

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΔΥΝΑΜΙΚΗΣ, ΤΕΚΤΟΝΙΚΗΣ & ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΛΟΓΙΑΣ

ΣμηΕΑ (Συστήματα μη Επανδρωμένων Αεροσκαφών) στη γεωλογική χαρτογράφηση και στην τεκτονική ανάλυση σε λατομεία των περιοχών της Καισαριανής Υμηττού και του Βώλακα Δράμας

Διπλωματική εργασία στο πλαίσιο του Προγράμματος Μεταπτυχιακών Σπουδών «Δυναμική, Τεκτονική και Εφαρμοσμένη Γεωλογία» με κατεύθυνση «Τεκτονική»

> Ειρήνη – Σπυριδούλα Γ. Στανωτά Α.Μ.: 21625

Τριμελής Εξεταστική Επιτροπή: Ε. Λέκκας, Καθηγητής (Επιβλέπων) Σ. Λόζιος, Επίκ. Καθηγητής Ε. Βασιλάκης, Επίκ. Καθηγητής

Αθήνα 2019

Ευχαριστίες

Η παρούσα διπλωματική εργασία εκπονήθηκε στο πλαίσιο του Προγράμματος Μεταπτυχιακών Σπουδών «Δυναμική, Τεκτονική και Εφαρμοσμένη Γεωλογία» με κατεύθυνση «Τεκτονική», του Τμήματος Γεωλογίας και Γεωπεριβάλλοντος, του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών.

Θα ήθελα να ευχαριστήσω τα μέλη της Τριμελούς Εξεταστικής Επιτροπής. Πιο συγκεκριμένα, θα ήθελα να ευχαριστήσω τον επιβλέποντα της εργασίας, Δρ. Ευθύμιο Λέκκα, Καθηγητή Δυναμικής, Τεκτονικής και Εφαρμοσμένης Γεωλογίας του ΕΚΠΑ, για την ανάθεση και την άριστη συνεργασία μας κατά τη διεκπεραίωσή της. Ευχαριστώ τους Δρ. Στυλιανό Λόζιο, Επίκουρο Καθηγητή Δυναμικής και Τεκτονικής Γεωλογίας του ΕΚΠΑ και Δρ. Εμμανουήλ Βασιλάκη, Επίκουρο Καθηγητή Τηλεανίχνευσης και Μορφοτεκτονικής του ΕΚΠΑ, για τη συμβολή τους στην ολοκλήρωση της εργασίας.

Σε αυτό το σημείο, θα ήθελα να ευχαριστήσω ιδιαιτέρως τον γεωλόγο PhDc του ΕΚΠΑ, Εμμανουήλ Ανδρεαδάκη, για την αμέριστη βοήθεια, την καθοδήγηση, τις πολύτιμες συμβουλές και τις παρατηρήσεις που μου παρείχε με υπομονή, καθ'όλη τη διάρκεια εκπόνησης της παρούσας εργασίας. Τον ευχαριστώ θερμά για το χρόνο του και για όλα όσα έχω μάθει δίπλα του.

Ευχαριστώ, επίσης, τη Δρ. Μαρία Σταυροπούλου, Αναπλ. Καθηγήτρια Εδαφομηχανικής – Βραχομηχανικής του ΕΚΠΑ για την άριστη συνεργασία μας και την υποστήριξη στο πρόσωπό μου.

Ευχαριστώ τον γεωλόγο PhDc του ΕΚΠΑ, Σπυρίδωνα Μαυρούλη, για όλες τις συμβουλές, τη βοήθεια και την εμπιστοσύνη που μου έχει δείξει σε όλη τη διάρκεια των σπουδών μου.

Θα ήθελα να ευχαριστήσω, επίσης, τον Δρ. Γεωλόγο Μιχάλη Διακάκη για τη στήριξη και τη βοήθειά του σε οτιδήποτε έχω χρειαστεί.

Ευχαριστώ τη γεωλόγο Msc του ΕΚΠΑ, Ελίνα Καπουράνη, για τα σχόλια και τη βοήθεια που μου παρείχε κατά την ολοκλήρωση της εργασίας.

Ευχαριστώ την αγαπημένη μου φίλη και γεωγράφο PhDc του ΕΚΠΑ, Ναυσικά – Ιωάννα Σπύρου, για την ενθάρρυνση και την έμπρακτη συμπαράστασή της κάθε στιγμή, εντός κι εκτός Πανεπιστημίου.

Τέλος, νιώθω την ανάγκη να ευχαριστήσω θερμά την οικογένειά μου και όλους τους φίλους, που με στήριξαν με κάθε τρόπο σε όλη τη διάρκεια των σπουδών μου και βρίσκονται πάντα στο πλευρό μου.

Περίληψη

Όπως είναι γνωστό, κατά τη διάρκεια μίας χαρτογράφησης στην ύπαιθρο, προκύπτουν προβλήματα που αφορούν την προσβασιμότητα της εκάστοτε περιοχής μελέτης και δομών κατ'επέκταση την εξέταση των της, εξαιτίας των ιδιαίτερων φυσικογεωγραφικών χαρακτηριστικών αυτής. Στη λύση τέτοιων προβλημάτων συνέβαλλε μέγρι πρότινος η αξιοποίηση αεροφωτογραφιών. Τελευταία, όμως, έχει παρατηρηθεί – στις γεωεπιστήμες και όχι μόνο – άνθηση της φωτογραμμετρίας SfM (Structure for Motion) που εφαρμόζεται σε φωτογραφίες που λαμβάνονται από drones (ΣμηΕΑ-Συστήματα μη Επανδρωμένων Αεροσκαφών, UAS – Unmanned Aircraft Systems). Έτσι, γίνεται εφικτή η αναγνώριση, η μελέτη με ακρίβεια και η ερμηνεία των εκάστοτε δομών (όπως για παράδειγμα επιφανειών ρηγμάτων). Δημιουργείται, λοιπόν – παράλληλα με την εργασία υπαίθρου όπου ήταν αυτή εφικτή – η δυνατότητα λήψης φωτογραφικού και βιντεοσκοπικού υλικού από drone ως επικουρική μέθοδος κατά τη χαρτογράφηση και την τεκτονική ανάλυση σε απότομα πρανή και συγκεκριμένα σε λατομεία των περιοχών της Καισαριανής Υμηττού και του Βώλακα Δράμας (Όρος Φαλακρό). Περιγράφεται αναλυτικά n διαδικασία χαρτογράφησης της γαρακτηριστικών δομών στις δύο περιοχές μελέτης. Στην περίπτωση της Καισαριανής, γρησιμοποιούνται δεδομένα που έχουν ληφθεί μέσω drone και μέσω εργασίας υπαίθρου, ενώ στην περίπτωση του Βώλακα χρησιμοποιείται υλικό που προέρχεται μόνο από πτήσεις drone. Τα σχέδια πτήσης σε κάθε περίπτωση ήταν διαφορετικά. Και στις δύο περιπτώσεις αναγνωρίζονται, χαρακτηρίζονται και ψηφιοποιούνται γαρακτηριστικές δομές κι εξάγονται συμπεράσματα σχετικά με αυτές και την αποτελεσματικότητα του συνδυασμού χρήσης δεδομένων υπαίθρου και δεδομένων από drone. Παράγονται ψηφιακά μοντέλα επιφάνειας, ορθομωσαϊκοί χάρτες, ψηφιακά μοντέλα εξομάλυνσης εδάφους μέσω της επεξεργασίας των δεδομένων που λαμβάνονται από drone. Αυτοί οι χάρτες χρησιμοποιούνται για την εξέταση των δομών των περιοχών. Υπολογίζονται τα στοιχεία των επιφανειών, δημιουργούνται διαγράμματα πυκνοτήτων σε δίκτυα Schmidt, τα αντίστοιχα ροδογράμματα και κυκλογραφικές προβολές κύριων επιφανειών και παράγονται χάρτες μορφολογικών κλίσεων. Δίνεται η δυνατότητα τρισδιάστατης απεικόνισης και μελέτης των δύο περιοχών μελέτης και του συνόλου των δομών τους, ακόμα κι εκείνων που δεν εκτίθενται στην επιφάνεια των πρανών. Διερευνάται, με αυτόν τον τρόπο, το κατά πόσο μπορεί η χρήση drone να συμβάλλει στη διαδικασία της γεωλογικής και τεκτονικής χαρτογράφησης, καθώς και ο τρόπος με τον οποίο μπορεί αυτό να επιτευχθεί. Στο πλαίσιο της μεθοδολογίας που αναπτύσσεται, επισημαίνονται τα πλεονεκτήματα και τα προβλήματα που προκύπτουν από κάθε μέθοδο, αλλά και τους τρόπους διόρθωσης ή αποφυγής τυχόν σφαλμάτων. Γίνεται ερμηνεία του ενιαίου στατιστικού δείγματος των μετρήσεων, λαμβάνοντας υπόψιν το κατά πόσο, με ποιόν τρόπο και σε ποιες δομές ήταν δυνατό να πραγματοποιηθούν πολλές μετρήσεις κι έχοντας εφαρμόσει όσο το δυνατόν μεγαλύτερη ομοιογένεια όσον αφορά αυτές. Τέλος, γίνεται κατανοητός ο καθοριστικός ρόλος της λήψης δεδομένων από drone σε περιπτώσεις εργασιών σε λατομεία, καθώς δίνεται η δυνατότητα ασφαλούς γαρτογράφησης του εκάστοτε κοιτάσματος.

Λέξεις κλειδιά: UAV, 3D απεικονίσεις, γεωλογική χαρτογράφηση, τεκτονική ανάλυση, Υμηττός, Δράμα, λατομεία

Summary

During field mapping, many problems arise as to the accessibility of each study area and hence the examination of its structures due to its particular physio – geographic characteristics. The use of aerial photographs has previously been the solution to such problems. Recently, however, there has been a booming of the structure for Motion (SfM) photogrammetry applied through Unmanned Aircraft Systems (UAS) not only in geosciences, but in other sciences as well. Thus, it is possible to identify, accurately study and interpret the structures (for example, fault surfaces). So, in addition to the fieldwork where this was possible, there is also the ability of taking photos and videos with drone as an auxiliary method in mapping and in structural analysis on steep slopes and specifically in quarries in the areas of Kaisariani of Mt. Hymitos and Volakas of Mt. Falakro (Drama). The process of mapping characteristic structures in the two study areas is described in detail. In the case of Kaisariani area, data obtained through drone and field work are used, while in the case of Volakas area, only imagery from drone flights is used. Flight plans were different in each case. In both cases, characteristic structures are identified, characterized and digitized and conclusions were drawn about them and the effectiveness of the combination of use of field and drone data. Digital Surface Models (DSMs), orthomosaic maps, Digital Terrain Models (DTMs) are produced through the processing of data acquired from drone. These maps are used to examine the structures of the study areas. Surface data are calculated, Schmidt network densities, corresponding rose diagrams and cyclographic projections of major surfaces are created, and morphological slope maps are generated. The three – dimensional imaging and study of the two study areas and their entire structure, even those not exposed to the slopes, is given. This explores how drone can contribute to the geological and tectonic mapping process, and how this can be achieved. In the framework of the methodology developed, the advantages and the problems arising from each method are highlighted, as well as the ways of correcting or avoiding any errors. Having applied as much homogeneity as possible, the single statistical sample of the measurements is interpreted, taking into account the extent to which and in which structures many measurements could be made. Finally, the crucial role of drone data acquisition in quarry operations is understood, as it is possible to safely map the deposits.

Key words: UAS, 3D imaging, geological mapping, structural analysis, Mt. Hymitos, Drama, quarries

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

MEPOΣ A' - ΕΙΣΑΓΩΓΗ
1. Σκοπός
2. UAV (Unmanned Aerial Vehicles)
2.1 Ιστορική ανασκόπηση8
2.2 Συστήματα
2.3 Ταξινόμηση των UAS
2.4 Τεχνικές / διαδικασίες κατά τη χρήση UAV
2.4.1 Συλλογή δεδομένων εικόνων (Vineyards, Καλιφόρνια)
2.4.2 Τεχνικά χαρακτηριστικά εμπορικού DJI Phantom
2.4.3 Αξιολόγηση της καταλληλότητας της χρήσης λέιζερ (TLS) και UAS, για τη δημιουργία DEM μεγάλης ακρίβειας
2.4.4 Ανακατασκευή μεγεθών πλημμύρων με χρήση Structure for Motion (SfM)
2.4.5 Χρήση UAV στη χαρτογράφηση της τοπογραφίας στη θέση ρηξιγενούς ζώνης
2.5 Εφαρμογές/χρήσεις των UAV στις γεωεπιστήμες
ΜΕΡΟΣ Β΄ - ΠΕΡΙΠΤΩΣΗ ΚΑΙΣΑΡΙΑΝΗΣ (ΥΜΗΤΤΟΣ)
3. Γεωγραφική θέση περιοχής μελέτης
4. Γεωλογία
Γεωδυναμικό πλαίσιο ευρύτερης περιοχής μελέτης
Λιθοστρωματογραφία της περιοχής μελέτης
5. Βασικές παρατηρήσεις για τη χαρτογράφηση με drone
 Μεθοδολογία της χαρτογράφησης με συνδυασμένη χρήση UAV και δεδομένων υπαίθρου
6.1 Δημιουργία Project για την περιοχή μελέτης
6.2 Επεξεργασία του Project
6.3 Υπολογισμός των στοιχείων των δομών που εξετάστηκαν μέσω drone
6.4 Δημιουργία διαγραμμάτων πυκνότητας σε δίκτυο Schmidt βάσει των δεδομένων που λήφθηκαν μέσω drone93
6.5 Δημιουργία ροδογραμμάτων (Rose diagrams) βάσει των δεδομένων που λήφθηκαν μέσω drone107
6.6 Δημιουργία διαγραμμάτων πυκνότητας σε δίκτυο Schmidt και των αντίστοιχων ροδογραμμάτων βάσει των δεδομένων υπαίθρου

6.7 Δημιουργία διαγραμμάτων πυκνότητας σε δίκτυο Schmidt και των αντίστοιχων ροδογραμμάτων βάσει όλων των δεδομένων
6.8 3D απεικόνιση ρηξιγενών επιφανειών και υπολογισμός των στοιχείων τους 126
6.9 Δημιουργία κυκλογραφικών προβολών για τις ρηξιγενείς επιφάνειες "Surface_3" και "Surface_14"
7. Συμπεράσματα
ΜΕΡΟΣ Γ΄- ΠΕΡΙΠΤΩΣΗ ΒΩΛΑΚΑ (ΔΡΑΜΑ)
8. Γεωγραφική θέση της περιοχής μελέτης
9. Γεωλογία
Γεωδυναμικό πλαίσιο ευρύτερης περιοχής μελέτης
Λιθοστρωματογραφία της περιοχής μελέτης139
10. Βασικές παρατηρήσεις για τη χαρτογράφηση με χρήση drone
11. Μεθοδολογία της χαρτογράφησης με χρήση UAV143
11.1 Δημιουργία Project για την περιοχή μελέτης143
11.2 Επεξεργασία του Project
11.3 Υπολογισμός στοιχείων των δομών της περιοχής μελέτης, μέσω επεξεργασίας των δεδομένων που λήφθηκαν μέσω drone148
11.4 Δημιουργία διαγράμματος πυκνότητας σε δίκτυο Schmidt και του αντίστοιχου ροδογράμματος βάσει των δεδομένων που λήφθηκαν μέσω drone
11.5 3D απεικόνιση ρηξιγενών επιφανειών και υπολογισμός των στοιχείων τους
11.6 Δημιουργία κυκλογραφικών προβολών για τις ρηξιγενείς επιφάνειες "Surf_20" και "Surf_43" και "Surf_schist"156
12. Συμπεράσματα
MΕΡΟΣ Δ΄- ΤΕΛΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ 160
ΜΕΡΟΣ Ε΄ - ΒΙΒΛΙΟΓΡΑΦΙΑ
ΜΕΡΟΣ ΣΤ΄ - ΠΑΡΑΡΤΗΜΑ

ΜΕΡΟΣ Α΄ - ΕΙΣΑΓΩΓΗ

1. Σκοπός

Η παρούσα διπλωματική εργασία έχει ως σκοπό τη διερεύνηση του κατά πόσο μπορεί η χρήση drone (UAV – Unmanned Aerial Vehicle) να συμβάλλει στη διαδικασία της γεωλογικής και τεκτονικής χαρτογράφησης, καθώς και του τρόπου με τον οποίο μπορεί αυτό να επιτευχθεί. Ο βασικός παράγοντας για την επιλογή χρήσης drone είναι η δύσκολη ή αδύνατη πρόσβαση του χαρτογράφου στην περιοχή μελέτης, εξαιτίας των φυσικογεωγραφικών χαρακτηριστικών της. Μέχρι πρότινος, η χαρτογράφηση της εκάστοτε περιοχής γινόταν αποκλειστικά μέσω της εργασίας υπαίθρου (μετρήσεις με γεωλογική πυξίδα, φωτογραφικό υλικό), που ήταν δυνατό να συμπληρωθεί από την αξιοποίηση αεροφωτογραφιών. Τελευταία, έχει παρατηρηθεί χρήση των drones σε διάφορους τομείς, συμπεριλαμβανομένων των γεωεπιστημών. Τόσο η μέθοδος της υπαίθριας εργασίας, όσο κι εκείνη της λήψης δεδομένων μέσω drone, χαρακτηρίζονται από πλεονεκτήματα και μειονεκτήματα, τα οποία συμβάλλουν και δυσγεραίνουν αντίστοιγα το έργο του χαρτογράφου. Στην παρούσα εργασία, παρουσιάζονται αυτά τα πλεονεκτήματα και μειονεκτήματα, καθώς και ο τρόπος με τον οποίο τα δεδομένα που λαμβάνονται μέσω drone μπορούν να συμπληρώσουν εκείνα που λαμβάνονται μέσω της εργασίας υπαίθρου. Παρουσιάζεται, επίσης, ο τρόπος με τον οποίο η εφαρμογή της μίας μεθόδου μπορεί να διορθώσει τα σφάλματα που προκύπτουν από την εφαρμογή της άλλης. Περιγράφεται αναλυτικά η διαδικασία της χαρτογράφησης χαρακτηριστικών δομών στην περιοχή της Καισαριανής στην Αττική και στην περιοχή του Βώλακα στη Δράμα. Στην περίπτωση της Καισαριανής, λήφθηκαν δεδομένα μέσω drone κι εργασίας υπαίθρου, ενώ στην περίπτωση του Βώλακα λήφθηκαν δεδομένα μόνο μέσω drone. Και στις δύο περιπτώσεις αναγνωρίστηκαν, χαρακτηρίστηκαν και ψηφιοποιήθηκαν γαρακτηριστικές δομές κι εξήγθησαν συμπεράσματα σχετικά με αυτές και την αποτελεσματικότητα του συνδυασμού χρήσης δεδομένων υπαίθρου και δεδομένων από drone.

2. UAV (Unmanned Aerial Vehicles)

2.1 Ιστορική ανασκόπηση

Η ιδέα της πτήσης ανέκαθεν απασχολούσε τον άνθρωπο. Η επιθυμία του να πετάξει ξεκίνησε να υλοποιείται μέσω δοκιμών κατά την αρχαιότητα (Δαίδαλος και Ικαρος) κι έπειτα, μέσω έργων βασισμένων στις θεμελιώδεις επιστήμες (π.χ. Leonardo da Vinci 1452-1519, Montgolfier 1783). Το όνειρο της πτήσης δε σταμάτησε ποτέ. Οι προσπάθειες συνεχίστηκαν με μηχανές που μπορούσαν να πετάξουν με φωτιά (Santos-Dumont 1899, Zeppelin 1900-1909) κι αργότερα, με μηχανές που ήταν αρκετά βαρύτερες από τον αέρα (Otto Lilienthal, 1890-1896) και ύστερα, κατά τη διάρκεια των Α΄ & Β΄ Παγκοσμίων Πολέμων. Η εξέλιξη των μη-επανδρωμένων μηχανών ήταν όμοια με εκείνην των επανδρωμένων. Η τεχνολογική και σχεδιαστική εξέλιξη επηρέασαν την ανάπτυξη των μη-επανδρωμένων μηχανών όλα αυτά τα χρόνια, όπως φαίνεται στο παρακάτω σύνθετο διάγραμμα (Εικ. 1):

Εικόνα 1: Η εξέλιξη των UAV.

Αναφορές σε ειδικά χαρακτηριστικά προσφέρουν μία σειρά κατηγοριών UAV, από τις οποίες, οι πιο αντιπροσωπευτικές αναφέρονται παρακάτω (Εικ. 2). Τα μη-ελεγχόμενα εναέρια συστήματα (UAS) έχουν ονομαστεί με διάφορους τρόπους κατά την πάροδο των ετών: drones, RPV (remotely piloted vehicle/οχήματα με τηλεχειρισμό), UAV (unmanned aerial vehicle/μη επανδρωμένο όχημα), UCAV (uninhabited combat aerial vehicle /ακατοίκητο πολεμικό αεροσκάφος), FVO (organic aerial vehicle/Οργανικό Αεροσκάφος), UCAV/S (uninhabited combat aerial vehicle/ακατοίκητα πολεμικά αεροσκάφη/σύστημα), RPA (remotely piloted aircraft/εξ αποστάσεως πιλοτικά αεροσκάφη), RPH (remotely piloted helicopter/εξ αποστάσεως πιλοτικό ελικόπτερο), εναέρια ρομποτική (aerial robotics), MAV (micro aerial vehicle / μικρό εναέριο όχημα) και η λίστα συνεχίζεται.

Εικόνα 2: Ταξινόμηση / κατάταξη των UAV.

Ειδικές αναφορές παρέχουν επαρκή στοιχεία που τονίζουν τις πιο σημαντικές στιγμές στην εξέλιξη των μη-ελεγχόμενων αέριων συστημάτων (unpiloted aerial systems). Παρακάτω (Εικ. 3) παρουσιάζεται ένα πλήθος σημαντικών έργων από την αρχή έως το 1980.

Εικόνα 3: Η εξέλιξη των πρώτων έργων.

Η πρώτη σημαντική συμβολή στην ανακάλυψη αυτόνομων μηχανισμών έγινε από τον Αρχύτα τον Ταραντίνο (νότια Ιταλία). Είχε εφαρμόσει ένα σύνολο γεωμετρικών εννοιών, με αποτέλεσμα να κατασκευάσει το 425 π.Χ. το πρώτο UAV. Το συγκεκριμένο UAV ήταν σαν μηχανικό πτηνό (Εικ. 4), το οποίο μπορούσε να πετάξει μέσω του μηχανισμού που είχε τοποθετηθεί στην περιοχή του στομάχου του.

Εικόνα 4: Το πρώτο UAV, όπως κατασκευάστηκε από τον Αρχύτα τον Ταραντίνο.

Κατά το 400 π.Χ. είγε καταγραφεί στην Κίνα η ιδέα της δημιουργίας μίας συσκευής που θα μπορούσε να πραγματοποιεί κατακόρυφες πτήσεις. Το 1483, ο Leonardo da Vinci είχε σχεδιάσει ένα αεροσκάφος ικανό να απογειωθεί κατακόρυφα (Εικ. 5). Αυτό το αεροσκάφος έχει θεωρηθεί από ειδικούς, ως «πρόγονος» του σημερινού ελικοπτέρου. Επίσης, κατά το 1508, ο da Vinci σχεδίασε ένα μηχανικό πτηνό που περιλάμβανε έναν διπλό μηχανισμό στροφάλου, που κατέβαινε κατά μήκος ενός καλωδίου. Αργότερα, το 1754, ο Mikhail Lomonosov σχεδίασε ένα αξονικό στροφείο (Εικ. 6) και το 1783 σχεδιάστηκε μία προπέλα αντίθετης περιστροφής (Εικ. 7), βασισμένη στην κινεζική ιδέα. Ο George Cayley σχεδίασε ένα μεταφορικό αεροσκάφος, το οποίο όμως δεν προγώρησε σε υλοποίηση, εξ'αιτίας του ότι τα συστήματα προώθησης τότε ήταν διαθέσιμα μόνο για ατμομηχανές (Εικ. 8). Το 1840, ο Horatio Phillips σχεδίασε μία μηχανή, ικανή να εκτελεί κατακόρυφες πτήσεις. Αυτή η μηχανή περιλάμβανε ένα μικροσκοπικό λέβητα που παρήγαγε ατμό και το 1860, ο Ponton d'Amecourt πέταξε μικρότερα ελικόπτερα, τα οποία τροφοδοτούνταν με ατμό (Eik. 9).

Εικόνα 5: Ο έλικας του Leonardo da Vinci.

Εικόνα 6: Το αξονικό στροφείο του Lomonosov.

Εικόνα 7: Η προπέλα αντίθετης περιστροφής (1783).

Εικόνα 8: Το μεταφορικό αεροσκάφος του G. Cayley.

Εικόνα 9: Το μικρό ελικόπτερο του d'Amecourt (1860).

Το 1849 χρησιμοποιήθηκε για πρώτη φορά ένα μη-επανδρωμένο μαχητικό αεροσκάφος, όταν οι Αυστριακοί επιτέθηκαν στην πόλη της Βενετίας στην Ιταλία. Επρόκειτο για 200 μη-επανδρωμένα μπαλόνια (Εικ. 10) που ήταν φορτωμένα με ωρολογιακές βόμβες. Το 1900, ο Nicola Tesla (1856-1943) παρουσίασε την ιδέα του ελέγχου του μπαλονιού μέσω ασύρματου δικτύου (Εικ. 11) και το 1915 περιέγραψε έναν στόλο μη-επανδρωμένων μαχητικών αεροσκαφών.

Εικόνα 10: Τα αυστριακά μπαλόνια (1849).

Εικόνα 11: Η ιδέα του Nicola Tesla.

Γενικά, τα μη-επανδρωμένα εναέρια συστήματα έχουν προκύψει από την ανάπτυξη των αεροσκαφών-τορπίλων πριν από σχεδόν 95 χρόνια. Οι προσπάθειες συνεχίστηκαν μέσω του Κορεατικού πολέμου, κατά τον οποίο πειραματίστηκαν οι στρατιωτικές υπηρεσίες με τις αποστολές, τους αισθητήρες και τα πυρομαχικά. Στη δεκαετία του 1950, τόσο το Πολεμικό Ναυτικό, όσο και η Πολεμική Αεροπορία διεύρυναν τις προσπάθειές τους να επικεντρωθούν σε "cruise missiles" και την ανάπτυξη μη-επανδρωμένων εναέριων οχημάτων (UAV) μέσω ξεχωριστών μέσων.

<u>Α΄ Παγκόσμιος Πόλεμος</u>: Το 1916 γίνεται η πρώτη προσπάθεια να χρησιμοποιηθεί ένα μη-επανδρωμένο αεροσκάφος που ονομάζεται "aerial target" (Archibald Montgomery Low, 1888-1956), τα target planes ελέχγονταν από το έδαφος μέσω ενός αυτόματου Hewitt-Sperry, γνωστού και ως "flying bomb" που ήταν ενσωματωμένο στον έλεγχο ενός γυροσκοπίου (1917). Το 1917 το αεροσκάφος Kettering Bug (Εικ. 12), που

ονομαζόταν aerial torpedo", πέταξε με αυτόματη λειτουργία για τον αμερικανικό στρατό. Το 1917 εμφανίζεται το Standard E-1 (Εικ. 13) και τα χαρακτηριστικά του συνοψίζονται στον παρακάτω πίνακα (Εικ. 14).

Εικόνα 12: Το μη επανδρωμένο σύστημα - Kettering Bug.

Εικόνα 13: Standrard E-1.

Span	7.31 m	Speed max	16 km h
Mass empty/ total	520 / 811 kg	Distance	290 km
Engine Rhone	60 CP	Ceiling	4420 m

Εικόνα 14: Χαρακτηριστικά του Standard-1.

Περίοδος του Μεσοπολέμου: Το 1922 έγινε η πρώτη εκτόξευση ενός μη-επανδρωμένου target (PAE 1921 – larynx) (Εικ. 15). Το Σεπτέμβριο του 1924 πραγματοποιήθηκε η πρώτη επιτυχημένη πτήση του ίδιου target, RAE 1921 για 39 λεπτά της ώρας και το 1933 ο βρετανικός στόλος χρησιμοποίησε drones στη Μεσόγειο. Τα target drones De Havilland DH82B Queen Bee (Εικ. 16) βασίστηκαν σε Tiger Moth biplane. Το 1935 αναπτύχθηκαν σειρές RPV (Εικ. 17), που ήταν έργα που είχαν ως επικεφαλής τον Reginald Denny (1891-1967). Το 1939, ο ίδιος ο Reginald Denny εισήγαγε ένα

αεροσκάφος RC χαμηλού κόστους, με σκοπό την εκπαίδευση AA σκοπευτών. Την ίδια χρονιά, παρουσίασε τα RP-RP-3 και 4.

Εικόνα 15: RAE 1921 - Larynx.

Εικόνα 16: De Havilland DH-82B.

Εικόνα 17: RP-1 (Reginald Denny).

<u>Β΄ Παγκόσμιος Πόλεμος</u>: Τον Ιούνιο του 1944, η Γερμανία χρησιμοποίησε τα Fi-103 (V1) (Εικ. 18). Τον Οκτώβριο του 1944 έγινε η πρώτη αποστολή και χρήση ενός UAV στα νησιά Balla. Οι ιαπωνικές θέσεις βομβαρδίστηκαν μέσω TDR-1 (Εικ. 19). Επίσης, το 1944 υλοποιήθηκε το έργο "Aphrodite", που ήταν ένα πρόγραμμα που μετέτρεπε τα US b-1 και PBY-4Y σε ιπτάμενες βόμβες – drone.

Εικόνα 18: Fi-103 (V1).

Εικόνα 19: TDR-1.

Μεταπολεμική περίοδος: Τον Απρίλιο του 1946, τα πρώτα μη-επανδρωμένα αεροσκάφη με σκοπό την επιστημονική έρευνα, ήταν τα Northrop P-61 Black Widow, που είχαν ως αποστολή να συγκεντρώσουν δεδομένα καιρού για το Weather Bureau των Η.Π.Α. Το 1951 χρησιμοποιήθηκαν οι πρώτες μηχανές jet (Teledyne Ryan Firebee τύπου Ι) (Εικ. 20). Το 1955 γίνεται η πρώτη πτήση μη-επανδρωμένου αεροσκάφους (Northrop radioplane SD-1 Falconer / Obsever) $\gamma_{1\alpha}$ αναγνώριση, που χρησιμοποιήθηκε στη συνέχεια από τον αμερικανικό στρατό και τη βρετανική εταιρεία Beechcraft. Στη συνέγεια εισήγθη το μοντέλο 1001 στο Ναυτικό των ΗΠΑ (Εικ. 21). Το 1959 γίνεται το πρώτο επίσημο σχέδιο για τις μη-επανδρωμένες πτήσεις με RPV / UAV. Το 1960 έγινε η παρουσίαση του προγράμματος UAV με την κωδική ονομασία "Red Wagon" και στα μέσα του Αυγούστου του ίδιου έτους πραγματοποιείται η πρώτη πτήση ενός μηεπανδρωμένου ελικοπτέρου Gyrodine QH-50A στο Μέριλαντ (Εικ. 22). Από το 1964 έως το 1975 η Strategic Reconnaissance Wing 100 3435 του USAF ξεκίνησε -μέσω Ryan drone- αναγνώριση του Βόρειου Βιετνάμ.. Το 1966 ξεκίνησε το έργο Lone Eagle (αργότερα ονομάστηκε Compass Arrow) για το σχεδιασμό απαραίτητων αποστολών αναγνώρισης πάνω από την Κίνα μέσω UAV, με αποτέλεσμα να προκύψει το D-21 (Εικ.23). Ο σκοπός ήταν να πραγματοποιηθούν αυτές οι απαραίτητες πτήσεις σε μεγάλο υψόμετρο. Αυτά είναι τα πρώτα βήματα όσον αφορά στη χρήση των UAV σε μάχες στη θάλασσα και στην ξηρά.

Εικόνα 20: Ryan Firebee II.

Εικόνα 21: SD-1 / MQM-57 Falconer.

Εικόνα 22: Girodina UAV QH-50A.

Εικόνα 23: D-21 Tagboard.

Τη δεκαετία του '70 και κατά ένα μέρος του '80 αναπτύχθηκαν διάφορα UAS, σχεδιασμένα για επιχειρήσεις αναγνώρισης και επιτήρησης τόσο για αποστολές μικρής και μεγάλης εμβέλειας όσο και για μεγάλες αποστάσεις. Στα τέλη της δεκαετίας του '60, η Πολεμική Αεροπορία των ΗΠΑ άρχισε να εξερευνά τα HALE (High Altitude Long Endurance) UAS με σκοπό τις αναγνωρίσεις.

Σκοπός της LTV Electrosystems (1968) ήταν να κατασκευάσει δύο πρωτότυπα, επανδρωμένα ή μη επανδρωμένα, γνωστά ως L-450F, με βάση το ανεμόπτερο Schweizer 2-32. Το πρώτο πέταξε το 1970 και το δεύτερο εξελίχθηκε στο UAV XQM-93. Στη συνέχεια δοκιμάστηκε ένα άλλο μοντέλο LTV στο πρόγραμμα Compass Dwell. Το αεροσκάφος Martin Marietta 845A ήταν εκείνο που πέταξε το 1972.

Στη συνέχεια το Boeing YQM-94 Gull ή Cope-B ήταν το 1971 ο νικητής του διαγωνισμού Compass Cope USAF για την ανάπτυξη ενός συστήματος αναγνώρισης HALE. Ο στόχος του προγράμματος ήταν, το αεροσκάφος να φτάσει σε υψόμετρο 16770m και να έχει αντοχή 20 ωρών με ωφέλιμο φορτίο ίσο με 680 κιλά. Αυτό το ωφέλιμο φορτίο περιλάμβανε εξοπλισμό για την αναγνώριση φωτογραφιών, το ρελέ επικοινωνιών και τα σήματα πληροφοριών (SIGINT) σε απόσταση 300Km., ημέρα και νύχτα, καθώς και σε όλες τις καιρικές συνθήκες. Το ένα πρωτότυπο συνετρίβη και ενώ προετοιμαζόταν το δεύτερο, ο άμεσος ανταγωνιστής του, δηλαδή το Teledyne Ryan YQM-98 (Cope-R) πέταξε με μεγάλη επιτυχία. Κατέγραψε διάρκεια αντοχής ίση με 28 ώρες και 11 λεπτά. Ο σχεδιασμός του Cope-R 275 οφείλεται σε μεγάλο βαθμό στον προηγούμενο (ίδιου κατασκευαστή) Compass Arrow (AQM-91 Firefly), ο οποίος ήταν ένα UAV αναγνώρισης και είχε παρουσιάσει πολλά εξωτερικά χαρακτηριστικά που θα χρησιμοποιούνταν στο νέο του σχέδιο (Global Hawk) 29 χρόνια μετά.

Από την άλλη μεριά, στον τομέα των MALE (Medium Altitude Long Endurance) UAS, είναι απαραίτητο να ανατρέξουμε στο DARPA (Defense Advanced Research Projects Agency) Amber project. Η Amber ήταν ένα DARPA/U.S. έργο του Ναυτικού που στόχευε στην κατασκευή ενός MALE UAV χαμηλού κόστους, ικανό να χρησιμοποιηθεί ως όπλο ή ως σύστημα αναγνώρισης. Από το έργο Amber προέκυψε το Gnat-750 (ο άμεσος πρόγονος του Predator, που κατασκευάστηκε από τη General Atomics) (Εικ.24).

Κατά τη διάρκεια της δεκαετίας του '80, αρκετές ένοπλες δυνάμεις παγκοσμίως είχαν την αναγκαιότητα επέκτασης σε πραγματικό χρόνο των δραστηριοτήτων ISTAR (ενημέρωση, παρακολούθηση, στόχος και αναγνώριση) UAS σε μεγαλύτερες διαδρομές (της τάξης των 100Km.). Αυτό απαιτούσε τη βελτίωση της ακρίβειας και της αξιοπιστίας των συστημάτων ελέγχου πτήσης. Για το σκοπό αυτό, χτίστηκαν αρκετά μοντέλα UAS μικρής και μεσαίας κλίμακας, από τα οποία, το IAI Scout (Εικ. 24) μπορεί να θεωρηθεί το πρώτο στην υιοθέτηση του γνωστού σχεδίου που χρησιμοποιείται μέχρι σήμερα (με τον κώνο διπλής ουράς και την έλικα ώθησης). Αυτό το σύστημα, μαζί με το παρόμοιο μοντέλο Tadiran Mastif, οδήγησε στο IAI (Mazlat) Pioneer, που ήταν σε υπηρεσία τόσο στο Ισραήλ όσο και στις ΗΠΑ μέχρι τα μέσα της δεκαετίας του 2000 (Prisacariu, 2017).

Εικόνα 24: Predator A (αριστερά) και ΙΑΙ Scout (δεξιά).

2.2 Συστήματα

Ένα μη επανδρωμένο όχημα είναι ένα σύστημα που περιέχει πολλά συστήματα ταυτόχρονα και είναι μέρος ενός μεγάλου σύνθετου συστήματος που αποτελείται από διάφορα στοιχεία, όπως άλλες εναέριες και επίγειες πλατφόρμες, δορυφόρους και τις επικοινωνίες μεταξύ του UAV και των άλλων αναφερθέντων στοιχείων

Ως πρώτη προσέγγιση, είναι δυνατή η διάκριση δύο τμημάτων στο UAS: ένα που αφορά στον αέρα και άλλο που σχετίζεται με το έδαφος. Το εναέριο τμήμα αποτελείται από τρία διαφορετικά συστήματα: την εναέρια πλατφόρμα, το απαιτούμενο ωφέλιμο φορτίο για την εκτέλεση της αποστολής και ένα μέρος του συστήματος επικοινωνίας. Στο τμήμα εδάφους περιλαμβάνονται επίσης ορισμένα συστήματα: το σύστημα ελέγχου του αεροσκάφους και το ωφέλιμο φορτίο του, ο εξοπλισμός επικοινωνίας και ο GCS (Ground Control Station). Ο GCS επιτρέπει την εμφάνιση των πληροφοριών όλων των αισθητήρων στους αντίστοιχους χρήστες με έναν από τους δύο διαφορετικούς τρόπους, έναν άμεσο και έναν έμμεσο (μέσω των δικτύων). Τέλος, το στοιχείο σύνδεσης μεταξύ αυτών των δύο τμημάτων είναι το σύστημα εκτόξευσης και ανάκτησης.

Τώρα, τα διαφορετικά συστήματα που μόλις αναφέρθηκαν πρόκειται να περιγραφούν λεπτομερώς. Το αεροσκάφος (ανυψωτική πλατφόρμα) έχει πολλά διαφορετικά μέρη, που ονομάζονται συστήματα ή υποσυστήματα της πλατφόρμας. Η χρήση του κάθε όρου εξαρτάται από την επεξεργασία που επιλέγεται για το αεροσκάφος κάθε φορά. Υπάρχει μια μεγάλη ποικιλία εναέριων πλατφορμών, που ποικίλλουν σε μέγεθος (από τα micro UAV έως τα αεροσκάφη με 40m έκταση πτερυγίων όπως το Global Hawk), στη γεωμετρία, στον τρόπο ανύψωσης (σταθερής πτέρυγας, περιστροφικής πτέρυγας) ή στο σύστημα πρόωσης (turbojet, κινητήρες εσωτερικής καύσης, ηλεκτρικούς κινητήρες). Η πλατφόρμα διαθέτει επίσης τα συστήματα εντοπισμού θέσης, πλοήγησης, επικοινωνίας και ζεύξης δεδομένων. Όλα αυτά τα στοιχεία χρειάζονται για να επιτευχθεί ο έλεγχος της πτήσης, καθώς και ο έλεγχος αποστολής και η λήψη των σχετικών πληροφοριών από τους αισθητήρες.

Το ωφέλιμο φορτίο καθορίζεται από τα απαιτούμενα μέσα κι εξοπλισμό για την συγκεκριμένη αποστολή, όπως αισθητήρες ΕΟ (ηλεκτρο-οπτικά) και IR (υπέρυθρες), ονομαστικοί στόχοι υπέρυθρων, εξοπλισμός ηλεκτρονικού πολέμου, συστήματα SAR και ραντάρ, όπλα κλπ. Το GCS αποτελεί μέρος του εδάφους. Περιέχει συστήματα και εξοπλισμό που σχετίζονται με τον σχεδιασμό και τον έλεγχο της αποστολής (έλεγχος της πτήσης, ωφέλιμο φορτίο) και τη διανομή των πληροφοριών σε εξωτερικούς χρήστες, επικοινωνίες ATC κλπ. Επίσης, ο GCS διαθέτει το σύστημα επικοινωνίας και τα δεδομένα σύνδεσης LOS (Line of Sight) ή BLOS (πέρα από τη γραμμή εντοπισμού) που είναι απαραίτητα για την πρόσβαση στην πλατφόρμα ή στα εξωτερικά συστήματα.

Το σύστημα εκτόξευσης και ανάκτησης (LRS) θεωρείται συχνά ως μέρος του σταθμού ελέγχου εδάφους. Σκοπός αυτού του συστήματος είναι ο έλεγχος της πλατφόρμας κατά τη διάρκεια της φόρτωσης, της απογείωσης, των πρώτων διαστημάτων της πτήσης και κατά τη διάρκεια της προσέγγισης και της προσγείωσης (όλα σχετικά με την εκτόξευση και την ανάκτησή της). Αυτά τα LRS ποικίλλουν ανάλογα με το βάρος και το μέγεθος του UAS. Έτσι, τα οχήματα μπορούν να απογειώνονται και να προσγειώνονται χρησιμοποιώντας το σύστημα προσγείωσης (καθοδηγούμενο ή αυτόματο ATOL), να

εκτοξεύονται από τη ράμπα με ειδικούς ενεργοποιητές ή βοηθητικούς πυραύλους, να εκτοξεύονται με το χέρι κ.λ.π. και μπορούν επίσης να ανακτηθούν με αλεξίπτωτα, δίχτυα ή άλλες συσκευές.

Τέλος, τα απαιτούμενα συστήματα επικοινωνίας ομαδοποιούνται σε ένα άλλο υποσύστημα, που είναι χωρισμένο σε δύο μέρη: στην εναέρια πλατφόρμα και στο σταθμό ελέγχου εδάφους. Αυτό το υποσύστημα περιλαμβάνει: τα τερματικά των συνδέσεων δεδομένων (επί του πλοίου και επί του εδάφους), το δορυφορικό τερματικό για τις επικοινωνίες BLOS, τον εξοπλισμό επικοινωνίας για την ενεργοποίησή του ως ρελέ επικοινωνίας κ.α. (Cuerno-Rejado et al., 2015).

2.3 Ταξινόμηση των UAS

Από όλα τα προηγούμενα συστήματα, συνηθίζεται να δίνεται ιδιαίτερη προσοχή στην ίδια την εναέρια πλατφόρμα, προκειμένου να καθιερωθεί μια ταξινόμηση. Μία πιθανή ταξινόμηση βασίζεται στο εύρος, το υψόμετρο, την αντοχή και το μέγιστο βάρος απογείωσης (MTOW) των πλατφορμών. Παρακάτω (Εικ. 25) παρουσιάζεται ένας πίνακας με την ταξινόμηση των εναέριων οχημάτων σύμφωνα με αυτές τις παραμέτρους (Cuerno-Rejado et al., 2015).

Category of UAS	Range (km)	Altitude (m)	Endurance (h)	MTOW (kg)
Stratospheric	>2000	20000-30000	48	<3000
High altitude and long endurance (HALE)	>2000	20000	48	15000
Medium altitude and long endurance (MALE)	>500	14000	24-48	1500
Low altitude and long endurance (LALE)	>500	3000	Around 24	Around 30
Low altitude and depth penetration	>250	50-9000	0.25-1	350
Medium range	70 to >500	8000	6-18	1250
Short range	10-70	3000	3-6	200
Mini	<10	<300	<2	<30
Micro	<10	<250	<0.5	<1

Εικόνα 25: Ταξινόμηση των UAS

2.4 Τεχνικές / διαδικασίες κατά τη χρήση UAV

2.4.1 Συλλογή δεδομένων εικόνων (Vineyards, Καλιφόρνια)

Το μικρό UAV χρησιμοποιήθηκε για τη συλλογή ψηφιακών RGB (κόκκινο-πράσινομπλε) και υπερφασματικών εικόνων πάνω από το San Bernabe Vineyards (King City, Καλιφόρνια) τον Αύγουστο του 2003. Τα δεδομένα από το μειωμένο ωφέλιμο φορτίο μεταδόθηκαν μέσω ενός ασύρματου τοπικού δικτύου σε σταθμό λήψης στο έδαφος σχεδόν σε πραγματικό χρόνο. Οι εικόνες υψηλής χωρικής ανάλυσης (~ 20 cm) RGB καταχωρήθηκαν στη βάση δεδομένων του GIS του παραγωγού και χρησιμοποιήθηκαν για τη χαρτογράφηση των διαφορών έντασης μέσα στα πεδία. Τα δεδομένα υψηλής φασματικής ανάλυσης συλλέχθηκαν από 580 κανάλια και χρησιμοποιήθηκαν για λεπτομερέστερη εξέταση των διαφορών στην ανάκλαση του θόλου σε σχέση με τη δυναμική των καλλιεργειών. Κατά τη διάρκεια της πτήσης, χρησιμοποιήθηκε ένας ασύρματος in-situ αισθητήρας ιστού για τη συλλογή μιας χρονοσειράς δεδομένων θερμοκρασίας αέρα σε διάφορες τοποθεσίες.

Για τη συλλογή εικόνων γρησιμοποιήθηκε ένα μικρό UAV (RCATS / APV-3) σε έναν μεγάλο εμπορικό αμπελώνα στην Καλιφόρνια. Το αεροσκάφος, που είναι υπό εξέλιξη από την RnR Products (Milpitas, Calif.), MLB (Palo Alto, Καλιφόρνια) και Lockheed-Martin είναι ικανό να παραμείνει ψηλά για 8 ώρες, σε υψόμετρο ίσο με 3000m. Το UAV, με σχεδίαση ισχύος 40 watts, μπορεί να υποστηρίξει ωφέλιμο φορτίο ίσο με περίπου 5Kg. Ένα μοντέλο A101fc 1280x1024 φωτογραφικής μηγανής RGB της σειράς Bayer χρησιμοποιήθηκε για υψηλή χωρική ανάλυση και γεωμετρικά συνεκτική απεικόνιση 2-d. Η μονόχρωμη φωτογραφική μηχανή (μοντέλο A302fm) τοποθετήθηκε σε ένα μικροσκοπικό φασματογράφο απεικόνισης και λειτουργούσε σε στροφική σάρωση (γραμμική συστοιχία), με σκοπό τη συλλογή υψηλής φασματικής ανάλυσης δεδομένων με μειωμένη χωρική ανάλυση και γεωμετρική ποιότητα. Και τα δύο συστήματα απεικόνισης ήταν διασυνδεδεμένα με ένα κοινό στοιγείο μέσω ενός πολύκαναλικού (multi-channel) ελεγκτή IEEE 1394. Εικόνα μετα-δεδομένων από έναν ενσωματωμένο μηχανισμό GPS και ενσωματωμένο τριαξονικό αισθητήρα θέσης κωδικοποιήθηκαν στα file headers της εικόνας. Χρησιμοποιήθηκαν δύο ασύρματες συνδέσεις για την παροχή αξιόπιστου ελέγχου του ωφέλιμου φορτίου σε χαμηλό εύρος ζώνης (19,2 Kbaud σε φορέα συχνότητας 900MHz) κι έγινε γρήγορη λήψη δεδομένων εικόνας σε υψηλό εύρος ζώνης (11 Mbaud μέσω ΙΕΕΕ 802.11b WLAN σε φέρουσα συγνότητα ίση με 2.4GHz). Το ωφέλιμο φορτίο περιλάμβανε έλεγγο εναέριας κυκλοφορίας - αναμεταδότη του συστήματος ραδιοφωνικού φάρου (ATCRBS) C και κωδικοποιητή υψομέτρου. Ο κώδικας του αναμεταδότη και το υψόμετρο ήταν έτσι ώστε να μειωθεί ο κίνδυνος παρεμβολών από άλλα αεροσκάφη που λειτουργούσαν Ολόκληρο το πακέτο, συμπεριλαμβανομένων απεικονιστών, στην περιοχή. υπολογιστών και τηλεμετρικών συστημάτων πτήσης, ήταν ενσωματωμένα στη θήκη φορτίου UAV (Εικ. 26 & 27).

Εικόνα 26: Τελική προετοιμασία φορτίου.

Εικόνα 27: Ενσωμάτωση του ωφέλιμου φορτίου στο UAV.

Αναπτύχθηκε ένα ασύρματο δίκτυο επίγειων αισθητήρων θερμοκρασίας αέρα. Οι αισθητήρες τοποθετήθηκαν σε διάφορες θέσεις σε όλο τον αμπελώνα, και συγκέντρωσε δεδομένα θερμοκρασίας αέρα ανά περίπου 10 δευτερόλεπτα κατά τη διάρκεια της περιόδου πτήσης. Τα δεδομένα που προέκυψαν ήταν τόσο από την κορυφή του θόλου όσο και από το θόλο, κάτω στη ζώνη φρούτων. Ένας αριθμός σημείων διέλευσης (x/y geolocations) εισήχθησαν σε ένα σύστημα αυτόματου πιλότου για να επιτραπεί η πλοήγηση αεροσκαφών πάνω από το δίκτυο αισθητήρων θερμοκρασίας καθώς και στους αμπελώνες με μεταβλητά εδάφη, προβλήματα παρασίτων και διαφορές στην ωρίμανση φρούτων.

Συνολικά συγκεντρώθηκαν 165 RGB εικόνες, σε χωρική ανάλυση των 20cm περίπου. Αρκετές RGB εικόνες ήταν καταχωρημένες στο GIS του παραγωγού και στον αισθητήρα εδάφους web (Εικ. 28). Πραγματοποιήθηκε μετα-επεξεργασία για την κατάτμηση των RGB σε στοιχεία βλάστησης και εδάφους και στη συνέχεια υπολογίστηκε η κάλυψη της βλάστησης σε ποσοστό επί τοις εκατό.

Εικόνα 28: Εικόνες της στέγης του αμπελώνα, ευθυγραμμισμένες με επίγειες θερμοκρασιακές σειρές και τοποθετημένες πάνω στο GIS του παραγωγού. Δεδομένα από την κορυφή του θόλου (μπλε ίχνη) και μέσα στη ζώνη των φρούτων (μωβ ίχνη).

Ως προς την απεικόνιση φασματομέτρου (imaging spectrometer), διεξήχθει βαθμονόμηση εργαστηριακής ακτινοβολίας στο φασματόμετρο απεικόνισης πριν από την πτήση. Οι προκύπτουσες εξισώσεις βαθμονόμησης χρησιμοποιήθηκαν για να μετατραπούν οι πρώτες ψηφιακές μετρήσεις σε μονάδες ακτινοβολίας. Παρακάτω (Εικ. 29) δείχνει ένα τμήμα μιας εικόνας που συλλέχθηκε κατά τη διάρκεια πτήσης και το αντίστοιχο φάσμα.

Εικόνα 29: Απεικόνιση δεδομένων φασματόμετρου. Αριστερά: ψευδοχρώματα σε 3 ζώνες, με γυμνό έδαφος γύρω από την περιοχή. Δεξιά: Αντίστοιχο φάσμα ακτινοβολίας σε αισθητήρα (μW/cm2/sr/nm), 580 φασματικά κανάλια. Σημειώνονται, επίσης, τα χαρακτηριστικά ατμοσφαιρικής απορρόφησης.

Εφαρμόστηκε μια εμπειρική γραμμή διόρθωσης στο φασματόμετρο δεδομένων, μέσω της χρήσης επιτόπιων μετρήσεων επίπεδων πεδίων, για να αντληθεί ανακλαστική επιφάνεια (π.χ. Εικ. 30). Και οι δύο χώροι είναι αρκετά φωτεινοί στην ορατή περιοχή, δεδομένου ότι ο αμπελώνας εμβολιάστηκε πρόσφατα. Σαν αποτέλεσμα, τα αμπέλια ήταν μικρά και υπήρχε σημαντική έκθεση του γυμνού εδάφους, το οποίο ήταν σχετικά φωτεινό στην ορατή περιοχή. Όπως και αναμένεται, ο ισχυρότερος (πιο κλειστός) θόλος απορροφά περισσότερο ορατό φως και αντανακλά περισσότερο φως NIR.

Εικόνα 30: Αντανάκλαση του θόλου που προέρχεται από το φασματόμετρο, που παρουσιάζει αδύναμο και μέτριο θόλο αμπελώνα. Αεροφωτογραφία από την κάμερα RGB που έχει τοποθετηθεί για αναφορά.

Συνοψίζοντας, το RCATS UAV χρησιμοποιήθηκε με επιτυχία για τη συλλογή εικόνων και των συναφών φασματικών πληροφοριών σε σχέση με τους γεωργικούς στόχους, σε συνδυασμό με την παρακολούθηση του περιβάλλοντος εκτελούμενη από το επίγειο ασύρματο web αισθητήρα. Περαιτέρω ανάπτυξη UAV, σε συνδυασμό με τη συνεχή βελτίωση και τη μικρογράφηση της απεικόνισης ωφέλιμων φορτίων, μπορεί ενδεχομένως να προσφέρει μια προσιτή εναλλακτική λύση σε πιο συμβατικές πλατφόρμες τηλεανίχνευσης για τις κοινότητες χρηστών που απαιτούν σχεδόν (σε πραγματικό χρόνο) την παράδοση (υπερ) υψηλού χώρου και δεδομένα εικόνας υψηλής ευκρίνειας (Johnson et al., 2003).

2.4.2 Τεχνικά χαρακτηριστικά εμπορικού DJI Phantom Βάρος = 1,2Kg Μέγεθος = 350mm (διαγώνια), 200mm (ύψος) Απόσταση ελέγχου = 400-800m Κάμερα = 14 Megapixels Ανάλυση στα 100m = 4cm

Τυπική πτήση: - Αυτονομία: 20min

- Ταχύτητα: 5m / s
- Ύψος: 50-100m
- Μήκος: 5Km
- Περιοχή έρευνας: 400x400m

Το συγκεκριμένο drone (Εικ. 31) είναι εξοπλισμένο με GPS, ψηφιακή πυξίδα και βαρόμετρο, μπορεί να κρατήσει τη θέση, την κατεύθυνση και το υψόμετρο. Μπορεί, επίσης, να πετάξει αυτόνομα κατά μήκος μιας διαδρομής που έχει αποθηκευτεί στη μνήμη του.

Εικόνα 31: DJI Phantom 2 Vision Plus.

Τα δεδομένα από LiDAR και UAV συλλέχθηκαν (Εικ. 33) για να δημιουργήσουν τρία εικονικά μοντέλα προβολής για την ποσοτική ανάλυση παραλλαγών στο σύστημα: Pertusa (ανώτερη μεσαία ζώνη) (Εικ. 34), Piracés (κατώτερη μεσαία ζώνη) και Bolea (απομακρυσμένη ζώνη) (Εικ. 32 & 34). Μετά τη δημιουργία αυτών των μοντέλων, είναι δυνατή η ερμηνεία στρωμάτων αμμολίθων και η μέτρηση της γεωμετρίας τους (Εικ. 35), καθώς και η εισαγωγή των δομών σε facies και γεωκυτταρικά μοντέλα, προκειμένου να γίνει δοκιμή προσομοιώσεων ροής (Εικ. 36).

