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ABSTRACT

Mobile  devices  have  limited  processing  power,  memory,  and  battery  life;  thus,
optimizing  mobile  applications  for  better  performance  is  critical  for  their  successful
deployment. However, since optimization requires high-level technical expertise, it is a
daunting  task  for  an  application  developer.  Therefore,  automatic  code  optimization
techniques and tools are widely used to achieve high performance in applications for
mobile devices. An Android application is written in the Java language and a well-known
optimizer for Android applications is ReDex, operating on the bytecode level. It statically
analyzes  the  application  and,  based  on  that  information,  it  applies  optimizations
wherever possible. However, ReDex’s static analysis is strict and conservative, and thus
it may miss various optimization opportunities. For that reason, in this thesis we attempt
to  enhance  ReDex’s  static  analysis  and  the  optimization  passes  it  runs  on  an
application. We use Doop, which is a framework for pointer, or points-to, analysis of
Java programs, and runs deeper and more detailed analysis, providing us with more
information that we can leverage. Our main focus is the method inlining optimization
and how we can further expand it so that it can also apply to virtual methods.

SUBJECT AREA: Static program analysis and program optimization

KEYWORDS: static program analysis, doop framework, program optimization, ReDex,
method inlining



ΠΕΡΙΛΗΨΗ

Οι  κινητές  συσκευές  έχουν  περιορισμένη  υπολογιστική  ισχύ,  μνήμη,  και  διάρκεια
μπαταρίας. Επομένως, η βελτιστοποίηση των εφαρμογών για καλύτερη απόδοση είναι
κρίσιμης σημασίας για την επιτυχημένη χρήση τους. Όμως, η βελτιστοποίηση σε υψηλό
επίπεδο  απαιτεί  μεγάλη  εμπειρογνωσία,  γεγονός  που  την  καθιστά  μια  δύσκολη
πρόκληση για  τους  προγραμματιστές.  Συνεπώς,  τεχνικές  και  εργαλεία  για  αυτόματη
βελτιστοποίηση κώδικα χρησιμοποιούνται ευρέως για την επίτευξη καλύτερης απόδοσης
για  εφαρμογές  κινητών  συσκευών.  Μια  εφαρμογή  Android  γράφεται  στη  γλώσσα
προγραμματισμού Java και ένας πολύ γνωστός βελτιστοποιητής για τέτοιες εφαρμογές
είναι  το ReDex, το οποίο λειτουργεί  σε επίπεδο ενδιάμεσης αναπαράστασης κώδικα
(bytecode).  Αναλύει  στατικά  την  εφαρμογή,  και  με  βάσει  αυτή  την  πληροφορία,
εφαρμόζει βελτιστοποιήσεις όπου κρίνει ότι είναι απαραίτητο και δυνατό. Παρόλα αυτά,
η στατική ανάλυση του ReDex είναι αυστηρή και συντηρητική, επομένως, χάνει αρκετές
ευκαιρίες για βελτιστοποίηση. Για το λόγο αυτό, στα πλαίσια αυτής της διπλωματικής
εργασίας,  επιχειρούμε  να  ενισχύσουμε  τη  στατική  ανάλυση  του  ReDex  και  τις
βελτιστοποιήσεις  που  εφαρμόζει  στην  εφαρμογή.  Χρησιμοποιούμε  το  Doop,  ένα
εργαλείο που αναλύει προγράμματα γραμμένα σε Java και μας δίνει διάφορες χρήσιμες
πληροφορίες, όπως για παράδειγμα, σε τι αντικείμενα στη μνήμη μπορεί να δείχνει μια
μεταβλητή  (pointer  analysis).  Το Doop  εκτελεί  βαθύτερη  και  πιο  λεπτομερή  στατική
ανάλυση και μας παρέχει περισσότερη πληροφορία για το πρόγραμμα που μπορούμε
να  την  εκμεταλλευτούμε  για  καλύτερα  αποτελέσματα.  Κύριος  στόχος  μας  είναι  να
εστιάσουμε συγκεκριμένα στο method inlining και πώς μπορούμε να επεκτείνουμε την
υλοποίηση του ReDex, ώστε να μπορεί να εφαρμοστεί και για virtual μεθόδους.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Στατική ανάλυση και βελτιστοποίηση προγραμμάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ:  στατική ανάλυση προγραμμάτων, doop framework, βελτιστοποίηση
προγραμμάτων, ReDex, method inlining
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PREFACE

This thesis attempts to enhance ReDex's method inlining optimization pass, the Android
bytecode optimizer developed at Facebook, based on the static analysis of the Doop
framework. It  was developed as a MSc thesis in the Department of Informatics and
Telecommunications,  at  the  University  of  Athens,  between  July  2018  and  February
2019.



Integration of Doop's static analysis to ReDex optimizer 

1. INTRODUCTION

There  are  many methods to  automate  program optimization,  ranging from rewriting
high-level language code up to completely rewriting the program’s machine code. Many
optimizations are nowadays performed by compilers, after the source code has been
compiled to an intermediate representation. This is because lower-level languages have
simpler expressions that are easier to optimize. After a sequence of transformations,
they  produce  a  semantically  equivalent  output  program  that  uses  fewer  resources
and/or  executes  faster.  However,  it  is  rare  that  the  compiler  alone  will  provide  the
optimal outcome, so, for even better results, there are several optimizers, which focus
specifically  on various kinds of  optimizations.  Commonly, an  optimizer  analyzes the
code and generates useful information to conclude if an optimization is possible without
altering the semantics of the program. Most of these optimizers, including ReDex, an
already  established  bytecode  optimizer,  developed  at  Facebook,  run  procedural
routines to analyze the code, aiming in finding patterns that satisfy particular criteria of
each optimization; such an analysis is difficult to expand and maintain. On the other
hand,  Doop  is  a  Datalog-based  framework  and  the  analyses  logic  is  declaratively
written,  which  is  its  greatest  advantage,  compared  to  alternative  pointer  analysis
implementations. Also, Doop is much faster, and scales better. Doop offers a rich set of
analyses and is more precise in handling various Java features, even reflection, than
alternatives. In this thesis we aim to integrate Doop’s sophisticated analysis into ReDex
to enhance its method inlining and take advantage of more optimization opportunities,
and  further  enrich  it  by  also  dealing  with  polymorphic  callsites  and  virtual  method
inlining. We evaluate our work using well-known Android applications, and also compare
how other ReDex passes behave after our enhanced optimization pass.

