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ABSTRACT

The data model RDF and query language SPARQL have been widely used for the inte-
gration of data coming from different souces. Due to the increasing number of geospatial
datasets that are being available as linked open data, a lot of effort focuses in the de-
velopment of geospatial (and temporal, accordingly) extensions of the framework of RDF
and SPARQL. Two highlights of these efforts are the query language GeoSPARQL, that is
an OGC standard, and the framework of stRDF and stSPARQL. Both frameworks can be
used for the representation and querying of linked geospatial data, and stSPARQL also
includes a temporal dimension.

Although a lot of geospatial (and some temporal) RDF stores started to emerge, converting
geospatial data into RDF and then storing it into an RDF stores is not always best practice,
especially when the data exists in a relational database that is fairly large and/or it gets
updated frequently.

In this thesis, we propose an Ontology-based Data Access (OBDA) approach for access-
ing geospatial data stored in geospatial relational databases, using the OGC standard
GeoSPARQL and R2RML or OBDA mappings. We introduce extensions to an existing
SPARQL-to-SQL translation method to support GeoSPARQL features. We describe the
implementation of our approach in the system Ontop-spatial, an extension of the OBDA
system Ontop for creating virtual geospatial RDF graphs on top of geospatial relational
databases. Ontop-spatial is the first geospatial OBDA system and outperforms state-of-
the-art geospatial RDF stores. We also show how to answer queries with temporal oper-
ators in the OBDA framework, by utilizing the framework stRDF and the query language
stSPARQL which we extend with some new features. Next, we extend the data sources
supported by Ontop-spatial going beyond relational database management systems, and
we present our OBDA solutions for creating virtual RDF graphs on top of various Web data
sources (e.g., HTML tables, Web APIs) using ontologies and mappings. We compared the
performance of our approach with a related implementation and evaluation results showed
that not only does Ontop-spatial support more functionalities (e.g., more data sources,
more simple workflow), but it also achieves better performance. Last, we describe how
the work described in this thesis is applied in real-world application scenarios.

SUBJECT AREA: Geospatial and Temporal Knoweledge Bases

KEYWORDS: Linked spatiotemporal data, Spatiotemporal databases, Semantic Web






NEPIAHWH

To povtého Oedopévwyv RDF kal n yAwooa emepwtioewv SPARQL eival eupéwg
dladedopéva yia TRV XPrRon Toug e OKOTTO TNV EVOTTOINCN TTANPOPOPIOG TTOU TTPOEPXETAI
atro d1aPOPETIKES TTNYES. O auéavOouevog apIBUOS TWV YEWXWPIKWY CUVOAWY BeSOUEVWV
TTou gival TTAéov BIaBETINa oav YEwXwPIKA diacuvdedepéva dedouéva odAynoe OTnv
EMPAVION ETTEKTACEWV TOU PoOVTEAOU dedouévwy RDF kal TG YAWOOAG ETTEPWTIOEWYV
SPARQL. Auo a1rd TIg onPavTIKOTEPEG ETTEKTACEIG AUTEG gival N YAwooa GeoSPARQL,
n omoia éyive OGC Tpdtutto, Kal TO TTAQiol0 Tou HovTélou Oedouévwy stRDF
Kal TNG yYAwooag emepwtioewyv stSPARQL. Kai o1 dUo Trpooeyyioelg utmmopouv va
XPNOIJoTToINBoUV yia TNV avatrapdoTaon Kal ETTEPWTNON SIACUVOESEPEVWIV YEWXWPIKWV
dedopévwy, evw 1o povtENo stRDF kal n yA\wooa stSPARQL trapExouv €TTiong eTTITTAEOV
AEITOUPYIKOTNTA VIO TV AVATTAPACTACN KAl ETTEPUWTNON XPOVIKWY OEDOUEVWV.

MapdT 0 apIBPOS Twv dedoPEVWY TTOU gival JIOBECIUA OavV YEWXWPIKA A Kal XPOVIKA
dlacuvoedepéva dedopéva auEAveTal, N HETATPOTTA TWV YEWXWPIKWYV dedouévwy oe RDF
Kal n atroBrikeuat) Toug o€ atmobetrpia RDF dev cival ravta n BEATIOTN AUON, €18IK& OTavV
Ta dedopéva Ppiokovtal EEAPXNG O OXETIOKES BATEIC Ol OTTOIEG UTTOPEI va £XOUV APKETA
MEYAAO pEYEDOG 1] KAl VA EVNUEPWVOVTAI TTOAU OUXVA.

210 TTAiola autrg NG dIGAKTOPIKAG dIaTPIPNAG, TTPOTEiVOUUE Pia Auon Baciopévn oTnv
avAaKTNon TTANPOYOPIaG PE XPON OVTOAOYIWV KAl AVTIOTOIXIOEWV YIO TNV ETTEPWTNON
0eDBOUEVWV TTAVW OTTO YEWXWPIKES OXEOIOKES BAOEIC DEDOUEVWY. ETTEKTEIVOUNE TEXVIKEG
emmaveyypa@rns GeoSPARQL epwTtnudtwy o SQL WOTE n ATroTipnon TwV ETTEPWTHOEWY
va yivetal eE0AOKARPOU OTO YEWXWPIKO ouaTnua diaxeipions Bacewy dedouévwy. ETriong,
€I0AYOUUE ETTITTAEOV AEITOUPYIKOTNTA OTN XPOVIKA OUVIOTWOO TOU POVTEAOU OEOOUEVWIV
stRDF kai Tng yAwoooag emepwtioewv stSPARQL, trpokelyévou va OleukoAuveOei n
UTTOOTNPIEN XPOVIKWV TeAeoTwv o€ cuotiuata OBDA. 2Tn ouvéxeia, €TTEKTEIVOUNE TIG
TTapATTAvw HMEBOOOUG PE TNV UTTOOTAPIEN BIAPOPETIKWYV TTNYWYV BedOUEVWV TTEPA aTTO
OXEOIaKEG Baoelg kal TrTapouaialoupue pia OBDA mTpooéyyion TTou emITPETTEI TN dnuIoupyia
eIkovikwv RDF ypd@wv mmavw atmd dedopéva 1Tou Bpiokovtal dlabEoiya oTo dIadiKTUO
oe d1aQopeg Pop®Eg (TrX. HTML Trivakeg, web dIeTTa@ég), e Xprion OVTOAOYIWV Kal
QVTIOTOIXIOEWV. ZUYKPIVOUE TNV ATTOBOCN TOU CUCTHAMATOS POG UE éva OXETIKO oUOTAUA
Kal Ta atroTeAéoparta €901Eav OTI TTEPAV TOU OTI TO CUCTNPA POG TTAPEXEI MEYOAUTEPN
AeiroupyikéTnTa (TTX. UTTOOTNPICEl TTEPIoCOTEPA €idn TTNywv dedopévwy, TTEPIAaUBAVEI
atrAoucoTepeG d1adIKATIES) Kal eEac@alilel KaAUTEPN attddoon. TEAOG, TTapouciddouue TV
EQapoyn Twv PEBOGdWY Kal CUCTNPATWY TTOU TTEPIYyPAQovTal 0Th dIATPIRr O€ TTPAYMATIKG

oevapla xprRong.
OEMATIKH NMEPIOXH: MewxwpIkéS Kal XpovikéG Bdoeig MNvwoewv

AEZEIZX KAEIAIA: Ailaocuvdedepéva XwWPOXPOVIKA Oedopéva, XwPOXPOVIKEG PAOEI
OedOoPEVWY, ZNUACIoAoyIKOG 10TOG






2YNONTIKH NMNAPOYZIAZH THZ AIAAKTOPIKHZ AIATPIBHZ

Eicaywyn

O 6YKOG TWV YEWXWPIKWYV Kal XPOVIKWY OEOONEVWYV TTOU TTAPAYOVTAI KAl KATAVAAWYVOVTAI
a1To EQAPMOYES autdveTal paydaia Ta TEAEUTaia Xpovia, KaBWS OAOEVa Kal TTEPIOCCOTEPES
EQPAPUOYEG XPNOIUOTIOIOUV YEWXWPIKA OEDOMEVA TTOU TTAPAYOVTal OTA TTAQiCIA dIaPOpwV
ETMOTAPOVIKWY TTESIWV (TTX. TNAETTIOKOTTNOT, TTEPIBAANOVTIKEG ETTIOTIUEG, YEWAOYIA), EVW
TTOAAEG eQapuoyEG Kal uTTnpeaieg (TTX. Google maps), oTnpiovTal TNV ATTOTEAECUATIKA
EVOTTOINON KAl DIAXEIPION YEWXWPIKWY OEOOPEVWYV ATTO DIOPOPETIKES TTNYEG.

To mpéPAnua TNG diaxeipiong Kal ATTOTEAECUATIKAG AVAKTNONG YEWXWPIKWY OEDOUEVWV
EXEI ATTAOXOANOEI TNV EPEUVNTIKA KOIVOTNTA PEPIKEG DEKAETIEG KAI APKETES DIETTIOTNNOVIKES
OMAdEG €xOUuv avaTITUgEl POVTEAD OEDOMUEVWYV KAl CUCTAPOTA TTOU OTOXEUOUV OTNV
QATTOTEAECUATIKI DIAXEIPION YEWXWPIKWYV KAl XPOVIKWY OESOUEVWV. ZTOV XWPO TWV PACEWV
0edONEVWYV, TO OXECIOKO HOVTEAO ETTEKTABNKE e T SuvVATOTATA VA AVOTTAPIOTA YEWXWPIKA
OedopEVA (TTX. YEWMETPIES) KAl XPOVIKA OEDOMEVA, EVWD AVTIOTOIXA N YAWOOA ETTEPWTHOEWV
SQL €TTekTAONKE PE YEWXWPIKOUG Kal XPOVIKOUG TEAEOTEG.  O1 TTPOOTTABEIEG AUTEG
odriynoav otn dnuioupyia piag TANBwpag cucTnUATwy dlaxeipiong Bacswv dedopévwv
TTOU UTTOOTNPICOUV XWPIKOUG Kal XPoVvIKoug TeAeoTég (TTX.  PostGIS kai PostgreSQL-
temporal, Spatialite, Oracle Spatial and Graph), evw péxpl kal opepa n BiBAIoypagia
BpiBel TEXVIKWY BEATIOTOTTOINONG YEWXWPIKWY KAl XPOVIKWY EPWTNNATWV.

MapdaAAnAa, uttdpxouv kabiepwpéva Mewxwpikéd NMAnpogopiakd Zuotiuata (GIS), 6TTwg
gival To euTTOPIKO ouoTnua ArcGIS kal To avtioToixo ouoTnua avoiktou Kwdika QGIS,
TA OTTOI0 XPNOIKOTTOIOUVTAl O€ ETTIXEIPNOIOKO ETTITTEDO YyIA KABNUEPIVEG £PYACIEG TTOU
QaPOPOUV TNV ETTEEEPYATIQ KAI TV OTTTIKOTTOINCN YEWXWPIKWY CUCTNUATWY. ZTOV TOUEA TNG
Texvntg Nonuoouvng UTTAPXOUV ETTIONG EPYOTIEG TTOU ETTIKEVTPWVOVTAI OTNV £QAPUOYN
MEBOBWY CUNPTTEPACHOU OE YEWXWPIKA Kal XPOVIKA Oedouéva PeE OKOTTO TNV €aywyn
OUUTTEPACHATWY OTTO TNV UTTAPYXOUOCO YEWXWPIKK KAl XPOVIKI TTANpOQopia, avTioTolXa.

MpoUTTéBeon yia Tnv gvotroinon 0edouEVwY atTd dIAQOPETIKESG TTNYEG €ival Ta dedopéva
va €ival o€ €va KoIvO JovTEAo dedopévwy. [a To OKOTTO auTd, CUXVA XPNOIMOTTOIEITAl
TO0 povTéAo dedopévwy RDF [51]. H kevrpikn 16éa Tou povTéAdou dedopévwv RDF givai
OTI KGBe ovToTNTa OTO dIadikTUO (KaI OXI MOVO) €ival évag TTOPOG, OTOV OTToI0 avaTifeTal
éva povadiko TpoodiopioTIKO (URI). O TTOpog auTtdg PTTOPEN va TTEPIYPAPET JE TN XPAON
TPITTAETWY, ONAadr dnAwoewv TTOU atroTeAouvTal ATTO Tpia péPn:To UTTOKEIUEVO, TTOU
gival o TTOPog TTou BEAOUNE va TTEPIYPAYOUUE, TO KATNYOpnua, Kal TO avrikeiuevo. To
KaTnyopnua TTepIypd@el hia 1I810TNTA TOU UTTOKEIYEVOU, KAl €ival KAl auTo £vag TTOPOG TTou
MTTOPEI va TTEPIYPAYPE, EVW TO AVTIKEIYEVO €ival N TIPA TNG 1010TNTAG TTOU TTEPIYPAPEI TO
Katnyopnua. H Ty autr) ptropei va gival ite €vag aAAog 1épog (URI), €ite éva AeKTIKO
€VOG TUTTOU OedOUEVWYV (TTX. apIBUOG, cupBoAoaclpd, nuepounvia). To povtéAo dedouévwv
RDF xpnoiyoTtroigital yia va dIEUKOAUVEI T cuvaAAayr TTAnpo@opiag HETAEU EQapUOywY,



KaBwg g10ayel onuacioAoyia ota dedopéva.

To oxAua Twv dedoEVWY TTOU gival ekppacuéva oTo HovTEAo RDF dnAwveTal e Tn xprion
ovToAoyiwv. O1 ovToAoyieg TTEPIYPAPOUV TA €idN TWV OVTOTATWYV TTOU UTTOPEI VA UTTAPYXOUV
o€ £va oUVOAO dedouEVWY, dNAAd TIG KAGOEIC, TIG OXEOEIG METAEU TWV KAAOEWV auTWwy, TA
KATNYOPAMOTA KAl TN oX€0N METAEU TWV KATNYOPNHATWY, VW UTTOPEI va TTEPIAaUBAvVOUV
Kal aglwpaTa TTou €I0dyouv TTPOCBETOUG OPICUOUG Kal TTEPIOPICHOUG OTa dEBOUEVA TTOU
MTTOPOUV Va XpNOoIYOTToINBouV yia TNV £€aywyn véag TTAnpogopiag atrd Tnv utradpyxouca
ME XpNon KATGAANAWY KavOvwy CUUTTEPACHOU. H yAwoooa TTou XpnoIJoTIoIEiTal YIa TN
dlaTUTTWON £TTEPWTACEWV o€ dedouéva RDF cival n yh\wooa SPARQL [40], n otroia eivai
MIa ONAWTIKA YAWOOA TTOU POIPACETAI APKETA KOIVA OTOIXEI YE TN YAWOOA ETTEPWTACEWV
SQL.

To povtého RDF Kai n yAwooa etrepwtriocwv SPARQL dev uttootnpifouv €101KOUG TUTTOUG
OedOPEVWYV KAl TEAEOTEG yIA TNV AvATTOPACTACH KAl ETTEPWTNON YEWXWPIKWYV KAl XPOVIKWV
oedopévwy. Ma 10 Adyo autd, Ta TeAeuTaia Xpovia dpXIoav va TTPOTEIVOVTAI Ol TTPWTEG
YEWXWPIKEG KOl XPOVIKEG ETTEKTACEIS TOUG.  2TnN OUVEXElD Ba avagepBouue oTig dUOo
KUPIOTEPEG ETTEKTAOEIS TOU povTéAou RDF kai Tng yAwooag SPARQL TTou €ivail n yA\wooa
GeoSPARAQL [26] kal n yA\wooa stSPARQL [47].

H yAwooa GeoSPARQL cival pia etréktaon tou povtéAou RDF kai 1ng yAwooag SPARQL
N OTToia TTPOTABNKE yIa TNV UTTOOTAPIEN VEWV TUTTWV OEOOPEVWV KAl TEAEOTWV YId TNV
avaTTapAoTaon KAl aVAKTNON YEWXWPIKWY OEBONEVWYV Kal TTPOTUTTOTTOINBNKE atrd To Open
Geospatial Consortium (OGC). H GeoSPARQL eTtrekreivel To povtédo dedopévwv RDF
€10AyovTag OU0 VEOUG TUTTOUG DEQOMNEVWYV VIO TV AvATIAPACTACH YEWHETPIWY OAV AETIKA
(literals). Autoi o1 TUTTOI dedopEVWY gival 0 TUTTOG dedopévwy Well-Known-Text (WKT),
Kal o TutTog dedopévwy Geography Markup Language (GML). Oi1 tutTOo1 dedopévwv WKT
kal GML atroteAouv \dn TpdéTutta OGC yia TNV avaTtapdoTaon YEWPETPIWY UTTO TN HOPPN
keipévou. H yA\wooa GeoSPARQL ettiong opidel katnyopruaTta TTou a@opouV TOTTOAOYIKEG
OX£OEIG METAEU TTOPWV TTOU £XOUV YEWMETPIO ) aTTEUBEIAG HETAEU YEWPETPIWY, EVW ETTIONG
opicel Kal éva oUVOAO atrd TEAEOTEG TTOU UTTOPOUV VA XPNOILOTIOINBoUV 0av CUVOPTACEIG
TTou emekTeivouv TNV SPARQL 1.1. O1 cuvapTtAoelg autég AappBdavouv cav €icodo pia i
OUO YEWWETPIES, UTTOAOYICOUV YEWMETPIKEG 1ID1OTNTEG (TTX. EUPADO) 1 TOTTOAOYIKEG OXETEIG
(1TrX. €mK&AAUWN BUO YEWMPETPIWV), KAl UTTOPOUV Va TTEPIANPOOUV O€ QIATPA ) OTIG BNAWCEIG
TpoPoAng (SELECT) twv SPARQL gpwtnudaTwy.

To povtédo dedopévwy stRDF kal n yA\wooa erepwtiocwy stSPARQL eival GAAN pia
emékTaon Ttou povrédou RDF kai 1ng yAwooag SPARQL pe tUtTOoug dedopévwv Kal
TEAEOTEG yIO TNV avaATTAPACTAON KAl ETTEPWTNON YEWXWPIKWY KAl XPOVIKWY OEDOUEVWV.
To povrého RDF kai n yAwooa stSPARQL avamtuxOnkav tnv idla Xpovikr TTepiodo
aAAG avegdptnta atrd T YAwooa GeoSPARQL, kal poipadovTtal apkeTd KOV OTOIXEIa.
H yAwooa stSPARQL 1poBAETTEl €TTIONG TNV QvVATIOPACTOON YEWMPETPIWY OAV AEKTIKA
ekppaopéva ota TpoTutta WKT kair GML, kai TrpoTteivel TUTToug dedopévwy TTou BaacidovTal
ota TpoTutta autd. 2tnv stSPARQL opifovTal €1miong avtioToIiXol TEAEOTEG HE TNV
GeoSPARQL, pe mn dlagopd o1 opidovtal €TMITTAEOV KAl CUVOBPOIOTIKEG CUVAPTHOEIG,
OnAadr) cuvapTAOEIG TTOU TTAiPVOUV oav €i0000 pia AioTa aTTd YEWMETPIES TTOU Eival AUCEIG
OTO KUPIO PEPOG eVOG StSPARQL epwTAUaTOG, KAVOUV £vav UTTOAOYIONO (TTX. €vwon OAwv



TWV YEWMPETPIWYV), KAl TTPOBAAANOUV TO ATTOTEAEC Q.

Mia dAAn onuavTtikh diagopd avaueoa oTig yAwooeg GeoSPARQL kai stSPARQL eival
o1l To povTéAo stRDF kal n yAwoa stSPARQL trepIAauBavouv Kal XPOVIKEG ETTEKTACEIG
oT1o TAaiolo Twv RDF kair SPARQL, evw n yA\wooa GeoSPARQL dev rapéxel emmITTAéov
OuvaTOTNTEG YIa XPovIKA Oedopéva. EIDIKOTEPA, XpnolpoTrolwvTag 1o hJoviéAo stRDF
MTTOPEI KAVEIG VA PJOVTEAOTTOINOEI TOV XPOVO £yKUPOTNTAS TPITTAETWYV, ONAAdK TOV XPOVO
KOTA TOV OTT0i0 MIa TPITTAETA €ival Eykupn. MNépav Tou Xpovou eykupdTNTAG OUWG, opilovTal
KO TTI0 YEVIKOI XPOVIKOi TEAEOTEG TTOU AauBAvouv oav £i0000 XPOVIKEG TTEPIODOUG i XPOVIKA
onueia (timestamps) Kal KAGvOUV avTiIOTOIXOUG UTTOAOYIOHUOUG.

MOAU ouUvTopa petd Tnv TpoTuTroinon TG YAwooag GeoSPARQL, dpyxioav va
AvaTITUCOOVTAl T TTPWTA CUCTAMATA | ETTEKTACEIS CUOTNUATWY TTOU TNV UAOTTOIOUV,
OTw¢ eival Ta cuotiuara: GraphDB', Oracle Spatial and Graph?, USeekM?3, svw
GA\a ouoThpaTta uttooTnpifouv dIKOUG TOug €10IKOUG TEAEOTEG yIa TNV OTTOBAKEUON KAl
ETTEPWTNON YEWXWPIKWV dedopévwy. To auotnua Strabon? [48] sival To M0 aATTOd0TIKO
aTré AUTA TA CUCTHAUATA, CUPQWVA PE TTEIPANATIKEG MEAETEG [34] AAG Kal TO TTANPECTEPO,
KaBwg utrooTnpicel Téoo 1N YAwooa GeoSPARQL 6oo kal Tn yA\wooa stSPARQL.

ZUOTAMATA AVAKTNONG OESONEVWV HE OVTOAOYiEG

MapodAo 1Tou 1o povTéAo RDF xpnoigoTrolsitTal EupEwg atrd TRV aKadNUAikA KoIvoTnTa Kal
ATTO EUTTOPIKEG EQAPUOYEG YIA TNV EVOTTOINGTN OEOOUEVWYV ATTO DIAPOPETKEG TTNYES, TTOANOI
XPAOTEG TTOU £XOUV Ta OEDOUEVA TOUG O€ OXETIOKESG BATEIC TTOAEG QOopEG OeV ETTIBUOUY
va petappdaldouv Ta dedopeva Toug o€ RDF yia va 1a eviyoouv e GAAa dedopéva Kal va
EKUETAAANEUBOUV T OQEAN TWV DIOCUVOEDEUEVWV OEDOUEVWY. EIDIKA OTIG TTEPITITWOEIG TTOU
01 BACEIG AUTEG TTEPIEXOUV UEYAAO OYKO BEDOUEVWYV 1) BEDOPEVA TTOU EVAEPWVOVTAI CUXVA,
ol XpNnoTeg amoBappuvovTal amd To va TTPAYHATOTTOIOUV PETATPOTTEG TWV OEOOPEVWV
Toug o RDF kdBe @opd 110U 01 BACEIC EVNUEPWVOVTAI TTPOKEIJEVOUV VO OUVTNPOUV
evnuepwpéva Ta RDF ammoBetApid Toug. ETriong, ouxvd ta ammobetripia RDF dev eival
TO iBI0 ATTODOTIKA HE TIG OXECIOKEG PATEIS OEDOUEVWIV.

MpokeluEvou va AVTIMETWITIOTOUV Ta TTPORARUATA AUTA, ONUIOUPYNBNKE N EPEUVNTIKA
TTEPIOXN) TNG avaKTNong oedopévwy pe ovioloyieg [75]. H Tmeploxn auth PEAETA TO
TPORANPa TNG dnuioupyiag eikovikwyv RDF TpImTAeTwov TTdvw a1md OXECIOKEG PAOEIG
O0edopévwy, Xwpic va petaTpémrovial Ta dOedouéva Twv Bdoewv e€apxns oe RDF
Kal va atmmofnkevovtal uttd Tnv popery RDF apxeiwv oe kdamolo RDF ammoBetApio.
XPNOIYOTTIOIWVTAG TIG TEXVIKEG QUTEG, O XPAOTEG PTTopouv va diatutTtwvouv SPARQL
epWTANATA TTAVW aTTd TOug €Ikovikoug RDF ypdgoug, Ta oTroia PETA eTTaveyypd@ovTal
autépaTa ota avrtiotoixa SQL €pwTAPATA TTOU ATTOTIMWVTAI OTO QVTIOTOIXO CUCTAPA

"https://www.ontotext.com/

’https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.
html

Shttps://wuw.w3.org/2001/sw/wiki/USeekM

4http://www.strabon.di.uoa.gr/
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dlaxeipiong Bdoewv dedoPEVWV Kal TA ATTOTEAEOUATA ETTIOTPEPOVTAI OTOV XPROoTn oav
eikovikoi RDF 6pol, akpiBwg pe Tov idlo TpéTTO PE TOV OTToio Kaveig Ba €0ete Ta idla
epwTnuata o€ €va ammobetrpio RDF.

MNa va dnuioupynoel kKaveig éva €ikovikd aTTroBeTpIo o€ éva oUOTNUA AVAKTNONG
OEQONEVWV E OVTOAOYIEG, TTPETTEI VA TTAPEXEI TNV OVTOAOYIA TTOU HOVTEAOTTOIET TO OEDOUEVA
oav €i00do OTO ouOTnua, KaBwg Kal éva apxeio avrioToixioewv (mapping file). 1o
apxeio autd dnAwvovTal ol RDF dpol TTou avTioTolxi(ovTal o€ KABE OTOIXEIO TOU OXECIOKOU
MOVTEAOU, yia KABe oUvoAo atrd TTAEIGdeC Twv TIVAKWY TNG Bdong tou B€Aoupe va
avTioTolxiooupe o€ €ikovikoug RDF 6poug. Ta 10 okommd autd, uttdpxouv BIAPOopPES
YAWWOOEG avTIoTOoIXioEWYV, KABWG KABE oUOoTNUA avAKTNONG OEBOUEVWY HE OVTOAOYIEG TTOU
QvVOTITUCOOTAV apXIKA UTTooTAPIE TN OIKN Tou yAwooa. Kabwg¢ Opwg avatrtuxdnkav
QPKETA TETOIO OUOTAMATA, N YAwooa eTepwtiocwv R2RML 1rpoTutrotmoifénke amod 1o
W3C [29].

APKETA OUOTAUATA TIOU UAOTTOIOUV  TIG TEXVIKEG AVAKTNONG OedOUEVWY  TTAVW
amdé  ovioloyieg  TrpaypaTtotroiwvTag  autépatn  SPARQL-0e-SQL  emraveyypaen
XPNOIUOTTOIWVTAG OvToAoyieg Kai avTioToixioels.  QoTdé00, Kavéva ammd autd Ogv
TepIEAGUPBavE UTTOOTAPIEN VIO YEWXWPIKA Kal xpovikd dedouéva, Tpiv TN dnuioupyia
TOU OUCTAHATOG TO OTTOIO TTEPIYPAPETAI OTNV TTapouca diaTpIPr).

Zuvelo@opd B18aKTOpPIKAG S1aTpIAg
O1 ouvelopopég TNG TTapoucag dIdAKTOPIKAG dIaTPIBAG, ival oI akOAOUBEG:

* [epiypagoupe dnuioupyia TOU TTPWTOU CUCTHPATOG ETTECEPYATIAG EPWTNNATWV
GeoSPARQL 1rdvw atmd OXEOIOKEG PAOEIG OEOOUEVWY, ETTEKTEIVOVTOG TEXVIKEG
emmaveyypaens SPARQL epwtnudtwy o SQL epwTtApaTa, YE XPron OVTOAOYIWV
KOl QVTIOTOIXIOEIC OXECIOKWY OpwV O€ €IKoVIKOUG 6poug RDF. O1 TeXVIKEG pag
uAoTtToloUvTal oav ETTEKTOCT TOU ouoThpaTtog Ontop, To otroio ovoudloupe Ontop-
spatial® [10].

* MNapouoidloupe Ta aTToTEAéOPOTA TNG OlEEAYWYNG TTEIPOUATIKAG MEAETNG TTOU
ouykpivel 10 Ontop-spatial pe TTapadooiakd atrobetrpia TTou TTEPIAAPBAvoUV
UTTOOTAPIEN VIO YEWXwPIKA dedopéva. Ta atmroTeAéouata Twv TTEIPAPATWY £DEIEav
OTI T0 ouoTnUA Ontop-spatial emmTUyXAvel KOAUTEPOUG XPOVOUG ATTOKPIONG ATTO TO
KaAUTEPO Xwpoxpovikd RDF atmoBetrplo cuxvd katd duo Tagelg pey£Boud.

» EmrekTeivoupe 10 povtéAo dedopévwyv RDF kal Tn yAwooa emepwtrioewv stSPARQL
ME XOPAKTNPIOTIKA TTOU OIEUKOAUVOUV TNV UTTOOTAPIEN XPOVIKWY TEAECTWV OE
OucThAPATa avakTnong 0eO0NEVWV UE OVTOAOYIEG.

* [1poteivoupe TEXVIKEG yia Tn dnuioupyia eikovikwv RDF ypda@wv Tavw atrd 1TnyEg
Oedopévwy O1aBéoiueg oTo dIAdiKTUO, TTEPA ATTO OXECIOKEG PACEIC DEQONEVWY,

Shttp://ontop-spatial.di.uoa.gr/
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yia Tmapadeiyua HTML Trivakeg 4 Web dietragég.  Mepiypd@oupe TRV uAoTroinon
TWV TEXVIKWV QUTWYV OQV ETTEKTOON TOU cuoTthuatog Ontop-spatial kai die¢dyoupe
TTEIPAMOTIKA  MEAETN TTOU OUYKpivel Tn OIKAR HAG TIPOCEYYION HE MIa GAAN
OXETIKI €pyaoia. Ta ammoteAéopaTta Twyv TEIPAPATWY Ogixvouv OTI N OIKN
MOG TTPOOEYYION ETTITUYXAVEI KAOAUTEPOUG XPOVOUG ATTOKPIONG O CUVOUAOHNO ME
KQAUTEPN AEITOUPYIKOTNTA.

* [Napouoiddoupe €VOEIKTIKEG TTEPITITWOEIG XPAONG TOU CUCTAUOTOG O€ TTPAYMATIKA
oevapIia  EQAPUOYWV. MoAU oUvTopa peTd TR dnuIOUPYId TOU OCUCTANOTOG
EVOWUATWONKE 0€ £va eUpU GACHUA EQAPHUOYWYV TTOU EVTACOOVTAI O€ DIAYOPETIKOUG
TOMEIG, OTTWG €ival n dlaxeipion yng, N aoTIK avatrTugn, BaAdoola ao@AaAEia, KabBwg
Kal dnuioupyia dieTra@wy yia Ta dedopéva Copernicus.

