
NATIONAL AND KAPODESTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSC THESIS

An Efficient Decentralized Streaming Model

Evangelos Grigoriou

Supervisors: Alexios Delis, Professor NKUA

ATHENS
OCTOBER 2019



ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ

An Efficient Decentralized Streaming Model

Ευάγγελος Γρηγορίου

Επιβλέποντες: Αλέξιος Δελής, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ
ΟΚΤΩΒΡΙΟΣ 2019



BSC THESIS

An Efficient Decentralized Streaming Model

Evangelos Grigoriou
S.N.: 1115201000027

SUPERVISORS: Alexios Delis, Professor NKUA



ΠΤΥΧΙΑΚΗ

An Efficient Decentralized Streaming Model

Ευάγγελος Γρηγορίου
Α.Μ.: 1115201000027

ΕΠΙΒΛΕΠΟΝΤΕΣ: Αλέξιος Δελής, Καθηγητής ΕΚΠΑ



ΠΕΡΙΛΗΨΗ

Πρόσφατα, όλο και μεγαλύτερα ποσά δεδομένων παράγονται από διάφορες πηγές. Τα
πλαίσια λογισμικού ροής για Μεγάλα Δεδομένα βοηθούν στην αποθήκευση, ανάλυση και
στην απόσπαση χρήσιμων πληροφοριών, από τέτοιου είδους δεδομένα που παράγονται
συνεχώς. Υπάρχουν αρκετά τέτοια πλαίσια λογισμικού ροής, όπως το Apache Storm, το
Apache Spark και το Apache Flume.

Στην παρούσα πτυχιακή εργασία παρουσιάζουμε ένα μοντέλο αποκεντρωμένης επεξεργ-
σίας ροής. Χρησιμοποιεί ένα πρωτόκολλο DHT για να επιτευχθεί μία αρχιτεκτονική πολλών
αφέντων-πολλών εργατών και σε κάθε εργασία να αντεθεί ο δικός της αφέντης.

Για κάθε εργασία δημιουργούνται όμοιες ομάδες χρησιμοποιώντας τις ιδιότητες δρομολό-
γησης του συστήματος, με αποτέλεσμα τον σχηματισμό ενός ιεραρχικού δέντρου, αποτε-
λόυμενο από κόμβους μου συμμετέχουν στο δίκτυο. Η ρίζα αυτόυ του δέντρου ενεργεί ως
ο αφέντης της ομάδας και είναι υπεύθυνος για τον συγχρονισμό των μελών της ομάδας.

Ο κάθε κόμβος καταναλώνει ζωντανά αρχεία καταγραφής δεδομένων, τα οποία αναλύ-
ονται σε μικρές παρτίδες και αποθηκεύονται σε μία δομή δεδομένων που χρησιμοποιεί
την μνήμη αποδοτικά. Οι κόμβοι συγκεντρώνουν τα τοπικά τους δεδομένα και τα αποτε-
λέσματα ανεβαίνουν προς τα πάνω στο δέντρο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Eπεξεργασία Ροής

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: μεγάλα δεδομένα, συντονισμός εργασιών, δέντρο με χρήση buffer
και συμπίεσης, κατανεμημένα συστήματα , αρχιτεκτονική πολλών
αφεντών



ABSTRACT

Recently, increasingly large amounts of data are generated from a variety of sources.
Streaming frameworks for Big Data applications help to store, analyze and extract useful
information from such continuously generated data. There are several existing streaming
frameworks, like Apache Storm, Apache Spark and Apache Flume.

In this thesis, we present a decentralized stream processing model. It uses a DHT protocol
to achieve amanymasters-many workers architecture and assign each job its ownmaster.

Even groups are created for each job by utilizing the system’s routing properties, resulting
in a hierarchical tree formation, consisted of agents that are participating in the network.
The root of this tree acts as the master of the group and is responsible for synchronizing
the group’s members.

Each agent consumes live data logs, which are parsed into mini batches and stored in a
memory efficient data structure. The agents aggregate their local data and the results are
rolled up the the aggregation tree.

SUBJECT AREA: Stream Processing

KEYWORDS: big data, cross job coordination, compressed buffer tree, distributed
systems, many masters architecture



ACKNOWLEDGEMENTS

We would like to thank our supervisors, Mr. Alexis Delis for his excellent guidance and
assistance in the preparation of this thesis.



CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Three Vs of Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. DATA PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Types of data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Batch Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Diverse Job Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Streaming System Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. COMPRESSED BUFFER TREE . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 CBT Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Finalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.1 Metis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.2 SparseHash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 CBT Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. DHT-BASED OVERLAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Pastry Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Routing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Pastry Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Scribe Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Scribe Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5. SYSTEM IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Group Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



5.2 Master / Worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.1 Job Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Job Worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Global Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6. EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 CBT Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ABBREVIATIONS, ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



FIGURES LIST

Figure 1: 3Vs of Big Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2: Streaming application example. . . . . . . . . . . . . . . . . . . . . 12

Figure 3: Compressed buffer tree. . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 4: Empty operation on a node. . . . . . . . . . . . . . . . . . . . . . . 14

Figure 5: Example of a Pastry node state. . . . . . . . . . . . . . . . . . . . . 17

Figure 6: Example of Subscription mechanism. . . . . . . . . . . . . . . . . . 19

Figure 7: Scribe implementation of forward. . . . . . . . . . . . . . . . . . . . 19

Figure 8: Scribe implementation of deliver. . . . . . . . . . . . . . . . . . . . 20

Figure 9: Group creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 10: Worker components. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 11: Example of key-value pair aggregation. . . . . . . . . . . . . . . . . 23

Figure 12: Insertion times without flushing. . . . . . . . . . . . . . . . . . . . . 25

Figure 13: Insertion times with flushing. . . . . . . . . . . . . . . . . . . . . . . 26

Figure 14: Flushing times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 15: TopK measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 16: Roll up times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 17: Average time of data transmission. . . . . . . . . . . . . . . . . . . 29



An Efficient Decentralized Streaming Model

1. INTRODUCTION
The importance of stream data processing these days is undeniable. Big companies and
industries are becoming increasingly interested in investigating streaming systems for
good reasons. Among these reasons are the following:

• Timely insights into their data are vital and streaming is a good way to achieve low
latency.

• The datasets are enormous and can be of any size. It is easier to analyze and gain
useful information from such data with systems that are designed for never ending
streams.

• Processing data as they arrive spreadsworkloads outmore evenly over time, yielding
more consistent and predictable consumption of resources.

Themanagement of such data offers plenty of benefits businesses, includingmore effective
marketing, generating business-critical decisions, fraud detection and overall better cus-
tomer service. Therefore, streaming systems, which could be defined as a process engine
designed for infinite datasets, are mainly used for such purposes.

In this thesis, we implement and evaluate some components of a streaming systemmodel,
based on a presentment on 2014 USENIX Annual Technical Conference by Liting Hu[1].
Specifically, we implement an efficient tree data structure, which is used for storage and
aggregation of the collected records. Furthermore, a DHT protocol responsible for network
routing is implemented, as well as a decentralized publish/ subscribe system, enabling
multicast group communication.

1.1 Three Vs of Big Data
Big Data as a term means large sets of structured and unstructured data. But that is a
little vague, since input data could originate from various sources, like social networks,
audio streams or bank transactions. In order to clarify and make it easier to understand
the nature of the data, Big data can be defined by three characteristics, volume, velocity
and variety[2].

• Volume
Volume is the amount of the data to be processed (gigabytes, terabytes etc). Volume
could refer for example to the amount of data generated through websites or online
applications. With the vast increase of Internet use in the past years, volumes of
data can reach unprecedented heights.

• Velocity
Velocity is the speed that information moves through the system. Data may be
flowing into the system from multiple sources. Some data might come in real-time,
while other might come in batches.

• Variety
Variety refers to the different types of data that may occur. Data can be collected
from server logs, social media feeds or other sources, with the type and format of
data varying significantly. Images, videos or audio recordings are ingested alongside
text or pdf files.

E. Grigoriou 9



An Efficient Decentralized Streaming Model

Data Volume

Data Velocity

Data Variety

KB

MB

GB

TB

PB

Batch

Periodic

Real Time

Database

Video
Unstructured

Audio
Text

Figure 1: 3Vs of Big Data.

With these three attributes taken in consideration, it is easier to select the appropriate
analytic and algorithmic tools to extract meaningful information.

1.2 Contributions
In this thesis we make the following contributions:

• A memory efficient data structure able to aggregate and store a large volume of past
data.

• A decentralized many masters-many workers architecture, with each job having its
own respective master.

• Capability of cross job coordination. The intermediate results of one job may be
requested and used by a different job.

E. Grigoriou 10



An Efficient Decentralized Streaming Model

2. DATA PROCESSING
In this section we describe some methods of data streaming and give an example of
concurrent stream job execution, that could prove to be challenging for streaming systems.

2.1 Types of data processing
There aremany types of data processing, but themost common types are Batch Processing
and Stream Processing.