The rest of this thesis is organized as follows:

 In Chapter 2 we give some background information about Android, the ReDex
framework, static program analysis, and Doop.

 In Chapter 3 we provide technical details about our approach.

 In Chapter 4 we present our experimental evaluation and the results of our work.

 In Chapter 5 we summarize this thesis, and provide conclusions.
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2. BACKGROUND

This section provides useful information about the Android operating system and the
format of the applications it hosts, the ReDex optimization tool, and the static analysis
framework that we used.

2.1 Android and Dalvik/ART Virtual Machines

Android [1] is a Linux-based, open source operating system developed by Google and it
was  initially  used  mainly  for  smartphones  and  tablets.  Android  is  one  of  the  most
popular computing platforms, and it’s also the mobile platform with the greatest diversity
of  devices.   However, its  use is  more extensive nowadays,  especially  with  the IOT
growth, and it also finds application in cars, electronic devices in homes and offices, and
other smart gadgets and wearables, such as watches.

Android applications are developed using Android Studio, the official IDE for Android
software developers. When the application is ready, developers can build it into an APK
file and sign it for release. An APK (Android Package) file is an archive that contains all
the  necessary  information  for  an  application  to  run  on  an  Android  device.  Such
information includes the source code which is compiled into .dex files, manifest files,
platform-dependent  compiled  code  for  various  platforms,  a  directory  containing
resources, as well as a file containing precompiled resources, and a directory containing
all assets used.

Android applications are commonly written in Java and compiled to bytecode for the
Java virtual machine (JVM), which is then translated to Dalvik bytecode and stored in
.dex (Dalvik Executable) and .odex (Optimized Dalvik Executable) files, as shown in
Illustration 1.

L.Zoghbi                                                                                                               14
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The  Dalvik  Executable  format  is  more  compact  and  benefits  systems  that  are
constrained in terms of memory and processor speed. In particular, JVM stores each
class in an individual .class file. Each class file has a constant pool for strings, method
names, class names, etc. If multiple classes reference the same string, then each .class
file will have a copy of that string in its constant pool. This is not the case with .dex files,
as the Dalvik Virtual Machine (DVM) stores multiple classes in a single .dex file, with a
single constant pool. So, if multiple classes reference the same string, there will only be
one copy of that string in the "global" constant pool for that .dex file.

The DEX bytecode is translated to native machine code via either ART or the Dalvik
runtimes, hence it is independent of device architecture. The Dalvik VM is an Android
virtual machine optimized for mobile devices. The main difference between Dalvik and a
typical  Java VM is  that  the former is  register-based while  the latter  is  stack-based.
Register-based VMs require fewer instructions and they are generally considered to
exhibit faster startups and have better performance than their stack-based counterparts.
Dalvik is a JIT (just-in-time) compilation based engine, meaning that compilation is done
on  demand  at  runtime;  all  the  .dex  files  are  converted  into  their  respective  native
representations only when it is needed. However, that process is repeated every time
the application runs, affecting the performance and the battery life of  the device. In
order  to  tackle  that,  beginning  with  Android  4.4,  ART  (Android  Runtime)[2]  was
introduced as a runtime and since Android 5.0 it has completely replaced Dalvik. ART is
the managed runtime used by applications and some system services on Android. ART
and  Dalvik  are  compatible  runtimes  running  Dex  bytecode,  so  apps  developed  for
Dalvik  should  work  when  running  with  ART.  ART  introduces  ahead-of-time  (AOT)
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compilation  to  entirely  compile  the  application  bytecode  to  machine code upon the
application  installation.  ART largely  increases the  battery  performance compared  to
DVM since the bytecode is not interpreted every time and also improves application
performance, as it reduces the startup time and it makes the execution smoother and
faster. However, it requires more storage space on the device as well as much more
time to install the application. In order to tackle the aforementioned problems, Android
7.0 reintroduced JIT Compilation with code profiling along with AOT, and an interpreter
in the ART, thus making it hybrid. The JIT compiler complements ART's current ahead-
of-time (AOT) compiler and improves runtime performance, saves storage space, and
speeds application and system updates[3]. It also improves upon the AOT compiler by
avoiding system slowdown during  automatic  application updates or  recompilation  of
applications during over-the-air updates.

 

2.2 ReDex

ReDex  is  an  Android  bytecode  optimizer  originally  developed  at  Facebook  [4].  It
provides  a  framework  for  reading,  writing,  and  analyzing  .dex  files,  and  a  set  of
optimization passes that use this framework to improve the bytecode. At the time of the
development of this thesis, ReDex only supported files with version 035 of the format,
which is equivalent to Android 6 and prior versions. ReDex is conceptually similar to
ProGuard [5], the default Android optimizer, in that both optimize bytecode, but ReDex
operates  on  .dex  files,  whereas  ProGuard  on  .class.  Operating  on  .dex  is  more
convenient  and  gives  the  opportunity  to  conduct  more  advanced  and  precise
optimizations. For example, we can have knowledge of the number of virtual registers
used by a method that is an inlining candidate, we are able to control  the layout of
classes within a .dex file, and it gives the opportunity for global, interclass optimizations
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across the entire binary, rather than just doing local class-level optimizations. However,
ReDex  works  alongside  with  ProGuard,  as  many  ReDex  passes  require  ProGuard
configurations in order to be applied. For example, one of the optimizations that ReDex
performs is to remove interfaces that have only one implementation. However, when
there is a use of that interface through reflection or constructs like instanceof, then this
is an unsafe removal, which should be prohibited by a ProGuard keep rule. Currently,
ReDex provides support for simple keep annotations only for classes and interfaces.

