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Abstract

In this Master thesis we deal with harmonic functions on complete Riemannian manifolds, having
as a final goal a proof of Yau’s conjecture (and eventually theorem of Colding and Minicozzi) which
states that the space of harmonic functions of polynomial growth of fixed degree d, H¢(M), on a
complete Riemannian manifold with non-negative Ricci curvature, M, is finite dimensional.

In the first chapter we give the definitions for the covariant derivatives of a function, and
subsequently the Hessian and Laplacian. We also give a formula for A(|V f|?), where f € C>(M).

In the second chapter, we first give a proof for the Laplacian comparison theorem, which bounds
the Laplacian of the distance function on a complete Riemannian manifold of dimension n where
the Ricci curvature satisfies Ric > —(n — 1)k, where k£ > 0, by the Laplacian of the distance
function on a space form with constant curvature —k. Then, we prove a gradient estimate for
positive harmonic functions on such manifolds. From that result, we derive as corollaries a Liouville
property, a Harnack type inequality and the finite dimensionality of the space of harmonic functions
with sublinear growth of fixed degree.

In chapter 3, we give proofs of a lemma of Yau, which estimates integrals of the form / o2V,
and of the Poincaré inequality. Using these results, we give a proof for a mean value inBequality.

In chapter 4, we give a proof of the theorem of Colding and Minicozzi using the ideas of Li.
We also give a proof for the finite dimensionality of H¢(M) in a more "relaxed” setting, where we
assume a weaker mean value inequality. Then, we state two results about massive sets, where the
ideas of Li find application.

Finally, in chapter 5, we state some later developments and conjectures on the subject of the
dimension of H%(M).






IMepirndn

3Ny nopolod BIMAWUATIXY, AOYONOVUAOTE UE HPUOVIXEC CUVORTHOELS OF TANPELC TOANATAOTNTES
Riemann, éyovtoc o¢ tehixd otdyo tnv mopovsiaon pog anddelne e ewxooioc Tou Yau (xou ev
éheL Véwpnua twv Colding-Minicozzi) olugwva ge TNy oTola, 0 YMEOS TWY APROVIXMY CUVIPTHOEWY
TOAVOVLULNC avanTuéne oe uioe TAYen moAAamAoTnTa Ye un apvnuxf Ricei  xopnuidtnta, etvon
TENEPUCHUEVNC BLACTAONC.

Yy mpd TN evotnTa, dlvouue 0ploUoUS Yia TIC GUVOAAOIWTES TPy WMYOUS Ui CUVERTNONG, TNV
Ecouavi) xon v Aamhaoiav|. Enfone anodewvoouye évay tomo yia v nosétnra A(|V f[2), émou
felC=

Yy debtepn evétnra, divouye pior amddelln yio to Yemdpnuo olyxpone tne Aariactavic, cOUpEvA
ue to omnolo,  Aamhaciavi Tne cuvdptnone andotaone ot plat Thipn toAlamhétta M, tne onolog 7
Ricci xopmulétnta ixavomotel ) ouvdfun Ric > —(n — 1)k, k > 0, gpdoeton o’ tnv Aomhaciavy
e ouvdpTnong andotaone ot plo ToAhamhoTnTa otodephc xoumuAGTNTaC  —k. XN ouvéyeld,
anodexvioupe o extiunon yia Ty xhion wac YeTxnc dploviXic cUVAETNONS OE ULo. TOAMAATAGTN T
omwe mapandve. And autd to anotéheopa, molpvouue we moplopata v WotTa  Liouville, piot
avicotnta TOnou Harnack xau to menepaouévo Tng SLAGTAGTC TOU YOPOU TOV OQUOVIXGDY CUVIPTACEWY
UTOY POULXNC AVATTUENS.

Yy tpltn evétna, divouue amodeléelg yio évo AMjupo Tou Yau, To omolo exTiudel ONOXANEOUNT
™Me YoppTc FO2|Vf, nu tne avicétrag Poincaré.  Xpnowwonowhvrog autd to anotehéopatd,
omoBevaOouusBpLoc avlo6TNToL H€ong TLHNC.

Yy tétaptn evotnta, divouue W anddeln tou Li yia to Yedpnuo v Colding-Minicozzi,
EVQ 0T ouVEYEL avapépoupe BUo anoteléoyata ylo. massive sets, 6mou ot 1Wéec Tov Li PBploxouv
enione eqopuoy.

Télog, oty TEUTTN EVOTNTA, AVUPEQOUUE TEQUITERW ATOTEAECUOTA OYETIXA YE TNV BIACTAOT TOU
YWPOU TWV OPUOVIXMY CUVIRTHGEWY TOAUGVLULXAG oVATTUENS O TATPELC TOAMAUTAOTNTEG UE UN) dEVT-

wxf) Ricel xopnuidtnto.
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Introduction

With the Riemannian structure on a manifold, we get the associated Levi-Civita connection and as
a result, we can consider covariant derivatives. Therefore we can consider the Laplace operator and
subsequently, harmonic functions. For certain types of manifolds there existed several well known
results on the theory of harmonic functions. For example, on the unit disk there is the Herglotz
theory (1911). On bounded domains of R™ we have the Martin representation of harmonic functions
(1941) and on bounded symmetric domains there is the theory of Hua and Fiirstenberg(1963).
However, for general complete Riemannian manifolds, the first serious contributions on the theory
of harmonic functions were made by the work of Yau. On such manifolds, Yau proved that for
1 < p < +o0, there are no harmonic functions in LP?. For p = 400 however, extra assumptions
on the curvature must be made. Therefore, Yau, in 1975 (]20]), proved that complete Riemannian
manifolds with non-negative Ricci curvature have a Liouville property, i.e. there are no non-
constant harmonic functions. Later, he along with Cheng ([2]) localized his argument and proved a
gradient estimate for harmonic functions. As corollaries, they derived the Liouville property again,
a Harnack-type inequality and also the finite dimensionality of the space of harmonic functions
of sublinear growth on a complete Riemannian manifold with non-negative Ricci curvature (in
the same paper, Cheng also proved a similar result for harmonic maps into a Cartan-Hadamard
manifold, i.e. a complete, simply connected Riemannian manifold with non-positive sectional
curvature). Yau then conjectured, that the space of harmonic functions of polynomial growth of a
fixed degree on such a manifold is finite dimensional. Note that in the case of R™, the dimension
is explicitly calculated (see Chapter 5).

It was not until 1996, that Yau’s conjecture was first proved. Specifically, Colding and Minicozzi
proved Yau’s conjecture, in the case the manifold has non-negative Ricci curvature and Euclidean
volume growth ([4]). Later, they proved Yau’s conjecture in the form of theorem 4.1.2 ([5]),
where they also provided a sharp estimate on the dimension of the space of harmonic functions
of polynomial growth. In that case, a vital role play Bishop’s volume comparison theorem and
the mean value inequality (theorem 3.0.3). In 1997, Li gave a proof that applied to a larger class

of manifolds and that also applied to sections of vector bundles (see the beginning of chapter



4). Specifically, he assumed a volume comparison condition (definition 4.0.2) and a mean value
inequality (definition 4.0.3). Note, that in the case of non-negative Ricci curvature these are
satisfied (Bishop’s volume comparison theorem and theorem 3.0.3). Later, Li and Wang observed
that if we are not interested in getting a sharp estimate on the dimension, but only in proving
the finite dimensionality of the space of harmonic functions of polynomial growth, we can relax
the above conditions, by assuming the volume to have polynomial growth and a weak mean value
inequality (see chapter 4).