Εικόνα 32: Bolea (εικονική προβολή 300x200m).

Εικόνα 33: LiDAR scanner (a) και UAV camera (b).

Εικόνα 34: Περιγραφή των proximal, medial και distal zones.

Εικόνα 35: Δυνατότητα ερμηνείας στρωμάτων αμμολίθων και μέτρησης της γεωμετρίας τους στο εικονικό μοντέλο.

Εικόνα 36: Εισαγωγή σε facies και γεωκυτταρικά μοντέλα προκειμένου να γίνει δοκιμή προσομοιώσεων ροής.

Στην περίπτωση της χρήσης drone στις Άνδεις της Βενεζουλέας, στο ρήγμα Bocono (Los Zepra Moraine), η λήψη των εικόνων πραγματοποιήθηκε τον Αύγουστο του 2015 και κάλυπταν έκταση ίση με 400 έως 600m πάνω από το σύστημα Moraine. Οι εικόνες αποκτήθηκαν σε αρχικό υψόμετρο 80m κατά την απογείωση και με επικάλυψη 70%. Συνολικά, αποκτήθηκαν 300 εικόνες περίπου σε δύο πτήσεις των 20 λεπτών. Παρακάτω (Εικ. 37) φαίνεται η θέση αυτών των εικόνων και της τοπογραφίας που δημιουργήθηκε το 3D μοντέλο που απεικονίζει την περιοχή στην οποία βρίσκεται το ρήγμα Boconó (Εικ. 38) κι έγινε σύγκριση των εικόνων που λήφθηκαν μέσω δορυφόρου και των εικόνων που λήφθηκαν από αέρος μέσω drone στην περιοχή (Εικ. 39).

Εικόνα 37: Η θέση των εικόνων και η τοπογραφία που δημιουργείται από την επεξεργασία τους στο λογισμικό του Pix4D στην περιοχή όπου βρίσκεται στο ρήγμα Bocono.

Εικόνα 38: 3D μοντέλο που απεικονίζει την περιοχή στην οποία βρίσκεται το ρήγμα Bocono.

Εικόνα 39: Σύγκριση των εικόνων που λήφθηκαν μέσω δορυφόρου και των εικόνων που λήφθηκαν μέσω drone για την περιοχή στην οποία βρίσκεται το ρήγμα Bocono.

Κατά την επισήμανση του πεδίου (Εικ. 40), διαπιστώθηκε η ύπαρξη αρκετών γεωμορφολογικών χαρακτηριστικών, που σχετίζονται με την αλληλεπίδραση μεταξύ του ρήγματος Boconó και των αποθέσεων moraine:

- το ίχνος του ρήγματος Boconó, που χαρακτηρίζεται από μια σειρά ευθυγραμμισμένων τεκτονικών τεμαχών.
- η απότομη κλίση του Rio Los Zerpa, που αποκλίνει κατά 90° όταν διασταυρώνεται με το ίχνος του ρήγματος.
- η δεξιόστροφη μετατόπιση των πλευρικών moraines καθώς το ρήγμα τα διαπερνά.
- δύο επίπεδα που μαρτυρούν παρελθοντικές χρονικές περιόδους πλήρωσης με ποτάμιο υλικό και διάβρωσης αργότερα.
- η παλαιά ποτάμια κοιλάδα που κόπηκε στα τερματικά moraine κι έχει πλέον εγκαταλειφθεί.

Εικόνα 40: 3D μοντέλο της περιοχής όπου βρίσκεται το ρήγμα Bocono (χρωματισμένο με βάση το σχετικό υψόμετρο).

Επίσης, η εικόνα του ίχνους του ρήγματος Boconó στην ύπαιθρο συσχετίστηκε με την εικόνα του στο τρισδιάστατο μοντέλο (Εικ. 41). Παρακάτω (Εικ. 42) φαίνεται η επισήμανση του ίχνους με κρημνούς και με τη σημερινή απορροή, καθώς και η μετατόπιση του ρήγματος (Εικ. 43) και η αρχική θέση του (Εικ. 44) (Rocca, 2017).

Εικόνα 41: Συσχέτιση της εικόνας του ίχνους του ρήγματος Bocono στην ύπαιθρο με την εικόνα του στο 3D μοντέλο που παράχθηκε μετά.

Εικόνα 42: Το ίχνος του ρήγματος επισημαίνεται με κρημνούς στην τοπογραφία και με τη σημερινή απορροή.

Εικόνα 43: Η απόκλιση στο ίχνος του ρήγματος σχετίζεται με μία μικρή τάφρο. Η μετατόπιση του ρήγματος φαίνεται από τη μετατοπισμένη απορροή και τις μετατοπισμένες τοπογραφικές κορυφές.

Εικόνα 44: Η ανακατασκευή της αρχικής κατάστασης του ρήγματος φέρνει σε ευθυγράμμιση τα μετατοπισμένα τμήματα των κορυφών τη οροσειράς και τη σημερινή κοιλάδα του ποταμού με την παλαιά εγκαταλελειμένη απορροή.

2.4.3 Αξιολόγηση της καταλληλότητας της χρήσης λέιζερ (TLS) και UAS, για τη δημιουργία DEM μεγάλης ακρίβειας

Περίπτωση διεξαγωγής μελέτης με σκοπό την αξιολόγηση της καταλληλότητας της φωτογραμμετρίας επίγειας σάρωσης με λέιζερ (TLS) και της μη επανδρωμένης εναέριας κυκλοφορίας (UAS), για τη συλλογή των τοπογραφικών δεδομένων υψηλής ανάλυσης που απαιτούνται για τη δημιουργία DEM μεγάλης ακρίβειας σε μια μικρή λεκάνη απορροής (12ha):

Χρησιμοποιήθηκε ένα μικρό Gatewing X100 UAS (έκταση πτερυγίων: 100cm, βάρος με ωφέλιμο φορτίο: 2 kg, ταχύτητα πτήσης: 80km/h, υψόμετρο πτησης: 100-750m, μέγιστη διάρκεια πτήσης: 40 min). Το X100 είναι ένα σύστημα σταθερής πτέρυγας, εξοπλισμένο με ένα GPS κι έχει μια αδρανειακή μονάδα μέτρησης (IMU). Οι πτήσεις του είναι εντελώς αυτόνομες (από την απογείωση μέχρι την προσγείωση) και το σχέδιο πτήσης ορίζεται εκ των προτέρων, καθορίζοντας τις παραμέτρους της (ζώνη σάρωσης, επικάλυψη εικόνας, υψόμετρο πτήσης, απογείωση και προσγείωση, τοποθεσία). Ο σταθμός ελέγχου εδάφους αποτελείται από έναν τραχύ δίσκο υπολογιστή (Yuma Trimble ®) που διατηρεί συνεχή επαφή με το UAS και επιτρέπει στον απομακρυσμένο χειριστή να διακόψει την πτήση σε περίπτωση κινδύνου ατυχήματος. Η πραγματική εμβέλεια αυτού του UAS είναι μέχρι 2km και η αντοχή πτήσης του είναι αρκετά μεγάλη ώστε να καλύψει τα 100 εκτάρια σε 100 μέτρα πάνω από το επίπεδο του εδάφους. Το X100 χρησιμοποιεί εκτοξευτήρα καταπέλτη για απογείωση και απαιτεί λωρίδα προσγείωσης (διαστάσεων 150×30m), απαλλαγμένη από οποιαδήποτε εμπόδια.
Ο οπτικός του αισθητήρας είναι μια φωτογραφική μηχανή ποιότητας (Ricoh GR Digital III) με μία φορτισμένη συσκευή CCD με ανάλυση 10 megapixels και σταθερή εστιακή απόσταση 6mm (το αντίστοιχο εστιακό μήκος είναι ίσο είτε με 28mm, είτε με 35mm). Δεδομένου ότι τα δεδομένα TLS πρέπει να χρησιμοποιούνται για άλλες εφαρμογές, η κάμερα Ricoh προσαρμόστηκε για την απόκτηση σχεδόν υπέρυθρης ακτινοβολίας (NIR), με αφαίρεση του κόκκινου φίλτρου φραγής και τοποθέτησή του με ένα κίτρινο φίλτρο (Verhoeven, 2008 και Hunt et al. 2010). Αυτή η τροποποίηση δεν επηρέασε την επεξεργασία της εικόνας.

Η εναέρια έρευνα (Εικ. 45) ξεκίνησε στις 13 Οκτωβρίου του 2011 κάτω από σαφείς συνθήκες και η άδεια πτήσης δόθηκε από τη βελγική αρχή πολιτικής αεροπορίας. Η πτήση διεξήχθη σε μέγιστη απόσταση ίση με 100m πάνω από το έδαφος, πράγμα που αντιστοιχεί σε χωρική ανάλυση εικονοστοιχείου/pixel (ground sample distance) ίση με 3,3×3,3cm. Οι φωτογραφίες λήφθηκαν με μπροστινές και πλευρικές επικαλύψεις κατά 80%, συνθήκη που ισοδυναμεί με απόσταση 25m μεταξύ των δύο γειτονικών εικόνων. Δέκα GCP τοποθετήθηκαν δια χειρός στη θέση μελέτης και ερευνήθηκαν με τη χρήση ενός Leica GPS1200, ώστε να γίνει ακριβής γεωαναφορά των DEM αρχείων που θα προέκυπταν. Όταν πραγματοποιούνταν οι πτήσεις, το σιτάρι είχε συλλεχθή από τα αγροτεμάχια, με εξαίρεση μια μικρή έκταση που καλλιεργήθηκε με καλλιέργεια mustard που κυμαίνεται σε ύψος από ± 10 έως ± 20cm (Εικ. 46).

Εικόνα 45: Ορθοφωτογραφία της περιοχής μελέτης που βρίσκεται στις 50 ° 34'33,00 "Ν και 4 ° 39'50,75" Ε, στο σύστημα αναφοράς WGS84.

Εικόνα 46: Θέση περιοχής καλλιεργούμενης με mustard κατά τη συλλογή αεροφωτογραφιών με το Gatewing X100 UAS.

Ο τρόπος με τον οποίο έγινε η αποτύπωση των δεδομένων περιγράφεται ως εξής:

Σημεία Ελέγχου Εδάφους (Ground Control Points-GCPs): Παρατηρήθηκαν συνολικά 1098 σημεία σε ολόκληρη την επιφάνεια του νερού από τον Απρίλιο του 2008 έως τον Σεπτέμβριο του 2009 και όλα αυτά τα σημεία χρησιμοποιήθηκαν για την αξιολόγηση της ακρίβειας των DEM. Τα σημεία απείχαν μεταξύ τους περίπου 10m σε κανονικό πλέγμα και τα δεδομένα συλλέχθηκαν μέσω χρήσης του Leica GPS1200 GPS, σε στατική λειτουργία RTK πάνω στην απογυμνωμένη επιφάνεια. Αυτή η λειτουργία δίνει πολύ ακριβείς συντεταγμένες των σημείων, οι οποίες μπορούν να χρησιμοποιηθούν για την αξιολόγηση της ακρίβειας λιγότερο ακριβών δεδομένων. Το Leica GPS1200 έχει ακρίβεια 1cm για τις συντεταγμένες x και y και 1,5cm για τη συντεταγμένη z (Leica Geosystems, 2008). Όλες οι συντεταγμένες εξετάστηκαν στο προβολικό σύστημα "Belgian Datum 1972".

Έρευνα με TLS: Τα δεδομένα συλλέγονταν κάθε φορά που το οικόπεδο ή ένα τμήμα της επιφάνειας του ήταν απογυμνωμένο. Αυτό οδήγησε στη διεξαγωγή μεμονωμένων σαρώσεων χωρίς τη χρήση οποιουδήποτε TLS, όπως έγινε σε άλλες μελέτες (Perroy et al. 2010, Coveney and Fotheringham 2011). Χρειάστηκαν 14 επικαλυπτόμενες σαρώσεις TLS - που ελήφθησαν από 14 σταθμούς με αρίθμηση από ST1 έως ST14 (Εικ. 47) - για να καλυφθεί η συνολική επιφάνεια του νερού. Οι διαφορές στην καλλιέργεια του εδάφους φαίνονται παρακάτω (Εικ. 48). Στη συνέχεια (Εικ. 49), φαίνεται η επεξεργασία του εδάφους και ο αριθμός των σημείων μέσα σε κάθε σάρωση. Αργικά σχεδιάστηκαν στον ArcGIS 9 σταθμοί σάρωσης, ώστε να αποκτήσουν τις συντεταγμένες x και y για μια περιοχή σάρωσης με έκταση ίση με 100m. Λόγω των «ζωνών σκιάς», ωστόσο, έπρεπε να προστεθούν ακόμη 5 σταθμοί για να καλυφθεί ολόκληρη η περιοχή ενδιαφέροντος. Χρησιμοποιήθηκε ένα Leica GPS1200 σε RTK λειτουργία για να εντοπιστούν οι σταθμοί στα οικόπεδα. Δύο στόχοι υψηλής ανάλυσης (HDS) επίσης ερευνήθηκαν με το Leica GPS1200 (για κάθε σάρωση), ώστε να γίνει σίγουρο ότι το σύννεφο σάρωσης που θα προέκυπτε θα ήταν στο σωστό προβολικό σύστημα (Belgian Datum 1972). Η σάρωση πραγματοποιήθηκε με έναν σαρωτή

Trimble Gx TLS, χρησιμοποιώντας το λογισμικό PointScape (v3.1). Το Trimble Gx χρησιμοποίησε ένα πράσινο λέιζερ κλάσης 2, παλλόμενο 532nm και με πρότυπο εύρος απόστασης ίσης με 200 m. Το οπτικό του πεδίο περιορίστηκε σε $360^{\circ} \times 60^{\circ}$, με ένα ασύμμετρο κατακόρυφο τμήμα περίπου 40° πάνω από τον ορίζοντα. Η ταχύτητα σάρωσης που πέτυχε η συσκευή έφτασε έως και τα 5000 σημεία ανά δευτερόλεπτο και λειτούργησε με μία μόνο επιστροφή laser, που μπορούσε να συλλάβει σημεία έρευνας με ακρίβεια 12mm εντός εύρους συλλογής δεδομένων, ίσου με 100m. Η σάρωση έγινε από έναν τρίποδα ύψους από 1,8 έως 2,0m. Η ανάλυση σάρωσης (μέση απόσταση μεταξύ σημείων) ρυθμίστηκε στα 20cm, που αντιστοιχούσε σε πυκνότητα ±25 μονάδες m² (κατά προσέγγιση).

Μελέτη φωτογραμμετρίας: Σε αυτή τη μελέτη, χρησιμοποιήθηκε ένα μικρό Gatewing X100 UAS (έκταση πτερυγίων: 100cm, βάρος με ωφέλιμο φορτίο: 2kg, ταχύτητα πτήσης: 80 km/h, ύψος πτήσης: 100-750m, μέγιστη διάρκεια πτήσης: 40min). Το X100 είναι ένα σύστημα σταθερού πτερυγίου, εξοπλισμένο με ένα GPS και μια αδρανειακή μονάδα μέτρησης (IMU). Οι πτήσεις του είναι εντελώς αυτόνομες από την απογείωση μέχρι την προσγείωση και το σχέδιο πτήσης ορίζεται εκ των προτέρων, με καθορισμό των παραμέτρων της (ζώνη σάρωσης, επικάλυψη εικόνας, υψόμετρο πτήσης, απογείωση και προσγείωση, τοποθεσία).

Εικόνα 47: Οι 14 επικαλυπτόμενες σαρώσεις TLS, που ελήφθησαν από 14 σταθμούς με αρίθμηση από ST1 έως ST14.

Εικόνα 48: Απεικόνιση των διαφορών στην καλλιέργεια του εδάφους.

Stations	Number of points within scans	Plot tillage
ST1	185,797	Plowed
ST2	126,798	Plowed
ST3	107,126	Plowed
ST4	150,389	Plowed
ST5	170,852	Plowed
ST6	112,472	After beet harves
ST7	23,791	After beet harves
ST8	133,867	After beet harves
ST9	76,691	Grass (<10 cm)
ST10	61,784	Grass (<10 cm)
ST11	89,180	Grass (<10 cm)
ST12	99,112	Grass (<10 cm)
ST13	58,251	Grass (<10 cm)
ST14	200,852	Grass (<10 cm)

Εικόνα 49: Οι σταθμοί ST και ο αριθμός των σημείων μέσα σε κάθε σάρωση κατά την επεξεργασία των δεδομένων.

Ύστερα, έγινε η επεξεργασία των δεδομένων μέσω: α) υπολογισμού DEM και ανάλυσης σφάλματος από δεδομένα TLS (Εικ. 50), β) φωτογραμμετρίας UAS και γ) αξιολόγησης και σύγκρισης ακρίβειας DEM.

Εικόνα 50: Επεξεργασία των δεδομένων μέσω υπολογισμού DEM και ανάλυσης σφάλματος από δεδομένα TLS.

Όσον αφορά στη φωτογραμμετρία UAS, αποκτήθηκαν περίπου 760 αεροφωτογραφίες με μία μόνο πτήση και ένας έλεγχος χειρωνακτικής εξέτασης επιβεβαίωσε ότι όλες οι εικόνες ήταν καθαρές (δηλ. μη θολωμένες ή υπερβολικές ή υπο-έκθεση) και θα μπορούσαν να χρησιμοποιηθούν για 3D αποκατάσταση. Για την αναδημιουργία επιφάνειας με βάση την εικόνα, χρησιμοποιήθηκε μία παρόμοια διαδικασία, που βασίζεται σε δύο πακέτα λογισμικών: το πρόσφατο Agisoft PhotoScan v0.84 και η εργαλειοθήκη ανοικτού κώδικα για πειραματικές εφαρμογές φωτογραμμετρίας MicMac, που αναπτύχθηκε από το Εθνικό Γεωγραφικό Ινστιτούτο της Γαλλίας (NGIF). Το λογισμικό Agisoft PhotoScan εξετάστηκε από τον Verhoeven (2011), ενώ το MicMac εξετάστηκε από τους Pierrot Deseilligny and Clery (2011). Η τρισδιάστατη αποκατάσταση από εικόνες πολλαπλών προβολών είναι πολύπλοκη διαδικασία που απαιτεί διάφορα βήματα. Η διαδικασία που ακολουθήθηκε σε αυτήν τη μελέτη περιγράφεται παρακάτω (Εικ. 51), όπου φαίνονται και οι διαφορές μεταξύ των δύο λογισμικών πακέτων. Αργικά, η κάμερα βαθμονομήθηκε με γνώμονα την παραμόρφωση του φακού. Στη συνέχεια, χαρακτηριστικά σημεία (π.χ. γωνίες ή χαρακτηριστικά σημεία) εξήχθησαν από κάθε εικόνα με χρήση μιας κλίμακας invariant feature transform (SIFT) algorithm (Lowe, 2004). Τότε καθορίστηκαν τα κοινά χαρακτηριστικά σημεία (σημεία σύνδεσης) για κάθε επικαλυπτόμενό ζεύγος εικόνων και χρησιμοποιήθηκαν για τον υπολογισμό ενός σχετικού προσανατολισμού του μπλοκ σε χαμηλό υψόμετρο. Στη συνέχεια, το μπλοκ εικόνας μετασχηματίστηκε με τη χρήση των GCP (RMSE of 0,05m). Στη συνέχεια, δημιουργήθηκε ένα DEM με χρήση αλγορίθμων πυκνής αντιστοίχισης. Πριν από την 3D αποκατάσταση, η ανάλυση των αεροφωτογραφιών ήταν μειωμένη σε 1:2, οδηγώντας έτσι σε ανάλυση 6,6cm GSD για τα παραγόμενα DEM από κάθε πακέτο λογισμικού. Προκειμένου να δημιουργηθούν DEM μεγέθους 1×1m, τα πρωτότυπα DEM μετατράπηκαν πρώτα σε ένα στρώμα σημείων μέσω του ArcGIS και με ρύθμιση κάθε τιμής κυψελών δικτύου στο μέσο ύψος των σημείων εντός του κελιού του δικτύου.

Process	Description	PhotoScan		MicMac toolbox	
		Tool name	Specificity	Tool name	Specificity
Camera calibration	Modeling of the inner geometry (interior orientation) of the camera	Agisoft Lens	With a set of checkerboard images	Apero	With a set of convergent images of a 3D objet
Feature point extraction	Extraction of point of interest for each image	Align tool	Similar approach than SIFT	Таріоса	SIFT algorithm
Tie point generation	Determining common feature points on image pairs				
Image orientation	Computing simultaneously the poses of each camera and the position of tie points in a relative system (aerotriangulation by means of bundle block adjustment)			Apero	Offers much fine control parameterization
Georeferencing	Transform the relative orientation in absolute orientation	Optimize tool		Bascule	
Surface reconstruction by dense matching	Multi-view geometry restitution by ray intersection	Building geometry	Triangulate the dense cloud points to produce a mesh and then simplify this mesh	MicMac	Multiscale pixel-based matching approach: surface reconstruction is performed from coarse to fine resolution.

Εικόνα 51: Η διαδικασία που ακολουθήθηκε για την 3D αποκατάσταση από εικόνες πολλαπλών προβολών.

Όσον αφορά την αξιολόγηση και τη σύγκριση ακρίβειας των DEM, τα DEM που ελήφθησαν από τα δεδομένα TLS και UAS συγκρίθηκαν με τα GCPs, τα οποία θεωρήθηκαν ως αναφορές. Υπολογίστηκαν πολλές κοινές παράμετροι για τη σύγκριση της ακρίβειας των DEM, συμπεριλαμβανομένου του RMSE, του μέσου σφάλματος

(ME), του απόλυτου σφάλματος STD και του μέσου απόλυτου σφάλματος (MAE). Αναλύθηκαν ανυψώσεις κατά μήκος μιας διατομής, ώστε να προσδιοριστούν οι αλλαγές στην τοπογραφία των αγροτικών αποβλήτων, που φαίνονταν καθαρά στη φωτογραμμετρία UAS και τα δεδομένα TLS (Moussa et al., 2014).

Stations	Soil tillage	Mean (cm)	RMSE (cm)	STD (cm)
ST1	Α	0	4.0	4.0
ST2	Α		4.4	4.4
ST3	Α		4.3	4.4
ST4	Α		3.9	4.0
ST5	Α		3.8	3.7
ST6	С		3.0	3.0
ST7	С		3.6	3.2
ST8	С		3.9	3.9
ST9	В		6.2	6.2
ST10	В		4.6	4.6
ST11	В		4.5	4.5
ST12	В		3.4	3.4
ST13	В		4.5	4.5
ST14	В		3.9	4.0

Εικόνα 52: ΜΕ, RMSE και STD που υπολογίστηκαν για κάθε σάρωση μετά την αφαίρεση σφαλμάτων θέματος από τα ST5, ST7, ST11 και ST13.

Εικόνα 53: Ιστογράμματα τυχαίων σφαλμάτων από τις σαρώσεις TLS. Οι διακεκομμένες γραμμές υποδηλώνουν τις κανονικές κατανομές που υπολογίστηκαν με χρήση του μέσου όρου και της τυπικής απόκλισης.

Εικόνα 54: RMSE τιμές κατά την εφαρμογή μεθόδων για την αφαίρεση σφαλμάτων που σχετίζονται με τις συντεταγμένες x και y και την απόσταση από τη θέση TLS.

Εικόνα 55: Απόλυτα σφάλματα που υπολογίζονται από τα DEM. (Α) Σφάλματα από τα DEM που δημιουργήθηκαν από δεδομένα TLS. (Β) Σφάλματα που παράγονται από δεδομένα UAS, χρησιμοποιώντας το λογισμικό Agisoft PhotoScan. (c) Σφάλματα που έχουν προκύψει από δεδομένα UAS, χρησιμοποιώντας λογισμικό MicMac. (D) Θέση της καλλιεργημένης περιοχής με την καλλιέργεια (Mustard) κατά τη συλλογή αεροφωτογραφιών μέσω UAS.

Εικόνα 56: Χωρική κτανομή των υψομετρικών διαφορών μεταξύ των DEM. (Α) Υψομετρικές διαφορές μεταξύ DEMTLS και DEMMCM, (Β) υψομτερικές διαφορές μεταξύ DEMTLS και DEMPSC και (C) υψομετρικές διαφορές μεταξύ DEMMCM και DEMPSC.

2.4.4 Ανακατασκευή μεγεθών πλημμύρων με χρήση Structure for Motion (SfM)

Όσον αφορά τα δεδομένα πεδίου, αυτά αφορούν 500 ξεχωριστές εικόνες των 5-megapixel που έχουν ληφθεί από μια τυπική Panasonic Lumix DMC-TZ65 ψηφιακή φωτογραφική μηχανή. Η συνολική φωτογραφική έρευνα από απόσταση έφτασε τα 30 λεπτά. Για να διατηρηθεί μια τυπική εστιακή απόσταση (4,1mm), η λειτουργία "zoom" δεν χρησιμοποιήθηκε (αν και αυτός ο περιορισμός δεν είναι απολύτως απαραίτητος για ορισμένα πακέτα SfM-MVS, συμπεριλαμβανομένου του πακέτου που περιγράφεται εδώ). Ο φωτογράφος ακολούθησε ένα μονοπάτι μεγάλου υψομέτρου που περιλάμβανε την έκταση της μελέτης (Εικ. 57), χρησιμοποιώντας κλίσεις πλαγιών εκατέρωθεν του καναλιού, 15-20m πάνω από την κλίνη του καναλιού. Για να ολοκληρωθεί η έρευνα, ελήφθησαν και εικόνες από τη βάση του καναλιού, παρέχοντας περισσότερες λεπτομέρειες σχετικά με τις περιοχές-κλειδιά. Ελήφθησαν επικαλυπτόμενες φωτογραφίες, έτσι ώστε όλες οι επιφάνειες να ήταν ορατές σε τουλάχιστον 5 εικόνες παρ'όλο που στην πραγματικότητα ο αριθμός αυτός ήταν σημαντικά υψηλότερος. Κάθε εικόνα είχε ληφθεί από μια ελαφρώς διαφορετική θέση που περιλάμβανε την περιοχή ενδιαφέροντος (Εικ. 58). Έξι σημεία ελέγγου εδάφους (GCP) τοποθετήθηκαν μέσω του lower study reach και σημειώθηκαν με ταινία υψηλής ορατότητας. Η φωτογραφική έρευνα κάλυψε λεπτομερώς τις περιοχές αυτές. Ένα - διπλής φάσης - διαφορικό σύστημα GPS του Topcon HiPer Pro χρησιμοποιήθηκε για: (i) να αποκτηθούν συντεταγμένες για κάθε ένα από αυτά τα GCP, (ii) έρευνα της ανύψωσης του bed channel σε 430 βαθμούς μέσω του study reach σε rtk-mode, ώστε να παραχθεί ένα σύνολο δεδομένων τοπογραφικής επικύρωσης για τη τοπογραφία SfM (Εικ. 59) και (iii) έρευνα 57 σημάτων νερού. Ο σταθμός βάσης ήταν τοποθετημένος στο ανάντη άκρο της θέσης σε σημείο με γνωστές συντεταγμένες (<10 mm ακρίβεια). Τα GCP δεν ήταν πλήρως κατανεμημένα μέσω της προσέγγισης της μελέτης. Αυτό ήταν συνέπεια της ευκαιριακής συλλογής δεδομένων. Αφού ολοκληρώθηκε η συλλογή δεδομένων πεδίου, η εμβέλεια επεκτάθηκε προς τα πάνω σε μια περιοχή χωρίς κάλυψη από GCP, όπου παρουσιάζεται η ευκαιρία να ποσοτικοποιηθούν τα λάθη που προέκυψαν από τέτοιες ελλείψεις στον σχεδιασμό της έρευνας. Ενώ μπορούν να ελεγχθούν περισσότερα GCP εύκολα, επιδιώχθηκε να ελαχιστοποιηθούν για να αναδημιουργηθεί μία γρήγορη αναγνώριση μετά την έρευνα σχετικά με την πλημμύρα. Χρησιμοποιήθηκαν, επίσης, 363 σημεία ανύψωσης channel bed για την επικύρωση του τοπογραφικού μοντέλου upstream από τα GCP. Έτσι, 793 dGPS σημεία χρησιμοποιήθηκαν για τοπογραφική επικύρωση. Η κλίση της επιφάνειας του νερού υπολογίστηκε από dGPS σημεία πλημμυρών.

Κατά την επεξεργασία των δεδομένων, οι φωτογραφίες επαναδημιουργήθηκαν σε ανάλυση 1,2 megapixels ώστε να μειωθεί το μέγεθος του προκύπτοντος νέφους σημείων και ο χρόνος της διεργασίας. Οι θολές φωτογραφίες διαγράφηκαν. Οι υπόλοιπες φωτογραφίες εισήχθησαν στο Agisoft PhotoScan. Τρισδιάστατα σύννεφα σημείων προέρχονται από μια διαδικασία τεσσάρων σταδίων. Πρώτον, το Scale Invariant Feature Transform (SIFT) object (Lowe, 2004) (ή παρόμοιοι αλγόριθμοι, όπως έχουν εφαρμοστεί στο Agisoft Photoscan) χρησιμοποιήθηκε για τον εντοπισμό και την αντιστοίχιση μοναδικών χαρακτηριστικών στις φωτογραφίες. Σκηνές που περιείχαν εντονότερη υφή ήταν εκείνες που ανακατασκευάστηκαν εύκολα. Δεύτερον, ορίστηκαν μοντέλα κάμερας και παράμετροι προσανατολισμού με τον καθορισμό των βέλτιστων θέσεων κάμερας που τροποποιήθηκαν αργότερα με αλγορίθμους προσαρμογής δέσμης. Έτσι, θέσεις κάμερας και ένα αραιό σύννεφο σημείων (που προέργεται από τις κύριες αντιστοιχίες χαρακτηριστικών που εντοπίστηκαν σε πολλές εικόνες) υπολογίστηκαν γωρίς προηγούμενη γνώση των σημείων ελέγγου ή των παραμέτρων της κάμερας (που παρουσιάζουν μια σημαντική εξοικονόμηση χρόνου σε σχέση με τη συμβατική φωτογραμμετρία). Οι εκτιμώμενες θέσεις κάμερας μπορούν να προβληθούν και να εξαγθούν και οι τυγόν εσφαλμένες φωτογραφίες να αφαιρεθούν από το σημείο σύννεφο μοντέλο. Τέτοιες εικόνες με κακή ευθυγράμμιση οφείλονταν συνήθως σε ανεπαρκή επικάλυψη με άλλες φωτογραφίες ή με αντικείμενα που δεν ήταν στατικά κατά τη λήψη της εικόνας (π.χ. βλάστηση, κινούμενες σκιές). Συνολικά γρησιμοποιήθηκαν 296 εικόνες για την ανασύνθεση ενός σημειακού νέφους του Prado reach. Τρίτον, το πυκνό σύστημα Multiview Stereo (MVS) εφαρμόστηκε από την Agisoft Photoscan για να παραχθεί ένα πυκνό σύννεφο σημείων χρησιμοποιώντας pixels των φωτογραφιών που παρέγονται. Ο αριθμός των pixels που χρησιμοποιήθηκαν για την ανακατασκευή μπορούσε να αλλάξει για να ρυθμιστεί η πυκνότητα του σύννεφου σημείων και ο χρόνος επεξεργασίας. Χρησιμοποιήθηκαν ενδιάμεσες πυκνότητες, οι οποίες υποβάθμισαν τη λήψη sampling εικόνων. Τέταρτον, το σύννεφο σημείων ήταν γεωαναφερμένο, δηλαδή το αυθαίρετου συστήματος συντεταγμένων άλλαξες σε μονάδες πραγματικού κόσμου. Για να επιτευχθεί αυτό, οι πραγματικές συντεταγμένες των έξι GCP εισήχθησαν στο Agisoft. Αυτά τα σημεία εντοπίστηκαν με

το χέρι στις φωτογραφίες και ορίστηκε μια εκτιμώμενη θέση των GCP στο σύννεφο σημείων που είχε προκύψει. Έγινε ένας μετασχηματισμός γραμμικής ομοιότητας, ώστε να γεωαναφερθεί το σύννεφο σημείων. Ενώ το Agisoft προσέφερε ένα ακόμα βήμα βελτιστοποίησης του μετασχηματισμού, όπου θα μπορούσαν να ρυθμιστούν οι παράμετροι της κάμερας, ώστε να ελαγιστοποιηθούν οι παρατηρούμενες διαφορές μεταξύ εκτιμώμενων και μετρηθέντων GCP (Agisoft, 2012), η διαδικασία αυτή δεν εφαρμόστηκε σε αυτή τη μελέτη. Ωστόσο, το σημειώνεται πως οι Javernick et al. μείωση των υπολειμμάτων με την εφαρμογή αυτής της (2014) πέτυγαν βελτιστοποίησης. Τα υπολειπόμενα σφάλματα γεωαναφοράς υπολογίστηκαν με αφαίρεση των συντεταγμένων GPS κάθε GCP από το σύννεφο σημείων (εκτιμώμενες συντεταγμένες x, y, z). Ενώ μια ιδανική μελέτη θα είχε περισσότερα από τα έξι GCP που παρουσιάζονται εδώ, έξι είναι επαρκή για τη γεωαναφορά (Fonstad et al., 2013). Από τους Javernick et al. (2014), η ποιότητα του νέφους σημείων αξιολογήθηκε, χρησιμοποιώντας τέσσερις μετρήσεις: (i) το μέσο σφάλμα (ME - ένα μέτρο ακριβείας) όπου θετικά σφάλματα έδειξαν ότι το νέφος σημείων ήταν πάνω από το σημείο που μετρήθηκε στο GPS, (ii) μέσο απόλυτο σφάλμα (MAE - ο μέσος όρος των απόλυτων σφαλμάτων) που αποφεύγει την αντιστάθμιση επιπτώσεων θετικών και αρνητικών σφαλμάτων, · (iii) σφάλμα μέσης τετραγωνικής ρίζας (RMSE - ένα μέτρο της ποιότητας της επιφάνειας) και (iv) την τυπική απόκλιση των σφαλμάτων (SDE - ένα μέτρο ακρίβειας). Αυτή η μελέτη χρησιμοποίησε το Agisoft Photoscan για να δημιουργήσει τα SfM-MVS σύννεφα σημείων λόγω της ευκολίας χρήσης. Ωστόσο, υπάρχουν ελεύθερα διαθέσιμα εναλλακτικά προγράμματα που παράγουν νέφη σημείων όμοιας ποιότητας (Westoby et al. 2012, James and Robson 2012, Oouedraogo et al. 2014).

Όσον αφορά στην εξαγωγή υψηλών σημείων νερού από SfM, συνήθως εξετάζονται υψηλά σήματα ύδατος με τη χρήση laser μέτρησης εύρους (π.χ. Denlinger et al., 2002), συνολικών σταθμών (π.γ. Bull et al. 1999, Ballesteros Cánovas et al. 2011) ή εξοπλισμού GPS (π.χ. Sandercock and Hooke, 2010). Η αναγνώριση των σημείων υψηλής στάθμης συχνά υπόκειται σε σημαντικό σφάλμα (Marchi et al., 2009) και απαιτείται δεξιότητα για να προσδιοριστεί με ακρίβεια η υψηλότερη στάθμη νερού. Το πλεονέκτημα της χρήσης SfM για την ανακατασκευή της τοπογραφίας κατά την ανάλυση μετά την πλημμύρα είναι ότι αποτελεί μία εγγενώς οπτική μέθοδο. Μπορεί να δαπανηθεί αρκετός γρόνος στο πεδίο για να επισημανθούν τα υψηλά σημεία νερού σε αυτό. Αυτά μπορούν είτε να αξιολογηθούν μέσω χρήσης των παραπάνω μεθόδων, είτε να επισημανθούν με έναν δείκτη υψηλής ορατότητας, έτσι ώστε να μπορεί να ταυτοποιηθεί κατευθείαν μέσα στο σύννεφο σημείων ή στις εικόνες. Το πραγματικό πλεονέκτημα του SfM έγκειται στην ικανότητα εξέτασης των φωτογραφιών του πεδίου σε περιβάλλον γραφείου. Οι πρωτότυπες εικόνες μπορούν να προβληθούν από τη στιγμή που δημιουργείται νέφος σημείων διατομής και η γεωαναφορά έχει ολοκληρωθεί. Επομένως, η ανάλυση μετά την πλημμύρα μπορεί να επεκταθεί με τον προσδιορισμό περαιτέρω σημείων υψηλού επιπέδου του νερού στις εικόνες. Οπουδήποτε μπορεί να εντοπιστεί ένα σημείο πάνω σε δύο ή περισσότερες εικόνες, οι συντεταγμένες αυτού του σημείου είναι τότε γνωστές. Έχοντας εστιάσει στην απόκτηση πολλαπλών σημείων υψηλής στάθμης νερού για την αύξηση της αξιοπιστίας

μιας έρευνας μετά την πλημμύρα (Gaume, 2006), η δυνατότητα να διεξαχθεί μία προσεκτική εξέταση (από το γραφείο) ενός ολόκληρου καναλιού για σημεία πλημμύρας είναι σημαντικό όφελος στην έρευνα. Σε αυτό το παράδειγμα, 10 υψηλά σημεία νερού κατανεμήθηκαν στα 150m από την απεικόνιση SfM χωρίς προηγούμενο πεδίο αναγνώρισης (Εικ. 59). Ένα από αυτά τα σημεία αφορούσε παρατηρήσεις της βλάστησης. Τα υπόλοιπα 9 ήταν παρατηρήσεις των γραμμών καθαρισμού στο έδαφος.

Το εργαλείο τοπογραφικής ανάλυσης νέφους σημείων (ToPCAT) χρησιμοποιήθηκε για τη δημιουργία ενός DEM από το γεωαναφερμένο νέφος σημείων. Οι Brasington et al. (2012) και Rychkov et al. (2012) έχουν δώσει μια πλήρη περιγραφή αυτής της μεθόδου. Αν και αρχικά σχεδιάστηκε κι εφαρμόστηκε σε δεδομένα TLS (π.χ. Williams et al. 2013, Vericat et al. 2014), η μέθοδος αυτή είναι εξίσου κατάλληλη για χρήση με νέφη σημείων SfM. Στη συγκεκριμένη μελέτη, το ToPCAT χρησιμοποιήθηκε για να εκτελέσει μία έξυπνη «απορρόφηση» του νέφους σημείων, ώστε να δημιουργηθεί ένα 0,5m-gridded προίόν εδοάφους, κατάλληλο για 2D υδραυλική μοντελοποίηση. Ένα πρόσθετο DEM σε χωρική ανάλυση 0,1 m δημιουργήθηκε για τοπογραφική επικύρωση. Καθώς το αρχικό νέφος σημείων ήταν σε πολύ υψηλότερη ανάλυση, δόθηκε ένας μεγάλος αριθμός σημείων ανά κυψέλη δικτύου, επιτρέποντας τον υπολογισμό sub-grid στατιστικών. Το μέσο ύψος σημείων σε κάθε κελί χρησιμοποιήθηκε κατά τη δημιουργία του DEM για να επιτευχθεί υδραυλική μοντελοποίηση. Παρόλο που οι προηγούμενες μελέτες χρησιμοποιούν δεδομένα TLS ή νέφη σημείων SfM που προέρχονται από αεροφωτογραφίες (π.χ. Brasington et al. 2012, Javernick et al. 2014), έχουν χρησιμοποιήσει το ελάγιστο υψόμετρο σημείων ως αντιπροσωπευτικό της τοπικής τοπογραφίας, η παρουσία τόσο των απομειώσεων πάνω και κάτω από την επιφάνεια από εφαρμογή λοξής επίγειας βάσης. Όσον αφορά στο SfM, η μέση ανύψωση είναι πιο κατάλληλη, δεδομένου ότι επηρεάζεται λιγότερο σε μεμονωμένα σημεία. Επιπλέον, για κάθε κυψέλη, το ΤοΡCAT κατασκεύασε την τοπική επιφάνεια χρησιμοποιώντας μια γειτονιά τριγωνική tesselation με βάση τη μέση ανύψωση σε κάθε πλέγμα και απομακρύνει όλα τα σημεία μέσα στην κεντρική κυψέλη του πλέγματος. Αυτό επέτρεψε τον υπολογισμό των σημαντικών στατιστικών στοιχείων κλίμακας υποπλέγματος, όπως η απομακρυσμένη τυπική απόκλιση των ανυψώσεων που θα μπορούσαν να χρησιμοποιηθούν για περαιτέρω παραμετροποίηση 2D υδραυλικών μοντέλων (π.χ. χρησιμοποιώντας κατανεμημένα πλέγματα τραχύτητας).

Καθώς το μη φιλτραρισμένο νέφος σημείων περιείχε τόσο απογυμνωμένη γη όσο και σημεία με βλάστηση, για πολλές εφαρμογές ήταν απαραίτητο το φιλτράρισμα της βλάστησης. Φιλτράρισμα της βλάστησης μπορεί να επιτευχθεί: (i) μέσω χειροκίνητης επεξεργασίας του νέφους σημείων, (ii) μέσω αλγορίθμων φιλτραρίσματος εδάφους, που διατίθενται σε πολλά πακέτα λογισμικών, (iii) μέσω της επιλογής σημείων με βάση τις τιμές RGB, (iv) χρησιμοποιώντας πολυδιάστατα κριτήρια (Brodu and Lague, 2012) και (v) με επαναδειγματοληψία του νέφους σημείων σε πλέγματα μεγαλύτερου μεγέθους, όπου παρατηρούνται βλάστηση και εξόρυξη με την ελάχιστη τιμή στην ευρύτερη περιοχή (Javernick et al., 2014). Ωστόσο, ο πρώτος τρόπος είναι μάλλον αυθαίρετος και ο δεύτερος και ο τέταρτος έχουν αναπτυχθεί για δεδομένα TLS, ο πέμπτος τρόπος δεν μπορεί να αντιμετωπίσει τη διασπορά σημείων κάτω από την επιφάνεια του εδάφους. Οπότε σε αυτή τη μελέτη, τιμές RGB ενσωματωμένες στο σύννεφο σημείων (iii) χρησιμοποιήθηκαν για το φιλτράρισμα της βλάστησης. Από το νέφος σημείων εξήχθησαν χρώματα βλάστησης και χρησιμοποιήθηκαν για να φιλτραριστούν τα σημεία μέχρι τα stands της κύριας βλάστησης να απομακρυνθούν. Στη συνέχεια δημιουργήθηκε συνεχές DEM στον ArcGIS με ένα περιορισμένο τριγωνικό δίκτυο Delaunay, που στη συνέχεια μετατράπηκε σε μία raster επιφάνεια. Η επίδραση της βλάστησης στην υδραυλική ροή έχει ήδη εξεταστεί (Sandercock and Hooke, 2010). Η τμηματοποίηση του νέφους σημείων με αυτόν τον τρόπο επέτρεψε την εξαγωγή παραμέτρων βλάστησης (ύψος, κ.λ.π.) που πρέπει να είναι διαφοροποιημένες από τις αρχικές και φιλτραρισμένες επιφάνειες με βλάστηση. Οι Manners et al. (2013) έχουν αποδείξει περαιτέρω εφαρμογές προϊόντων δεδομένων βλάστησης που εξάγονται από νέφη σημείων.

Για την εκτίμηση της αιχμής της εκφόρτωσης, χρησιμοποιήθηκαν τόσο ο σύντομος διαχωρισμός του εύρους ζώνης λέιζερ, όσο και οι τέσσερις λεπτομερείς διαχωρισμοί dGPS, με χρήση της παραδοχής ομοιόμορφης ροής και της εξίσωσης Manning. Έγινε μία εκτίμηση του n του Manning για την αιχμή, βάσει της μεθόδου Cowan (1956) μέσω της μεθόδου που έχουν περιγράψει οι Arcement and Schneider (1989). Συγκρίθηκαν SfM που προέρχονται από διατομές πάνω από τις ίδιες περιοχές (όπως και οι διατομές dGPS). Η κλίση προέκυψε από τον laser μετρητή εύρους ζώνης, την τοπογραφική επικύρωση dGPS και το SfM DEM για κάθε διατομή.

Για τη δισδιάστατη υδραυλική μοντελοποίηση, υποβλήθηκαν σε προσομοίωση οι συνθήκες ροής σε σταθερή κατάσταση κατά βάθος, με χρήση του λογισμικού Delft3D σε λειτουργία 2D για υπολογιστική αποδοτικότητα. Το μοντέλο ροής έλυσε τις εξισώσεις Navier-Stokes για ένα ασυμπίεστο υγρό, χρησιμοποιώντας συγκεκριμένες παραδοχές σχετικά με το νερό και την προσέγγιση του Boussinesq, ώστε η δυναμική μεταφορά από τυρβώδεις βρογές να μπορεί να μοντελοποιηθεί με σταθερό ιξώδες όσον αφορά το στροβιλισμό. Οι διαφορικές εξισώσεις επιλύθηκαν με τη χρήση μίας εναλλακτικής μεθόδου υπολογισμού (ADI). Το Delft3D έχει χρησιμοποιηθεί και επικυρωθεί εκτεταμένα σε μια σειρά περιβαλλόντων, συμπεριλαμβανομένων παράκτιων, παραποτάμιων και παράκτιων τοποθεσίιών (π.γ. Kleinhans et al. 2008, Carrivick et al. 2009, Schuurman et al. 2013, Williams et al. 2013, Dijk et al., 2014). Περισσότερες λεπτομέρειες σχετικά με το Delft3D μοντέλο διατίθενται αλλού (π.χ., Lesser et al. 2004, van der Wegen και Roelvink, 2008). Η κορυφή του υδραγωγείου που φαίνεται αφαιρέθηκε από το νέφος σημείων και παρέμειναν μόνο οι πυλώνες του υδραγωγείου που αλληλεπιδρούν με τη ροή. Το DEM που προήλθε από SfM (σε χωρική ανάλυση 0,5m) εισήχθη στο μοντέλο. Το μοντέλο ροής έτρεξε με ένα αριθμητικό σγήμα «πλημμύρας» για να επιτευγθεί η ορμή. Σε ολόκληρο το πλάτος της κοιλάδας ορίστηκαν ένα όριο στα ανάντη και ένα στα κατάντη. Αυτή η απορροή αυξήθηκε σταδιακά κατά 20 m³/s ανά μοντέλο 10 λεπτών κι επιτεύχθηκε μία σταθερή κατάσταση σε κάθε επίπεδο εκφόρτισης. Όπως πολλοί παράγοντες που ενσωματώθηκαν στις τιμές τραγύτητας για τη 1D μοντελοποίηση, μοντελοποιήθηκαν σε ένα 2D μοντέλο (π.χ., μορφή τραχύτητας, βλάστηση υποστυλώματα, διαμήκεις μεταβλητότητες, ολίσθηση), η τιμή τραχύτητας που εφαρμόζεται στο 2D μοντέλο είναι χαμηλότερη, αντανακλώντας μόνο την τραχύτητα των κόκκων κάθε κελιού. Μεταγενέστερα των Cowan (1956) και Arcement and Schneider (1989), εφαρμόστηκε η εξίσωση Manning στο μοντέλο, για να αντιπροσωπευτεί η επίδραση του στρώματος χαλικιών. Καθορίστηκε ένας υπολογιστικός χρόνος βήματος, ίσος με 0,001 λεπτά, ώστε να διατηρηθούν η μάζα και η ορμή. Έτσι λοιπόν, επιτεύχθηκαν: γεωαναφορά , τοπογραφικό μοντέλο, τοπογραφική «επικύρωση», επικύρωση σημείων υψηλής στάθμης νερού, σύγκριση των εκτιμήσεων της απόρριψης (Μέθοδος μεταφοράς κλίσης και Δισδιάστατη υδραυλική μοντελοποίηση χρησιμοποιώντας DELFT 3D) (Smith et al.,

2.4.5 Χρήση UAV στη χαρτογράφηση της τοπογραφίας στη θέση ρηζιγενούς ζώνης

Κατά τη συλλογή των δεδομένων, η πλατφόρμα που γρησιμοποιήθηκε ήταν ένα μικρό τετρατροχικό σύστημα UAV, το Motoarsky MS670, που παρουσιάζεται παρακάτω (Εικ. 57). Το κόστος του είναι περίπου 70.000 Yuan (δηλαδή μικρότερο από το 1/10 του κόστους του αεριωθούμενου lidar). Είχε διάμετρο περίπου 67cm, μέγιστο βάρος αποσκευών 5kg και διάρκεια πτήσης ~ 45min. Αυτή η πλατφόρμα ήταν ειδικά σχεδιασμένη για αεροφωτογραφήσεις, εξοπλισμένη τόσο με GPS όσο και με μονάδα αδρανειακής μέτρησης (IMU) για πλοήγηση. Διέθετε, επίσης, σταθεροποιημένη βάση για φωτογραφική μηγανή, η οποία ήταν εξοπλισμένη με κάμερα Sony ILCE-QX1 με σταθερή εστιακή απόσταση ίση με 16 mm. Λόγω της ενσωματωμένης τεχνολογίας αυτόματου πιλότου, το UAV μπορούσε να πετάξει αυτόνομα σύμφωνα με μια προκαθορισμένη από τον χρήστη- πορεία πτήσης και μπορούσαν επίσης να προσδιοριστούν η συνολική περιοχή μετρήσεων, το ύψος πτήσης και η επικάλυψη της εικόνας. Οι φωτογραφίες αποκτήθηκαν στις 11 Απριλίου 2016 και κάλυψαν έκταση ίση με 400m κατά τη διάρκεια πτήσης 35min. Συνολικά συλλέχθηκαν 826 εικόνες σε μέσο ύψος πτήσης ίσο με 30m και 70% εμπρόσθια και πλευρική επικάλυψη. Παρόλο που τα GPS δεδομένα από το UAV μπορούσαν να χρησιμοποιηθούν για την κλίμακα και τη γεωαναφορά του νέφους σημείων SfM, τα αποτελέσματα μπορεί να μην ήταν αρκετά ακριβή, δεδομένου ότι η ακρίβεια των μετρήσεων από GPS είναι σγετικά γαμηλή (Turner, Lucieer και Watson 2012). Έτσι, χρησιμοποιήθηκαν συντεταγμένες σε ένα πεδίο GCP για να βελτιωθεί η ακρίβεια της γεωαναφοράς. Για να αναγνωριστούν εύκολα τα GCP στις συνελλεγμένες εικόνες, τοποθετήθηκαν ομοιόμορφα 19 δίσκοι αλουμινίου διαμέτρου 20cm σε όλη την περιοχή μελέτης πριν από την εναέρια έρευνα και οι ακριβείς θέσεις τους μετρήθηκαν αμέσως μετά την απόκτηση εικόνας UAV, χρησιμοποιώντας ένα διαφορικό σύστημα GPS Trimble R8 real- (RTK). Η θέση των GCP φαίνεται παρακάτω (Εικ. 58).

Εικόνα 57: Το UAV σύστημα Motoarsky MS670 εξοπλισμένο με μία κάμερα Sony ILCE-QX1

Εικόνα 58: Η θέσεις των GCPs στην περιοχή μελέτης.

Κατά την επεξεργασία των δεδομένων, πολυάριθμα εμπορικά ή open-source πακέτα λογισμικού για 3D ανακατασκευή, βασισμένα σε SfM, είναι πλέον διαθέσιμα, όπως για παράδειγμα το Agisoft PhotoScan, το πακέτο φωτογραμμετρίας Bundler, το PhotoModeler και το Microsoft Photosynth (Snavely, Seitz και Szeliski 2008, Verhoeven 2011). Στη συγκεκριμένη μελέτη, χρησιμοποιήθηκε το πακέτο λογισμικού Agisoft PhotoScan για την επεξεργασία των εικόνων UAV. Η ανακατασκευή της επιφάνειας του εδάφους από το PhotoScan είναι μια διαδικασία τριών σταδίων. Στο πρώτο στάδιο, ο αλγόριθμος SIFT χρησιμοποιείται για τον προσδιορισμό των χαρακτηριστικών σε κάθε εικόνα. Αυτά τα χαρακτηριστικά είναι αμετάβλητα για την κλίμακα και τον προσανατολισμό της εικόνας και κάθε χαρακτηριστικό έχει αντιστοιχηθεί με τα αντιστοιχισμένα χαρακτηριστικά, πραγματοποιείται μια ρύθμιση δέσμης για να καθοριστεί η σχετική θέση και ο προσανατολισμός κάθε κάμερας και να

ταυτόχρονα οι συντεταγμένες όλων των αντιστοιχισμένων προσδιοριστούν χαρακτηριστικών, με αποτέλεσμα ένα αραιό σύννεφο σημείων του εδάφους. Στο δεύτερο στάδιο, με βάση τις γνωστές θέσεις και τους προσανατολισμούς της κάμερας, πραγματοποιείται ένας multi-view stereo αλγόριθμος βασισμένος σε pixels για τον εντοπισμό των καλύτερων αντιστοιχιών μεταξύ των εικόνων, ώστε να παραγθεί μια αναπαράσταση πυκνού νέφους σημείων της επιφάνειας. Στο τελευταίο στάδιο, το σύννεφο σημείων είναι κλιμακωτό και γεωαναφερμένο με το local point cloud coordinate system να μετασχηματίζεται στο σύστημα συντεταγμένων πραγματικού κόσμου μέσω ενός transformation Helmert επτά παραμέτρων (μία παράμετρος κλίμακας, τρεις παράμετροι μετάφρασης και τρεις παράμετροι περιστροφής). Αυτό μπορεί συνήθως να γίνει με δύο τρόπους. Ο πρώτος τρόπος είναι να χρησιμοποιηθούν οι συντεταγμένες που καταγράφηκαν από το δέκτη GPS επί του UAV κατά τη στιγμή της λήψης της εικόνας και να υπολογιστούν οι παράμετροι μετασχηματισμού Helmert, προσαρμόζοντας τις συντεταγμένες της κάμερας στο τοπικό σύστημα συντεταγμένων στις αντίστοιχες συντεταγμένες GPS. Ο δεύτερος τρόπος είναι να χρησιμοποιηθούν οι συντεταγμένες των πεδίων GCP για την επίλυση των παραμέτρων μετασχηματισμού Helmert. Μετά τη γεωαναφορά, ένα DEM και ένα αντίστοιχο ορθοφωτογραφικό μπορούν τελικά να δημιουργηθούν με βάση το πυκνό σύννεφο σημείων.

Σύμφωνα με τα αποτελέσματα SfM, το μεγαλύτερο μέρος της περιοχής καλύπτεται από περισσότερες από έξι εικόνες και η κάλυψη της φωτογραφίας είναι πολύ μεγαλύτερη στο κεντρικό τμήμα από ό, τι στην άκρη της περιοχής μελέτης. Λόγω του χαμηλού πτητικού υψομέτρου και της υψηλής κάλυψης φωτογραφιών, αποκτήθηκε ένα πυκνό σύννεφο σημείων και δημιουργήθηκε ένα DEM με εξαιρετικά υψηλή ανάλυση (3,5cm) με βάση αυτό το πυκνό σύννεφο σημείων. Το σκιασμένο ανάγλυφο που προέρχεται από το DEM και το αντίστοιχο ορθοφωτογραφικό δείχνουν το γραμμικό ίχνος ρήγματος που μπορεί να φανεί καθαρά και οι γειτονικές παραμορφώσεις αποκαλύπτονται επίσης με εξαιρετική λεπτομέρεια, επιδεικνύοντας το μεγάλο δυναμικό της μεθόδου SfM στη χαρτογράφηση -με υψηλή ανάλυση- της τοπογραφίας της ρηξιγενούς ζώνης (Bi et al., 2017).