An optimization pass is defined as a subclass of the abstract class Pass. The execution
of passes happens in two steps. First, method Pass::eval_pass() is executed for each
optimization, and then method Pass::run_pass() is executed. This allows each pass to
evaluate  its  rules  in  terms of  the  original  input,  without  other  passes  changing the
identity of classes, since during the second phase the order of passes affects what each
pass encounters. The optimization pipeline is organized as a series of stages, entering
with the original .dex at the first stage and exiting with the optimized .dex at the final
one.  Each stage in  the pipeline can be thought  of  as an independent  “optimization
plugin” that operates on the transformed bytecode from the previous stage, which gives
us the opportunity to conduct multiple unrelated transformations in a row to produce the
final,  fully optimized outcome. ReDex offers a large variety of optimizations, but the
subset and the order of the passes that are actually performed on an APK are specified
by  the  configuration  of  each  execution.  Nevertheless,  the  order  in  which  some
optimizations are run matters significantly in some cases, thus we may observe that
some passes may be defined more than one time in  the configuration.  Additionally,
some optimizations  completely  rely  on  running  along  with  others,  in  order  to  avoid
further conflicts, especially during the type checking phase. For instance, if a pass, such
as method inlining, that produces new bytecode, and thus introduces new registers, is
run,  then  it  is  necessary  to  run  RegAllocPass  afterwards,  which  handles  register
allocation and eliminates redundant move instructions. Moreover, many passes can be
configured in the configuration file, either for correctness or because some have various
features that can be enabled or not, according to what the user wants to achieve and
the depth she wants to reach. For instance, ReDex is quite aggressive about deleting
things it  considers unreachable, but often it  does not know about reflection or other
complex ways an entity could be reached. To ensure ReDex will not delete or rename a
program element that it should not, it can be defined in the configuration file explicitly
and ReDex will ignore any change to it. This is especially useful for methods and fields,
because as mentioned above, classes and interfaces can also be protected through the
ProGuard configuration file. 

When optimizing apps, ReDex mainly aims to either reduce the size of the apk, or
provide faster execution. Regarding the former, one of the first optimizations that were
implemented  targets  replacing  long  human-readable  identifiers  with  any  shorter
placeholder  strings.  This  reduces how many  bytes  are  dedicated to  strings  without
affecting  the  application’s  functionality.  In  general,  fewer  bytes  also  means  faster
download  and  install  times,  and  less  bytecode  also  typically  translates  into  faster
runtime  performance.  All  other  things  being  equal,  less  bytecode  means  fewer
instructions to execute and fewer code pages to fault into memory, which is going to be
a performance improvement for resource-intensive scenarios, like application cold start.
One  of  the  optimizations  that  fall  into  the  latter  category  is  method  inlining,  which
improves execution time by omitting the method call overhead.
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{

  "redex" : {

    "passes" : [

      "ReBindRefsPass",

      "BridgePass",

      "SynthPass",

      "FinalInlinePass",

      "DelSuperPass",

      "SimpleInlinePass",

      "PeepholePass",

      "ConstantPropagationPass",

      "LocalDcePass",

      "RemoveUnreachablePass",

      "RemoveGotosPass",

      "DedupBlocksPass",

      "SingleImplPass",

      "ReorderInterfacesPass",

      "RemoveEmptyClassesPass",

      "ShortenSrcStringsPass",

      "RegAllocPass",

      "CopyPropagationPass",

      "LocalDcePass"

    ]

  }

}

Illustration 4: Default ReDex configuration

"SimpleInlinePass": {

    "throws": true,

    "multiple_callers": true,

    "no_inline_annos" : [

      "Lcom/fasterxml/jackson/databind/annotation/JsonDeserialize;"

    ],

    "black_list": [],

    "caller_black_list": []

  }

Illustration 5: Configuration of SimpleInlinePass
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2.3 Method inline benefits and ReDex’s approach

Method inlining is an optimization technique used in compilers, that consists of inserting
the complete body of a method wherever that method is used in the application. This
optimization is one of the most common ones, as it comes with a handful of benefits. To
begin with, it eliminates function call overhead and can provide significant speedup in
programs in which small routines are called frequently. Another significant advantage of
inlining is  that  afterwards various intraprocedural  optimizations can also be applied.
However, it must be used frugally, as too much inlining results in larger code size, which
may be more inefficient, especially for mobiles with limited storage, than just calling the
method in the first place. Also, if the final number of registers in the new caller context is
big enough, then register pressure may occur. Most compilers won’t inline a function, if
its body is too large or if it has an excessive number of parameters. Another difficulty
with method inlining is handling virtual methods. They can be inlined when the compiler
or optimizer knows the exact type of the target object of the virtual function call, but that
is not the general case, as virtual methods are used to achieve runtime polymorphism
and are resolved during execution.

 

ReDex handles method inlining as one of the optimizations it applies on the bytecode,
called SimpleInlinePass. It only concerns small and non-virtual methods, or virtuals that
can be devirtualized beforehand.  Initially, the pass gathers all  the inline candidates,
which are mainly selected based on their code size, or if they are explicitly annotated to
force inline. Another criterion is if the method can be deleted or not, because afterwards
the pass deletes  the  definition  of  all  the  inlined methods.  Not  all  methods may be
inlined, due to restrictions both for the caller and the callee. For this reason, all  the
candidates are passed to the inliner, which checks in more detail if they can be inlined
without any conflicts, and if so, it eventually performs the optimization. This is based on
the static analysis performed by ReDex, which, thus far, is primitive and rather strict, in
order  to  avoid  runtime  errors.  Some of  the  prerequisites  that  determine  whether  a
method is inlinable are summarized below:

 If  the  callee  is  blacklisted  in  the  configuration  file  the  optimization  does  not
proceed; typically, this is used to prevent deletion of a method that  might be
accessed through reflection.

