

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

INTERDISCIPLINARY POSTGRADUATE PROGRAM "INFORMATION

TECHNOLOGIES IN MEDICINE AND BIOLOGY"

MSc THESIS

Web-Interface for querying and visualizing
Alcoholic Liver Disease Patients’ data from

database using GraphQL

Nikolaos I. Begetis

Supervisors: Dr. Εma Anastasiadou, Researcher-Lecturer Level, Biomedical
Research Foundation of the Academy of Athens (B.R.F.A.A.)

Dr. Styliani Georgiou, Postdoctoral Level, Biomedical Research
Foundation of the Academy of Athens (B.R.F.A.A.)

Pavlos Kafouris, PhD Candidate, Department of Informatics and
Telecommunication – National and Kapodistrian University of
Athens (N.K.U.A.)

ATHENS

JULY 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

"ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗΝ ΙΑΤΡΙΚΗ ΚΑΙ ΤΗ ΒΙΟΛΟΓΙΑ"

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

 Διαδικτυακή διεπαφή για επερωτήματα και οπτικοποιήσεις
σε δεδομένα ασθενών αλκοολικής ηπατικής νόσου με χρήση

βάσης δεδομένων και βοηθητικού λογισμικού
GraphQL

Νικόλαος Ι. Μπεγέτης

Επιβλέποντες: Δρ. Έμα Αναστασιάδου, Eρευνήτρια Δ', Ίδρυμα
Ιατροβιολογικών Ερευνών Ακαδημίας Αθηνών (Ι.Ι.Β.Ε.Α.Α.)

Δρ. Στυλιανή Γεωργίου, Μεταδιδακτορική Ερευνήτρια, Ίδρυμα
Ιατροβιολογικών Ερευνών Ακαδημίας Αθηνών (Ι.Ι.Β.Ε.Α.Α.)

Παύλος Καφούρης, Υποψήφιος Διδάκτορας, Τμήμα
Πληροφορικής και Τηλεπικοινωνιών, Εθνικό και Καποδιστριακό
Πανεπιστήμιο Αθήνας (Ε.Κ.Π.Α.)

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2019

MSc THESIS

Web-Interface for querying and visualizing Alcoholic Liver Disease Patients’ data from
database using GraphQL

 Nikolaos I. Begetis
R.N.: ΠΙΒ0111

SUPERVISORS: Dr. Εma Anastasiadou, Researcher-Lecturer Level, Biomedical
Research Foundation of the Academy of Athens (B.R.F.A.A.)

Dr. Styliani Georgiou, Postdoctoral Level, Biomedical Research
Foundation of the Academy of Athens (B.R.F.A.A.)

Pavlos Kafouris, PhD Candidate, Department of Informatics and
Telecommunication – National and Kapodistrian University of
Athens (N.K.U.A.)

EXAMINATION
COMMITTEE:

Dr. Εma Anastasiadou, Researcher-Lecturer Level, Biomedical
Research Foundation of the Academy of Athens (B.R.F.A.A.)

Dr. Styliani Georgiou, Postdoctoral Level, Biomedical Research
Foundation of the Academy of Athens (B.R.F.A.A.)

Dr. Eleftherios Ouzounoglou, Senior Researcher, I.C.C.S.-
N.T.U.A.

July 2019

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαδικτυακή διεπαφή για επερωτήματα και οπτικοποιήσεις σε δεδομένα ασθενών
αλκοολικής ηπατικής νόσου με χρήση βάσης δεδομένων και βοηθητικού λογισμικού

GraphQL

Νικόλαος Ι. Μπεγέτης
Α.Μ.: ΠΙΒ0111

ΕΠΙΒΛΕΠΟΝΤΕΣ: Δρ. Έμα Αναστασιάδου, Eρευνήτρια Δ', Ίδρυμα

Ιατροβιολογικών Ερευνών Ακαδημίας Αθηνών (ΙΙΒΕΑΑ)

Δρ. Στυλιανή Γεωργίου, Μεταδιδακτορική Ερευνήτρια, Ίδρυμα
Ιατροβιολογικών Ερευνών Ακαδημίας Αθηνών (Ι.Ι.Β.Ε.Α.Α.)

Παύλος Καφούρης, Υποψήφιος Διδάκτορας, Τμήμα
Πληροφορικής και Τηλεπικοινωνιών, Εθνικό και Καποδιστριακό
Πανεπιστήμιο Αθήνας (Ε.Κ.Π.Α.)

ΕΞΕΤΑΣΤΙΚΗ
ΕΠΙΤΡΟΠΗ:

Δρ. Έμα Αναστασιάδου, Eρευνήτρια Δ', Ίδρυμα
Ιατροβιολογικών Ερευνών Ακαδημίας Αθηνών (Ι.Ι.Β.Ε.Α.Α.)

Δρ. Στυλιανή Γεωργίου, Μεταδιδακτορική Ερευνήτρια, Ίδρυμα
Ιατροβιολογικών Ερευνών Ακαδημίας Αθηνών (Ι.Ι.Β.Ε.Α.Α.)

Δρ. Ελευθέριος Ουζούνογλου, Έμπειρος Ερευνητής,
Ε.Π.Ι.Σ.Ε.Υ.-Ε.Μ.Π.

Ιούλιος 2019

ABSTRACT

Alcoholism is one of the most serious and most common problems faced by modern
societies. Approximately, 5%-10% of the population in European countries do alcohol
abuse, with prolonged alcohol consumption causing liver fibrosis and cirrhosis (alcoholic
liver disease, ALD). Alcoholic disease is the development of fatty liver, alcoholic hepatitis,
and finally cirrhosis of the liver. The early stages of fibrosis and alcoholic hepatitis are
symptomless, and when the disease is finally manifested, the clinical picture is acute. In
clinical practice, the diagnosis of ALD is based on the historical alcohol ingestion, patient
symptomatology and laboratory tests (e.g. liver enzymes, blood pressure, blood glucose,
etc.). The dissertation aims to create a database for the collection and classification of all
laboratorial, clinical, etc. examinations of patients.
Data search and graph plots and charts are created in real-time with the use of GraphQL
queries and middleware query caching. The design process of the interface takes into
account data changes as well as reusability of this tool in different kind of data from other
tests or experiments and can be used in all types computing systems as it is containerized
and responsive. This bioinformatic tool will help physicians and researchers to simplify
the process of data selection, analysis and visualization by using graphs and diagrams of
all data. As a result, the tool facilitates the day-to-day physicians and researchers
schedule and as has the effect of letting them focus more on the essence of research,
i.e. to draw conclusions about the main categories of information that lead patients to
alcoholic liver disease, and less on processes.

SUBJECT AREA: Bioinformatics, Database, Web Applications, Biological Networks

KEYWORDS: web-interface, bioinformatics tool, database, alcoholic liver disease, liver

steatosis

ΠΕΡΙΛΗΨΗ

Ο αλκοολισμός αποτελεί́ ένα από τα σοβαρότερα και συχνότερα προβλήματα που
αντιμετωπίζουν οι σύγχρονες κοινωνίες. 5%-10% του πληθυσμού στις ευρωπαϊκές χώρες
κάνει κατάχρηση αλκοόλ, με την παρατεταμένη κατανάλωση αλκοόλ να επιφέρει ίνωση
και κίρρωση του ήπατος (αλκοολική νόσος, Alcohol Liver Disease, ALD). Η αλκοολική
νόσος συνίσταται στην ανάπτυξη του λιπώδους ήπατος, στην αλκοολική ηπατίτιδα, και
τελικά στην κίρρωση του ήπατος. Τα πρώτα στάδια της ίνωσης και της αλκοολικής
ηπατίτιδας είναι ασυμπωματικά ενώ όταν τελικά εκδηλωθεί η νόσος, η κλινική εικόνα είναι
οξεία. Στην κλινική πράξη η διάγνωση της ALD βασίζεται στο ιστορικό χρήσης αλκοόλ,
στην συμπτωματολογία του ασθενούς, και σε εργαστηριακές εξετάσεις (π.χ. ηπατικά
ένζυμα, αρτηριακή πίεση, γλυκόζη αίματος, κ.α.). Η διπλωματική εργασία αποσκοπεί στη
δημιουργία μιας βάσης δεδομένων για την συλλογή και ταξινόμηση όλων των
εργαστηριακών, κλινικών, κ.α. εξετάσεων των ασθενών.
Η αναζήτηση δεδομένων και δημιουργία γραφημάτων γίνεται σε πραγματικό χρόνο μέσω
της χρήσης GraphQL επερωτήσεων. Η σχεδίαση της διεπαφής λαμβάνει υπόψη την
αλλαγή των δεδομένων καθώς επίσης και την επαναχρησιμοποίηση σε διαφορετικού
είδους δεδομένα από άλλα πειράματα και τη χρήση από άλλα υπολογιστικά συστήματα.
Με αυτό το βιοπληροφορικό εργαλείο θα απλοποιηθεί η διαδικασία επιλογής δεδομένων,
ανάλυσης και προβολής με χρήση γραφημάτων και διαγραμμάτων όλων των δεδομένων
από ιατρούς και ερευνητές. Αυτό έχει ως αποτέλεσμα το εργαλείο να διευκολύνει την
καθημερινότητα των ιατρών και ερευνητών ώστε να επικεντρώνονται περισσότερο στην
ουσία της έρευνας, δηλαδή στην εξαγωγή συμπερασμάτων για τις βασικότερες
κατηγορίες των δεδομένων που οδηγούν τους ασθενείς στην πάθηση της αλκοολικής
ηπατικής νόσου, και λιγότερο στις διαδικασίες.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βιοπληροφορική, Βάσεις Δεδομένων, Διαδικτυακές Εφαρμογές,

Βιολογικά Δίκτυα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: διαδικτυακή διεπαφή, εργαλείο βιοπληροφορικής, βάση δεδομένων,

αλκοολική ηπατική νόσος, ηπατική στεάτωση

To my parents and sisters

Στους γονείς μου και τις αδερφές μου

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks to my supervisor, Dr. Ema
Anastasiadou for assigning me this thesis which really excited me, as she understood
exactly my interests and my strengths and she gave me this opportunity to contribute in
a European research project. I really appreciate her advice from start to finish and her
continuous participation in this thesis.
I would also like to express my sincere thanks to Dr. Styliani Georgiou, for her support
and guidance, for being always present to answer my questions and for embracing and
contributing in this thesis both with her theoretical and her technical knowledge. Great
thanks to some of my best professors and instructors for inspiring me and disseminating
me with an enthusiasm and a desire for perfection in my scientific field. These are: Dr.
Ema Anastasiadou, Prof. Koutsoupias Elias, Prof. Ioannis Emiris, Prof. Dimitris
Gunopulos, Prof. Sergios Theodoridis, Prof. Dimitris Achlioptas, Prof. Ioannis Ioannidis,
Prof. Alex Delis, and Prof. Giannis Smaragdakis, Dr. George Spyrou, Dr. Evangelia
Chrysina, Dr. George Tsangaris, Dr. Xanthou Georgina and Dr. Perantonis Stavros. I
would also like to give many thanks to all my colleagues for their continuous support and
help, and some special thanks to PhD Candidate Vicky Filippa and Vassilis Pierros.
Furthermore, I will always be thankful to my family for their support through all these years
and for having educated me properly. Special thanks to my mother, Irene, and my father,
Yannis, who are both teachers of computer science in secondary education, and whom I
consider as my mentors in computer science and even more in my whole life. Also, to my
younger sisters, Sophia, Eleni and Demetra, from whom I always receive endless love
and encouragement and for who I would like to engrave the path to go. My heartfelt thanks
to Margarita, for her unconditional support, love and encouragement. And last but not
least, special thanks go to my school friends, who have taken part to my behavior shaping
in all these years. The support that everyone above has given me, in all my pursuits has
been tremendous. And for me, I hope to worthy and to continue my work in research,
publish this thesis work to a scientific magazine and possibly, in near future, pursue a
PhD.

ΕΥΧΑΡΙΣΤΙΕΣ

Πρώτα απ' όλα, θα ήθελα να εκφράσω τις ειλικρινείς μου ευχαριστίες στην επιβλέπουσα
της διπλωματικής εργασίας μου, Δρ. Έμα Αναστασιάδου, για την ανάθεση αυτής της
διπλωματικής εργασίας που πραγματικά με ενθουσίασε, καθώς κατάλαβε με ακρίβεια τα
ενδιαφέροντά μου και τις δυνάμεις μου και μου έδωσε αυτή την ευκαιρία να συνεισφέρω
σε ένα ευρωπαϊκό ερευνητικό πρόγραμμα. Εκτιμώ πραγματικά τις συμβουλές της από
την αρχή μέχρι το τέλος και τη συνεχή συμμετοχή της σε αυτή τη διπλωματική.
Θα ήθελα επίσης να εκφράσω τις ειλικρινείς ευχαριστίες μου προς την Δρ. Στυλιανή
Γεωργίου για την υποστήριξη και την καθοδήγησή της, που είναι πάντα παρούσα για να
απαντήσει στις απορίες μου και που εναγκάλισε και συνέβαλε σε αυτή τη διπλωματική
τόσο με τις θεωρητικές όσο και με τις τεχνικές της γνώσεις. Ευχαριστώ μερικούς από τους
αγαπημένους μου καθηγητές και εκπαιδευτές οι οποίοι με εμπνέουν και με γεμίζουν
ενθουσιασμό και επιθυμία για να εξελίσσομαι στην επιστήμη μου. Αναφορικά αυτοί είναι
οι: Δρ. Έμα Αναστασιάδου, Καθ. Ιωάννης Εμίρης, Καθ. Δημήτρης Γουνόπουλος, Καθ.
Σέργιος Θεοδωρίδης, Καθ. Δημήτρης Αχλιόπτας, Καθ. Ηλίας Κουτσουπίας, Καθ. Ιωάννης
Ιωαννίδης, Καθ. Αλέξης Δελής, Καθ. Γιάννης Σμαραγδάκης, Δρ. Γιώργος Σπύρου, Δρ.
Ευαγγελία Χρύσινα, Δρ. Γιώργος Τσάγγαρης, Δρ. Γεωργιάνα Ξάνθου και Δρ. Σταύρος
Περαντώνης. Θα ήθελα επίσης να ευχαριστήσω όλους τους συναδέλφους μου για τη
συνεχή υποστήριξή τους και βοήθεια και πιο συγκεκριμένα να δώσω ειδικές ευχαριστίες
προς την υποψήφια διδάκτορα Βίκυ Φίλιππα και τον Βασίλη Πιέρρο.
Επιπλέον, θα είμαι πάντα ευγνώμων στην οικογένειά μου για όλη την υποστήριξή τους
όλα αυτά τα χρόνια και για τη σωστή εκπαίδευση και διαπαιδαγώγησή μου. Ευχαριστώ
ιδιαιτέρως τη μητέρα μου, την Ειρήνη και τον πατέρα μου, τον Γιάννη, οι οποίοι και οι δύο
είναι δάσκαλοι της επιστήμης των υπολογιστών στη δευτεροβάθμια εκπαίδευση και τους
οποίους θεωρώ ως μέντορές μου στην επιστήμη των υπολογιστών και ακόμη
περισσότερο σε όλη μου τη ζωή. Ευχαριστώ επίσης τις μικρότερες αδελφές μου, τη
Σοφία, την Ελένη και τη Δήμητρα, από τις οποίες λαμβάνω καθημερινά την ατελείωτη
αγάπη και ενθάρρυνσή τους και για τις οποίες θέλω να χαράξω το μονοπάτι για να
ακολουθήσουν. Ευχαριστώ θερμά τη Μαργαρίτα για την άνευ όρων υποστήριξη, αγάπη
και ενθάρρυνση. Και, τέλος, θέλω να δώσω ιδιαίτερες ευχαριστίες στους σχολικούς μου
φίλους, οι οποίοι συμμετείχαν στη διαμόρφωση της συμπεριφοράς μου σε όλα αυτά τα
χρόνια. Η υποστήριξη που μου έδωσαν όλοι οι παραπάνω, σε όλες τις επιδιώξεις μου,
ήταν τεράστια. Και για μένα, ελπίζω να συνεχίσω το έργο μου στην έρευνα, να
δημοσιεύσω αυτό το έργο της διπλωματικής εργασίας σε κάποιο επιστημονικό περιοδικό
και πιθανόν, στο εγγύς μέλλον, να ακολουθήσω την καριέρα μου με ένα διδακτορικό.

CONTENTS

1. INTRODUCTION .. 31

2. LIVER .. 33

2.1 Introduction ... 33

2.2 Importance of liver .. 33

2.2.1 Anatomy ... 34
2.2.2 Microscopic anatomy .. 36
2.2.3 Functions... 37

2.3 Diseases ... 42

2.3.1 Alcohol consumption and Liver Diseases .. 42
2.3.2 Liver inflammation is the key of chronic liver disease (CLD) progression ... 43

2.4 Alcoholic liver disease (ALD) .. 44

2.4.1 Definition and Epidemiology .. 44
2.4.2 Pathogenesis ... 45
2.4.3 Diagnosis ... 47

2.5 Alcoholic liver disease (ALD) Data.. 49

2.5.1 Data Categories ... 50

3. SOFTWARE DEVELOPMENT - BUSINESS CONCERNS ... 53

3.1 Introduction ... 53

3.2 Software Development Life Cycle .. 53

3.2.1 Planning .. 54
3.2.2 Analysis ... 55
3.2.3 Design ... 55
3.2.4 Development ... 55
3.2.5 Integration and Testing .. 56
3.2.6 Documentation ... 56
3.2.7 Training ... 56
3.2.8 Deployment... 56
3.2.9 Support and Maintenance ... 57

3.3 Software Release Life Cycle ... 58

3.3.1 Stages .. 58

3.4 Software development models .. 59

3.4.1 Waterfall Model .. 60

3.4.2 Agile Model ... 61
3.4.3 Agile vs. waterfall .. 66
3.4.4 This thesis working model.. 68

4. SOFTWARE DEVELOPMENT - TECHNOLOGICAL CONCERNS ... 71

4.1 Introduction ... 71

4.2 Architecture Schema – Technological Overview .. 71

4.2.1 Data pre-processing ... 71
4.2.2 Software Systems Layered Design .. 73
4.2.3 Persistence Layer - Database ... 76
4.2.4 Data-access Layer – Back-end Server ... 78
4.2.5 Business-Logic Layer – Back-end Middleware (using GraphQL) ... 80
4.2.6 Presentation Layer – Front-end User Interface ... 80

4.3 Web Application’s Technologies Stack ... 81

4.3.1 Git ... 81
4.3.2 MongoDB .. 85
4.3.3 JavaScript .. 86
4.3.4 Virtualization ... 113

4.4 Design Patterns.. 115

4.4.1 Software Directory File structure ... 115
4.4.2 Design Patterns and Principles: Scalability .. 118
4.4.3 Design Patterns and Principles: Maintainability .. 122
4.4.4 Design Patterns and Principles: Reusability .. 126
4.4.5 Design Patterns and Principles: Performance ... 131

4.5 Visualization .. 133

4.5.1 Definition .. 133
4.5.2 Visualizations Necessity ... 133
4.5.3 Chart Types ... 135
4.5.4 Chart Selection .. 140

5. WEB APPLICATION OVERVIEW ... 143

5.1 Introduction ... 143

5.2 Web Application Screens ... 143

5.2.1 Query Screen ... 143
5.2.2 Dashboard Screen ... 144
5.2.3 Analysis Screen .. 145

5.3 User Cases ... 146

5.3.1 Scenario 1: share data with other users ... 146
5.3.2 Scenario 2: discover data using search ... 147
5.3.3 Scenario 3: predict and/or project data using visualizations ... 147
5.3.4 Scenario 4: import data from a csv file ... 147
5.3.5 Scenario 5: add, edit, or delete data .. 147
5.3.6 Scenario 6: filter data .. 148
5.3.7 Scenario 7: clean data .. 148
5.3.8 Scenario 8: export data or filtered-data to a csv file ... 148
5.3.9 Scenario 9: explore data using navigation .. 148
5.3.10 Scenario 10: compare, compose, understand, distribute, analyze relations and trends on data or

filtered data visualizations based on criteria .. 149
5.3.11 Scenario 11: cache data for reuse and save history .. 150

5.4 Competition ... 150

6. CONCLUSIONS AND FUTURE WORK ... 155

6.1 Conclusions .. 155

6.2 Future Work .. 156

7. ABBREVIATIONS - ARCTICS - ACRONYMS ... 157

8. BIBLIOGRAPHY ... 159

LIST OF PICTURES

Picture 1: Capillaries lead to lobules [1] .. 34

Picture 2: Superior Surface [2] .. 34

Picture 3: Inferior Surface [2] ... 35

Picture 4: Posterior Surface [2].. 36

Picture 5: Microscopic anatomy of liver [1] .. 36

Picture 6: Liver diseases [23] .. 44

Picture 7: Liver Dysbiosis [89] ... 46

Picture 8: Liver Mechanisms after inflammation that lead to ALD [32] 47

Picture 9: Odense University Hospital ... 50

Picture 10: The Software Development Cycle [38] .. 54

Picture 11: Stages of Software Development Life Cycle ... 58

Picture 12: Software upgrade versioning ... 59

Picture 13: Waterfall Model [37] .. 60

Picture 14: Agile Development Life Cycle [46]... 62

Picture 15: Kanban Board [48] .. 64

Picture 16: Kanban Board through a cartoon .. 65

Picture 17: This thesis’s Kanban board ... 69

Picture 18: Initial Data set ... 72

Picture 19: All ways of handling missing data based on problem type and data type [97]

 .. 73

Picture 20: 1-tier architecture [54] .. 74

Picture 21: 2-tier architecture [54] .. 74

Picture 22: 3-tier architecture [54] .. 75

Picture 23: n-tier architecture [55] ... 76

Picture 24: Mongodb representation of data [56]... 78

Picture 25: Git branching and merging [58] ... 82

Picture 26: Git vs. SVN Benchmarks [58] .. 83

Picture 27: Git is distributed. Each developer has his own local copy of a shared repository

[58] .. 83

Picture 28: Git intermediate staging area [58] ... 84

Picture 29: Git use case of intermediate staging area, working directory and local-remote

differences [58] .. 84

Picture 30: Flexible storage architecture, optimizing MongoDB for unique application

demands [56]... 85

Picture 31: Standard web technologies [60] .. 86

Picture 32: Our application’s design using best practices (GraphQL for the Business-

Logic) [65].. 94

Picture 33: Showcase of different platforms and architectures that need to receive data

[66] .. 94

Picture 34: Today situation using REST services [66] ... 95

Picture 35: Todays’ situation using GraphQL [65] ... 95

Picture 36: Our web application’s situation using GraphQL [67].................................... 97

Picture 37: The GraphQ playground for queries and mutations 104

Picture 38: Create React Element with JSX or with Vanilla JS [74] 105

Picture 39: React props and action event-handlers [74] .. 105

Picture 40: react Virtual DOM usage [74] .. 105

Picture 41: Virtualization image, Virtual Desktop Infrastructure (VDI) [77] 114

Picture 42: Containerized architecture using Docker vs common VM architecture [78]

 .. 115

Picture 43: Git commit type and messages justify the maintenance types [72] 125

Picture 44: Data visualization example 1 [77] .. 134

Picture 45: Data visualization example 2 [77] .. 135

Picture 46: Column chart using react-vis [79] .. 136

Picture 47: Bar chart using react-vis [76] ... 136

Picture 48: Line chart using react-vis [76] ... 137

Picture 49: Dual Axis chart using react-vis [76] ... 137

Picture 50: Column chart using react-vis [76] .. 138

Picture 51: Stacked Bar chart using react-vis [76] ... 138

Picture 52: Pie chart using react-vis [76] ... 139

Picture 53: Scatter Plot chart using react-vis [76] .. 139

Picture 54: Bubble chart using react-vis [76] ... 140

Picture 55: Whisker chart using react-vis [80] ... 140

Picture 56: Web application’s query screen .. 144

Picture 57: Web application’s DashBoard screen.. 145

Picture 58: Web application’s Analysis screen .. 146

Picture 59: Use-case experimentation for verifying statements in Cited Publications . 150

LIST OF TABLES

Table 1: Functions of a normal liver [7] [8] .. 38

Table 2: Global morbidity related to chronic liver disease, 2015 [23] 43

Table 3: Advantages and disadvantages of the Waterfall model 61

Table 4: Differences between Agile and Waterfall [49] .. 67

Table 5: 2019 comparison with other data visualization software of competition 151

LIST OF CODES

Code 1: Show how we represented the empty cells of excel .. 73

Code 2: Connect server to mongodb database ... 78

Code 3: Abstract logical data using mongoose configuration options 79

Code 4: Mongo extracted schema for use by GraphQL .. 80

Code 5: Git branching and merging in our use-case in local repository 82

Code 6: Create server, connect mongo, run API services and listen for connection 91

Code 7: The package.json showing the backend dependencies 93

Code 8: GraphQL type definition ... 96

Code 9: GraphQL functions ... 96

Code 10: GraphQL query .. 96

Code 11: GraphQL query response .. 96

Code 12: Example User graphql type definition .. 98

Code 13: mongodb code before graphql-compose convertion 98

Code 14: graphql code after graphql-compose convertion .. 98

Code 15: graphql type definition using complex types .. 99

Code 16: Example graphql query definition ... 99

Code 17: Example graphql query response after execution .. 99

Code 18: Example graphql query definition with more fields 100

Code 19: Example graphql query response after execution with more fields 100

Code 20: Example graphql query definition with filter .. 100

Code 21: Example graphql query response after execution with filter 100

Code 22: Example graphql query definition with find ... 101

Code 23: Example graphql query response after execution with find 101

Code 24: Example graphql query definition with variables .. 101

Code 25: Example graphql create mutation .. 101

Code 26: Example User graphql type definition with ID .. 102

Code 27: Example graphql create mutation optimization .. 102

Code 28: Example graphql subscription .. 102

Code 29: Create graphql queries and mutations using graphql-compose 103

Code 30: Create a graphql query from React Application ... 107

Code 31: Create a menu entries for different applicstion routes.................................. 108

Code 32: React reusable Table component .. 108

Code 33: Math methods used for data transformation to apply in visualizations 110

Code 34: Wrap a react-vis LineSeries element and create a new with more capabilities

 .. 110

Code 35: add Graphql playground as a React component in Analysis route 111

Code 36: The package.json showing the fronted dependencies 113

Code 37: Web-application’s directory structure ... 117

Code 38: Scalable directory structure ... 121

Code 39: Scalable visualization addition ... 122

Code 40: Scalable menu creation ... 122

Code 41: Documentation usage in Drawer menu React component 126

Code 42: Documentation usage in Header React component with hooks 126

Code 43: Reusability example using class inheritance pattern.................................... 128

Code 44: Reusability example using composition pattern part 1 128

Code 45: Reusability example using composition pattern part 2 129

Code 46: Reusability example ... 129

Code 47: BarPlot creation using both mixin and decorator reusability pattern 131

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 31

1. INTRODUCTION

Alcoholism is one of the most serious and most common problems faced by modern
societies. Alcoholic disease is the development of fatty liver, alcoholic hepatitis, and finally
cirrhosis of the liver. The early stages of fibrosis and alcoholic hepatitis are symptomless,
and when the disease is finally manifested, the clinical picture is acute. In clinical practice,
the diagnosis of ALD is based on the historical alcohol ingestion, patient symptomatology
and laboratory tests. The dissertation aims to create a database for the collection and
classification of all laboratorial, clinical, etc. examinations of patients. Data search and
graph plots and charts are created in real-time with the use of GraphQL queries and
middleware query caching. This bioinformatic tool will help physicians and researchers to
simplify the process of data selection, analysis and visualization by using graphs and
diagrams of all data.
In the first chapter, we will take an insight look in the liver in order to better understand
the factors that lead the liver to pathological conditions. General information regarding its’
importance for the human organism an the variety of reactions that it regulates. An
overview of the diseases that occur in the liver is presented and a connection between
alcohol consumption and liver disease. Then, alcoholic liver disease (ALD) will be
presented focusing on the epidemiology, pathogenesis and lastly diagnosis. Lastly, we
devote a section on the data that this thesis uses. We start with the patients that consent
in sharing their personal information, and then categorise these data information and
describe each one of them.
In the second chapter, we present the architectural schema of the web application we
created and analyze it from a business aspect. We start by analyzing the software
development lifecycle and software release lifecycle, which consist of development
phases, release stages and the software versioning. This way we then refer to working
models and how they are connected through software phases. Also, we analyze two main
working models, Waterfall and Agile framework, emphasizing on the advantages,
disadvantages and their differences. Finally, we explain the reason why we chose our
working model methodology, Agile Kanban, and how we used it.
In the third chapter, we present the architectural schema of the web application we
created, and this time we analyze its technological aspect. We refer to separation of
concerns for each entity, and we de-structure the architectural schema in pieces and
explain each one of them until we glue them back together again. Then, we present the
web application’s technologies stack, which we used and how we blended them together.
Next, we analyze the coding design patterns that we used and how we assure that the
web application is designed with main concerns the scalability, maintainability, reusability
and performance. Finally, we explain the importance of visualizations and how we
managed to select which visualization charts and graphs fit better to our use cases.
In the fourth chapter, we present an overview of the different functionality offered from
the web application we created. In the beginning we refer to every screen of the
application and the value that each one tries to offer for the application’s users. Then, we
continue with some example use cases, that handle main user concerns like data sharing
among users, data discovery using search, data projection and predictability using
visualizations, data cleansing, data filtering, data import from csv formatted file, data and
filtered data extraction to csv format, data history saving, data exploration with navigation,
data and filtered data visualization for comparisons, composition, understanding,
distribution, trend and relations analysis purposes based on criteria, data additions,
editing and deletions Finally, we make a comparison with some of the best tools
nowadays for data-selection and visualization.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 32

In the final chapter, we present the conclusions of this thesis and what can be done to
expand or improve this software. We start by making an overview of all chapters and then
we focus on the value that this tool gives to our users. Then, we continue with some
statements about the process Kanban model that we uses by setting 2 statistics that
derive from the Kanban board, and pose some possible future extensions and
improvements.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 33

2. LIVER

2.1 Introduction

In this chapter we will take an insight look in the liver in order to better understand the
factors that lead the liver to pathological conditions. General information regarding its
importance for the human organism and in more detail for the anatomy, macroscopically
and microscopically will be presented in subsection 2.2. The three main surfaces that the
liver possess; superior, inferior and posterior and what are the main factors of the liver
lobe. Also, as the liver regulates a wide variety of reactions, some of them will be analyzed
in this subsection. Liver glucose metabolism, liver fatty acid metabolism, metabolism of
amino acids and protein synthesis are some of the functions of liver which are disturbed
when alcohol is consumed for a long period of time.
The position of the liver is a site that is vulnerable to the passing of infection. In the next
subsection 2.3 an overview of the diseases that occur in the liver is presented, a
connection between the reasons of alcohol consumption and liver disease. Moreover,
liver inflammation will be analysed as being the cause of chronic liver disease that can
lead to death.
At the last subsection 2.4, alcoholic liver disease (ALD) will be presented focusing on the
epidemiology, pathogenesis and lastly diagnosis.

2.2 Importance of liver

First of all, the terminology related to the liver often starts in hepat- from ἡπατο-, which is
the Greek word for liver. The liver is an organ only found in vertebrates with the main
functions of detoxifying various metabolites, synthesizing vitamins and produces
biochemicals which are necessary for digestion. Basically, it filters blood coming from the
digestive track, before passing it to the rest of the body. It receives 30% of the blood
circulating in our system every minute and performs chemical reactions to remove harmful
toxins and distribute and store essential nutrients. Also, it is the largest gland of the
human body and has both external and internal secretions which are formed in the hepatic
cells. Hepatocytes are the liver’s highly specialized cells which regulate a wide variety of
reactions. The liver counts approximately 500 functions.
The liver is a reddish-brown, wedge-shaped organ with four lobes of unequal size and
shape. In humans it is located in the upper and right part of the abdominal cavity, below
the diaphragm. In the male it weights from 1400 to 1600g and in the female 1200 to
1400g. It is relatively larger in the fetus than in the adult, consisting about one-eighteenth
in the fetus and one thirty-sixth of the entire body weight of the adult. Its other roles
in metabolism include the regulation of glycogen storage, decomposition of red blood
cells and the production of hormones.
Normally, you cannot feel the liver because it is protected by the rib-cage. In order for the
liver to stay in place there are several attachments that contribute. Attaching with the
diaphragm by the coronary and triangular ligaments and the intervening connective tissue
of the uncovered area, together with the connection of the inferior vena cava by the
connective tissue and hepatic veins would hold up the posterior part of the liver. Several
pressure support such as that of the abdominal visceral whose muscular walls are always
in tonic contraction. Moreover, the atmospheric pressure holds the superior surface of the
liver perfectly fitted under the diaphragm, holding against it. Also, the superior surface is
held up by the negative pressure in the thorax.
The liver is connected to two large blood vessels: the hepatic artery and the portal vein
and common hepatic duct. The hepatic artery carries oxygen-rich blood from the aorta

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 34

via the celiac plexus, whereas the portal vein carries blood rich in digested nutrients from
the entire gastrointestinal tract and also from the spleen and pancreas. These blood
vessels subdivide into small capillaries, which then lead to lobules. The lobules are held
together by a fine, dense, irregular, fibro elastic connective tissue layer which extends
from the fibrous capsule covering the entire liver known as Glisson's capsule.

Picture 1: Capillaries lead to lobules [1]

As said before the liver is one of the most vital organs, not only it executes multiple
reactions for the production of vital components, but also because its’ biochemistry is so
complex that no one understands all the functions it serves, or the details of how it works,
making it difficult to mimic all the functions completely. Artificial livers are yet to be
developed to promote long-term replacement. As a short term replacement is the howl
and mid liver transplantation which are the only options for liver failure.1
2.2.1 Anatomy

First of all, the liver has upper and a lower surface analogous to its’ position. Its upper
surface is entirely diaphragmatic and its lower surface is directed to the other abdominal
organs and abuts the abdominal esophagus, the stomach, the duodenum and the
kidneys. For presenting the anatomy of the liver we will move from the exterior to the
interior and the construction units developing the structure of the liver.
The liver is composed of three surfaces; the superior, the inferior and the posterior.

