X; x B) = ua(B),
for any B € X and p(A x X3) = pi(A), for any A € A].

The joining p is ergodic if (X7 x Xg, p, T} x T3) is an ergodic system.

A self-joining of a system, is a joining of two copies of the same system.

Remark 1.8.2.
The product measure p; ® g is a joining. Thus the set of joinings of two systems is

always nonempty

Definition 1.8.3.
When the only joining of two systems is the product measure, then the two system are

said to be disjoint.

Definition 1.8.4.
The diagonal self-joining of a system (X, i, T') is the image of the measure p under the
map z — (z,z) : X - X x X.

Definition 1.8.5.
Let 7 : (X,u,T) — (Y,r,S) be a factor map. The graph joining is the image of the

measure £ under the map z — (z,7(z)) : X - X X Y.

Remark 1.8.6.
The graph joining is ergodic if (X, u, T') is ergodic.

Proposition 1.8.7.
Let (X;, i, T;), 1 = 1,2 be two measure preserving systems and p be a joining of these
two systems. Consider the (1, x3) — p(Ix(lTlx z)Tz)

for p-almost every (z1,x2) € X1 x Xy the measure p

be the ergodic decomposition of p. Then
v (Tl XTQ)

(z1,20) IS @joining of puy and pup.

Definition 1.8.8.
Let (X, p;, T;), i = 1,2 and (Y, v, S) be three measure preserving systems and 7; : X; —

Y, ¢ =1, 2 be two factor maps. The relatively independent joining of X; and X5 over
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the common factor Y (or equivalently over the common factor ))) is the probability

measure /i1 ®y p2 (or equivalently uy ®y po) characterized by.

/ fi(a) fals) dpn @y pn(ier, 22) = / E(fi | V)W) - E(f2 | Y)(@) dv(y)

X1xX2 Y

for all f; € L*(p1) and fo € L™ (p2).

Definition 1.8.9.

Let (X, pi, T3), i = 1,2, and (Y, v, S;), ¢ = 1,2, be three measure preserving systems,
m  X; = Y, 1 = 1,2 be two factor maps and p a joining of the systems Y; and Ys.
The conditional measure of ;1 and 2 over p is the measure 1 ®, p2 on X1 X Xo

characterized by,

/ fr(@1) folaa) dpiy @, oy, x2) = / E(f1 | Y3)(1) - E(f2 | Y2) () dplun. v2)

X1><X2 Y1><Y2

for all f1 € L*(u1) and fo € L (u2).

1.9 Rotations

Let Z be a compact abelian group, « a fixed element of Z, R : Z — Z the function
given by R(z) = « - z and my tha Haar measure of Z. The measure preserving system

(Z,mz, R) is called a rotation.

Theorem 1.9.1.

Assume that (Z, mz, R) is a rotation and R is the translation z — z + « for some fixed
a € Z. Then (Z,mz, R) is ergodic if and only if {a" : Z} is dense in Z, and this holds
if and only if the unique character x of Z with x(«) = 1 is the trivial character. In this
case, the topological rotation (Z, R) is minimal and uniquely ergodic.

More generally, let (Z, R) be a topological rotation with R defined by a fixed element
«a € Z and let H be the closure of {a" : Z} in Z. Then H is a subgroup of Z. Every
ergodic R-invariant measure on Z is the image of my under the map z +— s - z for some

s € Z, and every measure defined in this way is R-invariant and ergodic.

Proposition 1.9.2.
Let (Z;,mz,, R;) be ergodic rotations given by «; € Z; fori = 1,2 and let H be the closure
of {(av1,9)™ : Z} in Zy X Zy. Then every ergodic joining A of Z, and Zs is the image
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under some translation of the Haar measure of H for some closed subgroup H of Z1 X Zs.

In particular, (Z1 X Za,\R1 x R3) is isomorphic to an ergodic rotation.
Applying the proposition above to the graph joining, we obtain:

Corollary 1.9.3.
Every factor map © : (Z1,mz,, R1) — (Z2,mz,, R2) between ergodic rotations has the
formm = B+ ¢, where 5 € Z and ¢ is a continuous group homomorphism from Z; onto Zs.

Furthermore, if «; is the element of Z; defining the transformation on Z; then ¢(a1) = ag.

Corollary 1.9.4.
Every isomorphism : (Z,mz, R) — (Z,mz, R), where (Z,mz, R) is an ergodic rotation,
is of the form z v z + (3, for some 8 € Z.

1.10 Group Extension and Cocycles

Definition 1.10.1.
If (X,pn,T), (Y,v,S) are measure preserving systems and 7 : X — Y a factor map, then

the system (X, i1, T') is an extension of Y and 7 can be also denoted as extension map.

Let (Y, v, S) be a measure preserving system and K a compact group, and mg its

(normalized) Haar measure.

Definition 1.10.2.
A K-cocycle or cocycle on Y is a measurable map p : Y — K. Let Coc(Y, K) denote the

set of all K-cocycles on Y.

Remark 1.10.3.
The set Coc(Y, K) equipped with the operation p; ® pa2, p1,p2 € Coc(Y, K), where

(p1 @ p2)(y) = p1(y)p2(y). Yy €Y, is a group.
Furthermore if K is in addition abelian then Coc(Y, K) is also abelian.

Definition 1.10.4.
Let p, p € Coc(Y,K). Letd : Coc(Y, K) — Coc(Y, K), defined by dp(y) = poS(y)p(y)~ .

(i) p is said to be a coboundary if there exists an f : Y — K, such that p = 0f

(ii) p,p’ are said to be cohomologous if there exists an [ : Y — K, f € Coc(Y, K),
such that, p(y)p'(y)~" = 9f(y)
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(iii) p is said to be quasi-coboundary if it is cohomologous to a constant cocycle.

Lemma 1.10.5.

Let (Y, )Y, v, S) be a measure preserving system, where (Y, ), v) is a Lebesgue probability
space. Let{ € N. Then Coc(Y,T") endowed with the distance d = dcoe(v,me), defined by
d(p, ") = [y dre(p(y), ¢'(y)) dv(y), is a Polish group.

Furthermore then the set of coboundaries O(Coc(Y, T*)) is a Borel subset of Coc(Y, T*).

Definition 1.10.6.
Let p € Coc(Y, K). The isometric extension of Y by K associated to p is defined

to be the extension 7 : (Y x K,v ® mg,S,) — (Y,v,S), where 7(y,k) = y and S, :
Y x K =Y x K, defined by

Sp(y, k) = (SW), p(y)k)  V(y, k)€Y x K

The cocycle p is said to be ergodic, when (Y x K,v ® mg, S,) is ergodic.

Definition 1.10.7.
A function f : X — X is called an automorphism of (X, X', u,T) if f.u = p and
foT =Tof

Let (X, X, 0, T) = (Y x K, Y ®K,v xmg,S,). Foreach h € K, define V}, : X — X
with Vj,(y, k) = (y, kh). Then clearly V}, is an automorphism of X

Definition 1.10.8.

Let h € K and V}, : * — X as above. The transformation V}, is called vertical rotation.

Definition 1.10.9.
We say that an extension X of the system Y is an extension by a compact group K

if, X is isomorphic to a group extension of Y.

Now let G be a compact, metrizable group, mg its Haar measure and H a closed
subgroup of G. Then G acts on the compact space G/H by (left) translations and
we write this action, (g,2) = g ©® 2 : G x G/H — G/H. Let mg/y be the (unique)
probability measure of G/H, which is invariant under this action. Actually mg /H is the

image of mg under the quotient map.

Definition 1.10.10.

Let (Y, v, S) be a measure preserving system, p : Y — G a G-cocycle. The extension
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of Y by G/H given by the cocycle p is defined to be the extension 7 : (Y x G/H,v ®
mayu, Sp) — (Y,v,S), where n(y,2) =yand S, : Y x G/H — Y x G/H, defined by

Sp(y,2) = (y,ply) ©2)  V(y,2) €Y xG/H .

The topology of G can be defined by a metric that is invariant under left translations.
Since H is a closed subgroup of G then the metric on G induces a metric on G/H that
is invariant under the left action of G on G/H. When G/ H is endowed with this metric
then the restriction of S, in each fiber of 7 is clearly an isometry. Thus say that the
extension 7 : Y x G/H — Y is an isometric extension of Y.

Without loss of generality we can assume that the subgroup H does not contain any
normal subgroup of G. Under this assumption, the (left) action of G on G/H is faithful.
This means thatif g € G with g © z = 2z, Vz € G/H, then g = eg.

Notation. Let (X, u,T) = (Y xG/H,v®@mg,q, Sy) be an isometric extension of (Y, v, S).
Then the group G acts on X by, (g,z) — g *x, where gxz = g * (y,2) = (y,9 © 2).

Remark 1.10.11.
Clearly, if (Y x G/H,v®mg, S,) is an isometric extension of (Y, v, T'), then Vg € G, the
map (y,z) — g (y,2) = (y,g © z) leaves the measure v ® m invariant, but in general

this map does not commute with S,. However we have the following result.

Proposition 1.10.12.
Any factor, W of X =Y x G/H overY has the formY x G /L, for some closed subgroup L
of G containing H. In particular, the action of g € G on W induces a measure preserving

transformation on this factor, written with the same notation.

Let 7 : X — Y be a factor map and assume that Y ergodic. Then the family of
isometric extensions of Y, such that they are factors of X, admits a maximal element,

called maximal isometric extension of Y below X.

Theorem 1.10.13.

Let (X,u,T), (Y,v,S) and (Z,\, Q) be three systems, where (Y, v, S) is in addition er-
godic. Furthermoreletm : X — Y andp : Z — Y be factor maps an W be the maximal
isometric extension of Y, below X. Then the o-algebra, Z(T x @), of the T' x Q-invariant
sets of the relatively independent joining (X X Z, u @y A\, T X Q), over the common factor
Y, is contained in the o-algebra W ® Z.
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Definition 1.10.14.
Now let G be in a compact abelian group. The extension of the system (Y, v, S) associ-

ated to a cocycle p : Y — G is the system (Y x G,v ® mq, S,).

Lemma 1.10.15. (Uniqueness of the measure)
Let (Y,v,S) be an ergodic system, K be a compact abelian group, p : ¥ — K be an
ergodic cocycle, and (Y x K, v@mg, S p) be the extension it defines. If i is a S,-invariant

measure on 'Y x K whose projectiononY is equal tov, thenu =v ® mg.

Lemma 1.10.16.

Let (Y,v,S) be an ergodic system, K be a finite dimensional torus (K = T") and let p :
Y — K beacocycle. Then p is a quasi-coboundary if and only if the cocycle Ap : Y? — K
given by Ap(yo,y1) = p(yo)p(y1) ™! is a coboundary of the system (Y2, v @ v, T x T).

1.11 Lie groups and nilsystems

Definition 1.11.1.

The commutator, [G, G], of a group G is the normal subgroup spanned by the elements

1

[z,y] = xyxflyf , £,y € G. This means,

[G,G] = (zyz 'y : z,y € G)

Definition 1.11.2.
The center, Z(G), of a group G is the normal subgroup that contains each element of

G, that commutes with every other element of G. This means,
Z(G)={zxeG: zg=gz, Vg€ G}

Definition 1.11.3.
A group G is called 2-step nilpotent when the commutator subgroup [G, G] is a subset
of the center, Z(G), of G.

Definition 1.11.4.
A Lie group is a group G that is also a finite dimension C'*° manifold, such that the

functions

e v:GxG— G, withv(g,9') =g ¢, for every g.¢' € G
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e a:G — G, with a(g) =g~ !, forevery g € G
are C'°° maps.

Proposition 1.11.5.
If H is a closed subgroup of a Lie group G, then H is an embedded Lie group with the
relative topology being the same as the group topology.

Proposition 1.11.6.
Let G be a Lie group. Then GG is Hausdorff, locally compact space and locally path

connected space.

Proposition 1.11.7.
Let G be a locally compact group and H a closed normal subgroup of G. If G/H and H

are Lie groups then G is a Lie group.

Definition 1.11.8.
Let GG be a Lie group. A discrete subgroup A of G is called cocompact when is closed in

G and the manifold G/A is compact.

Definition 1.11.9.
Let G be a Lie group and A < G a discrete, cocompact subgroup of G. If GG is in addition
2-step nilpotent, the compact manifold G/A is called 2-step nilmanifold.

Theorem 1.11.10. (Malcev)
The subgroups [G, G| and [G,G|A are closed subgroups of G and thus they are closed
Lie subgroups of G.

Let GG be a Lie group and A a discrete cocompact subgroup of GG. The group G acts
(transitively) on the manifold X = G/A by

(9,9N) > gOgdA= (g )A: Gx X = X

It can be proved that there exists a Borel probability measure, i, on X = G/A that is

invariant under this action.

Definition 1.11.11.
Let o € Gand T, = T : X — X be the continuous function on X defined by T'(z) =
a ® z. Then
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e The topological system (X, T") = (G/A,T,) is called topological 2-step nilsystem.

e In addition, Ty = u, thus (X,u,T) = (G/A,pn,T,) is a measure preserving

system. This kind of systems are called 2-step nilsystems.

Let (X,u,T) = (G/A, n, T,) a 2-step nilsystem. We assume that the system is also
ergodic. Let Gy be the connected component of the identity of GG. Since G is a Lie group
therefore locally path connected, we have that G is a clopen subgroup of G. Consider
G’ = (Go,a), and A’ = G’ N A. Then G’ is an open subgroup of G and A’ is a discrete
cocompact subgroup of G’. Furthermore by ergodicity the projection of G’ on X is
(almost) onto X (the image of G’ is an open subset of X that is T-invariant, follows that
that has measure . equal to 1). Follows that X is isomorphic to G'/A’.

In summary, for an ergodic 2-step nilsystem defined as above one can assume the

following:

(1.1) G is spanned by the identity component and the element a.

Again let (X, u, T) = (G/A, 1, T,) a 2-step nilsystem. Consider A” to be the largest
normal subgroup of G such that A” C A. Then we have that

G/A = (G/N")/(A/A")

Thus without loss of generality can G can be substituted by G/A” and A by A/A”. Thus

one can assume
(1.2) The subgroup A does not contain any normal subgroup ofG.

In order to make the assumption that property is satisfied, ergodicity is not neces-
sary.

Notice that property is satisfied for X, then after the substitutions made in
order to acquire property (1.2), it is still satisfied. Furthermore the second property
means that GG acts faithfully on X. This means thatif g € G with ¢ © z = z, Vz € X,
then g = eq. This implies that U N A is the trivial group and it follows that U is compact
(thus U is a finite dimensional torus). It can be proven that U is also connected.
Moreover A is abelian.

From here on for any ergodic 2-step nilsystem we will assume that these properties

are automatically satisfied.
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Let A\ denote the Haar measure of U and K = G/AU. Let 7 : X — K be the natural
(continuous and open) projection of X on the compact abelian group K. Moreover let m
be the Haar measure of K and ¢ : G — K the natural (continuous and open) projection
of G on K. Define 5 € K to be the ¢g-projection of a on K and R the rotation on K by f.

Since U C Z(G), the action of U on K commutes with 7' = T,,. Furthermore the
action is free. This means thatif x € X and v € U with u ©® x = x, then u = ey = eq.

The quotient of X under this action is the group K.

Proposition 1.11.12. (Parry)
Let (X, u, T') be an ergodic 2-step nilsystem. Then (X, T) is uniquely ergodic and minimal

2-step topological nilsystem.

Proposition 1.11.13. (Parry)
Let (X, u, T') be an 2-step nilsystem and (K, m, R) the measure preserving system where
K, m, R as above. Then

(i) (X.u,T) is ergodic if and only if (K, m, R) is ergodic

(i) If (X, u,T) is ergodic, the system (K, m, R) is the Kronecker factor of X, with factor

map 7 : X — K where 7 as above.

The previous Proposition, with an additional requirement, can be generalized in the

following manner.

Proposition 1.11.14. (Parry, Leibman)
Let X = G/A be a manifold with Haar measure p and ay,...,a € G, k € N be

commuting elements of G. Assume that
(1.3) G = (Go, a1, ..., ag)

LetT,, : X — X, withT,,(z) = o; ©® z, foreveryi =1,2,...,k and Rg, : K — K be the
rotations on K by f3; = q(«;), foreveryi =1,2,... k. Then

() The joint action of Ty, ..., Ty, is ergodic on X if and only if the joint action of the

induced transformations, Rg, , ..., Rg,, on K is ergodic on K.

(ii) Ifthejoint action of T,,,, ..., T, is ergodic on X, X is uniquely ergodic and minimal

Jor this joint action.
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1.12 Inverse Limits

Let (I, <) be a countable directed set. It follows that there exists an increasing sequence
(in)nen in I, such that for every i € I there exists a n € N such that i < 4.
For every ¢ € I let (X;, pi, T;) be a measure preserving system and for every i,j € I

with i < j let m; ; : X; — X be factor maps such that

T = Tij O Wiy Vi<j<¥t i,j4lel

)

We say that the pair ((Xi, wis T3)icr, (ﬂ'Z‘,j)iSj) forms an inverse system of measure
preserving systems or simply inverse system.

The inverse limit of an inverse system of measure preserving systems, is a mea-
sure preserving system (X, u,T') endowed with the factor maps m; : X — X, Vi € I,

satisfying the following properties.
(i) m = m;; omj, p-almost everywhere , for all 7 < j, 7,j € I.

(i) If (Y, v, S) is a measure preserving system and for each i € I there exists a factor
map p; : ¥ — X; such that p; = m; j op;j, Vi < j, ¢,7 € I, then there exists a
unique factor map p : Y — X such that p; = 7; op, v-almost everywhere, for every
el

The second property characterizes the inverse limit uniquely up to isomorphism. Thus
we can assume that the inverse limit is unique and we write

(XaﬂvT):m(Xlaulle) or m(Xh:uzaTz)
el

The inverse limit can be constructed in a more specific way. Let X = [[ X; and T be
the diagonal transformation on X. Foreachi € [, letm; : X — X denotéetlhe projection
to the ¢-th coordinate. By combining this and the properties of that inverse system we
can build an invariant probability measure p on the space X. Since [ is countable, p
is a Borel probability measure on X, and thus (X, i) is a Lebesgue space.

Now if (X, u,T) = @(Xi,,ui,Ti), then

Qi) X =V (&)
i€l

(iv) forevery 1 < p < 400, theset |J{fom : f € LP(u;)} is densein LP(u).
el
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Proposition 1.12.1.

Let ((Xi, wis T3)icr, (7Ti7j)i§j) be an inverse system and (X, u,T) a measure preserving
system such that Vi € I, 7 : X — X, is a factor map such that the property is
satisfied. Then each of the properties or implies that (X, u,T) = T&l(Xi, iy T3).

Proposition 1.12.2.
Let (in)nen be a subset of I as defined in the beginning of this section. Forn € N, let
X; =

an inverse system and l'&l(Xfl,,un,Tn) = @(Xi,ui,ﬂ).
neN el

and form < n, let 7r§n7n = m;,..in- The family of systems and factor maps form

in

Remarks 1.12.3.

e This means that essentially we can reduce to the case where [ = N

¢ In this case property implies that for 1 < p < 4+oo and f € LP(u),

[, dm B %)

Proposition 1.12.4.

The inverse limits of ergodic systems is itself an ergodic system.

1.13 Cubes

Throughout, we use 2¥-Cartesian powers of spaces for an integer k& > 0 and need
some shorthand notation. For an integer k¥ > 0, let V3, = {0,1}*. The elements of
Vi are written without commas or parentheses. For ¢ = €1€3...,¢; € Vi and n =

(n1,n2,...,n;) € ZF we write

€e-n=e€ny+eng+...+exng

We use O to denote the element 00...0 of V} and set V' =V, \ {0}. Let X be a
set. For an integer k > 0, we write X" = X2°_ For k > 0, we use the sets V;, = {0, 1}F
introduced above to index the coordinates of elements of this space, which are written
x=(z.: e€Vg).

When f., € € V}, are 2F real or complex valued functions on the set X, we define a

function ) f by
ecVy,

) fex) = [] fe(ze)

eeVy eeVy
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When ¢ : X — Y is a map, we write g/ : XK — Y for the map given by
(M (®)), = g(ze). €€ Vi
We often identify X*+1 with X x X[ In this case, we write x = (¥/,x”) for a

point of X**+11, where ¥/, x” € X!¥! are defined by
. =20 and ! = 31c
for € € V;, and Oe and 1e are the elements of V**! given by
(Oe)j =(le)j=¢ 2<j<k; (0e)1 =0, (le)1 =1

The maps x — x’ and x — X" are called the projections on the first and second side,
respectively.

It is convenient to view V as indexing the set of vertices of the cube of dimension
k, making the use of the geometric words side, face, and edge for particular subsets of
Vi natural. More precisely, for 0 < ¢ < k, consider A to be a subset of {1,2,...,k} of
cardinality k — £ and let n € {0,1}*. The subset

a:{eer: Gj:nj,VjEA}

of V}, is called a face of dimension ¢ of V}, or more succinctly, an ¢-face. Thus V} has
one face of dimension k, namely V}, itself. It has 2k faces of dimension k — 1, called the
sides, and has k2"~! faces of dimension 1, called edges. It has 2" faces of dimension 0,
each consisting in one element of V}, and called a vertex. We often identify the vertex
{€e} with the element € of V.

Let a be an /-face of Vj,. There is a natural bijection between « and V;. This bijection
maps the faces of V}, included in « to the faces of V,. Moreover, for every set X, it induces
a map from X* onto XY, When o is any face, we call it a face-projection and when «
is a side, we call it a a side-projection. This is a natural generalization of the projections
on the first and second sides.

The symmetries of the cube Vj play an important role in the sequel. We write Sy
for the group of bijections of V}, onto itself which maps every face to a face (of the same
dimension, of course). This group is isomorphic to the group of the geometric cube
of dimension k, meaning the group of isometries of R¥ preserving the unit cube. It is

spanned by digit permutations and reflections, which we now define.
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Definition 1.13.1.
Let 7 € Si. The permutation ¢ on V}, given by

(0(); =€y, 1<j<k

for € € V}, is called digit permutation.

Leti € {1,2,...,k}. The permutation of V}, defined by

(o(e)). =€ j#1i; (U(E))i =1—¢

J

for € € V., is called reflection.

For set X the group Sj acts on X (K] by permutating the coordinates. More precisely,
if o € Si, define o, : XK s xI[K by

(0+(x)), = 2o (0

When ¢ is a digit permutation (respectively, a reflection) we also call the associated map

o4 a digit permutation (respectively, a reflection).



Chapter 2

Kronecker Factor

2.1 Ergodic decomposition of a rotation

Definition 2.1.1.

Let Z be a compact, abelian, metrizable group with additive notation, a be a fixed
element of that group, R : Z — Z given by R(z) = « + z and my the Haar measure
of Z.

Then the measure preserving system (Z,my, R) is called rotation. If (Z,mz, R) in

addition is ergodic then it is called ergodic rotation.

Let (Z,mz, R) be an ergodic rotation.
For each s € Z, set

Zs = {(z,2+5): z€ 7}

Then Z; is a subgroup of Z2 that is invariant under the transformation R x R. The
map 0s: Z — Z, givenby 65(z) = (z,z + s) is an isomorphism from the topological
system (Z, R) to the topological system (Z,, R x R). Therefore the topological system
(Zs, R x R) is uniquely ergodic and its (unique) invariant measure m; is the image of

myz under the map 6,.

Proposition 2.1.2.
Let (Z,mz, R) be an ergodic rotation. The map ¢ : Z x Z — M(Z x Z) given by

o(x,y) = my_, is an ergodic decomposition of mz ® myz

25
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Proof. Let F' be a bounded function on X x X then by the pointwise ergodic theorem

N-—1
Jim ST R(RY@), RY0)) = Emgen, (F (R x B)(r.y),
n=1

for myz ® mz-almost every (x,y) € Z x Z.
On the other hand V (z,y) € Z x Z, (x,y) € Zy—, and since (Z,_,, R x R) is

uniquely ergodic, we have that

N—oo Jz2

1 N-1
N > F(R(x),R"(y)) — F(z1,29) dmy_q
n=1

Thus, for mz ® mz-almost every (z,y) € Z X Z, we have that
Emyamy (F | Z(R x R))(z,y) = /2 F(z1,22) dmy—z
Z

Equivalently,

/ F(z1,29) d(mz ® mz)(Ix(I;)XR) = / F(z1,29) dmy_g
ZXZ ’ zZ?

The result follows from the fact that Z x Z has a countable base and Z ® Z is its
Borel o -algebra (B(Z x Z) = Z x Z since Z is separable metric space).

Proposition 2.1.3.
Letp: Z x Z — Z, givenby p(x,y) =y — x. Then

p~'(2) = I(R x R)

Proof. We observe that the map p is continuous (and surjective). Thus p is Z X Z-
measurable. Let (z,y) € Z X Z,
po(RxR)(z,y) =plr+tay+ta)=(y+a)—(r+a) = y—z=py)

Z s
abelian

Thus p~!(Z) is R x R-invariant. In particular p~'(Z) C Z(R x R).

On the other hand, let A denote the sub-c-algebra of Z ® Z that makes ¢ measur-
able. We consider the map ¢ : s — ms : Z — M(Z x Z) and we have that ¢ = 1 o p.
Thus A C p~1(Z). Now from Proposition A = Z(R x R) modulo myz ® mz.
Therefore Z(R x R) C p~1(Z2). O
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Remark 2.1.4.
The function 1 defined in the proof above is indeed Z-measurable. In particular is a
continuous function.

Indeed, let f € C(Z x Z), r € R and € > 0. We consider the subset O, = {v €
M(Z % Z): |[o fdv — 1| < €} of M(Z x Z). then

< €}

1/171(0]3736) ={seZ: ‘/ fdmgs—r
72

<e}={seZ: ‘/fOQSdmZ—r
Z

Let sg € zb_l((?f’m) - |fo 005, dmy — r‘ <€ = dng € N such that

‘ Jy fobs dmg — 7"‘ < €— nio Since f is continuous on the compact space Z X Z,
then is uniformly continuous. Thus there exists a 6 = d(ng) > 0 so that, for every
2,z € 7 x Z with dy2(z,2) < 0, then |f(z) — f(2/)| < n%) Now, if dz(sp,s) < 0 then
dz2(0s,(2),05(2)) < 0, for every z € Z — ‘f(&so(z)) — f(0s(2)) ‘< nio, for every
2€Z = [ 1f(0s(2)) — FO.(2)] dmy < L.

Therefore for any s € Z that is -near s,

Z2fdms—7“ = /Zf095dmz—7“ < /Zfoﬁsodmz—r +‘/Zf(080(z))—f(93(z))dmz
< /ZfoGSO dmy — +/Z!f(980(2))—f(95(2))! dmz < e+ =

In other words if an s € Z is d-near to sq, then s € ¥~ 1(Oy, ) and that completes the

proof.

2.2 Existence

Theorem 2.2.1.

Let (X, X, u, T) be an invertible ergodic measure preserving system on a Borel probability
space, and let K be the smallest -algebra with respect to which all L? (1) eigenfunctions
of X are measurable. Then the corresponding factor (Z,Z,myz, R) of (X, X,u,T) is

isomorphic to a rotation R(z) = R,(z) = z - a on some compact abelian group Z .

Proof. Consider the countable set of { f1, fa, ..., fn, ...} of the eigenfunctions of X, such
fil = 1, for p-almost everywhere (Remark (1.3.8]). Let \; denote
the corresponding eigenvalue for each f;. Define F': X — TN by,

that, for every i € N,

F(z) = (fl(x),fg(a:),...,fn(m),...)
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Then F is measurable. In particular F~(B(T")) = K. Indeed for every [] B;, where
each B; is an open subset of T, we have that F~'( [] B;) = N fi_l(Bi)fevahich is an
element of K. Thus F~1(B(TY)) C K. Furthermor(;eill\CI B is arlle:jpen subset of T, then
forthe set B=T x...x T x B x T x ..., where B is in the ¢-th position, we have
that F~'(B) = f, '(B). This means that each of f; is F ~1(B(TY))-measurable. By
minimality of K, follows that K C F~(B(T")).