AvAKTNON YEWXWPIKWV dESONEVWV HE XPOTN OVTOAOYIWV

210 TTAiola autrg NG dIBAKTOPIKAG dIaTPIBAS TTAPOoUCIAlOUPE TNV TTPWTN TTPOCEYYIoN
uAotroinong cuoThuaTog TTou aTravid GeoSPARQL epwtAparta Tavw atmd YEWXWPIKES
Baoeig dedouévwv ETTAVEYYPAPOVTAG TA €£PWTAMATA aQUTE auTOuaTa OTA AVTIOTOIXA
epwtnuata SQL. YAotroloUPe Tnv TTPOCEYYION HAG OQV YEWXWPIKN ETTEKTACT TOU
ouoTtiuaTtog Ontop, Tou €ival éva oUoTAPO avAKTNONG OeDONEVWY E OVTOAOYIEC Kal
avTioToixioelg. To ouotnua Ontop uAotroiei évav aAyopiBuo etmavaypagns SPARQL
EPWTNHATWYV O€ epwTRaTa SQL, TOV OTTOIO ETTEKTEIVOUE VIO TNV UTTOCTHPIEN YEWXWPIKWV
epwTNUATWY. To vEéo ouoTnua, To otroio ovopalouue Ontop-spatial, ammotiud GeoSPARQL

EPWTANATA WG EENG:

* Apxikd, éva GeoSPARQL epwTnua €xel utTtoBANBEi 0TO CUOTNUA Kal YiVETOI EAEYXOG
OUVTOKTIKOU. 'EXOUNE TPOTTOTTOINOEI TO CUVTAKTIKO OEVTPO TO OTTOI0 XPNOIUOTTOI0UCE
£ToIMo TO ouoTnUa Ontop WoTE va avayvwpidovTal ol TUTTOI OEOOPEVWY Kal Ol TEAECTEG
NG YA\wooag GeoSPARQL.

* ‘Emreita 10 ouotnua Ontop petartpémel Ta SPARQL epwtApata o€ éva TTpoypauua
datalog.

* O1 avTmioTOIXiO€IG METATPETTOVTAN KOl QUTEC O datalog kai TTpooTiBevral OTO
TTPOYPANUA WOTE VA Yivouv BEATIOTOTTOINCEIG (TTX., ATTAOTTOINCN, AVIXVEUON KEVWV
EPWTNHATWY TIPIV TACOUV OTO oucoTnua dlaxeipiong Baccwyv dedopévwy). MNa 1o
OKOTTO aUTO, £XOUE ETTEKTEIVEI TOV JETATPOTTEN eTTAvVaAypa@hs SPARQL epwtnudaTwy
o€ datalog, opifovtag yewxwpikd katnyopruarta datalog. KédBe katnyoépnua datalog
QVTIOTOIXEI O€ KABEvav aTTd TOUG YEWXWPIKOUG TEAEOTEC TTOU opiovTal aTn YAWOOO
GeoSPARQL. Ze autd 10 OTAdIO UAOTTOIOUVTAI ETTIONG Ol KAVOVEG ETTAVAYPOAPNG
rmoiotikwv emrepwThocwv GeoSPARQL og mmooorikée emepwtioelg GeoSPARQL,
OTTWG opicel N eTTEKTOON PE TITAOG “Query rewrite” Tou TTPOTUTTOU.

* 2Tn ouvéxela, to datalog TTpoypapua TTou €xel dnUIoUpynOEi JETATPETTETAI OE MIA
emepwtnon SQL, n otroia TTpoweEeiTal 0TO YeEWXWPIKO ouoTnua diaxeipions Bacswv



Oedopévwy e TO oTToio €ival ouvdedepévo T0 ouotnua Ontop-spatial.  Agou
ATTOTIMATAI N ETTEPWTNOTN, Ta aTToTEAéoaTa TTpowBouvTal TTicw oTo Ontop-spatial,
otrou petatpétmovrtal o€ eikovikoi RDF 6pol, oupewva Pe TRV ovioAoyia Kal TIG
QVTIOTOIXIOEIG, KAl TEAOG ETTIOTPEPOVTAI OTOV XPAOTN.

MpayuatotToINocape TTEIPAPATIKA MEAETN ouyKpivovTag To ouoTnua Ontop-spatial, pe duo
atrd Ta Mo atmmodoTika atoBetApia RDF 1Tou uttooTtnpifouv emmepwtrioels GeoSPARQL,
TO oUCTNUA avoiXToU AoyiouikoU Strabon kai éva eutropikd ocuoTnua. Ta atroteAéopaTa
TNG TTEIPAPATIKA MEAETNG Beixvouv OTI To ouoTnua Ontop-spatial emTuyxdavel KOAUTEPOUG
XpoOvoug atmmokpiong atrd Ta AAAa dUO cuoTAUATA, CUXVA PE dUO TALEIS ueyEBoUG dlagpopd.
To TTEPIEXOUEVO AUTHG TNG EVOTNTAG avaAUETal TTEPICCOTEPO 0TO Ke@aAaio 3, KabBwg Kal
oTtn dnuoaiguon [10].

AvVAKTNON XPOVIKWYV SeSOUEVWV E XPHOT OVTOAOYIWV

Tnv idla TTpocEyyion PE TNV AVAKTNON YEWXWPEIKWY OEOOUEVWV UE XPHON OVTOAOYIWV
KAl avTioToIXioewv Ba PtTropoUcape va €QPAPPOCOUME Kal yia TV avAKTNon XPOVIKWYV
oedopévwy pe epwtiuata SPARQL 1Tdvw atrd €IKOVIKOUG XPOoVIKoUg ypdagoug RDF.
QoT1600, OTNV TTEPITITWON TWV XPOVIKWY OeOOUEVWV UTTAPXOUV TTPOCBETEG TTPOKANCEIC.
MpwTtov, dev UTTAPXEI TTPOTUTTOTTOINKEVN YAWOOX TTOU va £TTeEKTEIVEI TN YAwooa SPARQL
ME XPOVIKOUG TeEAeOTEG, o€ avTiBeon pe Tnv GeoSPARQL TT0oU €ival TTpoTuTro. AgUTEPOV, Ol
ETTEKTACEIG TTOU £XOUV TTPOTABEI YIA PMOVTEAOTTOINOT TOU XPOVOU £YKUPOTNTAG TPITTAETWV
dev Taipidlouv OTO MOVTEAO TnG avdktnong oedopévwyv Tou PBaciletar oTn XpHon
OVTOAOYIWYV, KOBWGS atraiTei AEITOUpyIKOTNTA TTOU OEV UTTOOTNPICETAI ATTO TIG UTTAPXOUCES
TEXVIKEG.

MNa va dIEUKOAUVOUWE TNV UAOTTOINON XPOVIKWV TEAEOTWV OTA CUCTAMOTA AVAKTNONG
dedopévwy TTou Baacidovtal o€ OVTOAOYIEG, OPICOUNE PIT ETTEKTOCN 0T XPOVIKH OUVIOCTWOO
Tou povTtéhou RDF kail Tng yAwooag stSPARQL, tTou TrepIAapBavel Ta €EN1G:

» Xpovikd karnyopnuara. Opifoupe Eva katnydpnua yia KABE XpovIKA cuvapTnon TTou
opiCetal otnv stSPARQL kal ptropei va xpnoipotroinBei oav xpovikd QiATpo.

» Emaveyypapn xpovikwv teAsotwv.  Opiloupe €va oUvoAo amrd KAVOVEG TTOU
ETTAVEYYPAPOUV Eva EPWTNUA TTOU TTEPIEXEI £VA XPOVIKO KATNyopnua, ot €va
I00OUVANO EPWTNMA TTOU TTEPIEXEI TNV AVTIOTOIXN XPOVIKI) GUVAPTNON OE QIATPO.

H oxediaoTikf atrd@acn atnv otroia BacifeTal n Tapatmavw amoeaacn gival va amopeuxOei
N ETTEKTAOCN TOU OUVTAKTIKOU TTOU UTTOOTNPICETAI aTTO £va oUOTNUA avAKTNONG OEDONEVWV
ME OVTOAOYiEG ME €va Pn TTPOTUTTOTTOINKEVO CUVTOKTIKO. AVT auTou, XPnOIMOTToIoUVTal
XPOVIKA KATNYOPrUATa, Ta OTToid, av Kal yia €uag €xouv €IdIKA onuacioAoyia n otroia
OUMPTTANPWVETAI ATTO TO TUAMA TNG ETTAVEYYPOAPNG XPOVIKWYV TEAeoTWwy, dev TTapafidlouv
TO TTPOTUTTO TOU POVTEAOU dedopévwy RDF kal 10 TTpOTUTTO OUVTOKTIKO TNG YAWOOOG
SPARQL. ‘E1ol, n diadikagia atroTiunong evog Xpoviko epwTriuatog stSPARQL (dnAadn,
EPWTANATOG TTOU TTEPIAAUPBAVEI Eva XPOVIKO KATYOPNUA) TTEPIYPAPETAl WG EGAG:



* To gpwTnua TTEPVA aTTO CUVTOKTIKO EAEYXO XWPIG dlapopoTroinon KabBwg TTPOKEITal
yla éva epwtnua Tou dgv Tapafiddel To TpoTuTTo TG YAwooag SPARQL

* To epwtnua petappdletal o €va Tpoypaupa datalog. Opiloupe €18IKE XPOVIKA
KATNYOPNUATA TTOU QVTIOTOIXOUV O¢ KABE xpovikd katnydpnua stSPARQL, kar apa
o€ KABe xpovik ouvaptnon stSPARQL.

» 210 emimmedo TnG datalog ulotroicital To TUAua TNG SstSPARQL yia peTaTpoT)
TWV XPOVIKWYV £PWTNUATWY TTOU TTEPIAANPBAVOUV XPOVIKO KATNYOPNHa O& XPOVIKA
EPWTAPATA TTOU TTEPIAANPBAVOUV TNV AVTIOTOIXN XPOVIKI CUVAPTAON.

* To TeAIKO TTpOypauua datalog upetaoynuartifetal oe pia SQL €mepWwTnON N OTTOIA
ATTOTIMATAI TEAIKA OTO ouoTnua dlaxeipiong Bdoewv dedopévwy TTou BpiokovTal
Ta Xpovika dedopéva. H emepwtnon auth TTeEPIAAPPAvEl ToV XPoVvIKO TEAEOTH TTOU
QVTIOTOIXEI OTOV XPOVIKO datalog TEAEOTH.

* Ta ammoTeAéopaTa ETTIOTPEPOVTAI GTOV XPHOTN.

To TTEPIEXOUEVO TNG EVOTNTAG AUTHG TTAPOUCIACETAI aVAAUTIKG oTo Ke@daAaio 4.

AvdkTnon dedopévwy amrd To Web pe xprion ovroAoyiwv

A@ou TTpoTEiVaME TIG DIKEG HOG AUCEIG VIO TNV AVAKTNON XWPEIKWYV KAl XPOVIKWY OXETIAKWV
OeQONEVWV XPNOIUOTTOIWVTAG OVTOAOYIEG KOl AQVTIOTOIXIOEIG, TO ETTOMEVO TTPORBANUA 1AV
Va ETTIXEIPIOOUMPE VA ETTEKTEIVOUUE TO OUCTNUA POG PE TN dUVATOTNTA VO ETTECEPYALETAI
epWTANATA 0€ €IkKoVIKOUG RDF ypdgoug 1Tou dnuioupyouvTtal TTavw atrd dedouéva Ta
oTroia dev avrikouv ToTTIK& o€ KatTrola Bdaon dedopévwy, aAAd uttdpyouv oTo O1adiKTUO
o€ dIAQopeg HOPPES, OTTwG TTivakeg HTML kai Web diettagéc.

To mp6BANua auTto gival IBIAITEPWS ATTAITNTIKO KABWG TO OXNHa TwWV OEBOUEVWY TTOU Eival
OI0BECINA OTIC HOPYPES QUTEG BEV €ival OUYKEKPIPEVO (OTTWG Eival TO OXECIAKO OXAHA).

H mpotaon pag yia tnv emmiAuon autou Tou TTpofAruatog Bacifetal otnv XpHon &vog
OUCTAPATOG porG dedouévwy TTou TTapéxel SQL dietmapry. XpnoIUOTTOIWVTAS autd TO
ouoTnpa, To otroio ovouddletal MadlS, uTropei kaveig va dnuioupynoel CUVAPTAOEIS TTOU
dnNUIoUPYOUV EIKOVIKOUG OXECIOKOUG TTivakeS. O1 ouvapTnoelg auTég TrepiExovTal o€ SQL
EPWTANATA Kal OTaV KANBOUV CUUTTEPIPEPOVTAI OAV KAVOVIKOI OXECIAKOI TTIVOKEG, PE TN
dlapopA OTI avakTouVv Ta dedopéva KaTeuBeiav atrd TNy TTnyr Kal Ta Kavouv diabéciua oav
EIKOVIKOUG OXECIAKOUG TTIVOKEG. ZNUEIWVETAI OTI € KavEVA OPWG Brua TnG eTTeCepyaciag
Ta dedopéva autd dev attoBnkeuovTal.

Emekteivape Aoimrév 10 ovotnua MadlS pe cuvapTtAoeig TTou dnuIoupyouv EIKOVIKOUG
TTivakeg avakTwvTtag dedoueva ammd Web APls, ottwg ival yia TTapdadeiyua ol SIETTAPES
TTOU UAOTTOIOUV TO TIPWTOKOAAO OPeNDAP yia TNV avakTnon YEWXWPIKWY O£O0NEVWY OTO
d1adikTuo. ETTiong, uhoTroioape TIG AKOAOUBEG eTTEKTACEIS OTO ouoTnua Ontop-spatial:



* YAotroimjoape dietragr) mou ouvdéel To cuoTnua Ontop-spatial ye To cuotnua MadlS,
WOoTE TO OEUTEPO VA PTTOPEI va AEITOUPYNOEl oav oUCTNUA dlaxEipiong OEOOUEVWV.

» Tpomrotroifjoaue 10 Ontop-spatial WOTE va dIAPOPOTTOIEITAI TNV TTEPITITWON TTOU TA
Oedopéva dev BpiokovTtal TOTTIKA O€ éva oUCTNHA BACEWY OEDOUEVWYV. ZUYKEKPIUEVA,
10 Ontop cuvdEeTal Je TNV UTTAPYXoUCd BACT dEdOUEVWY OTTWG OPICeTal ATTO TO APXEIO
QAVTIOTOIXACEWYV, TTPOKEIUEVOU VA TTPAYUATOTTOINCEI TTPOEPYOATIa TwV OEOOUEVWY TTOU
AVOUEVETOI VO EPTTAOKOUV OTA pWTAMATA (TTX. OUAAOYR) OTATIOTIKWY). AUTO dev
givar duvartdv va yivel 0TV TTEPITITWON PAG, KABWS ETTIKOIVWVOUNE PE TNV TTNYN
Oedopévwy PETA TNV uTToRoAr Tou SPARQL epwTAPaTOC.

2nuelveTal 0TI Ta SQL epWTANATA TTOU TTEPIEXOUV TOUG TEAEOTEG DNUIOUPYIAG EIKOVIKWV
OXECIAKWY TTIVAKWY TTEPIEXOVTAI OTIG AVTIOTOIXIOEIG TToU TTEPIAaUBAvVOVTAl OTO QpPXEio
QAVTIOTOIXIOEWV.

‘ET0o1, 6tav uttoBdAeTal éva gpwtnua oto auoTtnua Ontop-spatial, Tpayuartotrolgital n
akOAouBn diadikaoia:

* To egpwtnua petaTpémetal o€ datalog, Omwg Tmeplypdyape Tapamavw. Ol
avTioTolxio€lg TrepiAapBavovtal Kai autég oTo TEAIKO datalog TTpdypapua.

» To datalog TTpoypapua peratrpérreral oto TEAIKO SQL epwTnua TTOU ATTOTIUATAI OTO
ovuoTtnua MadlS. Av 010 epwTnPa TTEPIAANPBAVETAI TEAEOTAG dNUIOUPYIAG EIKOVIKWV
TIVAKWY, 0 TEAEOTAG KaAEiTal TNV wpa TnS amoriunons tou SQL epwrAuAroc Kai
TTpowOei Ta evdidueca amoOTeEAéOPATA OTOV TEAEOTA TTOU £TTETAI KATA TO TTAGVO
EKTEAEONG TOU EpwTAMATOG 0TO cuoTnua MadlS. H atré@aon autr £xel oav CUVETTEIO
() va avakTaral TravTa n teAeutaia €kdoon Twv OeOOPEVWY ATTO TNV TTNYI OEOOUEVWV
XWPIG va uTTdpyxouv TTPoBARuaTa cuyXpoviouou, Kail (i) Ta dedopéva avakTwvTal
atrd 70 GUCTNUA TTOU TTPAYUATOTTOIEI TEAIKA TNV ATTOTiUNON TOU EPWTANATOS KATI TTOU
€ENAXIOTOTTOIEI TO XPOVO dlaKivnong OEQOPEVWV.

E@apudoape TNV TEXVIKA TTOU UAOTTOINCAMUE O€ TIPAYUATIKEG TTEPITITWOEIS XPNOoNG,
XPNOIUOTTOIWVTAG TIG AKOAOUBEG BlETTaPEG oav TnyEg dedouévwy: Twitter, Foursquare,
Yelp, OPeNDAP server, kabwg¢ kai HTML Trivakeg. Ale¢dyaue TEIPAPATIKA MEAETN KAl
OUYKpivaue Ta atroTeEAéoPATA PE MO AAAN UAOTTOINON TTOU €XEI AVATITUXBOEI O€ JIa OXETIKA
gpyacia Kal uttooTnPigel TTAPOUOIa AEITOUPYIKOTNTA PE TN DIKI Pag TTPooéyyion (av Kal
QPKETA TTEPIOPIOUEVN). Ta eupUPATA TNG TTEIPAPOTIKAG MEAETNG £D<1Cav OTI N TTPOCEYYIoN
MOG, EKTOG TOU OTI TTAPEXEI HEYOAUTEPN AEITOUPYIKOTNTA KAl €ival TTIO EUKOAN OTn Xpnon,
UTTOOTNPICOVTOG TTEPICCOTEPEG TTNYEG DEQOPEVWYV, Eival KAl TTIO ATTODOTIKI).

To TTEPIEXOUEVO AUTAG TNG EVOTNTAG AVAAUETAI UE AeTTTOUEPEIEG OTO KepdAaio 5.

Epappoyég

To ouoTnua Ontop-spatial, TTou atmoTeAei TO KUPIO TTAPAYWYO AUTHS TNG BIOAKTOPIKAG
dIaTPIBNG €QAPUOOTNKE OE TIOAAG TTPAYMATIKA Oevapia XPAONG TTPOEPXOMEVA ATTO



OIOQPOPETIKOUG TOMEIC.  A@opur TNG dnuioupyiag Tou ATTOTEAECE apXIKA TO é€pyo OP-
TIQUE, kal ouyKkekpIgéva n TTEPITITWON XPHoNG TnNG eTaipiag Statoil, ota TTAaiola Tng
OTTOI0G TO CUCTNUA XPNOIYOTIOINONKE yia TNV avAKTNON YEWXWPIKWY OeOOPEVWV ATTO
MEYAAEG OXECIAKES YEWXWPIKES BATEIG XPNOIMOTTOIWVTAG OVTOAOYieS. MOAU ouvTopa pETd
TN dnuIoupYia TOU CUCTANOTOG, EPAPUOOTNKE £TTiIoNG OTa TTAGiola Tou épyou MELODIES
o€ ouvepyaoia pe TIg eTaipieg VISTA kai GISAT oe epappoyEg dlaxeipiong yng Kal aoTIKNG
QAVATITUENG QVTIOTOIXA.

2¢ ouvepyaoia pe Tnv etaipiac AIRBUS kal ouykekpiyéva pe 10 TUAPO Apuvag
kKal Alootiuatog (Defence and Space), 1o ouoTnua XPNOoIYOTTOINBNKE cav KOUMATI
EQPAPUOPYNS ME OTOXO TNV aAvAKTNOn OedONEVWY TTOU TTEPIYPAPOUV TTAoIa KaBwWG Kal
TNV Tpéxouoa B£on Kal KaTdoTaon Toug. ApxIKA, Ta dedouéva autd atrobnkeuovTal o€
OXEOIOKI YEWXWPIKA Bdon dedouévwy. H duvauikr euon Twv dedopévwy (TTX. BEoE€Ig
TTAOIWV) QUTWV KABIOTA CUXVEG TIG EVANEPWOEIG TNG PACNG UE VEQ DEDOUEVA CUVETTWG MIA
AUon dnuioupyiag eikovikwy ypdewyv RDF TTdvw atod 1a dedouéva auTd gival TTpoTINOTEPN
ammd TNV PETATPOTTA Kal atmmoBnikeuon Twv dedouévwyv oe RDF k&Be ¢@opd tmou autd
evnueEPWVOVTAL.

Mia akoéua €TTEKTAON Kal XPron Tou cucoThuartog Ontop-spatial €yive ota tAaioia Tou
¢pyou Copernicus App Lab. To €pyo €ixe oav o1éxo Tnv avaktnon dsdopévwy Coper-
nicus HEOoW OIETTAPWYV BIABECIUWY OTO DIABIKTUO, O€ OPPI) TTOU €ival EUKOAQ KATAVONTH
atrd XPNOTEG KAl TTPOYPAUMOTIOTEG eQapuoywy. Ta 1o AGyo autd xpnoiyotroinénkav
OVTOAOYiEG yIa TNV avaTapdoTaon Twy dedouévwy, KaBwg Kal To ouoTtnua Ontop-spatial.
To ouoTnua Ontop-spatial eTTeKTABNKE WOTE va PTTOPEI VO UTTOCTNPICEl dEdOPEVA TTOU Eival
dla8éoipya xpnoiyotroiwvtag 1o TPOTUTTo OPeNDAP. Mg TOV TPOTTO QUTO UTTOPEI KAVEIG
va Bétel GeoSPARQL gpwtripata Pe Tov idIo TPOTTO TTOU Ba €KAVE O€ £va YEWXWPIKO
atmmoBetipio RDF, pe tn diagopd ot Ba €pwTAHATA AUTA €E0WTEPIKA PETATPETTOVTAI OE
kAfoeig OPeNDAP kal avakTwvTtal KateuBeiav atmd Tov avtioToixo EUTTNEETNTH, Kal apa
oTnNV TTIO EVNUEPWHEVN £KOOOT) TOUG.

To TTEPIEXOUEVO AUTAG TNG EVOTNTAG AVAAUETAI IE AETTTOUEPEIEG OTO KepdAaio 6.

ZUPTTEPAOHATA KOl HEAAOVTIKEG ETTEKTACEIG

21NV Trapouca OISOKTOPIKY OIaTPIBA TTEPIYPAPOVTAI TEXVIKEG YIA TNV ATTOTEAECUATIKN
EVOTTOINON KAl ETTEPWTNON YEWXWPIKWY KAl XPOVIKWY Oedouévwy. Aivetal EUpacn oTIg
TEXVIKEG AVAKTNONG YEWXWPIKWY KAl XPOVIKWYV OEOONEVWV TTAVW OTTO YEWXPOVIKEG BATEIG
OEOOUEVWV XPNOIYOTIOIWVTAG OVTOAOYiEG. [leplypAPOuPE TO TTPWTO CUCTNUA AVAKTNONG
YEWXWPIKWY OEOOUEVWV XPNOIUOTTOIVTOG OVTOAOYIEG KAl TTPOCAPUOlouPE TN PEBODO
QUTHA KAl YIQ TNV UTTOOTAPIEN XPOVIKWY BEDOUEVWY, ETTEKTEIVOVTAG TO HOVTEAO BEDOPEVWV
stRDF kai Tn yAwooa emepwtiocwyv stSPARQL. TéAog, €TTekTEIVOUUE TIG HEBOGDOUG HOG
TTEPQ ATTO TIG OXECIAKES BATEIS KAl TTPOTEIVOUUE TN OIKA JOG TTPOCEYYIoN OTO TIPOBANUA TNG
avakTNOoNG TTANPOPOPIaG ATTEUBEING ATTO ETEPOYEVEIC TINYES TTOU UTTAPXOUV OTO OIadIKTUO
ME XPrion ovioAoyiwv.



ETTekTdoEIC TWV TEXVIKWY TTOU TTEPIypAgovTal otn dIaTpIBr) auTh €ival oI akOAOUBEC:
(i) kaTaveunuévn ETTECEPYATIO YEWXWPIKWY KAl XPOVIKWV EPWTNHATWY, (ii) UTTOOTAPIEN
EIOIKWV TUTTWV OEOOPEVWV KAl TEXVIKWYV VIO TNV avaTTapdoTaon Kal ETTEPWTNOT 0€O0UEVWV
o€ yopor Raster.



To my parents, Christos and Eufimia
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1. INTRODUCTION

Due to recent technological advances (Satellite missions, location-aware search engines,
mobile applications), the availability of geospatial data has been increased considerably.
At the same time, the data model RDF is widely used in order to integrate data coming
from different sources. The Linked Data paradigm allows for publishing data as linked
open data, in order to exploit the semantic links between datasets, increasing the overall
value of the data, as it allows users to pose rich queries over the combined, interlinked
datasets. As a result, more and more geospatial datasets are becoming available as
linked geospatial data.

Following to this trend, the first extensions of the framework of RDF and SPARQL ap-
peared, highlighted by the establishment of GeoSPARQL, a geospatial extension of
SPARQL, as an OGC standard. At the same time, the evolution of geospatial features
that changes over time is equally important, which also led to the creation of temporal ex-
tensions of the data model RDF and the SPARQL query language. For example, the data
model stRDF and the query language stSPARQL extend RDF and SPARQL respectively
with spatial and temporal features.

At the moment, there is a wide variety of RDF stores that support the OGC standard
GeoSPARQL. The state-of-the art of these systems is the open source spatiotemporal
RDF store Strabon, that supports both GeoSPARQL and stSPARQL.

However, the following challenges remain in the area of linked geospatial and temporal
data:

» Geospatial triple stores are not as efficient as geospatial databases (e.g., the Post-
GIS extension of PostgreSQL)

» There is no standard data model and query language for the representation and
querying of linked temporal data

» Geospatial and temporal data is often stored in geospatially and/or temporally en-
abled geospatial databases. In the cases when the size of these databases is large,
and/or when the databases get updated frequently, users are often discouraged to
maintain semantic replicas of their original datasets by converting the data each time
it gets updated and storing the new datasets in a triple store.

» A great part of data that is available on the Web is accessed via Rest APlIs, or is
available in other formats, such as HTML tables. In order to access this data and
make it available as linked open data, one needs to access it through public APls ,
parse it, convert it into RDF and store it in a triple store in order to query it combined
with other data.

In the context of this thesis, we address the challenges described above.
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1.1 Contributions

The contributions of the work described in this thesis are summarised as follows:

» We present the first approach of extending the OBDA paradigm with geospatial sup-
port, enabling the creation of virtual geospatial RDF graphs on top of geospatial
relational databases. In this context, we describe the implementation of the geospa-
tial extension of the OBDA system Ontop, which we named Ontop-spatial, that is
able to process GeoSPARQL queries on top of geospatial relational data on-the-fly,
using ontologies and mappings.

+ We perform an experimental evaluation of the system Ontop-spatial using heavily
geospatial workload and queries, and we compare its performance with two state-
of-the-art RDF stores with GeoSPARQL support, an open source system and a
commercial. The results of the experimental evaluation showed that Ontop-spatial
outperforms geospatial RDF stores often by two orders of magnitude. In this way,
Ontop-spatial is now considered as the most efficient GeoSPARQL query engine.

» We describe our approach for a temporally-enhanced OBDA system that is able to
process temporal SPARQL queries on top of temporal databases. To achieve this,
we introduce two more components in the temporal dimension of the data model
RDF and the query language stSPARQL, that can be easily implemented in OBDA
systems, in order to facilitate the implementations of temporal features in the OBDA
paradigm. Ontop-spatial was extended in this direction with support for the temporal
extension PostgreSQL.

* We extend further the OBDA paradigm in the direction of supporting more kinds
of data sources, apart from relational databases, that can be found on the Web
(e.g., HTML tables, Web APIs) and enable users to pose SPARQL queries on top
of them, without fetching the data a priori and storing it locally. For this purpose, we
extend SQL with virtual table operators that retrieve data from their original sources
(e.g., Rest APIs, HTML tables, etc.) and make it available in tabular format, as
virtual tables. We allow for the use of virtual table operators in R2ZRML mappings in
the same way that static relational tables could be used embedded in SQL queries
contained in the mappings. We implemented this approach as an extension of the
system Ontop-spatial using the data flow system MadlS as back-end. MadlS is an
SQLite python wrapper and can be used to implement virtual table operators on
top of SQLite as python user-defined functions. We also implemented a caching
mechanism that can be enabled as a virtual table operator parameter, so it can be
configured at the mappings level. The caching mechanism is able to use cached
data in the cases when the same API call needs to be made in a future query, until
the data expire. The expiration time of the data is configured as a parameter in the
virtual table operator.

* We compare our approach with related work both in terms of functionality and per-
formance. The findings of this comparison are that our system not only offers more

K. Bereta 36
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functionality (e.g., less workflow steps, extensibility, support for more kinds of data
sources), but it is also more efficient.

We finally present real-world scenarios where the approaches and systems de-
scribed in this thesis were used. Ontop-spatial has been used in various applica-
tions, two of which are described in this thesis: The Copernicus use case and the
maritime awareness use case. In the Copernicus use case, we describe how we
used the extension of Ontop-spatial with virtual tables to be able to retrieve Coper-
nicus data using SPARQL queries from Rest APIs on-the-fly with ontologies and
mappings, without materialising and converting the data into RDF. In the maritime
awareness use case, we describe how Ontop-spatial is used to integrate informa-
tion about vessels that originally reside in a geospatial relational database with linked
open data in order to express rich queries against the unified dataset.