Picture 2: Superior Surface [2]

The superior surface is attached to the diaphragm and anterior abdominal wall by a
triangular or falciform fold of peritoneum, the falciform ligament. The line of attachment of
the falciform ligament divides the liver into two parts, termed the right and left lobes, the

1 https://en.wikipedia.org/wiki/Liver

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 35

right being much larger. A line can be imagined running from the left of the vena cava and
all the way forward to divide the liver and gallbladder into two halves. This line is called
"Cantlie's line".
The superior surface comprises a part of both lobes, and, as a whole, is convex, and
fits under the vault of the diaphragm. Its middle part lies behind the xiphoid process, and,
in the angle between the diverging rib cartilage of opposite sides, is in contact with the
abdominal wall. Behind this the diaphragm separates the liver from the lower part of the
lungs and pleura, the heart and pericardium and the right costal arches from the seventh
to the eleventh inclusive. On the diaphragmatic surface, apart from a triangular bare
area where it connects to the diaphragm, the liver is covered by a thin, double-
layered membrane, the peritoneum. This surface covers the convex shape of the two
lobes where it accommodates the shape of the diaphragm. The peritoneum folds back on
itself to form the falciform ligament and the right and left triangular ligaments. [2]

Picture 3: Inferior Surface [2]

The inferior and posterior surfaces are divided into four lobes by five fossa. The left
limb it is known as the left sagittal fossa, and consists of two parts, viz., the fossa for the
umbilical vein in front and the fossa for the ductus venosus behind. The right limb is
formed in front by the fossa for the gall-bladder, and behind by the fossa for the inferior
vena cava; these two fossa are separated from one another by a band of liver substance,
termed the caudate process. The bar connecting the two limbs is the porta in front of it is
the quadrate lobe, behind it the caudate lobe. [2]
The inferior surface is uneven, concave, directed downward, backward, and to the left.
The surface is almost completely invested by peritoneum; the only parts devoid of this
covering are where the gall-bladder is attached to the liver, and at the porta hepatis where
the two layers of the lesser omen tum are separated from each other by the blood vessels
and ducts of the liver. The inferior surface of the left lobe presents behind and to the left
the gastric impression and to the right of this a rounded eminence. The under surface of
the right lobe is divided into two unequal portions by the fossa for the gall-bladder; the
portion to the left, the smaller of the two, is the quadrate lobe, and is in relation with the
pyloric end of the stomach, the superior portion of the duodenum, and the transverse
colon. [2]
The portion of the under surface of the right lobe to the right of the fossa for the gall-
bladder presents two impressions, one situated behind the other, and separated by a
ridge. The anterior of these two impressions, the colic impression, is shallow and is
produced by the right colic flexure; the posterior. Medial to the renal impression is a third
and slightly marked impression, lying between it and the neck of the gall-bladder. This is
caused by the descending portion of the duodenum, and is known as the duodenal
impression. Just in front of the inferior vena cava is a narrow strip of liver tissue,

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 36

the caudate process, which connects the right inferior angle of the caudate lobe to the
under surface of the right lobe. [2]

The posterior surface is rounded and broad behind the right lobe, but narrow on the left.
Over a large part of its extent it is not covered by peritoneum. It is marked off from the
upper surface by the line of reflection of the upper layer of the coronary ligament, and from
the under surface by the line of reflection of the lower layer of the coronary ligament. The
central part of the posterior surface presents a deep concavity which is moulded on the
vertebral column and crura of the diaphragm. To the right of this the inferior vena cava is
lodged in its fossa between the uncovered area and the caudate lobe. To the left of the
inferior vena cava is the caudate lobe. Its lower end projects and forms part of the
posterior boundary of the porta; on the right, it is connected with the under surface of the
right lobe of the liver by the caudate process, and on the left it presents the papillary
process. Its posterior surface rests upon the diaphragm, being separated from it merely
by the upper part of the omental bursa. To the left of the fossa for the ductus venosus is
a groove in which lies the antrum cardiacum of the esophagus. [2]

2.2.2 Microscopic anatomy

The substance of the liver is composed of lobules, held together by an extremely fine
areolar tissue, in which ramify the portal vein, hepatic ducts, hepatic artery, hepatic veins,
lymphatics, and nerves; the whole being invested by a serous and a fibrous coat.

Picture 5: Microscopic anatomy of liver [1]

Picture 4: Posterior Surface [2]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 37

Microscopically, each liver lobe is seen to be made up of hepatic lobules. The lobules are
roughly hexagonal, and consist of plates of hepatocytes radiating from a central vein. The
central vein joins to the hepatic vein to carry blood out from the liver. A distinctive
component of a lobule is the portal triad, which can be found running along each of the
lobule's corners. Between the hepatocyte plates are liver sinusoids, which are enlarged
capillaries through which blood from the hepatic portal vein and hepatic artery enters via
the portal triads, then drains to the central vein.
Each lobule consists of a mass of cells, hepatic cells, arranged in irregular radiating
columns between which are the blood channels (sinusoids). These convey the blood from
the circumference to the center of the lobule, and end in the intralobular vein, which runs
through its center, to open at its base into one of the sublobular veins. Between the cells
are also the minute bile capillaries. Therefore, in the lobule there are all the essentials of
a secreting gland; that is to say: cells, by which the secretion is formed; blood vessels, in
close relation with the cells, containing the blood from which the secretion is derived; and
ducts, by which the secretion, when formed, is carried away.
The liver is generally comprised of hepatocytes, which make up approximately two thirds
of its total cell population (60%-70%) and non-parenchymal cells (30%-40%). The
population of non-parenchymal cells includes liver sinusoidal endothelial cells (LSEC)
(approximately 50%), Kupffer cells (approximately 20%), lymphocytes (approximately
25%), biliary cells (approximately 5%), hepatic stellate cells (HSCs). About 70–85% of
the liver volume is occupied by parenchymal hepatocytes. Non-parenchymal cells
constitute 40% of the total number of liver cells but only 6.5% of its volume. The liver
sinusoids also contain sinusoidal endothelial cells, phagocytic Kupffer cells, adipocytes,
“pit” cells and epithelial cells which cover the choleaggia. The endothelial cells are
responsible for the wall of the colposids. The Kupffer cells are macrophage cells
associated with the endothelium in the blood vessels and come to contact with almost all
of the blood from the gastrointestinal (which means the possible existence of endotoxin
bacteria). They make up the 1/3 of reticulocyte cells and are involved in the catabolism of
red blood cells. Numerous macrophages are located in the lumen of the colposids with
the task of microbial phagocytosis, T-cell stimulation and the production of substances
such as prostaglandins, growth factors and peptidases. [2] [3]
[4] [5]

2.2.3 Functions

The liver is the largest reticuloendothelial metabolic organ and gland of the human body.
It governs body energy metabolism and secretes valuable hormones. It works as a sensor
and a controller of glycerol and glycogen as well as for many hormones like insulin,
bilirubin and angiotensinogen in order to maintain the stability of our organism. Moreover,
it is the exclusive organ for the biosynthesis of urea by converting ammonia, the
metabolism of glycogen to glucose and the synthesis of heparin. It basically acts as a hub
to metabolically connect to various tissues, including skeletal muscle and adipose tissue.
Food is digested in the gastrointestinal (GI) tract, and glucose, fatty acids, and amino
acids are absorbed into the bloodstream and transported to the liver through the portal
vein circulation system. Liver is the place where carbohydrate, protein, amino acid and
lipid metabolism happens.
Liver produces bile which is transferred by the biliary duct into the duodenum or it is either
stored in the gal-bladder via the cystic duct. Also, it plays a major role in the detoxification
through modifying toxic substances e.g. through methylation. It acts as a storing tank for
multiple substances including glycogen, vitamin A, vitamin D, vitamin B12, vitamin K, iron
and copper. The phagocyte system that exists due to the Kupffer cells is responsible for

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 38

immunological effects, as these cells act as ‘sieve’ for antigens. The liver is the primary
site of synthesis of nearly all coagulation factors. [6]

The functions of a normal liver are presented in the following table:

Table 1: Functions of a normal liver [7] [8]

2.2.3.1 Liver glucose metabolism
The liver is a pioneer in regulating carbohydrate metabolism and in particular in
maintaining stable blood glucose levels, which is controlled by hormone levels such as
insulin, glucagon, and under stress conditions (e.g., trauma, septicemia) of growth
hormone and catecholamines). Takes about 50% of the glucose from the circulation,
absorbed by the intestine and converts it to glycogen by 5% and to triglycerides by 35%.
Blood glucose enters hepatocytes via a plasma membrane glucose transporter (GLUT2).
Hepatocyte-specific deletion of GLUT2, blocks hepatocyte glucose uptake. Glucose is
phosphorylated by glucokinase in hepatocytes to generate glucose 6-phosphate (G6P),
leading to a reduction in intracellular glucose concentrations which further increases
glucose uptake. Moreover, G6P is unable to be transported by glucose transporters, so it

No. Function

1 Liver glucose metabolism

2 Liver fatty acid metabolism

3 Amino acid metabolism

4 Detoxification

5 Protein metabolism and Synthesis

6 Metabolism and storing of Vitamin A

7 Metabolism of Vitamin D

8 Bile acid production and metabolism

9 Blood coagulation

10 Excretion of enzymes and bicarbonate ions

11 Drug Metabolism and Excretion-Detoxification

12 Immunological function

13 Absorbing and metabolizing bilirubin

14 Synthesis of angiotensinogen

15 Protective functions and clearance functions

16 Production of urea

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 39

is retained within hepatocytes. In the fed state, G6P acts as a precursor for glycogen
synthesis (glycogenogenesis). It is also metabolized to generate pyruvate through
glycolysis. Pyruvate is channelled into the mitochondria and completely oxidized to
generate ATP through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation.
Alternatively, pyruvate is used to synthesize fatty acids through lipogenesis. G6P is also
metabolized via the pentose phosphate pathway to generate NADPH. NADPH is required
for lipogenesis and biosynthesis of other bioactive molecules. In the fasted state, G6P is
transported into the endoplasmic reticulum (ER) and dephosphorylated by glucose-6-
phosphatase (G6Pase) to release glucose (glycogenolysis).
The above procedures appear to be hormone dependent. In particular, insulin is
stimulated by elevated glucose levels during the meal thus promoting glycogen synthesis
while glucagon is excited when plasma glucose levels tend to decrease and thus promote
cleavage glycogen. The relationship between insulin and glucagon is important for
hunger. Consequently, blood glucose concentration remains stable despite steep and
broad changes in the rate of uptake and its consumption rate.
In individuals with liver disease there are large fluctuations in blood glucose levels. There
is insulin resistance or decreased catabolism or increased insulin secretion and thus
hyperglycemia is accompanied by elevated levels of insulin during fasting or post-meal
times. [6] [9] [10]
2.2.3.2 Liver fatty acid metabolism
When carbohydrates are abundant, the liver not only utilizes glucose as the main
metabolic fuel but also converts glucose into fatty acids. Hepatocytes also obtain fatty
acids from the bloodstream, which are released from adipose tissue or absorbed from
food digestion in the GI. Fatty acids are esterified with glycerol 3-phosphate to generate
TAG or with cholesterol to produce cholesterol esters. TAG and cholesterol esters are
either stored in lipid droplets within hepatocytes or secreted into the circulation as VLDL
particles. Fatty acids are also incorporated into phospholipids, which are an essential
component of cell membranes, and the surface layer of lipid droplets, VLDL, and bile
particles. In the liver, the synthesis of two enzymes involved in metabolism is made of
lipids, lecithin-cholesterol-acyl-transferase (LCAT), responsible for plasma esterification
of cholesterol and hepatic lipase disrupts triglycerides on the surface of hepatic colposids.
Also, cholesterol is synthesized by 80% of acetyl synergy A via a metabolic pathway that
binds carbohydrate metabolism to fat metabolism. Cholesterol is used in many metabolic
pathways, including bile acid production in the liver itself. It is primarily composed of
hepatocytes because it is needed for the secretion of triglyceride-rich lipoproteins.
The triglycerides and cholesterol synthesized in the liver are taken up by the VLDL and
secreted into the plasma. The liver contributes significantly to the removal of cholesterol
from the plasma as the hepatocytes are the richest in LDL receptors. In addition, dietary
fiber is processed into lipoproteins, which enter the blood for peripheral metabolism.
During the meal, ingestion of dietary carbohydrates promotes lipid synthesis in the liver
to convert carbohydrates to TG for long term storage. In the fasted state, fatty acids are
oxidized mainly in the mitochondria to generate energy supply (ADP) necessary for
gluconeogenesis, as well as ketone bodies.
Also, the liver synthesizes free fatty acids (FFA) when there is an increased supply of
carbohydrates, but it also receives free fatty acids that have been released by triggering
fatty tissue triglycerides from the effects of certain hormones such as adrenaline and
glucocorticoids. [6] [11] [12] [13]
2.2.3.3 Metabolism of amino acids and proteins
The proteins are hydrolyzed to amino acids, dipeptides and are absorbed. The amino
acid metabolic processes are performed in the liver. During amino acid metabolism,

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 40

ammonia is produced and due to its’ toxicity it is converted into urea, which is not toxic.
Through the urea cycle the liver makes sure that the excess nitrogen derived from amino
acids is converted. The liver is a major protein metabolism site, with urea reproduction.
Only in severe cases of liver damage the synthesis of urea decreases, resulting in an
increase in ammonia. Some of the points and the symptoms of chronic liver disease are
due to inadequate synthesis of these vital proteins.
After lunch, the concentration of amino acids in the portal circulation is up to 55%
approximately. When the concentration limits are exceeded, the surplus is metabolised.
The branched-chain amino acids, on the other hand, are transferred to muscles and fat
where they are metabolised. In the fasted state, the glucose-alanine cycle is a way of
removing nitrogen from amino acid catabolism in muscles during periods of increased
proteolysis and is transferred to the liver where it is converted to glucose through
neoglycogenesis. [6] [14] [15]
2.2.3.4 Protein synthesis
The liver is the main organ for the synthesis of plasma proteins such as albumin. Albumin
contributes to plasma cholelithiasis by reducing the synthesis rate when fasting and the
opposite when pathological loss of albumen is noted. The same happens due to the
synthesis or transport of various substances, organic anions and cations, hormones,
tryptophan, bilirubin, trace elements, drugs, fatty acids, lipoproteins, angiotensinogen,
insulin-like growth factor and clotting factors such as fibrinogen, prothrombin and agents
V, VII, VIII, IX, X, XI, XII, XIII, ferrous and copper-associated proteins and acute phase
proteins. Other proteins synthesized in the liver are transferrin, seruloplasmin, α-1-
antitrypsin, α and β globins, cyanoplasmin, ferritin, haptoglobin, lipoproteins and
hemocutin.
Through the production of these proteins, liver does not only play an important role in
plasma cholelithiasis but in the blood coagulation as well, in the regulation of blood
pressure, in the physical development and metabolism. In liver damage, plasma proteins
such as fibrinogen, haptoglobin, C-reactive protein, α-1-antitrypsin and other α and β-
globins, are increased. [16] [17]
2.2.3.5 Coagulation
The liver produces many of the coagulation factors including prothrombin (II) and
fibrinogen (I) as well as factors V, VI, VIII, IX, X, XI, XII, XIII. The synthesis of factors II,
VII, IX, X is essential for the gastrointestinal absorption of vitamin K which is needed to
produce the anticoagulant agents. In conditions where there is a major hepatocellular
disaster, the plasma levels of factors II, V, VII, IX and X are reduced, and it is very rare to
find low levels of fibrinogen (I) unless diffuse intravascular coagulation coexists.
Insufficient production of factors coagulation induces disturbances in the mechanism of
both the intrinsic and exogenous coagulation pathway. This disorder is detected in vitro
by prolongation of prothrombin time and partial thromboplasty time. When this is due to
a disorder of vitamin K absorption then the administration parenteral vitamin K normalizes
the disorder. [18]
2.2.3.6 Detoxification
Many substances produced in the body are present in the liver conversions that often
result in their inactivation, including steroid hormones (corticosteroids, estrogen,
progesterone), which are linked to glucuronide, are converted into water-soluble
derivatives that are easily eliminated by them kidneys, the proteins of protein metabolites
as well as a variety of foreign particles. It also detoxifies many metabolites, especially
nitrate elements, hormones and drugs. It is a useful protective measure, since toxic
substances are absorbed from the intestine must pass through the liver before they reach
the rest of the body.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 41

Significant is the liver's contribution to inactivation and elimination of ammonia which in
high concentrations is particularly toxic in contrast to urea produced which is not toxic and
is easily eliminated from the kidneys. Very important is the role of the liver and metabolism
of exogenous substances, in particular the cytochrome P-450 and the reduced
glutathione. P-450 plays a key-role in metabolism and metabolism excretion of many
drugs. Substances that stimulate P-450 are barbiturates, sedatives, antihistamines,
analgesics, insecticides, polycyclic hydrocarbons and others.
Glutathione is found at high concentrations in hepatic cells primarily in its reduced form
(GSH), and its biological role lies in the inactivation of oxidizing substances such as
peroxide hydrogen or free radicals. Glutathione serves as substrate of many phase II
coupling reactions of detoxification medicines. Most of the enzymes involved in the
detoxification and excretion of drugs and other substances are found in the smooth
endoplasmic reticulum of hepatocytes. These metabolic pathways are involved not only
in the metabolism of drugs but also in the metabolism of endogenous substances (e.g.,
bilirubin and cholesterol) that are difficult to dispose otherwise from the cells. In most
cases the detoxifying function of the liver involves the conversion of lipophilic substances
to more hydrophilic compounds. The above procedures are known as biotransformations,
allowing certain substances to be excreted directly into the urine or to be excreted via
stool bile. The liver also participates indirectly in other functions such as maintaining the
balance of water and electrolytes. [19]
2.2.3.7 Transport and storage of chemical compounds
The liver is an important storehouse for a number of substances including iron, copper,
as well as the intake, transport, storage and activation of vitamins (mainly fatty acids A,
D, E, K and vitamin B12) and trace elements (zinc, iron, magnesia), which can be
increased too much in case of disease. For example, the amount of vitamin B12 stored
in the liver is sufficient for about one year if no vitamin is taken up with food.
The liver is being neutralized with drugs and toxic substances through phase I and II
biotransformation reactions and then biliary excretion. The conversion by bile, fat and fat-
soluble vitamins into food water-soluble compounds, for the purpose of their uptake by
enterocytes. At the same time, the liver has the composition and secretion of various
protein carriers such as transferrin, the steroidal carrier globulin hormones, thyroid
hormone carrier globulin, seruloplasmin and metallothionein. In some cases the liver can,
by interaction with proteins, accumulate and store a high concentration of certain
substances in a non-toxic form. An example is iron which is a key nutrient. Free iron is
toxic to cells both directly and indirectly. The liver produces proteins essential for binding
and for iron metabolism. Thus, the liver synthesizes and secretes into the blood the
transferrin, an iron carrier protein. The transferrin is then released from iron (due to pH
reduction) and is linked to the cytoplasm of the hepatocyte with ferritin, a cytoplasmic iron
storage protein. Liver, also performs the synthesis and secretion of VLDL and pre-HDL
lipoproteins and their removal from circulation HDL, LDL and chylomicron residues. [16]
2.2.3.8 Purification operations and protective functions
Many of the liver functions can be considered such as the detoxification of drugs and the
elimination excess cholesterol in the bile after conversion to a water-soluble form. The
liver participates in the removal of bacteria and antigens that pass the bowel barrier and
enter the portal circulation. It contributes to the purification of blood from endogenously
produced cellular comparisons on the surface of Kupffer cells where there are specific
receptors that bind glycoproteins, immunoglobulin-coated molecules or complement,
thereby identifying altered plasma proteins, activated factors coagulation, immune
complexes, aged erythrocytes, etc. In liver:

• The ammonia is cleared through the urea cycle.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 42

• Drugs are detoxified by microsomal oxidases and coupling systems.
• Glutathione is synthesized and excreted.
• Portal circulation is cleared from dead cells and proteins, hormones, drugs and

activated clotting factors and clearance of portal circulation from bacteria and
antigens. Bilirubin is a product of degradation of hemoglobin and is excreted from
the liver in the bile. [20]

2.2.3.9 Regeneration
Many of the liver functions can be considered such as the detoxification of drugs and its
The liver is the only visceral organ that can regenerate. It can regenerate completely, as
long as a minimum of 25 percent of the tissue remains. The liver can regrow to its previous
size and ability without any loss of function during the growth process. In humans, the
process takes slightly longer, but regeneration can still occur in 8 to 15 days - an incredible
achievement, given the size and complexity of the organ. Over the following few weeks,
the new liver tissue becomes indistinguishable from the original tissue. This regeneration
is organized by a number of compounds, including growth factors and cytokines.
The liver primarily processes nutrients from food, synthesizes bile, removes toxins from
the body and produces proteins. Inflammation of the liver, or hepatitis, interferes with
these important functions and can lead disease onset. Fortunately, the liver is extremely
resilient and most cases of liver inflammation don't even come to medical attention, but
in cases of the severe liver disease, there can be a serious interruption of these essential
liver functions. When the liver is severely damaged, such as in liver failure, it can't
continue to process nutrients from the blood. Without aggressive medical care, the
absence of these essential liver functions can result in signs of serious illness like brain
damage and coma. [21]

2.3 Diseases

The liver is a vital organ and supports almost every other organ in the body. Because of
its strategic location and multidimensional functions, the liver is also prone to many
diseases. The bare area of the liver is a site that is vulnerable to the passing of infection
from the abdominal cavity to the thoracic cavity.
2.3.1 Alcohol consumption and Liver Diseases

Evidence is overwhelming about the link between excessive use of alcohol and a wide
range of harmful outcomes including mortality. The conditions that lead to excessive
alcohol consumption in some individuals and not in others are very complex. Alcoholism
is a multigenic disorder involving interactions between genetic, psychosocial,
environmental, and neurobiological factors. The pharmacological effects of ethanol that
support alcohol reward and alcohol seeking behaviour involve actions of multiple
receptors and neurochemical systems occurring throughout the body.
Neuropharmacology provided evidence for specific neurochemical mechanisms in the
brain that can lead to chronic alcohol consumption. There are many neurotransmitter
systems that become deregulated during the development of alcohol dependence,
including gamma (γ)- aminobutyric acid (GABA), opioid peptides, glutamate, serotonin
and dopamine systems.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 43

Further, alcohol use often exacerbates liver injury, as it coexists with other factors (e.g.
viral hepatitis). According to the World Health Organization (WHO), about 2 billion people
consume alcohol worldwide and upwards of 75 million are diagnosed with AUDs (Alcohol
Used Disorders). Worldwide annual consumption in 2010 was 6.2 liters of alcohol per
person aged 15 years or older. In Belarus, Moldova and Lithuania, annual per capita
alcohol consumption was above 15 liters. Age-standardized heavy drinking was highest
in European countries. In addition, the highest percentage of 15–19 years old who drink
heavily was seen in Germany, the Netherlands and France. In 2012, about 3.3 million
deaths (5.9% of all global deaths) were attributed to alcohol consumption. In 2012, 139
million DALYs (Disability-Adjusted Life Years), or 5.1% of the global burden of disease
and injury, were attributed to alcohol consumption. Alcohol is the leading global risk factor
for death and DALYs among those less than 20 years old. Globally, over 50% of mortality
related to cirrhosis is attributed to alcohol misuse. [22] [23]

 *Data available from Global Health Estimates 2015 : Disease burden by Cause, Age, Sex, by Country and by Region.
Liver transplantation is the second most common solid organ transplantation, yet less
than 10% of global transplantation needs are met at current rates. Though these numbers
are sobering, they highlight an important opportunity to improve public health given that
most causes of liver diseases are preventable
2.3.2 Liver inflammation is the key of chronic liver disease (CLD) progression

The progression of CLDs is known to depend upon the combination of different causes
(i.e. Hepatitis B virus (HBV) - Hepatitis C virus (HCV) co-infection, excess alcohol
consumption or NASH (non-alcoholic steato-hepatitis) associated with CHB. CLDs are
not generally recognized by physicians because of the absence of symptoms and limited
biochemical abnormalities. The extent of the global public health burden of CLDs,
whatever the cause, is not well known and is certainly underestimated.
Liver inflammation can cause the necrosis of hepatocyte cells, leading to fibrosis and
further deterioration to advanced-stage cirrhosis. Even after cirrhosis has developed,
continued fibrogenesis causes even more deterioration to advanced-stage cirrhosis and
then hepatocellular carcinoma (HCC) , causing morbidity and mortality.
However based on the following diagram fibrosis seems to be a consequence, not the
cause, due to moderate and marked Necro-inflammation. Necro-inflammation is known
to be independent of viral load in CHB and CHC and is not correlated with the height of
alcohol consumption.
Histological scores included the grade of inflammation in addition to the stage of fibrosis,
to determine the prognosis of CLD and the indication for therapy. Also, non-progressive
ALD versus progressive ALD is defined by the presence of inflammation (alcoholic
hepatitis). Non-progressive NAFLD is differentiated from progressive NAFLD (NASH) by
the presence of inflammation. The grade of Necro-inflammation is known to be correlated
with the stage of fibrosis and its prognosis in CLD. Indeed, in large histology studies
performed in CHC patients, the stage of fibrosis is correlated with the grade of Necro-
inflammation. The progression of CLD is driven by Necro-inflammation. This is
demonstrated by the histological effect of antiviral treatments in CHB and CHC, which are

Table 2: Global morbidity related to chronic liver disease, 2015 [23]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 44

associated with the disappearance of Necro-inflammation and the regression of fibrosis,
even in patients with cirrhosis. Finally, stopping inflammation stops the fibro genesis
process and allows natural fibrolysis to occur. Thus, inflammation should be the target of
therapy and better knowledge of the mechanisms responsible for the excessive immune
response in different CLDs is needed to develop more effective therapies. [23]
Alcohol is the main risk factor of cirrhosis in Europe, where 1.8% of all deaths are
attributable to liver disease. Although alcohol per se is the most important risk factor for
alcoholic cirrhosis, only about 35% of heavy drinkers develop the disease and there is
not a clear dose-response pattern. Moreover, even light drinkers, who consume one to
two drinks a day, are at increased risk of alcoholic cirrhosis compared to abstainers.
Alcohol use is therefore a bad predictor for the development of liver cirrhosis. Genetic
and environmental risk factors do also not explain the substantial inter
individual differences in susceptibility to ALF. [23] [24] [25]

2.4 Alcoholic liver disease (ALD)

In this chapter section we will refer generally to the alcoholic liver disease emphasizing
qualitative and quantitative characteristics associated with epidemiology, pathogenesis
and diagnosis.
2.4.1 Definition and Epidemiology

Alcoholic liver disease is a result of overconsuming alcohol that damages the liver,
leading to a build-up of adiocytes, inflammation, and scarring. Chronic alcohol overuse
causes alcoholic liver fibrosis (ALF). Currently, the pathophysiology of ALF is not
completely understood due to its heterogeneous nature. Continuous exposure to alcohol
in susceptible individuals induces a damage repair process that results in imbalanced
tissue turnover with accumulation of extracellular matrix proteins and liver fibrosis.
Alcoholic cirrhosis is considered irreversible, but its precursor, liver fibrosis, is reversible
if detected early.[26] [27]
The end stage of fibrotic liver disease, cirrhosis, is the most frequent single disease
entity attributed to alcohol overuse. The spectrum of alcoholic liver disease includes
steatosis, steatohepatitis, alcoholic fibrosis and cirrhosis. Alcoholic hepatitis is the acute
manifestation whereas ALF is the long term consequence ultimately leading to cirrhosis.
Age difference

Picture 6: Liver diseases [23]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 45

Alcohol abuse can be found in all age groups. Drinking often starts at a relatively young
age. A 2002 study found that 28.6% of high-school seniors admitted to having five or
more drinks in the previous 2 weeks, an increase from 27.5% in 1993. In fact, underage
drinkers consumed 19.7% of the total alcohol consumed in 2002. At the other end of the
age spectrum, a study of elderly patients presenting to an emergency room found that
24% of those over 65 met criteria for alcohol abuse or problem drinking. However, most
of those affected by alcohol are between the two age ranges. The age group at highest
risk for hospitalizations due to alcohol related liver diseases remains those between 45
and 64, with a prevalence of 94.8 per 10,000. The prevalence rate in 25 to 44 year olds
is approximately 60. In elderly hospitalized patients, the prevalence of alcohol-related
diagnoses ranges from 48.2 - 54.7 per 10,000 for men and 14.8 per 10,000 for women to
65.1 per 10,000. The overall prevalence decreases with increasing age, but the
prevalence always remains higher for men than for women. There is also a considerable
geographic variation in alcohol-related. [28]
Males and Females

Alcohol abuse and alcoholic liver disease are found predominately in men. In an Italian
study by Bellentani et al, there was a 9:1 ratio of men to women with cirrhosis in the
general population. However, 13 to 33% of Americans who are either abusing alcohol or
depend on it are women. In addition, alcohol consumption by women is increasing in the
United States, as well as in Europe and Asia. Women throughout the world, on average,
consume less alcohol than men do (43.8 g/d in men versus 15.7 g/d in women) and are
less likely to be heavy users when compared with men, but the duration of drinking is
similar in both sexes. Women have an increased susceptibility to the detrimental effects
of alcohol.
A 12-year study of 13,000 men and women found that women have a higher risk of
developing cirrhosis than men do for any given level of alcohol intake. In men, the risk of
cirrhosis increases with daily alcohol intake greater than 40 to 80 g/d. Women have a
lower threshold and are considered to be at increased risk with daily alcohol intake greater
than 20 to 60 g/d. For example, in those who have 28 to 41 drinks per week, men were
found to have one third the risk of developing cirrhosis compared with women, and the
risk of cirrhosis in women consuming this amount of alcohol was 16 times higher than in
abstinent women.
In addition, there is a more rapid development of liver disease in women who abuse
alcohol as compared with men, and the progression of liver disease in women with
alcoholic hepatitis who either continue drinking or stop drinking is greater. Not all studies
found an increased risk of alcoholic liver disease in women. In the population-based
Dionysus study, there was no gender difference in the susceptibility to alcoholic liver
disease. However, there was a non–statistically significant increase in the risk of
developing alcoholic liver disease in women with alcohol intake in the 30 to 80 g/d range.
Multiple mechanisms for this increased susceptibility to alcohol-related liver injury in
women have been postulated. These mechanisms include differences in endotoxin levels
and gut permeability to endotoxin, the effect of estrogen and androgens on endotoxin and
alcohol-mediated liver injury, and differences in alcohol elimination rates in women either
because of variations in first-pass metabolism or enzymatic activity or because of
differences in volumes of distribution and peak blood alcohol levels. [28]

2.4.2 Pathogenesis

Anyone interested in the pathogenesis and treatment of ALD realizes that abstinence
from drinking is the ultimate answer to this huge problem that includes both societal and

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 46

health issues. Research devoted to the pathogenesis of hepatotoxicity has shifted from
the central role of malnutrition to direct alcohol hepatotoxicity to the final realization that
no one central mechanism is operative. The place of other factors as equally important in
the pathogenesis of ALD is emphasized by the clinical observation that only 15 to 20% of
alcoholics end up with end-stage liver disease. It is believed that multidisciplinary efforts
incorporating cell and molecular biology, immunology, and genetics will ultimately lead to
a deeper understanding of the pathogenesis of ALD as well as to improved treatment
modalities. [29] [30]

The pathogenesis of ALD can be conceptually divided into:

i. Ethanol mediated liver injury
ii. Inflammatory Immune response to injury
iii. Intestinal permeability and microbiome changes

Ethanol mediated liver injury, is related to mouse models like NIAAA where ad libitum
ethanol liquid is used for producing liver pathology limited to steatosis or steatohepatitis.
Also, the metabolism of ethanol is often correlated to the acetaldehyde metabolism from
aldehyde dehydrogenase (ALDH) in the mitochondria. In depletion of the isozyme,
accumulation of acetaldehyde, following a minor pathway which involves microsomal
enzyme oxidation system and results in lipid peroxidation, mitochondrial glutathione
depletion and S-adenosylmethionine depletion. The cytochrome that catalyzes the
reaction is induced in chronic alcoholism, contributing to liver injury. Moreover, alcohol
metabolism leads to oxidative stress and hepatocyte death. The damaged hepatocytes
can release endogenous DAMPs, which activate cellular pattern recognition receptors,
leading to activation of inflammation. Alcohol catbolic byproducts can regulate the
transcription factors of lipid turnover resulting in accumulation triglycerides, phospholipids
and cholesterol esters in hepatocyte, which characterizes steatosis. That is possible as
alcohol can regulate the transcription factors of lipid metabolism. SREBP-1c is
upregulated and SREBP-1c is downregulated, including AMPK, Sirtuin 1, adiponectin and
STAT3. Also, alcohol inhibits fatty acid oxidation by inhibiting the transcriptional activity
and downregulating PPAR-a. All these contribute to the development of steatosis.
Inflammatory Immune response to injury, is related to innate immune signalling in the
early stage of ALD with simple steatosis even before the onset of inflammation. After
activating interferon regulatory factor 3 (IRF3) with phosphorylases (after exposure to
alcohol), inflammation starts to develop. The IRF3 is necessary for the mitochondrial
apoptosis pathway and at the Kupffer cells, if in deficiency it can cause only marginal
damage. Moreover, certain receptors on Kupffer cells lead to the production of pro-
inflammatory cytokines (TNF-a), palmitic acid, the downregulation of proteasome
functions and can cause hepatocytes and HSCs to produce chemokines for neutrophil

Picture 7: Liver Dysbiosis [89]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 47

recruitment. Overwhelming bacterial infection can lead to multiorgan failure. T-cells
increased after lipid peroxidation are heightened with inflammation. PD-1,
immunoglobulin and mucin protein 3 (TIM-3) are inhibitory receptors on T lymphocytes
expressed during chronic inflammation, can lead to immune exhaustion. [31] [32]

Intestinal permeability and microbiome changes happen after alcoholic liver disease.
Bacterial overgrowth and a lower proportion of Bacteroidacceae and probiotic bacterial
such as Lactobacillus caused by intestinal dysmobility and alterations in bile acid pool.
What is known as “leaky gut” is a phenomenon found in patients with chronic alcohol
abuse and caused by higher level of plasma endotoxin.
Zinc deficiency is common in ALD. In animals zinc deficiency attenuates alcohol-induced
liver injury and impairs the intestinal barrier, leading to endotoxin-induced cytokine
production. Also, it can lead to downregulation of antioxidant enzymes like superoxide
dismutase 1.
Epigenetics and microRNAs (miRNAs) control the expression of genes involved in cell
growth, differentiation, and apoptosis, and are believed to be involved in the pathogenesis
of liver disease, particularly cancer. Short-term alcohol exposure upregulates miRNA-212
(intestinal permeability), miRNA-217 (lipid synthesis and reduction of fatty acid oxidation).
Chronic alcohol also decreases the expression of miRNA 196a and c, which are involved
in early regeneration. The expression of liver miRNAs has also been shown to be
significantly altered in alcohol-fed mice, but the functions of these miRNAs in the
pathogenesis of ALD are not clear. [29] [33]

2.4.3 Diagnosis

In clinical practice the separation of ALD from non-alcoholic fatty liver disease is difficult
as their histological alterations observed from patients are similar and the absence of liver
biopsy data is based on the self-reported history alcohol consumption of the patient. In
most cases the maximum level of alcohol consumption for the diagnosis of ALD is two
glasses of alcohol per day for men (140g ethanol / week) and one day for women (70g of
ethanol / week).