2.1.1 Batch Processing
Batch processing is the processing of a significant amount of data, that have been stored
over a period of time. It is useful in situations where real time analytics results are not
necessary, since it requires a large amount of time compared with stream processing.

2.1.2 Stream Processing
Stream processing refers to real-time processing of continuously generated data. Such
data may originate from various sources like website visits, customer transactions or
event sensors. Some other names for stream processing are real-time analytics, event
processing and streaming analytics.

It provides the capability of getting instant results and it is useful for tasks like fraud
detection.

2.2 Application Example
Some job examples of a streaming system follow, that use as input user activity of an
e-commerce company.

2.2.1 Diverse Job Execution
1. The first job calculates item popularity by collecting user clicks, and lists the topK

items. The results can be used for placing discounts on those popular items. Batch
processing may be more suitable for this job, since clicks may be gathered for a long
period of time.

2. The second job collects item purchases and links together items that are usually
bought together. It can be used to recommend items to users, that are similar to the
items that the user has bought. Fast results are needed for this application and a
stream processing model is preferable.

3. The third job queries whether an item is popular. The results of the topK application
are needed for this.

E. Grigoriou 11



An Efficient Decentralized Streaming Model

In

item buys query

out

Job 1, topK

out

Job 2, Similar Items

out

Job 3, Yes/No

Figure 2: Streaming application example.

2.2.2 Streaming System Challenges
The above application comes with some challenges for streaming systems. First, historical
records are needed to determine the topK items in a given time span, for example the past
hour. An efficient data structure is required for this purpose, able to store a great amount
of data.

Second, a high number of diverse jobs may be running simultaneously. With a single
master responsible for coordination, potential bottleneck is created.

Third, communication across different jobs may also be necessary, since the results of a
running job may be needed for another application.

2.3 Solutions
1. Efficient Data Structure

For the purpose of storing incoming data, an in-memory data structured is used
called compressed buffer tree[3] (CBT). In order to achieve high throughput and be
able to store considerable volumes of data, CBT uses buffering and compression
techniques.

Hashtable implementations are another option, but the CBT uses less memory and
provides high throughput.

2. Many Masters/Many Workers Architecture
A DHT-based overlay is used. It is capable of hosting multiple jobs running simul-
taneously. Each job is assigned its own master and set of workers, with the master
being responsible for coordinating and controlling its respective workers.

Every master can easily communicate with a master responsible for another job.
A single message is required to be sent. The message delivery is handled in a
decentralized manner.

E. Grigoriou 12



An Efficient Decentralized Streaming Model

3. COMPRESSED BUFFER TREE
As we mentioned before, each agent uses an in-memory data structure called Com-
pressed Buffer Tree (CBT). Agents have direct data access and locally parse live data
logs into key-value pairs, which are stored and aggregated in the CBT. In this section we
describe CBT’s implementation and how it uses buffering and compression to improve
performance and storage capacity.

Figure 3: Compressed buffer tree.

3.1 Overview
CBT uses an (a-b)[4] tree with each node augmented by a large memory buffer[5]. An
(a-b) tree is a kind of balanced search tree, which has the following properties:

• 2 ≤ a ≤ (b+1)/2

• Every internal node, except the root, has at least a and at most b children.

• All leaves have the same distance to the root.

The root is always uncompressed, while the buffers of the other nodes are always com-
pressed. The internal nodes’ buffers may contain a varying size and number of com-
pressed fragments. Figure 3 shows a hypothetical state of a CBT. The root’s buffer is
displayed with gray color and internal nodes’ fragments are displayed with black color.
For buffer compression/decompression we use Snappy [6] by Google, a library intended
for high speed performance.

When an item is inserted, the insertion is not immediately performed. Instead the item
is appended to the root’s buffer. When the root reaches a given threshold, for example
half the size of the buffer, then an empty (Figure 4) operation is performed to the root. By
delaying the insertions the number of compressions/decompressions are reduced and I/O
performance is optimized.

E. Grigoriou 13



An Efficient Decentralized Streaming Model

1: procedure empty(N)
2: if isRoot(N) then
3: if isLeaf (N) then
4: splitRoot()
5: else
6: spillRoot()
7: else
8: if isLeaf (N) then
9: splitLeaf ()
10: else
11: spillNode()

Figure 4: Empty operation on a node.

CBT is also used as an aggregator for the stored data. It merges the inserted key-value
pairs with the existing ones in memory.

3.2 Aggregation
Each new key-value pair inserted is represented as a structure termed Partial Aggregated
Object (PAO). During aggregation given two PAOs that share the same key, their values
are merged forming a new PAO with the same key and the new value. For example, in
a word count application, PAOs (and, 1), (the, 3), (or, 5), (and, 3), (the, 2), will be merged
resulting (and, 4), (the, 5), (or, 5).