1.2 Publications

The content of the present thesis is partially covered in the following publications:

Konstantina Bereta, Guohui Xiao, Manolis Koubarakis. Ontop-spatial: Ontop of
geospatial databases. Journal of Web Semantics, 58 (2019)

Konstantina Bereta and Manolis Koubarakis. Ontop of Geospatial Databases. In-
ternational Semantic Web Conference (ISWC), Kobe, Japan, 17-21 October 2016

Konstantina Bereta, George Papadakis and Manolis Koubarakis. Querying the Web
On-the-fly Using Ontologies and Mappings. 31st International Workshop on Descrip-
tion Logics (DL 2018). Arizona, USA, 27-29 October, 2018

Konstantina Bereta and Manolis Koubarakis. Creating Virtual Semantic Graphs
on top of Big Data from Space. Conference on Big Data from Space (BiDS-17),
Toulouse, France, 28-30 November, 2017

Konstantina Bereta, Herve Caumont, Ulrike Daniels, Erwin Goor, Manolis
Koubarakis, Despina-Athanasia Pantazi, George Stamoulis, Sam Ubels, Valen-
tiin Venus, Firman Wahyudi and Dirk Daems. The Copernicus App Lab project:
Easy Access to Copernicus Data. The 22nd International Conference on Extending
Database Technology (EDBT 2019). Lisbon, Portugal, 26-29 March, 2019

Stefan Briggemann, Konstantina Bereta, Guohui Xiao and Manolis Koubarakis.
Ontology-based data access for Maritime Security. In 13th Extended Semantic Web
Conference (ESWC), Crete, Greece, May 30- June 2, 2016.

Konstantina Bereta, Guohui Xiao, Manolis Koubarakis, Martina Hodrius, Con-
rad Bielski, and Gunter Zeug. Ontop-spatial: Geospatial Data Integration using
GeoSPARQL-to-SQL Translation. International Semantic Web Conference (ISWC),
Kobe, Japan, 17-21 October 2016. Demo paper.
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* Konstantina Bereta, Hervé Caumont, Erwin Goor, Manolis Koubarakis, Despina-
Athanasia Pantazi, George Stamoulis, Sam Ubels, Valentijn Venus and Firman
Wahyudi. From Copernicus Big Data to Big Information and Big Knowledge: a Demo
from the Copernicus App Lab Project. 27th ACM International Conference on In-
formation and Knowledge Management (CIKM 2018). Turin, Italy, 22-26 October,
2018. Demo paper.

Part of the work described in this thesis is also covered in the following submitted paper:

» Konstantina Bereta, George Papadakis, Manolis Koubarakis. Querying the Web
On-the-fly Using Ontologies and Mappings. Submitted as conference paper.

1.3 Thesis structure

The rest of this thesis is organised as follows. In Chapter 2 we present background knowl-
edge and related work. In Chapter 3 we describe our extension of the OBDA paradigm
with spatial support, which we implemented in the system Ontop-spatial. In Chapter 4
we introduce our extension of the framework of stRDF and stSPARQL in the direction of
supporting temporal features in the OBDA paradigm. In Chapter 5 we go beyond rela-
tional databases as data sources and we describe our OBDA approach for creating virtual
semantic graphs on top of various of Web data sources, such as HTML tables and Web
APIls. In Chapter 6 we describe real-world applications in which the approaches described
in the context of this thesis were applied. Last, in Chapter 7 we conlude this thesis and
we present future extensions.
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2. BACKGROUND AND RELATED WORK

In this section we provide background knowledge that forms the ground which the work
described in this thesis is built on. In Section 2.1 we provide some preliminary knowl-
edge on the data model RDF and SPARQL query language. In Section 2.2 we describe
geospatial extensions of RDF and SPARQL.

2.1 RDF and SPARQL

2.1.1 The data model RDF

The Resource Description Framework (RDF) is a W3C standard that was created for de-
scribing resources on the Web. These resources can be anything that is available on the
web, whether it can be directly retrieved or not. For example, this framework can be used
to describe metadata about a Web page (e.g., the author of the Web page) or entities that
can be identified in that Web page. The primary purpose of the data model RDF is to fa-
cilitate data exchanging, suggesting a way of encoding information about Web resources
and adding semantics to it, so that it can be exchanged between applications preseving
its original meaning and in an interoperable way so that the data can be reused by appli-
cations and be combined with other data in a transparent, interoperable way, regardless
of the underlying schema of the original data.

In the data model RDF, resources are identified using Uniform Resource Identifiers (URIs).
URIs are also used to encode the properties and the respective values that describe these
resources. Properties and Values are Web resources as well.

RDF statements are used to describe resources in the same way that sentences are used
in natural language to describe facts. RDF statements consist of the following three ele-
ments: The subject, the predicate and the object of the statement.

Let us now consider the following statement statement in English, describing a Web page.
http://ontop-spatial.di.uoca.gr/ has a creator whose value is Konstantina Bereta
The statement described above could be encoded in RDF as follows:

<http://ontop-spatial.di.uoa.gr/> <http://purl.org/dc/elements/1.1/creator>
<https://dblp.uni-trier.de/pers/hd/b/Bereta:Konstantina>

The RDF statement decribed above follows the triples notation, having a subject, a pred-
icate and an object (in that order). The object of the RDF statement provided above is a
unique identifier of a Web page, that is essentially the URL of the page. The predicate
of the statement is a property that links the Web page to its creator. The value of this
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<http://purl.org/dc/elements/1.1/creator>

<http://purl.org/dc/elements/1.1/creator>
Konstantina Bereta

Figure 2.1: Example of an RDF graph

property is another URL. This URL is the DBLP page of the creator of the page. Notably,
the name and surname of the person that created this web page could have been used
instead,i.e.,“Konstantina Bereta”. This would be compliant with the standard RDF syntax
and closer to the natural language statement. However, The name of the creator of the
page is not a unique identifier (e.g., there can be more than one people with the same
name), while the URL that corresponds to their DBLP page is (i) unique (i.e., no other per-
son can have the same DBLP page), and (ii), it can potentially link the page to the DBLP
profile of its creator, enabling applications that could consume this data to have access to
enriched information across many datasets. In order also include information about the
name of the creator of the page, we can add the following triple:

<https://dblp.uni-trier.de/pers/hd/b/Bereta:Konstantina>
<http://www.example.org/terms/name> "Konstantina Bereta"

Apart from the triples notation, RDF statements can also be represented as a directed,
labeled graph. Figure 2.1 shows an example of an RDF graph that represents the triples
described above.

2.1.2 SPARAQL query language

SPARQL is the W3C standard language for querying RDF graphs. As it essentially per-
forms graph matching, graph pattern expressions are core components of a SPARQL
query.

As described in [60], a SPARQL graph pattern expression is defined recursively as follows.

* Atuplefrom (/U LU V)x(IUV)x(IULUYV)is agraph pattern (a triple pattern).

 If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OP P2), and
(P1UNION P2) are graph patterns (conjunction graph pattern, optional graph pat-
tern, and union graph pattern, respectively).

« If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern (a filter graph pattern).
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Apart from graph patterns, another important component of SPARQL queries is the solu-
tion modifiers. The solution modifiers are operators that operate on the output of the graph
pattern matching evaluation, e.g., it can be a projection, an order by, distinct, and/or a
limit clause.

The output of SPARQL queries can be a yes/no value (i.e., when using the ASK primi-
tive in the projection part), a set of bindings (i.e., mappings of variables included in the
SELECT clause with their corresponding values), constructed RDF graphs (e.g., using the
CONSTRUCT keyword), or a description of resources (i.e., using a DESCRIBE clause).

The work described in [60] also presents the semantics and complexity of SPARQL.

We now provide some SPARQL examples against the RDF graph described in Listing 2.1.

Listing 2.1: Example RDF graph

PREFIX dblp:<https://dblp.uni-trier.de/pers/hd/b/>
PREFIX purl:<http://purl.org/dc/elements/1.1/>
PREFIX ex:<http://www.example.org/terms/>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

<http://ontop-spatial.di.uoa.gr/> dc:creator dblp:Bereta:Konstantina
dblp:Bereta:Konstantina ex:name "Konstantina Bereta"
dblp:Bereta:Konstantina ex:age "31" “xsd:integer

Example 2.1.1. Retrieve the creator of the web page http://ontop-spatial.di.uoa.
gr/, and project also their name.

Listing 2.2: Example of a SPARQL query

PREFIX pu: <http://purl.org/dc/elements/1.1/>
PREFIX ex: <http://www.example.org/terms/>

SELECT 7cr 7name
WHERE { <http://ontop-spatial.di.uoca.gr/> pu:creator ?cr
?cr ex:name ?name 7

In the query described in Listing 2.3, the variables 7cr and 7name are projected using the
respective SELECT clause described in the first line of the query. The variable 7cr gets
bound with the value of the object part of the triple whose object and predicate parts
match with the URIs <http://ontop-spatial.di.uoa.gr/>and pu:creator respectively,
thus, a solution binding of this triple pattern is

wl = {7cr < <https://dblp.uni-trier.de/pers/hd/b/Bereta:Konstantina>}. In a
similar way, the second pattern of the query matches to a triple included in the dataset
that includes ex:name as a predicate. The evaluation of this triple pattern produces the
following binding:

w2 = {7cr < <https://dblp.uni-trier.de/pers/hd/b/Bereta:Konstantina>, 7name <+
'Konstantina Bereta'}
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The result of the graph pattern matching process of the query evaluation is w = wl x w2,
where x is a the set-theoretic left outer-join operator.

w = {?cr <~ <https://dblp.uni-trier.de/pers/hd/b/Bereta:Konstantina>, 7name
'Konstantina Bereta'}

Example 2.1.2. Retrieve the pages whose creator is less than 40 years old.

Listing 2.3: Example of a SPARQL query

PREFIX pu: <http://purl.org/dc/elements/1.1/>
PREFIX ex: <http://www.example.org/terms/>

SELECT 7page

WHERE { 7page pu:creator 7cr .
?cr ex:age Tage
FILTER (7age < 40}

The query described in Listing 2.3 contains two triple patterns and a FILTER clause. Fol-
lowing the approach explained above, we can easily infer that the solution of the evaluation
of the two triple patterns are the following bindings:

w = {?page < <http://ontop-spatial.di.uoa.gr/>, ?age < 31}

The FILTER clause of the SPARQL query, however, introduces a restriction. The binding
w will be included in the result set only if it qualifies the condition on the variable 7age.
As 31 < 40, the outcome of the FILTER condition is positive, so the binding w is indeed
included in the result set. However, only the variable ?page is included in the projection,
so the final result of the query is the following:

W' = {?page + <http://ontop-spatial.di.uoa.gr/>}

2.2 Geospatial and temporal extensions of RDF and SPARQL

2.2.1 GeoSPARAQL

The query language GeoSPARQL is a geospatial extension of the query language
SPARQL and it is standardized by OGC.

It comprises the following components:

» The Core component, which defines high level RDFS/OWL classes for spatial ob-
jects.

» The Topology Vocabulary extension, which defines RDF properties for asserting and
querying topological relations between spatial objects.

» The Geometry extension, which defines RDFS data types for serializing geometry
data, geometry-related RDF properties, and non-topological spatial query functions
for geometry objects.
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+ The Geometry topology extension, which defines topological query functions.
» The Query rewrite extension, which defines topological query functions.

* The RDFS entailment extension, which includes the RDF and RDFS reasoning re-
quirements.

We will now provide some examples that highlight the geospatial functionalities provided
in GeoSPARQL.

Example 2.2.1. Describe the geometry of a location of an area.

Listing 2.4: Spatial triple

:Area geo:asWKT "Point(-83 33)""“geo:wktLiteral

The triple provided in Listing 2.4 describes the WKT serialisation of the geometry of an
area. As defined in the Geometry extension component in GeoSPARQL, geometries can
be serialised using the standard Well-known-text (WKT) and Geography Markup Lan-
guage (GML) formats.

Example 2.2.2. Select features that overlap with each other

Listing 2.5: Spatial predicates in GeoSPARAQL triple patterns
SELECT 7x WHERE { 7?x geo:sfOverlaps 7y}

The GeoSPARQL query provided in Listing 2.5 uses the predicate geo:sfOverlaps, that
is defined in Topology Vocabulary extension of the GeoSPARQL specification [26]. Using
this predicate one can retrieve entities for which the overlap relationship holds. Notably,
to receive a non-empty result set of this query, this information should either exist in the
knowledge base or can be inferred using spatial reasoning (which might or might not be
supported depending on the implementation).

Example 2.2.3. Select features whose geometries overlap with each other

Listing 2.6: Spatial join in GeoSPARQL

SELECT ?x WHERE {
?x1 geo:asWKT 7gl . 7x2 geo:asWKT 7g2 .
FILTER (geof:sfOverlaps(?gl, ?7g2))}

An alternative way to retrieve overlapping geometries using GeoSPARQL is to pose the
query described in Listing 2.6, which uses the function geof :sfOverlaps instead of the
predicate geo:sfOverlaps. The difference is that in this case, the geometries of the cor-
respoding spatial objects need to be retrieved and the query processor needs to consider
the calculation of the overlap condition using the actual geometries. This approach is
normally used when the respective qualitative information does not exist explicitly in
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the knowledge base in order to be retrieved directly using the predicate geo:sf0Overlaps.
This query is of course more expensive in terms of query execution time, as it includes the
evaluation of the overlap condition for every pair of geometries included in the intermediate
results (spatial join).

In Chapter 3 we provide more details and formalisation of the GeoSPARQL components.

2.2.2 stSPARQL

The framework of stRDF and stSPARQL is an extension of the framework of RDF and
SPARQL with spatial and temporal support and it has been developed in the same time,
but independently, with GeoSPARQL, before it was standardised. The spatial dimension
of the data model stRDF and the query language stSPARQL is very similar to the ones
proposed in GeoSPARQL. For example, all geosptial functions defined in GeoSPARQL
are also defined in stSPARQL (using the strdf namespace instead'). The representa-
tion of geometries in the data model stRDF is also very similar to the one proposed in
GeoSPARQL, as again, the geometries are serialised as WKT and GML literals.

However, stRDF and stSPARQL support the following additional functionalities: (i) spatial
aggregates, and (ii) the representation and query of the valid time of triples.

Spatial aggregates. The language stSPARQL, as opposed to GeoSPARQL, considers
also the use of spatial aggregates in queries, i.e., a set of functions that perform spatial
operations over a set of bindings that are solutions of the corresponding triple patterns of a
stSPARQL query. More specifically, it defines the aggregate functions provided in Listing
2.7.

Listing 2.7: Spatial aggregates in stSPARQL

strdf :geometry strdf:union(set of strdf:geometry A)
strdf : geometry strdf:intersection(set of strdf:geometry A)
strdf :geometry strdf:extent(set of strdf:geometry A)

Notably, although the geof:union operator is defined in the GeoSPARQL specification
[26], it is not an aggregate, but an operator that takes a pair of geometries as input and
returns their union. This version of the geof :union is also supporting in the corresponding
strdf :union operator, but is also overloaded with the ability to be used as an aggregate.
The strdf :union operator shown in the first line of the Listing 2.7 takes a set of geometries
as input (e.g., it can be a variable bound of a set of geometry bindings that are solutions to
the triple patterns of an stSPARQL query), it computes the union of all these geometries
and it returns the result as a single, unified geometry.

Valid time. Another major feature of the framework of stRDF and stSPARQL is the tem-
poral dimension, e.g., the “t” in “st”, which is described in more detail in [13]. The data
model RDF only considers user-defined time and it does not provide support for the repre-
sentation of valid time of triples, which is the time when a triple is valid. GeoSPARQL does

"http://strdf.di.uoa.gr/ontology
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rdfs:Literal
V4 \Z

rdfs:subclassOf rdfs:subclassOf

strdf:geometry strdf:period
s/ \X

rdfs:subclassOf rdfs:subclassOf

Figure 2.2: The datatypes of stRDF

not offer any additional temporal features to RDF and SPARQL. The valid time support
of the framework of stRDF and stSPARQL enables users to model the spatial data that
changes over time. Below we describe the temporal features of the framework of stRDF
and stSPARQL, which we extend in the context of this thesis.

The timeline assumed is the (discrete) value space of the datatype xsd:dateTime of XML-
Schema. Two kinds of time primitives are supported: time instants and time periods. A
time instant is an element of the time line. A time period (or simply period) is an expression
of the form [B,FE), (B,E], (B,E), or [B,E] where B and E are time instants called the
beginning and the ending of the period respectively. Since the time line is discrete, we
often assume only periods of the form [B, F') with no loss of generality. Syntactically, time
periods are represented by literals of the new datatype strdf : period that we introduce in
stRDF. The value space of strdf : period is the set of all time periods covered by the above
definition. The lexical space of strdf :period is trivially defined from the lexical space of
xsd:dateTime and the closed/open period notation introduced above. Time instants can
also be represented as closed periods with the same beginning and ending time.

Values of the datatype strdf :period can be used as objects of a triple to represent user-
defined time. In addition, they can be used to represent valid times of temporal triples
which are defined as follows. A temporal triple (quad) is an expression of the form s p o
t. where s p o. is an RDF triple and t is a time instant or a time period called the valid
time of a triple. An stRDF graph is a set of triples and temporal triples. In other words,
some triples in an stRDF graph might not be associated with a valid time.

We also assume the existence of temporal constants NOW and UC inspired from the liter-
ature of temporal databases [25]. NOW represents the current time and can appear in the
beginning or the ending point of a period. UC means “Until Changed” and is used for intro-
ducing valid times of a triple that persist until they are explicitly terminated by an update.
For example, when John becomes an associate professor in 1/1/2013 this is assumed
to hold in the future until an update terminates this fact (e.g., when John is promoted to
professor).

Example 2.2.4. The stRDF graph described in Listing 2.8 consists of temporal triples that
represent the land cover of an area in Spain for the time periods [2000, 2006) and [2006,
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UC) and triples which encode other information about this area, such as its code and the
WKT serialization of its geometry extent. In this and following examples, namespaces
are omitted for brevity. The prefix strdf stands for http://strdf.di.uoa.gr/ontology
where one can find all the relevant datatype definitions underlying the model stRDF.

Listing 2.8: Example of temporal graph

clc:Area_4 rdf:type clc:Area .
clc:Area_4 clc:hasID "EU-101324"
clc:Area_4 clc:hasGeometry "POLYGON((-0.66 42.34,..))" “strdf:WKT .
clc:Area_4 clc:hasLandCover clc:coniferousForest
" [2000-01-01T00:00:00,2006-01-01T00:00:00) " ~""strdf:period .
clc:Area_4 clc:hasLandCover clc:naturalGrassland
"[2006-01-01T00:00:00,UC)" ~"strdf:period .

The stRDF graph provided in Listing 2.8 is written using the N-Quads format? which has
been proposed for the general case of adding context to a triple. The graph has been ex-
tracted from a publicly available dataset provided by the European Environmental Agency
(EEA) that contains the changes in the CORINE Land Cover dataset for the time period
[2000, UC) for various European areas. According to this dataset, the area corine:Area 4
has been a coniferous forest area until 2006, when the newer version of CORINE showed
it to be natural grassland. Until the CORINE Land cover dataset is updated, UC is used to
denote the persistence of land cover values of 2006 into the future. The last triple of the
stRDF graph gives the WKT serialization of the geometry of the area (not all vertices of
the polygon are shown due to space considerations).

The new features of the language are:

Temporal Triple Patterns. Temporal triple patterns are introduced as the most basic way
of querying temporal triples. A temporal triple pattern is an expression of the form s p o
t.,where s p o. is atriple pattern and t is a time period or a variable.

Temporal Extension Functions. Temporal extension functions are defined in order to
express temporal relations between expressions that evaluate values of the datatypes
xsd:dateTime and strdf :period. The first set of such temporal functions are 13 Boolean
functions that correspond to the 13 binary relations of Allen’s Interval Algebra. stSPARQL
offers nine functions that are “syntactic sugar” ,i.e., they encode frequently-used disjunc-
tions of these relations.

There are also three functions that allow relating an instant with a period:

* xsd:Boolean strdf:during(xsd:dateTime i2, strdf:period pl): returns true if
instant i2 is during the period p1.

* xsd:Boolean strdf:before(xsd:dateTime i2, strdf:period pl): returns true if
instant 12 is before the period p1.

2http://sw.deri.org/2008/07/n-quads/
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* xsd:Boolean strdf:after(xsd:dateTime i2, strdf:period pl):
returns true if instant i2 is after the period p1.

The above point-to-period relations appear in [53]. The work described in [53] also defines
two other functions allowing an instant to be equal to the starting or ending point of a period.
In our case these can be expressed using the SPARQL 1.1. operator = (for values of
xsd:dateTime) and functions period_start and period_end defined below.

Furthermore, stSPARQL offers a set of functions that construct new (closed-open) periods
from existing ones. These functions are the following:

* strdf:period strdf:period_intersect(period pl, period p2): This function is
defined if p1 intersects with p2 and it returns the intersection of period p1 with period

p2.

* strdf:period strdf:period_union(period pl, period p2): This function is de-
fined if period p1 intersects p2 and it returns a period that starts with p1 and finishes
with p2.

* strdf:period strdf:minus(period pl, period p2): This function is defined if pe-
riods p1 and p2 are related by one of the Allen’s relations overlaps, overlappedBy,
starts, startedBy, finishes, finishedBy and it returns the a period that is con-
structed from period p1 with its common part with p2 removed.

* strdf:period strdf:period(xsd:dateTime il, xsd:dateTime i2): This function
constructs a (closed-open) period having instant i1 as beginning and instant i2 as
ending time.

There are also the functions strdf :period_start and strdf:period_end that take as
input a period p and return an output of type xsd:dateTime which is the beginning and
ending time of the period p respectively.

Finally, stSPARQL defines the following functions that compute temporal aggregates:

* strdf:period strdf:intersectAll(set of period p): Returns a period that is
the intersection of the elements of the input set that have a common intersection.

* strdf:period strdf:maximalPeriod(set of period p): Constructs a period that
begins with the smallest beginning point and ends with the maximum endpoint of the
set of periods given as input.

The query language stSPARQL, being an extension of SPARQL 1.1, allows the temporal
extension functions defined above in the SELECT, FILTER and HAVING clause of a query.
A complete reference of the temporal extension functions of stSPARQL is available on the
Web?3.

Shttp://www.strabon.di.uoa.gr/stSPARQL
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Temporal Constants. The temporal constants NOW and UC can be used in queries to
retrieve triples whose valid time has not ended at the time of posing the query or we do
not know when it ends, respectively.

The new expressive power that the valid time dimension of stSPARQL adds to the version
of the language presented in [48], where only the geospatial features were presented, is
as follows. First, a rich set of temporal functions are offered to express queries that refer
to temporal characteristics of some non-spatial information in a dataset (e.g., see Exam-
ples 2.2.5,2.2.6 and 2.2.9 below). In terms of expressive power, the temporal functions of
stSPARQL offer the expressivity of the qualitative relations involving points and intervals
studied by Meiri [53]. However, we do not have support (yet) for quantitative temporal
constraints in queries (e.g., 71 — T, < 5). Secondly, these new constructs can be used
together with the geospatial features of stSPARQL (geometries, spatial functions, etc.) to
express queries on geometries that change over time (see Examples 2.2.7 and 2.2.8 be-
low). The temporal and spatial functions offered by stSPARQL are orthogonal and can be
combined with the functions offered by SPARQL 1.1 in arbitrary ways to query geospatial
data that changes over time (e.g., the land cover of an area) but also moving objects [38]
(we have chosen not to cover this interesting application in this chapter).

Below we provide some representative examples that demonstrate the expressive power
of stSPARQL.

Example 2.2.5. Temporal selection and temporal constants. Return the currentland cover
of each area mentioned in the dataset.

Listing 2.9: stSPARQL query retrieving the current land cover of an area
SELECT 7clcArea 7clc
WHERE {7clcArea rdf:type corine:Area .

7?clcArea corine:hasLandCover 7clc 7t .
FILTER(strdf :during (NOW, 7t))}

The query described in Listing 2.9 is a temporal selection query that uses an extended
Turtle syntax that we have devised to encode temporal triple patterns. In this extended
syntax, the fourth element is optional and it represents the valid time of the triple pattern.
The temporal constant NOW is also used.

Example 2.2.6. Temporal selection and temporal join. Give all the areas that were forests
in 1990 and were burned some time after that time.

Listing 2.10: stSPARQL query including temporal selection and join

SELECT 7clcArea

WHERE{ ?7clcArea rdf:type clc:Area ;
clc:hasLandCover clc:ConiferousForest 7tl1 ;
clc:hasLandCover clc:BurnedArea 7t2

FILTER(strdf:during(?tl, "1990-01-01T00:00:00"""xsd:dateTime)
&& strdf:after (?t2,7t1))}
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The query described in Listing 2.10 shows the use of variables and temporal functions to
join information from different triples.

Example 2.2.7. Temporal join and spatial metric function. Compute the area occupied by
coniferous forests that were burnt at a later time.

Listing 2.11: stSPARQL temporal join query
SELECT ?7clcArea (SUM(strdf:area(?geo)) AS 7totalArea)
WHERE {7clcArea rdf:type clc:Area;
clc:hasLandCover clc:coniferousForest 7tl1 ;
clc:hasLandCover clc:burntArea ?7t2 ;

clc:hasGeometry ?geo
FILTER (strdf:before(?t1,7t2))}
GROUP BY 7clcArea

In the query described in Listing 2.11, a temporal join is performed by using the tempo-
ral extension function strdf :before to ensure that areas included in the result set were
covered by coniferous forests before they were burnt. The query also uses the spatial
metric function strdf:area in the SELECT clause of the query that computes the area of
a geometry. The aggregate function SUM of SPARQL 1.1 is used to compute the total area
occupied by burnt coniferous forests.

Example 2.2.8. Temporal join and spatial selection. Return the evolution of the land cover
use of all areas contained in a given polygon.

Listing 2.12: stSPARQL temporal join and spatial selection query

SELECT ?7clcl 7tl1 7clc2 7t2
WHERE {7?clcArea rdf:type corine:Area ;
clc:hasLandCover 7clcl ?tl ;
clc:hasLandCover 7clc2 ?7t2 ;
clc:hasGeometry 7geo
FILTER(strdf:contains (?geo,"POLYGON((-0.66 42.34,..))" " “strdf:WKT)
FILTER(strdf:before(?t1,?7t2))}

The query provided in Listing 2.12 performs a temporal join and a spatial selection. The
spatial selection checks whether the geometry of an area is contained in the given polygon.
The temporal join is used to capture the temporal evolution of the land cover in pairs of
periods that preceed one another .

Example 2.2.9. Update statement with temporal joins and period constructor. Apply a
coalesce step over periods during which the land cover use of a CORINE area stayed the
same by unifying the periods for which the land cover of an area stays the same.

Listing 2.13: stSPARQL temporal update
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UPDATE {7area corine:hasLandCover 7clcArea 7coalesced}
WHERE {
SELECT (7clcArea AS 7area) 7clcArea
(strdf:period_union(?t1,7t2) AS 7coalesced)
WHERE {7clcArea rdf:type clc:Area ;
clc:hasLandCover 7clcArea ?7t1l;
clc:hasLandCover 7clcArea 7t2 .
FILTER(strdf :meets(?7tl1,7t2) || strdf:overlaps(?7tl,?t2))}}

The update statement provided in 2.13 performs an operation called coalescing in the
literature of temporal relational databases: two temporal triples with exactly the same
subject, predicate and object, and periods that overlap or meet each other can be “joined”
into a single triple with valid time the union of the periods of the original triples [15].

2.3 Ontology-based Data Access (OBDA)

In ontology-based data access (OBDA) [76], we can view existing relational (geospatial)
databases as RDF graphs with the help of mappings and ontologies. Formally, we start
from an OBDA specification P = (T, M, S), consisting of a set 7 of OWL axioms (called
the TBox), a relational database schema S, and a set M of mapping assertions. An OBDA
instance (P, D) is given by an OBDA specification P and a relational database instance
D compliant with S.

A mapping M is a declarative specification relating symbols in the ontology (classes and
properties) to (SQL) views over the data. The W3C standard RDB2RDF Mapping Lan-
guage (R2RML) was created with the goal of providing a language for such mappings. The
ontology 7, together with the mapping M, exposes a high-level conceptual view of the
underlying data in terms of a virtual RDF graph, which users can query using the SPARQL
query language. In this chapter, we extend R2ZRML mapping with supports of datatypes
defined in GeoSPARQL standard.

To ease the presentation, instead of the concrete Turtle serialization of an R2ZRML map-
ping, in the following we use an equivalent compact form. A mapping assertion m consists
of a source part sql which is a SQL query and a target part ¢t which is an RDF triple template
with placeholders inside.

By applying all mapping assertions in M to D, one can derive a (virtual) RDF graph AMD
[62]. Then, SPARQL query answering over an OBDA instance (P, D) is defined as query
answering over (T, Ay p)-

The derived RDF graph can be materialized as RDF triples, or alternatively it can be kept
virtual, in which case the user queries are translated by the OBDA system into queries over
the data sources. In the virtual approach, one avoids the cost of materialization, and one
can rely on the maturity of relational database systems for efficient query answering, with
support for security, robust transactions, etc. Among the state-of-the-art systems support-
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ing the virtual OBDA approach we mention Ontop [19], D2RQ*, Morph [63], Mastro [22],
and Stardog®.

4http://d2rq.org/
Shttp://stardog.com/

51 K. Bereta


http://d2rq.org/
http://stardog.com/

Efficient Management for Geospatial and Temporal Data using Ontology-based Data Access Techniques

K. Bereta 52



Efficient Management for Geospatial and Temporal Data using Ontology-based Data Access Techniques

3. GEOSPATIAL ONTOLOGY-BASED DATA ACCESS

In this chapter we present the first Ontology-based data access approch for querying
linked geospatial data using the language GeoSPARQL on top of geospatial relational
databases. The work that is presented in this chapter is covered in the publications
[11, 14, 7].

3.1 Introduction

Currently, there is an emerging interest of scientific communities from various domains that
produce and process geospatial data (e.g., earth scientists) to publish this data as linked
data and combine it with other data sources. Responding to this trend, the Semantic
Web community has been very active in the geospatial domain, proposing data models,
query languages, and systems for the representation and management of geospatial data.
Notably, this research has led to the development of extensions of RDF and SPARQL, such
as stRDF/stSPARQL [47] and GeoSPARQL [26], that handle geospatial data. Similarly,
research on geospatial relational databases has been going on for a long time and has
resulted in the implementation of several efficient geospatial DBMS.

