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Abstract

ENGLISH

This thesis investigates the behavior of the Lagrange multipliers at the piecewise monotonic

approximation to spectra of minerals, carbohydrate and thyroid hormone. The spectra

datasets of minerals are provided freely from Labratory of Photoinduced Effects Vibrational

and X-RAY Spectroscopies [25], of thyroid hormone from Human Metabolome Database

[26] and of carbohydrate from SPECARB database [27]. The thesis consists of four

chapter.

In chapter 1 we present the problem of data approximation and especially the case of

least squares data fitting, how the smoothed data are calculated and expound the piecewise

monotonic data approximation. Furthermore, we discuss the non-linear programming

problem and Lagrange multipliers in both cases when the constraints are linear equality

and linear inequality. In chapter 2 we present the piecewise monotonic data approximation

method, we give an example and we state how the Lagrange multipliers are calculated.

In chapter 3 we perform experiments using nine Raman spectra, eight of minerals and

one of carbohydrate, and one MS spectrum of thyroid hormone in order to determine how

Lagrange multipliers are changed as the number of monotonic sections in a piecewise

monotonic data approximation is changed. We define the measures which are needed

to determine this relationship, we fit each data by the L2WPMA software package for

various values of monotonic sections and we present the results. In chapter 4 we present

the conclusions from the experiments which lead to develop a Lagrange multiplier test that

will provide an estimation of a suitable or adequate number of monotonic sections of the

fit.

Keywords: Data smoothing, Least squares method, Lagrange multipliers, Piecewise

monotonic data approximation, L2WPMA algorithm
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GREEK

‘Αριθμητικά τεκμήρια των πολλαπλασιαστών Lagrange στην κατά τμήματα μονότονη

προσέγγιση δεδομένων’

Αυτή η διπλωματική εργασία ερευνά τη συμπεριφορά των πολλαπλασιαστών Lagrange

στην κατά τμήματα μονότονη προσέγγιση σε φάσματα ορυκτών, υδατάνθρακα και θυ-

ροειδούς ορμόνης. Τα σύνολα δεδομένων των φασμάτων των ορυκτών παρέχονται

ελεύθερα από το Labratory of Photoinduced Effects Vibrational and X-RAY Spectro-

scopies [25], της θυροειδούς ορμόνης από την βάση δεδομένων Human Metabolome

[26] και του υδατάνθρακα από την βάση δεδομένων SPECARB [27] .Η διπλωματική

εργασία αποτελείται από τέσσερα κεφάλαια.

Στο κεφάλαιο 1 παρουσιάζουμε το πρόβλημα της προσέγγισης των δεδομένων και

ειδικότερα την περίπτωση της προσέγγισης ελαχίστων τετραγώνων, τον τρόπο υπο-

λογισμού των εξομαλυνθέντων δεδομένων και κάνουμε μία πρώτη αναφορά στην κα-

τά τμήματα μονότονη προσέγγιση δεδομένων. Επιπλέον, συζητάμε το πρόβλημα του

μη γραμμικού προγραμματισμού και των πολλαπλασιαστών Lagrange στις περιπτώσεις

όπου οι γραμμικοί περιορισμοί είναι ισότητες ή ανισότητες. Στο κεφάλαιο 2 παρουσι-

άζουμε την κατά τμήματα μονότονη προσέγγιση δεδομένων μαζί με ένα παράδειγμα και

αναφέρουμε τον τρόπο υπολογισμού των πολλαπλασιαστών Lagrange. Στο κεφάλαιο 3

πραγματοποιούμαι πειράματα χρησιμοποιώντας εννέα φάσματα Raman ,οκτώ ορυκτών

και ενός υδατάνθρακα, και ένα φάσμα MS θυροειδούς ορμόνης, προκειμένου να κα-

θοριστεί ο τρόπος με τον οποίο μεταβάλλονται οι πολλαπλασιαστές Lagrange καθώς

ο αριθμός των μονότονων τμημάτων σε μια κατά τμήματα μονότονη προσέγγιση δεδο-

μένων μεταβάλλεται. Ορίζουμε τα μέτρα που χρειάζονται για να καθορίσουμε αυτή την

σχέση, τρέχουμε τα δεδομένα στο πακέτο λογισμικού L2WPMA για διάφορες τιμές

μονότονων τμημάτων και παρουσιάζουμε τα αποτελέσματα. Στο κεφάλαιο 4 παρουσι-

άζουμε τα συμπεράσματα από τα πειράματα τα οποία οδηγούν στην ανάπτυξη ενός τεστ

πολλαπλασιαστών Lagrange που θα παρέχει μία εκτίμηση ενός κατάλληλου ή επαρκούς

αριθμού μονότονων τμημάτων της προσέγγισης.

