
NATIONAL & KAPODISTRIAN UNIVERSITY OF

ATHENS

MASTER THESIS

Quantification of ocean model
uncertainties in an ensemble of
high-resolution Bay of Biscay

simulations

Author:
Ioannis KARAGIORGOS

Supervisor:
Assist. Prof. Sarantis SOFIANOS

A thesis submitted for the degree of Master of Science

in the

Oceanography and Management of the Marine Environment
Specialization: Physical Oceanography

Athens, Greece
July 2019



ii

QUANTIFICATION OF OCEAN MODEL UNCERTAINTIES IN AN ENSEMBLE
OF HIGH-RESOLUTION BAY OF BISCAY SIMULATIONS

Inter-Institutional Postgraduate Course

Oceanography and Management of the Marine Environment

NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

Dissertation Committee:

Assist. Prof. Sarantis Sofianos (Supervisor)

University of Athens

Department of Physics

Prof. Maria Tombrou-Tzella
University of Athens

Department of Physics

Dr. George Triantafyllou
Research Director of HCMR

Institute of Oceanography

Athens, Greece
July 2019



iii

Thesis supervisor:

Sarantis SOFIANOS

Author:

Ioannis KARAGIORGOS

QUANTIFICATION OF OCEAN MODEL UNCERTAINTIES IN AN ENSEMBLE
OF HIGH-RESOLUTION BAY OF BISCAY SIMULATIONS

Abstract

Quantifying model uncertainty and error bounds is a key outstanding challenge in
ocean state estimation and prediction. In this study, we investigate the impact of
different ensemble generation methods in terms of forecast uncertainty represen-
tation within the context of a regional/coastal model. As a case study for open-
ocean and coastal shelf dynamics, we use a coupled ocean–biogeochemical config-
uration of the ocean model NEMO (Nucleus for European Modelling of the Ocean)
for the Bay of Biscay at 1/36◦ resolution. An ocean ensemble forced by the at-
mospheric model ensemble product of the European Centre for Medium-Range
Weather Forecasts (ECMWF-EPS) is compared with an ensemble that generated
through applying stochastic perturbations to an unperturbed (control) run. The
stochastic perturbations are chosen with the aim to represent potential model fore-
cast uncertainties from assumptions subject to erroneous atmospheric forcing, im-
proper ocean model parameterizations, and ecosystem state uncertainties. The com-
parison is made through ensemble statistics focusing on the spatio-temporal vari-
ability of model spread for the coupled system. In summary, we find that the
ECMWF-EPS forcing does not produce a large wind spread compared to the stochas-
tic modelling approach. As a result of this, the stochastic method can be considered
as the primary approach to generate upper-ocean model uncertainties. This study
is concluded with a qualitative evaluation of the model forecasts with respect to the
observations.

Keywords: Ocean modelling; Ensemble forecast; Model uncertainties; Stochastic
modelling; NEMO; Bay of Biscay
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ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΤΩΝ ΑΒΕΒΑΙΟΤΗΤΩΝ ΑΡΙΘΜΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ

ΥΨΗΛΗΣ ΑΝΑΛΥΣΗΣ ΓΙΑ ΤΟ ΒΙΣΚΑΪΚΟ ΚΟΛΠΟ ΜΕ ΜΕΘΟΔΟΥΣ ΤΥΠΟΥ

῾ἉΝΣΑΜΠΛ᾿᾿

Περίληψη

Η ποσοτικοποίηση της αβεβαιότητας των αριθημτικών μοντέλων αποτελεί σημαντική πε-

ριοχή μελέτης για την εκτίμηση και την πρόβλεψη της κατάστασης των ωκεανών. Στην

παρούσα εργασία, διερευνάται η επίδραση διαφορετικών μεθόδων παραγωγής προσομοιώσεων

τύπου ῾ἁνσάμπλ᾿᾿ στην αναπαράσταση των αβεβαιοτήτων ενός περιοχικού αριθμητικού

μοντέλου. Για τη μελέτη αυτή χρησιμοποιήσαμε ένα συζευγμένο φυσικό-βιογεωχημικό

μοντέλο υψηλής ανάλυσης (1/36◦) για το Βισκαϊκό κόλπο, βασισμένο στην πλατφόρμα
ωκεανογραφικών μοντέλων ΝΕΜΟ. Συγκρίναμε δύο κύριες μέθοδους παραγωγής αν-

σάμπλ προσομοιώσεων για το μοντέλο του ωκεανού. Η πρώτη μέθοδος ενσωματώνει πολ-

υμεταβλητά ατμοσφαιρικά ανσάμπλ του Ευρωπαἰκό Κέντρο Μεσο-πρόθεσμων Μετεωρολογικών

Προγνώσεων (ECMWF-EPS), ενώ η δεύτερη διαταράσσει το πείραμα αναφοράς με τη
χρήση στοχαστικών μεθόδων. Οι στοχαστικές διαταραχές επιλέγονται με στόχο να αν-

τιπροσωπεύσουν πιθανές αβεβαιότητες στην πρόγνωση του μοντέλου, που οφείλονται σε

παραδοχές υποκείμενες σε εσφαλμένη ατμοσφαιρική δράση, εσφαλμένης παραμετροποίησης

μοντέλου και αβεβαιότητας της κατάστασης του οικοσυστήματος. Η σύγκριση γίνεται

μέσω στατιστικής ανάλυσης των αποτελεσμάτων, εστιάζοντας κυρίως στην χωρο-χρονική

εξέλιξη της διασποράς του συζευγμένου συστήματος. Συνοπτικά, διαπιστώνουμε ότι οι

προβλέψεις του ECMWF-EPS δεν παρουσιάζουν μεγάλη διασπορά ανέμου στο περιοχικό
μας μοντέλο σε σύγκριση με την στοχαστική μέθοδο μοντελοποίησης. Ως αποτέλεσμα

αυτού, η στοχαστική μέθοδος μπορεί να θεωρηθεί ως καταλληλότερη για την δημιουργία

αβεβαιοτήτων στο ωκεάνιο μοντέλο. Τέλος, γίνεται μια ποιοτική αξιολόγηση των αποτε-

λεσμάτων σε σχέση με τις παρατηρήσεις.
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Chapter 1

Introduction

1.1 Background and motivation

Many factors contribute to errors in regional/coastal ocean model forecasts. These
may be related to different sources of model uncertainties, such as physical parame-
terizations, atmospheric forcing, lateral boundary and initial conditions, bathymetry,
river runoff, and so forth. In general, these many sources of uncertainty are difficult
to assess. However, the sensitivity of ocean simulations to the different sources of
model uncertainties is necessary to assess the forecast skill, which is a key asset for
ocean data assimilation, and to produce reliable probabilistic hindcasts and forecasts
both in coupled and un-coupled systems.