Set @ = (A1, A2,...,An,...) and define R(z) = z - a for every z € TV. Then clearly
RoF = FoT. Let TV be endowed with the Borel measure v = Fyp. Then the
system (TN, v, R) is an ergodic system (see Remark . By Theorem we have
that the system (Z,myz, R), where my := v is the Haar measure of the subgroup

Z :={a": n € Z) of TV, is the ergodic factor with the required property. O

Definition 2.2.2.
The factor constructed in the Theorem above is called Kronecker factor of X.

A system that is isomporphic to its Kronecker factor is called system of order 1.

Remark 2.2.3.
Let (Z,mz, R) be an ergodic rotation, where R(z) = z + «.
Ifvye Z and ¢ € T then ¢y is an eigenfunction of Z, with eigenvalue y(«). Conversely,
if f is an eigenfunction of Z with eigenvalue ), then (by density in L?(my) there exists
aye 7 with f 4 f-7dmz # 0. Now since 7 is an eigenfunction of Z with eigenfunction
~(a), we have (eigenfunctions corresponding to different eigenfunctions are orthogonal
in L?(my)) that A = y(a) and 3 ¢ € T such that f = c-v. Therefore all the eigenfunctions
of Z are of the form c-~ , for some c € T and v € Z.

Since the linear subspace of L?(my), consisting of characters of Z, is dense in

L?(myg), then

Z\ ”AHLQ(mZ)

L*(mz) = (y€2) = (g is an eigenfunction of Z>‘|'HL2("‘Z)

Corollary 2.2.4.
Let (X, u,T) be an invertible ergodic system, (Z, m, R) be its Kronecker factor and 7 :
X — Z the corresponding factor map. Then every eigenfunction of X is of the formc-~om,

where ¢ € C is a constant and y € Z.

Proposition 2.2.5.
Let (X, u, T) be an ergodic system and (Z, mz, R) its Kronecker factor. Then:
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(i) Thesubspace L?(X, 71 (Z), u) of L*>(11), consisting of the 7 ~!( Z)-measurable func-

tions, is the closed linear space spanned by the eigenfunctions. That means

L*(X,m YZ),p) = (f € L2(u) : f is an eigenfunction ofX>H'”L2<“)

(ii) The sub-o-algebra of X spanned by the eigenfunctions of X is equal to 71'_1(2 )

modulo .

(iii) The system (X, u,T) is isomorphic to an ergodic rotation if and only if its o-algebra

is spanned by its eigenfunction.
(iv) The factor Z is the largest factor of X that is isomorphic to a rotation.
Proof.

(i) Let f € L?(X,7~%(Z), ). Then there exists a g € L?(my) such that f = go T,
p-a.e. From the Remark g can be approximated in L?(my) by functions of
n

the form Y ¢;v;. Thus f is approximated in L?(X, 7~ !(Z), i), by functions of the
i=1
n n
form (Z ci'yi> om =Y ¢(v;om). Observe that 7; o 7 is eigenfunction of X, with
i=1 i=1
eigenvalue y(«). Hence,

LA(X, 7 Y(2Z),u) = (f € L2(n) : f is an eigenfunction of X)'H‘LQ(“)

(ii) The result is proven with same procedure applied in (i).

(iii) If the system is isomorphic to an ergodic rotation then we obtain the result by
Remark Now if the g-algebra of X is spanned by its eigenfunctions, then by

() (X, u,T) is isomorphic to its Kronecker factor, which is an ergodic rotation.

(iv) Let (Y,),v,S) an ergodic rotation an p : X — Y a factor map. Then by (iii), )
is spanned by the eigenfunctions of Y. Thus p~!()) is spanned by the functions
of the form f o p, where f is an eigenfunction of Y. Observe that f o p is an

eigenfunction of X. Thus fopis 7~!(Z)-measurable. Therefore p~!()) C 7~ 1(Z).

O
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2.3 Decomposition of a system via the Kronecker factor

Theorem 2.3.1.

Let (X, 1, T) be a system. Then the subspace of L?(j1® ), consisting of (T x T))-invariant
functions is the subspace spanned by functions of the formﬁ@ fo where each f; € L? (1),
1 = 1,2, is an eigenfunction of Uy, such that the corresponding eigenvalues A1, Ay are

equal.

Proof. Let F € L?(u ® pu) be an Z(T x T)-measurable. Define L : L?(u) — L?(u), by
setting

Lf(x) = /X F(z,y)f () dpsaly)

for any f € L2(,u). Then L is a Hilbert-Schmidt operator and thus is compact. Further-
more, Ur o L = L o Up. Indeed

Lf(Tw) = Up(Lf)(x /FT:cy ) dpu(y)

= /F(T:z:,y)f( AT, iy /F (T, Ty) f(Ty) du(y)
X X

— / F(z,y)f(Ty) duly) = L(Urf)(x)

F=Fo(TxT
X

By writing F' = F'+iF", where F' = J(F(z,y)+F(y,z)) and F/ = o (F(z,y)—F(y,z)).
we have that F/(y,z) = F'(x,y) and F”(y,z) = F"(x,y). Thus, taking into account
the linearity of the integral, we can assume that F(y,z) = F(x,y). With this additional
assumption L is also self-adjoint.

Let {\, : n € N} be the countable set of non-zero eigenvalues of L. For each n € N
we consider V,, < L?(u1) to be the eigenspace corresponding to eigenvalue \,. We have
that dimV,, < oo and since UpoL = LoUyp, UpV, CV,, for every n € N. Since (X, u,T)

is a unitary

is invertible system, then Uy is a unitary operator. It follows that Ur }Vn

operator on the finite dimensional space V,,, for any n € N, and thus is diagonalizable
on each V,,. Hence V), has a basis that consists of eigenfunctions of the operator Ur.

We have that L?(yu ® p) = L?(u) ® L?(u). Hence if {e, : n € N} is a basis for L?(u)
then for the F' € L?(u ® p),

F= Z Fij-ei®ej
i,jEN
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for some F; ; € C.
Now we have that L?(u) = kerL @ @,enVa, thus we can consider that the basis
{e, : n € N} of L?(11) be the collection eigenfunctions of Ur that span V,,, for each

n € N plus a basis of kerL. We will show that ' € @V, ® @ V,,. Letej, € kerL
neN neN
then

0= Lejy (x ZF,J% / GW)es (v) duly) =D Fijei)(ejo, €5) 1200 = ZF,Joez
i

X
Since e; is a basis of L?(y1) then F; j, = 0 for all i € N. Applying the same procedure for
F(y,z) = F(z,y), one can show that if e;, € kerL, then F;,; = 0 for all j € N, and we
obtain the result.

Furthermore, let ¢; o T' = \;je; and ej o T = \jej. We have
Fo(T'xT)=> Fj-eoT®gGoT=> Fy\lj-ei®¢

i,jEN i,jEN
and since F'is Z(T x T))-measurable then F o (T x T') = F'. Follows that for all i, j € N,
Fyad = Fyj = A =1 25" A =, 0
Corollary 2.3.2.
The sub-o-algebra Z(T x T) of X ® X, is a subset of K @ K, where K = 771(Z). In
particular, K is the smallest factor of X with this property.

Corollary 2.3.3.
IfF € L?(u® p), is a Z(T x T)-measurable function, then F' = Z \ifi ® g; , where fi,

g; are eigenfunctions of X with eigenvalues Ay, = Ay, = A;, for every je{l,2,....,n}.

Definition 2.3.4.
We consider the measures mg, s € Z, on /Z X Z defined in the first Section of this
Chapter. For s € Z we define i the conditional product square of p with itself over mg.
That means s = {4 ®,, 4, Where for every f1, fo € L°°(u) we have,
| henhae) dutone) = [ B(R ] 2)08(G: | 2)) dm,
XxX

IXZ

= BRI DEEG 2) ) dma(s)

(95)*mZ:ms
Theorem 2.3.5.
Let (X, X, u,T) be an ergodic system, (Z, Z, myz, R) be its Kronecker factor and 7w : X —

Z the associated factor map. Then
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() Let P: X x X — Z, defined by P(x1,x2) = w(x1) — w(z2). Then

I(T xT) =P 1(2)
={Ac XX : A={(x1,22) € X x X : P(x1,22) € B}, forsome B € Z}
={Ac XX : A={(zx1,22) € X x X : 7w(x2) — w(x1) € B}, forsome B € Z}

(ii) For mz-almost every s € Z the system (X x X, us, T x T) is ergodic and the map

S — g is an ergodic decomposition of ;4 & (.
Proof. Let a € Z be the element that defining R: Z — Z, R(z) = z + «.

(i) With simple computations, clearly P~*(Z) C Z(T x T).
For the converse inclusion, we consider the multiplicative group Z. By Corollary
2.2.4| every eigenfunction of X is of the form ¢ - (y o 7), where ¢ € T and vy € Z.
By Corollary the o-algebra Z(T x T') is spanned by functions of the form
FoTmTRyom=75o0m®yomw. Observe that for every (z1,22) € X x X

(Fom@yom) (w1, x9) =7(m(21)) - y(m(2)) = V(=m(21)) - v(m(22))

= q(w(z2) — 7(z1)) = y(P(21,22)) = 70 P21, 22)
VE€Z,
Z abelian

In particular ¥ o 7 ® v o 7 is P~!(Z)-measurable. Hence Z(T x T) C P~1(Z).
(i) It suffices to prove that for every fi, fo € L>®(u),

2.1 E(fi® fo | (T x T)) (21, 32) = /X R J1® fa diip(z, )

By Corollary I(T xT) C K® K, where K = 7~(Z). Then the left side of

the above equation equals to

Eueu(E(fL | K) @ E(f2 | K) | Z(T x T))

Y Eyomy (E(fi | 2) ©E(f2 | 2) | Z(R x R)) o (m x )
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2.3. DECOMPOSITION OF A SYSTEM VIA THE KRONECKER FACTOR

By Proposition [2.1.2]

Emzoms (E(f1 | Z)®E(f2| Z) | (R x R)) o (m x m)(w1,22)
= Emomz (E(f1| 2) @E(f2 | Z) | Z(R x R)) (7 (1), 7(x2))

B /Z><ZIE(f1 | Z)(21)E(f2 | Z)(ZQ) dmﬂ(m)—ﬂ(m)('zla ZQ)
- / E(fl | Z) ®E(f2 ‘ Z) de(h,mz)
ZIXZ

= / fi(z1) f2(w2) dppa, 20y (71, 72)
o;;}:; XxX






Chapter 3

Construction of the measures

(X,X,u,T) is an ergodic invertible measure preserving system, (X, X', 1, ) Lebesgue

space.

3.1 The measure /!

Definition 3.1.1.
Let (X, X, u, T) be a measure preserving system. We define 7 0] to be the sub-o-algebra

of X that consists of the TI°! = T-invariant subsets of X

Definition 3.1.2.

Let (X, X, u,T) be a measure preserving system. We define the system (X (I, a0l ,u[l],
T1) to be the relatively independent self-joining of the system (X, X, i, T') over the factor

710]
Remark 3.1.3.

Indeed, as the system (X, X, u, T) is ergodic, thus Z!¥ is trivial. By definition of the

relatively independent joining we have the equality

Proposition 3.1.4.
We define two sub o-algebras of X 2,

Ao1 ={AC X?: A= B x X(modu) for some B C X} , and
JW={ACX?: (Idx T)"'(A) = A (modp)}.
Then

Ao = g

35
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Proof. If A € Ao,l then clearly A is also an element of J (1,
Conversely, if A € J! then (Id x T)(A) = A, (modp!1), thus

0= (u®p)((IdxT)(A)AA)= / dp @ p = / ( / du(y)> du(x)

(IdxT)(A)AA X ((raxmya)na)

- [ )

X (IdxT)(A)pr AA,

Now we have that (Id x T)(A), = T'(Az)
y € (IdxT)(A); < (z,y) € (IdxT)(A) & (2, T (y) € A= T y) € A, &y € T(Ay)

Thus,
0= Z <<M><A>,Mz Aly)) dute) = ! (T(AI)/A i W) auta)

It follows that, for pu-almost every x € X, u(T(Az) A Ay) = 0. Because (X, pu,T) is
ergodic, we have that p-almost every x € X, u(A,) =0 or 1, in other words A = B x X
for some B C X or A = @ up to to a set of y ® p-measure zero. Hence A € J1. O

3.2 The measure ,u[k]
We define by induction the TH-invariant measure, ,u[k], on XKV k e N.

Definition 3.2.1.

Z¥ is the sub-o-algebra of X'*l that consists of all T¥-invariant sets

Definition 3.2.2.
We define the system (X1, xk+1 - k+1] 7+l o pe the relatively independent
self-joining of the system (X*, X% ;K Ty over the factor ZI¥!

This means that if f, € € Vi1 are 2kl hounded functions on X then,

~ dylet] :/ E TN . | 71Ky g%
/X[k+1] ® fe dp X Ik] (® fO??’ ) (® fln’ ) H

€€Vit1 neEVy neVy



37 3.2. THE MEASURE plX]

Lemma 3.2.3.
Let k,¢ > 0 be integers and pl*l = ka M[f ] dPx(w) be an ergodic decomposition of the
measure . Let (ugf ])[f} be the measure on (X)) = X[k 4 (] built from the ergodic

system (X (k] ,uyf ] , T[k]) in the same way that p*! was built_from (X,pu, T). Then

pli = /Q (ufH! d Py (w)
k

Proof. For { = 1, the equation holds by the definition of M[kH] as the relatively indepen-
dent selfjoinig of u!*! over Z!¥!

We will show by induction tha it holds for every ¢ > 1.

Assume that it holds for some ¢ > 1. Let [J, denote the invariant o-algebra of the
system (( X[k])[@]’ ( Mﬂ“])m, (T[k])[é}) = ( X [k+0 MgchE]’T[kH])

Let f, g be two bounded functions on X [k+4] .By applying the Pointwise Ergodic theorem
for the two sytems (X ¥+, plk+d lk+a) (x[k+a Mny]’T[kH])’

(1) A}gnoo + 1:2: fo(Th+iyn(z) = E( f|Z*+9) (), for pl+9-almost every z € X*+1
and N1

(2) ]\}gnoo + 7;0 fo(Th+n(z) = E( f|Jw)(x). for (M‘[f])m—almost every z € X k+0]

We define N = {z € X*+4: (1) does not hold }. Then p**4(N) = 0 thus, by induction,

ka (uﬁ“])W(N) dPy(w) = 0. That is (,uc[f])[e] (N) =0, for Py-almost every w €

In particular 3 Q' C €, such that P,(Q) = 1, and ¥V w € €', equation (1) holds for
WNCR

(1) -almost everywhere.

In sum, if w € ' then

N-1

A}im + 2 fo(r*hn(z) = E( f|ZFY)(2), for (ug])w]-almost every x € XF+4]
=00 p=0

and

N-1
lim % Y fo (T+)(z) = E( f|Jw)(x), for (ut[f])[g]—almost every z € X[kt
n=0

N—o00
Equivelantly, for Pj-almost every w € Q, E( f | ZF) = E( f | J.). (1)1 ammost
every x € XF+4]

The same holds for g. Hence,
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Fogdultte Z / B( £ | T ) B( g | T ) dplt+i (z)

X[k+é+1] X[k+£]

= [ [ BT B 1 754 a0 (w) ) dPie)

Qe xlk+d

= [( [ 1) R T a6l ) ) an)
Q. X[k+e

= [ [ 5ooauh ) ame)

Q. X[kt

That is

] / (W) e Py (w)
Qg

Lemma 3.2.4.
Letp : (X,u,T) = (Y,v,S) be a factor map and let k > 0 be an integer. Then the map
plkl (X[k], M[k},T[k]) — (Y[k], vk S[k]) is a_factor map.

Proof. Clearly plil o TRl — Glkl o plkl - We are left with showing that the image of u[k]
under p[k] is v[¥1. For k = 0 is obvious and we assume that it holds for some k > 0. Let

fe, € € Vi, be sounded functions on Y. Since p[k] is a factor map, we have that

E((Q fo) o p™ | T (X)) = E( Q) fe | TH(Y) 0 pl*

e€Vy eeVy

By the definitions of the measures p/*+t1], y[#+1] the statement follows for k + 1. O

3.3 The measure

Already stated above, M[Q] is the ralatively independent self-joining of ,um = 1 ® u over

7M. In particular,

/)(4 foo ® for ® fio® fu1 dpl? = /X2 E(foo ® for | M) - E(fr0 @ fi1 | ZW) d(p ® p)
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Proposition 3.3.1.

The measure ,u[Q] is T invariant.

Proof. Let foo, fo1, fio0, fi1 € L>(p) then,

/ fo0oT® fo1 0T ® fipo T ® fry 0T dul?

\

. E(foooT @ foroT | TMY - E(fioo T ® fr1oT | M) d(p ® )
X

Il
o

[ B ® for) o (T xT) | ZV) (0 @ fu) o (T x 1) | 7) d(e® )

Il
T~

. E(foo @ for | ZM) -E(fro ® fir | ZM) o Tx T d(p® p)
X

E(foo ® for | M) -E(f10 @ f11 | M) d(p @ p)

\

X2

/ foo ® for ® fio ® fin dul?

The third equality holds by the definition of Z[. O

Proposition 3.3.2.
The measure ,u[z] is relatively independent with respect to Kl
(and the Kroneclker factor is minimal with this property)

This means that

/X4 foo® for® fro® fin dp? = /X4 E(foo | K) ©E(for | K) @E(f10 | K)RE(f11 | K) dpl?

Proof. Let f,g be bounded functionson X andT"' € K @ K
For every z,y € X we denote I';,, I'y X the sets {y € X| (z,y) € T'}, {z € X| (z,y) € '}
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respectively. Then for p-almost every x, I'; € K and for py-almost every y, I'y € K

/ E(f | K) ©E(g | K) (29) d(n ® p)(z,y) = / E(f | ) (x)( / E(g | K)(y) du(y) ) du(x)

I X 'y
- / E(f | K)(@)( / o(y) du(y) ) du(z)
X I

E(f | K)®g (z,y) dp @ p)(z,y)

Il
—

/f®g (2,9) (s ® 1) (2, )

E(f®@g| Ko K)(z,y) dp p)(z,y)

T

In particular, E(f | C) @ E(g | K) =E(f®g | K@ K) (1@ p)-a.e.

Now let foo, foi, fi0, fi11 be four bounded functions on X.
[, Bl | K) @ Bl | K) @ (o | K) @ B i1 | K) du
= /X E(E(foo | K) @ E(for | K) | M) - E(E(fi0 | K) @ E(fir | £) | ) dpl!

- /E(E(foo ® for | K@ K) [ ZV) -E(E(fi0® fu | K© K) | ZM) d(p @ p)

XQ
_ /X E(foo® for | T1) - E(fio @ fu | TV) d(n @ p)
= /X4 fo0 @ for ® fio ® fir du?

The third equality holds by the previous proposition. O

Remark 3.3.3.

Let Z, as mentioned above, denote the Kronecker factor of X. Define Z, = {(z, sz, tz,tsz) :

2,5,t € K} Then Zy is a closed subgroup of Z4.

Proof. Let (z,)nen a sequence in Z4 and z € Z* such that z, — z. Each z, is of the

form (Z’m SnZn, thn, tn3n2n> and z = (2007 2015 210, le)-



41 3.3. THE MEASURE /2

Hence z,, — 290 and s,z, — 201 and t,z, — 210 and spt,zn, — 211
— -1 -1 _ -1 —-1
= sp = (Sn2n)(2, ) = 201259 and t, = (tnzn)(2, ") = 21020
By setting z = zg9, s = zmzo_ol and t = zlozo_ol, follows z = (z,sz,tz,tsz). Therefore

Z, is closed in Z* O

Proposition 3.3.4.
Let my be the Haar measure of Zy, my = w Xt xmxmw: X* — Z4 and g., € € Va, be
Jfour bounded functions on Z. Then,

/®geo7r4d,u[2} = /®gedm4

¥12] ecV Za ecVy

Proof. Let ¢ : Z3 — Z, given by ¢(z,s,t) = (2,2 + 8,2 +t,2+ s+ t). Then ¢ is a
bijection, continuous and open function. In particular, ¢ is homeomorphism.

Let m3 = m ® m ® m, then ¢, m? is a Borel probability measure on Z, that is invariant
under any rotation, thus ¢, m3 = my4. Now let goo. go1. g10. 911 be four bounded functions

on Z, then

[ Qoeami= [ @06 am

74 eeVr 73 ecVp

= /goo(z) cgo1(z+38) - gi0(z +t) - g11(z + s+ t) dm(z)dm(s)dm(t)
Z3

With the additional assumption that g., ¢ € V5, are characters of Z, g. o m, ¢ € V5 are
eigenfunctions of X, thus K-measurable

Now, remember that s — us is an ergodic decomposition of y ® u, where

/ fi(1) - fol) dpa(n, ) = / E(f1 | 2)(21) - E(fs | Z)(25) dma(z1, 22)

XxX ZIXZ

~ [B( 1 2)6) B2 | 2)(: + ) dm2)

Z
Then, by Lemma [3.2.3],

pl? = /us ® ps dm(s)
Z
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Thus,

/ ® Je © T4 d:um

X4 GEVQ

= / (/E(goo | Z)(2) - E(go1 | Z)(z + s) dm(z E(gi0 | 2)(2) - E(gu1 | Z)(2" + s) dm(2")) dm(s)

N\

/ /goo - go1(z + s) dm(z ))(/910(2')'911(2 +5) dm(2")) dm(s)
Z Z

900(2) - go1(z + 8) - g10(2") - 11 (2" + 8) dm(z)dm(2")dm(s)

Il
\

73

= /900(2’) ~go1(z+8) - gio(z +1) - g11(z +t+s) dm(z)dm(t)dm(s)

/®ggo¢dm - [ Qg am:

73 ecVy 74 ecVa

The second equality holds beacause g, o 7 is K-measurable, thus E(gco7 | K) = g o .
Furthermore E(g.om | K) = E(geom | Z) ow. Hence geom = E(geom | Z) om, p-a.e.
= ge=E(geom | Z), m pn=m-ae.

The general case follows from density. O

From the two propositions above we deduce that:

Corollary 3.3.5.
The measure my is the image of 2] under the Ty =TXTXTXT: X 4 5 7Z*. Furthermore,

if fe, € € V5 are four bounded functions on X, then

/foo ® for ® fio ® fi1 dpa = /E(foo | Z) @E(fo1 | Z) @ E(fi0 | Z) @ E(f11 | Z) dmay
Z4

Proposition 3.3.6.
By identifying Z* with Z x Z?3, we have that the projection of my on Z3 is m3 = m@mem.

Proof. Letv : Z* — Z3 given by ¥ (200, 201, 210, 211) = (201, 210, 211) then 1, my is a Borel
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probability measure on Z2 and if f a bounded function on Z3 then,

/f((Zm,2107211)+(26172107Z11)) dyp,my

73

= /f o ((200, 201, 210, 211) + (200, 2015 2105 211)) A
74

= /f o 4 ((200, 201, 210, 211)) dmg
Z4

= /f(z(n, 210, 211) dibamy
73

Thus 1)xmy is the Haar measure on Z° In particular, 1,ms =m @ m ®m O

Since 4 is relatively independent with respect K* we have the following,

Corollary 3.3.7.
By identifying X* with X x X3, we have that the projection ofup] onX3is p? = pRup.

Proof. Let ¥ : X4 - X3 given by \P(mog,xol,xlo,xu) = (xm,:zlo,arn), fe € LOO(,U,),

e € Vi, and foo = Lx. then foo ® for ® fio ® fi1 = (fo1 ® fio® f11) o ¥, pllae.
Now we have that,

fe dW,pl? = foo W dpld = £, dul?
/® /® /®

x3 €€V5 x4 €€V x4 €€V2
:/®E(f€ | Z) dm4:/®E(f€ | Z) o tp dmy
Z4 EGVZ Z4 EGV;
- [ @t 12) avani = [ @ B0, | 2) aw®
53 €€Vy o3 €€Vy
~ 11 [ev 0 an=T] [e6 1 0a=T] [ra- [ & s
c€Vy c€Vy c€Vy 3 €€Vy

The fourth equality holds for the same reason the second equality holds and because

E(lx | Z) =1z, and the sixth equality holds from Proposition [3.3.6] O

Note.
Let ¢ : K3 — K bedefined by (201, 210, 211) = zmzlgzil. Then for each (200201, 210, 211) €

Ky, zoo = (201, 210, 211) and this relation holds for m4-almost every (2‘00, 2015 210, 211) S
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K*. Since my is the projection of um on K* we have that for any K function f on X
there exists a bounded function F' on X3, measurable with respect to K?> = K ® K ® K
such that:

3.1) f(xoo) = F(xo1, 10, Z11),

for ,u[Q]—almost every X = (x00, To1, 10, 11) € X4,

Indeed, if f is K-measurable then 3 h € L°>°(m) such that h o7 = f. Furthermore
h(z) = h(z00) = h o ¢(201, 210, 211), Mm4-a.e. . Setting H : Z3 — R, with H = h o ¢, we
have that H (201, 210, 211) = h(200), for my-almost every (200, 201, 210, 211) € Z* Then the

requested function is defined by F' = H o 73, because,

/ |F (01, %10, 211) — f(z00)| dpu? = / |H (201, 210, 211) — h(z00)| dmy =0
X4 74

The equality holds by Corollary Therefore f(zo9) = F(xo1, 210, 211), plZ-a.e.

On the other hand, if f a bounded function on X and F' is a bounded function on
X3 satisfying equation , then f is K-measurable.

Indeed, we have

(3.2)
[fllz2) = /f(xoo)'F(%hﬂ?lo,fUu) dul? (x)
X4
- / E(f) | K)(xo0) - Flaor, 710, 211) dpl? (x) = / E(f | K)() - f(x) du(x)
X4 X

For the second equality:

We have that F(zg1, 210, 711) can be approached in L' (1 ® p ® p1) by finite sums of the
form } Fi(200)Gi(z10)Hi(211). This last argument can be easily shown for character-
istic f&nction and the fact than finite unions of rectangles of K-measurable sets is an

algebra generating K3. Now the finite sums of the form f(z00)-Y_ F;(200)Gi(210) Hi(211)

(A
approach f(zg) - F(xo1,x10,211) in Ll(,um). Indeed if a ZE(Q@Ol)Gi(:clo)Hi(xn) is
KA
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e/ |1 F | oo (usy-mear F(zo1,x10, 11) in L'(y?) then,
/’f 00) ZF 200)Gi(w10)Hi(z11) = f(200) - F(01, 10, 211)| dpu) ()
/’f 11300 xol)xlﬂaxll ZF .’170]_ $10)Hi(x11)|du[2](x)

= / |F'(zo1, 210, 211)| -+ [F (201, 210, Z11) EF 201)Gi(x10) Hi(z11)| dp’ (%) < e
X3

where x = (209, %) € X x X>. The last equality holds because f,F satisfy equation (3.1).

Now,

/f@ZFiGiHi dul? = Z/f@ﬂ@Gi@Hi du?
4 i i 4

:Z/E(f |K)® F,®G; ® Hy du?! = /E(f | IC)®ZFiGiHi dpl?
i i

X4

and the last equality holds by Proposition
But f E(f | K)® ZFZGJL dpl, (in the same manner as [ f ® > FGH; dul?,

X4 i
approaches in L' (p f f(200)F(zo1, 210, 211) dpll = || f]| 2 “)) approaches
f E(f) | K)(zo0) - F(xm,a:lo,:cu) dpl? fIE F 1K) (z)- f(z) du(x). By uniqueness

of -1l L1 (u2)y-limit we have that the relation is proven.
It is easy now to deduce that f is K-measurable, since by relation (3.2):

(f=E(f|K),f)=0 = f=E(f|K), p-ae.
By summarizing the previous results we obtain the following.