3.3 CBT Operations
CBT consists of three main operations, insert, finalize and empty. Finalize aggregates all
the PAOs that are stored in the tree’s levels and returns the final results. Empty clears the
tree’s buffers.

3.3.1 Insertion
After a PAO has been created for the inserted key-value pair, the tuple (hash, size, serial-
izedPAO) is created and it is appended to the root. Hash is the hash result of the key and
size is the size of the serialized PAO. The key is hashed because integer comparison is
faster than string comparison.

When the root is full, first the tuples in the buffer are sorted by hash using the non-
comparative sorting algorithm, radix sort. Then the existing PAOs that have the same key
are aggregated and merged into a single PAO. Finally the buffer is pushed to the lower
levels of the tree.

If the root is a leaf then the buffer is split in two creating a new tree level. Otherwise,
the buffer is split and copied into the children nodes, based on the hash ranges of the
children, and afterwards compressed. If an internal node becomes full by this process, a
similar procedure, as when the root is full, occurs. If a leaf becomes full, the buffer is split
and a new leaf node is created.

E. Grigoriou 14



An Efficient Decentralized Streaming Model

Since the internal and leaf nodes’ buffers are always compressed, they must be decom-
pressed before sorting and aggregating them.

The CBT always maintains an (a,b) tree’s properties, and thus when one node’s children
exceed the maximum designated number, the node is further split.

3.3.2 Finalize
PAOs with the same key may reside in different levels of the tree. In order to get the final
aggregated results, starting from the root, the PAOs are pushed to the next tree level in
the same way the insertion is performed. This is repeated until all PAOs reside in the leafs,
resulting in all duplicate PAOs being merged.

3.3.3 Empty
Empty clears the CBT’s buffers and can be used when there is the need for a new batch
to be processed.

3.4 Alternatives
3.4.1 Metis
Metis[7] is a MapReduce library for multi core architectures. Metis uses a hash table
combined with a B+tree to store intermediate results. It works well for many workloads
if the keys hash uniformly, but encounters some performance issues with workloads that
have few repeated keys.

3.4.2 SparseHash
SparseHash[8] is a memory efficient hash table implementation by Google. It uses sparse
arrays and is time efficient for good hash functions.

3.5 CBT Benefits
The main advantage of the CBT is the use of buffering for insertions. With the use of a
simple (a,b) tree, the incoming key-value pairs traverse the tree and insertion is performed
immediately. Read and write operations are increased and performance declines.

By keeping intermediate results in a compressed form, use of memory is reduced. Com-
pressions and decompressions may add to the overall compute work, but this way it is
possible to store a greater amount of data.

E. Grigoriou 15



An Efficient Decentralized Streaming Model

4. DHT-BASED OVERLAY
All agents are structured into a peer-to-peer overlay based on the Pastry[9] distributed
hash table. Scribe[10], a multicast infrastructure, is built on top of Pastry to enable agent
communication. With the combination of these two software applications, a decentralized
many-master infrastructure is achieved, able to run diverse jobs concurrently.

4.1 Pastry Overview
Pastry is a decentralized network designed for various peer-to-peer applications like file
sharing. Given a message and a destination key, Pastry routes the message to the ap-
propriate node efficiently. The expected number of steps the routing procedure requires
is O(logn), where n is the number of nodes in the network.

4.1.1 Design
Each node is assigned 128-bit nodeId. The nodeId is assigned the moment a node joins
the system ranging from 0 to 2128 − 1. NodeIds could be generated by hashing the IP
address of the node. For this purpose we use the MD5[11] hash function, a non-reversible
encryption algorithm, ensuring uniform distribution of nodeIds. SHA-1[12] could also be
used, a cryptographic hash function that can process a message to produce to produce a
condensed representation called a message digest. The ids are treated of as sequences
of digits in base 2b, where typically b = 4, so these digits are hexadecimal.

To support the routing procedure, each node maintains three separate tables. A routing
table, a leaf set and a neighborhood set.

• Leaf Set
The Leaf set consists of the numerically closest Ids. Half of these Ids, are smaller
than the self Id of the node and the other half are greater.

• Routing Table
The Routing table is a two dimensional table, with 128/b rows and 2b columns. The
Ids at row n of the routing table share the same n first digits, with the n + 1 digit
having a different value.

• Neighborhood Set
The Neighborhood set contains the Ids of the nodes that are closest in terms of
network locality.