Ontology-based data access (OBDA) [76] is a popular paradigm for providing a convenient
and user-friendly access to data repositories. In OBDA, an OWL ontology describes the
domain of interest, which is connected to a data source through a declarative R2ZRML map-
ping specification. Then the underlying data source is virtualized as an RDF graph using
the vocabulary from the ontology, and the SPARQL queries over the ontologies are auto-
matically rewritten by an OBDA engine into SQL queries expressed over the underlying
database. Despite the extensive research performed in the fields of relational databases
and the Semantic Web on the development of solutions for handling geospatial data effi-
ciently, to the best of our knowledge, there is no OBDA system that enables the creation
of virtual, geospatial RDF graphs on top of geospatial databases. This would be very use-
ful for scientists that produce and process geospatial data, as they mainly store this data
in relational geospatial databases (e.g., PostGIS) or in other geospatial data formats that
are easily imported into such databases (e.g., shapefiles). With the existing solutions in
place, these scientists are forced to materialize their data as RDF in order to publish it as
linked data and/or use it in combination with other data sources. However, this is often
not practical and discourages users from using Semantic Web technologies. This issue
applies to the OBDA paradigm in general, but it has more impact in the geospatial domain
due to the reasons we have just described. We address these issues by extending the
OBDA paradigm with geospatial support.

The contributions to the state-of-the art described in this chapter are the following:

* On the theoretical side, we provide a formalization of the OGC GeoSPARQL stan-
dard in terms of SPARQL entailment regime.
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» For a practical query answering algorithm, we introduce an extension to the existing
SPARQL-to-SQL translation method in order to support GeoSPARQL queries.

» We describe the implementation of our approach in the system Ontop-spatial, which
to the best of our knowledge is the first OBDA system for GeoSPARQL.

* We present an experimental evaluation of our system by extending the benchmark
Geographica [34], comparing the performance of Ontop-spatial with the state-of-
the-art geospatial RDF store Strabon [48] and the free version of a state-of-the-art
commercial triple store with GeoSPARQL support. Due to license reasons, in the
context of this chapter we will refer to the commercial system using the alias “System-
X”. The results show that, in most cases, Ontop-spatial outperforms both of them.

Ontop-spatial is available as free and open source software at the following link: https:
//github.com/ConstantB/ontop-spatial.

3.2 Preliminaries

In this section, we recall the basic notions needed for the rest of this chapter.

3.2.1 RDF and SPARQL

We consider a vocabulary of three pairwise disjoint and countably infinite sets of symbols:
| for IRIs, L for RDF literals, and V for variables. In line with previous work on ontology-
based data access, we do not consider blank nodes. Intuitively, an IRI represents an
object, and a literal represents a typed value. A literal ¢ is of the form value®type where
value is the lexical value of the ¢, and type is the type IRI of /. The supported types defined
in the RDF 1.1 Concepts document [28] is largely based on the XML Schema Definition
Language (XSD) [61]. An RDF term is an elementin T = U L. An (RDF) triple is an
elementin T x I x T. An (RDF) graph is a set of triples.

SPARQL [39] is the W3C standard language designed to query RDF graphs. A triple
pattern is an element of (TUV) x (IUV) x (TUV). A basic graph pattern (BGP) is a
finite set of triple patterns. A filter expression F' is a Boolean function, which restricts on
solutions over the whole group where the filter appears. We consider the fragment of
SPARQL queries defined by Q in the following EBNF grammar’:

P = B |Q | PFILTER F' | P UNION P |

(P,P) | POPT P

() ::= SELECT { V ASV } WHERE P

where B is a BGP and F is a filter expression (we refer to [39] for details).

The semantics of SPARQL queries is given in terms of solution mappings, which are partial
maps s: V — T with (possibly empty) domain dom(s). Here, following [60, 45], we use

'Recall that in EBNF “{ A }” means any number of repetitions of A.
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the set-based semantics for SPARQL (rather than the bag-based one, as in the W3C
specification). More specifically, for a BGP B, the answer [B]. to B over a graph G is
[Blg = {s: var(B) — T | s(B) C G}, where var(B) is the set of variables occurring in B
and s(B) is the result of substituting each variable « in B by s(u). Then, the answer to a
SPARQL query @ over a graph G is the set [Q]; of solution mappings defined by induction
using the SPARQL algebra operators (filter, join, union, optional, and projection) starting
from BGPs; cf. [44]. This semantics is known as simple entailment.

3.2.2 SPARAQL Entailment Regimes

SPARQL entailment regimes allow for querying RDF graphs with reasoning capabili-
ties [36]. Specifically, an entailment regime E specifies how to obtain from an RDF graph
G an entailed graph eg”(G) [77]. Then, the answer [B]Z to a BGP B under the entail-
ment regime E is defined as [B],;z - Similarly, the answer [Q]E to a SPARQL query
(2 under the entailment regime E is defined as [[Q]]egE(G). In this way, entailment regimes
only modify the evaluation of BGPs but not that of other SPARQL operators.

We present now the standard W3C semantics for SPARQL queries over OWL ontologies.
Under the OWL 2 direct semantics entailment regime, one can query an RDF graph G that
consists of two parts: the intensional sub-graph (i.e., TBox or ontology) 7" representing the
background knowledge in terms of class and property axioms, and an extensional sub-
graph (i.e., ABox) A representing the data as class and property assertions. We write such
a graph G, which represents a knowledge base, as (T, .A) to emphasize the partitioning
when necessary. Moreover, for convenience, we use the triple notations (s, rdf:type, C)
and (s,p,o0) and the ABox assertion notations C(s) and p(s, o) interchangeably. We are
particularly interested in the OWL 2 QL profile [56] of OWL 2, which induces the OWL 2 QL
entailment regime. For an OWL 2 QL knowledge base G we have eg®*(G) = {t | G =pr.
t}, where =p; denotes the standard OWL 2 entailment, defined in terms of description
logics semantics, cf. [74].

3.2.3 Geospatial extensions of RDF and SPARQL

There are several research works on the spatial extensions of the data model RDF and
the query language SPARQL. The data model stRDF and the query language stSPARQL
are extensions of RDF and SPARQL 1.1 respectively, developed for the representation
and querying of spatial [48] and temporal data (i.e., the valid time of triples [13]). Another
framework that has been developed for the representation and querying of geospatial data
on the Semantic Web is the OGC standard GeoSPARQL [26]. Although GeoSPARQL and
stSPARQL were developed independently, they share a lot of features in common. They
both adopt the OGC standards Well-known Text (WKT) and Geography Markup Language
(GML) for representing geometries. Also both of them extend SPARQL with the topological
functions defined in the OGC standard “OpenGIS Simple Feature Access for SQL” [1], and
the Egenhofer [32] and the RCC-8 [65] topological relation families. The main difference

55 K. Bereta



Efficient Management for Geospatial and Temporal Data using Ontology-based Data Access Techniques

gid code_00 id remark area_ha shape_leng shape_area geom

integer character varying(100) character varying(18) character varying(20) numeric numeric numeric geometry
1 20440 BroadlLeavedForest EU-1900387 1916969872.0513230|5691.69698 010300002
2 20512 BroadLeavedForest EU-1960769 33331793!35.00228579833.31793 010300002
3 20543 BroadLeavedForest EU-1900881 }924707616.17039328|189. 247076 010300002
4 20797 BroadLeavedForest EU-19601587 17822436)3.55011923!107.822436 010300002
5 20904 BroadLeavedForest EU-1901816 71899830 197.0454395,0618.99830 010300002

Figure 3.1: table crc that contains CORINE land cover data

between stSPARQL and GeoSPARQL is that stSPARQL also provides support spatial
updates and spatial aggregates, and offer valid time support.

Since in the rest of this chapter we will refer to the notation and concepts defined or fol-
lowed by stSPARQL and GeoSPARQL, we briefly present them below for the convenience
of the reader.

Spatial literal. A spatial literal represents the serialization of a geometry. In stSPARQL, it
is a literal of type strdf : geometry or its subtypes strdf : WKT or strdf :GML, as defined in
[48]. Similarly, in GeoSPARQL, it is a literal of type geo:wktLiteral or geo:gmlLiteral.

Spatial term. A spatial term is either a spatial literal or a variable that can be bound to a
spatial literal.

Spatial filter. A spatial filter is a Boolean binary function SF(t,,¢,), where ¢y, t, are spatial
terms and SF is one of the Boolean functions of the Geometry extension of GeoSPARQL,
e.g., geof :sfEquals.

Spatial selection. A spatial selection in GeoSPARQL/stSPARQL is a SELECT query with
a FILTER which is a Boolean binary function with arguments a variable and a constant.

Spatial join. A spatial join in these languages is a query with a FILTER which is a Boolean
binary function whose all arguments are variables. The definition of the spatial join in
SPARQL corresponds to the definition of the spatial join in the geospatial extensions of
the relational model. In the rest of this chapter, spatial joins will often be denoted as x g,
where sfis a spatial filter.

Example 3.2.1. Consider the table crc shown in Figure 3.1 and the following mapping
assertion.

clc:{gid} rdf:type clc:CorinelLandCoverArea;

geo:hasGeometry clc:geometry/{gid} .
clc:geometry/{gid} geo:asWKT {geom}~~"geo:wktLiteral.
<~ SELECT gid, geom FROM clc

The source part of the first mapping assertion is a query over the table clc. Intuitively, for
each row in the table clc, it generates two triples sharing the same subject s = clc:{gid}.
The first triple declares that the type of s is an IRl clc:CorineLandCoverArea and the
second triple declares that the geometry of s is an IRl 0 = clc:geometry/{gid} . The
third triple declares that the WKT serialization of o is the literal {geom}~"geo:wktLiteral.
Below is the resulting virtual RDF graph that is populated with information of the first row
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of table clc.

clc:20440 rdf:type clc:CorinelandCoverArea .
clc:20440 geo:hasGeometry clc:geometry/20440/ .
clc:geometry /20440 geo:asWKT {geom} "geo:wktLiteral .

Consider another mapping assertion:

gag:{gid} rdf:type gag:AdministrativeDivision;

hasGeometry gag:geometry/{gid} .
gag:geometry/{gid} geo:asWKT {geom_4326}""geo:wktLiteral.
< SELECT gid,ST_Transform(geom, '4326') AS geom_4326 FROM gag

The source part is a query over the table gag, which contains information about administra-
tive divisions. In a similar way to the above, for each row in the table gag, it generates two
triples sharing the same subject s = gag:{gid}. The first triple declares that the type of s
is an IRI gag:AdministrativeDivision and the second triple declares that the geometry
of sisan IRl o = gag:geometry/{gid}. The third triple declares that the WKT serialization
of o the literal {geom}~"geo:wktLiteral. Notably, the source query contains a row SQL
function in the select clause named ST_Transform. This function is widely used in the
area of GIS and it transforms a geometry from its original Coordinate Reference System
(CRS) to another. The geometries original shapefile which is imported to our database
are expressed using the CRS 2100. Instead of transforming and materializing the geome-
tries into the WGS84 (the universal CRS), we incorporated this function in the mappings
to showcase the flexibility of our approach: Users can incorporate geospatial data manip-
ulation functions in the source part of the mappings, so that the virtual semantic views that
will be constructed on top of their data is an improved version of the original data.

3.3 A formalization of GeoSPARQL

In this section we present in detail the features of GeoSPARQL and provide a formalization
in terms of the SPARQL entailment regime.

3.3.1 OGC GeoSPARQL Standard

In the context of this chapter, we will only consider GeoSPARQL (and, as a result, the
geospatial part of stSPARQL). The main features of GeoSPARQL are specified in Clauses
6 to 10 of [26] consisting of one core component and four extensions. Specifically, the
core component, the topology vocabulary, and the geometry extension defines an OWL
ontology? (denoted by 7,.,); the geometry topology extension defines SPARQL functions
for spatial selection and spatial filter; and the query write extension defines additional
rules for computing spatial relations. In the following, we summarize these features of
GeoSPARQL following the structure of specification.

2http://www.opengis.net/ont/geosparql
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Spatial Object

rdfs:subclassOf rdfs:subclassOf

Feature Geometry
geo:hasGeometry
Figure 3.2: GeoSPARAQL class hierarchy

3.3.1.1 Core component [Clause 6, OGC-GeoSPARQL standard]

This component defines high-level RDFS/OWL classes for spatial objects. The main
GeoSPARQL classes are shown in Figure 6.3. Classes Feature and Geometry are sub-
classes of the general class SpatialObject (Subclass0f properties are represented using
dotted arrows). Features have geometries, and this is expressed using the object property
geo:hasGeometry.

3.3.1.2 Topology vocabulary extension [Clause 7, OGC-GeoSPARQL standard ]

This component defines RDF properties for asserting and querying topological relations
(i.e., object properties in OWL) between spatial objects. Specifically, it covers different
families of topological relations including Simple Features Access (e.g., geo:sf0verlaps),
RCCS8 (e.g., geo:rcc8po), and Egenhofer (e.g., geo:ehOverlap).

3.3.1.3 Geometry extension [Clause 8, OGC-GeoSPARQL standard]

The Geometry extension component defines RDFS data types for serializing geometry
data, geometry-related RDF properties, and non-topological spatial query functions for ge-
ometry objects. More specifically, this component of GeoSPARQL defines that serializa-
tions of geometries are RDF literals, introducing the datatypes geo: asWKT and geo : GML that
correspond to the respective OGC standards WKT and GML that are used to represent ge-
ometries as text. It also defines a set of properties that associate features with their geome-
tries, such as the properties geo:hasGeometry, geo:hasSerialization, geo:isSimple,
etc. The same component also defines a set of functions that perform non-topological
spatial operations, such as the functions geof :distance and geof:intersection.

3.3.1.4 Geometry Topology extension [Clause 9, OGC-GeoSPARQL standard]

This component defines topological query functions that take two geometry literal and
return a boolean value. Topological query functions can be used for spatial selections
and spatial joins. The standard defines functions in the families of Simple Features
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(1) feature — feature rule

geo:sfOverlaps(?fl, 7f2) < geo:hasDefaultGeometry(?7f1,?gl), geo:asWKT(?gl, ?g1WKT),
geo:hasDefaultGeometry(?£2, 7g2), geo:asWKT(?g2, 7g2WKT),
geof : sfOverlaps(?glWKT, 7g2WKT).

(2) feature — geometry rule

geo:sfOverlaps(?fl, 7f2) < geo:hasDefaultGeometry(?7f1, ?gl), geo:asWKT(?gl, 7g1WKT),
geo:asWKT(?7£2, 7g2WKT),
geof : sfOverlaps(?g1WKT, 7g2WKT).

(3) geometry — feature rule

geo:sfOverlaps(?f1,7£2) < geo:asWKT(?f1, 7g1WKT),
geo:hasDefaultGeometry(?7£2, 7g2), geo:asWKT(?g2, 7g2WKT),
geof :sfOverlaps(?7glWKT, 7g2WKT).

(4) geometry — geometry rule

geo:sfOverlaps(?fl, 7f2) < geo:asWKT(?7f1, 7g1WKT),
geo:asWKT(?7£2, ?7g2WKT),
geof :sfOverlaps(?glWKT, 7g2WKT)

Figure 3.3: The Rules R,,.,iqps for computing overlaps relations

Access, RCC8, and Egenhofer. These functions belong to the namespace geof and
have the same names as the topological predicates of the Topology extension. For ex-
ample, geof:sfOverlaps is the topological query function corresponding to the relation
geo:sfOverlaps.

3.3.1.5 Query Rewrite extension [Clause 10, OGC-GeoSPARQL standard]

This clause defines a set of transformation rules, denoted R, for computing spatial
relations between spatial objects based on their associated geometries. The rules R,
use the topological extension functions defined in Clause 9 to establish the existence of
topological predicates defined in Clause 7.

For example, the rules R,,.,qps in Figure 4.1 specifies how to compute geo:sfOverlaps
relations of two spatial objects 7f1 and 7f2. The first feature-feature rule deals with the
situation where 7f1 and 7f2 are features, and the overlaps relation can be computed by
calling the geof:sfOverlaps function over the WKT serializations ?g1WKT and ?g2WKT of
the geometries 7g1 and ?g2 of the objects 7f1 and 7£2. We use R,,(G) to denote the
minimal model of applying rules R, to a set of facts G.

The rules R, are also used for transforming qualitative spatial queries into equivalent
quantitative queries. When using R, for query rewriting, it transforms the triple patterns
that contain the topological relation (e.g., ogc:sfOverlaps) into an equivalent query that
describes the same relation using the respective function (e.g., geof : overlaps) in the filter
clause of the query. Given a SPARQL query ¢, we denote by rew,.,(¢q) the SPARQL query
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derived by applying all rules R, in query rewrite extension.

Example 3.3.1. The GeoSPARQL query ¢ that is described in Listing 3.2 retrieves all pairs
of Corine Land Cover areas (s1) and the administrative divisions (s2) such that s1 overlaps
with s2.

Listing 3.1: GeoSPARAQL overlap query

SELECT 7s1 7s2 WHERE {
?s1 a clc:CorinelandCoverArea
?s2 a gag:AdministrativeDivision
7sl geo:sflOverlaps 7s2.

The topological relation overlaps in g is expressed using the predicate geo:sf0Overlaps.
Query ¢ can be transformed to the following query ¢ using the equivalent quantitative
function in the example transformation rules of R ueriqps-

Listing 3.2: Query rewriting

SELECT 7s1 7s2 WHERE {
?sl a clc:CorinelandCoverArea
?s2 a gag:AdministrativeDivision

{
{ 7?s1 geo:sfOverlaps 7s2. }
UNION
# feature - feature

{ ?s1 geo:hasDefaultGeometry 7gl
?7gl geo:asWKT 7glWKT
?7s2 geo:hasDefaultGeometry 7g2
?7g2 geo:asWKT 7g2WKT
FILTER (goef:sfOverlaps (?7glWKT, 7g2WKT)).
b
UNION
# feature - geometry
{ 7?s1 geo:hasDefaultGeometry 7gl
7gl geo:asWKT 7glWKT
?s2 geo:asWKT 7g2WKT
FILTER (goef:sfOverlaps (?glWKT, 7g2WKT)).
+
# geometry - feature
UNION
{ ?s1 geo:asWKT 7glWKT
7?82 geo:hasDefaultGeometry 7g2
?7g2 geo:asWKT 7g2WKT
FILTER (goef:sfOverlaps (?glWKT, ?7g2WKT)).
+
UNION
# geometry - geometry
{ ?s1 geo:asWKT 7glWKT. ?7s2 geo:asWKT 7g2WKT.
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FILTER (goef:sfOverlaps (?7glWKT, ?7g2WKT)).
}
}
}

3.3.2 GeoSPARAQL entailment regime

Now we develop a formal framework capturing the semantics of the family of GeoSPARQL
query languages in terms of SPARQL entailment regime [73, 46, 77]. Here we introduce
a more general version of the formal semantics of GeoSPARQL. Given an entailment
regime E, we can augment it with the GeoSPARQL capabilities, to derive a new entailment
regime (geo-E). Intuitively, the geo-E-entailment regime captures the core component, the
topology vocabulary and the geometry extension by the built-in ontology 7,.,, the geometry
topology extension by corresponding SPARQL functions, and the query rewrite extent by
the rules R 4,.

Definition 1. Let geo be the GeoSPARQL ontology, (7,.4) a DL ontology, E an entailment
regime,
eg®E(T, A) = Ryeo(egf (T U geo, A)).

It is easy to see that the “query rewrite extension” can be indeed realized by query rewrit-
ing.

Proposition 1. Let 7., be the GeoSPARQL ontology, (7, .4) a DL ontology, ¢ a BGP, then

[[qﬂg_e:of = [{T'ewgeo(Q)]]’E/’UTgem A

We note that OGC GeoSPARQL standard does not explicitly specify which level of rea-
soning is required. The reasoning capabilities listed in the requirements essentially only
require RDFS. Therefore, GeoSPARQL roughly corresponds the geo-RDFS entailment
regime. However, the geo ontology is actually classified as SHZF, which is much more
expressive than RDFS.

Proposition 1 can be readily applied to the OBDA setting. Given an OBDA instance (P, D)
where P = (T, M,S), the answers of a SPARQL query ¢ under the geo-E-entailment
regime is [[q]]%ff‘;{ip and consequently [rewge,(q)]54c0. 4- When E is first-order rewritable
(e.g. OWL 2 QL), the geo-E entailment regime can be implemented in an OBDA system

by modifying the workflow. Details of such techniques are discussed in the next section.

3.4 GeoSPARQL-to-SQL

In this section, we present the techniques of answering GeoSPARQL queries in OBDA
by translating to SQL queries, which is based on the SPARQL-to-SQL algorithm used in
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Ontop [46, 19]. The pseudo code of algorithm is outlined in Figure 1. As in the classical
case, the algorithm takes as inputs a (Geo)SPARQL query, an ontology 7, and a map-
ping M, and returns a SQL query. The algorithm consists of (1) an offline step, which is
query-independent and preprocesses the mapping and ontology and generates the so-
called saturated mapping or T-mapping, and (2) an online step, which translates the input
SPARQL query into an SQL query. We refer the readers to [19] for more details of the
workflow. In the following, we discuss the GeoSPARQL specific steps, which are under-
lined in the pseudo code.

Algorithm 1 Algorithm of Translating GeoSPARQL into SQL
Input: GeoSPARQL query ¢, Ontology 7, Mapping M
Output: An SQL expression
/I offline phase
Tetassifiea = classify(T U geo) > ontology classification
M < saturate(M, Teiassi fied) > mapping saturation
/l online phase
Q  rewgeo(q) > GeoSPARQL query write
S « list of nodes in @ in a bottom-up topological order
sqgl < empty map from nodes to SQL expressions
for node n € S do
if n is triple pattern then > translating leaves
sql[n| « replace-Tmap-def(n, M)
11: else > translating non-leaf nodes
12: if n = JOIN(n1,n2) then
13: sql[n] < InnerJoin(sql[n1], sql[n2])
14: else if n = OPTIONAL(n1,n2, €) then
15: sql[n] < LeftJoin(sql[n1], sql[nz], )
16: else if n = UNION(n1,n9) then
17: sql[n] < Union(sql[n1], sql[n2])
18: else if n = FILTER(n1, ¢) then
19: sql[n] <« Filter(sql[n], e)
20: else if n = PROJECT(n1, p) then
21: sql[n] « Project(sql[ni], p)
22: end if
23: end if
24: end for
25: return sql[S.last()]

Nk

—
o ©

Ontology classification At line 2, the algorithm classifies the input ontology 7 union
with the GeoSPARQL ontology geo, and construct an explicit hierarchy of classes and
properties. By assuming the built-in ontology geo, the algorithm is able to support the
Clauses 6 — 8 of the GeoSPARQL standard.
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Table 3.1: GeoSPARQL Simple Feature functions of to SQL Functions

GeoSPARQL function O0GC SFS SQL function

geof :sfEquals ST_Equals
geof :sfDisjoint ST_Disjoint
geof:stIntersects ST_Intersects
geof :sfTouches ST_Touches
geof :sfCrosses ST_Crosses
geof :sfWithin ST_Within
geof:sfContains ST_Contains
geof :sfOverlaps ST_Overlaps

GeoSPARQL query-rewrite At line 5, the algorithm expands the input GeoSPARQL
query ¢ using the rules R, as in Example 3.3.1. We note that the resulting query is of
polynomial size of the input query.

Spatial filter expressions At line 19, the algorithm transforms the SPARQL filters to
its SQL equivalences. Now it also translates GeoSPARQL functions to the corresponding
functions in the spatial extension of SQL. In Table 3.1, we provide a list of SPARQL Simple
Feature functions defined in GeoSPARQL and their equivalences in SQL functions defined
in OpenGIS SQL standard [41].

3.5 Implementation

We implemented the GeoSPARQL-to-SQL translation framework discussed in Section
3.4 as an extension of the system Ontop with geospatial features focusing on spa-
tial selections and spatial joins. We chose to extend Ontop instead of systems offer-
ing similar functionality because (i) it is open source, robust and extensible, (ii) it of-
fers a wide range of functionalities that are useful for geospatial applications (reason-
ing, multiple APIs), and (iij) it implements significant SPARQL-to-SQL optimizations, pro-
ducing queries that can be executed efficiently by the underlying DBMS as reported in
[67]. Ontop-spatial is available as free and open source software at the following link:
https://github.com/ConstantB/ontop-spatial.

3.5.1 System overview

An abstract overview of the system as well as a high-level architecture diagram can be
seen in Figures 3.4(a) and 3.4(b) respectively. In the following, we highlight the compo-
nents of Ontop that we have extended as they are placed in the query processing workflow:
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(a) Abstract overview (b) Ontop-spatial architecture

Figure 3.4: Ontop-spatial

» The virtual Ontop repository takes as input an ontology and a mapping file. Mappings
can be either R2RML or the Ontop native OBDA mapping language.

* Once Ontop-spatial receives a GeoSPARQL query, the query gets parsed. We
modified the Sesame (now known as rdf4j) parser used by Ontop (and the javacc
parser that the respective Sesame library uses), in order to extend its syntax
to support geospatial operations in the filter clause of the query. Additionally,
qualitative geospatial queries, (i.e., queries containing geospatial triple patterns
such as ex:feauturel geo:overlaps ex:feature2)are also supported as standard
SPARQL triple patterns, and get transformed into their quantitative equivalents (i.e.,
queries with spatial filters) in the following step.

+ Conventionally, the next step in Ontop is to translate the SPARQL query and the
R2RML mappings into a Datalog program so that the query can be represented
formally and optimized following a series of optimization steps described in detail in
[67]. Ontop-spatial inherits these optimizations and extends the SPARQL-to-Datalog
translation module. As explained in the previous section, the geospatial filters are
transformed into Datalog using distinguished geospatial predicates. The same dis-
tinguished geospatial predicates are used in the case of the qualitative geospatial
queries as well using the Query Rewrite extension of GeoSPARQL. As a result, both
quantitative and qualitative representations of a GeoSPARQL query are transformed
into the same SQL query in the following step.

» The optimized version of the Datalog query, as derived from the previous step, gets
translated into SQL. Every geospatial Datalog predicate is mapped to the respective
geospatial SQL operator, following the syntax of the underlying DBMS. The DBMS
adapter has been extended in order to be able to identify geospatial columns in
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the database of the user. The PostgreSQL adapter of Ontop has been modified to
support the PostGIS extension and an adapter of the open source DBMS Spatialite
has been added.

* The SQL query gets eventually executed in the underlying DBMS. Currently, the
spatially-enabled databases that ontop supports are the geospatial extensions of
PostgreSQL and Sqlite, namely PostGIS3, Spatialite*, and Oracle Spatial® respec-
tively. More geospatial databases will be supported in the future.

+ After the evaluation of the spatial SQL query in the DBMS, Ontop-spatial gets the
results and sends them to the user. If geometries need to be projected, the SQL
query that is produced returns the result as WKT. This enables Ontop-spatial to be
used as a GeoSPARQL endpoint, that could serve as input endpoint for applications
like linked geospatial data visualizers [57] to display the geometries that are returned
as a result of a GeoSPARQL query.

Like the default version of Ontop, ontop-spatial can be used as a web application (using
Sesame workbench), as a Sesame library, as a Protege plugin, or it can be executed
from the command line. The virtual geospatial graphs created by Ontop can also be ma-
terialized, creating an RDF dump, so that it can then be imported in a geospatial RDF
store.

3.5.2 Compliance with GeoSPARQL

In the following, we explain the parts of GeoSPARQL that are supported in Ontop-spatial.

Core component. Ontop-spatial supports SPARQL and the RDFS classes of the
GeoSPARAQL ontology.

Topology Vocabulary extension. Ontop-spatial supports the properties geo: sfEquals,
geo:sfDisjoint, geo:sflntersects, geo:sfTouches, geo:sfCrosses, geo:sfWithin,
geo:sfContains, geo:sfOverlaps and the respective Egenhofer and RCC relations to
be used in SPARQL graph patterns.

Geometry extension. Ontop-spatial supports the Geometry classes and properties de-
fined in the Geometry topology component of the GeoSPARQL specification. It also
supports the serializations of geometries as literals of the datatypes geo:wktLiteral
and geo:gmlLiteral respectively, as well as the serialization properties geo:asWKT
and geo:asGML. Furthermore, Ontop-spatial supports the non-topological query func-
tions geof:distance, geof :buffer, geof :convexHull, geof:intersection, geof :union,
geof:difference, geof :symDifference, geof : envelope and geof :boundary as SPARQL
extension functions.

Shttp://www.postgis.net
*http://www.gaia-gis.it/gaia-sins/
Shttps://www.oracle.com/database/spatial/index.html
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Geometry topology extension. Ontop-spatial supports all of the topological relation
functions defined in the Geometry topology extension.

Query Rewrite extension. To the best of our knowledge, Ontop-spatial is the first
GeoSPARQL implementation that supports this extension of GeoSPARQL.

RDFS entailment extension. Ontop-spatial supports this GeoSPARQL component as
Ontop supports RDFS reasoning.

3.5.3 Beyond GeoSPARAQL: Raster data support

Raster data support. In the raster data model, the geospatial data are represented in a
different way than in the vector data model. Essentially, they are represented as pixels,
with each pixel containing a set of values. This data format is more compact and it is
very common in scientific data. For example, a value of a raster cell could indicate a
measurement value, such as temperature, moisture level, etc. Due to the popularity of
this data model, the geospatial databases incorporated the implementation of adapters
for Raster data, introducing specialized data types for representing raster data formats
and a set of extension functions for their processing and manipulation, handling them in a
similar way to how they handle vector data.

However, none of the geospatial extensions of the framework of RDF and SPARQL, such
as stRDF and stSPARQL and GeoSPARQL have considered support for raster data. The
main challenge that lies behind this is twofold: First, a raster file is associated with a ge-
ometry only as a whole. It is not straight-forward to associate separate raster cells to a
geometry, they have to be vectorized first (i.e., translated into polygons). Second, ev-
ery raster cell is associated with one or more values. In order to convert all information
contained in a raster file into RDF, then multiple triples should describe a raster cell, pro-
ducing a large amount of triples for a whole raster file. However, not all of this information
is needed. In most of the use cases, only the information that derives from a raster file and
satisfies certain criteria (e.g., value constraints) is all that is needed to be converted into
RDF. This means that the raster file needs to be processed and then the results of this
processing are useful as RDF, while any other information is redundant. These challenges
have discouraged the scientific community from converting and materializing raster data
to RDF. Recently, OGC and W3C have established a working group on Spatial Data on
the Web®. One of the working notes published by the working group recently is called
“Coverages in linked data” and, among other, this discusses these challenges of raster
data.

In the work described in this chapter, we address these challenges by following the OBDA
paradigm:

* Ontop-spatial can connect to a geospatial relational database with a raster adapter.

https://wuw.w3.org/2015/spatial/wiki/Main_Page
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* The raster datatype is internally handled in the same way as its vector counterpart
(e.g., the Geometry datatype).