2.5 Εφαρμογές/χρήσεις των UAV στις γεωεπιστήμες

Τα πλεονεκτήματα της χρήσης drone στις γεωεπιστήμες αφορούν σε προσβασιμότητα σε δύσβατες ή και απρόσιτες περιοχές, ακρίβεια, αποδοτικότητα, οικονομική αποδοτικότητα, βελτιωμένη παραγωγικότητα, μεγαλύτερη ευαισθησία και δημιουργία περισσότερων δεδομένων.

Όσον αφορά το drone στις γεωεπιστήμες, βρίσκει πολλές εφαρμογές, εξυπηρετώντας: περιβαλλοντικές παρακολουθήσεις, γεωτουρισμό, εξορύξεις και χαρτογραφήσεις. Τα πλεονεκτήματα που έχουν τα drone σε αυτές τις περιπτώσεις είναι η αποδοτικότητα ως προς το χρόνο, η ποσότητα των δεδομένων που μπορούν να ληφθούν, η προσβασιμότητά τους i) δυσπρόσιτες περιοχές, όπως γκρεμοί, ii) επικίνδυνα περιβάλλοντα, όπως ασταθείς πλαγιές / γκρεμοί και επικίνδυνα ορυχεία και iii) noninvasive περιοχές, δηλαδή ευαίσθητα περιβάλλοντα όπως άμμοι και θίνες. Επίσης πρόκειται για εργαλεία απεικόνισης και η απόκτησή τους δεν απαιτεί τη διάθεση υπέρογκου ποσού. Οι εταιρείες γεωδαισίας αξιοποιούν τα drone έτσι ώστε να πραγματοποιούν γρήγορη απεικόνιση κι έλεγχο της εκάστοτε περιοχής, αλλά και διάφορες χαρτογραφήσεις (Irvine, 2017).

Τα drones ξεκίνησαν στις γεωεπιστήμες με σκοπό τη λήψη φωτογραφιών. Ένα παράδειγμα είναι η χρήση τους για την καταγραφή συστημάτων παγετώνων στην Ισλανδία. Οι εικόνες που συλλέχθηκαν από ένα drone χρησιμοποιήθηκαν για να μελετηθούν φαινόμενα όπως το κατά πόσο μια περιοχή καλύπτεται από παγετώνα και ο τρόπος με τον οποίο αλλάζει η θέση του ορίου του παγετώνα. Έχουν επίσης χρησιμοποιηθεί για να εξεταστούν παλαιότερα παγετώδη χαρακτηριστικά, όπως παγετώδεις μορφές και το αποτύπωμα που αυτές αφήνουν πίσω τους. Το μεγάλο όφελος από τη χρήση ενός drone σε αυτή την περίπτωση είναι ότι δίνει γρήγορη πρόσβαση σε εικόνες και των δύο νέων περιοχών και πρόσβαση σε επαναλαμβανόμενες εικόνες μεταβαλλόμενων περιβαλλόντων. κάτι που δεν είναι δυνατό με τις παραδοσιακές μεθόδους της αεροφωτογραφίας και της επιτόπιας έρευνας. Οι πρόσφατες εξελίξεις στο computer vision και στην τεχνολογία αντιστοίχισης εικόνων δείγνουν ότι αυτές οι εικόνες, εάν ληφθούν από διάφορες γωνίες, μπορούν να χρησιμοποιηθούν για τη δημιουργία 3D μοντέλων υψηλής ανάλυσης του τοπίου. Αυτή είναι ουσιαστικά μια εξέλιξη της τεχνολογίας φωτογραμμετρίας της εποχής του Β΄ Παγκοσμίου Πολέμου (η οποία χρησιμοποιεί δύο επικαλυπτόμενες φωτογραφίες για να δημιουργήσει ένα 3D εφέ), δημιουργώντας για τους επιστήμονες μια πιο «πλήρη» εικόνα του περιβάλλοντος στο οποίο εργάζονται.

Ένα άλλο παράδειγμα μιας μεγάλης εφαρμογής της τεχνολογίας των κυκλωμάτων είναι η χρήση της στην εκτίμηση γεωλογικών φαινομένων, στην απεικόνιση πετρωμάτων που σχηματίζονται κάτω από συγκεκριμένες συνθήκες καθίζησης και θραύσης, στη χαρτογράφηση των θραυσμάτων, στην απεικόνιση ρηγμάτων που είναι αποτέλεσμα της τεκτονικής δραστηριότητας. Με άλλα λόγια, τα drones χρησιμοποιούνται για να εξετάσουν πού και πως αντιδρούν μάζες πετρωμάτων σε περιπτώσεις σεισμών και σχετικών πιέσεων. Οι βιομηχανίες πετρελαίου και φυσικού αερίου είναι ίσως αναπάντεχα πρωτοπόρες στη συγκεκριμένη εφαρμογή, χρησιμοποιώντας τη συγκεκριμένη τεχνολογία για την ταχύτερη και ακριβέστερη αξιολόγηση των δεξαμενών φυσικών πόρων με σκοπό την πιθανή εκμετάλλευσή τους. Τα συμφέροντα της βιομηχανίας διασταυρώνονται με τον ακαδημαϊκό χώρο, μέσω της χρηματοδότησης και της ανάπτυξης περαιτέρω αιτήσεων. Η βασική χρήση του drone εδώ είναι η ικανότητά του να αυξάνει τόσο την ταχύτητα όσο και την κλίμακα της απόκτησης δεδομένων. Πριν από την εμφάνιση αυτής της νέας τεχνολογίας, η απόκτηση δεδομένων περιοριζόταν ανάλογα με το πόση έκταση εδάφους θα μπορούσε να καλύψει ένας γεωλόγος σε μια μέρα. Με ένα drone, ολόκληρες περιοχές μπορούν να καλυφθούν σε σύντομα χρονικά διαστήματα, με μια ποικιλία πακέτων εργαλείων που προσφέρουν νέες, διεισδυτικές απόψεις για τον κόσμο.

Ένα ακόμα παράδειγμα της εφαρμογής των drone είναι η χρήση τους από τους ηφαιστειολόγους για τη συλλογή δεδομένων από μερικές από τις πιο επικίνδυνες περιοχές της γης (λίμνες λάβας ενεργών ηφαιστείων). Το drone μπορεί να προσεγγίσει τέτοιες τοποθεσίες για συλλογή δειγμάτων. Σε τέτοιες επικίνδυνες τοποθεσίες ίσως να είναι αναπόφευκτο να χαθούν κάποια drones.

Η χρήση drone έχει εξυπηρετήσει, επίσης, την ανάγκη για ποσοτικοποίηση του ρυθμού μετατόπισης ακτογραμμής, σε συνδυασμό με χρήση αεροφωτογραφιών και δορυφορικών εικόνων, αλλά και με πραγματοποίηση επιτόπιων μετρήσεων και παρατηρήσεων (Tsokos, A., et al. 2017). Με αυτόν τον τρόπο, η χρήση UAV μπορεί να συμβάλλει καθοριστικά σε μελέτες που σχετίζονται με το σχεδιασμό κατασκευαστικών έργων κατά μήκος μίας παράκτιας ζώνης.

Μία άλλη εφαρμογή των UAV στις γεωεπιστήμες σχετίζεται με τη μοντελοποίηση του SVF (Sky View Factor) όσον αφορά ένα πολύπλοκο οικοδομικό περιβάλλον, με βάση το DEM (Digital Elevation Model) που αντιστοιχεί στην περιοχή μελέτης (Nastos, T., P., et al., 2017). Ο παράγοντας SVF αποτελεί μία παράμετρο που επηρεάζει τις εισερχόμενες ροές ακτινοβολίας και κατ' επέκταση τις συνθήκες θερμικής άνεσης σε μία αστική περιοχή.

Σε όλα αυτά τα παραδείγματα, τα drones επιτρέπουν στους επιστήμονες να συλλέγουν δεδομένα από νέες περιοχές μέσω μιας νέας προοπτικής, οδηγώντας έτσι τον επιστήμονα στο να αντιμετωπίσει τα φυσικά φαινόμενα με διαφορετικό τρόπο. Μία σημαντική διαφορά πλέον είναι η συσσώρευση δεδομένων με ταχύτητα που υπερβαίνει κατά πολύ τις αναλογικές μεθόδους. Αυτό δημιουργεί νέα προβλήματα στον επιστήμονα. Αφενός, τα drone συγκεντρώνουν δεδομένα με ταχείς ρυθμούς, από την άλλη μεριά όμως, χρειάζονται αυξημένο χρονικό διάστημα για να αναλύσουν όλο τον όγκο των δεδομένων αυτών (π,χ, για τη δημιουργία τρισδιάστατων μοντέλων, την ψηφιοποίηση χαρτών ή την εξαγωγή δεδομένω προρεί να υπερβεί την ανθρώπινη ικανότητα, εισάγοντας την ανάγκη αυτοματοποίησης της διαδικασίας ανάλυσης δεδομένων.

Τα drones συμβάλλουν στο χαρακτηρισμό της τοπογραφίας. Τα τελευταία χρόνια, βοηθούν όλο και περισσότερο με την τεχνική φωτογραμμετρίας γνωστή ως Structure for Motion (SfM), όπου οι 2D εικόνες μετατρέπονται σε 3D τοπογραφικές επιφάνειες. Ένα τέτοιο παράδειγμα παρουσιάζεται παρακάτω (Εικ. 59). Αυτή η τεχνική παρέχει τοπογραφικές εικόνες υψηλής ανάλυσης, οι οποίες μπορούν να χρησιμοποιηθούν για την αύξηση των υφιστάμενων τοπογραφικών δεδομένων, καθώς και για την αναγνώριση μικρο-τοπογραφικών χαρακτηριστικών όπως μικρά κανάλια νερού στην επιφάνεια ενός παγετώνα.

Σε μελέτη των Rippin et al. (2015), οι τεχνικές SfM χρησιμοποίησαν απεικόνιση διάχυσης για να παραχθούν ψηφιακά μοντέλα εδάφους υψηλής ανάλυσης πάνω από τα χαμηλότερα τμήματα ενός παγετώνα στο Svalbard. Στη συνέχεια η ομάδα χρησιμοποίησε τα μοντέλα για να αναγνωρίσει τα δευτερεύοντα κανάλια που άλλαζαν την τραχύτητα της επιφάνειας του πάγου. Επειδή η τραχύτητα μεταβάλλει την ανταλλαγή ενέργειας, τα ευρήματα αυτής της μελέτης έχουν επιπτώσεις στην κατανόηση του ενεργειακού ισοζυγίου των παγετώνων.

Η SfM συμφέρει οικονομικά σε σύγκριση με τις παραδοσιακές μεθόδους έρευνας όπως το lidar και μπορεί να χρησιμοποιηθεί με το λογισμικό off-the-shelf που διατίθεται για την επεξεργασία και την ανάπτυξη εικόνων για την παραγωγή ψηφιακών μοντέλων εδάφους υψηλής ανάλυσης (DEM).

Εικόνα 59: Ένα 3D μοντέλο το οποίο παράχθηκε με τη χρήση φωτογραμμετρίας SfM που αποκτήθηκε στο Chimney Bluffs State Park στη Νέα Υόρκη. Το τοπίο badlands οφείλεται στη σοβαρή διάβρωση των ακτών του Pleistocene age drumlins. Το ένθετο δείχνει μια αεροφωτογραφία αυτού του τύπου τοπογραφίας στη νότια ακτή της λίμνης Οντάριο στο Chimney Bluffs State Park.

Τα drone προσεγγίζουν επικίνδυνες ή απρόσιτες περιοχές. Είναι ιδιαίτερα χρήσιμα για την απόκτηση εικόνων ή μετρήσεων σε τοποθεσίες που είναι επικίνδυνες ή δυσπρόσιτες με τα πόδια. Σε ένα παράδειγμα, οι McGonigle et al. (2008) απέκτησαν μετρήσεις ηφαιστειακών αερίων χρησιμοποιώντας ένα quadcopter εξοπλισμένο με φασματόμετρα και ηλεκτροχημικούς αισθητήρες μέσα στον κρατήρα La Fossa (Vulcano, Ιταλία). Η μελέτη καθόρισε το κριτήριο αναφοράς για τη χρήση του quadcopter στην ηφαιστειολογία και την ικανότητά του να μετρά τη ροή του CO2 και να βοηθάει στην πρόβλεψη της έκρηξης. Σε ένα άλλο παράδειγμα, οι Brownlow et al. (2016) ανέπτυξαν octocopters για την παρακολούθηση της δυναμικής του CH4 τόσο πάνω όσο και κάτω από την αντιστροφή του trade wind στο νησί Ascension στο Νότιο Ατλαντικό Ωκεανό (ιδανική τοποθεσία για τον χαρακτηρισμό των τροπικών συγκεντρώσεων CH4. Τα octocopters λειτουργούσαν σε μεγάλα ύψη, με δειγματοληψία CH₄ σε υψόμετρα μέχρι 2.700 μέτρα πάνω από τη μέση στάθμη της θάλασσας. Οι ερευνητές χρησιμοποίησαν στη συνέχεια παρατηρούμενες χημικές ουσίες του αέρα για να οριοθετήσουν τις πηγές αέριων μαζών σε διάφορα υψόμετρα. Η μελέτη κατέδειξε τελικά ότι η παρακολούθηση της ατμόσφαιρας μέσω των drones μπορεί να αποκαλύψει τις χωρικές πολυπλοκότητες

(π.χ. στήλη αέρα) που συχνά χάνονται με δειγματοληψία στην επιφάνεια. Σε άλλη καινοτόμο εφαρμογή (Ore et al. 2015), σχεδιάστηκε και αναπτύχθηκε ένα quadcopter ικανό να συλλέγει δείγματα νερού από ποτάμια και λίμνες. Το σύστημα εφαρμόστηκε με επιτυχία και μπορεί να συλλέξει τρία δείγματα νερού 200 mLt κάτω από την επίδραση μέτριων ανέμων, σε περισσότερες από 90 διαφορετικές αποστολές σε λίμνες και ποτάμια. Τέτοιες προσπάθειες παρουσιάζουν μια συναρπαστική πορεία για την παρακολούθηση περιβαλλοντικών κινδύνων ή καταστροφών, όπως πετρελαιοκηλίδες, παρακολούθηση ασθενειών λόγω του νερού και δειγματοληψίες σε απομακρυσμένες τοποθεσίες.

ΜΕΡΟΣ Β΄ - ΠΕΡΙΠΤΩΣΗ ΚΑΙΣΑΡΙΑΝΗΣ (ΥΜΗΤΤΟΣ)

3. Γεωγραφική θέση περιοχής μελέτης

Η περιοχή μελέτης τοποθετείται στο λεκανοπέδιο της Αττικής και πιο συγκεκριμένα στην περιοχή της Καισαριανής, στο δυτικό τμήμα του Υμηττού (Εικ. 60, 61 & 62). Πρόκειται για το παλαιό λατομείο της Καισαριανής, νοτιοδυτικά της Πανεπιστημιούπολης, μέσα στο οποίο έχει χτιστεί το δημοτικό γήπεδο «Μιχάλης Κρητικόπουλος». Γενικά, η Αττική αποτελεί χερσόνησο στο ΝΑ-κό τμήμα της Στερεάς Ελλάδας. Ο Υμηττός μαζί με το Πεντελικό όρος και τα όρη της Λαυρεωτικής, βρίσκεται στο νοτιοανατολικό τμήμα της Στερεάς. Αντιστοίχως, τα Γεράνεια όρη, τα όρη Πατέρα και Πάστρα, ο Κιθαιρώνας, το Αιγάλεω και η Πάρνηθα αποτελούν τους ορεινούς όγκους της βορειοδυτικής Αττικής.

Εικόνα 60: Η θέση του λατομείου της Καισαριανής στο ΝΑ-κό τμήμα της Στερεάς Ελλάδας.

Εικόνα 61: Η θέση του λατομείου της Καισαριανής (κίτρινο χρώμα), όπως αυτή φαίνεται μέσω δορυφόρου.

Εικόνα 62: Κάτοψη της θέσης του λατομείου της Καισαριανής (κίτρινο χρώμα), όπως αυτή φαίνεται μέσω δορυφόρου.

4. Γεωλογία

Η γεωλογία της Αττικής είναι αρκετά πολύπλοκη. Επίσης, υπάρχουν αμφιβολίες όσον αφορά τη λιθοστρωματογραφία της και τις γεωτεκτονικές ενότητες που τη δομούν.

Γεωδυναμικό πλαίσιο ευρύτερης περιοχής μελέτης

Από γεωτεκτονικής άποψης, η Αττική ανήκει στις Εσωτερικές Ελληνίδες (Εικ. 63) και στην Ενδιάμεση Τεκτονομεταμορφική Ζώνη των Ελληνίδων (Εικ. 64) (Brunn 1956, Παπανικολάου 1986). Παρακάτω (Εικ. 65) δίνεται και χάρτης που απεικονίζει τις ενότητες των Ελληνίδων (Papanikolaou 1989).

Εικόνα 63: Χάρτης που απεικονίζει τη θέση των Εσωτερικών κι Εξωτερικών Ελληνίδων στον ελλαδικό χώρο (Brunn 1956, Παπανικολάου 1986).

Εικόνα 64: Χάρτης που απεικονίζει τη θέση της Εσωτερικής, της Ενδιάμεσης και της Εξωτερικής Τεκτονομεταμορφικής Ζώνης (Brunn 1956, Παπανικολάου 1986).

Έχουν διατυπωθεί διάφορες απόψεις σχετικά με το γεωτεκτονικό πλαίσιο στο οποίο εντάσσονται οι γεωλογικοί σχηματισμοί που απαντούν στην περιοχή της Αττικής. Οι σημαντικότερες από αυτές, συνοψίζονται παρακάτω:

Κατά τον Jacobshagen (1979), στην περιοχή της Αττικής διακρίνονται η Πελαγονική, που ανήκει στα Κεντρικά Ελληνικά Καλύμματα και οι εξωτερικές ενότητες των κυανοσχιστόλιθων και των κατώτερων ενοτήτων των Κυκλάδων, που ανήκουν στις ενδιάμεσες κρυσταλλικές μάζες. Ο ίδιος θεωρεί πως ο χώρος της Αττικής βρίσκεται σε εφελκυσμό που εκδηλώνεται με μεγάλες κατακόρυφες κινήσεις, οι οποίες οφείλονται σε μικρής κλίσης κανονικά ρήγματα (detachment faults) και μεγάλης κλίμακας διατμητικές τάσεις στη λιθόσφαιρα, πάνω σε παλαιότερες δομές.

Κατά τον Μουντράκη (1983), η Αττική δομείται από γεωλογικούς σχηματισμούς που ανήκουν στις γεωτεκτονικές ενότητες Αττικοκυκλαδικής και Υποπελαγονικής. Οι σχηματισμοί της Αττικοκυκλαδικής καλύπτουν το ανατολικό περιθώριο, ενώ εκείνοι της Υποπελαγονικής, που είναι επωθημένη στην Αττικοκυκλαδική, το δυτικό.

Κατά τον Παπανικολάου (1986), η Αττική δομείται από σχηματισμούς των ενοτήτων: (α) Υποπελαγονική (ή Ανατολική Ελλάδα), που καλύπτει το δυτικό της τμήμα και (β) Λαυρίου και Αττικής που καταλαμβάνουν το ανατολικό της τμήμα. Οι ενότητες αυτές βρίσκονται σε τεκτονική σχέση μεταξύ τους, με υποκείμενη (εξωτερικότερη) την ενότητα της Αττικής. Η ενότητα Λαυρίου είναι αλλόχθονη της ενότητας Αττικής. Το βόρειο τμήμα της Αττικής διαφοροποιεί την υπερκείμενη τεκτονικά ενότητα Αλμυροπόταμου – Κερκετέα, την οποία θεωρεί αυτόχθονη (Εικ. 66).

Κατά τον Μιγκίρο (1991) στην περιοχή της Αττικής διακρίνονται οι ενότητες: α) Ολύμπου – Αλμυροπόταμου – Αττικής, αντίστοιχη της Γαβρόβου – Τρίπολης, β) Αττικοκυκλαδική, αντίστοιχη της Πίνδου και γ) Υποπελαγονική, που εκφράζεται τόσο με Μαλιακούς, όσο και με Βοιωτικούς σχηματισμούς, οι οποίοι καταλαμβάνουν μόνο τα δυτικά περιθώρια της περιοχής.

Κατά τον Κατσικάτσο (1992, 1986, 2002) η Αττική δομείται από τους αμεταμόρφωτους σχηματισμούς της Πελαγονικής, οι οποίοι βρίσκονται επωθημένοι στους εξωτερικότερους σχηματισμούς του Νεοελληνικού τεκτονικού καλύμματος και της αυτόχθονης ενότητας Αλμυροπόταμου – Αττικής.

Ο Λόζιος (1993), συμφωνεί με το γενικό πλαίσιο στο οποίο εντάσσει ο Παπανικολάου (1986a, 1986b, 2004), και άλλοι ερευνητές (Durr, et al. 1978) την Αττική, ενώ στην περιοχή που μελέτησε διέκρινε τις εξής ενότητες:

(α) Ενότητα Βορειοανατολικής Αττικής, που είναι σχετικά αυτόχθονη ενότητα, διαιρείται στις ενότητες:

 (i) Μαραθώνα – Αγ. Μαρίνας και αποτελεί τμήμα της ενότητας Ολύμπου – Αλμυροπόταμου – Κερκετέα (κατά Παπανικολάου) και

(ii) Πεντέλης – Γραμματικού και

(β) Ενότητα Αγίου Γεωργίου (αλλόχθονη ενότητα κυανοσχιστόλιθων), που πιθανόν είναι αντίστοιχη της ενότητας Λαυρίου (Παπανικολάου, 1986).

Κατά τον Παπαδέα (1969, 1973, 1986, 1987, 1991), το σύνολο των μεταμορφωμένων πετρωμάτων της Αττικής αποτελούν μια πλευρική μετάβαση στην αμεταμόρφωτη Πάρνηθα και όλα μαζί έρχονται με επίκλυση σε προαλπικό υπόβαθρο. Παρόλο που η θεώρησή του για την γεωτεκτονική ένταξη της Αττικής, βασίζεται σε αντιλήψεις ερευνητών της δεκαετίας του '50, το μόνο «πρόβλημα» που φαίνεται να εντοπίζεται, είναι η χρονολόγηση που δίνει για τους σχηματισμούς της Αττικής.

Εικόνα 65:Οι γεωτεκτονικές ενότητες των Ελληνίδων (Papanikolaou, 1989a).

Εικόνα 66: Γεωτεκτονική ένταξη της Αττικής και ο συσχετισμός των γεωλογικών ενοτήτων κατά Παπανικολάου (2015). (Τροποποιημένη).

Λιθοστρωματογραφία της περιοχής μελέτης

Η συστηματική μελέτη της περιοχής της Αττικής ξεκίνησε με την εργασία του Lepsius (1893) κι έκτοτε έχουν διατυπωθεί αρκετές θεωρίες σχετικά με τους γεωλογικούς σχηματισμούς που δομούν την περιοχή. Οι σημαντικότερες από αυτές τις θεωρίες διατυπώνονται παρακάτω.

Α) Αλπικοί σχηματισμοί

Κατά τον Lepsius (1893), η ενότητα Αττικής περιλαμβάνει στους εξής γεωλογικούς σχηματισμούς:

Προκάμβριους, που περιλαμβάνουν Σχιστολίθους Βάρης, Δολομίτες και Σχιστολίθους Πιρναρής, Κατώτερο Μάρμαρο, Σχιστολίθους Καισαριανής, Ανώτερο Μάρμαρο).

Ιουρασικούς – Κάτωκρητιδικούς, που περιλαμβάνουν την Κατώτερη Ασβεστολιθική βαθμίδα με ασβεστόλιθους και σχιστόλιθους – στρώματα Καρά (Bucking, 1884) που βρίσκονται σε ασυμφωνία με τους προηγούμενους σχηματισμούς.

Κρητιδικούς, που πρόκειται για Σχιστολίθους των Αθηνών με τράπεζες ασβεστολίθων, Ανώτερους ασβεστολίθους που επικάθονται ασύμφωνα στους προηγούμενους σχηματισμούς.

Κατά τους Μαρίνος και Petrascheck (1956), οι σχηματισμοί της Λαυρεωτικής αντιστοιχούν με εκείνους των κατώτερων βαθμίδων της Αττικής που πρότεινε ο Lepsiu (1893), ενώ οι μεταϊζηματογενείς σχηματισμοί των Αθηνών δεν ταυτίζονται και δε συσχετίζονται με τις αντίστοιχες ανώτερες βαθμίδες της Λαυρεωτικής. Γενικά, σύμφωνα με τους ίδιους, οι σχηματισμοί της Λαυρεωτικής διακρίνονται σε δύο ομάδες:

Στο αυτόχθονο σύστημα, που περιλαμβάνει αλλεπάλληλα στρώματα μαρμάρων, δολομιτών και σχιστόλιθων σε συμφωνία μεταξύ τους, τα οποία αντιστοιχούν στο κρυσταλλοσχιστώδες υπόβαθρο του Lepsius (Σχιστόλιθοι Βάρης – Ανώτερο Μάρμαρο).

Στο επωθημένο κάλυμμα, που περιλαμβάνει κυρίως φυλλίτες και χαλαζίτες με τράπεζες μαρμάρου, που αντιστοιχούν στους Σχιστόλιθους των Αθηνών και στην Ανώτερη Ασβεστολιθική βαθμίδα του Lepsius (1893).

Κατά τον Παπανικολάου (1986), στην περιοχή της Αττικής διακρίνονται δύο κύριες ενότητες σχηματισμών:

i. Η ενότητα Αττικής, που τεκτονικά είναι η κατώτερη και που επωθούνται σε αυτήν ενότητες όπως η Ανατολική Ελλάδα, το Λαύριο και ο Αλμυροπόταμος. Η συγκεκριμένη ενότητα είναι μεταμορφωμένη και έντονα παραμορφωμένη με τις αρχικές δομές να έχουν διεύθυνση ΒΑ-ΝΔ και τις νεότερες ΒΔ-ΝΑ (Μαριολάκος 1971, Mariolakos &. Papanikolaou 1973). Περιλαμβάνει, επίσης, μεγάλη μάζα μαρμάρων – συχνά δολομιτικών – και μαρμαρυγιακούς, αμφιβολιτικούς σχιστόλιθους με λεπτούς ορίζοντες ενδιάμεσων μαρμάρων. Η στρωματογραφική στήλη της ενότητας είναι σχεδόν ίδια με εκείνην που όρισε ο Lepsius (1893) στην περιοχή του Υμηττού και από τους κατώτερους προς τους ανώτερους σχηματισμούς, περιλαμβάνει: Σχιστόλιθους Βάρης στη βάση, Δολομίτες Πιρναρής, Κατώτερο Μάρμαρο και Σχιστολίθους ως Ανώτερο Μάρμαρο.

Η ενότητα της Λαυρεωτικής, που όπως προαναφέρθηκε, είναι επωθημένη στην ii. ενότητα Αττικής. Η Ενότητα Λαυρίου αντιστοιχεί στην αλλόχθονη ενότητα της Λαυρεωτικής (Μαρίνος &. Petrascheck, 1956) που περνά σταδιακά στην πολύπλοκη αλλόχθονη ενότητα του λεκανοπεδίου της Αθήνας, που είναι γενικά λιγότερο μεταμορφωμένη. Η στρωματογραφική στήλη της συγκεκριμένης ενότητας είναι δύσκολο να καθοριστεί, με αποτέλεσμα να έχουν προκύψει πολλές αντιθέσεις (Μαρίνος et al. 1971, 1973, Τάταρης 1972, Παρασκευαϊδης και Χωριανοπούλου 1978, Paraskevopoulos 1963). Η συγκεκριμένη ενότητα περιλαμβάνει πολλούς ολισθόλιθους και τεκτονικές σφήνες με μεγάλη ποικιλία λιθοτύπων, που της δίνουν τα χαρακτηριστικά ενός μίγματος. Στην οροφή της ενότητας παρατηρούνται ασβεστόλιθοι του Ανώτερου Κρητιδικού (Lepsius 1893, Κτενάς 1907, Leleu &. Neuman 1969) τόσο στην περιοχή της Αθήνας (Ακρόπολη, Λυκαβηττός, Τουρκοβούνια), όσο και στου Λαυρίου (περιοχή Μπερτζέκο). Οι πιο χαρακτηριστικοί λιθότυποι στο Λαύριο είναι οι σερικιτικοί γλωριτικοί σχιοτόλιθοι, που περιέχουν μεταβασάλτες και μεταγάββρους με κυανοσχιστολιθικού τύπου παραγενέσεις. Όσον αφορά στην τεκτονική δομή, κυριαρχούν οι εγκάρσιες δομές με γενική διεύθυνση γράμμωσης και μικροπτυχών Α-Δ.

Κατά τον Κατσικάτσο (1992, 2002) η ενότητα Αττικής περιλαμβάνει μία μεγάλου πάγους σειρά Μεσοζωικών έως Μεσο-ηωκαινικών μαρμάρων με παρεμβολές σχιστολίθων. Τα μάρμαρα του Αλμυροπόταμου – Αττικής είχαν θεωρηθεί παλαιότερα (ως μέλη της Αττικοκυκλαδικής μάζας) και είχαν χρονολογηθεί ως παλαιοζωικά ή και προ-παλαιοζωϊκά. Είναι συνήθως αδροκρυσταλλικά, τεφρά έως λευκότεφρα, ενώ κατά θέσεις εμφανίζονται λευκά, μεσοστρωματώδη έως παγυστρωματώδη και σε μερικές περιπτώσεις άστρωτα κι έντονα καρστικά. Μέσα στα μάρμαρα, παρεμβάλλονται και δολομιτιωμένα μάρμαρα. Οι σχιστόλιθοι της ενότητας αυτής έχουν ιζηματογενή προέλευση, έχουν μεταμορφωθεί στην πρασινοσχιστολιθική φάση και είναι κυρίως μοσχοβιτικοί, ασβεστιτικοί, χλωριτικοί και χαλαζιακοί σχιστόλιθοι. Οι σχηματισμοί αυτοί εμφανίζονται τόσο στη νότια Εύβοια (Σειρά Αλμυροπόταμου), όσο και στην Αττική (Σειρές Αττικής), με τη μορφή ενός μεγάλου τεκτονικού παραθύρου, το οποίο στην περιοχή της νότιας Αττικής, συνοδεύεται από μικρότερα τεκτονικά παράθυρα. Με βάση τα απολιθώματα που εξετάστηκαν σε μάρμαρα (κυρίως της Νότιας Εύβοιας) και τα λιθοστρωματογραφικά δεδομένα, οι σχηματισμοί της ενότητας αυτής στην περιοχή του νομού της Αττικής, εντάσσονται στις εξής λιθοστρωματογραφικές ακολουθίες:

 Βορειοανατολικής Αττικής. Οι σχηματισμοί καλύπτουν σχεδόν ολόκληρη την περιοχή της βορειοανατολικής Αττικής, μέχρι και την Πεντέλη, διαμορφώνοντας με αυτόν τον τρόπο, ένα μεγάλο αντίκλινο με άξονα διεύθυνσης BBA – NNΔ, το οποίο συνεχίζεται και στην περιοχή του Υμηττού. Η ακολουθία αυτή περιλαμβάνει, από κάτω προς τα πάνω, τους εξής λιθοστρωματογραφικούς ορίζοντες: (α) Μάρμαρα Πεντέλης, (β) Σχιστόλιθοι Διονύσου, (γ) Μάρμαρα Γραμματικού, (δ) Σχιστόλιθοι Μαραθώνα, (ε) Μάρμαρα Μαραθώνα, (στ) Σχιστόλιθοι Ραμνούντας και (ζ) Μάρμαρα Αγίας Μαρίνας.

ii. Υμηττού – Νότιας Αττικής. Η συγκεκριμένη ακολουθία περιλαμβάνει από κάτω προς τα πάνω, τους εξής λιθοστρωματογραφικούς ορίζοντες: (α) Σχιστόλιθοι Βάρης, (β) Δολομίτες Πιρναρής, (γ) Κατώτερο Μάρμαρο, (δ) Σχιστόλιθοι Καισαριανής και (ε) Ανώτερο Μάρμαρο. Οι σχηματισμοί του Νεοελληνικού Τεκτονικού Καλύμματος (Κυανοσχιστόλιθων) είναι επωθημένοι στις σχετικά αυτόχθονες σειρές της Αττικής. Οι σχηματισμοί του Νεοελληνικού Τεκτονικού Καλύμματος στη νότια Αττική έχουν συνολικό πάχος που ξεπερνά τα 800 μέτρα. Πρόκειται κυρίως για φυλλίτες, σερικιτικούς και χαλαζιακούς σχιστόλιθους και χαλαζίτες, με παρεμβολές μεταμορφωμένων βασικών εκρηξιγενών (πρασινιτών). Σε αυτούς τους σχηματισμούς, περιλαμβάνονται επίσης, ενστρώσεις κρυσταλλικών ασβεστόλιθων ποικίλου πάχους, κυρίως στα ανώτερα μέλη. Επίσης, κατά θέσεις, στους σχηματισμούς του Νεοελληνικού καλύμματος εμφανίζονται μικρά σώματα σερπεντινιτών. Χαρακτηριστικό γνώρισμα των σχηματισμών του τεκτονικού καλύμματος της Νότιας Αττικής είναι η παρουσία γλαυκοφανή, που δείχνει μεταμόρφωση σε συνθήκες HP/LT.

Κατά τον Νέγρη (1912, 1915, 1919), οι σχιστόλιθοι Αθηνών αποτελούν τη συνέχεια των σχιστολίθων Υμηττού, αλλά διαχωρίζονται από το σύστημα φυλλιτών και σχιστόλιθων του Λαυρίου. Σύμφωνα με τον ίδιο, τα κροκαλολατυποπαγή της βάσης των ανθρακικών λόφων του λεκανοπεδίου των Αθηνών, έχουν τεκτονική προέλευση.

Κατά τον Κτενά (1927), η Αττική εντάσσεται στην Αττικοκυκλαδική κρυσταλλική μάζα και αντιστοιχεί στο ενδιάμεσο σύστημα M2, από τα συνολικά τρία που διακρίνει με βάση το βαθμό μεταμόρφωσης. Τα πρασινοσχιστολιθικά πετρώματα μέσα στους σχιστόλιθους Αθηνών, σχηματίστηκαν πριν από την απόθεση των σχιστολίθων, σαν αποτέλεσμα ηφαιστειακής δραστηριότητας στην περιοχή της Λαυρεωτικής κατά το Ιουρασικό ή Παλιοκρητιδικό.

Κατά τον Kober (1929), τα τεκτονικά καλύμματα της Αττικοκυκλαδικής είναι επωθημένα στο μεταμορφωμένο υπόβαθρο της Αττικής, με αποτέλεσμα τη διαμόρφωση τεκτονικού παραθύρου. Η στρωματογραφία και η ερμηνεία που δίνει ο Kober (1929) διαφέρει από τις εκείνες του Lepsius (1893).

Οι Blumenthal (1931) και Kieslinger (1933) συμφωνούν με τη γενική άποψη που διατύπωσε ο Kober (1929), με τη διαφορά πως ο πρώτος αμφισβητεί τις ηλικίες των σχηματισμών που δίνει ο Kober, ενώ ο δεύτερος θεωρεί πως τα κροκαλολατυποπαγή που εμφανίζονται στη βάση των κρητιδικών ανθρακικών πετρωμάτων, είναι τεκτονικής προέλευσης, συμφωνώντας έτσι με τη θεωρία του Νέγρη (1912, 1915, 1919).

Ο Τρικκαλινός (1936) διαφωνεί με την άποψη του Kober (1929) και συσχετίζει τους δολομιτικούς ασβεστόλιθους της Καισαριανής με αυτούς της Πάρνηθας, εντάσσοντας τους μαζί με τα ανθρακικά του λεκανοπεδίου. Όσο αφορά την άποψη του Lepsius (1893), δεν την αποδέχεται, θεωρώντας ότι η εικόνα της Αττικής είναι μία «επαλληλία μαρμάρων και σχιστόλιθων».

Ο Sindowski (1949) συμφωνεί γενικά με τον Lepsius (1893), αλλά διαχωρίζει τους σχιστόλιθους Αθηνών από τους φυλλίτες της νοτιοανατολικής Αττικής. Επίσης, στους σχηματισμούς του λεκανοπεδίου διακρίνει τρία μέλη (1951) και συσχετίζει τους Αθηναϊκούς Σχιστολίθους με την σχιστοκερατολιθική διάπλαση με σερπεντίνες της Ανατολικής Ελλάδας. Δέχεται την αλλόχθονη προέλευση των λόφων της Αθήνας, αλλά δεν αποκλείει την περίπτωση αυτόχθονης δημιουργίας τους.

Ο Philippson (1952) συμφωνεί με τον Bluementhal (1931) σχετικά με την τεκτονική θέση των λόφων του λεκανοπεδίου της Αττικής πάνω στους Σχιστόλιθους Αθηνών.

Κατά τον Παρασκευόπουλος (1956a, 1956b), η στρωματογραφία του Lepsius (1893) είναι ορθή και οι σχιστόλιθοι και γνεύσιοι της Πεντέλης διαχωρίζονται από εκείνους της Καισαριανής που εμφανίζονται στον Υμηττό.

Ο Τάταρης (1972) συσχετίζει τους Αθηναϊκούς Σχιστολίθους με τη σχιστοκερατολιθική διάπλαση με οφιολίθους.

Οι Leleu και Neumann (1969) αποδέχονται εξ ολοκλήρου τον Lepsius (1893), και διαφοροποιούνται από αυτόν μόνο ως προς κάποιες ηλικίες.

Ο Παπαδέας (1973, 1986, 1991) συγκρίνει τα αμεταμόρφωτα της Πάρνηθας με τα μεταμορφωμένα της Αττικής, χωρίς να λαμβάνει υπόψιν τις χρονολογήσεις. Η στρωματογραφική στήλη που διατυπώνει αποτελείται από εναλλαγή μαρμάρων – σχιστολίθων και γνεύσιων, ηλικιών που ξεκινούν από πριν το Μέσο Λιθανθρακοφόρο και φτάνουν μέχρι το Τριτογενές. Διατυπώνει, επίσης, την πλευρική μετάβαση των μεταμορφωμένων, στα αμεταμόρφωτα της Πάρνηθας. Εντοπίζει τέσσερις κύριες ασυμφωνίες που – σε σχέση με τη Βαρίσκια και την Αλπική ορογένεση – τις εντάσσει ως εξής: την πρώτη του Μέσου – Ανώτερου Λιθανθρακοφόρου στο Μαραθώνα, στη βόρεια Πεντέλη και στο Λαύριο, μία του Τριαδικού – Ιουρασικού στο Λαύριο και την τελευταία του Ανώτερου Κρητιδικού στη βορειοανατολική Αττική, στο δυτικό Υμηττό και στο Λαύριο.

Κατά τον Μαριολάκο (1971), οι Σχιστόλιθοι Καισαριανής μπορεί να βρίσκονται κάτω από το Κατώτερο Μάρμαρο του Lepsius (1893) ή να αποτελούν πλευρική εξέλιξη του συστήματος του Κατώτερου Μάρμαρου. Μαζί με τον Παπανικολάου (1973) εξάγουν αντίστοιχα συμπεράσματα για την περιοχή της Πεντέλης, δηλαδή θεωρούν φασική και όχι στρωματογραφική διαφοροποίηση των σχιστολίθων στην περιοχή.

Κατά τους Παρασκευαϊδης και Χωριανοπούλου (1978), σύμφωνα με την εργασία τους για την περιοχή του ανατολικού Αιγάλεω, ο Αθηναϊκός Σχιστόλιθος παρομοιάζεται με φλύσχη τύπου Ανατολικής Ελλάδας και οι ανθρακικοί λόφοι αποτελούν φακούς μέσα στο φλυσχικό σύμπλεγμα.

Οι Δούνας και Γαϊτανάκης (1981), χωρίζουν το δυτικό τμήμα του λεκανοπεδίου της Αθήνας σε δύο συστήματα. Το πρώτο, το «αυτόχθονο» που αποτελείται από ιζήματα τύπου φλύσχη και ασβεστόλιθους Μαιστριχτίου – Ηωκαίνου και το δεύτερο που αποτελείται από σερπεντινιωμένους περιδοτίτες του Ιουρασικού. Το δεύτερο σύστημα βρίσκεται ασύμφωνα πάνω σε Ανωκρητιδικούς ασβεστόλιθους.

Κατά τον Κατσαβριά (1990) υπάρχει μία ισοπική σειρά στην περιοχή Λαύριο – Δασκαλιό – Άγιος Κωνσταντίνος Λαυρίου, που αντιπροσωπεύει μία ζώνη Εσωτερικών Ελληνίδων, με ραδιολαρίτες και οφιόλιθους και πάνω στα οποία έρχονται με επίκλυση λατυποπαγή, μαργαϊκοί και πλακώδεις ασβεστόλιθοι με silex του Ανώτερου Κρητιδικού.

Η Kessel (1990, 1990b), μελετώντας τις περιοχές Πεντέλης, Υμηττού και Λαυρίου, θέτει ως ερώτημα το κατά πόσο το αλλόχθονο κάλυμμα είναι πράγματι αλλόχθονο ή ανήκει στην ίδια ενότητα με το αυτόχθονο, από τη στιγμή που παρουσιάζει κοινή τεκτονομεταμορφική εξέλιξη με αυτό.

Κατά τον Αλεξόπουλο (1998) στο ανατολικό τμήμα του Υμηττού, 6 χιλιόμετρα νότια του Κορωπίου, εμφανίζονται υπολείμματα μόλασσας ολιγοκαινικής ηλικίας, που υπέρκεινται των αλπικών σχηματισμών.

Οι Λέκκας και Λόζιος (2000) αναφέρουν ότι η σχετικά αυτόχθονη ενότητα Αττικής διαιρείται σε δύο επιμέρους ενότητες: αυτήν της Βάρης - Κύρου Πήρα με τους σχιστόλιθους Βάρης, τους δολομίτες Πιρναρής και την ενότητα Υμηττού με το κατώτερο μάρμαρο, τους σχιστόλιθους Καισαριανής και το ανώτερο μάρμαρο. Διαπιστώνουν, επίσης, πως η τεκτονική μακροδομή του Υμηττού αντιπροσωπεύει μια αντικλινική μακροπτυχή χιλιομετρικής κλίμακας, με κύριο άξονα διεύθυνσης Β-Ν. Στον πυρήνα αυτής της δομής βρίσκεται η κατώτερη και σχετικά αυτόχθονη τεκτονική ενότητα του Λαυρίου – Αθηνών. Σύμφωνα με τους ίδιους, η επαφή μεταξύ των σχηματισμών της ενότητας Βάρης και των σχηματισμών της ενότητας Υμηττού, είναι τεκτονική και είναι πολύ καλά καθορισμένη στην ύπαιθρο.

Η Αντωνίου (2000) ενοποίησε τους σχηματισμούς που προγενέστεροι ερευνητές αναφέρουν, δίνοντας έτσι ομαδοποιημένες λιθοστρωματογραφικές ενότητες των βασικών στρωματογραφικών ακολουθιών.

Η Μπάσση (2004) συσχετίζει τους παραπάνω σχηματισμούς στο Πάνειο όρος, όπου ξεχωρίζει τρεις μεταμορφωμένες λιθολογικές ενότητες, που έχουν τεκτονική σχέση μεταξύ τους. Η κατώτερη ενότητα, στο δυτικό τμήμα του βουνού, αποτελείται από εναλλαγές μαρμάρου – σχιστολίθων που περνούν σε δολομιτιωμένα μάρμαρα Τριαδικής (;) ηλικίας. Η ανώτερη ενότητα αποτελείται από σχιστόλιθους HP/LT φάσης με πρασινίτες.

Οι Φωτιάδης και Καρράς (2001), αναφέρουν μία κατώτερη μεταμορφωμένη ακολουθία Τριαδικής – Ιουρασικής ηλικίας που ανήκει στην Πελαγονική, μία ασυνέχεια που σχετίζεται με την Ηωελληνική ορογενετική φάση και μία μη μεταμορφωμένη μετάβαση στο Τιθώνιο – Κατώτερο Κρητιδικό, που έχει τη μορφή καλύμματος.

Κατά τον Μπαζιώτη (2008), η Ανώτερη Τεκτονική Ενότητα (κατά τους Μαρίνος & Petrascheck, 1956) έχει παρόμοια πορεία ανάδυσης με εκείνην της ενότητς των κυανοσχιστόλιθων Κυκλάδων, με μόνη διαφορά ότι η πρώτη αναδύθηκε από μικρότερα βάθη (>30km). Η Ανώτερη Τεκτονική Ενότητα εμφανίζεται σε περιβάλλον οπισθοτόξιας λεκάνης ή στο εσωτερικό ωκεάνιας πλάκας. Η Κατώτερη Τεκτονική

Ενότητα έχει αναδυθεί από μεγαλύτερο βάθος (45 – 50km) και τοποθετείται σε ένα εξελισσόμενο τεκτονικό περιβάλλον έως οπισθοτόξια λεκάνη.

Β) Μεταλπικοί σχηματισμοί

Οι μεταλπικές λεκάνες της Αττικής οφείλονται στη δράση ρηξιγενούς νεοτεκτονικής, που σε ορισμένα σημεία της περιοχής εξακολουθεί να υφίσταται. Οι σημαντικότερες λεκάνες που εμφανίζονται στην Αττική είναι οι εξής:

Λεκάνη Θηβών, που έχει διεύθυνση Α – Δ. Διατάσσεται παράλληλα στις κύριες ρηξιγενείς δομές και οριοθετείται από τους ορεινούς όγκους του Κιθαιρώνα και της Πάρνηθας.

Λεκάνη Μεγάρων – Ελευσίνας, που ορίζεται από βόρειες και βορειοανατολικές ρηξιγενείς δομές και οριοθετείται από τα Γεράνεια Όρη, τα όρη Πατέρας κι Αιγάλεω και τη Σαλαμίνα.

Λεκάνη Αθηνών, που οριοθετείται από τα όρη Αιγάλεω, Πάρνηθας, Πεντέλης και Υμηττού. Ακολουθεί βόρειες και βορειοανατολικές ρηξιγενείς δομές.

Λεκάνη Σπάτων, που οριοθετείται από τον Υμηττό, την Πεντέλη, το Πάνειο και είναι ανοιχτή προς την ανατολή. Οι κύριες διευθύνσεις των ρηξιγενών δομών είναι ΒΔ – ΒΑ και Α – Δ.

Ο Lepsius (1893) διατυπώνει την εξής στρωματογραφική ακολουθία: στο Τριτογενές εντάσσει τους ασβεστόλιθους Ανώτερης Βαθμίδας, την Κατώτερη Βαθμίδα και τα στρώματα του Πικερμίου (Ανώτερη Βαθμίδα). Στο Τεταρτογενές διαχωρίζει διλούβια από αλλούβια.

Κατά τον Χαραλαμπάκη (1952), Πλειοκαινικές θαλάσσιες αποθέσεις εμφανίζονται μόνο στο νότιο τμήμα της Αττικής.

Ο Παπαχατζής (1980) αναφέρει για τα Μεσόγεια ασύμφωνη απόθεση των Πικερμικών σχηματισμών πάνω στα παλαιότερα στρώματα, καθώς και πιθανή επίκλυση τμημάτων της λεκάνης των Μεσογείων. Όσο αφορά τις διλουβιακές αποθέσεις του Lepsius, τις διακρίνει στις εξής τρεις ομάδες:

(α) Διλουβιακά στρώματα εντός των κοιλάδων των νοτίων υπωρειών του Πεντελικού, με διαφοροποίηση ως προς το χρώμα και την ορυκτολογική σύσταση τους. Τα βαθύτερα στρώματα αποτελούνται από κροκάλες σχιστόλιθων, μάρμαρα, χαλαζία και ασβεστόλιθο. Το πάχος τους κυμαίνεται από 5 έως 15 μέτρα.

(β) Διλουβιακά στρώματα στο εσωτερικό της λεκάνης, που καταλαμβάνουν τα υψηλότερα σημεία των λόφων Σπάτων – Μπουράνι και αποτελούνται από μικρότερες κροκάλες μαρμάρου, χαλαζία, σχιστόλιθου και κερατόλιθου. Το πάχος τους είναι περίπου ίσο με 20 μέτρα.

(γ) Διλουβιακά στρώματα στα χαμηλότερα σημεία της πεδιάδας των Μεσογείων. Η διάκρισή τους από τα βαθύτερα τριτογενή είναι δύσκολη, λόγω το τρόπου διανομής τους.

Όσον αφορά τις αλλουβιακές αποθέσεις, στην περιοχή Πικερμίου – Ραφήνας πρόκειται κυρίως για αργίλους, με κατακερματισμένες και αραιώς τοποθετημένες κροκάλες σχετικά μεγάλων παχών. Στην περιοχή Χαρβάτι – Σπάτα – Λιόπεσι, τα στρώματα αυτά αποτελούνται από τα προϊόντα αποσάθρωσης των τριτογενών και διλουβιακών λόφων μικρού πάχους.

Κατά τον Μέττο (1992), η λεκάνη των Σπάτων χαρακτηρίζεται από την εξής στρωματογραφία: (α) πηλοί, άργιλοι, μάργες, κροκαλοπαγή του Ανώτερου Μειοκαίνου (Πικέρμιο), (β) μάργες, αμμούχες μάργες και κροκαλοπαγή του Πλειοκαίνου, (γ) άργιλοι, πηλοί και κροκαλοπαγή του Κατώτερου Πλειστοκαίνου και (δ) συνεκτικά πλευρικά κορήματα και άργιλοι του Ανώτερου Πλειοκαίνου. Γίνεται, επίσης, αναφορά σε θαλάσσια ιζήματα, Πλειοκαινικής ηλικίας στο ανατολικό τμήμα της λεκάνης των Σπάτων.

Κατά τον Παπανικολάου (2004a), στο λεκανοπέδιο της Αττικής εντοπίζονται οι εξής μεταλπικοί σχηματισμοί:

(α) Ανωμειοκαινικοί, η θαλάσσια φάση των οποίων, χωρίζεται σε δύο λιθολογικές ενότητες, μία υποκείμενη κλαστική και μία υπερκείμενη ανθρακική. Η χερσαία – λιμναία φάση τους αποτελείται από μαργαϊκούς ασβεστόλιθους, αμμούχες μάργες, μάργες, ερυθρές αργίλους και κροκαλοπαγή.

(β) Πλειοκαινικοί σχηματισμοί, η θαλάσσια φάση των οποίων, αποτελείται από μάργες, ψαμμίτες, κροκαλοπαγή και ασβεστόλιθους μεταβαλλόμενης σύστασης και συνοχής. Η χερσαία τους φάση αποτελείται από άμμους και αργίλους με μικρές κλίσεις (< 50), με παρεμβολές λιγνιτικών οριζόντων μικρού πάχους. Κατά θέσεις παρατηρούνται εμφανίσεις ασβεστομαργών λιμναίας (;) φάσης, λευκών και κίτρινων μαργών, μαργαϊκών ασβεστολίθων και χαλαρών πολύμεικτων κροκαλοπαγ'ων και ψαμμιτών.

(γ) Τεταρτογενείς σχηματισμοί, που περιλαμβάνουν κυρίως πλευρικά κορήματα και ριπίδια στους πρόποδες ορεινών όγκων.

Η Ιωακείμ (2005) αναφέρει την απόθεση ποταμοχερσαίων και λιμναίων

αποθέσεων κατά το Ανώτερο Μειόκαινο (Τουρώλιο).

Κατά με τον Krohe (2010) τα Ανωμειοκαινικά – Κατωπλειοκαινικά ιζήματα της λεκάνης των Μεσογείων διακρίνονται σε τρεις σειρές: (α) Σειρά Ι, που αποτελείται από ένα στρώμα αγνώστου πάχους, κίτρινου έως κόκκινου χρώματος, ψαμμούχου έως ιλιούχου αργιλόλιθου, με ενστρώσεις ψαμμιτών και κροκαλοπαγών. Στο στρώμα έχουν βρεθεί απολιθώματα θηλαστικών και μικροθηλαστικών. Το περιβάλλον απόθεσης πιθανολογείται ως τεναγώδες. (β) Σειρά ΙΙ, που αποτελείται από εναλλαγές ψαμμιτών, αργιλόλιθων, μαργών, ασβεστόλιθων και κροκαλοπαγών και (γ) Σειρά ΙΙΙ, μη μεταμορφικής προέλευσης. Όσον αφορά τα Πλειοπλειστοκαινικά ιζήματα, επικάθονται ασύμφωνα στα προηγούμενα μειοκαινικά.

Εικόνα 67: Γεωλογικός χάρτης της περιοχής Αττικής (από γεωλογικούς χάρτες ΙΓΜΕ κλίμακας 1:50.000, με συσχετισμό και ενοποίηση σχηματισμών από Αντωνίου, 2000).

Εικόνα 68: Απλοποιημένος γεωλογικός χάρτης και γεωλογική τομή του Υμηττού. 1: Μεταλπικά, 2: Ενότητα Λαυρίου, 3: Μάρμαρα με σχιστόλιθους, 4: Σχιστόλιθοι Καισαριανής, 5: Κατώτερο Μάρμαρο, 6: Δολομίτης, 7: Δολομιτικό μάρμαρο, 8: Σχιστόλιθοι Βάρης, 9: Αποκόλληση, 10: Τεκτονική επαφή, 11: Ρήγμα (από Lekkas & Lozios, 2000).

Εικόνα 69: Σχηματική στρωματογραφική στήλη των τεκτονικών ενοτήτων του Υμηττού από Lekkas & Lozios (2000).

5. Βασικές παρατηρήσεις για τη χαρτογράφηση με drone

Η χρήση drone κατά τη γεωλογική χαρτογράφηση της περιοχής μελέτης έλυσε το πρόβλημα προσβασιμότητας στα δυσπρόσιτα σημεία του πρανούς που εξετάστηκε. Για την επεξεργασία των δεδομένων που λήφθηκαν από αέρος, έγινε χρήση των λογισμικών των Pix4D (Pix4Dmapper, Version 4.2.25) και GIS (ArcGIS 10.2.2). Το drone που χρησιμοποιήθηκε ήταν το PHANTOM 4 PRO / PRO+, τα χαρακτηριστικά του οποίου παρουσιάζονται παρακάτω (Εικ. 200).

Κάποιες αρχικές παρατηρήσεις σχετικά με τα πλεονεκτήματα, αλλά και τα εμπόδια που εμφανίστηκαν κατά την εξέταση των φωτογραφιών και βίντεο που λήφθηκαν μέσω drone, είναι οι εξής:

Στις περιπτώσεις που το φως του ήλιου προσέπιπτε στο πρανές που θέλαμε να χαρτογραφηθεί, κάποιες δομές δεν ήταν δυνατόν να φανούν καθαρά ούτε μέσω των φωτογραφιών, ούτε μέσω των βίντεο που είχαν ληφθεί. Σε αυτές τις περιπτώσεις, η διάκριση του είδους των επαφών και των αλλαγών της λιθολογίας ήταν δύσκολη.