 If the callee contains a catch block with an external catch type that is not public,
inlining it is not feasible.

 The estimated final size of the caller should not be very large. However, we can
configure the pass to not enforce a method size limit.

 If the callee contains an invoke-super to a different method in the hierarchy, and
the callee and caller are in different classes, inlining an invoke-super off its class
hierarchy would break the verifier.

 All the opcodes in the callee are analyzed to see if there is anything problematic,
like  accessing  a  virtual  method  or  a  field  that  is  not  known to  the  caller.  In
general, any type referenced in the callee body should be accessible in the caller
context too; that means, that we might need to change the visibility of a method
or a field. The problem occurs when a specific type is not known to ReDex, so to
tackle this ReDex has predefined some known final types or well-known ones
with no protected methods. In this case, the invocation is considered optimizable
and the inlining proceeds.
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Also, if a callee is inlined in multiple callsites, then its acceptable code size depends on
the  number  of  them;  if  it  is  being  inlined  in  2  callers,  then  it  can  have  at  most  7
instructions, whereas in the case of 3 callers the limit is 5 instructions. 

One of the easiest cases where SimpleInlinePass comes in handy is that of wrapper
methods. These are typically small methods added to provide a simpler class API to
engineers or  adapt  methods to  accept  different  lists  of  parameters.  This  also might
include simple  accessor  methods (setter/getters)  that  are necessary to  include in  a
class  API  but  that  might  never  even  be  called  during  runtime.  During  the  initial
compilation  of  class  files,  it  isn’t  immediately  obvious  which  of  these  functions  are
superfluous, but by the time we have the initial .dex file, it is trivial to determine which
global optimizations are available.

2.4 Static program analysis

Static analysis is a way to gather useful information about a program without actually
executing  it  and  is  the  cornerstone  of  optimizing  it.  A  very  advantageous  and
fundamental type of static analysis is points-to analysis or pointer analysis [6], which
determines information on the values of pointer variables or  expressions, offering a
static model of a program’s heap. Basically, pointer/points-to analysis tries to answer
“what objects can a variable point to?”. Pointer analysis is a whole-program analysis
with a modest performance cost, and the capability to scale to full realistic programs. A
well-known  and  straightforward  approach  for  points-to  analysis  was  proposed  by
Andersen  [7].  Andersen-style  pointer  analysis  can  be  easily  expressed  as  subset
constraints, inducing inferences of the form “points-to set A is a subset of points-to set
B”. Datalog is a very suitable language to implement such constraints, as it is a logic
programming  language  that  achieves  polynomial  complexity,  meaning  that  every
Datalog program runs in polynomial time, and every polynomial algorithm can be written
in  Datalog.  The  analysis’  logic  is  declaratively  written  and  represented  as  various,
probably recursive, relations that express information about the input program, such as
program instructions, or type system information. Being a logic programming language,
Datalog  is  largely  based on first-order  logic,  which  is  a  mathematic  formalism;  this
allows us to write or enhance precise analyses at a higher level and without having to
worry about the implementation of these algorithms, in terms of efficiency.
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Doop [8] is a versatile points-to analysis framework for Java programs, based on the
use of Datalog for specifying the program analyses. It implements a range of different
algorithms such as context insensitive, call-site sensitive, object-sensitive analyses and
a lot  of  other  variations of  these algorithms.  Also,  it  offers support  for  the complex
semantics of Java, such as cast checking or reflection analysis. Doop is launched by
specifying the type of analysis to run and the directory that contains the executable
(JAR, APK, etc.) to analyze. At first, the facts are generated and imported to a database
and then the specified analysis is run.
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3. IMPLEMENTATION

3.1  ExplicitInlinePass

To apply our pass, named ExplicitInlinePass, we take advantage of ReDex’s existing
application programming interface (API) to manipulate the bytecode and reuse already
implemented components, such as the inliner. In our case, we entirely omit the analysis
performed by ReDex, as our main goal is to bring in external information from Doop,
based on more extensive and precise analysis.

Initially, we parse the input file containing Doop’s InvocationToInline relation, which has
the following format. Each tuple indicates which method definition should be inlined, in
which  caller,  and  at  which  invocation  site  specifically.  In  the  following  example,  ‘0’
indicates  the  first  call  of  the  constructor  in  the  class  initializer  of  class
okhttp3.CacheControl$Builder, and ‘1’ the second call, respectively, as they appear in
the bytecode in terms of original instruction order.

Table 1: Doop output format

<okhttp3.CacheControl: void 
<clinit>()>/okhttp3.CacheControl$Builder.<init>/0 

<okhttp3.CacheControl$Builder: void 
<init>()>

<okhttp3.CacheControl: void 
<clinit>()>/okhttp3.CacheControl$Builder.<init>/1 

<okhttp3.CacheControl$Builder: void 
<init>()>

First of all, we ensure that both the caller and callee are methods with definitions known
to ReDex and we gather them using ReDex’s API. Inlining is performed in a bottom-up
manner, so that each method is fully resolved when it is being inlined to avoid extra
work. Also, we discard tuples that indicate inlining a recursive method or methods that
form a cyclical call chain, as such an action would lead to an infinite loop and ReDex
would  not  terminate  properly.  Regarding  the  recursive  methods,  however,  we  can
handle cases where there is tail recursion, meaning that the recurcive call is the last
instruction of the method body. We perform tail recursion elimination, by transforming
the recursion to a loop, and then we can proceed with inlining that method. In case of
cyclical call chains, we just skip optimizing the callsite where the cycle occurs, and not
the whole call chain. For example, if we have the following sequence of invocations, at
first, C will be inlined in B, and then B will be inlined in A, accordingly. However, A will
not be inlined in C, because at this point a cycle in the call chain is introduced.