It is worth mentioning that similar results to the ones we present here for harmonic functions,

such as the gradient estimate and the Harnack inequality, hold for positive solutions of the heat

Q)f(x,t) = 0. ( see [16])

tion, i.c. (A—
equation, i.e 5



Chapter 1

Preliminaries

Throughout this thesis let M be a complete Riemannian manifold of dimension n, (n > 2). We

will denote the metric tensor as g(-,-) as well as < -,- >. For a given chart z = (21, - -, z,) and
the associated frame {6%1, cee %}, gi; will denote the metric components with respect to this

chart -i.e. g;; = <6%¢’ %} and g%/ will denote the entries of the inverse matrix of (g;;);; . V will

denote the Levvi-Civita connection of M. For an f € C*(M) we denote gradf with Vf as well,

where gradf is the unique vector field such that Y (f) = <Y, gradf>.

The curvature R of M is Rxy(Z) = Vy (VXZ) — Vx (VyZ) — Vix,y}Z. The curvature ten-

sor is R(X,Y,Z,W) = (Rxy(W),Z) and with R;jx; we denote its components, i.e. Rjjr =
o 8 2 a\y_ d d

R(aTciv Oz; Oz 3_Tl) = <Ro§ia%j(871)v Do

The Ricci curvature of M is the unique -up to sign- non-zero contraction of R, and we denote it by

Ric(-,-). If x = (21, - -, 2,) is a normal coordinate chart with associated frame {8%1, e ,%},
n
0 0
then the components of the Ricci curvature are R;; = ]; <Raii 2 (a—xk)7 8795]>
1.1 Connection Forms
Let (U, x) be a normal coordinate chart of M, so that the frame {6%1’ e ,a%} is orthonormal
at each p € U. We define the 1-forms w;; by
o 0

wij(v) = <V”8Tsi’ 9z,

The linearity of V in the lower argument and the linearity of the metric guarantee that these are
indeed 1-forms.

We call them the connection forms of M with respect to (U7 x)



Let w; be the dual basis of {8%’ cee % } So the w;’s are 1-forms and wi(a%) = ;5. Cartan’s

first structural equation says that

n
dw; = Z wij N\ wj
j=1
Cartan’s second structural equation says that

n
dwij = Zwik A\ wkj + Qij
k=1

n
where Q;; = Zl,k:l Rijriwr A wg

1.2 Covariant Derivatives

Let f € C°(M) . Then df =Y., fiw;, where f; = %(f) . If we consider n = df; + Y _p_; frxwhi,
then 7 is a 1-form and since the w;’s form a basis, we must have n = Z;;l a’w; for some functions
al.
We define the second covariant derivatives of f by
fij = Oéj.
So we have
n n

Z fijwj = dfs + Z frwri

j=1 k=1
Lemma 1.2.1. fij = fji

Proof. We exterior-differentiate the equation df = "' | fiw; and we have:

0= Z [dfi A wj + fz‘dwi]

K2

= z df Nwy + Z fiwie Awy (Cartan’s 1st equation)
k ik
=3 [dfk +y fiwik:| A Wi
k i
= Z Jriws N wi
ki
= fij = fji O
Having had the second covariant derivatives defined, we consider the 1-form
dfi; + > 5 | frjwri + fikwkj} and we define, similarly as above, the third covariant derivatives fij;i

of f by the equation
D fipor = dfi; +Y [fkjwki + fikwkj}
k k



Lemma 1.2.2. (Ricci equation) Y, (fm — fm) =3 iRy

Proof. We begin by exterior-differentiating the equation Z?:l fijwj = dfi + > p_, fxwrki , which
gives
Z {dfw Nwj + fijdw]} = Z [df] Nwj; + fjdwjl}
J J

Bringing everything to the right hand side, we compute (constantly renaming the indices):

0= *Z [dfij A wj Jrz.fijwjk /\Wk] +Z [dfj A wji +ijwjk N Wi +ijjz}

J

= _deik /\Wk_Zfzngk/\wk+dek /\wkz+Zf;ng /\sz+ij e
k

Jik gk

=- 21@: :dfik + Zfijwjk_ A wy, + Z {dfk + ij(x)jk;:| A wri + ijjS

J j J
= —Zk: :dfik + Zfijwjk A wi + ka]wj AN wgi + ng i

J k,j
=- ; :dfik + Zfijwjk Nwg — szkjw]l A wg + ng i

J 2J
== Zk: -dfik + Z [fijwjk + fjkwjiH ANwi + ijﬂji

J

:_Zfzkjw] Nwp + 5 ng jiklWi N Wi

]7l;k

= Zfzkgw] ANwg + = Z (Zfthk])wJ N Wi

From this we get
1 1 1
3 Z fiRiik; — fikj = 3 Z fiRijk — fijk = fijk — firg = 3 Zfl (Rlijk - Rlikj) = Z fiRuijk
1 1 1 1
Setting i = k and summing for 1 < i < n we derive

Z fzyz fm] ZflRlJ

1.3 The Hessian

The symmetric 2-tensor defined by Hy := fijw; @ w; is called the Hessian of f.
It can be equivalently defined by Hy(X,Y) = X(Y(f)) — (VxY)(f) [see [8]]

10



Now, suppose p € M and = ¢ Cut(p). Let v : [0,7] = M be a minimal, normal (i.e. |¥/| =1)
geodesic from p to x. Let p be the distance function from p. Recall, that if % is the radial,

outward-pointing vector field (in a normal coordinate chart around p), then [see [17]]:

0
Vp=—
P= %

Since v is normal, 4" = % = Vp.
Now, suppose X € T,.M such that <X, fy’> = 0. Then, since x is not conjugate to p, there is
a Jacobi field, X, such that X(0) = 0 and X(r) = X and [X,+/] = 0. Later, we will need the

following:

Lemma 1.3.1. H,(X,X) = /OT (%(}?)P - <R()~(,'y')(7’),)}>> = I(X,X) (the index form).