The size of the Leaf set and the Neighborhood set are usually 2b or 2x2b. Figure 5 demon-
strates an example of the three tables with b = 2. The shaded cell in each row of the routing
table shows the corresponding digit of the present node’s nodeId.

E. Grigoriou 16



An Efficient Decentralized Streaming Model

NodeId 31323201
Leaf Set SMALLER LARGER

20133102 22310022 31333012 33002112
21022001 23301201 32001022 33221001

Routing Table
-0-1022103 -1-0123311 -2-2331010 3
3-0-112103 1 3-2-332011 3-3-221031
31-0-00211 31-1-12332 31-2-21001 3
313-0-0230 313-1-1302 2 313-3-0212
3132-0-322 3132-1-000 3132-2-121 3
31323-0-01 2 31323-3-11

0 313232-1-0
1

Neighborhood set
21022130 10221210 12331203 33201233
20200230 22301130 20331203 31313321

Figure 5: Example of a Pastry node state.

Chord[13] is a network protocol similar to Pastry, but instead of using prefix routing it uses
consistent hashing[14]. Each node has a finger table which contains the successor and
predecessor of the node.

4.1.2 Routing Procedure
The routing procedure is responsible for delivering a givenmessage to the node responsible
for. When a message with a key D arrives, the node executes the following steps:

1. It checks its Leaf set to find the numerically closest node to the key. If the key is
covered by the Leaf set, then the message is forwarded to the appropriate node.

2. If the key is not covered by the Leaf set, then the node checks its Routing table. The
message is forwarded to the node that shares a common prefix with the key by at
least one more digit.

3. Finally, if no such entry exists in the Routing table, then the message is forwarded to
the node that shares the same amount of digits with the key as the local node, and
is numerically closer to the key.

4.1.3 Pastry Operations
Pastry’s basic operations are the following:

• join
The node joins the network. If no network exists then it creates one. If a node wishes
to join the network, then a node that is already in the network must be made known
to the joining node.

E. Grigoriou 17



An Efficient Decentralized Streaming Model

• route
Given a message and a key, it routes the message to the node with numerically
closest nodeId to the key within the network.

• forward
It forwards the message to the next node with nodeId numerically closest to the key.

• deliver
It is called when the message has arrived at the designated node.

4.2 Scribe Overview
Scribe is a group communication and event notification system built on top of Pastry. It
provides an efficient application-level multicast.

4.2.1 Design
Scribe consists of a network of Pastry nodes. With the Scribe application, these nodes can
be managed in groups associated with a specific topic. Each topic has a unique topicId,
which is the hash of the topic’s textual name. Again, the MD5 function is used for hashing,
to ensure uniform distribution of topics across Pastry nodes.

By creating topics and joining node, multicast trees are formed that are responsible for
publishing events. Each topic can only have a single multicast tree. A new topic may be
created by any node and others may join. Nodes can be subscribed to more than one
topic and are able to multicast messages, even to groups that are not part of.

4.2.2 Scribe Messages
The possible messages in Scribe are CREATE, SUBSCRIBE and PUBLISH. By routing
these messages with Pastry, a Scribe node is able to create topics, subscribe to topics
and publish events. The procedures for these operations are described below.

• CREATE
To create a topic, Scribe asks pastry to route a CREATE message. First the name of
the topic is hashed to generate the topicId. Then the pastry delivers the message to
the node whose nodeId is numerically closer to the topicId. This node becomes the
rendezvous point and acts as the root of the multicast tree. Subsequently the root
adds the topic to its topic set.

• SUBSCRIBE
When a node wishes to subscribe to a topic, it asks Pastry to route a SUBSCRIBE
message. The message is routed towards the rendezvous point of the topic. The
nodes encountered through the process are either subscribed to the topic or not
subscribed. If a node is not a subscriber, it adds the topic to its topic set and adds
the source node to its children set. The node is now a forwarder of the topic. If a
node is already a forwarder, it simply adds the source node to its children set and
the forwarding procedure is terminated.

E. Grigoriou 18



An Efficient Decentralized Streaming Model

1111

1100

Root

1101

1001

0100

Subscriber

0111

Subscriber

Figure 6: Example of Subscription mechanism.

Figure 6 showcases two subscription cases. First, node 0111 wishes to subscribe
and a SUBSCRIBE message is routed to node 1001, then node 1101 and finally the
messaged is delivered to node 1100, which is the root of the topic. The subscription of
node 0111 causes nodes 1001 and 1101 to become forwarders for the topic and each
add the preceding node to its children table. When node 0100 wishes to subscribe,
the SUBSCRIBEmessage is routed to node 1001, but since it is already a forwarder,
it adds node 0100 to its table and the message is terminated.