Λέξεις-κλειδιά: Λείανση δεδομένων, Μέθοδος ελαχίστων τετραγώνων, Κατά τμήματα

μονότονη προσέγγιση δεδομένων, Πολλαπλασιαστές Lagrange, L2WPMA αλγόριθμος
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Chapter 1

Introduction

1.1 The problem of data approximation

A smooth function f(x), a≤ x≤ b is measured at the points a = x1 < x2 < · · ·< xn = b and

the measurements {φi≈ f (xi) : i = 1,2, . . . ,n} contain random errors. The general problem

of data smoothing on data approximation is to calculate numbers {yi : i = 1,2, . . . ,n} from

the measurements that are smooth and that should be closer than the measurements to the

true function values { f (xi) : i = 1,2, . . . ,n}.

There are many approaches to this problem and in section 1.1.2. we present one that

has been used for many years dating to Lagrange. By “close” we mean that one makes

least changes to the data subject to some condition that is defined by the user, and there are

several ways of defining “least”. A useful choice is to minimize the expression

‖y−φ‖2
2 =

n

∑
i=1

(yi−φi)
2, (1.1)

where φ denotes the vector in Rn whose components are φ1,φ2, . . . ,φn. Expression (1.1)

is appropriate when the data errors have a normal distribution (see, Gauss [1]). The

“condition” is related to the smoothing approach that is followed by the user.

1.1.1 Least squares data fitting

The material of this section has been based on Hildebrand [6] and Forsythe, Malcolm &

Moler [7]. Let {(xi,yi) : i = 0,1, . . . ,n} be a set of data points. Consider xi the indepentent

13



variable and yi the dependent variable which satisfy the functional relationship

yi = f (xi). (1.2)

The function f is an unknown function, which is known to exist, but its type is not

known. The main purpose is to determine a polynomial of hign degree that achieves a

best approximation. This ensues that the error of the approach should be as minimal as

possible.

Furthermore, in the discrete set of points x0, x1, . . . , xn we suppose that f is to be

approximated by y. Its form is the following

f (x)≈
m

∑
k=0

αkφk(x)≡ y(x), x ∈ Rn, (1.3)

where y is linear combination of m coordinate functions φ0, φ1, . . . , φm, although the

coordinate functions may be nonlinear functions of x. In the case of the number of the

unknown coefficients m is lower than the number of data points n, such that m+1 < n, the

problem of choosing the coefficients is overdetermined and it is hardly possible to achieve

the best data fitting.

If we determine the residual R(x) as follows

R(x) =
m

∑
k=0

αkφk(x)− f (x)≡ y(x)− f (x), (1.4)

the coefficients αk, which are chosen to minimize the sum of squares of the residuals, are

specified by the least squares criterion, that is,

min
n

∑
i=0

[R(xi)]
2 = min

n

∑
i=0

[
m

∑
k=0

αkφk(xi)− f (xi)]. (1.5)

In the special case of the model exactly fitting the data, the previous quantity will be zero,

hence interpolation is included.

A unique set of coefficients is defined by the least squares criterion. On condition

that the coordinate functions are linearly dependent at the data points, there are nonzero

coefficients ck, such that

m

∑
k=0

ckφk(xi) = 0 i = 0,1, . . . ,n. (1.6)
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Consequently, any multiple of the ck can be added to the αk without changing the sum

of squares of the residuals. Detecting and appropriate handling of such dependence and

nonuniqueness constitutes a significant task in the least squares data fitting.