The quantification and representation of model uncertainties (often formally ex-
pressed as model error covariance) both physically and statistically are required
in various data assimilation techniques such as the Ensemble Kalman (EnKF) filter
(Evensen, 2003), the Singular Evolutive Extended Kalman (SEEK) filter (Pham and
Jacques Roubaud, 1998) and the Ensemble Optimal Interpolation (EnOI; Oke et al.,
2002; Evensen, 2003). Thus, the success of data assimilation and forecast accuracy
depends crucially on the realism of model uncertainties, which in turn depends on
the realism of the representation method.

Ensemble methods are a useful way to represent the uncertainties associated with
complex systems. The idea of an ensemble forecast is simple enough. Instead of
running just one forecast with an unknown error, a set of slightly different forecasts
runs describing the evolution of the probability density function (pdf) of the model
results. The difficulty lies in constructing the ensemble in such a way that it cor-
rectly reflects uncertainties in our knowledge of ocean initial state and modelling
of the relevant processes. There are standard methods to represent uncertainty in
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the ocean for ensemble forecasts, namely: perturbed initial state, perturbed physics
(parameters and parametrizations) and multi-physics (such as multi-models).

The main goal of this study is to investigate the impact of different ensemble genera-
tion methods in terms of model errors, focusing on upper-ocean processes. As a case
study, we use the Bay of Biscay, which covers a broad spectrum of open-ocean and
coastal physical processes. The simulations are performed using a coupled ocean
physics and biogeochemistry configuration of the ocean model NEMO (Nucleus for
European Modeling of the Ocean), with a high horizontal analysis (1/36◦) in the
experimental region. The aim is to identify the spatial and temporal distribution
of model uncertainty for several physical-biogeochemical variables and to evalu-
ate the statistical consistency (reliability) of the model forecasts with respect to the
observations.

We use two main approaches to generate an ensemble of simulations in order to rep-
resent model uncertainties associated with unresolved or poorly-resolved processes
in the coupled physical-biogeochemical system. In the first method, we produce an
ocean ensemble using the atmospheric ensemble product of the European Centre
for Medium-range Weather Forecasting system (ECMWF-EPS). This ensemble in-
cludes several ocean simulations in which a different atmospheric member of the
ECMWF-EPS system used as forcing. The second approach is based on stochastic
perturbation of several variables/parameters of a control run, generating an ocean
ensemble. We also examine a third approach that merges the two above methods
using both the ECMWF-EPS and the ocean model stochastic perturbations.

Two schemes of stochastic parameterization are considered: a stochastically per-
turbed parameterization tendency (SPPT) scheme which has proven particularly ef-
fective in the atmosphere (e.g. Palmer et al., 2009), and a stochastic parameterization
of unresolved fluctuations (SPUF) scheme similar to Brankart et al. (2015). These
schemes can help to improve the representation of small scale, high frequency, and
unpredictable processes in a statistical sense, rather than trying to actually resolve
these processes. While they are already widely used in weather forecasting, the
application of these schemes in the ocean component is fairly recent.

The thesis structures as follows. In chapter 2, we describe the model implementation
and ensemble-forecast-generating methods. In chapter 3, the model uncertainties
are discussed on a temporal and spatial scale, focusing on the ensemble spread of
upper-ocean properties. We also identify the principal mechanisms associated with
the ocean response to the different ensemble-generation protocols, and we present
a qualitative evaluation with respect to observational products. Finally, we summa-
rize and discuss the results in chapter 4.
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1.2 The study region

Due to the rich nature of its dynamics, the Bay of Biscay, located in the North-eastern
Atlantic (Fig. 1.1), is an ideal laboratory for this study. In this region, the circulation
constrained by a complex topography (e.g. varying width of the continental shelf,
canyons), river runoffs, strong tidal currents, eddies, and large scale circulation.
Fig. 1.1A provides a schematic view of the major features of the water circulation
occurring in the Bay.

In the central part of the Bay of Biscay, the Abyssal plain, with depths around
4000 m reaching 5500 m, the surface circulation is relatively weak (Charria et al.,
2013); it is mainly cyclonic in winter and anticyclonic in summer. The continental
margin current instabilities yield long-lived anticyclonic eddies, called Slope Water
Oceanic eDDIES (SWODDIES) by Pingree and Le Cann (1992).

Along the slope, which indicates the transition region above the shelf break and
the open-ocean part, the circulation exhibits seasonal variations and a vertical baro-
clinic structure (Pingree and Le Cann, 1990). A typical recurrent dynamic feature of
the slope circulation is the warm extension of the Iberian Poleward Current (IPC)
along the northern Iberian coast during autumn/winter (Le Cann and Serpette,
2009; Garcia-Soto et al., 2002), which have been referred as the "Navidad" event
(Pingree and Le Cann, 1992).

The continental shelf is wide in the northern part of the Bay of Biscay (up to
180 km) but narrows to the south (up to 30 km). The circulation here may be
explained as a combination of wind-driven, tidally induced, and density-driven
flows (Pingree and Le Cann, 1989). At the shelf break, the interactions between
the barotropic tidal currents and the steep topography generate internal tides that
propagate both on- and off-shelf from about 5◦ to 9◦W (Pingree et al., 1986). They
appear to be responsible for significant mixing and upwelling of nutrients over the
shelf break.
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(A)

(B)

FIGURE 1.1: (A) Features of the general water circulation in the Bay of Biscay (modi-
fied from Koutsikopoulos and Le Cann, 1996). (B) The Bay of Biscay model domain and
bathymetry in meters. The black lines represent the 100, 200, 2000, 4000 m isobaths.
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Chapter 2

Methodology and experimental design

2.1 Model configuration

In this study, all simulations have been performed based on a high-resolution re-
gional configuration of NEMO (Nucleus for European Modelling of the ocean; Madec,
2012) modelling framework, targeting coastal to open-ocean applications. The model
domain covers the Bay of Biscay and the western part of the English Channel be-
tween 11–0.26◦W and 41–51.5◦N, which is a subgrid of the Iberian-Biscay-Irish (IBI)
model (more details and validation procedure given in Maraldi et al., 2013). This
domain includes the Bay of Biscay abyssal plain, the shelf break and a variety of
wide and narrow expanses of the continental shelf (Fig. 1.1B).

