NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

MSc THESIS

Adaptive UxV Routing Based on Network Performance

ATHANASIOS D. CHALVATZARAS

Supervisor: Stathes P. Hadjiefthymiades, Professor

ATHENS

August 2019

EONIKO KAI KAMOAIZTPIAKO MNMANENIZTHMIO AOHNQN

ZXOAH OETIKQN ENMIZTHMON
TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNION

AINAQMATIKH EPTAZIA

MpoocapuooTik ApopoAdynon pn Eravdépwpupévwy
Oxnuarwyv pe Baon tnv Amédoon Tou AIKTUOU

AGANAZIOZ A. XAABATZAPAZ

EmiBAéTTWV: EuoTtda0iog . Xar¢neuBupiadng, Kabnyntg

AOHNA

AuyouoTtog 2019

SUPERVISOR:

MSc THESIS

Adaptive UxV Routing Based on Network Performance

ATHANASIOS D. CHALVATZARAS
S.N.: M1611

Stathes P. Hadjiefthymiades, Professor

AINAQMATIKH EPTAZIA

MpooapuooTiki ApouoAdynon un Emavépwpévwy OxnuaTwy pe Badon tnv ATrddoon
ToUu AIKTUOU

XAABATZAPAZ A. AOANAZIOZ
A.M.: M1611

EMIBAEMNONTEZ: EuoTdBiog IN. XarineuBupiadng, Kabnyntig

ABSTRACT

Robotics and Internet of Things (IoT) have been experiencing rapid growth nowadays.
IoT nodes are significantly enhanced with many different features. One of the most
important is the mobility capabilities, given by the noticeably huge growth of UxV (UxVs-
x stands for a different type of environment, i.e. ‘s’ stands for sea, ‘a’ for air and ‘g’ for
ground) area. The idea is the assumption of a drone as a mobile sensor, that can be
deployed wherever the experimenter wants. Some more characteristics that make the
unmanned vehicles a very tempting decision as loT nodes are the decision-making
ability without human interaction, endurance, re-programmability and capability of
multimedia streaming. These characteristics make drones an option for use cases of
surveillance, security monitoring, and supporting crisis management activities. For
instance, a UGV equipped with a high-definition camera and running an algorithm of
object recognition can serve the purpose of border surveillance.

In this thesis, a framework that implements a network quality based decision-making
process is developed. This framework adapts the information flow between the UxV and
the Ground Control Station (GCS) based on network quality metrics (such as packet
error rate etc.) and the principals Optimal Stopping Theory (OST). The goal of this
framework is to ensure the optimal delivery of critical information from UxV to GCS and
vice-versa. If the network behaves optimally then there is no limitation on the
information flow, but if the network is saturated or overloaded restriction rules are
applied. The proposed model introduces two optimal stopping time mechanisms based
on change detection theory and a discounted reward process.

To support the implemented framework, an experimental environment has been set up
and also a series of experiments with very promising results. As a mobile loT node, a
TurtleBot has been used, along with an XBOX Kinect sensor (RGB camera and depth
sensor) and a Raspberry Pi running Robotic Operating System (ROS) and Apache
Kafka pub-sub system with ultimate purpose the communication between the TurtleBot
and the GCS.

SUBJECT AREA: Robotics, Decision Making, loT

KEYWORDS: Robotics, Network reliability, Decision making, |oT, Optimal Stopping
Theory, Unmanned Vehicles

NEPIAHWYH

Mia peydAn kal atrétoun €EEAIEN TTAPATNPEITAI ONUEPA OTOV TOUEA TNG POMTTOTIKAG Kal
Tou OIadIKTUOU Twv TTpaypdtwy. O1 kbéuBor TTou atroteAoUv TNV KUPIA UTTOOOUN Tou
OI00IKTUOU TWV TIPAYUATWY £XOUV EUTTAOUTIOTEI HPE ONUAVTIKEG KAl TTOAUTTOIKIAEG
duvatdéTnTeG. H TTI0 onuavTik ammd auteg TIG dUVATOTNEG €ival n KIVNTIKOTATA, N OTToia
EXEl TTPOOQEPBEI AOYW TNG €TTioNG onUAvTIKAG €EEAIENG TOU TOPEQ TTOU AQOPd Ta N
ETTavOpwWHEVa oxnuarta. ‘Eva pn emavopwuévo OXNUO UTTOPEI va €EUTTNPETNOEI Eévav
gpeUVNTH W¢ KIvNTég aioBntpag (Bepuokpaaciag, Trieong vepou) Kal va ToTtoBeTnOei o€
oTroladnTToTE dUVATA TOTTOOeCia. KATTOIO OKOUA XAPOKTNPIOTIKA TTOU KAVOUV OEAEQTTIKN
TNV ETMAOYA KN ETTAVOPWHEVWV OXNHATWY WG KOUPBOUS Tou BIadIKTUOU TWV TTPAYHATWYV
gival n IKavotTnTa TNG AQYNG aTTOQPACEWY XWPIG TNV avBpwTTivn TTapéuBacn, n avroxni, n
ETTAVATTPOYPAUMATICINOTNTA KABWG Kal n duvatotnta tnG {wvTavig POoAG TTOAUMECWV.
Me Bdaon autd Ta XOPAKTNEIOTIKA TA MO ETTAVOPWHPEVA OxXAUOTA JTTOPOUV vd
XpnoigotroinBouv €TTionNg 0€ TTEPITITWOEIG ETTOTITEIONG XWPWV KAl OUvVOpWY,
TTAPAKOAOUBNON KAPEPWY QOQPOAEIOG KOBWG KAl YIO UTTOOTAPIEN OE TTEPITITWOEIG
dlaxeipiong kpioewv. MNa Tapdadeiyua éva pn eTTavopwuEVO OXNUa ENEAg OTToU QEPEI Hia
UYPNANG eukpivelaog KAPeEpa, O OUuvOUOOPO MeE €vav aAyopiBuo avayvwpiong
QVTIKEIMEVWV UTTOPEI VA XPNOIYOTTIOINBEI yIa ETTOTITEIA CUVOPWV.

2.€ aQuTAV TNV JITTAWMATIKI €pyacia TTPOTEIVETAI £va TTAQICI0, OTO OTTOIO UAOTTOIEITAI WIa
dladikaoia Afwng atro@doewv Pe Baon Tnv ToIdTNTAa Tou OIKTUOU. To TTAQiclo auTd
TTPoCcapudlel TNV Por TNG TTANPOPOPIag PETAEU TOU ETTAVOPWHEVOU OXNMATOG KAl TOU
OTOOUOU €Aéyxou, POOCIOCUEVO O WETPIKEG TTOIOTNTAG TOU OIKTUOU (OTTwg TO pubud
ATTWAEIOG TTAKETWYV) Kal OTIC apxéS TN Ocwpiag BéATioTng lMavong, pye okotmd va
eCaoc@alioel 1o BEATIOTO TTOCOOTO TTAPAAAPBNS TTANPOPOPIWY UWIOTNG oNPaciag atmd 1o
M ETTAVOPWHEVO OXNUa TTPOG TO OTABPO eAéyxou kal To avrtioTpoo. Otav 10 dikTUO
OUUTTEPIPEPETAI APIOTA DEV UTTAPXEI TTEPIOPICUOG OTNV POor TTANPoYopIwy, aAAa €av To
OIKTUO €ival €iTE UTTEPPOPTWHEVO, EITE KOPEOMUEVO, TOTE €£QAPUOLOVTAl TTEPIOPIOTIKOI
Kavoveg. To TrpoTelvOpevo HOVTEAO, €10Ayel OUO pnXaviopoug BEATIOTNG TTauong
Baoiouévog otnv Ocwpiag BEéATIOTNG TlMauong, otn Ocwpia Avixveuong AAAayAg
KaTeuBuvong kabwg Kal o€ pia d1adIKaoia EKTITWTIKAG avTaPoIPNG.

Ma tnv uttooTAPIEN Tou UAOTToINUEVOU TTAQICIOU, £YIVE Wia OEIpd TTEIPAUATWY PE TTOAU
UTTOOXOMEVO QTTOTEAEOPOTA. ZaV KIVATOG KOUPBOG XpnoluoTroinenke éva pOPTIOT
TurtleBot, padi pe éva XBOX Kinect TTou £€@epe pia Eyxpwun KAUEPa Kail €vav aiobnTtripa
BaBoug kaBwg kai ye éva Raspberry Pi, 10 omoio ekteAouoe 10 Robotic Operating
System (ROS) kai 10 ouotnua Apache Kafka, pe okomd va yeQupwoel 10 XAOHO
eTMKoIVwViag peTagu TurtleBot kal otaBpou eAéyxou.

OEMATIKH NMEPIOXH: PopTrotikr, Aqyn amopdocwyv, Aiktowon Twv MNpayudrtwv

AEZEIX KAEIAIA: Poutrotikr}, AglomoTia Aiktuou, Aqun Atro@dcewy, AIKTOwWGON Twv
MpayudTtwy, Ocwpia BéAtotng [Madong, Mn Emavdpwpéva
Oxnuarta

H epyacia autn agiepwveral OTHV OIKOYEVEIA [IOU Kal I01QITELA OTOV TTATTITOU [JOU Kal TN
yiayia uou, yia tnv Uoviun Kai avidloteAn otnipién Tous Kara tnv OIGPKEIA TwWV OTTOUSWYV
ou.

EYXAPIZTIEZ

Ma Tnv diekTTaipéwaon TNG SITTAWMPATIKAG AUTHS epyaciag, Ba nBeAa va euxapioTHow ToV
emBAETTOVTA KABNYNTA pou, EuotdBio XatneuBupiddn 1Tou pou £dwaoe Ta KivnTpa, TNV
OTAPIEN Kal TNV €uKalpia va aoxoAnBw ue Tov Topéa Tou pervasive computing. ETtriong
Ba nBesha va euxapioTiow TNV uttown@ia O1dakTwp Kuplakr Mavayidn yia tnv
atmep1dpIoTn PonBeia kal CUUBOAN TNG. Xwpig auTr n ekTTévnon autr TnG epyaciag Ba
ATav aduvarn.

CONTENTS

1. INTRODUCTIONo 14
2. ROBOTIC OPERATING SYSTEM (ROS) AND HARDWARE COMPONENTS.....16
2.1 Robotic Operating SYStem (ROS)........ccuiiiiiiiiiiiiiiiiiiie e rrrr e e s e s s s s sbbr e e e e e sesssaans 16
2.1.1. Messaging Publish/Subscribe System Modelcccoviveiiiiiiiii e 17
212, FIleSYStemM LEVEooiiiiii e 18
2.1.3. Computation Graph LEVEL..........oouiiiiiiei e e 19
2.1.4. ROS COMMUNILY LEVEL ...ceiiiiiiiiiieeec ettt e e e e s e e e e e e e s e e anreneees 23
2 S TS 1= 4 T £ TSRO P R PUPRPURRTR 24
2.1.6. ROS COMMANGS....cccitiiiiiiiiiie ettt e sttt e e st b et e s aab e e e s abbe e e e s anbn e e e s annneeens 24
2.2 Main Hardware and Software COMPONENEScoceiiiiiiiiiiiiiieiieeeeiiiiiirrreee e e e e sabrrereeesesssanans 26
2 O V14 {11 OSSR 26
2.2.2. Raspberry Pi- PlayStation 3 Controller............occviiiiiiiiiiii e 29
2.2.3. Ground Control Station (GCS).......ccciiuiiiiiiiiiie ittt e e e e s snraeee s 30
A S oAV =Y G U o] o] Y25 SR 30
225, ROS and UDBUNTU VEISIONcooiiiiiiiiiiiii ittt 31
b2 S T o USSR 31
2.2.7. Simultaneous Localization and Mapping (SLAM)......cc.uuiiiiiiieiiiiiie e 31
3. APACHE KAFKA ...t basessbbsannnsnnsnnnes 33
3.1 Ideal Publish-SUDSCIIDE SYSteMccoiiiiiiiiiiiiiiie e naree s 34
3.2 Apache Kafka Key CharacteriStiCS...............ooiiiiiiiiiiiiiiiiiiiiiiiiii et sbbr e e e e s e s saans 34
K T B oY 1= PSRRI 35
B I B =T o LY PSP 35
3.5 RECOIMSuiiiiiiieiitee ettt e ettt e et e e s bt e e s st e e ste e e bt e e et b e e e be e e aaEe e e e s bt e e anbe e e anbe e e aR b e e e an b e e e nnbe e e naeeenreeens 36
B T o T T L= PSP 36
3.7 Record Order and ASSIgNMENt.............ooiiiiiii i e 37
3.8 LOgS and LOG SE@GMENESccoouiiiiiiiiiiiecciiei e ettt e e s stee e e e et e e e e st e e e s s ar e e e e e sabe e e e s etreeeesanraeaas 37
3.9 Kafka Brokers and ZOOKEEPETueeiiiuiieeiiiiieeeiiieeeesssiteeeesstseeeesnsseeeeassseseesssseeeesnnnneeens 39
4. OPTIMAL STOPPING THEORY (OST) AND CHANGE DETECTION................... 41
4.1 Definition Of the ProBIEIMooiiiiiiiiiii e r e e e e s s s bbb e e e e e e e e seiaes 41
4.11. LOSS VS REWAIottt e e e e e e ettt s e e e e e e e s st e e e e e e s sesbaaaaeeaaees 42
4.1.2. Random RewWard SEQUENCES...........ciiiiuiiiiiiiiiie ittt 43
4.2 Stopping RUIE EXISTENCEcciiuiiiiiiiiiiie et e e e e e st e e e s e e e e e s eab e e e e abae e e e s sneeeaeeeanees 43
4.3 The Secretary Problem...............ccoiiiiiiiiii it et e e e et e e e e s e e e e ennees 44
4.3.1. The Parking Problem (Mac Queen and Miller (1960))..........ccocveiriiiieiniiie e 46
4.4 Change Point DeteCiONcooiiiiiiiiiiiiie e e e e e e e e e e e s s s b e e e e aaeeen e 47
44.1. Change Point Detection AlgOrithmsS..........cooiiiiiiiiiii e 47
5. RATIONALE AND PROBLEM FORMULATIONcuuuiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnenes 52
5.1 Definition of the Problemccciiiiiiiiiii i e e e e e e s snreeeeans 52