• PUBLISH
A PUBLISH message is routed to the rendezvous point of the topic, which dissem-
inates the events. It notifies its children and they in turn do the same until every
subscribed node has been notified. The IP of the rendezvous point can be cached
as an optimization and the publishing node needs only to contact the rendezvous
point directly.

Scribe implements the forward (Figure 7) and deliver (Figure 8) methods to achieve the
above operations. The following variables are used in the pseudocode: topicSet is the set
of topics that the local node is aware of, msg.source is the source node of the message,
msg.type is the type of the message and topic is the topicId of the topic.

procedure forward(msg, topic)
if msg.type = SUBSCRIBE then

if ! isSet(topic) then
topicSet.add(topic)

addChild(topic, msg.source)
msg.setSource(selfInfo)

Figure 7: Scribe implementation of forward.

E. Grigoriou 19



An Efficient Decentralized Streaming Model

procedure deliver(msg, topic)
if msg.type = CREATE then

topicSet.add(topic)
else if msg.type = SUBSCRIBE then

topic.addChild(msg.source)
else if msg.type = PUBLISH then

sendChildren(msg)
if isSubscribed(topic) then

invokeEventHandler(msg)

Figure 8: Scribe implementation of deliver.

4.3 Benefits
Using the DHT, efficient aggregation trees can be built that guarantee multicasts with only
O(logN) hops. Multicasts are more efficient, with each node of the tree sending messages
only to its children, instead of a single node notifying all the members of the group.

Additionally, many independent groups can be supported which have the capability to com-
municate with each other by publishing messages, making job interaction possible.

E. Grigoriou 20



An Efficient Decentralized Streaming Model

5. SYSTEM IMPLEMENTATION
5.1 Group Creation
Unlike other streaming systems with static assignments of nodes to act as masters vs.
workers, all agents are treated equally. As we have described in Section 3, they are struc-
tured into a P2P overlay, in which each agent has a unique nodeId and can act as master
or worker for multiple jobs.

The first step, is to create a group of agents for every job. Using Scribe’s software, a CRE-
ATE message is routed using the job’s id as the key. JobId is the hash of the job’s textual
name. The message eventually arrives at the destination node with nodeId numerically
closer to jobId and is set as the job’s master.

All other nodes wishing to join the group must then route a SUBSCRIBE message using
jobId as the key. The unions of all messages’ paths are registered to construct the group,
in which the internal node, as the forwarder, maintains a children table for the group con-
taining an entry (IP address and jobId) for each child.

Since a hash function is used for generating jobId, even distribution of groups across all
agents is ensured. A single node is rarely the master of more than one job, avoiding poten-
tial bottleneck.

A80A91

A55212

A47DEE
A319A4

A21C2A

983D5E

21D2C3

F1ED24

Figure 9: Group creation.

E. Grigoriou 21



An Efficient Decentralized Streaming Model

5.2 Master / Worker
Each job can only have a single master. Every other agent in the group acts as a job
worker. Consequently, an agent can only act as a master, a worker or both.

5.2.1 Job Master
Job master is the aggregation’s tree root. It is responsible for synchronizing the workers
and collecting the globally aggregated results. This is achieved by routing a PUBLISH mes-
sage through the system, which is guaranteed to notify all of the group’s agents.

Job master is also responsible for interacting with other job masters, when the results of its
job are required for a different job. It can actually provide the results to any node that
requests it.

5.2.2 Job Worker
A job worker has the following responsibilities:

• Input stream parsing.
Adopting an ’in-situ’[15] approach to data access, each agent consumes live logs
and parses them into key-value pairs, which are inserted in the CBT. CBT resides in
local agent’s memory. As an example, we use Apache Flink[16] for log collection.
Flink’s Twitter Streaming API[17] provides access to the stream of tweets made avail-
able by Twitter, with a built-in TwitterSource class.

• Local Aggregation
Each key-value pair is represented as a partial aggregation object (PAO) . New
PAOs are inserted into and accumulated in the CBT. When requested, new and past
PAOs are aggregated and returned.

Job Worker
Stream Observer
Stream Parser
PAO Execution
P2P Socket

Figure 10: Worker components.

5.3 Global Aggregation
Scribe’s multicast trees are enhanced to also support aggregation functions.

Specifically, when agents periodically send their updates for map results towards the root,
all intermediate nodes in the path aggregate the datasets collected from their children, ap-
plying the aggregation functions along the entire path. Aggregation, therefore, occurs in
O(log2bN) hops.