Proposition 3.3.8.
Let A be a subset of X. Then

Aek <« 3B CX?suchthatAx X>=X x B (modu?)

Note.
The rotations R41 = Id X R x Id X Rand R4o = Id x Id X R X R of zZ4 clearly leave
Z, invariant, thus leave the measure my4 invariant. Since u[z] is relatively independent

over my, it follows that,
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Proposition 3.3.9.

The measure up] is invariant under the transformations
Typ=HdxTxIdxTandTyo=IdxIdxT xT
Proof. Let foo, fo1, fi0, f11 € L>(p)

® feoTa du = [ E(fua | K) & B(for o T | K) @ B0 | K) 9 B oT | K)

x4 ecVy x4
- / E(fuo | 2) @ E(for o T | Z) © E(fao | Z) @ E(fuy o T | Z) dimy
Z4
- / E(fuo | 2) @ E(f | Z) o RO E(fio | Z) © B(fu1 | Z) o R dma
74
— [ Bl | 2)© Bl | 2) © Blfi | 2) © Blfu | 2) dmy

Z4

_/®f€ du?

x4 eeVy

The first equality holds by Proposition [3.3.2] the second equality holds by Proposition
[3.3.4] and the fourth holds by the Note above.

Now for the four equality:

Let f € L*°(u) and A € Z, then

/E(foT\Z)dm: / E(foT|K)du= / foT du= / £du
) T

A 7=1(A) 7=1(A —H(r=1(4))
- [ ra= [ B¢ W= [ EGI2dn= [B(EZ)0Rdm
7 1(R=1(A)) 71 (R=1(A)) R=1(A) A

Thus E(foT | Z) =E(f | Z) o R for m-a.e. and by the fact that

[ Bl | 2) 9Bl o T | 2) @ Blf | 2) @ Blfu o T | 2) dms
Z4
= /E(foo | Z2)(2) - E(for o T | Z)(s2) - E(f10 | Z)(t2) - E(fu1 0 T | Z)(stz) dm®(z, s,1)
73
it is easy to deduce that the requested equality indeed holds.

The proof is exactly the same for T} ». O
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Remark 3.3.10.

For T} 5 there is a more direct proof:

/foo ® for®@fi00 T ® fry 0T dul?
X4

B /E(foo ® for | ZM) - E((f10 @ f11) o (T x T) | M) d(p @ p)

X2

= /E(foo ® for | M) - E(fio @ fun | M) d(p @ p)
X2

= /foo @ for ® f10® fry dpl?

Proposition 3.3.11.
We define two sub o-algebras of X'*, 4
Aoz ={AC X*: A= B x X3(modu?) for some B C X} , and
JE ={AcXx*: 4_11(A) = A (modu?) and T472 (A) = A (moduP)}.
Then
Ao = g mod ()

Proof. If A € Ag 2 then clearly A is an element of J (21
Conversely, if A € 7 then T4_711 (A) = Aand Ty »(A) = A. Let F be abounded 7 ?-
measurable function on X*. Since (X*, ul?, T1?) is a self-joining of (X2, ® u, T} [1]),
over Z!I, we have that the function F(x) = F(x/,x") on X* = X2 x X2 can be approxi-
mated in L?(u[?) by finite sums of the form > Fi(x')Gi(x"), where I, G; are bounded
i

functions on X?2. Since F oTys = F and Tys = Idy2 X T, by passing to ergodic
averages we can assume that each G; is T’ M.invariant. Indeed, let ¢ > 0 and consider a
finite sum ZF( "YG;(2"), such that ||F — EF( NGi(2")|| 22y < €/2. Since F' and

,um are T 2 -invariant, we have that for every j € N, the sum
ZFG o Tyo(x, x" ZF G; (T (x")

is e-near F in L? (,u[Q]). By Von Neumann’s Mean Ergodic Theorem (Theorem we
have that

A, = %Z < F(x)G; (T x") ) ZF

j=0 N
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in L2 (M[Q]), as n tends to +o00, where each él is T?-invariant. Now we have that for each

n €N,

n—1
1
4= Fllsgn, = |13 (S E@ Gy @) - F
=0 L2(ul?)
n—1
1
<D | BEG((TWY ) - F
=0 Il L2 ()
n—1
1 €
< nley =
7=0

Choose, ng € N so that A, is ¢/2-near to 3 F; @ G;, in L(u/2). Then,
i

no

e ¢
+ [ Ang = Fll 202y < 5T

3=°
L2(ul2)) L2(pl2])

Hence F can be approximated in L?(ul?) by finite sums of the form Y. F;(x')G;(x"),
7
where F;, GG; are bounded functions and in addition each G; is T invariant.

Now we will show that by the construction of the measure M[Q] we have that for each
i, Gi(x') = G;(x"), for ,um—almost every x = (¥,x") € X* = X? x X2, Since each G; is
T invariant, G;(y) = E(G; | Z)( f G duI[ ! for i X p-almost every y € X 2.

/ Gi(®) — C:(x")] dul?

_ / < / Gi(x) — Gax")| d(E™) @ (2" ]><x’,x”>) d(p @ u)(y)

X2  X2ZxX?

[ ([ Jiow - citee o a5 @)

X2 X2 X2

[1] 1]
+ / (Gi(x") = Gi(® )6,y A (&) dpk <x”>) d(n @ p)(y)
X2
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[ ([ oo e amng@

X2 X2

[1]
= | GilE) (UG w) 00 © G dptg (%)

/G”wmmwGﬂﬁwﬁw>
- / Gi(XI)(]l(foo,Gi(x”)) °G)(®) duy (%)) dpy (X”)) d(p ® p)(y)
X2

= / </ (Giy)((L(c, (@), 400) © Gi)(¥)) = Gi(®”) (LG, (x7) 400) © Gi)(¥))

X2 X2

FGI (g ) © GO — GO )) 2G(3)) " @) ) Al )5

x/l

]
/ </G ]l(G (x'"),400) OG )( d/,by X” /G ” G;(x'"),400) o G; )( ) dusz,l (X”)

X2
—/G1<Y><]l(ooe(x~)) °0G)(y)) diy ( ">) d(p® 1)(y)
X2
= / ( / Gi(¥) L5 6 (e () i (2) — / Gi(®") 1,915y () i (2
X2 X2

X2
7] 1]
/G’ NiGig)<c@n(¥) duy (%) — /G (6, 5)<Gixn (¥) ) drg (X”)> d(p® p)(y)

-/ (/ GO (L) G 5" ) = [ Gl ) GO i
X2

X2

[1]
/ i) (LG sy © C) (&) ™ (=)

- / Gi(¥) (UG, (yt00) © Gi) (&) A" <x">) d(u ® p)(y)

X2

= / Giy e w>a@ — Gl m>ciy)

+ Gi¥) g, y)<ciy) — Gi¥) G (v)<cay) i@ p1)(y)
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Thus each sum Y, F;(x)G;(x") = 3 Fi(x')Gi(¥), for pl?-almost every (x/,x") €
X%, Passing to the limit, we have thatZ there exists a function H on X? such that
F(x,x") = H(x'), for ?-almost every (x/,x") € X*. Since F is T -invariant then H
is Id x T invariant and thus by Proposition is Ao,l—measurable. Follows that F' is

Ao 2-measurable. O

Corollary 3.3.12.

The measure M[Q] is ergodic under the joint action spanned by T2, Tya, Ty

Proof. Let A C X* be an invariant set under all T2, T4, Ty 2. From Proposition |3.3.11
we have that there exists a set B C X such that A = B x X3 Now, T12(A) = A, and thus
T(B) = B. By ergodicity, u(B) = 1 or 0, it follows that u?(A) =1 or uPl(A) =0. O

Proposition 3.3.13.
The measure ,um is invariant under the group of isometries of the unit Euclidean square,

acting on X 4 by permutation of the coordinates

Proof. Since the group of isometries of the unit Euclidean square is spanned by digit
permutations and reflections, it suffices to prove it for any reflection and any digit

permutation,

o reflection:
There are only two reflection o, o3 defined by
0?(e) = oi(e1e2) = (1 — €1)ea , foreach € € Vo and
o3(€) = 03(e1e2) = €1(1 — €2) , foreach e € Vs
and they act on X* by
(02)«((x00, T01, T10, 711)) = (%10, 11, Too, To1) for each x € X* and

(03)+((z00, To1, T10, 11)) = (T01, T00, T11, T10) for each x € X*.
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Let f. € L®(n), ¢ € Vy

/(fOO & fOl ® f10 X f11> ) (g%)* d:u[2]

X4

- /foo(:l?m) - for(z11) - fro(zoo) - fi1(zor) dut? (x)

x4

= /E(foo | Z)(z10) - E(fo1 | Z)(z11) - E(f10 | Z2)(200) - E(f11 | Z)(201) ma(z)
Z4

= /E(foo | Z)(tz) - E(fo1 | Z)(stz) - E(f10 | Z)(2) - E(f11 | Z)(s2) m(z)m(s)m(t) =
ZB

Now by setting 2’ = tz and t~! = ' we have that the Haar measure, m, of Z is

invariant under this transformations. Thus

= /E(foo | Z2)(2') - E(fo1 | Z)(s2") - E(fr0 | Z2)(t'2") - E(f11 | Z)(st'2") m(z")ym(s)m(t')

Z3

= /(foo ® for ® fio ® fi1) dp?

X4

The same procedure can be applied for (03),.

e digit permutation:
The only one nontrivial digit permutation of V2, 7 € S3. In other words 7 = (12)
and it defies o on V3, with o(€) = o(e1e2) = €ae1. Now o acts on X* by
o+ (x00, To1, 10, £11) = (00, 10, To1, T11
Let fo € L>®(p), € € Vo
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/(fOO ® fo1 ® fio ® fll) o (O'*) d’u[z]

X4

= /foo(woo) - for(z10) - fro(zor) - fi1(z11) duP(x)
X4
= /E(foo | Z)(200) - E(for | Z)(z10) - E(f10 | Z)(201) - E(f11 | Z)(211) dma(z)
Z4
= /E(foo | Z)(2) - E(for | Z2)(tz) - E(fi0 | Z)(s2) - E(f11 | Z)(stz) dm(z)dm(s)dm(t)
73
= /E(foo | Z)(2) - E(for | Z)(s'z) - E(fi0 | Z)(t'2) - E(f11 | Z)(s't'z) dm(z)dm(s")dm(t")
ZS

= /(foo @ fo1 @ fi0 ® f11) du?

X4

Lemma 3.3.14.
Let f € L*(u). Then

4
| ferere sl > (/fdu>
x[2] X

Proof. Applying the Cauchy-Schwarz inequality we have,

2
/ f®f®f®fdu[2}=/ E(f®f|1[1])2d/i®ﬂ2</ E(f®f|1[”)du®u>
x|[2] X[ X1

(reramen) = ((fra) ) = (fro)

By applying the previous Lemma for the function f = 1 4 we have that

Corollary 3.3.15.
For any subset A of X , plPl(Ax Ax Ax A) > pu(A)*
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Definition 3.3.16.
The sub-c-algebra of X' that contains all the subsets of X? that satisfy the property in
Proposition is denoted as Js.

Lemma 3.3.17.
(i) J5 is T3-invariant.

(ii) J3 is the o-algebra that contains the subset of X 3 that are invariant byTs1 andT3 .

Proof.
(i) Clearly this statement holds since K is T-invariant.

(i) Weidentify X4, with X x X3, by z = (29, %), where zop € X and & = (201, T10, 711) €
X3, Let X3 be endowed with the measure ;* = 1 ® jt ® p, the projection of M[Q] on
X3 and with the transformations 131, T3 induced on X 3 by the transformations
Ty1. Ty 2 respectively.

Let B C X3. If B is J3-measurable. Then X x B is invariant by all T} 1, T4 2 and
by Proposition there exists an A C X such that X x B = A x X*® modul?.
Conversely, if there exists an A C X such that X x B = A x X3 modu?, then

clearly B is is [J3-measurable.

Lemma 3.3.18.
Let f and g be two bounded functions on X and X 3 respectively, then

/ F(@o0)g () dp (x) = / E(f | K)(zo0)E(g | J3)(%) dul ()
x4 x4

In other words (X2, u?) is the relatively independent joining of (X, 1) and (X3, ) over
K when identified with J3.

Proof. Let f be a bounded function on X and ¢ a bounded function on X3, Since M[Q] is

Ty 1. Ty 2-invariant, then for every n1, no € N, we have,

/ £ (200)9(%) dul?)(x / F(00)g(TIT3 (%)) dpl?) (x)
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Thus we have

ni ng

/ Fao)g®) @) = 3> [ flaw)a(T5 ) dlw

a=0 =0 4

From the L!-ergodic theorem,

niy n9 .
> [ g T @) an ) 2 [ Bl | )@ du® )
a=05=0 x4 L2 a

ning
Thus

/f 00)g /f z00)E(9 | J3) (%) du®) (x) = /E(f!/C)(woo)E(gljs)(i) duP)(x)

X4

O

Definition 3.3.19.
Let f € L*°(u). We define

1/4

71l = ( [ resere fdﬂm)
Lemma 3.3.20.

(i) Let f., € € V4 be four bounded functions on X, then

®f Al < TT I fe Mg

EEV ecVs

(@) [ - [l is @ semi-norm on L>(u)
Proof.

(i) Let fe, € € V5 be four bounded functions on X.

(/@)

x4 ecVa

< [E(foo ® for ® foo ® for IZM)][72(uep - E(f10 ® f11 @ fi0 @ fir ITM)][72 (e,

= (/f00®f01 ®f00®f01d/~0[2]> : (/f10®f11 ®f10®f11dﬂ[2]>
X4 X4
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By using the o, defined in the Proposition [3.3.13] we have that

( / foo @ for @ foo ® fmdu[”) : < / fio® fi1 ® fio ® flldu[2]>
X4 X4
= (/foo ® foo ® for ® f01dﬂ[z]> : </f1o ® fio® fu1 ® flldu[2]>
X4 X4

Applying the same procedure on each of the last two integrals, we obtain the

result.

(i) Let f be a bounded function on X.

4 2 = my)*
Wiy = ([ e rose ) = [ (B r12)" awsp

> ([ rverimawen) = ([ rerawen)
- ([, sw) dm@m(x,y>)2: [(/deu)grz (/deﬂ)4>0

It is trivial to prove that ||c - f||][2] =|c| - H|f|H[2] Vee C
The remaining property that needs to be proven is subadditivity. Let f,g € L (u).

I1£ + glly

_(* 4y g2 4 (4 {3} {1} q,2
—(O>/f du +1/f gt dp
X4
()/jM{a@p ()/QM{@Mﬂ+<>/{Q@m

where the notation f{™ (respectively ¢{"}) implies the number that f (respectively

g) appears in the integral regardless of the position. By (i) we have that,

I1£ + glly

4 4 3 4 4 4
< (o)t + (3 ) sl sty + () 0ttty + (5 ) rtiaionty + () iy

4
= (£l + Mgllz)
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Proposition 3.3.21.
Let f € L>®(u), then
£l =0 <= E(f[K)=0

Proof. Assume that E(f | K) = 0. By Lemma [3.3.18| applied for g(%) = ][] f(z.), we
eeVy

have that || f[|[5 = 0
Conversely, let || f||;; = 0. Then by Lemma 3.3.20, if fe € L>(u). € € V5"

[ o) T] £l duP =0
x4

eeVy

By density we have that | f(zo0)g(%) dpl?l = 0, function on X3. In particular, this

X4
holds for every J3-measurable function on X? and thus f is orthogonal in L?(j) to
every K-measurable function on X. Thus E(f | K) = 0. O

Proposition 3.3.22.
Let f € L?(u), then
f is K-measurable if and only if fis orthogonal in L*(11) to every g € L*(u) with

llglly =0

Proof. Let f € L?(u), K-measurable and g € L>(u) with llglllj5; = 0. Then there exists

a function F in X that is 3-measurable such that, for u/?-almost every x € X*
f(zoo0) = F(zo1, 710, 711)
As in Note on page 11, we have that

Z/X49®Fi®Gi®Hi dpll(x)

i

/f'ng = /F(mm,xlo,%n)'g(%o) dpPl(x)| -
X 4

<> Mgl - NEllgy - NGillig - 1 Hilly = 0

Conversely, let f € L?(u) such that Vg € L>(u) with llglllg = 0.

/Xf-gdu

We can write f = ' + f”, where [’ is K-measurable and E(f” | ) = 0. Then,

s = [ 57 dn= [ £+ au= [ £opans [ 557
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Now, E(f" | K) <= [| /"]y = 0 thus,
/ffﬂuzo
X

Affw:AfMMKmu

Hence f is K-measurable O

In other words

Proposition 3.3.23.
Let (X,u,T) and (Y,v, S) be two systems adp : X — Y be a factor map. Let K(X),
K(Y) be the Kronecker factor of X, Y respectively. Thenp~' (K(Y)) = K(X) np~ (V).

Proof. Let p® = p xpx p: (X3, 43, T3) — (Y3,12,9%) be the natural map. Then p? is
a factor map. Let f be a bounded function on X that is p_l (/C(Y))—measurable. Then
f = gop for some bounded function on Y that is K£(Y')-measurable. By Proposition
there exist a K3(Y)-measurable function G on Y? such that g(yoo) = G (yo1, y10, Y11)-
for vP2l-almost every y = (00, ¥o1, %10, ¥11) € Y. Thus g o p(200) = G o p*(z01, 210, 211),
for p?-almost every (200, Zo1, 710, 711) € X*. Again by Proposition we have that
f = gopis K(X)-measurable. Thus p~ (K(Y)) C K(X)np~ (V).

Now let f be a bounded function on X that is K(X) N p~!())-measurable. Then
f = g o p for some bounded function on Y. Write ¢ = ¢’ + ¢”, where ¢ is K(Y)-
measurable and E(¢” | IC(Y)) = 0. By the first part of this proof, we have that ¢’ o p
is (X )-measurable. Since E(¢” | K(Y)) = 0, we have that ||¢”||ys« = 0, and thus
llg"” o pl| x4 = 0 thus E(¢” op | K(X)) = 0. Since f = ¢’ op+ ¢” op is K(X)-measurable,
we have that ¢’ o p = 0. Thus ¢’ = 0 and g is K£(Y)-measurable. O

Remark 3.3.24.
This means that the Kronecker factor of any ergodic system is a system of order 1.
Furthermore the Kronecker factor is the largest system of order 1 under any ergodic

system.

Note.
The sub-o-algebra K* C X* is TPl invariant, hence the conditional expectation with

respect to Z 2] commutes with the conditional expectation with respect to KA

Lemma 3.3.25.
Let fo € L™ (u) fore € Vs.
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@) If f, is K-measurable for some y € Va, then B( @ fe | Z1?) is K*-measurable.
eeVy

(i) If E(f5 | K) = 0 for some § € Vs, then E(E( Q) f- | 3y | K% =0

ecVa

(iii) If the conditions in both (i) and (ii) are satisfied, then E( @ f.|ZZ) =0
eeVa

Proaf. (i) By Proposition [3.3.13]it suffices to prove it for v = 00
Since [y is K-measurable , 3 F on X 3, that is K3-measurable, such that for ,u[g]—almost
every x € X* | f(xoo) = F(z01,Z10,211). Thus we have that,
[1 f(ze) = F(zo1, 210, 711) - [[ fe(we) for pl?l-almost every x € X*
ecVr eeVy

By Corollary we also obtain that the 73-invariant sets of (X3, 4 ® pu ® p) are

KC2-measurable

By corollary we have that the 3 dimensional marginal of ,up] is 4 ® u® u. Thus
E(Q f|Z [2]) is K*-measurable. Indeed, let A € Z1?

ecVh
/ E

B(Q f 17%) | K4 = [BE(Q 1.1 KY) | T7) au

A eeVs A eeVs
:/ (X fe | K*) dul =/1x®E - @ fe | K?)duP
‘A ecVh eeVy
/]1X®F & 7. dul? —/®f 4 = [B(® 1.1 7%) au
eeVy 3% A eeVs

The first equality holds by the previous Note and the third by the fact that, E( QR fel IC4) =

ecVa
E(x@F- @ f|K')=1x@E(F- @ f |K?)

ecVy eeVy

(i) By Proposition [3.3.2|we have that, ® E(f. | K) =E(Q® f. | £*)
e€Vs eeVs

Indeed, if A € K*, then

/ R E(. | K) dul?) = / Q£ du® = / B f. | KY) dpl?

‘A ecVa ecVa A ecVa
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Hence

E(fs | K)=0 = E(Q) fe|K*) =0

3%
= E(E(@ﬂ | K1) ‘Im> =0 = E(E(@fgI[z]) ‘ /c4> =0
ecVa ecVa

(iii) If one f, is K-measurable then from (i)
B(B(Q 1K) | 79) = B(@ 1.1 7¢)
€€V ecVy
Furthermore if E(fs | ) = 0 then from (ii)
E(E( ) fo | ) ‘ /c4> =0
eeVy
and as mentioned before

E(E(@fe )

ecVa

I[2l> _ E(E( ® 7.1 7%) ‘ /c4>

ecVy

It follows that

E(®f€ |I[2]) =0

eeVr

3.4 The measure ;)

As stated above, the measure ,u[3] is the relatively independent joining over Z 2. That
means

/ &) fedu® = /

X

]E( ® fe | I[Q}) E( ® fe |I[2]) du@]

oo <18 4 4
— [ B o | T - B 11y | 22 0y
neVa neVa

for fooo, foo1, foio, foi1, fioo, fio1, fi10, fi11 € LOO(M)-

Proposition 3.4.1.

The measure,u[?’] is TBl =T xTxTxTxTxTxT xT -invariant.
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Proof. The proof is exactly the same as Proposition [3.3.1] O

Proposition 3.4.2.

The measure /ﬂ?’] is invariant under the tranformations
T&l :T471 XT471 , T&Q :T472 x Ty o andT&g =IdxIdxIdxIdxT xT xT xT
where Ty, 1, Ty 2 are as in Proposition[3.3.9)

Proof. Let f. € L>(u), € € V3 be 8 functions on X

/ ® fe (@] Tg}l d,u[s} = /E(@ fo77 O T4’1 | I[Q]) . E(® f177 [¢] T471 ‘ 1[2}) d,u[Q}

XS 66‘/3 X4 7’]6‘/2 T]EVQ

= [ foy | 7%) 0 Tas - B Jiy | 72) 0 Ty
x4 neVa neve

= / (E(@ fon | T - E(Q) fry |z[21>) 0Ty dul
X4 neva nevs

= [E(Q o |79 B 1| 7% = [ @ 5.
x4 NEV2 neVa X8 €€V3

The second equality holds because Ty o Tl = T1? 0 Ty ; and the fifth holds by Propo-
sition [3.3.9

The remaining two cases can be proved in the exact same manner. O

Proposition 3.4.3.
The measure ,u[3] is invariant under the group of isometries of the unit Euclidean cube,

acting on X 8 by permutation of the coordinates.

Note. We will use the transformations (7)., (03)+, (o).« defined in Proposition
acting on X* by

(a%)*((xgo,xm,xlo,a:ll)) = (210, 11, T00, Xo1) for each x € X4,

(02)«((x00, To1, T10, 711)) = (T01, T00, T11, T10) for each x € X* and

4
o«(z00, o1, 10, 11) = (200, T10, 01, 211) for eachx € X

Proof. Since the group of isometries of the unit Euclidean cube is spanned by digit
permutations and reflections, it suffices to prove it for any reflection and any digit

permutation,
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o reflections:

There are 3 reflections 3, 03, Ug’ where

(03)+ (2000, 001, 0105 T011, T100 T101,T1105 T111) =

= (2100, %101, £110, Z111, 000> 001, £010, L011)
(03) (70005 T0015 T010, T011, T1005 T101,T110; T111) =

= (2010, 011, £000, L0015 L1105 L111, £100, L101)
(03)+ (2000, 001, 010, T011, T100, T101,T1105 T111) =

= (33001,96000,96011,16010,96101,33100,90111,96110)

Let fo € L>®(u), € € V.

/®fc CHNTE

X8 eeVy

= /fooo(wloo)fom($101)f010(9€110)f011(93111)f100($000)f101(96001)f11o($010)f111(96011) dub
X8

= /E(floo ® fi01 @ f110 ® fi11) | T - E(fooo ® foor ® foro @ forr) | T¥) dpl?

X4

= / & fe duP’

X8 eeVs

/ Q) feo (03). dul”

X8 ceVy
= /f000(96010)f001(:Bon)fom(xooo)fon(93001)f100($110)f101(96111)f11o($100)f111(96101) dub
X8
= /E(fmo ® forr ® fooo @ foor) | Z¥) - E(f110 ® fiu1 ® fio0 ® fro1) | Z?) dul?
X4
/ (fooo ® foor @ for0 @ for1) | Z®) o (01) - E(fi00 @ fio1 ® fi10 ® fi11) | T?) o (07)s dul?
x4
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= / (E(fooo ® foor ® for0 ® forr) | T - E(fi00 ® fro1 ® fi10 ® fin1) | 2[2])> o (0?), dul?

X4

= /E(fooo @ foor @ for0 ® for1) | T - E(f100 ® fio1 © fr10 ® fin1) | ZH) dpl?

X4

= / & fe dul?

X8 E€V3

For the third equality, let A € 712, then

/E(fom ® fo11 ® fooo ® foor) | T?) = /fmo(yoo) - for1(or) - fooo(y10) - foor(y11) dul?
A

A

= / (fooo ® foor ® for0 ® for1) © (%)« dul?
A

= / f000 @ foor ® foro ® forr du® (1)
(0.) ()

Now it is easy to deduce that (07), o TP = T o (53),. Thus ((U%)*)_I(A) c 7l
and by that we have

(1) = / E(fo0o ® foor © foro @ forr | Z%) dul?
(e)-)

= /E fo0o ® foor ® foro ® forr | T o (03). dul?
A

Thus E(fo10 @ fo11 @ fooo ® foor) | T#') = E(fooo ® foor @ foro © forr | Z%) o (07)x .
(i-a.e. and correspondingly E(f110 ® fi11 ® fio0 ® f101) | T?) = E(f100 ® fio1 ®

fi10 ® fi11) | 7l )o (03)s p?-a.e., and the relation follows.

The fifth equality holds by Proposition [3.3.13]

The case for (03), is proved in the exact same way as (03 )., using now the trans-

formation (03).

e There are five nontrivial elements in S3, 7; € S3, 7 € {1,2,3,4,5}, where 1 = (12),
T = (13), 73 = (23), 74 = (123), 75 = (132). They defy five nontrivial digit permu-

tation on V5,
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o1(€1€2€3) = €9€1€3 o9(€1€2€3) = €3€9€1 o3(€1€2€3) = €1€3€2
o4(€1€2€3) = €3€1€2 o5(€1€2€3) = €g€3€1

and those transformations act on X by

(1)+(z000, Zoo1, 0105 Z011, 100, £101,L110, £111)

= (2000, £001, £100, £101, 010> 011, L1105 L111)

(02)+(z000, Too1, €010, £011, 100, £101,X110, L111)

= (90000,3310071‘010,16110,117001755101,l‘on,ﬂcln)

(03)« (2000, Too1, 010, 011, 100, £101,%1105 L111)

= (IOOO,90010,93001756011756100@110,!L“101733111)

(64)« (2000, Zoo1, 010, 011, 100, £101,%110, L111)

= (58000,$010,1‘1007$1107$001,$011,$101,$111)

(05)+(Z000; 001, 010, £011, 1005 £101,L1105 T111)

= (2000, £100, £001, £101, £010, L1105 L011, T111)
We have that 7o =11 o7m307, 7y =7307and 75 =T 0 T3
= 09 =01003001, 04 =03001 and 05 = 01 003

= (02)* = (Ul)*O(US)*O(Ul)* s (04)* = (0'3)*0(0'1)* and (05)* = (Ul)*O(US)* s

thus it suffices to show it just for (01). and (03).