A → B → C → A
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Some  inlinable  methods  determined  by  Doop  are  also  considered  so  by  ReDex’s
analysis; we want to ensure that the file parsing mentioned above will take place before
any  other  optimization  pass  makes  changes  to  the  bytecode,  especially
SimpleInlinePass, as it might mess up the invocation order of a method. To illustrate this
with an example, imagine having the following code snippet:

Inside  method  bar,  Doop  will  assume  that  the  invocation  offset  of  bla  is  0.  If
SimpleInlinePass runs first and inlines foo inside bar, then another callsite for bla occurs
first, making our point of interest appear second. If we parse the transformed bytecode
in order to locate the invocation sites retrieved based on the initial bytecode the results
will be inconsistent, inlining bla on the invocation that occurred from foo’s body and not
the  proper  one,  causing  potentially  further  conflicts,  especially  in  case  of  method
overloading where the wrong number and type of parameters are passed. This is why
the whole parsing process described above is carried out during the eval_pass defined
for our optimization. After the inlining is performed by our pass, the definitions of the
inlined methods are deleted so that we do not bloat the bytecode. 

3.2 Virtual method inlining

Polymorphism is one of the most powerful features of object-oriented programming and
in Java it is enabled by class inheritance. Runtime polymorphism arises from method
overriding and requires dynamic method dispatch. When an overridden method is called
through a superclass reference, Java determines which version(superclass/subclasses)
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class A{

    public void foo(int x){

        System.out.println(“x in foo = ” + x);

         bla(x+1);

    }

    public void bla(int x){

        System.out.println(“x in bla = ” + x);

    }

};

class B{

    public void bar(){

        foo(5);

        bla(10); //doop invocation identifier will be 0 here for method bla

    }

};

Illustration 7: Example for parsing Doop's output during EvalPass
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of that method is to be executed based on the type of the object being referred to at the
time the call occurs. Therefore, if a superclass contains a method that is overridden by a
subclass,  then when different  types of  objects are referred to  through a superclass
reference variable, different versions of the method are executed. 

In case an inline candidate is a virtual method, then the Doop analysis will provide us
with the method definitions that are likely to be called at this callsite during runtime. We
cannot always know statically the actual type of the object upon which that method is
called;  thus,  we  should  proceed  with  the  inlining  with  the  assistance  of  guards.
Essentially,  guards  are  if-then-else  blocks  that  check  the  actual  type  of  the
aforementioned object during execution, and, according to that type, the appropriate
method body is run. To delve into more details, the possible types that we have to check
are that of the base class or of any of its subclasses. However, we sort them in order to
first inspect if the object type matches that of the subclass(es) and then the superclass,
as any subclass object  would also match the superclass types,  otherwise.  The first
parameter  passed to  the method at  the original  invocation site  holds the object,  or
alternatively it is the “this” pointer. We use that specific register to check it upon the first
possible  type  with  the  “instanceof”  Dalvik  opcode  and  then  we  proceed  with  an
“if..elseif..else” statement to apply the inlining accordingly. In case the result is true at
runtime, the inlined method of that type will be run, otherwise, the execution flow will
branch to the false-block and the alternative definition will be executed. Also, to tackle
some unsoundness from Doop, if none of the above conditions checks true, then in the
final “else” statement we rewrite the original invocation, so that the app will  be fully
functional,  as  it  was  in  the  first  place.  However,  that  still  does  not  eliminate
unsoundness entirely, because of reflection. For example, imagine loading at runtime a
another subclass, that we have no information about statically; then, the invocation will
call the definition of the base class, which is not the case, as it should be called the
definition of the newly loaded class. Rewriting the original invocation instruction causes
further increase to the size of the APK, because the method definitions are not deleted,
as  it  happens  with  SimpleInlinePass.  However,  RegAllocPass  balances  out  that
increase, because it removes many move instructions that occur during inlining, and
other passes further optimize the altered caller body, removing fields or unnecessary
instructions.

Illustration 8 shows the initial bytecode, with the virtual method call that will be replaced
after our pass. Illustration 9 shows the outcome, after the guarded inlining. Specifically,
it illustrates exactly how the type of the object is checked first, and according to that, the
corresponding method is inlined.
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Illustration 8: Example of virtual method call to be inlined
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It  is  worth  mentioning  that  all  the  execution  paths  that  occur  from  the  additional
bytecode for guarding, should use the same register, in case we have returned values.
This  is  important,  because  later  that  register  will  be  used  at  specific  instructions,
meaning that it should have a specific type. ReDex conducts some verification checks
before repacking the optimized APK and in case of inconsistency, it will  prevent the
transformation; the type of the register would errupt to bottom, meaning that it could be
anything, which breaks the verifier. This is shown in the example of Illustration 9, where
all branches store the result in register v1. Also, the red frame shows how the inilitial
invocation is preserved for safety reasons at runtime. Finally, when we inline all  the
possible target methods to a virtual callsite, we do not delete their definitions afterwards,
as mentioned above. We follow a more conservative approach here, as these methods
may also be called by other program points, as well.
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Illustration 9: Example of guarded inlining
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4. EXPERIMENTAL EVALUATION

In this section, we present  the results  of  our work through experimental  evaluation.
Some of the key points we focused on are:

 to determine how our pass outperforms ReDex’s SimpleInlinePass, 

 how other passes benefit from ours,

 how is the final size of the APK affected, 

 the runtime benefit of the transformed application

For  our  experimentation  we  used  some  well-known  and  widely  used  applications;
Specifically,  Instagram,  Signal,  Chrome,  Viber,  and  WhatsApp.  Also,  to  assess  the
performance tradeoff between virtual call or polymorphic inlining with guards, we wrote
a micro-benchmark to measure the execution time in both cases. 