Στις περιπτώσεις που το φως προσέπιπτε στο πρανές που θέλαμε να χαρτογραφηθεί, η οποιαδήποτε βλάστηση πάνω σε αυτό, ήταν εξαιρετικά ευδιάκριτη. Αυτό είχε ως αποτέλεσμα την εύκολη διάκριση ανάμεσα σε τυχόν βλάστηση και σκιές που οφείλονταν στην ύπαρξη δομών. Έτσι, αποφεύχθηκαν λάθη κατά την αναγνώριση ορίων, δομών, λιθολογιών.

Αρκετές από τις φωτογραφίες που συλλέχθηκαν, απεικόνιζαν περιοχές εκτός του πεδίου που περιλαμβάνει το πρανές. Αυτές οι φωτογραφίες δεν έδιναν πληροφορίες σχετικά με την τεκτονική ή τη στρωματογραφία της περιοχής μελέτης κι επομένως, δε λήφθηκαν υπόψη κατά την επεξεργασία των δεδομένων.

Στις περιπτώσεις που το φως του ήλιου προσέπιπτε στο τμήμα που βρίσκεται πίσω από το πρανές ή υπό γωνία πάνω στο πρανές, δημιουργούνταν σκιές πάνω στο πεδίο μελέτης. Στις φωτογραφίες που συλλέχθηκαν, οι σκιές που οφείλονται στην ύπαρξη δομών διακρίνονται δύσκολα από εκείνες που οφείλονται σε τυχόν βλάστηση πάνω στο πρανές. Τα βίντεο που λήφθηκαν από το drone αποσαφήνισαν την εικόνα σε αυτές τις περιπτώσεις.

Είναι αναγκαίο να σημειωθεί ότι κατά την επεξεργασία των δεδομένων που εισήχθησαν στο GIS, διαπιστώθηκε πως κάποια τμήματα της περιοχής μελέτης δεν είναι ορατά μέσω του Pix4D, αλλά μόνο μέσω του GIS. Σε αυτά τα τμήματα υπολογίστηκαν οι τιμές και οι φορές μέγιστης κλίσης, αλλά δεν έγινε χαρακτηρισμός των δομών τους, αφού η εικόνα για αυτά δεν ήταν σαφής.

6. Μεθοδολογία της χαρτογράφησης με συνδυασμένη χρήση UAV και δεδομένων υπαίθρου

6.1 Δημιουργία Project για την περιοχή μελέτης

Αρχικά, στο Pix4D δημιουργήθηκε ένα αρχείο (New Project), μέσα στο οποίο εισήχθησαν οι φωτογραφίες που λήφθηκαν μέσω του drone στην περιοχή μελέτης. Ως σύστημα συντεταγμένων επιλέχθηκε το WGS 84 / UTM zone 34N και ως διαδικασία προτιμήθηκε η επιλογή 3D Maps. Μέσω της επιλογής 3D Maps, παράχθηκαν υψηλής ανάλυσης DSM και mosaic αρχεία που αφορούν τη συγκεκριμένη περιοχή, Η διαδικασία που ακολουθήθηκε φαίνεται στις παρακάτω εικόνες (Εικ. 70-78).

Pix4Dmapper Pro - Educational		- 0 X
Project Process View Help		
🔜 🖉 🕀 🖸 合 🖸 👰		 2 一
Project Process		
Home		
	New Project	
Map View		
	I his wizard creates a new project. Choose a name, a directory location and a type for your new project.	
La	Nama- Kaisariani hintras nolul nolur	
- CA	Crosts In: Cillicer/EDCM-EDecumentalistd	
Mosaic	Create Jr. C. Josefs (EDCHT-5) DOCUMENTS (DUFU	
Editor	ose As belaux moject totation	
支柱	Project Type	
Index Calculator	New Project	
	Project Merged from Existing Projects	
	New Project with Camera Rigs	
	Project Merged from Existing Projects for Camera Rig Calibration	res.p4d
		0.2018
		0 2010
		p4d
		1 2019
		72010
	1	
	The Court Party Court	
C .	Helb < Eqcy Hext > Cauces	
Processing	How to correct building artifacts in the DSM and Orthomosaic with the ravCloud	-
Log Output		
Ö		
Processing		
upuons		

Εικόνα 70: Δημιουργία του αρχείου που θα περιέχει το νέο Project.

Εικόνα 71: Επιλογή της εντολής, μέσω της οποίας, οι φωτογραφίες που λήφθηκαν από το drone εισήχθησαν στο Pix4D.

Pix4Dr	napper Pro - Educational	- a ×
Project	Process View Help	
ANTO	副学社 ビーローロー Process Process	2
Home		
	Can New Project X	
Map View	Select Images	
rayCloud	At least 3 images in JPG or TJPF format are required.	
Volumes	Selecting images. Please winit Add Images dd Directories Add Video Remove Selected Clear List	
년		
Editor	E Select Images X	
+= ×+ Index	← → × ↑ 📕 > Elem > 2018-07-07-KAISAPI > V 🖸 AvaC/(trany: 2018-07-07-KAIS	
Calculator	Οργάνωση 👻 Νέος φάκελος 📰 👻 🔲 🕑	
	E Exóvec 🖈 ^	
	2018-07-07-KAU	
	Kaisariani_prints D2018	
	pix4d b pix4d TitAcc DCIM.100MEDIA.DJI.0779.JPG	
	ConcDrive	
	2.2018	
	Elements (F) DJL0781 DJL0782 DJL0783 DJL0784	
	2017-12-30-Món	
	2018-07-07-KAU	
Cí Processian	kaisariani gis	
LB	SM and Orthomosaic with the Ονομα αρχείου: DJL_0780	
Log Output	Ανογμία Ακύρο	
Q		
Options		

Εικόνα 72: Επιλογή των φωτογραφιών που εισήχθησαν στο Pix4D, προκειμένου να δημιουργηθεί το νέο Project.

Pix4Dmapper Pro - Educational		- a ×
Project Process View Help		
And Protect Protect		쓰
Image Network Name Network	New Project Select Images Select Images Foundsh images are selected; press fixed to proceed. 127 mono(s) window Mathematical Addressing Matchematical Addressing Mathematical Addressin	

Εικόνα 73: Εισαγωγή των φωτογραφιών που λήφθηκαν μέσω drone, στο Pix4D.

Pix4Dmapper Pro - Educational	- 0 X
Project Process View Help	2. 🗆
Project Procest More: Image: More: Image: More: Image: TopUnit Image:	press lact is proceed. d Bagent. Add Directanne. Add Viden. Remove Selected Case List 01,073 LinG 01,073 LinG 01,073 LinG 01,073 Reading DDF data. Flease wat

Εικόνα 74: Φόρτωση των δεδομένων που εισήχθησαν στο Pix4D.

Pix4Dmapper Pro - Educational		- a ×
Project Process View Help		
		2. Ē
Nome New Year New Yea	New Project Image Selectator Conditioned System Detun::: Word Genders: System: 1984; coordinates System:: WOS 84 (signife) Educ. Conditioned System Detun::: Word Genders: System: 1984; coordinates System:: WOS 84 (signife) Educ. Image Selectator Conditioned System Detun::: Word Genders: System:: WOS 84 (signife) Educ. Image Selectator Conditioned System Detun::: Word Genders: System:: WOS 84 (signife) Educ. Image: Conditioned System:: WOS 84 (signife) Educ. Conditioned System::: Word Genders:: With Conditioned System::: WOS 84 (signife) Educ. Image: Conditioned System:: WOS 84 (signife) Educ. Conditioned System::: Word Conditioned System::: WOS 84 (signifie) Educ. Image: Conditioned System:: WOS 84 (signifie) Image: Conditioned System:: Condit Image: Conditioned System:: Conditione	

Εικόνα 75: Ρύθμιση της ακρίβειας της τοποθεσίας των φωτογραφιών που εισήχθησαν στο Pix4D.

Pix4Dmapper Pro - Educational		- 0 ×
Project Process View Help		<u> </u>
Project Process		쓰
Mane Map View Payebuat Processing Lag Output Processing Lag Output Processing	New Project Select Output Coordinate System Output Coordinate System Output Coordinate System Output Coordinate System Output Coordinate System Output Coordinate Options O	d

Εικόνα 76: Επιλογή του κατάλληλου συστήματος συντεταγμένων.

Pix4Dmapper Pro - Educational		- o ×
Project Process View Help		
		요
Process Process In Mane In	oject Ing Options Template Ing Age	9. p4d 1/18 d

Εικόνα 77: Ανοιγμα της καρτέλας επιλογών που αφορούν στη διαδικασία δημιουργίας του νέου Project.

Fiv4Dmapper Pro - Educational	0 X
Project Process View Help	
Marchard Protects	20
Project Project Project Processing Options Template Processing Options Template Processing Options Template Processing Options Template Processing Options Template Processing Options Template Processing Options Template Processing Options Processing Options Template Processing Options Processing Options Template <t< th=""><th></th></t<>	

Εικόνα 78: Ρύθμιση της ποιότητας της τελικής εικόνας του νέου Project και της ταχύτητας διαδικασίας δημιουργίας του.

Στη συνέχεια, όπως φαίνεται παρακάτω (Εικ. 79), ξεκίνησε η διαδικασία που περιλάμβανε την αρχική επεξεργασία των δεδομένων (initial processing), τη δημιουργία των point cloud και mesh και τέλος, τη δημιουργία των DSM, orhomosaic και index αρχείων. Παρακάτω, στο Παράρτημα (Εικ. 201), παρατίθεται το "Quality Report" που εξήχθη από το Pix4D μετά τη δημιουργία των παραπάνω αρχείων και παρέχει όλες τις

πληροφορίες (γενικά χαρακτηριστικά, έλεγχο ποιότητας, προεπισκόπηση των αρχείων που παράχθηκαν και τις ενότητες "Calibration Details", "Bundle Block Adjustment Details", "Geolocation Details", "Point Cloud Densification Details", "DSM, Orthomosaic and Index Details") σχετικά με το νέο Project. Μετά την ολοκλήρωση της διεργασίας (Εικ. 80), το νέο Project είναι έτοιμο προς επεξεργασία. Το πλέγμα που φαίνεται στις εικόνες, αποτυπώνει τη διαδρομή που ακολούθησε το drone και τα κόκκινα σημεία αντιστοιχούν στα σημεία όπου λήφθηκαν οι φωτογραφίες που χρησιμοποιήθηκαν στο συγκεκριμένο Project.

Εικόνα 79: Έναρξη της διεργασίας που περιλάμβανε την αρχική επεξεργασία των δεδομένων (initial processing), τη δημιουργία των point cloud και mesh, τη δημιουργία των DSM, orhomosaic και index αρχείων.

Εικόνα 80: Ολοκλήρωση της διαδικασίας δημιουργίας του νέου Project.

Οι φάκελοι αρχείων που δημιουργήθηκαν μετά την ολοκλήρωση της παραπάνω διαδικασίας και αφορούσαν το Project που παράχθηκε, είναι οι εξής: α) "1_initial", β) "2_densification", γ) "3_dsm_ortho" και δ) "temp" (Εικ. 81). Καθένας από αυτούς τους φακέλους περιλαμβάνει επιμέρους φακέλους. Έτσι, μέσα στον "1_initial" περιλαμβάνονται οι "params", "project_data" και "report". Εντός του "2_densification" βρίσκονται οι "3d_mesh", "point_cloud" και "project_data". Ο "3_dsm_ortho" περιλαμβάνει τους "1_dsm", "2_mosaic" και "project_data". Τελος, ο "temp" περιέχει τους :dense" και "rays".

📕 🗹 📜 🗉 Kaisariani_hi	ighres_polyLpolyg			
Apgelo Apgeli Kowij pp	piloli ripolicini	dal is Malaasiaal bioters	abd as here is	
e> v ↑ 🚺 > Elem	nents (PD > 2018-07-07-KAIEAPIANH > pix	ka > kasanani,highies,pi	owilbowd >	
 Loducos mobelleres 	Ονομα	Ημερομηνία τροπ	Túnoc	MéyeRoc
	📕 1 jinitial	10/7/2018 7:18 µµ.	Φάκελος αρχείων	
Trough dans	2_densification	10/7/2018 7:18 µµ	Φάκελος αρχείων	
Contraction of the second	3_dsm_ortho	10/7/2018 7:18 µµ	Φάκελος αρχείων	
e eyypoqu /	temp	25/7/2018 5×45 µµ	Φάκελος αρχείων	
Elikovec //	Kaisariani_highres_polyLpolyg	25/7/2018 1:30 µµ	Έγγραφο καμένου	26.041 KB
2018-07-07-KAILAP	kaisariani_poly_lines.dbf	20/7/2018-644 µµ	Appeio DBF	40.03
L b	kaisariani_poly_lines.ptj	20/7/2018-644 µµ	Appeio PRJ	1.03
📕 Kaisariani printscrex	kaisariani_poly_lines.shp	20/7/2010 4:44 µµ	Appeio SHP	130 K0
pix4d	kaisariani_poly_lines.stx	20/7/2018-4:44 µµ	Appeio SHX	3 103
CareDrive	kaisariani_poly_vertices.dbf	20/7/2018 4:44 µµ	Apgeio DBF	042 KD
- OneDrive	kaisariani_poly_vertices.prj	20/7/2018 4:44 µµ	Apgeio PRJ	1 KB
🍠 Αυτός ο υπολογιστήκ	kaisariani_poly_vertices.shp	20/7/2018 4644 µµ	Apyria SHP	177 KB
- Elements (Et)	kaisariani_poly_vertices.shx	20/7/2018 4:44 µµ	Apprio SHX	40 KB
2017.13.30.Min.Fr	kaisariani_polygon_surfaces.dbf	20/7/2018 4-44 µµ	Appaio DBF	8 KB
2017-12-30-M0V0p	kaisariani_polygon_surfaces.ptj	20/7/2018 4644 µµ	Appreio PIU	1.68
2018-07-07-KAILAP	kaisariani_polygon_surfaces.shp	20/7/2018 4644 µµ	Apyria SHP	43 KB
Kaisariani	kaisariani_polygon_surfaces.shs	20/7/2018 4-44 µµ	Apyrio SHX	1 KB
kaisariani_gis	kaisariani_polygon_vertices.dbf	20/7/2018 4:44 µµ	Apyrio DBF	277 KB
📫 Nemes	kaisariani_polygon_vertices.ptj	20/7/2018 4644 µµ	Apgeio PRJ	1 KB
- Monte	kaisariani_polygon_vertices.shp	20/7/2018 4644 µµ	Apyrio SHP	58 KB
	kaisariani_polygon_vertices.shx	20/7/2018 4:44 µµ	Apysia SHX	13 KB
21 στοιχεία 4 επιλεγμένα ι	στοιχεία			
				-

Εικόνα 81: Οι φάκελοι (επιλεγμένα στοιχεία) των αρχείων που δημιουργήθηκαν μετά την ολοκλήρωση της

6.2 Επεξεργασία του Project

Ανοίγοντας την προβολή rayCloud προκειμένου να γίνει επεξεργασία των δεδομένων της περιοχής, παρατηρήθηκε πως σε κάποια σημεία ενώ έχουν ληφθεί φωτογραφίες, αυτές δεν είναι ορατές. Τα σημεία στα οποία αναφερόμαστε, είναι εκείνα που απεικονίζονται με κόκκινο χρώμα (Εικ. 82, 83 & 84).

Εικόνα 82: Τα σημεία, στα οποία, ενώ έχουν ληφθεί φωτογραφίες, αυτές δεν είναι ορατές στο Project που δημιουργήθηκε.

Εικόνα 83: Απεικόνιση των σημείων που παρουσιάστηκαν στην Εικ. 13, από διαφορετική οπτική γωνία.

Εικόνα 84: Απεικόνιση των σημείων που παρουσιάστηκαν στις Εικ. 13 & 14, έχοντας ενεργοποιημένο το "Point Clouds" layer.

Μέσω της προβολής rayCloud, δίνεται η δυνατότητα χρήσης της εργαλειοθήκης Create και της ενεργοποίησης ή απενεργοποίησης των layers που έχουν παραχθεί κατά τη διαδικασία δημιουργίας του νέου Project, αλλά και κατά την επεξεργασία των δεδομένων από το χρήστη. Απενεργοποιώντας, λοιπόν, το "Cameras" layer, το "Rays" layer, το "Tie Points" layer και το "Point Cloud" layer κι ενεργοποιώντας μόνο το "Triangle Meshes" layer, η τρισδιάστατη απεικόνιση της περιοχής μελέτης έχει μεγαλύτερη ευκρίνεια, αφού δεν εμφανίζονται πλέον επιπρόσθετα στοιχεία που δε βοηθούν στην επεξεργασία που θα ακολουθήσει. Η περιοχής μελέτης μετά την ενεργοποίηση κι απενεργοποίηση των προαναφερθέντων layers, έχει την παρακάτω όψη (Εικ. 85).

Εικόνα 85: Απεικόνιση της περιοχής μελέτης, έχοντας ενεργοποιημένα μόνο τα "Point Groups" και "Triangle Meshes" layers.

Η εργαλειοθήκη Create του rayCloud περιλαμβάνει τα εξής 7 εργαλεία: New Processing Area, New Scale Constraint, New Orientation Constraint, New Orthoplane, New Video Animation, New Polyline και New Surface. Κατά την επεξεργασία του συγκεκριμένου Project, χρησιμοποιήθηκαν τα εργαλεία "New Polyline" και "New Surface". Προκειμένου να ψηφιοποιηθούν τεκτονικές και στρωματογραφικές δομές που εμφανίζονται στο πρανές της περιοχής μελέτης, μελετήθηκαν οι φωτογραφίες και τα βίντεο που λήφθηκαν από το drone και αντιστοιχούν σε διάφορα τμήματα του πρανούς. Το λογισμικό του Pix4D δίνει τη δυνατότητα προβολής του εκάστοτε σημείου ενδιαφέροντος υπό οποιαδήποτε οπτική γωνία, σε οποιονδήποτε προσανατολισμό, με μεγέθυνση ή σμίκρυνση, ανάλογα πάντα με τις ανάγκες που προκύπτουν κατά την επεξεργασία του Project. Εστιάζοντας, λοιπόν, κάθε φορά σε ένα τμήμα του πρανούς που παρουσιάζει γεωλογικό ενδιαφέρον και αφού διαπιστωθεί ο γαρακτήρας της εκάστοτε δομής, ξεκινά η ψηφιοποίηση αυτής. Έτσι λοιπόν, στις περιπτώσεις που εντοπίστηκαν επιφάνειες (είτε στρώσης, είτε διάρρηξης), αυτές ψηφιοποιήθηκαν μέσω του εργαλείου "New Polygone" (Εικ. 86 & 87). Στις περιπτώσεις που διαπιστώθηκε η ύπαρξη γραμμικού στοιχείου (ρήγμα, διάκλαση, ρωγμή, στρωματογραφική επαφή), αυτό ψηφιοποιήθηκε μέσω του εργαλείου "New Polyline" (Εικ. 88 & 89).

Εικόνα 86: Εντοπισμός επιφάνειας ρήγματος στο πρανές της περιοχής μελέτης.

Εικόνα 87: Η ψηφιοποιημένη επιφάνεια του ρήγματος, η οποία εντοπίστηκε στην περιοχή που απεικονίστηκε στην Εικ. 86.

Εικόνα 88: Εντοπισμός ρήγματος στο πρανές της περιοχής μελέτης.

Εικόνα 89: Το ψηφιοποιημένο ρήγμα, το οποίο εντοπίστηκε στην περιοχή που απεικονίστηκε στην Εικ. 88.

Σε όσα σημεία υπήρξε δυσχέρεια ως προς την αναγνώριση του είδους των δομών, ενεργοποιήθηκε το "Point Clouds" layer. Το συγκεκριμένο layer δίνει τη δυνατότητα επιλογής σημείων πάνω στο πρανές, που οδηγεί στην εμφάνιση όλων των αντίστοιχων φωτογραφιών που το απεικονίζουν (Εικ. 87 & 89). Οι φωτογραφίες αυτές, εμφανίζονται στην ενότητα "Images" του παραθύρου "Properties" κι επιτρέπουν τη στοχευμένη παρατήρηση του σημείου ενδιαφέροντος με δυνατότητα αυξομείωσης των διαστάσεων τους (zoom in & zoom out). Η συγκεκριμένη λειτουργία, αποδείχθηκε ιδιαίτερα χρήσιμη, καθώς το εκάστοτε σημείο ενδιαφέροντος απεικονίζεται από πολλές οπτικές γωνίες. Η δυνατότητα αυτή, σε συνδυασμό με τη μελέτη του βιντεοσκοπικού υλικού, βοηθούν στην όσο το δυνατόν ακριβέστερη ψηφιοποίηση. Μετά την ολοκλήρωση της ψηφιοποίησης των χαρακτηριστικών δομών που εμφανίζονται στο πρανές, η περιοχή μελέτης αποκτά την όψη που παρουσιάζεται στις παρακάτω εικόνες (Εικ. 90, 91, 92, & 93). Για κάθε ψηφιοποιημένο στοιχείο αντιστοιχεί ένα layer που ανήκει στο "Object" layer, το οποίο περιλαμβάνει τα "Polylines" και "Surfaces" layers. Τα layers των ψηφιοποιημένων γραμμικών στοιχείων βρίσκονται αποθηκευμένα στο "Polylines" layer, ενώ εκείνα των ψηφιοποιημένων επιφανειών βρίσκονται στο "Surfaces' layer. Έχοντας ενεργοποιημένο μόνο το "Objects" layer, η εικόνα που προκύπτει για την περιοχή μελέτης φαίνεται παρακάτω (Εικ. 94).

Εικόνα 90: Η όψη που αποκτά η περιοχή μελέτης μετά την ολοκλήρωση της ψηφιοποίησης των χαρακτηριστικών δομών που εμφανίζονται στο πρανές.

Εικόνα 91: Η απεικόνιση της ψηφιοποιημένης περιοχής μελέτης, που παρουσιάζεται στην Εικ. 90, από διαφορετική οπτική γωνία.

Εικόνα 92: Η κάτοψη της ψηφιοποιημένης περιοχής μελέτης.

Εικόνα 93: Η κάτοψη της ψηφιοποιημένης περιοχής μελέτης, διαφορετικά προσανατολισμένη συγκριτικά με την κάτοψη που παρουσιάζεται στην Εικ. 92.

Εικόνα 94: Η κάτοψη της ψηφιοποιημένης περιοχής μελέτης, έχοντας απενεργοποιημένο το "Triangle Meshes" layer.

6.3 Υπολογισμός των στοιχείων των δομών που εξετάστηκαν μέσω drone

Στη συνέχεια, έγινε εισαγωγή δεδομένων - τα οποία είχαν δημιουργηθεί μέσω του Pix4D - στο GIS. Τα δεδομένα αυτά (Εικ. 95) ήταν τα dsm, το mosaic, καθώς και οι γραμμές και οι επιφάνειες με τα αντίστοιχα σημεία τους, που δημιουργήθηκαν κατά την ψηφιοποίηση. Σε αυτό το σημείο, παρατηρήθηκε το εξής φαινόμενο: Κάποια τμήματα του πρανούς είναι ορατά κατά την προβολή της περιοχής μέσω του Pix4D, ενώ κατά την προβολή μέσω του GIS, τα ίδια τμήματα ήταν ανύπαρκτα. Έχοντας ως σκοπό να μετρηθούν οι τιμές και οι φορές μέγιστης κλίσης χαρακτηριστικών επιφανειών του πρανούς, δημιουργήθηκαν τα αρχεία "slope.tif" και "aspect.tif" μέσω των εργαλείων "slope" και "aspect" αντίστοιχα της εργαλειοθήκης ArcToolbox (Εικ. 96, 97, 98 & 99).

Εικόνα 95: Επιλογή των δεδομένων – που είχαν δημιουργηθεί μέσω του Pix4D – τα οποία εισήχθησαν στο GIS.

🗿 kaicariani - ArcMan		- a v
Els Edit View Reekmarks Jacob Calastian	Generocercing Customics Windows Hale	- 5 ^
The bot view bookmans insert selection	Geoprocessing Customote Windows Help	
	× =) (= 💎 - 1:4.000	🔛 🖽 🚚 📲 👔 later 🕩 🔼 🖉 Z Z Z Z MAR 📭 🖓 🔛 🖓 🔛 Mar 👔 🥙 measurgments ne* 🕕 🕸 🧐 😪 🖽 🥪 2500. 🖻
0, 0, 🖑 🔕 👬 💱 🗢	🔶 🔯 · 🖾 🖡 🚺 🖉 🗐	
Georeferencing* Kaisariani biohres p v	୲୵ୣୣ୶ୢ୶୕୷୕ଢ଼ୖୖୖ≣ୖ୰	
🖗 Kaisariani hiohres 🔻 烱 <u>h</u>	Geostatistical Analyst • 🐠 🚦 30 Analyst • 🖗 Ka	Slope - X
Table Of Contents	ArcTeolbox 🗆 ×	Input raster
Sec. 19 19 19 19 19 19 19 19 19 19 19 19 19	S ArcToolbox	C\Kaisariani\kaisariani gis\Kaisariani highres polyl polyg dsm tif 🔍 🦉
G Generation of the set	🖃 🔍 3D Analyst Tools	Cubicit and an use in a set of the set of th
•	🗄 🗞 3D Features	Cultareter Cultareter Control Support According to the Control of the Cultareter Cu
 kaisariani_polygon_vertices 	🗄 🗞 CityEngine	c. losa sterim formar inclusion and the construction for the construction of the const
kaisariani_poly_vertices	Sonversion	Output measurement (optional)
B □ kaisariani_poly_lines	🗄 🗞 Data Management	UEGNEE V
-	Sunctional Surface	Z factor (optional)
kaisanani_potygon_sumaces	Section	i
Kaisariani_highres_polyl_polyg_transparent, pop	🗄 🗞 Raster Math	
Red: Band_1	🗄 🗞 Raster Reclass	
Green: Band_2	🗆 🗞 Raster Surface	
Kaisariani_highres_polyl_polyg_dsm.tif	Aspect	
Value High: 279.138	Contour	
	🔨 Contour List	
Low: 201,666	 Contour with Barriers 	
□ aspect.tif	 Curvature 	
Value High: 360	Cut Fill	
Low 1	≦ Hillshade	OK Cancel Environments << Hide Help Tool Help
1. MW = - 1	Slope	
Kaisariani_highres_polyl_polyg_transparent,	III STITI	
Red: Band_1	III S Visibility	
Green: Band_2	Analysis Tools	
Kaisariani_highres_polyl_polyg_dsm.tif	E Cartography Tools	
Value High : 279,138	🗄 🍳 Conversion Tools 🗸 🗸	
Low: 201,666	v 28 0 H c	>
Drawing • 🖹 💿 🐨 🔲 • 🗛 •	• 🖂 🖉 Arial 🛛 🗸 🗸 🖌 🛛 🖉	Ⅰ 및 ▲ 첫 4 · ∸ ·] 더 더 더 더 더 더 더 더 ㅠ 아 쁘 ㅎ ㅎ ㅎ ㅋ ㅋ
Geoprocessing tool that identifies the slope (rate of ma	stimum change in z-value) from each cell.	743340.107 4205423.338 Meters

Εικόνα 96: Χρήση του εργαλείου "Slope" με σκοπό τη μέτρηση των τιμών μέγιστης κλίσης των επιφανειών που μελετήθηκαν στο πρανές. Τα δεδομένα που εισήχθησαν προέρχονται από εκείνα που δημιουργήθηκαν στο Pix4D.

Εικόνα 97: Ενεργοποίηση του "slope.tif" layer που δημιουργήθηκε με τη χρήση του εργαλείου "Slope".

🥘 kaisariani - ArcMap		- 6 ×
File Edit View Bookmarks Insert Selection	Geoprocessing Customize Windows Help	
🗋 🖆 🖶 🖨 🛸 👘 🛍 🗎	× > C 🔶 1:4.000 ·	🔣 🖼 🗊 📲 teter 🕨 📐 🖉 🧭 🛞 🐘 🏹 🐘 🛊 X 🔉 💷 🗛 👘 👘 measurgments net 🕕 🗰 🥵 🗇 🛃 🥎 500 1
🔍 🔍 🖑 🥝 👯 🖸 🗢	🔶 🔊 🖉 💺 🚺 🖉 🖮	
Georeferencing* Kaisariani bjohres p 🗸	v≁ 🛠 🞼 🛋 🖧 👼 🖽 💽	· · · · · · · · · · · · · · · · · · ·
🖗 Kaisariani hichres 🔻 🎘 🛅 💡	Geostatistical Analyst • 🐠 🚛 3D Analyst • 🌾 Ka	
Table Of Contents	ArcTeolbex 🗆 ×	Input raster
1	S ArcToolbox	C\Kaisariani\kaisariani dis\Kaisariani highres nolyl nolyg dsm tif
Generation in the second	B SD Analyst Tools	Output raster The input surface raster.
kaisariani nolvoon vertices	SD Features	C:\Users\eirin\OneDrive\Eyypapa\ArcGIS\Default.gdb\Aspect_tif1
•	GityEngine	
kaisariani_poly_vertices	Sonversion	
kaisariani_poly_lines	🗄 🗞 Data Management	
kaisariani, polygon_surfaces	Surface	
- Pl Maladad blabar and astro incorporati	Raster Interpolation	
RGB	🗄 🗞 Raster Math	
Red: Band_1	🗄 🗞 Raster Reclass	
Blue: Band_3	🗆 🗞 Raster Surface	
Kaisariani_highres_polyl_polyg_dsm.tif	Aspect	
High : 279,138	in Contour	
Low: 201.665	in Contour List	
	Contour with Barriers	\sim
Aspect.M	Curvature	
High : 360	🔨 Cut Fill	
Low: -1	Hillshade	OK Cancel Environments << Hide Help Tool Help
Kaisariani hinkres only notwo transparent	Slope	
RGB	Weight Surface	
Red: Band_1 Green: Band_2	🗄 🗞 Visibility	
Blue: Band_3	Analysis Tools	
 Kaisariani_highres_polyl_polyg_dsm.tif Value 	Cartography Tools	
High : 279,138	Conversion Tools	
Low : 201,666	v 🖾 🛛 🖉 🖷 🤘	3
Drawing- 🖹 💿 🎲 🔛 - 🗛 -	• 🔀 🖉 Arial 🛛 🗸 🕹 🖪	/ U ▲ ♠ ◢ ∸ ∥ K K K K H H H H H H H H H H A # # @ @ + + H H H H H H H H A # A 4
Geoprocessing tool that derives aspect from a raster su	rface. Aspect identifies the downslope direction of the ma	imum rate of change in value from each cell to its neighbors. 743840,813 4205598,316 Meters

Εικόνα 98: Χρήση του εργαλείου "Aspect" με σκοπό τη μέτρηση των φορών μέγιστης κλίσης των επιφανειών που μελετήθηκαν στο πρανές. Τα δεδομένα που εισήχθησαν προέρχονται από εκείνα που δημιουργήθηκαν στο Pix4D.

Εικόνα 99: Ενεργοποίηση του "aspect.tif" layer που δημιουργήθηκε με τη χρήση του εργαλείου "Aspect".

Έπειτα, δημιουργήθηκε ένα νέο shapefile (Εικ. 100) που ονομάστηκε "measurements_2_new", ώστε να καταχωρηθούν σε αυτό οι μετρήσεις των τιμών και των φορών μέγιστης κλίσης των επιφανειών του πρανούς. Για το συγκεκριμένο shapefile, ως feature type επιλέχθηκε το "Point". Με αυτόν τον τρόπο, κατά το Editing, ήταν δυνατόν να δημιουργηθούν σημεία πάνω σε κάθε επιφάνεια και στη συνέχεια να μετρηθούν τα slope και aspect για κάθε ένα από αυτά τα σημεία. Έτσι, θα έχουμε υπολογίσει slope και aspect για κάθε επιφάνεια. Όσο περισσότερα σημεία υπάρχουν σε κάθε επιφάνεια, τόσο πιο αξιόπιστα είναι τα αποτελέσματα. Προκειμένου να πραγματοποιηθούν οι παραπάνω υπολογισμοί, ενεργοποιήθηκε το εργαλείο "Surface

information". Στο παράθυρο "Add Surface Information" εισήχθησαν τα σημεία του "measurements_2_new" και το "slope.tif" για τη μέτρηση της τιμής μέγιστης κλίσης (dip). Όπως φαίνεται και παρακάτω, οι τιμές της μέγιστης κλίσης μετρήθηκαν σε μοίρες και όχι σε ποσοστό επί τοις εκατό. Για τη μέτρηση της φοράς μέγιστης κλίσης (dip direction), στο προαναφερθέν παράθυρο εισήχθησαν τα σημεία του "measurements_2_new" και το "aspect.tif". Η διαδικασία αυτή παρουσιάζεται παρακάτω (Εικ. 101 & 102).

Εικόνα 100: Δημιουργία του "measurements_new_2" shapefile, που περιλαμβάνει τις μετρήσεις των τιμών και των φορών μέγιστης κλίσης των επιφανειών του πρανούς που μελετήθηκε. Αυτό το shapefile αφορά στις επιφάνειες που εξετάστηκαν κατά την επεξεργασία των δεδομένων που λήφθηκαν μέσω drone.

Εικόνα 101: Χρήση του εργαλείου "Add Surface Information" για τον υπολογισμό των τιμών μέγιστης κλίσης των επιφανειών που μελετήθηκαν στο πρανές. Το shapefile που εισήχθη ήταν το "measurements_new_2".

Εικόνα 102: Χρήση του εργαλείου "Add Surface Information" για τον υπολογισμό των φορών μέγιστης κλίσης των επιφανειών που μελετήθηκαν στο πρανές. Το shapefile που εισήχθη ήταν το "measurements_new_2".

Οι μετρήσεις τιμής και φοράς μέγιστης κλίσης των επιφανειών εμφανίζονται στον Attribute Table του "measurements_2_new". Μετά την ολοκλήρωση της διαδικασίας υπολογισμού των τιμών μέγιστης κλίσης των επιφανειών, δημιουργήθηκε ένα New Field που ονομάστηκε "Dip". Στη συνέχεια οι τιμές μέγιστης κλίσης που ήταν καταγωρημένες στο field "Ζ" αντιγράφηκαν στο field "Dip" και το "Ζ" διεγράφη. Ομοίως, μετά τον υπολογισμό των φορών μέγιστης κλίσης των επιφανειών της περιοχής μελέτης, δημιουργήθηκε ένα New Field που ονομάστηκε "Dip direct". Έπειτα, οι τιμές του field "Ζ" αντιγράφηκαν στο field "dip_direct" και το "Ζ" διεγράφη από τον Attribute Table. Ο λόγος για τον οποίο δημιουργήθηκαν τα νέα fields ("Dip" και "Dip_direct") όπου αντιγράφηκαν οι τιμές και οι φορές μέγιστης κλίσης αντιστοίχως, σχετίζεται με τον τρόπο λειτουργίας του εργαλείου "Surface Information". Οι τιμές, δηλαδή, που υπολογίζονται μέσω του Surface Information, αποθηκεύονται σε ένα και μόνο field, που είναι το "Ζ". Έτσι, προκειμένου ο Attribute Table του shapefile του "measurements_2_new" να περιλαμβάνει τις υπολογισμένες τιμές και φορές μέγιστης κλίσης, μετά τον υπολογισμό των τιμών μέγιστης κλίσης, τα αποτελέσματα αντιγράφηκαν σε ένα νέο field ("Dip"), ώστε το "Ζ" να είναι κενό και να μπορεί να δεχτεί τις φορές μέγιστης κλίσης που υπολογίστηκαν στη συνέχεια.

Υστερα, στον Attribute Table του "measurements_2_new" δημιουργήθηκε το field "surf_type". Το συγκεκριμένο field περιλαμβάνει τις περιγραφές σχετικά με το είδος της κάθε επιφάνειας, στην οποία ανήκει το κάθε σημείο, μέσω του οποίου έχουν υπολογιστεί οι τιμές και οι φορές μέγιστης κλίσης. Οι περιγραφές αυτές έχουν γίνει με βάση τη διάκριση των επιφανειών σε επιφάνειες διάρρηξης ("Fault_surface") και επιφάνειες στρώσης ("Bedding_surface"). Έτσι, εάν για παράδειγμα υπάρχουν 5 σημεία που ανήκουν στην ίδια επιφάνεια και η συγκεκριμένη επιφάνεια είναι επιφάνεια ρήγματος, τότε κάθε κελί του field "surf_type" που αντιστοιχεί σε αυτά τα 5 σημεία, θα είναι συμπληρωμένο με το χαρακτηρισμό "Fault_surface_1". Παρακάτω (Εικ. 103) φαίνεται η εικόνα που έχει ο Attribute Table του "measurements_2_new" μετά τον υπολογισμό των τιμών και των φορών μέγιστης κλίσης και το χαρακτηρισμό των επιφανειών στις οποίες ανήκουν τα σημεία που επιλέχθηκαν.

Εικόνα 103: Ο Attribute Table του "measurements_new_2" shapefile, που περιλαμβάνει τις τιμές κλίσης και φοράς μέγιστης κλίσης των επιφανειών που υπολογίστηκαν μέσω των εργαλείων "slope" και "aspect".

Συνολικά, επιλέχθηκαν 564 σημεία και διαπιστώθηκε η ύπαρξη 11 επιφανειών διάρρηξης κι 100 επιφανειών στρώσης. Οι επιφάνειες των σημείων που βρίσκονταν στα τμήματα του πρανούς που ήταν ορατά μέσω του GIS μεν, αλλά όχι μέσω του Pix4D, δε χαρακτηρίστηκαν. Τα κενά κελιά του "surf_type" αντιστοιχούν σε αυτές τις επιφάνειες. Η ολοκληρωμένη εικόνα του Attribute Table του "measurements_2_new" δίνεται παρακάτω (Παράρτημα, Πίν. 6 – 17).

6.4 Δημιουργία διαγραμμάτων πυκνότητας σε δίκτυο Schmidt βάσει των δεδομένων που λήφθηκαν μέσω drone

Οι τιμές και οι φορές μέγιστης κλίσης που μετρήθηκαν προηγουμένως, εξήχθησαν από το GIS ως αρχείο του Excel. Στη συνέχεια, το αρχείο αυτό, εισήχθη στην πλατφόρμα StereoStat του λογισμικού του RockWorks και πιο συγκεκριμένα, στην ενότητα "Datasheet" (Εικ. 104, 105, 106, 107, 108, 109, 110), όπου κι έγινε η μετέπειτα επεξεργασία (Εικ. 111 & 112).

Εικόνα 104: Ανοιγμα της ενότητας "Datasheet" της πλατφόρμας StereoStat του λογισμικού του RockWorks.

Εικόνα 105: Έναρξη διαδικασίας εισαγωγής του κατάλληλου Excel αρχείου στην ενότητα "Datasheet".

≩ ++ ++ + + +D+ ⊞ ‡ ⊠ wrap		Instructions				
« »	< >>	* *				
Bristing Excel File	8					
F Header Line			Home > RockWork	ks Utilities - Entering Data > Importing Data > Importing D	Data from Excel Files into the Utilities Dat	tasheet
Process Header Line		1				
C Ignore Header Line		Show navigation				
- Number of Rows			Conon Data File			×
I Header Row			Copen Data rile			^
C 2 Header Rows (Units)			$\leftrightarrow \rightarrow - \uparrow$	« Windows (C:) → Kaisariani → 🗸 🗸	Αναζήτηση: Kaisariani	P
- Excel Datasheet #	1		Οργάνωση -	Νέος φάκελος	BE • 🔳	0
Video Help	Watch Video			Output	Huropupuia TooToT	Túr
			5 Dropbox		- Achebalter destruit	
			ConeDrive	kaisariani_gis	30/7/2018 5:45 πμ	Φα
		E		Kaisariani din direction excel	22/7/2018 7:52 m	(U)
		This program is used to impo			not the second the	
		Microsoft Excel program. The	Pierro			
		row in which the cursor is cur	O Divico			
		types using the Columns Co				
		In order to use this import to	Επικόνες			
		launched, and the selected fi	h Mauguri	Yuc		
		if you so requested. The Exc				
		No. Contract				
		Sten-by-Sten Summary	windows (C:)	v «		>
		sisk of each solution.		Ovous service:	Excel Files (*.xls.*.xlsx)	~
				Citize of Action Contraction	encer river (intel interly	
					Ανοινιια Ακιοο	

Εικόνα 106: Επιλογή του Excel αρχείου που περιλαμβάνει τις τιμές του Attribute Table του "measurements_new_2" shapefile.

K Excel Import		- 0 ×
\$ + + + + + + + = ‡ ▽	7 Wrap	Instructions
<< >>>	« »	+ +
Existing Excel File	C:\Kaisariani\Kaisariani_dip_dip_direction_excel.xlsx	
E I Header Line		Home > RockWorks Utilities - Entering Data > Importing Data > Importing Data from Excel Files into the
Process Header Line		Utilities Datasheet
-C Ignore Header Line		Show navigation
B Number of Rows		
— I Header Row		Importing Data from Excel Files into the Utilities Datasheet
C 2 Header Rows (Units)		
- Excel Datasheet #	1	
니원 Video Help	Watch Video	
	Ξ	RockWorks Utilities File Import Excel
		This program is used to import into the Utilities datasheet the entirety of a specified worksheet (.xks or .xksi) created by the Microsoft Excel program. The imported rows and columns will be placed in the active RockWorks datasheet, starting at the row in which the cursor is currently placed. Once the data is displayed in RockWorks, you can modify the column names and types using the Columns Column Properties command.
		In order to use this import tool, you must have Microsoft Excel installed on your computer. The Excel program will be launched, and the selected file opened. The selected worksheet's data will be imported into the current RockWorks data sheet, starting at the current cursor location. The header of the datasheet will be modified to lst the Excel column headings if you so requested. The Excel program will be closed automatically.
		Menu Options Stee-by-Stee Summary
X Process (Ctrl+G)		

Εικόνα 107: Εισαγωγή του Excel αρχείου που περιλαμβάνει τις τιμές του Attribute Table του "measurements_new_2" shapefile.

K Excel Import		- 0 ×
æl↔++ +⊮+⊡+⊞ 1 ‡ □	Wrap Instructions	
Existing Excel File	C:\Kaisariani\Kaisariani_dip_dip_direction_excel.xlsx	
E- Header Line	Home > RockWorks Litilities - Entering Data > Importing	Data > Importion Data from Excel Files into the Litilities Datacheet
Process Header Line		
- C Ignore Header Line	Show pavination	
Number of Rows	Processing 100% -	
I Header Row	Executing: "xls_2_ru"	 Juilities Datasheet
C 2 Header Rows (Units)	Opening Excel (C:\Kaisariani\Kaisariani_dip_dip_direction_excel.xlsx)	1 4
Excel Datasheet #	1 Copying to memory	
2 Video Help	Copying data	
	Do you want to update the project dimensions based on this new data? Yes No	: Excel tirety of a specified worksheet (.xls rows and columns wil be placed in a cursor is currently placed. Once the res and types using the Columns
		s if you so requested. The Excel
	program wil be dosed automatically. <u>Menu Options</u> <u>Step-by-Step Summary</u>	
Y Process (Ctrl+G)		

Εικόνα 108: Επιλογή της ενέργειας "Process" ώστε να ξεκινήσει η διαδικασία δημιουργίας διαγράμματος πυκνότητας με βάση τις τιμές του Excel αρχείου που εισήχθη.

Εικόνα 109: Εμφάνιση των διευθύνσεων του πλέγματος και του μοντέλου που παράχθηκαν στη συνέχεια.

Folder C:\Users\eirin\One	Drive\'Eyyp	αφα\Ρ	ockWork	s17	Data\Sampl	es\								Subsite:	Full Pr	oject	-	B	B Window	
Settings Coordinates: UTM I	Meters, W	GS-84	1984, Zo	ne 1	3 X: 481.87	5,0 - 4	82.175,0	Y: 4.399.72	5,0 - 4.400.	025,0 Z	1.650,0	- 1.770,0	Nodes: 6	1x61x121				- /	Run Script	
Project Manager	A Ho	me	K Utili	ties	Bor	ehole M	Manager													
 Project Tables A Datasheet Files (152 Files) B Grid Models (9 Files) Solid Models (0 Files) C D Diagrams (13 Files) 	Aap Map Datashe	Grid	Soli	d	Volumetrics	s Hyc	drology H	NydroChem	X Linears	Planes	Faults	IL Statistics	⊼ Survey	Coords	0 Wid	<mark>셈</mark> igets	G Imagery	S rafix	Generation Control Con	
ReportWorks Diagrams (2	* File	Edit S	earch ⊻	iew	⊆olumns	Rows	Filter													
Google Earth Files (0 Files	Rov	/# U	se FID		Shape *	Id	surf_typ	e Dip	Dip_direct	7	8	9	10 11	12	13	^	 Additiona 	I File In	formation	
RCL Files (65 Files)			2	0	Delet		0	156 40604	200.022741							-	Numeric F	ormat		
T System Tables		2 5	2	1	Point		0_surface	1 40 60206	0 05 001022								Deci	imal Se	parator:	
		3 0	3	2	Point		0 surface	1 41 67574	0.82 172152								Thousa	inds Se	parator: .	
		4 5	3	3	Point		0 surface	1 47 45926	1 15 879115								Nieter (Ma	tadata		
		5 5	3	4	Point		0 surface	1 54.47542	5 04 002 187								INDES (INE	cauaca,		
		6 6	3	5	Point		0_surface	1 45, 10910	7 00,357255											
		7 5	3	6	Point		0_surface	1 41,44065	5 316,42873											
		8 5	3	7	Point		0_surface	1 50,37982	4 12,982302											
		9 6	3	8	Point		0_surface	1 26,24429	2 45,253058											
		10	3	9	Point		0_surface	1 27,96320	8 43,068316											
		11 5	3	10	Point		0_surface	1 51,83251	2 60,059832											
		12 5	2	11	Point		0_surface	1 43,05863	5 67,067849											
		13	3	12	Point		0_surface	1 25,57673	2 50, 126732											
	<	14 5	7	13	Point		0 surface	261 87753	7 73 383849						,	×				
,																				

Εικόνα 110: Εμφάνιση του πίνακα της ενότητας Datasheet με τα δεδομένα του Excel αρχείου που αντιστοιχούν στα δεδομένα του Attribute Table του "measurements_new_2" shapefile.

Εικόνα 111: Επιλογή του εργαλείου "Stereonet Diagram" του "Planes" στην καρτέλα "Utilities".

Εικόνα 112: Εισαγωγή των στηλών "Dip_direct", "Dip" και "7" του πίνακα της ενότητας Datasheet στα πεδία "Direction", "Dip" και "Rake Angle" αντιστοίχως.

Με αυτόν τον τρόπο, δημιουργήθηκε ένα διάγραμμα πυκνοτήτων σε δίκτυο Schmidt, με βάση τις παραπάνω τιμές. Στο δίκτυο αυτό, φαίνονται τα σημεία που αντιπροσωπεύουν τις θέσεις των μετρήσεων (564 συνολικά). Σύμφωνα με το δίκτυο, το Mean Lineation Azimuth ισούται με 118,3°, η Mean Lineation Plunge είναι ίση με 81,8°, το αζιμούθιο μεγάλου κύκλου ισούται με 85,0°, ενώ η βύθισή του με 85,5°. Η πρώτη ιδιοτιμή (1st Eagenvalue) ισούται με 0,524, η δεύτερη (2nd Eagenvalue) ισούται με 0,268 και η τρίτη (3rd Eagenvalue) με 0,208. Ως προς τα λοιπά στοιχεία που προέκυψαν από τη δημιουργία του δικτύου: LN (E1 / E2) = 0,672, LN (E2 / E3) = 0,251 και [LN (E1 / E2)] / [LN (E2 / E3)] = 2,675. Η τιμή της Spherical Variance ισούται με 0,2961και Rbar = 0,7039. Παρακάτω (Εικ. 113) φαίνεται το διάγραμμα πυκνοτήτων και τα στατιστικά στοιχεία που προκύπτουν από αυτό..

Κατά τη δημιουργία του διαγράμματος αυτού, ήταν απαραίτητη η επεξεργασία των πεδίων της ενότητας "Input Columns" (Εικ. 112). Έτσι, το πεδίο "Direction" συμπληρώθηκε με την επιλογή "Dip direct", το πεδίο "Dip" συμπληρώθηκε με την επιλογή "Dip" και το πεδίο "Rake Angle" συμπληρώθηκε με την επιλογή "7" (αφού δεν υπάρχουν τιμές για τη Rake Angle). Οι επιλογές αυτές αντιστοιχούν στις στήλες του Attribute Table του shapefile "measurements_2_new" και κατ'επέκταση στις στήλες του πίνακα της ενότητας "Datasheet" του Rockwork. Επίσης, στο ίδιο στάδιο επεξεργασίας, δίνεται η δυνατότητα τροποποιήσεων που αφορούν τα layers που σχετίζονται με τον τρόπο απεικόνισης του δικτύου και των στοιχείων που προβάλλονται σε αυτό. Επομένως, στο layer "Input", για τα sublayers "Data Type", προτιμήθηκαν οι επιλογές "Planes", "Dip "Data Convention" και "Projection" Direction" και "Schmidt Net (Equal Area)" αντιστοίχως. Τα sublayers "Symbols" και "Colored Intervals" ενεργοποιήθηκαν, ενώ τα "Labels" και "Contour Lines" απενεργοποιήθηκαν. Μέσω της επιλογής "Options" του "Symbols" sublayer, διαμορφώθηκε ο τρόπος απεικόνισης των σημείων του δικτύου, που αντιστοιγούν στις

θέσεις των μετρήσεων. Αντιστοίχως, μέσω τη επιλογής "Options" του "Colored Intervals" sublayer, διαμορφώθηκε η χρωματική κλίμακα μεγέθους για τις τιμές και τις φορές μέγιστης κλίσης. Τα layers "Great Circles", "Best-Fit Great Circle" και "Overlay AGL Contents" απενεργοποιήθηκαν, ενώ τα "Mean Lineation Vector", "Title" και "Statistics" ενεργοποιήθηκαν. Στο πεδίο του "Title" layer καταχωρήθηκε ο τίτλος του δικτύου. Στην περίπτωση που το δίκτυο δημιουργήθηκε με βάση τις μετρήσεις όχι μόνο των επιφανειών στρώσης, αλλά και των επιφανειών διάρρηξης, ο τίτλος που δόθηκε ήταν "Kaisariani_all_surfaces_dip_dipdirect" (Εικ. 113). Στην περίπτωση που το δίκτυο περιλαμβάνει τις μετρήσεις που αφορούν μόνο τις επιφάνειες στρώσης, ο τίτλος που δόθηκε ήταν "Kaisariani_bedding_surfaces_dip_dipdirect" (Εικ. 114). Τέλος, στην περίπτωση που για τη δημιουργία του δικτύου λήφθηκαν υπόψιν μόνο οι επιφάνειες διάρρηξης, ο τίτλος που δόθηκε ήταν "Kaisariani_fault_surfaces_dip_dipdirect" (Εικ. 115).

Εικόνα 113: Το διάγραμμα πυκνοτήτων σε δίκτυο Schmidt, που δημιουργήθηκε με βάση τις μετρήσεις των τιμών και των φορών μέγιστης κλίσης που εξήχθησαν από τον Attribute Table του "measurements_new_2" shapefile. Δίπλα στο διάγραμμα φαίνεται ο πίνακας με τα στατιστικά στοιχεία που προέκυψαν από αυτό. Ο τίτλος που δόθηκε στο συγκεκριμένο διάγραμμα είναι "Kaisariani_all_surfaces_dip_dipdirect".

Εικόνα 114: Το διάγραμμα πυκνοτήτων που αφορά στις επιφάνειες στρώσης, με τον τίτλο του και τον πίνακα των στατιστικών στοιχείων που αντιστοιχούν σε αυτό.

Εικόνα 115: Το διάγραμμα πυκνοτήτων που αφορά στις επιφάνειες διάρρηξης, με τον τίτλο του και τον πίνακα των στατιστικών στοιχείων που αντιστοιχούν σε αυτό.

Κατά τη δημιουργία του διαγράμματος πυκνοτήτων (δηλαδή πριν από την ενεργοποίηση της επιλογής "Process"), στην πλατφόρμα Stereonet εμφανίζεται μόνο η καρτέλα "Instructions" που δίνει οδηγίες και βοήθεια σχετικά με τον τρόπο επεξεργασίας των layers. Μετά από τη δημιουργία του διαγράμματος, όμως, στην πλατφόρμα Stereonet προστίθεται η καρτέλα "Steronet" που εμφανίζει το νέο δίκτυο με τον τίτλο του και τον πίνακα με τα στατιστικά στοιχεία που προκύπτουν από αυτό.

Θα πρέπει να σημειωθεί ότι για τη δημιουργία του κάθενός από τα 3 διαγράμματα που προαναφέρθηκαν ("Kaisariani_all_surfaces_dip_dipdirecion", "Kaisariani_bedding_surfaces_dip_dipdirection" και "Kaisariani_fault_surfaces_dip_dipdirection"), ακολουθήθηκε η ίδια διαδικασία κάθε φορά, με μοναδική απόκλιση την εισαγωγή διαφορετικού Excel αρχείου. Πιο δημιουργία διαγράμματος συγκεκριμένα, για του τη "Kaisariani all surfaces dip dipdirection", εισήγθη το Excel αργείο "Kaisariani_dip_dipdirection_excel" (Εικ. 116 – 119). Για τη δημιουργία του διαγράμματος "Kaisariani_bedding_surfaces_dip_dipdirection", εισήχθη το Excel αρχείο "Kaisariani dip dipdirection bedding surfaces excel" (Εικ. 120 – 123). Τέλος, για τη δημιουργία του διαγράμματος "Kaisariani_fault_surfaces_dip_dipdirection", εισήχθη το Excel αρχείο "Kaisariani_dip_dipdirection_fault_surfaces_excel" (Εικ. 124 - 127).

Εικόνα 116: Εισαγωγή του αρχείου "Kaisariani_dip_dipdirection_excel" για τη δημιουργία του διαγράμματος "Kaisariani_all_surfaces_dip_dipdirection".

K Excel Import		- 0 ×
28 ↔ → + +0+ +0+ e→ 1 t i (d Wrap	
Existing Excel File	C:\Kaisariani\Kaisariani_dip_dip_direction_excel.xlsx	
🕀 🔽 Header Line	Home > RockWorks Utilities - Entering Data > Impo	sting Data > Importing Data from Excel Files into the Utilities Datasheet
Process Header Line		
O Ignore Header Line	Show pavination	
- Number of Rows	Processing 100%	
I Header Row	Executing: "xls_2_ru"	 Itilities Datasheet
C 2 Header Rows (Units)	Opening Excel (C:\Kaisariani\Kaisariani_dip_dip_direction_excel.xlsx)	
 Excel Datasheet # 	1 Copying to memory	E ⁴
Video Help	Copying data	E
	Up you wait to update the project dimensions based on this new data?	Texts tirety of a specified worksheet (.xls rows and columns will be placed in cursor is currently placed. Once the ses and types using the Columns installed on your computer. The
	100% ★ Cancel program will be closed automatically. Menu Options Step-by-Step Summary Step-by-Step Summary	e selected worksheet's data will be current curron focation. The header www.merror.current.cur
X Process (Ctrl+G)		

Εικόνα 117: Επιλογή της ενέργειας "Process" ώστε να ξεκινήσει η διαδικασία δημιουργίας διαγράμματος πυκνότητας με βάση τις τιμές του αρχείου "Kaisariani_dip_dipdirection_excel".

Εικόνα 118: Εμφάνιση των διευθύνσεων του πλέγματος και του μοντέλου που παράχθηκαν στη συνέχεια με βάση τις τιμές του αρχείου "Kaisariani_dip_dipdirection_excel".