Proof.
H,(X, X) = X (X(p)) = (V5 X)(p) = X ((X,Vp)) ~ (V5 X, Vi)
= X((X.4) ~(VxX.o) = (X, 957)

The last equality is true because, since X(0) = 0 and X(r) = X we have that <)~(,'y’>(0) =
(X.7/)(r) = 0= (X.7') = 0 [sec [6]).
Also, because [X,~'] =0, <)?, Vi) = <)?, Vy)?) Therefore we have:
H,(X, X) :/Ti@ vV, X) = /r (|2()?)|2+<)? Vo (V4 X))
P ) 0 dt 1) ol 0 dt ? Y Y
But since X is a Jacobi field, \ (VV/)?) + R(X,7")(7') = 0 Hence

H,(X,X) = /0 ( %()?)I2 ~(R(X,7)(), X))

1.4 The Laplacian

For a X € X(M) and each p € M we can define a linear map in T,M by Y, — (VyX)p. Taking

the trace of that map we get the divergence of X, i.e.
divX(p) = tr{Y, — (VyX)p}
Then, for a f € C*°(M) we define the Laplacian of f by
Af = div(gradf)

11



Locally, for a given chart « = (x1,...,x,) we can define the

Laplace - Beltram: operator by

1 0 i 0
— _ vy _—

where g = det((gij)i,j)'

Alternatively, we can define the Laplacian as the trace of the Hessian, i.e. Af = Z fii-
i=1
The above different definitions are easily seen to be equivalent.

Lemma 1.4.1. Let x = (z1,...,2,) be a normal coordinate chart at p € M and
feC>®(M). Then at p,

( gradf| > =2 Z .+ 2Ric(gradf, gradf) + 2 Z AN DT

Proof. Since x is a normal coordinate chart, we have that gradf =", fia%i and |gradf|? = Z f2.

So
A(lgradf?) = A 12)
-S(5),
- z (;zfifij)j
= Z <Z2fifji>j (fij = fi)
—2Zf3]+22fz me
= 22 +2Z fi Z fiRij — fizi)]  (Ricci equation)
:2Zfij+2_2fifﬂ%ij+2Zfi(zfjj)i
_22 .+ 2Ric(gradf, gradf) + 2 (Af),f

7

O

Definition 1.4.1. A function f € C°°(M) is called harmonic at p € M if Af(p) =0. f is called
harmonic if Af = 0 everywhere. f is called subharmonic if Af > 0.

12



1.5 Bishop’s Volume Comparison Theorem

We state a standard result from Riemannian geometry, that we will use later.

Theorem 1.5.1. (Bishop) Suppose R;; > (n — 1)k, where k is a constant. Let p € M. We denote
the volume of a geodesic ball of radius r around p, by V,(r), and the volume of a geodesic ball of
radius v of a space form with constant curvature k, by V(r). Then, for any 0 < r1 < 7y < +00,

we have that

=

’I"g) S V(TQ)

For a proof, see [12].

13



Chapter 2

Gradient estimate

v . .. . .
‘ uu‘, where u is a positive harmonic function, when

In this chapter we will compute a bound for
we have a lower bound for the Ricci curvature. For this, we will need the Laplacian Comparison
Theorem which allows us to ”control” the Laplacian of the distance function. Afterwards, we will
derive some important corollaries, such as a Liouville property for manifolds with non-negative

Ricci curvature and a Harnack type inequality.

2.1 The Laplacian Comparison Theorem

In order to prove this chapter’s main result we will need the following:

Theorem 2.1.1. Suppose R;; > —(n— 1)k, where k > 0 is a constant. Let p € M and ~ : [0,b] —
M a minimal, normal geodesic in M with y(0) = p. Let N be a space form of curvature —k, p € N
and 7 : [0,b] = N a minimal, normal geodesic in N, with ¥(0) = p. Moreover, let p be the distance
function from p, in M, and p the distance function from p, in N. Then

Marp(r(t)) < Anp(A ()
Proof. We fix a t € [0,b]. Let eq,--- ,e, be an orthonormal, parallel frame along v, with e; = ~'.
For i > 2, let X;(s) be a normal Jacobi field along v such that X;(0) = 0 and X;(t) = e;(¢).
Then by Lemma 1.3, H,(e;(t),e;(t)) = I;(X;, X;). Also, observe that, since v is a geodesic,
Hp(elael) = HP(’Ylv’y/) = U

Therefore,
Anp(r(t) = ZHp (es(t),ei(t) = th(XhXi)
i=2 i=2
Analogously, we define, in N, é1,--- ,e, and Z(SL 1=2,---,n. Since N has constant curvature
—h, Xi(s) = SOOEE(s) [see (6]

14



Now, we define along -, for ¢ > 2 the vector fields:

sinh(Vkt)

Xi(s) = €i(s)

Each X/ has the same boundary values as X; and the X;s are Jacobi fields, hence by the Index
Lemma [see [6]]:

I(X;, X;) < L(X{, X))
Therefore, it suffices to show that Z L(X], X)) < Z.Tt(jfvi,kvi) = Anp(3(t)). Indeed, we have

i>2 i>2

St =3 [ (12t - (RO X0 s

B D smh(fs) o AN e ) ds
=3 [ (12xe- Smh(m} (Rlei, ) )res))d

~(sinh fs sinh(Vks) 2 ;o

B Z/ dsmh (Vkt) - [smh(\/ﬁt)} Ky 761))d8

_ / ([n 1 dé(smh(f s)] B [smh(\/ﬁs
0 sinh(Vkt) sinh(Vkt
¢ %(sinh(x/%s) o sinh(Vks

S/O ([nfl [dsinh(\/Et) '+ [smh(\/Et

YD g sinh(VES) 2 s o o g
:Z/O (|EX1| B [Sinh(\/gt)]2<R(Xi77)(’y )7Xi>)d8

]2Ric(’y', 7’))ds

)
)
)znflkds
= 1k)

In the same setting as in the above proof, we want to calculate Anp. So, we have:

_ N LV 4 (sinh(VEks),2  sinh(Vks)2 B
ANp_ZIt(XHXZ)_/O ([n ”“sinh(\/ﬁﬁ) ] +[sznh(ﬂt)] (n 1)k)ds

_ b k- cosh?>(Vks) sinh?(Vks)
—(n—l)/o ( sinh2(v/kt) e sinh? \/Et)>ds
cosh?(Vks) + sinh?(Vks)
(n=1) k/ sinh2(V/kt)

_ (n—-Dk /cosh(2\fs)d$— (n=Dk / d(smh(Z\fs))dS

3mh2(\fs) 0 SinhQ(\/Es) ds 2k
(n—-1WVk ’ sinh(2Vkt)  (n—1)Vk . 2sinh(v/kt)cosh(Vkt)
B 2 sinh2(Vkt) 2 sinh2(Vkt)

=(n—1)Vk coth(Vkt)

15



It is easy to check that Vkcoth(Vkt) <
t = p(7(t)). Therefore, we have the following:

. But ¢ is the distance from p of ~(t), i.e

1+ VEkt
t

Corollary 2.1.1.1. If R;; > —(n — 1)k, then, at any point where p is smooth,

L1+ V)

2.2 The Gradient Estimate

Theorem 2.2.1. Suppose R;; > —(n — 1)k, where k > 0 is a constant. Let u be a positive,
harmonic function on M, and B, () be a geodesic ball at x € M. Then on Bg(z) we have:

|Vl . Cﬂ(l +a\/E>
o

u

where Cy, depends only on n.