Picture 8: Liver Mechanisms after inflammation that lead to ALD [32]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 48

Alcoholic hepatitis is diagnosed predominantly on clinical history, physical examination,
and laboratory testing, although liver biopsy is often necessary.
Experimental evidence suggests that cytokine pathways signalling cell death are critical
in initiating and/or perpetuating alcohol-induced liver injury through apoptosis and
necrosis. In particular, apoptosis appears to be a prominent event in both clinical and
experimental alcoholic liver disease. The initial event may be mediated by the effects of
alcohol on the gut. [34]
In its early stages, ALD is a silent disease and can only be detected by laboratory tests
or imaging techniques. There are few programs aimed at early detection of ALD at its
asymptomatic stages. Some patients with early ALD can show stigmata of alcohol abuse
such as bilateral parotid gland hypertrophy, muscle wasting, malnutrition, Dupuytren’s
sign, and signs of peripheral neuropathy. However, some signs such as gynecomastia
and extensive spider angiomas may be more frequently seen in those with alcohol as the
main cause of liver disease. The diagnosis of ALD is frequently suspected upon
documentation of excessive alcohol consumption (>40–50 g/day) and the presence of
clinical and/or biological abnormalities suggestive of liver injury.
Laboratory blood tests such as mean corpuscular volume, gamma glutamyl
transpeptidase (GGT) and aspartate amino transferase (AST) can indicate early ALD
whereas advanced ALD is suspected if there is decreased albumin, increased INR,
elevated bilirubin level or low platelet count. There are several laboratory markers that
estimate persistent alcohol intake. Among them, carbohydrate deficient transferrin and
GGT are the most frequently used markers to detect previous alcohol consumption. In
patients with ALD, the AST/ALT ratio typically is greater than 1. This ratio is typically
greater than 2 in AH and can also be found in patients with advanced cirrhosis regardless
of the etiology.
Liver biopsy is not clearly indicated in patients with early stages of ALD or when
established cirrhosis is revealed by clinical, analytical and imaging data. The liver biopsy
can be done percutaneously in most patients but requires a transjugular approach in
patients with a low platelet count and/or a prolonged prothrombin time. The precise
indications of liver biopsy are not well established in routine practice. However, it is
suggested in patients with aggressive forms of ALD such as AH requiring specific
therapies (e.g., corticosteroids and/or pentoxifylline) and in patients with other cofactors
suspected of contributing to liver disease. In the setting of clinical trials, the assessment
of liver histology by performing a liver biopsy is recommended. The typical findings in
patients with ALD include steatosis, hepatocellular damage (ballooning and/or Mallory-
Denk bodies), an inflammatory infiltrate basically composed of PMN cells that
predominates in the lobules, and a variable degree of fibrosis and lobular distortion that
may progress to cirrhosis. For the assessment of liver fibrosis in patients with ALD, there
are non-invasive methods including serum markers and liver stiffness measurements.
Most non-invasive tests have been largely validated in patients with hepatitis C, while few
studies have included patients with ALD. Thus, AST to platelet ratio index (APRI),
FibroTest, Fibro meter, Hepascore, and Fibro sure can be useful in patients with ALD.
They are useful to distinguish between mild and severe fibrosis, but have limited utility in
intermediate degrees of fibrosis. In terms of prognostic value, FibroTest (AUROC for
survival = 0.79 ± 0.04), Fibro meter (0.80 ± 0.04) and Hepascore (0.78 ± 0.04) had a
prognostic value equivalent to liver biopsy (0.77 ± 0.04) [54]. Transient elastography
(Fibro Scan) is commonly used to assess fibrosis in patients with chronic liver disease.
Fibro Scan calculates an estimate, expressed in kPa (kilopascals), for the stiffness from
the measurement of wave velocity. The diagnostic threshold with the optimal diagnostic
value for the detection of cirrhosis varies.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 49

For society to be able to respond to this important challenge there is an urgent need to
better understand alcoholic liver disease mechanisms and develop new tools for early
diagnosis and monitoring of treatment effect, and better treatment options. [34]

2.5 Alcoholic liver disease (ALD) Data

Data are information and knowledge that can be represented as a set of values that any
subject can have. These values can either be qualitative or quantitative. Sometimes,
though, we use the word information or knowledge for the data that have been already
analyzed or processed, or we refer to data that have not been processed, as raw data.
Data is what consists any measurement, collection, report or analysis and many times it
is combined with visualizations using charts or images because it is easier for the human
mind to visualize, when trying to grasp what the data represents.
Raw data, is a collection of numbers or characters before it has been "cleaned" and
corrected by researchers. Raw data needs to be corrected to remove outliers or obvious
instrument or data entry errors. Data processing commonly occurs by stages, and the
"processed data" from one stage may be considered the "raw data" of the next
stage. Finally, there exist two main categories of raw data, the field data and the
experimental data, and our thesis is based on experimental data. Field data is raw data
that is collected in an uncontrolled "in situ" environment, while Experimental data is raw
data that is generated within the context of a scientific investigation by observation and
recording, using measurement tools for collecting them.
In this section we describe the data that our web-application’s database is filled with, in
order to visualize them efficiently for our users to extract meaningful conclusions. For
collecting the data we used the survey data collection of patients with ALD who agreed
to give specimens of their liver biopsies for experimentation. These surveys and liver
biopsies were received at the Odense University Hospital in Denmark. Then, with respect
to the user data privacy rules and having the patients given their consents, these raw data
were edited in order not-to be related directly to patients according to General Data
Protection Regulation(GDPR). The consents that the patients agreed in were to give their
specimens of liver biopsies for lab experimentation to help in finding possible reasons or
patterns that may result in suffering from ALD. [35]
The above consents allow access in patients’ data only from the researchers that are
participating in this research, and forbid any kind of sharing this data with legal penalties.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 50

Odense University Hospital has an immediate collaboration with the University of
Southern Denmark (SDU)2, and there has been created a research collaborative team
between SDU and BRFAA3 Dr. Anastasiadou4 Ema’s Lab5 with the main purpose to
analyze these patients data.

2.5.1 Data Categories

The data that was given for lab experimentation consisted of two types. The patients’
survey data collection, and the specimens of liver biopsies that were extracted at Odense
University Hospital.
This thesis purpose is to use the patient’s survey data collection to find patterns in patients
alcohol history, clinical, demographic, medication and comorbidity background. This data
is going to fill in the database of our web-tool and provide our users possible informative
visualizations. In later use, this web-tool will also be filled with experiment results of liver
biopsies and possibly provide enlightening information for relations among miRNA or
mRNA findings based on the liver biopsy specimens.
As mentioned before, the survey data collections consist of five main categories:
demographic data, clinical data, alcohol history data, comorbidity data, and medication
data. And all of these categories together consist of 479 distinct characteristics, that were
all extracted and given to our lab in a MS Excel file.
Below we give a short description about each category and refer to some of the most
important characteristics of each one.
Demographic Data

2 https://www.sdu.dk/en
3 http://www.bioacademy.gr/?lang=en
4 http://www.bioacademy.gr/faculty-details/H8o/ema?lang=en
5 http://www.bioacademy.gr/lab/anastasiadou?lang=en

Picture 9: Odense University Hospital

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 51

Demographic data6 is the data that is statistically socio-economic in nature such as
population, race, income, education and employment, which represent specific
geographic locations and are often associated with time. For example, when referring to
population demographic data, we have characteristics such as area population,
population growth or birthrate, ethnicity, density and distribution. With regard to
employment, we have employment and unemployment rates, which can be related further
to gender and ethnicity. In our case scenario the demographic data that were collected
consist of 18 characteristics: id, gender, age in years, age with score 0-5 for calculating
AP-index, smoking qualitative variables for smokers, ex-smokers and non-smokers,
smoking years, smoking volume, pack years, height (cm), weight (kg), body mass index
(kg/m2), waist circumference (cm), hip circumference (cm), waist-hip ratio, living
arrangements, employment status, longest education, parenthood, and income before
taxes (DKK/year).
All these characteristics are very useful for our data analysis use-cases, therefore
bibliography mostly looks for relations that have to do with age and gender.
Clinical Data
Clinical data7 is a staple resource for most health and medical research. Clinical data is
either collected during the course of ongoing patient care or as part of a formal clinical
trial program. There exist six major types of clinical data which are: Electronic health
records, administrative data, claims data, patient / disease registries, health surveys, and
clinical trials data. In our case scenario the clinical data that were collected consist of 296
characteristics, that will be attached with this thesis submission. All these characteristics
are very useful for our data analysis use-cases, therefore the ones that are more
interesting for being used in data visualizations are the following 18: histological
characterization, NAS fibrosis subscore, stage of fibrosis, NAS steatosis subscore,
histological inflammation (lobular and portal), steatohepatitis appearance, alcoholic
inflammation, Child-Pugh (A, B, C), Model of end-stage liver disease, FibroTest score,
ActiTest score, FIB-4 index, Age-Platelet index (0-10), Forns index, Transient
Elastography (kPa), 2D-SWE (kPa), and ascites appearance.
Historical Data
Historical data8, in a broad context, is collected data about past events and circumstances
pertaining to a particular subject, that are usually useful for predictive future data relations.
By definition, historical data includes most data generated either manually or
automatically within an enterprise, organization, government, or even individual persons.
In particular, in this thesis given data, the provided characteristics that were can be
classified as alcohol historical data are the following 14: patient’s abstinence at inclusion,
patient’s ongoing alcohol overuse (>2 units/day for women, >3 units/day for men), years
of excess drinking, years of alcohol abuse, number of current drinks/day, number of drinks
in the week up to inclusion, average drink units/week for the last 3 months, height of
alcohol consumption (drinks/day), years of abstinence, weeks since last drink (for patients
who quit drinking within the last 12 months), wine consumer (yes/no), beer consumer
(yes/no), spirits consumer (yes/no), fortified wine consumer (yes/no).
All these characteristics are very useful for our data analysis use-cases, and in many
cases there overlap. Though, for our visualization purposes the following five

6 https://www.techopedia.com/definition/30326/demographic-data
7 http://guides.lib.uw.edu/hsl/data/findclin
8 https://whatis.techtarget.com/definition/historical-data

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 52

characteristics cover our users’ needs: years of abstinence, ongoing alcohol overuse (>2
units/day for women, >3 units/day for men), years of excess drinking, height of alcohol
consumption (drinks/day) and years of abstinence.
Comorbidity Data
In medicine, comorbidity9 is the presence of one or more additional conditions co-
occurring with a primary condition. Comorbidity describes the effect of all other conditions
an individual patient might have other than the primary condition of interest. The term can
indicate either a condition existing simultaneously, but independently with another
condition or a related medical condition. The latter sense of the term may cause
some overlap with the medicine’s concept of complications. In our case scenario the
comorbidity relevant data that were collected consist of 22 characteristics, as follow: No
comorbidity, arterial hypertension, COPD, other lung disease, hypercholesterol_mi, atrial
fibrillation, heart failure / insufficiency, pacemaker and/or ICD unit, other heart disease,
myotonic dystrophy(DM), diabetes type 2 without complications, diabetes type 2 with
complications, chronic nephropathy, chronic pancreatitis, previous malignant disease
(diverted to planocellulart carcinoma), chronic skin disease, chronic rheumatological
disorder, depression, anxiety, other mental illness, chronic pain, and other chronic
disorder.
All these characteristics are very useful for our data analysis use-cases and relations
exploration, therefore bibliography mostly looks for relations that have to do with no
comorbidity, arterial hypertension, other heart disease, myotonic dystrophy(DM), and
chronic rheumatological disorder.
Medication Data
A medication10 is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy
(pharmacotherapy) is an important part of the medical field and relies on the science of
pharmacology for continual advancement and on pharmacy for appropriate management.
In our case scenario the clinical data that were collected consist of 49 characteristics, that
will be attached with this thesis submission. All these characteristics are very useful for
our data analysis use-cases, therefore the one that we mostly are interested for data-
visualization and diagnosis purposes is whether there were used antibiotics 3 months
prior to inclusion, as such a case may affect the quality of the visualized data.
To sum up, this thesis web-application tool hopefully is going to provide our research
team an ease at handling and visualizing the above data relations. Being able to easily
manipulate datasets and create charts and other visualizations offers users a tremendous
time-efficiency gain, which can result for researchers to truly research interesting data
relations and don’t have a great loss in their daily time for just trying to manipulate data
themselves and as a result missing possibly a significant use case experimentation
scenario due to lack of time.

9 https://en.wikipedia.org/wiki/Comorbidity
10 https://en.wikipedia.org/wiki/Medication

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 53

3. SOFTWARE DEVELOPMENT - BUSINESS CONCERNS

3.1 Introduction

In this chapter we analyze software development from a business point of view. We start
with the software development lifecycle and software release lifecycle, which consist of
development phases, release stages and the software versioning. This way we then refer
to working models and how they connect with software phases. We analyze two main
working models, Waterfall and Agile framework, their advantages, disadvantages and
their differences and then we write about our working model methodology, Agile Kanban,
and how we accomplished to use this. [35]

3.2 Software Development Life Cycle

The systems development life cycle (SDLC), also referred to as the application
development life-cycle, is a term used in systems engineering, information
systems and software engineering to describe a process for planning, creating, testing,
and deploying an information system. The systems development lifecycle concept applies
to a range of hardware and software configurations, as a system can be composed of
hardware only, software only, or a combination of both.

SDLC works by lowering the cost of software development while simultaneously
improving quality and shortening production time. SDLC achieves these apparently
divergent goals by following a plan that removes the typical pitfalls to software
development projects. That plan starts by evaluating existing systems for deficiencies.
Next, it defines the requirements of the new system. It then creates the software through
the stages of design, development, testing, and deployment. By anticipating costly
mistakes like failing to ask the end user for suggestions, SLDC can eliminate redundant
rework and after-the-fact fixes. [36] [37]

SDLC done right can allow the highest level of management control and documentation.
Several pitfalls can turn an SDLC implementation into more of a roadblock to
development than a tool that helps us. Failure to take into account the needs of customers
and all users and stakeholders can result in a poor understanding of the system
requirements at the outset. The benefits of SDLC only exist if the plan is followed faithfully.

The product life cycle describes the process for building information systems in a very
deliberate, structured and methodical way, reiterating each stage of the product's life. The
systems development life cycle, according to Elliott & Strachan & Radford (2004),
"originated in the 1960s, to develop large scale functional business systems in an age of
large scale business conglomerates. Information systems activities revolved around
heavy data processing and number crunching routines". 11
Several systems development frameworks have been partly based on SDLC, such as
the structured systems analysis and design method (SSADM) produced for the UK
government Office of Government Commerce in the 1980s. Ever since, according to
Elliott (2004), "the traditional life cycle approaches to systems development have been
increasingly replaced with alternative approaches and frameworks, which attempted to
overcome some of the inherent deficiencies of the traditional SDLC".
The process of software development is a never-ending cycle. The first release of a
software application is rarely completed. There are almost always additional features and

11 https://en.wikipedia.org/wiki/Systems_development_life_cycle

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 54

bug fixes waiting to be designed, developed and deployed. Reports from error monitoring
software about usability and bugs feed back into the process of software development,
and become new feature requests and improvements to existing features. This is why the
Software Development Life Cycle is the most general term for software development
methods. The steps of the process and their order vary by method. Regardless of method,
they typically run in cycles, starting over with each iteration.
The SDLC is not a methodology, but rather a description of the phases in the life cycle of
a software application. All software development methodologies follow the SDLC phases
but the method of doing that varies vastly between methodologies. These methodologies
are obviously quite different approaches, yet they both contain the SDLC phases in which
a requirement is born, then travels through the life cycle phases ending in the final phase
of maintenance and support, after-which the whole life cycle starts again for a subsequent
version of the software application.
In the following diagram the steps of the SDLC are presented. These steps are roughly
the same from one methodology to another. They tend to occur in this order, though they
can also be mixed together, such that several steps occur in parallel. [38]
12

3.2.1 Planning
The most important parts of software development, requirement gathering or requirement
analysis are usually done by the most skilled and experienced software engineers in the
organization. After the requirements are gathered from the client, a scope document is
created in which the scope of the project is determined and documented.
Planning, always begins with a preliminary analysis, proposing alternative solutions,
describing costs and benefits, and submitting a preliminary plan with recommendations.
Discover the organization's objectives and the nature and scope of the problem under
study. Even if a problem refers only to a small segment of the organization itself, find out
what the objectives of the organization itself are. Then see how the problem being studied
fits in with them.
First the IT system proposal is investigated. During this step, consider all current priorities
that would be affected and how they should be handled. Before any system planning is
done, a feasibility study should be conducted to determine if creating a new or improved

12 https://www.drasecurity.com/secure-design-review.html

Picture 10: The Software Development Cycle [38]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 55

system is a viable solution. This will help to determine the costs, benefits, resource
requirements, and specific user needs required for completion. The development process
can only continue once management approves of the recommendations from the
feasibility study. [38]
The following represent different components of the feasibility study:

• Operational feasibility
• Economic feasibility
• Technical feasibility
• Human factors feasibility
• Legal/Political feasibility

3.2.2 Analysis
During the analysis step project goals are defined and expressed into functions and
operations of the intended application. This involves the process of gathering and
interpreting facts, diagnosing problems, and recommending improvements to the system.
Project goals will be further aided by analysis of end-user information needs and the
removal of any inconsistencies and incompleteness in these requirements.
A series of steps followed by the developer include:

1. Obtain end user requirements through documentation, client interviews,
observation, and questionnaires.

2. Identify pros and cons of the current system in-place, so as to carry forward
the pros and avoid the cons in the new system.

3. Find solutions to the shortcomings described in step two and prepare the
specifications using any specific user proposals.

The goal of analysis is to determine where the problem is, in an attempt to fix the system.
This step involves breaking down the system in different pieces to analyze the situation,
analyzing project goals, breaking down what needs to be created, and attempting to
engage users so that definite requirements can be defined. [36]

3.2.3 Design
At this step desired features and operations are described in detail, including screen
layouts, business rules, process diagrams, pseudocode, and other documentation.
screen layouts, business rules, process diagrams, and other documentation. The output
of this stage will describe the new system as a collection of modules or subsystems.
The design stage takes as its initial input the requirements identified in the approved
requirements document. For each requirement, a set of one or more design elements will
be produced as a result of interviews, workshops, and/or prototype efforts.
Design elements describe the desired system features in detail, and they generally
include functional hierarchy diagrams, screen layout diagrams, tables of business rules,
business process diagrams, pseudo-code, and a complete entity-relationship diagram
with a full data dictionary. These design elements are intended to describe the system in
sufficient detail, such that skilled developers and engineers may develop and deliver the
system with minimal additional input design. [36] [37] [38]
3.2.4 Development
This phase produces the software under development. Depending on the methodology,
this phase may be conducted in time-boxed “sprint” or may proceed as a single block of
effort. Development teams should produce working software as quickly as possible.
Detailed designs that brings initial design work into a completed with form of

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 56

specifications. Also, it includes the specification of interfaces between the system and its
intended environment and a comprehensive evaluation of the systems logistical,
maintenance and support requirements. The detail design and development is
responsible for producing the product, process and material specifications and may result
in substantial changes to the development specification.
Key steps within the development stage include:

• Development of engineering and prototype models
• Revision of development specification
• Product, process and material specification
• Critical design review
Business stakeholders should be engaged regularly to ensure that their expectations are
being met. The output of this phase is testable, functional software. [38]
3.2.5 Integration and Testing
This is the process of finding defects or bugs in the created software. All the pieces are
brought together into a special testing environment, then checked for errors, bugs, and
interoperability. The code is tested at various levels in software testing. Unit, system, and
user acceptance testings are often performed.
3.2.6 Documentation
Every step in the project is documented for future reference and for the improvement of
the software in the development process. The design documentation may include writing
the application programming interface (API).
3.2.7 Training
Once a system has been stabilized through adequate testing, the SDLC ensures that
proper training on the system is performed before transitioning the system to its support
staff and end users. Training usually covers operational training for those people who will
be responsible for supporting the system as well as training for those end users who will
be using the system after its delivery to a production operating environment.
After training has been successfully completed, systems engineers and developers
transition the system to its final production environment, where it is intended to be used
by its end users and supported by its support and operations staff.
3.2.8 Deployment
The software is deployed after it has been approved for release. This stage is ideally a
high automated phase. In high-maturity enterprise, the software is deployed the instant it
is ready. Although in smaller enterprises, the process involves manual approvals.
Application Release Automation (ARA) tools are used in medium and large-size
enterprises to automate the deployment of applications to Production environments. The
output of this phase is the release to Production of working software. Moreover,
the deployment of the system includes changes and enhancements before release. [38]
3.2.8.1 Cloud Deployment
Cloud deployment refers to the enablement of SaaS (Software as a Service), PaaS
(Platform as a Service) or IaaS (Infrastructure as a Service) solutions that can be
accessed on demand by end users. A cloud deployment model refers to the type of cloud
computing architecture a cloud solution will be implemented on. Also, cloud deployment
includes all of the required installation and configuration steps that must be implemented
before used provisioning can occur. SaaS deployment is a type of cloud deployment that
is typically initiated using a public cloud or a private cloud deployment model, however it
may also be initiated using a hybrid cloud deployment model when hybrid cloud resources
are owned and/or managed by the same entity. What is more, virtual private clouds can

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 57

be used for SaaS deployment as well. Virtual private clouds are technically public clouds
that function the same as private clouds, since only trusted entities may gain access to
the virtual private cloud resources.
After cloud deployment has been completed for a SaaS, PaaS or IaaS solution, user
provisioning can occur based on user permissions, where access is provided for cloud
resources based on the consumer’s classification as either a trusted or untrusted entity.
Trusted entities may receive access permission to managed cloud, private cloud or hybrid
cloud resources. Untrusted entities may receive access permission to public cloud,
managed cloud or hybrid cloud resources. [39] [40]
Docker Cloud
Docker in cloud computing is a technology, which has undoubtedly taken an evolutionary
step towards the management of deployment platforms. It is an extremely new way of
working in premises where work management becomes easier for industries. No extra
finance for the storage server and cloud infrastructure maintenance is required in Docker
cloud. The Docker is an open-source environment of product containers. These
containers help applications to work while it is being shifted from one platform to another
like – migration from developer’s laptop to staging to the production. This is a new era
technology, which enables enterprises to ship, build, and run any product from any
geolocation.
It permits applications to be bundled and copied where all apps are dependent on each
other. Cloud users find this concept useful when it comes to working with a scalable
infrastructure. When docker gets integrated with cloud, it is named as Docker Cloud.

Docker Cloud is an official online service to deliver Docker products. Several online
services like Azure, AWS, Google cloud platform, etc., are present for enterprises in
today’s date. Although these services provide flexibility in work, they require
configurations of everything. On the other hand, Docker Cloud is found as an advance
managed cloud system, where it could render orchestration and develop different options
for its clients. This new concept prevent customers from wasting their time in several
kinds of configuration processes and enables them to work more on their business
growth. [41] [42] [43]
3.2.9 Support and Maintenance
During the maintenance stage of the SDLC, the system is assessed/evaluated to ensure
it does not become obsolete. This is also where changes are made to initial software.
Software maintenance is done for future reference. The operations and maintenance
phase is the “end of the beginning”. The Software Development Life Cycle does not end
here. Software must be monitored constantly to ensure proper operation. Bugs and
defects discovered in Production must be reported and responded. [38]
Generally, eeffectiveness and efficiency of the system must be continuously evaluated to
determine when the product has met its maximum effective lifecycle. Considerations
include: Continued existence of operational need, matching between operational
requirements and system performance, feasibility of system phase-out versus
maintenance, and availability of alternative systems.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 58

3.3 Software Release Life Cycle

3.3.1 Stages 13 14

3.3.1.1 Alpha

This is the first phase to begin software testing. In this phase, developers generally test
the software using white-box techniques and perform additional validation using black-
box or gray-box techniques, by another testing team. Moving to black-box testing inside
the organization is known as alpha release.

Alpha software can be unstable and could cause crashes or data loss. In general, external
availability of alpha software is uncommon in proprietary software, while open source
software often has publicly available alpha versions. The alpha phase usually ends with
a feature freeze, indicating that no more features will be added to the software.
3.3.1.2 Beta

This is the software development phase following alpha. Software in the beta stage is
also known as betaware. Beta phase generally begins when the software is feature
complete but likely to contain a number of known or unknown bugs. Software in the beta
phase will generally have many more bugs in it than completed software, speed or
performance issues, and may still cause crashes or data loss. The focus of beta testing
is reducing impacts to users, often incorporating usability testing.

The process of delivering a beta version to the users is called beta release and this is
typically the first time that the software is available outside of the organization that
developed it. Software beta releases can either be public or private, depending on
whether they are openly available or only available to a limited audience. Beta version
software is often useful for demonstrations and previews within an organization and to
prospective customers.
Beta testers are people who actively report issues of beta software. They are usually
customers or representatives of prospective customers of the organization that develops
the software

13 https://wpsitesync.com/release-candidate-vs-general-release/
14 https://en.wikipedia.org/wiki/Software_release_life_cycle

Picture 11: Stages of Software Development Life Cycle 1

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 59

3.3.1.3 Release candidate

It is also known as "going silver", is a beta version with potential to be a final product,
which is ready to release unless significant bugs emerge. In this stage of product
stabilization, all product features have been designed, coded and tested through one or
more beta cycles with no known showstopper-class bugs.

A release is called code complete when the development team agrees that no entirely
new source code will be added to this release. There could still be source code changes
to fix defects, changes to documentation and data files, and peripheral code for test cases
or utilities.
3.3.1.4 Software upgrade versioning15 16

Software upgrade versioning is the process of assigning either unique version names or
unique version numbers to unique states of computer software. Within a given version
number category (major, minor), these numbers are generally assigned in increasing
order and correspond to new developments in the software. At a fine-grained
level, revision control is often used for keeping track of incrementally different versions of
information, whether or not this information is computer software.

Modern computer software is often tracked using two different software versioning
schemes—internal version number that may be incremented many times in a single day,
such as a revision control number, and a released version that typically changes far less
often, such as semantic versioning or a project code name.

3.4 Software development models

The software development models are the various processes or methodologies that are
being selected for the development of the project, depending on the project’s aims and
goals. There are many development life cycle models that have been developed in order
to achieve different required objectives. The models specify the various stages of the
process and the order in which they are carried out.
There are various Software development models or methodologies.

1. Waterfall model
2. V model
3. Incremental model

15 https://en.wikipedia.org/wiki/Software_versioning
16 https://blog.soenneker.com/a-new-increment-for-software-versioning-9fc2a9068c23

Picture 12: Software upgrade versioning 1

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 60

4. RAD model
5. Agile model
6. Iterative model
7. Spiral model
8. Prototype model

Subsequently, the Waterfall and Agile software development models will be explained.
3.4.1 Waterfall Model

The Waterfall Model is the oldest model created. The first formal description of the
method is often cited as an article published by Winston W. Royce, in 1970. Royce
presented this model as an example of a flawed, non-working model.
The waterfall model was an early attempt to provide structure, metrics and control to the
development of large and complex application systems, usually mainframe systems.17
In Royce's original waterfall model, the following phases are followed in order:

1. System and software requirements: captured in a product requirements document
2. Analysis: resulting in models, schema, and business rules
3. Design: resulting in the software architecture
4. Coding: the development, proving, and integration of software
5. Testing: the systematic discovery and debugging of defects
6. Operations: the installation, migration, support, and maintenance of complete

systems
Thus the waterfall model maintains that one should move to a phase only when its
preceding phase is reviewed and verified.18 [37]

Various modified waterfall models (including Royce's final model), however, can include
slight or major variations on this process. In the olden days, Waterfall model was used to
develop enterprise applications like Customer Relationship Management (CRM) systems,
Human Resource Management Systems (HRMS), Supply Chain Management Systems,
Inventory Management Systems, Point of Sales (POS) systems for Retail chains etc.
Waterfall model was used significantly in the development of software till the year 2000.
This "inflexibility" in a pure waterfall model has been a source of criticism by supporters
of other more "flexible" models. It has been widely blamed for several large-scale
government projects running over budget, over time and sometimes failing to deliver on

17 https://en.wikipedia.org/wiki/Waterfall_model

18 https://melsatar.blog/2018/02/16/the-waterfall-model-a-different-perspective/

Picture 13: Waterfall Model [37]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 61

requirements due to the Big Design Up Front approach. Except when contractually
required, the waterfall model has been largely superseded by more flexible and versatile
methodologies developed specifically for software development. [37]

 Table 3: Advantages and disadvantages of the Waterfall model

3.4.2 Agile Model

In 2001, a group of software developers met to discuss some lightweight development
methods that emerged from the late 1970s: Kent Beck, Ward Cunningham, Dave
Thomas, Jeff Sutherland, Ken Schwaber, Jim Highsmith, Alistair Cockburn, Robert C.
Martin, Mike Beedle, Arie van Bennekum, Martin Fowler, James Grenning, Andrew
Hunt, Ron Jeffries, Jon Kern, Brian Marick, and Steve Mellor. Together they published
the Manifesto for Agile Software Development.
Agile software development is an approach to software development under which
requirements and solutions evolve through the collaborative effort of self-
organizing and cross-functional teams and their customer(s)/end user(s). It advocates
adaptive planning, evolutionary development, early delivery, and continual improvement,
and it encourages rapid and flexible response to change.19
Advantages of Agile model:

• Customer satisfaction by rapid, continuous delivery of useful software.
• People and interactions are emphasized rather than process and tools.

Customers, developers and testers constantly interact with each other.
• Working software is delivered frequently (weeks rather than months).
• Face-to-face conversation is the best form of communication.
• Close, daily cooperation between business people and developers.
• Continuous attention to technical excellence and good design.
• Regular adaptation to changing circumstances.
• Even late changes in requirements are welcomed

19 https://en.wikipedia.org/wiki/Agile_software_development

Advantages Disadvantages

Easy to explain to the users Assumes that the requirements of a system can be frozen

Structures approach Very difficult to go back to any stage after it finished

Stages and activities are well defined A little flexibility and adjusting scope is difficult and expensive

Helps to plan and schedule the project Costly and required more time, in addition to the detailed plan

Verification at each stage ensures early
detection of errors/misunderstanding

Each phase has specific deliverables

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 62

Disadvantages of Agile model:

• In case of some software deliverables, especially the large ones, it is difficult to
assess the effort required at the beginning of the software development life cycle.

• There is lack of emphasis on necessary designing and documentation.
• The project can easily get taken off track if the customer representative is not clear

what final outcome that they want. Only senior programmers are capable of taking
the kind of decisions required during the development process. Hence it has no
place for newbie programmers, unless combined with experienced resources. [44]

3.4.2.1 Categories

1. Scrum
2. Kanban
3. Extreme Programming
4. Lean Software Development
5. Rapid Application Development

3.4.2.1.1 Scrum

Scrum is an agile framework for managing knowledge work, with an emphasis
on software development, although it has wide application in other fields and is slowly
starting to be explored by traditional project teams more generally. It is designed for
teams of three to nine members, who break their work into actions that can be completed
within time boxed iterations, called sprints, no longer than one month and most commonly
two weeks, then track progress and re-plan in 15-minute time-boxed stand-up meetings,
called daily scrums.

Hirotaka Takeuchi and Ikujiro Nonaka introduced the term scrum in the context
of product development in their 1986 Harvard Business Review article, "The New
Product Development Game". The authors described a new approach to commercial
product development that would increase speed and flexibility, based on case studies
from manufacturing firms in the automotive, photocopier and printer industries. They
called this the holistic or rugby approach, as the whole process is performed by
one cross-functional team across multiple overlapping phases, in which the team "tries to
go the distance as a unit, passing the ball back and forth".
In the early 1990s, Ken Schwaber used what would become Scrum at his company,
Advanced Development Methods; while Jeff Sutherland, John Scumniotales and Jeff

Picture 14: Agile Development Life Cycle [46]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 63

McKenna developed a similar approach at Easel Corporation, referring to it using the
single word Scrum.
In 2001, Schwaber worked with Mike Beedle to describe the method in the book, Agile
Software Development with Scrum. Scrum's approach to planning and managing product
development involves bringing decision-making authority to the level of operation
properties and certainties.
In 2002, Schwaber with others founded the Scrum Alliance and set up the Certified
Scrum accreditation series. Schwaber left the Scrum Alliance in late 2009 and
founded Scrum.org which oversees the parallel Professional Scrum accreditation series.
Since 2009, a public document called The Scrum Guide has officially defined Scrum. In
2018, Schwaber and the Scrum.org community, along with leaders of
the Kanban community, published The Kanban Guide for Scrum Teams. [44] [45]
A Scrum process is distinguished from other agile processes by specific concepts and
practices, divided into the three categories of Roles, Artifacts, and Time Boxes. These
and other terms used in Scrum are defined below. Scrum is most often used to manage
complex software and product development, using iterative and incremental practices.
Scrum significantly increases productivity and reduces time to benefits relative to classic
“waterfall” processes. Scrum processes enable organizations to adjust smoothly to
rapidly-changing requirements, and produce a product that meets evolving business
goals. An agile Scrum process benefits the organization by helping it to:

• Increase the quality of the deliverables
• Cope better with change (and expect the changes)
• Provide better estimates while spending less time creating them
• Be more in control of the project schedule and state

Scrum is facilitated by a scrum master, who is accountable for removing impediments to
the ability of the team to deliver the product goals and deliverables. The scrum master is
not a traditional team lead or project manager but acts as a buffer between the team and
any distracting influences. The scrum master ensures that the scrum framework is
followed. The scrum master helps to ensure the team follows the agreed processes in the
scrum framework, often facilitates key sessions, and encourages the team to improve.
The role has also been referred to as a team facilitator or servant-leader to reinforce these
dual perspectives. 20 [37] [46]
3.4.2.1.2 Kanban

Kanban is a lean method to manage and improve work across human systems. This
approach aims to manage work by balancing demands with available capacity, and by
improving the handling of system-level bottlenecks. Work items are visualized to give
participants a view of progress and process, from start to finish - usually via a Kanban
board. Work is pulled as capacity permits, rather than work being pushed into the process
when requested.
In knowledge work and in software development, the aim is to provide a visual process-
management system which aids decision-making about what, when and how much to
produce. The underlying Kanban method originated in lean manufacturing (inspired by
the Toyota Production System and Taiichi Ohno) it is now used in software development

20 https://en.wikipedia.org/wiki/Scrum_(software_development)

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 64

and technology-related work and has been combined with other methods or frameworks
such as Scrum.
David Anderson's 2010 book, Kanban, describes the method's evolution from a 2004
project at Microsoft to a 2006-2007 project at Corbis in which the kanban method was
identified. 21
A Kanban board looks like the following:

Although Kanban does not require that the team or organization use a Kanban board,
they can be used to visualize the flow of work. Typically, a Kanban board shows how work
moves from left to right, each column represents a stage within the value stream. The
image above is a typical view of a simplified Kanban board, where work items move from
left to right. In some cases, each column has a work in progress limit. This means that
each column can only receive a fixed amount of work items with the aim to encourage
focus, and make system constraints evident.
Kanban is becoming a popular way to visualize and limit work-in-progress in software
development and information technology work. Teams around the world are adding
Kanban around their existing processes to catalyze cultural change and deliver better
business agility. [47]
Organizations use the Kanban method to manage the project’s creation while
emphasizing on the continued delivery and not overburdening the development team.
Like Scrum, Kanban processes are designed to help teams work more efficiently together.

There are three principles:
1. Visualize what you do: see all the items within context of each other – more

informative
2. Limit the amount of work in progress (WIP): balance the flow-based approach so

teams are not committed to doing too much work at once
3. Enhance the flow: as soon as one task is finished, start on the next highest job from

the backlog

21 https://en.wikipedia.org/wiki/Kanban

Picture 15: Kanban Board [48]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 65

The Kanban method promotes continued collaboration by the client and team. It
encourages ongoing learning and improvements to provide the best possible workflow for
the team.