Folder C:\Users\eirin\One	Drive	Εγγραφ	α∖Rock	Works17	Data\Sampl	es\								Subsite:	Full Project	t ·	· 🗄 🖽 Windo	v
Settings Coordinates: UTM	Meter	s, WGS-	84 198	4, Zone 1	3 X: 481.87	75,0 - 44	82.175,0	Y: 4.399.72	5,0 - 4.400.	025,0 Z	: 1.650,0	- 1.770,0	Nodes: 6	1x61x121			Run Sc	ipt
E Project Manager	~	Home	K	Utilities	Son	ehole N	lanager											
 Project Tables Datasheet Files (152 Files) Grid Models (9 Files) Solid Models (0 Files) 2-D Diagrams (13 Files) 3-D Diagrams (8 Files) 	M H	ap G J tasheet	III Brid	Solid	Yolumetric:	s Hydr	ology H	MydroChem	Linears	Planes	D Faults	lik. Statistics	A Survey	Coords	<u>हुर्ब</u> Widgets	💋 Imagery	🛓 😡 Grafix EarthA	ops
ReportWorks Diagrams (2 Google Farth Files (0 Files	⇒ F	Row#	Sear	th View	Columns	Rows	Filter	e Din	Dip dired	7	0	0 1	0 11	12	12 .	- Addition	al File Informatio	
LAS Files (0 Files)		ROW#	Use	FID	snape	iu	sun_typ	e Dip	Dip_direct	/	0	9 1	0 11	12	15	Numeric	Format	
RCL Files (65 Files)		1		0	Point		0_surface	1 56,49696	3 99,822741							Dec	rimal Separator:	
System Tables		2		1	Point		0_surface	1 40,60306	9 05,801833							-	and separatori	H
		3		2	Point		0_surface_	141,67574	9 83, 173 153							Thous	ands Separator:	<u> </u>
		4		3	Point		0_surface_	1 47,45926	1 15,879115							Notes (M	etadata)	
		5		4	Point		0_surface_	1 54,47542	5 04,002187									
		6	5 🗹	5	Point		0_surface_	1 45,10910	7 00,357255									
		7		6	Point		0_surface_	1 41,44065	5 316,42873									
		8	3 🗹	7	Point		0_surface_	1 50,37982	4 12,982302									
		9		8	Point		0_surface_	1 26,24429	2 45,253058									
		10		9	Point		0_surface_	1 27,96320	8 43,068316									
		11		10	Point		0_surface_	151,83251	2 60,059832									
		12		11	Point		0_surface_	1 43,05863	5 67,067849									
		13	3 🗹	12	Point		0_surface_	1 25,57673	2 50, 126732									
		14		13	Point		0 surface	2 61 87753	7 73 383849						>			

Εικόνα 119: Εμφάνιση του πίνακα της ενότητας Datasheet με τα δεδομένα του αρχείου "Kaisariani_dip_dipdirection_excel".

Εικόνα 120: Εισαγωγή του αρχείου "Kaisariani_dip_dipdirection_excel_bedding_surfaces" για τη δημιουργία του διαγράμματος "Kaisariani_bedding_surfaces_dip_dipdirection".

Katel Import			- 5 ×
\$\$ ++ ++ +0+ ⊞ ‡	🗹 Wrap	Instructions	
« »	- << >>	+ +	
Existing Excel File	E:\Kaisariani\Kaisariani_dip_dip_dir		
🗉 🔽 Header Line		Home > RockWorks Utilities - Entering Data > Importing Data > Imp	orting Data from Excel Files into the Utilities Datasheet
Process Header Line			
-C Ignore Header Line	A Processing 100%	Show navigation	
Number of Rows	Processing 100%		Detected
I Header Row	Executing: "xls_2_ru	۳	Datasneet
C 2 Header Rows (Units)	Opening Excel (E:\	Kaisariani\Kaisariani_dip_dip_direction_excel_bedding_surfaces.xlsx)	
Excel Datasheet #	1 Copying to memor	y	
2 Video Help	Copying data	Configure V	
		this new data? Yes No	ed worksheet (.xks or .xisx) created the active RockWorks datasheet, yed in RockWorks, you can modify computer. The Excel program will be orted into the current RockWorks will be modified to kit the Excel
	100%	X Cancel	aly.
		Menu Options Step-by-Step Summary	
Process (Ctrl+G)		Menu Options	,

Εικόνα 121: Επιλογή της ενέργειας "Process" ώστε να ξεκινήσει η διαδικασία δημιουργίας διαγράμματος πυκνότητας με βάση τις τιμές του αρχείου "Kaisariani_dip_dipdirection_excel_bedding_surfaces".

K Excel Import					– 0 ×
\$\$ ↔++ ++++1+ ⊞ \$ ‡ ⊳	Wrap	Instructions			
« »	< >>	+ +			
Existing Excel File	E:\Kaisariani\Kaisariani_dip_dip_dir				
E- 🗹 Header Line			Home > RockWorks Utilities - I	Entering Data > Importing Data > Importing Data fro	m Excel Files into the Utilities Datasheet
Process Header Line		Change and a strength of			
—C Ignore Header Line		Show havigation			
Number of Rows			Importing Data from I	Excel Files into the Utilities Datash	heet
- C 1 Header Row			Importing Data from t	excertines into the ountres batasi	leet
C 2 Header Rows (Units)	Contrast Dimensions				
 Excel Datasheet # 	1 Output Dimensions			~	
🛃 Video Help	Grid & Model Dimensions	Anning Mades	Panga Linita	North	
	Minimum Maximum	spacing Nodes	Range Units		
	A: 481.875 482.	1/5 5 61	300	station - The second	
	Y: 4.399.725 4.400.	025 5 61	300 Meters	Zmin	
	Z: 1.650 1.	770 1 121	120	Ymax Yspacing work	(sheet (vis or visy) created
				Xspacing Ymin Xmin Xmax Y e act	tive RockWorks datasheet,
	Scan Datasheet Scan Boreh	ioles 🕞 Import 🗒 Expor	t 🗊 Summary 🇊 Preview	🚱 G 🐃 X 🚽 🧭 👌 İn R	RockWorks, you can modify
	🖌 ОК				
	L	III UIUCI LU USC UIIS IIII	port tool, you must have in	nerosore excernistance on your compute	er. The Excel program will be
		launched, and the sele	cted file opened. The select	ted worksheet's data will be imported in	to the current RockWorks
		data sheet, starting at	the current cursor location.	. The header of the datasheet will be n	nodified to list the Excel
		countri neddings ir you	To requested. The Exect p	sogram will be absed datematically.	
		Menu Options			
		step-by-step summary	Ĺ		
		Menu Options			
		Fordation Frond	min other to the second		
X Process (Ctrl+G)					

Εικόνα 122: Εμφάνιση των διευθύνσεων του πλέγματος και του μοντέλου που παράχθηκαν στη συνέχεια με βάση τις τιμές του αρχείου "Kaisariani_dip_dipdirection_excel_bedding_surfaces".

Εικόνα 123: Εμφάνιση του πίνακα της ενότητας Datasheet με τα δεδομένα του αρχείου "Kaisariani_dip_dipdirection_excel_bedding_surfaces".

Εικόνα 124: Εισαγωγή του αρχείου "Kaisariani_dip_dipdirection_excel_fault_surfaces" για τη δημιουργία του διαγράμματος "Kaisariani_fault_surfaces_dip_dipdirect".

++ ++ +0• œ ‡	🛛 Wrap	Instructions	
>>	< >>>		
Existing Excel File	E:\Kaisariani\Kaisariani_dip_dip_dir		
Header Line		Home > RockWorks Utilities - Entering Data > Importing Data >	> Importing Data from Excel Files into the Utilities Datashee
Process Header Line			
C Ignore Header Line	A Proceeding 100%	Show pavication	~
Number of Rows	Processing roose		Datachast
- @ 1 Header Row	Executing: "xls_2	.ru"	Dataslieet
C 2 Header Rows (Units)	Opening Excel (E	:\Kaisariani\Kaisariani_dip_dip_direction_excel_fault_surfaces.xlsx)	
xcel Datasheet #	1 Copying to mem	ory	
Video Help	Copying data	Cardina	
		Ves No	the active RockWorks datasheet, yed in RockWorks, you can modify computer. The Excel program will be orted into the current RockWorks
	100%	X Cancel	will be modified to list the Excel ally.
		Menu Options Step-by-Step Summary	
		Menu Options	

Εικόνα 125: Επιλογή της ενέργειας "Process" ώστε να ξεκινήσει η διαδικασία δημιουργίας διαγράμματος πυκνότητας με βάση τις τιμές του αρχείου "Kaisariani_dip_dipdirection_excel_fault_surfaces".

K Excel Import					- 0 X
▓│↔┿╵╇╺┺╘╛┆┇╡╔	🖓 Wrap	Instructions			
« »	- « »	+ +			
Existing Excel File	E:\Kaisariani\Kaisariani_dip_dip_dir				
🗄 🔽 Header Line			Home > RockWorks Utilities - E	Entering Data > Importing Data > Importing Data from	n Excel Files into the Utilities Datasheet
Process Header Line		et an and a strange			
C Ignore Header Line		Show navigation			
- Number of Rows			Importing Data from F	Excel Files into the Utilities Datash	eet
I Header Row			Importing Data from t	Excertines into the oundes butusi	ccc
C 2 Header Rows (Units)	Contract Dimensions			- D ×	
Excel Datasheet #	1 Output Dimensions			- 🗆 🛪	
Video Help	Grid & Model Dimensions	a i Madaa	Dense Units	North	
	Minimum Maximum	n Spacing Nodes	Range Units		
	X: 481.875 482	.175 5 61	300	Topacing *	
	Y: 4.399.725 4.400	.025 5 61	300 Meters	Zmin—+	
	Z: 1.650 1.	.770 1 121	120	Ymax Yspacing works	rhaat (vis ar visy) graated
				Xspacing Ymin Y e acti	we RockWorks datasheet.
	Scan Datasheet Scan Borel	noles 📴 Import 🗒 Expor	t 🗊 Summary 🏼 Preview	G G → X → I in Re	ockWorks, you can modify
	- OK				
				TICTOSOTE EACET ITISCAICO OT YOUR COMPUTE	ar. The Excel program will be
		launched, and the sele	cted file opened. The select	ted worksheet's data will be imported int	to the current RockWorks
		data sheet, starting at	the current cursor location.	. The header of the datasheet will be m	odified to list the Excel
		column headings if you	i so requested. The Excel p	program will be closed automatically.	
		Menu Options			
		Step-by-Step Summar	¥		
		Manu Ontions			
		Picitu Options			~
		P. Caller Provid	millionali time ta tanan d	£	card to be 0.000 to 0.000
Process (Ctrl+G)					

Εικόνα 126: Εμφάνιση των διευθύνσεων του πλέγματος και του μοντέλου που παράχθηκαν στη συνέχεια με βάση τις τιμές του αρχείου "Kaisariani_dip_dipdirection_excel_fault_surfaces".

Folder C:\Users\eirin\One	Drive\Έγγρα	φα∖Roc	Works17	Data\Sampl	es\								Subsite:	F <mark>ull P</mark> roject	t 💌 🗒	H Window
ettings Coordinates: UTM I	Meters, WGS	5-84 198	34, Zone	13 X: 481.8	75,0 - 48	2.175,0	Y: 4.399.72	5,0 - 4.400.	025,0	: 1.650,0) - 1.770,0	Nodes:	51x61x121		•	Run Script
oject Manager	🔨 Hom	e 🛛 🛠	Utilities	Sor	ehole M	anager										
 Project Tables A Datasheet Files (152 Files) Grid Models (9 Files) Solid Models (0 Files) 2-D Diagrams (13 Files) 3-D Diagrams (8 Files) 	Map Patasheet	Grid	Solid	Volumetric	volumetrics Hydrology H			HydroChem Linears Planes			「ひう」 山山 不 ; Faults Statistics Survey		ବ हुन्दी y Coords Widget:		🕼 🛓	fix EarthApps
ReportWorks Diagrams (2	* File Ed	it Sear	ch ⊻iew	Columns	Bows I	Filter										
Google Earth Files (3 Files	Row#	Use	FID	Shape *	Id	surf_typ	e Dip	Dip_direct	7	8	9 10	11	12 13	14 ^	Additional File	Information
RCL Files (65 Files)		1 2	0	Doint) curface	1 56 40606	00 922741							Numeric Forma	at
System Tables		2 17	1	Point		surface	1 40 60306	05 801833							Decimai	Separator:
		3 17	2	Point		surface	1 41.67574	83.173153							Thousands	Separator:
		4 🗹	3	Point	(surface	1 47,45926	15,879115							Notes (Metada	ata)
		5 🗹	4	Point	(_surface	1 54,47542	5 04,002187								,
		6 🗹	5	Point	(_surface	1 45,10910	00,357255								
		7 🗹	6	Point	0	_surface	1 41,44065	5316,42873								
		8 🗹	7	Point	(_surface	1 50,37982	12,982302								
		9 🗹	81	Point	0	_surface	2 50,65473	275,728953								
	1	10 🛛	82	Point	(_surface	2 46,47986	79,122279								
	1	11 🗹	83	Point	(_surface	_2 48,28722	581,089561								
	1	12 🗹	84	Point	0	_surface	2 39,50581	576,527688								
	- 3	13 🗹	85	Point	(_surface	2 50,57075	370,930424								
	<	4 10	86	Point	(surface	2 51 30796	78 174593						>		

Εικόνα 127: Εμφάνιση του πίνακα της ενότητας Datasheet, συμπληρωμένου με τα δεδομένα του αρχείου "Kaisariani_dip_dipdirection_excel_bedding_surfaces".

6.5 Δημιουργία ροδογραμμάτων (Rose diagrams) βάσει των δεδομένων που λήφθηκαν μέσω drone

Ύστερα από τη δημιουργία των τριών διαγραμμάτων πυκνότητας, δημιουργήθηκαν τα αντίστοιγα διαγράμματα Rose, δηλαδή τα αντίστοιγα ροδογράμματα. Για τη δημιουργία αυτών των διαγραμμάτων, εισήγθη κάθε φορά το αντίστοιγο Excel αρχείο. Παρακάτω φαίνεται η διαδικασία δημιουργίας των ροδογραμμάτων με βάση τις μετρήσεις που σγετίζονται με όλες τις επιφάνειες που μελετήθηκαν (Εικ. 128 – 131), με βάση τις μετρήσεις που αφορούν μόνο τις επιφάνειες στρώσης (Εικ. 132 – 135) και με βάση τις μετρήσεις που αφορούν μόνο τις επιφάνειες διάρρηξης (Εικ. 136 – 139). Η δημιουργία, λοιπόν, των συγκεκριμένων διαγραμμάτων γίνεται μετά την εισαγωγή των αντίστοιχων Excel αρχείων και την επιλογή - στη συνέχεια - της κατάλληλης ενέργειας από το εργαλείο "Linears" της καρτέλας "Utilities". Ειδικότερα, από τις ενέργειες του "Linears", επιλέχθηκε η "Rose Diagram" και κατόπιν η "From Bearings (Frequency-Based Analysis). Έπειτα, στο πεδίο "Strike" του παραθύρου "Rose Diagram From Bearings (Frequency-Based Analyses), καταχωρήθηκε η επιλογή "Dip_direct" (που αντιστοιγεί στην ομώνυμη στήλη του πίνακα του Excel αργείου) και στο πεδίο "Caption" της ενότητας "Title" (μέσω της επιλογής του "Diagram Options") καταχωρήθηκε ο τίτλος που δόθηκε σε κάθε διάγραμμα.

Εικόνα 128: Εισαγωγή του Excel αρχείου "Kaisariani_dip_dipdirection_excel" για τη δημιουργία του ροδογράμματος "Rose_Diagram_all_surfaces".
Folder • C:\Users\eirin\One	Drive\'E	γραφα	x\Rock\	Works17	Data\Samp	es\								Subsite:	Full Project		• 🗄	H Window	
ettings Coordinates: UTM	Meters,	WGS-I	84 1984	4, Zone 1	3 X: 481.8	75,0 - 4	82.175,	0 Y: 4.399.72	5,0 - 4.400	.025,0	Z: 1.650,0	- 1.770,0	Nodes: 6	51x61x121			•	Run Script	
roject Manager	~	Home	X	Utilities	Sor	ehole N	lanager	. /											
 Project Tables Datasheet Files (152 Files) 	🧶 Map	G	nid .	Solid	Volumetric	s Hyd	ology	HydroChem	× Linears	Planes	Faults	lilu. Statisti	⊼ cs Survey	Coords	<u>तुर्ख</u> Widgets	Imagery	Grafi	EarthApps	
Iff Grid Models (0 Files) Solid Models (0 Files) Image: Sol	Data	H Arrow Map Datasheet K Lineation Griddin									Iding								
	🖲 File	Edit	Searc	h ⊻iew	<u>C</u> olumns	Rows	Filter		👯 Linea	ition Maj	P								
	F	low#	Use	FID	Shape *	Id surf_t		type Dip	C Linea	tion Pro	perties ram	•	10 11 From B	12 earings	E Addition	ditional File Information Based Analysis)			
		1	1 🗹 🛛		Point		0_surfa	ice_1 56,49696	53 🐚 Import			•	🕨 🥜 From Endpoints						
		2		1	Point		0_surfa	ce_1 40,60306	905,80183	5		_				Thous	and c		
		3		2	Point		0_surfa	ce_1 41,67574	983,17315	3						inous	ands Si	eparator:	
		4		3	Point		0_surfa	ice_1 47,45926	1 15,87911	5						Notes (N	letadata	a)	
		5		4	Point		0_surfa	ce_1 54,47542	5 04,00218	7									ï
		6		5	Point		0_surfa	ce_1 45,10910	7 00,35725	5									
		7		6	Point		0_surfa	ce_1 41,44065	5 316,4287	3									
		8		7	Point		0_surfa	ice_1 50,37982	4 12,98230	2									
		9		8	Point		0_surfa	ice_1 26,24429	2 45,25305	8									
		10		9	Point		0_surfa	ice_1 27,96320	8 43,06831	6									
		11		10	Point		0_surfa	ice_1 51,83251	2 60,05983	2									
		12		11	Point		0_surfa	ce_1 43,05863	5 67,06784	9									
		13		12	Point		0_surfa	ce_1 25,57673	2 50, 12673	2									
		14		13	Point		0 surfa	CP 2 61 87753	7 73 38384	9					× *				

Εικόνα 129: Επιλογή του εργαλείου "Rose Diagram" κι έπειτα του "From Bearings (Frequency-Based Analysis)" του "Planes" στην καρτέλα "Utilities" μετά την εμφάνιση του πίνακα της ενότητας Datasheet, συμπληρωμένου με τα δεδομένα του αρχείου "Kaisariani_dip_dipdirection_excel".

Εικόνα 130: Εισαγωγή της στήλης "Dip_direct" του πίνακα της ενότητας Datasheet στο πεδίο "Strike" και ορισμός του τίτλου του ροδογράμματος ("Rose_Diagram_all_surfaces").

Εικόνα 131: Απεικόνιση του ροδογράμματος "Rose_Diagram_all_surfaces" που δημιουργήθηκε.

Εικόνα 132: Εισαγωγή του Excel αρχείου "Kaisariani_dip_dipdirection_excel_bedding_surfaces" για τη δημιουργία του ροδογράμματος "Rose_Diagram_bedding_surfaces".

older C:\Users\eirin\One	Drive\Έγγραφ	a\Rock	Works17	Data\Sampl	es\							Subsite:	Full Project		• 🗄 e	Window	
ttings Coordinates: UTM I	Meters, WGS	-84 1984	4, Zone 1	3 X: 481.87	5,0 - 482.175,0	Y: 4.399.72	5,0 - 4.400	.025,0 2	1.650,0	- 1.770,0	Nodes: 6	1x61x121			- 1	Run Script	
oject Manager	🔨 Home	X	Utilities	Bor	ehole Manager												
Project Tables Datasheet Files (152 Files) Grid Models (9 Files)	🧶 Map	Grid	Solid	Volumetrics	d Hydrology	HydroChem	× Linears	Planes	D Faults	th. Statistics	⊼ Survey	e Coords	् <u>क्ष</u> Widgets	Ø Imagery	🕹 Grafix	EarthApps	
Gran Models (p Files) Gold Models (p Files) Gold Models (p Files) Gold S-D Diagrams (13 Files) Gold S-D Diagrams (13 Files) Gold S-D Diagrams (14 Files) Gold S-D Diagra	B	월 ☆ Arrow Map ▓ Lineation Gridding															
	File Edi	t Searc	h View	Columns	Rows Filter		💥 Lineation Map										
	Row#	Use	FID	Shape *	Id surf_ty	/pe Dip	Chines	tion Prop	perties		11 Erom B	12 13 earings	14 A	Addition	al File In d Analy	formation	
		1	8	8 Point 0 surface 126 244292 https://www.art		From Endpoints											
		2 17	9	Point	0 surfac	e 127.96320	343 U083T			e moni enaponia						ł	
		3 🖂	10	Point	0 surfac	e 151.832512	2 60.05983	2						Thous	ands Se	parator: 🕞	
		4 🗹	11	Point	0_surfac	e_1 43,058635	5 67,06784	9						Notes (N	letadata		
		5 🖂	12	Point	0_surfac	e_1 25,57673	2 50, 12673	2						Trates (it	recording (
		6 🗹	13	Point	0_surfac	e_2 61,87753	7 73,38384	9									
		7 🗹	14	Point	0_surfac	e_2 48,825876	571,51484	7									
		8 🗹	15	Point	0_surfac	e_2 56,832024	4 59,58000	1									
		9 🗹	16	Point	0_surfac	e_2 54,07803	351,94481	в									
	1	0 🗹	17	Point	0_surfac	e_2 53,67560	8 65,97956	3									
	1	1 🗹	18	Point	0_surfac	e_2 57,162318	8 65,28029	5									
	1	2 🗹	19	Point	0_surfac	e_2 53,452323	5 98,29301	2									
	1	3 🗹	20	Point	0_surfac	e_2 52,47329	872,29458	4									
	< 1	4 🕅	21	Point	0 surfac	e 3 48 78646	777 71704	4					, ×				

Εικόνα 133: Επιλογή του εργαλείου "Rose Diagram" κι έπειτα του "From Bearings (Frequency-Based Analysis)" του "Planes" στην καρτέλα "Utilities" μετά την εμφάνιση του πίνακα της ενότητας Datasheet, συμπληρωμένου με τα δεδομένα του αρχείου "Kaisariani_dip_dipdirection_excel_bedding_surfaces ".

Εικόνα 134: Εισαγωγή της στήλης "Dip_direct" του πίνακα της ενότητας Datasheet στο πεδίο "Strike" και ορισμός του τίτλου του ροδογράμματος ("Rose_Diagram_bedding_surfaces").

Εικόνα 135: Απεικόνιση του ροδογράμματος "Rose_Diagram_bedding_surfaces" που δημιουργήθηκε.

Εικόνα 136: Εισαγωγή του Excel αρχείου "Kaisariani_dip_dipdirection_excel_fault_surfaces" για τη δημιουργία του ροδογράμματος "Rose_Diagram_fault_surfaces".

Folder • C:\Users\eirin\Onel	Drive\'Ey	γραφα	RockV	Vorks17	Data\Samp	les\							Subsite:	Full Project		• 🗄 🖽	Window
Settings Coordinates: UTM N	Neters,	WGS-8	4 1984	Zone 1	X: 481.8	75,0 - 482.175,0	Y: 4.399.725	,0 - 4.400	025,0 Z	1.650,0	- 1.770,0	Nodes: 6	1x61x121			• 🔼	Run Script
Project Manager	~	Home	X	Utilities	Sor	ehole Manager											
 Project Tables Datasheet Files (152 Files) Grid Models (9 Files) Solid Models (0 Files) 	Map Hil	G	nid 🛛	Solid	volumetric	s Hydrology	HydroChem	Linears	Planes	D Faults	Statistics	⊼ Survey	e Coords	هو Widgets	g Imagery	a Grafix	EarthApps
2-D Diagrams (13 Files)								🔀 Linea	tion Grid	ding							
S-D Diagrams (8 Files)	File	Edit	Search	View	Columns	Rows Filter		💥 Linea	tion Map								
Google Earth Files (4 Files	R	ow#	Use	FID	Shape *	Id surf ty	npe Dip	Y Linea	tion Prop	oerties	•	11	12 13	14 .	Addition	al File Info	ormation
LAS Files (0 Files)								🗱 Ros	e Diagr	am	• 🗡	From B	earings	(Frequer	cy-Based	d Analy	sis)
 Marchaeler (65 Files) Marchaeler (65 Files) 		1		0	Point	0_surfac	e_1 56,496963	1 Impo	rt		• 2	From End	points				
		2		1	Point	0_surfac	e_1 40,603069	05,80183	-						The	and the first	
		3		2	Point	0_surfac	e_1 41,675749	83,173153	1						Inous	ands Sep	arator:
		4		3	Point	0_surfac	e_1 47,459261	15,879115							Notes (M	letadata)	
		5		4	Point	0_surfac	e_1 54,475425	04,002187									
		6		5	Point	0_surfac	e_1 45,109107	00,357255									
		7		6	Point	0_surfac	e_1 41,440655	316,42873									
		8		7	Point	0_surfac	e_1 50,379824	12,982302									
		9		81	Point	0_surfac	e_2 50,654732	75,728953									
		10		82	Point	0_surfac	e_2 46,479861	79,122279									
		11		83	Point	0_surfac	e_2 48,287225	81,08956									
	12 2 84 Point 0_surfac 13 2 85 Point 0_surfac	e_2 39,505815	76,527688	E .													
		13		85	Point	0_surfac	e_2 50,570758	70,930424	L I								
		14		86	Point	0 surfac	P 2 51 307962	78 17459						~			
>	<													>	1		

Εικόνα 137: Επιλογή του εργαλείου "Rose Diagram" κι έπειτα του "From Bearings (Frequency-Based Analysis)" του "Planes" στην καρτέλα "Utilities" μετά την εμφάνιση του πίνακα της ενότητας Datasheet, συμπληρωμένου με τα δεδομένα του αρχείου "Kaisariani_dip_dipdirection_excel_fault_surfaces ".

Εικόνα 138: Εισαγωγή της στήλης "Dip_direct" του πίνακα της ενότητας Datasheet στο πεδίο "Strike" και ορισμός του τίτλου του ροδογράμματος ("Rose_Diagram_fault_surfaces").

Εικόνα 139: Απεικόνιση του ροδογράμματος "Rose_Diagram_fault_surfaces" που δημιουργήθηκε.

Παρακάτω (Πίν. 1), λοιπόν, παρουσιάζονται τα διαγράμματα πυκνότητας και τα ροδογράμματα που αφορούν τις επιφάνειες στρώσης και διάρρηξης, όπως αυτά δημιουργήθηκαν με βάση την επεξεργασία των δεδομένων που λήφθηκαν από το drone.

Πίνακας 1: Διαγράμματα πυκνότητας και ροδογράμματα που αφορούν επιφάνειες διάρρηξης και στρώσης του πρανούς που μελετήθηκε, σύμφωνα με τα δεδομένα που λήφθηκαν από το drone.

6.6 Δημιουργία διαγραμμάτων πυκνότητας σε δίκτυο Schmidt και των αντίστοιχων ροδογραμμάτων βάσει των δεδομένων υπαίθρου

Για τη δημιουργία διαγραμμάτων πυκνότητας σε δίκτυο Schmidt, που απεικονίζουν τους πόλους των επιπέδων στρώσης και διάρρηξης, με βάση τις μετρήσεις κλίσης και φοράς μέγιστης κλίσης που έδειξαν τα δεδομένα υπαίθρου, ακολουθήθηκε η διαδικασία που περιγράφηκε παραπάνω για τα δεδομένα που λήφθηκαν μέσω του drone. Τα excel αρχεία που εισήχθησαν στο λογισμικό του Rockworks, περιείχαν μετρήσεις που πραγματοποιήθηκαν μέσω γεωλογικής πυξίδας στην ύπαιθρο. Μέσω του GIS, τοποθετήθηκαν στην περιοχή μελέτης τα σημεία όπου έγιναν οι μετρήσεις υπαίθρου. Το shapefile που περιλαμβάνει αυτές τις μετρήσεις, ονομάστηκε "field measurements" (Εικ. 140). Στη συνέχεια, στον Attribute Table (Εικ. 141) του "field_measurements", καταχωρήθηκαν οι μετρήσεις κλίσης ("dip_comp") και φοράς μέγιστης κλίσης ("dip_di_comp"), καθώς και οι αντίστοιχες μετρήσεις ("dip_gis" για τιμή κλίσης και "dip_di_gis" για φορά μέγιστης κλίσης) που υπολογίστηκαν μέσω του εργαλείου "Surface Information". Στο συγκεκριμένο Attribute Table καταχωρήθηκαν, επίσης, οι συντεταγμένες "POINT_X" και "POINT_Y" για κάθε σημείο μέτρησης. Αυτές οι συντεταγμένες υπολογίστηκαν μέσω του εργαλείου "Add XY coordinates (Data Management)" του GIS. Η ολοκληρωμένη εικόνα του Attribute Table του "field_measurements" δίνεται παρακάτω (Παράρτημα, Πίν. 18).

Εικόνα 140: Οι θέσεις των σημείων στα οποία πραγματοποιήθηκαν μετρήσεις τιμών και φορών μέγιστης κλίσης στην ύπαιθρο.

			Il court to be	120	PT MAINT	N also	ZAR	0 0 0000	A		A FOR
	K.	all	Editor*	1 2 2 3	**. MA (***	나라면서	くる目的の	🖌 👔 🍽 tiel	ld measuremer*		500
Q Q 🕎 🎱 XX 23 🗢 🔶 🕅 🕨 🚺 🖉	Table									n ×	
eoreferencing · Kaisariani hiphres n v 📌 📌 🖉 👘 🚛 \Xi	field measurements									×	
	FID Shape	• Id	Surf type	Dip comp	Din di com	Dip gis	Dip di dis	POINT X	POINTY		
Kaisariani hichres 🔻 🧖 📴 Geostatistical Analyst - 🐠 🛛 3D Analyst -	0 Point	0	Fault_surface	75	144	48,349535	73,74914	743728,345811	4205523,09412	^	
in Of Contents	1 Point	0	Fault_surface	75	120	29,623367	109,937709	743727,96922	4205522,29719		-
	2 Point	0	Fault_lineation	40	190	27,116172	112,79942	743727,933942	4205522,20018		CA 1 5-12
	3 Point	0	Tectonic_breccia	65	134	52,720117	127,739787	743725,672926	4205520,05387		
E Layers	4 Point	0	Fault_surface	85	132	34,199571	120,605771	743723,399268	4205517,1144		-
E dield measurements	- 5 Point	0	Fault_surface	50	123	30,000220	27 502016	743725 612612	4205500,90025		
	7 Point	0	Redding surface?	50	0	46.015606	88 6044	743726 510022	4205500,75580		
	8 Point	0	Bedding surface	50	171	79 529702	76 661421	743727 072369	4205495 99476		
Imasurements_new_2	9 Point	0	Fault surface	75	165	64 348319	84 73492	743727 522161	4205492 52518		
•	10 Point	0	Bedding surface	45	2	71,954419	71,779528	743727,22715	4205494,65641		hc\Tektoniki
D kalessiani nohunon unitiens	11 Point	0	Fault_surface	50	30	63,173377	87,605327	743728,74057	4205488,2085		
Li kaisanani_poiygon_vertices	12 Point	0	Fault_surface	60	184	42,185362	134,889657	743709,265434	4205469,65808		Lakonia_an
•	13 Point	0	Bedding_surface	25	253	45,966546	227,564816	743771,879322	4205380,05169		Lakonia_ar
kaisariani poly vertices	14 Point	0	Bedding_surface	22	282	58,680458	244,771159	743774,953787	4205373,66287		Lakonia_an
	15 Point	0	Fault_surface	70	165	67,483614	245,884504	743774,389277	4205374,82998		VIM2 - GISV
	10 Point	0	Bedding_surface	60	240	60,0033347	237,000591	7437774 60204	4205375,43804		
kaisariani_poly_lines	18 Point	0	Eault Enontion	2	233	74 460625	230,310020	743774 737107	4205374,59109		
_	19 Point	0	Fault surface	70	210	65 90 1992	274 779545	743774 721232	4205353,63860		
D balandari naharan aufaran	20 Point	0	Bedding surface?	45	327	52 598542	307.832633	743774.644591	4205335.63411		
Li kaisanani_poiygon_surraces	21 Point	0	Bedding or Fault	50	328	49,027595	326,090551	743763,501201	4205329,49136		
	22 Point	0	Bedding_surface	40	220	51,389418	285,222709	743775,092179	4205339,78367		
C Kaisariani highres polyl polyg trans	23 Point	0	Fault_surface	68	15	78,610448	241,262392	743775,529918	4205346,96977		14
DCD	24 Point	0	Bedding_surface	20	277	37,083274	348,931936	743745,01785	4205323,80799		ses
KGB	25 Point	0	Bedding_surface	45	102	59,538466	105,916756	743660,796926	4205374,93723		
Red: Band_1	26 Point	0	Fault_surface	80	6	65,65837	91,567566	743658,932403	4205381,93824		
Green: Band 2	27 Point	0	Fault_surface	80	344	56,416353	89,359432	743059,075279	4205381,78566		
	20 Point	0	Fault surface	68	138	36 72002	61.623681	743657 608561	4205302,07305		
Blue: Band_3	30 Point	0	Fault surface	65	18	46 91 3697	55 092412	743662 167088	4205365 75592		
Kaisariani_highres_polyl_polyg_dsm	31 Point	0	Bedding surface	15	213	52 34615	57 610477	743664 444626	4205362 07909		
Value	32 Point	0	Fault surface	85	175	50,48553	48,448372	743669,093365	4205359,64227		
1 Usek : 270 120	33 Point	0	Bedding_surface	55	255	37,080683	32,164872	743673,6348	4205354,60356		
rign : 279, 150	34 Point	0	Fault_surface	85	174	63,095473	24,717747	743673,451355	4205351,59348		
	35 Point	0	Bedding surface	60	255	58,549446	28,253424	743693,908391	4205339,8134	~	
Low : 201.666	14 4 1 2		(0 out of 42 Selected)								
~	(field_measurements)										
0000.		_							>	1.	4

Εικόνα 141: Ο Attribute Table του "field_measurements" shapefile, που περιλαμβάνει τις μετρήσεις υπαίθρου.

Παρακάτω (Πίν. 2), λοιπόν, παρουσιάζονται τα διαγράμματα πυκνότητας και τα ροδογράμματα που αφορούν τις επιφάνειες στρώσης και διάρρηξης, όπως αυτά δημιουργήθηκαν με βάση τις μετρήσεις υπαίθρου. Είναι αναγκαίο να σημειωθεί το γεγονός ότι στις περιπτώσεις όπου ο χαρακτηρισμός του είδους της επιφάνειας δεν κατέστη δυνατός, οι αντίστοιχες μετρήσεις εξαιρέθηκαν από το σύνολο όσων λήφθηκαν υπόψιν. Δημιουργήθηκε, δηλαδή, ένα νέο excel αρχείο που περιλάμβανε τις μετρήσεις υπαίθρου που αντιστοιχούσαν σε χαρακτηρισμένες επιφάνειες και στη συνέχεια αυτό εισήχθη στην πλατφόρμα StereoStat του λογισμικού του RockWorks και συγκεκριμένα, στην ενότητα "Datasheet".

6.7 Δημιουργία διαγραμμάτων πυκνότητας σε δίκτυο Schmidt και των αντίστοιχων ροδογραμμάτων βάσει όλων των δεδομένων

Τέλος, δημιουργήθηκαν διαγράμματα πυκνότητας και ροδογράμματα που αφορούν επιφάνειες στρώσης και διάρρηξης του πρανούς που μελετήθηκε, σύμφωνα με τα δεδομένα που λήφθηκαν συνολικά από το drone και την εργασία υπαίθρου. Προκειμένου να επιτευχθεί αυτό, δημιουργήθηκε ένα νέο excel αρχείο, το οποίο περιλαμβάνει τις τιμές των μετρήσεων που χρησιμοποιήθηκαν για τη δημιουργία των διαγραμμάτων και ροδογραμμάτων του Πίν. 1 και τις τιμές που χρησιμοποιήθηκαν για τη δημιουργία των διαγραμμάτων και ροδογραμμάτων του Πίν. 2. Το νέο, αυτό, excel αρχείο εισήχθη στην πλατφόρμα StereoStat του λογισμικού του RockWorks και ακολουθώντας την πορεία που περιγράφηκε παραπάνω, παράχθηκαν τα παρακάτω (Πίν. 3) διαγράμματα πυκνότητας και ροδογραμματα.

Πίνακας 3: Διαγράμματα πυκνότητας και ροδογράμματα που αφορούν επιφάνειες διάρρηξης και στρώσης του πρανούς που μελετήθηκε, σύμφωνα με τα δεδομένα που λήφθηκαν από το drone και την εργασία υπαίθρου.

6.8 3D απεικόνιση ρηξιγενών επιφανειών και υπολογισμός των στοιχείων τους

Συχνά, πολλές από τις επιφάνειες των ρηγμάτων μίας περιοχής δεν εκτίθενται εξ ολοκλήρου στην επιφάνεια. Το γεγονός αυτό δυσχεραίνει την αποσαφήνιση και την απόδοση της συνολικής εικόνας της γεωμετρίας των τεκτονικών δομών της περιοχής μελέτης. Το πρόβλημα αυτό εμφανίστηκε και στην περίπτωση του πρανούς που μελετήθηκε στην παρούσα εργασία. Προκειμένου, λοιπόν, να λυθεί το συγκεκριμένο ζήτημα, εισήγθησαν στο GIS, shapefiles που αντιστοιγούσαν σε επιφάνειες ρηγμάτων και είχαν δημιουργηθεί μέσω του Pix4D. Πιο συγκεκριμένα, κατά την ψηφιοποίηση των επιφανειών του πρανούς μέσω του Pix4D, δημιουργήθηκαν τα "Surfaces" layers, που ανήκουν στο "Object" layer (βλ. Μέρος Β΄, Κεφ 2.3). Αρχικά, επιλέχθηκαν δύο χαρακτηριστικές ρηξιγενείς επιφάνειες και στη συνέχεια εξήχθησαν από το Pix4D ως shapefile αργεία. Οι επιφάνειες που επιλέγθηκαν ήταν η "Surface 3" και η "Surface 14". "Surface_3_surfaces.shp" Στη συνέχεια, τα και "Surface_14_surfaces.shp" εισήχθησαν στο GIS. Στο GIS εισήχθησαν, επίσης, τα dsm, το mosaic, καθώς και τα αρχεία "slope.tif" και "aspect.tif", που είχαν δημιουργηθεί μέσω των εργαλείων "slope" και "aspect" αντίστοιγα της εργαλειοθήκης ArcToolbox (βλ. Μέρος Β΄, Κεφ. 2.3). Παρακάτω (Εικ. 142) φαίνονται οι δύο ρηξιγενείς επιφάνειες που επιλέχθηκαν και τα layers που εισήχθησαν στο GIS.

Εικόνα 142: Η περιοχή μελέτης, όπου με γαλάζιο χρώμα διακρίνονται οι δύο ρηξιγενείς επιφάνειες που επιλέχθηκαν για τον υπολογισμό των τιμών και φορών μέγιστης κλίσης.

Επειτα, δημιουργήθηκαν δύο shapefile αρχεία, που ονομάστηκαν "new_measurements_surf_3" και "new_measurements_surf_14", ώστε να καταχωρηθούν σε αυτά οι μετρήσεις των τιμών και των φορών μέγιστης κλίσης των δύο επιφανειών. Για τα συγκεκριμένα shapefiles, ως feature type επιλέχθηκε το "Point". Με αυτόν τον τρόπο, κατά το Editing, ήταν δυνατόν να δημιουργηθούν σημεία πάνω σε κάθε επιφάνεια και στη συνέχεια να μετρηθούν τα slope και aspect για κάθε ένα από αυτά τα σημεία. Έτσι, θα έχουμε υπολογίσει slope και aspect για κάθε επιφάνεια. Συνολικά, δημιουργήθηκαν 5 κι 14 σημεία πάνω στις επιφάνειες "Surface_3" και "Surface_14" αντιστοίχως.

Προκειμένου να πραγματοποιηθούν οι παραπάνω υπολογισμοί, ενεργοποιήθηκε το εργαλείο "Surface information" και εκτελέστηκαν τα στάδια που αναφέρθηκαν σε προηγούμενο κεφάλαιο (βλ. Μέρος Β΄, Κεφ. 2.3). Στο παράθυρο "Add Surface Information" εισήχθησαν τα σημεία του "new_measurements_surf_3" και το "slope.tif" για τη μέτρηση της τιμής μέγιστης κλίσης (dip). Όπως φαίνεται και παρακάτω, οι τιμές της μέγιστης κλίσης μετρήθηκαν σε μοίρες και όχι σε ποσοστό επί τοις εκατό. Για τη μέτρηση της φοράς μέγιστης κλίσης (dip direction), στο προαναφερθέν παράθυρο εισήχθησαν τα σημεία του "new_measurements_surf_3" και το "aspect.tif". Για τη μέτρηση των στοιχείων της επιφάνειας "Surface_14", εισήχθησαν τα σημεία του "new_measurements_outf_3" και σι μέγιστης κλίσης που καταχωρήθηκαν στους Attribute Table των "new_measurements_surf_3" και "new_measurements_surf_14".

Στη συνέχεια, μέσω του εργαλείου "Create TIN" (όπου TIN=Triangulated irregular network) της εργαλειοθήκης του ArcToolbox, δημιουργήθηκαν τα αρχεία "CreateTin" και "CreateTin1" για τις επιφάνειες "Surface_3" και "Surface_14" αντιστοίχως. Δηλαδή, στο παράθυρο "Create TIN", στο πεδίο "Input Features" εισήχθησαν τα "Surface_3_surfaces.shp" και "Surface_14_surfaces.shp" για την περίπτωση της "Surface_3" και της "Surface_14 αντιστοίχως (Εικ. 143, 144, 145, 146 & 147). Με αυτόν τον τρόπο, η καθεμία από τις δύο επιφάνειες, απεικονίζεται ως συνεχής επιφάνεια που αποτελείται εξ ολοκλήρου από τριγωνικές όψεις/πλευρές.

Εικόνα 143: Χρήση του εργαλείου "Create TIN" για την επιφάνεια "Surface_3".

Εικόνα 144: Η 3D απεικόνιση της επιφάνειας "Surface_3".

Εικόνα 145: Χρήση του εργαλείου "Create TIN" για την επιφάνεια "Surface_14".

Εικόνα 146: Η 3D απεικόνιση της επιφάνειας "Surface_14".

Εικόνα 147: Η 3D απεικόνιση των δύο ρηξιγενών επιφανειών.

6.9 Δημιουργία κυκλογραφικών προβολών για τις ρηξιγενείς επιφάνειες "Surface_3" και "Surface_14"

Οι τιμές και οι φορές μέγιστης κλίσης που μετρήθηκαν προηγουμένως, εξήχθησαν από το GIS ως αρχεία του Excel. Στη συνέχεια, τα αρχεία αυτά, εισήχθησαν στην πλατφόρμα StereoStat του λογισμικού του RockWorks και πιο συγκεκριμένα, στην ενότητα "Datasheet" (βλ. Μέρος Β΄, Κεφ. 2.4). Πρόκειται, δηλαδή, για δύο excel αρχεία που αντιστοιχούν στις δύο ρηξιγενείς επιφάνειες. Στη συνέχεια, ακολουθήθηκε η διαδικασία που έχει περιγραφεί παραπάνω (βλ. Μέρος Β΄, Κεφ. 2.4) για καθεμιά από τις επιφάνειες.

Επιλέχθηκε και εισήχθη το excel αρχείο που περιλαμβάνει τις τιμές του Attribute Table του "new_measurements_surf_3" shapefile. Επιλέχθηκε το εργαλείο "Stereonet Diagram" του "Planes" στην καρτέλα "Utilities". Εισήχθησαν οι στήλες "Dip_direct", "Dip" και "7" του πίνακα της ενότητας Datasheet στα πεδία "Direction", "Dip" και "Rake Angle" αντιστοίχως. Η ίδια διαδικασία ακολουθήθηκε και για τη "Surface_14", με την επιλογή και εισαγωγή του "new_measurements_surf_14" shapefile. Τέλος, απενεργοποιώντας το layer "Mean Vector" της καρτέλας "Stereonet", οι κυκλογραφικές προβολές που αφορούν τις δύο επιφάνειες, φαίνονται παρακάτω (Εικ. 148 & 149).

Εικόνα 148: Κυκλογραφικές προβολές που αντιστοιχούν στις μετρήσεις που πραγματοποιήθηκαν για την επιφάνεια "Surface_3".

Εικόνα 149: Κυκλογραφικές προβολές που αντιστοιχούν στις μετρήσεις που πραγματοποιήθηκαν για την επιφάνεια "Surface_14".

7. Συμπεράσματα

Το πλήθος των μετρήσεων υπαίθρου είναι σαφώς μικρότερο από εκείνο των μετρήσεων που πραγματοποιήθηκαν με βάση τα δεδομένα που λήφθηκαν μέσω του drone. Αυτό συμβαίνει, διότι τα σημεία του πρανούς που ήταν προσβάσιμα για εργασία υπαίθρου ήταν λίγα, λόγω της απότομης κλίσης του πρανούς. Επομένως, οι θέσεις όπου πραγματοποιήθηκαν μετρήσεις κλίσης και φοράς μέγιστης κλίσης με χρήση γεωλογικής πυξίδας, βρίσκονταν αποκλειστικά στη βάση του πρανούς.

Συνολικά, οι θέσεις των μετρήσεων κλίσης και φοράς μέγιστης κλίσης, που πραγματοποιήθηκαν κατά την επεξεργασία των δεδομένων που λήφθηκαν μέσω drone, βρίσκονται σε ψηλότερα – τοπογραφικά – σημεία συγκριτικά με εκείνες που επιλέχθηκαν για μετρήσεις με χρήση γεωλογικής πυξίδας. Αυτό συμβαίνει, γιατί η διαδρομή της πτήσης του drone καλύπτει μεν την επιφάνεια ολόκληρου του πρανούς, αλλά οι φωτογραφίες που λήφθηκαν κατά τη διάρκεια της πτήσης εμφανίζουν το εξής χαρακτηριστικό: εκείνες που απεικονίζουν τα χαμηλότερα σημεία του πρανούς παρουσιάζουν μικρότερη ευκρίνεια συγκριτικά με εκείνες που απεικονίζουν ψηλότερα σημεία της περιοχής μελέτης. Αυτό συμβαίνει, διότι η πτήση έγινε πάνω από το πρανές, με την κάμερα του drone να λειτουργεί υπό γωνία ίση με ~70°. Αυτό είχε σαν αποτέλεσμα, στο DSM που δημιουργήθηκε για την περιοχή μελέτης, οι δομές που βρίσκονται σε μεγαλύτερο υψόμετρο να είναι γενικά πιο ευδιάκριτες σε σχέση με εκείνες που βρίσκονται σε χαμηλότερα σημεία του πρανούς. Επομένως, η επιλογή υψηλότερων - τοπογραφικά - θέσεων μέτρησης κλίσης και φοράς μέγιστης κλίσης με βάση την εικόνα που δίνει το DSM, είναι πιο αξιόπιστη συγκριτικά με την επιλογή σημείων που βρίσκονται κοντά στη βάση του πρανούς.

Κατά την εργασία υπαίθρου, η μέτρηση των τιμών κλίσης και φοράς μέγιστης κλίσης επιφανειών στρώσης κατέστη δύσκολη. Αυτό συνέβη, διότι το πλήθος των αποκαλυμμένων επιφανειών στρώσης που βρίσκονταν στη βάση του πρανούς, ήταν μικρό. Αντίθετα, το πλήθος τέτοιων επιφανειών αυξανόταν όσο αυξανόταν το υψόμετρο. Επομένως, η μελέτη των επιφανειών στρώσης που βρίσκονταν σε υψηλότερα – τοπογραφικά – σημεία, ήταν απαραίτητη για την εξαγωγή αξιόπιστων αποτελεσμάτων σχετικά με τα στοιχεία των επιφανειών στρώσης της περιοχής μελέτης. Οι μετρήσεις, αυτές, έγιναν μέσω του GIS στις θέσεις/σημεία που επιλέχθηκαν μετά την εισαγωγή του DSM αρχείου που είχε δημιουργηθεί στο Pix4D.

Η διαδικασία μέτρησης των τιμών κλίσης και φοράς μέγιστης κλίσης επιφανειών διάρρηξης ήταν ευκολότερη στην ύπαιθρο συγκριτικά με τη διαδικασία που ακολουθήθηκε μέσω της χρήσης των εργαλείων του GIS που περιγράφηκαν παραπάνω. Αυτό συνέβη, διότι οι επιφάνειες διάρρηξης στη βάση του πρανούς ήταν εμφανείς, σε αντίθεση με τις επιφάνειες διάρρηξης που βρίσκονταν σε υψηλότερα – τοπογραφικά – σημεία στο πρανές, για τη μελέτη των οποίων, ήταν απαραίτητο να μελετηθεί το DSM αρχείο προκειμένου να επιλεχθούν οι θέσεις/σημεία προς μέτρηση. Σε αρκετά σημεία του DSM αρχείου, οι επιφάνειες διάρρηξης δεν ήταν ιδιαίτερα ευκρινείς, με αποτέλεσμα να μη συμπεριληφθούν στις επιλεχθείσες θέσεις προς μελέτη. Αυτός είναι και ο λόγος, για τον οποίο, οι επιφάνειες διάρρηξης που μελετήθηκαν κατά την εργασία υπαίθρου είναι περισσότερες σε σχέση με εκείνες που μελετήθηκαν κατά την επεξεργασία των δεδομένων που λήφθηκαν μέσω drone. Η δυσκολία που περιγράφηκε παραπάνω, σχετικά με τη μελέτη του DSM αρχείου, οφείλεται στο γεγονός ότι το DSM αρχείο που εισήχθη στο GIS – όπως και κάθε DSM αρχείο – παρουσιάζει την κάτοψη της περιοχής που απεικονίζει.

Παρατηρώντας τα διαγράμματα πυκνότητας και ροδογράμματα τα που παρουσιάστηκαν στους Πίνακες 1, 2 & 3, διαπιστώθηκε πως όσον αφορά στα αποτελέσματα της εργασίας υπαίθρου, οι περισσότερες επιφάνειες στρώσης κλίνουν προς τα ΝΝΔ, ΔΒΔ και προς τα ΝΔ, ενώ υπάρχουν ακόμα 5 ομάδες μετρήσεων, που δείγνουν αντιστοίγως κλίση προς τα BBΔ, BBA, ANA, NNA, NNΔ και 2 ομάδες που δείχνουν κλίση προς τα ΝΔ. Οι διευθύνσεις των επιφανειών στρώσης που μελετήθηκαν στην ύπαιθρο, είναι κυρίως ΔΒΔ-ΑΝΑ, BBA-ΝΝΔ και ΒΔ-ΝΑ και δευτερευόντως ΔΝΔ-ΑΒΑ και ΑΒΑ-ΔΝΔ. Οι περισσότερες επιφάνειες διάρρηξης που μελετήθηκαν στην ύπαιθρο, κλίνουν κυρίως προς τα NNA, BBA και NA, ενώ υπάρχουν ακόμα 5 ομάδες μετρήσεων που δείγνουν κλίσεις προς τα ΒΒΔ, ΒΑ, ΝΑ, ΝΝΔ και ΝΔ αντιστοίγως και ακόμα 2 ομάδες που δείγνουν κλίση προς τα ΒΔ. Οι διευθύνσεις των επιφανειών διάρρηξης που μελετήθηκαν στην ύπαιθρο, είναι ΑΒΑ-ΔΝΔ, ΒΔ-ΝΑ, ΒΑ-ΝΔ και ΔΒΔ-ΑΝΑ. Γενικά, όσον αφορά όλες τις επιφάνειες που μελετήθηκαν – είτε πρόκειται για επιφάνειες στρώσης, είτε για επιφάνειες διάρρηξης – διακρίθηκαν συνολικά 25 ομάδες με βάση τα στοιχεία τους. Με βάση, λοιπόν αυτές τις ομάδες, οι επιφάνειες που μελετήθηκαν κλίνουν κυρίως προς τα BBΔ, BΔ, BBA, NA, NNA, ΔΝΔ και ΔΒΔ. Δευτερευόντως κλίνουν προς τα ΑΝΑ, ΝΝΑ, ΝΝΔ και ΝΔ. Με βάση αυτές τις ομάδες, οι επιφάνειες που μελετήθηκαν εμφανίζουν τις εξής διευθύνσεις: Κυρίως ΔΝΔ-ΑΒΑ, ΒΑ-ΝΔ, ΔΒΔ-ΑΝΑ, ΒΒΔ-ΝΝΑ και ΒΒΑ-ΝΝΔ και δευτερευόντως ΒΑ-ΝΔ. Όσον αφορά στα αποτελέσματα που εξήχθησαν κατά την επεξεργασία των δεδομένων που λήφθηκαν μέσω drone, οι τιμές φοράς μέγιστης κλίσης των επιφανειών στρώσης, δείχνουν ότι η συντριπτική πλειοψηφία των επιφανειών αυτών κλίνουν προς τα ΝΔ, λιγότερες επιφάνειες στρώσης κλίνουν προς τα ΔΒΔ και ακόμα λιγότερες προς τα ΑΝΑ. Δευτερευόντως, υπάρχουν και μετρήσεις που δείχνουν κλίσεις προς τα ΔΝΔ, ΒΑ και ΝΑ. Οι διευθύνσεις που εμφανίζουν οι επιφάνειες αυτές, είναι κυρίως ΒΔ-ΝΑ, ΑΒΑ-ΔΝΔ και ΒΒΑ-ΝΝΔ και δευτερευόντως ΒΑ-ΝΔ. Οι τιμές φοράς μέγιστης κλίσης των επιφανειών διάρρηξης που υπολογίστηκαν μέσω της επεξεργασίας των δεδομένων που λήφθηκαν κατά την πτήση του drone, δείχνουν πως οι περισσότερες επιφάνειες διάρρηξης κλίνουν προς τα ABA, λίγες κλίνουν προς τα BBA και BA, ακόμα λιγότερες προς τα ΒΔ κι ελάχιστες κλίνουν προς τα ΝΑ. Οι διευθύνσεις που εμφανίζουν είναι κυρίως ΒΒΔ-ΝΝΑ, ΔΒΔ-ΑΝΑ και ΒΔ-ΝΑ και δευτερευόντως ΒΑ-ΝΔ. Συνδυάζοντας τα αποτελέσματα της εργασίας υπαίθρου και της επεξεργασίας των δεδομένων που λήφθηκαν μέσω drone, διαπιστώνεται το γεγονός ότι οι περισσότερες επιφάνειες στρώσης κλίνουν προς τα ΝΔ, λιγότερες προς τα BBA και ακόμα λιγότερες προς τα ΑΝΑ. Υπάρχουν, επίσης επιφάνειες που κλίνουν προς τα ΔΝΔ, ΝΑ, ΒΑ και ΔΒΔ, αλλά αποτελούν τη συντριπτική μειοψηφία των επιφανειών στρώσης. Οι διευθύνσεις των επιφανειών στρώσης είναι κυρίως ΒΔ-ΝΑ και δευτερευόντως ΑΒΑ-ΔΝΔ και ΒΒΑ-ΝΝΔ. Διαπιστώνεται, επίσης, πως η πλειοψηφία των επιφανειών διάρρηξης κλίνει προς

τα ABA. Οι επιφάνειες διάρρηξης, δευτερευόντως κλίνουν προς τα BBA, BA, NA και BΔ. Η διεύθυνση που κυριαρχεί στις επιφάνειες διάρρηξης είναι BBΔ-NNA και δευτερευόντως παρατηρήθηκαν διευθύνσεις ΔBΔ-ANA, BΔ-NA και BA-NΔ. Γενικά, όσον αφορά όλες τις επιφάνειες που μελετήθηκαν – είτε πρόκειται για επιφάνειες στρώσης, είτε για επιφάνειες διάρρηξης – διακρίθηκαν συνολικά πέντε ομάδες με βάση τα στοιχεία τους. Με βάση, λοιπόν αυτές τις ομάδες, οι επιφάνειες που μελετήθηκαν κλίνουν προς τα NΔ, BBΔ, ABA, ANA και BBΔ έως BBA. Με βάση αυτές τις ομάδες, οι επιφάνειες που μελετήθηκαν εμφανίζουν τις εξής διευθύνσεις: BΔ-NA, ΔΝΔ-ABA, ΔBΔ-ANA, BBA-NNΔ και ΔΝΔ-ABA έως ΔΝΔ-ABA.