Proof. By Lemma 1.4.1, we have 1A (|Vul?) Z“w + Zuz (Au); + Ric(Vu, Vu) Zuu +

i,

Ric(Vu, Vu). (u harmonic)

Now, from the hypothesis on the Ricci curvature:

A(|Vul?) Zuu (n — 1)k|Vul? (2.1)

Let p € B,(x) such that Vu(p) # 0, otherwise the inequality of the theorem holds trivially. Then we
= |V1u|Vu and < Vu> =0
atp,fori =2,--- 'n. Then at p, u; = a%1(u) ~a IVu( u) = du(lvU|Vu) = <|VU‘Vu Vu> [Vul
and u; = 0 for ¢ # 1. Indeed, u; = a%i(u) <8$ ,Vu) =0.

Now, at p,

may choose normal coordinates at p, © = (x1,--- , ;) such that ‘9

9 _9 oy _ Wil
axj (|Vu|) - axj( Zuz) - ‘VU| = Uiy

Hence,
|Vu| Zuu
Recalling the formula A(f - g) = g- A(f) + f - Ag) + 2(V [, Vg), we have:
A(IVul?) = A(IVul - [Vul)

= 2|Vul - A(|Vu|) + 2<V(|Vu|), V(|Vu|)>

=2|Vu|- A(|Vu]) + 2|V (|Vul)[?

=2|Vu| - A(|Vu]) + ZZu%j

J

16



Combining with (2.1) we get:

[Vu| - A(|Vul) JrZul] > Zu” (n — 1)k|Vul?

= |Vu| - A(|Vaul) + (n — 1)k|Vul* > Zufj - Zu%
— -

- Z U (2.2)

i#1,J
2 2
> uh+ ) oul
i#1 i#1

Now, in general, we have ZIV\/:1 a2 >+ ( Zivzl 041,> Indeed, ( Z ) Z %42 Z (o)

v=1 K<

Za +Z a? +oz,\ =N- Za Moreover, since u is harmonic, Zu” =0= un = (Zu”)2

R<A v=1 i i#1
Hence, we get

2
Suh Yz S (Y =

i£1 i£1 i£1 i£1 N A

1 1
2 2 2
i1+n_1u11 = n_lzuil
K3
But, by a previous calculation:

|V“‘ Zulz Zuzzl
i

Combing this with (2.2), we have
1
[Vl - A(|Vul) + (0 = DEVUl? > —— |V (|[Vul) (2.3)

Since we can do the same calculations for any p € B, (z) such that Vu(p) # 0, (2.3) holds for every

such p.

[Vu|
u

Next, we consider the function ¢ = and we will find a lower bound for A¢. Firstly, we

have

V(|Vul) V|- Vu

U u?

Vo =
Also,
A(|Vu\) = A((;S . u)
=u-Dp+¢- Au+2(Vep,Vu)
=u-AN¢p+ 2<V¢, Vu>

A(|Vul) _2<v¢,vu> |Vul - A(|Vul) 2<v¢,w>

Ap = = —
= &0 u [Vu|-u u

17



So, for any p such that Vu(p) # 0, using (2.3), we get:

802 e (LT (VUDE = (0= DEITR) - AL

[Vul-u\n—1
_ 1 |Vul <V¢,Vu>
= D oV VEDF = (= Dk -2 (2.4)
= ; ul)]? = (n — k- M

However, using our calculation of V¢ above, we have:

QM ~(2- 2 )<V¢7Vu> N 2 (V,Vu)

n—1 u n—1 U

(- 2 )<V¢7Vu> N 2 <M7W> . 2 (- V4, Tu)
= n—1 u n—1 U n—1 u
. 3
(Cs) < (2- 2 ) (Vo Vu) 2 . IV(IWIZI Vu| 2 - [vu
n — u n — U n— U
_ 2 (Vo Vu) 2 |V(Vd)|-|Vul 2
_(2_71—1) u +n—1' u? _n—1.¢

In addition,

2 [V(IVul)|-[Vul _ 2 V(IVul)| Va2 o1 IV (|Vul)? e
n—1 u? n—1 |Vu|'/2ul/2 w32 —n-1 |Vulu

Taking these and (2.4) into account, we derive:

1 1 2 <V¢,Vu>
Ad’zn_l‘m'\v(lv’tﬂ)l —(n=1)¢ k21—
! ! 2\ (Vo,Vu) = 2
> 1wy VIV = (= Dé ok = (2= o) S e o (2.5)
L v(ve)P 1 5 .
n—1 [Vulu n—1
_ 2 (Vo,Vu) 1,
__(n_l)(é'k_@_n—l) U +n_1¢

To get our estimate, we consider the function F' = (a2 — p?)¢ = (a? — pz)lv—u”l, on B, (x)

Then, F' > 0 and F = 0 on 0B,(z). Hence, if Vu # 0 on B,(z), F attains its maximum, at some
xo € By(x). We consider two cases:

Case 1: xg is not a cut-point of x

In that case p is smooth near g = F' is smooth near zg, and therefore:

VF(z0) =0
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and
AF(J?()) S 0

The former gives:
Vp? \Y
~Vp? ¢+ (a* —p*)Vo=0= = fpz = 7:25 (2.6)

The Laplacian of F is,
AF = =10p* - ¢+ (02 = p) 2d + 2(V(a® = p?), V)

= —Ap* -+ (0 — )¢ — 2(Vp?, Vo)
Hence, from AF(zg) < 0, we have:

—Ap? o+ (o = p*)Ap—2(Vp*, V) <0
Np? A Vp?,V

Y, 2+7¢_2<2p 2¢>§0
a?—p? ¢ (a? = p?)o

Ap? A Vp?|?
2P2+7¢_2 |2p|22
-2 T3 -
But, we have that |Vp?| = 2p|Vp| = 2p and Ap? = 2pAp + 2|Vp|? = 2pAp + 2. Now, using
Corollary 2.1.1.1:

< 0 (using (2.6))

Ap? =2p0p+2<2(n—1)(1+ Vkp) + 2
<2(n—1)(1 + Vkp) +2(1 + Vkp) < C(1 + Vkp)

where C' depends only on n. So we have that

VU R\l
Oé2 _ ,02 ¢ (042 _ p2)2

CO+Vhp) D), 4p” (2.7)

0>—

e T e
O52_p2

(using (2.5))

Y

Vp? _ 2pVp
2—p2 a2 p

Now, since ? = we get,

(Vo,Vu)y  2p(Vp,Vu)

ou (@@=
20 |Vu| _ 2p

2—p2 u  aZ—p?

(C-5) < ¢
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So, in (2.7), we multiply by (a? — p?)?, and we get:

1 2
1

S — 1F2—201pF—C(1—|—\/Ep)0<2 —8a? — (n —1)ka* (2.8)
1

> F2—201QF—02(1+\/%0Z)2042

n—1

The last line can be justified as follows:
802 < 8(1 + Vka)a? < 8(1 + Vka)?a?
and
(n— ko = (n — 1)(Vka)?a® < (n —1)(1 + VEa)?a?