2.1.1 The coupled physical-biogeochemical NEMO/PISCES model

The primitive model equation NEMO platform in its stable version 3.6 is used,
which realistically represents the ocean dynamics and its interactions with the bio-
geochemical component. The main part of the NEMO system is the 3D hydrostatic
OPA (Ocean PArallelised; Madec et al., 1998) module which computes the oceanic
circulation. The biogeochemical model PISCES-v2 (Aumont et al., 2015) is coupled
on-line (one-way coupling and at the same resolution) to OPA via the TOP2 com-
ponent that manages the advection-diffusion equations of passive tracers and bio-
geochemical source and sinks terms. The coupling is done every two time-steps
(i.e., 150 s for physics and 300 s for biogeochemistry), and the biogeochemistry has
no feedback on the physics. This on-line high-frequency coupling is optimal com-
pared to an off-line approach, in terms of the conservation of tracers Gutknecht et al.
(2016).
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The primitive equations are discretized on a curvilinear Arakawa C-grid which is
a refined subset at 1/36◦(≈2–3 km) of the so-called “ORCA” tripolar grid (Bernard
et al., 2006). The model grid is an exact 3:1 refinement of the PSY2V4R2 parent grid
providing initial and boundary conditions. The chosen resolution characterizes the
model as eddy-resolving in the abyssal plain and eddy-permitting on the shelves.
The vertical grid has 50 geopotential levels as in the parent grid model, with a res-
olution decreasing from ∼ 1 m in the upper 10 m to more than 400 m in the deep
ocean. The vertical mixing is parameterized using a k-epsilon scheme (Umlauf and
Burchard, 2003), and the 3rd order QUICKEST scheme is used (Leonard, 1979) for
tracer advection. For the biogeochemical processes, an Euler integration scheme is
used which differs from the scheme used in physics, i.e., leap-frog scheme. The
advection scheme is the same as in physics, i.e., QUICKEST. More details for the
physical component of the numerical set-up provided by Maraldi et al. (2013) and
Vervatis et al. (2016).

The NEMO/PISCES set-up is the same as in Vervatis et al. (2019). The PISCES ar-
chitecture includes 24 prognostic variables simulating the biogeochemical cycles of
oxygen, carbon, and the main nutrients controlling phytoplankton growth, i.e., ni-
trate, ammonium, phosphate, silicic acid, and iron. The model distinguishes four
plankton functional types based on size, including two phytoplankton compart-
ments (nano-phytoplankton and diatoms) and two zooplankton classes (micro-zooplankton
and meso-zooplankton). The distinction of the two phytoplankton size classes,
along with the description of multiple nutrient co-limitations allows the model to
represent ocean productivity, across different biogeographic ocean provinces (Longhurst,
1998). The phytoplankton prognostic variables are the total biomass in C, Fe, Si
(only for diatoms) and chlorophyll and hence the Fe/C, Si/C, Chl/C ratios are vari-
able. This allows a more accurate conversion of phytoplankton into chlorophyll con-
centrations, which is of great importance for comparisons with proxy ocean colour
satellite data. PISCES also distinguishes three non-living pools for organic carbon:
small Particulate Organic Matters (sPOM), big Particulate Organic Matters (bPOM;
different settling velocities with sPOM) and semi-labile Dissolved Organic Carbon
(DOC).

In the coupled NEMO/PISCES configuration, the biogeochemical variables are con-
sidered as tracers with their evolution determined by the advective-diffusive
Eq. 2.1.1:

∂C
∂t

= −
A︷ ︸︸ ︷

∇(uC)−

Dh︷ ︸︸ ︷
Kh∇2

hC +

Dv︷ ︸︸ ︷
∂

∂z
(Kz

∂C
∂z

) + SMS(C), (2.1)
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where C is the model state vector including the 24 PISCES prognostic variables. The
terms A, Dh and Dv represent respectively the advection, the horizontal diffusion
and the vertical diffusion computed by the physical model. SMS is the "Source Mi-
nus Sink" term of the PISCES model budget due to the biogeochemical sources and
sinks.

2.1.2 Forcing and boundary conditions

Meteorological fields are provided by the European Center for Medium-Range Weather
Forecasts (ECMWF, https://www.ecmwf.int/) with a resolution of three hours in
time and 9 km or 18 km in the horizontal depending from the forecast product, as
we will see below. Wind stress and heat surface fluxes are computed, within the
model, with bulk formulae (Large and Yeager, 2004) using a set of atmospheric vari-
ables which is summarized in Table 2.1. Freshwater fluxes are also considered in the
model implementation.

TABLE 2.1: Atmospheric variables from the ECMWF used to calculate the atmospheric forc-
ing both and on the ensemble and the control run simulations.

10 m U wind component
10 m V wind component

2 m air temperature
2 m relative humidity
2 m specific humidity

Surface downward solar radiation
Surface downward thermal radiation

Total precipitation
Mean sea level pressure

Initial and open boundary conditions (temperature, salinity, current velocities, and
sea surface height) are provided by the Mercator Ocean operational system over the
North Atlantic area at 1/12◦, named PSY2v3. A monthly climatology provides the
river’s discharge contribution at the sites of the three major rivers Loire (2.19 ◦W
47.27◦N), Gironde (0.73◦E 45.26◦N) and Adour (1.52◦E 43.53◦N) acts as a forcing
mechanism for coastal non-linear processes in the Armorican shelf.

Tidal forcing is implemented as the sum of 11 tidal harmonics (M2, S2, K2, N2, K1,
O1, P1, Q1, M4, Mf, and Mm) provided by the TPXO 7.1 global tide model (Egbert
et al., 1994). Finally, an Inverse Barometer (IB) signal is added to the sea level at

https://www.ecmwf.int/
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the boundaries, since the parent system does not include any atmospheric pressure
forcing. See Maraldi et al. (2013) for a detailed description.

The open boundaries of the biogeochemical model are forced by the global system
BIOMER4V1R1 (resolution: 1/2◦; http://www.mercator-ocean.fr/), providing 3D
global weekly mean analysis of dissolved iron, nitrate, phosphate, silicate, oxygen,
chlorophyll, phytoplankton concentrations, and primary production parameters.

2.2 Ocean ensemble generation methods

In this section, we will describe the ensemble forecast methods that we use to gen-
erate ocean-biogeochemical ensemble forecasts over the Bay of Biscay domain (Fig.
1.1B).

2.2.1 The ECMWF-EPS system

The first method studied here uses forecast products from the ECMWF global en-
semble prediction system (ECMWF-EPS). The ECMWF-EPS is one of the most suc-
cessful prediction systems and proved to be extremely useful in a wide range of
applications (Buizza, 2006). However, the capability of this product in generating
an ensemble of regional ocean forecast is tested here. The atmospheric forcing vari-
ables of ECMWF-EPS product used in this study are summarized in Table 2.1. In
Fig. 2.1, we also illustrate an example of differences, in forcing variables for two
members, over the Bay of Biscay domain.

The key feature of the ECMWF-EPS system is the usage of singular vectors to per-
turb the atmospheric forecast initial conditions (Lacarra and Talagrand, 1988; Far-
rell, 1990). The forecast products consist of one control forecast starting from the
best guess initial conditions, and 50 members starting from slightly perturbed ini-
tial conditions at a horizontal resolution of approximately 18 km.