A S Y Y =Y 1LY 3 TR 52

5.3 Time-Optimized Decision-Making Model for Unmanned Vehiclescccoociiiiiiiiiinnnnnnn, 53

LT TRt I © - o 1= TSP PT R PUR TR 53
5.3.2. Time-Optimized Change-Point Decision Making Process (TOCP)cccccvcvveeeviiicivnnnnn. 54
5.3.3. Discounted Secretary problem (DSP)ccoiiiiiiiiiiii e 58
6. PERFORMANCE EVALUATION.......coooii e 59
6.1 EXPErMENtAl SETUPvvviiiiiiiiii ittt e e e e e s st e s b e eeeeeesssa bbb e eeeeseessssabbbbbereeeeessaaans 59
6.1.1. CommuniCation SCREMAooiiiiiiiiie e 59
6.1.2. Measuring the NEIWOIK ... 61
6.1.3. Telemetry Data........cooouiiiiiiiiii e 63
6.2 EXperiments and RESUILScccuiiiiiiiiii it e e e e st e e e e e e e s s ssaab e rereeeaeeeeanes 65
T. CONCLUSION ... e e e et e e e e e e e e e e eeaan s 72
ABBRIVIATIONS - ACRONYMS ..., 73
APPENDIX L. .ot 74

REFERENCESo e 75

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

LIST OF FIGURES

ROS graph architeCture...........cooiii i 17
Abstract representation of ROS' filesystem levelccccooviiiiiiiiiiiiiiinnnn. 18
ROS Filesystem Level EXampleoouiiiiiiiiiiii e 19
ROS Computational Graph Levelcoiiiiiiiiiiiiii e 20
ROS message EXampleueoiiiiiiiiic e 21
Upper View of TUMIEBOL............oiiiii e 27
Side View Of TUMIEBOLcoovviiiiiiiiiiiiiii e 27
Front View of TURIEBOLueeiiei e 28
Live TurtleBot used in this thesisoiiiiiiiiii e 28

Figure 10: Raspberry Pi Model 3 B with case, wi-fi USB adapter and PlayStation3

(o7o] g1 (o] | [= SO PP PPPTTRT 29
Figure 11: Raspberry Pi Model 3 B abstract architecture schema.ccccccciin. 29
Figure 12: Cable that powers the Raspberry from TurtleBot’s battery 30
Figure 13: YAML file @Xample ... 31
Figure 14: Pgm file @Xample........coooorriiiiiiii e 32
Figure 15: rviz map VIEW €XamPIeuuiiiiiiiiiiieiiie e eeeeeeees 32
Figure 16: Kafka architecture as directional graphccccccoiiiiiiiie 33
Figure 17: Publish-Subscribe SYStemccooiiiiiiiiiiii e 34
Figure 18: Abstract representation of pub-sub system topiCScccvvviiiiiiiiiiieninnnnns 35
Figure 19: Abstract representation of Apache Kafka Brokerscccccvvviiiiiiieennnnnnn, 36
Figure 20: Abstract representation of Apache Kafka partitionscccccccceeiiiieennnnnis 37
Figure 21: Log structure format of partitions............ccccoooiiiiiiii e 38
Figure 22: Apache Kafka Partition Log Segmentscccccovvviiiiiiiiiiiiiiieeee 39
Figure 23: Brokers/Zookeeper relationship.............cooiiiiiiiiiiiiii e 40

Figure 24: Typical behavior of the log-likelihood ratio Sk corresponding to a change in
the mean of a Gaussian sequence with constant variance: negative drift before and

positive drift after the change..............eiiiii e 48
Figure 25: Typical behavior of the CUSUM decision function gkccoovvvevinennnn. 49
Figure 26: Graph representation of DMP...............oiiiiiiiiiiic e 54
Figure 27: Probability Density Function of f0 Model Fitting...........ccccvvvviviiiiiiiiiiininnnn. 55
Figure 28: Probability Density Function of f1 Model Fitting...........ccccccviviiiiiiiiiiiinnnnnn. 56
Figure 29: Log-Likelihood Ratio BEhavior ... 57

Figure 30:
Figure 31:
Figure 32:

Abstract Representation of Experimental Approachcccccccvvviiiiiinnnnnns 59
JSON message example for movement to specific point.cccevvvvinnnnnn. 60
Twist message type example. ... 60

Figure 33: Abstract Communication Schema.............cccccoiiiiiiie 61

file:///C:/Users/thanos/Desktop/Chalvatzaras_v1.docx%23_Toc17272471
file:///C:/Users/thanos/Desktop/Chalvatzaras_v1.docx%23_Toc17272471
file:///C:/Users/thanos/Desktop/Chalvatzaras_v1.docx%23_Toc17272472

Figure 34: Running ping, iwconfig commands and receiving their output...................... 62
Figure 35: Creating and sending to Apache Kafka a JSON message carrying the

network quality data............ooovviiiiiiiiii 62
Figure 36: TurtleBot's Position Data Message............cooviviiiiiiiiiiiiiici e 63
Figure 37: TurtleBot's Battery Level Data Message...........cccccccvviviiiiiiiiiiiiiiiiiiiiiiiiieeee 64
Figure 38: Memory Consumption Data MeSSagecccovvviiiiiiiiiiii e, 64
Figure 39: CPU Consumption Data Message............ccccccvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 64
Figure 40: Network Quality Data Messageccccvvviiiiiiiiiiiieeee 64
Figure 41: CPU Temperature Data Message............cccccvviiiiiiiiiiiiiiiieeeee 64
Figure 42: Mission A and Mission B Real-Time Illustrationccccooiviiiiiiiiiiinnnnn. 65
Figure 43: TOCP-DSP vs No-Policy regarding QNI in Mission 1- Path Exploration....... 66
Figure 44:TOCP-DSP vs Threshold Policy regarding QNI in Mission 1- Path Exploration
.. 67
Figure 45:TOCP-DSP vs TOCP-Only Policy regarding QNI in Mission 1- Path
b q] 0] = 11T o PSSR 67
Figure 46: PER of all four policies in Mission 1- Path Explorationc.oooo. 68
Figure 47:TOCP-DSP vs No-Policy Policy regarding QNI in Mission 2- Exhaustive
S Tox= 1 o1 o1 1 o TS PSS 69
Figure 48:TOCP-DSP vs Threshold Policy regarding QNI in Mission 2- Exhaustive
S Tox= 1 o1 o1 1 o TSP 69
Figure 49:TOCP-DSP vs TOCP-Only Policy regarding QNI in Mission 2- Exhaustive
S Tor= 1 o1 o1 1 o TS PSP 70
Figure 50: PER of all four policies in Mission 2- Exhaustive Scanning............cccccceee... 70

Figure 51: TOCP-DSP vs No-Policy policy regarding latency (ms) in Mission 1- Path
e q] (0] = 1 (T o SRR 71

Figure 52:TOCP-DSP vs No-Policy policy regarding latency (ms) in Mission 2-
EXhaustive SCanNiNgooooiiiiiiii 71

LIST OF TABLES

Table 1: ROS standard message tYPESvvvuiiiiiieiiiieece e 22
Table 2: ROS COMMANGASouuiiiiiiii ettt e e e e e e e e eaann e e e e 24
Table 3: Secretary Problem Expected Probabilitiesccccvvviiiiiiiciicee e, 45
Table 4: Rules of State Transition ... 54
Table 5: Description of Network Quality Indicators ..o, 55

Table 6: Telemetry Data Types and their priorities ..., 63

Adaptive UxV Routing Based on Network Performance

1. INTRODUCTION

In the last decade, we have been witnessing significant advancements and evolution of
the Internet of Things (loT). Going a step further to the IoT infrastructure nodes are
enhanced with mobility capabilities forming the mobile 0T networks and especially huge
growth can be noticed at unmanned vehicles area. One can assume a drone as a
mobile sensor node deployed to different locations. Other characteristics that make
unmanned vehicles (UxVs- x stands for different type of environment, i.e. ‘s’ for sea, ‘a’
for air and ‘g’ for ground) popular are the ability to make decisions without human
intervention capable of carrying additional payloads, the endurance, re-programmable
and capacity to stream multimedia content. As unmanned vehicles and especially
drones become more advanced, they present greater value especially in use cases of
surveillance, security monitoring, and supporting crisis management activities. For
instance, consider the use case of UxVs equipped with a video camera and air-quality
sensors to recognize objects in real-time including to cruise over forests and to spot
fires early.

For example, let's assume a ground unmanned device with video steam capabilities
recognizing objects in real-time is sent to explore a disaster area from wildfire and to
spot new outbreaks of fire. This device is equipped with a camera, a connection
interface, a GPS, various sensors like thermostats and a back-end collection service.
The question is how is this device going to operate in an unknown area while it ensures
the successful execution of a mission? A mission is often described as a trajectory with
specific way-points in which the vehicle is ordered to approach and gather various
measurements from sensors or images from cameras. Can the dedicated round Control
Station (GCS) control the device in real-time without risks? A GCS is the terrestrial
system, which acts as a coordinator or master node at distance responsible for data
acquisition and transmission. The communication between the unmanned vehicle and
the GCS is established via wireless communications. A key feature of UxVs is the
control of a possible mission. A mission is created by the users and, then, GCS is
responsible for the successful execution of the mission autonomously. GCS control
messages shall be delivered with a high assurance of low or minimal time delay to
enable real-time management, monitoring, control, and feedback loops.

At loT networks and especially after a disaster the successful delivery of messages
cannot be taken for granted. However, telemetry can be divided into main categories:
critical information transmission and sensor measurements. Critical information contains
the commands sent by GCS and the responses to these commands by UxVs. Critical
information requires real-time monitoring and control messages to be delivered with
high accuracy and minimal delay, while the connection between GCS and UxV is
always alive. In emergency cases, if UxV lost its connection to the base then it usually
returns to its initial position. Hence this means that the mission is canceled, even if the
device could be close to its end. This leads to waste of resources.

Unmanned vehicle is commanded to operate in an unknown area with no prior use of
maps or localization techniques. The trajectories are also dynamically created by users.
One possible metric to use of the mission is the quality of the network. Quality of the
network has high importance for the mission because significant commands or sensor
values can be lost. The quality of the network can be discriminated as proposed in. We
can assume that even if control feedback is in high priority, telemetry can be paused for
a short time in need of crisis. When the quality of network changes, UxV/GCS can
decide on-line to pause the transmission of commands in order not to overload a
saturated network or to risk to lose completely the messages. This loss can occur in

A. Chalvatzaras 14

Adaptive UxV Routing Based on Network Performance

unwanted robot’s behavior like skipping a trajectory point, or even more devastating
results such as aborting the mission and returning to its initial point.

In this thesis, a framework that implements a network quality based decision-making
process is developed. This framework adapts the information flow between the UxV and
the Ground Control Station (GCS) based on network quality metrics (such as packet
error rate etc.) and the principals Optimal Stopping Theory (OST). The goal of this
framework is to ensure the optimal delivery of critical information from UxV to GCS and
vice-versa. If the network behaves optimally then there is no limitation on the
information flow, but if the network is saturated or overloaded restriction rules are
applied. The proposed model introduces two optimal stopping time mechanisms based
on change detection theory and a discounted reward process.

A. Chalvatzaras 15

Adaptive UxV Routing Based on Network Performance

2. ROBOTIC OPERATING SYSTEM (ROS) AND HARDWARE
COMPONENTS

2.1 Robotic Operating System (ROS)

ROS is an open source operating system for robots [5] [6], but not in the traditional
sense of an operating system regarding process management and scheduling. ROS
can be characterized as a meta-operating system. This means that ROS does not
replace, but instead works alongside the traditional operating system. Its main goal is to
provide communication between a host operating system (e.g. Linux) and a robot (e.g.
TurtleBot) and its philosophy is the quick and effective reusability of software on any
robot running ROS, with just little changes so the need of reinventing the wheel
vanishes.

The growth of interest in robotics combined with the simplicity and robustness of ROS,
led to its usage from a lot of research institutions, expanding its popularity. Nowadays,
commercial companies already adapting their products, in order to achieve compatibility
with ROS, such as sensors and actuators. Every day the number of devices compatible
with ROS increases.

Some of the standard operating system facilities that are provided from ROS are
hardware abstraction, low-level device control, implementation of commonly used
functionalities, message passing between processes, and package management.
Architecture of ROS can be described like a graph architecture with centralized
topology. This graph is composed of vertices, called ROS nodes (see section 2.1.3.1)
where processing takes place and edges, called topics (see section 2.1.3.2). A node
can post or/and subscribe to a topic, in order to pass or receive messages respectively.
A representation of that graph architecture is illustrated in Figure 1Figure 1. So, nodes
exchange messages using a pub/sub communication system (see section 2.1.1).

The ROS architecture has been designed and divided into three sections or levels of
concepts:

e The Filesystem level.
e The Computation Graph level.

e The Community level.

A. Chalvatzaras 16

Adaptive UxV Routing Based on Network Performance

I."
/_/"_"m_\ I,\ node2 ;'
.f \. _
| nodel | —
\ / \
\ / @O_ \ o
~— o bt \ / \
| \ { \
ﬁ \ | noded4 |
[T T \ \ /
| \ X
III / \\. \\% ,-’\1“‘“-——— __/f/
| | node6 | \ & /
| g \ / \ ™ /
I| -g \ \\ é"‘.‘. f f/ ~
| & — N\ T
| o) \ = /) &
| C:Z '\\ I|l. ;:" (-).
'| \ /[/8
/ /
|II \//__5___“ [
| rd
s Ay / \ /
e N ' node3 f

Figure 1: ROS graph architecture

2.1.1. Messaging Publish/Subscribe System Model

Publish-subscribe is a messaging pattern. In this messaging pattern there are producers
and consumers. Producers, called publishers, send the messages and consumers,
called subscribers, receive the messages. Publishers do not send the produced
messages directly to the subscribers, on contrary they categorize these messages into

classes being unaware of the existence of subscribers. Pub-sub messaging pattern is
similar with message-queue pattern.

One specific subscriber does not need to consume all the messages produced and sent
in the system. For this case there is the process of filtering. Two forms of filtering and
the most common ones are topic-based filtering and content-based filtering. For the
case of this thesis topic-based filtering was applied. In topic-base filtering messages are
published on topics. Publishers choose the desired topic to produce their messages and
consumers subscribe to any desired topic. A topic can have many producers and many

consumers. All of the consumers will receive all messages that are published on this
topic.

ROS pub-sub system consists of nodes and topics. Nodes are executables that can
communicate with other processes using topics, services, or the Parameter Server. (see
section 2.1.3.7) Topics provide this communication between the nodes by transmitting
data. These data can be transmitted without a direct connection between nodes,
meaning the production and consumption of data are decoupled. A node can subscribe

and publish on any desired topic available. A topic can have multiple publishers and
subscribers so there is no limitation.

A. Chalvatzaras

17

Adaptive UxV Routing Based on Network Performance

The other publish-subscribe messaging system that was used is Apache Kafka, but
more information about it can be found in Chapter 3.