Therefore, taking into account the derivatives as follows

∂ r2

∂αk
= 0, k = 0,1, . . . ,m (1.7)

and interchanging orders of summation, we result in

m

∑
k=0

αk[
n

∑
i=0

φk(xi)φr(xi)] =
n

∑
i=0

φr(xi) f (xi), (1.8)

m+1 simultaneous linear equations in m+1 unknown parameters α0,α1, . . . , αm, which

are the normal equations. The following linear system is derived from the equation

α0φ0(x0)+α1φ1(x0)+ · · · +αmφm(x0) = f (x0)

α0φ0(x1)+α1φ1(x1)+ · · · +αmφm(x1) = f (x1) (1.9)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

α0φ0(xn)+α1φ1(xn)+ · · · +αmφm(xn) = f (xn).

This system has a unique solution in the case when {xi : i = 0,1, . . . ,n} are all different. It

can be written in the matrix form as

PC = Q, (1.10)

where

pkr =
n

∑
i=0

φk(xi)φr(xi),

qk =
n

∑
i=0

φr(xi) f (xi).

It can be shown that the matrix P, which is symmetrical and depends only on the coordinate

functions, is positive define, so no pivoting is required. Also, the matrix of coefficients C

is symmetrical.

A fundamental drawback to the use of the normal equations should be noticed. The set

of normal equations includes small errors in the coefficients or roundoff errors introduced

during the solution, which may lead to large errors in the solution of the set. Hence, it is
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crucial the errors in the calculated coefficients be estimated.

However, besides the numerical problems that arise, a serious difficulty is how to

choose the basis {φi : i = 0,1, . . . ,m} so as to provide a suitable approximation to the data.

In Chapter 2, we shall see that the piecewise monotonic method suggests a completely

different approximation to data smoothing or fitting.

1.1.2 Piecewise monotonic approximation

Consider a smooth function f(x) which is measured at abscissae x1 < x2 < · · · < xn

and measurements {φi ≈ f (xi) : i = 1,2, . . . ,n} which contain large uncorrelated errors.

Demetriou and Powell proposed a data smoothing method that calculates smoothed values

{yi : i = 1,2, . . . ,n} and imposes a prescribed number of sign changes, say k−1, on the

first differences of the smoothed values. This condition allows k monotonic sections to the

smoothed data, so k−1 is the number of sign changes in the first derivative of f(x).

The method minimizes the sum of squares of residuals εi as follows

min
n

∑
i=1

ε
2
i = min

n

∑
i=1

(yi−φi)
2 (1.11)

subject to the piecewise monotonicity constraints

yt j−1 ≤ yt j−1+1 ≤ ·· · ≤ yt j , if j is odd

yt j−1 ≥ yt j−1+1 ≥ ·· · ≥ yt j , if j is even
(1.12)

where the integers {t j : j = 1,2, . . . ,k}, positions of turning points, satisfy the condition

1 = t0 ≤ t1 ≤ ·· · ≤ tk = n. (1.13)

Although there are about O(nk) combinations of the integer variables {t j : j = 0,1, . . . ,k−

1} in order for the problem to be solved, a dynamic programming method that generates

the required fit in only O(kn2) computer operations was developed by Demetriou and

Powell [16].
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1.2 Non-linear programming problem and Lagrange multipliers

In this section, we state fundamental conditions that are obtained at the solution of a non-

linear programming problem when the variables satisfy equality and inequality constraints.

These conditions show the importance of the Lagrangian function and of the Lagrange

parameters when feasible changes occur in the constraints.

1.2.1 Non-linear programming problem

Consider the non-linear programming problem minimize the objective function

f (x), x ∈ Rn (1.14)

subject to the constraints

ci(x)≥ 0, i = 1,2, . . . ,m, m < n (1.15)

where f and each ci are real functions of x (for a general reference, see, Fletcher [9]).

We suppose that all functions are twice continuously differentiable. A vector x is called

“feasible” if it satisfies the constraints (1.15).

The vector x∗ is a local solution of the non-linear programming problem, if x is feasible

and if x is in the set

S(x∗,ρ) = {x : ‖x− x∗‖ ≤ ρ}, (1.16)

then the inequality

f (x)≥ f (x∗)

is satisfied.

Suitable conditions are well known in the case when there are no constraints on the

variables. Specifically, if x∗ is a local solution, then the gradient vector ∇ f (x∗) is zero and

the second derivative matrix ∇2 f (x∗) is positive define or positive semi-define. Conversely,

if ∇ f (x∗) is zero and if ∇2 f (x∗) is positive define, then x∗ is a local solution (see, Powell

[11]).