Let fo € L>®(u), € € V.

/ ® feo(o3)s dNB]

X8 EGV?,

= /fooo(wooo)fom($010)f010(9€001)f011(93011)f100($100)f101(96110)f11o($101)f111(96111) dub
X8

= /E(fooo ® fo10 @ foor @ forr | T¥) - E(fooo @ fi10 ® fro1 @ finr | TH) dp?

X4

= /E(fooo ® foor ® fo10 ® forr | ) o (0)u - E(fooo ® fro1 ® f110 ® fi11 | Z) 0 o dpl®
X4
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= / <E(f000 ® foor ® foro ® forr | Z) - E(fooo ® fio1 ® fi10 ® fi11 | Im)) oo, dul?
X4
= /E(fooo ® foor ® fo10 ® forr | T3 - E(fooo ® fior ® fr10 ® finr | TH) dpl?

X4

:/®f€ e

X8 e€Vs

For the third equality, let B € 72, then

/E(fooo @ fo10 ® foor®forr | T¥) dpl?
B

= /fooo(yoo) - foro(yo1) - foor (y10) - for1 (y11) dul?

B

= / (fooo ® foor @ foro ® for1) © o dul?
B

= / fo00 ® foor ® foro ® forr dut? (2)
(0+)~1(B)

Now it is easy to deduce the o, o T = T? 0 5. Thus (0,)"1(B) € T!? and by

that we have,

(2) = / E(fooo ® foor ® foro ® fou1 | Z#) dpl?
(0+)~1(B)

= /E(fooo ® foor @ for0 ® forr | %) o (o) dul?
B

Thus E(fooo ® foro @ foor @ for1 | Z) = E(fooo ® foor ® for0 ® for1r | Z2) o (o).
p?-a.e. and correspondingly E(fioo ® fi10 ® finn ® fin1 | ) = E(fio0 ® fio1 ®
fi10 ® fi11 | Z®) o (0,), pl#-a.e. and the equality holds.

The fifth equality holds by Proposition [3.3.13]

Now for (1)«
We define the system (Y, ), 1,5) = (X x X, X @ X, u ® u, T x T). Then the
measure v?, built from the system (Y, ), v, S) in the same way that ,um was built

from (X, X, ., T), is equal to pl®!
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Indeed let v = p ® p = [ p, dP(w) be the ergodic decomposition of v = p ® p.

Q
Then by Lemma [3.2.3] v1Z = [ ug] dP(w) where ug] is constructed in the same
Q

way that p?) was built from (X, X, s, T). From the same Lemma, we have that
pl3l = f,ug] dP(w). Thus v = uBl,
Q

Now we identify X® with Y4 as follows

(33000, 2001, X010, L0115, L1005, 101, L110, $111)

= ((37(00)07 90(00)1)7 (93(01)07 1’(01)1)7 (37(10)0a 95(10)1)7 (95(11)07 33(11)1))

~~ ~~

Yoo Yyo1 Y10 Y11
Then (03), acts on X 8 as o, acts on Y% By Proposition |3.3.13| we have that
(04)«v = v. Hence ((03)y)pul3 = pl?!

O
Corollary 3.4.4.
The image of MB] under any side projection X Bl - X2 s ,um.
Lemma 3.4.5.
Let f € L*(p). Then
8
[ getesarerareforal = ([ 1)
XB X
Proof. By applying the Cauchy-Schwarz inequality and Lemma [3.3.14] we have that,
Jfofefefaiefefofyt = [ B(fofeofef|TH? 40
X6 X2
2 2
> (/ E(fofefof|IP) du[3]> = </ f®f®f®fdu[3]>
X2 X2
4\ 2 8
=((fre) ) = (L)
X X
O

Applying the previous Lemma for the function 1 4, we have that,

Corollary 3.4.6.
For any subset A of X,

PP AX AX Ax Ax Ax Ax Ax A) > p(A)S






Chapter 4

Conze-Lesigne Factor

4.1 Construction of the factor

Proposition 4.1.1.
We define Agz = {BC X8: B=Ax X7 (modu?)}, and

T ={AC X8 Ty (A) = A (modu), T (A) = A (modp?)) and
Ti3(A) = A (modp)}

Then
Aoz =TB (modu)

We omit the proof of this Proposition as the procedure is exaclty the same as in

Proposition [3.3.11]

Corollary 4.1.2.

The measure ,u[3] is ergodic under the joint action spanned by Tl 181,182, T3 3.

Proof. Let B C X8 be an invariant set under all T[3],T871, 182, 13 3. From Proposition
[4.1.1) we have that there exists a set B C X such that A = B x X7

Now, (TP)~1(B) = 0 = T-'(A) = A. By ergodicity, u(A) = 1 or 0, it follows that
plBl(B) =1 or ul¥(B) = 0. O

We establish some more notation. We identify X8, with X x X7, by x = (2000, &),
where zgpp € X and & = (2. : e € V) € X 7. Let X7 be endowed with the measure

W7, the projection of u[3] on X7 and with the transformations 171, T7 2, T7 3 induced on

67
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X7 by the transformations 731, T3 2, T3 3. respectively. We define [J7 be the o-algebra
of subsets of X7, invariant under the transformations T71. T2, T7 3.

Let B C X'. If B is J7-measurable. Then X x B is invariant by all 181, Tg2, T3 3
and by Proposition there exists an A C X such that X x B = A x X7 (modpl®.
Conversely, if there exists an A C X such that X x B = A x X7 (modul®), then clearly

B is is J7-measurable. So we have,

Lemma 4.1.3.
Let X7 be endowed with the measure ji7. A set B C X" is J7-measurable if and only if
there exists a set A C X so that

XxB=AxX" (moduP)
Equivalently,
4.1) BeJ; < 14(xo00) = 1p(%), for M[3]—almost every x = (zgpo, X) € X°

Definition 4.1.4.

The Conze-Lesigne o-algebra, CL, on X contains the sets A C X so that there exists a
set B C X7 such that A x X7 = B x X modu!?!

Equivalently, is the o-algebra of subsets of X such that the relation is satisfied.
A system is called Conze-Lesigne system or system of order 2 when it is isomorphic to

its Conze-Lesigne factor.
Remarks 4.1.5.

e By Lemma [£.1.3] and the definition [4.1.4] of the Conze-Lesigne o-algebra we can
identify the o-algebras CL C X and J7 C X7 by identifying a subset B of X7
belonging to J7 in with the corresponding subset A of X, in CL

e By Lemma if f is a bounded function on X then, f is CL-measurable if and
only if there exists a [J7-measurable function F' on X” with f(zo0) = F (%) for

pl3)-almost every x = (200, %) € X®

Proposition 4.1.6.
The o-algebra CL is invariant under T (thus is a_factor of X).

Proqf. From the previous Remark (4.1.5) it suffices to prove that T7(7;) = J7. By the
fact that T o Ty ; = T, Vi = 1, 2,3 we have T"(J;) = J7. as desired. O
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Lemma 4.1.7.
Let f and g be two bounded functions on X and X 7 respectively, then

/f(xooo)g(f) du®l(x) = /E(f!CE)(ivooo) (91 T0)(#) du (x)
X8

X8

In other words (X3!, ;i1?]) is the relatively independent joining of (X, i) and (X", ju7) over
C L when identified with J7

Proof. Since /ﬂ?’] is Tg 1 and Iy » and Ty 3 invariant (Proposition . then for every nq,

n9, n3 € N, we have

[ #tason)ot®) aux) = [ fasoo)gTATIETER)) anx)
8 X8
((f-9)oTxi(wo00, %) = f(xo00)- (90T%,;)(X), Vi=1,2,3and the order is not important
since Ty ;0 T3 ; =Ty joTs,; , Vi,j=1,2,3)

Thus we have,

ny n2 ng

/mm anx szzz/mm@mmwwa

=0 =07=0

From Von Neumann’s Mean Ergodic Theorem (Theorem [I.5.3),

ny n2 N3

ninsnsg n1,n2,M3—>00

=0p4=0~v= OXS

Hence,

ZZZ/mmﬂﬂﬁmwﬂwiﬂé/mm@mmww>

[ £o)g(® dilw) = [ Fanon)E(g | 7)®) i) = [ E(F 1 CL)woo0)Elg | T)®) a4 )
X8 X8

X8

O

Lemma 4.1.8.
Let f € L (u). The following are equivalent.

@ E(f|CL)=0

Q) [ f(xo00)g(®) dul¥ = 0 for every bounded function g on X7
X8
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Proof. Let f € L*°(u) and g € L™ (uy).
If such that E(f | CL) = 0, by Lemma we have that

[ @ anim) = [ B | €LYl | F)E)
XS

XS

Hence,

/ Flaon)g(®) dul® ) = [ (7| CL)(aon)Blg | T7)®) du(x) =0
X8
Conversely, let f € L>(u) such that [ f(w000)g(%) dul?l = 0 for every bounded function

X8
gon X7, By Lemma it suffices to prove it with the additional property that f

is CL-measurable. Then there exists a [J7-measurable function F' on X 7 such that

Tooo) = F(%X) for B]_almost every x = Z000, ) € X®. By hypothesis we have
2 ry y hyp

0= /f oo0) F(%) dull(x) = Hf||L2

Proposition 4.1.9.

The measure ,u[3] is relatively independent with respect to its projection on C L8, meaning

that,
[ @14 = [ Qe |eo) aul?

X8 €V3 X8 €V3

Proof. 1t suffices to prove that if there exists n € V3 such that E(f,, | CL) = 0, then
J ® fedull = 0.

X8 e€Vs
Indeed the statement above is enough, by writing the arbitrary f,, € € V3, as the direct

sum of f/ and f/, where f/ = E(f. | CL) and f! the complementary part, on L?(p). That

is f. is CL-measurable and E(f” | CL) = 0. Expanding the the [ @(f/ + f”) dul,
X8 €
we get the sum of 16 integrals where f X f! du[?’] is the only integral which does not
X8 €
contain any function with conditional expectation with respect to CL zero.

Thus if that condition holds, then the desired relation holds.

Now let n € V3 such that E(f, | CL) = 0. By Lemma that is equivalent with,
[ fo(z000)g(%) dul®l = 0 for every bounded function g on X7. If = 000 then we choose
X8



71 4.1. CONSTRUCTION OF THE FACTOR

gtobe @ f.and we have f fo(zooo)( &  fe)(®) duB) = 0 as desired. If ) # 0
€€V, e£n €€V, e#n
then 1 = nin2n3 € V3 where at least one of the 1;, i € {1,2, 3} is not zero. Then by using

the necessary of the reflections, o7, i € {1,2,3} so fn goes to the right position and

setting g to be the proper product of the rest of fe so f®g = f, & ( X fE) when
€€V, e#£n

composed with the reflections used above, equals &) f. and by Proposition [3.3.13| we

eeVs

obtain the desired result. O

Definition 4.1.10.
Let f € L*°(u). We define

1/8
il = ( [ resresoiorere s )
Lemma 4.1.11.

(i) Let fo € L*°(u), € € V3, then

[ @ s < L2y

8 eeVs e€Vs
(@) [[ - llj3) is @ seminorm on L (p).
Proof. The procedure is exactly the same as in the proof of Lemma [3.3.20] O

Similar to Kronecker factor, the Conze-Lesigne algebra has good behaviour with
respect to factor. More precisely, if ¢ : X — Y is a factor map, then ¢~ '(CL(Y)) =
CL(X)Ng 1 (Y), where CL(X), and CL(Y') are the Conze-Lesigne algebras of X and Y’

respectively.

Proposition 4.1.12.
If ¢: X =Y isafactor map, theng ' (CL(Y)) = CL(X)Ng (V). where CL(X). and
CL(Y) are the Conze-Lesigne algebras of X andY respectively

Proof. Let ¢" : X7 — Y7 be the natural map. By Lemma the map q" is a factor
map. Let f be a bounded function on X that is ¢—! (Cﬁ(Y)). Then f = g o q for some
bounded function g on Y, that is CL(Y)-measurable. Thus there exists a bounded
Jr-measurable function G' on Y7, such that g(yo0) = G(§), for v1*-almost every y =
(Y000, ¥) € Y3. Thus g o q(zo00) = G o ¢ (%), for pll-almost every x = (xggg, %) € X8. In
other words f is CL(X)-measurable. Thus ¢~ *(CL(Y)) C CL(X)Nqg (V)
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Let f be a bounded function on X thatis CL(X)Ng™* (J)) -measurable. Then f = gogq
for some bounde function g on Y. Write g = ¢’ + ¢”, where ¢’ is CL(Y )-measurable
and E(¢g” | CL(Y)) = 0. By the first part of this proof, we have that ¢’ o ¢ is CL(X)
measurable. Now, since E(¢” | CL(Y)) = 0, [|¢”[lys = 0 and thus ||g” o qf| s = 0.
follows that E(g” o ¢ | CL(X)) = 0. Since f = g’ o g + ¢" 0 ¢ is CL(X)-measurable, we
have that ¢” o ¢ = 0. Hence ¢” = 0 and thus g is CL(Y")-measurable. O

Remark 4.1.13.
This means that the Conze-Lesigne factor of any ergodic system is a Conze-Lesigne
system. Furthermore the Conze-Lesigne factor is the largest Comze-Lesigne system

under any ergodic system.

Proposition 4.1.14.
Let f € L*>(u) then,
E(f[CL)=0 & [|flly=0

Proof. If E(f | CL) = 0, by Lemma 4.1.8| [ f(2000)g(%) dul’l = 0 for every bounded
X8

function g on X”.By setting g(%) = [[ f(zc) we have that
ecVy

Wiy = [fo 5@ o a =0
X8

Conversely, let || f[|5; = 0. then by Lemma [4.1.11} if fc € L>(p). € € V5

[ 1o @ sl =0
X8

eeVy’

By density we have that [ f(2000)g(%) dul®l = 0 for every bounded function g on X7
X8
and by Lemma[4.1.8] E(f | CL) = 0. O

Remark 4.1.15.

By the definition of the measure ,u[g] and of the seminorm H|H|[3}
|||f”|[3] =0 <« E(f®f®f®f|14) =0, ,u[Q] —a.e.

Lemma 4.1.16.
Let f € L*(p). Then || fllljg < [Iflllp3-
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Proof. By Cauchy-Schwartz inequality,

2
A1y = IECD 1 T iy = ( / R ! dM) — 1£1I%,

776 VQ X4 7]6 V2

Corollary 4.1.17.
For the factors IC, C L the following holds K C CL.

Proof. It suffices to prove that for every bounded function f on X with, E(f | CL) =0,
then E(f | £) = 0. Indeed, assume that the statement holds and let g is a K-measurable
function. Write ¢ = ¢’ + ¢”, where ¢’ is CL-measurable and E(¢” | CL) = 0. By the
statement, follows that E(¢” | ) = 0. Thus g = ¢'.

Now we have,

E(fCL)=0 & [Iflly=0 = [Iflly =0 & E(f|K)=0

Proposition 4.1.18.
CL is the smallest sub-o-algebra of X so that T2 CCL & CL® CL® CL = CL™.

Proqf. To prove that 12 C CL* it suffices to show that if f. € L™(u), ¢ € Va and 3

n € Va so that E(f,, | CL) =0, then E(® f. | Z?) =0
eeVa

JIE £ 177 4 = [ @ f.a0) @ Sulore) aul® < T] Ay =0

4 ecV g €€EVa ecVh €
X X

Hence E( ® f. | Z?) = 0 as desired.
ecVh

Now let W be a factor of X such that T C W* and let f € L>(u), so that
E(f | W) = 0. By the projection (20, Zo1, Z10, Z11) — (Z00,%01) : X* — X?, we have
that ZI'/ € W2, By minimality, X C W. Now since K C W and f4®eev2 fe dpl? =

X

| Qv E(fe | K) dul!, we obtain that,
X4

[ @ st = [ QB | W) dut

x4 ecVa x4 ecVa
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Thus E( @ fc | W) = Q E(fc | W). pl2-almost everywhere. Applying this equality

ecVa eeVa
for fo = f. for all € € V5, we have that E( @ f. | W*) = 0 and by hypothesis follows
eeVa
that E( @ f. | Z1¥) = 0. Equivalently, I flljz; = 0 and thus E(f | CL) = 0. Therefore
eeVa
CLCW. O

4.2 Group Extensions

Lemma 4.2.1.
Let (X, u, T') be a Conze-Lesigne systemand (Z, m, R) its Kronecker factor. Then (X, u,T')

is an isometric extension of (Z, m, R).

Proof. Let (W, W, \, S) denote the maximal isometric extension of Z below X. We will
show that W = X. Since W is a factor of X, it suffices to show that for every f € L>(u),
with E(f W) =0, then f =0, p-a.e.

Let f € L>®(u), with E(f |W) = 0. Define F(x) = F(x00, To1,%10,211) = H f(xe),
eeVa

Vx € X*. Considering (X 21 2, T[2]) as the relatively independent joining of (X, u, T)
and (X3, ;%) over the common factor Z = J3, then by Theorem [1.10.13} 712 ¢ W& A3,
We have that

E(F | W ®X?%)(x) = E(f | W)(z00) [] f(we) =0

ecVy

for u[3]—almost every X = (xo0, %01, 10, %11) € X4, It suffices to show that for every
AxBeW® X3,

[ EEiwe @ dil = [ 2 W) [T s i
AxB AxB c€Vy
which clearly holds. Now since E(F | W ® X3) = 0 and Z1? C W @ X3, follows that
E(F | Z”) = 0. This means 1 £lll;5; = 0. Equivalently, E(f | CL) = 0. Since (X, p,T) is

a Conze-Lesigne system, this means that f = 0. O

Let (Y,v,S) be system, (X,u,T) = (Y x G/H,m ® mg,g, R,) be an isometric
extension of Y and o an edge of V. Let g € G, then V,, : X — X, with V,(y,q) = (y,9-9).
Difine ¢(® € G*, where

g, ifeca

eq, otherwise



75 4.2. GROUP EXTENSIONS

Now define, Vg(a) : X4 - X4 with Vg(a) = (7,4) = (§, ' - §), where

~ 8e " e Zf €ECcx
(9" q)e =
Je> otherwise
Lemma 4.2.2.
Let (Y,v, S) be system, (X, 1, T) = (Z x G/H,m ® mgy, S,) be an isometric extension
of Y and « an edge of V. Then every A € ZPI(T) is Vg(a)—invariant.

Proof. First, let g € G, n € Vi and p®@ p = f e dP(w) the ergodic decomposition
Q

of 4 ® p. Then by Lemma [3.2.3] pl? = [ o ® pi, dP(w). Define J§y = {B € X*:
Q

[ @ oy (B A (T2 )~'B) = 0}, the invariant o-algebra of the system (XP, 1y, @ pag,, TR,

Let A € T2, Then pl? (AN (T[Q])_lA) = 0. Follows that 1, ® i, (AA (T[Q})_IA) =0,
for P-almost every w € (). This means that A € J} for P-almost every w € (2. In other
words ZI? C J¥, dor P-almost every w € €.

Since every i, is ergodic on X2, the system (X 2], P @ Ly s T[Q]) is relatively indepen-
dent joining of (X2, ., T?) over the trivial factor. Furthermore (X2, p,, T?) is isometric
extension of (Y2, v, S?) by G?/H? ~ (G/H)2.

By Lemma [A.5 for every (g,¢') € G? the map,

(0 z©)1), (@@, z@1)) = ((9,9) - @0 T0)1)s (9,9) - (@@y0, z))) =
((9- 20,9 zo)): (92009 - )))

leaves each set of Z(X*, j1, ® pu,,, T*) = J§, invariant. Follows that Vg(m X Vg(") leaves
)

every set of J;°, modulo 1, ® p,,. Follows that va(n) X Vg(77 leaves every set of 712, modulo

He ® iy, for P-almost every w € ). Thus Vg(n) X V:q(n) leaves every set of 7 2, modulo
M[Q}_

Now we have that Vg(n) X Vg(n) = Vg(a), where « is an edge of V5. Thus Vg(a) leaves
every set of 7 2, modulo ,um, for an edge a of V5. Since with digit permutations and
reflections we can obtain from every edge of V5, any other edge of V5> and ,u[Q] is invariant
under this transformations, we have that, for every edge 3 of V5, Vf leaves every set of

72, modulo p2. O

Proposition 4.2.3.
Let (X, u, T') be a Conze-Lesigne systemand (Z, m, R) its Kronecker factor. Then (X, j1,T')

is an extension of (Z, m, R) by a compact abelian group U.
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Proof. By Lemma we have that (X, p,7T) is an isometric extension of (Z, m, R).
This means there exist a compact, metrizable group G, a closed subgroup of G, H and

a cocycle p : Z — @, susch that
(XnuvT) = (Z X G/H7m®mG/H7Rp)

where R,(z,y) = (R(z), p(z) - y), for every z € Z and every y € G/H. We will show that
G is abelian, thus G/H is a compact abelian group as desired.

Let € € Vo and g, € G. Let o, be two faces of V3 such that a« N 5 = {e}.
In particular «, 8 can be chosen to be edges of V5. Then by Lemma for every
A e 10 s Vg(a), Vg(,a) invariant. By some relatively simple computations we have
that u = [¢(™,¢'®)] = [g,¢']*" = [g,¢ |4}, thus Vg({e}), leaves every set of 712,
invariant. Since every generator of [G, G| can be obtained this way, we have that for
every u € [G,G], ) Jeaves each set of Z[Z invariant and thus we clearly have the
same result for every u € m Since this holds for every € € V, we obtain that Z[? is
contained to W2, where W is the quotient of X = Y x G/H under the action of [G, G].

By Remark and Proposition and since X is a Conze-Lesigne system,

we have that W = X. Thus the action of |G, G] on X is trivial and sice the action of G

on X is faithful, we have that [G,G] = {eg}. In particular [G,G] = {eg}. Thus G is

abelian. O

Definition 4.2.4.
Let (Y,r, S) be a system and GG a compact abelian group.

() For a function F' : Y — @G, define 0¥ F : YIH — K, with 9FF(y) = Fo
Tk (y)F(y)~!, for every y € vkl

(ii) For a cocycle p: Y — K, define Al VI — K with AFp(y) = 32 p(y) D",
ecVy

for every y € Y, where |¢| = €] + ... + €.

(iii) Acocyle p:Y — K is said to be a cocycle of type k, if there exist an F': YylH - K,
such that AlFlp = gF F plkl_ge. . In other words Al¥lp is a coboundary of Y*.

Lemma 4.2.5.
Let (Y, v, S) be an ergodic system. K a compact abelian group and p : Y — K a cocycle.
Then p is a coboundary if and only if for every x € K ,xop:Y — Tis acoboundary.
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Proof. If p is o coboundary then clearly for for every x € K ,xop:Y — Tis a
coboundary.
Conversely, assume that p : Y — K is a cocycle and for every y € K, xop:Y —=T

is a coboundary. Thus for each character x there exists a f, : Y — T such that,

(4.2) x(p(w) = F(SW)) - Fy)

for v-almost every y € Y. Now, if x, ' € K , the function fxx'?x?x’ is S-invariant and,
by ergodicity, is a constant almost everywhere. Thus there exists a constant ¢(x, x') € T,

such that,

(4.3) fxx’ (y) = cx, X/)fx (y)fx’ (y)

for v-almost every y € Y.
Since K is compact, K is countable. Thus there exists a Y € YV, with S(Y7) C Y1,
v(Y1) = 1 and relations and hold for every y € Y;. Picking a y; € Y] we

replace every f, by fy(y1)fy. Then equality still holds for every y € Y] and for
every x, X' € K, relations becomes,

fxx’ (y) = fx(y)fx’ (y)

for every y € Y.

Hence there exists a function F' : ¥; — K such that for every y € Y1, fy(y) = x(F(y)).
for every x € K. Indeed, Vy € Y; we consider o, : K — T. with ®(y)(x) = Ix (@),
for every x € K. Then ® € I/A\( = K and thus considering each ®, as an element of
K. x(®,) = ®,(x). By setting F : Y1 — K, with F(y) = ®,. we have that x(F(y)) =
X(®y) = Py(x) = fr(v)-

Extending F' on Y, by (4.2), we have that for v-almost every y € Y, X(F(Sy) : F(y)*l) =
x(p(y)). and this holds for every x € K. Thus F(S(y)) - F(y)~* = p(y). for v-almost
every y € Y. Thus p is a coboundary, as desired. O

Proposition 4.2.6.

Let (Y, v, S) be an ergodic system, K a compact abelian group, p € Coc(Y, K) an ergodic
cocycle. Le (X, u,T) be the extension of Y, by K, associated to p and 7w : X — Y the
corresponding factor map. Then, if X is a type 2 system the p is a cocycle of type 2.
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Proof. We have X =Y x K and X% = Y% x K%. Let x : K — T be a character of K.
Define ¢ : Y — T, by ¥(y, k) = x(k) ® : X* — T, by

Wy, k) = [] x(k) D" = x(koo) x(kor) ™" x(k10) ™" x (k1)
eeVr

= X(koo) x(ko1) x(k10) x(k11)

Then for every (y,k) € Y* x K*, ¥ oT4(y, k) = ¥(y,k) - x(AZp(y)). In other words
4.4) VoT*=0. X(Amp) on?t

Now by definition of ¢ and because X is a Conze-Lesigne system we have that
0# ¢ =E(¢ [ CL). Thus [[¢[|5 # 0. By definition of the simenorm and ul3,

IEW | Z8)| 21y = 117y # O

Let J : L2(v?) — L?(ul) be the linear map defined by J(f) = ¥ - f o n*. Since
”[2] =2 m‘}(, J is an isometry and its range is an closed subspace of L? (M[Q]). By
relation for an f € L?(v1?) we have,

J(f)oT* = (WoTh - (for*oTh = (WoT% - (foS or?)
= 0y (APp) ot (fosort = W (X(A%)«fos‘*))
= J(x(A[Q]p)%fos“))

Therefore the range of J is T#-invariant. By Theorem and since J (LQ(I/[Q])) is a
closed and T*-invariant subspace of LQ(MM), we have that the range of J is also invari-
ant under taking conditional expectation with respect to Z 2] (X). Since the function
¥ = J(1), we have that E(¥ | k) (X)) is also contained in J(LQ(VM)). This means that
there exists a non identically zero function f € L?(v1?) with J(f) = E(V | TP (X ).
Because J(f) o T* = J(X(A[Q]p) “(fo S4)> and J is an isometry we have that for

v -almost everywhere,

(4.5) (x(APp)) - fost=f

In particular, since ](X(Amp)) foS4 = |foS% =|f|oS? |f|is S*-invariant. Replacing
oy Ligeva: piy)20} % we have that still holds and thus we can assume that | f| = 0
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or 1, v?-almost everywhere. Let A = {y € Y*: |f(y)| = 1}. Then A is S*-invariant
and v?(A) > 0.

Now we have that (Ym, 1/[2]) is ergodic under the joint action of 5%, Sa,1, Sa2. Since A
is S*-invariant and has a positive measure, by Proposition there exist a countable
family of T*-invariant subsets, A, of A and a family of transformations on Y4, Q,,
where each @,, is of the form Ti”l o TZE’ where iy, jn, € N U {0}, such that the sets
B, = Q;(A,), forms a partition of Y* into $* invariant subsets.