2.2.2 Stochastic approaches

We use the SPPT (Stochastically Perturbed Parametrisation Tendencies) scheme for
the ocean in a similar way to weather forecasting systems (Buizza et al., 1999).
The SPPT scheme addresses model uncertainty due to the physics parameterization
schemes by perturbing the physics tendencies or parameters using multiplicative
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FIGURE 2.1: The ECMWF-EPS atmospheric ensemble product. Row one: 2m air temper-
ature in the global; rows two-five: the difference of members 1 and 2 for the atmospheric
forcing variables in the Bay of Biscay domain. Date: 30-Jan-2017 15:00:00.

noise; the word "tendency" refers to the change in a variable over time. Let X de-
note the net parametrized physics tendency of any variable. For an unperturbed
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tendency Xc, the perturbed tendency Xp is computed as:

Xp = (1 + ξ)Xc, (2.2)

where ξ is the zero-mean random perturbation. The multiplication with the random
number ξ takes place at every time step and every grid node.

There are a few properties of the random number that needs to be defined, namely
temporal and spatial correlations, and the shape of the distribution. The tempo-
ral correlation is given by a Gaussian auto-regressive process of first-order (AR(1))
(Brankart et al., 2015):

ξk+1 = e−1/τξk + (σ +
√

1− e−2/τ)w + µ(1− e−1/τ), (2.3)

where k is the model time-step, w is a Gaussian white noise, µ, σ and τ the mean,
the standard deviation (uncertainty amplitude) and the correlation timescale, re-
spectively.

The spatial correlation is introduced to the system by replacing the white noise of
w in Eq. 2.2.2. For more realistic spatial scales, instead of implementing white
noise, we introduce anisotropic 2D correlated spatial scales based on long-range
spatial correlations modelled through an anisotropic Gaussian recursive filter (Ri-
ishøjgaard, 1998; Purser et al., 2003). More in specific, we generate 2D equal prob-
ability density contours, using a bivariate normal distribution function (Gaussian)
over a few random grid-points in the model domain. The centers of the distribu-
tions are called modes. Then, the stochastic patterns are produced by the linear
combination of these unimodal probability distributions. Since downscaling projec-
tion methods (i.e for the atmospheric forcing) are subject to many sources of model
uncertainties, this approach is of vital importance in high-resolution regional con-
figurations.

For the generation of the stochastic ensembles, we use the SPPT scheme focused on
uncertainties from:

• Surface boundary conditions perturbing the atmospheric forcing

– U and V wind component (U )

– Air temperature (Tair)

– Sea level pressure (SLP)

• Improper parametrizations perturbing ocean model coefficients
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– Wind drag (cd)

– Turbulent fluxes (ce, ch)

– Bottom drag (cb)

• State variables perturbing the "Sources Minus Sink" (SMS) term of the ecosys-
tem in Eq. 2.1.1

The spatio-temporal correlation parameters for applying the auto-regressive pro-
cesses are presented in the Table 2.2.

TABLE 2.2: Statistical parameters defining the first-order auto-regressive processes in the
context of SPPT scheme.

Perturbed
variables

Uncertainty
amplitude (σ)

Correlation
timescales (τ)

Spatial
scales (σr)

Distribution

U 0.4 3 days 1 ◦ Gaussian
Tair 0.1 15 days 2 ◦ Gaussian
SLP 0.01 5 days 3 ◦ Gaussian
Cd, Ce, Ch 0.1 3 days 0.5 ◦ Gaussian
Cb 0.2 30 days 0.2 ◦ Gaussian
SMS 0.8 10 days 0.5 ◦ Log-normal

We also perturb the nonlinear equation of state ρ(T, S), using the stochastic parame-
terization of unresolved fluctuations scheme (SPUF; Brankart et al., 2015). The SPUF
scheme is based on random walks sampling gradients from the state vector (T/S),
in order to simulate the effect of unresolved temperature and salinity fluctuations
(∆T and ∆S) (Brankart, 2013). The random walks are parameterized with indepen-
dent first-order auto-regressive processes. The statistical parameters defining the
random walks (Table 2.3) were selected in an ad hoc way to inflate the ensemble
spread. No special tuning has been preceded.

TABLE 2.3: Statistical parameters defining the random walks in the context of SPUF scheme.

Number of random walks p=1
Horizontal standard deviation 1 grid-point
Vertical standard deviation 0.5 grid-point
Correlation time-scale τ = 5 days

2.2.3 Experiments

Results from four simulations will be considered in the next chapters:
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1. A control run (hereinafter CR), forced by the unperturbed atmospheric fields
(ECMWF-HRES product; 9km resolution) and without other stochastic parametriza-
tion, has been first carried out for the ocean-biogeochemical model to develop
coherent structures starting from PSY2V4R2 analysis and identify the main
physical processes of the Bay of Biscay. The CR starts on January 2015 and in-
cludes the period in which the ensemble experiment was performed in a sec-
ond step (December 2016 to June 2017). Since all ensembles were initialized
by using the ocean and the biogeochemical states of the CR (without perturb-
ing the initial conditions), the deterministic CR serves as a reference for the
ensemble experiments.

2. An ocean ensemble that incorporates atmospheric ensembles (i.e., using the
ECMWF-EPS system). We call this experiment the EPS ocean ensemble fore-
cast. The EPS is constructed, forcing several ocean runs with different mem-
bers of the ECMWF-EPS atmospheric ensemble.

3. An ocean ensemble based on stochastic approaches (i.e., SPPT and SPUF schemes).
We call this experiment the CR-STO ocean ensemble forecast. The CR-STO en-
semble generated by perturbing variables/parameters (Table 2.2) of the CR.

Several ocean-atmosphere and biogeochemistry sources of uncertainty are con-
sidered by perturbing the relevant variables/parameters of the CR, and an en-
semble of simulations run with the perturbed fields.

4. An ocean ensemble runs identical to EPS, but in this case, a perturbation ap-
plied on each member with the same stochastic protocol used in the CR-STO
experiment. We call this merged experiment the EPS-STO ocean ensemble
forecast.

The flowchart of the ensemble-based forecasts generation is presented in Fig. 2.2A.
In addition, the Table 2.4 briefly summarize all the performed simulations.

(A) (B)

FIGURE 2.2: The ensemble generation strategy.
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In order to be able to properly compare different periods of the year with identical
forecast lead time, we perform a short- to medium-range ensembles (we call this
method time-chunk initialization or hereinafter "time-chunked" ensembles) over re-
peated periods (see Fig. 2.2B). Time-chunk initialization is a common practice for
operational forecasting systems and permits to take into account the ensemble spin-
up period and give access to aging errors within a given forecast lead time, which
does not occur in the seasonal range ensemble. The length of the ensemble time-
chunks is adjusted between 10 days and up to a month. The short spin-up of 10
days is meant to bring the ensemble up to empirical consistency, and the Usable
Period (UP) of "ensemble forecasts" spanning the rest of the time-chunk, is meant
to assess model uncertainties and probabilities over lead times within the length
of the UP, i.e., 20 days. In general, time-chunked ensembles could be useful to ac-
cess probabilistic skill scores with respect to forecast lead time mimicking repeated
forecasting cycles, but this application is out of the scope of this work.

TABLE 2.4: Table of simulations.