Παρατηρώντας τις κυκλογραφικές προβολές που δημιουργήθηκαν για τις επιφάνειες "Surface_3" και "Surface_14", διαπιστώθηκε πως η "Surface_3" έχει διεύθυνση BA-ΝΔ και κλίνει προς τα BΔ (σύμφωνα με τα στοιχεία των σημείων που δημιουργήθηκαν πάνω σε αυτήν). Η επιφάνεια "Surface_14" έχει διεύθυνση ΔBΔ-ANA και κλίνει προς τα NNΔ.

Όσον αφορά στην επιφάνεια "Surface_14", θα πρέπει να σημειωθεί πως πρόκειται για περίπτωση μη αποκαλυμμένης επιφάνειας ρήγματος, που παρουσιάζει έντονη καρστικοποίηση. Πιο συγκεκριμένα, μόνο ένα μικρό ίχνος του ρήγματος εμφανίζεται στην επιφάνεια του αναγλύφου της περιοχής μελέτης. Εξάγοντας, λοιπόν, από το Pix4D την ψηφιοποιημένη επιφάνεια του ρήγματος, εισάγοντας το raster αρχείο στο περιβάλλον του GIS και ψηφιοποιώντας – μέσω του GIS – νέα σημεία μετρήσεων πάνω σε αυτήν την επιφάνεια έγινε εφικτή η αναγνώριση κι απεικόνιση ολόκληρης της μη αποκαλυμμένης επιφάνειας, καθώς και ο υπολογισμός των στοιχείων αυτής. Αντίθετα, στην περίπτωση της επιφάνειας "Surface_3", που πρόκειται για εκτεθειμένη επιφάνεια, τα σημεία που επιλέχθηκαν για τον υπολογισμό των στοιχείων της, ανήκαν στην επιφάνεια του αναγλύφου.

ΜΕΡΟΣ Γ΄- ΠΕΡΙΠΤΩΣΗ ΒΩΛΑΚΑ (ΔΡΑΜΑ)

8. Γεωγραφική θέση της περιοχής μελέτης

Η περιοχή μελέτης τοποθετείται στη Βόρεια Ελλάδα και πιο συγκεκριμένα στον Βώλακα Δράμας, στην ανατολική Μακεδονία (Εικ. 150, 151 & 152). Πρόκειται για λατομείο μαρμάρου, που βρίσκεται βόρεια της πόλης της Δράμας και ανατολικά της κωμόπολης Βώλαξ, στο Φαλακρό όρος. Σχεδόν ολόκληρο το ορεινό τμήμα του νομού Δράμας ανήκει στην ευρύτερη περιοχή του Φαλακρού όρους.

Εικόνα 150: Η θέση του λατομείου στην περιοχή του Βώλακα Δράμας.

Εικόνα 151: Η θέση του λατομείου του Βώλακα (κίτρινο χρώμα), όπως αυτή φαίνεται μέσω δορυφόρου.

Εικόνα 152: Το λατομείο του Βώλακα (κίτρινο χρώμα) που μελετήθηκε και η θέση της ομώνυμης κωμόπολης, όπως αυτά φαίνονται μέσω δορυφόρου.

9. Γεωλογία

Τα μάρμαρα (ασβεστιτικά – δολομιτικά) του Φαλακρού Όρους καλύπτουν επιφάνεια ίση με 600km² περίπου και μόνο τα 40 km² περίπου από αυτά είναι δολομιτικά (Χατζηπαναγής & Βουγιούκας, 2004, Χατζηπαναγής κ.ά., 2006). Αυτά εξορύσσονται συνολικά σε πέντε λατομικά κέντρα (Βώλακα, Γρανίτη, Οχυρού, Πηγών και Πύργων).

Γεωδυναμικό πλαίσιο ευρύτερης περιοχής μελέτης

Ο νομός Δράμας, γεωτεκτονικά, ανήκει στη Μάζα της Ροδόπης, που περιλαμβάνει τον ορεινό όγκο της Ροδόπης, τη Θράκη, τη Νότια Βουλγαρία, την Ανατολική Μακεδονία (με δυτικό όριο τη γραμμή του ποταμού Στρυμώνα) και το νησί της Θάσου.

Το μεγάλο πάχος των πετρωμάτων της Ροδόπης οφείλεται στην πτυχωσιγενή τεκτονική με εφιππεύσεις και επωθήσεις που έλαβαν χώρα κατά τα τελευταία τεκτο-ορογενετικά επεισόδια. Αυτές οι κινήσεις έφεραν τα πετρώματα που βρίσκονταν σε μεγαλύτερα βάθη και χαρακτηρίζονταν από υψηλότερο βαθμό μεταμόρφωσης, πάνω στα λιγότερο μεταμορφωμένα πετρώματα.

Όσον αφορά την Κεντρική Ροδοπική Μάζα, αποτελείται από σχηματισμούς Ανω – Παλαιοζωϊκής ως Κάτω – Μεσοζωϊκής ηλικίας (Κατώτερο – Μέσο Τριαδικό). Η λιθοστρωματογραφική της κολόνα φαίνεται πως είναι συνεχής, παρά το γεγονός ότι πλέον δεν υπάρχουν διάφορες ασυμφωνίες και τεκτονικές επαφές, που ενδεχομένως να υπήρχαν. Τα πετρώματα της Κεντρικής Ροδοπικής Μάζας έχουν υποστεί μεταμόρφωση τόσο Χαμηλών Πιέσεων – Υψηλών Θερμοκρασιών (LP/HT), όσο και Υψηλών Πιέσεων – Χαμηλών Θερμοκρασιών (HP/LT), με έντονα φαινόμενα μιγματιτίωσης, Η δράση πολλών παραμορφωτικών φάσεων είχε ως αποτέλεσμα τη δημιουργία πολυάριθμες ισοκλινών πτυχώσεων στα μάρμαρα και πτυγματικών πτυχών στους σχηματισμούς της ανθρακικής ενότητας (δολομιτικά μάρμαρα Παγγαίου).

Σχετικά με τη Δυτική Ροδοπική Μάζα, η άμεση εξαγωγή συμπερασμάτων για τη λιθοστρωματογραφική διαδοχή και την ηλικία των σχηματισμών της, είναι δύσκολη εξαιτίας των συνθηκών έντονης μεταμόρφωσης, της επικράτησης των σχιστογνευσίων – αμφιβολιτών έναντι των μαρμάρων και της επίδρασης νεοτεκτονικών κινήσεων. Οι παραμορφωτικές τάσεις που επέδρασαν στη Δυτική Ροδοπική Μάζα, δημιούργησαν μια S-σχιστότητα στα μαρμαρά της και όχι απαραιτήτως μόνο σε αυτά. Ο χώρος της Ανατολικής Μακεδονίας (Δυτική Ροδοπική Μάζα) καλύπτεται από την Κατώτερη – τεκτονικά – Ενότητα (Ενότητα Παγγαίου), που περιλαμβάνει πετρώματα χαμηλού βαθμού μεταμόρφωσης (πρασινοσχιστολιθική φάση) και την Ανώτερη – τεκτονικά – δύστητα που έχουν υποστεί ανάδρομη μεταμόρφωση (αμφιβολιτική φάση). Κατά τους Panpanikolaou & Panagopoulos (1981) και Μουντράκη (2010) στη Δυτική Ροδόπη αναγνωρίζονται δύο τεκτονικές ενότητες. Την ανώτερη (ενότητα Σιδηρόνερου) που χαρακτηρίζεται από υψηλό βαθμό μεταμόρφωσης και την κατώτερη (ενότητα Παγγαίου) με χαμηλότερο βαθμό μεταμόρφωσης. Οι δύο, αυτές, ενότητες διαχωρίζονται από μία επωθητική επιφάνεια, το ίχνος της οποίας αποτελεί η νοητή γραμμή Κ. Νευροκοπίου – Ξάνθης. Οι δύο ενότητες παρουσιάζουν τεκτονική δομή που χαρακτηρίζεται από τρεις φάσεις πτυχώσεων, οι οποίες έλαβαν χώρα από το Παλαιοζωικό μέχρι το Ηώκαινο.

Ανάλογη άποψη εκφράζεται από τους Chatzipanagis et al. (1983), σύμφωνα με την οποία η ενότητα Σιδηρόνερου είναι επωθημένη στην ενότητα Φαλακρού – Παγγαίου.

Κατά τους Zachos & Dimadis (1983), η επώθηση της ανώτερης τεκτονικής ενότητας στην κατώτερη αντιστοιχεί σε μια – μεγάλης κλίμακας – ανεστραμμένη πτυχή.

Επίσης, αναγνωρίζονται δύο συστήματα πτυχών, που θεωρούνται ότι δημιουργήθηκαν σχεδόν ταυτόχρονα. Το πρώτο περιλαμβάνει ισοκλινείς πτυχές, με άξονες διεύθυνσης 50° περίπου. Το δεύτερο σύστημα περιλαμβάνει ανοιχτές πτυχές με άξονες ΔΒΔ διεύθυνσης (Kronberg et al., 1970). Στο δεύτερο σύστημα πτυχών οφείλεται και η δημιουργία τεράστιων συγκλίνων και αντικκλίνων που στην περιοχή του Φαλακρού όρους έχουν ΒΔ – ΝΑ διεύθυνση (Jordan, 1969), ενώ στην περιοχή των Ορέων Λεκάνης έχουν διεύθυνση ΒΑ – ΝΔ (Kronberg, 1969). Η τεκτονομεταμορφικής εξέλιξης της Δυτικής Ροδόπης θεωρείται πως είναι αλπικής ηλικίας.

Εικόνα 153: Γεωλογικός χάρτης όπου φαίνονται οι ισοτοπικές ζώνες (Μουντράκης Δ., 2010) (Rh: Μάζα της Ροδόπης, Sm: Σερβομακεδονική μάζα, CR: Περιροδοπική ζώνη, Pe: Ζώνη Παιανίας, Pa: Ζώνη Πάικου, Al:

Ζώνη Αλμωπίας = Ζώνη Αξιού, ΡΙ:Πελαγονική ζώνη, Αc: Αττικό-Κυκλαδική ζώνη, Sp: Υποπελαγονική ζώνη, Pk: ΖώνηΠαρνασσού - Γκιώνας, P: Ζώνη Πίνδου, G: Ζώνη Γαβρόβου – Τρίπολης, Ι: Ιόνιος ζώνη, Px: Ζώνη Παξών ή Προαπούλια, Au: Ενότητα Ταλέα όρη - πλακώδεις ασβεστόλιθοι πιθανόν της Ιονίου ζώνης).

Λιθοστρωματογραφία της περιοχής μελέτης

Η ευρύτερη περιοχή του Φαλακρού Όρους ανήκει στην γεωτεκτονική ενότητα του Παγγαίου της Μάζας της Ροδόπης. Η συγκεκριμένη ενότητα, που αποτελεί την κατώτερη της Ροδοπικής Μάζας, χαρακτηρίζεται ως μία παχιά ανθρακική πλατφόρμα πάνω σε υπόβαθρο γνευσίων (Χατζηπαναγής, 1991, Χατζηπαναγής κ. α., 1993). Η περιοχή δομείται κυρίως από μεταμορφωμένα πετρώματα πρασινοσχιστολιθικής φάσης (Μπόσκος κ.ά., 1998), μέσα στα οποία διείσδυσαν όξινα μαγματικά σώματα.

Η λιθοστρωματογραφική κολόνα της Κεντρικής Ροδοπικής Μάζας περιλαμβάνει μια κατώτερη ακολουθία σχηματισμών, όπου επικρατούν γνεύσιοι – σχιστόλιθοι και μια ανώτερη ακολουθία, που κυριαρχείται από μεταμορφωμένα ανθρακικά πετρώματα. Όσον αφορά τη Δυτική Ροδοπική Μάζα, τα μεταμορφωμένα πετρώματα της Ανατολικής Μακεδονίας, με βάση τα λιθολογικά τους χαρακτηριστικά, είναι δυνατό να διακριθούν σε 4 ορίζοντες, που από τους βαθύτερους προς τους ανώτερους είναι: ο ορίζοντας των γνευσίων του υποβάθρου, ο ορίζοντας των μαρμάρων, ο ορίζοντας των μαρμάρων. Η ηλικία των πετρωμάτων, αυτών, είναι Προκάμβρια ως Κάτω – Παλαιοζωϊκή.

Παρακάτω (Εικ. 154) απεικονίζεται η λιθοστρωματογραφική στήλη της περιοχής του Φαλακρού όρους. Παρουσιάζεται η λιθοστρωματογραφική στήλη του όρους για την περιοχή του Βώλακα (Εικ. 155), όπου γίνεται εκμετάλλευση για παραγωγή μαρμάρου και διακρίνονται οι θέσεις των ποιοτικών και εμπορικών τύπων μαρμάρου.

Εικόνα 154: Λιθοστρωματογραφική στήλη Φαλακρού όρους (Βουγιούκας Δ. και Χατζηπαναγής Ι., 2009)

Εικόνα 155: Λιθοστρωματογραφική στήλη της περιοχής Βώλακα στην οποία φαίνεται η θέση των ποιοτικών και εμπορικών τύπων μαρμάρου (Βουγιούκας Δ. και Χατζηπαναγής Ι., 2009)

10. Βασικές παρατηρήσεις για τη χαρτογράφηση με χρήση drone

Κατά τη χαρτογράφηση των χαρακτηριστικών τεκτονικών δομών του λατομείου που εξετάστηκε, η χρήση drone αποτέλεσε επιλογή – μονόδρομο, καθώς όλα τα σημεία της περιοχής ήταν δυσπρόσιτα. Στη συγκεκριμένη περίπτωση, δηλαδή, ήταν αδύνατο να πραγματοποιηθεί οποιαδήποτε μέτρηση με χρήση γεωλογικής πυξίδας, λόγω της μορφής του λατομείου. Για την επεξεργασία των δεδομένων που λήφθηκαν από αέρος, έγινε χρήση των λογισμικών των Pix4D (Pix4Dmapper, Version 4.2.25) και GIS (ArcGIS 10.2.2). Το drone που χρησιμοποιήθηκε ήταν το PHANTOM 4 PRO / PRO+, τα χαρακτηριστικά του οποίου παρουσιάζονται παρακάτω (Εικ. 200).

Κάποιες αρχικές παρατηρήσεις σχετικά με τα πλεονεκτήματα, αλλά και τα εμπόδια που εμφανίστηκαν μετά τη δημιουργία του μοντέλου της περιοχής μελέτης και κατά την εξέταση των φωτογραφιών που λήφθηκαν μέσω drone, είναι οι εξής:

- Μετά τη μοντελοποίηση των εικόνων της περιοχής μελέτης, σε μερικά σημεία παρατηρήθηκαν είδωλα αντικειμένων, κενά σε κάποιες όψεις, αλλά και ψευδή αντικείμενα. Η ακρίβεια του μοντέλου μειωνόταν από το κέντρο της περιοχής προς τα περιθώριά της, καθώς και στα σημεία όπου δεν προσέπιπτε το φως του ήλιου ή που καλύπτονταν από κάποια σκιά. Σε αυτές τις περιπτώσεις, εξετάστηκαν με λεπτομέρεια οι φωτογραφίες του μοντέλου, ώστε να αποσαφηνιστεί η πραγματική εικόνα της περιοχής και να αναγνωριστούν σωστά οι δομές της.
- Όσον αφορά στο σχεδιασμό της πτήσης, επρόκειτο για μία περίπτωση που είχε τα δύο παρακάτω χαρακτηριστικά:
- Μεγάλη κατακόρυφη ανάπτυξη. Σε κάθε περίπτωση, η προκαθορισμένη επιλογή για τρισδιάστατο χάρτη είναι η πτήση σε διπλό κάνναβο (πτήση με παράλληλες σαρώσεις σε δύο διευθύνσεις κάθετες μεταξύ τους), ώστε να καλύπτονται οι απαιτήσεις της τρισδιάστατης απεικόνισης. Η σάρωση πραγματοποιείται σε δύο διευθύνσεις, με επικάλυψη από 70% ως 90% και με τη βύθιση της κάμερας ίση με 70° περίπου. Το σχέδιο πτήσης θα έπρεπε να υπερκαλύπτει οπωσδήποτε την έκταση που μας ενδιαφέρει, ώστε να προληφθεί το πρόβλημα της μείωσης της ακρίβειας της εικόνας από το κέντρο προς τα περιθώρια της περιοχής. Επιπλέον στη συγκεκριμένη περίπτωση, θα ήταν δόκιμο αν όχι απαραίτητο να πραγματοποιηθεί μια επιπρόσθετη ελεύθερη πτήση με τη βύθιση της κάμερας να είναι ρυθμισμένη σε μικρότερη τιμή (ίση με 60°, μικρότερη ή και μηδενική) και με περιστροφική κίνηση, ώστε να ληφθούν ευκρινείς εικόνες στα κατακόρυφα τοιχώματα της περιοχής μελέτης.
- Ιδιαίτερες απαιτήσεις ως προς την ευκρίνεια της εικόνας του μοντέλου της περιοχής μελέτης. Αυτό συνεπάγεται ότι η ανάλυση θα έπρεπε να αντιστοιχεί σε 2-5cm/pixel και ότι ο φωτισμός θα έπρεπε να είναι σχετικά ομοιόμορφος. Συνεπώς, θα ήταν απαραίτητο οι πτήσεις να είχαν πραγματοποιηθεί σε συνθήκες

ώρας και καιρού, τέτοιες ώστε το φως του ήλιου να μην προσπίπτει σε κάποιες επιφάνειες και να σκιάζονται οι υπόλοιπες.

Εάν είχαν εφαρμοστεί οι παραπάνω βελτιωτικές αλλαγές στο σχεδιασμό της πτήσης, με σκοπό την ευκρινέστερη εικόνα του τελικού μοντέλου της περιοχής μελέτης, είναι βέβαιο ότι θα παράγονταν ακόμα περισσότερες φωτογραφίες. Αυτό θα ήταν πρόβλημα μόνο για τον επεξεργαστή. Οι φωτογραφίες αυτές θα ήταν αναγκαίες, γιατί εκτός από την ακρίβεια του μοντέλου, μελετώνται κατά τη διάρκεια της τρισδιάστατης ψηφιοποίησης, ώστε να αποσαφηνιστεί με μεγαλύτερη ευκολία η συνέχεια και η φύση των επιφανειών. Είναι δεδομένο το γεγονός ότι τυχόν λήψη κοντινού βιντεοσκοπικού υλικού, με αρχικά εποπτικά πλάνα και μετά σάρωση με κοντινά, θα βοηθούσε ακόμα περισσότερο στην αντίληψη σχετικά με την ύπαρξη ή όχι, στο χαρακτηρισμό και τέλος, στην ψηφιοποίηση των χαρακτηριστικών δομών της περιοχής μελέτης.

11. Μεθοδολογία της χαρτογράφησης με χρήση UAV

11.1 Δημιουργία Project για την περιοχή μελέτης

Αρχικά, στο Pix4D δημιουργήθηκε ένα αρχείο (New Project), μέσα στο οποίο εισήγθησαν οι φωτογραφίες που λήφθηκαν μέσω του drone στην περιοχή μελέτης. Ως σύστημα συντεταγμένων επιλέχθηκε το WGS 84 / UTM zone 34N και ως διαδικασία προτιμήθηκε η επιλογή 3D Maps. Μέσω της επιλογής 3D Maps, παράχθηκαν υψηλής ανάλυσης DSM και mosaic αρχεία που αφορούν τη συγκεκριμένη περιοχή, Η διαδικασία που ακολουθήθηκε είναι όμοια με εκείνην που περιγράφηκε παραπάνω (βλ. Μέρος Β΄, Κεφ. 4.1). Παρακάτω, στο Παράρτημα (Εικ. 202), παρατίθεται το "Quality Report" που εξήχθη από το Pix4D μετά τη δημιουργία των παραπάνω αρχείων και παρέχει όλες τις πληροφορίες (γενικά χαρακτηριστικά, έλεγγο ποιότητας, προεπισκόπηση των αρχείων που παράχθηκαν και τις ενότητες "Calibration Details", "Bundle Block Adjustment Details", "Geolocation Details", "Point Cloud Densification Details", "DSM, Orthomosaic and Index Details") σχετικά με το νέο Project. Παρακάτω (Εικ. 156) δίνεται η όψη του νέου Project μετά την ολοκλήρωση της αρχικής επεξεργασίας των δεδομένων (initial processing), της δημιουργίας των point cloud και mesh και τέλος, της δημιουργίας των DSM, orthomosaic και index αρχείων.

Εικόνα 156: Ολοκλήρωση της διαδικασίας δημιουργίας του νέου Project.

Μετά την παραγωγή του νέου Project, δημιουργήθηκαν οι αντίστοιχοι φάκελοι αρχείων που περιγράφηκαν παραπάνω (βλ. Μέρος Β΄, Κεφ. 4.1). Πρόκειται για τους φακέλους: α) "1_initial", β) "2_densification", γ) "3_dsm_ortho" και δ) "temp".
11.2 Επεξεργασία του Project

Όπως συνέβη και στην περίπτωση της Καισαριανής, ανοίγοντας την προβολή rayCloud προκειμένου να γίνει επεξεργασία των δεδομένων της περιοχής, παρατηρήθηκε πως σε κάποια σημεία ενώ έχουν ληφθεί φωτογραφίες, αυτές δεν είναι ορατές. Τα σημεία στα οποία αναφερόμαστε, είναι εκείνα που απεικονίζονται με κόκκινο χρώμα (Εικ. 157).

Εικόνα 157: Απεικόνιση των σημείων που παρουσιάστηκαν στην Εικ. 157, έχοντας ενεργοποιημένο το "Point Clouds" layer μέσω της προβολής rayCloud.

Κατά την επεξεργασία του νέου Project, με τη χρήση της εργαλειοθήκης Create στην προβολή rayCloud, απενεργοποιήθηκε το "Cameras" layer, το "Rays" layer, το "Tie Points" layer και το "Point Cloud" layer κι ενεργοποιήθηκε μόνο το "Triangle Meshes" layer, με αποτέλεσμα την όψη της περιοχής μελέτης, όπως παρουσιάζεται παρακάτω (Εικ. 158).

Εικόνα 158: Απεικόνιση της περιοχής μελέτης, έχοντας ενεργοποιημένα μόνο τα "Point Groups" και "Triangle Meshes" layers.

Όπως αναφέρθηκε και παραπάνω (βλ. Μέρος Β΄, Κεφ. 4.2), η εργαλειοθήκη Create του rayCloud δίνει τη δυνατότητα ψηφιοποίησης τεκτονικών και στρωματογραφικών δομών που μπορεί να εμφανίζονται στην περιοχή μελέτης. Επομένως, στις περιπτώσεις που εντοπίστηκαν τεκτονικές επιφάνειες, αυτές ψηφιοποιήθηκαν μέσω του εργαλείου "New Polygone". Πρόκειται για επιφάνειες διάρρηξης (Εικ. 159 & 160) και μία επιφάνεια σχιστότητας (Εικ. 161 & 162). Η ψηφιοποίηση των επιφανειών αυτών, έγινε κατά τον τρόπο και σύμφωνα με το σκεπτικό που ακολουθήθηκε στην περίπτωση της Καισαριανής (βλ. Μέρος Β΄, Κεφ. 4.2). Στην περίπτωση του λατομείου που μελετήθηκε στην περιοχή του Βώλακα Δράμας, ψηφιοποιήθηκαν μόνο επιφάνειες και όχι γραμμικά στοιχεία, διότι οι επιφάνειες, στις οποίες ανήκαν τα γραμμικά στοιχεία, ήταν εκτεθειμένες. Η κάθε γραμμή, δηλαδή, που αντιπροσωπεύει την κάθε διάρρηξη και τη σχιστότητα που ψηφιοποιήθηκαν, συμπίπτει με την εκτεθειμένη πλευρά του κάθε πολυγώνου που αντιπροσωπεύει κάθε επιφάνεια. Επομένως, σε αυτήν την περίπτωση, η ψηφιοποίηση των γραμμικών στοιχείων της περιοχής μελέτης μέσω του εργαλείου "New Polyline", ήταν περιττή. Η ανάγκη απεικόνισης των γραμμικών στοιχείων της περιοχής καλύφθηκε από την ψηφιοποίηση των αντίστοιχων επιφανειών της.

Εικόνα 159: Εντοπισμός επιφάνειας ρήγματος στην περιοχή μελέτης.

Εικόνα 160:Η ψηφιοποιημένη επιφάνεια του ρήγματος, η οποία εντοπίστηκε στην περιοχή που απεικονίστηκε στην Εικ. 159.

Εικόνα 161: Εντοπισμός επιφάνειας σχιστότητας στην περιοχή μελέτης.

Εικόνα 162: Η ψηφιοποιημένη επιφάνεια σχιστότητας, η οποία εντοπίστηκε στην περιοχή που απεικονίστηκε στην Εικ. 161.

Εικόνα 163: Η όψη που αποκτά η περιοχή μελέτης μετά την ολοκλήρωση της ψηφιοποίησης των χαρακτηριστικών δομών που εμφανίζονται στην περιοχή μελέτης.

Εικόνα 164: Η πρόσοψη της ψηφιοποιημένης περιοχής μελέτης, έχοντας απενεργοποιημένο το "Triangle Meshes" layer.

11.3 Υπολογισμός στοιχείων των δομών της περιοχής μελέτης, μέσω επεξεργασίας των δεδομένων που λήφθηκαν μέσω drone

Στη συνέχεια, όπως και στην περίπτωση της Καισαριανής, έγινε εισαγωγή δεδομένων τα οποία είχαν δημιουργηθεί μέσω του Pix4D - στο GIS. Τα δεδομένα αυτά ήταν τα dsm, το mosaic, καθώς και οι επιφάνειες με τα αντίστοιχα σημεία τους, που δημιουργήθηκαν κατά την ψηφιοποίηση. Παρακάτω παρουσιάζεται η όψη της περιοχής μελέτης μετά την εισαγωγή των δεδομένων, που προαναφέρθηκαν, στο GIS (Εικ. 165) και η όψη της ίδιας περιοχής με τις ψηφιοποιημένες επιφάνειές της (Εικ. 166).

Εικόνα 165: Εισαγωγή των δεδομένων – που είχαν δημιουργηθεί μέσω του Pix4D – στο GIS.

Εικόνα 166: Απεικόνιση των ψηφιοποιημένων επιφανειών (μωβ χρώμα) της περιοχής μελέτης μέσω του GIS.

Στη συνέχεια, έχοντας ως σκοπό τη μέτρηση των κλίσεων και των φορών μέγιστης κλίσης των επιφανειών που μελετήθηκαν, ακολουθήθηκε η διαδικασία που περιγράφηκε στην περίπτωση της Καισαριανής (βλ. Μέρος Β΄, Κεφ. 4.3). Δημιουργήθηκαν, δηλαδή, τα αντίστοιχα αρχεία "slope.tif" και "aspect.tif" (Εικ. 167 &

168), καθώς και το shapefile ("measurements_Volakas"), στο οποίο καταχωρήθηκαν οι τιμές των κλίσεων και των φορών μέγιστης κλίσης που υπολογίστηκαν μετά τη δημιουργία των σημείων πάνω σε κάθε επιφάνεια κατά το Editing.

Εικόνα 167: Ενεργοποίηση του "slope.tif" layer που δημιουργήθηκε με τη χρήση του εργαλείου "Slope".

Εικόνα 168: Ενεργοποίηση του "aspect.tif" layer που δημιουργήθηκε με τη χρήση του εργαλείου "Aspect".

Παρακάτω (Εικ. 169) φαίνεται η εικόνα που έχει ο Attribute Table του "measurements_Volakas" μετά τον υπολογισμό των τιμών και των φορών μέγιστης κλίσης και το χαρακτηρισμό των επιφανειών στις οποίες ανήκουν τα σημεία που επιλέχθηκαν.

Εικόνα 169: Ο Attribute Table του "measurements_Volakas" shapefile, που περιλαμβάνει τις τιμές κλίσης και φοράς μέγιστης κλίσης των επιφανειών που υπολογίστηκαν μέσω των εργαλείων "slope" και "aspect".

Συνολικά, επιλέχθηκαν 166 σημεία και διαπιστώθηκε η ύπαρξη 33 επιφανειών διάρρηξης και μίας επιφάνειας σχιστότητας. Η ολοκληρωμένη εικόνα του Attribute Table του "measurements_Volakas" δίνεται παρακάτω (Μέρος Ε΄, Παράρτημα, Πίν. 21 – 24). Στο συγκεκριμένο Attribute Table καταχωρήθηκαν, επίσης, οι συντεταγμένες "POINT_X" και "POINT_Y" για κάθε σημείο μέτρησης (Εικ. 170), ακολουθώντας τη διαδικασία που περιγράφηκε παραπάνω (βλ. Μέρος Β΄, Κεφ. 4.3).

🔍 Nordia_Volakas - ArcMap – 🖸 🗙									
File Edit View Bookmarks Instat Selection Contraction Contamine Mindaux Halm									
Inde Inde								CreateTin5	
1	measurements_Volakas ×							< l	
Georeferencing Aspect_tf2	FID	Shape	ld	Dip	Dip_direct	Surf_type	POINT_X	POINT_Y	
	I 0	Point	0	28,636389	254,527436	fault_surf	501420,413861	4574142,47315	The set was not been and the set of the
	1	Point	0	45,682397	229,438204	fault_surf	501420,113689	4574141,36228	
	2	Point	0	53,694467	275,84075	fault_surf	501419,281224	4574139,48805	
10.000	3	Point	0	50,302036	270,379253	fault_surf	501418,467886	4574137,36688	
Aspect_tif2	4	Point	0	8,334467	299,697486	fault_surf	501417,991699	4574136,1441	
Table Of Castanta II Y	5	Point	0	32,344004	301,232972	fault_surf	501417,390515	4574134,86409	THE REAL COURSE OF A
Table Of Contents 4 X	6	Point	0	11,034427	242,310913	fault_surf	501426,456201	4574129,9579	A Search 4 X
N: 🔍 😓 📮 🗄	7	Point	0	83,777931	233,861438	fault_surf	501426,556522	4574132,19619	🖌 🖉 🦛 🔶 🖓 🙄 🗄 👻 Local Search 🗸 🗸
1014 764 1017 755	8	Point	0	23,365338	297,675474	fault_surf	501431,654184	4574125,79381	
1014,764 - 1017,755	9	Point	0	30,186888	256,682693	fault_surf	501431,304598	4574124,64314	ALL Maps Data Tools Images
1011,772 - 1014,764	10	Point	0	13,690028	310,61377	fault_surf	501431,020444	4574123,68097	add xy coordinates
1008,78 - 1011,772	11	Point	0	72,698386	254,22784	fault_surf	501430,644593	4574122,12728	
1005,788 - 1008,78	12	Point	0	2,246877	298,787257	fault_surf	501430,101474	4574119,23031	Any Extent -
1002,796 - 1005,788	13	Point	0	9,061331	72,964839	fault_surf	501420,340088	4574102,1324	
999,804 - 1002,796	14	Point	0	1,72823	234,373948	fault_surf	501419,63034	4574101,72691	Search returned 3 items Sort By
996.813 - 999.804	15	Point	0	78,575059	264,912042	fault_surf	501418,357572	4574100,8956	Add XY Coordinates (Coverage) (T
003 921 - 006 912	16	Point	0	51,888759	216,248503	fault_surf	501420,305636	4574094,56539	Adds the items X-COORD and Y-COOR
995,021 - 990,015	17	Point	0	28,847714	255,308561	fault_surf	501422,074412	4574096,65825	toolboxes\system toolboxes\coverage t
990,829 - 993,821	18	Point	0	59,923388	10,017776	fault_surf	501425,459888	4574100,46836	A Address Country Country (Date Houses
measurements_Volakas	19	Point	0	3,032974	303,214053	fault_surf	501430,450341	4574108,65869	Add XY Coordinates (Data Manage
•	20	Point	0	9,627284	237,608312	fault_surf	501431,908206	4574111,18649	toolboxes) system toolboxes) data mana
Aspect_tif2	21	Point	0	55,843972	269,701962	fault_surf	501434,857593	4574116,46823	toolooxes ay stem toolooxes tatta manam
Value	22	Point	0	1,816617	122,236978	fault_surf	501429,484058	4574076,78025	Add Geometry Attributes (Data Man
High : 360	23	Point	0	3,030989	274,269151	fault_surf	501430,78375	4574079,83038	Adds new attribute fields to the input f
	24	Point	0	6,813138	306,068709	fault_surf	501434,598394	4574090,44236	toolboxes\system toolboxes\data mana
Low: -1	25	Point	0	6,044029	218,802195	fault_surf	501437,112699	4574093,61918	A STATE OF
	26	Point	0	0,324324	302,455374	fault_surf	501441,181075	4574099,28353	
	27	Point	0	28,097398	265,693793	fault_surf	501444,822827	4574092,38443	and the second sec
⊟ Slope_tif3	28	Point	0	88,838895	293,696647	fault_surf	501444,114526	4574090,83618	
Value	29	Point	0	11,433837	262,307163	fault_surf	501441,837688	4574085,26133	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE
. ,	30	Point	0	1,024775	236,955816	fault_surf	501441,570685	4574084,10928	1
Dominar N (a) and	31	Point	0	4,381933	250,125289	fault_surf	501440,527177	4574081,85105	LDDDBBB + A "
	32	Point	0	2,514176	243,205748	fault_surf	501439,981397	4574080,49888	지난 네 년 네 ㅋ ㅌ ㅋ ㅋ .
	33	Point	0	51,620957	216,966796	fault_surf	501438,830526	4574079,03716	250066 729 4578318 219 Meters

Εικόνα 170: Ο Attribute Table του "measurements_Volakas" shapefile μετά τον υπολογισμό των συντεταγμένων κάθε σημείου μέτρησης.

11.4 Δημιουργία διαγράμματος πυκνότητας σε δίκτυο Schmidt και του αντίστοιχου ροδογράμματος βάσει των δεδομένων που λήφθηκαν μέσω drone

Σύμφωνα με τη διαδικασία που περιγράφηκε παραπάνω (βλ. Μέρος Β΄, Κεφ. 4.4), οι τιμές και οι φορές μέγιστης κλίσης που μετρήθηκαν προηγουμένως, εξήχθησαν από το GIS ως αρχείο του Excel. Στη συνέχεια, το αρχείο αυτό, εισήχθη στην πλατφόρμα StereoStat του λογισμικού του RockWorks. Με αυτόν τον τρόπο, δημιουργήθηκε ένα διάγραμμα πυκνοτήτων σε δίκτυο Schmidt, με βάση τις παραπάνω τιμές. Στο δίκτυο αυτό, φαίνονται τα σημεία που αντιπροσωπεύουν τις θέσεις των μετρήσεων (166 συνολικά). Σύμφωνα με το δίκτυο, το Mean Lineation Azimuth ισούται με 77,6°, η Mean Lineation Plunge είναι ίση με 55,8°, το αζιμούθιο μεγάλου κύκλου ισούται με 77,6°, ενώ η βύθισή του με 90,0°. Η πρώτη ιδιοτιμή (1st Eagenvalue) ισούται με 0,689, η δεύτερη (2nd Eagenvalue) ισούται με 0,192 και η τρίτη (3rd Eagenvalue) με 0,119. Ως προς τα λοιπά στοιχεία που προέκυψαν από τη δημιουργία του δικτύου: LN (E1 / E2) = 1,278, LN (E2 / E3) = 0,483 και [LN (E1 / E2)] / [LN (E2 / E3)] = 2,645. Η τιμή της Spherical Variance ισούται με 0,1814 και Rbar = 0,8186.

Ύστερα από τη δημιουργία του διαγράμματος πυκνότητας, δημιουργήθηκε το αντίστοιχο διάγραμμα Rose, δηλαδή το αντίστοιχο ροδόγραμμα. Σε αυτό το στάδιο της παρούσας εργασίας, ακολουθήθηκε η διαδικασία που εφαρμόστηκε και στην περίπτωση της Καισαριανής (βλ. Μέρος Β΄, Κεφ. 4.5), με βάση – φυσικά – τις τιμές που αφορούν την περίπτωση του λατομείου που εξετάστηκε στην περιοχή του Βώλακα Δράμας.

Παρακάτω (Πίν. 4), λοιπόν, παρουσιάζεται το διάγραμμα πυκνότητας και το ροδόγραμμα που αφορούν τις επιφάνειες διάρρηξης και σχιστότητας, όπως αυτά δημιουργήθηκαν με βάση την επεξεργασία των δεδομένων που λήφθηκαν από το drone.

11.5 3D απεικόνιση ρηξιγενών επιφανειών και υπολογισμός των στοιχείων τους

Όπως επισημάνθηκε παραπάνω (βλ. Μέρος Β΄, Κεφ. 4.8), συχνά, πολλές από τις τεκτονικές επιφάνειες μίας περιοχής δεν εκτίθενται εξ ολοκλήρου στην επιφάνεια της περιοχής μελέτης. Το γεγονός αυτό δυσχεραίνει την αποσαφήνιση και την απόδοση της συνολικής εικόνας της γεωμετρίας των τεκτονικών δομών της περιοχής. Το πρόβλημα αυτό εμφανίστηκε και στην περίπτωση του λατομείου που μελετήθηκε στην παρούσα εργασία. Προκειμένου, λοιπόν, να λυθεί το συγκεκριμένο ζήτημα, εισήχθησαν στο GIS, shapefiles που αντιστοιχούσαν σε τεκτονικές επιφάνειες και είχαν δημιουργηθεί μέσω του Pix4D. Επιλέχθηκαν δύο τμήματα χαρακτηριστικής επιφάνειας διάρρηξης και μία επιφάνεια σχιστότητας, που στη συνέχεια εξήχθησαν από το Pix4D ως shapefile αρχεία. Οι επιφάνειες που επιλέχθηκαν ήταν οι "Surf 20", "Surf_43" και "Surf_schist".

Στη συνέχεια, εισήχθησαν στο GIS τα shapefiles αυτών των επιφανειων. Στο GIS εισήχθησαν, επίσης, τα dsm, το mosaic, καθώς και τα αρχεία "slope.tif" και "aspect.tif", που είχαν δημιουργηθεί μέσω των εργαλείων "slope" και "aspect" αντίστοιχα της εργαλειοθήκης ArcToolbox. Σύμφωνα, λοιπόν, με τη διαδικασία που ακολουθήθηκε παραπάνω (βλ. Μέρος Β΄, Κεφ. 4.8), έτσι και στην περίπτωση του λατομείου του Βώλακα Δράμας, υπολογίστηκαν και καταχωρήθηκαν στους αντίστοιχους Attribute Tables οι τιμές κλίσης και φοράς μέγιστης κλίσης των επιλεγμένων επιφανειών. Έπειτα, μέσω του εργαλειοθήκης του ArcToolbox και ακολουθώντας τα βήματα που περιγράφηκαν στην περίπτωση της Καισαριανής (βλ. Μέρος Β΄, Κεφ. 4.8), η καθεμία από τις τρεις επιφάνειες, απεικονίζεται ως συνεχής επιφάνεια που αποτελείται εξ ολοκλήρου από τριγωνικές όψεις/πλευρές (Εικ. 171 & 172).

Εικόνα 171: Η 3D απεικόνιση των επιφανειών "surf_20" και "surf_43".

Εικόνα 172: Η 3D απεικόνιση της επιφάνειας "surf_schist".

11.6 Δημιουργία κυκλογραφικών προβολών για τις ρηξιγενείς επιφάνειες "Surf_20" και "Surf_43" και "Surf_schist"

Όπως και στην περίπτωση του πρανούς στην περιοχή της Καισαριανής, έτσι και στην περίπτωση του λατομείου της περιοχής του Βώλακα Δράμας, οι τιμές κλίσης και φοράς μέγιστης κλίσης που μετρήθηκαν προηγουμένως, εξήχθησαν από το GIS ως αρχεία του Excel. Στη συνέχεια, τα αρχεία αυτά, εισήχθησαν στην πλατφόρμα StereoStat του λογισμικού του RockWorks και πιο συγκεκριμένα, στην ενότητα "Datasheet" (βλ. Μέρος Β΄, Κεφ. 2.4). Πρόκειται, δηλαδή, για τρία excel αρχεία που αντιστοιχούν στις τρεις τεκτονικές επιφάνειες. Στη συνέχεια, ακολουθήθηκε η διαδικασία που έχει περιγραφεί παραπάνω (βλ. Μέρος Β΄, Κεφ. 2.4) για καθεμιά από τις επιφάνειες. Έπειτα, με βάση τα βήματα που περιγράφηκαν παραπάνω (βλ. Μέρος Β΄, Κεφ. 4.9), δημιουργήθηκαν οι κυκλογραφικές προβολές που αφορούν τις μετρήσεις που πραγματοποιήθηκαν για τις "Surf_20", "Surf_43" και "Surf_schist" επιφάνειες (Εικ. 173, 174 & 175).

Εικόνα 173: Κυκλογραφικές προβολές που αντιστοιχούν στις μετρήσεις που πραγματοποιήθηκαν για την επιφάνεια "Surf_20".

Εικόνα 174: Κυκλογραφικές προβολές που αντιστοιχούν στις μετρήσεις που πραγματοποιήθηκαν για την επιφάνεια "Surf 43".

Εικόνα 175: Κυκλογραφικές προβολές που αντιστοιχούν στις μετρήσεις που πραγματοποιήθηκαν για την επιφάνεια "Surf_schist".

12. Συμπεράσματα

Παρατηρώντας το διάγραμμα πυκνότητας και το ροδόγραμμα που παρουσιάστηκαν στον Πίνακα 4, διαπιστώθηκε πως οι τιμές των φορών μέγιστης κλίσης δείχνουν ότι οι επιφάνειες που μελετήθηκαν στο λατομείο του Βώλακα Δράμας, κλίνουν κυρίως προς ΔΝΔ. Τρείς ομάδες επιφανειών κλίνουν προς τα ΔΝΔ, ΝΔ και ΒΔ αντιστοίχως. Υπάρχουν τέσσερις επιφάνειες εκ των οποίων, η κάθε μία κλίνει προς τα BBA, BA, ΝΔ και ΝΝΔ αντιστοίχως. Επίσης, οι διευθύνσεις που επικρατούν όσον αφορά τις επιφάνειες της περιοχής, είναι κυρίως B-N και δευτερευόντως ΒΔ-ΝΑ και BA-ΝΔ.

Όπως ήταν αναμενόμενο και όπως φαίνεται από τις κυκλογραφικές προβολές (βλ. Μέρος Γ΄, Κεφ. 4.6), οι μετρήσεις των τιμών και των φορών μέγιστης κλίσης των επιλεγθέντων επιφανειών συμφωνούν με την παραπάνω διαπίστωση. Πιο συγκεκριμένα, τα στοιχεία των σημείων που δημιουργήθηκαν πάνω στην "Surf 20" επιφάνεια διάρρηξης, δείχνουν πως η επιφάνεια αυτή έχει διεύθυνση ΒΔ-ΝΑ και κλίνει προς τα ΝΔ. Όσον αφορά τη "Surf 43" επιφάνεια διάρρηξης, τα στοιχεία όλων – πλην δύο – των σημείων που δημιουργήθηκαν πάνω της, δείχνουν πως η συγκεκριμένη επιφάνεια έχει διεύθυνση ΒΔ-ΝΑ και κλίνει προς τα ΝΔ. Τα στοιχεία των δύο σημείων που διαφοροποιούνται από τα υπόλοιπα, δείγνουν πως η επιφάνεια στην οποία ανήκουν, έχει διεύθυνση ΒΒΔ-ΝΝΑ και κλίνει προς τα δυτικά. Πρόκειται για σφάλμα που προέκυψε κατά την ψηφιοποίηση στο GIS. Πιο συγκεκριμένα, λόγω του γεγονότος ότι το DSM αρχείο δείχνει την κάτοψη της περιοχής μελέτης, κατά τη δημιουργία των σημείων του "measurements_Volakas" στο GIS, δημιουργήθηκαν δύο σημεία, τα οποία κατά την προβολή της περιοχής μελέτης μέσω του GIS, φαίνεται να ανήκουν στην παραπάνω επιφάνεια, αλλά στην πραγματικότητα ανήκουν σε παρακείμενη δομή. Αυτό επαληθεύτηκε από εξέταση της περιοχής κατά την προβολή της μέσω του Pix4D. Επομένως, προκειμένου να εξαχθεί ασφαλές συμπέρασμα σχετικά με τα στοιχεία της επιφάνειας "Surf 43", λήφθηκαν υπόψη τα στοιχεία όλων των σημείων της εκτός από τα δύο που προαναφέρθηκαν. Έτσι, διαπιστώθηκε πως η επιφάνεια "Surf 43" έχει διεύθυνση ΒΔ-ΝΑ και κλίνει προς τα ΝΔ. Όσον αφορά στην επιφάνεια σχιστότητας "Surf schist", τα στοιγεία των σημείων που δημιουργήθηκαν πάνω σε αυτήν, δείγνουν ότι η συγκεκριμένη επιφάνεια έχει διεύθυνση BBA-NNΔ και κλίνει προς τα ΔΒΔ.

Όσον αφορά την περίπτωση του λατομείου του Βώλακα Δράμας, με βάση την απεικόνισή του μέσω του λογισμικού του Pix4D, είχε διαπιστωθεί το γεγονός ότι οι επιφάνειες "Surf_20" και "Surf_43" πιθανότατα αποτελούν τμήματα της ίδιας επιφάνειας διάρρηξης. Η συγκεκριμένη επιφάνεια, όμως, λόγω των τεχνικών ζητημάτων που προέκυψαν σχετικά με την πτήση του drone (βλ. Μέρος Γ΄, Κεφ. 3), δεν είναι ευδιάκριτη σε όλα της την έκταση. Αυτό είχε σαν αποτέλεσμα να δημιουργηθούν κάποια κενά σχετικά με την αιτιολόγηση της σχέσης μεταξύ των επιφανειών "Surf_20" και "Surf_43". Αυτά τα κενά καλύφθηκαν από την απεικόνιση της περιοχής μελέτης μέσω του λογισμικού του GIS και από τις μετρήσεις των τιμών και των φορών μέγιστης

κλίσης των σημείων κάθε μίας από τις δύο αυτές επιφάνειες. Δηλαδή, η παρατήρηση της κάτοψης της περιοχής μελέτης (απεικόνιση της περιοχής μέσω του GIS) και η διαπίστωση πως οι μετρήσεις των στοιχείων των σημείων της "Surf_20" και της "Surf_43" επιβεβαίωσαν τις αρχικές εκτιμήσεις που είχαν γίνει κατά την προβολή της περιοχής μέσω του Pix4D.

Με βάση τα παραπάνω, γίνεται κατανοητό πως είναι πλέον εφικτή η ακριβέστερη χαρτογράφηση του κοιτάσματος σε περιπτώσεις λατομείων. Ο συνδυασμός της εικόνας που μας δίνει το drone και των δυνατοτήτων που παρέχει το λογισμικό του Pix4D, βοηθά καθοριστικά στην ορθή ψηφιοποίηση δομών και ορίων που δεν είναι ούτε προσβάσιμα στον άνθρωπο, ούτε ευδιάκριτα και πολλές φορές δεν εμφανίζονται στην επιφάνεια του εκάστοτε πρανούς.

ΜΕΡΟΣ Δ΄- ΤΕΛΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ

Με βάση όλα τα παραπάνω αποτελέσματα και τις παρατηρήσεις που έγιναν κατά τη διάρκεια της εκπόνησης της συγκεκριμένης εργασίας, εξήχθησαν κάποια συμπεράσματα που αφορούν τόσο την αποτελεσματικότητα των μεθόδων που εφαρμόστηκαν, όσο και την ερμηνεία χαρακτηριστικών δομών των περιοχών μελέτης.

Αργικά, είναι αναγκαίο να τονιστεί εκ νέου το γεγονός ότι στην περίπτωση του πρανούς στην περιοχή της Καισαριανής, το πλήθος των μετρήσεων υπαίθρου είναι σαφώς μικρότερο συγκριτικά με εκείνο των μετρήσεων που πραγματοποιήθηκαν με βάση τα δεδομένα που λήφθηκαν μέσω drone. Αυτό συμβαίνει, διότι η πρόσβαση ήταν δυνατή για εργασία υπαίθρου μόνο σε λίγες θέσεις του πρανούς, εξαιτίας της απότομης κλίσης του. Επομένως, οι θέσεις όπου πραγματοποιήθηκαν μετρήσεις κλίσης και φοράς μέγιστης κλίσης με χρήση γεωλογικής πυξίδας, βρίσκονταν αποκλειστικά στη βάση του πρανούς. Στην περίπτωση του λατομείου στην περιοχή του Βώλακα Δράμας, οι μετρήσεις που πραγματοποιήθηκαν μόνο μέσω της επεξεργασίας των δεδομένων που λήφθηκαν μέσω drone, αφού τα γεωμορφολογικά χαρακτηριστικά του λατομείου και κατ'επέκταση η μορφή του, δεν επέτρεψαν τη λήψη δεδομένων μέσω εργασίας υπαίθρου. Επομένως, το πρόβλημα της προσβασιμότητας στην περίπτωση της Καισαριανής, αφορά μόνο τα σημεία που βρίσκονται στη βάση του πρανούς που μελετήθηκε, ενώ στην περίπτωση του Βώλακα Δράμας, αφορά σε ολόκληρη την περιοχή μελέτης. Η ανάγκη για ολοκληρωμένες μετρήσεις και αξιόπιστα αποτελέσματα στην περίπτωση της Καισαριανής καλύφθηκε με συνδυασμό εργασίας υπαίθρου και πτήσης drone, ενώ στην περίπτωση του Βώλακα Δράμας μόνο με πτήση drone. Εάν στην περίπτωση της Καισαριανής δεν είχε πραγματοποιηθεί πτήση drone, τα αποτελέσματα της μελέτης θα ήταν ελλειπή και η εικόνα που θα παρουσιαζόταν σχετικά με τις χαρακτηριστικές δομές της περιοχής θα ήταν από ασαφής έως λανθασμένη. Στην περίπτωση του Βώλακα Δράμας, η λήψη δεδομένων μέσω drone.αποτέλεσε μονόδρομο για την ασφαλή αναγνώριση και ψηφιοποίηση των δομών του λατομείου. Εάν αντί χρήσης drone, γινόταν χρήση αεροφωτογραφιών, τα αποτελέσματα θα ήταν ασαφή κι ελλειπή και το κόστος της εργασίας θα ήταν σαφώς μεγαλύτερο.

Όσον αφορά το σχεδιασμό πτήσης drone, παρατηρήθηκε πως αυτός είναι απαραίτητο να αλλάζει με βάση τις καιρικές και γεωμορφολογικές συνθήκες που επικρατούν στην εκάστοτε περιοχή μελέτης. Όταν, για παράδειγμα, πρόκειται για περιοχή όπου προσπίπτει το φως του ήλιου και πρέπει να αναγνωριστούν και να ψηφιοποιηθούν τεκτονικές ή στρωματογραφικές δομές, τότε είναι αναγκαίο η πτήση να πραγματοποιηθεί κάποια ώρα της ημέρας, κατά την οποία η περιοχή δε φωτίζεται απευθείας από το φως του ήλιου. Σε περιπτώσεις όπου στην περιοχή μελέτης εμφανίζονται πρανή με μεγάλη κλίση, τότε κρίνεται αναγκαία η αλλαγή της βύθισης της κάμερας από 70° που είναι η συνήθης τιμή βύθισης που δίνεται, σε 60° ή ακόμα και σε μηδενική. Σε κάθε περίπτωση, οι πτήσεις πρέπει να είναι σχεδιασμένες έτσι ώστε οι φωτογραφίες που λαμβάνονται, να απεικονίζουν κάθε σημείο της περιοχής από διαφορετικές οπτικές γωνίες, ώστε το μοντέλο που πρόκειται να δημιουργηθεί στο Pix4D, να είναι όσο γίνεται πιο ευκρινές. Επίσης, η λήψη βιντεοσκοπικού υλικού μέσω drone διευκολύνει σε πολύ μεγάλο βαθμό το έργο του χαρτογράφου, καθώς σε συνδυασμό με τη μελέτη των φωτογραφιών που προαναφέρθηκαν, τον απαλλάσσει από κάθε αμφιβολία σε περιπτώσεις ασαφούς εικόνας της περιοχής. Τα DSM αρχεία που δημιουργούνται κατά τη μοντελοποίηση της εκάστοτε περιοχής μελέτης και στη συνέχεια εισάγονται στο GIS, δε βοηθούν στην αποσαφήνιση της εικόνας των δομών της, αφού απεικονίζουν την κάτοψή της, με αποτέλεσμα να μη μπορούν να συμβάλλουν στην ευκολότερη και ακριβέστερη ψηφιοποίηση.