3.4.2.1.3 Extreme Programming (XP)

Extreme Programming (XP) was originally described by Kent Beck. It is one of the most
popular and controversial agile methodologies. XP is a highly disciplined method of
continually delivering high-quality software faster. The customer is actively involved with
the close-knit team to perform continued planning, testing and rapid feedback to deliver
working software frequently. The software should be delivered in intervals everyone to
three weeks. [48]

The original XP method is based on four simple values:
1. Simplicity
2. Communication
3. Feedback
4. Courage
It has 12 supporting practices:
1. Planning game
2. Small releases
3. Customer acceptance tests
4. Simple design
5. Pair programming
6. Test-driven development
7. Refactoring
8. Continuous integration
9. Collective code ownership
10. Coding standards
11. Metaphor
12. Sustainable pace

Picture 16: Kanban Board through a cartoon

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 66

3.4.2.1.4 Lean software development
Lean software development is an iteration methodology originally developed by Mary and
Tom Poppendieck. Many of the principles and practices in Lean Software Development
came from the lean enterprise movement and were first used by big companies like
Toyota. This value based method focuses on giving the customer an efficient “Value
Stream” mechanism that delivers the value to the project. [48]
The main principles of this methodology are:
• Eliminate waste
• Amplify learning
• Make decisions as late as possible
• Deliver results as quickly as possible
• Empower the team
• Build integrity
• Envision the whole project
By choosing only the features that have real value for the system, prioritizing and
delivering them in small batches eliminates waste. Instead, the lean methodology
emphasizes on speed and efficiency; relying on rapid, reliable feedback between the
customers and programmers. It focuses on the idea that customer requests “pull” the
product. The focus is more about the faster and more efficient decision-making abilities
of individuals or small teams instead of a hierarchy controlled method. This methodology
concentrates on the efficiencies of its team’s resources, ensuring everyone is as
productive as possible always. [48]

3.4.2.1.5 Rapid-application development (RAD)

Rapid-application development is both a general term, used to refer to adaptive software
development approaches, as well as the name for James Martin's approach to rapid
development. In general, RAD approaches to software development put less emphasis
on planning and more emphasis on an adaptive process. [48]
RAD is especially well suited for developing software that is driven by user interface
requirements. Graphical user interface builders are often called rapid application
development tools. Other approaches to rapid development include
the adaptive, agile, spiral, and unified models.
3.4.3 Agile vs. waterfall

One of the differences between agile software development methods and waterfall is the
approach to quality and testing. In the waterfall model, there is always a separate testing
phase after a build phase; however, in agile software development testing is completed
in the same iteration as programming.
Another difference is that traditional "waterfall" software development moves a project
through various Software Development Lifecycle (SDLC) phases. One phase is
completed in its entirety before moving on to the next phase.
Because testing is done in every iteration—which develops a small piece of the
software—users can frequently use those new pieces of software and validate the value.
After the users know the real value of the updated piece of software, they can make better
decisions about the software's future. Having a value retrospective and software re-
planning session in each iteration—Scrum typically has iterations of just two weeks—

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 67

helps the team continuously adapt its plans so as to maximize the value it delivers. This
follows a pattern similar to the PDCA cycle, as the work is planned, done, checked (in the
review and retrospective), and any changes agreed are acted upon.
This iterative approach supports a product rather than a project mindset. This provides
greater flexibility throughout the development process; whereas on projects the
requirements are defined and locked down from the very beginning, making it difficult to
change them later. Iterative product development allows the software to evolve in
response to changes in business environment or market requirements.[38]
Because of the short iteration style of agile software development, it also has strong
connections with the lean startup concept. [49]

Table 4: Differences between Agile and Waterfall [49]

 Agile Waterfall

1 It separates the project development
lifecycle into sprints.

Software development process is divided into
distinct phases.

2 It follows an incremental approach sequential design process

3 flexibility rigid

4 Can be considered as a collection of
many different projects.

Software development will be completed as
one single project.

5
Changes can be made in the project

development requirements even if the
initial planning has been completed.

No change in the requirements once the
project development starts.

6 Iterative development approach -
phases may appear more than once.

All the project development phases are
completed once

7 Test plan is reviewed after each sprint
The test plan is rarely discussed during the

test phase.

8 Requirements are expected to change
and evolve.

Definite requirements and changes not at all
expected.

9 Testing is performed concurrently with
software development. Testing phase comes after the Build phase

10 Focuses on the needs of its end
customers

Focus completely on accomplishing the
project.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 68

11
Time & Materials or non-fixed funding. It

may increase stress in fixed-price
scenarios.

Reduces risk in the firm fixed price contracts
by getting risk agreement at the beginning of

the process.

12
Prefers small but dedicated teams with a

high degree of coordination and
synchronization.

Team coordination/synchronization is very
limited.

13
Products owner with team prepares
requirements just about every day

during a project.

Business analysis prepares requirements
before the beginning of the project.

14 Test team can take part in the
requirements change without problems.

It is difficult for the test to initiate any change in
requirements.

3.4.4 This thesis working model

Our thesis working model is based on Kanban lean methodology, as from the start of this
thesis we gathered all the responsible people for this thesis, me and my supervisors (in
role of stakeholders) and discussed about the working model that we should work with,
as I was also working on a full-time job and had only evenings and weekends to work on
this thesis in a daily base.
Having considered all available options, both waterfall and agile models, we ended up
using Kanban. The reason is that Kanban approach aims to manage work by balancing
demands with available capacity, and by improving the handling of system-
level bottlenecks. This approach, fitted exactly our case, as the capacity was almost
exclusively dependent on my occupation with this thesis in a daily base. What is more,
we tried to avoid bottlenecks by analyzing in depth the backlog task that would proceed
to the next “To Do” progress phase.
Another reason that resulted in our decision to use Kanban methodology was that in
Kanban work items are visualized to give participants a view of progress and process,
from start to finish - usually via a Kanban board, which in our case we developed it and
visited it daily by using Trello22. This way, we shared among us a Trello Kanban-like board
(see image below) which the stakeholders (my supervisors) could visit at any time to
analyze the backlog or to respond in any comment in a Kanban task that was for me an

22 https://trello.com/

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 69

impediment for software development, while also to have a visual process-management
over the progress of my thesis.

Using Trello, my supervisors based on their needs and other users’ needs could reorder
tasks in a Kanban progress column as we decided that the top task in each column had
the maximum priority.
Finally, in our Kanban methodology we borrowed two processes, let us refer to them as
“Kanban Sprint Review” and “Kanban Sprint Grooming”, based on another methodology’s
functions, the Scrum Sprint Review and the Scrum Sprint Grooming. Scrum is a very
useful methodology to work with and is the most applied agile methodology globally.
Nevertheless, Scrum requires a team of at least 3 people, and a daily Scrum meeting
which in our case, neither of the two could apply, and for this reason we rejected working
with this framework. So, based on Scrum, in our Kanban methodology we decided that
once in a two-week “Kanban-Sprint” we should meet to review the work done (“Kanban-
Review”), and to discuss about the next “Kanban-sprint” backlog tasks that I was going
to implement (“Kanban-Grooming”).
This methodology of ours worked greatly and appeared very interesting and appealing to
stakeholders that did not know about it.

Picture 17: This thesis’s Kanban board

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 70

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 71

4. SOFTWARE DEVELOPMENT - TECHNOLOGICAL CONCERNS

4.1 Introduction

In this chapter we present the architectural schema of the web application created, and
we analyze its technological aspect. We refer to separation of concerns for each entity,
and we de-structure the architectural schema in pieces and explain each one of them
until we glue them back together again. Then, we present the web application’s
technologies stack, which we used and how we blended them together. Next, we analyze
the coding design patterns that we used and how we assure that the web application is
designed with main concerns the scalability, maintainability, reusability and performance,
while providing samples of code. Finally, we explain the importance of visualizations and
how we selected the visualization charts and graphs that fit better to our use cases.

4.2 Architecture Schema – Technological Overview

In this section we present the architectural schema of the web application we created.
In computer science, separation of concerns (SoC)23 is a design principle for separating
a computer program into distinct sections, so that each section addresses a
separate concern. A concern is a set of information that affects the code of a computer
program. A concern can be as general as the details of the hardware the code is being
optimized for, or as specific as the name of a class to instantiate. A program that
embodies SoC well is called a modular program. Modularity, and hence separation of
concerns, is achieved by encapsulating information inside a section of code that has a
well-defined interface. Encapsulation is a means of information hiding. Layered designs
in information systems, as we are going to find in this chapter section, are another
embodiment of separation of concerns.
Separation of concerns results in higher degrees of freedom for some aspect of the
program's design, deployment, or usage. What is common amongst these is the higher
degrees of freedom for reaching simplification and maintenance of code. When concerns
are well-separated, there are higher degrees of freedom for module reuse as well as
independent development and upgrade. Because modules hide the details of their
concerns behind interfaces, increased freedom results to later improve or modify a single
concern's section of code without having to know the details of other sections, and without
having to make corresponding changes to those sections. Modules can also expose
different versions of an interface, which increases the freedom to upgrade a complex
system in piecemeal fashion without interim loss of functionality.
4.2.1 Data pre-processing
In this thesis, as in every other thesis, research analysis or business analysis aims in
creating new tools based in a case scenario, which will help research to evolve. In order
for the developer to create the most efficient tools or models, he needs to have the
appropriate data for the specific application. Generally, data plays a crucial role in the
journey of making a research or a business model. There is no place nor time for poor
data representations or unexpected results, due to incomplete, noisy and inconsistent
data. Raw data has to be preprocessed prior to being imported in an application. [50]
Data preprocessing is a proven method for resolving such issues and it is executed in 5
or more simple steps:

23 https://en.wikipedia.org/wiki/Separation_of_concerns

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 72

1. Gather the data
2. Import the datasets
3. Divide the dataset into Dependent and Independent variables
4. Check for missing values and for Categorical values
5. Normalize

Web application’s Dataset
Data is raw information, it’s the representation of both human and machine observation
of the world. Dataset entirely depends on what type of problem you want to solve, and in
most cases each problem has its own unique nuance and approach. And sometimes it
can be quite hard to find the specific dataset for the variety of problems. Fortunately, there
is dataset for every problem and more specifically the dataset for this thesis was given,
so as to only have to deal with the application development. [51]
Nonetheless, we still needed to apply some of the above preprocessing rules, mostly for
preventing application error cases but also for research purposes as sometimes we
needed to calculate the non-answered fields.
So, this is a snapshot of how our dataset looks like:

Picture 18: Initial Data set

The dataset was given in an MS Excel format from the researchers, so our job was to
carefully convert it in CSV format and then import it in our database. Nevertheless, in the
following paragraphs the data preprocessing done by the researchers will be presented.
Τhe researchers had to deal with missing variables and decided how they want to fill
these fields. In order to anticipate possible miss outs and to overcome crashing, we
incorporated the possibility of editing the data cells, in the application. What is more, in
some cases the researchers wanted to count also the missing data as an answer, so we
also managed to keep track of missing cell data too, using imputation with a constant
“not-answered”, which means that we replaced missing values with empty strings “” or
the null special character (the zero-valued ASCII character) if it was applied in a column
of numbers. [52]

 const groupArrays = groupUniqueCategories.map(
 (category) =>
 category !== ''
 ? {
 key: category,
 value: data.filter(
 (e) => (!!groupByVar1 ? e[groupByVar1] === category : e[xAxis] === category)
),
 }
 : {
 key: 'not-answered',
 value: data.filter(

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 73

 (e) => (!!groupByVar1 ? e[groupByVar1] === category : e[xAxis] === category)
),
 }
);

Code 1: Show how we represented the empty cells of excel

Other kinds of imputation could be to use the most frequent value, or the mean value, or
the median value. In our case though we wanted to keep track of the unassigned cells
and don’t use any logic for filling them. [53]

In the above figure, our problem classifies as a “Categorical General Problem” and this is
also how we decided to handle the missing data, by making NA as a different answer in
our filtering dropdown selection checkboxes.
Finally, in our case the dataset as we described previously consists only of patients data,
and our end users are going to be researchers and doctors. For this reason, and because
the data are not analyzed by a machine learning algorithm, but on the contrary they are
going to be analyzed directly by the end user, it is not recommended to scale them and
normalize them as such case will confuse the end users. For that reason we skipped this
pre-processing step. In future work, though, a machine learning algorithm can be applied
and if so then normalization would fit well for algorithm to handle data processing in a
better way.

4.2.2 Software Systems Layered Design

In this thesis one of our main goals is to design a web application interface that can
connect to a database and present the database’s data with some meaningful
visualizations. That said, what we are dealing with, in other words can be described as a
Database Management System (DBMS). DBMS is almost used in any application
nowadays. DBMSs focus on the design, development, implementation and maintenance
of computer programs that store and organize information for businesses, agencies and
institutions. DBMSs use programming languages to design a particular type of software
for businesses or organizations. The design of a DBMS depends on its architecture. It
can be centralized or decentralized or hierarchical. The architecture of a DBMS can be
seen as either single tier or multi-tier. The tiers are classified as follows: [54]

1. 1-tier architecture
2. 2-tier architecture

Picture 19: All ways of handling missing data based on
problem type and data type [97]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 74

3. 3-tier architecture
4. n-tier architecture.
1. 1-tier architecture

One-tier architecture involves putting all of the required components for a software
application or technology on a single server or platform.

Basically, an one-tier architecture keeps all of the elements of an application, including
the interface, Middleware and back-end data, in one place. Developers see these types
of systems as the simplest and most direct way.

2. 2-tier architecture
The two-tier is based on Client Server architecture. The two-tier architecture is like client
server application. The direct communication takes place between client and server.
There is no intermediate between client and server.

3. 3-tier architecture
A 3-tier architecture separates its tiers from each other based on the complexity of the
users and how they use the data present in the database. It is the most widely used
architecture to design a DBMS.

Picture 20: 1-tier architecture [54]

Picture 21: 2-tier architecture [54]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 75

This architecture has different usages with different applications. It can be used in web
applications and distributed applications. The strength in particular is when using this
architecture over distributed systems.

1. Database (Data) Tier − At this tier, the database resides along with its query
processing languages. We also have the relations that define the data and their
constraints at this level. It is also called the persistence layer.

2. Application (Middle) Tier − At this tier reside the application server and the
programs that access the database. For a user, this application tier presents an
abstracted view of the database. End-users are unaware of any existence of the
database beyond the application. At the other end, the database tier is not aware
of any other user beyond the application tier. Hence, the application layer sits in
the middle and acts as a mediator between the end-user and the database. It is
also called the data access and business logic layer.

3. User (Presentation) Tier − End-users operate on this tier and they know nothing
about any existence of the database beyond this layer. At this layer, multiple views
of the database can be provided by the application. All views are generated by
applications that reside in the application tier. It is also called the presentation
layer.

4. n-tier architecture
N-tier architecture would involve dividing an application into three different tiers. These
would be the following:

1. data access and business logic tier,
2. the presentation tier, and
3. the persistence tier

And then, separate one or more tiers into simpler layers. N-tier is the physical separation
of the different parts of the application as opposed to the usually conceptual or logical
separation of the elements in the model-view-controller (MVC) framework. Another
difference from the MVC framework is that n-tier layers are connected linearly, meaning
all communication must go through the middle layer, which is the logic tier. In MVC, there
is no actual middle layer because the interaction is triangular, the control layer has access
to both the view and model layers and the model also accesses the view, the controller
also creates a model based on the requirements and pushes this to the view. However,
they are not mutually exclusive, as the MVC framework can be used in conjunction with
the n-tier architecture, with the n-tier being the overall architecture used and MVC used
as the framework for the presentation tier. [54] [55]

Picture 22: 3-tier architecture [54]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 76

In our case, we use a 4-tier architecture where we place a fourth tier between the web-
interface (presentation layer) and the server (data access layer). This fourth tier is the
business logic tier, which we separated it from being totally connected with the data-
access layer. In the above figure we see that we use GraphQL query language to handle
all the business logic layer. This tier lets us filter or even alter database schema and
create a new schema representation for our data that is more user-friendly. This way user
doesn’t need to have access to database specific values and data. What is more, this tier
gives a lot bigger flexibility to users to search in a database schema and caches users
choices for future reuse.

4.2.3 Persistence Layer - Database

When it comes to choosing a database, one of the biggest decisions is picking a relational
(SQL) or non-relational (NoSQL) data structure. While both are viable options, there are
certain key differences, between the two that users must keep in mind, when making a
decision. SQL databases use structured query language (SQL) for defining and
manipulating data. On the one hand, this is extremely powerful because SQL is one of
the most versatile and widely-used options available, making it a safe choice and
especially great for complex queries. On the other hand, it can be restrictive. SQL requires
that you use predefined schemas to determine the structure of your data before you work
with it. In addition, all of your data must follow the same structure. This can require
significant up-front preparation, which if omitted or not handled carefully can result in
painful situations where a simple change in the structure, such as a change in a table’s
field name, would come to be both difficult and disruptive to the whole system.
NoSQL, has also been interpreted as the abbreviation of “Not Only SQL” or “no SQL at
all” are types of databases often used for storing of the big data in non-relational and
distributed manner, and its concurrency model is weaker than the ACID transactions
(standing for Atomicity, Consistency, Isolation, Durability, all being the set of core SQL
properties) in relational SQL-like database systems. [56]
In this thesis we use a NoSQL database. First of all, it better matches our data. Also, the
database schema may often change and more columns may be added in the future, as
well as the schema is created dynamically, based on key-value pairs. Furthermore, we
may have a lot of empty cells that do not need storing and as a result we can maintain
the size of the database smaller. Also, due to separation of concerns and our n-tier
architectural structure model we want to add operations and filters on data where SQL-
like databases perform better, so for this reason we transferred the business logic to the
GraphQL layer in order to achieve similar performance velocity as if we used SQL-like
databases.
As we mentioned above, NoSQL systems are ACID-non-compliant by design, and the
complexity for enforcing ACID properties does not exist for most of the properties. For

Picture 23: n-tier architecture [55]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 77

example some of the ACID compliant NOSQL databases are: Redis, Aerospike and
Voldemort as key-value stores; where as Neo4jDB and Sparksee are as graph-based
data stores. In contrast to this MongoDB is not ACID compliant document-oriented
database, and better matches our data changing scenario, so this is what we decided to
use. Nevertheless, column-oriented could also be a good case to use, and graph-based
data stores could be a better match when in future it can be used for machine-learning
algorithms. [56]
Key-value stores
These are systems that store values against the index keys, as key-value pairs. The keys
are unique to identify and request the data values from the collections. Such databases
has emerged recently and are influenced heavily by Amazon’s Dynamo key-value store
database, where data is distributed and replicated across multiple servers. The values in
such databases are schema flexible and can be simple text strings or more complex
structures like arrays. The simplicity of its data model makes the retrieval of information
very fast, therefore supports the big data real-time processing along the scalability,
reliability and highly available characteristics.
Column-oriented databases
Relational databases have their focus on rows in which they store the instances or the
records and return rows or instances of an entity against a data retrieval query. Such rows
possess unique keys against each instance for locating the information. Whereas column-
oriented databases store their data as columns instead of the rows and use index based
unique keys over the columns for the data retrieval. This supports attribute level access
rather than the tuple-level access pattern.
Graph databases
Graph databases, as a category of NoSQL technologies, represent data as a network of
nodes connected with edges and are having properties of key-value pairs. Working on
relationships, detecting patterns and finding paths are the best applications to be solved
by representing them as graphs.
Document databases
These are the most general models, which use JSON (JavaScript Object Notation) or
BSON (Binary JSON) format to represent and store the data structures as documents for
the data management. Document stores provide schema flexibility by allowing arbitrarily
complex documents, i.e. sub-documents within document or sub-documents; and
documents as lists. A database comprises one or more collections, where each collection
is a named group of documents. A document can be a simple or complex value, a set of
attribute-value pairs, which can comprise simple values, lists, and even nested sub
documents. Documents are schema-flexible, as one can alter the schema at the run time
hence providing flexibility to the programmers to save an object instances in different
formats, thus supporting polymorphism at the database level.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 78

Picture 24: Mongodb representation of data [56]

The above figure illustrates a patient’s document using MongoDB, our selection for a
document database. It is evident that a collection can have different formats of documents
in JSON format and they have hierarchies among themselves. [56]

4.2.4 Data-access Layer – Back-end Server

A back-end system is any system that supports back-office applications. These systems
are used as part of corporate management and they work by obtaining user input and
gathering input from other systems to provide responsive output. The separation of front-
end and back-end computer systems simplifies the computing process when dealing with
multilayered development and maintenance. Back-end systems deal with databases and
data processing components, so the purpose of the back-end system is to launch the
operating system's programs in response to front-end system requests and operations.
In other words, the back-end system implements responses to what the front end has
initiated. [57]
The main reason for using a backend server is to abstract the actual database engine or
other data store, such that the application we use can switch a database model to another
without the other layers(like the middleware and the presentation layer being affected.
More specifically, as mentioned above, there may be a possible future change from using
MongoDB to using Neo4j graph database, as in case we apply machine learning, Neo4j
is a better applying database to our dataset. So, now that we use a data-access layer,
this change can happen pretty easily. [57]

// Project ALD-BRFAA-API
// Filepath: src/server.js

connect('mongodb://localhost/ALD-BRFAA');
connection.once('open', () => {
 console.log('Database connected!');
});
server.listen().then(({ url }) => {
 console.log(`🚀 Server ready at ${url}`);
});

Code 2: Connect server to mongodb database

Another case for using a data-access layer is to abstract the logical data model such that
the business-logic layer is decoupled from this knowledge and is agnostic of it. This gives
to the system structure the ability to have its logical data model modified without impacting
the business layer. In our application’s case, we also did abstract the logical data model24.

24 https://medium.com/@ahsan.ayaz/how-to-find-schema-of-a-collection-in-mongodb-d9a91839d992

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 79

For the thesis purposes, we just used the same labels and naming in order to make an
abstraction, using the mongo schema of patients collection extracted with an open-source
tool25 that currently doesn’t have any affect but in the future it will be easier to use this
abstraction for business purposes. [57]

// Project ALD-BRFAA-API
// Filepath: src/models/patients
// STEP 1: DEFINE MONGOOSE SCHEMA AND MODEL
const patientSchema = new Schema(schema.patients);
const Patient = mongoose.model('Patient', patientSchema);

Code 3: Abstract logical data using mongoose configuration options
// Project ALD-BRFAA-API
// Filepath: schema.json
// extracted mongo schema using extraction tool4

{
 "patients": {
 "_id": {
 "type": "Object",
 "structure": {
 "_bsontype": {
 "type": "string",
 "required": false
 },
 "id": {
 "type": "Uint8Array",
 "required": false
 },
 "get_inc": {
 "type": "function",
 "required": false
 },
...
 },
 "age": {
 "type": "number",
 "required": false
 },
 "ap_age": {
 "type": "string",
 "required": false
 },
 "biopsy": {
 "type": "string",
 "required": false
 },
 "no_biopsy": {
 "type": "string",
 "required": false
 },
 "kleiner": {
 "type": "number",
 "required": false
 },
...
 "smoke": {
 "type": "string",
 "required": false
 },
 "smokeyears": {
 "type": "number",
 "required": false
 },
 "smokevolume": {
 "type": "number",
 "required": false
 },

25 https://github.com/perak/extract-mongo-schema

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 80

...
}

Code 4: Mongo extracted schema for use by GraphQL

4.2.5 Business-Logic Layer – Back-end Middleware (using GraphQL)
The business logic layer is the business components that provide services to return data
or start business processes. The presentation layer uses these services to display data,
or to invoke a business process. The business logic provides data required by the
presentation layer. The business logic layer exists because in most cases more than just
fetching and updating data is required by an application; there is also additional business
logic independent of the presentation layer. [60]
This business logic is better practice to be used in the backend in order to be handled
once and don’t depend on the client-side systems. Software developers tend to represent
this layer as a software in the middle of the presentation layer and the database layer
(middleware). Middleware is computer software that provides services to software
applications beyond those available from the operating system. It can be described as
"software glue". Middleware is multipurpose software that provides services to
applications outside of what’s offered by the operating system. Any software between the
kernel and user apps can be middleware. Middleware doesn’t offer the functions of a
traditional app, it connects software to other software. For instance, GraphQL is open
source middleware that offers real-time data querying capabilities for your applications.
There exists a variety of Middleware software, but in general we can categorize it to:
Application Programming Interface (API)
APIs are sets of tools, definitions, and protocols for building application software, which
lets your product or service communicate with other products and services without having
to know how they’re implemented. In our case of the web interface we used the GraphQL
API middleware as a surface between the GUI and the server that connents to our
database.
Application Server
Platform for app development. An application server is a framework that provides the
functionality to create apps and a server on which to run them.
Application Integration
Application integration is the practice of combining data from several apps through an
integration framework. The framework can limit the number of point-to-point connections
across your organization that can lead to complex dependencies and potential points of
failure.
Data Integration
Data integration is the practice of combining data from heterogeneous sources into a
unified view for users to access and manipulate.26

4.2.6 Presentation Layer – Front-end User Interface
A front-end system is part of an information system that is directly accessed and
interacted with by the user to receive or utilize back-end capabilities of the host system.

26 https://www.redhat.com/en/topics/middleware/what-is-middleware

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 81

It enables users to access and request the features and services of the underlying
information system. The front-end system can be a software application or the
combination or hardware, software and network resources. A front-end system is primarily
used to send queries and requests, and receive data from the back-end system or the
host information system. It serves or provides users with the ability to interact and use an
information system. Typically, front-end systems have very limited computational or
business logic processing capabilities and rely on the data and functions from the host
system. However, nowadays this has been changed and companies tend to have some
more advanced level front-end systems do maintain copies of data, cache them in local
client’s memory for performance reasons and make quick simple computations that are
faster to do in client-side than unnecessarily connect and stream to backend to do so, for
example store in local memory a query answer that previously was queried in server, in
order to fetch the data from cache than from database or backend middleware.
A front-end system may include or consist of textual or graphical user interface (GUI) ,
visualizations, and/or a front-end client application that is connected by the back-end
system. In this thesis case, our front-end is written mostly in JavaScript using React’s
JSX and we use all of the aforementioned processes, like caching, visualizations, etc.
that we will also analyze in further in the next section.27

4.3 Web Application’s Technologies Stack

In this section we present the stack of the technologies used to build this web interface
for querying data patients data and easily manipulate and visualize them with a handy
user interface with the use of UX principles. In short, everything we used is open-source
and free to use, and is applicable to work in any system’s platform architecture and
operation system (i.e. Windows, Unix based systems, etc.).
The main pillar for this web interface’s software development were:

1. Git tracking system for code tracking and changelog
2. MongoDB as the NoSQL application’s database
3. Node.js for data access to MongoDB and serving to client’s Web-UI and for

manipulating the middleware GraphQL using Apollo engine
4. ReactJS, for creating the Web-UI, with main support of packages Material-UI that

follows the material design principles, Ant Design – which is a powerful UI
components’ library and react-vis, which we used for creating the visualizations.

4.3.1 Git

Git is a distributed version-control system for tracking changes in source code during
software development. It is designed for coordinating work among programmers, but it
can be used to track changes in any set of files. Its’ goals include speed, data integrity,
and support for distributed, non-linear workflows. As with most other distributed version-
control systems, and unlike most client–server systems, every Git directory on every
computer is a full-fledged repository with complete history and full version-tracking
abilities, independent of network access or a central server.

27 https://www.techopedia.com/definition/3799/front-end-system

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 82

Some of Git’s features that make it stand out through its other competitor version-control
systems are:
1. Branching and Merging
2. Size and performance
3. It can be distributed
4. Data assurance
5. It has a third area of “working space” except for the local and remote - the “stage” area
6. It is free and open-source
Branching and merging is the most important aspect that lets Git standalone from nearly
every other SCM out there. Git allows and encourages you to have multiple local
branches that can be entirely independent from each other. The creation, merging, and
deletion of those lines of development takes seconds. [58]

Picture 25: Git branching and merging [58]

Code 5: Git branching and merging in our use-case in local repository

Git size and performance also make it stand out as nearly all operations are performed
locally, giving it a huge speed advantage on centralized systems that constantly have to
communicate with a server somewhere. Initially, Git was built to work on the Linux kernel,
meaning that it has had to effectively handle large repositories from day one. Git is written
in C, reducing the overhead of runtimes associated with higher-level languages. Some
benchmarks from the official git page show that common operations stack up against
Subversion, a common centralized version control system that is similar to CVS or
Perforce. Smaller is faster.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 83

Picture 26: Git vs. SVN Benchmarks [58]

Git is distributed which means that even if you're using a centralized workflow, every user
essentially has a full backup of the main server. Each of these copies could be pushed
up to replace the main server in the event of a crash or corruption. In effect, there is no
single point of failure with Git unless there is only a single copy of the repository.

Picture 27: Git is distributed. Each developer has his own local copy of a shared repository [58]

Git is safe and provides users with data assurance. This happens because the data model
that Git uses, ensures the cryptographic integrity of every bit of your project. Every file
and commit is checksummed and retrieved by its checksum when checked back out. It's
impossible to get anything out of Git other than the exact bits you put in.
As referenced earlier, Git, unlike the other systems, has something a third “area”, called
the "staging area" or "index". This is an intermediate area where commits can be
formatted and reviewed before completing the commit. This is also one of the reasons
that sets Git apart from other tools, as it's possible to quickly stage some of your files and
commit them without committing all of the other modified files in your working directory or
having to list them on the command line during the commit.28 29

28 https://medium.com/@nmpegetis/git-how-to-start-code-changes-commit-and-push-changes-when-
working-in-a-team-dbc6da3cd34c
29 https://medium.com/@nmpegetis/git-commit-message-conventions-841d6998fc4f

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 84

Picture 28: Git intermediate staging area [58]

Picture 29: Git use case of intermediate staging area, working directory and local-remote

differences [58]

Finally, Git is released under the GNU General Public License version 2.030, which is
an open source license31. The Git project chose to use GPLv2 to guarantee freedom to
share and change free software, which ensures that the software is free for all its users.32

30 GNU General Public License version 2.0
31 open source license
32https://medium.com/@nmpegetis/git-how-to-start-code-changes-commit-and-push-changes-when-
working-in-a-team-dbc6da3cd34c

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 85

4.3.2 MongoDB

MongoDB, created by 10gen software company in 2007, is a document oriented database
for today’s applications which are not possible to develop using the traditional relational
databases. It is an IoT database which instead of tables (as in RDBMS) provides one or
more “collection(s)” as main storage components consisted upon similar or different
JSON or BSON based documents or sub documents. Documents that tend to share some
of the similar structure are organized as collections, which can be created at any time,
without predefinitions. A document can simply be considered as a row or instance of an
entity in RDBMS (Relational DBMS), but the difference is that, in MongoDB we can have
instances within instances or documents with in documents, even lists or arrays of
documents. The types for the attributes of a document can be of any basic data type,
such as numbers, strings, dates, arrays or even a sub-document.

Picture 30: Flexible storage architecture, optimizing MongoDB for unique application demands [56]

MongoDB provides unique multiple storage engines within a single deployment and
automatically manages the movement of data between storage engine technologies
using native replication. MongoDB 3.2 consists of four efficient storage engines as shown
in the above figure, all of which can coexist within a single MongoDB replica set. The
default Wired Tiger storage engine provides concurrency control and native compression
with best storage and performance efficiency. MongoDB allows both the combinations of
in-memory engine for ultra-low-latency operations with a disk-based engine for
persistence altogether.
It allows to build large-scale, highly available, robust systems and enables different
sensors and applications to store their data in a schema flexible manner. There is no
database blockage, such as we encounter during “alter table” commands in RDBMS
during schema migrations. However in rare cases, such as during the write-intensive
scenarios in master-slave nature of MongoDB there may be blockage at the document
level or bottleneck to the system if sharding is not used, but these cases are avoidable.
MongoDB enables horizontal scalability because table joins are not as important as they
are in the traditional RDBMS. MongoDB provides auto-sharding in which more replica
server nodes can easily be added to a system. It is a very fast database and provides
indexes not only on the primary attributes rather also on the secondary attributes within
the sub-documents even. For the cross comparison analysis between different collections
we have different technologies, such as aggregation framework, Map Reduce Hadoop
etc. [56] [59] 33

33 https://www.mongodb.com/

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 86

In this thesis our dataset is large, but not so that latencies would be incorporated or
sharding would be needed. So for the purposes of the present thesis, the goals achieved
by using MongoDB were multiple.

1. Schema-flexibility, for adding more columns or even a new dataset.
2. Polymorphism, for saving object instances in different formats at database

level.
3. Fast installation and changes that require schema change.

All of these purposes are met by using MongoDB as our researchers are familiar with the
JSON-like structure, and so they can easily understand a MongoDB schema and edit it if
needed. Importing a CSV in mongo is handy and can be achieved with the mongoimport
command which provides the option to convert the csv directly to a mongo collection by
creating its mongo schema in the background. In this thesis these commands are running
in a docker container which works in all types of operating systems that in future may be
installed. Now, docker is installed in a lab server that we use for deployment purposes.

4.3.3 JavaScript

JavaScript is a scripting or programming language that allows the implementation of
complex things on web pages, like displaying timely content updates, interactive maps,
animated 2D/3D graphics, scrolling video jukeboxes, etc. It is the third layer of the layer
cake of standard web technologies, alongside HTML and CSS.

Picture 31: Standard web technologies [60]

In this graph, HTML is the markup language that we use to structure and give meaning
to our web content, for example defining paragraphs, headings, and data tables, or
embedding images and videos in the page. CSS is a language of style rules that we use
to apply styling to our HTML content, for example setting background colors and fonts,
and laying out our content in multiple columns. Also, JavaScript is a scripting language
that enables you to create dynamically updating content, control multimedia, animate
images, and almost everything else one can find in a web page.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 87

Initially only implemented client-side in web browsers, JavaScript engines are now
embedded in many other types of host software, including server-side in web servers and
databases, and in non-web programs such as word processors and PDF software, and
in runtime environments that make JavaScript available for writing mobile and desktop
applications, including desktop widgets.
The terms Vanilla JavaScript and Vanilla JS refer to JavaScript not extended by any
frameworks or additional libraries. Scripts written in Vanilla JS are plain JavaScript code.
Although there are similarities between JavaScript and Java, including language
name, syntax, and respective standard libraries, the two languages are distinct and differ
greatly in design. JavaScript was influenced by programming languages such
as Self and Scheme.
The JSON serialization format, used to store data structures in files or transmit them
across networks, is based on JavaScript. This format is also used in many NoSQL
databases, as we already saw before, and more specifically for our web application, this
format is used both in the MongoDB database and in the client-side labels handling that
we use for all columns to have more user-friendly names. [60]
Some of JavaScript’s common features using an eagle’s eye perspective list as follows:

§ Universal support
It has a Universal support, which means that all popular modern Web browsers support
JavaScript with built-in interpreters.