Note that each (),, commutes with S*. By the construction of B,, and relation
we have that on each B,,, f o @), takes values on T and

(x(APp0 Q) - foQuoSt=foQu & (foQnoSY) FoQn=x(APpoQ,)

Now since Q,, = 1,7 o T7%, for each n, for every ¢ € V5 there exists an integer

m = m(n, €), such that
(Qn(y))6 — gm(n.e) (ye) Vye y4

Thus for every n € N,

A0 Quis) A%(9) " = 3 (@) )ota) )

For every n € N, define F,, : Y* — K, by

Z Z SZlyE Vyev?

ecVa i=0
m(n,e)#£0
Then
46  APpoQu(y)-APlp(y) ' =0F(y) = FoS'y)-F(y)' VyeY*
In other words the map

y— A[z]po Qn(y) - A[Q]p(y)_l S YP S K

is a coboundary of the system (Y4, 12, §%).
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By setting, for each n, ¢,, = Y o F}, : Y4 — T and by equality (4.6), we have,
4.7) Y(A[Q]p o Qn) . X(A[Q]p) = ¢p 0S8t @y,

For each n, define the function ¢, = fo Q, - ¢, : B, — T. By and we
have that X(A[Q] p) = 1, 0 8* .1, on B,. Since the sets B,, is S*-invariant and form
a partition of Y4, we can define the function G : Y* — T by G = Y 1p 1, and it

neN
satisfies the property

GoS*.G = X(A[z]p)

Therefore for every x € K, the cocycle X(Ap]p) is a coboundary of Y. By Lemma
, A2 p is a coboundary of Y4, an hence p is o cocycle of type 2. O

By summarizing the previous results we have the following Theorem.

Theorem 4.2.7.
Let (X, u, T) be a Conze-Lesigne system and let (K, m, R) be its Kronecker factor. Then
X is an extension of K by a compact abelian group U and the cocycle p : K — U that

defines this extension, is a cocycle of type 2.

Lemma 4.2.8.
Let (Z,m, R) be an ergodic rotation, U be a finite dimensional torus and p : Z — U a

cocycle of type 2. Then for every s € Z, there exist f : Z — U and ¢ € U such that

p(st)p(z) " = f(Rx)f(z) e
This equation is called Conze-Lesigne Equation.

Proof. Let s € Z.
The cocycle, o, defined by = — p(sz)p(z) is a cocyle of type 1. Indeed, since p is a
cocycle of type 2 thre exists an F : Z* — U, such that

APl(x) = p(z00)p(w01) " pla10) p(z11) = F o TH(x) F(x) !
for every x € Z* Now

Allo(x) = o(z0)a(21) = p(szo)p(xo) ' p(sz1) ™ pla1)

=Fo T4(sx0, T, sx1, s20) F (520, 20, 571, 520) "
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for every x € Z2. Define G : Z2 — U, by setting G(zq,71) = F(sxo, 29, 571, 571). Then
we have that,

Alg(x) = GoT*(x)G(x)™! VxeZ?

In other words, the cocyle 0 : Z — U, is a cocycle of type 1. By Lemma [1.10.16| and
since U is a torus, p is a quasi-coboundary. This means that there exist a function

f:Z — U and a constant ¢ € U, sucht that. for every x € Z,

o(z) = f(Ra)f(z)"'e <= p(sz)p(ax)™ = f(Rx)f(z)""c

Lemma 4.2.9.
Let (Y,v,S) and K a compact abelian group. A cocycle cohomologous to a cocycle of type

k is itself a cocycle of type k

Proof. For this proof we will use the additive notation, due to convenience.
Let p, p' € Coc(Y, K) two cocyles, such that p is cohomologous to p’. This means that
there exists an f : Y — K such that

py) —ply) = foS(y) — fy)

Assume that p is a type k cocycle. This means that there exists an F' : Y — K such
that
AMp(y) = F o sH(y) - F(y)

Since K is abelian we have that

A () = Al p(y) — A (p — ') (y)
=FoSH(y)— F(y) = > (|- 1I1f oSy — [ = 1/ f(ye))

eeVy
— (Fostim+ 1= 1 ost0) - (Fo)+ 1= 1100
c€Vi €V
Define G : Y¥ — K, by G(y) = F(y) + X | — 1/l f(y.), for every y € Y*. Then
Ay = 9G. Thus ' is also a cocycle of ty;EeVIlZ:. O

Remark 4.2.10.
From the previous Lemma we have that if a cocycle is a quasi-coboundary, equivalently

is cohomologous to a constant, then is a cocycle of type k, for every k € N.
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Lemma 4.2.11.
Let (Z,m, R), where R(x) = ax, be an ergodic rotation, and p : Z — T a cocycle of
type 2. Assume that there exist an € N such that the cocycle p,, : Z — T, defined by

pn(2) = p(2)™, is a quasi-coboundary of Z. Then p is also a quasi-coboundary.

Proof. Let s, f, ¢ be such that they satisfy the Conze-Lesigne Equation. This means
that

p(sz)p(z)™" = f(Rx)f(z)"le & p(sz)p(x) = f(Rx)f(x)e

Since p,, is a quasi-coboundary the cocycle, there exist an g : ¥ — T and a constant

¢ €T, such that

pn(z) = go R(z)g(z) '

Define o, : Z — T by 05(2) = pn(52)pn(2) ™" = pn(52)pn(2). Then

os(x) = pu(s2)pn(2)”" = go R(sx)g(sz) "' go R(z) 'g(z)d "

= go R(sz)g(sz)™" go R(z) 'g(x)

By setting G : Z — T, to be G(z) = g(sz)g(z)~!, we have that o4(z) = dG(z) =

G(Rr)G(r)~! = G(Rz)G(z). In other words o is a coboundary. Substituting in the

Conze-Lesigne Equation,

Us('r) - pn(sz)pn('z>_l - fn(Rm)mcn = G(Rx)@ - fn(Rx)fn(x)cn

=  G(Rz)fn(Rx) = G(x) fn(x)c"

where f,(z) = f(x)". In other words ¢" is an eigenvalue of Z, with eigenfunction
F=G-f.
Therefore, for all s, f, ¢, satisfying the Conze-Lesigne Equation, we have that ¢ € T,

where

I'={ceT: ¢"is an eigenvalue of Z}

Since Z is compact, I' is countable. Furthermore I' is a subgroup of T.

If s € Z, consider Vy : Z — Z, with Vs(z) = sz. Since Z is abelian, for all s € Z,
R o V; = V; o R. With this notation, o0, = po V; p

Define

Zy = {s € Z : the cocyle oy is a coboundary}
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Let s, s’ € Zy. This means that for the cocycles o and o, there exist hg, hy : Z — T,
such that o5 = Ohs; and 04 = Ohy. Then for the cocycle 0.y : x +— p(ss'z)p(z) we

have,

Oss = po Vsap = (poVsﬁ)oVS/-(poVS/ ﬁ) = (hSoRoVs/ Eo%/)-(hs/oRE)
= (hsoVy hy) o R (hso Vy hy)

Thus o, is also a coboundary. Equivalently ss’ € Z,. Now for the cocycle o1 : =

p(s~1z)p(x) we have,

og1=poVorp=(ppoVs)oVi1i=(hhoR)oV,1=(hoVi1)oR-(hoV,1)

Thus o,-1 is also a coboundary. Equivalently s~ € Zy. Lastly, e clearly is an element
of Zy. Follows that Zj is a subgroup of Z.

Define ¢ : Z — Coc(Z,T), by ®(s) = 05 = po Vy p. Then we have that ® is
measurable (see Lemma below) and clearly @1 (9(Coc(Z,T))) = Zo. Thus
by Lemma Zy is a Borel subset of Z. Define ¥ : Z — I', by ¥(z) = ¢, where ¢, is
the constant arising from the Conze-Lesigne Equation. Then ¥ is an group epimorphism
and kerV = Zy. Hence Z/Zy ~ T, and T is countable. Thus m(Zy) > 0. (Follows that
Zy is an open subgroup of Z.)

Furthermore « clearly is an element of Zj. Follows that Zy; = R(Zj), modulo m.
Since Z is an ergodic rotation, and m(Zy) > 0, we have that Zy = Z, modulo m. Thus
for m-almost every s € Z, o, is a coboundary. In other words the cocycle (zg,x1) —

p(z1)p(xo) is a coboundary of the system Z x Z. By Lemma [1.10.16] p is a quasi-
coboundary. O

Lemma 4.2.11.1.
For ( € Z let V¢ : Z — Z denote the translation on X by (, defined by V¢(z) = (- 2
and f : Z — T be a continuous function. The function ® : Z — Coc(Z,T) defined by

®(z) :=(f o V,)f, is continuous. Indeed, if

dCoc(Z,'JT) ((I)(Z),(I)(Z/)) = /Zd']T((fOVZ(C))f(C)a (fo‘/z’(g))f(C)> d)\Z(C)
_ /Z dr(f o Va(O), f o Vir(Q)) dAz(0) = /Z dp(1(20). () dAz(C).

The second equality holds since dr is invariant under translations. Now since f is

considered continuous we have that if 2/ — z then for every ( € Z we have that
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dr ( f(z0), f(Z'¢ )) — 0. Now since dr is bounded, applying Lebesgue’s Dominated Con-
vergence Theorem we have that if (2, ),en is a sequence in Z such that z, — z, for some

z € Z, then
[ (0. £:0)) 22O =, 0

To summarize, we proved that if f : Z — T is a continuous function then @ is Borel
measurable (in particular continuous).

For the general case, let p be an element of Coc(Z, T). By Lemma there exists a
sequence of continuous functions f, : Z — T, n € N, such that dCoc(Z, T)(r, f,) — 0,
as n — +o0o. Consider the functions ®,®,, : Z — Coc(Z,T) defined by ® := (po V,)p
and ®,, := (f o V,)f, for every z € Z and every n € N. Then we have,

deoe(zm) (P(2),2(2')) = /Z dqr<(povz<<))p(<>,(fnow<¢>)n(<>> dAz(¢)
<[ ((p o Vo(O)P(O): (fu 0 vz<<)>p<o) ()
+ [ <(fn o Vo(O)P(C): (fn 0 vz<<>)fn<<>) A(0)
Z
_ / dqr((povxo),(fnovz(o)) Dz (0) + / dr((0). () dA2(0)
A 7z
_ / dp(p(O), £(0)) dAZ(O) + / dr (p(O), £(0)) dAz(C)
7 7
= 2dCoc(Z,']I‘) (p, fn) = 0.

The second equality holds since dr is invariant under translations and the third equality
holds since the Haar measure of Z, )z, is invariant under the translation V., and
dr(z,w) = dr(z,w). It follows that ® is the pointwise limit of ®,,, and since every ¥, is

Borel measurable, ® is also Borel measurable.

Corollary 4.2.12.

Let (Z,m, R), where R(x) = ax, be an ergodic rotation, and p : Z — T a cocycle of
type 2. Assume that there exist a n € N such that the cocycle p,, : Z — T, defined by
pn(z) = p(2)", is a quasi-coboundary of Z. Then p is a cocyle of type 1.

Proof. It is a direct result combining the previous Lemma and the Remark above. O

Proposition 4.2.13.
Let (Z,m, R) be an ergodic rotation, U be a compact abelian group, p € Coc(Z,U) an
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ergodic cocycle and 7 : (Y,v,5) — (Z, m, R) be the extension of Z by U defined by p.
Then, if p is a cocycle of type 1 the (Y, v, S) is a cocycle of order 1.

Proof. (Additive Notation)
Letu € Uand V,, : X — X, eith V,,(z,9) = (z,u + g). Since p is a cocycle of type 1,
there exists an function F : Z[!l - U such that Allp = F = F o Rl — F'. Define
®: YW 5 U, by ®(z,u) = F(z) — 3 (—1)!“u,. Then,

eeVy

0o Sl(zu) = R = FoRM(z)— Allp(z) = Y " (~1)lu,
eeVy

= F(z)- > (1) = ®(z,u)
eeVr

Consider Z(Y) to be the Kronecker factor of Y and 72 : Y — Z(Y) the corresponding
factor map. Then, since 7 is a factor of order 1 of Y, then Z is a factor of Z(Y') and let
73 denote the corresponding factor map. By Lemma Z(Y) is an extension of Z by
the compact abelian group K/L where L = {u € U : w0V, = ma}.

Let u € L. Consider the function Vu({ﬁ}) : Y — v where, Vu(zo, 21, 90, 91) =
(20, 21, u+ go, g1). By Lemma we have that Vu({é}) leaves each set of Z(R!!)
invariant. Since ® is R[!-invariant, we have that <I>oVu( oh _ P, u[l] - almost everywhere.

This means that

F(z) =Y (-Duc=Fz)—go+u— Y (-D)u = go=go+u = u=0
eeVy ecVy

Thus L = {0}. In other words Y = Z(Y"). Thus Y is a system of oreder 1. O
With a similar procedure we abtain the following.

Lemma 4.2.14.

Let (Y, v, S) be an ergodic system of order 2, U be a compact abelian group, p € Coc(Z,U)
an ergodic cocycle and 7 : (X, u, T) — (Y, v, S) be the extension of Y by U defined by p.
Then, if p is a cocycle of type 2 the (Y, v, S) is a cocycle of order 2.

Theorem 4.2.15.
Let (X, u,T) be a Conze-Lesigne system and (K, m, R) its Kronecker factor. Then X is
an extension of K by a compact connected abelian group U and the cocycle p : K — U

that defines the extension is a cocycle of type 2.
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Proof. By Theorem [4.2.7|we are left with showing that U is connected.

Assume that U is not connected. Then U admits an open subgroup Uy and an integer
n > 1, such that U/Uy ~ Z,. Let q : U — U/Up denote the natural (continuous and
open) group epimorphism.

Define the cocycle o : Z — U/Uy by o(z) = p(2)Up. In other words o = ¢ o p.
The cocycle o is also of type 2. Consider the group isomorphisms ¢ : U/Uy — Z,, and
Y Ly — {eQﬂ%i : k € Z}. Define the (non-ergodic) cocycle 7 : Z — T, with 7 := 1 ogoo.
Then 7,, = 1 and thus, by the Corollary above, 7 is of type 1. Follows that o is of type 1.

Nowlet 7 : (X, fi,T) — (Z,m, R) be the extension of Z by the compact abelian gorup
U/Uy, defined by the cocycle o. Since o is of type 1, by Theorem is a system of
order 1. By maximality of the Kronecker factor in X, we have that Z = X. Thusn =1

which is a contradiction. O

4.3 Conze-Lesigne systems and 2-step nilsystems

Lemma 4.3.1.
Let (Y, v, S) be an ergodic system, K a compact abelian group and p € Coc(Y, K). Then
p is not ergodic if and only if there exists a character x € K , Where x is not identically

equal to 1, such that x o p is a coboundary of T.

Proof. Letm: (Y x K,v®m,S,) = (Y,v,S) is the extension of Y by K defined by p. Let
X € K , where Y is not identically equal to 1 such that y o p is a coboundary of T. This

means there exists a function f : Y — T such that x o p(y) = f o S(y) — f(y). Define
F:Y x K — Thby F(y,k) = f(y)x(k). Then

X chracter

FoS,(y,k)=F(S),p(n)k) ~ =" f(SW) x(pv)) x(k)
= f(y) x(k) = F(y, k)

Thus F' is S,-invariant and is not equal to a constant. Indeed if F(y, k) = ¢, for all
(y,k) then F(y,k1) = c for all y. Follows that f(y) = cx(k1) for all y. Follows that
x(y) = foS(y)f(y) = ce x(k1)X(k1) = 1, for all y and that contradicts with the choice
of x. Thus p is not ergodic.

Conversely, since p is note ergodic, there exists an f : ¥ x K — C, S,-invariant
that is not everywhere equal to a constant. By relation there exist a vertical Fourier

coefficient fx, where x € K and X is not identically equal to 1. Thus fx is a vertical
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character with frequency y. This means that fx (y,k) = &(y)x(k), for some ¢ : Y — C
that is not everywhere equal to 0.

Since Vj, 0 S, = S, 0V}, for all h € K we have that fx oS, = fx. Follows that
o(y) = ¢(S(y)) x(p(y)). Follows that |¢| is S-invariant an since (Y,v, S) is ergodic,
|¢| = ¢, almost everywhere for some constant ¢ € C \ {0}.

By defining ¢ : Y — T, with ¢ = % we have that 1) 0 S ¢ = x o p. This means that
X © p is a coboundary. O

Lemma 4.3.2. Let (Y, v, S) be an ergodic system, K a compact connected abelian group

and p : Y — K a cocycle. Then there exists an c € K such that the cocycle p is ergodic.

Proof. Let x € K, where X is not identically equal to 1. Define the sets

Ay ={ce K: xo(p-c)isacoboundary}
B, ={ce K : x(c) is an eigen function of (Y,v,S)}

Clearly By is a subgroup of K and ker(x) is a subgroup of B,. If x(a) = x(b) = A,
where )\ is an eigenvalue of Y, then a ker(y) = b ker(x). Since Y admits countably

many eigenvalues, there are ¢;, © € N such that

B, = |_| c ker(x) = |_| c; ker(x)

ceK: €N
x(c)
eigenvalue

Thus that ker () has has a countable index in B,. Furthermore, since ker(x) is closed
on K and B, = | | ¢; ker(x). By is a Borel subset of K.

Now since XliesN a non-trivial character of K and K is connected, x(K) is a non-
trivial connected subgroup of T. Thus x(K) ~ T. By the First Isomorphism Theorem
K /ker(x) ~ T. In particular ker(x) has has a uncountable index in K.

Applying Lagrange Theorem we obtain that B, has also an uncountable index in K.
In particular is infinite. Thus, if mx is the Haar measure of K then mg (B, ) = 0.

Observe that A, is not empty, is a coset of B,. Indeed, let ¢,¢’ € Ay, meaning that
there exist function f., fo : Y — T (clearly fes for € LQ(V)) such that x o (p-¢) = df.

and x o (p- ) = 0fy. This means that for v-almost every y € Y,

x(p())x(c) = f(S)) - fo() (W) = £o(S®)) - fe(v)

x(p(@)x() = fo (SW) - fo(y) " (W) = fo (SW)) - fer(y)
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Thus we have,

x(ed™h) = x(Ox() = [e(SW)) - fely) - fo(SW)) - fer(y) = (fo- ) 0 S(y) - (fe- fo) ()
Thus ¢! € B,. Follows that A, is a subset of a coset of B, ( in particular A, C ¢ B,,
where c € A, )

Conversely, since the union of all cosets of B, covers K, then there exists a c € K such
that A, NcBy # 0. Since cB, = B, for every 5 € cB,, we can assume that c € A,.
Let ¢ € B,. Then et e B, . Thus we have, that there exist f,g : Y — T, such that,

xopx(c) = foS-f
goS = x(cd Mg = x(c)x(c)g

Follows that,

xo(p-c)=xop-x(¢)=xopx(c)ggoS=xo(p-c)ggos
=foSfggoeS=(fg) oS (fg)

This means that ¢’ € A,. Therefore cB, C A,. Thus mg(Ay) =0.

Thus the countable union, |J A, cannot be equal to K. This means that there

xeK
x#1
exists a ¢ € K, such that y o (p + ¢) is not e coboundary. By Lemma p+cis

ergodic. O

Proposition 4.3.3.

Assume that (X, 1, T) and (Y, v, S) are ergodic systems and that X is of order 2 for some
integer. Assume thatn : X — Y is a factormap and p : Y — U is a cocycle. Then p is of
type2onY ifandonlyif porisiftype2 on X.

Proof. Let p be of type 2. Then AlZp = df for some f : Y — U. Follows that
(APp)r = (0f) o = APl (porm) = a(f o)

. Thus p o 7 is of type 2.

Conversely, assume that p o 7 is of type 2. By Lemma [4.2.5] it suffices to show that
X o p for every x € U. Since X o pom, we can assume that U = T. By Lemmam the
set {c € T: p-cis not ergodic} is a coset of the countable (since Y admits countably

many eigenvalues) subgroup {c € T : ¢" is an eigenvalue of Y for some n € N}. Thus
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there exists a ¢ € T so that the cocyle p - ¢ is ergodic. By substituting p - ¢ with p, we
can assume that p is ergodic.

By Lemma the extension X, of X by K defined by p o 7 is a system of order 2
since p o 7 is of type 2. Furthermore the extension Y.of Y by K defined by p is a factor
of X thus it is also a system of order 2. By Proposition p is a cocycle of type 2. [

Theorem 4.3.4.

Let (Z,m, R) be an ergodic roatation, U a finite dimensional torus and p : Z — U a
cocycle of type 2. Then there exist a closed subgroup Zy of Z so that Z/Z is a compact
abelian Lie group and a cocycle p' : Z/Zy — U of type 2 so that p is chomologous to p’ o,

where 7w : Z — Z/Z is the natural projection.

Proof. By the Conze-Lesigne Equation, we have that for every s € Z the map z — p(sz)
is a quasi-coboundary. The compact abelian group Z acts on itself with automorphisms
by Ss : z +— s. In other words for every s € Z po S; — p is a quasi-coboundary. By
Lemma [A.7] there exist a closed subgroup Zj of Z and a cocycle o : Z — U, such that
Z|Zy ~ T™ x G, where G is a finite abelian group and o is cohomologous to p and for
every s € Zy, 00 Sy = 0.

Since for every s € Zy, 0 0 Sy = 0 we can define p' : Z/Zy — U by p'(z + Zy) = o(z).
Now, by Proposition we have that p’ is of type 2 iff p’ o 7 is of type 2. Observe that
p om = o and o is cohomologous to p which is of type 2. Thus p’ is indeed of type

two. O

Definition 4.3.5.
Let (X, u, T) be a system of order 2. Then X is called toral if its Kronecker factor Z ia

a compact abelian Lie group and X ia an extension of Z by a finite dimensional torus.

Lemma 4.3.6.

Let G be a compact abelian group and H a subgroup of G. Define th set Anng(H) =
{X eq ‘ Vhe H: x(h)= 1@}. Then Anng(H) is a closed subgroup of G and H ~
G/Anng(H)

Corollary 4.3.7.
Let G be a compact abelian group and H a subgroup of G. Then each character of H is
of the form x| i, where x € G.
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Lemma 4.3.8.
Let U be a compact abelian group. Then U is the inverse limit of a sequence of sompact
abelian Lie group. If in addtion U is connected then U is the inverse limits of finite-

dimensional tori.

Proof. As stated in the beginning, U is considered to be metrizable.

Since Z is compact abelian then Z is separ/glble /aEd let A = {z1,22,...} be a countable
dense subset of Z. By Potryagin’s Theorem 7= (2 ) ~ Z. Furthermore the dual group of
a compact group, separates its points. Thus Z separates the points of Z. Equivalently A
separates the points of Z and since A is s countable set follows that Z is also countable.
Now let Z = {Xn : n € N}. Define the subgroups of Z,A; = (X15X2y--+,Xi)» ¢ € N. Then

{A;}ien is an increasing sequence of finitely generated subgroups of Z and Z = U A
ieN

Let Z; = E be the dual group of A;. Let z € 7 =17 , a character of 7. Then the
restriction of z on each A;, z|5, : A; — T, is clearly an element of E = Z;. Define for

eachi € N, p; : Z — Z;, with p;(z) = z|a,. Then p; is a continuous group epimorphism:
e p; is clearly a group homomorphism

e 7 is continuous R
Let 2z, — 2, where z,,,z € 7 = Z, m € N. This means that zm(x) converges
to z(x), for every x € Z. In particular this holds for every y € A; and thus
Zm|A;, = 2|a,. Follows that p;(z,) — p(2)

e by the corollary above p; is onto

Leti < j,4,j € Nand p;j : Z; = Z;, defined by p; j(2) = z|p,. Then p;; is a
continuous group epimorphism. Furthermore, clearly p; j o p; = p; and p; . = p; j © 0k,

Vi <j<keN. Thus Z = @ Z; ( in the algebraic sense where the homomorphisms
7

are in continuous and thus measurable )

Since each A; is finitely generated then A; is the direct product of a free abelian
group and a finite group. This means that A; = Z" x H;, where H; = {¢1, ..., g, }. for
some n;, k; € N. Now for (G1, (G we have that G@g = é\l X é\g 7 =Tand H ~ H,

— ki
for any finite group H. Thus A; = T" x H; = | | T™ x {g;}. which is a compact abelian
j=1
Lie group.
Let, now assume that Z is in addition connected. Then we have that 2 is torsion

free. Indeed, if x € Z and n € N such that X" = 1. Then x(Z) is a closed subgroup
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of the discrete group Z, < T. Since y is continuous and Z is connected and x(Z) a
discrete set, then x = c for some constant ¢ € T. Since Y is a character, follows that
c = 1. Thus xy = 1. Thus Z does not contain any non trivial element with finite order.
In other words Z is torsion free. Thus each A < 7 is torsion free. This means that

H; = {1}, for each i € N. Thus isomorphic to T":. O

Remark 4.3.9.
With the exact same procedure one can show that if (Z, mz, R) is an ergodic rotation

and « € Z defines R, then (Z,mz, R) = @(Zi,mzi, R;), where Z; is as above, my, is

K3
its Haar measure and R; is the rotation on Z; defined by «o; = p;(«).

Proposition 4.3.10.

Every system of order 2 is the inverse limit of a sequence of toral system, of order two.

Proof. Let (X, u,T) be a system of order 2. By Theorem X is an extension
of its Kronecker factor, Z, by a compact connected abelian group, given by a cocycle
p: Z — U of type 2. By Lemma([4.3.8 U is an inverse limit of tori. Let p,, : U — T be the
continuous group homomorphisms defined in the proof above. Setting A,, = kerp,, we

have that {A, },cn is a decreasing sequence of closed subgroups, with (| A, = {0},
neN
such that U,, = U/A,, is a finite dimensional torus.

Define 7, : Z — U,, by &,(z) = p(2)U,. In other words §, = p, o p. Con-
sider (X, pin, Ty,) to be the extension of Z by the compact connected abelian gorup
U, = T™(") associated with the cocycle &,. For n,m € N, with n < m, define 7, ,, :
Xm — Xn, by Tpm (2, um) = (z,pn,m(um)) and 7, : X — X,,, by m,(z,u) = (z,pn(u))
Then ((XnyﬂnaTn)neNy (Tn,m)nmeN, . < m) is an inverse system and (X, u,T) =
I.&H(Xm/iann)-

" By Lemma for each n there exists a subgroup K,, of Z, such that Z/K, is a
compact abelian Lie group and a cocycle &), : Z/K,, — U,, such that &, is chomologous
to &,. In addition we can modify the groups K, such that {K,},cn is a decreasing
sequence of subgroups and (), K, = {1}. Now for each n, let (Y,,v,,S,) be the
extension of the compact abelian Lie group Z/K,, by the torus U,, associated with the

cocycle &,. Then (X, pu,T) = Wm(Yy, vp, Sp) and each (Yn, Vn, Sy) is a toral system. [
n
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Throughout the remaining section, we assume that (X, u, ) is a system of order 2,

(Z,m, R) its Kronecker factor, where R(z) = az, U a finite dimensional torus, T", and

p: Z — U a cocycle, such that
(XvuvT) = (Z X U7m®mU7Rp)
Definition 4.3.11.

e Define ¥ to be the group of the measure preserving transformation S, ¢ : Z xU —
Z x U given by
Suf(z,u) = (s “Z, U f(z))

where s € Z, f € Coc(Z,U) satisfy the Conze-Lesigne Equation for some constant
ceU.

e Amap f : Z — U is affine if there exist a continuous group homomorphism

¢ : Z — U and a constant ¢ € U, such that
f =6
e Define A(Z,U) ={f:Z — U] f is affine }.

Remarks 4.3.12.

() Remember if s, s’ € Z and fs, fy are the corresponding functions arrising from

the Conze-Lesigne Equation, then the function defined by

fss (Z) = fo (SZ)fS(Z)

satisfies the Conze-Lesigne Equation for ss’ and thus Sy, fu 0 Ssf. = Ssst.f,. €Y.

Therefore ¢ is indeed a group equipped with the operation of composition

(ii) T is an element of ¢ since ' = R, = S, , and (a, p) satisfies the Conze-Lesigne

Equation with constant ¢ = e;.
(iii) A(Z,U) is a closed subgroup of the (Polish group) Coc(Z,U).