For our analysis in Doop we focus mainly on the size of the methods to be inlined, in
relation with the number of the callsites it will be inlined into. This is a similar approach
to what ReDex does, however, the notion was to find the appropriate size so that we
handle bigger methods than ReDex, but still small enough to not increase heavily the
final  size  of  the  application.  Bigger  methods  have  more  information  and  offer  the
opportunity  to  other  optimization  passes  to  perform  more  drastic  transformations,
contrary  to  ReDex's  approach,  where  most  of  the  inlined  methods  are  accessors,
constructors, or synthetic and wrapper methods introduced by the compiler. Shortly, the
key points of our Doop analysis are: 

 If a method will be inlined in one caller, its size is at most 20 instructions, for two
callers  it  is  limited  to  10  instructions,  and for  three callers  it  drops  under  6.
Methods with at most 3 instructions are small enough to be considered inlinable
in any case.

 Methods that will be inlined in virtual callsites that have 2 possible targets can be
at most 10 instructions long, and in case we have three targets, the maximum
size is restricted to 4 instructions.

4.1 ExplicitInlinePass performance

One of the metrics to evaluate our work, is to consider how many methods are inlined
by ExplicitInlinePass compared to SimpleInlinePass. We already expect the numbers to
be higher, but it is also important to ensure that the new opportunities that arised from
Doop are handled properly and are reliable. Doop’s analysis is very sophisticated and
can detect more complicated cases than ReDex. With our pass, as already mentioned,
we only delete method definitions inlined in monomorphic callsites. The most objective
way to compare the two passes, is based on the total number of methods inlined, and
the number of methods deleted as well. Table 2 and Illustration 10 show the results of
ExplicitInlinePass  when  run  alone,  for  the  various  applications,  and  presents  some
statistics about the invocation sites. The polymorphic callsites are strictly handled by our
pass only, and is a clear advantage over ReDex’s inlining policy.
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Table 2: ExplicitInlinePass’ invocation sites that will be inlined

Invocation
types

WhatsApp Viber Instagram Chrome Signal

Static 6673 10677 1007 1224 5570
Direct 6150 12419 5267 3064 6274

Interface 942 2818 885 780 1129
Super 148 559 116 250 176
Virtual 2791 14064 1474 1843 8978
Total

callsites
16704 40537 8749 7161 22127

Table 3 and Illustration 11 present  the total  number of  methods that  are inlined by
SimpleInlinePass and ExplicitInlinePass. Our pass shows significant increase, because
even though Doop’s analysis gathers small methods, their size is bigger than the size of
those gathered from ReDex. ReDex’s policy mainly inlines synthetic wrappers, bridge
methods, small constructors, and setter/getter methods, which consist of, more likely, at
most  7  instructions,  as  also  mentioned  above.  Also,  Doop  and  ExplicitInlinePass
dominate at polymorphic invocation sites. 

Table 3: Number of inlined methods

SimpleInlinePass ExplicitInlinePass
WhatsApp 5725 17593

Viber 17434 42199
Instagram 968 9547
Chrome 1096 7536
Signal 11338 24193
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Table  4  shows the  number  of  methods  removed  from each  pass  respectively, and
Illustration 12 also illustrates the aforementioned results. SimpleInlinePass aims to not
only improve runtime performance by reducing method calls, but also to maintain the
final size of the application almost the same, without increasing it through inlining. For
this reason, ReDex inlines strictly very small methods, and also deletes their original
definition, so the outcome is almost the same in terms of bytes. However, there are
some  methods  that  cannot  be  deleted,  thus  the  number  of  methods  that
SimpleInlinePass removes is not identical with the number of methods it inlines, but the
difference is relatively small. On the other hand, our pass, only deletes methods inlined
in monomorphic callsites, and that explains the big discrepancy between the numbers of
Table 3 and Table 4.  We will present in section 4.3 how that affects the APK size.

Table 4:  Number of deleted methods

SimpleInlinePass ExplicitInlinePass
WhatsApp 5664 11170

Viber 17182 27101
Instagram 953 5769
Chrome 936 4074
Signal 11244 12716

L.Zoghbi                                                                                                               28

WhatsApp Viber Instagram Chrome Signal
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

SimpleInlinePass

ExplicitInlinePass

N
u

m
b

e
r 

o
f i

n
lin

e
d

 m
e

th
o

d
s

Illustration 11: Comparison of inlined methods between SimpleInlinePass and

ExplicitInlinePass



Integration of Doop's static analysis to ReDex optimizer 

4.2  Benefit of ExplicitInlinePass to other passes

Method inlining can create more opportunities to other optimizations as well. Some of
the other ReDex’s passes that benefit the most from our own are the following:

 ConstantPropagationPass, which propagates constants both intraprocedurally
and interprocedurally, and also eliminates field writes if they all write the same
constant value. Moreover, it removes dead branches from the control flow graph,
based on whether the last instruction in a basic block is a dead if-instruction (i.e
the branch is always taken or never taken). In our case, the extensive inlining we
apply makes room for even more optimization opportunities.

 CopyPropagationPass, eliminates writes to register that already hold the written
value. Also, it finds all alias registers and replaces them with one representative,
which leads to more compact move instructions and also gives the chance for
dead code elimination to optimize the bytecode more efficiently. It is also based
on intraprocedural analysis, and thus after our pass this optimization operates
better. 

 LocalDcePass, which eliminates dead code using a standard backward dataflow
analysis for liveness inside a method body. 

 RemoveUnreachablePass, which  removes  unreachable  classes,  fields  and
methods.  Likewise,  inlined  methods  may  no  longer  be  reachable  from other
points in the application code, and their definitions are removed.