Also, the constants C,Cy depend only on n.
If we consider P(s) = —1-s? — 2C1as — Ca(1 + Vka)?a?, (2.8) says that P(F) < 0, therefore

F must lie between the roots of P. In particular,

2Ca + \/40%(12 +4-22 (1 4+ Vka)2a?
9_1

n—1

F <

=SF < C'(1+Vka)a

Moreover, on B, 2(z), p < § = a? —p? > %Oz?. As a result, on B, /o(x), we have:

IVl o (M)
o

where C), depends only on n.
Case 2: xg is a cut-point of =

We consider a minimizing, normal geodesic v : [0,7] — M such that v(0) = = and ¥(r) = zo.
For € > 0 small, we consider y = «(e). We note the following fact:
Since 7y is minimizing, there cannot be a conjugate point to y somewhere in -, for in that case,
there would have to be a cut-point of y somewhere in between, and v would stop to minimize the
distance after that, a contradiction.
As a result we can find a neighborhood of 7 such that it contains no conjugate to y points. Next,
we consider the distance function from y, p. From the triangle inequality we have

d(z,z) <d(z,y) + d(y,z) =d(z,2) + €

(2.9)
=p<p+te
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Additionally, since v is minimizing: p(z¢) = p(xo) + €. Finally, we consider the function F =
(0% = (p+ ) 51 By (9):

F<F and F(xo) = F(x0)
Therefore, F attains its maximum at xy. Since p is smooth near zo, we can do the same work as
before and get the same estimate for F'(xg) = F(z¢). Passing to the limit as e — 0 completes the

proof of the theorem O

Corollary 2.2.1.1. On a non-compact, complete Riemannian manifold M, such that R;; > 0,

there do not exist positive harmonic functions, other than the constants.
(For a compact manifold, that is true, even without any curvature assumption)

Proof. In Theorem 2.2.1 we can take k = 0. Then, if u is a harmonic function we have:

IVul _ 1
U Q@
Letting o — +o00, gives Vu = 0 which implies that w is constant. O

Corollary 2.2.1.2. (Harnack inequality) Suppose R;; > —(n—1)k. Let u be a harmonic function

on the geodesic ball B,,. Then, there exists a constant C(n, «, k) such that

sup u < C(n,a, k) - inf u
Ba/z Ba/2

Proof. By Theorem 2.2.1, |Vu7u\ < O(n,a,k). Let x1,22 € B,y such that u(r;) = sup u and
Ba /2
u(zz) = inf w.
(22) jnf,
Let v be a minimizing, normal geodesic that connects x; and xg. Then, I(v) = d(x1,z2) < . So,

we have

/ ‘vu|ds < C(n,a,k)/ds <C(n,a, k)«
2! gl

u

Next, we note that Lu(y(s)) = v'(s)(v) = (Vu,7) = |Lu(vy(s))| < |Vu|, by the Cauchy-

Schwarz inequality and since |y'| = 1. Finally, we compute
u(r)\ d
loQ(u(xg)) = ’[{dleg [u(’y(s))}ds

’U,(:L’l) < eC(n,a,k:)-a ’U,(Ig)

1
< / —|Vulds < C(n,a, k) - «
4 U

As a result

which proves the Corollary. O
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Corollary 2.2.1.3. (Yau-Cheng) Suppose R;; > 0. Let u be a harmonic function on M and let
B, (p) be a geodesic ball around a point p € M. We set i(a) = iélf u(xz). Then, there exists a
constant C', depending only on n, such that :

Vul(@) < ¢4 =1

for every x € By .

In particular there does not exist a non-constant harmonic function, satisfying the growth estimate

lim inf M >0
T—00 (1‘)

where p is the distance function from p.

Proof. We observe that u — i(«) is a positive harmonic function. We apply theorem 2.2.1 for

u —i(a), with k = 0. Then, we have

|Vul <Cl
u—ila) T«

=|Vu| < Cé(u —i(a))

for every x € B, 2.

ifa) _ uly)

Now, by the maximum principle, i(a) = u(y), where y € 9B, (p). Hence —= = ﬁ As a result,
a  ply
if we assume the growth estimate on wu,
lim @ >0
a—oo (Y
: : u(z) —i(e) :
Fix an x € M. By our estimate, |Vu|(z) < C—————=. Hence, if we let & — oo, we get
a
|[Vu| < 0= Vu=0. x was arbitrary, so Vu = 0 and u is constant. O
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Chapter 3

Mean Value Inequality

In this chapter we prove a mean value inequality, which will be used later in the proof of the

theorem of Colding and Minicozzi. We begin with two lemmas.

Lemma 3.0.1. (Yau) Let p € M, r4 > 0 and B,,(p) be a geodesic ball around p, such that
B,.,(p) NOM = 0. Suppose f is a non-negative, subharmonic function on B,,(p). Then, for every
a>1and0<r; <rey <rs<ry, if we denote B; = B,.,(p), we have the following estimates:

a—2 2 4 |: 1 « 1 0‘:|
/133\32 FIvIE < (@ =1)2 [(rg —r1)? /132\15"1 ;o (ra —13)? /194\15"3 !

oo ) 4 1 «
B, ORIV = (—1)2 (rqg —r3)? /34\33 d

Proof. We define the function

and

0 for p <7
L=t forrm <p <

o(p(x)) =41 for ro < p <rj
T4—pP

forrs <p <y

T4—T3

0 forry <p

Since ¢ = 0, on 9By, we have that
F1ons e [ (V@ =0
B4 B4
Therefore

2&*1& - _ 2 rae—1 - _
[ oriag /B4<V(¢f ).Vf) /

By

(a0 — )22V f? / 2651 (V. V1)

By
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Observe that P2 fLAf >0, hence
By

/ (0 — D@2V < — / 2611 (V6, V f) (3.1)
By By

But the left-hand side is non-negative, so the previous inequality implies that

- / 2¢fa—1<w,w>=‘ / 2¢f°“1<V¢7Vf>’
By By

Now, we compute

[ orwave| <2 [ forr 1|Vf|} [ror21v9]

By
J3
- /B 4 - [ A=l
<o ! ¢2f“ 2|Vf|2+i1 R

Combining this with (3.1) we get

(04—1)/3 S fOVIP < —/B 20"V, Vf) = ‘/B 2¢fa_1<V¢>7Vf>‘

Sla=n) [ apvp e

_ 2 N
PV < —— [ fVel?
By a—1 By

2 pa—2 2 4 a 2
= [ etrrwir < 2 [l

_ 2 o
PLOVIP+ —— | Ve
By a—1/p,

a—1
2

A

a—2 2 2 raa—2 2 « 2 _ 1 « o
But /Bs\&f vl S/B4¢ vy, and/&f Vel —/32\31 oy +/B4\BS (m_m)Qf

and the first estimate is proved. The second estimate is proved in an analogous manner by con-

sidering
1 for p <rg
=1 7=h forrs<p<r
0 forry <p

O

Lemma 3.0.2. (Poincaré Inequality) Suppose p € M and Bs,.(p) is a geodesic ball around p such
that Boy(p) NOM = (. Moreover, R;j > —(n — 1)k, k >0, and o > 1. Then there exist constants
Ci(a), Ca(a, n) such that for any function g, supported on By (p):