2.1.2. Filesystem Level

Like any traditional operating system, ROS’ programs are divided in folders and files.
Every file has a type that performs a specific task or action. In the following Figure 2, an
abstract representation of the filesystem level is illustrated.

Filesystem Level

Stack

Manifest

Packages

Messages

Figure 2: Abstract representation of ROS' filesystem level

2.1.2.1 Stack

A stack is a collection of packages, which co-operate in order to provide a specific
functionality. ROS has numerous of default stacks. The most infamous of all being the
navigation stack.

2.1.2.2 Stack Manifest

A stack manifest is a file that provides information about a specific stack, like its license
information and its dependency on other stacks. Stack manifests usually, if not always
follow the xml file format.

2.1.2.3 Packages

Packages are comprising the atomic level of ROS. They provide the minimum structure
that a ROS program requires. A ROS program may contain a ROS runtime process
(node), a configuration file etc. Packages also provides the benefit of code reusability
within ROS. A package can be transferred from one project to another with just minor
changes regarding the code of the runtime process and/or the configuration file. The
most granular thing you can build and release is a package.

A. Chalvatzaras 18

Adaptive UxV Routing Based on Network Performance

2.1.2.4 Manifests

Management of manifest is coordinated by a file called manifests.xml. A manifest
provides a lot of information about a package including dependencies, compiler flags,
license information etc.

2.1.25 Messages

Messages are used for data and information communication between processes. Every
message type has its own structure and fields. ROS has numerous standard types of
messages. More about messages on section 2.1.3.3

2.1.2.6 Services

Direct communication between nodes for request and response messages is provided
from ROS services. There are no default services provided, and all of them should be
created by the user. The source code files are stored in the srv folder.

2.1.2.7 Code

Source code for ROS nodes can be written in the following programming languages:
C++, Python and Java. There is a good amount of documentation and support for these
three languages, but there are also developers working in order to build support for
other languages too.

2.1.2.8 Other

Other files can be any type of files. A video file in order to process it, a text file for the
means of input or output, a config file to set the node parameters etc.

An example of the ROS filesystem level is illustrated in Figure 3.

3 tutorials/

chapter3_tutorials,
}— cMakeLists.txt

contTig

— chapter3_tutorials.config
Launch

i— examplel_gdb.launch

t— examplel.launch

t— examplel valgrind.launch
r—- example2.launch

— example3. launch
mainpage.dox

Makefile

manifest.xml

output

L— gdb_run_node_examplel.txt

}— examplel.cpp
— example2.cpp
— example3.cpp

4 directories, 14 files

Figure 3: ROS Filesystem Level Example

2.1.3. Computation Graph Level

The second level is the Computation Graph level where communication between
processes and systems happens. ROS creates a network where all the processes are

A. Chalvatzaras 19

Adaptive UxV Routing Based on Network Performance

connected. Any node in the system can access this network, interact with other nodes,
see the information they are sending, and transmit data to the network. The basic
elements in this level are nodes, the Master, the Parameter Server, messages, services,
topics, and bags, all of which provide data to the graph in different ways. A
representation of this graph is illustrated in Figure 4.

Computational Graph Level

\ Bags

Parameter
Messages

Server

Figure 4: ROS Computational Graph Level

2131 Nodes

Nodes are the most important component of ROS Computational Graph level. They are
processes that interact with the ROS network and complete their given tasks. Every
node has a unique name that differentiate it from the other nodes. This name is like its
unique id, and it is used in order to achieve communication with other nodes via topics.
A node can subscribe to a topic, so it can receive information, perform computation,
control sensors and actuators, and publish data to topics for other nodes to use. Given
that each node provides a specific functionality, it is wiser to have many nodes to control
different functions rather that a big single node. This aspect is crucial for fault tolerance
and code reusability. Nodes are written with a ROS client library. This library supports
many programming languages, with more important ones being: python, java and C++.

2.1.3.2 Topics

Topics are unique named buses used for data transmission between nodes. Nodes can
publish or subscribe to a topic, but data production and consumption are decoupled
meaning that there is an indirect connection between the nodes. Every topic should
have a unique name in order to avoid problems and confusion between same named
topics. Finally, each topic is related to a message type, meaning that it only accepts
specific message type. The connection between topics and nodes is depicted in Figure
1.

A. Chalvatzaras 20

Adaptive UxV Routing Based on Network Performance

2.1.3.3 Messages

ROS messages are stored in .msg files and are used by nodes in order to publish
information on topics. Each message file defines a message type that uses the standard
ROS naming convention: the name of the package followed by the /, and the name of

the .msg file. ROS has numerous predefined types of messages. An example of a
message file is illustrated in Figure 5.

4 N

Message.msg

uint8 state
float32 posx
string description

- /

Figure 5: ROS message Example

As one can read from the figure Mesasge.msg type contains an 8-byte sized unsinged
integer named state, a 32-byte sized float named posx, and a string named description.

In ROS, you can find a lot of standard types to use in messages as shown in the
following Table 1:

A. Chalvatzaras 21

Adaptive UxV Routing Based on Network Performance

Table 1: ROS standard message types

Primitive Type Serialization C++ Python2 Python3
bool unsigned 8-bit int uint8_t bool
int8 signed 8-bit int int8_t int
uint8 unsigned 8-hit int uint8_t int
intle signed 16-bit int intl6_t int
uintl6 unsigned 16-bit int uintl6_t int
int32 signed 32-bit int int32_t int
uint32 unsigned 32-bit int uint32_t int
int64 signed 64-bit int inte4_t long int
uint64 unsigned 64-bit int uint64_t long int
float32 32-bit IEEE float float float
float64 64-bit IEEE float double float
string ascii string std::string str bytes
time sgcs/nsecs unsigned 32- ros::Time rospy.Time
bit ints
duration f:tcss/nsecs signed 32-bit ros::Duration rospy.Duration

A special type in ROS is Header. This is used to add the timestamp, frame, and so on.
This allows messages to be numbered so that we can know who is sending the
message. Other functions can be added, which are transparent to the user but are
being handled by ROS.

The header type contains the following fields:
e uint32 seq
e time stamp

e string frame_id
2134 Services

ROS services are stored in .srv files. They are similar with topics in matter of format but
they have a crucial difference regarding functionality. Topics can provide many-to-many
communication whereas services provide one-to-one communication. One more
difference is that all services should be created by the user and there are no default
services in ROS. A providing ROS node offers a service under a string name, and a
client calls the service by sending the request message and awaiting the reply. Client
libraries usually present this interaction to the programmer as if it were a remote
procedure call.

2.1.35 Bags

A primary feature of a well-designed ROS system that we will utilize is that the parts of
the system that consume information do not care about the mechanism used to produce
that information. A good subscriber node will work any time the messages it needs are

A. Chalvatzaras 22

Adaptive UxV Routing Based on Network Performance

being published without any knowledge of which other node or nodes is publishing
them. Bags are files created by ROS in the. bag format to save all the information of the
messages, topics, services and others. Bags can be used later to process, analyze and
visualize the flow of messages. Bags are created utilizing the rosbag tool, which
subscribes to one or more ROS topics and stores message data as they are received.
The bag file can be reproduced in ROS like a real session, sending the topics at the
same time with the same data. This allows us to run the robot itself a few times, record
the topics we need and then replay the messages on those topics many times in the
simulation environment, experimenting with the software that processes those data.

2.1.3.6 Master

Master provides an application program interface (API), a set of routines and protocols,
tracks publishers and subscribers and services. It also is the domain name system
server, which stores topic’s and services registration information for ROS nodes. But
Master’s main role is to guide individual ROS nodes in order to locate one another so
they can establish a peer-to-peer communication between them.

2.1.3.7 Parameter Server

Parameter Server is a shared, multivariable dictionary that is accessible via a network.
Nodes use this server to store and retrieve parameters at runtime. The ROS Parameter
Server is implemented using XML-RPC (a remote procedure call protocol which uses
XML to encode its calls and HTTP as a transport mechanism), which means that its API
is accessible via normal XML-RPC libraries. The Parameter Server uses XML-RPC data
types for parameter values, including the following:

» 32-bit integers
Booleans
Strings
Doubles

ISO 8601 dates
Lists

Base 64-encoded binary data

V V V V VYV V

A user can also set a parameter from the command line by using:

rosparam set <param_name> <param_value>

2.1.4. ROS Community Level

The third level is the Community level which consists of ROS resources that enable
separate communities to exchange software and knowledge. These resources include
ROS distributions, repositories, the ROS wiki and mailing lists.

o Distributions: Similar to the Linux distribution, ROS distributions are a collection
of versioned meta packages that we can install. The ROS distribution enables
easier installation and collection of the ROS software. The ROS distributions
maintain consistent versions across a set of software.

e Repositories: ROS relies on a federated network of code repositories, where
different institutions can develop and release their own robot software
components.

A. Chalvatzaras 23

Adaptive UxV Routing Based on Network Performance

e The ROS Wiki: The ROS community Wiki is the main forum for documenting
information about ROS. Anyone can sign up for an account and contribute their
own documentation, provide corrections or updates, write tutorials, and more.

e Bug ticket system: If we find a bug in the existing software or need to add a new
feature, we can use this resource.

e Mailing lists: The ROS-users mailing list is the primary communication channel
about new updates to ROS, as well as a forum to ask questions about the ROS
software.

2.1.5. Sensors

Sensors are crucial in robotics nowadays. With the use of sensors, a robot can
understand and map the environment around it and also it can report more types of data
(temperature, GPS location, humidity, brightness, video etc.) back to the user. The more
advanced the sensor is, the more accurate the data. ROS every day supports more and
more sensors and actuators, not only by the official ROS packages, but also with the
help from is community. A list of supported ROS sensors is provided in [7].These
supported sensors are divided in categories. Some of them are the above:

1. 1D range finders

2D range finders

3D Sensors (range finders and RGB-D cameras)
Audio / Speech recognition

Cameras

Environmental (like measuring wind speed and direction)
Force / Torque / Touch Sensors

Motion Capture

. Pose estimation (GPS / IMU)

10.Power Supply

11.RFID (Radio-frequency identification)

© 0o N o bk WD

2.1.6. ROS Commands

There are some default commands and tools that helps the user interact with ROS,
compile, execute and get the output of his programs etc. In the following Table 2, there
is a list of basic ROS commands and also of some commands used in this thesis.

Table 2: ROS Commands

Command Description

roscore Starts ROS master

rosrun <pkg_name> <node_name> Starts executable node

rosrun turtlesim turtlesim_node Starts simple movement simulator

rosrun turtlesim turtle_teleop _key Control the TurtleBot movement with
arrow keys

A. Chalvatzaras 24

Adaptive UxV Routing Based on Network Performance

rospack list

Lists all installed ROS packages

rospack find <pkg_name>

Prints file path to package

rosls <pkg_name>

Lists all files in package directory

roscd <pkg_name>

Allows you to change directories using a
package name, stack name, or special
location

rosnode info <node_name>

Display information about a node,
including publications and subscriptions.

rosnode kill <node_name>

Kill one or more nodes by name. It is not
guaranteed to succeed. If a node is hung
or set to “respawn” in roslaunch, it may
either fail to die or may quickly reappear.

Rosnode cleanup

Purge the registration of any node that
cannot be contacted immediately. Prints
list of unreachable nodes which has to be
confirmed. It can potentially unregister
functioning nodes.

rqt_graph

Provides a GUI plugin for visualizing the
ROS computation graph.

rostopic echo </topic_name>

Prints topic messages to screen

Rostopic info </topic_name>

Provides data on topic such as type,
subscribers and publishers.

rostopic list

Lists all active topics

rosbag record -0 <filename></topic>

Starts rosbag tool to record data from a
desired topic.

roslaunch turtlebot_bringup minimal.launch

Starts the communication between the
TurtleBot and the ROS slave, in this case
a Raspberry Pi.

roslaunch turtlebot_navigation
amcl_demo.launch
map _file:=/home/pi/Desktop/little_map.yaml

Loads a map, creating the TurtleBot's
space.

roslaunch turtlebot_rviz_launchers
view_navigation.launch --screen

Opens a navigation simulation on the
workstation.

roslaunch turtlebot_navigation
gmapping_demo.launch

Starts the mapping process.

rosrun map_server map_saver -f

/home/thanos/Desktop/thesis/maps/basement

Saves the created map.

A. Chalvatzaras

25

Adaptive UxV Routing Based on Network Performance

roslaunch turtlebot _teleop ps3_teleop.launch | Starts the teleoperation using a PS3
controller.

2.2 Main Hardware and Software Components

For this thesis, it was critical to execute a series of experiments. A mobile network node
was needed, with capabilities of posting sensor data and network data extracted from its
link with the access point. Our choice was TurtleBot.

2.2.1. TurtleBot

TurtleBot [1] is a low-cost, personal robot kit with open source software. TurtleBot [1]
was created at Willow Garage by Melonee Wise and Tully Foote in November 2010.
The model which was utilized in this thesis had a built in XBOX Kinect sensor. XBOX
Kinect is equipped with a depth sensor, and an RGB camera. XBOX Kinect was
required for implementing SLAM mapping (see section 2.2.7), in order to create a map
(world) for the TurtleBot, so it can navigate autonomously.

Technical specifications of TurtleBot:
Dimensions: 354 x 354 x 420 mm (14 x 14 x 16.5in.)
Weight: 6.3 kg (13.9 Ibs.)
Max Payload: 5 kg (11 Ibs.)
Speed and Performance
Max Speed: 0.65 m/s (25.6 in./s)
Obstacle Clearance: 15 mm (0.6 in.)
Drivers and APIs: ROS

In the following Figure 6, Figure 7 and Figure 8 some more technical specifications are
presented. The images were downloaded from the official TurtleBot web page [1] .
Figure 9Figure 9 is a picture of the TurtleBot that was used for the experiments of this
thesis.

A. Chalvatzaras 26

Adaptive UxV Routing Based on Network Performance

.
C I I T
© 0 0 ¢ 0 0 0
o 8 0 % 0 6 0
E e @ e e & @ e
L~ © e o ® 0 0 o
Ec
=
- a5 0 8 0 0 0
—
=) © 0 0 0 0 0 0
© 0 0 & ¢ 6 o
© 0o 0 & 0 0 o
I I
© 0o 0o 0o 0o 0 0
L

Figure 6: Upper View of TurtleBot

AEL mm
(14 m]

217.5mm
[12.5in]

420 mm
—_— [14.5n]

SIDE

Figure 7: Side View of TurtleBot

A. Chalvatzaras

27

Adaptive UxV Routing Based on Network Performance

J0&mm
12 in]
155mm
[&in]

B%mm
[3E in]

FRONT

Figure 8: Front View of TurtleBot

Figure 9: Live TurtleBot used in this thesis

This figure presents the TurtleBot used. There
are 3 shelves, the middle one has mounted the
XBOX 360 Kinect used to map the area of the
experiment and on the top shelf lies a
Raspberry Pi model 3B.