Experiment Contents Members Stochastic
perturbations

CR Control run incorporating the atmo-
spheric ECMWF-HRES product - no

EPS
Ocean ensemble incorporating the atmo-
spheric ECMWF-EPS ensemble product
in the form of a time-chunked ensemble

10 no

CR-STO
Stochastic time-chunked ocean ensemble
based on SPPT and SPUF methods incor-
porating the ECMWF-HRES product

20 yes

EPS-STO

Combining the EPS and CR-STO en-
sembles, incorporating the atmospheric
ECMWF-EPS product, in the form of a
time-chunked ensemble

20 yes

EPS-SR Seasonal-range ensemble incorporating
the atmospheric ECMWF-EPS product 20 no

All the simulations were performed at ECMWF’s High-Performance Computing Fa-
cilities (HPCF) using resources of ECMWF’s special project SCRUM2. In the context
of ensemble experiments, the present configuration uses the enhanced MPI strat-
egy of NEMO for double parallelization in the spatial domain and the ensemble
dimensions (Bessières et al., 2017). The latter means that ensemble simulations are
carried out by just one call to the executable of the coupled NEMO-PISCES system.
The configuration scales-out using 96 processors of domain decomposition per en-
semble member, excluding land processors. Thus, due to the limited computational
resources, only 20 members for CR-STO, EPS-STO and EPS-SR and 10 for EPS were

https://www.ecmwf.int/en/research/special-projects/spgrver2-2018
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carried out instead of 50 members which are the overall target (i.e., the same number
of members as in the ECMWF-EPS perturbed forecasts).

2.3 Diagnostics–Consistency analysis

The ocean model response to the various experimental setups (Table 2.4) is investi-
gated using ensemble statistics, mainly the ensemble mean and spread. The ensem-
ble mean is the average of all ensemble members. The ensemble spread, computed
as the standard deviation about the ensemble mean, provides a measure of the fore-
cast uncertainty on the model results. On average, small spread indicates high the-
oretical forecast accuracy; large spread indicates low theoretical forecast accuracy.

For the model evaluation with respect to observational products, we use the data-
space consistency statistics tool of SDAP (Sequoia Data Assimilation Platform), whose
functions are interfaced with the NEMO platform and its biogeochemical compo-
nent PISCES. This tool calculates first- and second-order statistics about the distri-
bution of observational samples, ensemble samples, and innovation (observation
minus Ensemble – OmE) samples. For this task, observations are perturbed with a
Gaussian random number, in order to generate data distributions with the proper
error standard deviation for each network. The observations are considered inde-
pendent (no cross-correlations), and their Error Covariance Matrix (ECM) is diago-
nal. In particular, the following consistency statistics are calculated:

• SPREAD: mean spread (st.dev.) of the ensemble

• OmE: center of the mean OmE distribution (should be close to 0)

• DOmE: st.dev. of the debiased mean OmE distribution (should be larger than
SPREAD)

Besides, we calculate ensemble quantiles both in the model and data space to assess
the ensemble median Q2(50%), the mid-spread Q1(25%)-Q3(75%) and the ensemble
envelope Q0(1%)-Q4(99%).

https://sourceforge.net/projects/sequoia-dap/
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Chapter 3

Results

In this chapter, we want to investigate how different ensemble generation strategies
lead to different properties of the ensemble spread both on the open ocean and the
shelf regions for different space and time scales. We aim at discussing two distinct
areas in the Bay of Biscay, namely the Armorican shelf and the Abyssal plain, both
governed by different physical-biogeochemical processes.

3.1 Comparison between ECMWF-EPS and stochastic

perturbed wind distributions

The uncertainties in the wind forcing fields are expected to have a significant im-
pact on different space and time scales on the induced ocean response. For ex-
ample, in the Bay of Biscay, the upper-ocean processes include Ekman currents,
mesoscale/sub-mesoscale shelf break exchanges, slope currents, vertical mixing,
upwelling/downwelling and density-driven currents reshaped by the wind field.

For this reason, we examine the wind speed standard deviation generated by the
different ensemble forecasts, as described in chapter 2. Fig. 3.1b shows the time
evolution of domain-averaged wind spread for the EPS and stochastic CR-STO and
EPS-STO ensembles, respectively. The EPS wind spread is smaller compared to
those from the stochastic ensembles by an average of about 0.4 m/s. Besides, for
the stochastic methods, the temporal variability of wind spread follows the mean
wind speed variability of the CR (Fig. 3.1a). The EPS-STO method has slightly
higher spread values than the CR-STO method, especially in cases where the spread
is minimum. Thus, the spread is not added linearly when we use ECMWF-EPS in
combination with the stochastic implementation.
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FIGURE 3.1: The temporal evolution of domain-averaged (a) wind speed derived from CR,
(b) ensemble standard deviation of wind speed generated by the different ensemble exper-
iments.

FIGURE 3.2: Snapshots of the ensemble mean (a-c) and spread (d-f) for the wind speed on
01 May 2017. Results correspond to the EPS, CR-STO, and EPS-STO ensembles.
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As shown in Fig. 3.2d for a given date, the ECMWF-EPS forcing are not capable
of giving significant spread to wind patterns that cover broad-domain scales (Fig.
3.2a). In contrast, it presents high spread values in areas with a strong wind speed
gradient (Fig. 3.2a) associated with colocated ensemble members. On the other
hand, the stochastic perturbations can produce high values of spread with spatial
scales consistent with the wind ensemble mean (see Fig. 3.2b,c, and Fig. 3.2e,f re-
spectively).

In the sections below, we will show that higher uncertainties in the wind field with
eventually smaller scales are important in generating an ensemble response at the
ocean mesoscale.

3.2 Ensemble spread of upper-ocean properties

3.2.1 Temporal evolution

In Fig. 3.3 and 3.5, we present the impact of the different ensemble-generation-
methods on the temporal evolution of the model spread (i.e., 1σ) focusing on surface
ocean variables such as SST, surface CHL, and SSH. Smaller model spread occurs
for the time-chunked EPS ensemble mainly attributed to the smaller wind spread
compared to the stochastic ensembles CR-STO and EPS-STO respectively. The en-
semble envelope also presented for the EPS-STO ensemble. We discuss results over
the Abyssal plain and the Armorican shelf in model space for 20 members, over the
same period from 03/12/2016 to 30/06/2017.

As shown in Fig. 3.3b,d, the EPS ensemble which incorporates the ECMWF-EPS
forcing (no stochastic formulation for the ocean state), has a smaller spread in the
SST compared with the stochastic ensembles CR-STO and EPS-STO, though their
differences are small during the transition period in March-April. The stochastic en-
sembles seem identical in terms of spread during winter, but differences are found
in the spread peaks during the summer, coming from the different atmospheric forc-
ing of ECMWF (CR-STO: 9km; EPS-STO: 18km). The model uncertainties are more
extensive in the Armorican shelf than in the Abyssal plain, especially in the winter,
as shown by the larger ensemble envelope and spread (Fig. 3.3c,d).