» The following GeoSPARQL operators are overloaded for supporting the respective
operations having raster data as arguments in addition to vector data: ST _Contains,
ST_Covers, ST_Within, ST_Overlaps, ST_Intersects, ST_Touches.

» PostGIS operators can be added in the mappings in order to process the raster data
and create virtual geospatial RDF views above them. For example, certain operators
can be used in the SQL query of a mapping in order to refine the results, refining the
information from the original raster file that will be virtually translated into RDF. An
example is given below.

In this example, we will try to combine both vector and raster sources. First, we import a
shapefile containing USA second-level administrative divisions to a PostGIS database.
The table that contains this information is named USA_ADM2 and it has the following
columns: the gid column that stores the id of the respective entries of the shapefile, the
id_0 column that stores an identifier of the administrative division, and the geom column
that stores the boundaries of the administrative divisions as vector geometries in Well-
known-binary format (WKB). Then, we import a raster file that is a GeoTIFF image of
Chicago. With the raster extension of PostGIS enabled in the database, the raster file is
imported into a table named CHICAGO. The column rast of this table contains the raster
cells of the GeoTIFF image and it is of raster datatype, which is supported by the raster
extension of PostGIS. According to the PostGIS reference’, each raster has one or more
bands each having a set of pixel values and it can be georeferenced. To summarize, the
schema of these two tables are:

USA_ADM2 (gid, id_0, geom)
CHICAGO (rid, rast)

The mapping provided below encodes how data stored in tables USA_ADM2 and CHICAGO
can be mapped into (virtual) RDF terms.

Listing 3.3: Mapping vector and raster geometries

mappingId chicago2
target geo:{geom} rdf:type f:rasterCell ;
geo:{geom} geo:asWKT {geom} .
source SELECT (ST_DumpAsPolygons(rast)).geom FROM chicago;

In the mapping shown in Listing 3.3, the geometries (that are of the raster datatype in the
database) are mapped to the WKT format, after they are vectorized, using the PostGIS
ST_DumpAsPolygons function in the source part. This is a procedure that allows domain
experts to use all geometries that they may have in a database uniformly, and execute

"https://postgis.net/docs/raster.html
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spatial operations involving vector and raster geometries, for example. Domain experts
usually perform this vectorization step as part of pre-processing. In the mapping described
above, we show how this can be done on-the-fly, using Ontop-spatial. In the following, we
provide an example of a GeoSPARQL query that involves the combination of vector and
raster data sources.

Example 3.5.1. Retrieve administrative divisions that intersect with raster cells of the Geo-
TIFF image of Chicago.

Listing 3.4: Query intersecting verctor and raster geometries

SELECT 7adm
WHERE { ?r rdf:type :rasterCell . 7r :hasGeometry 7rast
7adm rdf:type :AdministrativeDivision .
7adm geo:hasGeometry 7g . 7g geo:asWKT 7geom .
FILTER(geof:sfIntersects(?geom,?rast))}

Using the query described in Listing 3.4, we retrieve the geometries that correspond to
the boundaries of second level administrative divisions whose serializations get bound
to the variable 7geom. We also retrieve the geometries of raster cells that get bound
to the variable ?rast. In Ontop-spatial, the GeoSPARQL function geof:sfIntersects is
overloaded so that it can evaluate the condition that checks the spatial intersection of
vector and raster geometries. As a result, we retrieve tha administrative divisions whose
boundaries intersect with the GeoTIFF image.

In this way, a user can handle geospatial data sources regardless of their original format.
The query described above is identical to a query that we would pose if only vector data
sources were involved. Notably, there is no other system that is able to perform spatial
joins between vector and raster geometries in such transparent way, even in the case of
specific software solutions that specialize in raster data management like Rasdaman?.

3.6 Evaluation

We conducted an empirical evaluation of our implementation based on the philosophy of
Geographica®, a benchmark for testing the performance of geospatial RDF stores [34].
Geographica consists of a micro benchmark and a macro benchmark. The micro bench-
mark is designed for testing basic geospatial operators, such as spatial selections and
spatial joins. The macro benchmark tests the performance of the evaluated systems using
queries that correspond to real application scenarios. As our aim is not to test geospatial
RDF stores as done in [34], we use a modified benchmark based on the micro benchmark
of Geographica as we explain later in this section.

Since there was no alternative OBDA system that allow for posing GeoSPARQL queries
over geospatial relational databases, we decided to evaluate Ontop-spatial in comparison

8http://www.rasdaman. com/
Snttp://geographica.di.uoa.gr/
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with a geospatial RDF store. We consider that the spatiotemporal RDF store Strabon [48]
is a good representative of the family of the geospatial RDF stores to compare with as (i) it
is a state-of-the-art geospatial RDF store both in terms of functionality and performance
[48, 34], (ii) it supports a big subset of GeoSPARQL (apart from stSPARQL), and (iii) it
uses a spatially-enabled DBMS as back-end, performing a SPARQL-to-SQL translation
following a specific storage scheme as explained in [48]. This enables us to use the same
DBMS (PostGIS with the same configuration and tuning) and perform a comprehensive
comparison. We also consider the system System-X (the Free version) which is one of
the most efficient triple stores and recently added support for GeoSPARQL. Since this
system is more recent than the study described in [34], we included it in our experimental
evaluation to find out how it compares to both Strabon and Ontop-spatial.

3.6.1 Datasets

Geospatial data come, in most cases, in native geospatial data formats. In a real-world
scenario, a user that works with geospatial data obtains it as files in a geospatial data
format (e.g., a shapefile) and stores it either in a GIS or a spatially-enabled relational
database. Later on, he may convert the data into RDF and store it in a geospatial RDF
store in order to combine it with other linked data.

The benchmark Geographica is based on such real-world geospatial application scenarios
and for the experimental evaluation of Ontop-spatial we will also follow this approach: We
will import real geospatial datasets in a spatially-enabled relational database and use it as
the back-end of Ontop-spatial.

We chose to use the datasets of Geographica that are available in their original format
(shapefiles). These datasets are the Corine Land Cover dataset of Greece, which is pro-
vided by the European Environment Agency (EEA), the Greek Administrative Geometry
(GAG), and the Hotspots dataset provided by the National Observatory of Athens. We
complemented these data sources with the original raw files of OpenStreetMap data about
Greece which are available as shapefiles'®. Geographica uses the RDF versions of the
same subset of the OSM datasets created by the project LinkedGeoData'!. For the rest
of this Chapter, we will refer to this dataset using the acronym of the resulting, RDF-ized
version (LGD). We added more OSM categories to our workload (e.g., buldings, water-
ways, etc.), as we will exploit the fact that each one is contained in a different shapefile
(so it will be imported into a different table), to stress our system as we explain later on in
this section.

For the evaluation of Ontop-spatial, we imported the shapefiles in a PostGIS database
using the shp2pgsql command as described here: https://github.com/ConstantB/
Ontop-spatial/wiki/Shapefiles. In this way, each shapefile is loaded into a separate
table in the database. Each one of these tables contains a column where geometries are
stored in binary format (WKB) and an index has been built on that column. Then, we cre-

"Ohttp://download.geofabrik.de/europe/greece.html
"http://linkedgeodata.org/
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ated the minimum set of mappings in order to pose the queries of the benchmark. We used
PostgreSQL version 9.1.13 and PostGIS 2.0.3, performing the fine tuning configurations
suggested here: http://geographica.di.uoa.gr.

Table 3.4 shows information about the datasets described above, such as the disk size that
each of these tables occupy, the number of tuples and the average number of points per
geometry. Notice that the LGD dataset consists of 7 shapefiles/tables which is important
in the OBDA setting as we will explain later on. Also, LGD-Places and LGD-Points contain
only point geometries.

In order to compare the performance of our system with Strabon and System-X, we mate-
rialized the virtual geospatial RDF graphs produced by Ontop-spatial and stored them in
Strabon and System-X, so that both the virtual RDF graphs produced by Ontop-spatial and
the graphs stored in Strabon contain exactly the same information. The produced RDF
dump consists of 5.620.482 triples and contains 855.502 geometries. The total PostGIS
database size (in terms of disk usage) of Ontop-spatial is 700 MB. The respective size
of the PostGIS database that was produced after loading the RDF dump to Strabon is
1665 MB, which is more than twice the disk space compared to the original database pro-
duced by importing the shapefiles directly. The reason is that in the first case the database
stores the data, while in the second case the database stores the equivalent set of triples.
This kind of overhead is common in RDF stores that use a relational database as back-
end. Also, Strabon inherits the per_predicate storage scheme of the Sesame RDBMS
package, so every predicate is stored in a different table and additional tables are used
for dictionary encoding. According to this storage scheme, all geometries are stored in
a table called geo_values in WKB format and the respective column is indexed using an
R-tree-over-GiST index, as described in [48].

3.6.2 Queries

The GeoSPARQL queries that we used for the experimental evaluation of our system
are a set of spatial selections and a set of spatial joins. We used some of the queries
of Geographica, and some queries that are appropriate in the OBDA setting as we will
explain in the rest of this section. The queries used in our evaluation are presented in
Tables 3.2 and 2. Each query has a numeric identifier, a mnemonic label, a number that
shows how many BGPs it consists of and a number that shows how many results it returns.

Both spatial selection and spatial join queries contain a spatial filter that checks if a spa-
tial relation holds between two geometries that are given as arguments to the respective
GeoSPARAQL function. In the case of spatial selections, one of the arguments is a variable
and the other one is a constant, which can be either a line (queries suffixed with “L” in the
query label) or a polygon (using “P” suffix). In spatial join queries, both arguments of the
respective spatial binary operator are variables. The first set of queries that we consider
contains simple geospatial queries, i.e., queries consisting of a single triple pattern to re-
trieve the geometries of a dataset and a spatial filter (spatial selections 00-14 and spatial
joins 00-03). Note that spatial joins require at least two triple patterns to retrieve the ge-
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ometries that will be bound to the variables that are involved in the spatial filter. This kind
of queries test the response time of the compared systems to perform “pure” geospatial
queries (i.e., with the minimum amount of non-spatial triple patterns involved, focusing as
much as possible on the evaluation of the spatial condition).

The next set of queries that we consider tackles an important issue that is crucial in OBDA
systems: the generation of Union operators, deriving from the ontology and the schema
of the database in the SPARQL-to-SQL translation phase. For example, the LGD dataset
consists of 7 shapefiles, each one containing a column where geometries are stored. But
according to the ontology, the data property that connects a spatial object with its geometry
is universal for all spatial objects in the dataset. We present the mappings for two of these
tables/shapefiles in Listing 3.5.

Listing 3.5: Examples of geospatial mappings for two LGD tables

mappingId 1gd_buildings_geometry
target lgd:{gid} 1gd:asWKT {geom}~"geo:wktLiteral.
source SELECT gid, geom FROM buildings

mappingld 1gd_landuse_geometry
target lgd:{gid} 1lgd:asWKT {geom} "geo:wktLiteral.
source SELECT gid, geom FROM landuse

Listing 3.6: Template for spatial selection queries

SELECT ?s1 7ol
WHERE { ?s1 1gd:asWKT 7ol
FILTER (geosparql:FUNCTION (SPATIAL_CONSTANT,?01)).}

Listing 3.7: Spatial selection query 19

SELECT distinct 7sl

WHERE { 7?s1 1gd:asWKT 7ol . { {?s1 rdf:type lgd:Road}
UNION {?sl rdf:type lgd:Waterwayl}.}

FILTER (geof:sfIntersects (GEOMETRY,?01))

Listing 3.8: Spatial join query 6

SELECT 7s1 7s2
WHERE { 7s1 1gd:asWKT 7ol . ?s2 lgd:asWKT 702
FILTER(geo:sfIntersects(701,702))}

Let us now consider the template for spatial selection queries in Figure 3.6. The trans-
lated SQL query corresponding to a GeoSPARQL query following this template would
create unions in order to fetch results deriving from all the tables it has been mapped to,
that is, all seven LGD tables, and then apply the spatial selection to this union. This is
the case for spatial selection queries 15-19. In order to test how our system responds
by increasing/decreasing the number of unions produced in the translated query, we add
an additional, thematic filter that selects a different number of LGD categories each time,
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thus affecting a different number of tables, and producing different number of unions, re-
spectively. For example, consider query 19 which is shown in Listing 3.7, which contains
a union to retrieve both waterways and roads (coming from different shapefiles, thus dif-
ferent tables in the database).

The queries 15, 16, 17, and 18 produce 6, 4, 3, and 4 unions respectively. The presence
of unions has a negative impact on the query response time, but things get even worse
when unions appear in spatial joins (e.g., spatial join query 6). Since variables appear
in the spatial filters that serve as the conditions of the spatial joins, all combinations of
the respective tables that are involved in the corresponding mappings should be spatially
joined pairwise.

For example, consider the spatial join query 6 which is given in Listing 3.8. This query
performs a spatial join with the condition intersects in all LGD tables that are involved
in the mappings containing the predicate Igd:asWKT. This join is translated into the cor-
responding relational algebra expression as follows:

(Lbuildings U Lluse u..u Lwater’ways) st (Lbuildings U Lluse u..u Lwaterways)

where Lyyidingss Liuses---» Lwaterways, €1C @re LGD tables and sf is spatial operator corre-
sponding to geof:sfIntersects from the query. The query engine evaluates this rela-
tional algebra expression as unions of joins and all involved tables get spatially joined
pairwise.

Last, in order to measure how the selectivity of the queries affect the performance of the
systems, we included the spatial selection queries 20 and 21 involve the computation of
the intersection of all kinds of LGD areas with a specific polygon. This polygon is large
in the case of spatial selection query 20 so that many geometries will be returned, while
in spatial selection query 21 this polygon is small enough so that very few LGD areas
intersect with it.

3.6.3 Results

Experimental set up. The experiments were carried out on a server with the the following
specifications: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz, 12MB L3, RAID 5, 32GB RAM
and OS: Ubuntu 12.04. All experiments were carried out with both cold and warm cache.
Queries are first executed in cold cache and then in warm cache. The queries for which the
system under test times out ( the time out threshold is set to 40 minutes) are not executed
in warm cache. All queries and code we used to execute the experiments in both systems,
can be found in the “experiments” branch of the github repository of Ontop-spatial (folder
“‘benchmark”) at https://github.com/ConstantB/Ontop-spatial.

Query response time. The results of our experimental evaluation can be seen in Figures
3.5 - 5. Response time is measured in nanoseconds and presented in logarithmic scale.
A general observation is that the query response time of Ontop-spatial is better than the
one of Strabon and System-X, especially when big datasets are involved, both for spatial
selections and spatial joins. Strabon times out after 40 minutes in spatial join queries 6
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Table 3.2: Spatial selections description

No Query #BGPs | results

00 Equals_ GADM_P 1 0

01 | Contains_ GADM_P 1 9

02 | Contains_ GADM_P 1 0

03 Equals_ GADM_L 1 1

04 | Overlaps_ GADM_L 1 0

05 | Contains_ GADM_L 1 0

06 Intersects_CLC L 1 5

07 Contains_CLC_L 1 0

08 Equals_CLC_L 1 5

09 Overlaps CLC L 1 0

10 Overlaps CLC P 1 132

11 Intersects_CLC_P 1 533

12 Contains_CLC_P 1 401

13 Equals CLC_P 1 0

14 Intersects LGD_P 2 2749

15 Intersects LGD B 2 2749

16 | Intersects LGD PL 2 2626

17 Intersects LGD P 2 2522

18 | Intersects LGD LU 2 2722

19 | Intersects_LGD_ROA 2 2387

20 | Intersects_LGD_bigP 1 729189

21 | Intersects LGD P2 3 5

Table 3.3: Spatial joins description

No Query #BGPs | results
00 Within_CLC_GADM 2 34114
01 | Intersects GADM_GADM 2 1556
02 Overlaps_ GADM_CLC 2 17035
03 Intersects LGD_GADM 3 154725
04 | Intersects LGD LGD_Mus 4 2
05 Intersects LGD_GADM 2 819319
06 Intersects LGD _LGD 1 3686229
07 | Crosses LGD LGD Roads 4 178602
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Table 3.4: Workload characteristics

Dataset Size | Tuples | Avgtrome
CLC 283MB | 44834 187.84
Hotspots 35MB | 37048 5
GAG 24 MB 326 3020.14
LGD-Buildings | 42 MB | 155474 6.5
LGD-Landuse | 20 MB | 40220 19.4
LGD-Places 24 MB | 13043 1
LGD-Points 12 MB | 61664 1
LGD-Railways 2 MB 4996 13.3
LGD-Roads 250 MB | 514403 19
LGD-Waterways | 16 MB | 20565 39.84

and 7. System-X times out after 40 minutes in spatial join queries 0,1,2,3,6 and 7. In
spatial selection queries 2-5, although Ontop-spatial achieves better response time than
Strabon in cold cache, it gets outperformed in warm cache, as intermediate results (which
are not many as the dataset involved in this query is relatively small), are more likely to
be found in the cache, increasing the hit rate of the cache and decreasing I/O requests.
However, such differences between executions in warm and cold cache are eliminated in
larger datasets. System-X performs worse than Ontop-spatial and Strabon in both cases.

In what follows we explain why Ontop-spatial outperforms Strabon.

Listing 3.9: Spatial join query 2 Listing 3.10: Spatial join query 4

SELECT 7s1 7s2
WHERE {
?s1 clc:asWKT 7ol .

select ?sl ?s2 where {

?s1l lgd:asWKT 7ol .
?sl rdf:type 1lgd:Building .
782 gag:asWKT 702 . ?sl lgd:type "Museum" . 7s2 lgd:asWKT 702 .
FILTER (geof : sfWithin (701, 702)) ?s2 rdf:type lgd:Landuse .
} filter (geof:sfIntersects(?0l,%702))}

Listing 3.11: Ontop-spatial SQL query
SELECT 1 AS "s1lQuestType", NULL AS "slLang",

('http://geo.linkedopendata.gr/clc/' || REPLACEC(...... [l '/') AS "s1",
1 AS "s2QuestType", NULL AS "s2Lang",
('http://geo.linkedopendata.gr/gag/ont/' || REPLACE(...'/') AS "s2"

FROM clc QVIEW1, gag QVIEW2

WHERE QVIEW1."gid" IS NOT NULL AND QVIEW1l."geom" IS NOT NULL AND

QVIEW2."gid" IS NOT NULL AND QVIEW2."geometry" IS NOT NULL AND
(ST_Within (QVIEW1."geom",QVIEW2."geometry"))

Listing 3.12: Strabon SQL query

SELECT a0O.subj, u_s2.value, a2.subj,

u_sl.value FROM aswkt_855211 a0

INNER JOIN geo_values 1_02 ON (1_o02.id = a0.obj)
INNER JOIN geo_values 1_ol
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ON (ST_Within(l_ol.strdfgeo, 1_o2.strdfgeo))
INNER JOIN aswkt_135992 a2 ON (a2.obj = 1_o1l.id)

LEFT JOIN uri_values u_s2 ON (u_s2.id = a0.subj)
LEFT JOIN uri_values u_sl ON (u_sl.id = a2.subj)
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Figure 3.5: Spatial Selections experiment (cold and warm cache)
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Figure 3.6: Spatial Joins experiment (cold and warm cache)

The queries provided in Listings 3.11 and 3.12 are the SQL translations of the
GeoSPARAQL spatial join query 2, which is provided in Listing 3.9. One can observe that
Ontop-spatial produces the same query as one would have written by hand in a geospatial
relational database. Strabon produces some extra joins, as a result of the star schema
that it follows in the database (and has been inherited from the Sesame RDBMS that
Strabon is built on), i.e., each predicate is stored in a different table and there are some
additional tables used for dictionary encoding (tables storing URIs, one table for each
different datatype, etc.). This has a negative impact on performance when many interme-
diate results are produced. In Strabon, geometries are stored in a single table, named
geo_values, and are indexed on the geometry column using an R-tree-over-GiST index.
On the other hand, Ontop-spatial stores each shapefile in a different table, and geome-
tries are stored in a sepate column for each table, and a separate R-tree-over-GiST index
is constructed for the geometries of each shapefile/table. As Table 3.4 shows, there are
cases where geometries of a shapefile/table are of the same type (e.g., all contain points/-
linestrings/polygons), allowing Ontop-spatial to build smaller and more efficient indices.
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Nevertheless, in spatial join query 4, Strabon outperforms Ontop-spatial. The query is
provided in Listing 3.10. Using this query, we want to retrieve the land use of areas that
intersect with Museums. This is a very selective query with respect to the thematic con-
dition, so the PostgreSQL optimizer correctly chooses to perform the thematic conditions
first so that only the geometries of Museums will be checked in the spatial condition that
follows, and the R-tree index will be used. Both systems execute the query very fast, with
Strabon achieving nearly 4 times better performance than Ontop-spatial, as the overhead
of the extra joins it performs, as described above, is reduced because very few inter-
mediate results are produced. Also, dictionary decoding helps Strabon to perform string
comparison (for value “Museum”) only once, in order to retrieve the id of that value and
then perform thematic joins efficiently using the id (numeric) value.

Queries 15-19 have filters that select different kinds of LGD categories. Query response
time increases every time many LGD categories are involved (Query 15 asks for all cate-
gories), producing the respective number of unions in the case of Ontop-spatial and more
intermediate results for Strabon, forcing more geometries to be checked in the spatial fil-
ter. On the contrary, query response time decreases when less LGD categories need to
be selected.

The results of union-queries are more interesting in the case of spatial joins, shown in
Figure 5. One would expect that unions with spatial joins, as in the case of the spatial join
query 6, would dramatically decrease the performance of Ontop-spatial. Indeed, query
response time increases in the case of queries like query 6, but Ontop-spatial still performs
better than Strabon. The explanation for this lies in the fact that each time a spatial join
is performed between two different LGD tables, the optimizer chooses the one having the
smaller index (and usually smaller geometries, in this case) to be nested inside the inner
branch of the nested loop, where it performs an index scan. This has greater impact on the
execution time of geospatial queries, as the evaluation of spatial joins is more expensive
due to the cost of the evaluation of the spatial conditions.

In spatial selection query 20, the performance of the two systems is very close, while in
the more selective version of the same query, i.e., spatial selection query 21, the gap in
the execution times between Ontop-spatial and Strabon increases again. This happens
because nearly every geometry in the workload is included in the results, so spatial indices
are not useful in this case.

System-X performs worse than the other two systems in all cases mainly because of the
fact that its geospatial index relies on Apache Lucene'?, that does not support R-trees
but simpler forms of spatial indices, such as quad-trees. The spatially-enabled RDBMS
(i.e., PostgreSQL with PostGIS extension enabled) that serves as the back-end for Ontop-
spatial and Strabon, on the other hand, incorporates more advanced and mature tech-
niques for efficient geospatial query processing which are considered stadard for the re-
lational database community, such as support for R-tree indices and spatially-enabled
optimizer.

Overall, we observe that importing the shapefiles to a database and then using an OBDA

2https://lucene.apache.org/core/
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approach is very efficient, as in most cases, the information that is contained in a shape-
file is compact and homogeneous, as we often have one shapefile per data source. So,
the SQL queries that are produced based on such a schema contain reduced amount of
joins and can be executed efficiently. It is also evident from the experiments that forward-
ing geospatial query processing to a spatially-enabled DBMS as back-end can improve
performance significantly, as they incorporate well-established optimization techniques
in the area of geospatial query processing that have not yet been incorporated in native
geospatial triple stores up to date.

3.7 Related Work

The work on extending RDF and SPARQL with geospatial functionality also gave rise to the
implementation of geospatial RDF stores such as Parliament, uSeekM and Virtuoso, that
implement a subset of GeoSPARQL, and Strabon [48] that implements both GeoSPARQL
and stSPARQL.

There have also been systems that enable the translation of geospatial data from their
native formats to RDF. GeoTriples [49] is a tool for the conversion of geospatial data from
a variety of source formats (shapefiles, relational databases, XML files, etc.) to RDF using
GeoSPARQL and stSPARQL vocabularies and R2RML mappings.

Another category of systems that are related to our work is SPARQL-to-SQL systems such
as Ontop [67], Ultrawrap [69], D2RQ'2 and Morph [63]. These systems offer no geospatial
functionality.

In the area of description logics, the work described in [33] extends DL-Lite with spa-
tial primitives and presents a rewriting mechanism to standard DL-Lite, preserving FOL-
rewritability. The work described in [58] examines the FOL rewritability of spatial calculi
(e.g., RCC8, RCC2) combined with DL-Lite. PelletSpatial [70] is a qualitative spatial rea-
soner implemented on top of Pellet.

3.8 Discussion and Findings

In this chapter, we describe how we extended the techniques of [67] to develop the first
geospatially-enabled OBDA system, named Ontop-spatial. By extending the OBDA sys-
tem Ontop, Ontop-spatial inherits the advantages of using RDB2RDF systems in real use
cases: (i) RDB-to-RDF workflow becomes less complicated, without having to use differ-
ent tools for converting data into RDF and then storing it in RDF stores, (ii) no data needs
to be transfered, as existing databases are used as input to the system, and (iij) mappings
provide a layer of abstraction between the data manipulation/database experts and the
end users.

Bhttp://d2rq.org/
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These advantages have even greater impact when dealing with geospatial data. The
domains where geospatial data are produced and used are dominated by geospatial
databases and other tabular file formats that could easily be imported to a database
(e.g., shapefiles). GIS practitioners use geospatial relational databases in their day-to-
day tasks, either directly or as the back-end of applications to store and manipulate data
(e.g., GIS have connectors for geospatial relational databases). Ontop-spatial provides
a solution for combining the advantages of geospatial relational databases, for example,
the wide variety of geospatial data operators and the performance achieved by the use
of spatial indices, with the data modeling advantages of the RDF data model. Moreover,
Ontop-spatial allows for encapsulating geospatial data manipulation functions offered by
geospatial extensions to SQL (e.g., functions for transforming geometries to a different
coordinate reference system) in the mappings.

On the other hand, Ontop-spatial inherits the disadvantages of the OBDA systems as well.
First, in order to combine information coming from different geospatial sources, the data
should be imported in databases. Second, as the database is given as input to the system,
it is read-only and Ontop-spatial does not support SPARQL store or update operations; all
updates should be done directly on the database level. Third, the performance of the sys-
tem is heavily dependent on the ontology, the schema of the database, and the mappings,
as we explained in the previous sections, which applies for OBDA approaches in general.
However, our experiments showed that in many cases, our geospatially enchanced OBDA
approach achieves significantly better performance than the state-of-the-art geospatial
RDF store Strabon. The main reasons for this are summarized as follows:

» The database schema that is produced simply by importing the shapefiles to the
database is in most cases suitable for OBDA approaches, as shapefiles contain
compact and homogeneous information per dataset.

* The database produced by storing the materialized RDF dump that ontop exports
in Strabon is bigger than the database that results from importing the shapefiles,
even though only the RDF triples that were involved in the OBDA mappings (i.e., the
virtual RDF triples) were exported. This happens because of i) the normalization
imposed by the RDF data model itself (i.e., triples) and ii) the additional tables used
for dictionary encoding.

» The additional joins that are created in the translated SQL queries of Strabon and
the fact that geometries are stored in a single table where geospatial operators are
performed increase even by more than an order of magnitude in very large work-
loads with many and complicated geometries, when many intermediate results are
produced in queries.

3.9 Summary

In the work described in this chapter we introduced the system Ontop-spatial, this is now
the most efficient GeoSPARQL query engine, as it is able to outperform state-of-the-art
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GeoSPARQL query engines, without the need to covert geospatial relational data into RDF
and store it geospatial RDF stores.

In the next chapter we present how we followed a similar approach in order to extend
the OBDA paradigm with temporal support. However, unlike GeoSPARQL, there is no
standard extension of the framework of RDF and SPARQL with temporal support. For
this reason, as we describe in the following chapter, we follow the framework of stRDF
and stSPARQL which we adjust in the OBDA setting and we develop further its temporal
dimension.
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4. TEMPORAL ONTOLOGY-BASED DATA ACCESS

In this chapter, we present our approach for creating virtual temporal semantic graphs on
top of temporal relational databases, employing an Ontology-based data access technique
that we used for the spatial case, as described in Chapter 3. The problem of posing tem-
poral SPARQL queries on top of temporal databases on-the-fly using the OBDA paradigm
is even more challenging. First, there is no standard temporal extension of the frame-
work of RDF and SPARQL, as in the case of the OGC standard GeoSPARQL. Second,
in order to support valid time in the data model RDF, none of the proposed approches for
translating temporally-enhanced queries into standard SPARQL queries suits the OBDA
paradigm.

The first approach is reification, that is proposed in [37]. Reification exploits the fact that
every RDF triple is a resource and it can be described using the rdf:statement RDF
primitive. Therefore, one can use additional triples to declare the subject, the predicate
and the object of the triple, using the RDF properties rdf:subject, rdf:predicate, and
rdf :object of the triple. In the same way, one can use another triple to denote the valid
time of the triple. Although this is a straightforward approach that can be used to map
temporally-ehanced triples into standard RDF ones using reification, the use of so many
additional triples to describe a statement is not very user-friendly and also not very efficient,
as it increases considerably the number of triples for a temporal dataset. To address
these issues, Tappolet et al. proposed in [71] the use of named graphs to denote the
valid time of triples. In this approach, a triple that has a valid time belongs to a named
graph that corresponds to this valid time. Then, this named graph is associated with
a triple describing the actual serialisation of the temporal value it corresponds to. This
information, i.e., the temporal values of named graphs, is stored in the default graph of the
dataset. The temporal dimension of the framework of stRDF and stSPARQL, as described
in Section 2.2.2 is based on the named graph approach of [71]. In the OBDA setting, both
approaches are challening to implement. First, the reification approach means that the
user needs to write the reified syntax on their own when writing the mappings. On the
other hand, OBDA systems and SPARQL-to-SQL translation techniques that have been
studied so far do not support named graphs.

Another feature that the OBDA systems lack is the support for SPARQL1.1. extension
functions, which is needed for the support of the temporal extension functions defined in
stSPARQL that we explained in 2.2.2 and are documented in [13].

Due to these challenges, we will not consider valid time for the rest of this chapter and
we will focus in addressing these issues for supporting user-defined time. We propose an
extension of the data model stRDF and the query language stSPARQL with additional, but
lightweight temporal features that can be adopted by both RDF stores and OBDA systems.
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strdf:periodContains(?sl, ?s2) < strdf:hasTime(?s1,?t1),
strdf:hasTime(?7s2, 7t2),
strdf:periodContains(?7tl, 7t2).