A. Chalvatzaras

28

Adaptive UxV Routing Based on Network Performance
2.2.2. Raspberry Pi - PlayStation 3 Controller

TurtleBot uses ROS, but ROS does not run on the TurtleBot, but usually on a laptop or
netbook that lies on its top shelf. The laptop or netbook is connected with TurtleBot’s
base via USB cable to transfer the commands from ROS to the its hardware. Laptops
with high performance are usually heavy and big in size for TurtleBot usage, so the
option is almost always a netbook. Conventional low-cost netbooks do not have the
performance required and cause performance problems. The solution is a high-cost
netbook, but also a Raspberry Pi.

Turtlebot2

Figure 10: Raspberry Pi Model 3 B with case, wi-fi
USB adapter and PlayStation3 controller.

The Raspberry Pi [2] is a series of small single-board computers. For the purpose of this
thesis a Raspberry Pi Model 3 have been used, along with an SD Class 10 card and a
wi-fi USB adapter compatible with Linux.

2x USB 2.0

2x USB 2.0

Ethemet

o
3 RJ45
i
L]
.
M . 2 Eth emet

4 poles jack

Power in

Figure 11: Raspberry Pi Model 3 B abstract
architecture schema.

A. Chalvatzaras 29

Adaptive UxV Routing Based on Network Performance

A Playstation3 controller also have been used for moving the TurtleBot around
manually, because of its compatibility with ROS. The controller communicates with the
Raspberry via Bluetooth. Figure 10 illustrates the aforementioned hardware and Figure
11 gives an abstract representation of Raspberry Pi’s 3 architecture. As one can see in
Figure 11, Raspberry Pi 3 already has a wi-fi interface, but it does not have the required
capabilities to support the case of this thesis.

2.2.3. Ground Control Station (GCS)

A Ground Control Station (GCS) is usually a computer machine inside the field of the
experiment, but it can also in this case be anywhere. For the purpose of this thesis,
GCS communicates with the Raspberry Pi, passing commands and consuming
measurements, feedback etc. The most important task of the GCS, is passing the
movement commands to the TurtleBot. This procedure can have failures and delays
due to saturation or overloading of the network, so the GCS should have the knowledge
when to send a movement command, with a minimum possibility of being dropped as a
result of poor network quality. This knowledge comes from monitoring the network and
making decisions about pausing the transmission of movement commands with the use
of OST. It is assumed that the GCS has strong connection to its base station, thus the
network monitoring measurements come from the Raspberry Pi, that measures the link
strength between the TurtleBot and its base station, quality of that link and packet loss.

2.2.4. Power Supply

Raspberry Pi is not a common choice for TurtleBot, because there are some critical
issues regarding its compatibility with it. The most important of them is powering the
Raspberry. One option is high-cost and high-capacity power banks, and the other more
viable but harder option is to create a cable that draws power from TurtleBot’s battery.
Drawing energy from TurtleBot's battery in order to power the TurtleBot has the
disadvantage of emptying the battery faster. On the other hand, the advantage is that
energy consumption of the TurtleBot's hardware and of the algorithms that are
implemented is measured as a whole. For this thesis a cable for this purpose has been
created. The cable is connected to an already existent power output port of TurtleBot,
that provides power of 5V and 1A with the required pin, and ends up into the micro-USB
power supply port of the Raspberry Pi. Figure 12 illustrates this cable.

G |

Figure 12: Cable that powers the Raspberry from TurtleBot’s battery

A. Chalvatzaras 30

Adaptive UxV Routing Based on Network Performance

2.2.5. ROS and Ubuntu Version

One more critical issue is that ROS is stable under specific Linux distributions. Two of
them are Ubuntu 14.04 and Ubuntu 16.04. Neither of them exists for Raspberry Pi, but
with some tweaks a version of Ubuntu Mate 16.04 can be installed on Raspberry Pi
Model 3B and Model 3B+. Ubuntu Mate 16.04 supports specific version of ROS called
ROS Kinetic Kame, so there is no other choice regarding ROS version.

2.2.6. Wicd

The Raspberry Pi that lies on the top of TurtleBot, should eventually shut down after the
execution of specific number of missions, or because TurtleBot’s battery is empty and
needs recharging. When Ubuntu Mate boots, asks for root password in order to run the
network-manager service and finally connect to a desired wireless network. For
purposes of convenience and generality, every time that Raspberry turns on, should
automatically connect to the testbed’s base station or hotspot. This can be done with
the use of Wicd.

Wicd, which stands for Wireless Interface Connection Daemon is an open source
network manager for Linux and it provides a simple network connection interface.

The main advantage of Wicd is that bypasses the need to login as root, because it
starts running as a service before any user logs in. So, it is sufficient just the one-time
configuration of Wicd in order to solve the aforementioned problem. When the
Raspberry boots up alongside TurtleBot, connects to the specified network
automatically without having to login.

2.2.7. Simultaneous Localization and Mapping (SLAM)

TurtleBot should receive movement commands in order to approach the given
trajectory’s points and finally reach the goal point. Hence TurtleBot has to recognize the
space around it. In other words, it needs a map of the experimental area. ROS provides
the capability of mapping the TurtleBot’s space using the XBOX 360 Kinect connected
on it. Kinect has a depth sensor that allows it to sense how far an object is, and if it is
combined with moving the TurtleBot manually around using the PS3 controller, then
there is a complete map of the experimental area. This way ROS creates a map that
lays inside the local storage of Raspberry Pi. The map is separated in two files, one
yaml| formatted file and one pgm file. Figure 13 and Figure 14 illustrate an example of a
yaml file and an example of a pgm file respectively.

image: /home/pi/Desktop/basement.pgm
resolution: 8.8588088

origin: [-12.200000, -12.200800, ©.008000]
negate: ©

occupied thresh: B.65

free thresh: B8.196

Figure 13: YAML file example

A. Chalvatzaras 31

Adaptive UxV Routing Based on Network Performance

Figure 14: Pgm file example

After creating the map, the workstation can initiate rviz, open the map and take the
coordinates of specific points in order to create a desired trajectory. This set of points
(trajectory) is given as input in the experiment’s source code. Figure 15 illustrates an
example rviz instance. Commands can also be given directly from rviz instance but this
is not the case of this thesis.

Figure 15: rviz map view example

The technique used for the map creation is called SLAM (Simultaneous localization and
mapping). SLAM can be described as the computational problem of constructing or

updating a map of an unknown environment while simultaneously keeping track of an
agent’s location within it.

A. Chalvatzaras 32

Adaptive UxV Routing Based on Network Performance

3. APACHE KAFKA

In this thesis two publish-subscribe (pub-sub) messaging systems were used. These
two messaging systems are Apache Kafka [3] and ROS pub-sub communication system
(see section 2.1.1). Apache Kafka is an open-source stream-processing software
platform written in Scala and Java.

Streaming platforms has the following capabilities:

¢ Similarity to message queues, regarding publishing and subscribing to streams of
records. In case of Kafka topics.

e Durable fault-tolerance.
e |Immediate stream processing.

The main advantages of Kafka are that it provides high-throughput, and low latency,
regarding real-time data feeds. Storage layer of Kafka is a pub-sub message queue.
This means that there are application instances which act as consumers and application
instances which act as producers. Producers publish messages to specific Kafka topics
and consumers subscribe to these topics in order to consume the messages.

Kafka has a similar directional graph representation as ROS pub-sub system (see
section 2.1.1). An overview graph is illustrated in Figure 16.

In this work Kafka was used in order to fill the communication gap between the UxV and
the Ground Control Station (GCS) (see section 2.2.3). For a more analytical explanation
about the communication abstract introduced please refer to section 6.1.1.

Producers
App App App
Iiiiilﬁh““ﬂa. ,tf”'r App
Kafka Stream
Connectors | o ster Processors
= 7N
App
App App App
Consumers

Figure 16: Kafka architecture as directional graph

A. Chalvatzaras 33

Adaptive UxV Routing Based on Network Performance
Examples of application that Apache Kafka can be utilized perfectly:

e Internet of things: Swarms of robots, smart watches, smart TV’s, or even
personal health monitors can send telemetry data through Apache Kafka.

e Sensor Networks: Areas and complex can be designed with an array of sensors
to track data or current status.

o Positional Data: Massive Multiplayer Online games, delivery tracks, robot
swarms.

e Other Real-Time Data like satellite data or medical sensor data.

3.1 Ideal Publish-Subscribe System

The idea behind ideal publish-subscribe system is pretty simple, Publisher A's
messages should be delivered to Subscriber A’'s, Publisher B's messages should be
delivered to Subscriber B'’s etc. as it is illustrated in Figure 17. But as it is known in real-
world architectures the existence of this system is impossible.

Publisher & | | SULSCTIDEr A
Publish
Publisher B = Subscribe = Subscriber B
o System
N

Publisher C Subscriber C
Figure 17: Publish-Subscribe system
The ideal Publish-Subscribe system has the benefit of the following features:

e Unlimited Lookback: A new Subscriber can read any subsequence of the sent
messages.

e Message Retention: Message loss is zero.
¢ Unlimited Storage: An infinite number of messages can be stored.
e No Downtime: The system is never down.

e Unlimited Scaling: Delivery latency is constant, no matter the number of
publishers and/or subscribers.

3.2 Apache Kafka Key Characteristics

The key differences of Apache Kafka in comparison with the ideal Publish-Subscribe
system are:

e Messaging is implemented on top of a replicated, distributed commit log.

e The functionality of the client is increased.

e Batch optimization instead of individual messages optimization.

e Retention of messages even after consumption, so they can be consumed again.
The results of these design decisions are:

e Extreme horizontal scalability

A. Chalvatzaras 34

Adaptive UxV Routing Based on Network Performance
e \Very high throughput
¢ High availability

¢ Different semantics and message delivery guarantees

3.3 Topics

Topics are the buses that help messages to find their way from the Publisher to the
Subscriber. A topic is a queue of messages written by one or multiple Producers and
read by one or multiple consumers. The identification of a topic is provided by the
knowledge of its name. In Apache Kafka, publishers are called producers and
subscribers are called consumers. In the following Figure 18, one can see an abstract
representation of the topics.

Publish-Subscribe System

Topic A Topic A
PRODUCER 1 | =¥ CONSUMER 1
e - | |
il opic A Messages [~
TopicA | _— ” f) Topic A
PRODUCER M1 CONSUMER M1
Topic B Topic B
PRODUCER1 | 7| COMSUMER 1

L84 -
: " = . Topic B Messages - q _
Taopic B " R Topic B

PRODUCER M2 | CONSUMER M2

Figure 18: Abstract representation of pub-sub system topics

34 Brokers

The design of Apache Kafka offers distributed nature, meaning that Apache Kafka runs
on multiple hosts, with one broker per host. There are guarantees that there are no
downtime and unlimited scaling, because Apache Kafka ensures that always one host is
up and running. Brokers are coordinated by Zookeeper, in order to achieve the goal of
unlimited scaling. Furthermore, topics are replicated across brokers, contributing to no
downtime, unlimited scaling and message retention goals. As one can extract from the
above is that Apache Kafka behaves much like an ideal public-subscribe system. In the
following Figure 19, the issues explained in this paragraph are presented.

A. Chalvatzaras 35

Adaptive UxV Routing Based on Network Performance

Broker 1

Topic A PRODUCER 1 |
> Topic A |

Topic A PRODUCERN |

\J

72 Topic A CONSUMER 1

Topic A CONSUMER N

Al

1 TopicB |

Broker N

Topic B CONSUMER 1

Y

Topic B PRODUCER 1 | i Topic A /
opic
| S

A

Topic B PRODUCERN | Topic B CONSUMER N

vy

Topic B |

Zookeeper
Cluster

Figure 19: Abstract representation of Apache Kafka Brokers

35 Records

In Apache Kafka semiology messages send between the producers and the consumers
are called records. Records consist of a key/value pair and metadata including a
timestamp. Key is used in order to identify the source of the message, and it is not
required. Keys and values are stored as arrays of bytes, and the format is not strict. The
metadata of each record can include headers. Headers may store application-specific
metadata as key-value pairs. In the context of the header, keys are strings and values
are byte arrays.

3.6 Partitions

Apache Kafka divides records into partitions. Partitions can be thought of as a subset of
all the records for a topic. In each partition the records are sorted by arrival time. Topics
are created by setting the following two parameters:

e Partition count: The number of partition that records will be spread among.

¢ Replication factor: The number of copies of a partition that are maintained to
ensure consumers always have access to the queue of records for a given topic.

Every topic has its leader partition. If the replication factor exceeds one, there will be
additional follower partitions. Apache Kafka clients communicate only with leader
partition for data. The rest of the partitions act like a fail-safe mechanism, providing
redundancy and failover. They are responsible of copying new records from their leader
partitions. With N brokers and topic replication factor M:

e |f M <N, each broker will have a subset of all the partitions
e |f M =N, each broker will have a complete copy of the partitions

In the following Figure 20, there are illustrated two brokers (N = 2) and a replication
factor of two (M = 2).

A. Chalvatzaras 36

Adaptive UxV Routing Based on Network Performance

Broker 1

Topic A

Topic A PRODUCER 1 = Partition AT | T 7‘ Topic A CONSUMER 1

_» Partition A4

Topic A PRODUCER2Z |~ 7{ Topic A CONSUMER 2
\ Broker 2 i '

\| Topic A

| \—» Partition A2 4 /

Topic A PRODUCER 3 C——
% Partition A3 Vv

Figure 20: Abstract representation of Apache Kafka partitions

Partitions are the key to keeping good record throughput. Correct amount of partitions
and partition replications for a topic has the following benefits:

e Spreads leader partitions evenly on brokers throughout the cluster.
e Makes partitions within the same topic are roughly the same size.

e Load balancing on the brokers.

3.7 Record Order and Assignment

Apache Kafka uses round-robin regarding the assignment of records to partitions. There
are no guarantees that multi-partition records will retain their order by production time.

If the order of the records is of high importance, there can be guarantees from the
producer that records are sent to the same partition. This can be done by including
specific metadata in the record. These metadata are the following:

e The record can indicate a specific partition.
e The record can include an assignment key.

The hash of the key and the number of partitions in the topic determines which partition
the record is assigned to. Including the same key in multiple records ensures all the
records are appended to the same partition.

3.8 Logs and Log Segments

Inside topics and partitions Apache Kafka stores records in a log structured format. In
the following Figure 21, this log structured format is illustrated.