The SST spread evolution follows the seasonal cycle of mixed-layer depth, showing
similar behavior both on the shelf and the open ocean. The deepening of the mixed-
layer in the winter period (February-March) reduces the impact of the atmospheric
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forcing on the SST spread modulation. On the other hand, the shoaling of mixed-
layer depth in summer (June), increases the impact of wind forcing uncertainties on
the SST model errors (Fig. 3.3a,c), therefore enhancing SST spread. More in specific,
the SST spread is small during winter at about 0.1◦C for the Abyssal plain and 0.2◦C
for the Armorican shelf, and it is increased during summer at about 0.5◦C and 0.6◦C
respectively. The ensemble envelope is also broader in the summer season than in
the winter.

FIGURE 3.3: Temporal evolution of the ensemble statistics for the SST in model space. Up-
per panels present EPS-STO envelope (quantiles: Q0(cold member); Q4(warm member)).
Lower panels show ensemble spread for EPS, CR-STO and EPS-STO ensembles. A spin-
up period of 10 days (dashed line; overlapped in each time-chunk) and a Usable Period
(continuous line) with the forecast lead time of 20 days is presented. (a), (c) correspond to
spatially-averaged values for the Abyssal Plain, and (b), (d) to Armorican shelf respectively.

In Fig. 3.4 we show that the ECMWF-EPS forcing is also not able to augment signif-
icant ensemble spread for the SSH. The stochastic ensembles CR-STO and EPS-STO
are identical in terms of spread both in the Armorican shelf and in the Abyssal plain,
and they have significantly higher spread than the EPS ensemble throughout the
running period. The SSH fields are de-tided, filtered over 25 h and daily-averaged.
Since we focus on the baroclinic impact of IB and not on the barotropic part, the
Inverse Barometer (IB) component also subtracted from the SSH. As clearly seen,
the SSH presents highly variable model errors over the Armorican shelf (Fig. 3.4b)
compared to the Abyssal plain (Fig. 3.6a). This result is associated with uncertain-
ties induced from high-frequency shelf processes, especially during winter, where
the wind uncertainties modulate the shelf dynamics.
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Over the Abyssal plain (Fig. 3.4a), the SSH spread appears to be less variable in time.
The spread evolution for the time-chunked stochastic ensembles shows a maximum
(∼ 0.7cm) during the end of winter (February-March). This fact may be associated
with the intense mesoscale eddy activity during the winter, which has the potential
to increase the spread in SSH. An interesting remark in this area is the different be-
havior of the seasonal range EPS-SR ensemble, where after about a month of spin-up
the spread is progressively increased until the end of the running period. This fact is
related to the decorrelation of mesoscale activity, namely the increasing differences
with time on the representation of eddies between members (Lucas et al., 2008). This
behavior also appears on the shelf towards the end of the run but to a lesser extent.

FIGURE 3.4: Temporal evolution of the spatially-averaged SSH ensemble spread (in cm)
for the EPS, CR-STO, EPS-STO, and EPS-SR experiments, respectively. A spin-up period
of 10 days (dashed line; overlapped in each time-chunk) and a Usable Period (continuous
line) with the forecast lead time of 20 days is presented. The inverse barometer has been
removed. (a) correspond to the Abyssal plain and (b) to the Armorican shelf.

In the case of surface chlorophyll, very different behavior presented between the
shelf and the open ocean. High chlorophyll dispersion is observed over the Ar-
morican shelf (Fig. 3.5c) throughout the run (particularly after the late winter). In
contrast, the Abyssal plain (Fig. 3.5a) generally shows low chlorophyll dispersion
with a peak during the spring bloom (March-early April).

In Fig. 3.5b,d is highlighted the higher impact of stochastic methods on CHL spread
compared to the EPS method, indicating that biogeochemical uncertainties arise
from uncertainties in ocean physics (i.e., SST, SSH). The onset of the spring bloom
drives a CHL spread maximum over the Abyssal plain (∼ 0.04mg/m3 for the stochas-
tic ensembles) in March-early April (Fig. 3.5b). This maximum is related to the
strong biogeochemical dynamics when seasonal re-stratification occurs, and conse-
quently, the mixed layer becomes shallower. From May onwards, the chlorophyll
spread drops sharply to lowest values in summer (∼ 0.01mg/m3), when water
column stratification prevents nutrient supply to euphotic layers. Over the shelf,
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coastal runoff and river plumes provide continual input of nutrients. In combina-
tion with physical processes, such as coastal upwelling, internal waves, and tidal
fronts, these nutrients modulate intense uncertainty in chlorophyll throughout the
run (above 0.02mg/m3 on average).

FIGURE 3.5: Identical to Fig. 3.3 for the surface chlorophyll.

3.2.2 Spatial patterns

In this subsection, we examine the spatial patterns of the model spread for the dif-
ferent ensemble-forecast-generating methods.

In a first step, we investigate the skill of the ensemble mean forecasts to produce the
main dynamical processes of the Bay of Biscay. Fig. 3.6 and 3.7 shows maps of the
ensemble mean (top panels) and spread (bottom panels) for the SST in two contrast
days (winter and summer). Model uncertainties appear to linked with processes
being different between the open ocean and the shelves, and between seasons re-
spectively. Even if the ensemble experiments have identical ensemble mean, they
present differences in spread patterns, especially in the summer period. The ensem-
ble spread localized in a few regions where ocean response to wind forcing is signif-
icant. Also, a background ocean mesoscale signal is more widespread, with specific
regional maxima that coincide with variable regions of the Bay of Biscay general cir-
culation. As we expected, the stochastic approach presents a higher spread intensity
compared to the EPS method.
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FIGURE 3.6: Snapshots of the ensemble mean (a-c) and spread (d-f) for sea surface temper-
ature (in ◦C) on 08 February 2017. Results correspond to the EPS, CR-STO, and EPS-STO
ensembles.

In winter, the persistence of a warm surface water mass in the southern part of
the Bay, the main signature of the so-called Navidad event, is highlighted in Fig.
3.6a-c. The Navidad event generates a surface temperature gradient contrasting the
colder temperatures of the northern side of the Bay. In summer (Fig. 3.7(a)-(c)), the
simulation’s ensemble mean re-produces the "warm pool" in the southeastern part
of the Bay of Biscay with temperature exceeding 21 ◦C (Lazure et al., 2009).

In the Abyssal plain, the SST spread is relatively weak in winter (<0.3 ◦C), with
filament-like patterns around the mesoscale features (Fig. 3.6d-f). Higher values are
associated with the active dynamical processes of the southern continental slope,
due to the evolving SST, and subsequent generation and evolution of SWODDIES,
in turn linked to the Navidad event. The SST spread is higher in summer (Fig. 3.7d-
f) compared to winter and can be mainly associated with thermal fluxes due to less
mesoscale activity. The maximum SST spread (∼ 1◦C) occurs in the southeastern
corner of the Bay of Biscay due to the mixed layer depth minimum (not shown).