1
[ vtz e e enedm [ g
B.(p) r B.(p)
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Proof. Let ¢ € 0Ba.(p). If x € B,(p), then d(z,p) < d(z,p) + d(p,q) < 3r, while d(p,q) <

d(xz,p) +d(z,q) = d(x,q) > 2r — d(p,x) > r. In other words, B,(p) C Bs.(q)\Br(q). Let p denote
1
the distance function from ¢, p(z) = d(x, q). Then, by lemma 2.1.1.1, Ap < (n—1)(Vk+ —). Now,
p
for A > n — 2 (and recalling that Y p? = |Vp|*> = 1), we have
Dp ==X Ap+ AA+1)p M
1
> Ap - 1)(VE + ;) +AA+1)p A2
=X - VE(n—1)—(n—-1)p '+ (A + Dp~ ']
=X M A+2-n)p - (n— 1)\/%]
1
>\ M (A +2 - n)3— — (n—1)Vk]
r
on B.(p).
We take A =n — 1+ 3(n — 1)rvk. Then

1
Ap_)\ > )\p—A—lg > )\(37“)_)\_2

on B,(p).
Suppose f is a non-negative function, supported on B,.(p). Multiplying the above inequality with
f and integrating over B,(p), we get:

=2 -
M) /Br(p) I= /BT(p) Jer 32

Since f is supported on B (p), it is zero on dB,(p). Therefore

R R IR 7R
B,(p) B.(p)

But the left hand side of (3.2) is non-negative, hence

- /m(p) (V1907 = ‘ /Br(l)) (V7 Vp_)‘>‘

R A IRy
»(p) By (p)

gAr*H/ V£
B..(p)

Combining with (3.2) we get
11
Vil > —-f/ f (3.3)
/mp) 32 B
1 1

Now, Cy e Rl e Ty exp| — log3(n — 1+ 3(n — Drvk + 2)] >

exp[ —1log3(3(n — 1) + 3(n — 1)rvk +2)| = exp[ — 2log3] - exp[ — 3log3(n — 1)(1 +rVk)]. So, we
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can rewrite (3.3) as

1
/ [Vf| 2 Cy-em 0B */ f (3.4)
B.(p) " JB.(p)

Finally, for o = 1, we apply (3.4) for f = |g|. For a > 1, by Holder’s inequality

(o) ()

B, (p) B (p)

Za/
B(p)

o* Vel = [ 194"
~(p B (p)

1
sy Lo [
r B, (p)

where for the last inequality we have applied (3.4) for f = |g|*. The desired inequality follows. [

Theorem 3.0.3. (Mean Value Inequality) Let p € M and By,-(p) be a geodesic ball around p such
that Bar(p) N OM = (). We denote the volume of a geodesic ball of radius r around p, by V,(r).
Suppose R;j > —(n—1)k, where k > 0, and suppose that f is a non-negative, subharmonic function

on By, (p).Then, there exist constants C1,Csy, with Co depending only on n, such that

B, (p) Vi (4r)

Proof. We begin by considering the function h on Bs,.(p), which solves the problem

sup 2 < Cu(14+ eV [
Bar(p)

Ah =10

h = f on 0Ba,(p)

Since f > 0, by the maximum principle h > 0 on Bs,.(p). Moreover, f — h is subharmonic on
Bs,.(p) and f —h = 0 on 0Bs,-(p), so by the maximum principle again f < h on B,(p). By the
Harnack inequality

sup h < inf h- eC(H'“/E)

B.(p) Br(p)
As a result
sup f2 < sup A2 < inf A%- 20(+rVE) < 200+rVE) 1 / h? (3.5)
B.(p) B (p) B (p) Vo(r) JB, )

Next, we estimate [ ) hZ:

/Bmp) "= /Br@)(h REAE /Bmp) (h=9+ /Bmp) =D /Br@) r
=2 /B,(p)(h IR /Br(p) r (3

g2/ m—fﬁ+2/ s
Ba..(p) Bur(p)
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Now, h — f = 0 on dBs,(p). By the Poincare inequality (lemma 3.0.2)

/ (h— f)? < Clp2eCotisrv®) / V(h— PP (3.7)
BQT(ZD)

BQT(p)

But / IV(h—f)> < 2/ |Vh|2+2/ |V £|2. However, since h is harmonic and h = f
B2 (p) Bar(p) B2 (p)

on 9Bs,(p), by Dirichlet’s principle,

/ \W?s/ V5P
Ba.(p) B, (p)

/ V(h- <4 / v FP (3.8)
Ba.(p)

B27‘(p)

As a result

Using lemma 3.0.1 (with o = 2,73 = 2r,r4 = 47r) we get

1
/ IVf? < —2/ f? (3.9)
Bar(p) 2 J B o)

Combining (3.5),(3.6),(3.7),(3.8) and (3.9), we get

sup f2 < e2C0+VED) 1 [401602(1+r\/®/ f2_|_2/ f2]
(r) Bir(p) Bir(p)

B, (p) Valr
~ 1
<Cy(1+ eC2(1+rVk) 7/ f2
( )Vp(T) Bur(p)
1
< Oy (1+ C20H7VER) 7/ e
( ) Vo(4r) JB. ()
where the last inequality is justified by the volume comparison theorem. O
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Chapter 4

Polynomial Growth Harmonic

Functions

Definition 4.0.1. For d > 1, we define H%(M) to be the vector space of harmonic functions of

M which are of polynomial growth of order at most d:
o ={s af=0 & f=00"}

where p is the distance function from a fixed point p € M.
We denote the dimension of H(M) by h?(M).

Shortly after Colding and Minicozzi proved Yau’s conjecture in the form of theorem 4.1.2, Li
gave a proof that applies to a larger class of manifolds, i.e. those that satisfy a volume comparison

estimate and a mean value inequality (see difinitions below).

Definition 4.0.2. We say that a manifold satisfies a Volume Comparison Condition (V,) for a

w>1,if for any 0 < r; <re < 400 and p € M, we have that:
9\ #
Vp(rz) < CvaUl)(;)
1
for some constant Cy, > 0.

Definition 4.0.3. We say that a manifold satisfies a Mean Value Inequality (M) if for any r > 0

and p € M and any non-negative subharmonic function f on M we have that:

for some constant C'yq > 0.
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Also, Li’s argument can be applied to sections of vector bundles. More specifically, Li proved

the following theorem:

Theorem 4.0.1. (Li) Suppose M satisfies (V) and (M). Let E be a rank-m vector bundle over
M and Sq(M, E) <T(E) a vector subspace of sections of E, such that for each u € Sq(M, E) we
have that

e Alu| >0
o [ul = O(p")

where p is the distance function from a fized point. Then the dimension of Sq(M, E) is finite.