§ Imperative and structured
It is imperative and structured, meaning that it supports much of the structured
programming syntax from C (e.g., if statements, while loops, switch statements, do while
loops, etc.). One partial exception is scoping: JavaScript originally had only function
scoping with var. ECMAScript 2015 added keywords let and const for block scoping,
meaning JavaScript now has both function and block scoping. Like C, JavaScript makes
a distinction between expressions and statements. One syntactic difference from C is
automatic semicolon insertion, which allows the semicolons that would normally terminate
statements to be omitted.

§ Dynamic typing and runtime evaluation
It is Dynamic in typing and in runtime evaluation. Dynamically typed like most other
scripting languages, means that a type is associated with a value rather than an
expression. For example, a variable initially bound to a number may be reassigned to a
string. JavaScript supports various ways to test the type of objects, including duck typing.
Run-time evaluation means that it includes an eval[function that can execute statements
provided as strings at run-time.

§ Prototype-based
It is Prototype-based (object-oriented). In JavaScript, an object is an associative array,
augmented with a prototype (see below); each string key provides the name for an object
property, and there are two syntactical ways to specify such a name: dot notation (obj.x
= 10) and bracket notation (obj['x'] = 10). A property may be added, rebound, or deleted
at run-time. Most properties of an object (and any property that belongs to an object's
prototype inheritance chain) can be enumerated using a for...in loop. JavaScript has a
small number of built-in objects, including Function and Date. Prototypes: JavaScript uses
prototypes where many other object-oriented languages use classes for inheritance. It is
possible to simulate many class-based features with prototypes in JavaScript. Functions
as object constructors: Functions double as object constructors, along with their typical
role. Prefixing a function call with new will create an instance of a prototype, inheriting
properties and methods from the constructor (including properties from the Object

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 88

prototype). ECMAScript 5 offers the Object.create method, allowing explicit creation of an
instance without automatically inheriting from the Object prototype (older environments
can assign the prototype to null).
The constructor's prototype property determines the object used for the new object's
internal prototype. New methods can be added by modifying the prototype of the function
used as a constructor. JavaScript's built-in constructors, such as Array or Object, also
have prototypes that can be modified. While it is possible to modify the Object prototype,
it is generally considered bad practice because most objects in JavaScript will inherit
methods and properties from the Object prototype, and they may not expect the prototype
to be modified. Functions as methods: Unlike many object-oriented languages, there is
no distinction between a function definition and a method definition. Rather, the distinction
occurs during function calling; when a function is called as a method of an object, the
function's local this keyword is bound to that object for that invocation.

§ Functional
It is Functional. A function is first-class; a function is considered to be an object. As such,
a function may have properties and methods, such as .call() and .bind(). A nested function
is a function defined within another function. It is created each time the outer function is
invoked. In addition, each nested function forms a lexical closure: The lexical scope of
the outer function (including any constant, local variable, or argument value) becomes
part of the internal state of each inner function object, even after execution of the outer
function concludes. JavaScript also supports anonymous functions.

§ Delegative
It is delegative, as it supports implicit and explicit delegation. More specifically JS provides
Functions as roles (Traits and Mixins) and Object composition and inheritance. Functions
as roles (Traits and Mixins), means that JavaScript natively supports various function-
based implementations of Role patterns like Traits and Mixins. Such a function defines
additional behavior by at least one method bound to the this keyword within its function
body. A Role then has to be delegated explicitly via call or apply to objects that need to
feature additional behavior that is not shared via the prototype chain. What is more,
Object composition and inheritance means that whereas explicit function-based
delegation does cover composition in JavaScript, implicit delegation already happens
every time the prototype chain is walked in order to, e.g., find a method that might be
related to but is not directly owned by an object. Once the method is found it gets called
within this object's context. Thus inheritance in JavaScript is covered by a delegation
automatism that is bound to the prototype property of constructor functions34. [61]
4.3.3.1 Node.js
Node.js is an open-source, cross-platform JavaScript run-time environment that runs
JavaScript code outside of a browser. Node.js lets developers use JavaScript to write
command line tools and for server-side scripting, meaning to run scripts server-side to
produce dynamic web page content before the page is sent to the user's web browser.
Consequently, Node.js represents a "JavaScript everywhere" paradigm, unifying web
application development around a single programming language, rather than different
languages for server- and client-side scripts.
Though .js is the standard filename extension for JavaScript code, the name "Node.js"
does not refer to a particular file in this context and is merely the name of the product.
Node.js has an event-driven architecture capable of asynchronous I/O. These design

34 https://github.com/getify/You-Dont-Know-JS

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 89

choices aim to optimize throughput and scalability in web applications with many
input/output operations, as well as for real-time Web applications.
The Node.js distributed development project, governed by the Node.js Foundation, is
facilitated by the Linux Foundation's Collaborative Projects program. Node.js allows the
creation of Web servers and networking tools using JavaScript and a collection of
"modules" that handle various core functionality.
Modules are provided for file system I/O, networking (DNS, HTTP, TCP, TLS/SSL,
or UDP), binary data (buffers), cryptography functions, data streams, and other core
functions. Node.js's modules use an API designed to reduce the complexity of writing
server applications. Though initially the module system was based on commonjs module
pattern, the recent introduction of modules in the ECMAScript specification has shifted
the direction of using ECMAScript Modules in Node.js by default instead. Node.js is
primarily used to build network programs such as Web servers. [62] [63]
The most significant difference between Node.js and PHP is that most functions in
PHP block until completion (commands only execute after previous commands finish),
while Node.js functions are non-blocking (commands execute concurrently or even
in parallel, and use callbacks to signal completion or failure). So, some of Node.js’s
features using an eagle’s eye perspective list as follows:
Platform architecture
Node.js brings event-driven programming to web servers, enabling development of fast
web servers in JavaScript. Developers can create scalable servers without using
threading, by using a simplified model of event-driven programming that uses callbacks
to signal the completion of a task. Node.js connects the ease of a scripting language
(JavaScript) with the power of Unix network programming.
Node.js was built on the Google V8 JavaScript engine since it was open-sourced under
the BSD license. It is proficient with internet fundamentals such as HTTP, DNS, TCP.
JavaScript was also a well-known language, making Node.js accessible to the web
development community. Node.js is a JavaScript runtime environment that processes
incoming requests in a loop, called the event loop.
Threading
Node.js operates on a single thread event loop, using non-blocking I/O calls, allowing it
to support tens of thousands of concurrent connections without incurring the cost of
thread context switching. The design of sharing a single thread among all the requests
that use the observer pattern is intended for building highly concurrent applications, where
any function performing I/O must use a callback. To accommodate the single-threaded
event loop, Node.js uses the libuv library - which, in turn, uses a fixed-sized thread pool
that handles some of the non-blocking asynchronous I/O operations.
A thread pool handles execution of parallel tasks in Node.js. The main thread function
call posts tasks to the shared task queue, which threads in the thread pool pull and
execute. Inherently non-blocking system functions such as networking translate to kernel-
side non-blocking sockets, while inherently blocking system functions such as file I/O run
in a blocking way on their own threads. When a thread in the thread pool completes a
task, it informs the main thread of this, which in turn, wakes up and executes the
registered callback.
A downside of this single-threaded approach is that Node.js doesn't allow vertical scaling
by increasing the number of CPU cores of the machine it is running on without using an
additional module, such as cluster, StrongLoop Process Manager, or pm2. However,
developers can increase the default number of threads in the libuv thread pool. The server
operating system (OS) is likely to distribute these threads across multiple cores. Another

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 90

problem is that long lasting computations and other CPU-bound tasks freeze the entire
event-loop until completion.
V8 JavaScript Engine
V8 is the JavaScript execution engine which was initially built for Google Chrome. It was
then open-sourced by Google in 2008. Written in C++, V8 compiles JavaScript source
code to native machine code during runtime instead of interpreting it in ahead of time
(AOT). Node.js uses libuv to handle asynchronous events. Libuv is an abstraction layer
for network and file system functionality on both Windows and POSIX-based systems
such as Linux, macOS, OSS on NonStop, and Unix. The core functionality of Node.js
resides in a JavaScript library. The Node.js bindings, written in C++, connect these
technologies to each other and to the operating system.
Package management
npm is the pre-installed package manager for the Node.js server platform. It installs
Node.js programs from the npm registry, organizing the installation and management of
third-party Node.js programs. Packages in the npm registry can range from simple helper
libraries such as Lodash to task runners such as Grunt.
Unified API
Node.js can be combined with a browser, a database that supports JSON data (such as
Postgres, MongoDB – what we used in this thesis application, or CouchDB) and JSON
for a unified JavaScript development stack. With the adaptation of what were essentially
server-side development patterns such as MVC, MVP, MVVM, etc., Node.js allows the
reuse of the same model and service interface between client-side and server-side.
Event loop
Node.js registers with the operating system so the OS notifies it of connections and issues
a callback. Within the Node.js runtime, each connection is a small heap allocation.
Traditionally, relatively heavyweight OS processes or threads handled each connection.
Node.js uses an event loop for scalability, instead of processes or threads. In contrast to
other event-driven servers, Node.js's event loop does not need to be called explicitly.
Instead callbacks are defined, and the server automatically enters the event loop at the
end of the callback definition. Node.js exits the event loop when there are no further
callbacks to be performed.
Project governance
In 2015, various branches of the greater Node.js community began working under the
vendor-neutral Node.js Foundation. The stated purpose of the organization "is to enable
widespread adoption and help accelerate development of Node.js and other related
modules through an open governance model that encourages participation, technical
contribution, and a framework for long-term stewardship by an ecosystem invested in
Node.js' success."
The Node.js Foundation Technical Steering Committee (TSC) is the technical governing
body of the Node.js Foundation. The TSC is responsible for the core Node.js repo as well
as dependent and adjacent projects. Generally the TSC delegates administration of these
projects to working groups or committees. The LTS group that manages long term
supported releases is one such group. Other current groups include: Website, Streams,
Build, Diagnostics, i18n, Evangelism, Docker, Addon API, Benchmarking, Post-mortem,
Intl, Documentation, and Testing. [64]
Usage in our web application

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 91

In this thesis we implemented the whole application in two different code projects, one for
the frontend and one for the backend. As we described in previous sections the data
persistence layer, the data access layer and the business logic layer are commonly all of
them parts of the so called “backend”. What is more while describing Node.js we
referenced in the Unified API that it can be combined with a browser, a database that
supports JSON data (in our case MongoDB) and JSON (we used it for data-columns user-
friendly labeling) for a unified JavaScript development stack. So, as a matter of fact this
is how we organized our application development.
We adapted what used to be essentially server-side development patterns like MVC,
MVP, MVVM, etc., and reused the same model and service interface between client-side
and server-side. To do so, we had Node.js running in backend and handle anything that
had to do with connection to MongoDB, data providing to GraphQL interface using Apollo,
assigning Apollo GraphQL response to API services and finally serving its API services
to presentation layer.
// Project ALD-BRFAA-API
// Filepath: src/server.js

import { ApolloServer, gql } from 'apollo-server';
import { connect, connection } from 'mongoose';
import graphqlSchema from './models/patient';

const server = new ApolloServer({ schema: graphqlSchema });

connect('mongodb://localhost/ALD-BRFAA');
connection.once('open', () => {
 console.log('Database connected!');
});
server.listen().then(({ url }) => {
 console.log(`🚀 Server ready at ${url}`);
});

Code 6: Create server, connect mongo, run API services and listen for connection

Packages
Using packages already tested and published by their owners is very common in
application development, as all software developers want to finish their work the fastest
they can and don’t want to reinvent the wheel. But, as the dependencies grow in number
and as the time passed and new package versions are released this may result in an
obstacle. So to avoid such impediments or the so called Dependency Hell35, we always
have to be careful and research the packages that we are using that they have for
instance a long time endurance, many backers and contributors, or are supported from
big organizations.
With that said, in this application we decided to use the less possible needed shared
packages, in order to avoid on the one hand the possible future application breaking due
to dependency hell impediments, and on the other hand to use only the required really
helpful and back-supported dependencies that will make the development faster.
The backend packages in this application’s backed list as follow:

1. Apollo-server36
Apollo Server is the best way to quickly build a production-ready, self-documenting
API for GraphQL clients, using data from any source. It's open-source and works

35 https://en.wikipedia.org/wiki/Dependency_hell
36 https://www.apollographql.com/docs/apollo-server/

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 92

great as a stand-alone server, an addon to an existing Node.js HTTP server, or in
"serverless" environments.

2. GraphQL compose Group of packages needed37
GraphQL compose is a toolkit for generating complex GraphQL schemas in Node.js.
We used it to create GraphQL types and more specifically derive automatically the
GraphQLType from our mongoose model. What is more GraphQL compose
provided us with some convenient CRUD resolvers, including relay connection and
pagination. So finally we had easily found a way to serve database data to the
presentation layer.

3. Mongoose38
Mongoose is an elegant mongodb object modeling helper tool, built for node.js. It
provides a straight-forward, schema-based solution to model our application data. It
includes built-in type casting, validation, query building, business logic hooks and
more, out of the box.

4. Nodemon39
Nodemon is a utility that will monitor for any changes in your source and
automatically restart your server. Some of its features that helped our development
is:

• Automatic restarting of application.
• Detects default file extension to monitor.
• Default support for node & coffeescript, but easy to run any executable (such

as python, make, etc).
• Ignoring specific files or directories.
• Watch specific directories.

5. Cross-env40
Run scripts that set and use environment variables across platforms. Useful for
building the application in all environment and operating systems.

6. Babel Group of packages needed41
Babel is a JavaScript transpiler, or in other words a compiler for writing next
generation JavaScript. By using Babel, our ES6+ code can be compiled down to a
supported version.

7. Extract-mongo-schema42
Extract mongo schema is a small package script developed for extracting the mongo
schema to a JSON file with ease. We used it only once in the beginning of code
writing as we needed to convert it later to a graphql-schema.

37 https://graphql-compose.github.io/
38 https://mongoosejs.com/
39 https://nodemon.io/
40 https://www.npmjs.com/package/cross-env
41 https://babeljs.io/
42 https://github.com/perak/extract-mongo-schema

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 93

// Project ALD-BRFAA-API
// Filepath: package.json

{
 "name": "adl-brfaa-api",
 "version": "0.1.0",
 "scripts": {
 "server": "nodemon --exec babel-watch src/server.js",
 "start": "cross-env NODE_ENV=development yarn server"
 },
 "keywords": [
 "apollo",
 "apollo-server",
 "api",
 "graphql"
],
 "author": "nmpegetis@gmail.com",
 "dependencies": {
 "apollo-server": "^2.3.2",
 "graphql": "^14.1.1",
 "graphql-compose": "^7.1.0",
 "graphql-compose-connection": "^6.0.3",
 "graphql-compose-mongoose": "^7.0.3",
 "graphql-compose-pagination": "^6.0.3",
 "mongoose": "^5.4.8",
 "nodemon": "^1.18.9"
 },
 "devDependencies": {
 "babel-cli": "^6.26.0",
 "babel-preset-env": "^1.7.0",
 "babel-watch": "^2.0.8",
 "cross-env": "^5.1.3",
 "extract-mongo-schema": "^0.2.7"
 }
}

Code 7: The package.json showing the backend dependencies

4.3.3.2 GraphQL middleware (with Apollo)
In the previous sections we already mentioned that we used Apollo and GraphQL and
that by using Apollo Server were able to quickly build a production-ready, self-
documenting API for GraphQL clients, using data from our MongoDB database. So in this
section we are going to provide some more knowledge resources about GraphQL and
Apollo Server.
But, before describing GraphQL, we should mention that we decided to use GraphQL
because as mentioned earlier that between n-tier layers there we should have some well-
designed layers that are abstract and there are no ambiguous areas, and more
specifically for our use case an ambiguous area is the area where we can’t distinguish if
some procedures belong to the data-access or they belong the business-logic layer. The
Dependency Inversion Principle43 indicates that:

A. High-level modules should not depend on low-level modules. Both should depend
on abstractions.
B. Abstractions should not depend on details. Details should depend on
abstractions.

Having that in mind the following figure now makes sense.

43 https://en.wikipedia.org/wiki/Dependency_inversion_principle

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 94

In this Figure we see that we separate the concerns of the backend layer in Node.js using
the data access layer and the business logic layer using only mongoose tool by leaving
only the data accessing layer to be done mongoose tool and then we convert the data
schema returned by mongoose data access to a GraphQL schema so that for now on
GraphQL should be responsible for the business logic layer.
GraphQL is an open-source data query and manipulation language for APIs, and a
runtime for fulfilling queries with existing data. GraphQL was developed internally by
Facebook in 2012 before being publicly released in 2015. On 7 November 2018, the
GraphQL project was moved from Facebook to the newly-established GraphQL
Foundation, hosted by the non-profit Linux Foundation. Since 2012, GraphQL's rise has
followed the adoption timeline as set out by Lee Byron, GraphQL's creator, with surprising
accuracy. Byron's goal is to make GraphQL omnipresent across web platforms.
It provides an efficient, powerful and flexible approach to developing web APIs, and has
been compared and contrasted with REST and other web service architectures. It allows
clients to define the structure of the data required, and exactly the same structure of the
data is returned from the server, therefore preventing excessively large amounts of data
from being returned, but this has implications for how effective web caching of query
results can be. The flexibility and richness of the query language also adds complexity
that may not be worthwhile for simple APIs. It consists of a type system, query language
and execution semantics, static validation, and type introspection. GraphQL supports
reading, writing (mutating) and subscribing to changes to data (realtime updates). [65]
[66]
GraphQL isn't just a developer megatrend. It's the smart architectural choice for any team,
large or small, that needs to quickly build high-quality apps in the modern environment.
And today, users expect high-quality personalized experiences that are available on all
of their devices.

Nowadays, developers need to build these apps on top of an ever-increasing number of
data services. How can they manage this development complexity? This is what GraphQL
is trying to achieve. The unification of all different policies, protocols and API technologies.
[65]

Picture 32: Our application’s design using best practices (GraphQL for the Business-Logic) [65]

Picture 33: Showcase of different platforms and architectures that need to receive data [66]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 95

Nowadays, REST services are used to be the state of the art. The point-to-point nature
of REST, a procedural API technology, forces the authors of services and clients to
coordinate each use case ahead of time. When frontend teams must constantly ask
backend teams for new endpoints, often with each new screen in an app, development is
dramatically slowed down. Both teams need to move fast independently.

GraphQL is a comprehensive solution to the problem of connecting modern apps to
services in the cloud. As such, it forms the basis for a new and important layer in the
modern application development stack: the data graph. This new layer brings all of a
company's app data and services together in one place, with one consistent, secure, and
easy-to-use interface, so that anyone can draw upon it with minimal friction. [65]

GraphQL decouples apps from services by introducing a flexible query language. Instead
of a custom API for each screen, app developers describe the data they need, service
developers describe what they can supply, and GraphQL automatically matches the two
together. Teams ship faster across more platforms, with new levels of visibility and control
over how their data is used. [65]
A GraphQL service is created by defining types and fields on those types, then providing
functions for each field on each type. For example, a GraphQL service that tells us who
the logged in user is (me) as well as that user's name might look something like this:
type Query {

 me: User

}

type User {

 id: ID

Picture 34: Today situation using REST services [66]

Picture 35: Todays’ situation using GraphQL [65]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 96

 name: String

}

Code 8: GraphQL type definition

Along with functions for each field on each type:
function Query_me(request) {

 return request.auth.user;

}

function User_name(user) {

 return user.getName();

}

Code 9: GraphQL functions

Once a GraphQL service is running (typically at a URL on a web service), it can be sent
GraphQL queries to validate and execute. A received query is first checked to ensure it
only refers to the types and fields defined, then runs the provided functions to produce a
result.
For example the query:
{

 me {

 name

 }

}

Code 10: GraphQL query

Could produce the JSON result:
{

 "me": {

 "name": "Luke Skywalker"

 }

}

Code 11: GraphQL query response

So, some of GraphQL’s features using an eagle’s eye perspective list as follows:
§ Shipping Faster

Don’t write a ton of code or rely on new rigid API endpoints when there is need to fetch
data for a new screen in an app. This is easily shown in our application’s presentation
layer, as you can find out that we connect our presentation layer to only one endpoint
serving the GraphQL data, where each time needed, and in any screen needed we just
send to the only one endpoint a different query.

§ Better Apps
Build features with the best data and services possible, not the API available that day.
GraphQL helps you put personalization into every app. This is also easily shown as we
dynamically change in our presentation layer the “getPatients” query, each time
requesting for more or less data to be provided to us.

§ Parity Across Platforms
Makes applications consistent across all channels. This happens by moving data-related
functionality that is common between platforms into the shared GraphQL layer.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 97

§ Powerful Partner APIs
Get new partners onto your API without custom changes, while ensuring a high-quality
experience for your mutual customer.

§ Visibility Into Your Data
Gives to development teams real-time visibility into exactly what services are available
for them to build on top of. We also provide this in our web interface as a custom page
build inside the web-application, but also we have allowed production read visibility to the
data using GraphQL Playground44.

§ Positive Control
Get a single point of control to secure and analyze all access to the applications’ data and
see how it’s used.
Usage in our web application
In this thesis we implemented GraphQL by using the Apollo Server. As was presented in
a previous section, we used the apollo-server package dependency and also created and
run an Apollo Server instance with the following line of code:
const server = new ApolloServer({ schema: graphqlSchema });

Apollo Server is the best way to quickly build a production-ready, self-documenting API
for GraphQL clients, using data from MongoDB or any other source, and that is because
it implements a spec-compliant GraphQL server which can be queried from any GraphQL
client, as we will also refer-to later when describing the presentation layer.

Picture 36: Our web application’s situation using GraphQL [67]

Apollo server is open-source and works great as a stand-alone server, an addon to an
existing Node.js HTTP server, or in "serverless" environments. So by combining a server
with GraphQL specs preinstalled and the graphql-compose set of packages described in
the previous section we were ready to easily and in a few lines of code provide a ton of
services to the client. [67] [68]
So, our main concern left, in order to finish with the backend coding, is to find a way to
translate the MongoDB schema, that we got from the data-access layer, to a GraphQL
schema. GraphQL Compose toolkit package, described in the previous section, helped
us on doing so, as it offers a graphql-compose-mongoose package which exports a

44 https://github.com/prisma/graphql-playground

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 98

composeWithMongoose function that converts the mongo schema into a graphql
schema. [69]
The GraphQL Schema Definition Language (SDL)
A schema definition is the most concise way to define a GraphQL query. To define the
schema of a GraphQL API, you have to use the type system provided by GraphQL, and
this is where composeWithMongoose helps us, as it is automatically converting the
MongoDB schema type and relations definitions to GraphQL type and relation definitions.
The syntax for writing schemas is called Schema Definition Language. The main
components of a schema definition are the types and their fields. A GraphQL schema
describes the types, shapes and relationships in your data and can be written in any
programming language that implements the type system.
Types are used to describe the set of possible data you can query from a service. Here’s
an example of how to define a type in GraphQL:
type User {

 name: String!

 username: String!

}

Code 12: Example User graphql type definition

The User type we just described is a GraphQL Object Type which means that it is a type
that contains some fields. This “User” type has two fields: “name” and “username”, and
they’re both of type String. The ! following the types indicates that the field is required
(non-nullable). In this application’s use case, one part of the MongoDB schema given in
an earlier section describing MongoDB, would convert using graqhl-compose-mongoose
from:
"patient": {

...

 "age": {

 "type": "number",

 "required": false

 },

 "biopsy": {

 "type": "string",

 "required": true

 },

...

}

Code 13: mongodb code before graphql-compose convertion

To:
Type Patient {

...

 age: Number,

 biopsy: String!,

...

}

Code 14: graphql code after graphql-compose convertion

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 99

In GraphQL, you can express relationships between types, too. This means that the
Type Patient that we created in the above code can be used as a type definition of another
type’s field, for example Hospital.
Type Hospital {

...

 patients: [Patient!]!,

...

Code 15: graphql type definition using complex types

In our application’s case we didn’t need such a case at the moment, as the collection we
have in the database is only one, but in future possibly if we have more data about the
patients we could easily find such scenarios. So finally, after using the graphql-compose-
mongoose method we managed to translate the MongoDB schema to a GraphQL schema
with its GraphQL Object Type definitions45. Having the GraphQL schema ready for use,
the next step is to append it by creating the Queries and Mutations that will be needed
from the presentation layer.
Queries are used by the client to request the data it needs from the server. Unlike REST
APIs where there’s a clearly defined structure of information returned from each endpoint,
GraphQL always exposes only one endpoint, allowing the client to decide what data it
really needs from a predefined pattern. Here’s an example based on the previous “User”
type definition:
{

 Users {

 name

 }

}

Code 16: Example graphql query definition

The “Users” field in our query above is called the root field of the query. Anything that
comes after the root field is known as the payload. Since we only added name in the
payload, the query will return a list of all the users like this:
{

 "Users": [

 {"name": "Nikolas"},

 {"name": "Ema"},

 {"name": "Styliani"},

 {"name": "Pavlos"},

]

}

Code 17: Example graphql query response after execution

You’ll notice that the query only returned the names of the users; this is because in the
query payload, we specified that we need only the name of each user. This capability is
described by GraphQL as ask for what you need and you’ll get exactly that. Now
assuming we need more information about the users, we can decide to add username to
the payload:

45 https://medium.com/software-insight/graphql-types-and-relationships-cbb046a541c4

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 100

{

 Users {

 name

 username

 }

}

Code 18: Example graphql query definition with more fields

Now the server will include the username of each user in its response:
{

 "Users": [

 {"name": "Nikolas", "username": "nmpegetis"},

 {"name": "Ema", "username": "eanastasiadou"},

 {"name": "Styliani", "username": "sgeorgiou"},

 {"name": "Pavlos", "username": "pkafouris"},

]

}

Code 19: Example graphql query response after execution with more fields

This way we have more flexibility over the data we receive from the server, which is
immensely valuable for many reasons. For example, assuming we want to request the
server to send information of only the last two users who were added, we can use
arguments to specify it like this:
{

 Users(last: 2) {

 name

 username

 }

 }

}

Code 20: Example graphql query definition with filter

Note: Zero or more arguments (like last: 2) can be provided for each field in GraphQL.
Each argument passed to any field must be defined in the schema.
Thus the server will only return:
{

 "Users": [

 {"name": "Styliani", "username": "sgeorgiou"},

 {"name": "Pavlos", "username": "pkafouris"},

]

}

Code 21: Example graphql query response after execution with filter

Also assuming we have defined an argument in our schema for getting a single User from
its username, we can pass in the username as an argument, like this:
{

 Users(username: “nmpegetis”) {

 name

 username

 }

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 101

 }

}

Code 22: Example graphql query definition with find

As expected, this query returns the user whose username matches our argument:
{

 "Users": [

 {"name": "Nikolas", "username": "nmpegetis"},

]

}

Code 23: Example graphql query response after execution with find

Passing arguments the way we just did is helpful, but in most instances, the arguments
needs to be dynamic. GraphQL provides a way for us to pass in dynamic values as
arguments — by treating them as variables
Variables are used to factor dynamic values out of the query and pass them as a separate
dictionary. For example, if we have a search field where a user types in the name of
patient he or she wants to view. To allow that, we’d use variables like this: [70]
query Patients($namevar: String) {

 patient(name: $namevar) {

 name

 username

 }

}

Code 24: Example graphql query definition with variables

In the example above “($name: String)” is the variable definition. “namevar” is the
variable name and it is prefixed by “$”, followed by the type in this case “String”. That’s it.
This is all, we used about queries in our web application’s code.
Finally, to sum up and present our implementation code that handles all the above
scenarios we just have to mention Mutations.
So, so far we have seen the way to retrieve data from the server using queries, but how
do we create, update and delete data in GraphQL? The answer is with Mutations.
Mutations in GraphQL are used to CUD:

• Create new data

• Update existing data

• Delete existing data
The syntax for mutations look almost the same as queries, but they must start with the
“mutation” keyword. Here’s an example that’ll allow us create a new user:
mutation {

 createUser(name: “Lefteris”, username: “louzounoglou”) {

 name

 username

 }

}

Code 25: Example graphql create mutation

Notice that the mutation has a root field and payload, just like a query. There are also two
arguments passed to the mutation : “name” and “username”. To be able to manage the

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 102

data of our users effectively, we need to assign a unique identity to each user. GraphQL
has a type ID that can be attached to a field. When that is done, the server will
automatically generate a unique id for each new object (user).
Recall from the previous article that we created a GraphQL type called User, and now we
can update it to include an id field as follows:
type User {

 ID: ID!

 name: String!

 username: String!

}

Code 26: Example User graphql type definition with ID

Now we can update the mutation by passing only the id to the payload. That way the
server will return the id of the user we just created. [71]
mutation {

 createUser(name: “Lefteris”, username: “louzounoglou”) {

 id

 }

}

Code 27: Example graphql create mutation optimization

Subscriptions, is an improvement for future work. Subscriptions, are a way to create and
maintain real time connection to the server. This enables the client to get immediate
information about related events. Basically, a client subscribes to an event in the server,
and whenever that event is called, the server will send the corresponding data to the
client. Subscriptions are event based46.
Let’s say a hypothetical user profile app allows users to change their username on their
profile and the displayed username needs to be updated in real time. This means:

• For the initial page load, we need to fetch the displayed username using GraphQL
queries.

• Next, we’ll listen for the new username and get it through a subscription.
• We update the UI with a notification that the username change was complete.

We can also create a subscription that notifies users for deletions, etc. in their profile. In
the previous example, we will want to get updates from the server whenever a new user
is created that way we can update the client automatically without having to make a call
for it. Here is an example subscription:
subscription {

 newUser {

 name

 username

 }

}

Code 28: Example graphql subscription

46 https://medium.com/fbdevclagos/understanding-graphql-queries-mutations-and-subscriptions-
a80a8b5c877c

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 103

That’s all folks about coding GraphQL. Now let’s finally see how we created our queries
and mutations for our web application.
// Project ALD-BRFAA-API

// Filepath: src/models/patients

import schema from '../../schema.json';

import mongoose from 'mongoose';

import { composeWithMongoose } from 'graphql-compose-mongoose';

import { schemaComposer } from 'graphql-compose';

const Schema = mongoose.Schema;

// STEP 1: DEFINE MONGOOSE SCHEMA AND MODEL

const patientSchema = new Schema(schema.patients);

const Patient = mongoose.model('Patient', patientSchema);

// STEP 2: CONVERT MONGOOSE MODEL TO GraphQL PIECES

const customizationOptions = {}; // left it empty for simplicity, described below

const PatientTC = composeWithMongoose(Patient, customizationOptions);

// STEP 3: Add needed CRUD Patient operations to the GraphQL Schema

// via graphql-compose it will be much much easier, with less typing

schemaComposer.Query.addFields({

 patientById: PatientTC.getResolver('findById'),

 patientByIds: PatientTC.getResolver('findByIds'),

 patientOne: PatientTC.getResolver('findOne'),

 patientMany: PatientTC.getResolver('findMany'),

 patientCount: PatientTC.getResolver('count'),

 patientConnection: PatientTC.getResolver('connection'),

 patientPagination: PatientTC.getResolver('pagination'),

});

schemaComposer.Mutation.addFields({

 patientCreateOne: PatientTC.getResolver('createOne'),

 patientCreateMany: PatientTC.getResolver('createMany'),

 patientUpdateById: PatientTC.getResolver('updateById'),

 patientUpdateOne: PatientTC.getResolver('updateOne'),

 patientUpdateMany: PatientTC.getResolver('updateMany'),

 patientRemoveById: PatientTC.getResolver('removeById'),

 patientRemoveOne: PatientTC.getResolver('removeOne'),

 patientRemoveMany: PatientTC.getResolver('removeMany'),

});

const graphqlSchema = schemaComposer.buildSchema();

export default graphqlSchema;

Code 29: Create graphql queries and mutations using graphql-compose

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 104

The above figure shows how simply we managed to convert our mongoose schema to a
graphql schema and let GraphQL manage the business logic of our application. To do so,
we used the “getResolver” graphql-compose’s method on a GraphQL Object Type
Composer to create the relative Queries and Mutation such as those of MongoDB, and
finally we built all this GraphQL schema using the method buildSchema() of the graphql-
compose schemaComposer47.
The final result of all this backend configuration for connecting with the MongoDB
database, then converting the data to GraphQL and finally serving a playground for user
access to data, where the user can handle with ease queries and mutations can be found
in the following Picture.

Picture 37: The GraphQ playground for queries and mutations

4.3.3.3 React48
React (also known as React.js or ReactJS) is an open-source JavaScript library for
building user interfaces specifically for single page applications. It is used for handling
view layer for web and mobile apps, while also allows us to create reusable UI
components. React was first created by Jordan Walke, a software engineer working for
Facebook, and it was first deployed on Facebook’s newsfeed in 2011 and on
Instagram.com in 2012. It is now maintained by Facebook and a community of individual
developers and companies.
React can be used to create large web / mobile / AR etc. applications, as it is optimal for
fetching rapidly changing data that needs to be rendered, without reloading the page. So,
it works only on user interfaces in application, which corresponds to view in the MVC
template, and its main purpose is to be fast, scalable, and simple. However, fetching data
is only the beginning of what happens on a web page, which is why complex React
applications usually require the use of additional libraries for state management, routing,
and interaction with an API, and for this reason it is usually used with a combination of

47 https://github.com/graphql-compose/graphql-compose-mongoose

48 https://reactjs.org/

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 105

other JavaScript libraries or frameworks. We refer below some of ReactJS commonly
used features.
JSX
In React, instead of using regular JavaScript for templating, it uses JSX. JSX is simple
JavaScript which allows HTML quoting and uses these HTML tag syntax to render
subcomponents, then the HTML syntax is processed into JavaScript calls of the React
library. Nevertheless, this feature in not obligatory and one can also use HTML for
creating React components in Vanilla JavaScript.

Picture 38: Create React Element with JSX or with Vanilla JS [74]

Single-Way data flow
In React, a set of immutable values are passed to the components renderer as properties
in its HTML tags. Component cannot directly modify any properties but can pass a
callback function with help of which we can do modifications. This complete process is
known as “properties flow down; actions flow up”.

Picture 39: React props and action event-handlers [74]

Virtual Document Object Model
React creates an in-memory data structure cache, the Virtual DOM, which is a copy of
the browser’s DOM. In every event change React computes the changes made on the
Virtual-DOM and then updates the only the part of DOM that needs to be changed without
changing all the DOM. This way with a little more space complexity React manages to
handle much better the time of rendering complexity.