(iv) A(Z,U) ~ U x I, where T is the discrete group, consisting of the continuous
group homomorphisms on Z to the torus U. In other words I' = Z" x U, where

U=T1T"
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Proposition 4.3.13.
For every toral system of order 2, ¢4 is 2-step nilpotent.

Proof. For each w € Z let V,, denote the topological isomorphism on Z defined by
Vw(z) =2 -w
Let S, f,, Syr.p1 € 4, where (s, fs,cs) and (s, fo, cs) satisfy the Conze-Lesigne Equation
(i) the inverse element of Sy s, in ¢, is denoted as S;}S and is equal to S s,l’ﬁovfl,
where (s‘l, fso Vs‘l’a) satisfy the Conze-Lesigne Equation.

(i) the functions fss = (fsoVy)- fs and ggs = (fs 0 V5) - fs satisfy the Conze Lesigne
equation for ss’, ¢, = cscy and §'s, cgs = cycs, respectively. Since Z, U = T"

are abelian groups we have that ss’ = s’s and ¢,y = cgs.
By () and some simple computations we have that

sz © S 0 Ss,f, © SS’yfé(Zvu) = (2, fss(2) - Gs's(2) - )

Let SS//,fS,, € ¢4. Then
Ss//7fs” ° (Sif © S 1 © Ssva © S/7fé)(z’ u) = (8”’2’ fS// (Z) : fSS/(Z) : @(z) : U/)
and

(SS s o S (o] S, fs e} Ss’,f;) o S//’fSI,(Z,U,) = (3//2:, fs”(z) . fss/(S//Z) X E(S”Z) . U)

Now by (i), ss’ = s’'s and css = ¢y 5 and thus by the Conze-Lesigne Equation we have

that
fss’ (Z) : @(2) = fss’(az) : @(az) = (fss’ : E) o R(Z)
By ergodicity of the system (Z, m, R) we have that fsy - g5 = 3, m-almost everywhere

for some constant $ € U. Hence for m-almost every s” € Z

fss(2) - Gos(2) = fosr(s"2) - Gs(s"2)
for m-almost every z € Z. This means that

Ss’ﬁfsu © (Ss_,}s © Ss_’,lfs, © Ss,fs ° Slvf.;) = (sz ° S 1 O Ds,fs © Ss’,fé) O Os fou

@ = m @ my, almost-everywhere. Thus S;f ° S_ 1, 09 p. 08 51 € 2 (¢) and since
[¢4,9] is spanned by elements of this form we have that [¢,9] C Z(¥). Therefore ¥ is
2-step nilpotent. O



CHAPTER 4. Conze-Lesigne Factor 94

Let ¢4 be endowed with the topology of convergence in probability. The map p :
Y — Z: Ssf + sis a continuous group homomorphism. In particular by Conze-
Lesigne Equation p is an epimorphism. The kernel of this homomorphism is the group of
transformations of the kind S ¢, where (again by Conze-Lesigne Equation) f(tz)f(z)!
is constant. A map f € Coc(Z,U) satisfies this condition if and only if it is affine.
Indeed if a function f = (f1,..., fn) : Z — U = T", satisfies this property, then fo R =
c- f for some constant. Follows that each f; is an eigenfunction of Z and thus f = ¢;-7;,
where c; is a constant and ; € 7. Thus f=c- ¢, where c = (c1,...,c,) is a constant
and ¢ = (71,...,7n). The function ¢ is clearly a continuous group homomorphism. The
converse clearly holds.

The map f — S s is then an algebraic and topological embedding of A(Z,U) in 4
with range ker(p). In the sequel we identify A(Z, U) with ker(p).

By Lemma [I.1.8] ¢ is locally compact, since A(Z,U) =T x U (as mentioned in
Remarks which is locally compact and ¢/ A(Z,U) ~ Z which is compact and

thus locally compact.

Lemma 4.3.14.

¥ acts transitively on X by automorphisms.

This means that for every x1, x2 € X, there exists a g = S,y € ¢, so that g e x| :=
Ss f(x1) = 2.

Proof. Let z1, xo € X. Identifying X = Z x U, we have that ;7 = (21,u;1) and
o = (z2,u2). There exist a s9 € Z such that z; = spz2. Consider Sy, s € 9.
Then Sy ,(21,u1) = (s0z1, fo(z1)u1) = (22, fo(z1)u1). Now there exists a ¢ € U so
that cfy(z1)u; = uy. Consider ¢ : Z — U be a homomorphism so that ¢(z2) = c.
Furthermore we have that ¢ satisfies the Conze-Lesigne Equation for s = 1 and con-
stant ¢(«). Thus S; 4 is an element of ¥ and S 4 0 Sy s, (21, u1) = S1,6(22, fo(z1)u1) =
(22, 0(22) fo(z1)u1) = (22,cfo(z1)u1). Thus for Ss 5 = S 4 0 Sy 5, Wwe have the state-

ment. H

Proposition 4.3.15.

Every toral system of order 2 is isomorphic to a 2-step nilsystem.

Proof. Let (X, u,T') be a toral system of order 2. That is its Kronecker factor is a compact
abelian Lie group and is an extension by U = T, defined by some cocycle p : Z — U.
The kernel of the map p, A(Z,U) is the direct product of the torus U and the discrete
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group I'. Thus A(Z,U) is a Lie group. Since ¥/ A(Z,U) ~ Z and A(Z,U) are Lie
groups, follows that ¢ is a Lie group (Proposition ). Furthermore by Proposition
4 is 2-step nilpotent.

Define the stabilizer of (ez, ey) = (1, 1), under the action of ¢, C' = Staby ((1,1)) =
{Seg: Se(l,1)=(1,1)}={Se¥9: S(1,1) =(1,1)}. Since 9 ~ Z x A(Z,U),
¢ consist of transformations associated to (s, f) where s € Z and f € A(Z,U). Thus
C consists of transformations associated to (1, f), where 1 € Z and f € A(Z,U). This
means C = {(1, f): f € A(Z,U)}. Now, since A(Z,U) is the direct product of a torus
and a discrete group, then C is also a discrete group.

Now since ¢ acts transitively on X, the onto map ¢4 — X : Sy;r — Ssr(1,1)
induces a bijection ¢ from the manifold ¢ /C onto X. For every S,y = g € 4. define
£ 1 9/C — 9/C, by setting £ = ¢! 0 go ¢. Then &, is the translation on 4/C, by
g € 9. Furthermore since the measure p is invariant under any g € ¢, then the image
of 1 under ¢! is an invariant measure on ¢/C that is invariant under the action of
% on ¥/C. Thus (¢ !),u is the Haar measure of ¢/C. Lastly define T on ¢/C by
T = ¢! o T, we have that ¢ : (X,u,T) = (¢9/C, mgg/c,f) is an isomorphism and

(9/C,my,c,T) is a 2-step nilsystem. O
Summarizing the previous results we have the following.

Theorem 4.3.16.

Every Conze-Lesigne system is the inverse limit of a sequence of 2-step nilsystems.






Chapter 5

Some first results

5.1 The product of 3 terms and the integral with 4 terms

We now prove the Bergelson’s two dimensional generalization of Khintchine’s Theorem.

We consider sequences of averages of the form

N- N:
1 1 2

(Nl - Ml)(NQ — M2) Z Z fOl(Tml')flo(Tn2x)f11(Tm-&-mz)

ni=1ng=1

(5.1)

where fo1,fo1, for € L°°(X) for some invertible ergodic probability measure preserving
system (X, B, u, T)

Proposition 5.1.1.
When Ny — M; and No — My tend to 400 the average converges to 0 in Lz(,u)
whenever there exists an n € Vy* with E(f, | K)=0.

In other words, Kronecker factor is characteristic for the convergence in LQ(M) for

average5.]]

Proof. Let k,/ € 7. Because p is T™ ™2 invariant, we have,

/f01(T"1+k33) Cfro(T ) - fr (T2 ) o (T ) - fio(T™a) - fur(T™™22) du(w)
X

= / (for o TF - for)(T ™) - (fio o T fr0) (T ™) - (fr1 o TFH - f11)(x) dp(x)

X

Taking average over nj and ng, we have as Ny — M; and Ny — Ms tend to 400, by

97
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ergodicity, this converges to
eSS /f01 oT* . for du /flo oT"- fio dp /fn o T fi1 dp
X X X

r—1A-1

Now, if E(f, | K) = 0 for some n € V5", then =5 > > |wyel — 0. as LA —
k=0 ¢=0

oco. Indeed, if for example 7 = 01 (the other cases are similar) then, by ergodicity

2
% [ for oTk - for du — [ fo d,u) ,as A — 0o. By Lemma |3.3.14
X

4

/f01 dp | < / for ® for @ for @ for dul?
X4

= /E(fm | K) @E(for | K) @ E(for | K) @ E(for | K) dpl?
x4

and thus, if E(fo1 | ) = 0 then the last integral is also 0. Hence

li =0
U Z ‘W'

In particular
L-1L-1

hm ﬁZZ]VHI—O

k=0 ¢=0
The result follows from the two dimensional Van der Corput Lemma (Section [4.4). O

Proposition 5.1.2.
The average5.1| converges in L*(11) to

/ E(fo1 | Z)(n(z)) E(f10 | Z) (s7(2)) E(f11 | Z) (str(x)) dm(s)dmi(t)
KxK
Proof. By Proposition it suffices to prove it when all of f., € € V5" are K-measurable.
We consider ge = E(fe | Z), e € V5f on Z and foo = 1x, thus goo = E(foo | Z) = 1. By
Von Neumann’s Ergodic Theorem (Theorem and because (X, B, u, T) is ergodic,
the average converges in L?(y) to

/E(fm | K) dM'/E(flo | K) dﬂ'/E(fu | KC) du
X

X X
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Now we have,

/E(f(HUC) dﬂ'/E(fw’C)dM'/E(fnUC) dM:/f01 d#'/fwdu'/fndu
X X X X X

X

Z/f01®f1o®f11 dﬂ®ﬂ®/t=/f00®f01®f10®f11 dul?

= /goo(z) 901(82) g10(t2) g11(stz) dm(z) dm(s) dm(t)
73

/ﬂz(z) 901(82) g10(tz) g11(stz) dm(z) dm(s) dm(t)
73

= /901(52) g10(tz) gi1(stz) dm(z) dm(s) dm(t)

73

= /901(2’) g10(t'2") gr1(st’z") dm(2') dm(s) dm(t')

/ / 901 (7(2)) g10(pm(2)) g1 (pg(z)) dm(p) dm(g) dyu(z)

X z2
First equality holds because every f., € € V5" is K-measurable. Second equality holds by
Proposition|3.3.2]and Proposition [3.3.4 Seventh equality by setting 2’ = sz and ¢/ = ts~!
and because the Haar measure m is invariant under those translations. Finally, eighth
because ™ : X — Z is factor map, thus for every z € Z there exists x € X such that
z=mn(x) and m = (7).p.
Therefore, indeed, the average converges in L? (1) to

!/ E(for | Z) (x(2)) E(f10 | Z)(sm(2)) E(f11 | Z)(stn(x)) dm(s)dm(t)

KxK

Theorem 5.1.3.
Let foo,f01,f10,f11 S LOO(/L), ni € [Ml,Nl] and ng € [MQ,NQ], then

N1
(N, — M) N M) Z Z /foo ) for(T™x) f10(T™22) fr1(T™ "2 2) du(x)
1 — Mi)(N2 — Ma) B A 128

— [ @ s

x4 ecVa

as N1 — My, and Ni — M; tendto +oo.
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Proof. By Proposition [5.1.2] we have,

Ny

) Z /foo ) for(T™ @) fro(T™x) fra (T™ ) du(w)

ni1=My neo= MQX

ning

— / (foo / f01 ] Z)( (z )) ]E(flo | Z) (sw(a:)) E(f11 \ Z) (stw(az)) dm(s)dm(t)> du(z)

KxK

By Proposition we can consider the case where f, € € V5 are K-measurable. Now,

with this additional assumption we have,

/foo ® for @ fio ® fi1 dpl?
= / E(foo | 2)(2) E(for | Z)(s2) E(fi0 | 2)(2) E(fur | Z)(stz) dm(z)dm(s)dm(t)
73

- / / E(foo | 2)(m(x)) E(for | Z)(s7(x)) E(fro | Z)(tn(@)) B far | Z)(str(x)) dm(s)dm(t) du(z)

X Z2

E(foo | Z)(m(x)) /E(fm | 2)(x(x)) E(f10 | 2)(sm(x)) E(f11 | 2)(stm(x)) dm(s)dm(t) du(x)

Z2

X

- / E(foo | K)(@) / E(for | 2)(n()) E(fio | Z)(sm(x)) E(fu1 | Z)(str(a)) dm(s)dm(t) dpu()
X
-/

Z2

<f00( ) / E(f()l ’ Z) (7‘((1’)) E(flO | Z) (Sﬂ'(l‘)) E(fll ’ Z) (Stﬂ'(l')) dm(s)dm(t)> d/L({E)

KxK

O

Theorem 5.1.4. (Bergelson)
Let A be a subset of X with (A) > 0. Then for any € > 0 the set

{(n,m)€Z : p(ANT"ANTTANT™™A)) > p(A)* — €}
is syndetic.

Proof. By setting for every ¢ € V5 in Theorem fe = 1 4 and by Corollary [3.3.15| we

deduce the requested.

O
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5.2 The measure [

Recall that p7 is the projection of ,u[?’} on X7 and J7 is the o-algebra on X' consisting

of sets that are invariant under 77 1, 17 2 and 7% 3, as defined in Chapter 4

Lemma 5.2.1.
The measure 7 is relatively independent with respect to K.

That means that if f., € € V5" are seven bounded functions on X, then,

/@fedm:/@E(feI’C)dm

7 €€y Vs

Proof. Let f. € L>(u), € € V5 and assume that 3 7 € V5" with E(f,, | K) = 0. We will

show that f QR fedur=0
X7 eeVy
Define fpoo = 1. By definition of pu7,

/ X f. du7—/®fe dpPl = /IE((X) fe | TH E(Q fe | T*) duP
X7 ecVy X7 eeV3 x4 eEV(g) EGV?
€1= €1=

Firstly assume that 1; = 0. Since fyoo is K-measurable and E(f, | ) = 0 by Lemma
4.1.14{and Lemma |4.1.11}, E( @ f. | Z*) = 0, thus the integral above equals to zero.

eeVs
e1=0
Now assume that 7; = 1. Since fooo is K-measurable by Lemma [3.3.25} E( ® f. | Z%)
eeVs
e1=0
is K*-measurable. Since E(f, | K) = 0, by the same Lemma E(E( ®Q f. |Z%) | K*) =0

€€V
e1=1

thus the integral above is also zero. To be more precise

/ E(Q) fo | T E() /. | T dul? = / BE(Q £ | T4 | K B(Q) - | T4 dul
X4 X4

eeVs e€Vs eeVs eeVs
e1=0 e1=1 e1=0 e1=1

/ B /.1 T4 | K4 BE() /- | T4 | ) dpl?

S it
— [EEQ £ 1T K 04 = o
x4 EGV%
€e1=

Corollary 5.2.2.
Let X7 be endowed with the measure wr. Then J7 CC Lo
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Proof. CL is T-invariant, thus CL” is invariant under T 7.1, T72 and T7 3. So we have
that the conditional expectations on C L" and on J7 commute. Therefore it suffices to
show thatif f € L (uy) with E(f | CL) = 0, then E(f | J7) = 0. Equivalently, it suffices
to show that the unique f € L*(uy), that is also J7-measurable, with E(f | CL) = 0,

is the zero function.
Let f be a function as above. By Lemma there exists a CL-measurable function
g € L>®(u) such that

g(woon) = f(®)  for p¥-almost every x = (zop0, %) € X
Now,

/f2 dur = /g(ffooo)f(i) dull(x) = /E(Q | CL)(w000)E(f | CLT)(%) dpl®l(x) = 0
X7

X8 X8

The first equality holds by Proposition [4.1.9)and the last by hypothesis.
Hence f =0 as desired. O

Corollary 5.2.3.
Let X7 be endowed with the measure ji7. Let f. € L>®(u), € € V5 and assume that

dn € V5 suchthat E(f, |CL) =0. Then E( Q fc|J7) =0.
ecVy

Proof. Let g, € € V3" be seven bounded functions on X, that are also measurable with

respect to CL. By Lemma

| ® s @ gi = [ Bl €L du

Y7 €EVs  eeVy P

Now, since g, is CL-measurable, E(f,g, | CL) = gE(f, | CL) = 0, by hypothesis. Thus
E(fyg, | K) =0, thus [ E(fege | CL) dur = 0. To summarize, we proved that @ fe is
X7 eeVy
orthogonal to every X g. where g. are CL-measurable, in L?(y7). By density &) f
eeVy ceVy'
is orthogonal, in L?(p7), to every CL"-measurable function, thus E( ® f. | CL") = 0.
eeVy

By Corollary [5.2.2| follows that, E( @ f. | J7) =0 O
eeVy
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5.3 Reduction to nilsystems

Given seven bounded functions f., ¢ € V5* we consider averages over n; € [Ny, M;],

ng € [Na, Ma], n3 € [N3, Ms], of the form,

(5.2) / H feo T du

X €€Vs
and take limit when N7 — My, No — My, N3 — M3 tend to +o0o We will show that for
the average of [5.2] the Kronecker factor is characteristic. In other words the average

converges to 0 whenever E(f. | K) = 0 for at least one € € V5".

Lemma 5.3.1.
Let f, € L*>(u), n € V. Then the limsup, as N1 — M; — +00, No — My — +00, of

1 N N 1 N3 2
mn +no+mn2—na
(N1 — My)(N2 — M>) Z Z /‘]\]3_]\43 g || [ o T2 3‘ du
m=Mynz=Ms i n3=MsnEVs

is less than or equal to

2
JE(@ern £y122) [ au?
X4

Proof. Without loss of generality, we can assume that || f,||oc < 1, for each 7 € V5.

Fix an integer L > 0. We consider z,,, = [[ fy" "*, n = (n1,n2) € Z? and n3 € Z.By
neVa
van der Corput Lemma (Section |A.4)) for each n = (n1,n2) ,

2

[ ooy 3
‘ fn o Tn1771+n2+n27n3{ dp = Tng
X Ny = Ms n3=M3z neVa Ny = M3 nz=Ms3 L2(n)
L N3
AL L 1
< — .
— NB _ M3 +£ZL 1,2 N3 _ M3 n_z]\:/[ <xn57xn3+€>
=— =M3
L N3
AL L—1g 1 / . .
— TN—Ns TN n3+~4 d
Ng—Mngz_Z:L 12 N3—M3n;4 LI v 1L v :
= =Ms neVz neVa

L

AL L 1 &
— § : — T n—n3 Tn-nfnng@ d
Ng—M3+ L2 N3 — M E /ll(fno fno ) du
{=—1 n=Msz % neEVz
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4L Lo — 1| 1 N3
= — + ° Tn-n i o Tn.n+g d
N3 — M3 EZ_:L L? N3 — M; n=ZJ\:43X/nle_\[/2(fn I ) dp

:4L+§L:L_£| 1 (N—M)/H(fOT"'”-fOT"'”H)d,u
Ny — Ms I2 N3— Mz~ > % g g

L
41 L—\/ . .
ek Vel 01 CRTER L
3 3 =1 v eV

Thus the limsup of the average stated above is bounded by

L Ny No

L 1
> g Jimey NI ) 2 2 /H(fn'fnng) du

N1—M
{=—L NéfMéjg n1=M; n2:M2X neVa

By Theorem [5.1.3] the limsup above is

L

Z L;QIEI / ®(fn'fn0TE) dpl?

{=—L X4 7’]€V2

By taking the limits as L — oo we obtain the bound. O

Lemma 5.3.2.
The Kronecker factor is characteristic for the average of the integral[5.2] In other words

the average converges to 0 whenever E(f | K) = 0 for at least one € € V"

Proof. Firstly, lets assume that E(f. | £) = 0 for some ¢ € {001, 010, 011}. Set
Gn = fonine. for n € V5 and goo = 1. Then ggo is K-measurable and E(g, | K) = 0 for
some 7 € V. By Lemma [3.3.25, E( @ gy, | ZI?) = 0. By Lemma5.3.1]

neva
1 N1 Ny 1 N3 ;
N s nini+nz+n2—n
(Nl_Ml)(NQ—MQ) Z Z /‘]\[3_]\43 Z anoT 1M +n2+n2 3‘ dﬂ_>0
m=M na=Ma x nz=M3 neVa

as Ny — My — +oo, Ny — My — +00. For n = (ng,ni,ny) we can rewrite the above
average of the integral as the average over n; € [M, N1] and ny € [Ma, Na] of

N3
[ (5t X Mmoo )( [ gomee)ay
X

n3=Ms3 neVs eeVs,e0=1

Applying Cauchy-Schwartz to this average and using the limit above, we have that this

average converges to 0. The same process can be applied for € € {100, 101, 111}.
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Finally we consider the case where E(f111 | £) = 0. By the preceding steps we can
assume that each of the other functions is K-measurable. Set h, = fi,,,, for n € V5.
Then (as mentioned before) hog, hoi, hip are K-measurable and E(hi; | £) = 0. By

Lemma [3.3.25, E( @ h,, | Z1?)) = 0. We conclude as above, by using again Lemma 5.3.1
neVs
and the Cauchy-Schwartz inequality. O

For the following part we omit some of the proofs, as they are similar to those of

Chapter 3. Define Z7 to be the closed subgroup of Z”7 where
Z7 = {(za, zb, zab, zc, zac, zbe, zabe) :  z,a,b,c € Z}

and let m; be the Haar measure of Z7. Then the measure my is the projection of 7 on

Z" and if g, € € V5 are seven bounded functions on Z

® ge dmy7 = / H ge(zs7's5755%) dm(s1)dm(s2)dm(s3)dm(z)
7 €€Vy 4 €€Vy

Proposition 5.3.3.
Let f. € L°°(p). The average of integral[5.2] converges to

| ® foaus

eeVy

Proof. By Lemma and my7 = (77)xp7

| ® s = [ Q| 2) dmr = [ @ E(. | 2) dm

X7

eeVy 77 eeVy Z eeVy

By Lemma it suffices to prove the result when f, are all K-measurable. ( Thus
from now on we can continue with the assumption that (X,u,T) = (Z,m,R) and
(X7, p7, T7) = (Z7,m7, R7) ).

By density it suffices to prove the result for functions of the form () g. where each of
eeVys

the functions g, is a character of Z, in particular is continuous. Now since (Z7, R") is
uniquely ergodic (by the uniqueness of the Haar measure), the map Z7 — R, defined by

Ny No N3

1 1 1
. > R61n1+62n2+63n3
(eevi = N30 N, — 0 N — 0 Z_ Z_ Z_ H ge® (z)
n1=My no=Ms nz3=Ms3 EGVS

converge uniformly to the constant

/ &) ge dur

Z7 €c V3*
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Thus this average converges uniformly to the same constant on the diagonal subset of

Z7 ., {(z2,2,2,2,2,2,2) : z € Z}. In other words the average

Ny N2 N3

1 1 1
50 3 [Laemmimion
Nl - Ml N2 o M2 N3 a M3 n1=Mj no=Ms n3=DMs3 E€V3*

converges uniformly to the same constant. Taking the integral , we get that the average

N1 Ny N3

1 1 1 / 11 e1ny+eanat
E E E ge © REMITN2TENI () dm
N1 — Ml N2 - A42 N3 - 1M3 n1=M; ng—Ms, n3:M3X eV

converges to

/ &) ge dur

Z7 €c Vg*

We now study averages over n; € [Mi, Ni|, na € [Ma, N2] and n3 € [M3, N3] of

(5.3) H fe (T€1n1+62n2+53n3m6)
ecVys

in L2(M) as N1 — My, Ny — My and N3 — M3 tend to +o0

Lemma 5.3.4.
The factor CL of X is characteristic for the convergence in L?(u) of the average of the

product [5.3] This means that this average converges to 0 if there exists at least one

e € V5 suchthat E(f. | CL) = 0.

Proof. For n = (n1,n2,n3) € Z3 set

Up = H fe ° Tn.e _ H fe o Tn161+n262+n363

ecvy ecvy

Now, for k = (ki1, ko, k3) € Z3 we have

(U Un) = /uk+nun du = /(fe o TH<. fe)oT™ dp
X X
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By Proposition [5.3.3} for k = (ki1, k2, k3) € Z3, the averages over n; € [My, Ny, ny €
[My, N3] and n3 € [Ms, N3] as Ny — Mj, No — Ms and N3 — M3 tend to +oco of

/ Uk ynUp At

X

converge to

"= / [T 7-(T"z) fe(we) dur = / (TP TR TIR)F (%) dps
X7 €€V3* X7

where F'(&) = [[ fe(we) for & = (x¢)ccvy - Thus the average of 7y over ki, ko, k3 € [0, K]
eeVy
converges to ’

[ B 1CO)F du = [EF €0) dur = [E(F | COIxy,

X7 X7
By Lemma if there exists at least one € € V5" such that E(f, | CL) = 0 the average
of 7, converges to 0. By van der Corput Lemma ([A.4)) the result follows. O

The product of 7 terms

In order to prove Theoreny] it suffices to prove it when all the functions are measurable
with respect to CL since, if fc, € € V5", are seven bounded functions on X, by Lemma
[5.3.4] the difference between the average of the product and the same average with
E(f. | CL) substituted for each f., converges to 0 in L?(u). Therefore, we can restrict
to the case that the system itself is a CL-system, meaning that the system is equal to
its Conze-Lesigne algebra.

Furthermore, a CL-system is an inverse limit of 2-step nilsystems. By density, it

suffices to prove Theorenyd] for such systems.

The integral with 8 terms

Theorem 5.3.5.
Let f., € € V3 be eight functions on the ergodic system (X, u,T). Then the average over
ny € [My, N1], ng € [Ma, Na|, n3 € [M3, N3] of

(5.4) /H fg(Tn151+"2€2+n363x) du(m) _ /fOOO(x) H fE(Tn1€1+n262+n363$) du(x)
X

X eeVs eeVy
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converges to

/® fo dpl?!

X8 66‘/3

when N1 — My, No — M5, N3 — M3 tend to +oo.

We will take as a fact that the theorem holds for 2-step nilsystems, which is proven
in the next chapter (Theorem [6.2.6).
By Lemma [5.3.4] the difference between the average [5.4] and the same average with each
of the function f, is replaced by E(f. | CL). By Proposition

[ Qs = [ @i oy aul

XS EGV?, XS €€V3
Thus it suffices to prove it when (X, p,T") is a Conze-Lesigne system. In this case by
Theorem |4.3.16| X is the inverse limit of a sequence of 2-step nilsystems. So it suffices
to prove it for 2-step nilsystems and the result follows from density.

Combining Corollary [3.4.6| and the Theorem above, we gain Theorem [2|



Chapter 6
Convergence for a nilsystem

We are left with showing that Theorem [5.3.5] holds for ergodic 2-step nilsystems. The
proof uses the precise description of measures um and ,u[?’] in the particular case of a

2-step nilsystem.

Throughout this chapter the system (X, u,T') is an ergodic 2-step nilsystem. We
assume that the hypotheses H; and H» are satisfied.