Over the Armorican shelf, a thermal front divides colder and fresher coastal waters
related to river plumes, from the relatively warmer open-ocean waters (Fig. 3.6a-
c). Two major rivers, the Loire and the Gironde, are responsible for large outflows
during the winter, contributing to establish a strong stratification over the shelf.
In summer (Fig. 3.7a-c), the interactions of tidal currents with bottom topography
are also responsible for the formation of seasonal thermal fronts, such as Ushant
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FIGURE 3.7: Identical to Fig. 3.6 for 19 June 2017.

front off western Brittany (48.2 ◦N, 5.6 ◦W), with cold waters in the vicinity of the
coast and warmer water outside the front (Renaudie et al., 2011; Pasquet et al., 2012;
Boyer et al., 2013). The internal tides also induce intense vertical mixing in the shelf,
which prevents the formation of seasonal stratification and results in a cold SST
tongue along with the shelf break from 11 ◦W to 5 ◦W. In addition, the coastal areas
of the southern continental shelf and the French coast (vicinity of islands; Loire and
Gironde estuaries) principally marked by the presence of local wind-induced up-
welling events during summer (Pingree, 1984; Botas et al., 1990; Puillat et al., 2004).

The winter SST spread was found to be larger over the shelf (>0.4 ◦C for the stochas-
tic ensembles) compared to the Abyssal plain (Fig. 3.6d-f). The maximum values
associated with the position of the thermal front whose variability may arise by the
combined effect of the wind uncertainties and the river outflow. In summer (Fig.
3.7d-f), the SST spread pattern presents a remarkable difference between stochastic
and EPS ensembles in contrast with the winter case. More in specific, the main dif-
ference is located on the northern part of the Armorican shelf at the entrance of the
English Channel. In stochastic ensembles, we have higher model SST spread which
may be induced by the perturbation of the bottom drag coefficient (3.7g-h) since the
above area dynamically controlled by tides and their interaction with the seabed.
The imprint of the Ushant thermal front is also revealed at the south-western edges
of the English Channel and dominates the SST pattern with small SST spread.

In Fig. 3.8a, the modeled surface relative vorticity for the CR at a given date is
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presented. Eddies and filament-like structures can be seen through large relative
vorticity values over the Abyssal plain. The spread of SSH is associated with these
structures, mostly in the stochastic CR-STO than in the EPS ensemble (Fig. 3.8b-c).
An interesting remark for the open ocean (i.e., the Abyssal plain) is that the pattern
of SSH spread is colocated with the pattern of SST spread (see Fig. 3.6d-f). Over the
Armorican shelf, the SSH spread is right at the coast and may correspond to waves
caused by the wind.

FIGURE 3.8: (a) Snapshot of surface relative vorticity ζ (in s−1) for the CR on 08 February
2017. (b-c) correspond to sea surface height spread (in cm) for EPS and CR-STO experi-
ments, respectively. The inverse barometer has been removed.

Fig. 3.9b-c presents snapshots of surface CHL spread for the EPS and CR-STO en-
sembles during the spring bloom period (22/03/2017). As clearly seen, the CHL
spread follows the eddy mesoscale activity (Fig. 3.9a) over the Abyssal plain, in-
dicating the strong dependence of the biogeochemical field on physical processes.
The spread pattern of CHL is different compared with the pattern in SST. The lat-
ter presents a filament-like structure, while the former increasing above the center
of the anticyclonic eddies (Fig, 3.9a; especially at 46 ◦N, 5 ◦W), where the surface
chlorophyll exhibits high values (Caballero et al., 2016). Over the Armorican shelf,
the progressively diffuse processes of river plumes lead to high CHL spread.

In Fig. 3.10, we focus on upwelling events along the Iberian and Spanish coast dur-
ing summer. The imprint of these processes on the CHL concentration and the rel-
evant spread is presented in Fig. 3.10a-b. The uncertainties in upwelling-favorable
winds induce variability in the upwelled nutrients, which in turn have a significant
impact on primary production in coastal areas. An interesting feature of upwelled
waters is the westward off-shore advection along the 200 m isobaths, in the form of
filament structure. This feature is visible in the CHL ensemble mean (Fig. 3.10a;
∼ 3◦W, 44◦N) and indicates the transportation of biological material towards to
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FIGURE 3.9: Identical to Fig. 3.8 for surface chlorophyll concentration (in mg/m3) on 22
March 2017.

oceanic waters. The "4 ◦W eddy" (Fig. 3.10c) described by Caballero et al. (2014)
have a strong influence on chlorophyll distribution leading to high spread values
(Fig. 3.10a-b).

FIGURE 3.10: Snapshots of the ensemble mean (a) and spread (b) of surface chlorophyll
concentration (in mg/m3) for the CR-STO ensemble on 19 June 2017. (c) correspond to the
surface relative vorticity ζ (in s−1(×10−4)) for the CR on the same date.

3.3 Ensemble-based innovation statistics

In this section, the time-chunked stochastic ensemble EPS-STO undergo verifica-
tion with respect to CMEMS (Copernicus Marine Environment Monitoring Service;
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http://marine.copernicus.eu/) observational products. In particular, the model-
data misfits (hereafter called “innovation” for simplicity) are examined, focusing
on upper-ocean variables. Fig. 3.11 and 3.12, shows examples of consistency met-
rics for SST and sea level anomaly (SLA), based on innovation samples for different
datasets and periods. The calculations were carried out with the SDAP platform
using only the Usable Period (UP) of the EPS-STO time-chunked ensemble, both for
the Abyssal plain and Armorican shelf.

FIGURE 3.11: Ensemble envelope of EPS-STO (blue) in OSTIA-SST (obs. error in grey)
(upper panels), and EPS-STO innovation statistics/spread (lower panels). (a-b) correspond
to the Abyssal plain and (c-d) to Armorican shelf respectively.

For the SST evaluation, we use a high-resolution (0.05◦ × 0.05◦) OSTIA SST L4 gap-
free gridded dataset. OSTIA is a near-real-time (NRT) daily-mean product of foun-
dation SST free of diurnal variability. In Fig. 3.11, the EPS-STO ensemble is com-
pared to a data ensemble generated by the random perturbation of the OSTIA SST
product using a Gaussian law and assuming an observational error with st.dev. of
0.5◦C. The model and data ensemble envelope (Fig. 3.11a,c) appear to be compatible
with each other since vicinities overlapped most of the time though the EPS-STO is
cold-biased over the Armorican shelf during summer (June-July) (Fig. 3.11c). The
statistical properties showing that the ensemble is consistent, are the model error
estimate σf being lower than the innovation spread DOmE, and the ensemble mean

http://marine.copernicus.eu/
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FIGURE 3.12: (a-c) EPS-STO model equivalent SLA envelope (blue) in along-track SLA data
(obs. error in grey). (d) innovation metric OmE (in meters), in view of three different al-
timetry missions in data space (from left to right (a-c)): Jason-3, Cryosat-2 and Sentinel-3A,
for the period 01 Feb to 25 Mar 2017.

innovation vector OmE contained within the observational error interval ±0.5◦C,
which are desired conditions in both cases (Fig. 3.11b,d).