 Picture 40: react Virtual DOM usage [74]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 106

And now, having referred some of most interesting React features that are commonly
used, the main question that arises is why one should use ReactJS. There are so many
open-source platforms for making the front-end web application development easier, like
Angular, or VueJS, and more. Some of the benefits of React over other competitive
technologies or frameworks, are presented next:
Simplicity
ReactJS is just simpler to grasp right away. The component-based approach, well-defined
lifecycle, and use of just plain JavaScript make React very simple to learn, build a
professional web (and mobile applications), and support it. Especially by using JSX,
React allows the developer to easily mix HTML with JavaScript
Easy to learn
Anyone with a basic previous knowledge in web-programming can easily understand
React while other libraries or frameworks like Angular and Ember are referred to as
‘Domain specific Language’, which implies that they are more difficult to learn, and that
to dive into them one needs to study the framework first, and can’t start using it with no
prior knowledge.
Native Approach
React can be used to create mobile applications (React Native). And React is a diehard
fan of reusability, meaning extensive code reusability is supported. So at the same time
one can make iOS, Android and with small amount of changes a web-application.
Data Binding
React uses one-way data binding and an application architecture called Flux controls the
flow of data to components through one control point – the dispatcher. One-way binding
in comparison to two-way binding makes debugging easier at self-contained components
of large ReactJS apps, but on the other hand need more coding.
Un-opinionated
React does not offer any concept of a built-in container for dependency. One can use
whichever module wants to accompany React’s building process, transpilation, etc.
Testability
ReactJS applications are very easy to test. React views can be treated as functions of
the state, and because state manipulation is easily handled one can fast get the output
by triggering actions, events, functions, etc. [74] [75] [76]
Usage in our web application
In this thesis as mentioned also in the Node.js section, we implemented the whole web-
application in two different code projects, one for the frontend and one for the backend.
As we described in previous sections the data persistence layer, the data access layer
and the business logic layer are commonly all of them parts of the so called “backend”.
So what is left for the “frontend” is the presentation layer. In general, some years before,
handling data in the frontend was not recommended and also sometimes compelling as
at that time using JavaScript was said: “it is like adding a time bomb on one’s application”.
Nowadays and after Angular, React, etc. arrival, while also because of the mobile era and
IoT and in general the different devices usage for the presentation layer this has changed.
Devices and their browsers are much more powerful and resourceful and so a lot of things
that previously were supposed as a backend-concern, now they are a frontend concern.
As a matter of fact, in our web-application project we left on the backend only the data
access and the things that were truly having to do with the business-logic layer. All the
rest, and the biggest part of our development was transferred to the frontend.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 107

So, the tasks we had to implement in the front-end using React and JavaScript were (we
also provide some small implementation snippets):
1. Manipulate the data from GraphQL Queries and Mutations
In the following code snippet we show an example of query creation for adding to Query
ApolloClient React component that helps in connecting the presentation layer with the
business logic layer. We use this Query component inside another parent React
component named Layout
// Project ALD-BRFAA-UI

// Filepath: src/layouts/layout.js

...

class Layout extends React.Component {
 constructor(props) {
 super(props);
 const labelKeys = Object.keys(props.labels).slice(0, 15);

 const query = `
 {
 patientMany {
 ${labelKeys.join().replace(/,/g, `\n`)}
 }
 }
 `;

...

 render() {
 const { classes, history } = this.props;
 const { query } = this.state;
 const graphQLQuery = gql`${query}`;

 return (
 <div className={classes.root}>
 <CssBaseline />
 <Header open={this.state.open} onDrawerOpen={this.handleDrawerOpen} history={history} />
 <Drawer open={this.state.open} onDrawerClose={this.handleDrawerClose} />
 <main className={classes.content}>
 <div className={classes.appBarSpacer} />
 <Query query={graphQLQuery}>
 {({ loading, error, data, subscribeToMore }) => {
 if (error) return <div> Error {error.message} </div>;
 return <Switch>{this.renderRoutes(data, loading)}</Switch>;
 }}
 </Query>,
 </main>
 </div>
);
 }
}

...

Code 30: Create a graphql query from React Application

2. Create different SPA (Single Page Application) routes in respect to the
functionality we want to provide to the users
We decided to distinguish routes based on every different business functionality, meaning
that we created pages based on different business use cases, i.e. a page for visible
application data manipulation, a page to visualize data, a page to store data, etc.. In the
following code snippet we show an example of a React menu navigation creation, using
React Icons and a List made of React ListItems that link to different routes.
// Project ALD-BRFAA-UI

// Filepath: src/layouts/menu.js

...

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 108

export const mainMenuEntries = {
 Dashboard: { link: '/', renderIcon: () => <DashboardIcon /> },
 Query: { link: '/query', renderIcon: () => <QueryIcon /> },
 Analysis: { link: '/analysis', renderIcon: () => <LayersIcon /> },
 Reports: { link: reportsLink, renderIcon: () => <BarChartIcon /> },
};

export const mainListItems = Object.keys(mainMenuEntries).map((entry) => (
 <Link to={mainMenuEntries[entry].link} style={{ textDecoration: 'none' }}>
 <ListItem button>
 <ListItemIcon>{mainMenuEntries[entry].renderIcon()}</ListItemIcon>
 <ListItemText primary={entry} />
 </ListItem>
 </Link>
));

...

Code 31: Create a menu entries for different applicstion routes

3. Create manageable widgets for use (Buttons, Tables, Fields, etc.)
In the following code snippet we show an example of a reusable React Table widget
creation that wraps a React Table component from the antd package library.
// Project ALD-BRFAA-UI
// Filepath: src/components/Table/TableView.js

...

export class TableContainer extends React.Component {
 render() {
 const {
 data,
 classes,
 onDataChange,
 labelKeys,
 labels,
 loading,
 onTitleChange,
 title,
 isTitleEditable,
 } = this.props;
 return (
 <TableView
 data={data}
 classes={classes}
 onDataChange={onDataChange}
 labelKeys={labelKeys}
 labels={labels}
 loading={loading}
 onTitleChange={onTitleChange}
 title={title}
 isTitleEditable={isTitleEditable || false}
 />
);
 }
}

...

Code 32: React reusable Table component

4. Transform data from GraphQL to charts and graphs x-y coordinates
In the following code snippet we show an example of some methods that handle
transformations needed for applying the GraphQL data in graphs, diagrams and chart
visualizations.
// Project ALD-BRFAA-UI
// Filepath: src/routes/DashBoardView.js

...

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 109

 transformDataToXY = (data) => {
 const { xAxis, yAxis } = this.state;

 const vizdata = data.map((e, i) => ({
 x: e[xAxis],
 y: e[yAxis],
 xAxisName: xAxis,
 yAxisName: yAxis,
 }));

 return vizdata;
 };

 f = (a, b) => [].concat(...a.map(d => b.map(e => [].concat(d, e))));
 cartesian = (a, b, ...c) => (b ? this.cartesian(this.f(a, b), ...c) : a);

 getGroupArrays = (data) => {
 const { groupByVar1, xAxis, groupByVar2, groupByVar3} = this.state;
 const groupUniqueCategories = [...new Set(data.map((e, i) => (
 !!groupByVar1 ?
 e[groupByVar1] :
 e[xAxis]
)))];

 const output = !!groupByVar3 ? this.cartesian(groupUniqueCategories,
 groupUniqueCategories2, groupUniqueCategories3) : !!groupByVar2 ?
 this.cartesian(groupUniqueCategories, groupUniqueCategories2) :
 groupUniqueCategories;

...

 return groupArrays;
 };

 transformDataToAngles = (data) => {
 const groupArrays = this.getGroupArrays(data);

 const dataCategories = groupArrays.map((e, i) => ({
 label: groupArrays[i].key,
 angle: Math.floor(groupArrays[i].value.length * 100 / data.length),
 }));

 return dataCategories;
 };

 computeStandardDeviation = (array) => {
 const len = array.length;
 const mean = array.reduce((a, b) => a + b) / len;
 const sd = Math.sqrt(array.map((x) => Math.pow(x - mean, 2)).reduce((a, b) => a + b) / len);
 return sd;
 };

 calculateDataProps = (data) => {
 const groupData = this.transformDataToXY(data);
 const arrayOfx = groupData.map((obj) => obj.x).filter((num) => !isNaN(num));
 const arrayOfy = groupData.map((obj) => obj.y).filter((num) => !isNaN(num));
 const minx = Math.min(...arrayOfx);
 const miny = Math.min(...arrayOfy);
 const maxx = Math.max(...arrayOfx);
 const maxy = Math.max(...arrayOfy);
 const meanx = (maxx + minx) / 2;
 const meany = (maxy + miny) / 2;
 const sdx = arrayOfx.length > 0 && this.computeStandardDeviation(arrayOfx);
 const sdy = arrayOfy.length > 0 && this.computeStandardDeviation(arrayOfy);
 const xVariance = maxx - minx;
 const yVariance = maxy - miny;
 const size = groupData.length;

 return groupData.map((o) => ({
 ...o,
 xVariance: xVariance + 0.1,
 yVariance: yVariance + 0.1,
 minx,
 maxx,
 miny,

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 110

 maxy,
 meanx,
 meany,
 sdx,
 sdy,
 size,
 }));
 };

 transformGroupData = (data) => this.getGroupArrays(data).map((array) => this.calculateDataProps(array.value));

...

Code 33: Math methods used for data transformation to apply in visualizations

5. Use Visualizations
In the following code snippet we create a LineGraph visualization using React package
react-vis’s LineSeries.
// Project ALD-BRFAA-UI

// Filepath: src/components/Charts/LineGraph/LineGraphView.js

...

const LineGraphView = ({
 data,
 groupedData,
 groupedCategories,
 ...
 }) => {

...

 let name = 'lineGraph';

 const categories = (groupedCategories && groupedCategories.map((category) => category.label)) || [];
 return (
 <React.Fragment>
...
 <div id={name}>
 <FlexibleXYPlot
 xType={showXQualitative ? 'ordinal' : undefined}
 yType={showYQualitative ? 'ordinal' : undefined}
 animation
 height={!isFullScreen ? 300 : height * ratio}
 >
 {!showGrouped ? (
 <LineSeries data={data} />
) : (
 (groupedData || []).map((groupData) => <LineSeries data={groupData} />)
)}
 <VerticalGridLines />
 <HorizontalGridLines />
 <XAxis title={data[0] && data[0].xAxisName} tickLabelAngle={-45} />
 <YAxis title={data[0] && data[0].yAxisName} />
 </FlexibleXYPlot>
 </div>
 </React.Fragment>
);
 }
);
...

Code 34: Wrap a react-vis LineSeries element and create a new with more capabilities

6. Provide access to backend and store in cache previously queried queries
In the following code snippet we create an Analysis route where we plug the GraphQL
playground as a React component with all its functionality, one of which is also storing
the already applied queries.
// Project ALD-BRFAA-UI

// Filepath: src/routes/Analysis/AnalysisView.js

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 111

...

const AnalysisView = (props) => (
 <React.Fragment>
 <Provider store={store}>
 <Playground
 subscriptionEndpoint="http://localhost:4000/query"
 createApolloLink={(session, subscriptionEndpoint) => {
 return { link: link };
 }}
 shareEnabled={true}
 canSaveConfig={true}
 />
 </Provider>
 </React.Fragment>
);
...

Code 35: add Graphql playground as a React component in Analysis route

Packages
In this thesis as mentioned also in the Node.js section, using packages already tested
and published by their owners is very common in application development, as all software
developers want to finish their work the fastest they can and don’t want to reinvent the
wheel. But, we have to keep in mind always the impediments of Dependency Hell49. And
so we also did for the packages we used for this application’s frontend. The packages list
as follow:

1. Material-UI Group of packages50
Material-UI is an open-source project that features React components that implement
Google’s Material Design. It kick-started in 2014, not long after React came out to the
public, and has grown in popularity ever since. With over 48,000 stars on GitHub,
Material-UI, now in v.4, is one of the top user interface libraries for React. One of Material-
UI features that makes it stand out, and also reason for us to select it for this web-
application is its responsive design for all types of screens, like Google Material Design
demands. In specific, we used Material-UI in all visual components of our Web-UI, i.e. all
Buttons, Menus, Lists, Headers, Fields, DropDownLists, Icons, and ButtonIcons of the
user interface are created with Material-UI’s components, except for the Table
component.

2. Ant Design51
Ant Design is also an open-source project that features React components but specially
created for internal desktop applications. We selected to add this package alongside
Material-UI because it has a very good API and it’s very easy to use. More specifically,
the Table component that it provides the developer with many handy functionalities, much
more than the relevant provided by Material-UI. What is more, It has an equal reputation
to Material-UI with over 47,000 starts on GitHub.

3. Apollo Group of packages52
Apollo Client is the best way to use GraphQL to build client applications. The client is
designed to help the developer quickly build a UI that fetches data with GraphQL, and
can be used with any JavaScript front-end. More specifically, we used the Query React

49 https://en.wikipedia.org/wiki/Dependency_hell
50 https://material-ui.com/
51 https://ant.design
52 https://www.apollographql.com/docs/react/

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 112

component that provides us with a way to link the presentation layer to the GraphQL
business-logic layer, while also all the other packages that provide us, linking protocols,
memory caching, etc.

4. Axios53
Axios is a JavaScript library used to make HTTP requests from node.js or
XMLHttpRequests from the browser that also supports the ES6 Promise API. In this
thesis, we used axios to help this web application get more unaware for the provided
data. One of the main concerns that we had from the beginning of the project setup is to
build with project and make it context unaware, meaning that the web-tool can work with
any kind of data, providing only two independent variables. First, the dataset can change
in MongoDB and so with only a script execution we can import the new dataset to
MongoDB and then extract the new schema and provide it from the persistence layer to
the data access layer, to the business logic layer, to the presentation layer, automatically.
Second, in the presentation layer we have got a user-friendly display of all columns that
if willing the user can create for helping himself and upload it to the user-interface for use.
For example there is a column “kleiner” which in the web application labels was labeled
as “NAS fibrosis subscore” which is very helpful, especially for users that don’t have to
do with the dataset creation. This is where axios is needed for. Axios is used in the HTTP
“fetch labels” request to upload labels in the UI. Of course in cases of no labels existence
the user interface works with datasets column keys.

5. React-router54
React Router is a collection of navigational components that compose declaratively with
the application. As we already have indicated this thesis’s application is a Single Page
Application (SPA) which means that it really exists in only one route URL. But as we need
for this application to have more than one routes, and have options like having
bookmarkable URLs for the web app, this is where React Router navigational
components help us solve this impediment.

6. GraphQL playground React55
GraphQL Playground uses components of GraphiQL (provided by GraphQL) under the
hood but is meant as a more powerful GraphQL IDE enabling better development
workflows. Compared to GraphiQL, the GraphQL Playground ships with the additional
features: Interactive, multi-column schema documentation, Automatic schema reloading,
Support for GraphQL Subscriptions, Query history, Configuration of HTTP headers and
Tabs. In our application such a case loses the developer’s hands as by importing this
React Component, we solve the aware of saving the queries already requested, the multi-
query user’s tasking, and queries caching issues. Nevertheless, in future we can store
these queries also to a previous tier layer, like in business-logic, in order that caching is
also done in the backend and provided to all connected frontends.

7. Html2Canvas56

53 https://github.com/axios/axios
54 https://reacttraining.com/react-router/web/guides/quick-start
55 https://github.com/prisma/graphql-playground
56 https://html2canvas.hertzen.com/

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 113

Html2Canvas is a helper package that provided to our application the ability to easily
handle the image convertion from .svg format to .png format and download.

// Project ALD-BRFAA-UI
// Filepath: package.json

{
 "name": "adl-brfaa-ui",
 "version": "0.1.0",
 "keywords": [
 "reactjs",
 "apollo",
 "graphql",
 "react-vjs",
 "visualization"
],
 "author": "nmpegetis@gmail.com",
 "dependencies": {
 "@material-ui/core": "^4.0.0-rc.0",
 "@material-ui/icons": "^3.0.2",
 "antd": "^3.16.1",
 "apollo-cache-inmemory": "^1.4.2",
 "apollo-client": "^2.4.12",
 "apollo-link": "^1.2.11",
 "apollo-link-http": "^1.5.14",
 "apollo-utilities": "^1.3.0",
 "autosuggest-highlight": "^3.1.1",
 "axios": "^0.19.0",
 "connected-react-router": "^6.2.2",
 "graphql": "^14.1.1",
 "graphql-playground-react": "^1.7.20",
 "graphql-tag": "^2.10.1",
 "html2canvas": "^1.0.0-rc.3",
 "prop-types": "^15.6.2",
 "react": "^16.8.6",
 "react-apollo": "^2.4.0",
 "react-autosuggest": "^9.4.3",
 "react-dom": "^16.8.6",
 "react-highlight-words": "^0.16.0",
 "react-input-autosize": "^2.2.1",
 "react-redux": "^5.0.6",
 "react-router-dom": "^4.3.1",
 "react-scripts": "2.1.3",
 "react-vis": "^1.11.6",
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 },
 "devDependencies": {
 "css-loader": "^2.1.0"
 }
}

Code 36: The package.json showing the fronted dependencies

4.3.4 Virtualization
In computing, virtualization refers to the act of creating a virtual (rather than actual)
version of something, including virtual computer hardware platforms, storage devices,
and computer network resources. Virtualization began in the 1960s, as a method of
logically dividing the system resources provided by mainframe computers between
different applications. Since then, the meaning of the term has broadened. One type of
virtualization is desktop virtualization, which is the concept of separating the logical
desktop from the physical machine. And one form of desktop virtualization, is virtual
desktop infrastructure (VDI), which can be thought of as a more advanced form of
hardware virtualization, in which the user rather than interacting with a host computer
directly via a keyboard, mouse, and monitor, interacts with the host computer and uses
another desktop computer or a mobile device by means of a network connection, such

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 114

as a LAN, Wireless LAN or even the Internet. In addition to that, the host computer in this
scenario becomes a server computer capable of hosting multiple virtual machines at the
same time for multiple users.
The last decades, organizations continue to virtualize and converge their data center
environment. That effects in the continuation of evolution of client architectures in order
to take advantage of the predictability, continuity, and quality of service delivered by their
converged infrastructure. For example, companies like HP and IBM provide a hybrid VDI
model with a range of virtualization software and delivery models to improve upon the
limitations of distributed client computing. Selected client environments move workloads
from PCs and other devices to data center servers, creating well-managed virtual clients,
with applications and client operating environments hosted on servers and storage in the
data center. For users, this means they can access their desktop from any location,
without being tied to a single client device. Since the resources are centralized, users
moving between work locations can still access the same client environment with their
applications and data. For IT administrators, this means a more centralized, efficient client
environment that is easier to maintain and able to more quickly respond to the changing
needs of the user and business.

Picture 41: Virtualization image, Virtual Desktop Infrastructure (VDI) [77]

Nowadays, moving virtualized desktops into the cloud creates hosted virtual desktops
(HVDs), in which the desktop images are centrally managed and maintained by a
specialist hosting firm. Benefits include scalability and the reduction of capital
expenditure, which is replaced by a monthly operational cost. Operating-system-level
virtualization, also known as containerization, refers to an operating system feature in
which the kernel allows the existence of multiple isolated user-space instances. Such
instances, called containers, partitions, virtual environments (VEs) or jails, may look like
real computers from the point of view of programs running in them. A computer program
running on an ordinary operating system can see all resources (connected devices, files
and folders, network shares, CPU power, quantifiable hardware capabilities) of that
computer. However, programs running inside a container can only see the container's
contents and devices assigned to the container. Containerization started gaining
prominence in 2014, with the introduction of Docker. [77]
Docker is a set of coupled software-as-a-service and platform-as-a-service products that
use operating-system-level virtualization to develop and deliver software in packages
called containers. The software that hosts the containers is called Docker Engine. It was
first started in 2013 and is developed by Docker, Inc. The service has both free and
premium tiers.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 115

Containers are isolated from each other and bundle their own software, libraries and
configuration files; they can communicate with each other through well-defined channels.
All containers are run by a single operating-system kernel and are thus more lightweight
than virtual machines. Containers are created from “images” that specify their precise
contents. Images are often created by combining and modifying standard images
downloaded from public repositories.
Docker is developed primarily for Linux, where it uses the resource isolation features of
the Linux kernel such as cgroups and kernel namespaces, and a union-capable file
system such as OverlayFS and others to allow independent containers to run within a
single Linux instance, avoiding the overhead of starting and maintaining virtual
machines (VMs). The Linux kernel's support for namespaces mostly isolates an
application's view of the operating environment, including process trees, network, user
IDs and mounted file systems, while the kernel's cgroups provide resource limiting for
memory and CPU. Since version 0.9, Docker includes the “libcontainer” library as its own
way to directly use virtualization facilities provided by the Linux kernel, in addition to using
abstracted virtualization interfaces via libvirt, LXC and systemd-nspawn.
Building on top of facilities provided by the Linux kernel (primarily cgroups and
namespaces), a Docker container, unlike a virtual machine, does not require or include a
separate operating system. Instead, it relies on the kernel's functionality and uses
resource isolation for CPU and memory, and separate namespaces to isolate the
application's view of the operating system. Docker accesses the Linux kernel's
virtualization features either directly using the libcontainer library, which is available as of
Docker 0.9, or indirectly via libvirt, LXC (Linux Containes) or systemd-nspawn. [78]

Picture 42: Containerized architecture using Docker vs common VM architecture [78]

4.4 Design Patterns

In this section we present the coding design patterns and the coding principles that we
use to follow when developing software applications. The contents of this sections are
described as follow. We start by describing the software directory file structure, and then
we continues with the design patterns and principles as applied to software development
in React, by focusing on the scalability, maintenance, reusability and performance and
providing for each principle some relative React code snippets.

4.4.1 Software Directory File structure

Software architects always mind except for the software details that need to be handled,
they consider also of business organization structures, users point of view about the
application, possible future trends, developments tools used, better data modeling,
optimization and performance, better problem to be solved definition etc. These qualities
and more are what makes them stand out among other senior developers.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 116

In this section we want to define and describe what is a good software directory structure
and why the proposed structure that we are used in this thesis application is a good
structure.
All companies, even the best ones struggle with this exact problem. The problem that a
lot of business projects where their projects’ directory structure philosophies were not
thought out carefully enough kept being changed through the project lifecycle again and
again, resulting in huge causes of unnecessary problems. Such changes inadvertently
generate huge volumes of work, and of course this happens because a lot of times
projects are in the rush and under deadlines pressure, resulting in considering the project
structure as a low priority.
But, there is no global solution to this project structure definition. Software project
directory structure should neither be too complex nor be too simple and this has to do
with the size of the project, the developers working in the project, the users of the project
and the scope of value that this software project gives to the business.57
File Directory Organization
There is a very fine line in balancing the understanding of project members about the
structure of the file system with the complexity of the file system you deploy. If too
complex, they won't understand it or use it properly. If too simple, each person will begin
inventing their own more complex version.
ALD-BRFAA-UI/
│
├── public/
│ ├── favicon.ico
│ ├── fonts.css
│ ├── index.html
│ ├── labels.json
│ └── manifest.json
│
├── src/
│ ├── layouts/
│ │ │
│ │ ├── Drawer.js
│ │ ├── Header.js
│ │ ├── index.js
│ │ ├── Layout.js
│ │ ├── menu.js
│ │ └── styles.js
│ │
│ ├── routes/
│ │ │
│ │ ├── Analysis/
│ │ │ ├── AnalysisView.js
│ │ │ ├── styles.js
│ │ │ └── index.js
│ │ │
│ │ ├── DashBoard/
│ │ │ ├── DashBoardView.js
│ │ │ ├── styles.js
│ │ | └── index.js
│ │ │
│ │ └── Query/

57 https://www.cmcrossroads.com/article/importance-directory-structure-development-process

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 117

│ │ ├── QueryView.js
│ │ ├── styles.js
│ │ └── index.js
│ │
│ ├── components/
│ │ │
│ │ ├── Autocomplete/
│ │ │ ├── AutocompleteView.js
│ │ │ ├── styles.js
│ │ | └── index.js
│ │ │
│ │ ├── Charts/
│ │ │ ├── BarPlot
│ │ │ │ ├── BarPlotView.js
│ │ │ │ └── index.js
│ │ │ ├── BubbleChart
│ │ │ │ ├── BubbleChartView.js
│ │ │ │ └── index.js
│ │ │ ├── CandleStick
│ │ │ │ ├── CandleStickView.js
│ │ │ │ └── index.js
│ │ │ ├── Histogram
│ │ │ │ ├── HistogramView.js
│ │ │ │ └── index.js
│ │ │ ├── LineGraph
│ │ │ │ ├── LineGraphView.js
│ │ │ │ └── index.js
│ │ │ ├── PieChart
│ │ │ │ ├── PieChartView.js
│ │ │ │ └── index.js
│ │ │ ├── ScatterPlot
│ │ │ │ ├── ScatterPlotView.js
│ │ │ │ └── index.js
│ │ │ ├── Whisker
│ │ │ │ ├── WhiskerView.js
│ │ │ │ └── index.js
│ │ │ ├── index.js
│ │ │ └── styles.js
│ │ │
│ │ └── Table/
│ │ ├── EditableRow.js
│ │ ├── TableView.js
│ │ ├── styles.js
│ │ └── index.js
│ │
│ ├── App.css
│ ├── App.js
│ ├── App.test.js
│ ├── index.css
│ ├── index.js
│ ├── logo.svg
│ └── serviceWorker.js
│
├── node_modules/
│
├── .gitignore
├── package.json
├── README.md
└── yarn.lock

Code 37: Web-application’s directory structure

Good guidelines and training early with fairly disciplined rules on directory creation at
certain levels should help with this problem. The above directory diagram attempts to
explain in plain view how the project is structured, which consist of conceptual levels of

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 118

decomposition and intuition starting from the root level and componentizing business
assets in software files. As one can easily, in our opinion, find out, even without any
software knowledge, the main source code can be found under the src/ sub-directory,
whereas in public/ directory are placed common files possibly without any code that
interests only the developers but all of projects stakeholders. Truthly, patients.json file
with the labeling of columns is also placed in this directory.
As a matter of intuition, the three pages that are observable to the user when navigating
from a browser to this web-application are with their relevant names under the “routes/”
sub-directory.
Similarly, the common parts of the web-application what are re-used in more than one
pages are reusable components, and as a matter of fact they are placed under the
components sub-directory. This sub-directory consists of an Autocomplete React
component, a Table React components and some Charts React components under the
Charts sub-directory. This derives the conclusion that possibly as it seems only these
components are commonly used among more than one pages, and this is why we
componentized these React components, in order to reuse them with the given
functionality we implemented for the purposes of this thesis. Finally, we observe the
“layouts/” sub-directory of “src/”, which leads us to the summation that this includes big
components that capture the largest screen size. And this derives from the naming
“layouts” as well as because this directory was not placed under components but as a
root-development directory, meaning that it possible applies also to all routes. And that is
correct! Layouts sub-directory consists of components that are rendered in all routes, and
such components are the Header, the Drawer Menu and the Page Components itself.
To sum up, to conclude to a directory file structure is neither easy to achieve, nor it should
be passed by – even when deadlines are applied. Directory structure should be definitely
thought and designed from the beginning of a software application and should be
definitely considered a time estimation in future for re-designing the structure as a lot of
requirements always change as time passes and backlog changes. Having a good file
directory structure helps everyone in a project, both the creator, the users and the
possible future maintainers. 58
4.4.2 Design Patterns and Principles: Scalability
Scalability is an essential design principle in enterprise software development. Prioritizing
it from the start leads to lower maintenance costs, better user experience, and higher
agility. Software design is a balancing act where developers work to create the best
product within a client’s time and budget constraints. There’s no avoiding the necessity
of compromise. Tradeoffs must be made in order to meet a project’s requirements,
whether those are technical or financial. Too often, though, companies prioritize cost over
scalability or even dismiss its importance entirely. This is unfortunately common in big
data initiatives, where scalability issues can sink a promising project. Scalability isn’t a
“bonus feature.” It’s the quality that determines the lifetime value of software, and building
with scalability in mind saves both time and money in the long run.
A system is considered scalable when it doesn’t need to be redesigned to maintain
effective performance during or after a steep increase in workload. “Workload” could refer
to simultaneous users, storage capacity, the maximum number of transactions handled,
or anything else that pushes the system past its original capacity. Scalability isn’t a basic

58 https://medium.com/swift2go/code-structure-and-readability-part-4-project-structure-99f9a6671ce3

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 119

requirement of a program in that unscalable software can run well with limited capacity.
However, it does reflect the ability of the software to grow or change with the user’s
demands. Any software that may expand past its base functions- especially if the
business model depends on its growth- should be configured for scalability.
Principles of Scalability
Several factors affect the overall scalability of software:

A. Usage
Usage measures the number of simultaneous users or connections possible. There
shouldn’t be any artificial limits on usage. Increasing it should be as simple as making
more resources available to the software. In our thesis application this is handled from
the Node.js backed. As we described in Node.js section, Node.js works using and event-
stack and never locks the users, even if they work simultaneously.

B. Maximum stored data
This is especially relevant for sites featuring a lot of unstructured data: user uploaded
content, site reports, and some types of marketing data. Data science projects fall under
this category as well. The amount of data stored by these kinds of content could rise
dramatically and unexpectedly. Whether the maximum stored data can scale quickly
depends heavily on database style (SQL vs NoSQL servers), but it’s also critical to pay
attention to proper indexing. In our thesis application this was one of the many reasons
we selected a NoSQL database and more specifically a MongoDB, as also described in
MongoDB section.

C. Code
Inexperienced developers tend to overlook code considerations when planning for
scalability. Code should be written so that it can be added to or modified without
refactoring the old code. Good developers aim to avoid duplication of effort, reducing the
overall size and complexity of the codebase. Applications do grow in size as they evolve,
but keeping code clean will minimize the effect and prevent the formation of “spaghetti
code”. In our thesis application this is one of the reasons of using React, as it allows us
to create reusable components, as we also found out earlier when describing React and
the directory structure.

D. Scaling Out Vs Scaling Up
Scaling up (or “vertical scaling”) involves growing by using more advanced or stronger
hardware. Disk space or a faster central processing unit (CPU) is used to handle the
increased workload. Scaling up offers better performance than scaling out. Everything is
contained in one place, allowing for faster returns and less vulnerability. The problem with
scaling up is that there’s only so much room to grow. Hardware gets more expensive as
it becomes more advanced. At a certain point, businesses run up against the law of
diminishing returns on buying advanced systems. It also takes time to implement the new
hardware. Because of these limitations, vertical scaling isn’t the best solutions for
software that needs to grow quickly and with little notice. Scaling out (or “horizontal
scaling”) is much more widely used for enterprise purposes. When scaling out, software
grows by using more- not more advanced- hardware and spreading the increased
workload across the new infrastructure. Costs are lower because the extra servers or
CPUs can be the same type currently used (or any compatible kind). Scaling happens
faster, too, since nothing has to be imported or rebuilt. There is a slight tradeoff in speed,
however. Horizontally-scaled software is limited by the speed with which the servers can
communicate. The difference isn’t large enough to be noticed by most users, though, and
there are tools to help developers minimize the effect. As a result, scaling out is
considered a better solution when building scalable applications. In our thesis application

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 120

this is one of the reasons we consider the deployment in docker containers, as
virtualization in clouds helps in scaling out.
Guidelines for Building Highly Scalable Systems
It’s both cheaper and easier to consider scalability during the planning phase. Here are
some best practices for incorporating scalability from the start:59
1. Use load balancing software
Load balancing software is critical for systems with distributed infrastructure (like
horizontally scaled applications). This software uses an algorithm to spread the workload
across servers to ensure no single server gets overwhelmed. It’s an absolute necessity
to avoid performance issues. In our thesis application we don’t use a load balancer as it
wasn’t needed. Nevertheless, if this web application, should in future be used by multiple
users then surely a load balancer would help.
2. Location matters
Scalable software does as much near the client (in the app layer) as possible. Reducing
the number of times apps must navigate the heavier traffic near core resources leads to
faster speeds and less stress on the servers. Edge computing is something else to
consider. With more applications requiring resource-intensive applications, keeping as
much work as possible on the device lowers the impact of low signal areas and network
delays. In our thesis application this is why we decided to do the calculations of data on
the frontend and leave to the backend only the pure business logic. As described earlier,
devices nowadays are much more powerful than supercomputers of 1-2 decades ago.
This means, that except for big data processing, and a few more occasions, the rest of
computation can be done on the frontend. Moreover, in addition to what is described
above, a react service worker implementation would fit for cases with offline usage and
cached queries in future.
3. Cache where possible
Be conscious of security concerns, but caching is a good way to keep from having to
perform the same task over and over. In our thesis application we cache queries in the
frontend but in future we could cache also queries on the backend for faster responses.
4. Lead with API
Users connect through a variety of clients, so leading with API that don’t assume a specific
client type can serve all of them. In our thesis application this is why we decided to let
GraphQL manipulate the business logic as described in the relative section.
5. Asynchronous processing
It refers to processes that are separated into discrete steps which don’t need to wait for
the previous one to be completed before processing. For example, a user can be shown
a “sent!” notification while the email is still technically processing. Asynchronous
processing removes some of the bottlenecks that affect performance for large-scale
software. In our thesis application using React and JS callback we manage to handle
asynchronous processing.
6. Limit concurrent access to limited resources

59 https://conceptainc.com/blog/importance-of-scalability-in-software-design/

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 121

Don’t duplicate efforts. If more than one request asks for the same calculation from the
same resource, let the first finish and just use that result. This adds speed while reducing
strain on the system. In our thesis application this is a built in process that Apollo with
GraphQL does. Another way to handle such purposes would be with Relay.js or with
React Redux-Saga libraries.
7. Use a scalable database
NoSQL databases tend to be more scalable than SQL. SQL does scale read operations
well enough, but when it comes to write operations it conflicts with restrictions meant to
enforce ACID principles. Scaling NoSQL requires less stringent adherence to those
principles, so if ACID compliance isn’t a concern a NoSQL database may be the right
choice.60
Some snippets showing scalability of our project list as follow:
We can add easily more charts in Charts directory where they all share the same styling,
without needing to add it in each one of them

...

│ ├── components/
│ │ │
│ │ ├── Charts/
│ │ │ ├── Chart1
│ │ │ │ ├── Chart1View.js
│ │ │ │ └── index.js
│ │ │ ├── Chart2
│ │ │ │ ├── Chart2View.js
│ │ │ │ └── index.js
│ │ │ ├── index.js
│ │ │ └── styles.js

...

Code 38: Scalable directory structure

We can easily add a Chart in a DashBoard and apply to it all the responsive styles and
feed it with all the data needed to render by only adding it in the array returned from the
chartComponents:
// Project ALD-BRFAA-UI

// Filepath: src/routes/DashBoardView.js

...

chartComponents = (filter = null) => (
 vizData,
 groupDataCategories,
 vizGroupData,
 commonShowGrouped,
 commonShowXQualitative,
 commonShowYQualitative
) =>
 !filter
 ? [
 <Chart1
 data={vizData}
 groupedData={vizGroupData}
 groupedCategories={groupDataCategories}

60 https://medium.com/salesloft-engineering/react-atl-building-scalable-applications-using-react-
8f2eade49347

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 122

 commonShowGrouped={commonShowGrouped}
 commonShowXQualitative={commonShowXQualitative}
 commonShowYQualitative={commonShowYQualitative}
 enterFullScreen={this.enterFullScreen}
 isFullScreen={this.state.isFullScreen}
 saveImage={this.saveImage}
 />,
 <Chart2
 data={groupDataCategories}
 groupedData={vizGroupData}
 groupedCategories={groupDataCategories}
 commonShowGrouped={commonShowGrouped}
 enterFullScreen={this.enterFullScreen}
 isFullScreen={this.state.isFullScreen}
 saveImage={this.saveImage}
 />,
...