In the following subsections, we present some statistics to evaluate the aforementioned
optimizations,  comparing their  performance when run alone and when run after  our
own. However, the fact that we do not delete all the method definitions, as described in
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section 3.2, introduces some noise to the actual  optimization results for the passes
ConstantPropagationPass, CopyPropagationPass, and LocalDcePass. Thus, in order to
evaluate the effect of our pass on those passes, we temporarily delete all the method
definitions we inline, so that we do not encounter optimizations applied on the original
definitions during our experiments.

4.2.1 ConstantPropagationPass 

 

Table 5: Results for ConstantPropagationPass

Before and After ExplicitInlinePass
WhatsApp Viber Instagram Chrome Signal

Branches
propagated

31 65 68 273 26 92 18 88 95 210

moves_replaced
by_const_loads

17 17 12 13 2 2 0 0 119 148

 

L.Zoghbi                                                                                                               30

WhatsApp Viber Instagram Chrome Signal
0

50

100

150

200

250

300

Alone

After ExplicitInlinePass

B
ra

n
ch

e
s 

p
ro

p
a

g
a

te
d

Illustration 13: Number of branches propagated before and after ExplicitInlinePass



Integration of Doop's static analysis to ReDex optimizer 

It is clear that the significant benefit comes from the elimination of redundant branches.
The results are more promising for Viber, with almost 120% increase, and Signal, with
75%, as they are the biggest applications with multiple dex files. This difference in the
results can be explained considering that, after inlining it is easier to extract information
about how values flow between variables and conclude whether the condition of an if-
instruction, at specific points in the method, is always true or false. In such cases, the
branches are removed. Without method inlining, such information is difficult to gather,
as it needs flow sensitive program analysis, which is a demanding and hardly trivial
task. Regarding the propagation of constants, it is presumable that the results are in
most cases identical, because constant propagation is also performed interprocedurally,
and thus, already handles most of the opportunities.
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4.2.2  CopyPropagationPass

 

Table 6: Results for CopyPropagationPass

Before and After ExplicitInlinePass
WhatsApp Viber Instagram Chrome Signal

redundant
move

instructions
5006 5223 6884 7188 7963 8048 1669 1727 10534 10777

source
registers

replaced with
representative

6650 48044 9791 111430 6804 32753 2366 21963 16513 72008
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Illustration 15: Number of redundant move instructions
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We  observe  that  there  is  a  significant  improvement  to  the  performance  of
CopyPropagationPass. This arises from the fact that intraprocedural analysis benefits
incredibly from method inlining, as it has more information about how data flows and
can  conclude  to  more  alias  registers.  When  CopyPropagation  is  run  after
ExplicitInlinePass, some of the moves that are redundant are the ones introduced from
the  inliner,  as  it  copies  both  the  method  arguments  and  the  return  value  to  new
registers.  Also,  these new registers  are  aliases with  the  ones that  held  initially  the
method arguments passed during the invocation, and the return value after the call, thus
the  pass  can  create  large  sets  of  aliases  and  replace  most  of  them  with  one
representative register.

4.2.3  LocalDcePass

Table 7:  Results for LocalDcePass

Before and After ExplicitInlinePass
WhatsApp Viber Instagram Chrome Signal

Dead
instruction

s
1567 4634 4099 13742 2542 4579 1748 3772 2859 9308

Unreachabl
e

instruction
s

0 18 6 152 0 58 0 20 0 341

L.Zoghbi                                                                                                               33

WhatsApp Viber Instagram Chrome Signal
0

2000

4000

6000

8000

10000

12000

14000

16000

Alone

After ExplicitInlinePass

D
e

a
d

 in
st

ru
ct

io
n

s

Illustration 17:  Number of dead instructions



Integration of Doop's static analysis to ReDex optimizer 

This pass removes dead and unreachable code. It has a similar benefit from our pass
as constant and copy propagation, based on the fact that it performs intraprocedural
analysis,  like  the  aforementioned  passes.  So,  extensive  inlining   contributes  to
encounter more optimization opportunities, as more code is analyzed within a method
body and more information about it can be extracted.

4.2.4 RemoveUnreachablePass 

Table 8: Number of items deleted

Before and After ExplicitInlinePass
WhatsApp Viber Instagram Chrome Signal

classes 6719 3831 8989 8918 9979 10090 6446 6485 10234 10216
fields 23319 14954 42168 41329 31051 31132 17317 17351 58311 58141

method
s

43361 25121 76982 62704 41282 36008 35355 32146 84312 75711
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Illustration 18: Number of unreachable instructions
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Illustration 19: Number of removed classes
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This pass uses a mark-sweep algorithm to determine which classes,  methods,  and
fields  are  reachable  among  the  application  code.  Whatever  remains  unmarked  is
deemed as unreachable and eventually is removed. We are mostly interested in the
changes of method removals. It  might appear that after our pass, less methods are
deleted, but in reality, we have to take into account that when RemoveUnreachablePass
runs afterwards,  it  works on an already reduced total  number of  methods,  because
ExplicitInlinePass has removed the definitions of all  methods inlined without guards.
The main difference comes from removing the virtual methods inlined with guarding, so
in that specific case, RemoveUnreachablePass shows an increase in the results. That
can  be  easily  verified,  if  we  add  to  the  amount  of  the  methods  removed  from
RemoveUnreachablePass, the total number of deleted methods from ExplicitInlinePass,
as  shown  above.  Specifically,  for  Signal  it  succeeds  to  delete  4115  more  virtual
methods, for Viber the difference is increased by 12823 more methods, for Instagram it
achieves  495  additional  deletions,  and  finally,  for  Chrome  it  removes  865  more
methods.  WhatsApp  is  the  exception  among  our  benchmarks  and  after  our  pass
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Illustration 21: Number of removed methods
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Illustration 20: Number of removed fields
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RemoveUnreachablePass manages to remove 36291, which less than the amount it
deletes alone by 7070 methods.