It is straightforward to extend these definition to the case when all the constraints on x
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are only the equality constraints (see, for example, Walsh [10])

ci(x) = 0, i = 1,2, . . . ,m (1.17)

provited that the constraints gradients

{∇ci(x∗) : i = 1,2, . . . ,m}

are linearly independent, as we show in the next section.

1.2.2 First order conditions for equality constraints

If the constraints on x, are given by (1.17), i.e. all equality constraints, then x is a local

solution of the non-linear programming problem if the vector ∇ f (x∗) and {∇ci(x) : i =

1,2, . . . ,m} are linearly dependent. Specifically, the Lagrangian condition hold. Namely, if

x∗ is a local solution and if the only constraints are linear equality constraints, then there

exist multipliers {λi : i = 1,2, . . . ,m}, such that the equation

∇ f (x∗) =
m

∑
i=1

λi∇ci(x∗) (1.18)

is satisfied [11].

The assumption that constraint gradients are linearly independent at the solution x∗

implies that the exist unique values of the Lagrange multipliers {λi : i = 1,2, . . . ,m} such

that the equation (1.18) holds. We note that this equation implies that the Lagrangian

function

L(x,λ ) = f (x)−λ
T c(x) (1.19)

is stationary at x∗. An interesting interpretation of the Lagrange multipliers is given below

[11].

We assume at the moment that equation (1.17) become

ci(x) = bi, i = 1,2, . . . ,m. (1.20)

Then (1.19) becomes

Ψ(x,λ ) = f (x)−λ
T (c(x)−b. (1.21)
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From (1.21) we deduce the interesting result

∇bΨ(x,λ ) =
∂Ψ(x,λ )

∂b
= λ (1.22)

or
∂Ψ(x,λ )

∂bi
= λi i = 1,2, . . . ,m. (1.23)

This provides an interpretation of the Lagrange multiplier λi as a number measuring the

marginal potential change in Ψ(x,λ ) = f (x), when bi is changed by a small amount.

Here, of course, we assume that x = x∗. It is of great importance that the implication of

(1.23) is deeply understood. The same result is obtained in a different way. Suppose that

the right-hand side of (1.20), i.e. the vector b, is changed a little by amounts given by the

vector

∂b =


∂b1

∂b2
...

∂bm

 . (1.24)

Then the vector x has to change by a vector δ say, such that x+δ satisfy the constraints

(1.20)

ci(x+δ ) = bi +∂bi, (1.25)

where ‖δ‖ is small.

We seek an estimate of the change { f (x∗+δ )− f (x∗)} that is caused by the change in

the constraints. Even though that there may be much freedom in δ after the constraints are

satisfied, we have the very useful property that the Lagrangian condition (1.18) provides

a first order estimate of the change to the objective function. Because the constraint

conditions give the approximations

bi = ci(x∗+δ )

= ci(x∗)+δ
T

∇ci(x∗)+O(‖δ‖2)

= δ
T

∇ci(x∗)+O(‖δ‖2) i = 1,2, . . . ,m, (1.26)
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where x∗ is a local solution of the equality constrained problem, we deduce the estimate

f (x∗+δ )− f (x∗) = δ
T

∇ f (x∗)+O(‖δ‖2)

= δ
T

m

∑
i=1

λi∇ci(x∗)+O(‖δ‖2)

=
m

∑
i=1

λibi +O(‖δ‖2). (1.27)

Thus the Lagrange multiplier λi is just a multiplier factor in the change to the objective

function that occurs if the right-hand side of the constraint ci(x) = 0 is altered from zero to

bi.

1.2.3 Quadratic objective function and linear equality constraints

In this section, we replace the general objective function f (x) by a quadratic function

and obtain analogous conditions to (1.27). Consider next the problem of minimizing the

objective function

Q(x) = α
T x+

1
2

xT Bx, (1.28)

subject to the m < n linear equality constraints

cT
i x = 0 i = 1,2, . . . ,m, (1.29)

where x ∈ Rn,α ∈ Rn,ci ∈ Rn and B is a positive definite n× n matrix. As usual, the

constraint gradients are linearly independent (see, Boot [8]).