6.1 The manifold X,

Define

G = {g = (900, 901, 910, 911) € G* = googoi 910 911 € [G, G},
Ay ={X = (Moo, Mo, Mo, A1) € AT 1 Xoodg A =1 = ATNGy

Proposition 6.1.1.
G is closed subgroup of G*, thus is a closed Lie subgroup of G*. In addition Gy is 2-step

nilpotent.
Proof.

e Gy < G*
Letg, h € Gy = goodo; 910 911 = U1, hoohgihigh11 = uz € [G, G|

109



CHAPTER 6. Convergence for a nilsystem 110

We will show g-h € G4:

goohoohot 9o1 P10 910 911P11 = goo(u2hii h10)gor hig (901900 w1 )ha1
= goouz2hiy (h10)901 Pio 901) 900 u1hi1 = gooushii usgeg uihi
N— ——
:uge[G,G]
= usgoohi gog h11usur € [G,G] <G
—_—————

€[G,G]

The last equality holds because u;,ug, us € [G,G| C Z(G).
Now we will show g~! € G4. We have that g~! = (g&)l, gall, gfol, gil) and

-1 -1 —1
9doo 901 = g1 911u7 . Now,

900901910911 = 9109114 g10917" = g1 91191095 vt € [G,G] <G
——_———
€|G,G]

e Gy is closed in G*
Let (g, )nen @ sequence in G4 and g € G* such that g, — g. Equivalently, g" — g,
for any € € V5. By the continuity of the maps (a1, a2) — ajas : G x G — G and
a+— o' G — G, we have that,

930(980)_1(980>_1930 — 90090_1191_01911

Now g% (98) " (98,) 198y € [G,G], ¥n € N and by Theorem [1.11.10} [G,G] is
closed in GG. Hence 90090_1191_01911 €[G,G] =ge Gy

e (G4 is 2-step nilpotent
That means [G4,G4] € Z(G4). In other words, if g -h € G4 then ghg 'h™! «—
aghg 'h™! = ghg 'h~la, forevery a € G; < ozegehege_lhe_1 = geheg th La,
Ve € Vo, Ya = (a¢)eev, € G4 and the last statement is true, since g.h g, 'h-! €
[G,G] and [G,G] C Z(G)

Proposition 6.1.2.
The commutator, [Gy4, G4], of G4 is equal to |G, G]*.

Proqf. For showing [G4, G4] C [G, G]* it suffices to show it for the generators of [G4, G4].
Let g,h € G4. Then ghg 'h™! = (goohoogog hog ; - - -) which is clearly element of [G, G]*.



111 6.1. THE MANIFOLD X,

Conversely, let u € [G,G] then (1,1,1,u), (1,1,u,1), (1,u,1,1), (u,1,1,1) € G*. In par-
ticular they are in [Gy4, G4). Now if (ugo, uo1, w10, u11) € [G, G]* then (ugo, uo1, u10, u11) =
(U()(),1,1,1)(1,“01,1,1)(1,1,U10,1)<1,1,1,'LL11) S [G47G4] E‘G4 O

Proposition 6.1.3.
A, is discrete, cocompact subgroup of G4, with Ay N [G, G]* = {1}.

Proof.

« AN[G, G = {1}
Since A N [G, G] = {1}, then A* N [G, G]* = {1}.
Thus A4 N [G,G]* = A*NG4N[G,G)* = {1}.

o Ay <Gy
A=A"NGL<G* = AN, CGy.
A%, G4 are subgroups of G*, thus Ay = A* NGy < G2,
Hence Ay < Gy4.

e Ay is closed in Gy

Since A is closed in G then, A? is closed in G*. Thus Ay = A*N Gy is closed in G4

e A4 is discrete subgroup of G4

e G4/A* is compact
By Lemma it suffices to prove that G4\, is a closed subset of G*. Define the
continuous, onto maps ¢ : G* — G, with ¢(goo, go1, 910, 911) = googallgfolgn and
7 : G — G/|G, G] to be the natural projection. Now define h : G* — G/[G, G] with
h(g00, 901, 910, 911) = goog(ilgfolgll[G, G, which is as well onto and continuous.
Since G is 2-step nilpotent, G/[G, G] is an abelian group. Thus h is a group

homomorphism:

h((900, 901, 910, 911)(9o0s 901> 910> 911)) = 900900(901) 901" (910) ™ 910 911911 [G, G]

= (900[G, G]) (g0 [G, G ((961) 1[G, G (91 |G, G ((g10) T G, GD) (910 [G, G1)(911[G, G]) (911G, G))

= (900[G, G)) (901" [G, G)) (910 |G, G)) (911 (G, G (900 G G1) ((901) G, G ((910) ™G, GI)(g
= (900901 910 911G G)) (900901~ " dh0 " 911 (G, G])
= h((90079017910a911)) h((g(/)OagE)lvg/lOagil))

/
11

G, G))
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Therefore if (g()(), go1, 910, g11) € G4 and ()\00, o1, A0, /\11) € A4, we have that,

9000001 9ot Mo 910 911 M1[G, G] = h((goo, 9ot 10, 911) (Moo, Aots A0, A11) )
= h(goo, 901, 9105 911) A(Aao, A1, A0, A1) = (9o09or 910-911) (Moo Aor Ajg A1) [G, G

Hence there exists a u € [G, G| so that
9000001 901 Ao 910 911211 = (900901 910 911) (Moo Agr' Afg Ar1)u
and since [G,G] C Z(G),
(900901 910 911) (Moo Ao ATp A1)u = u(googoy' 910 911) (Moo Aot At A1)
and the equality above becomes,
90020001 901 Ao 910 911311 = u(go0gor 910 911) (AooAgr Alp Ann) € [G, GIA
In other words, ¢(G4A?) C [G, G]A, and since ¢ is onto it follows that
GaAt € 671 (#(GaA)) € o7 ([G, GIA)

Conversely, let ¢(goo, go1, 910, 911) € |G, G]A. Then there exists a v € [G,G] and a
A € A, such that googp;' 919 911 = v. Equivalently, googo, 9190911\~ = v € [G,G].
Thus, by the definition of Gy, (900, o1, 910, g11A 1) € G4. Follows that,

(900> o1, g10, g11) = (900, go1, 910, 9112~ ) (1g, 1as Lg, A) € GyA?

This means that ¢~ ([G, G]A) C G4A,.
By summarizing, we have that ¢~ ([G, G]A) = G4A*. By Theorem|l.11.10|we have
that [G, G]A is a closed subgroup of GG and since ¢ is continuous, it follows that

G4A* is a closed subset of G* and that completes the proof.
O

There is a natural embedding of the manifold G4/Ay — X* = G*/A* and we can

identify this manifold with its image in X4

(6.1) Xy = {x = (w00, v01, 710, 711) € X* : q(200)q(01) " q(210) Tq(211) = 1}

where ¢ : G/A — G/A[G, G| is the natural projection of G/A on G/A[G, G].



113 6.1. THE MANIFOLD X,

Lemma 6.1.4.

The measure ,u[Q] is the Haar measure of X4 = G4/A\4

Proof. Let 1/ 2l be the Haar measure of X4. The transformations Ty = T2, Tya, Tyo
of X* are the translations by the elements ay = (o, a,a, ), aun = (1,,1, ) and
Q49 = (1,1, 0, ), of G4, respectively. In addition oy, ay4,1, a4 are elements of Gjy.
Then these transformation are translation on X4 ~ G4/A4. In particular they leave the
measure /2 invariant.

We will show that 2 is ergodic under the action of Ty = T2, Ty, and Ty 2. We will
use the Proposition [I.T1.14] We observe that the hypothesis of this Proposition is
satisfied for Xy ~ G4/A4, since G = (Gy, «) (Property )

Let ¢ : G — K, where K = G/A[G,G] ( K is compact and by Propositionis the
Kronecker factor of X = G/A ) and q is the natural projection (g is continuous, open,

group epimorphism). Define g4 : G4 — K 4 with

q4(goo; go1, 910, 911) = (q(900), 9(g01), a(g10), q(g11))

Then g is a continuous group homomorphism. In addition

q1(G4) = {(koo, ko1, k10, k11) € K* : kookoy kg ki = 1}
={(z,82,tz,stz) : z,t,s € K} =Ky

and kerqs = (A'[G,G*) N Gy = (A*G4, Ga]) N Gy = Mi[Ga, G4] = A4[G,G]*. Thus,
by first Group isomorphism theorem, K4 ~ G4/A4[G,G]*. Under this identification
the transformations R4, R41. R42, induced by Ty, T4 1, T2 through g4, on K, are
the rotations by 84 = (8,05, 5,0). 41 = (1,5,1,5) and B4 = (1,1, 5, 3). respectively,
where § = q(«).

Now (K, m, R) (where R(k) = (- k) is ergodic since, (X, y1,T) is ergodic. Equivalently
(Theorem the subgroup of K generated by the element (3, ((), is dense in K. It
follows that the subgroup, (84, 84,1, B4,2). of K4 is dense in K4 ( since for any element of
Ky, (z,82,tz,stz) = (2,2,2,2)(1,s,1,5)(1,1,¢,t) and 5, (B), is dense in K). Equivalently
the joint action of the rotations R4, 241, %42 is ergodic on K4. By Proposition
the measure 1/[2] is ergodic on X, under the joint action of T, T41. Ty 2. By Proposition
1.11.12| the measure 1/
Ty, Tyo.

is the unique measure on X4 that is invariant under the T},



CHAPTER 6. Convergence for a nilsystem 114

Now the measure ,um is also invariant under those transformations on X4. By

Proposition and y[z] (X4) = y[z] (q;l(Kzl)) = Mmy (K4) = 1. In other word ,um
is concentrated on X,. It follows ,um =u 2], O

6.2 The manifold X;

Define
H = {(h, hu, hv,huv) : he€GqG, u,v€[G, G|}

and

Gg = {(900, 901, 910, 911, hoogoo,ho1 901, 10910, h11g11) -
(900, 901, 910, 911) € Ga, (hoo, ho1, hio, h11) € H}

Proposition 6.2.1.
H is a normal subgroup of G4. Furthermore H is closed in G4, thus is a closed Lie

subgroup of G4
Proof.
e H<Gy
Let a1 = (h1, hiuhivi, hiugvr), ag = (he, houg, hove, housve) € H. Now since
ul,v1,uz,v2 € [G,G] C Z(G), then gu; = w;g and gv; = v;g, Vg € G and Vi €
{1,2}. Thus,
a1t = (hihyt, hiugug 'hyt hivroy that hiugvrvg fuy Tyt

—1 -1 —1 —1 -1 —1 -1, —1
:(<h1h2 ,h1h2 UL Uy ,h1h2 V1Vq ,h1h2 UIV1Vy Usg ) cH

e H is closed in G4
Let ((hna hnurw hnUna hnunvn))neN

such that (hy,, hptn, hyvn, hntunvy) — (900, 901, 910, 911). This means h, — goo

a sequence in H and (goo, go1, 910, 911) € G4

and h,u, — go1 and h,v, — g10 and h, U,V — §11.
Now we have [G, G| 3 u, = (haun)hy,' — go19og and since [G, G] is closed in G,

90190_01 € [G,G]. Then gp1 = ( 90190_01 ) goo =uh = hu. In the same manner
——— u€|G,G]
=u€[G,G]

gi0 = hv, where h = ggp and v = gloggol = nlLIglo Up. Finally for g1, by continuity,

g1 = li_>m hptnvy, = huv. To summarize, (goo, go1, 910, 911) = (h, hu, hv, huv) for
n o0

some h € G and u, v € [G, G|, thus it is an element of H.
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o HLGy

It suffices to prove that gHg ' C H for every g € G4. Then Vg € G4 we will have
that gHg ! C H and g 'Hg C H and thus gH C Hg and Hg C gH. In
particular we wil have that Hg = gH, Vg € Gy4.

Let g = (900, o1, 910, g11) € G4, u,v € [G,G] and h € G. We will show that

(900, go1, 910, g11) - (A, hu, hv, huv) - (goo, go1, g10, g11) * € H
Now since u,v € [G, G| C Z(G),

(900, go1, 910, g11) - (A, hu, hv, huv) - (goo, go1, 910, g11) "
= (goohgog > gorhugoy's giohvgry, giihuvgyi')
= (900hgo0 » go1hgg ' u, giohgig v, giihgiy uv)

By setting h/ = goohg&)l, u = gooh_lg&]lgmhgallu and v = gooh_lgaolglohgi]lv

we have that h'u/ = go1hgg,'v and h'v' = g1ohg;g v. Furthermore we have,

u' = gooh 9o g01hgoru = (901901 )g00h ™ gog- g1 hgo; u

= g01(901 900h " 9og 901 1) g1 v = (901" gooh ™ 950 901h)u € [G, G]
€lG.GICZ(G)

In the same manner we have that v’ € [G, G].

We are left with showing that
hu'v' = gllhgﬁluv
We have,

Ku'v' = gorhgou - gooh gog - g10hgi0 v = gorhgor - gooh ‘g5 - g10hgig - uv
= g009og’ - 9o1hgor' - gooh  gogt - gr0hgrg - uv

= 900 - (9og- 901951 gooh ™) - gog-g10hgry - uv
€[G,G]CZ(G)

= 900900 910 * (900 9017901 gooh™ I - g1y - wv
1 —1 _1
= 910 * (9o 9011901 Goo) * G1g - WV

= 910900 910900901 * I * Go1 Goog1g  Uv
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Now by the definition of G4,
g11hgiT uv = 910901900 (900901 910-911) 2 (900901 916-911) - 900901 910 UV
—_————
€[G,GICZ(G)
= 910901900 "Moo Jo1 910 UV
Since g5, 90090190 € [G, G) C Z(G), we have

haoi 900901900 = 901 900901900 1 <= oo 901P g1 900 = 901900 hd00dor"
= g10900 9011901 900910 = 910901900 h900d01 1o == h'u'v' = gi1hgytuw
Summarizing, we have that (goo, go1, 910, g11)(h, hu, hv, huv)-(goo, go1, g10, g11) "' =

(W', h'u', W'V, hu/v'), where b’ € Gand v/, v’ € [G, G]. In other words (goo, o1, 9105 911)-
(h, hu, hv, huv) - (goo, go1, 910, g11)~' € H and that completes the proof.

Proposition 6.2.2.

Gy is a closed subgroup of G®, thus is a closed Lie subgroup of G&.
Proof.

o Gg <GB

Let z,z € Gg, where z = (g0, 901, 910, 911, R00900, R00900; Ro1901, R10910, R11911)

and 2" = (909, 901> 910 911> "00900 009005 P01901> M109105 P11911)- Then

2271 =

;-1 /-1 /=1 /-1 ;I =131 —1
(900900 > 901901 > 910910 911911 > hoogoogoo hoo
/=137 —1 /=137 —1 /! =131 —1
ho1901901~ ho1” s h1og10g10” hio s haigi1g1n T hn )
Now

(900900 "+ 901961~ 910050 9119017 = (96) vy, (907 ) ery = (96) vy (90) oy, € G

, since (96)6 ey’ (96)6 cy, are elements of the group G4.

Furthermore,

(hegegé_lhé_l) ceVy (he)eevs (ge)eevs (g,_l)EEVQ (h,_l)EEVQ

= (he)EEVQ (96)66V2 (g/)E_GIVQ (h/)E_GIVQ <h6)6(96>6<9/);1(h,>e—1

notation
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Since H < Gy, there exists an (h!). € H, such that

(96)6(9/)5_1(h/)e_1 = (h/e/)E(ge)e(g/)e_l

Thus (he)e(ge)e(9)c (W)t = (he)e(h)e(ge)e(g')c ! By setting (He)e = (he)e(h)e €

H, we have
227 = (997" (Ho)e(g0)e(a))

where (96)6(9,);1 € Gyand (H¢) € H.

e Gy is closed in G®

Let (gn)nen a sequence in Gg and g € G® such that g, — g <=

(900> 901> 910> 9115 009005 P00 9005 P019015 10910 h?lg?l) - (96)66‘/3

Since (g8, 9%, 9%, g%y) € G4, ¥n € N and G4 closed subgroup of G%, then

90005 90015 9010, go11) € G4. Now,
n n n n n n n n
hoogoo — 9100, ho1901 — 9101, h1pg10 — 9110,  P11911 — g1n

By continuity, we have that hlly, = (hygi)(90) ™" — 9100900y € G. In the
same manner each of the h{};, h7; and h7, converges to some element of (. Hence
(h2y, h2, kT, b)) converges in G4, to some element of G*. Since (h{y, hily, hy, hYy) €
H,Vn € Nand H is closed in Gy,

(hoos ho1s P1os hY1) — (hoo, hots hio, ha1) € H
It follows that (again from continuity) that
9100 = hoogooo;, 9101 = ho1goo1, 9110 = h10goio, G111 = h11gonn
Hence, to summarize,
(9e)eevs = (9000, goot, o10, Jo11, hoogooo, ho19001, h10go10, h11g011)

where (9000, 9001, 9010, 9o11) € G4 and (hoo, hot, 1o, h11) € H

Proposition 6.2.3.
The group Gy is 2-step nilpotent.
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Proof. Gg < G4 x HGy o G4 x G4. Since (G4 is 2-step nilpotent then, G4 x G4 is
>G4

2-step nilpotent. Now every subgroup of a k-step nilpotent group is k’-step nilpotent

group, with ¥’ < k. Thus Gy is either 1-step nilpotent (in other words abelian) or 2-step

nilpotent). Since Gy is clearly non abelian group, we obtain the result. O

Proposition 6.2.4.

Gs = {g=(g)ecvs * 90009001 901190109100911191019100 = 1 ; (9000s Goo1: G010, Go11) € G

(9000, goo1, g100-g101 € G4) 5 (9000, go10, 9100, g110) € Ga}

Define

Ag = A®NGg
Us = [G,G]* NGy

. -1 -1 1
={u= (U)ecrs : U000UyHU011UHLHUI10UT11UI01U g = 1}

As in the preceding section:

Ag is discrete cocompact subgroup of Gs. There is a natural embedding of Gg/Ag in
X8 = (G/A)® = G8/A®. We identify the manifold Gg/Ag with its image Xg in X5.

The commutator, [Gg, Gs], of Gy is equal to Ug and Ug N Ag = {1}

Lemma 6.2.5.

The measure u[g] is the Haar measure of the manifold Xg = Gg/As.

Proof. We proceed as in Lemma [6.1.4]

/3]

Let u''”! be the Haar measure of the manifold Xg. The transformations Ty = T' 81, 181,

Tg 2, Ty 3 on X 8 are thr translations by the four elements of G8,

ag = (o, 0,0, 0,a,0), g1 = (1,1, 0,1, 0, 1)

ag2 = (17 17 a, &, 17 17 a, Oé), ag3 = (17 17 1a 17 a, a, Od)

In particular those four element belong to Gg and thus the corresponding transforma-
tions are translations on the manifold Xg = Gg/Ag

We will show that Bl is ergodic on Xy, for the joint action of Ty = Tl 131, 132,
Tg 3. Observe that the hypothesis of Proposition is satisfied, since the
Property is satisfied. We define ¢g : Gg — K® with

as((9e)eevs) = (a(9¢)) ey,
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Then gg is continuous group homomorphism. Furthermore, by the definition of H <Gy,
K =G/A and gs = (qa X qa)

|Gg

qs(Gs) = {(ke)eevs € G® + (ke)eevs = (oo, koot, ko10, ko11, ckooos ckoot, ckoto, cko11),
where (kooo, koot ko10, ko11) € K4 and c € K}
= {(z, za, zab, zab, zc, zac, zbc, zabc) : z,a,b,c € K}

= Ky

Clearly Ky is a closed subgroup of K® and its kernel is A8[G, G]® N Gg = AgUs. Thus
we can identify Gg/AsUs = Kg. Under this identification the transformations induced

by Ty = Tl 131, Tg 2, Ty 3, on Kg are rotations by

68 = QS(QS) = (67ﬁ75767ﬁa6767/8)7 /88,1 = QS(QS,I) = (176717671767 1)
58,2 = QS(a8,2) = (17 1767ﬁ7 17 17ﬁa5)a 68,3 = QB(a8,3) = (17 17 la 1a575316a6)

where 3 = q).

As in the proof of Lemmal6.1.4] it can be shown that the joint action of these rotations
on Ky, is ergodic on Kg. By Proposition the joint action of Ty = T8, 181, 132,
Ty 3 is ergodic on Xg. By Proposition w Bl is the unique measure on Xg that is
invariant under these transformations. The measure ,u[?’} is also invariant under these
transformations, and we will show that is concentrated on Xg.

By Lemma HA, is a closed subgroup of G4. Let Y denote the compact space
G4/HAy4. Define £ : X4 — Y, be the natural projection of Xy = G4/AyonY = G4/ HA4.
Since ay = (@, @, v, @) belongs to H, clearly the map ¢ is invariant under 7}.

Now measure ,u[3] is the relatively independent self-joining of ,u[z] over 713, By

Lemma [6.1.4] the measure ,um is concentrated on X, and thus, pg(X4 x Xy) =
property of
joining
p2(Xy) - p?(X4) = 1. In addition € is Ty-invariant, hence (as in the proof of Proposition
3.3.11) &(z') = £(2"), for plPl-almost every x = (2/,2”) € X* x X*. In other words, ul®!

is concentrated on the set

E={x=(,2") e Xy x Xy : £) =&}

We are left with showing that = is actually Xg. Let Agg € Xg = Gg/Ag, where
g = ((gn)n€V27 (hngn)WEVZ)' Since AS = A8 N GS’

Asg = A89 = (A4 X A4)(<9n)776\/27 (hngn)nevz) = (A4(9n>nEV2a A4(hn9n>n6V2)
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Now, by the definition of Gig and because, H < Gy, (gy)nevs, € G4, and (hygy)nevs €
HG4 < Gy. Since Ay = A* NGy,

(A4(gn)n6V2aA4(hngn)n6V2) = (A4(gn)n6VzaA4(hngn)n6Vz) = (33/:33”) .

So, Agg = (2/,2") € E.
Conversely, let (2/,2”) € = then (2/,2") = (A4(97/7)neV27A4(91/7,)neV2)’ where (g )nevs
(9n)nevs € Gu, with {(z') = £(2"). This means

A4H(g1/7)?76V2 = A4H(g;;)77€V2 = (gZ)UEVQ - (/\W)UGVQ (hn)ﬁéVQ (g;])WEVQ

where, (\;)per, € Ag and (hy)yev, € H.

Thus (as above),

(xlvxﬂ) = (A4(9;7)n ) A4()\n)n<h77)n(g;7)77) - (A4(g;7)77 ’ A4(h")n(g;7)n)
= (AYg)y s A hy)y(dl)n) = (AT < AYY((gh)n s (hy)n(gl)n)
= A%((gh)n + (h)y(gy)n)
= As((gg)na (hn)n(ggy)n) € Xs

O

We are now ready to proceed with the proof of Theorem [5.3.5in the case where the
system (X, i, T') is an ergodic 2-step nilsystem:

Theorem 6.2.6.
Let (X, i, T) be a 2-step nilsystem and f, € € V3 be eight bounded functions on X. Then
the average over ny € [Mi, N1], ny € [Ms, No], ng € [M3, N3] of

(6.2) /H fE(Tn1e1+n262+n363$) du(.%') — /fOOO(x) H fe(Tn161+n262+n353x) d,u(:v)
X

5 €V ecVy

converges to

/® fo dpb?!

X8 ecVs
when N1 — My, Ny — My, N3 — M3 tend to +oo.

Proof. The measure ,u[3] is ergodic under the joint action of T3, T3 1, T3 2, T3 3 (Corollary
4.1.2). By Proposition [1.11.14] Xg is uniquely ergodic for this action. Observe that

l_i[/ fE fe) Tp+n161+n262+7l3€3 (:1;6) — @/ fe o) ((T[3])p o) TSW& o) TSTf% o) Tgf%)(x)’ for every
ecVs ecVs
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XxX=(zc: ecV3)eX Bl Thus if f., € € V3 are eight continuous functions on X, the

averages

N1 No N3

B
1 1 1 1
Ny — My No — Mo Na — M- Z Z Z B_A Z H feoTP+n161+n262+n363(x6)
! b 2 3 =My no=Mz ns=Mj p=AecV3

converges uniformly to the constant, when N; — My, No — Ms, N3 — M3, B — A tend to

400
/ &) fe dul”

Xs 66V3
Since the diagonal {(z,z,z,z,z,z,z,z): = € X} is a subset of X3, the average

Ny Na N3

1 1 1 1 B R
Ny — My Ny — My N3 — Mjs Z Z Z B_AZI_IJ“EOTJDJFUJr 22+33(a:)

n1=My no=Ms n3=Ms3 p=AecVs

converges uniformly to the same constant, when Ny — M7, No — My, N3 — M3, B— A
tend to +o0o. Taking the integral and since T,y = u, we obtain the result for continuous

functions. The general case holds by density. O
Now we will prove the Theorem 4 for nilsytems:

Theorem 6.2.7.
Let (X, 1, T) be a 2-step nilsystem and f., € € V5" be seven bounded functions on X.
Then the average over ny € [Mi, N1], na € [Ma, No], ng € [Ms, N3] of

(6.3) H f. (Tﬂ161+n2€2+n363x)
ecVy

converges in L?(p) to the function
= E(Q) fe| Tr) ()
eeVy'

where we have identified J; with CL, when N1 — My, Ny — M, N3 — Mj tend to +oc.

Proof. Let f., € € V5" be seven continuous functions on X. By Theorem assuming

fooo = 1x, we can deduce that the averages

Ny No N3

1 1 1
N1 — My Ny — My N3 — M3 Z Z Z H feo Tn161+n262+n363(x6)

n1=Mjy no=Ms n3=Ms3 €€V3*
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converge for every x = (z. : € € V3). In particular they converge for every diagonal point

(r,z,x,z,x,z,2,2) € Xg. Therefore the averages of converge for every x € X. The
L?(u)-convergence follows by Proposition [1.11.14]

Assume F'(z) is the limit. By Theorem for every bounded function g on X,

/ 9(2)F(z) du(z) = / goooo) - T £-(w) dul ()
X

X8 eeVy

By Lemma [4.1.7, the last integral is equal to

g(x)-E(Q) fe | Tr)(2) du()

ecVy

—

when the o-algebra J7 is identified with the o-algebra CL. Follows that F(z) =

E( @ fc| J7)(x)). for pu-almost every z € X. The convergence in The general case
eeVy
holds by density. O



Appendix A

Some more notation

In this Appendix we establish some additional notation and results that, regardless their

importance, are being used less frequently in this dissertation.

A.1 More about Group Extensions and Cocycles

Lemma A.1.

Let X be a compact metric space, X its Borel o-algebra and j1 a Borel probability space on
(X, X). Then (C(X, T"), dcoc(X,W)) is dense in (Coc(X, T"), dCoc(X,TZ))’ where de oo x 1)
is a metric on Coc(X, T"), defined by deoex 10y (05 0') = [ dpe (p(x), ' (x)) dpu(z).

Proof. We prove this statement when ¢ = 1. The general case is proven in a similar
manner.

Let f : X — [0,1) be an element of Coc(X,T). For all n € N define, s,(x) := k/n,
where z € X with f(z) € [k/n,(k + 1)/n) and Ay, = f~'([k/n,(k + 1)/n)). Vk €
{0,1,...,n — 1}. Notice that for every n € N, Ay, k € {0,1,...,n — 1} is pairwise
disjoint and UZ;(I) Ay, = X. Then for every n € N,

n—1 k
Sn Z 7]1Ak n
n >
k=0

Furthermore 0 < s, < f, Vn € Nand s, — f, since |s,(z) — f(z)| < 1/n, Vz € X. In

particular,

SENS

sup [sp(z) — f(2)] <
zeX

123
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Since p is a Radon measure on (X, X) ( Proposition) , for every n € N and for every
k€ {0,1,...,n — 1}, there exists a compact set By, , C Ay, such that p(Ay, \ Bipn) <
1/n2.