Figure 4.1: The Ry crioicontains transformation rule

4.1 Temporal extensions of stSPARQL

We define the following two additional temporal components in the query language
stSPARQL.

Temporal predicates. We extend stSPARQL by defining a set of temporal predi-
cates that are based on Allen’s interval algebra [3]. These predicates are the fol-
lowing: strdf:peridEquals, strdf:after, before, periodOverlaps, starts, finishes,
periodContains, strdf :meets, during, and isMetBy. The temporal predicates are equiv-
alent to the temporal extension functions that are defined in stSPARQL and are described
in [13]. These functions can either operate on intervals or time instants, where suits the
case. For example, an interval can either contain another time interval (e.g., a literal of
the strdf :period datatype or a literal of the xsd:dateTime datatype).

Temporal query rewrite component. The temporal query rewrite component of
stSPARQL defines a set of rules for translating qualitative temporal queries, i.e., queries
with temporal predicates, into quantitative ones, i.e., queries with temporal operators. This
component of stSPARQL is similar to the query rewrite component of GeoSPARQL [26].
We denote as R;...,.r: the set of rewriting rules R; that we define for each temporal pred-
icate . Using these rules, a query ¢ that contains a temporal predicate i will get trans-
formed into the equivalent query ¢, by applying rule R; to q. The query ¢’ contains the
temporal extension function of stSPARQL that corresponds to the temporal operator i. In
the following section we provide an example of how this new query rewriting component
of stSPARQL participates in the overall evaluation of temporal stSPARQL queries. This
component of stSPARQL is important, as it allows any OBDA system that implements it
to answer temporal SPARQL queries transparently, without modifying their syntax.

Rewriting rules. We now explain how queries that contain temporal predicates (qualita-
tive) get translated into queries that contain functions. We define a rule for each temporal
prediate that we define, that corrseponds to a temporal function in stSPARQL. Table 4.1
describes this mapping. For example, in Figure 4.1 we describe the rule that translates
statement patterns that contain the temporal predicate strdf :periodContains into state-
ment patterns that contain the respective quantitative function strdf :periodContains of
stSPARQL. In the rest of this chapter, we explain how we implement this set of rules in
the OBDA setting and how this feature enables the creation of virtual temporal graphs
on top of temporal relational data. Notably, this extension of the temporal dimension of
stSPARQL does not only apply for the OBDA setting, but it can be implemented in RDF
stores with temporal features as well, in order to provide temporal support without extend-
ing the standard SPARQL syntax.
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Temporal stSPARQL queries
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Figure 4.2: Workflow of the execution of temporal queries
4.2 Translation of temporal stSPARQL queries to SQL

In this section we describe the workflow of answering stSPARQL queries in an OBDA
system like Ontop [67]. As we have already explained in Chapter 3, the system Ontop
introduces an intermediate layer between the syntax level (SPARQL) and the data level
(SQL), which is the Datalog layer. Once a temporal stSPARQL query ¢ that contains the
temporal predicate ¢ arrives, it gets processed as follows:

* First, the query gets parsed as standard SPARQL query, as the temporal predicates
are standard RDF predicates. This ensures compliance with all OBDA engines since
they support standard SPARQL syntax.

» Second, the query gets translated into datalog, and so as the mappings. To achieve
this, we have defined a set of temporal datalog predicates that correspond to the
temporal predicates and temporal operators defined in stSPARQL. These operators
and their equivalent stSPARQL and SQL operators are shown in Table 4.1.

* In the next step, the datalog representation of the query ¢ gets translated into the
datalog representation of query ¢/, by applying rule R; to ¢. The datalog representa-
tion of the query g’ now contains the stSPARQL temporal operator that corresponds
to the predicate .

* Then, the datalog program that is created in the previous step, that contains the
transformed query ¢’ and the mappings (as described in [67], gets translated into
SQL. To achieve this, we have map each datalog temporal predicate to the corre-
sponding temporal SQL operator, as shown in Table 4.1.

The workflow of the temporal query execution in Ontop-spatial is shown in Figure 4.2.
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Table 4.1: Mapping stSPARQL temporal operators to SQL and Datalog

Operator stSPARQL Datalog
equals(periodl, period2) strdf:periodEquals PERIODEQ
after(period1, period2) strdf:after AFTER
before(period1, period2) strdf:before BEFORE
overlaps(period1, period2) strdf:PeriodOverlaps PERIODOVERLAPS
starts(period1, period2) strdf:starts STARTS
finishes(period1, period2) strdf:finishes FINISHES
periodContains(period1, period2) strdf:periodContains PERIODCONTAINS
meets(period1, period2) strdf:meets MEETS
during(period1, period2) strdf:during DURING
isMetBy(period1, period2) strdf:isMetBy ISMETBY

4.3 Example

In this section we provide an example that showcases the approach that we presented in
this chapter. We assume the temporal relational table shown in 4.2. This is a PostgreSQL
table that is temporally-enabled (it supports the PostgreSQL temporal extension). The
datatype of the column named duration is the period datatype supported PostgreSQL-
temporal and it is used to denote intervals. Timestamps can also be stored in this table,
as intervals with the same beginning and end.

| id (Integer) | name (varchar) | duration (Period) |
Table 4.2: Schema of table Meeting

The mappings shown in Listing 4.1 describe how the relational data of Table 4.2. The
source part of the mapping consists of a simple SQL query that retrieves all columns of
the table described in 4.1. The target part of the mappings consists of a set of virtual triple
templates. In the third triple template, the predicate strdf :hasTime is used to connect an
entity to the time it is valid for. This time can either be an interval or a timestamp, i.e., a
literal of the strdf :period datatype, or the xsd:dateTime datatype respectively. As in this
case we have intervals, the values stored in the duration column of the table are mapped
into literals of the datatype strdf :period.

We use the predicate strdf :hasTime as a generic predicate that can capture any temporal
dimension, i.e., valid time, transaction time, or user-define time. Our method is generic
enough to capture all different time dimensions. For example, if we would like to represent
valid time, we would use the predicate strdf :hasValidTime instead.

Listing 4.1: Temporal mappings

mappingId Meeting-Mapping

target strdf:Meeting/{id} a strdf:Meeting ;
strdf :hasId {id} ;strdf:hasName {name} ;

strdf :hasTime {duration} " "strdf:period .

source SELECT id, name, duration FROM meeting
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Let us now pose a temporal query over the virtual graph that will be generated based on
the mappings provided in Listing 4.1. The query is described in Listing 4.2 and it retrieves
meetins whose durations overlap with each other.

Listing 4.2: Temporal stSPARQL query

SELECT DISTINCT x*

WHERE { 7x1 a strdf:Meeting . 7x2 a strdf:Meeting
?x1 strdf:hasTime 7pl . ?x2 strdf:hasTime 7p2
?pl strdf:contains 7p2 . 7?xl1 strdf:hasId 7idl
7x2 strdf:hasId 7id2}

Listing 4.3: Datalog translation of temporal query

ans10000000000(x1,x2) :- TemporalMeeting.owl#Meeting(xl), TemporalMeeting.owl#Meeting(x2)
ans1000000000(p1,x1,x2) :- ans10000000000(x1,x2), TemporalMeeting.owl#hasTime (x1,p1l)
ans100000000(p1,p2,x1,x2) :- ans1000000000(p1,x1,x2), TemporalMeeting.owl#hasTime(x2,p2)
ans10000000(p1,p2,x1,x2) :- ans100000000(pl,p2,x1,x2), TemporalMeeting.owl#contains(pl,p2)
ans1000000(p1,p2,idl,x1,x2) :- ans10000000(p1,p2,x1,x2), TemporalMeeting.owl#hasId(x1l,id1l)
ans100000(pl,p2,id2,id1,x1,x2) :- ans1000000(pl,p2,idl,x1,x2), TemporalMeeting.owl#hasId(x2,id2)
ans10000(p1,p2,id2,id1,x1,x2) :- ans100000(pl,p2,id2,id1,x1,x2), NEQ(idl,id2)
ans10(x1,x2,p1,p2,id1,id2) :- ans100(pl,p2,id2,idl,x1,x2)

ans1(x1,x2,pl,p2,id1,id2) :- ans10(x1,x2,pl,p2,idl,id2)

Listing 4.4: Translated temporal SQL query

SELECT =*

FROM public.meeting qviewl, public.meeting qview2

WHERE qviewl.id IS NOT NULL AND qgview2.id IS NOT NULL AND
(qviewl.duration @> qview2.duration) AND (qview2.id <> qviewl.id) AND
qviewl.duration IS NOT NULL AND gview2.duration IS NOT NULL;

4.4 Summary

In this chapter we describe how we used and extended the framework of stRDF and
stSPARQL with more temporal features and we also documented how these features
were implemented in the temporal extension of the system Ontop-spatial. In the following
chapter we tackle the challenging problem of extending the OBDA paradigm to support
SPARQL queries over data that is not materialised in a relational database, but exists in
the Web in various kinds of sources, such as HTML tables and Rest API’s.
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5. QUERYING THE WEB USING ONTOLOGIES AND MAPPINGS

This chapter describes how we further extended the OBDA paradigm with the capability
to pose SPARQL queries on top of heterogeneous data sources available on the Web in
different formats, such as Web APIs, HTML tables, etc. The work that is presented in this
chapter is also covered in [12].

5.1 Introduction

Ever since its creation, the World Wide Web has been populated with a constantly increas-
ing amount of data. In the era of the Web of Data, being able to retrieve information from
different sources and correlate it to extract knowledge is of paramount importance. The
linked data paradigm was proposed with the purpose of integrating RDF data coming from
different sources so that they can be queried through the SPARQL query language [40].

Despite the rapidly increasing availability of open data as linked data on the Web, a lot of
data is still published in other, non-RDF formats, such as HTML forms/tables, or via Rest
APls [55, 54]. To use this data as linked data, one should transform it into RDF triples to
be stored in a triple store. Depending on the format of this data, this transformation can be
performed either by using a specialized tool, or by writing custom code for retrieving the
data from the Web and materializing the corresponding RDF triples. However, this can be
a challenging task in cases where the data is large and/or the data sources get frequently
updated.

During the last decade, the problem has been partially addressed by the Ontology-based
Data Access (OBDA) paradigm [21]. In essence, the OBDA systems create virtual RDF
graphs on top of relational data using ontologies and mappings. The mappings encode
how the relational data is mapped into the RDF terms that are described in the ontology.
Various mapping languages exist for encoding mappings, with R2RML being recently es-
tablished as a W3C standard [29]. Using ontologies and mappings, OBDA systems pro-
cess SPARQL queries by translating them into SQL queries that are executed in the un-
derlying DBMS. The results are translated into the respective RDF terms so that OBDA
systems can be used as triple stores - except that they do not need to transform and
materialize the data as RDF triples. The OBDA paradigm is particularly useful when the
amount of data to be processed is large and/or the database is updated frequently [75].

Recent research efforts have concentrated on the automatic conversion of more data for-
mats into RDF, aiming to reduce the transformation overhead and to facilitate the synchro-
nization of the RDF versions of the data with its original sources [75, 31, 23, 54, 55]. One
of the highlights of these efforts is the creation of the mapping language RML [31], a su-
perset of R2ZRML that captures data transformation for many formats other than relational
tables. Indeed, the adoption of RML in various use cases has significantly simplified and
improved their performance [52, 50].
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In this work, we consider a different problem, namely the task of querying on-the-fly non-
RDF web data using SPARQL [55, 54, 23]. To address it, [55] proposes an extension of
the query language SPARQL to query RDF data combined with data coming from Web
APls as JSON files. [54] proposes an architecture based on micro-services that extends
the SPARQL protocol with the ability to query APIs on-the-fly. Finally, [23] proposes an
extension of the R2ZRML mapping language that is inspired by RML and aims at providing
primitives for querying different kinds of data sources available on the Web, such as APIs.

However, these works merely support relational data or specific file formats (e.g., XML,
CSV). They also rely on custom SPARQL/R2RML extensions that hamper their adoption,
while their extension with third-party added-value services is a very complicated proce-
dure. Lastly, some of them implement a caching mechanism [55, 54], but they cannot
make the most of it, as demonstrated by our experimental evaluation in Section 5.6.3.

In this chapter, we go beyond these state-of-the-art works, introducing a framework for ex-
tending existing OBDA techniques to support querying of data from different sources that
are available on the Web, such as webtables and Rest APIs. It relies on virtual relational
tables that allow for executing any SPARQL query on top of an OBDA system, using the
necessary ontology and mappings, but without requiring the data to be available a-priori,
i.e., before the query is posed. This approach offers a series of unique characteristics: (i)
It accommodates any format of web data, like the increasingly popular HTML tables and
the omnipresent REST APIs. (ii) It is easy to use and incorporate into any Semantic Web
application, as it relies on standard SPARQL and R2RML (and its equivalents). (iii) It is
transparent to the user, allowing the seamless enrichment of retrieved data with third-party
added-value services (e.g., sentiment analysis). (iv) It is suitable for non-relational web
data with frequent updates. (v) It is able to fully exploit an effective caching mechanism.

In short, the contributions to the state-of-the-art described in this chapter are as follows:
e We propose an OBDA-based framework for posing SPARQL queries on top of non-
RDF Web on-the-fly, i.e., without requiring them to be a-priori imported or downloaded -
they are fetched at query time. To achieve this, virtual table operators are embedded in
SQL queries that take part in RZRML mappings. These mappings specify which part and
source of web data will be fetched as well as how they will be mapped to virtual RDF terms.
Combining these mappings with an ontology allows for returning the virtual relational data
that are involved in the query as RDF results.

¢ We showcase the applicability of our approach in three use cases that (i) involve signifi-
cant amount of crowd-sourced information, (ii) are widely used by application developers,
and (iii) get updated so frequently that a snapshot of the respective information at a given
time might become outdated soon. Using traditional OBDA approaches, we would have
to convert the data into RDF every time it gets updated, storing it in a triple store, or to
ingest the data in a DBMS when it gets updated, using an OBDA system to query the data.
Our aim is not to outperform existing SPARQL query engines, but to complement them,
targeting the velocity and variety dimensions of the Web of data, rather than the volume.

e We provide a thorough experimental evaluation of our approach, demonstrating its fea-
sibility and scalability in three, realistic, highly diverse and demanding applications we
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consider. The results show that our approach is able to process queries on webtables
of up to 100,000 rows in size within minutes. We also compared the performance of our
approach to the state-of-the-art method described in [55], with the results verifying that
our framework provides more functionality, while being more efficient, as well.

The rest of the chapter is organized as follows: Section 5.2 discusses the state-of-the-art
in the field, while Section 5.3 describes our approach and methodology. In Section 5.4,
we document the implementation of our approach, which is applied to three practical sce-
narios in Section 5.5. Section 5.6 presents our experimental evaluation, whereas Section
5.7 concludes the paper along with directions for future work.

5.2 Related Work

OBDA systems are primarily useful in cases where users store their data in relational
databases, but do not want to materialize them as RDF triples, particularly when these
databases are large or/and get frequently updated [21]. As a result, many OBDA and
RDB2RDF systems have been developed in the recent years, such as Ontop [20], Ul-
trawrap [69], Morph [63], Sparqlify’, and Oracle Spatial and Graph?. These systems are
able to connect to existing relational data sources and create virtual RDF graphs using
ontologies and mappings. The common assumption of these systems is that the data
source should already exists and thus, connection details should be provided in the map-
pings. Most of them support the R2ZRML mapping language or provide translators from
their native mappings languages to R2ZRML. For example, Ontop also supports its own na-
tive OBDA language for encoding mappings. Once connected to the data source, OBDA
systems make the most of the underlying database by collecting information about data
characteristics (e.qg., statistics, constraints).

On another line of research, there are RDB2RDF systems that focus on converting data
into RDF using mappings producing RDF dumps. Initially, only relational data sources
were supported through the R2RML language [29]. Given, though, that data can be found
in many formats other than relational, the RML language was created as a superset of
R2RML, encoding how various data formats, like XML and CSV, can be mapped to RDF
triples [31]. Another recent work in this direction is the approach described in [50], which
aims at converting Web data from various formats (e.g., CSV, JSON) into RDF, using
SPARQL queries - SPARQL 1.1 primitives and extension functions were extended, too.

A recent work described in [23] proposed a mapping language called D2RML which is
inspired from R2RML and RML. This work extends R2RML to support more data formats,
including REST APIs. Although an implementation of a D2RML processor exists, it is not
part of a standalone SPARQL query engine, to the best of our knowledge.

Closer to our work is the approach presented in [55]. It proposes an extension of SPARQL

"http://aksw.org/Projects/Sparqlify.html
2http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.
html
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that enables users to combine the responses of JSON APIs with results from the evaluation
of standard triple patterns. We deviate from this approach in that: (i) we do not extend
SPARQL syntax, (ii) we allow users to query APIs using standard SPARQL triple patterns
directly, without having to combine them with stored RDF data, (iii) we provide a general
approach that is not limited to JSON APIs, and (iv) we produce significantly fewer API
calls that the current state-of-the-art [55], which translates to improved performance. In
Section 5.6.3, we provide a detailed functionality and performance comparison between
the two approaches.

Another work close to ours is described in [54]. It proposes an architecture that is based
on the development of SPARQL wrappers for Web APIs. To this end, it extends HTTP
requests to SPARQL endpoints to include arguments that are used to retrieve a fragment
of the data that can be accessed via the Web API. This fragment is converted into RDF and
stored using an in-memory triple store. In this way, the SPARQL query that is contained
in the original SPARQL HTTP request is evaluated against the RDF graph that is stored
in the triple store, which is only a fragment of the original dataset. This fragment can be
considered as a linked data fragment (LDF) interface, as described in [72]. Note that the
original linked data fragment approach considers the evaluation of single triple patterns
on the server-side, leaving the rest to the client, in order to improve the sustainability of
linked data endpoints [72]. However, there is no limit to the expressivity of queries that
can be executed on the server in [54].

In short, [54] converts a fragment of the dataset into RDF and stores the converted data
into an in-memory triple store. In our approach, the conversion is performed on-the-fly
using mappings and an in-memory virtual table is constructed instead. In the former case,
the schema of the virtual RDF terms can be changed only by modifying part of the sys-
tem code, whereas in our approach, it suffices to change the mapping file. Additionally,
[54] requires the user to specify the fragment of the Web API that will be accessed us-
ing SPARQL passing through the SPARQL endpoint parameters, which depends on the
API. This means that the end user should be fully aware of the Web API documentation,
whereas in our case, the query level is completely transparent to the end-user.

5.3 Approach

We begin with background information on the formalisation of RDF and SPARQL (Section
5.3.1) as well as the Ontology-based data access paradigm (Section 5.3.2). This prelim-
inary knowledge forms the basis, on which we build our approach. In Section 5.3.3, we
explain how we extend SQL with virtual table operators that access different data sources
available on the Web, while Section 5.3.4 explains how we evaluate standard SPARQL
queries on top of web APls. Section 5.3.5 summarizes our methodology.
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5.3.1 RDF and SPARQL

We denote as I, B and L the pairwise disjoint infinite sets of IRIs, blank nodes and literals,
respectively. V' stands for the infinite set of varibles that are disjoint from /, B and L. Based
on [40], we provide the following definitions:

RDF triple. An RDF triple is an element of the form (s, p,0) of (/U B) x I x (I UB U L),
where s is the subject, p is the predicate and o is the object of the triple.

RDF graph. An RDF graph is finite set of RDF triples.
Triple pattern. A triple pattern is an element of the form (JUL)UV) x (JUV) x (TUV).
Graph pattern. A (basic) graph pattern (BGP) is a finite set of triple patterns.

Evaluation of triple patterns over an RDF graph. Let D be an RDF graph over lTUBUL,
t a triple pattern and P1, P2 graph patterns. The evaluation of a graph pattern over D,
denoted by [[.]] p, is defined recursively as follows:

* [[tllp = {u|dom(p) = var(t) and u(t) € D}, where var(t) is a set of variables occur-
ring in ¢.

* [[(PL AND PR)]lp = [[P]]p » [[2]]p-
* [[(PL OPT R)]lp = [[Pllp >< [[P2]]p-

* [[(PL UNION P)]|p = [[P]]p U [[%]]p-

The mapping p is a partial function  : V +— (I U BU L). We denote as p(t) the triple
obtained if we replace every variable u of the variables included in ¢ (i.e., var(t)) with their
bindings according to y, i.e., u(u).

5.3.2 Ontology-based data access

The ontology-based data access paradigm [75] proposes the creation of virtual RDF
graphs on top of relational databases using ontologies and mappings. Given a database
schema S, an ontology O, and a set of mappings M, an OBDA specification is defined as
P =(0,M,S). Then, an OBDA instance (P, D) is defined given the OBDA specification P
and the database D that follows the database schema S. Mappings encode how relational
data get mapped into RDF terms. A virtual RDF graph VG, p of the database instance
D is produced if we apply the mappings M to D. Then, if [[Q]]p,p) is the evaluation of the
SPARQL query @ over the OBDA instance (P, D), it is equavalent to [[Q]](rve . p)-

R2RML [29] is a W3C standard language for encoding mappings. Nevertheless, many
OBDA systems support their own native mappings languages. In this work, we will present
examples on mappings using the native language of Ontop [20], as it is more compact and
user-friendly, combining brevity with readability.
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5.3.3 Extending SQL with virtual table operators

The core concept of our approach is to model a data source as a virtual relational table.
For this reason, we define a virtual table operator for each kind of data source. Each virtual
table operator has the syntax: VT ::= vtable(args||[, f|), where the vector args denotes
the arguments that are given as input to the virtual table operator, while f is optional,
denoting the cache update rate.

To understand the form of the SQL queries that use virtual tables, consider the extension
of the SQL syntax provided in Listing 5.1.

Listing 5.1: SQL syntax for virtual tables

<query specification> ::= SELECT [ <set quantifier> ] <select list>
<table expression>
<table expression> ::= <from clause> [ <where clause> ]
[ <group by clause> ] [ <having clause> ]
FROM <table references>
<table reference>
[ { <comma> <table reference> }..] |
vtable_operator_name (args[,f])

<from clause>
<table references>

We extend the SQL syntax provided in Listing 5.1 with virtual table support as shown
in the last lines. The SQL standard defines two types of tables: the base ones, which
are materialized in a database, and the derived ones, which are produced from relational
algebra expressions. Atthe relational algebra level, vtable is just another relational algebra
operator. Thus, we consider virtual tables generated by virtual table operators as another
kind of derived tables, and any mapping language that is able to use SQL queries in
mappings (e.g., R2RML, OBDA) is compatible.

To improve performance, each virtual table can optionally use a cache. The cache feature
is useful in cases where: (i) not all data sources get updated with the same frequency,
(ii) some data sources might not be accessible at the next query time (e.g., due to API
limitations), or (iii) a minimal query execution time is required, due to a large number of
queries, i.e., the frequency of queries is much higher than the update frequency of data
sources. To support these cases, f indicates the length of the time window (in millisec-
onds), during which the retrieved data are temporarily stored. If the virtual table operator
with the same input parameters (args) is invoked twice (or more) before this time window
ends, the cached data will be used, improving query time. If the query is repeated after
the end of the time window, the fresh data is fetched from the data source and gets stored
in the system. If f has a negative value or is completely absent, nothing is stored and the
virtual table operator fetches fresh data every time it is invoked. To support this function-
ality, we store meta-data that contain information about when and where data resulting
from a virtual table signature was stored last time.

Since our approach and our caching mechanism deviates considerably from related works
[55, 54], we now explain in more detail how virtual tables work. Each virtual table operator
is implemented differently, but a generalized description is provided in Algorithm 2. First,
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Algorithm 2 Virtual Table Operator
Input: args|], frequency f
Output: 7', the generated virtual table
T+ 0
t < getLastUpdate(args|])
if |t — NOW| < f then

T « getTableFromCache(args[]) > Get table from cache if current
return N
end if
E « retrieveData(args|])
fore ¢ £ do

row < {tupleI D}
10: W < getAttributes(e)
11: for w e W’ do
12: w'[] <= process(w) > Process attributes of tuple
13: row < row U {w'[]}
14: end for
15: T+ T Urow
16: end for
17: UpdateCache(args|], NOW) > Store the new data in cache for time f
18: return T

S S R T ) S

©

the operator checks the time the last query with the same arguments was executed (Line
3). If it is within the given cache update rate, f, the already retrieved results are returned
as output (Lines 4-6). Otherwise, the operator retrieves the data from scratch, using the
given arguments (Line 7). For each record, it creates a new tuple with a unique id (Lines
8-9). Next, it iterates over its attribute values, adding them to the tuple after the necessary
processing (Lines 11-14). Note that the functionality of the processAttribute function
ranges from simple tasks (e.g., data manipulation functions like value transformation/cor-
rection), to more complicated tasks (e.g., data mining tasks), as we explain in Section
5.5.2. For this reason, v’ may contain more than one element. For example, it can be
the text of a tweet together with information about its polarity, i.e., whether its sentiment is
positive or negative. Finally, after all tuples have been processed and added to the virtual
table (Line 13), the cache is updated (Line 15) and the table is returned as output.

The result of a virtual table operator is a virtual table with the following schema:
VTltuplelD, cols|, where tuplel D is the unique identifier of a tuple and cols are the re-
quested attributes. Note that some of these attributes might not exist originally in the data
source, but they could introduce new knowledge derived from processing of the original
data (as we explain in Section 5.5.2).
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5.3.4 Evaluation of SPARQL queries on top of web APIs

As described above, the semantics of RDF and SPARQL [40] assume that the evaluation
of SPARQL queries is performed over an RDF knowledge base and the OBDA paradigm
[75] defines the creation of virtual RDF graphs on top of materialised databases for which
the schema is known a-priori.

Our aim is to support the evaluation of SPARQL queries on top of different kinds of web
data (e.g., APIs, webtables, etc.) without extending SPARQL or the mapping languages,
as suggested by the related work [55, 54, 23]. Instead, we extend the OBDA paradigm to
support virtual relational data, for which the schema is not known a-priori, i.e., not before
a SPARQL query is fired.

Let us now model the response of an API call as a set of sets of < attribute, value >
pairs. Let ATTR be the set of all attributes of a response of an API call. For each attr; €
ATTR; C ATTR, we define a mapping p : attr; — pred; that maps attr; to a virtual
predicate pred; € I. Then, the value of attr; defines obj; as follows:

obj; == u(v(attr;))|u(URI(v(attr;))), where v(attr;) is the value of attr; and U RI(v(attr;))
is a URI template populated by the (API) value of attr; , as the object of a triple can either
be a literal or a URI. All URI templates are defined in the mappings.

Then, we create a virtual graph VGapry that consists of triples of the form
(subj;, pred;, obj;). The evaluation of a SPARQL triple pattern ¢ over a virtual RDF graph
on top of an API given the set of mappings M, is provided below:

Ht]]VGAPI,M = {M|d0m(:u) = UCLT(t) and M(t) S VGAPLM}

Notably, although we only mention web APIs as a data source in this section, the same

approach applies to other non-RDF data sources as well, such as HTML tables, as we
explain in Section 5.5.

5.3.5 Methodology

We now describe the steps that should be performed in order to pose SPARQL queries to
non-RDF data sources on-the-fly with the help of the virtual table operator.

1) We construct an ontology that models the data of interest.

2) We create a virtual table operator (if it is not available) for the data source at hand (e.g.,
a specific REST API), applying Algorithm 2.

3) We create the mappings, where the source part comprises an extended-SQL query,
i.e., an SQL query that uses the virtual table operator for the selected data source along
with the respective parameters.

3) Given the ontology and the mappings, we set up an OBDA repository in combination
with an SQL engine that is able to process the extended-SQL queries included in the
mappings. Note that the selected OBDA system should be (made) “database-agnostic” in
the sense that it does not require access to the data beforehand. This feature goes beyond
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the existing RDB2RDF/OBDA systems, which require that the data to be mapped already
reside in a database, to which they connect in order to a-priori extract data characteristics
(e.g., schema, integrity constraints, primary keys) [69, 67]. In our case, the data is fetched
on-the-fly, after a SPARQL query is fired.

4) Once a SPARQL query arrives, the OBDA system translates it to SQL. The resulting
SQL embeds the virtual table operator(s) involved in the query. By the time these operators
are invoked as part of the extended-SQL query evaluation, the involved data source(s) will
be accessed and made available as virtual table(s). Next, the query result returns back to
the OBDA system to be presented as virtual RDF terms.

5) If the OBDA system supports reasoning, the reasoning process will also be applied for
the new data sources (e.g., OWL-QL reasoning is performed in [67]).

Given that our approach is generic, we do not associate it with a specific mapping lan-
guage or OBDA system. Instead, we set the specifications such that, once they are met,
any RDB2RDF mapping language or system can implement our approach. Our own im-
plementation is described in Section 3.5, followed by three examples that apply and extend
it in Section 5.5.

5.4 Architecture and Implementation

SPARQL
ontol Ontop l — W
ntology

SPARQL-to- o
Mappings extended-SQL HTML

translator I L E

Third party
services

Figure 5.1: System architecture.

We now describe the implementation of the methodology described above. As shown in
Figure 5.1, its architecture consists of the following components:

¢ As back-end, it uses the MadIS?® [24] system, an extensible relational database system
built on top of the SQLite* database, with extensions implemented in Python via the SQLite
wrapper APSW?®. The SQLite database can be extended with user-defined operators that

Shttp://madgik.github.io/madis
“http://www.sqlite.org
Shttps://github.com/rogerbinns/apsw
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can be used as row, aggregate, or virtual table operators. The APSW SQLite wrapper pro-
vides an interface for implementing these operators in an extensible way through Python.
Using MadIS, we define our own operators to create virtual tables and populate them with
data that we retrieve from the Web. To query them, we use MadQL, the MadIS implemen-
tation of the extended-SQL language we described above, which contains the virtual table
operators. We implemented a MadlS virtual table operator for each of the data sources
we query in Section 5.5 (i.e., Twitter, Foursquare, webtables). A virtual table operator for
webtables is already provided by MadlS, but we extended it so that it implements Algo-
rithm 2. Instead of using MadlS, we could implement the same virtual table operators in
C, extending SQLite directly, but this would be less user-friendly and re-usable than the
plug-and-play MadIS Python operators and it would affect the modularity and extensibility
of the architecture that we propose.

e Third party applications are external micro-services that could be invoked by a virtual
table operator in MadIS. For example, in the Twitter use case, the twitterapi virtual
table operator communicates with a Sentiment Analysis classifier to identify the sentiment
of each tweet (see Section 5.5.2). In this way, we suggest an architecture for performing
data analysis tasks that eliminates compatibility issues between the virtual table operator
and any data analysis software: the server can be written in any language or platform, but
the client can still use it as a service.

e The system Ontop® [20], a state-of-the-art, open-source OBDA system that supports
both R2ZRML and the OBDA mapping language. Most specifically, we extended its
geospatial extension named Ontop-spatial [10] in order to have geospatial support. To
this end, we extended the MadIS JDBC connector so that it complies with Ontop, while
Ontop was extended to use MadlS as a back-end. The latter modification is the most
significant one, enabling Ontop to operate in a “database-agnostic” manner that supports
non-materialized databases and relies on MadlS as back-end. The reason is that On-
top, like all other OBDA systems, originally connects only with populated and materialized
databases, using their data for optimization, before a query is actually fired. Instead, our
framework retrieves data only affer a query is fired, creating a virtual table on-the-fly. As
a result, no prior knowledge of the data can be used.