E. Grigoriou 22



An Efficient Decentralized Streaming Model

(a,5), (b,2), (c,6), (d,7)

(a,5), (c,2), (d,3)

(a,3), (c,2) (a,2), (d,3)

(b,2), (c,4), (d,4)

(d,4) (b,2), (c,4)

Figure 11: Example of key-value pair aggregation.

Figure 11 illustrates an aggregation example. Starting from the root, an aggregation mes-
sage is emanated through the tree. When a node receives the message, it replicates the
message to its children and waits until all of them respond with their results. The results
are merged and sent back to the node’s parent. In the end the root has gathered all of
the aggregated key-value pairs of the tree.

E. Grigoriou 23



An Efficient Decentralized Streaming Model

6. EVALUATION
In this section, we evaluate CBT’s throughput, as well as the system’s aggregation speed.
In order to evaluate CBT’s throughput we measured the time required to insert 1,000,000
records with and without the use of flushing, and for the evaluation of the system we mea-
sured the time required to complete a topK application with varying number of nodes par-
ticipating in the network.

All the tests were conducted on PCs with 16GB Ram and 4 cores.

6.1 CBT Evaluation
In this part, the time measurements of inserting key value pairs in the CBT are presented,
as well as the time measurements for flushing the CBT. We evaluated the insertion time in
the CBT without the use of flushing and with the CBT flushing every 50,000 records. Since
the PAOs are pushed to the bottom of the tree, the insertion time with the use of flushing is
expected to be lower. On both occasions, buffers with size of 30MB and 30KB were used,
considering that the higher the size of the buffer, the less operations are required.

We also measured the time for flushing the CBT for different number of key-value pairs in-
serted, as well as when the flushing occurs every 50,000 inserted records.

E. Grigoriou 24



An Efficient Decentralized Streaming Model

• Time measurements for insertion without flushing. Figure 12 displays the time re-
quired for inserting 1,000,000 records without ever flushing the CBT. In the first graph
we allocate 30 MBs for the buffers, while in the second 30 KBs are allocated.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0

2

4

6

8

key-value pairs

Ti
m
e(
s)

30MB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

2

4

6

8

10

12

key-value pairs

Ti
m
e(
s)

30KB

Figure 12: Insertion times without flushing.

E. Grigoriou 25



An Efficient Decentralized Streaming Model

• Time measurements for insertion with flushing. Figure 13 displays the time
required for inserting 1,000,000 records while flushing the CBT every 50,000
records inserted. The same space for the buffers is allocated.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

1

2

3

key-value pairs

Ti
m
e(
s)

30MB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

2

4

6

8

10

12

key-value pairs

Ti
m
e(
s)

30KB

Figure 13: Insertion times with flushing.

E. Grigoriou 26



An Efficient Decentralized Streaming Model

• Time measurement for flushing. The first graph presents the time needed when
flushing occurs every 50,000 records and the second one presents the time needed
for flushing records in total.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0.2

0.4

0.6

0.8

1

1.2

key-value pairs

Ti
m
e(
s)

30MB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0.4

0.6

0.8

1

1.2

key-value pairs

Ti
m
e(
s)

30MB

Figure 14: Flushing times.

E. Grigoriou 27



An Efficient Decentralized Streaming Model

6.2 System Evaluation
In this section, we present the measurements for a topK application. Each node has in be-
fore 2,000,000 records stored in its CBT. First, we measured the total time required to com-
plete a topK application (Figure 15). Then, during a topK operation, we measured solely the
time required for the for the all the key-value pairs to reach the root of the aggregation tree
from the moment an aggregation message is published (Figure 16). Finally, we evaluated
the average time of data transmission from on agent to another (Figure 17).

The tests were conducted with 2, 4, 6 and 8 nodes participating.

x2 x4 x6 x8
0

10

20

30

40

50

11.27

18.28

27.36

49.39

Number of nodes

Ti
m
e(
s)

Figure 15: TopK measurements.

x2 x4 x6 x8
0

10

20

30

8.29
10.49

15.15

27.95

Number of nodes

Ti
m
e(
s)

Figure 16: Roll up times.

E. Grigoriou 28



An Efficient Decentralized Streaming Model

x2 x4 x6 x8
0

5

10

15

20

8.5
10.18

14.83

19.67

Number of nodes

Ti
m
e(
s)

Figure 17: Average time of data transmission.

E. Grigoriou 29



An Efficient Decentralized Streaming Model

7. CONCLUSION
In this thesis, we have described and implemented a decentralized streaming system able
to run concurrently diverse jobs. It utilizes Pastry’s routing protocol and Scribe’s multicast
trees to achieve a many masters many workers architecture.