A. Chalvatzaras 37

Adaptive UxV Routing Based on Network Performance

Topic A

__— Partition AT —__

97 | %8 | 99 | 100 | 107 | 102 | 103 s B473 | B4T74 | BATS | B4T6 | 84TT (8478 | B4TO

_— Partition A5 [~

267 | 268 | 269 | 270 | 271 | 272 | 273 LN 3836 (3837 | 3838 | 3839 | 3840 | 3841 | 3842

Figure 21: Log structure format of partitions

Actually, not all the records are kept sequentially into a large file, but instead each log is
divided in segments, called log segments. Each log segment can be defined using a
size limit, a time limit, or both. Each of the partitions is broken into segments, with
Segment N containing the most recent records and Segment 1 containing the oldest
retained records. This is configurable on a per-topic basis. The following Figure 22
illustrates the above statements.

A. Chalvatzaras 38

Adaptive UxV Routing Based on Network Performance

Topic A
___.«{ Partition A1 [~
e T
.'-"'_FF-F- --\-\--\"-
__-"""Ff-- -h--h_“""x,__ 1
---"'_'-F ""-.L
97 | 98 | 99 | 100 | 107 [102 | 1053 | & e« |B473|BATA|B4TS |B476 | 8477 (8478 | 8470
Segment 1 Segment M
- Partition A5}~
.:—""--'---'-FF--- -\--\-\--\---\-\-\-"-_
- -\---‘""-.
_-o—"""'_H [-‘-_"‘--__
e -
267 | 268 | 260 | 270 | 271 | 272 | 273 | e e e |3836|3837|3838|3m30 | 3p40 3841 | 3842

Segment 1

Segment N

Figure 22: Apache Kafka Partition Log Segments

3.9

Zookeeper maintains broker, topic and partition information. Partition information such
as replica and partition locations, are updated regularly. Because of this frequent
metadata refreshes, a reliable connection between the brokers and the Zookeeper is
crucial. Some of the Zookeeper features are the following:

Kafka Brokers and ZooKeeper

o Kafka Controller maintains leadership via Zookeeper
o Kafka Brokers also store other relevant metadata in Zookeeper
o Kafka Partitions maintain replica information in Zookeeper

The following Figure 23 illustrates the relationship between the brokers and the
Zookeeper.

A. Chalvatzaras 39

Adaptive UxV Routing Based on Network Performance

Kafka Controller

Partition
Partition

Partition

Partition
Partition
Partition

Topic A Topic A

|_Partition | |_Partition |
|_Partition | |_Partition |
_Partition _ _Partition _
Topic B Topic B

|_Partition | |_Partition |
|_Partition | |_Partition |
_Partition | _Partition |

Kafka Broker

Partition
Partition
Partition

Partition
Partition
Partition

Kafka Broker

Partition
Partition
Partition

Partition
Partition

))
=4 =4
o 0
w >

Partition

A. Chalvatzaras

Zookeeper Cluster

Partition Broker
Metadata Metadata

Figure 23: Brokers/Zookeeper relationship

40

Adaptive UxV Routing Based on Network Performance

4. OPTIMAL STOPPING THEORY (OST) AND CHANGE DETECTION

The theory of Optimal Stopping (OST) [8] is concerned with the problem of choosing an
optimal time to take a given action based on sequentially observed random variables in
order to maximize an expected reward or minimize an expected cost. Problems of this
type can be found in areas of statistics and operations research.

The theory of Optimal Stopping was considerably stimulated by A. Wald (1947). He
showed that — in contrast to the classical methods of the Mathematical Statistics,
according to which the decision is taken in a fixed (and nonrandom) time — the methods
of the sequential analysis take observations sequentially and the decision is taken,
generally speaking, at a random time whose value is determined by the rule (strategy)
of observation of a statistician. Wald discovered the remarkable advantage of the
sequential methods in the problem of testing (from i.i.d. observations) two simple
hypotheses. He proved that there is a sequential method (sequential probability-ratio
test) which requires on average a smaller number of observations than any other
method using fixed sample size (and the same probabilities of wrong decisions). It
turned out that the problem of optimality of a sequential statistical decision can be
reformulated as an “optimal stopping problem,” and this was the essential step in
constructing the General Optimal Stopping Theory.

The change to transmission of commands and sensor values is detected through an
optimal stopping rule based on the principles of Optimal Stopping Theory (OST); this
statistically secures the best time instance to maximize an expected pay off as will be
introduced later in our objective function. Before elaborating on our rationale and time-
optimized mechanisms, we provide the fundamentals and principles adopted from the
OST.

4.1 Definition of the problem
Stopping rule problems [8] are defined by two objects,

e a sequence of random variables, X;, X,, ..,whose joint distribution is assumed
known, and

e a sequence of real-valued reward functions

yO' yl(xl)' yZ(xlf xZ)' ey yoo(xl; X2, e)

Given these two objects, the associated stopping rule problem may be described as
follows. You may observe the sequence X;,X,, ... for as long as you wish. Foreachn =
1,2, ...,after observing X; = x,,X, = x,, ..., X;, = x,,, you may stop and receive the known
reward yn(X1,..., Xn) (possibly negative), or you may continue and observe Xn+1. If you
choose not to take any observations, you receive the constant amount, yo. If you never
stop, you receivey, (x1, X3, ...). (We shall allow the rewards to take the value —oo; but we
shall assume the rewards are uniformly bounded above by a random variable with finite
expectation so that all the expectations below make sense.)

Your problem is to choose a time to stop to maximize the expected reward. You are
allowed to use randomized decisions. That is, given that you reach stage n having
observed X1 = x1..., Xn = Xn, YOu are to choose a probability of stopping that may depend
on these observations. We denote this probability by ¢, (x4, ...,x;). A (randomized)
stopping rule consists of the sequence of these functions,

D = (@o, 1(x1), P2(x1, X2), -),

A. Chalvatzaras 41

Adaptive UxV Routing Based on Network Performance

where for all n and dxy, ..., x,, 0 < @, (x4, ..., x,) < 1. The stopping rule is said to be non-
randomized if each ¢, (x4, ..., x,,)is either 0 or 1.

Thus, @o represents the probability that you take no observations at all. Given that you
take the first observation and given that you observe X; = x;,¢,(x;) represents the
probability you stop after the first observation, and so on. The stopping rule, @, and the
sequence of observations, X = (X;,X,,...), determines the random time N at which
stopping occurs, 0 < N < oo, where N = coif stopping never occurs. The probability
mass function of N given X = x = (x4,x,,...) is denoted by ¢ = (Yo, Y1, P2, -, Vo),
where

Yu(xy oo, xy) = PN =nlX =x)forn=0,1,2, ..., 1
lpoo(xl,xZ,) = P(N = OO|X = x)_ ()

This may be related to the stopping rule ¢ as follows:

Yo = Po
Yy (x1) = (1= @o)®1(x1)
. n—-1
CACH I | [[CEHCOED)| P CE S P
Yoo (X, Xy) = 1 —lej(xl,...,xj)
0

Yo (X1, X4, ...) represents the probability of never stopping given all the observations.

Your problem, then, is to choose a stopping rule ¢ to maximize the expected return,
V(@), defined as

Vip) = Eyn (X1, ., Xn)

= EyNzlp](XllﬂxN)y](Xl,,X])
j=0

where the “= «” above the summation sign indicates that the summation is over values
of j from 0 to oo, including . In terms of the random stopping time N, the stopping rule
¢ may be expressed as

on(Xq, ... Xp) = P(N =n|N =2n,X =x), wheren =0,1, ... (4)
The notation used is that of Section 7.1 of Ferguson (1967).

4.1.1. Loss VS Reward

Often, the structure of the problem makes it more convenient to consider a loss or a
cost rather than a reward. Although one may use the above structure by letting
yndenote the negative of the loss, clarity is gained in such cases by letting y,denote the
loss incurred by stopping at n, and considering the problem to be one of choosing a
stopping rule to minimize V(o).

A. Chalvatzaras 42

Adaptive UxV Routing Based on Network Performance

4.1.2. Random Reward Sequences

For some applications, the reward sequence is more realistically described as a
sequence of random variables Y, Y;, ..., Y, whose joint distribution with the observations
X1,X,, ... is known. The actual value of ¥,, may not be known at time n when the decision
to stop or continue must be made. However, allowing returns to be random does not
represent a gain in generality because, since the decision to stop at time n may depend
on X,,...,X,, we may replace the sequence of random rewards Y,, by the sequence of
reward functions y,, (x4, ..., x,) for n =0,1, ..., co where

yn(xll "'Ixn) = E{Ynlxl = X1, ""Xn = xn} (5)
Any stopping rule ¢ for the payoff sequence Y,, Y;, ..., Y, should give the same expected.

4.2 Stopping Rule Existence

It is crucial that a stopping rule exists for a given problem. Optimal Stopping cannot be
applied if there is no stopping rule existence. For example, assume a problem that
someone throws a dice for an infinite time of times and wins the sum of all the throws. It
is clear that he should never stop, because the expected reward increases continuously.
For this problem a stopping rule does not exist. In this chapter the requirements for the
existence of stopping rule will be listed.

Assume the general stopping rule problem described in section 4.1 with observations
X, X,, ... and rewards Y,,Y;,.., Y, where Y, = y,(X4,..,X;). The existence of the
stopping rule relies on the two following requirements:

1. E{sup,Y,} < o
2. limsup,_o¥n < Yo

The meaning of these two requirements is given bellow with no strict mathematical
explanation:

e The maximum of ¥,, should exist, or else someone who can predict the future will
always receive a non-finite reward.

e Y, should not go to «, because there will be cases that someone by chance will
not get a finite reward.

For better understanding of the above requirements, refer to the following two
examples:

e Example 1: Let X3, X,, ... be independent Bernoulli trials with probability 72 of
success, and let Y, =0,

n=e-v|[x ©
1

and Y,, = 0. As long as only successes have occurred, you may stop at stage n
and receive 2" — 1; after the first failure has occurred, you receive 0. Since Y,, —
0 a.s., the second requirement is satisfied. On the other hand, sup, Y, = 2 -1

with probability L fork=0,1,2,... so that E{sup,Y,} = X5 (1 — 1/2,()/2 = o

2k+1
and the first requirement is not satisfied. If you reach stage n without any failures,
your return for stopping is 2™ — 1, while if you continue one stage you can get an
expected value of at least (2"*1 — 1)/2 = 2™ — 1/2, which is better. Thus, it can
never be optimal to stop before a failure has occurred. Yet continuing forever

A. Chalvatzaras 43

Adaptive UxV Routing Based on Network Performance

gives you a zero payoff so there is no optimal stopping rule. In fact, supyEYy =
1, but the supremum is not attained.

e Example2:LetY,;=0,Y,=1-1/nforn=1,2...and Y, =0. (The X,, are
immaterial). Here requirement one is satisfied and requirement two is not. Yet,
like the previous example, the longer you wait the better off you are, but if you
wait forever you win nothing. There is no optimal rule.

4.3 The Secretary Problem

A commonly known application of the optimal stopping theory is known as the Secretary
Problem [8]. The problem is usually described as the problem of a decision maker who
is called to choose the best secretary among a finite number of applicants with the goal
of picking the best applicant.

1. There is one position available.

There are n applicants for the position where n is a known finite number.
You can rank the applicants linearly from worst to best without ties.

The applicants are interviewed sequentially.

o bk~ D

As each applicant is interviewed you must either reject the applicant and
interview the next one or accept the applicant and end the decision problem.

6. You must make the decision to accept or reject each applicant using only the
relative ranks of the applicants interviewed so far.

7. Arejected applicant cannot be recalled later.

8. The objective of the general solution is to maximize the probability of selecting
the best applicant. This is the same as maximizing the expected payoff, with
payoff defined to be 1 if you do select the best, 0 otherwise.

We place this problem into the guise of a stopping rule problem by identifying stopping
with acceptance. We may take the observations to be the relative ranks, X;,X,, ..., X,,,
where X;is the rank of the jth applicant among the first j applicants, rank 1 being best.
By assumption 4, these random variables are independent and Xjhas a uniform
distribution over the integers from 1 to j. Thus, X; = 1,P(X, =1) =P(X, =2) =1/2,
ect.

Note that an applicant should be accepted only if it is relatively best among those
already observed. A relatively best applicant is called a candidate, so the jth applicant is
a candidate if and only if X; = 1. If we accept a candidate at stage j, the probability we

win is the same as the probability that the best candidate overall appears among the
first j applicants, namely j/n. Thus,

{j/n if applicant j is a candidate,
0 otherwise.

Yi(X1, -oes X)) (7)

Note that y, = 0and that for j > 1, y;depends only on x;.

This basic problem has a remarkably simple solution which we find directly without the
use of the optimal rule for finite horizon problems:

Vj(T)(xl, ...,xj) = max {yj(xl, ...,xj),E(Vj(JrTl)(xl, ...,xj,XjH)|X1 = X1, 0, Xj = xj)} (8)

A. Chalvatzaras 44

Adaptive UxV Routing Based on Network Performance

Let W; denote the probability of win using an optimal rule among rules that pass up the
first j applicants. Then W; = W, since the rule best among those that pass up the first

+ 1 applicants is available among the rules that pass up only the first j applicants. It is
optimal to stop with a candidate at stage j if j/n = W;. This means that if it is optimal to

stop with a candidate j, then it is optimal to stop with a candidate at j + 1, since
(G+1)/n>j/n=W; = W,,,. Therefore, an optimal rule may be found among the rules
of the following form, N,.for some r > 1:

N,: Reject the first r-1 applicants and then accept the next relatively best
applicant, if any.

Such a rule is called a threshold rule with threshold r. The probability of win using N,.is

n
P = z P(k'"applicant is best and is selected)
k=r
n
= Z P(kt"applicant is best)P (kt*applicant is selected|it is best)
T 9)
= %P(best of first k - 1 appears before stage r)

k=r

n n
_ zlr—l_r—lz 1
B nk—1 n k—1"
k=r

k=r

where (r—1)/(r — Drepresents 1 if r=1. The optimal r;is the value of r that
maximizes P.. Since

P,,, < B.if and only if

rZ”: 1 <r—1zn: L o
nlik—1- n K—1 andonyt (10)
n T
1

r+1

we see that the optimal rule is to select the first candidate that appears among
applicants from stage r; on, where

n
1
= [>1: —_—<
2 mm{r_l. E k—l_l}' (11)

r+1
The following table is easily constructed.

n = 1 2 3 4 5 6 7 8
n = 1 1 2 2 3 3 3 4
P, = 1.0 .500 .500 .458 .433 .428 .414 .410

Table 3: Secretary Problem Expected Probabilities

A. Chalvatzaras 45

Adaptive UxV Routing Based on Network Performance

It is of interest to compute the approximate values of the optimal r,and the optimal
P,,for large n. Since Zﬂﬂk—il ~log(§), we have approximately log(n/r;) =1, or r;/n =

e~ 1. Hence, for large n it is approximately optimal to pass up a proportion e~!of the
applicants and then select the next candidate. The probability of obtaining the best
applicant is then approximately e~1.