5.5 Practical Scenarios

We now showcase how we can pose SPARQL queries on data coming from HTML tables
or REST APIs using ontologies and mappings.

5.5.1 Querying Webtables on-the-fly with SPARQL

HTML tables constitute one of the most common tabular formats for publishing data on
the Web. A lot of research activities and applications have focused on retrieving, min-

https://github.com/ontop/ontop
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Film ¢ Releaseyear ¢ 1998rank ¢ 2(
M TOP 100 MOVIES OF ALL TIME 1941 '
" Casablanca 1942
g The Godfather 1972
Gone with the Wind 1939

The Wizard of Oz 1939

2
3
4
Lawrence of Arabia 1962 5
6
The Graduate 1967 7
On the Waterfront 1954 8
Schindler's List 1993 9
Singin'in the Rain 1952 10
It's a Wonderful Life 1946 11
Sunset Boulevard 1950 12
The Bridge on the River Kwai 1957 13
Some Like It Hot 1959 14

Star Wars 1977 15

® 97% Mad Max: Fury Road (2015) 377

All About Eve 1950 16
# 100% The Cabinet of Dr. Caligari (Das Cabinet des Dr. Caligari) (1920) 50 The African Queen 1951 17

# 100% All About Eve (1950) 64
# 98% Inside Out (2015) 332

® 98% Moonlight (2016) 321

Figure 5.2: Tables with 100 movies from Rotten Tomatoes and Wikipedia.

ing, annotating, and semantically-enriching information available in webtables [66]. As
an example, consider a semantic-based recommendation engine that tries to address the
cold-start problem for new users. To make meaningful suggestions for users with no his-
tory and an empty profile, it uses the American Film Institute list of the 100 best movies
from Wikipedia’ in combination with the latest list of user reviews from Rotten Tomatoes?,
as shown in Figure 5.2. This is expressed with the SPARQL query described in Listing
5.2.

Listing 5.2: Querying webtables using SPARQL

PREFIX wiki: <http://en.wikipedia.org/movies/ontology#>
PREFIX r: <http://www.rottentomatoes.com/top/bestofrt/>

select distinct 7title 7rrank 7wrank
where { 7s r:title 7title

?7s2 wiki:title 7title

?s r:rank 7rrank

7?82 wiki:rank ?wrank }

The SPARQL query provided in Listing 5.2 retrieves the titles of movies that are included
in both tables and the respective ranks. This is performed by executing a join on the “title”
column of both tables. We now explain how we can accommodate this application using
our approach to query data contained in HTML tables based on ontologies and mappings.

First, we use the virtual table operator webtable, extending the respective MadIS operator.
This operator creates a virtual table and populates it with data contained in the HTML table
that is given as input so that this data can be queried using MadQL queries. These queries
can then be embedded in mappings as a data source, so that virtual RDF graphs can be
created.

The mappings provided in Listing 5.3 describe how the information contained in these
tables is translated into RDF terms. From the Rotten Tomatoes webtable, we retrieve the
rank number of reviews along with the title of the film. From the Wikipedia webtable, we
retrieve the title, the ranks for years 1998 and 2007 and the release date. To retrieve this

"http://en.wikipedia. org/wiki/AFI%,27s_100_Years...100_Movies
8http://www.rottentomatoes.com/top/bestofrt/
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information, we use the webtable virtual table operator that parses an HTML table and
returns the results as a virtual table. The MadQL query that uses this operator can be
seen in both mappings. lts first argument is the HTML page that contains the respective
webtable, while the second one is the index of the webtable in the page. In our example,
we want the third HTML table that appears in the Rotten Tomatoes page and the second
one that appears in the respective Wikipedia page.

Note that the Rotten Tomatoes website includes the release date of every film in parenthe-
sis next to the film title, while the Wikipedia table provides it in a separate column. Since
we want to join the two webtables on the “Title” field, we align this attribute so that it has
the same format in both tables. To achieve this, we concatenate the columns “Title” and
“‘Release year” of the Wikipedia table so that the format of the resulting title is exactly the
same with the one in the Rotten Tomatoes webtable.

Listing 5.3: Mappings for webtables

mappingld webtable_rotten_tomatoes

target rot:{rank} rot:rank {rank}; rot:title {Title};
rot:reviews A{reviews} "xsd:int;
rot:rating {RatingTomatometer}” "xsd:int

source select rid as rank, "No. of Reviews" as reviews, Title,
RatingTomatometer from
webtable('http://www.rottentomatoes.com/top/bestofrt/"',3)

mappingld webtable_wikipedia
target wiki:{rid} wiki:title {Title}; wiki:rank98 {rank98}~"xsd:int ;
wiki:rank {rank} .
source select rid, rank,Title from (select rid,Film]||"
("||"Release year"||")"as Title, "2007 rank" as rank from
webtable('http://en.wikipedia.org/wiki/AFI\%27s\_100 \_Years
...100\ Movies',2))]]

5.5.2 Querying Twitter data. What is happening now?

Twitter is a popular social network whose popularity is increasing to the extent that many
people use it as a news stream [43]. Collecting its data is important for many academic and
commercial activities to perform data mining, integration, and analysis tasks [5]. Twitter
data sources have the following characteristics: (i) They get frequently updated (about
8,000 tweets are posted per second and around 700M are posted per day?®), (ii) They are
more important when they are fresh - the primary use of Twitter is to find out information
about what is happening now. (iii) They are frequently used by data scientists as input
datasets to data analysis and data mining tasks (e.g., sentiment analysis [68]).

Typically, users write crawlers to retrieve Twitter data and store it in files or in a database.
Since the Twitter API has a limit of 100 tweets per request, the crawlers perform multiple

Shttp://www.internetlivestats.com/twitter-statistics/
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requests and accumulate data over a large period of time. Let us now imagine a semantic-
based application that tracks user-generated content about active Semantic Web events,
collecting the latest relevant tweets and processing them with a sentiment analysis service
that identifies their polarity. For example, it uses the SPARQL query described in Listing
5.4 to retrieve positive tweets about the Web Conference 2019.

Listing 5.4: SPARQL query for twitter

SELECT distinct 7s
WHERE { 7s twitter:tweetsAbout <http://www2019.thewebconf.org/> .
?s twitter:sentiment "positive"}

Traditionally, this query would be answered through the following steps: (i) retrieve the
relevant Twitter data, (ii) transform it into RDF, and (iii) store it in a RDF store. Alternatively,
one would store the data in a database, using an OBDA system to query it with mappings.
The sentiment analysis task would be performed as a pre- or a post- processing step.

In contrast, using our approach requires less steps for answering this query. After a
SPARQL query like the one described above is fired, a virtual table is created, containing
information about every tweet along with its sentiment, i.e., whether its sentiment is pos-
itive or negative. Then, this information gets mapped into virtual RDF terms. To this end,
we implemented a virtual table operator that (i) searches data using the Twitter REST AP,
(ii) uses a binary classifier to identify whether it is positive of negative, and (iii) populates
a virtual table with the results. This data can then be accessed using MadQL queries that
can be incorporated in mappings so that virtual RDF triples can be produced on-the-fly.
An example of such a mapping is given in Listing 5.5.

Listing 5.5: Mappings for twitter

mappingld twitter_mapping

target twitter:{username} twitter:tweetsAbout
<http://www2019.thewebconf.org/>; twitter:sentiment {s}.
source select id, sentiment as s from (twitterapi key:www2019)

The source part of this mapping contains a MadQL query that uses the virtual table opera-
tor named twitterapi. This virtual table operator takes as input a search keyword, which
in our example is www2019. The result of this query is the creation of a virtual table with
information about tweets for the Web Conference 2019. Note that the attribute sentiment
is not part of the data retrieved from the Twitter API, but is derived from the sentiment
analysis classifier that is used internally, in the twitterapi virtual table operator.

The above SPARQL query is translated into the SQL query provided in Listing 5.6.

Listing 5.6: SQL query

SELECT * FROM ( SELECT DISTINCT 1 AS "sQuestType", NULL AS "sLang",
('http://twitter.com/' || REPLACE(REPLACE (REPLACE (REPLACE (REPLACE (
REPLACE (REPLACE (REPLACE (REPLACE (REPLACE (REPLACE (REPLACE (REPLACE (
REPLACE (REPLACE (REPLACE (REPLACE (REPLACE (REPLACE (
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CAST(QVIEW1.id AS CHAR),',', '%20'),'v', '%21'),...)) AS "s"

FROM

(select distinct id, sentiment from (twitterapi key:www2019)) QVIEW1,
(select distinct id, sentiment from (twitterapi key:www2019)) QVIEW2
WHERE QVIEW1.id IS NOT NULL AND (QVIEW1.id = QVIEW2.id) AND
(QVIEW2.sentiment = 'positive')) SUB_QVIEW;

This query contains the virtual table operator twitterapi that creates a virtual table. The
columns id and sentiment of this table populate a view that is created on-the-fly by the
OBDA system. In traditional OBDA systems, the views are constructed on-the-fly from
existing, materialized tables (or other views). In our system, this table does not exist,
but is created and populated on-the-fly, after the SPARQL query is fired and translated
into MadQL. The MadQL query will create and populate the table, but this procedure is
completely invisible to the user: exactly the same SPARQL query would be used even if
the data did not come from a REST API, but was stored in a database, or a triple store.

To classify the tweet according to its polarity, we employed an open-source sentiment
classifier for Twitter'®, which uses an SVM model that is already trained with the following
datasets: (i) The Stanford Sentiment140 dataset, (ii) the Polarity Dataset (v2.0)'?, and
(iii) a dataset from the University of Michigan'® that contains 7,086 sentences extracted
from various social media.

We have modified this classifier so that it follows a client-server model, where the server
and the client communicate through a socket. In this way, we avoid incorporating the whole
classifier into the virtual table operator and save the cost of loading the classifier every
time the virtual table operator is invoked. When the server starts, it loads the classifier
and waits for connection. The client part is incorporated into the twitterapi virtual table
operator and sends every tweet of the results to the server for classification through a
socket. The server performs sentiment analysis and returns whether the tweet is positive
or negative. The result is returned as an additional column of the produced virtual table,
called sentiment.

5.5.3 Querying Foursquare data on-the-fly

Foursquare is a mobile application that offers location-based search for venues with mul-
tiple criteria (e.g., nearby restaurants ranked by rating or distance). The descriptions of
these venues are enriched with user reviews and ratings, thus facilitating location recom-
mendations. Foursquare also allows users to share their location (e.g., park) with their
friends, informs them how many other users are simultaneously at the same location, and
alerts them when many people have checked in at the same time in a place nearby.

"Onttps://github.com/dkakkar/Twitter-Sentiment-Classifier
"http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
"2http://www.cs.cornell.edu/people/pabo/movie-review-data/
Bhttps://inclass.kaggle.com/c/si650winter1il
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Having around 55 million monthly users and a platform that contains crowd-sourced infor-
mation for 105 million venues worldwide (according to its website), Foursquare soon be-
came a useful data source for application development. Developers can access its APl
and get part of this information for free (e.g., venue description, location, rating, check-
ins), while more data is available on charge. Foursquare has approximately 40,000 regis-
tered developers using its API'S. As an example of applications built on top of Foursquare,
consider the “Mr Jitters” app, which uses Foursquare data to find the best coffee places
nearby®.

Semantic Web agents could also exploit this valuable data source. Imagine a semantic-
web alternative to “Mr Jitters” that uses Foursquare venues as RDF so as to interlink
them with datasets from the linked open data cloud (e.g., DBpedia, LinkedGeodata, Geon-
ames). Supposing that it searches information about coffee places in Chicago, it would
pose the SPARQL query described in Listing 5.7:

Listing 5.7: Querying Foursquare using SPARQL

SELECT 7venue 7checkins
WHERE {?venue four:name ; four :hereNow 7checkins;
four:category "Coffee"; four:near "Chicago"}

We now explain how our framework can be used to map the free Foursquare data to
virtual RDF graphs and perform this query on top of them. First, we create an ontology that
describes all venue categories that appear in the Foursquare venue category taxonomy'”.
The resulting ontology contains 961 classes that represent venue categories, enabling us
to perform reasoning over this rich class hierarchy of venues.

Next, we implement a virtual table operator, called foursqr, that receives as input some
keywords for searching venues and returns as output a list of venues. The operator is
implemented as a Python MadlS virtual table operator, which internally uses a Python
library for the Foursquare API'®. When the Foursquare virtual table operator is invoked, it
accesses the Foursquare API with the input parameters as arguments, and the result is
presented as a virtual table that in turn gets mapped into RDF terms using the mapping
described in Listing 5.8.

Listing 5.8: Foursquare mappings

mappingld foursquare_mapping

target four:{id} four:hasID {id} ; four:name {namel} ;
four:hereNow {h} " "xsd:integer; four:category four:{category};
four:near "Chicago"

source select id, category, name, hereNow_count as h, contact
from (foursqr key:coffee near:Chicago)

"https://developer.foursquare.com/
Shttps://en.wikipedia.org/wiki/Foursquare#Foursquare_API
"®https://developer.foursquare.com/docs/sample-apps
"https://developer.Foursquare.com/docs/resources/categories
Bhttps://github.com/mLewisLogic/foursquare.git
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In this mapping, we want to retrieve coffee places in Chicago. The foursqr operator used
in the MadQL query of the mapping takes the respective parameters as input. It generates
a virtual table populated with information about coffee places in Chicago. The target part
of the mapping encodes how these attributes are translated into RDF terms according to
the Foursquare Ontology.

5.6 Experimental evaluation

In this section, we empirically evaluate the time efficiency of our approach. Section 5.6.1
describes the setup of our experiments, while Section 5.6.2 evaluates the three operators
that were implemented using our approach. We conclude with a performance comparison
against the sate-of-the-art system described in [55]. The process we followed to perform
this comparison and the respective results are described in detail in Section 5.6.3

5.6.1 Experimental setup

Execution environment. All experiments were executed in an Intel Core(TM) 2 Quad
CPU Q9650 machine at 3.00GHz with Ubuntu 14.04 and 8GB RAM. In all experiments,
we measure the query execution time, which includes a full iteration of the result set. We
execute all experiments in both cold and warm cache. In warm cache, we execute a
query once before all executions of the same query that we measure. In cold cache, we
configure all virtual tables that are involved so that they do not use the caching mechanism
described in Section 5.3 (i.e., we set a negative value to the rate parameter of the virtual
table operator in the mappings). These two configurations allow for measuring the impact
of the caching mechanism on the query execution time.

Data sources and queries. We query data from HTML tables about films, Twitter and
Foursquare, posing queries that are similar to the ones described in Section 5.5. More
specifically, we pose queries for tweets that contain the www2019 hashtag, retrieving also
the sentiment for each tweet. We look for coffee places in Chicago from Foursquare and
we join two HTML tables with films, one from Wikipedia and one from Rotten Tomatoes.
The mappings and part of the queries that we used are explained in Section 5.5. For
each data source, we begin with a query that involves a single triple pattern and then, we
increment the number of triple patterns to increase the complexity of the query.

However, the amount of tweets and Foursquare entries that one can obtain for free through
a single request is limited, due to the restrictions of the respective APls. The HTML tables
that exist in the Web are also relatively small. For these reasons, we evaluate the scala-
bility of our system using synthetic webtables. We employed an original Wikipedia table
about Italian election opinion polls'® as a template, which we multiplied so that we can ex-

"https://en.wikipedia. org/wiki/Opinion_polling_for_the_Italian_general_election, _2018
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ecute queries for tables with 10, 100, 1,000, 10,000, and 100,000 rows. Then, we posed
the same queries over these tables in order to measure the scalability of our system.

Comparison with related work. We compared our approach with the system described
in [55]. To achieve this, we additionally implemented an operator of Yelp, which allows for
comparing the two systems on a equal basis (note that the system of [55] does not apply
to webtables). In Section 5.6.3, we describe in detail the set up of the comparison and
report the evaluation results.?°

5.6.2 Experimental Results

Real workload. The query execution times of the real workload experiments in both cold
and warm cache are presented in Figure 5.3. The label of each query is suffixed by
the number of triple patterns it incorporates (e.g., Q2 indicates two triple patterns). We
observe that in warm cache, the execution times are at least an order of magnitude lower
than in cold cache. Apparently, the reason is that in the former case, the virtual tables are
cached (cf. Section 5.3), whereas in the latter case, the data must be fetched (e.g., calling
the respective APIs).

Reasonably, as the number of triple patterns used in the queries increases, the execution
time increases. This happens because more triple patterns yield more joins in the trans-
lated SQL query. When these joins produce more intermediate results, instead of filtering
them down, they introduce additional cost in the evaluation. In other words, we add triple
patterns to retrieve more information, rather than to pose restrictions. The main reason
for this performance cost is that the data is not materialized in the database and, thus, the
OBDA system is not aware of database constraints, or other hints that could accelerate
SQL translation and execution, as described in [20].

Note also that all films queries use two data sources, joining the HTML tables described
in Section 5.5.1 to retrieve the movies that are common between the two tables. This is a
more costly operation than the selections performed in Twitter and Foursquare use cases,
resulting in higher execution times, as the query execution time also includes the time to
parse the HTML table(s).

Twitter Foursquare Films
16 140

[o5 [oXy o3} =3

) ’ o ) ) ’ o
Figure 5.3: Execution times for real workload queries.

Synthetic workload. Recall that our approach does not target the volume of the Web of

2ONote that we also attempted to compare our approach with the work described in [54], but we could not
build an instance of their platform, following the online instructions.

103 K. Bereta



Efficient Management for Geospatial and Temporal Data using Ontology-based Data Access Techniques

data, but rather the variety and velocity dimensions. Nevertheless, we included a scal-
ability experiment in our evaluation so as to assess the maximum size of input data that
we can query efficiently. For the scalability experiment, we used a query with two triple
patterns posed against the synthetic webtables of varying size. The first query, that is
provided in Listing 5.9, is not selective, returning as many results as the rows of the table.
The second query , that is described in Listing 5.10 is very selective, returning two results
at all cases.

Listing 5.9: Query of low selectivity for webtables
SELECT distinct 7s1 7d 71

WHERE { 7?s1 :date 7d
?s1 :lead 7?1 }

Listing 5.10: Query of high selectivity for webtables
SELECT distinct 7sl1 7d
WHERE { ?7s1 :date 7d
7?81 :lead "1.5"""xsd:float }

The outcomes of the scalability test appear in Figure 5.4. We observe that as the number
of rows in a webtable increases, the query execution time increases superlinearly, but
the extent of this increase depends heavily on the selectivity of the query. We can safely
conclude, though, that our system can query webtables with up to 100,000 rows within
minutes.

Scalability experiment
10000

Low-selectivity —+—
High-selectivity

1000 ¢ E|

Execution time (seconds)
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Figure 5.4: Query execution time as dataset size increases.

5.6.3 Comparison with the state-of-the-art

We now compare our approach with the system described in [55], which we call SERVICE-
to-API in the following?'. Recall that its goal is to enrich RDF data with data from external

21We also attempted to compare our approach with the work described in [54], but we could not build an
instance of their platform, following the online instructions.
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Figure 5.5: Execution times for Yelp queries in warm and cold cache.

sources, such as REST APIs. Thus, its query language requires at least one triple pat-
tern that is evaluated in the RDF repository and its variables are bounded to values that
populate their URI templates. Every variable binding actually yields a separate API call.
A cache mechanism aims to minimize the API calls.

An example of its query language is presented in Listing 5.11. The value of keyword
SERVICFE creates a URI template for each one of the values bound to the variable [,
which is used in the query’s triple pattern. In this case, a call to the Yelp API is produced
for each binding of the variable [, returning a JSON file. This JSON file is parsed according
to the JSON pattern included in the query, which bounds the variables i, name and rating
to the values of the respective attributes of the JSON file.

Listing 5.11: SERVICE-to-API query, equivalent to SPARQL query Q1

SELECT ?7i ?name ?7rating WHERE {

?x <http://www.w3.0rg/2000/01/rdf -schema#label> 71 .

SERVICE <https://api.yelp.com/v3/businesses/{1}>{

C $.[\"id\"], $.[\"name\"], $.[\"rating\"]) AS (?i, ?7name, ?rating)l}}

In this context, there are two major qualitative differences between our approach and
SERVICE-to-API [55]:

(i) The query language. For SERVICE-to-API, the JSON attributes are directly bound to
variables by parsing the JSON response, as instructed by the JSON patterns included in
the query. As a result, the users need to know the documentation of the API in order to
identify the information they need. Only in this way are they able to combine API data
with the RDF data in the triplestore, formulating accurate queries that extend SPARQL
with JSON patterns [55]. In contrast, our approach creates virtual semantic graphs on top
of APIs using mappings, thus allowing users to pose standard SPARQL queries as if the
contents of the APIs were transformed into RDF.

(ii) Every API call in our approach retrieves an entire virtual table, which is mapped to a
virtual RDF graph. In contrast, SERVICE-to-API [55] merely retrieves one entry of this
table per API call, which has a significant impact on performance, as explained below.

Regarding the quantitative comparison of the two systems, we consider data retrieved
from the REST API of Yelp??, as SERVICE-to-API does not apply to WebTables. We

2nttps://www.yelp.ie/dublin
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Figure 5.6: API calls for Yelp queries in warm and cold cache.

chose the Yelp API, as it is the only data source for which both systems offer the same
functionality (our Twitter operator involves a microservice for performing sentiment analy-
sis). However, the findings of this experiment are representative of the general behaviour
of the two systems - the differences between the two systems as exposed by the following
experiment are the same against any Web API.

% %

For SERVICE-to-API, we stored data about businesses (burger joints in Chicago) in an
RDF repository, as it does not allow for queries that include API calls without triple patterns
included in the query. Then, we used the SERVICE keyword to join them with their names
and IDs that are retrieved from the REST API of Yelp. Note that we used the original
implementation of SERVICE-to-API, which was kindly provided to us by the authors of
[55]. For our approach, we implemented a virtual table operator of Yelp and pose the
SPARQL query Q1, which appears in Listing 5.12, to retrieve the same data.

SPARQL Query Q2 contains one more triple pattern (i.e., we also retrieve the rating of
businesses) and it is described in Listing 5.12. There are different ways to express this
query in the SERVICE-to-API, depending on the configuration of the repository. The clos-
est definition seems to be the query shown in Listing 5.15, which is query Q5. However,
the fact that it returns different results suggests that this is not the case. Instead of return-
ing the name and rating of the requested businesses, it returned the Cartesian product of
all different burger businesses and all different rating values. So, if the SPARQL query Q2
is expected to return |N| results, the query in Listing 5.15 returns |V x S| results, where
|S| is the number of different rating values. We could briefly describe this phenomenon as
a difference in semantics between SPARQL and the new language proposed in [55].

In order to follow the semantics of [55], we create variations of queries Q1 and Q2, in
which we have partially stored the data to be retrieved by Q1 and Q2 in the repository
supported by SERVICE-to-API. Once we have at least one triple for each entity stored,
we retrieve only the missing values using the queries described in Listings 5.11 and 5.14,
respectively. In this way, SERVICE-to-API returns the correct results, since the underlying
triple store is forced to perform a JOIN between the materialized and the values that are
returned from the API, instead of a Cartesian product. The trade-off, on the other hand, is
that SERVICE-to-API cannot pose a query to retrieve the results directly through the API,
as some form of materialization needs to be performed in order to retrieve correct results.

Query Q6 differs from query Q5 only in that it uses the BIND operator instead of triple
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pattern (i.e., instead of storing the respective triple in a triple store).

Listing 5.12: SPARQL query Q1 Listing 5.13: SPARQL query Q2
select distinct 7id 7name select distinct 7id 7name
where { where { 7s yelp:name ?name .
?s yelp:name 7name . ?s yelp:rating ?rating .
?s yelp:hasID ?7id } ?s yelp:hasID ?7id }

Listing 5.14: SERVICE-to-API query Q3

SELECT distinct ?7i 7?name WHERE {

?x <http://www.w3.0rg/2000/01/rdf -schema#label> 71 .
?x <http://yelp.com/ontology#name> 7name .

?x <http://yelp.com/ontology#rating> 7rating .
SERVICE <https://api.yelp.com/v3/businesses/{1}>{
C$.[\"id\"]) AS (7i)}}

Listing 5.15: SERVICE-to-API query Q5

SELECT distinct ?id ?b WHERE {

?x <http://www.w3.0rg/2000/01/rdf -schema#label> 7?1 SERVICE
<https://api.yelp.com/v3/businesses/search?term=Burgers&location={1}&sort=2>
($.[\"businesses\"J[0:20][\"%d\"], $.[\"businesses\"]J[0:20][\"name\"],
$.[\"businesses\"][0:20] [\"rating\"] ) AS (?id, ?b, ?r)}"

We evaluated these queries in both systems and we present the results in Figures 5.5
and 5.6. The former depicts the query execution times and the latter the number of API
calls invoked. In both cases, we consider warm and cold caches (on the left and right,
respectively). We observe that our approach is three times faster than SERVICE-to-API.
The main reason is that we retrieve a set of tuples for each API call, which are then mapped
into virtual RDF graphs. In contrast, SERVICE-to-API retrieves one entry for each API call,
yielding many more API calls in order to get the same information.

Another observation is that our system by design benefits more from caching than the
system in comparison. We cache the entire table for each API call, while SERVICE-to-
API performs an API call for each tuple, which means that only one tuple is cached each
time. Hence, for a result set consisting of NV tuples, our system will cache the entire result
set as a virtual table that is retrieved from a single API call. On the other hand, SERVICE-
to-API needs at least V calls, of which at most one will be cached,

5.7 Summary

In this chapter, we presented a methodology for querying Web data on-the-fly using
SPARQL, based on extending SQL with virtual table operators, embedding them into map-
pings, and making an OBDA system compliant to them. We also performed an experimen-
tal evaluation of our approach, showing that we go beyond the state of the art, not only in
terms of functionality, but also in terms of performance. Our approach complements tra-
ditional approaches of querying data using SPARQL and targets the diversity and velocity
of web data.
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In the next chapter, we present how the work described so far in this thesis was used and
extended in real-world applications. In one of these applications, the requirement was to
retrieve Copernicus data from a Rest kind of API, named OPeNDAP, without materialising
the data. For this reason, as we explain in the following chapter, we implemented another
virtual table operator that serves as an adapter with the Copernicus OPeNDAP APIs and
can be used in mappings to retrieve Copernicus data on-the-fly and make them available
as virtual RDF triples using the system that we described in this section. We refer the
reader to the next chapter for more details.
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6. APPLICATIONS

The system Ontop-spatial was very useful to many real-world applications, as many end-
users did not wish to materialise their data as RDF triples, but used mainly geospatial
relational databases. Ontop-spatial is applicable to any domain where integration and
processing of geospatial and temporal data is first class citizen. Ontop-spatial has been
used in the following domains: land management (collaboration with the german com-
pany ViSTA), urban planning (collaboration with the czech company GISAT), oil industry
(collaboration with the international company Statoil), and maritime security ( collabora-
tion with AIRBUS defence and Space in Bremen). It was also used and extended in the
project Copernicus App Lab in order to create semantic views on top of Copernicus data
on-the-fly. This chapter highlights two of the main applications where Ontop-spatial was
used, the maritime application and the Copernicus App Lab application. The material of
this chapter is partially covered in [8], [9] and [17].

6.1 Querying Copernicus Data on-the-fly using ontologies and mappings

Earth observation (EO) is the gathering of data about our planet’s physical, chemical and
biological systems via satellite remote sensing technologies supplemented by Earth sur-
veying techniques. The Landsat program of the US was the first international program
that made large amounts of EO data open and freely available. Copernicus, the Euro-
pean programme for monitoring the Earth, is currently the world’s biggest EO programme.
It consists of a set of complex systems that collect data from satellites and in-situ sensors,
process this data and provide users with reliable and up-to-date information on a range of
environmental and security issues. The data of the Copernicus programme is provided by
a group of missions created by ESA, which is called Sentinels, and the contributing mis-
sions, which are operated by national, European or international organizations. Coperni-
cus data is made available under a free, full and open data policy. Information extracted
from this data is also made freely available to users through the Copernicus services which
address six thematic areas: land, marine, atmosphere, climate, emergency and security.

The Copernicus programme offers myriad forms of data that enable citizens, businesses,
public authorities, policy makers, scientists, and entrepreneurs to gain insights into our
planet on a free, open, and comprehensive basis. By making the vast majority of its data,
analyses, forecasts, and maps freely available and accessible, Copernicus contributes
to the development of innovative applications and services that seek to make our world
safer, healthier, and economically stronger. However, the potential (in both societal and
economic terms) of these huge amounts of data can only be fully exploited if using them
is made as simple as possible. Therefore, the straightforward data access every down-
stream service developer requires must also be combined with in-depth knowledge of EO
data processing. The Copernicus App Lab' aims to address these specific challenges by

"http://www.app-lab.eu/
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bridging the digital divide between the established, science-driven EO community and the
young, innovative, entrepreneurial world of mobile development.

Copernicus App Lab goes beyond these projects in the following important ways:

* It develops a software architecture that enables on demand access to Copernicus
data using the well-known OPeNDAP framework and the geospatial ontology-based
data access system Ontop-spatial. Now users and application developers do not
need to worry about having to download data or having to learn the details of sophisti-
cated data formats for EO data. All they need to develop is an ontology describing the
data they are interested in and R2RML mappings that capture the correspondence
between the ontology and the data sources containing the data. Using traditional ap-
proaches, application developers would have to implement different clients/adapters
in their applications corresponding to the different file formats their data is in, in order
to access and process the data. Instead of implementing custom code, they can now
use GeoSPARQL queries to access the geospatial data, regardless of their formats.