Όπως διαπιστώθηκε από την εξέταση των διαγραμμάτων πυκνότητας και των ροδογραμμάτων που δημιουργήθηκαν για την περίπτωση του πρανούς στην Καισαριανή, όσον αφορά στα αποτελέσματα της εργασίας υπαίθρου, οι περισσότερες επιφάνειες στρώσης κλίνουν προς τα ΝΝΔ, ΔΒΔ και προς τα ΝΔ, ενώ υπάρχουν ακόμα 5 ομάδες μετρήσεων, που δείχνουν αντιστοίχως κλίση προς τα BBA, BBA, ANA, NNA, ΝΝΔ και 2 ομάδες που δείχνουν κλίση προς τα ΝΔ. Οι διευθύνσεις των επιφανειών στρώσης που μελετήθηκαν στην ύπαιθρο, είναι κυρίως ΔΒΔ-ΑΝΑ, BBA-NNΔ και BΔ-ΝΑ και δευτερευόντως ΔΝΔ-ΑΒΑ και ΑΒΑ-ΔΝΔ. Οι περισσότερες επιφάνειες διάρρηξης που μελετήθηκαν στην ύπαιθρο, κλίνουν κυρίως προς τα NNA, BBA και ΝΑ, ενώ υπάρχουν ακόμα 5 ομάδες μετρήσεων που δείχνουν κλίσεις προς τα ΒΒΔ, ΒΑ, ΝΑ, ΝΝΔ και ΝΔ αντιστοίχως και ακόμα 2 ομάδες που δείχνουν κλίση προς τα ΒΔ. Οι διευθύνσεις των επιφανειών διάρρηξης που μελετήθηκαν στην ύπαιθρο, είναι ΑΒΑ-ΔΝΔ, ΒΔ-ΝΑ, ΒΑ-ΝΔ και ΔΒΔ-ΑΝΑ. Γενικά, όσον αφορά όλες τις επιφάνειες που μελετήθηκαν - είτε πρόκειται για επιφάνειες στρώσης, είτε για επιφάνειες διάρρηξης – διακρίθηκαν συνολικά 25 ομάδες με βάση τα στοιχεία τους. Με βάση, λοιπόν αυτές τις ομάδες, οι επιφάνειες που μελετήθηκαν κλίνουν κυρίως προς τα BBΔ, ΒΔ, BBA, NA, NNA, ΔΝΔ και ΔΒΔ. Δευτερευόντως κλίνουν προς τα ΑΝΑ, ΝΝΑ, ΝΝΔ και ΝΔ. Με βάση αυτές τις ομάδες, οι επιφάνειες που μελετήθηκαν εμφανίζουν τις εξής διευθύνσεις: Κυρίως ΔΝΔ-ΑΒΑ, ΒΑ-ΝΔ, ΔΒΔ-ΑΝΑ, ΒΒΔ-ΝΝΑ και ΒΒΑ-ΝΝΔ και δευτερευόντως ΒΑ-ΝΔ. Όσον αφορά στα αποτελέσματα που εξήχθησαν κατά την επεξεργασία των δεδομένων που λήφθηκαν μέσω drone, οι τιμές φοράς μέγιστης κλίσης των επιφανειών στρώσης, δείχνουν ότι η συντριπτική πλειοψηφία των επιφανειών αυτών κλίνουν προς τα ΝΔ, λιγότερες επιφάνειες στρώσης κλίνουν προς τα ΔΒΔ και ακόμα λιγότερες προς τα ΑΝΑ. Δευτερευόντως, υπάρχουν και μετρήσεις που δείχνουν κλίσεις προς τα ΔΝΔ, ΒΑ και ΝΑ. Οι διευθύνσεις που εμφανίζουν οι επιφάνειες αυτές, είναι κυρίως BΔ-NA, ABA-ΔΝΔ και BBA-NNΔ και δευτερευόντως ΒΑ-ΝΔ. Οι τιμές φοράς μέγιστης κλίσης των επιφανειών διάρρηξης που υπολογίστηκαν μέσω της επεξεργασίας των δεδομένων που λήφθηκαν κατά την πτήση του drone, δείχνουν πως οι περισσότερες επιφάνειες διάρρηξης κλίνουν προς τα ABA, λίγες κλίνουν προς τα BBA και BA, ακόμα λιγότερες προς τα BΔ κι ελάχιστες κλίνουν προς τα ΝΑ. Οι διευθύνσεις που εμφανίζουν είναι κυρίως ΒΒΔ-ΝΝΑ, ΔΒΔ-ΑΝΑ και ΒΔ-ΝΑ και δευτερευόντως ΒΑ-ΝΔ. Συνδυάζοντας τα αποτελέσματα της εργασίας υπαίθρου και της επεξεργασίας των δεδομένων που λήφθηκαν μέσω drone, διαπιστώνεται το γεγονός ότι οι περισσότερες επιφάνειες στρώσης κλίνουν προς τα ΝΔ, λιγότερες προς τα BBA και ακόμα λιγότερες προς τα ANA. Υπάρχουν, επίσης

επιφάνειες που κλίνουν προς τα ΔΝΔ, ΝΑ, ΒΑ και ΔΒΔ, αλλά αποτελούν τη συντριπτική μειοψηφία των επιφανειών στρώσης. Οι διευθύνσεις των επιφανειών στρώσης είναι κυρίως ΒΔ-ΝΑ και δευτερευόντως ΑΒΑ-ΔΝΔ και ΒΒΑ-ΝΝΔ. Διαπιστώνεται, επίσης, πως η πλειοψηφία των επιφανειών διάρρηξης κλίνει προς τα ABA. Οι επιφάνειες διάρρηξης, δευτερευόντως κλίνουν προς τα BBA, BA, ΝΑ και ΒΔ. Η διεύθυνση που κυριαρχεί στις επιφάνειες διάρρηξης είναι BBΔ-NNA και δευτερευόντως αφορά όλες τις επιφάνειες που μελετήθηκαν – είτε πρόκειται για επιφάνειες στρώσης, είτε για επιφάνειες διάρρηξης – διακρίθηκαν συνολικά πέντε ομάδες με βάση τα στοιχεία τους. Με βάση, λοιπόν αυτές τις ομάδες, οι επιφάνειες που μελετήθηκαν εμφανίζουν τις εξής διευθύνσεις: ΒΔ-ΝΑ, ΔΝΔ-ΑΒΑ, ΔΒΔ-ΑΝΑ, BBA-NNΔ και ΔΝΔ-ΑΒΑ έως ΔΝΔ-ΑΒΑ.

Ερμηνεύοντας τις κυκλογραφικές προβολές που δημιουργήθηκαν για τις επιφάνειες "Surface_3" και "Surface_14", διαπιστώθηκε πως η "Surface_3" έχει διεύθυνση BA-ΝΔ και κλίνει προς τα BΔ. Όσον αφορά την επιφάνεια "Surface_14", τα δεδομένα που προκύπτουν από την εξέταση της αντίστοιχης κυκλογραφικής προβολής δείχνουν πως έχει διεύθυνση ΔBΔ-ANA και κλίνει προς τα NNΔ (βλ. Μέρος B΄, Κεφ. 5).

Όπως διαπιστώθηκε από την εξέταση του διαγραμματος πυκνόητητας και του αντίστοιχου ροδογράμματος, οι επιφάνειες που μελετήθηκαν στο λατομείο του Βώλακα Δράμας, κλίνουν κυρίως προς ΔΝΔ. Τρείς ομάδες επιφανειών κλίνουν προς τα ΔΝΔ, ΝΔ και ΒΔ αντιστοίχως. Υπάρχουν τέσσερις επιφάνειες εκ των οποίων, η κάθε μία κλίνει προς τα BBA, BA, ΝΔ και ΝΝΔ αντιστοίχως. Επίσης, οι διευθύνσεις που επικρατούν όσον αφορά τις επιφάνειες της περιοχής, είναι κυρίως B-N και δευτερευόντως BΔ-NA και BA-NΔ.

Εξετάζοντας τις κυκλογραφικές προβολές που δημιουργήθηκαν για τις επιφάνειες "Surface 20", "Surface 43" και "Surf_schist", τα στοιχεία των σημείων που δημιουργήθηκαν πάνω στην "Surf 20" επιφάνεια διάρρηξης, δείχνουν πως η επιφάνεια αυτή έχει διεύθυνση BΔ-NA και κλίνει προς τα ΝΔ. Η "Surf 43" επιφάνεια διάρρηξης, έχει διεύθυνση ΒΔ-ΝΑ και κλίνει προς τα ΝΔ. Θα πρέπει να επισημανθεί το γεγονός ότι διαπιστώθηκε η ύπαρξη δύο σημείων του "measurements_Volakas" shapefile, των οποίων τα στοιχεία διαφοροποιούνται από των υπόλοιπων, λόγω σφάλματος που προέκυψε κατά τη δημιουργία των σημείων στο συγκεκριμένο shapefile στο GIS (βλ. Μέρος Γ΄, Κεφ. 5). Το σφάλμα οφείλεται στο γεγονός ότι επειδή το DSM αρχείο δείχνει την κάτοψη της περιοχής μελέτης, οι θέσεις στις οποίες τα δύο προαναφερθέντα σημεία, λανθασμένα φαίνεται να ανήκουν στην παραπάνω επιφάνεια. Στην πραγματικότητα ανήκουν σε παρακείμενη δομή, γεγονός που μετά επαληθεύτηκε μέσω της εξέτασης της περιοχής κατά την προβολή της μέσω του Pix4D. Επομένως, οι δύο αυτές μετρήσεις δε λήφθηκαν υπόψη για την εξαγωγή του συμπεράσματος σχετικά με τα στοιχεία της επιφάνειας "Surf 43". Όσον αφορά στην επιφάνεια σχιστότητας "Surf schist", τα στοιχεία των σημείων που δημιουργήθηκαν πάνω σε αυτήν, δείχνουν ότι η συγκεκριμένη επιφάνεια έχει διεύθυνση BBA-NNΔ και κλίνει προς τα ΔΒΔ.

Κατά τη διαδικασία που ακολουθήθηκε με σκοπό την τρισδιάστατη απεικόνιση επιφανειών και τον υπολογισμό των στοιχείων τους, έγινε αντιληπτό πως η αναγνώριση, η ψηφιοποίηση και η μελέτη δομών που δεν εκτίθενται καθόλου στην επιφάνεια ενός αναγλύφου θα ήταν αδύνατο να επιτευχθούν χωρίς τη λήψη δεδομένων από drone και – εν συνεχεία – χωρίς την επεξεργασία τους στο περιβάλλον του Pix4D. Το συγκεκριμένο λογισμικό, δηλαδή, δίνει τη δυνατότητα στο χρήστη όχι μόνο να εκτιμήσει, αλλά να προσδιορίσει, να χαρακτηρίσει και να αναλύσει το εσωτερικό ενός πρανούς, χωρίς να έχει καμία οπτική επαφή μαζί του. Αυτό δε θα μπορούσε να επιτευχθεί με διαφορετικό τρόπο.

Είναι σημαντικό να σημειωθεί το γεγονός πως η χρήση drone με σκοπό τη χαρτογράφηση μίας περιοχής μελέτης, δεν ενδείκνυται σε όλες τις περιπτώσεις. Για παράδειγμα, σε περιοχές που εμφανίζουν έντονη φυτοκάλυψη, η πτήση drone δε μπορεί να εξυπηρετήσει το χαρτογράφο, καθώς η εικόνα που προκύπτει δε βοηθάει στο έργο του.

Πρέπει, τέλος, να επισημανθεί το γεγονός ότι κατά την ερμηνεία του ενιαίου στατιστικού δείγματος των μετρήσεων που γίνονται κάθε φορά, προκύπτει πρόβλημα όσον αφορά στη βαρύτητά τους. Πιο συγκεκριμένα, είναι αναγκαίο να εξεταστεί με ιδιαίτερη προσοχή αν κάποιες μετρήσεις έχουν όντως μεγαλύτερη βαρύτητα συγκριτικά με τις υπόλοιπες. Μία ομάδα μετρήσεων, είναι δυνατόν να δείχνει πως έχει μεγάλη βαρύτητα αν την εξετάσουμε μεμονωμένα. Αν όμως μελετήσουμε την ίδια ομάδα ως προς το σύνολο των μετρήσεων, μπορεί η βαρύτητά της να υποβαθμίζεται ή ακόμα και να χάνεται. Κρίνεται αναγκαίο, λοιπόν, για κάθε ομάδα μετρήσεων να εξετάζεται το μέτρο της δυνατότητας πραγματοποίησης πολλών μετρήσεων, ο τρόπος με τον οποίο έγιναν αυτές, αλλά και οι δομές στις οποίες αντιστοιχούν. Επίσης, είναι απαραίτητο να εφαρμόζεται ομοιογένεια στην κατανομή των μετρήσεων. Έτσι, θα είναι εφικτή η εξαγωγή όσο γίνεται πιο ασφαλών στατιστικών συμπερασμάτων σχετικά με τις τεκτονικές αναλύσεις κάθε φορά.

Παρακάτω (Εικ. 176, 177, 178, 179, 180, 181 & 182) παρουσιάζονται συνοπτικά οι μεθοδολογίες που εφαρμόστηκαν και περιγράφηκαν προηγουμένως, στην παρούσα εργασία.

Εικόνα 176: Δημιουργία Νέου Project στο Pix4D.

Εικόνα 177: Ψηφιοποίηση γραμμικών στοιχείων κι επιπέδων στο Pix4D.

Εικόνα 178: Υπολογισμός των στοιχείων των δομών στο GIS, με επεξεργασία των δεδομένων που δημιουργήθηκαν στο Pix4D.

Εικόνα 179: Τρισδιάστατη απεικόνιση επιφανειών και υπολογισμός των στοιχείων τους.

Εικόνα 180: Δημιουργία διαγραμμάτων πυκνότητας σε δίκτυο Schmidt για τις δομές που μελετήθηκαν.

Εικόνα 181: Δημιουργία ροδογραμμάτων για τις δομές που μελετήθηκαν.

Εικόνα 182: Δημιουργία κυκλογραφικών προβολών για τις δομές που μελετήθηκαν.

Στο Παράρτημα (βλ. Μέρος ΣΤ΄) παρατίθενται οι χάρτες για την περίπτωση της Καισαριανής (Εικ. 183, 184, 185, 186, 187, 188, 189, 190 & 191) και την περίπτωση του Βώλακα (Εικ. 192, 193, 194, 195, 196, 197, 198 & 199) που προέκυψαν από την επεξεργασία των δεδομένων, όπως περιγράφηκε αναλυτικά στα προηγούμενα κεφάλαια.

ΜΕΡΟΣ Ε΄ - ΒΙΒΛΙΟΓΡΑΦΙΑ

Α) Ελληνική βιβλιογραφία

Αντωνίου Β. και Μιγκίρος Π. (2002). Η μορφοτεκτονική δομή της Αττικής. 60 Πανελλήνιο Γεωγραφικό Συνέδριο (Τόμος Α).

Αντωνίου, Β. (2002). Οι γεωπεριβαλλοντικές συνθήκες του λεκανοπεδίου Αθηνών με χρήση γεωγραφικών πληροφοριακών συστημάτων. Αθήνα: Διδακτορική διατριβή, Γεωπονικό Πανεπιστήμιο Αθηνών.

Αντωνίου, Β. Σ. (2010). Ανάλυση ανάγλυφου και γεωτεκτονική δομή ανατολικής Αττικής. Διδακτορική διατριβή, Γεωπονικό Πανεπιστήμιο Αθηνών.

Βουγιούκας Δ. και Χατζηπαναγής Ι. (2009). Γεωλογία – Λιθοστρωματογραφία – Τεκτονική και Κοιτασματολογία του Φαλακρού Όρους, Τελική Έκθεση, Γ' Κοινοτικό Πλαίσιο Στήριξης, Επιχειρησιακό Πρόγραμμα «Ανταγωνιστικότητα», Μέτρο 7.3, Δράση 7.3.1 (Ξάνθη, 2009), Τόμος 1, 1-76.

Δηλγεράκη, Ζ. (2014). Μελέτη πετρογραφικών και φυσικομηχανικών ιδιοτήτων μαρμαροφόρων κοιτασμάτων από περιοχές των Νομών Δράμας και Σερρών. Πάτρα: Πτυχιακή εργασία, Πανεπιστήμιο Πατρών.

Δούνας, Α. και Γαϊτανάκης, Π. (1981). "Στρωματογραφικές και τεκτονικές παρατηρήσεις στη βουνοσειρά Αιγάλεω και στο δυτικό τμήμα του λεκανοπεδίου της Αθήνας." Ελλ. Γεωλ. Εταιρ. 28/1, 151-163.

Κατσαβριάς, Ν. "Υπολείμματα μίας άγνωστης ισοπικής ζώνης των ανατολικών Ελληνίδων στη Λαυρεωτική." Πρακτικά Ακαδημίας Αθηνών, 1990: 96-106.

Κατσικάτσος, Γ. Γεωλογία της Ελλάδας. Πάτρα, 1992.

Λόζιος, Σ. (1993). Τεκτονική ανάλυση μεταμορφωμένων σχηματισμών Βορειοανατολικής Αττικής. Αθήνα: Διδακτορική διατριβή, ΕΚΠΑ. Μαρίνος, Γ., Κατσικάτσος, Γ., Γεωργιάδου-Δικαιούλια, Ε. και Μίρκου, Ρ., (1971). "Το σύστημα των σχιστολίθων Αθηνών. - Ι. Στρωματογραφία και Τεκτονική." Ann. Geol. De Pays Hell.: 183-216.

Μαριολάκος, Η. "Τεκτονική ανάλυση των συστημάτων διακλάσεων του βόρειου Υμηττού (Αττική)." Ann. Geol. Pays Hell., 1971: 323-379.

Μέττος, Α. (1992). Γεωλογική και παλαιογεωγραφική μελέτη των ηπειρωτικών νεογενών και τεταρτογενών σχηματισμών ΒΑ/κης Αττικής και ΝΑ/κής Εύβοιας. Αθήνα: Διδακτορική διατριβή, ΕΚΠΑ.

Μιγκίρος, Γ. Στρωματογραφία - Εφαρμοσμένη Γεωλογία. Αθήνα: Γεωπονικό Πανεπιστήμιο Αθηνών, 1991.

Μιχαλόπουλος, Ι. & Σκρομπόλας, Δ. (2016). Γεωλογικές και Τεκτονικές παρατηρήσεις στην περιοχή της Μονής Καισαριανής (Δυτικός Υμηττός). Αθήνα: Πτυχιακή εργασία. ΕΚΠΑ.

Μουντράκης Δ. (2010) Γεωλογία και Γεωτεκτονική Εξέλιξη της Ελλάδας, Θεσσαλονίκη: University Studio Press.

Μπόσκος Ε., Χατζηπαναγής Ι. & Παπαδόπουλος Π. (1998). Νέα δεδομένα στην οριοθέτηση των τεκτονικών Ενοτήτων Παγγαίου και Σιδηρόνερου στη Δυτική Ροδόπη. Δελτ. Ελλ. Γεωλ. Εταιρ. 32/1, 13-21.

Παπαδέας, Γ. "Γεωλογική - τεκτονική εξέλιξη στην Αττική και η βαρίσκιος μεταλλοφορία μικτών θειούχων και άλλων ορυκτών στην Ελλάδα." Πρακτικά Ακαδημίας Αθηνών 62 (1987): 59-81.

Παπαδέας, Γ. "Η Στρωματογραφία και η ηλικία των μεταμορφωμένων πετρωμάτων της ΒΑ Αττικής." Δελτίο Ελληνικής Γεωλογικής Εταιρείας 18 (1986): 55-81.

Παπαδέας, Γ. "Νεότερα πορίσματα στη γεωλογική - τεκτονική εξέλιξη των μεταμορφωμένων πετρωμάτων της Αττικής και στη Βαρίσκια μεταλλοφορία." Πρακτικά της Ακαδημίας Αθηνών 66 (Νοέμβριος 1991): 331-370.

Παπανικολάου, Δ., Μπάση, Ε., Κράνης, Χ. και Δαναμός, Γ. "Παλαιογεωγραφική εξέλιξη του λεκανοπεδίου Αθηνών από το Άνω Μειόκαινο έως σήμερα." Bull. of the Geol. Soc. of Greece, 2004a: 816-825.

Παπανικολάου, Δ. (2015). Γεωλογία της Ελλάδας. Αθήνα: Εκδόσεις Πατάκη.

Παπανικολάου, Δ. Γεωλογία της Ελλάδας. Αθήνα: Επτάλοφος, 1986b

Παπανικολάου, Δ., Σούκης, Κ., Λόζιος, Σ, Σκούρτσος, Ε. (2004). Η γεωλογική δομή του αλλόχθονου των «Σχιστολίθων Αθηνών». 10ο Διεθνές Συνέδριο Ε.Γ.Ε., Θεσσαλονίκη 2004, Δ.Ε.Γ.Ε. τομ. XXXVI, 2004.

Παπαχατζής, Ν. Ι. (1980). Μορφογενετικαί έρευναι του βαθυπέδου των Μεσογείων Αττικής. Αθήνα.

Παρασκευόπουλος, Γ. "Τα πετρώματα του ορίζοντος του σχιστολίθου Καισαριανής εν Πεντελικώ." Πρακτικά Ακαδημίας Αθηνών 31 (1956a): 280-290.

Παρασκευόπουλος, Γ. "Φλεβικές εμφανίσεις εν Πεντελικώ προελθούσαι εκ μεταμορφώσεως." Πρακτικά Ακαδημίας Αθηνών 31 (1956b): 291-299.

Τάταρης, Α. "Νεώτερα πορίσματα επί της γεωλογίας της νήσου Σαλαμίνος και της περιοχής Αττικής." Δελτ. Ελλην. Γεωλ. Εταιρίας, 1972: 482-514.

Χατζηπαναγής Ι. & Βουγιούκας Δ. (2004). Η σημασία της λιθοστρωματογραφικής θέσης και της τεκτονικής παραμόρφωσης στον εντοπισμό και την αξιοποίηση των δολομιτικών μαρμάρων του Όρους Φαλακρού. Δελτ. Ελλ. Γεωλ. Εταιρ. 36/1, 63-71.

Χατζηπαναγής, Ι. (1991). Η γεωλογική δομή της ευρύτερης περιοχής του όρους Φαλακρού. Διδακτορική Διατριβή, Ε.Μ.Πολυτεχνείο, 170σ.

Χατζηπαναγής Ι., Βουγιούκας Δ., Παπατρέχας Χ. & Μπίτζιος Δ. (2006). Μοντέλο διαχείρισης της μαρμαροφόρου περιοχής του Όρους Φαλακρού, Νομού Δράμας. Πρακτ. Ημερ. 30η MAPMIN, «Ανταγωνιστικότητα του Ελληνικού μαρμάρου στη σύγχρονη αγορά», 4 σ.

Χατζηπαναγής Ι., Φυτρολάκης Ν. & Μπόσκος Ε. (1993). Η γεωλογική δομή της ευρύτερης περιοχής του όρους Φαλακρού και η τεκτονική σχέση της Δ. Ροδόπης με τη Σερβ/κή μάζα Δελτ. Ελλ. Γεωλ. Εταιρ. 28/1, 151-164

Χατζηπαναγής Ι., Φυτρολάκης Ν. & Μπόσκος Ε. (1993). Η γεωλογική δομή της ευρύτερης περιοχής του Όρους Φαλακρού και η τεκτονική σχέση της Δ. Ροδόπης με τη Σερβομακεδονική μάζα. Δελτ. Ελλ. Γεωλ. Εταιρ. 28/1, 151-163.

B) Ξένη Βιβλιογραφία

Agisoft (2012). Agisoft PhotoScan User Manual: Professional Edition, Version 0.9.0., http://www.agisoft.ru/products/photoscan/professional.

Alexopoulos, A., Lekkas, S. and Moraiti, E. "On the occurence of non-metamorphic Uper Eocene-Lower Oligocene clastic sequence, wedged between the allochton and the relative autochton system of Atiica (Greece)." Bull of Geol. Soc. of Greece. Athens, 1998. 79-84.

Arcement, G. J., Schneider, V. R. (1989). Guide for selecting Manning's roughness coefficients for natural channels and floodplains. Water-Supply Paper 2339, U.S. Geological Survey.

Ballesteros Canovas, J. A., Eguibar, M., Bodoque, J.M., Diez-Herrero, A., Stoffel, M. and Gutierrez-Perez, I. (2011). Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators. Hydrol. Process. 25, 970–979.

Barnhart, R. K., Hottman, S. B., Marshall, D. M. and Shappee, E. (2012). Introduction to unmanned aircraft systems, CRC Press, ISBN 978-1-4398-3520-3.

Bassi, E. K., Soukis, K. and Lekkas, S. "The presence of Vari - Kirou Pira Unit at Panion Hill (SE Attica, Greece)." Bul. of the Geol. Soc. of Greece, 2004, XXXVI ed.: 1608-1617.

Baziotis, I. (2008). Petrological and geochemical study of the metamorphic rocks from east Attica. Athens: PhD Thesis. National Technical University of Athens.

Bi, H., Zheng, W., Ren, Z., Zeng, J. and Yu, J. (2017). Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. International Journal of Remote Sensing, 38, 8 - 10, 2495 - 2510.

Blom, J. D. (2010). Unmanned Aerial Systems: A Historical Perspective, Combat Studies Institute Press, US Army Combined Arms Center, Fort Leavenworth, Kansas, ISBN 978-0-9823283-0-9.

Bluementhal, M. "Uber den tektonischen Verband osthellenischer Gebirge." 1931: 347-372.

Brasington, J., Vericat, D. and Rychkov, I. (2012). Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resour. Res. 48, W11519. http://dx.doi.org/10.1029/2012WR012223.

Brodu, M. and Lague, D. (2012). 3D t-lidar data classification of complex natural scenes. ISPRS J. Photogramm. Sens. 68, 121–134.

Brownlow, R. et al. (2016), Methane mole fraction and $\delta 13C$ above and below the trade wind inversion at Ascension Island in air sampled by aerial robotics, Geophys. Res. Lett., 43(22), 11,893–11,902, https://dx.doi.org/10.1002/2016GL071155.

Bull, L.J., Kirkby, M.J., Shannon, J. and Hooke, J. (1999). The impact of rainstorms on floods in ephemeral channels in southeast Spain. Catena 38, 191–209.

Carrivick, J. L., Manville, V. and Cronin, S. J. (2009). A fluid dynamics approach to modelling the 18th March 2007 lahar at Mt. Ruapehu, New Zealand. Bull. Volcanol. 71, 153–169.

Charalambakis, S. "Contribution la connaissance du N?og?ne de l' Attique." Ann. Geol. des Pays Hell., 1952: 1-156.

Chatzipanagis, I., Compagnoni, R. and Sanerone, R. (1983). Studio geologicopetrografico di Bos-Dag settentrionale (Macedonia Greca). Boll. del assoc. Mineraria Subalpina 22, 1 12-126. Coveney, S., and Fotheringham, A.S. (2011). Terrestrial laser scan error in the presence of dense ground vegetation. Photogramm. Rec. 26, 307–324.

Cowan, W.L. (1956). Estimating hydraulic roughness coefficients. Agric. Eng. 37, 473–475.

Cuerno-Rejado, C., García-Hernández, L., Sánchez-Carmona, A., Carrio, A., Sanchez-López, J. L. and Campoy, P. (2015). Evolution of the unmanned aerial vehicles until present.

Denlinger, R.P., O'Connell, D.R.H. and House, P.K. (2002). Robust determination of stage and discharge: an example from an extreme flood on the Verde River, Arizona. Water Sci. Appl. 5, 127–146.

Durr, S., Altherr, R., Keller, J., Okrusch, M. and Seidel, E. The Median Aegean Crystalline Belt: Stratigraphy, Structure, Metamorhism, Magmatism. Vol. 38, in Alps, Apennines, Hellenides, edited by H Closs, D Roeder and K Schmidt, 455-477. Int. Un. Com. on Geod., 1978.

Ehrhard, T. P., Airforce UAVs (2010). The secret history, Mitchell Institute Press, Air Force Association.

Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. and Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf. Proc. Land. 38, 421–430.

Gaume, E. (2006). Post Flash-Flood Investigations: Methodological Note. FLOODsite Report T23-06-02. www.floodsite.net/html/publications2.asp?document-Type=1.

Helicopter History Site, History of Helicopters, June 2004; http://www.hiller.org.

Hunt, E. R., Hively, W. D., Fujikawa, S. J., Linden, D. S., Daughtry, C. S. T. and McCarty, G. W. (2010). Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2, 290–305.

Ioakim, Ch., Rondoyanni, Th. And Mettos, A. "The Miocene basins of Greece (Eastern Mediterranean) from a paleoclimatic perspective." Revue de Paleobiologie, 2005: 735-748.

Irvine, M. (2017) Exploring the use of UAVs in geosciences.

Jacobshagen, V. "Orogenic evolution of the Hellenides: new aspects." Geol Rundsch, no. 84 (1994): 249-256.

Jacobshagen, V. "Structure and geotectonic evolution of the Hellenides." VI Coll. Geol. Aegean Region. Athens, 1979. 1355-1367.

James, M. R. and Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J. Geophys. Res.: Earth Surf. 117, F03017. http://dx.doi.org/10.1029/2011JF002289.

Javernick, L., Brasington, J. and Caruso, B. (2014). Modelling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology. http://dx.doi.org/10.1016/j.geomorph.2014.01.006.

Johnson, L. F., Herwitza, S., Dunagana, S., Lobitza, B., Sullivana, D. and Slye, R. (2013). Collection of Ultra High Spatial and Spectral Resolution Image Data over California Vineyards with a Small UAV. Biosystems Engineering, 108, 4, 49 - 61.

Jordan, H. (1969). Geologie und Petrographie in Zentraltein des Bos-Dag (Drama Griechisch- Makedonien). Geotekt. Forsch. 31 (I-III), 50-85.

Katsikatsos, G., Migiros, G., Trianta?llis, M. and Mettos, A. "Geological structure of Internal Hellenides (E. Thessaly-SWMacedonia, Euboa-Attica-Northern Cyclades Islands and Lesvos)." Geological and Geophysical Research, Special Issue, 1986: 191-212.

Keane, J. F. and Carr, S. S. (2013). A Brief History of Early Unmanned Aircraft. THE HISTORY AND THE EVOLUTION OF UAVs FROM THE BEGINNING TILL THE 70s. Johns Hopkins APL Technical Digest, vol. 32, no.3.

Kelleher, C., Scholz, C. A., Condon, L. and Reardon, M. (2018). Drones in geoscience research: The sky is the only limit, Eos, 99, https://doi.org/10.1029/2018EO092269.

Kessel, G. "Attic peninsula (Greece): Deformation and P-T path of the cristalline units." Int. Earth Sci. Cong. on Aegean Reg. (IESCA). Izmir, 1990. 63.

Kessel, G.. "Untersuchungen zu Deformation und Metamorphose in Attischen Kristallin, Griechenland." Berliner geowiss Abh., 1990b: 150.

Kieslinger, A. (1933). "Die Akropolis - Veberschiebung in Athen." Zentrbl. Min B: 276-280.

Kleinhans, M., Jagers, H., Mosselman, E., Sloff, C. (2008). Bifurcation dynamics and avulsion duration in meandering rivers by one-dimensional and threedimensional models. Water Resour. Res. 44, W08454. http://dx.doi.org/10.1029/2007WR005912.

Kober, L. "Beitrage zur Geologie von Attika." Sitz. Akad. Wiss. Mat. - Mat. kl., 1929: 199-326.

Krohe, A, Mposkos, E., Diamantopoulos, A. and Kaouras., G. "Formation of basins and mountain ranges in Attica (Greece): The role of Miocene to Recent low-angle normal detachment faults." Earth-Science Reviews, 2010: 81-104.

Kronberg, P. (1969). Gliederung. Petrographie und Tektogenese des Rhodopen-Kristallins im Tsal-Dag, Simvolon und Ost-Pangaion (Griechisch-Makedonien). Geotektonische Furschtuigen 31, 1-49.

Kronberg, P., Meyer, W. and Pilger, A. 1970. Geologie der Rila-Rhodope Masse zwischen Strimon und Nestos (Nordgriechenland). Beih. Geol. Jb. 88, 133-180.

Lambermont, P. (1958). "Helicopters and Autogyros of the World". Cassel, London.

Leica Geosystems (2008). Leica GPS1200 User Manual.

Lekkas, S., and Lozios, S. (2000). Tectonic structure of Mt Hymittos (Attica – Greece). Ann. Geol. Pays Hellen., 38, σ.323-379, Αθήνα.

Lelew, M, and Newmann, M. "L' age des formations d' Attique, Grece." C.R. Acad. Sc. Paris, 1969: 1361-1363.

Lepsius, R. Geologie von Attika. Ein Beitrag zur Lehre vom Metamorhismus der Gesteine. Berlin, 1893.

Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M. and Stelling, G.S. (2004). Development and validation of a three-dimensional morphological model. Coast. Eng. 51, 883–915.

Lilienthal, O. and Lilienthal, G. (1911). Birdflight As the Basis of Aviation: A Contribution Towards a System of Aviation. LONGMANS, GREEN, AND CO., London.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110.

Manners, R., Schmidt, J. and Wheaton, J.M. (2013). Multiscalar model for the determination of spatially explicit riparian vegetation roughness. J. Geophys.Res.: Earth Surf. 118. http://dx.doi.org/10.1029/2011JF002188.

Marchi, L., Borga, M., Preciso, E., Sangati, M., Gaume, E., Bain, V., Delrieu, G., Bonnifait, L. and Pogacⁿik, N. (2009). Comprehensive post-event survey of a flash flood in Western Slovenia: observation strategy and lessons learned. Hydrol. Process. 23, 3761–3770.

McGonigle, A. J. S. et al. (2008), Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes, Geophys. Res. Lett., 35, L06303, https://doi.org/10.1029/2007GL032508.

Mountrakis, D, Sapounzis, E., Kilias, A., Eleftheriadis, G. and Christofides, G. "Paleogeographic conditions in the western pelagonian margin in Greece during the initial rifting of the continental area." Canadian Journal of Earth Sciences, no. 20 (1983): 1673-1681.

Moussa, M., Degré, A., Debouche, C. and Lisein, J. (2014). Geomorphology The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology, 214, 339-355.

Nastos PT., Vassilakis E., Nastos M-PP., Charalampopoulos I. and Matzarakis A. Assessment of continuous sky view factor based on ultra-high resolution natural colour images acquired by remotely piloted airborne systems for applications in an urban area of Athens. International Journal of Remote Sensing [Internet]. 2017;38:5814-5829.

Negris, Ph. "Roches cristallophylliennes et tectonique de la Grece." N. Jah. f. Min. Geol. Pal. Beil, 1919: 100 (210-310).

Negris, Ph. "Sur l'age des schistes d' Athenes." Com. Red. Ac. Sc. Paris, 1912: 1838-1840.

Negris, Ph. "Vicissitudes de l' Egeeis a travers les ages geologigues." Archimides 16 (1915): 13-23.

Neufeld, J., Watson, G. M. jr. and Chenoweth, D. (1997). Technology and the Air Force: A Retrospective Assessment. Air Force History and Museums Program. United States Air Force, Washington D.C., UG1103.T43.

Ore, J. P. et al. (2015), Autonomous aerial water sampling, J. Field Robotics, 32, 1,095–1,113, https://doi.org/10.1002/rob.21591.

Ouedraogo, M. M., Degre, A., Debouche, C. and Lisein, J. (2014). The evaluation of unmanned aerial systems-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology. http://dx.doi.org/10.1016/j.geomorph.2014.02.016.

Papadeas, G. "Zur Geologie der kristallinen Gesteine von Marathon." Δελτίο Ελληνικής Γεωλογικής Εταιρείας 10/2 (1973): 13-64.

Papadeas, G. "Zur stratigraphie und Alterstellung der metamorphen Serien NE von Athen (Marathon)." Πρακτικά Ακαδημίας Αθηνών 44 (1969): 10-18.

Papanikolaou, D. and Panagopoulos, A. 1981. On the structural style of Southern Rhodope, Greece. Geol. Balcanica 11(3), 13-22.

Perroy, R. L., Bookhagen, B., Asner, G. P. and Chadwick, O. A., 2010. Comparison ofgully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology 118, 288–300.

Philippson, A. "Die griechischen Landschaften. Eine Landskunde. I/3 Attika and Megaris." Ref. Creutzburg: Erdke 9, 69-77 & ref. Haralambous: Cent. f. Geol. und Pal, I, 440-442, 1952: 745-1086.

Photiades, A. and Carras. N. "Stratigraphy and geological structure of the Lavrion Area (Attica, Greece)." Bull of the Geol. Soc. of Greece. Athens, 2001. 103-109.

Pierrot Deseilligny, M. and Clery, I. (2011). Apero, an open source bundle adjustment software for automatic calibration and orientation of set ofimages. Int. Arch. Photogramm. Re- mote. Sens. Spat. Inf. Sci. XXXVIII, 113–124.

Prisacariou, V. (2017). The History and the Evolution of UAVs from the Begining Till the 70s. Journal of Defense Resources Management, 181-190, 181-189.

Rippin, D. M., Pomfret, A. and King, N. (2015). High resolution mapping of supraglacial drainage pathways reveals link between micro-channel drainage density, surface roughness and surface reflectance, Earth Surf. Processes Landforms, 40(10), 1,279– 1,290, https://doi.org/10.1002/esp.3719.

Rocca, R. (2017). Low cost 3d mapping using a commercial drone/UAV: Application in structural geology, 42054, 143 – 143. Adapted from oral presentation given at AAPG International Conference & Exhibition, Barcelona Spain, April 3-6, 2016.

Ross, F. (1953). Flying windmills: the story of helicopters. Lothrop Lee Shepard, Boston.

Rychkov, I., Brasington, J. and Vericat, D. (2012). Computational and methodological aspects of terrestrial surface analysis based on point clouds. Comput. Geosci. 42, 64–70.

Sakamoto, N. S. (2004). UAV Development and History at Northrop Grumman Corporation, Ryan Aeronautical Center SI4000 SUMMER 2004, UAV Brief.

Sandercock, P. J. and Hooke, J. M. (2010). Assessment of vegetation effects on hydraulics and of feedbacks on plant survival and zonation in ephemeral channels. Hydrol. Process. 24, 695–713.

Schuurman, F., Marra, W. A. and Kleinhans, M. G. (2013). Physics-based modeling of large braided sand-bed rivers: bar pattern formation, dynamics and sensitivity. J. Geophys. Res. 118, 2509–2527.

Sindowski, K. "Der geologische Bau von Attika." Ann. Geo. Pays Hell. 2 (1949): 163-218.

Smith, M. W., Carrivick, J. L., Hooke, J. and Kirkby, M. J. (2014). Reconstructing flash flood magnitudes using 'Structure-from-Motion': A rapid assessment tool. Journal of Hydrology, 519, PB, 1914-1927.

Snavely, N., Seitz, S. M. and Szeliski, R. (2008). "Modeling the World from Internet Photo Collections." International Journal of Computer Vision 80: 189–210. doi:10.1007/s11263-007-0107-3.

Trikkalinos, J. "Beitrage zur Erforschhung des tektonischen Baus Griechelands. Uber die Schichtenfolge und den Bau Attikas." Fest. Geb V. H. Stille 60 (1936): 303- 314.

Tsokos A, Kotsi E, Petrakis S, Vassilakis E. Combining series of multi-source high spatial resolution remote sensing datasets for the detection of shoreline displacement rates and the effectiveness of coastal zone protection measures. Journal of Coastal Conservation. 2018;22:431-441.

Turner, D., Lucieer, A. and Watson, C. (2012). "An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (Sfm) Point Clouds." Remote Sensing 4: 1392–1410. doi:10.3390/ rs4051392.

Van der Wegen, M. and Roelvink, J. A. (2008). Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. J. Geophys. Res. 113, C03016. http://dx.doi.org/10.1029/2006JF003983.

Verhoeven, G. (2011). "Taking Computer Vision Aloft-Archaeological Three-Dimensional Reconstructions from Aerial Photographs with Photoscan." Archaeological Prospection 18: 67–73. doi:10.1002/arp.v18.1.

Verhoeven, G. (2008). Imaging the invisible using modified digital still cameras for straightforward and low-cost archaeological near-infrared photography. J. Archaeol. Sci. 35, 3087–3100.

Verhoeven, G. (2011). Taking computer vision aloft — archaeological threedimensional re- constructions from aerial photographs with PhotoScan. Archaeol. Prospect. 18, 67–73.

Vericat, D., Smith, M. W. and Brasington, J. (2014). Patterns of topographic change in subhumid badlands determined by high resolution multi-temporal topographic surveys. Catena 120, 164–176.

Werrell, K. P. (1985). The evolution the cruise missile. Air University (AU), Air University Press, Maxwell Air Force Base Alabama, USA.

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J. and Reynolds, J. M. (2012). 'Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314.

Williams, R. D., Brasington, J., Hicks, M., Measures, R., Rennie, C. D. and Vericat, D. (2013). Hydraulic validation of two-dimensional simulations of braided river flow with spatially continuous aDcp data. Water Resour. Res. 49, 5183–5205.

Williams, R. D., Brasington, J., Hicks, M., Measures, R., Rennie, C. D. and Vericat, D. (2013). Hydraulic validation of two-dimensional simulations of braided river flow with spatially continuous aDcp data. Water Resour. Res. 49, 5183–5205.
Zachos, S. and Dimadis, E. (1983). The geotectonic position of the Skaloti-Echinos granite and its relations to the metamorphic formations of Greek Western and Central Rhodope. Geol. Balcanica 13(5), 17-24.

ΜΕΡΟΣ ΣΤ΄ - ΠΑΡΑΡΤΗΜΑ

Πίνακας 5: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (i).

FID	Shape *	ld	surf_type	Dip	Dip_direct	POINT_X	POINT_Y
0	Point	0	Fault_surface_1	56,496963	299,822741	743783,9368	4205332,155
1	Point	0	Fault_surface_1	40,603069	305,801833	743784,1837	4205330,779
2	Point	0	Fault_surface_1	41,675749	283,173153	743785,7359	4205329,72
3	Point	0	Fault_surface_1	47,459261	315,879115	743788,029	4205329,368
4	Point	0	Fault_surface_1	54,475425	304,002187	743786,0887	4205331,237
5	Point	0	Fault_surface_1	45,109107	300,357255	743790,6043	4205328,204
6	Point	0	Fault_surface_1	41,440655	316,42873	743790,1809	4205326,087
7	Point	0	Fault_surface_1	50,379824	312,982302	743784,8893	4205328,627
8	Point	0	Bedding_surface_1	26,244292	45,253058	743778,8903	4205419,125
9	Point	0	Bedding_surface_1	27,963208	43,068316	743779,4688	4205419,167
10	Point	0	Bedding_surface_1	51,832512	60,059832	743780,4707	4205418,885
11	Point	0	Bedding_surface_1	43,058635	67,067849	743780,5131	4205418,363
12	Point	0	Bedding_surface_1	25,576732	50,126732	743779,5253	4205418,476
13	Point	0	Bedding_surface_2	61,877537	273,383849	743769,6538	4205404,756
14	Point	0	Bedding_surface_2	48,825876	271,514847	743769,9431	4205404,622
15	Point	0	Bedding_surface_2	56,832024	259,580001	743770,3594	4205404,651
16	Point	0	Bedding_surface_2	54,07803	251,944818	743770,5499	4205404,947
17	Point	0	Bedding_surface_2	53,675608	265,979563	743770,7757	4205405,166
18	Point	0	Bedding_surface_2	57,162318	265,280295	743770,2818	4205405,293
19	Point	0	Bedding_surface_2	53,452325	298,293012	743771,4671	4205406,429
20	Point	0	Bedding_surface_2	52,473298	272,294584	743771,0508	4205405,497
21	Point	0	Bedding_surface_3	48,786467	277,717044	743774,8749	4205403,573
22	Point	0	Bedding_surface_3	49,758196	258,489546	743775,0549	4205403,277
23	Point	0	Bedding_surface_3	44,101581	251,65018	743775,1078	4205402,938
24	Point	0	Bedding_surface_3	40,699377	254,190006	743775,1289	4205402,388
25	Point	0	Bedding_surface_3	43,319925	246,518374	743775,1289	4205401,901
26	Point	0	Bedding_surface_3	39,218739	260,036708	743774,5363	4205402,97
27	Point	0	Bedding_surface_3	39,598464	257,184283	743774,6421	4205402,642
28	Point	0	Bedding_surface_3	40,275105	249,480769	743774,568	4205402,292
29	Point	0	Bedding_surface_3	33,778782	243,897992	743774,5998	4205401,731
30	Point	0	Bedding_surface_3	47,111326	235,392343	743775,076	4205401,467
31	Point	0	Bedding_surface_4	33,946604	271,998203	743771,647	4205401,964
32	Point	0	Bedding_surface_4	24,717698	259,07679	743771,5835	4205401,805
33	Point	0	Bedding_surface_4	44,980634	255,32666	743771,9785	4205401,489
34	Point	0	Bedding_surface_4	42,950264	253,455489	743771,6999	4205401,477
35	Point	0	Bedding_surface_5	40,548595	197,217512	743783,6239	4205393,021
36	Point	0	Bedding_surface_5	48,818293	200,745757	743784,0754	4205393,078
37	Point	0	Bedding_surface_5	36,358173	194,27478	743783,4686	4205392,457
38	Point	0	Bedding_surface_5	45,655237	194,773795	743783,9907	4205392,457
39	Point	0	Bedding_surface_5	46,775955	199,480673	743784,3717	4205391,991
40	Point	0	Bedding_surface_5	41,149454	206,851709	743784,4	4205391,554
41	Point	0	Bedding_surface_5	42,247312	191,856608	743783,2005	4205391,398
42	Point	0	Bedding_surface_5	42,564535	196,537357	743783,6521	4205390,608
43	Point	0	Bedding_surface_5	38,672513	203,68337	/43784,273	4205390,679
44	Point	0	Bedding_surface_5	38,373267	193,504016	743783,8779	4205389,973
45	Point	0	Bedding_surface_5	38,668489	200,20806	/43784,527	4205389,536
46	Point	0	Bedding_surface_5	47,943301	210,123577	/43/85,0067	4205389,282
47	Point	0	Bedding_surface_5	55,726558	212,641227	743785,3877	4205388,449
48	Point	0	Bedding_surface_5	45,520023	200,693401	743784,4282	4205388,802

49	Point	0	Bedding_surface_5	57,939154	203,930485	743785,162	4205387,941
50	Point	0	Bedding_surface_6	34,149762	216,529285	743781,6906	4205389,606
51	Point	0	Bedding_surface_6	48,487356	207,444315	743781,7753	4205389,268
52	Point	0	Bedding_surface_6	31,848165	209,671199	743782,368	4205389,536
53	Point	0	Bedding_surface_6	38,330031	209,97526	743782,8477	4205389,141
54	Point	0	Bedding_surface_6	43,645281	206,349063	743782,622	4205388,788
55	Point	0	Bedding surface_6	37,840069	210,520744	743782,6643	4205387,913
56	Point	0	Bedding_surface_6	32,716556	217,965446	743782,9747	4205388,407
57	Point	0	Bedding_surface_6	45,673592	219,128539	743783,2005	4205387,701
58	Point	0	Bedding_surface_6	42,353483	220,276272	743783,13	4205387,01
59	Point	0	Bedding_surface_6	41,960342	218,376144	743783,3981	4205386,897
60	Point	0	Bedding_surface_6	44,335391	210,11968	743783,1582	4205386,375
61	Point	0	Bedding_surface_6	46,17428	221,096579	743783,0735	4205385,881
62	Point	0	Bedding_surface_7	55,611107	238,658033	743786,0016	4205387,01
63	Point	0	Bedding_surface_7	49,774276	236,559695	743786,0227	4205386,77
64	Point	0	Bedding_surface_7	45,585138	243,09758	743785,8534	4205386,594
65	Point	0	Bedding_surface_7	50,249646	247,465587	743785,6065	4205386,206
66	Point	0	Bedding_surface_7	40,82146	232,645424	743786,058	4205386,269
67	Point	0	Bedding_surface_7	29,004428	237,794877	743785,9451	4205386,008
68	Point	0	Bedding_surface_7	31,675544	232,985789	743786,0227	4205385,726
69	Point	0	Bedding_surface_7	44,326668	228,584991	743786,1074	4205385,408
70	Point	0	Bedding_surface_7	43,925927	238,810123	743786,1004	4205384,921
71	Point	0	Bedding_surface_7	52,182512	242,738069	743785,543	4205385,422
72	Point	0	Bedding_surface_7	58,028558	236,665705	743786,3261	4205386,53
73	Point	0	Bedding_surface_8	47,562116	303,199767	743775,9227	4205385,278
74	Point	0	Bedding_surface_8	40,543374	289,958444	743775,9333	4205385,024
75	Point	0	Bedding_surface_8	44,074656	264,952356	743776,3672	4205384,611
76	Point	0	Bedding_surface_8	38,502811	258,596946	743776,5577	4205384,283
77	Point	0	Bedding_surface_8	38,938769	250,799718	743776,6529	4205383,711
78	Point	0	Bedding_surface_8	26,139682	258,93051	743775,9862	4205383,807
79	Point	0	Bedding_surface_8	40,00241	275,074118	743775,6475	4205384,653
80	Point	0	Bedding_surface_8	31,048933	230,128589	743776,2719	4205383,415
81	Point	0	Fault_surface_2	50,654732	75,728953	743797,1847	4205392,551
82	Point	0	Fault_surface_2	46,479861	79,122279	743798,0666	4205392,233
83	Point	0	Fault_surface_2	48,287225	81,089561	743798,9485	4205391,916
84	Point	0	Fault_surface_2	39,505815	76,527688	743799,3719	4205391,387
85	Point	0	Fault_surface_2	50,570758	70,930424	743800,0245	4205390,187
86	Point	0	Fault_surface_2	51,307962	78,174593	743799,9363	4205389,305
87	Point	0	Fault_surface_2	42,491053	78,981649	743798,5252	4205390,593
88	Point	0	Fault_surface_2	43,359965	79,491364	743798,3488	4205389,658
89	Point	0	Fault_surface_2	41,634427	72,802446	743799,0191	4205390,117
90	Point	0	Fault_surface_2	42,306471	76,006332	743799,3719	4205388,829
91	Point	0	Fault_surface_2	39,932542	83,814315	743798,2606	4205388,37
92	Point	0	Fault_surface_2	44,809583	79,434653	743799,1426	4205387,824
93	Point	0	Bedding_surface_9	36,16105	253,851764	743776,1879	4205375,475
94	Point	0	Bedding_surface_9	44,63417	249,512284	743776,7347	4205374,804
95	Point	0	Bedding_surface_9	33,651481	248,23422	743777,0875	4205374,152
96	Point	0	Bedding_surface_9	51,59838	253,355094	743775,7116	4205374,734
97	Point	0	Bedding_surface_9	49,042465	243,257826	743776,1173	4205374,169
98	Point	0	Bedding_surface_9	41,059153	252,918066	743777,0875	4205373,693

Πίνακας 6: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (ii).

99	Point	0	Bedding_surface_10	37,361896	246,166054
100	Point	0	Bedding_surface_10	38,441075	224,525481
101	Point	0	Bedding_surface_10	38,840606	232,536465
102	Point	0	Bedding_surface_10	36,89988	217,904964
103	Point	0	Bedding_surface_10	40,536914	228,312806
104	Point	0	Bedding_surface_11	25,540802	269,54604
105	Point	0	Bedding_surface_11	36,455352	260,745609
106	Point	0	Bedding_surface_11	37,642226	263,513024
107	Point	0	Bedding_surface_11	29,604573	268,678164
108	Point	0	Bedding_surface_11	34,708773	254,971669
109	Point	0	Bedding_surface_11	10,247047	309,258519
110	Point	0	Bedding_surface_11	83,350721	125,142903
111	Point	0	Bedding_surface_11	40,523805	152,616586
112	Point	0	Bedding_surface_11	31,989942	250,986894
113	Point	0	Bedding_surface_12	28,977756	257,098072
114	Point	0	Bedding_surface_12	25,912633	245,571198
115	Point	0	Bedding_surface_12	25,798044	230,059517
116	Point	0	Bedding_surface_12	32,111737	207,875145
117	Point	0	Bedding_surface_12	30,678299	205,942377
118	Point	0	Bedding_surface_13	62,061536	232,965875
119	Point	0	Bedding_surface_13	59,653162	231,77435
120	Point	0	Bedding_surface_13	57,558869	237,46492
121	Point	0	Bedding_surface_13	52,611755	243,592675
122	Point	0	Bedding_surface_13	56,615132	238,389738
123	Point	0	Bedding_surface_13	57,110723	241,363812
124	Point	0	Bedding_surface_13	58,613902	239,744772
125	Point	0	Bedding_surface_13	55,251701	237,966951
126	Point	0	Bedding_surface_13	49,755921	240,97409
127	Point	0	Bedding_surface_13	57,208764	245,090909
128	Point	0	Bedding_surface_13	55,40539	246,224739
129	Point	0	Bedding_surface_14	55,145362	252,534503
130	Point	0	Bedding_surface_14	48,600172	248,211489
131	Point	0	Bedding_surface_14	55,346469	239,434605
132	Point	0	Bedding_surface_14	53,895404	250,208202
133	Point	0	Bedding_surface_14	54,490309	239,563705
134	Point	0	Bedding_surface_14	49,573223	249,266809
135	Point	0	Bedding_surface_14	50,306298	240,127104
136	Point	0	Bedding_surface_14	58,506785	240,308869
137	Point	0	Bedding_surface_14	55,044161	240,214601
138	Point	0	Bedding_surface_15	26,664604	230,817322
139	Point	0	Bedding_surface_15	36,879863	226,466153
140	Point	0	Bedding_surface_15	34,674491	218,244364
141	Point	0	Bedding_surface_15	30,546395	214,240477
142	Point	0	Bedding_surface_15	30,052562	221,919531
143	Point	0	Bedding_surface_15	33,0455	220,696498
144	Point	0	Bedding_surface_15	30,826381	212,541638
145	Point	0	Bedding_surface_15	35,961789	226,440152
146	Point	0	Bedding_surface_15	38,141369	222,228312
147	Point	0	Bedding_surface_15	37,024156	251,086901
148	Point	0	Bedding_surface_15	27,757816	247,130188

Πίνακας 7: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (iii).

149	Point	0	Bedding_surface_16	34,154481	236,548641
150	Point	0	Bedding_surface_16	29,448261	238,103208
151	Point	0	Bedding_surface_16	32,055043	234,890251
152	Point	0	Bedding_surface_16	33,656664	238,344409
153	Point	0	Bedding_surface_16	35,997655	231,958784
154	Point	0	Bedding surface 16	39,628912	234,243109
155	Point	0	Bedding surface 16	32,110016	242,902773
156	Point	0	Bedding surface 16	47,356098	279,711713
157	Point	0	Bedding surface 17	35,050717	228,440263
158	Point	0	Bedding_surface_17	48,909888	220,419699
159	Point	0	Bedding surface 17	56,980659	226,070661
160	Point	0	Bedding surface 17	32,840401	252,580463
161	Point	0	Bedding surface 17	33,07922	236,581184
162	Point	0	Bedding surface 17	36.278779	242,652023
163	Point	0	Bedding surface 17	39.211682	255,633134
164	Point	0	Bedding surface 17	44,918212	248,781592
165	Point	0	Bedding surface 17	38,382826	265,577078
166	Point	0	Fault surface 3	64,993751	276,980304
167	Point	0	Fault surface 3	72.212076	294,534726
168	Point	0	Fault surface 3	53 549086	262,953172
169	Point	0	Fault surface 3	53,701608	286 47 253
170	Point	0	Fault surface 3	76,503755	280,67084
171	Point	0	Fault surface 3	50 50443	284 613072
172	Point	0	Bedding surface 18	33 41878	334 748101
173	Point	0	Bedding surface 18	37365491	306 305534
174	Point	0	Bedding surface 18	41 2 38525	301 648121
175	Point	ŏ	Bedding surface 18	35454792	343 155731
176	Point	0	Bedding surface 18	38864678	308 793196
177	Point	ŏ	Bedding surface 18	36366093	300,733230
178	Point	ő	Bedding surface 19	41 943828	379.014838
170	Point	0	Bedding surface 19	40,601936	336 77800
180	Point	ŏ	Bedding surface 19	45,001350	346 410441
181	Point	ŏ	Bedding surface 19	42,559883	335 668583
187	Point	ŏ	Bedding_surface_10	34878008	313 104272
182	Point		Bedding_surface_20	11 8 7 4 18 0	307.057051
184	Point	ŏ	Bedding surface 20	34101042	317 ///8633
195	Point	ŏ	Redding surface 20	28224660	202 20872
185	Point	- č	Bodding_surface_20	42.067371	293,29872
100	Point	, v	Bedding_surface_20	42,007371	302,242703
187	Point		Bedding_surface_20	36,51/650	300,957918
180	Point	- č	Redding_surface_20	29700269	299,936436
109	Point		Bedding_surface_21	38,709368	283,793074
101	Point	0	Bedding_surface_21	27,012525	297,578452
107	Point	0	Bodding_surface_21	28,249009	293,92979
192	Point		Redding_surface_21	23,747823	277,080049
193	Point	0	Bedding_surface_21	37,835569	280,995599
105	Point	0	Bodding_surface_21	12 712256	330 701204
195	Point		Bedding_surface_22	45,715556	330,701364
107	Point	0	Bedding_surface_22	47,22259	2 22 504000
100	Point	0	Bedding_surface_22	42,2680/2	222,291988
198	Point		Bedding_surface_22	48,702239	527,061427

Πίνακας 8: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (iv).