4.3.1. The Parking Problem (Mac Queen and Miller (1960))

Assume that you are driving towards a destination on an infinite distance. When you are
close enough, you have to park in order to disembark. If you pass an empty parking
spot, you are not allowed to go back and take it, but it is not guaranteed that you will
find a spot later on the road. So, the problem here is to pick the perfect spot, closer to
your destination, without having to know if there are spots closer.

Here, we model this problem in a discrete setting. We assume that we start at the origin
and that there are parking places at all integer points of the real line. Let X, X, X,, ... be
independent Bernoulli random variables with common probability p of success, where
X; = 1 means that parking place j is filled and X; = 0 means that it is available. Let if
you do you lose |T-j|. You cannot see parking place j+1 when you are at j, and if you

once pass up a parking place you cannot return to it. If you ever reach T, you should
choose the next available parking place. If Y is filled when you reach it, your expected
loss is then (1 —p) + 2p(1 —p) + 3p%(1 —p) + - = 1/(1 — p), so that we may consider
this as a stopping rule problem with finite horizon T and with loss

andforj=0,..,T—-1,

The value y; = o forces you to continue if you reach a parking place j and it is filled.

We seek a stopping rule, N < T, to minimize EYy.

First, we show that if it is optimal to stop at stage j when X; = 0, then it is optimal to stop
at stage j + 1when X;,; = 0. As in Moser’s problem, V(T)depends only on X;,and X; =
1is a constant that depends only on n —j. It is optimal to stop at stage n —j if Yn—j <

Aj. We are to show that if n—j < A;, then n—j—1<A4;_;. This follows from the
inequalites, n —j —1<n—j<A; < A;_;.

Thus, there is an optimal rule of the threshold form, N,for some r > 0: continue until r
places from the destination and park at the first available place from then on. Let
P.denote the expected cost using this rule. Then, P, = p/(1 —p)and forr > 1,B. = (1 —
p)r + pP._;. We will show by induction that

Zpr+1_
B=r+l+——. (19
Ph=p(1l-p)=1+2p—-1)/(1—p), so, itis true for r = 0. Suppose it is true for r — 1;
then PB=(Q-pr+pP_,=(1-p)r+pr+pRp"—-1)/A1-p)=C+1)+

(2p"™*1 —1)/(1 — p), as was to be shown. To find the value of r that minimizes (7), look
at the differences, P,.; —P.- =1+ (2p"% - 2p"™™1) /(1 —p) =1 —2p"*1. Since this is
increasing in r, the optimal value is the first r for which this difference is nonnegative,
namely, min{r = 0:p"*! < 1/2}. For example, if p < 1/2, you should start looking for a
parking place r = 6 places before the destination.

A. Chalvatzaras 46

Adaptive UxV Routing Based on Network Performance
4.4 Change Point Detection

Let us assume that we monitor a sequence of i.i.d. random variable X;, X,,...with a
known distribution F,. At some point T in time, unknown to you, the distribution will
change to some other known distribution F;, and we have to sound an alarm as soon as
possible after the change occurs. It is assumed that you know the distribution of T. If the
cost of stopping after the change has occurred is the time since the change, and if the
cost of false alarm that is of stopping before the change has occurred is taken to be a
constant ¢>0 then the total cost may be represented by

YVo=cl{in<T}+n—-T)I{n=>T}forn=0,1...,and Y, = 0. (15)

In this display I(A) represents the indicator function of a set: so, for example I{n < T}is
equal to 1 if n<T and to zero otherwise. Since T is a random unobservable quantity, we
may replace Y,, by conditional expected value given X; , X,

Vo =cP(T>n|F)+E((n—T)*) | E,)forn=0,1...,and Y,, = 0. (16)

Change-point detection has its origins almost sixty years ago in the work of Page [9]
Shirayaev [10] and Lorden [11] who focused on sequential detection of a change-point
in an observed stochastic process. The stochastic process was typically a model for the
measured quality of a continuous production process, and the change-point indicated a
deterioration in quality that must be detected and corrected. In our case, we are
adopting this methodology for finding the best time instance for the controller strategy in
order to maximize the possibility of successful message delivery by observing runtime
network statistics.

The need of change point detection is based on the critical issue that the UxV should
‘know” when to stop transmitting sensitive and crucial information and data to a
saturated network risking their loss. For that reason, a Time Optimized Change-Point
Decision Making Process (TOCP) based on CUSUM algorithm was created. More about
TOCP in section 5.3.2.

4.4.1. Change Point Detection Algorithms

Let a sequence of independent random variables (y,), with a probability density pg(y)
depending upon only one scalar parameter. Before the unknown change time t,, the
parameter 6 is equal to 6,, and after the change it is equal to 8, # 6,. The problems are
then to detect and estimate this change in the parameter. The parameter 6, it is
assumed that it is known before the change. Change point detection algorithms are
based on a crucial concept of mathematical statistics, namely the logarithm of the
likelihood ratio, defined by:

Po1(¥)
Poo (y)

s(y) = In . (17)

and referred for simplicity as log-likelihood ratio. Below is explained the key statistical
property of this ratio. Eg, and Ey, are representing the expectations of the random
variables under distribution pg, and distribution pg, respectively. Then,

Ego(s) < 0and Eg,(s) > 0. (18)

This practically means that a change in parameter 9 is reflected as a change in the sign
of the mean value of the log-likelihood ratio. This property of the log-likelihood ratio can

A. Chalvatzaras 47

Adaptive UxV Routing Based on Network Performance

be viewed as a measure of detectability of the change. Also, the Kullback information K
is defined by K(64,6,) = Eg,(s), there is the difference between the two mean values,

Eg1(s) — Ego(s) = K(6,,0,) + K(8o,6,) > 0. (19)
So, the detectability of a change can be found also with the aid of the Kullback
information between the two distributions before and after the change.
44.1.1 CUmulative SUM (CUSUM) Algorithm

CUSUM algorithm, was first proposed in [23]. There are several different variations and
approaches. The one described here is the Intuitive Derivation approach. Also, a simple
pseudo-code approach is made.

4.4.1.1.1 Mathematical Approach of CUSUM Algorithm (Intuitive Derivation
Approach)

Let S; be the log-likelihood ratio. This ration shows a negative drift before the change
and a positive drift after the change as it is illustrated in Figure 24.

" -
T T

i i i alarm time
o 5 10 15 20 25 30 35 40 45 50

Figure 24: Typical behavior of the log-likelihood ratio S; corresponding to a change in the mean of
a Gaussian sequence with constant variance: negative drift before and positive drift after the
change.

So, the relevant information lies in the deference g, between the value of the log-
likelihood ration and its current minimum value my; and the corresponding decision rule
is then, at each time instant, to compare this difference to a threshold h as follows:

gk = Sk —my = h, (20)

k
Sk = Z Si
i=1

Po1 (V)
Poo (yi)

Where,

Si=1n

(21)

A. Chalvatzaras 48

Adaptive UxV Routing Based on Network Performance

m, = minS; wherel <j <k

In the following Figure 25, the typical behavior of g, is illustrated. The stopping time is:

t, = min{k: g, = h}.(22)

which can be also written as:

4.4.1.1.2

t, = min{k: S, > my, + h}. (23)

O I I ¥ ¥ T T | |

T =

G =

0 5 10 15 20 25 30 35 <40 45

Figure 25: Typical behavior of the CUSUM decision function g,

Algorithm

50

In this section, a general approach to the CUSUM algorithm is given. Its purpose is the

better understanding of the algorithm. Assume a univariate time series x; € R consisting

of data values collected over time and a target value u for this data stream. CUSUM

involves the calculation of positive and negative changes (P and N, respectively) in the
time series x;, cumulatively over time and it compares these changes to a positive and a

negative threshold (thresh* and thresh™, respectively). Whenever these thresholds are
exceeded, a change is reported through the above-detection and below-detection
signals (s and s, respectively) while the cumulative sums are set to zero. In order to
avoid the detection of non-abrupt changes or slow drifts, the algorithm takes into

consideration tolerance parameters for positive and negative changes (k™ and k-,

respectively).

The input parameters for the CUSUM algorithm are the following:

The output parameters for the CUSUM algorithm are the following:

the target value 1 € R

the above-tolerance value k™ € R

the below-tolerance value k™ € R

the above-threshold value thresh* € R

the below-threshold value thresh™ € R

the above-detection signal s* € {0,1}

A. Chalvatzaras

49

Adaptive UxV Routing Based on Network Performance

¢ the below-detection signal s~ € {0,1}

CUSUM is presented in Algorithm 1 below.

ALGORITHM 1. Cumulative Sum (CUSUM)

Input: univariate time series x,, target value u, above-tolerance k*,
below-tolerancek~, above-threshold thres*, below-threshold thres™

Output: above detection signal s*, below detection signal s~

1. P« 0;

2: N«O;

3 te1;

4: while (true)
5: st «0;

6: s« 0;

7: P« max(0,x, — (u+ k%) + P);
N <« min(0,x, — (u— k™) + N);

9: if (P > thres™) then
10: st«1;

11: P < 0;

12: N < 0;

13: end

14: if (N < —thres™) then

15: st «1;
16: P < 0;
17: N < 0;
18: end

19: t<t+1;
20: End

The algorithm assumes that the arrived time series follow a normal distribution. In order
the algorithm to work properly, the tolerance and threshold parameters should be tuned
in a way that determines what an actual change is for a specific time-series.

This tuning can be performed by following these steps:
« Start with large thresh*, thresh™ values.

o Choose k*, k= parameters to half of the expected change, or adjust them such
that P, N are zero more than half of the times.

A. Chalvatzaras 50

Adaptive UxV Routing Based on Network Performance

e Then set the thresh*,thresh™ values so that the required number of false alarms
or the required delay for detection is obtained.

« If faster detection is sought, try to decrease k™, k~values.

If fewer false alarms are desired or changes that do not make sense are detected, try to
increase k*, k~values.

A. Chalvatzaras 51

Adaptive UxV Routing Based on Network Performance

5. RATIONALE AND PROBLEM FORMULATION

51 Definition of the Problem

In practice, if a UxV loses contact with the GCS, it returns back to a given initial position.
This is impractical for missions that require UxV to travel a good distance away from the
GCS. It is also energy inefficient both for the UxV’s battery and for the network, to start
the mission from the beginning every time that communication is lost. The goal of this
thesis is to prevent the aforementioned loss of communication by acting proactively
based on the OST, in order to complete the mission without the need of restarting it. The
algorithm implemented for the purpose, extracts network data from the UGV’s and
GCS’s wireless interface and then uses the OST in order to take actions, for example
starting and stopping the telemetry transmission from the sensors. In this thesis, there
will be usage of live data produced by a UGV (TurtleBot), in order to prove the
theoretical work and the simulations.

In this thesis a framework that implements a network quality based decision-making
process is developed. This framework adapts the information flow between the UxV and
the Ground Control Station (GCS) based on network quality metrics (such as packet
error rate etc.) and the principals Optimal Stopping Theory (OST). The goal of this
framework is to ensure the optimal delivery of critical information from UxV to GCS and
vice-versa. If the network behaves optimally then there is no limitation on the
information flow, but if the network is saturated or overloaded restriction rules are
applied. The proposed model introduces two optimal stopping time mechanisms based
on change detection theory and a discounted reward process.

52 Related Work

In the literature researchers have extensively studied message-routing protocol
employed on the unmanned vehicles. Opportunistic networks are studied as long as
they are capable of maintaining efficient operation in a wide range of network density
and mobility conditions. These network environments are classified by their diversity of
topological conditions. One of the classification categories are networks of almost static
dense topologies. Regarding this category conventional topology-based protocols [14]
are the best option; they just use labels/identities. When the density starts decreasing
but the mobility status remains stable, then the best option is the position-based
protocols [15] [16]. Position-based protocols rely on the spatial transposition of
messages due to hops from one node to another. Another classification category are the
networks of low nodal density. In these networks intense mobility is required, so nodal
contact opportunities can be created. These topologies are based on the ‘carry’ action
[17] [18], i.e. the spatial transposition of the message due to the physical movement of
the carrier node, perform better; they employ information about the nodes motion
characteristics.

Connectivity issues between mobile nodes is critical and there should be guarantees for
the secure delivery of the messages. For this reason, a Decision-Making Process
(DMP) can be created. The DMP relies on information that have an impact on message
delivery rate, such as network ping, packet loss, delay deadlines, etc. In [4] ,a cross-
layer optimization framework for single-user multimedia transmission over single hop
wireless networks was created. In this framework the DMP takes into consideration the
network conditions and the adaptation capabilities of the user at various layers of the
protocol stack.

A. Chalvatzaras 52

Adaptive UxV Routing Based on Network Performance

Methods that derive from the principals of Optimal Stopping Theory (OST), can also be
studied. These methods can apply on information exchange regarding ad-hoc networks.
However, the focus of the research in the literature is not based on the OST principals.
In [19] - [21] contextual data mechanisms deal with the delivery of quality information to
context-aware applications in static and mobile ad-hoc networks respectively assuming
epidemic-based information dissemination schemes. The mechanism in [19] is based
on the probabilistic nature of the “secretary problem” [8] and the optimal on-line
problem. Authors in [20] study a dynamic video encoder that detects scene changes
and tunes the synthesis of Groups-of-Pictures accordingly. Such dynamic encoding can
be applied to infrastructures with restricted resources, like loT facilities where
multimedia streams are of use. They propose a time-optimized DMP that yields different
sizes of groups-of-pictures (frames) to meet the previously discussed objectives i.e.,
transmit video sequences in acceptable quality with rational use of the wireless
resources. In [22] authors propose optimal DMP decisions on the collection of
contextual data from WSNs. The authors determine the best time to switch from
decision to learning phase of Principal Component-based Context Compression (PC3)
model, while data inaccuracy is taken into account. If data inaccuracy remains at low
levels, then any deterministic switching from compression to learning phases of the
observation.

Concluding, change-point is a legacy work, with his lineage going back to the work of
Page [9], Shiryayev [10] and Lorden [11]. Lorden, focused his research on sequential
detection of a change-point in an observed stochastic process. The stochastic process
was typically a model for the measured quality of a continuous production process, and
the change-point indicated a deterioration in quality that must be detected and
corrected.