 <Grid container style={{ padding: 30 }}>
 {this.chartComponents(fullScreenVizType)(
 vizData,
 vizDataCategories,
 vizGroupData,
 commonShowGrouped,
 commonShowXQualitative,
 commonShowYQualitative
).map((component) => (
 <Grid item xs={12} sm={!isFullScreen && 4} md={!isFullScreen && 3} style={{ padding: 20 }}>
 {component}
 </Grid>
))}
 </Grid>,
...

Code 39: Scalable visualization addition

We can easily add as many ListItems and their links to the Drawer menu as we like by
simply adding an entry in mainMenuEntries:
// Project ALD-BRFAA-UI

// Filepath: src/layouts/menu.js

...

export const mainMenuEntries = {
 Dashboard: { link: '/', renderIcon: () => <DashboardIcon /> },
 Query: { link: '/query', renderIcon: () => <QueryIcon /> },
 Analysis: { link: '/analysis', renderIcon: () => <LayersIcon /> },
 Reports: { link: reportsLink, renderIcon: () => <BarChartIcon /> },
 NextItem: { link: '/nextitem’, renderIcon: () => <AnotherIcon /> },
};

export const mainListItems = Object.keys(mainMenuEntries).map((entry) => (
 <Link to={mainMenuEntries[entry].link} style={{ textDecoration: 'none' }}>
 <ListItem button>
 <ListItemIcon>{mainMenuEntries[entry].renderIcon()}</ListItemIcon>
 <ListItemText primary={entry} />
 </ListItem>
 </Link>
));

...

Code 40: Scalable menu creation

4.4.3 Design Patterns and Principles: Maintainability
Maintainability is another essential design principle in enterprise software development.
Maintainability means fixing, updating, servicing and to modify the system or update the
software for performance improvements or for the correction of faults.
Maintainability also includes the addition of new functionality or the adaptation of software
to meet new requirements for the customer needs. Software maintainability is the degree
of an application to repaired or enhanced it. During the system development life cycle

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 123

(SDLC) this phase requires more development effort than any other phase. It has also
been calculated that approximately 75 percent of the software development cost is related
to software maintenance.
What is more, maintainability increases the reliability, efficiency or safety of the software.
It is also used to make future maintenance easier. It is used to increase the lifetime of the
software. Maintainability repair or replace the faulty components and make the software
even better as compared to the previous condition of the software.
Software maintenance is required when the customer demands new features and new
functions in the software. Sometimes maintenance is required when the hardware of the
system is changed then the modification of software is needed. Market conditions and
organization changes are also the reasons for software modification. It also includes that
when the issue is detected, immediately fix it before it becomes a big problem. Sometimes
viruses and malware are detected in the software which causes problems for the user
than software maintenance is required to fix it or improve the performance.
Types of Maintainability
Software maintainability consists of four types: [72]
1. Corrective maintenance
Corrective maintenance is defined as maintenance of bugs or errors. It means when the
error is detected in the software then the corrective maintenance is required to fix it. These
bugs or errors are responsible for the faults which may appear in the code, design or logic
of the software. Sometimes the user asks for the enhancements of the software and not
about fixing the bugs. Corrective maintenance requires the correction of existing faults in
the software. Sometimes a change in hardware also cause bugs or errors. In this thesis
application for example in several occasions we had to use the corrective maintenance
as using the KanBan framework of the Agile methodology has to do with adding in
Backlog new features and implementing them. So as described earlier, some bugs or not
were occasionally added in backlog to be developed or fixed.
2. Adaptive maintenance
Adaptive maintenance includes the environmental changes where your software is living.
Changes to the hardware, operating system, software dependencies, and organizational
business rules and policies are handled in adaptive maintenance. By these modifications
to the environment, changes can occur in the other parts of the software. In changing
circumstances adaptive maintenance is required to keep your software fresh or to
increase the lifetime of the software. In this thesis we used adaptive maintenance when
we had to deal with the multi-system build and serve. The application was then developer
so that it can adapt to setups in any platform both by using docker and by just be set up
to a Windows or Linux server.
3. Perfective maintenance
Perfective maintenance refers to the changes in features and requirements in your
existing system. After sometime when user suggests for new features and new
functionality of the software than adaptive maintenance is used. In adaptive maintenance,
some features are removed from the software which features are not effective for the
software. Adaptive maintenance involves 50-55% of the maintenance work. In this thesis
as you will also find in the following Image every once in a while between fixes in code or
new feature development we also use a refactor commit, which means that we rewritten
the same code but in different style that is more suitable, adaptive, reusable and scalable.
4. Preventive maintenance

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 124

Preventive maintenance maximizes the maintainability or understanding of the software
system. Documentation updating or code optimizing are involved in preventive
maintenance. Preventive maintenance helps the software to become more scalable,
stable, understandable, maintainable. This maintenance acts as medicine to prevent the
problems. Restructuring the data and code of the software are implemented in preventive
maintenance. As also mentioned in perfective maintenance, in this web application
development we used both these types of maintenance with main purposes the
scalability, performance and reusability of the application components.
Some examples showing maintainability of our project list as follow:
In our project we used the commit conventions that are referenced in this Medium article61
written by the author of this thesis. These commit conventions can be assigned to these
four types of maintainability as follows.
Commit message types relations to maintenance types:

• feat (a new feature) - Adaptive, Corrective, Perfective
• fix (bug fix) - Corrective
• perf (a code change that improves performance) - Perfective
• ci (changes to CI configuration files and scripts (e.g. kubernetes, swarm, jenkins,

openshift, heroku)) - Adaptive
• build (changes that affect the build system or external dependencies (e.g. gulp,

npm, yarn, .env variables)) - Adaptive
• docs (documentation only) - Preventive
• style (formatting, missing semi colons) - Adaptive, Corrective
• refactor (a code change that neither fixes a bug nor adds a feature) - Perfective,

Preventive
• test (code changes in tests) - Adaptive, Preventive
• chore (maintain (e.g. remove console.log, unnecessary comments)) - Corrective,

Perfective, Preventive
The Image below as referenced earlier, shows a screen capture of the commits applying
the commit conventions with messages that justify the Maintenance type they belong to.

61 https://medium.com/@nmpegetis/git-commit-message-conventions-841d6998fc4f

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 125

Picture 43: Git commit type and messages justify the maintenance types [72]

Also, additionally to the above here you can also find two code snippets that justifies the
Preventive maintenance type using Documanation with @JSDocs62.

// Project ALD-BRFAA-UI
// Filepath: src/layouts/Drawer.js

...

/**
 * @param {object} classes
 * @param {boolean} open
 * @param {function} onDrawerClose
 * @returns {Component} {Drawer}
 */
const SideDrawer = withStyles(styles)(({ classes, open, onDrawerClose }) => (
 <Drawer
 variant="permanent"
 classes={{
 paper: classNames(classes.drawerPaper, !open && classes.drawerPaperClose),
 }}
 open={open}
 >
 <div className={classes.toolbarIcon}>
 <IconButton onClick={onDrawerClose}>
 <ChevronLeftIcon />
 </IconButton>
 </div>
 <Divider />
 <List>{mainListItems}</List>
 <Divider />

62 https://devhints.io/jsdoc

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 126

 <List>{secondaryListItems}</List>
 </Drawer>
));

...

Code 41: Documentation usage in Drawer menu React component
// Project ALD-BRFAA-UI
// Filepath: src/layouts/Header.js

...

/**
 * @param {object} classes
 * @param {boolean} open
 * @param {function} onDrawerOpen
 * @param {object} history
 * @returns {Component} {Header}
 */
const Header = withStyles(styles)(({ classes, open, onDrawerOpen, history }) => {
 const [loaded, setLoaded] = useState(0);
 const [selectedFile, setSelectedFile] = useState(0);

 const handleselectedFile = (event) => {
 setSelectedFile(event.target.files[0]);
 setLoaded(0);
 };

...

Code 42: Documentation usage in Header React component with hooks

4.4.4 Design Patterns and Principles: Reusability
While developing a complex software, programmers or software developers require
immense knowledge and brain-storming. Absolutely, their natural tendency to write long
lines of code which can be intricate, hard to manage and can’t be reused. However,
programmers must store the code components and knowledge that can be reused, which
in return can save time for developing a software requiring similar code capabilities.
Software reusability is a process of developing a software from existing software
components, instead of developing an entire software from scratch. In other words,
software reusability is developing a brand new software from an existing one. Software
reusability results into increased productivity and quality by minimizing risk of newly
developed projects. Software reusability not only depends on code. On the contrary, it
entails all entities of software development life cycle like software components, test suites,
documentations and designs.
Reusability can be achieved by opting for software metrics technique. Software metrics
are considered to be vital in software development and management. Within an
organization, various types of metrics can be applied which includes reuse metrics and
software and quality metrics. These kind of metrics prove helpful in shaping appropriate
practices, while developing a software and its entire life cycle. However, component
based programs is a common method of reusable programs where they are highly
dependent on software reuse repositories. Component based reuse programs are
becoming extremely popular owing to their cost-effective approach for software
development. These programs are highly inclined towards design and development of
software systems using reusable components. This is also a development pattern that
can be found in all recent large UI libraries and frameworks, like React, Angular, Vue, etc.
Components developed by developers within an organization are not only meant to reuse
within a particular organization instead, they are distributed in form of an object code and
reused by other environments. Hence, developers looking for reused components are
unable to attain exact source codes of components as only object codes are available.
Sharing object code online is one of the finest way to make components available for

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 127

reusability. Though, there can be few things which can hamper the reusability of
component.
Some aspects that strengthen Reusability list as follow:

i. The software component must be easily available for use whenever required.
ii. An appropriate and simple documentation on how to use component can make it

more understandable and easy to implement.
iii. The components must not be too complex and should be bug-free.
iv. The components should be flexible enough to be easily incorporated into a new

system and environment.
v. Finally, cost of the component must be effective and comply requirements of the

existing system.
Software reusability is changing the way programmer’s code and organizations operate.
Being an evolving concept, lot of organizations are moving forward to incorporate
software reusability within their environment. Software reusability can encourage
innovation in traditional development methods and also it is a cost effective option. The
software reusability research started during 1960 and it has a long way to go.
In this thesis as we silently implied we use software reusability in some, if not all, of the
more core and significant parts of the web-application. Npm (node package manager)
that we used to download some packages does this exact thing. Npm stores in its registry
reusable software that is backed from industries, organizations and simple developers
that like to contribute to community open-source software. As mentioned in previous
chapters, Apollo, graphql-compose, mongoose, Material-UI, Ant Design, react-vis and
even React itself are packages that have arisen to the most successful libraries because
they use software reusability, and one can find that the above 5 Reusability aspects, they
all apply to these package libraries. What is more, except for the velocity we gain by using
such software, it is much more certain that our web application will not fail or act
erroneously, because this software as indicated before is not backed by just one
developer, but on the contrary by hundreds of the community’s developers. [80]
What is more, though, reusability doesn’t just have to do with libraries and packages that
are publicly available. Reusability is a pattern that all good developers adopt in order to
both write less code and adaptive code. React in specific, uses a variety of patterns for
code reuse. Some of which are:

I. Inheritance Pattern
Used sparingly to share common code across React class components. In this thesis we
didn’t use this pattern as in JavaScript it is not that much frequent to use it. Nevertheless,
all class created components use this pattern by default as they should inherit the
reusable Component class of React.
// Project ALD-BRFAA-UI
// Filepath: src/App.js

class AppContainer extends Component {
 render() {
 return (
 <BrowserRouter>
 <Provider store={store}>
 <ApolloProvider client={client}>
 <Layout labels={this.props.appLabels} />
 </ApolloProvider>
 </Provider>
 </BrowserRouter>
);
 }
}

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 128

export default AppContainer;
Code 43: Reusability example using class inheritance pattern

II. Composition Pattern
The core pattern for separating concerns while creating complex UIs with React.
Composition is a code reuse technique where a larger object is created by combining
multiple smaller objects. In other words it is also the “componentization”. We build smaller
reusable components to build up larger ones and so on and so forth.
In our thesis web-application a very good showcase for this pattern can be found the the
following two code snippets. In the first one we use composition to compose a larger
React Fragment Component made of main menu ListItems and Secondary menu
ListItems. These two larger React Fragments are exported for a later use from the Drawer
menu component in another file that also is composes these two React Fragments among
with Dividers and the menu open Button
// Project ALD-BRFAA-UI
// Filepath: src/layouts/menu.js

...

export const mainListItems = Object.keys(mainMenuEntries).map((entry) => (
 <Link to={mainMenuEntries[entry].link} style={{ textDecoration: 'none' }}>
 <ListItem button>
 <ListItemIcon>{mainMenuEntries[entry].renderIcon()}</ListItemIcon>
 <ListItemText primary={entry} />
 </ListItem>
 </Link>
));

export const secondaryListItems = (
 <React.Fragment>
 <ListSubheader inset>Saved reports</ListSubheader>
 {secondaryListEntries.map((entry) => (
 <Link to={`${reportsLink}/${entry}`} style={{ textDecoration: 'none' }}>
 <ListItem button>
 <ListItemIcon>
 <AssignmentIcon />
 </ListItemIcon>
 <ListItemText primary={entry.split('T')[0]} />
 </ListItem>
 </Link>
))}
 </React.Fragment>
);

...

Code 44: Reusability example using composition pattern part 1
// Project ALD-BRFAA-UI
// Filepath: src/layouts/Drawer.js

...

/**
 * @param {object} classes
 * @param {boolean} open
 * @param {function} onDrawerClose
 * @returns {Component} {Drawer}
 */
const SideDrawer = withStyles(styles)(({ classes, open, onDrawerClose }) => (
 <Drawer
 variant="permanent"
 classes={{
 paper: classNames(classes.drawerPaper, !open && classes.drawerPaperClose),
 }}
 open={open}
 >
 <div className={classes.toolbarIcon}>
 <IconButton onClick={onDrawerClose}>
 <ChevronLeftIcon />
 </IconButton>

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 129

 </div>
 <Divider />
 <List>{mainListItems}</List>
 <Divider />
 <List>{secondaryListItems}</List>
 </Drawer>
));

...

Code 45: Reusability example using composition pattern part 2

III. Decorator Pattern
Used to provide a nice interface for separating out logic shared by multiple components
and centralizing it. Decorators are a pattern for editing an instance of a class to give it
additional behaviors than it had previously. In contrast to inheritance, decorators are not
part of the class definition, but are modifications to the class at run time to allow a subset
of objects to have additional data or behavior. The React community generally refers to
this pattern as Higher Order Components(HOC).
In this thesis we mostly use HOCs for styling purposes are Material-UI provides us with
a withStyles HOC that wraps almost all of our React components and applies styling to
them styling in runtime.
// Project ALD-BRFAA-UI
// Filepath: src/components/Autocomplete/AutocompleteView.js

...

class IntegrationAutosuggest extends React.Component {

...

 render() {

...

 return (
 <div className={classes.root}>
 <Typography>{this.props.label}</Typography>
 <Autosuggest
 {...autosuggestProps}
 inputProps={{
 classes,
 placeholder: 'Search an available label',
 value: this.state.single || this.props.initialValue,
 onChange: this.handleChange('single'),
 }}
 theme={{
 container: classes.container,
 suggestionsContainerOpen: classes.suggestionsContainerOpen,
 suggestionsList: classes.suggestionsList,
 suggestion: classes.suggestion,
 }}
...
 />
 </div>
);
 }
}

IntegrationAutosuggest.propTypes = {
 classes: PropTypes.object.isRequired,
};

export default withStyles(styles)(IntegrationAutosuggest);

Code 46: Reusability example

IV. Mixin Pattern
Mixins are useful when you have classes with different purposes that shouldn’t share an
inheritance tree but do have some shared behavior. In practice though they have

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 130

historically been tricky to use because it is easy to tightly bind mixin code to the
implementation of the code that it is mixed into. More specifically to our thesis use case,
we also used React hooks. React hooks is the newest pattern that React has added to
its bag of code reuse tricks. So even though “Mixins” are gone now in newer versions of
JavaScript, the “Mixin pattern” is back with React Hooks. Hooks use a variation on the
Mixin pattern to allow sharing related behavior and data between unrelated function
components easily. And with Hooks, we can create a much cleaner version of our Higher
Order Component use cases in the decorator pattern section. [73]
In this project for all of our charts creation, we used both mixin and decorator pattern with
React hooks and with HOCs. 63
// Project ALD-BRFAA-UI
// Filepath: src/components/Charts/BarPlot/BarPlotView.js

const BarPlotView = ({
 classes,
 data,
 groupedData,
 groupedCategories,
 commonShowGrouped,
 commonShowXQualitative,
 commonShowYQualitative,
 enterFullScreen,
 isFullScreen,
 saveImage,
 }) => {
 const [showGrouped, setShowGrouped] = useState(false);
 let [prevCommonShowGrouped, prevSetCommonShowGrouped] = useState(null);

 const [showXQualitative, setShowXQualitative] = useState(false);
 let [prevCommonShowXQualitative, prevSetCommonShowXQualitative] = useState(null);
 const [showYQualitative, setShowYQualitative] = useState(false);
 let [prevCommonShowYQualitative, prevSetCommonShowYQualitative] = useState(null);

 const [height, setHeight] = useState(0);

 useEffect(() => {
 // Similar to componentDidMount
 window.addEventListener('resize', () => setHeight(window.innerHeight));

 // Similar to componentDidUpdate
 setHeight(window.innerHeight);

 // Similar to componentWillUnmount
 return () => window.removeEventListener('resize', () => setHeight(window.innerHeight));
 });

 if (commonShowGrouped !== prevCommonShowGrouped) {
 setShowGrouped(commonShowGrouped);
 prevSetCommonShowGrouped(commonShowGrouped);
 }

 if (commonShowXQualitative !== prevCommonShowXQualitative) {
 setShowXQualitative(commonShowXQualitative);
 prevSetCommonShowXQualitative(commonShowXQualitative);
 }

 if (commonShowYQualitative !== prevCommonShowYQualitative) {
 setShowYQualitative(commonShowYQualitative);
 prevSetCommonShowYQualitative(commonShowYQualitative);
 }

 let name = 'barPlot';

63 https://medium.com/the-andela-way/reactjs-the-art-of-reusable-components-5b67359e8ebb

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 131

 const categories = (groupedCategories && groupedCategories.map((category) => category.label)) || [];
 return (
 <React.Fragment>
 <Typography variant="h4" gutterBottom component="h2">
 Bar Plot
 <IconButton onClick={enterFullScreen(isFullScreen ? null : 'barplot')}>
 {!isFullScreen ? <FullScreen /> : <FullScreenExit />}
 </IconButton>
 <IconButton onClick={saveImage(name)}>
 <SaveIcon />
 </IconButton>{' '}
 </Typography>
 <Typography variant="caption" gutterBottom component="h2">
 <Switch checked={!!showGrouped} onChange={() => setShowGrouped(!showGrouped)} />
 Show Grouped Data
 </Typography>{' '}
 <Typography variant="caption" gutterBottom component="h2">
 <Switch checked={!!showXQualitative} onChange={() => setShowXQualitative(!showXQualitative)} />
 Show Qualitative Data in X Axis
 <Switch checked={!!showYQualitative} onChange={() => setShowYQualitative(!showYQualitative)} />
 Show Qualitative Data in Y Axis
 </Typography>
 <Typography component="div" className={classes.chartContainer}>
 {showGrouped && <DiscreteColorLegend items={categories} orientation="horizontal" height="70px" />}
 {!data.length && (
 <Typography className={classes.flexCenter}>
 <CircularProgress className={classes.progress} />
 </Typography>
)}
 <div id={name}>
 <FlexibleXYPlot
 xType={showXQualitative ? 'ordinal' : undefined}
 yType={showYQualitative ? 'ordinal' : undefined}
 animation
 height={!isFullScreen ? 300 : height * ratio}
 >
 {!showGrouped ? (
 <VerticalBarSeries cluster="stack 1" data={data} />
) : (
 (groupedData || [])
 .map((groupData) => <VerticalBarSeries cluster="stack 1" data={groupData} />)
)}
 <VerticalGridLines />
 <HorizontalGridLines />
 <XAxis title={data[0] && data[0].xAxisName} tickLabelAngle={-45} />
 <YAxis title={data[0] && data[0].yAxisName} />
 </FlexibleXYPlot>
 </div>
 </Typography>
 </React.Fragment>
);
 }
);

export default withStyles(styles)(BarPlotView);

Code 47: BarPlot creation using both mixin and decorator reusability pattern

4.4.5 Design Patterns and Principles: Performance
Software performance testing is the practice of determining whether a given application
has the capacity to perform in terms of scalability and responsiveness under a specified
workload. Responsiveness refers to the ability of a given application to meet pre-
determined objectives for throughput, while scalability is the number of activities
processed within a given time. Performing this type of testing is a key factor when
ascertaining the quality of a given application.
Software performance testing is done to serve three main purposes. First, testing is done
to determine whether the application meets the specified performance criteria. For
example, a performance criteria may specify that an application must be able to handle
500 concurrent users. Secondly, it compares two or more applications with the objective
of determining which one can perform better. For instance, say your application needs a

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 132

tool to export reports. You can compare tools to see which tool’s performance can best
handle the export requirements. Lastly, performance testing is done to measure the parts
or configuration of a given application that are responsible for the poor performance of
the application. A common example of this would be insufficient memory leading to
performance bottlenecks.
Goals of Performance Testing
The entire process of software performance testing is done to accomplish a set of four
goals: [74]

i. To determine the throughput or the rate of transaction.
ii. To determine the server response time, which is the time taken by a given

application node to give a response to a request made by another node.
iii. To determine the response time of the render, which requires the inclusion of

functional test scripts in the test scenario.
iv. To determine the performance specifications and document them in the test plan.

As for React performance can be easily measured by making a performance audit and
see how the applications React components are spending their time. This feature is an
extension to all big browser. In this thesis for measuring Performance we used the
Chrome Dev Tools Audit section, where one can fine tune the app and find expensive
components and methods.
When developing in React one of the most frequent performance issues that are
discussed is that a lot of times, especially in React Lists creation an performance issue
appear that has to do with the “key” prop. This also appears in the console of the browser.
This key prop is used from React in similar sibling React components to distinguish them.
If it is applied, React instantly finds the DOM element that corresponds to each
component, elsewise React has to loop through all elements to decide what is the DOM
element that it may be looking for. 64
Some more frequent performance issues list as follow:

i. Manage carefully the shouldComponentUpdate lifecycle with a logical statement
ii. Related to the use case prefer to use PureComponent instead of Component, if

applicable
iii. Use immutable data
iv. Use stateless components
v. Analyze the webpack bundle.js and clear packages not used

In this application before deploying to the server we made some audits and fixes issues
that had to do with performance. More specifically we fixed an issue like the one described
above with the key omitting in Lists. Another performance boost that we gave to the
application was that in the last two months of the implementation we refactored our code
and by switched from using Class Components to using stateless components where
applicable and React Hooks. Finally, as for the webpack bundle, we didn’t remove
anything from the package.json as all packages, where used in the application, while also
this was a concern we had from the beginning of the implementation – to use the less
possible needed package libraries.

64 https://medium.com/@joekarlsson/building-high-applications-react-applications3d02145a81e6

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 133

4.5 Visualization

In this chapter’s section we are going to define what is a visualization. The word
“visualization” is in many cases problematic, and there have been a lot of definitions,
some unsuccessful, that try to define this field. But before moving on to define a
visualization, let’s consider this: What is not a visualization? It is easy to argue that
anything visual is a visualization in some way – but does that mean anything? Here is a
definition of visualization and a few examples of different chart types, that are created
with react-vis (this thesis visualization library) to illustrate the different criteria according
to which it is recommended to select a chart type for use.

4.5.1 Definition

The following are three minimal criteria that any visualization has to fulfill to be considered
a pragmatic visualization. A good visualization certainly has to do more, but these criteria
are useful to draw the line between a lot of things that are often called visualization and
what we consider visualization in this field. [75]
Based on (non-visual) data
A visualization’s purpose is the communication of data. That means that the data must
come from something that is abstract or at least not immediately visible (like the inside of
the human body). This rules out photography and image processing. Visualization
transforms from the invisible to the visible.
Produce an image
It may seem obvious that a visualization has to produce an image, but that is not always
so clear. Also, the visual must be the primary means of communication, other modalities
can only provide additional information. If the image is only a small part of the process, it
is not visualization.
The result must be readable and recognizable
The most important criteria is that the visualization must provide a way to learn something
about the data. Any transformation of non-trivial data into an image will leave out
information, but there must be at least some relevant aspects of the data that can be read.
The visualization must also be recognizable as one and not pretend to be something else
(see the discussion of Informative Art). This definition was published in a paper on
Visualization Criticism.
Data visualization refers to techniques used to communicate insights from data through
visual representation. Its main goal is to distill large datasets into visual graphics to allow
for easy understanding of complex relationships within the data. It is often used
interchangeably with terms such as information graphics, statistical graphics, and
information visualization.
It is one of the steps of the data science process developed by Joe Blitzstein, which is a
framework for approaching data science tasks. After data is collected, processed, and
modeled, the relationships need to be visualized so a conclusion can be made. It’s also
a component of the broader discipline of data presentation architecture (DPA), which
seeks to identify, locate, manipulate, format, and present data in the most efficient way.
[76]

4.5.2 Visualizations Necessity

According to the World Economic Forum, the world produces 2.5 quintillion bytes of data
every day, and 90% of all data has been created in the last two years. With so much data,
it’s become increasingly difficult to manage and make sense of it all. It would be

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 134

impossible for any single person to wade through data line-by-line and see distinct
patterns and make observations. Data proliferation can be managed as part of the data
science process, which includes data visualization. [77]
Some reasons that verify the visualizations necessity lists as follows:
Improved Insight
Data visualization can provide insight that traditional descriptive statistics cannot. A
perfect example of this is Anscombe’s Quartet, created by Francis Anscombe in 1973.
The illustration includes four different datasets with almost identical variance, mean,
correlation between X and Y coordinates, and linear regression lines. However, the
patterns are clearly different when plotted on a graph. Below, you can see a linear
regression model would apply to graphs one and three, but a polynomial regression
model would be ideal for graph two. This illustration highlights why it’s important to
visualize data and not just rely on descriptive statistics.

Picture 44: Data visualization example 1 [77]

Faster Decision Making
Companies who can gather and quickly act on their data will be more competitive in the
marketplace because they can make informed decisions sooner than the competition.
Speed is key, and data visualization aides in the understanding of vast quantities of data
by applying visual representations to the data. This visualization layer typically sits on top
of a data warehouse or data lake and allows users to discover and explore data in a self-
service manner. Not only does this spur creativity, but it reduces the need for IT to allocate
resources to continually build new models.
For example, say a marketing analyst who works across 20 different ad platforms and
internal systems needs to quickly understand the effectiveness of marketing campaigns.
A manual way to do this would be to go to each system, pull a report, combine the data,
and then analyze in Excel. The analyst will then need to look at a swarm of metrics and
attributes and will have difficulty drawing conclusions. However, modern business
intelligence (BI) platforms will automatically connect the data sources and layer on data
visualizations so the analyst can slice and dice the data with ease and quickly come to
conclusions about marketing performance.
Basic Example
Let’s say you’re a retailer and you want to compare sales of jackets to sales of socks over
the course of the previous year. There’s more than one way to present the data, and
tables are one of the most common. Here’s what this would look like:

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 135

The table above does an excellent job showing precise if this information is needed.
However, it’s difficult to instantaneously see trends and the story the data tells.
Now here’s the data in a line graph visualization:

Picture 45: Data visualization example 2 [77]

From the visualization, it becomes immediately obvious that sales of socks remain
constant, with small spikes in December and June. On the other hand, sales of jackets
are more seasonal, and reach their low point in July. They then rise and peak in December
before decreasing monthly until right before fall. You could get this same story from
looking at the chart, but it would take you much longer. Imagine trying to make sense of
a table with thousands of data points. [78]

4.5.3 Chart Types

In this section we illustrate all different types of charts that we used in this thesis. Here is
an overview of each type of chart used in this thesis web-application: [79] [76]
Column Chart
A column chart is used to show a comparison among different items, or it can show a
comparison of items over time. You could use this format to see the revenue per landing
page or customers by close date.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 136

Design Best Practices for Column Charts:

• Use consistent colors throughout the chart, selecting accent colors to highlight
meaningful data points or changes over time.

• Use horizontal labels to improve readability.
• Start the y-axis at 0 to appropriately reflect the values in your graph.

Bar Chart
A bar chart, basically a horizontal column chart, should be used to avoid clutter when one
data label is long or if you have more than 10 items to compare. This type of visualization
can also be used to display negative numbers.

Design Best Practices for Bar Charts:

• Use consistent colors throughout the chart, selecting accent colors to highlight
meaningful data points or changes over time.

• Use horizontal labels to improve readability.
• Start the y-axis at 0 to appropriately reflect the values in your graph.

Line Chart
A line chart reveals trends or progress over time and can be used to show many different
categories of data. One should use it with a continuous data set.

Picture 47: Bar chart using react-vis [76]

Picture 46: Column chart using react-vis [79]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 137

Design Best Practices for Line Charts:

• Use solid lines only.
• Don't plot more than four lines to avoid visual distractions.
• Use the right height so the lines take up roughly 2/3 of the y-axis' height.

Dual Axis Chart
A dual axis chart allows you to plot data using two y-axes and a shared x-axis. It's used
with three data sets, one of which is based on a continuous set of data and another which
is better suited to being grouped by category. This should be used to visualize a
correlation or the lack thereof between these three data sets.

Picture 49: Dual Axis chart using react-vis [76]

Design Best Practices for Dual Axis Charts:
• Use the y-axis on the left side for the primary variable because brains are naturally

inclined to look left first.
• Use different graphing styles to illustrate the two data sets, as illustrated above.
• Choose contrasting colors for the two data sets.

Area Chart
An area chart is basically a line chart, but the space between the x-axis and the line is
filled with a color or pattern. It is useful for showing part-to-whole relations, such as
showing individual sales reps' contribution to total sales for a year. It helps you analyze
both overall and individual trend information.

Picture 48: Line chart using react-vis [76]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 138

Design Best Practices for Area Charts:

• Use transparent colors so information isn't obscured in the background.
• Don't display more than four categories to avoid clutter.
• Organize highly variable data at the top of the chart to make it easy to read.

Stacked Bar Chart
This should be used to compare many different items and show the composition of each
item being compared.

Design Best Practices for Stacked Bar Graphs:
• Best used to illustrate part-to-whole relationships.
• Use contrasting colors for greater clarity.
• Make chart scale large enough to view group sizes in relation to one another.

Pie Chart
A pie chart shows a static number and how categories represent part of a whole -- the
composition of something. A pie chart represents numbers in percentages, and the total
sum of all segments needs to equal 100%.

Picture 50: Column chart using react-vis [76]

Picture 51: Stacked Bar chart using react-vis [76]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 139

Design Best Practices for Pie Charts:

• Don't illustrate too many categories to ensure differentiation between slices.
• Ensure that the slice values add up to 100%.
• Order slices according to their size.

Scatter Plot Chart
A scatter plot or scattergram chart will show the relationship between two different
variables or it can reveal the distribution trends. It should be used when there are many
different data points, and you want to highlight similarities in the data set. This is useful
when looking for outliers or for understanding the distribution of your data.

Design Best Practices for Scatter Plots:
• Include more variables, such as different sizes, to incorporate more data.
• Start y-axis at 0 to represent data accurately.
• If you use trend lines, only use a maximum of two to make your plot easy to

understand.
Bubble Chart
A bubble chart is similar to a scatter plot in that it can show distribution or relationship.
There is a third data set, which is indicated by the size of the bubble or circle.

Picture 52: Pie chart using react-vis [76]

Picture 53: Scatter Plot chart using react-vis [76]

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 140

Picture 54: Bubble chart using react-vis [76]

Design Best Practices for Bubble Charts:
• Scale bubbles according to area, not diameter.
• Make sure labels are clear and visible.
• Use circular shapes only.

Whisker Chart
Whisker charts, also known as boxplots, are very useful when large numbers of
observations are involved and when two or more data sets are being compared. The Box
& Whisker chart displays the spread and skewness in a batch of data through its five-
number summary: minimum, maximum, median, upper and lower quartiles. [80]

Picture 55: Whisker chart using react-vis [80]

Design Best Practices for Whiskers and Boxplots:
• For a quick understanding of the distribution of a dataset
• To know whether a distribution is skewed or not
• To find out unusual observations/errors in the data set

4.5.4 Chart Selection

Finally in this section we are going to give some recommendations for chart usage
regarding the purposes of using a visualization. Given as purposes the following six
distinct reasons: data comparing, data composing, understanding of data distribution,
analyzing data trends, and data set relations understanding we recommend for each
reason to use the following Charts as they are listed below: [76] [79]
Comparison
Charts are perfect for comparing one or many value sets, and they can easily show the
low and high values in the data sets. To create a comparison chart, we recommend using

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 141

almost all described types of charts: Column, Bar, Pie, Line, Scatter Plot, Bubble, and
Whiskers.
Composition
We recommend using this type of chart to show how individual parts make up the whole
of something. To show composition, the proposed charts are: Pie, Stacked Bar, Stacked
Column, and Area.
Data distribution
Distribution charts help in understanding outliers, the normal tendency, and the range of
information in the dataset’s values. Use these charts to show distribution: Scatter Plot,
BubbleCharts, Line, Whiskers.
Data Trend Analysis
If you want to know more information about how a data set performed based on a specific
third value like a time period, there are specific chart types that do extremely well, such
as Line Charts, Dual-Axis Line Charts, Column Charts, and Area Chart.
Dataset relationships
Relationship charts are suited to showing how one variable relates to one or numerous
different variables. You could use this to show how something positively effects, has no
effect, or negatively effects another variable. When trying to establish the relationship
between things, use these charts: a Scatter Plot, a Bubble Chart, or a Line Chart.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 142

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 143

5. WEB APPLICATION OVERVIEW

5.1 Introduction

In this chapter we present an overview of the different functionality offered from the web
application we created. In the beginning we refer to every screen of the application and
the value that each one tries to offer for the application’s users. Then, we continue with
some example use cases, that handle main user concerns like data sharing among users,
data discovery using search, data projection and predictability using visualizations, data
cleansing, data filtering, data import from csv formatted file, data and filtered data
extraction to csv format, data history saving, data exploration with navigation, data and
filtered data visualization for comparisons, composition, understanding, distribution, trend
and relations analysis purposes based on criteria, data additions, editing and deletions.
In these use cases we note the ease with which a user (researcher or doctor in this thesis
case) can handle all the above data-related concerns based on the pre-application’s
workload and post-application’s workload. Finally, we make a comparison with some of
the best tools nowadays for data-selection and visualization.

5.2 Web Application Screens

In this section we present the three main screens of the Application that function by
sharing the same data and use this data for their unique function, based on user’s needs.
These screens are Query Screen, Dashboard Screen and Analysis Screen.