* It brings computing resources close to the data by making the Copernicus App lab
tools available as Docker images that are deployed in the Terradue cloud platform
as cloud services.

* It enables search engines like Google to treat datasets produced by Copernicus as
“entities” in their own right and store knowledge about them in their internal knowl-
edge graph.

In this context, the following section describes how the techniques presented in Chapter
5 were extended to support Copernicus data that has been available through OPeNDAP
services.

6.1.1 Mapping Copernicus Data

The geospatial ontology-based data access (OBDA) system Ontop-spatial [10] is used
to make Copernicus data available via OPeNDAP as linked geospatial data, without the
need for downloading files and transforming them into RDF. Ontop-spatial is also used in
order to create virtual semantic RDF graphs on top of geospatial relational data sources
using ontologies and mappings.

Then, the Open Geospatial Consortium standard GeoSPARQL can be used to pose
queries to the data using the ontology. As documented in [10], Ontop-spatial also achieves
significantly better performance than state-of-the-art RDF stores, and as we explained
earlier, it also supports raster data as well.

In the context of the work described in this section, we extend the approach described in
Chapter 5. Ontop-spatial has been extended with an adapter that enables it to retrieve
data from an OPeNDAP server, create a table view on-the-fly, populate it with this data and
create virtual semantic geospatial graphs on top of them. In order to use OPeNDAP as a
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new kind of data source, Ontop-spatial utilizes the system MadlS as backend, following
the architecture of the system that is presented in Chapter 5. We implemented a new
MadlS virtual table operator named Opendap, that is able to create and populate a virtual
table on-the-fly with data retrieved from an OPeNDAP server. In this way, Ontop-spatial
enables users to pose GeoSPARQL queries on top of OPeNDAP data sources without
materializing any triples or tables. We stress that the relational view that is created is not
materialized. The intermediate SQL layer facilitates the data manipulation process, in the
sense that we can manipulate the data before they get RDF-ized. By using this approach,
we can perform “data cleaning” without (i) changing the data that arrive from the server (ii)
changing any intermediate code, such as the opendap function and (ii) without requiring
any extra pre-processing steps.

To improve performance, the OPeNDAP adapter also implements a caching mechanism
that stores results of an OPeNDAP call in a cache for a time window w, so that if another,
identical OPeNDAP call needs to be performed within this time window, the cached results
can be used directly. The length of the time window w is configured by the user in the
mappings and it is optional.

Listing 6.1: Example of mappings

mappingld opendap_mapping
target lai:{id} rdf:type lai:0Observation .
lai:{id} lai:lai {LAI}""xsd:float;
time:hasTime {ts} " "xsd:dateTime .
lai:{id} geo:hasGeometry _:g .
_:g geo:asWKT {loc} "geo:wktLiteral .
source SELECT id, LAI, ts, 1loc
FROM (ordered opendap
url:https://analytics.ramani.ujuizi.com/
thredds/dodsC/Copernicus-Land-timeseries-
global-LAI%29/readdods/LAI/, 10)
WHERE LAI > O

In the example mappings provided in 6.1, the source is the LAl dataset discussed above
which provided through the RAMANI OPeNDAP server of the Copernicus App Lab soft-
ware stack. The dataset contains observations that are LAl values as well as the time
and location for each observation. The MadIS operator Opendap retrieves this data and
populates a virtual SQL table with schema (id,LAI,ts,loc). The column id was not
originally in the dataset but it is constructed from the location and the time of observation.
The LAI column stores LAI values of an observation as float values. The attribute ts
represents the timestamp of an observation in date-time format. In the original dataset
times are given as numeric values and their meaning is explained in the metadata. For
example, it can be days or months after a certain time origin. The Opendap virtual table
operator converts these values to a standard format. Because of the fact that the Opendap
operator is implemented as an SQL user-defined operator, it can be embedded into any
SQL query. In the above mapping, we also refine the data that we want to be translated
into virtual RDF terms by adding an filter to the query to eliminate (noisy) negative or zero
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LAl values. The value 10 that is passed as argument to the Opendap virtual table operator
is the length of the time window w of the cache that is used (in minutes). In this case, if
|w| is the length of the time window w, then |w| = 10 minutes. This means that results
of a every OPeNDAP call get cached every 10 minutes. If a query arrives resulting in an
OPeNDAP in time ¢, where ¢ < 10 minutes later than a previous identical OPeNDAP call
(resulting from a same or similar query that involves the same OPeNDAP call), then the
cached results can be used directly, eliminating the cost of performing another call to the
OPeNDAP server.

The target part of the mapping encodes how the relational data is mapped into RDF
terms. Every row in the virtual table describes an instance of the class 1ai:0bservation.
The values of the LAl column populate the triples that describe the LAl values of the
observation, and the values of the columns ts and loc populate the triples that describe
the time and location of the observations accordingly.

6.1.2 Querying Copernicus Data using GeoSPARQL

Given the mapping provided above, we can pose the GeoSPARQL query provided in
Listing 6.2 to retrieve the LAl values and the geometries of the corresponding areas.

Listing 6.2: Query retrieving LAl values and locations
SELECT DISTINCT ?7s 7wkt 7lai
WHERE { 7s lai:hasLai ?7lai
?s geo:hasGeometry 7g
7g geo:asWKT 7wkt }

Using queries like the one described in Listing 6.2, Sextant can again visualise the various
datasets and build layered maps like the one in Figure 6.1. The visualisation of the case
study in Sextant is available on line at the following URL: http://test.strabon.di.uoa.
gr/Sextant0L3/?mapid=m8s4kilcarublmun_

Similarly, in Figure 6.1, we have used Sextant to build a temporal map that uses the fol-
lowing datasets:

» Leaf area index (LAI) is a dimensionless quantity that characterizes plant canopies
and it is defined as the one-sided green leaf area per unit ground surface area in
broadleaf canopies?. LAl information from the global land service of Copernicus
is made available as a NetCDF file giving LAl values for points expressed by their
lat/long co-ordinates. Part of this dataset is described above. We access this dataset
through the OpeNDAP adapter which we implemented for Ontop-spatial and we
automatically retrieve the data on-the-fly, using SPARQL queries.

» The Urban Atlas dataset of 2012, which provides land cover data for European urban

’https://en.wikipedia.org/wiki/Leaf_area_index
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areas with more than 100.000 inhabitants?.

* OpenStreetMap data, which we used as shapefiles, provided by the company Ge-
ofabrik*. We imported the shapefiles into a PostGIS database and we used Ontop-
spatial to create virtual geospatial RDF graphs on top of them. Insted, we could have
used the RDF versions of this dataset, as for example the RDF datasets provided
by the project LinkedGeoData®. We opted for the OBDA solution in order to (i) re-
trieve the most current version of the data without materialising the OpenStreetMap
data every time it gets updated, and (ii) achieve better query execution times, as we
explained in Chapter 3.

« GADM is an open and free dataset giving us the geometries of administrative di-
visions of various countries®. It is available in various formats (e.g., ESRI geo-
database, SQLite database, shapefiles), which we converted and materialised as
RDF files, which we stored in Strabon and made it available in a GeoSPARQL end-
point. Since GADM data does not change frequently, we opted for the materialised
solution in this case.

We show how the LAl values (small circles) change over time in each administrative area of
Paris (administrative areas are delineated by magenta lines) and correlate these readings
with the land cover of each area (taken from the CORINE land cover dataset or Urban
Atlas). This allows us to explain the differences in LAl values over different areas. For
example, Paris areas belonging to the CORINE land cover class clc:greenUrbanAreas
overlap with parks in OpenStreetMap and show higher LAl values over time than industrial
areas. Paris enthusiasts are invited to locate the Bois de Boulogne park in the figure.

6.2 Maritime Security application

The maritime security domain is challenged by a number of data analysis needs with a
focus on increasing the maritime situation awareness. Vessel movements are of major
importance for maritime data analysts and decision makers. Abnormal vessel behaviors
and suspicious vessel movements need to be detected and understood to properly in-
crease the maritime domain awareness. More than two-thirds of the overall volume of
cargo worldwide is transported seaborne. This massively increases the number of ships
traveling on the seas. Next, the continuously increasing number of offshore wind parks
has an impact on the security of the citizens. The energy supply must be ensured even
without fossil fuels. This turns offshore wind park into assets with a strong demand for
protection. Moreover, industrial nations worldwide use the potential of the seas, but are
threatened by pirates and terrorists.

3https://land.copernicus.eu/local/urban-atlas/view
“http://download.geofabrik.de/
Shttp://linkedgeodata.org/About

Shttps://gadm.org/
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Figure 6.1: The “greenness” of Paris

The project EMSec’ (real-time services for the maritime security) has the aim to support
the maritime security by improving the availability and accessibility of relevant data and
information ashore and offshore. The central data management component of EMSec
is the “Real-time Maritime Situation Awareness System” (RMSAS), which is in charge of
integrating various types of data from different sources.

This section focuses on the integration and analysis of data for vessel movements in RM-
SAS. For the proper analysis a storage capability is needed to properly analyze vessel
data and to identify vessel trajectories and their stops and movements for the last days.
However, the vessel data integration and management task in RMSAS is challenged by
the following requirements: (a) The vessel data is heterogeneous and in particular consists
of dynamic position data or static metadata. (b) There is a need for integrating third party
data, i.e., open data like GeoNames and OpenStreetMap. (c) The size of the data is large,
deriving from the acquisition and processing of large radar and satellite images. (d) The
data about vessels are produced in real-time, i.e., approximately 1000 vessel positions
are acquired per second.

The motivation of this use case was to address the above needs for combining data from
heterogeneous sources, such as in-situ data, AIS data, and open data developing an
automated solution avoiding manual work as much as possible. We considered that the
conceptualized model offered by ontologies would meet the requirements of that purpose,
so we used state-of-the-art technologies and tools into this direction. The rationale behind

"http://www.emaritime.de/projects/emsec/
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our design choices was to avoid the creation of replicas of the same data in other formats
and also to avoid storing natively data that are already available as open data. For the
first, the system Ontop-spatial was used, instead of using a triple store, to avoid the cost
(in disk space and response time) of materializing our frequently updated data to RDF
and storing them natively. For the second, we used federation to query data coming from
different endpoints (e.g., in-house data and linked data like geonames).

The RMSAS system has been implemented on top of these state-of-the-art Semantic Web
techniques and tools. The evaluation has shown that RMSAS eases the data analysis
by using virtual triples and standardized vocabularies. Next, the integration of several
heterogeneous data sources is a benefit for maritime decision makers and the maritime
security. Finally, the approach contributes significantly to the detection of routine traffic
and abnormal vessel behavior.

6.2.1 RMSAS: Real-time Maritime Situation Awareness System

RMSAS is a real-time maritime situation awareness system that has been implemented
in EMSec as a system of systems to integrate vessel data coming from various sensors,
enrich this data with data from other sources (e.g. open data), harmonize these datasets
using established maritime standards and infer new knowledge from the integrated data
and deliver this it in near real-time. The final results are displayed in a user-friendly inter-
face that enables maritime decision makers to handle maritime situations more efficiently.

Situation-aware data shall be presented to the user in near real-time. To achieve this,
data have to be integrated and consolidated from several different sources. This allows
for properly displaying the combination of this data to the user via an application. Providing
data faster and in further detail shall allow the involved parties to identify critical situations
better and earlier, to avoid these situations, and to manage them efficiently.

Being the central data management component in EMSec, the RMSAS aims at integrating
and consolidating data. RMSAS uses the “System of Systems” approach and implements
a federated information system based on separate services (SOA). Data are integrated in
RMSAS in near real-time, next they are consolidated based on semantic data models and
techniques and provided to the end user as information products. Ontologies are used in
the consolidation of these heterogeneous data.

Data sources. The data sources that are used in the maritime awareness scenario that
is described in this section

Data streams. Data streams are data which are created continuously in real-time. These
data streams can be AlS-data that continuously report new arriving vessels in the German
bay.

Static data. Data are static when they are stored in databases, on FTP-servers, or in
external systems. These can be metadata about vessels as for example the vessel type,
cargo, port of departure, and historical data about previous routes. After transmission to
the earth, satellite data are made available as packages.
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More specifically, data sources that are used in the context of this use case are described
below.

AIS. AIS messages are not only used as reference data, they are additionally used for
quality inspections and — wherever possible — analyzed to identify certain movement pat-
tern, for instance for ferries. Several AlS types are available: Terrestric AlS, satellite AIS?2,
and the AIS signal that comes from the Columbus-module of the ISS®. In EMSec we re-
ceive AlS data about 800-1000 vessels in the German bay every 1-3 seconds.

Satellite SAR. TerraSAR-X provides satellite-based synthetic aperture radar (SAR) and
creates radar images with a high resolution. Algorithms can be used to detect objects
(e.g., vessels) and to link these detected objects with previously collected AIS messages.
The radar images can also be analyzed to extract wind and wave information and connect
them with conventional secondary weather information.

Airborne systems. The EMSec consortium utilizes an airplane that comes with an AIS
receiver and a radar system. The AIS messages are used as described before. The
radar system provides objects and their movements as plots and tracks. Next, another
airborne system provides optical images that are used to detect vessels in these images.
RMSAS is capable of providing these object detections together with weather information
and geospatial information to the end user applications.

Open Data. Open data are data coming from the linked open data cloud or from other ex-
ternal data sources. Using these data can improve certain kinds of analysis. For example,
these data sources contain information about real existing harbors (as in GeoNames'?),
or information about certain points of interest (as in DBpedia' or OpenStreetMap'?), or
that contain weather data (as in OpenWeatherMap'3).

GeoNames. is a gazetteer that collects both spatial and thematic information for various
place names around the world. GeoNames data is available through various Web services
but it is also published as linked data. The features in GeoNames are interlinked with
each other defining regions that are inside the underlined feature (children), neighboring
countries (neighbors) or features that have certain distance with the underlined feature
(nearby features).

OpenStreetMap (OSM). maintains a global editable map that depends on users to pro-
vide the information needed for its improvement and evolution. OpenStreetMap datasets
are available in RDF format from the LinkedGeoData project’*. However, it was more
convenient for us to download the most up-to-date original OpenStreetMap data about

8http://www.esa.int/Our_Activities/Space_Engineering_Technology/ESA_satellite_
receiver_brings_worldwide_sea_traffic_tracking within_reach

Shttp://www.esa.int/Our_Activities/Space_Engineering_Technology/Space_Station_keeps_
watch_on_world_s_sea_traffic

"Onttp://geonames.org

"http://dbpedia.org

"2nttp://openstreetmap.org/

Bhttp://openweathermap.org/

"http://linkedgeodata.org
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Bremen, available as Shapefiles'®. We imported the Shapefiles into a PostGIS database
and created virtual geospatial RDF views on top of them using Ontop-spatial, as described
at https://github.com/ConstantB/ontop-spatial/wiki/Shapefiles.

6.2.2 Request Management in EMSec

This section describes the concept of managing and answering requests in EMSec. Fig-
ure 6.2 describes that these requests may come from a user, a SOA-architecture or else.
The main concept is that requests are formulated using the Top level ontology (TLO) and
are posed using SPARQL. This enables the end user to use the described high level se-
mantics of the TLO. The semantic data processing component utilizes Ontop to translate
the queries to SQL queries in order to be evaluated in the underlying RDBMS, e.g., a
PostgreSQL database. This work focuses on relational data sources, so other input data
formats such as CSV will not be discussed here.
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Figure 6.2: Request Management within EMSec

6.2.3 Scenarios in EMSec

The validation of the created methods, architectures, algorithms, and concepts will be
done in a campaign, where two maritime security scenarios are executed. First, a concrete
satellite mission is utilized. Second, both airborne missions are requested and executed.
The generated data are transferred to RMSAS in near real time and integrated, analyzed,
consolidated and finally transferred to the user. Several maritime regions are deserving

"Shttp://download.geofabrik.de/europe/germany/bremen.html
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protection. Restricted areas can be off-shore platforms, wind parks, or preserved areas.
These call for limited vessel traffic with certain restrictions. Geographic fences can be cre-
ated to analyze the vessel traffic focusing in specific areas of interest. Possible scenarios
are to check that the speed over ground is within a limited range in these regions, that
certain vessel types like oil-tanker may not pass these regions, or that under certain sea
conditions no vessel traffic is allowed.

6.2.4 Modeling the maritime domain

Maritime domain models are results of several research projects, both national and inter-
national. The CoopP-project has created the CISE-ontology[2], which is reused in RMSAS
and adopted to meet the project’s specific requirements.

Object. Objects can be any involved parts of the maritime domain. They can be physical
elements that are airborne, onshore and offshore, such as vessels, containers, planes,
icebergs, or satellites. Vessels are central elements of interest and modeled in greatest
detail with a special focus on the information that are available in AlS.

Geometry. Geometry is dedicated to deal with information about space and geographical
localizations of the maritime objects. The geometries contained in our data are encoded
in WKT format, which is an OGC standard for the serialization of geometries. The ge-
ometries encountered in our dataset are mainly polygons and points. The geometries of
areas, for example, are represented as polygons. These areas can be marked regions
ashore, for instance. Dimension describes the specifics of an object like length, width,
or height. A location describes places with a geographical name like cities or harbours.
They can be identified using a URI which makes it possible to interlink them with external
sources like GeoNames or DBPedia. Movements describe the track of an object including
its course and speed over ground and optionally its rate of turn. Points describe a ded-
icated geographical point described using its geographical coordinates and its height. A
position then is a point combined with a timestamp.

Time. Time is used to describe timestamps that can be used to model positions of objects,
to label data during data integration and to support temporal data analysis.

In order to model our data, we have constructed an ontology that is shown in figure 6.3.
In this work, we focus on the aspects of vessel movements and trajectories.

The movement ontology defines the necessary structures for modeling object movements
like vessel, satellites or aircrafts. The ontology allows for enriching native position data
with semantics. This allows to model vessel positions as being moves or stops. Any mov-
ing object has position data and consists of trajectories that reflect the historic positions of
an object. The use of semantics to these positions facilitates the monitoring of the status
of the moving object, i.e. whether it has stopped or was moving.
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Figure 6.3: RMSAS Movement ontology
6.2.5 Semantic Data Analysis

In this section we describe how RMSAS uses the Semantic Web technologies that we
mentioned in the introduction in order to achieve the following goals:

» Transparent integration of different, geospatial and thematic data sources using on-
tologies.

* Processing of in-house dynamic and static data, enriching them with information
already available on the web (linked open data).

* Avoid replicating the same data as much as possible (e.g., materializing data to RDF,
storing data from scratch when a SPARQL endpoint for them is already available)
using OBDA techniques and federation.

* Visualization of the data and creation of persistent, web accessible maps, with no
need to load the datasets or issue the queries again every time we want to populate
the existing databases/endpoints with fresh data.

We illustrate the abstract architecture of RMSAS in Figure 6.4. RMSAS uses the OBDA
system Ontop and Ontop-spatial to expose the data we need from the relational databases
as SPARQL endpoints. For accessing non-relational data sources, RMSAS first wraps
these sources into relational ones by Teiid, and then uses Ontop [46, 18] to access them.
For federating third party SPARQL endpoints like GeoNames, Sesame is used for the
SPARQL 1.1 federated query answering. Finally, Sextant is used for visualizing the re-
sults on temporally-enabled maps combining geospatial and temporal results from differ-
ent (Geo)-SPARQL endpoints.

The relational data in RMSAS can be faithfully mapped to the ontology using the ontology-
based data access (OBDA) approach. We use Ontop and the its extension Ontop-spatial
for this purpose. As illustrated in Figure 6.4, Ontop allows for querying relational data
sources through a conceptual representation of the domain of interest, provided in terms
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Figure 6.4: Abstract Architecture of RMSAS

of an ontology, to which the data sources are mapped. Ontop answers the SPARQL
queries by translating them into SQL queries over the database and avoids materializing
triples. Ontop-spatial is an extension of Ontop with geospatial features.

Ontop uses declarative mappings to encode how relational data are mapped to the re-
spective RDF terms. Ontop supports W3C R2RML mapping language [30] and its native
Ontop mapping languages. Here we use the native syntax because it is more compact.
An Ontop mapping consists of three fields: mappingld, source and target. The mappingld
is an identifier for mapping; the source is an arbitrary SQL query over the database; and
the target is a triple template written in Turtle syntax that contains placeholders referencing
column names mentioned in the source query.

For example, all information about the positions of vessels are stored in a spatially en-
abled PostGIS database. In Figure 6.5, we present mappings related to vessels in Ontop
native syntax. The coordinates of the mappings that are stored in the respective columns
named longitude and latitude in the database in textual form are mapped into RDF
literals, as objects of the respective virtual triples as indicated in the mapping assertion
with mappingld “Position”. The respective geometries that represent the vessels positions
are also stored in the well-known binary format (WKB) in a separate column, named geom.
The mapping assertion Geometry indicates how this information is mapped to RDF: The
binary geometry of the database is exported as a well-known text literal (WKT), following
the OGC GeoSPARAQL standard [26].

In the following we present two example SPARQL queries that we used in order to process
our data using OBDA technologies and combine them with other sources.

The query described in Figure ?? retrieves geometries of the locations of vessels (ordered
by the timestamps) that are stored in binary (WKB) format in the relational database. Ob-
jects of this datatype are internally handled by Ontop-spatial and are eventually trans-
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mappingId
target
source

mappingld

target
source

mappingId
target
source

mappingId
target

source

Vessel
:Vessel-{v.id} a :Vessel ; :hasName {v.namel}
SELECT v.id, v.name FROM Vessel v

VesselPosition

:Vessel-{v.id} :hasLocation :Position-{vp.position_id}

SELECT v.id, vp.position_id FROM Vessel v,
Vessel_position vp WHERE v.id=vp.vessel_id

Position

:Position-{id} a :Position ; :hasLatitude {latitudel} ;
:hasLongitude {longitude} ; :hasDateTime {ts} ;
:hasGeometry geos:Geometry-{id}

SELECT id, latitude, longitude, ts FROM position

Geometry
geos:Geometry-{id} a geos:Geometry ;

geos:asWKT {geom} " ~"geos:wktLiteral
SELECT id, geom FROM position

Figure 6.5: Example mappings in RMSAS

Listing 6.3: SPARQL query retrieving positions of a vessel through time

PREFIX : <http://www.rmsas.de/DMARitime#>
PREFIX geos: <http://www.opengis.net/ont/geosparql#>
SELECT DISTINCT 7x 7z 7g 7timestamp

WHERE {
?x rdf:type :Vessel. 7x :hasName "Vesselname'" ™ “xsd:string.
?x :hasLocation 7z. 7z :hasDateTime 7timestamp

7z geos:asWKT 7g. }
ORDER BY DESC(?7timestamp)

Figure 6.6: SPARQL query retrieving positions of a vessel through time
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PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX osm: <http://linkedgeodata.org/ontology#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>

SELECT DISTINCT ?lu ?geo

WHERE {
?x osm:landUse lgd:port . 7x geo:asWKT 7geo .
?x1 geo:asWKT ?geol . 7?x1 osm:landUse 71lu .
FILTER (geof:sflntersects(?geo,?geol))}

Figure 6.7: SPARQL query retrieving locations of ports and land use of intersecting areas

PREFIX : <http://www.rmsas.de/DMARitime#>
PREFIX geos: <http://www.opengis.net/ont/geosparql#>

SELECT 7vessel 7location 7geometry 7wkt 7mmsi 7length 7height
WHERE { SERVICE <http://www.rmsas.de/openrdf-sesame/PositionStore>
{ ?vessel rdf:type :Vessel
?vessel :hasLocation 7location
?vessel :hasName "388328333".
?location :hasGeometry 7geometry
?7geometry geos:asWKT 7wkt

OPTIONAL {
SERVICE <http://www.rmsas.de/openrdf-sesame/0ObjectStore>
{?vessel :hasMMSI ?mmsi ; :hasName "388328333".
7vessel :haslLength 7length ; :hasHeight 7height .}}}}

Figure 6.8: SPARQL Federation: finding locations of a vessel and their static metadata

formed into RDF literals of WKT datatype, as specified the OGC standard GeoSPARQL
and indicated by the mappings that we presented in the previous section. This is the tem-
plate of the queries we posed to retrieve the locations of ferries to three German islands
(Langeoog, Spiekeroog, and Wangerooge).

The query described in Figure 6.7 retrieves the geometries that represent the locations of
ports and the land use of areas that they intersect with (e.g., farmyards, commercial/reli-
gious areas).

For federating third party SPARQL endpoints like GeoNames, RMSAS relies on the
SPARQL 1.1 federated query [64] implemented in Sesame [16]. In the query described in
Figure 6.8, we use “SERVICE” function in order to combine information coming from differ-
ent endpoints exposed by Ontop. The first endpoint (PositionStore) contains dynamic data
about the locations of vessels stored in a PostGIS database. The second endpoint (Ob-
jectStore) contains static metadata about vessels, such as dimensions, name, etc. The
query retrieves all available information about a specific vessels combining both Ontop
endpoints in a federated store.

Evaluation. The benefits of the approach that we presented in this the maritime aware-
ness use case described in this section are explained below.
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Improved data analysis using virtual triples. The data given in this project mainly
exists in databases and data streams and is modeled with respect to different data mod-
els. The use of OBDA techniques facilitates the process of data analysis as these data
are mapped to the ontology that has been created for RMSAS. This allows decision mak-
ers to formulate queries against a standardized ontology instead of articulating different
queries in different languages against different data sources like the ones described in
Section 6.2.5.

Benefits of data integration for maritime decision makers. Compared to the old
workflow with respect to information exchange and integration that was identified in the
beginning of the EMSec project, where maritime staff had to exchange data often in very
traditional ways like email, USB-sticks, mail, paper, or else, the current workflow is sig-
nificantly improved. With the presented technologies in place, maritime decision makers
have all the desired information at hand in near real-time, integrated from different data
sources. This increasing having an overview on the maritime security and having a better
maritime situational awareness.

Detection of routine traffic and abnormal vessel behavior. In the process on data
analysis, SPARQL queries and SWRL rules [42] have been used as a good means (w.r.t.
expressivity and efficiency) to detect routine traffic and abnormal vessel behavior. Since
we cannot display these rules here for confidentiality reasons, we can state that vessel
movements can be easily classified using movement ontologies and that vessel behavior
can be classified using the introduced movement pattern. Having combined this with the
OBDA approach and with the utilization of (Geo-)SPARQL functionalities, this has strong
benefits regarding the detection of routine traffic and abnormal vessel behavior.

6.3 Summary

In this chapter, we described two real-world applications in the context of which the work
described in this thesis was applied. The first application belongs to the Earth Observation
domain and it aims at accessing Copernicus data through a Rest API, i.e., the OPeNDAP
API, as virtual triples on-the-fly, using ontologies and mappings. The second application
belongs to the maritime domain awareness and uses Ontop-spatial to integrate relational
data about vessels positions with linked geospatial data.

In the next chapter we conclude the thesis and we also present future extensions.
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7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In the context of this PhD thesis we describe techniques for efficient integration and query-
ing of geospatial and temporal data. We focus in ontology-based data access techniques
for creating virtual semantic graphs on top of relational geospatial and temporal databases,
avoiding the conversion and materialisation of original data into RDF, using ontologies and
mappings. We introduce the first geospatial OBDA system and we demonstrate its effi-
ciency, comparing its performance with state-of-the-art RDF stores. Then, we introduce
new temporal features to the temporal dimension of the data model stRDF and the query
language stSPARQL, in order to facilitate the support of temporal SPARQL queries in
OBDA systems.

The next step was to go beyond relational databases as data sources by extending the
OBDA paradigm with the capability to create virtual RDF graphs on top of data that can
be accessed via Web APIls, HTML tables, etc. We propose an architecture of a sys-
tem that implements these techniques and we showcase its functionality using real-world
scenarios. We conduct an experimental evaluation of the system and we compare our
approach with a related approach offering similar functionality. The outcome of the eval-
uation proves that our system is more rich in functionality and also more efficient. Last
but not least, we present real-world applications in which the approaches described in this
thesis were used.

7.2 Future work

Regarding future work, Ontop-spatial could be extended to support distributed
GeoSPARQL processing. One possible solution into this direction would be to use a
distributed system with geospatial support as back-end, such as SpatialHadoop', Hive,
GeoSpark?, etc. However, since Ontop-spatial performs GeoSPARQL-to-SQL transla-
tion, a candidate back-end system should also have an SQL API apart from geospatial
support. Our recent study [35] presented an evaluation of various geospatial distributed
systems with an SQL API. In this paper the system Exareme?, which is a parallel DBMS
built on top of MadlS, is extended with geospatial support.

Another extension of the work described in this thesis could be the further development
of the raster support. In the context of the thesis, we did not extend GeoSPARQL with
primitives for raster data, however, in DBMSs with raster support, such as the systems
described in [27, 78, 6], there is a wide variety of operators supported. GeoSPARQL
could be extended to support these operators, which could then be implemented in Ontop-

"http://spatialhadoop.cs.umn.edu/
2https://datasystemslab.github.io/GeoSpark/
Shttp://madgik.github.io/exareme/
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spatial or any other GeoSPARQL query engine. Even in these systems, however, support
for relational geospaital operations combining vector and raster data is challenging. For
example, RasDaMan [6], a well-known DBMS with raster support, is not able to perform
spatial joins between a raster and a vector table. The raster extension, on the other hand,
supports it but it is not very effective. It seems that there is still room for research in the
area of databases with raster support in order to effectively handle vector and raster data.
An extension of SPARQL with support for scientific data was proposed in [4], however as
this work is not aligned with GeoSPARQL. The W3C working group “Coverages in Linked
Data™ was formed to address the challenges of the effective representation and querying
of raster data on the Web.

Last but not least, another possible direction could be to introduce support for trajectory
data. Of course, trajectories can already be modeled once spatial and temporal support
are in place, however, there are systems that natively support dedicated primitives and
operators for trajectories, such as the system Hermes [59]. The system Hermes is an
extension of an RDBMS with special data stractures for trajectories and dedicated oper-
ators. The query language GeoSPARQL could be extended to support similar features
and Ontop-spatial could be extended to support systems like Hermes to efficiently query
trajectory data.

‘https://www.w3. org/2015/spatial/wiki/Coverages_in_Linked_Data
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ABBREVIATIONS - ACRONYMS

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

OWL Web Ontology Language
OGC Open Geospatial Consortium
OBDA Ontology-based Data Access
WKT Well-known text

WKB Well-known binary

GML Geography Markup Language

R2RML RDB-to-RDF Mapping Language

RML RDF Mapping Language
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