4.1 The Theorem of Colding-Minicozzi

We will adapt Li’s proof, to prove directly the theorem of Colding-Minicozzi. The proof is based

on the following lemma:

Lemma 4.1.1. (Li) Let K be a finite dimensional vector space (of dimension k) of functions of

M such that each uw € K has polynomial growth of order at most d, i.e.
u < Cp*
Moreover, assume that M has polynomial volume growth at most of order u, i.e.
Vy(r) < Crt
forpe M. For A\ >0 we consider the inner products

A,\(u,v):/ w-v
Bx(p)

Then, for any B > 1,0 > 0 and ro > 0, there exists r > ro such that if {u; le 18 an orthonormal
basis of K with respect to the inner product Ag,, then

k
Z/ g2 > = (2 i+d)
i=1 Br(p)

Proof. Let r,7" > 0. We denote the trace and the determinant of A, with respect to A,. with

tr,. A, and det, A,, respectively. We assume that the lemma is false. Then, for all r > rg,

k
Z/ a2 = trsy Ay < k= Catnto)
i=1 BT'(P)
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Since each A, is positive definite, by the geometric-arithmetic mean inequality applied on the

eigenvalues

=

(detgrAr) ™ < —trg, A,

T =

As a result,
detg, A, < BHEEHITO)

for each r > ry. Setting r = B%r, for 0 < ¢ < j — 1 and iterating the above inequality j times, we
get
d€t5.7rAr < ijk:(2d+u+5) (41)

However, for a fixed A,-orthonormal basis {u;}F_;,
/ lug|? < C‘/p(Tl)T%d < C2rfd+”
B, (p)

for each 1 > r, and each 1 < ¢ < k. Then, since Ag;, is positive definite, by Hadamard’s
inequality:
det, Ags, < C** Bkt p1) ke (2d+4)

and this contradicts (4.1) as j — 4o0c. Therefore, the lemma is true. O

Theorem 4.1.2. (Colding-Minicozzi) Suppose M has non-negative Ricci curvature. Then, the

dimension of H*(M) is finite. Moreover, there exists a constant C, depending only on n, such that
RY (M) < C-d" !

Proof. (Li) First of all, observe that, since R;; > 0, by Bishop’s volume comparison theorem, (V,,)
holds with Cy, = 1 and pu = n, and also (M) holds by theorem 3.0.3 and Crq depends only on n.

Let K be a finite dimensional subspace of H%(M), with dimK = k, and suppose {u;}¥_; is a
basis of K. We claim that for any p € M,r >0 and 0 < € < %, we have the estimate

k
Z/ ‘Ui|2 < Olef(nfl) sup/ |u|2 (4.2)
i=1 Y Br(p) Bitar(p)

ueT

where C1 is a constant depending only on n and

T={u=aus+ - +arur | (a1, --,ax) € RFunit vector}.

Indeed, for any x € B,(p), there exists a subspace K, of K, defined by

Ke={feK | f(z)=0}

We observe that K, has co-dimension at most 1, since otherwise there would exist two linearly
independent function f, g € K such that f(x), g(x) # 0. But then, the function f(z)-g—g(z)-f is a

linear combination of f and g that belongs in K, a contradiction. Therefore, after an orthonormal
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k

change of basis, we may assume that u; € K,, for 2 < ¢ < k and then Z lug|?(x) =

i=1
Now, w7 is harmonic, so (denoting with p(z) the distance from p to z, i.e. p(x) = d(

mean value inequality (M) for radius [1 + €]r — p(z) and noting that By tqr— () ()

we have

k
3 uil? (@) = [ua?(2)
=1
<c ! /
=MV d = p@) Sy @
! / fua ?
‘/p([l + 6] - p(l‘)) Bl14¢r(p)

|us|?

<Cwm

1
< Cum sup / Jul?
V([ + € = p(x)) wet Bitan(p)

Ju [* ().

p,x)) by the
Cc B[1+e]r(p)

Now, since [1 + €]r — p(z) < [1 + €]r < 2r, by the volume comparison theorem, we have

2r

Valor) < Vel dr = o) (i —0)

By a simple triangle inequality we observe that B,(p) C Ba,(x). Therefore we have

Vol +dr— o) > (LI 2Ly, ) o (L =26y
N 1 <( 2r )" 1
VTt dr o) - Tt dr— o) 7,00

Using this and (4.3) we get

Z\uz )< P -2 s [

Integrating over B,.(p) we get

_ O ,n
Z/ ) (x M2 sup/ |u|? / ([1+¢ - @) dx
B.(p) STy Bpugar(®) B.(p) r

To continue, we consider the function

Fo)=(L+d-5)"

Then
o)=L+ =L)
Fp)=2(l+d=7)" 20

for p < r. Using polar coordinates gives

/ ([1+¢ - @)ﬂld;p = /T Ay () f(t)dt
B.(p) r 0
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where A, (t) is the area of the sphere of radius ¢, around p.

Now, integrating by parts, we have
| aoswi = sono);,- [ rovod (145)
However, since f' > 0, by the volume comparison theorem,
[ rovid = e [ e
=, ([0 - n/o F(oye"ar)
= FOVlr) Vo) [ ot
Combining with (4.5) we get
/OT FO)A,(B)dt < nr="V,(r) /OT ftmtat
< nr"Vp(T’)r”rl /O f(t)dt
= o) [ (o

= "V, /0 (-5 (46)
= 20 [ [+ - 1),

= V() (T = ()

< V(e

From (4.4) and (4.6) our claim is proved.

On the other hand, note that condition (V,,) implies that the volume growth of M is at most
of order r*. Therefore, if we take 8 = 1+ ¢ and a § > 0 in lemma 4.1.1, we have that if {u;}*_;
is an orthonormal basis of K, with respect to the inner product Ag,, then there exists » > 0 such
that

k
> / us? > k- gm0 (4.7)
i=1 By (p)

However, if {u;}¥_; is an Ag,-orthonormal basis, then

[ k=
Bli1er(p)

for any v € T.
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Hence, combining (4.2) and (4.7) we get

k- ﬂ—(2d+n+5) < Cl . 6—(71—1)

Taking § — 0:
k < Cl . 6—(n—1) . (1 + 6)2d+n
Taking € = 24" we get
F<Coan (14 i)mn
< Cy 2d

1 \2d+n
The proof of the theorem will be complete if we show that (1 + ﬁ) is bounded by a constant

depending only on n. To that end, we consider the function
1 rrTn
Hx) = (1+ )"

for x > 2. Then

@)= (1+5)7"

: (log(l + %) + [z +n]
= D) ot + D~ )

1 r+n

We set h(z) = log(1 + E) i and compute:

x 1 22+z2—(x+n)2z+1)

Wi(z) = — o
(z) x+1 z2 (22 + x)?
—2? - —z2 —2nx —n
T @reP @y
_(2n—1):c—|—n>0
- (22 + )2

Therefore h is increasing, and since lim h = 0, we have that i < 0. As a result, H’ < 0 and
xr—r 00

H is decreasing, hence
H(z) < H(2) = C(n)

Next, we derive finite dimensionality for H¢(M) in a more "relaxed” setting.