For every n € N the set UZ;(% By, , is a closed set, thus the restriction of s,, in this
set extents to a continuous function f, : X — [0,1). Indeed, he restriction of s, in
each By, is a constant and thus continuous. Moreover By, k € {0,1,...,n — 1}
are compact and pairwise disjoint the distance between each and every pair of them
is positive. Hence the restriction of s, on Uz;é By, is a continuous function. By
Tietze Extension Theorem (see [5]) the function s,, extents to a continuous function

fn: X —[0,1). In particular,

Iznea)}({ fn( ) = $€Ur£l;aéXBk?n Sn(x) and gél)r(l fn(m) = IGUE(}HBk,n Sn(x)
Notice that for every x € X, |fn(x) — f(x )| |sn (z ) ( )] < 1/n and for every
(z) — f(z)| < 1. Moreover dr( fn(z), f(z)) < — f(=)],
We have,
dewon (oo f) = [ drl£,(0). £@) dute) < [ 11a(o) = Flo)] duto)
= [ 1) = S duta) + / L o)~ 5@ dute)
") Biom xX\UrZL By,
n—1 — —
< %M(X) +u(X\gBk,n> = = +u< U Apn \ U Bkn>
1 1
S E + nﬁ = Z/n
In other words dcoe(x,1)(fn, f) — 0. O

Proposition A.2.
Let (Y,v,T) be an ergodic system, K a compact abelian group and p : Y — K a cocycle.
Then there exists a closed subgroup H of K and an ergodic cocycle o : Y — H such that

p is cohomologous to o when considered as a K -valued cocycle.

Proof. Define A = {x € K: X © p is a coboundary}. Then A is a subgroup of K. Define
H=A={gecK: x(9) =1, VXEA}.ThenA:HL:{XGIA(: x(g) =1, Vg€ H}.
The dual group of K/H is naturally identified with A.

Let o' : Y — K/H defined by p'(y) = p(y)H. Then for every x € [?/7{ =A, xyoyp is
a coboundary. By Lemma P is a coboundary. This means there exist a function
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f':Y - K/H, such that p' = f'o p/ — f/ = df’. Lift f’ to a function f : Y — K. Then
p—(f op — f') = o, where o takes values on H. By this equation follows that p is
cohomologous to o.

Now assume that o is not ergodic. By Lemma m there exists a nontrivial x € H
such that y o ¢ is a coboundary. By extending the character y of H to a character x’
of K, we have that x o p is a coboundary. Thus ¥ is an element of A and hence has e

trivial restriction on H, which contradicts with the hypothesis. O

By this proposition we obtain the following.

Lemma A.3.

Let (X,u,T), (X', 0/, T, (Y,v,S), (Y',V/,S") be measure preserving systems and let
7: X =Y, 7 : X =-Y.,r: X — X andp : Y — Y’ be factor maps such that
pom = 7 or. Assume that X is ergodic and X' is an ectension of Y’ by a compact
abelian group K associated with a cocyle p' : Y’ — K'. Furthermore assume that

X =r5X")\/ 7 Y(Y). Then X is an extension of Y by a compact ablian group H.

Proof. Reference [14], Part 1, Chaprer 5, Section 3 : Section 3, Subsection 3.6 : The
Mackey group of a cocycle, Lemma 18, page 72] O

Lemma A.4.

Letm: (X,u,T) — (Y,v,S) be an ergodic extension by a compact abelian group K and
letp: W — Y be an intermediate extension, meaning that there exists a factor map
q: X — W such thatpo g = m. Then W is the quotient of X under the action of some
closed subgroup H of K and is an extension of Y by the group K/H.

Proof. Reference [14], Part 1, Chaprer 5, Section 3 : Section 3, Subsection 3.6 : The
Mackey group of a cocycle, Lemma 19, page 73] O

Lemma A.5.
Let (X, u,T) be an ergodic isometric extension of (Y,v,S), where X =Y x G/H, p =
vxmggandT =S, foracocyle p: Y — G. Then for every g € G the transformation

(xo,21) — (920, g- 1) : X? 5 X?

leaves each set of T 1 invariant.



CHAPTER A. Some more notation 126

Proof. Let Z be the Kronecker factor of X. and let W be the factor associated to the
o-algebra )V V Z. Then W is a factor of X. Thus there exists o closed subgroup K of
G such that W =Y x G/K. By Lemma follows that X and W share the same
Kronecker factor. Thus Z? is contained in YW ® W. Thus, without loss of generality,
we can assume that X = YV Z.

Applying Lemma with Z instead of X’ and the trivial system instead of Y, we
have that X is an extension of Y by a compact abelian group L. Comparing the two
representations of X, we obtain that H is normal subgroup of G and G/ H is isomorphic
to L. In particular G/H is abelian.

Let g € G and p : X — Z the factor map. The transformation V, : X — X, with
Ve(y,q) = (y,9 - q) commutes with T = S,. Thus by Corollary there exists a R,
on Z which is a rotation defined by a 3 € Z, such that R, op = p o V. Therefore, for
x1, 22 € X, p(Vyao) 'p(ngl)_l = p(x2) -p(a:l)_l. By Theorem follows that every
AeTlis V4 x Vg invariant. O

Lemma A.6.

Let (X, u, T) be an ergodic system, U a compact abelian group and let (u,x) — u X x
be a free action of U on X by automorphisms. Let p € Coc(X,U) be a cocycle so that
p oV, — pis a coboundary for every u € U. Then there exists an open subgroup Uy of U
and a cocycle p’' € Coc(X,U), cohomologous to p, with p' o V,, = p’ for every u € U.

Proof. Reference [12, Lemma C.9, APPENDIX] O

Lemma A.7.

Let (X, i1, T') be an ergodic system, U a compact abelian group and let (u, x) — u X = be a
free action of U on X by automorphisms. Let p € Coc(X,U) be a cocycle so that poV,, — p
is a quasi-coboundary for every u € U. Then there exists a closed subgroup U of U so
that U/Uy is a torus and there exists a cocycle p', cohomologous to p, with p o V,, = p’ for

every u € Uy.

Proof. Reference [12, Lemma C.10, APPENDIX] O

A.2 More about nilmanifolds

Lemma A.8.
Let X = G/T be a nilmanifold. For a subgroup H of G the following are equivalent
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(i) The subset H - ex of X is closed in X.

(ii) the subset HT" of GG is closed in G.
(iii) The subgroup I' N H is cocompact in H meaning that H/(H NT") is a compact.
(iv) There exists a compact subset K of H suchthat K(HNTI') = H.

Theorem A.9.

Let Xs = Gg/Ag be a manifold and ag.1, g2, (g 3 the three commuting elements of Xg
that define Iy 1, Ty 1. 13 3 respectively. Then for every continuous function f on X, the
average over ny € [My, N1], ny € [Ma, No] and ng € [M3, N3] of

FTTERTES ()
converges for allx € X, when N1 — M, Ny — My, N3 — M3 tend to +oc.

Proof. (Sketch of the proof)
For every z € X define the set,

XS,x = {X: (xe L€ E Vg) GXg: 000 :.’E}

Clearly these sets form a closed partision of Xs.

Now define,
s ={g=(vc:e€V3)€Gs: gooo = 1g}

Clearly Gj is a closed subgroup of Gg and thus it is a closed Lie subgroup of Gs.
Moreover Gf is 2-step nilpotent, since Gy is 2-step nilpotent and GY is not abelian. We
observe that for every = € X, (left) translations by elements of this group leaves each
Xg,, invariant and acts transitively on each of this spaces. We can now give to Xg , the
structure of a nilmanifold by identifying it with the manifold G§/A,, where A, := AgNGy
is a discrete cocompact subgroup of G%.

Let g, denote the Haar measure of X5 ;. This measure is invariant under the action
of Gg on Xg ;. In particular it is invariant under the transformations 75 1, 731, 75 3.

We have that

pbfl = / pis.2 dp(z)
X

since the right hand side of this equation is a measure on Xg that is invariant under

the action of Gg
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We give a second interpretation of this formula. Let mggp : X 8 5 X be the first pro-
jection. The family of measures (ug, : = € X) is the conditional probability measures
given the o-algebra 7'('0_010(X ) = Ao,z which coincides with the o-algebra J 3] modulo
,u[3]. Thus the equation above can be viewed as the ergodic disintegration of u[g] for the
action spanned by the joint action of 75 1, 731, 75 3.

It follows that for ;-almost every € X, the measure yg ; is ergodic for this action.
By Proposition applied to the nilmanifold X5 ,, we have that for y-almost every
x € X, Xg, is uniquely ergodic for the action spanned by the three transformations
T3, 13,1, T3 3. Therefore, for any continuous function F' on X3 ., for p-almost every

x € X, the average over ny € [My, N1], ng € [Ms, No| and n3 € [M3, N3] of
F(T T3 Tg5(x))

converges to [ F dus . The result follows. O
X8,m

A.3 Vertical characters and vertical Fourier transforms

Let (Y, v, S) be a system, K be a compact abelian group and p : Y — K a cocycle. Let
(X, 1, T) = (Y x Kv®mg,S,) be the extension defined by p.

If y € K , a vertical character of X with frequency y is a function F' € LQ(M) such
that

F\x(th) = X(h)ﬁx(l‘)

for every h € K. Since X = Y x K, this means that F(y,g) = f(y)x(g) for some
f e L?v).

The vertical characters with frequency x form a closed subspace L, of L? (). This
subspace is invariant under multiplication by functions of the form ¢ o 7, where ¢ €
L>(v) and is also S,-invariant. For example, for the trivial character 1 of K, the
subspace L is the set of functions of the form (y, g) — f(y) with f € L?(v). For distinct
characters, the associated spaces L, for x € K are pairwise orthogonal subspaces of
L ().

Now, for a function F € L2(y) and x € K define the function ﬁx on X by,

Fw) = [ FVao)x(h) dmic(
K
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and we call ﬁx the vertical Fourier coefficient of frequency y of F'. Identifying X with

Y x K, this formula becomes

Fy(y.9) = fx(y)x(g) where f, = / F(y,h)x(h) dmg(h)

K

Clearly, every vertical Fourier coefficient ﬁx is a vertical character with frequency Y.
Via the identification of X with Y x K, if F' € L?(u) then for y-almost every y € Y
, the function f,, on K given by f,(g) = f(y,g) belongs to L?(m) and thus is the sum

in this space of its Fourier Transform. It follows that
(A.1) F =Y F
ek

where the convergence holds in L?(u) and the series is called the vertical Fourier series

of F. It follows from that LQ(M) is the orthogonal sum of the spaces L., x € K.

A.4 Van der Corput Lemma

Proposition A.10.
Assume that {x,,} is a sequence in a Hilbert space with norm ||z,|| < 1 foralln € Z. Let
L,M and N be integers with L. > 0 and N > M. Then

2

1 N—-1 L M’ 1 N
HN_M > 3 L S s

Proposition A.11.
Assume that {x,} is a sequence in a Hilbert space with norm ||x,|| < 1 foralln € Z.
Then

H

< limsup — Z lim sup
H~>+oo he1 N—+o0

N

5 O (s i)

n=1

lim sup
N—+o0

1N
- x
|

Proposition A.12.
Assume that {Um,nz,ng : ny,ne,n3 € Z} be a bounded triple sequence of vectors on a

Hilbert space. If the limit of

K-1

N

1 . 1

K3 E N—J%/IIIBH—OO N_M E (Uni 2, un1+k1,n2+k27n3+k3>
k1,k2,k3=0 ni,n2,n3=M
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Jor K — +00, is equal to 0, then

N

li 1 g 0

im _ U L =

N-M—+oo||N — M m2ns
ni,nz,n3=M



Appendix B

Proofs

In this Appendix we give proofs of or, mainly, references for the results mentioned in
Chapter 1}

B.1 Section|l1.1

Proof of Proposition A topological space is called topologically complete if it is com-
pletely metrizable. The Cartesian product of a countable family of topologically com-
plete topological spaces, endowed with the product topology, is topologically complete
[5, Theorem 2.5(4) in Ch. XIV]. Also, the product of countably many separable Hausdorff
topological spaces, endowed with the product topology again, is, obviously, separable
[5, Theorem 7.2(3) in Ch. VIII]. Another reference for this fact is [15, Proposition 3.3
(iii)]. O

Proof of Proposition References for this fact are, for example, [2, Theorem 1.1],
[15, Theorem 17.10], [22] Theorem 1.2, Chapter II]. O

Proof of Theorem This is the Isomorphism Theorem for standard Borel spaces [15,
Theorem 15.6] or [22, Theorem 2.12, Chapter IJ. O

Proof of Theorem[I.1.7] (i) That X is countably generated is obvious: the open balls
with centers in a countable dense subset of X and rational radii obviously generate
X. To show the other assertion, first note that, in case X uncountable, it is enough
to only consider the standard Borel space ([0, 1], B([0, 1])). by Theorem m For if

{fn: n € N} is a countable family of bounded Borel measurable functions on [0, 1]

131
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which is dense in any LP([0,1],8([0,1]),x). p € [1,+00), for any Borel probability
measure £ on ([0,1], B([0,1])). and if f: X — [0, 1] is the Borel isomorphism of Theorem
then {f, o f: n € N} is a countable family of bounded Borel functions on X
which is dense in any LP(X, X, u), for any p € [1,4+00) and any Borel probability
measure ;¢ on (X, X). Now in the case of the interval [0, 1], the continuous functions
are dense in LP([0,1], B([0, 1]), 1) for any p € [1,+00), for any finite Borel measure
[8. Proposition 7.9], and on the other hand, C([0,1]) is separable because [0,1] is a
compact metric space [3, Theorem 6.6, Chapter V]. It follows that any countable dense
subset { f,: n € N} of C([0,1]) is dense in L?([0,1], B([0,1]), u) for any p € [1,+00), for
any finite Borel measure p. Finally, if X is countable, (finite) linear combinations of the
characteristic functions of the singletons with coefficients in a countable dense subset
of C, say with coefficients in Q +¢Q, form a countable set of bounded Borel functions on
X which is dense in any L? ([0, 1], B([0,1]), i), p € [1,+00), for any finite Borel measure
pon X.

Alternatively one may argue directly as follows, without appealing to the Isomor-
phism Theorem If X is a Polish space, it may be embedded as a dense Borel
subset of a compact metrizable space. In fact X is homeomorphic to a G5 subset of the
Hilbert cube [0, 1] with the product topology [15, Theorem 4.14]. If h: X — [0,1]V is
the homeomorphism of X onto its image in [0, 1] and d(z,y) := p(h(z), h(y)), z,y € X,
where p is the metric on the Hilbert cube [0, 1], then the completion (X' , CZ) of the metric
space (X, d) is a compact metric space. Indeed (X' , ci) is complete and totally bounded,

because for every € > 0, on can choose § € (0,¢), and cover the closure h(X) of the im-

age h(X) of X in [0, 1] with a finite number of open J-balls with centers h(x1),. .., h(zy)

in h(X), by compactness of A(X); then the open balls with centers z1, ..., z, and radii
e cover X. It follows that C' (X ) is separable and has therefore a countable dense subset
{ fn: n €N } [3, Theorem 6.6, Chapter V]. Then, the restrictions f,, := fn| x of the fn
to X, n € N, form a countable set of bounded Borel functions on X which is dense in
Lp (X , X, u) for any p € [1,+00), for any finite Borel measure p on X. Indeed, if p is
a Borel probability measure in X, then ji(B) := u(B N X), for B a Borel subset of X,
defines a Borel measure on X, because X is G5 and hence Borel in X,soBNXisa
Borel subset of X whenever B is a Borel subset of X. For any p € [1,400), C(X ) is
dense in LP (X , X , [L) [8, Proposition 7.9], where X is the Borel o-algebra of (X , (f) and
it follows that already {fn 'n € N} is dense in LP (X, /f, /l). Then, ifg € LP(X, X, ), for
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some p € [1,+00), extend g to a function j on X, say by setting §(z) = 0 forz € X < X;
then g is Borel-measurable, [ [§|”’di = [|g[Pdu < +oco and hence g € LP (X, X, fi). For
any ¢ > 0 there exists then an n € N such that (f\g — fn‘pdﬂ) p < ¢, and because
ﬂ(X ~ X) = 0, one has that ¢ > (ﬂg} — fn|pdﬂ)1/p = (f\g — fn\pd,u)l/p. This shows
that {f,,: n € N} is dense in LP(X, X, u).

(ii) When X is a Polish space, the space of Borel probability measures M (X, X') on X,
where X is the Borel o-algebra of X, is completely metrizable and separable, i.e., Polish
[15, Theorem 17.23]. Therefore, with M the Borel o-algebra of M(X, X), (M(X, X), M)
is a standard Borel space. Furthermore, M is in fact generated by the maps p — [ fdp
as f varies over bounded real Borel functions on X [15, Theorem 17.24], which by
definition means that M is the smallest o-algebra with respect to which all these maps

are measurable. O

Proof of Lemma For this fact see [1, Chapter 1] or [19, CHAPTER II, Section 2.2 :
The class of locally compact groups]
O

B.2 Section|1.2

Proof of Proposition References for these facts are, for example, [6, Theorem 2.14]
or [25, Theorem 1.5]. O

Proof of Theorem[1.2.5] References for these facts are, [6, Theorem 2.14] again or [25,
Theorem 1.6 and Remark (1) following it]. O

Proof of Theorem A reference for this facts is [25, Corollary 1.14.1]. See also [6,

Theorem 2.21 and Corollary 2.22]. O
Proof of Theorem[1.2.7] [6l Theorem 2.30] again or [25, Theorem 1.14]. O

B.3 Section|1.3

Proof of Proposition[1.3.5] Reference [25, Theorem 3.1]. O

Proof of Corollary When (X, X) is a standard Borel space, L?(X, X, i) is separa-
ble, by Theorem Hence any orthogonal set is countable, and by Proposition|1.3.

there can only be countably many distinct eigenvalues. O
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Proof of Theorem Reference [25, Theorem 3.1]; see also [6, Lemma 6.9]. O

B.4 Section|1.4

Proof of Proposition[1.4.4] Let £ := {x € X: moT(z) = Som(x)}. Let A € A. Then
A = 771(B) for some B € ). Since (Y,),v, S) is invertible, there exists B’ € ) such
that B = S~1(B’). Let A’ := 7—(B’). Then T~ 1(A’) A A C E°, because when = € E,
then

reT Y A)YeTx)ceA oroT(x)e B & Son(x)e B & n(z)c Bexc A

Hence p(T71(A’) o A) = 0. Conversely, given T-1(A) € T ' A, ie., given A € A,
there exists B € ) such that 7—!(B) = 4; since S is measurable, S~1(B) € ), whence
Al :=7"1(571(B)) € A. and again A’ A T~!(A) C E“. O

Proof of Theorem|1.4.5] A reference for this is [6, Theorem 6.5]. The setting there is
slightly different than ours in that a Borel probability space in that reference is defined
to be a dense Borel subset of a compact metric space X endowed with the restriction of
the Borel o-algebra 3 (Y) to X and a probability measure defined on this restriction. As
explained in the proof of Theorem when X is a Polish space, it may be embedded
as a dense G5 and hence Borel subset of a compact metrizable space. Thus a Polish
space endowed with its Borel o algebra and a Borel probability measure is a Borel
probability space in the sense of [6]. Finally, if X is merely Borel isomorphic to a Polish
space X' and h: X — X’ is a Borel isomorphism, i.e., h is invertible and both h and
h~! are measurable with respect to the Borel o-algebras on X and X', and if A is a
sub-c-algebra of the Borel o-algebra X of X satisfying A = T~'A mod y, then hA
is a sub-c-algebra of the Borel o-algebra X’ of X' satisfying (7')"'h.A = h.A mod 1/,
where 77 := hoT o h™! and y := hyu. Note that hX = X’. If (Y,),v,S) is a factor
of (X', X', 1/, T") with (Y,)) standard Borel and A = 7~ 1())), where 7: X’ — Y is
a factor map, then (Y, ), v, S) is also a factor of the original system (X, X', u,T) with
factor map 7 o h and satisfies (7o h)~1(Y) = A. O

B.5 Section|1.5

Proof of Proposition[1.5.1} These are standard results in Probability theory, see, e.g.,
Section 34 of [2]. Alternatively, see [6, Theorem 5.1] for the Proposition as stated
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here. O
Proof of Remarks

e Reference [6, Theorem 5.1]

e Reference [6, page 125]

e Note that E(f | A) o T is T~!(A)-measurable because E(f | A) is .A-measurable.
Let Ac A

T-1(4) 7-1(4)
~ [fau=[EG 1A an= [ B(IAoT
A A T-1(A)

O

Proof of Theorem[1.5.5] Reference [6, Lemma 5.25]. This is standard again, see e.g.,
[4, Theorem 4.2.8].

Alternatively, the statement is proven when X, Y and Z are dense Borel subsets of
some compact spaces X.Y and Z respectively. In particular we have the result when
X, Y and Z are compact spaces. Via Theorem we obtain the same result when
X, Y and Z are Polish spaces. O

Proof of Remark[1.5.6, When (Y, ), v, S) is invertible, S~} C ), because S is mea-
surable, and also S) C ), because S~! is measurable, whence )V C S~1)), because
A=S"1S(A) € ST1(SY) C S'Y forall A c ). It follows that S~'Y = ), and then
that

Tl a W) =@oT) Y =(Son) ' Y=na1(S71Y)=r"1).

Let f € L'(X, X, ;1). One then has that, for y-almost all z € X,

E(foT |Y)(n(z) =E(foT |n'Y)(z) =E(fo T | T~ (x~'V))(x)
=E(f | 7' V)(T(2) = E(f | Y)(n(T(2))) = E(f | Y)(S(n(x))) = E(f | Y) o S(n(x)).

Let A:={y e Y:E(foT|Y)(y) ZE(f | Y) o S(y)}. Then

v(A) = p(r N (A) =p({z € X:E(fo T | Y)(r(z)) #E(f | V)0 S(n(z))}) =0. O
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B.6 Section|1.6

Proof of Theorem Reference [6, Theorem 5.14]. The statement is proven when
X is a dense Borel subset of some compact spaces X. In particular we have the result
when X is a compact space. Via Theorem we obtain the same result when X is
Polish space.

Another reference [14, Part 1, Chapter 2, Section 2:Probability Spaces, Subsection

2.5:Disintegration of a measure, page 19] O
Proof of Theorem Reference [6, Theorem 5.19] O

Proof of Proposition Reference [14] Part 1, Chapter 2, Section 2:Probability Spaces,

Subsection 2.5:Disintegration of a measure, page 19] O

Proof of Remark|1.6.6] Reference [14, Part 1, Chapter 3, Section 2:Ergodic Theory,

Subsection 2.8:Disintegration of a measure, page 34] O

B.7 Section|l1.7

Proof of Theorem[1.7.1] Reference [6, Theorem 6.2]. The statement is proven when X
is a dense Borel subset of some compact spaces X. In particular we have the result
when X is a compact space. Via Theorem we obtain the same result when X is
Polish space. O

B.8 Section|1.8

References for this Section are, for example, [6], [11] and [14]

B.9 Section|1.9

Proof for Theorem A reference for this facts is [14], Part 1, Chapter 4, Section
1:Topological and measurable rotations, Subsection 1.2:Measurable rotations, Proposi-

tion 5, page 47]. See also [6, Theorem 4.14] O

Proof for Proposition Reference [14], Part 1, Chapter 4, Section 1:Topological and
measurable rotations, Subsection 1.2:Joinings and factors of rotations, Proposition 7,

page 49] O
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Proof for Corollary(1.9.3] Reference [14] Part 1, Chapter 4, Section 1:Topological and
measurable rotations, Subsection 1.2:Joinings and factors of rotations, Corollary 8,

page 49] O

Proof for Corollary(1.9.4] Reference [14] Part 1, Chapter 4, Section 1:Topological and
measurable rotations, Subsection 1.2:Joinings and factors of rotations, Corollary 9,

page 49] O

B.10 Section|(1.10

Proof for Lemma[1.10.5] d is clearly a metric. By Theorem there exists a Borel
isomorphism ¢ : (Y,Y) — ([0,1], B(]0,1])). Define the Borel probability measure on
([0,1], B(]0,1])), A := ¢.v. We have that ¢ : (Y,V,v) — ([0,1],B([0,1]),A) is an iso-
morphism between these two Lebesgue probability spaces. This isomorphism induces a
isometric isomorphism between Coc(Y, T?) and Coc([0, 1], T*). In particular by defining
P : (Coc(Y, Tz)vdcoc(Y,W)) — (Coc([0, 1],T€),dcoc([0’1me)), where ®(p) = po ¢! one
can easily check that is ¢ is indeed an isometric isomorphism. Hence it sufficient to
show that (Coc([0,1], T), dcoc([o,l],W)) is a Polish space.

Firstly, by Lemma (C(]o,1]),TY), dCoc([o,l],Tl)) is a dense subset of (Cooc([0, 1], T%).
Furthermore (C([0,1]),T*), dsup) Where dgyp, is the metric on C([0, 1] induced by ||||cc.
is separable and Vp,p" € C([0,1]), deoe(jo1),m0) (0 p") < dsup(p,p'). 1t follows that
(C([o, 1})7dCoc([0,1]7Tl)) is separable. Hence (Coc([0, 1]7T€)adcoc([0,1],1r€)) is separable.

Now let (pn)nen be a doe(o,1],1¢)-Cauchy sequence in (Coc([0,1], T, dcoc([o,l],ﬂrf))-
This means that for every ¢ > 0 there exists a ng = ng(€) such that Yn,m > ny,
dcoc((0,1],17) (Pns pm) < € <= [ig 1) drpe(pn (@), pm(@)) dA(2) < € ==>dpe(pn(@), pm(w)) for
A-almost every x € [0, 1]. In particular there exists a X’ € B([0, 1]) such that A(X’) =1
and for every x € X’ and every € > 0 there exists a ng = ng(e) such that Vn,m > ny,
dre(pn(2), pm(z)) < €. This means that Vz € [0, 1] the sequence (py(z)) is dpe-Cauchy
in T*. Therefore there exists an element ¢ = t(x) € T. such that p, () E) t(z). Define
(\-a.e) p:[0,1] = T by p(x) = t(z). Then p is measurable, since is it is (\-a.e.) the
pointwise limit of p,,. In particular p € Coc([0, 1], T*). We are left with showing that p is
the deoe((o,1),1¢)-limit of py,. Let € > 0 and x X'. Then,

(B.1) there exists a ng = ng(e) € N such that, Vn,m > ng, dype(pn(x), pm(z)) < €/4.
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(B.2) there exists a n; = nj(€,z) € N such that, Vn > n1, dp(pn(z), p(x)) < €/4.

Let N = max{no,n1} and m > N. Then Vn > (€¢) we have that,

(B.1),
(B2)

dpe(pu(@), () < dye (pu(@), (@) + dpe (p(2), pl@)) < €/d+ /4= €/2

. It follows that for all n > ny(e),
Ao 2ty (Pns P) = /[0 , G (on(a) () AGo) = [ declpata).ple) dX@) < /2 <
In other words p is the dg((o,1) T¢)-limit of py,.

For the second part of this Lemma see [14, Part 1, Chapter 5, Section 3:Cocycles

and coboundaries, Subsection 3.3:Measurability properties, Lemma 10, page 65] O

Proof for Proposition[1.10.12] Reference [10]. They show thatif X = Y x (G is an ergodic
extension of Y and W is an intermediate extension of Y , then X is an extension of W
by a closed subgroup H of G. From the proof, it follows that W is an isometric extension

of Y, and it is of the form W =Y x G/H. The same result holds more generally when

X is an isometric extension of Y . O
Proof of Theorem[1.10.13] Reference [11, Theorem 9.21] O

Proof of Lemma(1.10.1 Reference of this fact is [14] Part 1, Chapter 5, Section 2:Ex-
tensions by a compact abelian group, Subsection 2.2:Uniqueness of the measure,

Lemma 4, page 61] O

Proof of Lemma [1.10.16] Reference [14, Part 1, Chapter 5, Section 3:Cocycles and

coboundaries, Subsection 3.4:Cocycles on a Cartesian square, Lemma 13, page 67] O

B.11 Section|1.11

Proof of Proposition Reference [16, Theorem 20.10] O
Proof of Theorem Reference [18] O
Proof of Proposition Reference [20] O
Proof of Proposition Reference [20] O

Proof of Proposition[1.11.14] Reference of this fact are [20] or [17] O
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B.12 Section(1.12

References for this Section are, for example [11] and [14].
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