The Lagrangian function (1.19) now takes the form

Φ(x,λ ) = Q(x)−λ
TCT x, (1.30)

where C is the n×n matrix of the constraints ci = 1,2, . . . ,m and the minimizing procedure

again amounts to the taking the first order pantial derivatives with respect to x and λ and

then equating the results to zero.This gives the system of the n+m equations

α +Bx−Cλ = 0 (1.31)

CT x = 0. (1.32)
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If we change the right-hand side of (1.29) from zero to bi,

cT
i x = bi i = 1,2, . . . ,m, (1.33)

equation (1.32) becomes

CT x = b. (1.34)

But from (1.30) we deduce for this case as well that (1.22) and (1.23) hold, while (1.25)

gives

cT
i (x+δ ) = bi +∂bi (1.35)

or for all i,

CT (x+δ ) = b+∂b. (1.36)

Hence

CT
δ = ∂δ (1.37)

The vector δ of changes in the components of x is not fully determined by ∂b, because

the system CT δ = ∂δ has m equations in n unknowns m < n. Now by neglecting terms of

second order of magnitude, we have

∂ f = f (x+δ )− f (x)

= (α +Bx)T
δ , (1.38)

where for uniformity of notation we let f (x) = Q(x).

Next suppose that we are at a minimum point. Thus the equation (1.31) is satisfied and

we obtain from (1.38) the equation

(α +Bx − Cλ )
T

δ = 0. (1.39)

Substituting (1.39) into (1.28) and, in view of (1.27), by using

λ
TCT

δ = λ
T

∂b,

we obtain

∂ f = λ
T

∂b =
m

∑
i=1

λi∂bi
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or
∂ f
∂b

= λ .

Thus, as long as we are in a minimum point, a small change ∂bi in the component bi

changes the value of f by an amount λi. The m values of the Lagrangian multipliers

are associated with the m constraints, one multiplier for each constraint. The sign of the

multiplier is particularly important.

If the sign is positive, a unit increase in bi is positively valued. One would obtain a

smaller value of the objective function if more of bi were available. In fact the minimum

would, according to the argument given above, decrease by an amount λi, which is in

economics is referred to as the shadow price. If the sign is negative, then a unit less of bi

would decrease the value of the objective function by λi. One has too much bi to be good,

and would be willing to pay up to λi to get rid of one unit bi. The special case when λi = 0

means that one has the right amount of bi available. The minimization of the objective

function subject to CT x = b leads to the same result x̂, say, whether cT
i x = bi is present

or not. That is, if we disregard the constraint cT
i x = bi, if we do not impose it, and then

proceed to minimize the objective function subject to the remaining constraints we obtain

a solution x̂ which happens to be such that

cT
i x̂ = bi.

This is a degenerate constraint and we are at degeneracy when it occurs (see, for example,

[8] and [9]).

1.2.4 First order conditions for inequality constraints

In this section we admit both equality and inequality constraints on the vector of variables,

thus we consider the general non-linear problem of section 1.2.1. We consider the case

when the vectors ci(x), i = 1,2, . . . ,m, are linearly independent. If x∗ is a local minimum,

then it is also a local minimum of the problem of minimizing f (x) subject to the equality

conditions

ci(x) = 0, i ∈ E, (1.40)
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where E is a subset of the constraints indices {1,2, . . . ,m}. It follows that the first order

conditions are

∇ f (x∗) = ∑
i∈E

λi∇ci(x∗), (1.41)

where the values of the multipliers are uniquely determined because the constraint gradients

are linearly independent. Further, the remarks of the last paragraph of section 1.2.2 show

that, if λi is negative, then the objective function can be reduced by changing x∗ by a small

amount, so that the constraint function ci(x) becomes positive, which preserves feasibility.

Therefore, if x∗ is a local solution to the main non-linear programming problem, then not

only is ∇ f (x∗) in the linear space spanned by the vectors

{∇ci(x∗) : i ∈ E},

but also the multipliers {λi : i ∈ E} in expression (1.41) are nonnegative. This is stated by

the following fundamental theorem [9].

Theorem (Karush-Kuhn-Tucker conditions).