5.3 Time-Optimized Decision-Making Model for Unmanned Vehicles

5.3.1. Overview

The main goal of this thesis is the development of a framework that implements a
network quality-based decision-making process. That decision-making process (DMP)
adapts the information flow of UxV missions. UxV not only have to receive messages
from a GCS, but also post data from their built-in sensors like position, temperature etc.
Information flow is adjusted dynamically based on network metrics such as packet error
rate (PER), by starting and stopping message production between the GCS and the
UxV. So, the framework has two states of operation: active and passive. The duration
and the transitions between the states, are defined by two on-line mechanisms. As
mentioned in the introduction (see chapter Error! Reference source not found.), not a
Il the messages have the same criticality, for example sensor telemetry (e.g. humidity)
can be characterized as lower priority messages in comparison with the position
reporting of UxV that is a perquisite for the safe execution of the mission. Higher priority
messages should be sent constantly, but lower priority messages can be delayed if the
network performance is not sufficient. With this behavior there is a better chance that
the UxV will finish the mission without losing completely the link between its network
interface and the mission’s access point.

The DMP runs locally on the UxV/GCS, and it is equipped with a Time-Optimized
Change-Point Decision Making Process (TOCP), which is triggered every time there is a
change to network performance (TOCP is fully described in section 5.3.2). When the
DMP is in ‘passive’ state, stopping the transmission of various messages, a Discounted
Secretary Problem (DSP) which is activated tries to recover the state back to ‘active’
(DSP is introduced in Section 5.3.3). DSP ranks the network quality measurements from

A. Chalvatzaras 53

Adaptive UxV Routing Based on Network Performance

worst to best and optimally delays its pause interval. The pausing period has a
maximum deadline of Th,, .

In the following Figure 26, everything of the above are explained with the help of a
directed graph where QNi stands for Quality of Network Indicator.

_\\z d T(EEP(QN i) :) fassive

- counter == 0 T

Active State Passive State

.o\ IS
) . - \ o
0%0\9 DRP(QNi) - active [| counter == Th .0‘.\@
2 2
’O% \’O\ﬂ
N 0«.

Figure 26: Graph representation of DMP

In the following

Table 4 there are the rules of state transitions.

Component Optimal Network States Poor Network States

UxV Active: High-Priority sensors Active: High-Priority sensors
UxV Active: Low-Priority sensors Passive: Low-Priority sensors
GCS Active: High-Priority messages Passive: High-Priority messages

Table 4: Rules of State Transition

5.3.2. Time-Optimized Change-Point Decision Making Process (TOCP)

When the UxV is in active state, then TOCP mechanism is triggered. Assume the
network quality data follow a probability density function (x,, f;) where f; expresses the
normal distribution (with value y; and variance o;). These network data x;, x,, ..., x,, can
be considered as a random signal with i.i.d. random variables observed in real-time. For
the case of this thesis, a probability density function comparison method was adopted in

A. Chalvatzaras 54

Adaptive UxV Routing Based on Network Performance

order to estimate p(x,, f;). This method derives the closest distributions to the newly
introduced Quality Network Indicator (QNI). QNI is calculated using live network data
and more specifically: Packet Error Rate (PER), Signal-to-Noise Ratio (SNR), and the
UNIX built-in interference quality indicator (Q). The description of these metrics can be
found in Table 5 bellow. So, QNI is an affine combination of the above metrics
normalized in [0,100]:

QNI, = PER, + SNR,, + Q,,. (24)

Quality indicator Description

Packet Error Rate (PER) Rate between the lost packets and the total
packets sent through the network

Signal-to-Noise Ratio (SNR) Ratio of signal power to the noise power

Interference quality Indicator (Q) Exported by an access point in scale [0,100]

and depends on the level of contention or
interference, like the bit or frame error rate, or
other hardware metric.

Table 5: Description of Network Quality Indicators

Now assume two priors know distributions f, , f; where f;, # f;, where f, represents the
data of QNI when the network quality is good, and f; represents the data of QNI when
the network quality is bad. Probability Density Function (PDF) model fittings of these
distributions are illustrated in Figure 27 and Figure 28.

Probability Density Function
T T T

03 T T T T T T
Cemprical
~——— normal
026 || e goererm .
00 St
nverse gaussian
2 o2} rayieigh .
5 exponential
Q
2045 | R
=
:
£ oa} -
005 |- -1
N
0 L 1 1 ! - B« @ M | 9.’1..&'” m
0 10 20 30 40 50 60 70 80 20 100

Value

Figure 27: Probability Density Function of f, Model Fitting

A. Chalvatzaras 55

Adaptive UxV Routing Based on Network Performance

Probability Density Function

O-"/‘ T T T T T T T T T

=
Cempincal

logiogistic
nverse gaussian | -
- rayteigh

exponential
008 - 1 -1

o
-
T

006 -

Probability Density

S
o
a
T
/
y 4 4

002

40 50 60 70 80 Q0 100
Value

Figure 28: Probability Density Function of f; Model Fitting

The method for estimating p(x,, f;), is based on model fitting of all the parametric
probability distributions to the QNI, and then is observed if there is a concept drift of QNI
from one distribution to another.

Now assume a time m. Before this time QNI follows the PDF of the distribution f; , and
after this time shifted to the PDF of distribution f;. Under the given observations, the
following equation (25) can be extracted, where x, is the first sample, and x is the
current sample.

k
1_[p(x,, fo) ,no change; hypothesis H,
p(x) = g 0 .
[1 o] | peuf). change hypothesis ,

n=0 n=m

The challenge is now to approximate the potential change point time m and decide
between the hypothesis H, and H; based on the behavior of QNI. A good solution for
this problem can be found in [9] which adopts the minimax approach. From [9] the
conditional expected delay is defined:

.(25)

Epy[(Ny—m+ 1D In=01,..,m—1]. (26)

The minimax performance criterion is given by its supremum taken over. Specifically,
the worst-case detection delay is estimated as:

D, (1) = supess supEy [(t — k + 1)T|F,_,]. (27)

nz1

Where x* = max{x, 0} and the False Alarm Rate (FAR) is defined in [12] as:

FAR(7) =

G

A. Chalvatzaras 56

Adaptive UxV Routing Based on Network Performance

where E,[t]| defines the expected time between false alarms

Log-likelihood ratio at time n is defined by:

_ p(x(n), fo) _ of (x—p)? (x—pp)?
L,(n) = ln—p(x(n),fl) = lna—02 + 2012 + 2002 .(29)

and S(n) is defined as the cumulative summation of the log-likelihood ratios from 0 to n:

S(n) = ZLx(k). (30)
k=0

Under the Lorden criterion, the goal is to find the optimal solution to equation (27). This
solution was determined in [13] and it is given by the CUSUM test proposed in [23]. The
optimal stopping time of change point detection is given by:

n
T = min {n >1, 1r2kas)§lz L,(i) = a}, 31)
i=k
where a is the detection threshold

In the following Figure 29, is illustrated the behavior of log-likelihood ratio, when there is
a change from good network state to bad network state.

1 10 - —
// N
09 1 S \
8 / \
4 X
08 1 / \
/ \
07t 1 g /
7 X
086 = ,/ \
/; 4 // \\
Z 3 @
Zos : P %
= ” /
0.4 [2 2 \
e N\
0.3 0 F 4 %
\
0.2 \\
2 \
01 \
X
) 4
5000 10000 15000 0 5000 10000
Timestep t Timestep t

Figure 29: Log-Likelihood Ratio Behavior

A. Chalvatzaras 57

Adaptive UxV Routing Based on Network Performance

5.3.3. Discounted Secretary problem (DSP)

When the UxV transits from the active state to the passive state, it cannot stay passive
forever, because it has a hard limit for sending messages to GCS in order to report that
its alive. This limitation does not only apply to the UxV, but also for the GCS; a GCS
cannot leave a UxV with no control messages for a long time. TOCP introduced in
section 5.3.2 optimally picks the moment, that the UxV’s telemetry will transit from
active to passive state. A finite horizon problem was applied in the pausing state. A
discounted secretary problem was assumed in which the QNI measurements are
treated as ‘candidates’ for the secretary position. DSP shall stop if the best candidate is
selected prior to the deadline of the pausing period. In other words, it is used stopping
rule that will maximize the probability of choosing the best/maximum QNI value x;.
Discounted factor works a penalty for every timestep that DSP do not conclude to the
optimal stopping time.

A. Chalvatzaras 58

Adaptive UxV Routing Based on Network Performance

6. PERFORMANCE EVALUATION

6.1 Experimental Setup

Approaching the problem effectively, there should be an experimental scenario, in order
to have unbiased, accurate and representative data. The most common technique is to
run a robotics simulator, in order to simulate the behavior and the sensors of a UxV,
replay dummy network measurements, execute the experiment on the given
environment and finally get the results as an output. In contrast to the usual practice of
simulating the UxV and the network, in this thesis live UxV and network data were used.

In order to explain further the given approach, there is Figure 30. Figure 30Error!
Reference source not found. is an abstract representation of the experimental setup.

» o

/
A
I
.
e
4

\ UxV
. (Turtlebot) L. /

. e
. - P -~

Figure 30: Abstract Representation of Experimental Approach

6.1.1. Communication Schema

Messages like movements commands should be passed from GCS to TurtleBot.
Communication between GCS and TurtleBot is not direct. The messages first pass
through Apache Kafka, then received by Raspberry Pi and finally are served to the
corresponding TurtleBot nodes. The need for an intermediate messaging system
between GSC and Raspberry exists because there is not a default ROS server which
can accept messages directly from the GCS (see Figure 33). Apache Kafka fills this
communication gap. Messages between GCS and Raspberry Pi are in JSON format.
Messages between Raspberry and TurtleBot are in various JSON style formats. The
messages that should be given to TurtleBot in order to move, has to be received from
cmd_vel topic and be in Twist format. Figure 31 and Figure 3232 illustrate a JSON
formatted movement command and a Twist formatted movement command
respectively.

A. Chalvatzaras 59

Adaptive UxV Routing Based on Network Performance

{

‘orientationz’: 0,
‘orientationx’: 0,
‘orientationy’: 0,
‘orientationw”: 0,
‘positionx ”: 0,

‘positiony ”: 0,

‘tst’: 2019-02-08 11:31:47°

Figure 31: JSON message example for movement to specific point.

twist:
twist:
linear:
x: 0.0
y: 0.0
z: 0.0
angular:
x: 0.0
y: 0.0
z: 0.0
covariance: [0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0]

Figure 32: Twist message type example.

In the following Figure 3333 is illustrated an abstract representation of the

communication schema.

A. Chalvatzaras

60

Adaptive UxV Routing Based on Network Performance

Publishing and
subscribing to
desired Kafka topics.
lMessages are
formatted as 150N

Publishing and
subscribing to
desired Kafka topics.
Messages are
formatted asz 150N

Publishing and
subscribing to
TurtleBot topics.
Messages have
various formats.

Figure 33: Abstract Communication Schema.

6.1.2. Measuring the network

As mentioned in section 5.3.2, it is critical to extract network information (PER, SNR, Q)
in order to calculate QNI. For this reason, an algorithm for extracting these values was
made. The source code can be found in Error! Reference source not found. by f
ollowing the GitHub link listed. This algorithm executes the default ping command and
iwconfig installed in UNIX systems. By parsing the output of these commands, the
aforementioned network quality metrics can be extracted. The algorithm takes as input
the interval between sending packets, address to ping (in this case the Access Point of
the mission), size of the packet to send and the wireless interface of the UxV.
Afterwards it transmits the extracted network quality data through Apache Kafka to the
GCS, in a JSON formatted message. The messages carrying these data are considered

as high priority messages and their transmission is never paused.
Snapshots of the code, can be found bellow.

A. Chalvatzaras

Adaptive UxV Routing Based on Network Performance

#run ping command
cmdl ='ping' + "' + str(host) + ' -c ' + str(count) + ' -s ' + str(size) + ' -i ' + str(interval)
+] _ql

commandl = subprocess.Popen(cmd1l.split(),stdout=subprocess. PIPE)
rawoutputl = commandl.communicate()

#check if network is ok

if rawoutput1[0] ==""
print "Waiting to reconnect..."
time.sleep(3)
continue

outputl = rawoutput1[0].split("\n")
outputl = filter(None, outputl)
del output1[0]

del output1[0]

packets = output1[0].split(’,)
pnumbers = re.findall(\d+',output1[0])

iwconfout = os.popen(‘iwconfig %s' % interface).readlines()

Figure 34: Running ping, iwconfig commands and receiving their output

x = Record(sent, received, loss, quality, level, str(millis))
njson = json.dumps(x.__dict_)

print njson

Figure 35: Creating and sending to Apache Kafka a JSON message carrying the network quality

data

A. Chalvatzaras

62

Adaptive UxV Routing Based on Network Performance
6.1.3. Telemetry Data

While the UxV is in the passive state all transmissions regarding telemetry data except
the network quality data and the UxV'’s location data are paused for a period of time,
until it is decided to resume. But what exactly are these telemetry data?

The following Table 6 shows the types of telemetry data and their priority per type:

Telemetry Data Type Priority (Importance)
Network Quality High
TurtleBot’s Battery Level Low
Memory Consumption Low
CPU Consumption Low
CPU Temperature Low
TurtleBot’s Location High

Table 6: Telemetry Data Types and their priorities

Network data are crucial because by reading these, TOCP and DSP can decide on-line
about the UxV’s state transition as mentioned in section 5.3.2. All the other data except
TurtleBot’s location data are considered as low priority data. TurtleBot’s location is a
critical piece of information, because the GCS should know anytime where the UGV is
inside the field of the experiments, in order to modify its behavior, take photos etc.

JSON formatted messages of the aforementioned data types can be found bellow.

"orz": 0.0,

"orx": 0.0,

"ory": 0.0,

"orw™: 0.0,

"posx": 0.0,

"posy": 0.0,

"tst": "2019-02-08 11:31:47",

"latency”: "12312324124" //millis from 1970

Figure 36: TurtleBot's Position Data Message

A. Chalvatzaras 63

Adaptive UxV Routing Based on Network Performance

{
"battery": 150.0,

"ts": "2019-02-08 11:43:54",
"latency": "12312324124" /Imillis from 1970

}

Figure 37: TurtleBot's Battery Level Data Message

{
"ts'": "2019-02-08 11:43:54",

"memory": 1.3,
"latency”: "12312324124" //millis from 1970

}

Figure 38: Memory Consumption Data Message

{
"cpu": 14.5,
"ts'": "2019-02-08 11:43:54",
"latency”: "12312324124" //millis from 1970

}

Figure 39: CPU Consumption Data Message

"loss™: 0.0,

"received": 0,

"ts": "2019-02-08 11:43:54"

"quality": 0,

"level™: 0,

"sent": 0,

"latency™: "12312324124" //millis from 1970

Figure 40: Network Quality Data Message

{

"meantemp": 41.3,
"ts": "2019-06-05 10:49:53",
"latency": "1559720993088"

¥

Figure 41: CPU Temperature Data Message

The code of ROS Nodes that implement this functionality can be found in Error! R
eference source not found. by following the GitHub listed there.