 

4.3 Final APK size

In this section we elaborate about why and how APK size is a crucial criterion for every
application,  and  also  provide  some  insight  on  how  our  pass  affects  it.  As  mobile
applications have evolved over time, developers have added new features to serve and
attract users, like higher resolution images and better graphics, causing further APK
size increase. The size of the APK has an impact on how fast the application loads, how
much memory it uses, and how much power it consumes, so it is a legitimate way to
evaluate and compare applications. Therefore, an important aspect of our work is to
maintain the final size of the APK, after all the inlining during our pass, in reasonable
values, because if we exaggerate, we may cause bytecode bloating. Mobile storage is
pretty limited and this is a serious constraint that we have to take into consideration,
because we do not want to further burden an already critical  matter. Our pass only
affects the data in the dex files, so we calculate the difference in size of the dex(es)
before and after our pass. In case of multidex APKs, then we add the size of all of them.

 

Table 9: DEX file size in bytes

Before and After ExplicitInlinePass

WhatsApp 8,674,944 8,107,028
Viber 18,211,476 17,050,640

Instagram 7,986,396 7,694,708
Chrome 6,522,252 6,297,268
Signal 17,949,448 17,120,876
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We observe that even though only our pass is run, despite all  the inlining, the final
outcome is smaller than the initial. That can be explained both because we delete all
methods  inlined  without  guards,  and  also,  because  after  ExplicitInlinePass  it  is
necessary  to  run  RegAllocPass,  as  mentioned  in  section  3.2,  which  makes  the
instructions  more  compact  after  register  allocation,  and  removes  redundant  move
instructions. 
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4.4 Runtime benefits 

In this section we showcase the execution times of our benchmarks, before and after
our pass. Evaluating the applications that we used as our benchmarks so far is not
straightforward, because they need user interaction. For this reason, we wrote our own
simple microbenchmark to evaluate how it performs at runtime, when calling a method,
and how the execution time changes if we inline it. Also, we evaluate the cost that the
guards might introduce to the runtime, because they use the “instanceof” opcode, which
carries out a series of type checks across a class hierarchy. 

First,  we  aim to  evaluate  the  runtime overhead  of  a  method  call  compared  to  the
improvement in the performance that method inlining provides. We create an object with
of type A and,  then, we proceed with calling a method on this object,  calculating a
mathematical operation, inside a loop that is executed for large number of iterations, for
example 1.000.000. All the aforementioned procedure is repeated at least 10 times, and
we finally, estimate the execution time of the whole process. The fact that the inner loop,
which calls the virtual method, is performed so many times, ensures that the code will
be JIT compiled. This is important, if we want to be as objective with our measurements
as possible,  because in reality all  applications take advantage of JIT compilation at
runtime.

 

Table 10: Runtime results of microbenchmark

Execution time in ms
Method call 1745

Method inline 369
Guarded inline 654

Furthermore, we want to evaluate how virtual method inlining with the assistance of
guards affects the execution time. We alternate our benchmark by having a simple class
hierarchy,  where  A becomes  the  base  class  that  has  two  subclasses,  B  and  C,
respectively.  The  object  we  create  for  this  experiment  is  of  static  type  A and   the
dynamic type might be either B or C. Then, we repeat the process as described above,
before and after optimizing it with our pass. This time, to inline the method we need
guards, because it is not trivial to conclude what the dynamic type of the object might be
at runtime. 
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5. CONCLUSIONS

Automatic  program optimizations  are  much  more  useful  and  effective,  thus  are  the
cornerstone  of  software  engineering.  Optimizers,  such  as  ReDex,  that  are  written
procedurally are able to handle and manipulate the bytecode easily, however, writing
analyses is not a trivial task. The fundamental idea of this thesis was to take advantage
of the Doop framework, which consists of various very sophisticated analyses for Java
programs that are written completely declaretively, in Datalog. The outcome of this work
proves that more precise analyses can benefit ReDex and help it optimize applications
more  aggressively.  Specifically,  we  observed  that  ExplicitInlinePass  inlined  more
methods  and  also  helped  other  passes  perform  better,  which  further  resulted  in
decreasing the final APK size.

By the end of the development of this thesis, ReDex made an attempt to handle non-
devirtualizable  virtual  methods  as  well,  in  order  to  explore  more  optimization
opportunities. However, their approach was not based on whole-program analysis, like
Doop. They concentrated mainly on finding abstract methods whose implementors have
the same definition across the whole code base,  and allow inlining,  in  such cases,
based  on  that  definition.  Moreover,  another  optimization  pass  they  implemented
removes virtual methods that override other virtual methods, by merging them, under
certain conditions. This gives the opportunity to the SimpleInlinePass to perform more
inlining afterwards. Currently, they restrict this optimization, namely VirtualMergingPass,
within each dex only (when overridden and overriding method are within the same dex).
Also, the overriding method must be inlinable into the overridden method, using the
standard inliner functionality that we presented in Section 2.3, and their implementation
for  this  transformation  pass  is  still  vey  conservative,  for  example  they  omit  virtual
scopes that are involved in invoke-supers. This concludes that their results might still be
weaker than those from Doop, which gives us the ability to perform more detailed and
sophisticated whole-program analyses, and we plan to further examine how our pass
interacts with these new transformations and how many opportunities are discovered in
each case.
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ACRONYMS AND ABBREVIATIONS

APK Application Package

JIT Just-in-time

JVM Java Virtual Machine

DVM Dalvik Virtual Machine

ART Android Runtime

DEX Dalvik Executable

ODEX Optimized Dalvik Executable

AOT Ahead-of-time

JAR Java Archive

API Application programming interface
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