Streams are parsed int mini-batches and are stored and aggregated in memory efficient
compressed buffer trees. The aggregated results of each node in the network are rolled up
the aggregation tree that is formed, until they become available to the tree’s root. Coordi-
nation among different jobs also becomes available by routing simple messages through
the network.

Finally, the system’s performance can be further improved by optimizing the compressed
buffer tree’s throughput with the use of threads and multiple root buffers. Optimizations in
the way the key-value pairs are aggregated through the system are also possible. The ca-
pability to detect node failures by periodically sending keep-alive messages is another im-
plementation extension.

E. Grigoriou 30



An Efficient Decentralized Streaming Model

ABBREVIATIONS, ACRONYMS
CBT Compressed Buffer Tree
PAO Partial Aggregated Objdect
DHT Distributed Hash Table
MD5 Message Digest 5
SHA-1 Secure Hash Function 1
P2P Peer to Peer

E. Grigoriou 31



An Efficient Decentralized Streaming Model

REFERENCES
[1] L.Hu, K.Schwan, H. Amurm, X. Chen ”ELF: efficient lightweight fast stream processing at scale”.

Application Delivery Strategies, USENIX ATC’14 Proceedings of the 2014 USENIX conference on
USENIX Annual Technical Conference.

[2] D.Laney, ”3D Data Management: Controlling Data Volume, Velocity, and Variety”. Application
Delivery Strategies, Meta Group 2001.

[3] H. Amur, W. Richter, D. Andersen, M. Kaminsky, K. Schwan, A. Balachandran, E. Zawadzki.
”Memory-Efficient GroupBy-Aggregate using Compressed Buffer Trees”. In SoCC 2013.

[4] D. Cormer, ”The ubiquitous B-tree”, ACM Computing Surveys, 11(2):121-137, 1979.
[5] L Arge. ”The Buffer Tree: A Technique for Designing Batched External Data Structures ”.

Algorithmica , 37(1):1–24, 2003.
[6] ”Snappy”. https://github.com/google/snappy.
[7] Y. Mao, R. Morris, F. Kaashoek. ”Optimizing MapReduce for Multicore Architectures”. MIT-CSAIL-

TR-2010-020.
[8] ”SparseHash”. https://github.com/sparsehash.
[9] A. Rowstron, P. Druschel. ”Pastry: Scalable, decentralized object location and routing for large-

scale peer-to-peer systems”. 18th IFIP/ACM Int ernational Conference on Distributed Systems
Platforms (Middleware 2001).

[10] A. Rowstron, A. Kermarrec, M. Castro, P. Druschel. ”SCRIBE : The design of a large-scale event
notification infrastructure”. Networked Group Communication 2001.

[11] R. Rivest. ”The MD5 Message-Digest Algorithm”. MIT Laboratory for Computer Science and RSA
Data Security 1992.

[12] D. Eastlake, P. Jones. ”US Secure Hash Algorithm 1 (SHA1)”. Cisco Systems 2001.
[13] I. Stoica, R. Morris, F. Kaashoek, H. Balakrishnan, ”Chord: A Scalable Peer-to-peer Lookup Service

for Internet Applications”, Proceedings of the 2001 ACM SIGCOMM Conference 2001 .
[14] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, R. Panigrahy. ”Consistent Hashing and

Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web”. In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing.

[15] D. Logothetis, C. Trezzo, K. Webb, K. Yocum. ”In-situ MapReduce for Log Processing”. USENIX
annual technical conference 2011.

[16] ”Flink”. https://flink.apache.org.
[17] ”Twitter Streaming API”. https://developer.twitter.com/en/docs.

E. Grigoriou 32

https://github.com/google/snappy
https://github.com/sparsehash
https://flink.apache.org
https://developer.twitter.com/en/docs

	Introduction
	Three Vs of Big Data
	Contributions

	Data Processing
	Types of data processing 
	Batch Processing
	Stream Processing

	Application Example
	Diverse Job Execution
	Streaming System Challenges

	Solutions 

	Compressed Buffer Tree
	Overview
	Aggregation
	CBT Operations
	Insertion
	Finalize
	Empty

	Alternatives
	Metis
	SparseHash

	CBT Benefits

	DHT-based Overlay
	Pastry Overview
	Design
	Routing Procedure
	Pastry Operations

	Scribe Overview
	Design
	Scribe Messages

	Benefits

	System Implementation
	Group Creation
	Master / Worker
	Job Master
	Job Worker

	Global Aggregation

	Evaluation
	CBT Evaluation
	System Evaluation

	Conclusion
	Abbreviations, Acronyms
	References