Definition 4.1.1. We say that M satisfies a Weak Mean Value Inequality (WM) if there exist
constants Cyyaq > 0 and b > 1, such that for any non-negative subharmonic function f on M

flz) < CWM%W /B Ty

for all x € M and r > 0.
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Theorem 4.1.3. Suppose M satisfies WM) and the volume growth of M satisfies V,(r) = O(r#)
for some p € M. Then H*(M) has finite dimension and h*(M) < Cyypq(2b + 1)2d+r

Proof. Let K < H%(M) be a finite dimensional subspace of H%(M), with dimK = k. We set
B =2b+ 1, where b is the constant in (WM). By lemma 4.1.1, for any 6 > 0, there exists r > 0

such that if {u;}¥_, is an Ag,-orthonormal basis of K, then

k
Z/ w2 > k- g 2dtuto) (4.8)
i=1 Y Br(p)

k

On the other hand, since Zuf is subharmonic, by the maximum principle there exists a point
i=1

q € OB,(p) such that

k
Youie) <Y udla)

i=1
for any x € B,(p).

As in the proof of theorem 4.1.2, we can assume (after an orthonormal change of basis, if
necessary) that u;(¢) = 0, for 2 < i < k. We note that
B,.(p) C Ba;(p) C Bap41)-(p) and then, by (WM) on ui we have

Vp(r)ui(q) < Vy(2r)ui(q)

As a result

By (4.8) and (4.9),
k- 5—(2d+u+6) < Cywm

Taking § — 0,
k- 5—(2d+u) < Cywm

=k < (20 + 1)2THCyy
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As a result
hE(M) < Cyypaq(2b 4 1)%0HH < 400

4.2 Two Results about Massive Sets

Li’s ideas in the proof of theorem 4.1.2 (in particular lemma 4.1.1), can be used to prove similar-
looking results about massive sets. The notion of a massive set (more specifically that of a 0-
massive set) was first introduced by Grigor’yan in [7]. Later, Li and Wang generalized this idea

and considered d-massive sets, in [15]. We begin with the difinition.

Definition 4.2.1. Let d > 0 be any real number. Let 2 C M be a subset of M such that it admits

a non-negative, subharmonic function f defined on 2, such that
f=0 on Of)
and
[f(@)] < C-p

for each = € Q and for some constant C' > 0. We then call  a d-massive set (The function f is
called a potential function of Q). We also denote the maximum number of disjoint d-massive sets
admissible on M by m?(M).

Li and Wang proved the following three theorems:

Theorem 4.2.1. (Li-Wang) Suppose M satisfies (V) and (M). Let d > 1. Then, there exists a
constant C' > 0, depending only on p, such that

mé(M) < C-Cpy-dH?

The proof of the theorem above is essentially the same with that of theorem 4.1.2. Instead of
considering an orthonormal basis of a finite dimensional subspace, we consider a set of potential
functions corresponding to disjoint d-massive sets, with normalized L?-norm. Note that these
are automatically orthogonal, since they are supported on disjoint sets. Also, we do not need to
consider a change of basis and the subspaces K, because for each x € M, there exists at most one
potential function not vanishing at . The rest of the argument is almost the same.

Similarly, they proved the next theorem, which mirrors theorem 4.1.3:

Theorem 4.2.2. Li-Wang Suppose M satisfies (WM) and the volume growth of M satisfies:

Vo(r) = O(r")
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for some point p € M.Then
m(M) < Cyyaq - (2b 4 1)24H1

In the next theorem, they provided a sharp estimate of m®(M ) on R?:

Theorem 4.2.3. On R?,
m?(R?) < 2d

for alld > 0.

For a proof, see [15].
In general, it is not known whether there exists a direct relation between m® and h®. However

for d = 0 we have the following theorem (see [7])

Theorem 4.2.4. (Grigor'yan) The mazimum number of disjoint 0-massive sets admissible on M

is given by the dimension of the space of bounded harmonic functions on M, i.e.

m®(M) = h°(M)
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Chapter 5

Further Results about h%(M)

In this final chapter, we present some further results about the dimension of H¥(M), as well as
some conjectures on the subject.
First of all, for d € Z*, the case M = R™ has been explicitly calculated, and it is

e <n+;i—1>+ (nl—f;Q)

Along with his conjecture about whether the space of harmonic functions with polynomial

see for example [12].

growth is finite dimensional on a manifold M with non-negative Ricci curvature, Yau also raised

the question if the following relation holds:
dimHY(M) < dimH*(R™)
In this direction, Li and Tam considered the case d = 1 and proved the following in [13]

Theorem 5.0.1. (Li-Tam) Suppose M has non-negative Ricci curvature and that the volume
growth of M satisfies

for a constant k > 0. Then
dimHY (M) < dimH'(R¥) =k + 1
Moreover, as it turns out, such a constant k¥ must exist and 1 < k < n. As a result
Corollary 5.0.1.1. If M has non-negative Ricci curvature, then

dimH (M) <n+1
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This, led Li and Tam to consider two questions:

Question 1: Suppose M has non-negative Ricci curvature and satisfies the volume growth condi-
tion

Vy(r) = O(r")

for some constant k > 0. Is it true then that

mmH%MygmmH%wﬁ(k+gl>+<k;fl2)?

In the case n = 2 the question above was affirmatively answered by Kasue in [9], and indepen-
dently by Li and Tam in [14].

Question 2: What can be said about the manifolds on which equality is achieved in corollary
5.1.17
Li proved in [10] the following

Theorem 5.0.2. (Li) Suppose M is complete Kahler manifold with non-negative Ricci curvature.

If
dimH"(M) = 2m + 1

where m = dimc M, then M must be isometrically biholomorphic to C™.

Later, Cheeger, Colding and Minicozzi gave a proof in [1] that did not require the Kéhler
assumption. They proved a splitting type theorem for the tangent cone at infinity that had the

following corollary:

Theorem 5.0.3. (Cheeger-Colding-Minicozzi) Suppose M has non-negative Ricci curvature. If
dimH"(M) =n + 1

then M must be isometric to R™.

Finally, Wang in [19], estimated dimH"'(M) when M has non-negative Ricci curvature outside
a compact set and has finite 1st Betti number. Recall, that the n-th Betti number of a topological

space is the rank of the n-th homology group.

Theorem 5.0.4. (Wang) Suppose M has non-negative Ricci curvature outside a geodesic ball
B.(p), for p € M and r > 0. Moreover suppose that the 1st Betti number of M is finite and that
the Ricci curvature in B,.(p) satisfies

Ri; > —k

for some constant k > 0. Then there exists a constant C depending on n,r and k such that

dimH"(M) < C
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