199	Point	0	Bedding_surface_22	43,242769	325,627871	743764,5081	4205296,274
200	Point	0	Bedding_surface_22	48,23834	326,050992	743765,5382	4205295,667
201	Point	0	Bedding_surface_22	48,578668	337,573127	743766,3426	4205295,498
202	Point	0	Bedding_surface_22	44,538986	319,542411	743765,7499	4205294,976
203	Point	0	Bedding_surface_22	43,909399	329,057666	743766,4837	4205294,68
204	Point	0	Bedding_surface_23	54,414432	350,796598	743762,0175	4205294,717
205	Point	0	Bedding surface 23	46,119509	357,147955	743762,5378	4205294,531
206	Point	0	Bedding surface 23	49,314391	350,200686	743763,0846	4205294,373
207	Point	0	Bedding_surface_23	36,634953	349,597134	743763,4727	4205294,117
208	Point	0	Bedding surface 23	42,550082	1,831724	743762,5731	4205294,073
209	Point	0	Bedding surface 23	35,282049	351,856873	743763,0846	4205293,941
210	Point	0	Bedding_surface_23	35,594518	348,681543	743763,4727	4205293,588
211	Point	0	Bedding surface 23	38,7225	337,139882	743763,7814	4205293,694
212	Point	0	Bedding surface 24	50,293326	0,993863	743756,7117	4205304,512
213	Point	0	Bedding surface 24	43,332719	13,807452	743757,2144	4205304,335
214	Point	0	Bedding surface 24	34,036017	29,778509	743757 5143	4205304.044
215	Point	0	Bedding surface 24	46,72961	6,435387	743756,8969	4205304,265
216	Point	0	Bedding surface 24	58.092588	2.278309	743756.3148	4205304.344
217	Point	0	Bedding surface 24	62 625351	1 121681	743755 8739	4205304 397
218	Point	0	Bedding_surface_24	59 663796	359 004848	743754 8861	4205304 388
219	Point	0	Bedding_surface_25	53,851892	346.511317	743749,2328	4205303,584
220	Point	0	Bedding surface 25	50 542204	344 813267	743749 508	4205303 373
221	Point	0	Bedding_surface_25	57 124264	351 978164	743749 3245	4205303.14
222	Point	0	Bedding_surface_25	52 361157	334 481087	743749 7337	4205303.034
223	Point	0	Bedding_surface_25	42 996362	350 922574	743749 5291	4205302,773
224	Point	0	Bedding_surface_25	55 049806	338 741592	743749 5644	4205302,775
225	Point	0	Bedding_surface_25	45 337299	334 87196	743749 769	4205302,779
226	Point	0	Bedding_surface_25	47 796986	342 101592	743750 0795	4205302,275
227	Point	0	Fault surface 4	68 353228	8 134472	743741 865	4205299 542
228	Point	0	Fault surface 4	68 349689	7 415157	743741 9973	4205299 552
229	Point	0	Fault surface 4	62 352695	7 958335	743742 2275	4205299 566
230	Point	0	Fault_surface_4	65,712726	8,500741	743742 582	4205299,573
231	Point	0	Fault_surface_4	68 811169	1 925647	743741 6084	4205299 513
232	Point	0	Fault_surface_4	64 368388	356 864209	743741 1692	4205299 489
233	Point	0	Bedding surface 26	44 030526	346 83495	743735 8607	4205296 434
234	Point	0	Bedding_surface_26	54 951763	11 2375	743736 7868	4205296 412
235	Point	0	Bedding_surface_26	34 886905	340 725 383	743737 6908	4205296,169
236	Point	0	Bedding_surface_26	35 566585	344 565972	743738 705	4205295 706
237	Point	0	Bedding_surface_26	47 080969	21 539915	743739 4547	4205295,177
238	Point	0	Bedding surface 26	37 536739	353 626125	743736 8529	4205295 772
239	Point	0	Bedding surface 26	36 870196	342 861793	743738 0215	4205295.662
240	Point	0	Bedding surface 27	51 402225	341 592005	743737 52	4205292.92
241	Point	0	Bedding surface 27	48 825764	335 808657	743737 7493	4205292,93
242	Point	0	Badding surface_27	54 800461	336 050000	742727 9715	4205292,927
242	Point	0	Bedding surface 27	49 090421	352 85174	743738 2291	4205292,955
245	Point	0	Bedding_surface_27	56 927769	339 358206	743737 8904	4205292,505
245	Point	0	Badding_surface_27	49 746179	357,336206	742729 4442	4205292,003
245	Point	0	Bedding_surface_27	52 889879	342 694526	743730,4442	4205292,055
240	Point	0	Bedding_surface_28	47 107/12	229 20/1	743710,0207	4205256,052
24/	Point	0	Bedding_surface_28	4/,15/415	241 027014	743710,51	4205250,445
248	Point	0	bedding_sufface_28	44,280015	541,93/816	/45/18,8815	4205296,35

Πίνακας 9: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (v).

249	Point	0	Bedding_surface_28	55,131261	218,236836	743719,3683	4205296,188
250	Point	0	Bedding_surface_28	52,992304	352,108994	743718,6134	4205296,167
251	Point	0	Bedding_surface_28	58,245905	349,616478	743719,0297	4205296,117
252	Point	0	Bedding_surface_29	38,076732	343,564883	743756,0203	4205288,487
253	Point	0	Bedding_surface_29	39,327007	338,862949	743756,0291	4205288,275
254	Point	0	Bedding_surface_29	44,063522	323,64026	743756,6376	4205288,063
255	Point	0	Bedding_surface_29	40,611621	323,501411	743756,8405	4205287,852
256	Point	0	Bedding_surface_29	32,177166	333,586273	743757,0786	4205287,516
257	Point	0	Bedding_surface_29	38,287649	319,507276	743756,3466	4205287,516
258	Point	0	Bedding_surface_29	35,67576	316,343066	743756,7523	4205287,393
259	Point	0	Bedding_surface_30	53,541349	1,418063	743751,0602	4205283,327
260	Point	0	Bedding_surface_30	53,974194	348,65905	743751,3847	4205283,271
261	Point	0	Bedding_surface_30	55,14452	346,64844	743751,8293	4205283,348
262	Point	0	Bedding_surface_30	59,574705	349,925432	743752,302	4205283,433
263	Point	0	Bedding_surface_30	48,170888	343,612883	743751,7516	4205283,052
264	Point	0	Bedding_surface_30	41,737416	343,891945	743752,3302	4205282,982
265	Point	0	Bedding_surface_30	54,327073	353,845861	743752,2314	4205282,65
266	Point	0	Bedding_surface_31	41,414953	89,323649	743640,8504	4205345,072
267	Point	0	Bedding_surface_31	31,676978	90,005175	743641,1327	4205344,952
268	Point	0	Bedding_surface_31	29,587736	95,929932	743641,3584	4205344,741
269	Point	0	Bedding_surface_31	40,466728	98,158905	743641,6265	4205344,261
270	Point	0	Bedding_surface_31	41,813905	89,021071	743641,8312	4205343,774
271	Point	0	Bedding_surface_31	37,599748	75,399239	743642,2333	4205343,605
272	Point	0	Bedding_surface_31	41,542014	76,077243	743642,6355	4205343,449
273	Point	0	Bedding_surface_31	44,845607	73,454604	743642,9742	4205343,139
274	Point	0	Bedding_surface_32	44,688536	89,321175	743657,4711	4205372,214
275	Point	0	Bedding_surface_32	46,279353	103,428262	743657,4579	4205372,068
276	Point	0	Bedding_surface_32	47,749224	98,24354	743657,6916	4205372,2
277	Point	0	Bedding_surface_32	60,519076	100,938904	743657,9254	4205372,121
278	Point	0	Bedding_surface_32	57,094902	100,423076	743658,1855	4205372,178
279	Point	0	Bedding_surface_32	66,128384	84,737417	743658,4325	4205372,249
280	Point	0	Bedding_surface_32	56,138355	73,111866	743658,7985	4205372,306
281	Point	0	Bedding_surface_32	57,307966	70,786629	743659,019	4205372,266
282	Point	0	Bedding_surface_33	52,592456	105,087904	743658,4766	4205373,351
283	Point	0	Bedding_surface_33	73,317068	106,121569	743658,5868	4205373,281
284	Point	0	Bedding_surface_33	72,426249	108,496415	743658,6706	4205373,457
285	Point	0	Bedding_surface_33	62,180717	108,542347	743658,9925	4205373,581
286	Point	0	Bedding_surface_33	60,52783	105,258353	743659,235	4205373,633
287	Point	0	Bedding_surface_33	64,525365	98,99842	743659,4247	4205373,545
288	Point	0	Bedding_surface_33	57,021227	109,92278	743658,9087	4205373,444
289	Point	0	Bedding_surface_34	59,316019	101,499397	743659,8343	4205374,167
290	Point	0	Bedding_surface_34	59,579641	103,156748	743659,9975	4205374,335
291	Point	0	Bedding_surface_34	57,409652	103,932707	743660,218	4205374,29
292	Point	0	Bedding_surface_34	59,466697	110,346555	743660,0636	4205374,189
293	Point	0	Bedding_surface_34	65,106316	104,508558	/43659,8608	4205373,986
294	Point	0	Bedding_surface_35	64,589982	99,705329	/43660,6325	4205374,89
295	Point	0	Bedding_surface_35	61,423536	106,208094	743660,6986	4205375,058
296	Point	0	Bedding_surface_35	58,962657	105,992811	/43660,8045	4205374,934
297	Point	0	Bedding_surface_35	62,079959	102,/15062	/43660,7515	4205374,851
298	Point	0	Bedding_surface_36	47,61433	88,23733	743659,3845	4205375,34

Πίνακας 10: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (vi).

_		_					
299	Point	0	Bedding_surface_36	60,181587	87,478743	743659,5256	4205375,393
300	Point	0	Bedding_surface_36	55,385021	77,554736	743659,68	4205375,508
301	Point	0	Bedding_surface_36	52,105738	82,924735	743660,1121	4205375,424
302	Point	0	Bedding_surface_36	61,121611	85,671254	743660,3326	4205375,552
303	Point	0	Bedding_surface_36	59,122017	83,732255	743660,6104	4205375,644
304	Point	0	Bedding_surface_37	40,924898	191,57844	743651,5161	4205420,101
305	Point	0	Bedding_surface_37	38,742536	197,704081	743651,8265	4205419,974
306	Point	0	Bedding_surface_37	29,374552	163,170473	743651,3609	4205419,254
307	Point	0	Bedding_surface_37	38,299082	172,608527	743650,8105	4205417,617
308	Point	0	Bedding_surface_37	45,742095	156,200663	743650,4719	4205416,954
309	Point	0	Fault_surface_5	52,891291	121,660809	743714,9025	4205505,247
310	Point	0	Fault_surface_5	41,623248	118,955267	743716,1372	4205504,828
311	Point	0	Fault_surface_5	48,429064	95,776673	743715,6301	4205504,277
312	Point	0	Fault_surface_5	54,420362	93,692628	743717,2176	4205504,387
313	Point	0	Fault_surface_6	51,677564	20,805226	743687,8439	4205339,352
314	Point	0	Fault_surface_6	60,249315	16,897227	743688,1649	4205339,352
315	Point	0	Fault_surface_6	58,046649	12,266342	743688,4295	4205339,253
316	Point	0	Fault_surface_6	64,933951	322,02151	743688,7541	4205339,256
317	Point	0	Fault_surface_6	75,200765	5,780069	743689,1104	4205339,242
318	Point	0	Bedding_surface_38	58,0981	278,10035	743777,5021	4205409,053
319	Point	0	Bedding_surface_38	52,258257	286,237357	743777,3963	4205408,656
320	Point	0	Bedding_surface_38	40,012426	282,434466	743777,4404	4205408,33
321	Point	0	Bedding_surface_39	37,576856	241,23248	743776,1469	4205412,815
322	Point	0	Bedding_surface_39	35,261089	261,650544	743775,7059	4205412,304
323	Point	0	Bedding_surface_39	39,985236	273,103336	743775,4237	4205411,316
324	Point	0	Bedding_surface_40	39,145632	227,433015	743776,7907	4205396,878
325	Point	0	Bedding_surface_40	41,176135	225,671463	743777,0906	4205396,437
326	Point	0	Bedding_surface_41	29,419668	201,843289	743778,0466	4205394,229
327	Point	0	Bedding_surface_41	32,634283	208,297248	743777,7432	4205393,827
328	Point	0	Bedding_surface_41	35,19379	186,000346	743777,6515	4205393,41
329	Point	0	Bedding_surface_41	49,14042	201,907734	743777,2211	4205392,303
330	Point	0	Bedding_surface_42	42,932932	251,522781	743770,4215	4205391,397
331	Point	0	Bedding_surface_42	33,766875	255,522643	743770,3844	4205391,127
332	Point	0	Bedding_surface_42	35,765272	246,498999	743770,4955	4205390,762
333	Point	0	Bedding_surface_43	38,660092	205,593272	743778,3713	4205390,139
334	Point	0	Bedding_surface_43	33,301394	199,244791	743778,6677	4205390,134
335	Point	0	Bedding_surface_43	35,457516	190,724083	743779,0698	4205389,637
336	Point	0	Bedding_surface_43	43,873065	188,179063	743779,1016	4205389,208
337	Point	0	Bedding_surface_44	35,554653	258,34308	743773,2723	4205379,047
338	Point	0	Bedding_surface_44	36,078609	259,74058	743773,9162	4205378,853
339	Point	0	Bedding_surface_44	48,600249	251,689714	743773,4664	4205378,562
340	Point	0	Bedding_surface_44	44,34672	247,232594	743774,3042	4205377,68
341	Point	0	Bedding_surface_45	40,512127	222,340174	743789,6818	4205382,15
342	Point	0	Bedding_surface_45	43,002472	217,910476	743789,8371	4205381,769
343	Point	0	Bedding_surface_45	47,179331	225,138902	743789,5548	4205381,868
344	Point	0	Bedding_surface_46	38,902772	281,630516	743787,8051	4205375,403
345	Point	0	Bedding_surface_46	36,975337	261,049474	743787,7874	4205374,945
346	Point	0	Bedding_surface_46	35,791391	244,60486	743787,7345	4205374,539
347	Point	0	Bedding_surface_47	47,860822	253,995986	743777,0541	4205370,958
348	Point	0	Bedding_surface_47	38,409513	233,265219	743777,3293	4205370,662

Πίνακας 11: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (vii).

349	Point	0	Bedding_surface_47	47,898618	232,557671	743777,1282	4205370,281
350	Point	0	Bedding_surface_47	41,275409	242,839336	743777,6997	4205370,334
351	Point	0	Fault_surface_7	36,536831	70,245972	743799,2721	4205368,921
352	Point	0	Fault_surface_7	36,481854	61,844588	743799,5588	4205368,083
353	Point	0	Fault_surface_7	31,470221	71,646796	743800,3084	4205368,701
354	Point	0	Fault_surface_7	36,03439	68,218496	743799,5588	4205369,627
355	Point	0	Bedding_surface_48	30,928255	248,072323	743794,073	4205364,869
356	Point	0	Bedding_surface_48	31,928072	255,456342	743794,1171	4205364,596
357	Point	0	Bedding_surface_48	30,934936	260,712152	743793,9055	4205364,208
358	Point	0	Bedding_surface_49	55,885036	240,137277	743796,2797	4205369,702
359	Point	0	Bedding_surface_49	49,531933	262,993751	743796,3114	4205369,321
360	Point	0	Bedding_surface_50	5,668004	304,651647	743793,4539	4205380,487
361	Point	0	Bedding_surface_50	1,954781	140,36106	743793,5333	4205380,381
362	Point	0	Bedding_surface_50	5,928238	350,274053	743793,4098	4205380,734
363	Point	0	Bedding_surface_51	57,918263	245,713844	743785,6787	4205367,576
364	Point	0	Bedding_surface_51	36,644984	238,879663	743785,7104	4205367,248
365	Point	0	Bedding_surface_51	53,958809	236,10106	743785,9539	4205366,963
366	Point	0	Bedding_surface_52	46,051239	290,524004	743782,3485	4205311,321
367	Point	0	Bedding_surface_52	43,731012	290,319689	743782,2073	4205311,138
368	Point	0	Bedding_surface_52	44,951369	289,009027	743782,2497	4205310,947
369	Point	0	Bedding_surface_52	49,354774	294,128281	743782,1297	4205310,665
370	Point	0	Bedding_surface_53	34,090958	331,905098	743764,8727	4205311,624
371	Point	0	Bedding_surface_53	41,682213	340,298343	743765,4239	4205312,285
372	Point	0	Bedding_surface_53	38,487188	349,964286	743765,7546	4205311,999
373	Point	0	Bedding_surface_54	53,042613	336,012267	743770,0718	4205325,232
374	Point	0	Bedding_surface_54	55,944399	332,099344	743769,9571	4205325,144
375	Point	0	Bedding_surface_55	37,524944	356,058109	743773,2629	4205318,792
376	Point	0	Bedding_surface_55	30,926607	343,499782	743772,6456	4205318,474
377	Point	0	Bedding_surface_55	36,557789	330,022105	743771,9929	4205318,033
378	Point	0	Bedding_surface_55	34,659238	341,281354	743772,4868	4205317,981
379	Point	0	Bedding_surface_56	44,297232	339,038274	743772,8008	4205332,483
380	Point	0	Bedding_surface_56	33,949439	344,066186	743773,3741	4205332,328
381	Point	0	Bedding_surface_56	29,381166	334,041156	743772,911	4205331,998
382	Point	0	Fault_surface_8	49,378292	33,584966	743767,5488	4205302,053
383	Point	0	Fault_surface_8	56,087135	40,170531	743767,2807	4205301,658
384	Point	0	Fault_surface_8	49,42977	47,730481	743767,577	4205301,192
385	Point	0	Fault_surface_8	37,475277	31,307724	743767,8734	4205300,515
386	Point	0	Bedding_surface_57	48,02537	356,565617	743748,24	4205308,445
387	Point	0	Bedding_surface_57	58,04347	3,278075	743747,9578	4205308,26
388	Point	0	Bedding_surface_58	33,835746	341,901777	743749,6514	4205325,246
389	Point	0	Bedding_surface_58	47,497062	342,703719	743749,7661	4205325,122
390	Point	0	Bedding_surface_59	28,710639	14,558565	743745,0918	4205324,272
391	Point	0	Bedding_surface_59	27,841401	185,110804	743744,9806	4205324,14
392	Point	0	Bedding_surface_59	36,768622	358,155076	743745,1235	4205324,071
393	Point	0	Bedding_surface_60	38,954669	339,728362	743750,3499	4205315,987
394	Point	0	Bedding_surface_60	39,377651	340,744211	743750,0007	4205315,828
395	Point	0	Bedding_surface_60	42,024718	349,37635	743749,7467	4205315,659
396	Point	0	Bedding_surface_61	52,212143	335,56526	743754,1044	4205312,879
397	Point	0	Bedding_surface_61	47,689154	322,37043	743753,8221	4205312,676
398	Point	0	Bedding_surface_61	46,764366	317,005438	743753,6369	4205312,465

Πίνακας 12: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (viii).

399	Point	0	Bedding_surface_61	43,864851	318,271195	743753,8927	4205312,465
400	Point	0	Bedding_surface_62	54,928823	0,047711	743746,3518	4205294,927
401	Point	0	Bedding_surface_62	51,418657	56,040207	743746,5899	4205295,104
402	Point	0	Bedding_surface_62	51,254391	0,778306	743746,8457	4205295,209
403	Point	0	Bedding_surface_63	54,213101	21,744	743749,3398	4205288,9
404	Point	0	Bedding_surface_63	54,281168	20,90181	743749,7773	4205288,731
405	Point	0	Bedding_surface_63	60,203439	18,365926	743750,0736	4205288,406
406	Point	0	Fault_surface_9	51,268557	44,349047	743716,4609	4205310,66
407	Point	0	Fault_surface_9	64,779272	15,036789	743716,8136	4205310,667
408	Point	0	Fault_surface_9	68,710638	345,266686	743717,491	4205310,745
409	Point	0	Bedding_surface_64	37,959626	59,705418	743707,2867	4205325,145
410	Point	0	Bedding_surface_64	34,392082	71,326092	743707,7101	4205324,986
411	Point	0	Bedding_surface_64	28,35647	57,584688	743708,3768	4205325,061
412	Point	0	Bedding_surface_64	51,262248	36,860677	743709,3505	4205325,092
413	Point	0	Bedding_surface_65	35,624623	52,161597	743687,0975	4205313,336
414	Point	0	Bedding_surface_65	40,601011	57,828109	743687,3656	4205313,082
415	Point	0	Bedding_surface_65	35,140006	62,962975	743687,5067	4205313,308
416	Point	0	Bedding_surface_66	47,281924	17,779933	743691,6695	4205310,881
417	Point	0	Bedding_surface_66	32,862244	39,924464	743692,1916	4205310,697
418	Point	0	Bedding_surface_66	79,989247	68,301183	743692,8266	4205310,81
419	Point	0	Bedding_surface_67	38,534002	30,581941	743687,8913	4205332,943
420	Point	0	Bedding_surface_67	43,185298	31,3331	743687,9971	4205332,699
421	Point	0	Bedding_surface_67	35,47345	20,744298	743688,3993	4205332,71
422	Point	0	Bedding_surface_68	48,577311	10,203955	743692,8557	4205337,159
423	Point	0	Bedding_surface_68	60,888975	17,52639	743693,2226	4205337,413
424	Point	0	Bedding_surface_68	51,46071	35,852184	743693,9846	4205337,314
425	Point	0		0,004572	41,258483	743617,2521	4205356,109
426	Point	0		0	-1	743617,4426	4205355,848
427	Point	0		0,092594	40,148127	743617,8165	4205355,834
428	Point	0		0,785293	135	743617,6472	4205355,565
429	Point	0	Bedding_surface_69	80,696827	122,309728	743724,8822	4205520,333
430	Point	0	Bedding_surface_69	63,316385	131,170161	743725,3937	4205520,333
431	Point	0	Bedding_surface_69	81,010671	131,613175	743725,4819	4205520,774
432	Point	0	Bedding_surface_69	56,773172	112,838208	743723,7533	4205518,287
433	Point	0	Bedding_surface_69	56,891223	112,929229	743724,0884	4205518,746
434	Point	0	Bedding_surface_69	44,351316	125,82775	743724,6176	4205519,24
435	Point	0	Fault_surface_10	55,625471	137,214189	743717,0819	4205518,041
436	Point	0	Fault_surface_10	75,487812	124,68525	743717,2583	4205518,121
437	Point	0	Fault_surface_10	36,835983	108,965973	743718,5901	4205518,456
438	Point	0	Fault_surface_10	67,561284	126,301736	743718,8635	4205518,606
439	Point	0	Bedding_surface_70	56,752591	158,391282	743721,4973	4205482,11
440	Point	0	Bedding_surface_70	62,527627	143,210989	743722,0194	4205482,252
441	Point	0	Bedding_surface_70	61,387162	154,118261	743721,6666	4205481,842
442	Point	0	Bedding_surface_71	14,29933	140,386102	743719,8798	4205486,825
443	Point	0	Bedding_surface_71	52,867248	133,343265	743720,2678	4205486,702
444	Point	0	Bedding_surface_71	38,863895	165,055471	743719,915	4205486,437
445	Point	0	Bedding_surface_72	48,859168	77,930736	743707,4377	4205493,326
446	Point	0	Bedding_surface_72	34,733002	62,421788	743707,7816	4205493,485
447	Point	0	Bedding_surface_72	46,860746	64,424166	743708,0462	4205493,389
448	Point	0	Bedding_surface_72	60,274993	70,569598	743708,3055	4205493,373

Πίνακας 13: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (ix).

449	Point	0	Bedding_surface_73	12,143989	22,202554	743721,1383	4205498,292
450	Point	0	Bedding_surface_73	13,678391	39,304605	743721,2018	4205498,007
451	Point	0	Bedding_surface_73	15,108478	22,253332	743721,2971	4205498,377
452	Point	0	Bedding_surface_74	31,473317	121,939659	743709,5178	4205503,702
453	Point	0	Bedding_surface_74	45,823015	122,363347	743709,6765	4205503,427
454	Point	0	Bedding_surface_75	28,396571	90,496446	743708,6217	4205495,322
455	Point	0	Bedding_surface_75	37,475304	98,192224	743708,8122	4205495,227
456	Point	0	Bedding_surface_75	31,361935	110,083831	743708,6058	4205495,031
457	Point	0	Bedding_surface_76	58,708149	93,979583	743712,4538	4205492,158
458	Point	0	Bedding_surface_76	56,775153	101,253487	743712,7448	4205492,167
459	Point	0	Bedding_surface_76	57,540163	92,998712	743712,5332	4205491,92
460	Point	0	Bedding_surface_77	56,003835	129,8693	743714,163	4205489,29
461	Point	0	Bedding_surface_77	52,242695	132,225951	743714,4029	4205489,051
462	Point	0	Bedding_surface_77	55,419378	142,289163	743714,2618	4205488,74
463	Point	0	Bedding_surface_78	40,059901	157,211652	743715,8146	4205487,477
464	Point	0	Bedding_surface_78	55,256858	130,917622	743716,4072	4205487,195
465	Point	0	Bedding_surface_78	35,488725	172,452374	743715,8428	4205487,039
466	Point	0	Bedding_surface_79	28,726703	18,668218	743723,6653	4205491,612
467	Point	0	Bedding_surface_79	37,224348	25,045625	743723,877	4205491,951
468	Point	0	Bedding_surface_79	36,252006	30,275743	743723,5101	4205492,219
469	Point	0	Bedding_surface_79	42,574915	12,552029	743724,0463	4205492,685
470	Point	0	Bedding_surface_80	40,205392	92,344701	743692,6786	4205463,185
471	Point	0	Bedding_surface_80	57,740187	91,633437	743692,9855	4205463,439
472	Point	0	Bedding_surface_80	56,300485	89,700696	743693,1548	4205463,799
473	Point	0	Bedding_surface_81	39,778609	101,706606	743686,1733	4205469,607
474	Point	0	Bedding_surface_81	61,598366	104,272258	743686,1645	4205469,377
475	Point	0	Bedding_surface_81	74,053657	107,604547	743686,041	4205469,122
476	Point	0	Bedding_surface_82	13,576882	21,433028	743647,9285	4205437,852
477	Point	0	Bedding_surface_82	20,601188	79,613512	743648,4753	4205437,411
478	Point	0	Bedding_surface_82	31,381917	74,800748	743648,9516	4205437,499
479	Point	0	Bedding_surface_83	60,550268	138,6555	743633,1568	4205391,397
480	Point	0	Bedding_surface_83	62,878413	150,044983	743632,931	4205391,158
481	Point	0	Bedding_surface_83	65,998114	131,921051	743633,6507	4205391,045
482	Point	0	Bedding_surface_83	55,006815	123,604002	743634,074	4205391,016
483	Point	0	Bedding_surface_84	33,69486	109,950462	743634,6358	4205380,82
484	Point	0	Bedding_surface_84	34,028688	136,42585	743635,0327	4205380,071
485	Point	0	Bedding_surface_84	35,503488	141,190594	743635,165	4205379,321
486	Point	0	Bedding_surface_84	34,171735	134,62629	743635,0547	4205378,593
487	Point	0	Bedding_surface_85	42,250479	92,106131	743628,0944	4205383,014
488	Point	0	Bedding_surface_85	34,752702	98,624613	743628,6659	4205382,612
489	Point	0	Bedding_surface_85	33,602897	96,365438	743628,9728	4205382,813
490	Point	0	Bedding_surface_85	35,880967	96,554697	743629,2903	4205382,41
491	Point	0	Bedding_surface_86	33,552317	110,347821	743628,5298	4205380,132
492	Point	0	Bedding_surface_86	39,020227	117,461197	743629,2635	4205379,37
493	Point	0	Bedding_surface_86	41,24175	118,162038	743628,9531	4205378,467
494	Point	0	Bedding_surface_86	35,923037	121,487258	743629,7998	4205377,902
495	Point	0		0,001222	16,922383	743620,4843	4205347,245
496	Point	0		7,599269	135	743620,5796	4205346,716
497	Point	0		0	-1	743620,7913	4205346,345
498	Point	0		26,878109	127,306061	743629,3035	4205344,19

Πίνακας 14: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (x).

499	Point	0		22,055285	123,971043	743629,4728	4205344,56
500	Point	0		44,031053	126,784424	743629,5998	4205344,211
501	Point	0		0,037487	22,132721	743639,374	4205334,032
502	Point	0		0,069911	6,039343	743639,6385	4205333,918
503	Point	0		0	-1	743638,9594	4205334,5
504	Point	0		12,969669	25,118965	743636,6928	4205333,547
505	Point	0		0,226899	2,008463	743636,8428	4205333,38
506	Point	0	Bedding_surface_87	44,32787	92,905776	743651,862	4205405,947
507	Point	0	Bedding_surface_87	46,266944	109,32451	743651,6416	4205405,44
508	Point	0	Bedding_surface_87	48,620226	103,436117	743651,4872	4205404,382
509	Point	0	Bedding_surface_87	52,251026	105,572765	743651,2006	4205403,5
510	Point	0	Bedding_surface_87	58,685069	119,307141	743651,0462	4205402,485
511	Point	0		0,093699	87,223476	743625,0659	4205412,774
512	Point	0		0,134324	32,406317	743624,8401	4205412,308
513	Point	0		0,218352	74,249939	743625,715	4205412,449
514	Point	0	Fault_surface_11	53,405202	44,457738	743709,6855	4205498,858
515	Point	0	Fault_surface_11	29,188887	69,07126	743709,5885	4205498,585
516	Point	0	Bedding_surface_88	58,995712	164,400877	743673,6086	4205433,888
517	Point	0	Bedding_surface_88	54,21718	161,232641	743673,9579	4205433,877
518	Point	0	Bedding_surface_88	64,804949	130,538746	743674,413	4205433,75
519	Point	0	Bedding_surface_88	65,196263	128,192702	743674,8998	4205433,845
520	Point	0	Bedding_surface_89	40,04	106,910272	743664,7912	4205439,74
521	Point	0	Bedding_surface_89	40,334461	108,243808	743664,6148	4205439,572
522	Point	0	Bedding_surface_90	61,010301	158,878612	743660,99	4205438,717
523	Point	0	Bedding_surface_90	62,118105	163,61226	743661,1593	4205438,583
524	Point	0	Bedding_surface_90	72,230041	154,236785	743661,2863	4205438,724
525	Point	0	Bedding_surface_91	56,93946	45,271651	743633,9417	4205345,764
526	Point	0	Bedding_surface_91	51,880042	50,755883	743634,3739	4205345,728
527	Point	0	Bedding_surface_91	48,501452	55,227738	743634,5767	4205345,614
528	Point	0	Bedding_surface_92	42,888143	31,610318	743673,4313	4205352,65
529	Point	0	Bedding_surface_92	42,72808	35,394796	743673,6059	4205352,597
530	Point	0	Bedding_surface_92	45,613553	44,51645	743673,8758	4205352,491
531	Point	0	Bedding_surface_93	28,744594	47,835443	743682,9992	4205345,449
532	Point	0	Bedding_surface_93	39,19719	51,703043	743683,1138	4205345,599
533	Point	0	Bedding_surface_93	29,272615	54,189694	743683,3431	4205345,378
534	Point	0	Bedding_surface_94	38,589971	81,35053	743659,0896	4205343,156
535	Point	0	Bedding_surface_94	39,686958	99,9721	743659,0631	4205342,724
536	Point	0	Bedding_surface_94	35,768051	95,938674	743659,4512	4205342,865
537	Point	0	Bedding_surface_94	26,192618	80,572543	743660,0597	4205342,292
538	Point	0	Bedding_surface_95	28,587024	26,931791	743663,3573	4205330,58
539	Point	0	Bedding_surface_95	29,081009	38,608877	743664,0206	4205329,677
540	Point	0	Bedding_surface_95	38,580599	4,894691	743665,3188	4205329,211
541	Point	0	Bedding_surface_96	66,783193	140,037217	743675,8028	4205417,612
542	Point	0	Bedding_surface_96	62,449422	131,008944	743675,4853	4205417,401
543	Point	0	Bedding_surface_96	57,016239	121,652869	743675,009	4205417,062
544	Point	0	Bedding_surface_96	60,994678	122,486854	743674,2682	4205416,586
545	Point	0	Bedding_surface_96	51,696897	124,620407	743673,8449	4205416,776
546	Point	0	Bedding_surface_97	44,468009	82,035747	743632,2706	4205364,643
547	Point	0	Bedding_surface_97	49,735374	100,039682	743632,3412	4205364,423
548	Point	0	Bedding_surface_97	56,606953	89,130001	743632,4735	4205364,599

Πίνακας 15: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (xi).

549	Point	0		0,017529	122,865741	743618,275	4205354,576
550	Point	0		0,023502	109,10341	743618,6278	4205354,9
551	Point	0		2,937012	127,333048	743619,3193	4205355,295
552	Point	0		15,533516	113,398209	743619,7567	4205355,535
553	Point	0		0,600357	323,763546	743617,8021	4205359,131
554	Point	0		2,510154	315	743618,0755	4205359,175
555	Point	0	Bedding_surface_98	39,845739	86,820106	743642,008	4205367,772
556	Point	0	Bedding_surface_98	32,031942	88,567445	743642,6289	4205367,603
557	Point	0	Bedding_surface_98	30,71971	79,377412	743643,2357	4205367,32
558	Point	0	Bedding_surface_98	35,683971	78,737213	743643,7154	4205367,193
559	Point	0	Bedding_surface_99	46,011619	175,332662	743656,0477	4205432,083
560	Point	0	Bedding_surface_99	64,039634	173,172211	743656,2946	4205431,695
561	Point	0	Bedding_surface_100	44,749072	84,884194	743690,589	4205461,271
562	Point	0	Bedding_surface_100	53,296868	99,619806	743690,2786	4205460,96
563	Point	0	Bedding_surface_100	53,138693	103,825905	743689,9964	4205460,678

Πίνακας 16: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_new_2" shapefile (xii).

FID	Shape *	Id	Surf_type	Dip_comp	Dip_di_com	Dip_gis	Dip_di_gis	POINT_X		POINT Y
0	Point	0	Fault_surface	75	144	48,349535	73,74914	743728,3458		4205523,094
1	Point	0	Fault_surface	75	120	29,623367	109,937709	743727,9692		4205522,297
2	Point	0	Fault_lineation	40	190	27,116172	112,79942	743727,9339		4205522.2
3	Point	0	Tectonic_breccia	65	134	52,720117	127,739787	743725,6729		4205520.054
4	Point	0	Fault_surface	85	132	34,199571	120,605771	743723,3993		4205517,114
5	Point	0	Fault_surface	50	123	38,008228	72,780108	743724,8738		4205508,968
6	Point	0	Fault_surface	60	8	59,743615	37,592916	743725,6125		4205500,754
7	Point	0	Bedding_surface?	50	0	46,015606	88,6944	743726,5109		4205497,997
8	Point	0	Bedding_surface	50	171	79,529702	76,661421	743727,0724		4205495,995
9	Point	0	Fault_surface	75	165	64,348319	84,73492	743727,5222		4205492.525
10	Point	0	Bedding_surface	45	2	71,954419	71,779528	743727,2272		4205494,656
11	Point	0	Fault_surface	50	30	63,173377	87,605327	743728,7406		4205488,209
12	Point	0	Fault_surface	60	184	42,185362	134,889657	743709,2654		4205469,658
13	Point	0	Bedding_surface	25	253	45,966546	227,564816	743771,8793		4205380.052
14	Point	0	Bedding_surface	22	282	58,680458	244,771159	743774,9538		4205373 663
15	Point	0	Fault_surface	70	165	67,483614	245,884504	743774,3693		4205374.83
16	Point	0	Bedding_surface	60	245	66,853347	237,666591	743773,744		4205375,439
17	Point	0	Bedding_surface	50	233	53,824835	258,518826	743774,693		4205374 591
18	Point	0	Fault_lineation	2	121	74,469625	271,288811	743774,7371		4205353,834
19	Point	0	Fault_surface	70	219	65,901992	274,779545	743774,7212		4205353.639
20	Point	0	Bedding_surface?	45	327	52,598542	307,832633	743774,6446		4205335 634
21	Point	0	Bedding_or_Fault	50	328	49,027595	326,090551	743763,5012		4205329,491
22	Point	0	Bedding_surface	40	220	51,389418	285,222709	743775,0922		4205339,784
23	Point	0	Fault_surface	68	15	78,610448	241,262392	743775,5299		4205346.97
24	Point	0	Bedding_surface	20	277	37,083274	348,931936	743745,0179		4205323 808
25	Point	0	Bedding_surface	45	102	59,538466	105,916756	743660,7969		4205374 937
26	Point	0	Fault_surface	80	6	65,65837	91,567566	743658,9324		4205381 938
27	Point	0	Fault_surface	80	344	56,416353	89,359432	743659,0753		4205381 786
28	Point	0	Fault_surface	89	322	85,845138	27,210859	743658,7551		4205388 301
29	Point	0	Fault_surface	68	138	36,72002	61,623681	743657,6986		4205392.073
30	Point	0	Fault_surface	65	18	46,913697	55,092412	743662,1671		4205365 756
31	Point	0	Bedding_surface	15	213	52,34615	57,610477	743664,4446		4205362.079
32	Point	0	Fault_surface	85	175	50,48553	48,448372	743669,0934		4205359.642
33	Point	0	Bedding_surface	55	255	37,080683	32,164872	743673,6348		4205354 604
34	Point	0	Fault_surface	85	174	63,095473	24,717747	743673,4514		4205351,001
35	Point	0	Bedding_surface	60	255	58,549446	28,253424	743693,9084		4205339,813
36	Point	0	Fault_surface	80	10	37,290982	20,309491	743695,5171		4205339.014
37	Point	0	Bedding_surface	30	188	69,423849	13,965957	743715,1183		4205327.068
38	Point	0	Fault_surface	60	316	31,691849	2,096044	743720,3853		4205327,000
39	Point	0	Fault_surface	80	336	45,60778	1,272757	743719,9937		4205324,025
40	Point	0	Fault_surface	40	132	55,923724	11,082367	743721,3907	1	4205325,391
41	Point	0	Bedding_surface	15	213	59,010611	21,734053	743714,9211		4205323,100

Πίνακας 17: Η ολοκληρωμένη εικόνα του Atribute Table του "field_measurements" shapefile.

FID	Shape *	ld	Dlp	Dlp_Direct	
0	Point	0	46,715715	302,247073	
1	Point	0	59,418763	302,397109	
2	Point	0	55,141005	301,639058	
3	Point	0	48,622343	297,406289	
4	Point	0	55,914191	312,148785	

•

Πίνακας 18: Η εικόνα του Attribute Table του "new_measurements_surf_3".

Πίνακας 19: Η εικόνα του Attribute Table του "new_measurements_surf_14".

FID	Shape *	ld	Dip	Dip_direct
0	Point	0	35,830311	227,175181
1	Point	0	16,621084	133,046419
2	Point	0	16,904028	52,33806
3	Point	0	32,768058	83,759584
4	Point	0	58,427251	91,699157
5	Point	0	71,672548	100,489665
6	Point	0	71,038765	92,292202
7	Point	0	55,087115	64,396407
8	Point	0	73,329053	264,904321
9	Point	0	52,548199	301,929579
10	Point	0	70,057101	268,010657

FID	Shape *	Id	Dip	Dip_direct	Surf_type	POINT_X	POINT_Y
0	Point	0	28,636389	254,527436	fault_surf	501420,4139	4574142,473
1	Point	0	45,682397	229,438204	fault_surf	501420,1137	4574141,362
2	Point	0	53,694467	275,84075	fault_surf	501419,2812	4574139,488
3	Point	0	50,302036	270,379253	fault_surf	501418,4679	4574137,367
4	Point	0	8,334467	299,697486	fault_surf	501417,9917	4574136,144
5	Point	0	32,344004	301,232972	fault_surf	501417,3905	4574134,864
6	Point	0	11,034427	242,310913	fault_surf	501426,4562	4574129,958
- 7	Point	0	83,777931	233,861438	fault_surf	501426,5565	4574132,196
8	Point	0	23,365338	297,675474	fault_surf	501431,6542	4574125,794
9	Point	0	30,186888	256,682693	fault_surf	501431,3046	4574124,643
10	Point	0	13,690028	310,61377	fault_surf	501431,0204	4574123,681
11	Point	0	72,698386	254,22784	fault_surf	501430,6446	4574122,127
12	Point	0	2,246877	298,787257	fault_surf	501430,1015	4574119,23
13	Point	0	9,061331	72,964839	fault_surf	501420,3401	4574102,132
14	Point	0	1,72823	234,373948	fault_surf	501419,6303	4574101,727
15	Point	0	78,575059	264,912042	fault_surf	501418,3576	4574100,896
16	Point	0	51,888759	216,248503	fault_surf	501420,3056	4574094,565
17	Point	0	28,847714	255,308561	fault_surf	501422,0744	4574096,658
18	Point	0	59,923388	10,017776	fault_surf	501425,4599	4574100,468
19	Point	0	3,032974	303,214053	fault_surf	501430,4503	4574108,659
20	Point	0	9,627284	237,608312	fault_surf	501431,9082	4574111,186
21	Point	0	55,843972	269,701962	fault_surf	501434,8576	4574116,468
22	Point	0	1,816617	122,236978	fault_surf	501429,4841	4574076,78
23	Point	0	3,030989	274,269151	fault_surf	501430,7838	4574079,83
24	Point	0	6,813138	306,068709	fault_surf	501434,5984	4574090,442
25	Point	0	6,044029	218,802195	fault_surf	501437,1127	4574093,619
26	Point	0	0,324324	302,455374	fault_surf	501441,1811	4574099,284
27	Point	0	28,097398	265,693793	fault_surf	501444,8228	4574092,384
28	Point	0	88,838895	293,696647	fault_surf	501444,1145	4574090,836
29	Point	0	11,433837	262,307163	fault_surf	501441,8377	4574085,261
30	Point	0	1,024775	236,955816	fault_surf	501441,5707	4574084,109
31	Point	0	4,381933	250,125289	fault_surf	501440,5272	45/4081,851
32	Point	0	2,514176	243,205748	fault_surf	501439,9814	4574080,499
33	Point	0	51,620957	216,966796	fault_surf	501438,8305	45/40/9,03/
34	Point	0	38,6181	257,968/41	fault_suff	501447,6169	45/4088,978
30	Point	0	17,220717	278,959452	fault_surf	501446,7451	45/4091,18/
30	Point	0	0,08973	200,23/5/5	fault_suff	501450,3141	45/4088,/8
3/	Point	0	12,170285	298,128252	fault_surf	501447,8469	4574086,223
20	Point	0	42,070763	275 457025	fault_curf	501440,2908	4574082,948
39	Point	0	12 055520	273,437925	fault_surf	501442,7559	4574079,132
40	Point	0	26 160052	205,414200	fault_surf	501445,8644	4574080,462
42	Point	0	12 201235	286 531136	fault_surf	501440 7847	4574075 583
42	Point	0	8 718/30	170 330656	fault_surf	501463 4935	4574069.91
44	Point	0	5 205937	301 240817	fault_surf	501469 3426	4574073 492
45	Point	0	3,393762	270 111277	fault surf	501469 5489	4574072 702
46	Point	0	27,335219	239,208633	fault_surf	501469 2962	4574076.13
47	Point	0	66,937576	209,105926	fault surf	501466.1881	4574060.633

Πίνακας 20: Η ολοκληρωμένη εικόνα του Atribute Table του "measuremer	ts_Volakas'	' shapefile (i).
--	-------------	------------------

48 Point	0	62,545086	216,110302	fault_surf	501470,9991	4574058,599
49 Point	0	79,543671	200,317937	fault_surf	501462,2013	4574058,421
50 Point	0	59,577276	200,111858	fault_surf	501460,5018	4574056,162
51 Point	0	67,336991	196,948324	fault_surf	501465,9684	4574057,197
52 Point	0	68,979444	210,723309	fault_surf	501456,7247	4574056,454
53 Point	0	75,323651	221,820079	fault_surf	501483,5322	4574058,711
54 Point	0	83,889406	204,009337	fault_surf	501484,8904	4574058,114
55 Point	0	52,999381	207,601765	fault_surf	501487,3238	4574057,267
56 Point	0	82,831679	204,01066	fault_surf	501489,8407	4574055,966
57 Point	0	72,47641	214,919706	fault_surf	501493,0462	4574054,824
58 Point	0	65,638472	222,559199	fault_surf	501498,7585	4574053,651
59 Point	0	75,596075	245,130912	fault_surf	501500,6345	4574053,716
60 Point	0	22,923185	262,269952	fault_surf	501503,2076	4574052,746
61 Point	0	21,249046	255,85398	fault_surf	501482,0221	4574040,245
62 Point	0	76,521329	199,862087	fault_surf	501485,853	4574040,843
63 Point	0	69,893107	268,9919	fault_surf	501493,1373	4574043,169
64 Point	0	73,483031	287,323389	fault_surf	501493,4321	4574040,767
65 Point	0	57,254312	274,441757	fault_surf	501489,4907	4574037,244
66 Point	0	61,212318	268,287191	fault_surf	501485,6289	4574037,534
67 Point	0	28,941984	224,934744	fault_surf	501484,5768	4574035,77
68 Point	0	51,962646	276,507492	fault_surf	501486,1369	4574034,352
69 Point	0	50,470834	253,506572	fault_surf	501487,4185	4574032,542
70 Point	0	80,551468	234,666863	fault_surf	501489,7549	4574031,81
71 Point	0	63,083922	238,184799	fault_surf	501490,6563	4574031,079
72 Point	0	68,103228	266,430179	fault_surf	501483,2421	4574037,066
73 Point	0	57,66297	283,06641	fault_surf	501503,1641	4574034,708
74 Point	0	20,302839	263,819568	fault_surf	501505,9922	4574034,779
75 Point	0	57,944046	267,140884	fault_surf	501505,9098	4574030,279
76 Point	0	83,570944	271,481261	fault_surf	501502,8176	4574029,432
77 Point	0	55,511812	262,13946	fault_surf	501503,3368	4574022,836
78 Point	0	51,841561	253,388578	fault_surf	501505,7916	4574020,699
79 Point	0	64,182406	273,086167	fault_surf	501505,7395	4574013,184
80 Point	0	65,733516	266,164812	fault_surf	501503,745	4574014,554
81 Point	0	68,981757	260,711789	fault_surf	501503,3147	4574004,974
82 Point	0	61,151155	218,630857	fault_surf	501501,1478	4573997,872
83 Point	0	3,393604	289,156794	fault_surf	501498,5902	4574003,286
84 Point	0	1,885144	269,205204	fault_surf	501499,6828	4574009,631
85 Point	0	73,318738	288,057116	fault_surf	501497,9553	4574021,634
86 Point	0	53,174535	301,96925	fault_surf	501499,7583	4574024,575
87 Point	0	14,628136	261,410707	fault_surf	501497,5475	4574018,742
88 Point	0	68,707229	233,755716	fault_surf	501498,8695	4574018,533
89 Point	0	17,801695	254,051638	fault_surf	501494,9755	4574017,155
90 Point	0	66,601797	235,988261	fault_surf	501493,8446	4574015,833
91 Point	0	86,211206	272,153436	fault_surf	501494,4584	4574012,282
96 Point	0	6,012544	250,037687	fault_surf	501505,783	4573994,784
97 Point	0	3,56072	202,526174	fault_surf	501508,082	4573994,398
98 Point	0	52,95054	267,210522	fault_surf	501512,7724	4573994,624
99 Point	0	58,744618	264,115889	fault_surf	501515,5329	4573993,132
100 Point				C 10 C	E01E17 0340	4572002 662
coon onic	0	15,801132	257,205765	fault_surf	501517,8348	45/3352,002

Πίνακας 21: Η ολοκληρωμένη εικόνα του Attribute Table του "measurements_Volakas" shapefile (ii).

102	Point	0	39,023386	207,033428	fault_surf	501522,4933	4573982,709
103	Point	0	67,104232	237,887107	fault_surf	501521,5289	4573982,202
104	Point	0	60,712925	264,120658	fault_surf	501516,3031	4573981,056
105	Point	0	64,869598	263,574422	fault_surf	501518,1655	4573981,544
106	Point	0	18,124101	224,217167	fault_surf	501513,1396	4573981,962
107	Point	0	75,480694	264,758795	fault_surf	501515,4154	4573982,735
108	Point	0	47,023494	233,073384	fault_surf	501511,0963	4573982,789
109	Point	0	79,828952	293,329321	fault_surf	501506,3399	4573981,778
110	Point	0	7,230196	255,723839	fault_surf	501508,1761	4573982,045
111	Point	0	57,569495	251,176808	fault_surf	501509,4123	4573982,527
112	Point	0	74,576052	273,423578	fault_surf	501510,2818	4573981,372
113	Point	0	53,497073	274,875198	fault_surf	501511,8977	4573981,157
114	Point	0	60,603765	273,672335	fault_surf	501519,758	4573979,214
115	Point	0	59,859073	269,547567	fault_surf	501520,3364	4573979,501
116	Point	0	60,970298	263,95203	fault_surf	501520,8388	4573979,662
117	Point	0	66,472456	279,282769	fault_surf	501521,2653	4573979,812
118	Point	0	39,705512	337,507554	fault_surf	501521,9974	4573979,939
119	Point	0	52,657749	272,824432	fault_surf	501501,1587	4573981,892
120	Point	0	83,821784	307,86729	fault_surf	501501,7524	4573981,861
121	Point	0	74,462895	290,761183	fault_surf	501502,8186	4573981,873
122	Point	0	2,500385	300,859698	fault_surf	501503,3444	4573981,844
123	Point	0	3,078817	272,182613	fault_surf	501504,4338	4573981,552
124	Point	0	6,116173	242,689092	fault_surf	501505,0646	4573981,548
125	Point	0	1,07718	115,68171	fault_surf	501515,9162	4573968,181
126	Point	0	2,808247	251,552957	fault_surf	501517,6789	4573967,696
127	Point	0	4,75724	273,880023	fault_surf	501518,7649	4573967,32
128	Point	0	80,066277	312,786008	fault_surf	501519,7088	4573967,378
129	Point	0	85,92958	259,810286	fault_surf	501520,1413	4573967,297
130	Point	0	78,701153	266,445903	fault_surf	501520,2769	4573967,352
131	Point	0	6,050271	249,072943	fault_surf	501520,5548	4573967,543
132	Point	0	6,602706	236,872873	fault_surf	501521,6528	4573967,878
133	Point	0	4,140919	253,636048	fault_surf	501522,2697	4573967,942
134	Point	0	8,862011	258,57259	fault_surf	501522,6384	4573968,142
135	Point	0	5,200058	244,915419	fault_surf	501517,3363	4573955,029
136	Point	0	22,630741	234,083856	fault_surf	501516,9404	4573952,708
137	Point	0	19,301006	253,083352	fault_surf	501516,7526	4573950,797
138	Point	0	85,972541	249,974061	fault_surf	501515,6775	4573950,061
139	Point	0	51,299086	297,158476	fault_surf	501515,9636	4573949,758
140	Point	0	49,200884	256,522845	fault_surf	501515,3234	4573948,674
141	Point	0	2,737858	301,714117	fault_surf	501515,5707	4573947,477
142	Point	0	38,921432	261,290293	fault_surf	501514,2553	4573944,986
143	Point	0	86,847898	280,597363	fault_surf	501514,0551	4573943,434
144	Point	0	12,409623	263,933512	fault_surf	501512,9301	4573942,919
145	Point	0	36,91722	275,356889	fault_surf	501512,3325	4573942,36
146	Point	0	77,504153	298,87112	fault_surf	501511,5999	4573940,413
147	Point	0	80,131642	286,25124	fault_surf	501511,9456	4573942,41
148	Point	0	52,380646	306,113377	fault_surf	501511,9163	4573942,032
149	Point	0	80,739292	271,458252	fault_surf	501511,7211	4573941,255
150	Point	0	84,674208	303,414136	fault_surf	501511,1883	4573940,564
151	Point	0	77,707164	301,615233	fault_surf	501511,1434	4573939,845

Πίνακας 22: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_Volakas" shapefile (iii).

152	Point	0	25,006701	296,695694	fault_surf	501510,9877	4573939,389
153	Point	0	27,799296	284,116248	fault_surf	501510,4317	4573939,497
154	Point	0	59,881769	212,500666	fault_surf	501604,1875	4573895,919
155	Point	0	57,731965	220,029328	fault_surf	501605,1816	4573895,077
156	Point	0	54,067664	200,554052	fault_surf	501604,1994	4573895,208
157	Point	0	7,03556	223,501825	fault_surf	501599,9583	4573896,674
158	Point	0	82,983006	220,586258	fault_surf	501601,0627	4573895,95
159	Point	0	13,895087	274,014594	fault_surf	501605,4456	4573875,948
160	Point	0	61,571416	220,115478	fault_surf	501607,5262	4573876,369
161	Point	0	9,055335	125,910494	fault_surf	501595,9368	4573857,175
162	Point	0	40,648671	171,12796	fault_surf	501598,2146	4573854,651
163	Point	0	58,658599	232,458967	fault_surf	501619,4499	4573851,037
164	Point	0	52,170911	242,819522	fault_surf	501614,273	4573850,191
165	Point	0	26,583857	278,937128	fault_surf	501610,562	4573851,936
166	Point	0	35,800746	280,553336	fault_surf	501606,0913	4573851,781
92	Point	0	6,056688	323,306178	schist_surf	501495,0493	4574011,354
93	Point	0	5,632423	303,889204	schist_surf	501495,461	4574010,708
94	Point	0	3,524323	258,423401	schist_surf	501494,0228	4574018,023
95	Point	0	4,385385	267,201339	schist_surf	501494,2696	4574016,762

Πίνακας 23: Η ολοκληρωμένη εικόνα του Atribute Table του "measurements_Volakas" shapefile (iv).

Εικόνα 184

Εικόνα 185

Εικόνα 186

Εικόνα 187

Εικόνα 188

Εικόνα 189

Εικόνα 190

Εικόνα 191

Εικόνα 192

Εικόνα 193

Εικόνα 194

Εικόνα 195

Εικόνα 196

Εικόνα 197

Εικόνα 198

Εικόνα 199

- [1] GPS
- [2] Propellers
- [3] Motors
- [4] Front LEDs
- [5] Gimbal and Camera
- [6] Forward Vision System
- [7] Intelligent Flight Battery
- [8] Aircraft Status Indicator
- [9] Rear Vision System
- [10] Infrared Sensing System
- [11] Camera / Linking Status Indicator and Link Button
- [12] Micro USB Port
- [13] Camera Micro SD Card Slot
- [14] Downward Vision System

Εικόνα 200

Εικόνα 201

Εικόνα 202