A. Chalvatzaras 64

Adaptive UxV Routing Based on Network Performance
6.2 Experiments and Results

An experimental evaluation is reported in order to compare the performance of the
implemented framework. TurtleBot was used for the executed experiments for two
applications:

¢ Following a trajectory reaching a goal point. (Mission A)
¢ Exhaustive scanning of a room. (Mission B)

For both mission categories, user gives the desired trajectory points, creating a path,
that the UxV should follow in order to reach its final destination. In the following Figure
42 the UxV, the map, and the user-given trajectory for the two missions are illustrated.
These screenshots were taken, while the TurtleBot was executing a live mission. The
experiments were conducted in a classroom and a corridor of the University of Athens.

I (N 3y &

~'l L. |

—

Mission B- Starting Point Mission B- End Point

Figure 42: Mission A and Mission B Real-Time lllustration

100 runs of 10 minutes duration were performed and each run involved more than 100
observations for every integrated TurtleBot sensor. Four different policies of decision
were adopted, in order to build the comparative assessment:

¢ No-policy, meaning that the UxV always sent and receive messages, with no
concern of the network conditions.

e A heuristic threshold-based model. In this model the transmission of messages
and telemetry stops when QNI falls under the interval of [0.4, 0.5].

e A TOCP model which applies a change detection policy.
e ATOCP-DSP model.

In the following Figure 43, Figure 44, Figure 45 and Figure 46 the QNI and PER
performance of the four policies is plotted regarding Mission 1 — Path following. In
Mission 1 there are two intervals that the network has very poor quality. These intervals
are [35-45] and [75-90] and exist in all four different policies. There is a difference
though regarding the TOCP-DSP policy. While for Threshold policy, No-policy and only

A. Chalvatzaras 65

Adaptive UxV Routing Based on Network Performance

TOCP policy the QNI reach values less than 50%, for the TOCP-DSP policy QNI is
close to 68%. PER maximum values per policy are:

e No-policy: 25%
e Threshold: 45%
e Only TOCP: 15%
e TOCP-DSP: 10%

These maximum values are reached in the aforementioned intervals of poor network
quality. The gain of PER with the application of TOCP-DSP policy is up to 20%. TOCP-
DSP policy is more efficient that the only TOCP policy because the “pausing” period is
not only adaptively activated, but also adaptively deactivated. TOCP-DSP related to
PER reaches from 20% up to 70% better results.

100

g0

T

a0

T

QNI

80 -

40 |

........ _‘-.:.w-["ulu._-.
TOCP-DRP

a0 1 1 1 | 1 1 | 1 1]
0 10 20 30 40 50 60 70 80 80 100

Timestep ¢

Figure 43: TOCP-DSP vs No-Policy regarding QNI in Mission 1- Path Exploration

A. Chalvatzaras 66

Adaptive UxV Routing Based on Network Performance

QNI

QNI

100 -

m_

70

-------- Theeashold = I
TOCP-DREP B B

a0 1 I I L L L 1 1 1 I
0 10 20 a0 40 50 B0 70 &0 a0 100

Timestep

Figure 44:TOCP-DSP vs Threshold Policy regarding QNI in Mission 1- Path Exploration

100 -

50 -
ceavesns TOOP :
— T P-DRE
40 1 1 1 1 1 1 1 1 1 1

i} 10 20 30 40 50 60 70 80 80 100
Timestep

Figure 45:TOCP-DSP vs TOCP-Only Policy regarding QNI in Mission 1- Path Exploration

A. Chalvatzaras

67

Adaptive UxV Routing Based on Network Performance

45

Mao-Polley .
an F|— — Threashold r|_
— OO Jl
covees TOOP-DREP
35 F H *

30

25 |

FER

20

I :': -:']
3N ’Al ;’\ AJ, ;'ll' i IJ' ri| : Nl
R ;'l.;l."\j.-‘_."ri '. .
T0 80

a0 60 a0 100

Timestep §
Figure 46: PER of all four policies in Mission 1- Path Exploration

In the following Figure 47, Figure 48, Figure 49 and Figure 50 the QNI and PER
performance of the four policies is plotted regarding Mission 2 — Exhaustive Scanning.
Mission 2 was executed inside a classroom of University of Athens. Because of the
indoor space there are many obstacles and walls, that render the finalization of the
mission harder than Mission 1.

QNI mean values for Mission 2 polices:
e No-policy: 68.4446
e Threshold: 70.8197
e Only TOCP: 65.8525
e TOCP-DSP: 76.3498
PER maximum values for every policy:
e No-policy: 30%
e Threshold: 20%
e Only TOCP: 20%
e TOCP-DSP: 10%

From the above data is shown that the TOCP-DSP policy, outperforms the rest of the
policies, not only regarding PER, but also regarding network quality.

A. Chalvatzaras 68

Adaptive UxV Routing Based on Network Performance

{
Il |||| / W
_Il — I | ||J | 'I Il
" H'I | -Ill ll‘JI || al! |5r.‘ll_ ||
R AN o ﬁ W i
Z ',ﬁ} | H] f""' ERniie
i I y l| 'q

&

ol i
........ No-Podicy
TOCP-DRP
55 I | ! 1 1 1
0 20 A0 B0 80 100 120

Timeatep

Figure 47:TOCP-DSP vs No-Policy Policy regarding QNI in Mission 2- Exhaustive Scanning

o0
| |”|
B85 -1 |
il A |(||| Ll
= 1 4 : Vl /| " |
75 | Al |: 1 \ ll |'."
= .|"-J.: Vol |1 ‘ I || i " ||
= Al VR | 1; |
71 : I|I| |J i _.::: ;::f|| {|1| |||- 1]:5" L ._-"-lﬂil'l'||| __ ::E ']‘[I-‘ ljl L! lIIII I.-" LJ hi}
851 ! WIS
RYRE
80 - --- Thiressheld v | q
550 2:3 4:.'] »aln BIIZI |Euj |2|c-

Timestep £

Figure 48:TOCP-DSP vs Threshold Policy regarding QNI in Mission 2- Exhaustive Scanning

A. Chalvatzaras 69

Adaptive UxV Routing Based on Network Performance

05

o0

QNI

[DCP-DRP

45 ! L ! ! L]
0 20 40 60 BD 100 120

Tirmestep !

Figure 49:TOCP-DSP vs TOCP-Only Policy regarding QNI in Mission 2- Exhaustive Scanning

30 -
25 |
20 . |
!
|
=RL] I
- I i
.’1 I
T f | L
I i | !
B ol O TRV I N TR YT
eeee- TOOPTRP |'] [|| .||| il f il A |l il !I | i :
o N AEE il 'I'k H EEIR I [T I 1 il L3 |i LT
0 20 A &0 BO 100 120

Timveslep ¢

Figure 50: PER of all four policies in Mission 2- Exhaustive Scanning

In the following Figure 51 and Figure 52 latency of No-policy and TOCP-DSP is plotted
regarding Mission 1 and Mission 2 respectively. As it is shown TOCP-DSP policy
achieves better results in both missions. For Mission 1 TOCP-DSP outperforms No-
policy by 24%. Furthermore TOCP-DSP achieves a constant maximum value less than
9% of original latency of the messages.

A. Chalvatzaras 70

Adaptive UxV Routing Based on Network Performance

16 -
15
14
-
213 - FR
. |||"- A .
12 - i o A__.. :--_J‘I : : i llﬁl.. i J.| II"|| : ,u"l I'. A /
dr e e J‘ml_f__-’-\;a’"f\"\r'w’ﬂ’\b\)ll\f\" sl A
11
-------- NowPolley
TOCP-DRP
10 1 1 | 1 | 1 1 1 1]
0 10 20 30 40 a0 B0 70 80 80 100

Timestep ¢

Figure 51: TOCP-DSP vs No-Policy policy regarding latency (ms) in Mission 1- Path Exploration

16

14

13

Latency (ms)

ainfl I
] :_ |"|.
S A

12

"

10 . ;

| Ahith Y Goa o
.m_u,‘l..\v,,q-\-._;,_-_\ﬁr\ﬁ.,n\l{ ..-—f\m!_”_‘,\; b s,

60 100 120
Timestep ¢

Figure 52: TOCP-DSP vs No-Policy policy regarding latency (ms) in Mission 2- Exhaustive

Having this data, as one can see,

Scanning

the double optimal stopping game (TOCP-DSP)

based on network performance, outperforms regarding PER, QNI, and latency not only

the default UxV policy (No-policy),
Threshold).

A. Chalvatzaras

but also the other tested policies (TOCP-Only,

71

Adaptive UxV Routing Based on Network Performance

7. CONCLUSION

In this thesis a framework that implements a network quality based decision-making
process is developed. This framework adapts the information flow between the UxV and
the Ground Control Station (GCS) based on network quality metrics (such as packet
error rate etc.) and the principals Optimal Stopping Theory (OST). The goal of this
framework is to ensure the optimal delivery of critical information from UxV to GCS and
vice-versa. If the network behaves optimally then there is no limitation on the
information flow, but if the network is saturated or overloaded restriction rules are
applied. The proposed model introduces two optimal stopping time mechanisms based
on change detection theory and a discounted reward process. The performance
evaluation showed the successful delivery of messages in poor network conditions and
the moderate production of messages so as not to burden an already saturated
network.

A. Chalvatzaras 72

Adaptive UxV Routing Based on Network Performance

ABBRIVIATIONS - ACRONYMS

IoT Internet of Things

UxV Unmanned Vehicle, x can stand for aerial, ground or sea
uGv Unmanned Ground Vehicle

GCS Ground Control Station

OST Optimal Stopping Theory

ROS Robotic Operating System

SLAM Simultaneous Localization and Mapping

CUSUM CUmulative SUM

DMP Decision-Making Process

PER Packet Error Rate

TOCP Time-Optimized Change-Point decision making process
QNI Quality of Network Indicator

SNR Signal-to-Noise Ratio

FAR False Alarm Rate

GoP Group of Pictures

WSN Wireless Sensor Networks

DSP Discounted Secretary Problem

A. Chalvatzaras

73

Adaptive UxV Routing Based on Network Performance

APPENDIX |

The source code of this thesis can be found by following the link:
https://github.com/Thanoschal/thesis

A. Chalvatzaras 74

https://github.com/Thanoschal/thesis

Adaptive UxV Routing Based on Network Performance

REFERENCES
[1] “TurtleBot2” [Online]. Available: https://www.turtlebot.com/. [Accessed: 09-Jul-2019]
[2] “Raspberry Pi hardware — Raspberry Pi Documentation” [Online] Available:

https://www.raspberrypi.org/. [Accessed: 12-Jul-2019]
[3] “Apache Kafka” [Online] Available: https://kafka.apache.org/. [Accessed: 26-Jun-2019]
[4] F. Fu and M. van der Schaar, “Dependent optimal stopping framework for wireless multimedia

transmission,” 2010 IEEE Int. Conf. Acoust. Speech Signal Process., pp. 2354-2357, 2010.
[5] A. Martinez and E. Fernandez, Learning ROS for Robotics Programming. Packt Publishing, 2013.
[6] J.M.O’Kane and J. M. O. Kane, A gentle introduction to ROS. 2013.

[7] “Sensors supported by ROS.” [Online]. Available:
http://wiki.ros.org/Sensors#Sensors_supported_by ROS. [Accessed: 09-Jan-2018].

[8] T. Ferguson, Optimal stopping and applications. Mathematics Department, UCLA.
[9] E. S. Page, “Continuous Inspection Schemes,” Biometrika, vol. 41, no. 1/2, p. 100, 1954.
[10] A. bert N. Shirayaev and A. B. Aries, Optimal stopping rules, no. 8. 2008.

[11] G. Lorden, “Procedures for Reacting to a Change in Distribution,” Ann. Math. Stat., vol. 42, no. 6,
pp. 1897-1908, 1971.

[12] J. Unnikrishnan, V. V. Veeravalli, and S. Meyn, “Least favorable distributions for robust quickest
change detection,” IEEE Int. Symp. Inf. Theory - Proc., pp. 649—653, 2009.

[13] G. V. Moustakides, “Optimal Stopping Times for Detecting Changes in Distributions,” Ann. Stat.,
vol. 14, no. 4, pp. 1379-1387, 1986.

[14] A. B. Mcdonald, “Survey of Adaptive Shortest-Path Routing in Dynamic Packet-Switched Networks
1 Introduction,” pp. 1-29, 1997.

[15] Min Chen, V. C. M. Leung, Shiwen Mao, Yang Xiao, and I. Chlamtac, “Hybrid Geographic Routing
for Flexible Energy—Delay Tradeoff,” IEEE Trans. Veh. Technol., vol. 58, no. 9, pp. 4976—4988,
Nov. 2009.

[16] S. Giordano, I. Stojmenovic, and L. Blazevie, “Position Based Routing Algorithms for Ad Hoc
Networks: a Taxonomy,” Ad Hoc Wirel. Netw., pp. 103—-136, 2003.

[17] Y. Cao and Z. Sun, “Routing in delay/disruption tolerant networks: A taxonomy, survey and
challenges,” IEEE Commun. Surv. Tutorials, vol. 15, no. 2, pp. 654-677, 2013.

[18] H. M. Lin, G. Yu, A. C. Pang, and J. S. Pathmasuntharam, “Performance study on delay tolerant
networks in maritime communication environments,” Ocean. IEEE Sydney, Ocean. 2010, 2010.

[19] C. Anagnostopoulos and S. Hadjiefthymiades, “Delay-tolerant delivery of quality information in ad
hoc networks,” J. Parallel Distrib. Comput., vol. 71, no. 7, pp. 974-987, 2011.

[20] K. Panagidi, C. Anagnostopoulos, and S. Hadjiefthymiades, “Optimal grouping-of-pictures in iot
video streams.”

[21] C. Anagnostopoulos and S. Hadjiefthymiades, “Optimal, quality-aware scheduling of data
consumption in mobile ad hoc networks,” J. Parallel Distrib. Comput., vol. 72, no. 10, pp. 1269—
1279, 2012.

[22] C. Anagnostopoulos and S. Hadjiefthymiades, “Advanced Principal Component-Based
Compression Schemes for Wireless Sensor Networks,” Acm Trans. Sens. Networks, vol. 11, no. 1,
pp. 1-34, 2014.

[23] E. S. Page. 1971. Procedures for reacting to a change in distribution. Ann. Math. Statist.42, 6
(1971), 1897-1908.

A. Chalvatzaras 75