To evaluate the model SSH, we use L3 along-track seal-level anomaly (SLA) prod-
ucts from different altimetry missions (Jason-3, Cryosat-2, and Sentinel-3A;
14 km resolution). For the SLA model equivalent calculations, we subtracted from
the modeled SSH the mean SSH of the control run for the period 2015-2018. The
model also includes pressure forcing, and therefore, an inverted barometer (IB) cor-
rection is applied to the model and observations. Also, both data and model in-
clude tides. In Fig. 3.12, an ensemble generated by the perturbation of the SLA data
(assuming an observational Gaussian error with st.dev. of 0.05 m) is compared to
EPS-STO ensemble. In Fig. 3.12a-c, we could see the partial overlapping between
the model and along-track data distributions. The EPS-STO ensemble appears to
have more energy on weekly timescales, resulting in several disjoint uncertainty
vicinities. However, we find that OmE stays in a fair number of cases within the
observational error interval of 0.05 m (Fig. 3.12d).

For the chlorophyll evaluation, we use a gridded NRT product provided through
CMEMS which based on a multi-sensors/algorithms approach. The OC L4 product
is reconstructed from L3 reprocessed daily composites applying space-time optimal
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(a) Model CHL
(b) Model CHL spread

(c) S3A-OC CHL (d) OmE CHL

FIGURE 3.13: EPS-STO mean (a) and spread (b) in data space for 22 March 2017. (c) cor-
respond to the satellite observational data and (d) presents the observations minus model
metric (OmE) for the same date.

interpolation to fill in missing data (4 km resolution). The innovation statistics are
calculated in log space by applying an anamorphosis function to transform ecosys-
tem log-normal distributions into Gaussian distributions. An ensemble of OC (L4)
CHL data (generated with random perturbation of CHL data assuming an observa-
tional error with st.dev. of 0.3 mg/m3) is also compared with the EPS-STO ensemble.
Fig. 3.13 shows ensemble statistics and observations in data space for CHL during
the spring bloom (22/032017). The strong phytoplankton bloom dynamics leads to
a high ensemble mean and spread values throughout the Abyssal plain (3.13a-b).
Since the OmE metric is close to zero (Fig. 3.13d), the EPS-STO model-data samples
appear to be compatible with each other in this region. Over the Armorican shelf,
the EPS-STO ensemble is underestimated compared to the observations (3.13d).
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Chapter 4

Summary and discussion

This study aimed to explore the response of a coupled ocean-biogeochemical model
to different ensemble generation methods. A regional high-resolution NEMO model
for the Bay of Biscay was used to perform ensemble simulations. Three ensemble
generation strategies were compared. In the first approach, an atmospheric model
ensemble (the ECMWF-EPS product) was used to force our ocean model configura-
tion. In the second approach, the ECMWF-HRES deterministic atmospheric forcing
was used, and ocean model ensembles were generated by perturbing stochastically
several variables in the ocean model. Finally, in the third approach, the two above
methods were merged using both the ECMWF-EPS and the ocean model stochas-
tic perturbations. In order to mimic the repeated data assimilation cycles used in
most forecasting systems, the simulations were performed with a specific forecast
lead time ranging from a few days to weeks (we call this method time-chunked ini-
tialization or hereinafter time-chunked ensembles). Those time-chunked ensembles
were also compared with a seasonal range ensemble which spanning a period of
seven months.

Our stochastic implementation was based on a stochastically perturbed parameteri-
zation tendency (SPPT) scheme, which has proven to be an important element of an
ensemble forecast system in numerical weather prediction. The SPPT scheme was
applied to several sources of model uncertainties in the coupled system such as erro-
neous atmospheric forcing, improper ocean model parameterizations, and ecosys-
tem model state uncertainties (Brankart et al., 2015). The relatively simple SPPT
scheme injects noise into the prognostic equations with an amplitude proportional
to the deterministically parameterized tendencies. In addition to the SPPT scheme,
the impact of unresolved variability in salinity and temperature on the equation of
state was simulated with the stochastic parameterization of unresolved fluctuations
(SPUF) scheme, as proposed by Brankart (2013) and Brankart et al. (2015).
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In this study, we focused on the model response in upper-ocean variables (SST, SSH,
and CHL). Our analysis was mainly based on the ensemble spread, its time evolu-
tion, and spatial distribution. Four ensembles were carried out over a period of
seven months for the years 2016-2017. We also investigated the consistency of our
ensembles against CMEMS observational products using the SEQUOIA Data As-
similation Platform (SDAP).

Our results show that the ocean stochastic implementation was able to produce
larger spread in the wind field compared to the approach using the ECMWF-EPS
forcing. Since the wind forcing has a major impact on upper-ocean properties, the
ocean stochastic method enabled the generation of a larger spread for SST, SSH, and
surface CHL. For our domain of application, the combination of the two methods
slightly augments the ensemble spread for the wind and the upper-ocean variables.

The most uncertain component of the ocean model response was found to be the
mesoscale eddy activity in the Abyssal plain and the high-frequency processes on
the shelf. We showed that over the Abyssal plain, eddies and meanders form the
spatio-temporal evolution of the ensemble spread. Higher spread values that were
observed over the shelves are associated with coastal river runoff processes and
upwelling events. The forecasts spread with a lead time of a few days and up to
two/three weeks appear to be comparable in magnitude with the expected data er-
rors for most observational networks. Since there is no need to run extended period
experiments to obtain large ensemble spread, the similar expected data errors lay
the basis for an ensemble-based data assimilation coastal ocean forecasting system.

The quantitative evaluation of model forecast skill with respect to the SST observa-
tional product showed that the time-chunked ensembles based on ocean stochastic
physics are fairly consistent with the data distribution. The joint probability associ-
ated with both model and data ensemble distributions appeared to be always non-
zero, showing the potential use of data assimilation. The consistency analysis of
the stochastic ensembles with respect to the along-track SLA data showed a partial
overlapping between the model and data distributions. Regarding chlorophyll, the
stochastic ensemble appeared to be skillful mostly above the Abyssal plain. Statisti-
cal consistency was not verified for chlorophyll in coastal regions, like for instance
over the Armorican shelf, most likely indicating model ensemble overconfidence
(i.e., small ensemble spread).

This study is a step towards the estimation of model uncertainties using ensemble
approaches in the context of coastal/regional high-resolution ocean modelling. Fu-
ture steps include: a) the use of our model ensembles in a physical-biogeochemical
multivariate data assimilation scheme and b) the investigation of additional sources
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of model uncertainty to inflate the ensemble spread, such as uncertainties in the
initial and/or boundary conditions.
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