5.2.1 Query Screen
Query is the screen of the presentation layer that users use to do one or more of the
following processes:

1. Import data to the MongoDB database from .csv files.
2. Import data columns labeling (not required).
3. Define the application’s dataset for use, by querying and caching using GraphQL,

the imported dataset to filter and fetch only needed columns.
4. Filter the predefined dataset’s data.
5. Sort the predefined dataset’s data.
6. Search for column-data values in predefined dataset’s data.
7. Arrange the data columns by preference.
8. Edit and update the data in the predefined application’s dataset.
9. Delete data records from the database.
10. Export the final predefined and updated dataset in .csv format.

The above processes are distinct and don’t block one another.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 144

5.2.2 Dashboard Screen
Dashboard Screen which is also the default screen of the application, represents the
presentation layer that the users use to do one or more of the following processes:

1. Filter the predefined dataset’s data.
2. Sort the predefined dataset’s data.
3. Search for column-data values in predefined dataset’s data.
4. Arrange the data columns by preference.
5. Edit and update the data in the predefined application’s dataset.
6. Delete data records from the database.
7. Export the final predefined and updated dataset in .csv format.
8. Automatically visualize in real-time every table change based on filtering.
9. Custom select certain data-table rows to visualize.
10. Have all different types of visualization charts together in one screen, getting all

different facets of the data.
11. Select as x and y axis for all charts whichever column (or labeled column) of the

predefined dataset needed.
12. Group by one, two or three different columns the data visualized on x axis giving

that way a third, fourth or fifth dimension to every visualization chart.
13. Decide for each chart or all charts together whether the visualizations should show

the customly predefined data-groups based on labels or not.
14. Decide for each chart or all charts together whether the visualizations should show

the customly predefined X axis data or grouped-data with a qualitative or a
quantitative way.

Picture 56: Web application’s query screen

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 145

15. Decide for each chart separately or all charts together whether the visualizations
should show the customly predefined Y axis data or grouped-data with a qualitative
or a quantitative way.

16. Select a visualization chart for full screen usage to extract more visual information,
while also have filtering, searching, grouping and the ability to change the axis and
labels.

17. Download each chart in .png format either in a full-screen mode with more
information included or in a normal mode with the only the basic information.

The above processes are distinct and don’t block one another.

Picture 57: Web application’s DashBoard screen

5.2.3 Analysis Screen
Analysis Screen is the screen of the presentation layer that the users use to do one or
more or the following processes:

1. Test more complex queries on database’s datasets directly without the use of
Query screen for faster access and filter applying (suitable for Big Data, multiple
collections).

2. Apply multiple GraphQL queries or mutations at once in a queue.
3. Use different queries for fetching data in multiple tabs and compare them.
4. Cache queries for faster fetching when requested from the visualizations.
5. Save data exploration history for later use.
6. Explore the GraphQL data schema.
7. Explore the documentation for all enabled queries or mutations that are allowed

for use.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 146

8. Share queries and mutations, history and multiple tabs with collaborators.
The above processes are distinct and don’t block one another.

Picture 58: Web application’s Analysis screen

5.3 User Cases

In this section we present some use cases for the applications’ users, that handle their
main concerns. These are; data sharing among users, data discovery using search, data
projection and predictability using visualizations, data cleansing, data filtering, data import
from csv formatted file, data and filtered data export to csv format, data history saving,
data exploration with navigation, data and filtered data visualization for comparisons,
composition, understanding, distribution, trend and relations analysis purposes based on
criteria, data additions, editing and deletions.
In these use cases we note the ease with which a user (researcher or doctor in this thesis
case) can handle all the above data-related concerns based on the pre-application’s
workload and post-application’s workload. For each use case, we present the applied
work (and the estimated time to accomplish the task) that has to be done on this web tool
and a hypothesis on what could have happened without its existence.

5.3.1 Scenario 1: share data with other users

Before web-application’s existence:

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 147

Users send different excel versions among one another and this might result in a
confusion in regards to the version they are working on.
Using the web-application:
All data exists in the database and it is common for all users, but still the application
cannot support simultaneous editing. In a future work, the application will evolve and data
should be edited by all users at the same time in order to ensure better efficiency.

5.3.2 Scenario 2: discover data using search

Before web-application’s existence:
The application has many labels and for each one we create an index in the beginning
(label-1-1-title). There is a capability of visiting indexes and searching by the name of
labels in order to find the corresponding column title. By the time we find all the column
titles for all the labels, we search for them in the excel file. We can do this one column at
a time or create a macro for all search fields.
Using the web-application:
The application has many labels and for each one we create an index in the beginning
(label-1-1-title) which can be uploaded in a web-application start. The web-application
automatically translates each column title to the corresponding label and uses it in the
application. There is a capability of scrolling in the web-application’s table and use a
search field which allows the selection of rows. After having only the needed rows, you
can apply a second search on this rows etc.
5.3.3 Scenario 3: predict and/or project data using visualizations
Before web-application’s existence:
In order to predict or project data you first filter and manipulate the data in the excel sheet
in order to have the final dataset that you want to visualize and then you apply the dataset
to the desired chart. If you cannot find a chart that suits the case you want then you ask
of someone (developer) to create the visualization chart you want. If the visualization at
the end is still not perfect then you start again from the beginning by altering or using a
smaller dataset.
Using the web-application:
In the application created for this thesis, you can select data from the web-application’s
table and every selection is automatically visualized in real-time for all visualization charts
that are provided.

5.3.4 Scenario 4: import data from a csv file
Before web-application’s existence:
There doesn’t exist any database for common use among doctors and researchers.
Using the web-application:
Import data in the web application by running an import local script followed by a csv file
provided with the web-application.

5.3.5 Scenario 5: add, edit, or delete data
Before web-application’s existence:
Create a copy of the excel sheet for backup, add/edit/delete rows or columns to the excel
sheet. Save file and distribute it to all other collaborators.
Using the web-application:

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 148

For all rows, you can download the csv data of the table for backup. Add/edit/delete rows
in the web application’s table and then click save. After you save the changes all
collaborators to the web-application can have access to the new data.
For the columns of the web-application’s table in this thesis they cannot be added, edited
or deleted. In a future work this could happen, though. But there exist some side-ways
that can be done to handle such cases. An easy one is to download the csv data of the
table and duplicate the file. Keep the one for backup and edit the other adding the new
column with its data. Then, go back to the web-application and upload the data by
importing the new edited csv file.
5.3.6 Scenario 6: filter data
Before web-application’s existence:
Similarly with Scenario 2, the application has many labels and for each one we create an
index in the beginning (label-1-1-title). There is a capability of visiting indexes and
searching by the name of labels in order to find the corresponding column title. By the
time you find all the column titles for all the labels, you can use the excels’ filter for the
columns that you want. We can do this one column at a time or create a macro for all
search fields.
Using the web-application:
The application has many labels and for each one we create an index in the beginning
(label-1-1-title) which can be uploaded in a web-application start. The web-application
automatically translates each column title to the corresponding label and uses it in the
application. There is a capability of scrolling in the web-application’s table and use a filter
field which filters the table and keeps only the rows that you want. After having only the
needed rows, you can apply a second search on this rows etc.
5.3.7 Scenario 7: clean data
Before web-application’s existence:
You can either write a program that cleans data as described in a previous chapter or
select one column at a time and manually check for errors, miswritten values, empty
values, etc. Edit them and then save the file. You can send the copy of the saved file to
all other collaborators so they can use this version.
Using the web-application:
In the application created for this thesis, you can click in each column filter and search for
empty value, or find in filtered lists the “not-answered” annotation. You can filter the table
based on this annotation and edit it until no “not-answered” annotations exist. In the same
way, if filters in a column have a miswritten value, you can select this filter to keep only
the rows with this miswritten text or number and edit it. Eventually, you save the changes
and then all the other users have access to this changes due to the common database.
5.3.8 Scenario 8: export data or filtered-data to a csv file
Before web-application’s existence:
A user can duplicate a file and keep it for backup, then he can make changes to excel
data or filter the data and finally save the file in csv format.
Using the web-application:
By clicking the “Download in .c csv format” button the data that are present in the Table
are downloaded in .csv format.
5.3.9 Scenario 9: explore data using navigation
Before web-application’s existence:

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 149

Data in excel are plain text and cannot be used for exploration easily. What is more, in
this thesis case there are more than 460 different columns and many of them consists of
rows filled with numbers. It is very easy for users to confuse and to miss something, while
also header title keys in excel is very uncomfortable to follow and understand, and so, as
we described also in Scenario 2 and Scenario 6 users what to go back and forth to check
their column-title to labels index in order to understand the data.
Using the web-application:
This thesis web-application’s interface is based on User Experience(UX) principles and
was evaluated with all the lab’s researchers at this time period. Users can navigate with
ease to all different screens and manipulate the data available in the interface each time
by their preference, while also help themselves with the real-time visualizations in their
data exploration. Furthermore, users can now go in the Analysis Screen and select only
the columns that they want to visualize (which also helps in speeding up the page data-
loading). In this way, they don’t have to scroll amongst 460+ columns but only the needed
ones, while also they can rearrange the columns in their preference possibly to observe
some visual patterns in data. What is more, to even strengthen more this powerful web-
tool as described in Scenario 2 and Scenario 6, now all column-titles are replaced
everywhere within the interface with more user-friendly labels that every user can upload
and use. All the above, result in a simple and easy to use web interface.
5.3.10 Scenario 10: compare, compose, understand, distribute, analyze relations

and trends on data or filtered data visualizations based on criteria
Before web-application’s existence:
Data in excel are plain text and cannot be used for research purposes using visualizations
at once without first preprocessing them, until their data-shape is applicable as an entry
to visualization charts. So we decided to describe it with an example. For instance, in
Chapter 3.5.2, it is argued that “Alcohol is the main risk factor of cirrhosis in Europe, where
1.8% of all deaths are attributable to liver disease. Although alcohol per se is the most
important risk factor for alcoholic cirrhosis, only about 35% of heavy drinkers develop the
disease and there is not a clear dose response pattern. Moreover, even light drinkers,
who consume one to two drinks a day, are at increased risk of alcoholic cirrhosis
compared to abstainers. Alcohol use is therefore a bad predictor for the development of
liver cirrhosis. Genetic and environmental risk factors do also not explain the substantial
inter individual differences in susceptibility to ALF..”. Also, a few sections later, in Chapter
3.6.1., it is argued that: “ In an Italian study by Bellentani et al. there was a 9:1 ratio of
men with cirrhosis in the general population. However, 13 to 33% of Americans who are
either abusing alcohol or depend on it are women..”

So, to evaluate these statements the researchers and doctors have to filter in excel the
data by gender and start with the males, then they have to filter again by alcoholic
cirrhosis and compare the total males that have alcoholic cirrhosis to a part of them that
are also heavy drinkers. Then, having done so, they need to apply the same filters for
females, in the initial excel data, in order to combine the two above statements. At follow,
they gather all the 4 custom dataset (male with cirrhosis – male with cirrhosis and heavy
drinkers - female with cirrhosis – female with cirrhosis and heavy drinkers) and before
visualizing the data using Excel charts for this use case, they would expect that the total
cirrhosis data sample would consist of more men than women, but the percentage of
women that have both cirrhosis and are also heavy drinkers would be bigger than that of
men. Finally, they visualize the data to find out if such a case applies also to these data.
Unfortunately, in order for users to experiment, verify and explore these types of simple
cases this job is time consuming and many times results to unexpected and
misunderstood solutions.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 150

Using the web-application:
This thesis web-application’s interface on the contrary is created by the will to present
and visualize data in real-time. Considering this, the above use-case experiment can very
simply be elaborated, as the users only need to select the X and Y chart-axis which they
want to visualize, and group the visualized data by Cirrhosis and by Alcohol Overuse (>2
units/daily for women and >3 units/daily for men). To filter the data even more, they also
use the data for those that are Positive to Cirrhosis.

Picture 59: Use-case experimentation for verifying statements in Cited Publications

Truthfully, we can see that both males with Cirrhosis are more than females, and also
cirrhosis in females may be more relevant to alcohol abuse than cirrhosis in males.
5.3.11 Scenario 11: cache data for reuse and save history
Before web-application’s existence:
Users didn’t have a database for caching or saving data, all history is kept by using file
duplication. Users create backup copies for keeping track of the changes.
Using the web-application:
Using the database, users are capable to keep track of the database changes but at this
time they cannot access these changes, only the administrator can access them. The
reason is that there is not any screen for users implemented to access these data. And
this will be one of the first features to be added in future. Nevertheless, caching of similar
data responses to queries is implemented, while also in Analysis screen a user can save
queries for personal use and access them again in future using the history tab.

5.4 Competition

In this section we present several applications that exist at the moment in the market of
“data-visualization-software”. These applications are proposed by Capterra65 which is a
“Applications Software” Search Engine with a good reputation. Capterra’s main function

65 https://www.capterra.com/

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 151

is to provide users the ability to easily find software that is related to their needs, simply
by querying a keyword or browsing into its categories. What is more Capterra provides
users with main descriptions for each application found and user reviews for rating
purposes.
For this thesis purposes we searched for the keywords “data” and “visualization” and we
found the category ”Data Visualizations Software” which is where our web-application
also classifies. Then, for purposes of a fair product comparison we selected from the filter
side-menu the filters “Analytics”, “Dashboard creation”, “Visual Discovery”, and “Web-
Based”. Finally after sorting based on highest rated software we came up with the
following list of top-5 products: CanvasJS Charts66, Informer67, DataPlay68,
CleverAnalytics69, and Worksheet Systems70. Below, we present a comparison amongst
our web-application and these five products. [82]

Table 5: 2019 comparison with other data visualization software of competition

 CanvasJS
Charts

Informer DataPlay CleverAnalytics Worksheet
Systems

Thesis web-
tool

Use common
database

Database location
(for privacy
concerns)

Remote

Remote

Remote

Remote

Remote

Remotely and/or
in-house

Code editing
allowed

Responsive web
application

Price/Free $399.00/yea
r/user, Free
trial 30 days

- $140.00/mo
nth/user,
Free trial 30
days

$499.00/month/10-
users, Free trial 15
days

£100.00/month/us
er, Free trial 15
days

Free

66 https://canvasjs.com/
67 http://www.entrinsik.com/
68https://www.margasoft.com/
69https://www.cleveranalytics.com
70 https://www.worksheet.systems/

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 152

Platforms Cloud-SaaS-
Web, Mac,

Windows,

Android,

iOS

Cloud-
SaaS-
Web, Mac,
Windows

Cloud-
SaaS-Web,
Windows

Cloud-SaaS-Web Cloud-SaaS-Web Cloud- SaaS-
Web

Storage Limited Limited Limited Limited, up to 2GB Lmited, up to
100,000 records

and 50 data tables

Unlimited

Real-time charts
on data change

Dashboard
Content

management

Filtered database
views

Visual discovery
using Dashboard

Data file types
supported import

>2

>2

>2

>2

2

1

Data filetypes
supported export

>2

>2

>2

>2

2

2

Number of
visualizations

offered

30

>10

>10

5-10

5-10

5-10

Data filtering

Support Online-
Business

Hours

Online-
Business

Hours

24/7 Online-Business
Hours

Online-Business
Hours

24/7

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 153

Creator Fenopix
Technologie

s

Entrinsik Margasoft CleverAnalytics FalconSoft

Open API

Import Table
Labels

representation

Database History
Changes View

From the above table we can infer that there is no-perfect tool in competition and that
there is a lot of work needed to be done in this field as the users’ needs always increase,
and there should be tools created to fill in these needs. We can also infer that for our use
case the web-application implementation was an one-way to follow, as most of the tools
that do what our researchers and doctors want are paid, and the ones that are free (not
enclosed in the table above) have many disadvantages or do not have that much features
as our users want So they preferred to use Excel. Furthermore, Data Privacy Concerns,
are ensured as the database and all the computers’ network are all running inside the
BRFAA intranet. In case we decide to use the docker in a cloud based platform then we
should revisit such issues.
In addition to the above, an advantage of our web-application creation is that we can
decide about what changes we want to implement and we can prioritize them first and
develop them in-house, i.e. we can develop whatever custom charts based on our users’
needs, we can add A.I. and use deep learning inference algorithms, we can scale out the
application based on our storage, memory and processors needs of use, all costs that
occur are development costs without any middlemen, or because we have ownership
permissions on the application, if it grows larger it could even spin off the lab.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 154

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 155

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The main purpose of this thesis was to create a data visualization web-tool that would be
connected to a database with survey, clinical, and laboratorial data taken from patients of
Alcoholic Liver Disease. To do so, we decided to experiment and use the state-of-the-art
web technologies that are also used in the biggest companies worldwide and are
supported by the community and by international companies such as Amazon, Google
and Facebook, and in order to succeed in our goal we followed by the book the software
development lifecycle and versioning, using the Kanban model.
In our tech stack we started from a technical background software architecture theory that
suggest to use separation of concerns with n-tiers (data persistence, data access,
business-logic and presentation layer) and we implemented this theory in practice step
by step using the most recent and emerging web-technologies stack and the best design
patterns for scalability, reusability, maintainability and performance applied in these
technologies.
Our technological stack consisted of MongoDB, Node.js, GraphQL and ReactJS, each
one of them used for each one of the 4-tier architecture of our web-application. Of course,
in this web application would mean nothing if it didn’t fulfill its purpose, which is to visualize
the database’s data in user-friendly and handy ways on a nice user interface that uses
good UX principles. So, three of the most important UI libraries that correspond to the
largest part of the interface were Material-UI that follows the Google Material Design
pattern for UI and UX purposes, Ant Design that provided as with a great React
component for Table representation and react-vis made by Uber, that provided us with all
the different types of data visualization charts.
Then, having glue together all these different technologies and libraries and having
handled with a centralized manner all of the data processing and filtering for visualization
purposes, our web-application could start get tested by our users. We discussed with
supervisors 11 interesting use cases and tried to compare for each use case the steps a
user should follow to do these 11 casual scenarios before and after this web-tool creation.
The results were very satisfying, as it seems that the web-tool may save more than an
hour in a daily basis to each user that is using it, because it provides feature such as:
labeling columns with user-friendly titles, easy column and multiple column filtering with
also multiple options criteria, real-time visualizations in several charts, common database
with all other users - no share needed, export filtered data in csv format and visualizations
in png format, responsive web-application that loads in every device type, and more.
Finally, we challenged ourselves and made a comparison with some of the best tools
nowadays for data-selection and visualization and found out that there is no-perfect tool
in competition and that there is a lot of work needed to be done in this field as the users’
needs continuously increase, and there should be tools created to fill in these needs. We
can found out that the good software for data visualizations is mostly paid and this is why
many researchers are still using MS Excel.
As a result, we concluding that the creation of this a web-application tool was an one-way
to go, as this way we don’t need to entangle with Data Privacy Concerns as the database
and all the computers network that connect to its data are all running inside the BRFAA
intranet and because we want to provide the researched more effective time to work on
cases that they are really concerned.
To sum up, this bioinformatic tool will help physicians and researchers to simplify the
process daily of data selection, analysis and exploration by using visualization charts and

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 156

data filtering. As a result, the tool facilitates the day-to-day physicians and researchers
schedule to focus more on the essence of research, i.e. to draw conclusions about the
main categories of information that lead patients to alcoholic liver disease, and less on
processes.

6.2 Future Work

This web-application tool as it was also described in the conclusions will always need
more features as the users’ demands increase continuously, and the competition is also
growing. In this thesis we implemented almost the 95% of our initial plan, as one can find
out in our Kanban board (the 5% that we didn’t implement was because of requirements
changes). Software planning can never be set in advance as software is everyday
changing. This is also another metric, as we finally, so far added almost a 20% bigger
load in the backlog than the initial calculated and expected. This means that while the
thesis had started, in grooming processes every 2-weeks we thought about and finally
added some more feature in the backlog that either we hadn’t thought from the beginning,
or were software impediments that we could continue without implementing them, or were
nice to have and easy to implement and so we added them. Nonetheless, this thesis
came to an end, or better a checkpoint. This web-application is fully functional and
supports what was aforementioned in this thesis document. Therefore, while reading this
thesis there are notes scattered in text that refer to some future work that could be done
to optimize or extend some processes. These future work proposals are listed below, in
an unordered list:

• apply machine learning to find important relations among data characteristics
• add more visualization types, distributions, ROC curves, etc.
• use docker virtualization
• collaborative editing. This can happen by adding GraphQL subscriptions which

use websockets. This way concurrent users can edit in database and data are
updated in all other clients

• move data caching and history saving to backend
• add user roles (user profiling and edit tracking)
• use a service worker for offline data visualization and cache data in browser
• group by more than three labels with a multiple selection field
• add/edit/delete column data
• keep track of history changes in database

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 157

7. ABBREVIATIONS - ARCTICS - ACRONYMS

ALD Alcoholic Liver Disease

CLD Chronic Liver Disease

HBV Hepatitis B Virus

HCV Hepatitis C Virus

NASH Non-alcoholic steato-hepatitis

HCC Hepatocellular carcinoma

NAFLD Non-alcoholic fatty liver disease

ALF Alcoholic liver fibrosis

GDPR General data protection regulation

BRFAA

SDU University of Southern Denmark

SDLC Software development life-cycle

SSADM structured systems analysis and design method

API Application Programming Interface

ARA Application release automation

SaaS Software as a service

PaaS Platform as a service

IaaS Infrastructure as a service

CRM Customer Relationship Management

HRMS Human Resource Management System

XP Extreme Programming

RAD Rapid-application development

PDCA Plan-do-check-act

SoC Separation of Concerns

DBMS Database management system

SQL Structured query language

ACID Atomicity, Consistency, Isolation, Durability

JSON JavaScript Object Notation

BSON Binary JSON

RDBMS Relational DBMS

TSC Technical Steering Committee

SDL Schema Definition Language

SPA Single Page Application

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 158

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 159

8. BIBLIOGRAPHY

[1] “Wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/Liver.

[2] [Online]. Available: https://www.bartleby.com/107/250.html.

[3] H. G. e. al., Gray's Anatomy: The Anatomical Basis of Medicine and Surgery, 1995.

[4] G. Fornari, The Body Athlas Steve Parker, 1993.

[5] J. E. H. Arthur C. Guyton, Textbook of Medical Physiology, 1995.

[6] V. G. Filippa, “Bioinformatic Analysis of Clinical and Molecular Patient Data with Non-Alcoholic
Fatty Liver Disease and Implementation of Statistical Methods in Co-Expression Networks,”
Athens, 2018.

[7] [Online]. Available: https://www.webmd.com/digestive-disorders/picture-of-the-liver#1.

[8] [Online]. Available: https://www.stanfordchildrens.org/en/topic/default?id=anatomy-and-function-of-
the-liver-90-P03069.

[9] N. P.-F. C. F.-F. C. D.-G. C. P.-G. María M. Adeva-Andany, "Liver glucose metabolism in humans,"
Biosciences Reports, vol. 36, no. 6, 2016.

[10] B. E. Roden M, "Hepatic glucose metabolism in humans-its role in health and disease.," PubMed,
vol. 3, pp. 365-383, 2003.

[11] A. P. Y.-J. H. Frayn KN, “Fatty acid metabolism in adipose tissue, muscle and liver in health and
disease.,” Essays Biochem, vol. 42, pp. 89-103, 2006.

[12] D. B. Jump, "Fatty acid regulation of hepatic lipid metabolism," PMC , 2012 .

[13] "VIVO Pathophysiology," [Online]. Available:
http://www.vivo.colostate.edu/hbooks/pathphys/digestion/liver/metabolic.html.

[14] C. MR, "Protein metabolism and liver disease.," Baillieres Clin Endocrinol Metab, pp. 617-635,
1996.

[15] R. University, "BC Open Textbooks," [Online]. Available:
https://opentextbc.ca/anatomyandphysiology/chapter/24-4-protein-metabolism/.

[16] "Hepatitis C Trust," [Online]. Available: http://www.hepctrust.org.uk/information/liver/protein-
synthesis.

[17] L. P. De Feo P, “Liver protein synthesis in physiology and in disease states,” Curr Opin Clin Nutr
Metab Care, pp. 47-50, 2002.

[18] M. EF, “Coagulation abnormalities in liver disease,” Hematol Oncol Clin North Am, pp. 1247-1257,
1992.

[19] T. A. Woreta, "John Hopkins Medicine," [Online]. Available:
https://www.hopkinsmedicine.org/health/wellness-and-prevention/detoxing-your-liver-fact-versus-
fiction.

[20] "Medicine Plus," [Online]. Available: https://medlineplus.gov/lab-tests/bilirubin-in-urine/.

[21] G. K. Michalopoulos, “Liver Regeneration,” J Cell Physiol , 2009.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 160

[22] B. K. K. Patrick Marcellin, “Liver diseases: A major, neglected global public health problem,” Liver
International, 2017.

[23] B. K. K. Patrick Marcellin, “Liver diseases: A major, neglected global public health problem requiring
urgent actions and large-scale screening,” Liver International, 2018.

[24] R. G. R. S. M. Massimo Pinzani, “Progression of fibrosis in chronic liver diseases: time to tally the
score,” Journal of Hepatology, 2001.

[25] K.-K. Q.-X. L. C. H. N. L. J.-M. S.-X. B. Q. C. M.-Q. &. M.-Q. Sheng-Sen Chen, “Factors associated
with significant liver necroinflammation in chronic hepatitis B patients with cirrhosis,” Nature, 2016.

[26] S. D. A. J. M. e. a. Robert S. O'Shea, “Alcoholic liver disease,” Hepatology, 2009.

[27] M. M. M. J. M. M. a. T. R. M. M. Sarathy Mandayam, “Epidemiology of Alcoholic Liver Disease,”
2004.

[28] J. T. D. L. G. Askgaard, “A measure of alcohol consumption in late adolescence associated with liver
disease after 39 years of follow-up is insufficient to guide alcohol safe limits,” Journal of Hepatology
.

[29] P. T. M. D. J. P. a. K. K. K. P. Natalia A. Osna, “Alcoholic Liver Disease: Pathogenesis and Current
Management,” Alcohol Research, pp. 147-161, 2017.

[30] M. K. V. NARAYANAN MENON, M. GREGORY J. GORES and M. AND VIJAY H. SHAH,
“Pathogenesis, Diagnosis, and Treatment of Alcoholic Liver Disease,” Mayo Clin Proc, 2001.

[31] R. B. BIN GAO, “Alcoholic Liver Disease: Pathogenesis and New Therapeutic,” Gastroenterology.,
2011.

[32] G. Szabo, “Gut–Liver Axis in Alcoholic Liver Disease,” Gastroenterology, 2015.

[33] V. P. a. E. A. S. Georgiou, “The Role of microRNAs in the Gut-Liver Axis,” in The Human Gut-Liver-
Axis in Health and Disease,, 2019, pp. 207-234.

[34] P. M. a. R. Bataller, “Trends in the management and burden of alcoholic liver disease,” J Hepatol.,
pp. 38-46, 2015.

[35] “European Union,” [Online]. Available: https://europa.eu/youreurope/citizens/consumers/internet-
telecoms/data-protection-online-privacy/index_en.htm.

[36] "Learn.org," [Online]. Available: https://learn.org/articles/What_is_Database_Architecture.html.

[37] "Stackify," 2017. [Online]. Available: https://stackify.com/what-is-sdlc/.

[38] "technopedia," [Online]. Available: https://www.techopedia.com/definition/22193/software-
development-life-cycle-sdlc.

[39] “raygun,” [Online]. Available: https://raygun.com/blog/software-development-life-cycle/.

[40] “Apprenda,” [Online]. Available: https://apprenda.com/library/cloud/deployment-to-the-cloud/.

[41] “deploy partners,” [Online]. Available: https://deploypartners.com/security-and-maintenance-
considerations-for-the-cloud/.

[42] “Cloud Codes,” 2018. [Online]. Available: https://www.cloudcodes.com/blog/cloud-and-docker-
cloud.html.

[43] “Open Source,” [Online]. Available: https://opensource.com/business/14/7/why-docker-new-craze-
virtualization-and-cloud-computing.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 161

[44] “open source,” [Online]. Available: https://opensource.com/resources/what-docker.

[45] “tryqa,” [Online]. Available: http://tryqa.com/what-is-agile-model-advantages-disadvantages-and-
when-to-use-it/.

[46] “cprime,” [Online]. Available: https://www.cprime.com/resources/what-is-agile-what-is-scrum/.

[47] “ambysoft,” [Online]. Available: http://www.ambysoft.com/essays/agileLifecycle.html.

[48] “luis-goncalves,” [Online]. Available: https://luis-goncalves.com/what-is-agile-methodology/.

[49] "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Liver .

[50] “guru99,” [Online]. Available: https://www.guru99.com/waterfall-vs-agile.html.

[51] H. D. O. M. A. G. Y. I. Orfeas Aidonopoulos, “DCV: From cleaning to analytics through WEB based
interactive”.

[52] M. K. Y. I. Anna Gogolou, “Data exploration: a roll call of all user-data interaction functionality,” in
the Third International Workshop, 2016.

[53] A. Gogolou, “Exploration and Data Cleansing in Biomedical Bases,” Athens, 2016.

[54] “DCV curation tools and services to automatically and manually acquire high-quality curated data,”
Athens, 2015.

[55] “Software Testing Material,” [Online]. Available: https://www.softwaretestingmaterial.com/software-
architecture/.

[56] M. S. J. H. Joseph M. Hellerstein, “Architecture of a database,” The essence of knowledge, vol. 1,
no. 2, pp. 141-259, 2007.

[57] "Medium," [Online]. Available: https://medium.com/oceanize-geeks/concepts-of-database-
architecture-dfdc558a93e4.

[58] R. C. a. L. M. Nadeem Qaisar Mehmood, “Modeling temporal aspects of sensor data for MongoDB
NoSQL database,” Journal of Big Data, vol. 4, no. 8, 2017.

[59] “technopedia,” [Online]. Available: https://www.techopedia.com/definition/1405/back-end-system.

[60] "IBM," [Online]. Available:
https://www.ibm.com/support/knowledgecenter/en/SSZLC2_7.0.0/com.ibm.commerce.developer.d
oc/concepts/csdbusinesslogicbase.htm.

[61] S. C. a. B. Straub, Pro Git, 2014.

[62] "MongoDB," [Online]. Available: https://www.mongodb.com/.

[63] "MDN web docs mozilla," [Online]. Available: https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/First_steps/What_is_JavaScript.

[64] “MDN web docs mozilla,” [Online]. Available: https://developer.mozilla.org/el/docs/Web/JavaScript.

[65] “The Linux Foundation Projects,” [Online]. Available: https://www.linuxfoundation.org/projects/.

[66] "Foundation nodejs," [Online]. Available: https://foundation.nodejs.org/.

[67] “readwrite,” [Online]. Available: https://readwrite.com/2013/11/07/what-you-need-to-know-about-
nodejs/.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 162

[68] “Facebook Code,” [Online]. Available: https://code.fb.com/core-data/graphql-a-data-query-
language/.

[69] “Techcrunch,” [Online]. Available: https://techcrunch.com/2018/11/06/facebooks-graphql-gets-its-
own-open-source-foundation/?renderMode=ie11.

[70] “Apollo QraphQL,” [Online]. Available: https://www.apollographql.com/.

[71] “Apollo GraphQL,” [Online]. Available: https://www.apollographql.com/docs/apollo-server/.

[72] “ITNEXT,” [Online]. Available: https://itnext.io/graphql-mongoose-a-design-first-approach-
d97b7f0c869.

[73] “GraphQL,” [Online]. Available: https://graphql.org/learn/queries/#variables.

[74] “Medium,” [Online]. Available: https://medium.com/fbdevclagos/understanding-graphql-queries-
mutations-and-subscriptions-a80a8b5c877c.

[75] “c-sharp corner,” [Online]. Available: https://www.c-sharpcorner.com/article/what-and-why-reactjs/.

[76] “itnext.io,” [Online]. Available: https://itnext.io/using-advanced-design-patterns-to-create-flexible-
and-reusable-react-components-part-3-render-d7517dfe72bc.

[77] “Github Page,” [Online]. Available: https://nmpegetis.github.io/eurobank-training/.

[78] M. R. E. B. I. E. Alex Fishman, “HVX: Virtualizing the Cloud,” Ravello Systems.

[79] “Docker,” [Online]. Available: https://docs.docker.com/engine/docker-overview/.

[80] “t4tutorials,” [Online]. Available: https://t4tutorials.com/software-maintainability-in-software-
engineering/.

[81] “e-zest,” [Online]. Available: https://blog.e-zest.com/why-reusability-of-software-components-is-
essential.

[82] “benmccormick,” [Online]. Available: https://benmccormick.org/2019/02/11/reusable-react.

[83] “sequetech,” [Online]. Available: https://www.seguetech.com/what-is-software-performance-
testing/.

[84] “eagereyes,” [Online]. Available: https://eagereyes.org/criticism/definition-of-visualization.

[85] “microstrategy,” [Online]. Available: https://www.microstrategy.com/us/resources/introductory-
guides/data-visualization-what-it-is-and-why-we-use-it.

[86] “weforum,” [Online]. Available: https://www.weforum.org/agenda/2017/09/the-value-of-data/.

[87] “microstrategy,” [Online]. Available: https://www.microstrategy.com/us/resources/introductory-
guides/data-visualization-what-it-is-and-why-we-use-it.

[88] “Hubspot,” [Online]. Available: https://blog.hubspot.com/marketing/types-of-graphs-for-data-
visualization.

[89] “Fusion Charts,” [Online]. Available: https://www.fusioncharts.com/resources/chart-primers/box-
and-whisker-chart.

[90] “Capterra,” [Online]. Available: https://www.capterra.com/sem-compare/data-visualization-
software?gclid=CjwKCAjwr8zoBRA0EiwANmvpYO3QKOxYoSXnHeFfvAbuGxoQeoBhRHRMcLvs
J8qwqBNYFB5DbI3fnhoCsbAQAvD_BwE.

Web-Interface for querying and visualizing Alcoholic Liver Disease Patient’s data from database using GraphQL

N. Begetis 163

[94] "Medium," [Online]. Available: https://medium.com/@nmpegetis/git-how-to-start-code-changes-
commit-and-push-changes-when-working-in-a-team-dbc6da3cd34c.

[95] “Github,” [Online]. Available: https://github.com/getify/You-Dont-Know-JS.

[96] “Medium,” [Online]. Available: https://medium.com/software-insight/graphql-types-and-
relationships-cbb046a541c4.

[97] “Github,” [Online]. Available: https://github.com/graphql-compose/graphql-compose-mongoose.

[98] H. D. J. E. P. S. K. Sumeet K. Asrani, “Burden of liver diseases in the world,” Journal of Hepatology,
2018.

[99] A. P. B. S. Shiv K. Sarin, “Microbiome as a therapeutic target in alcohol-related liver disease,” Journal
of Hepatology, 2018.

[100] M. M. M. J. M. M. Sarathy Mandayam, "Epidemiology of Alcoholic Liver Disease," 200.

[101] B. K. K. Patrick Marcellin, “Liver diseases: A major, neglected global public health problem,” Liver
International, 2017.

[102] “Software Testing Material,” [Online]. Available: https://www.softwaretestingmaterial.com/software-
architecture/.

[103] “Software testing material,” [Online]. Available: https://www.softwaretestingmaterial.com/software-
architecture/.

[104] “Medium,” [Online]. Available: https://towardsdatascience.com/how-to-handle-missing-data-
8646b18db0d4.