If x∗ is a local solution of the problem that minimizes the objective function (1.14) subject

to (1.15), then there exist multipliers {λi : i ∈ E}, where

λi ≥ 0 i ∈ E

and

λi = 0 i ∈ {1,2, . . . ,m}\E,

such that the gradient of the objective function at x∗ has the form

∇ f (x∗) = ∑
i∈E

λi∇ci(x∗). � (1.42)

It follows from this theorem that

λi = 0 if ci(x∗)> 0, i ∈ {1,2, . . . ,m}\E.
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Thus, if there exist multipliers {λi : i ∈ E} that satisfy equation (1.42) and the conditions

λi ≥ 0 i ∈ E

λi = 0, ci(X∗)> 0
(1.43)

then x∗ is a Karush-Kuhn-Tucker points. These points correspond to stationary points

of the objective function when there are no constraints, because any more away from a

Karush-Kuhn-Tucker point that maintains feasibility and that reduces the objective function

can only reduce the objective function by an amount that is of second order in the change

of variables. Specifically, if d is small and if (x∗+d) is feasible, then expressions (1.42)

and (1.43) imply the band

f (x∗+d)− f (x∗) = dT
∇ f (x∗)+O(‖d‖2)

= dT
∑
i∈E

λi∇ci(x∗)+O(‖d‖2)

= ∑
i∈E

λidT
∇ci(x∗)+O(‖d‖2)

= ∑
i∈E

λi[ci(x∗+d)− ci(x∗)]+O(‖d‖2)

≥ O(‖d‖2),

where the penultimate equality follows from the first order approximation to the constraint

functions.

Thus, any feasible change to a local solution is bounded below by a second order change

to the objective function [11].
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Chapter 2

Piecewise monotonic data

approximation

2.1 Definition of piecewise monotonic data approximation

The piecewise monotonic data approximation is a data smoothing method. Introduced by

Demetriou and Powell [16] and it provides some useful applications in image processing,

signal restoration and spectroscopy(see, for example, [3] and [18]). This method has

some significant advantages over others currently used smoothing methods. The method

is particularly suitable when the errors are large and uncorrelated and choosing a set of

approximation functions is not needed. Also, the smoothing process is a projection because,

if it is applied to smoothed data, then there is no need for changes.

Let n, k be positive integers,where n is the number of data and k is a prescribed integer,

such that k < n and let {φi = φ(xi) : i = 1,2, . . . ,n} be a sequence of measured values of a

signal f (x) at the abscissae x1 < x2 < · · · < xn. The measurements contain uncorrelated

random errors (noise) εi such that φ(xi) = f (xi)+ εi. We assume that if the signal has

turning points, their number is much lower than the number of measurements. Also,

let {yi : i = 1,2, . . . ,n} be a sequence of smoothed values. Some algorithms have been

developed by Demetriou & Powell [16] and also by Demetriou [13] and [14] that modify

the measurements if their first differences {yi+1−yi : i = 1,2, . . . ,n−1} contain more than

k−1 sign changes. This is a condition that allows k monotonic sections to the smoothed

data.

We regard {φi : i = 1,2, . . . ,n} as components of n-vector φ , {yi : i = 1,2, . . . ,n} as

components of n-vector y and for the present that k is known. The method [16] calculates
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a vector y that minimizes tha sum of squares of the errors

Φ(y) =
n

∑
i=1

(yi−φi)
2 (2.1)

subject to the piecewise monotonicity constraints

yt j−1 ≤ yt j−1+1 ≤ ·· · ≤ yt j , if j is odd

yt j−1 ≥ yt j−1+1 ≥ ·· · ≥ yt j , if j is even
(2.2)

where {t j : j = 0,1, . . . ,k} are integers, that is to say the positions of the turning points or

extrema of the fit, satisfy the conditions

1 = t0 ≤ t1 ≤ ·· · ≤ tk = n. (2.3)

The integers {t j : j = 1,2, . . . ,k−1} which not known originally, are variables in the

optimization calculation that gives a best fit. While the number of combinations of integer

variables is raised to the order O(nk), the piecewise monotonic approximation method

allows an efficient and automatic calculation of an optimal fit y in only O(kn2) computer

operations. Especially, when k = 1 or k = 2, this complexity reduces to O(n).

When the number of extrema in the data is less than k−1, φ satisfies the piecewise

monotonicity constraints, so y = φ . On the contrary the case of y not satisfying the

piecewise monotonicity constraints, the turning point indices {t j : j = 1,2, . . . ,k−1} are

all different. At the turning points of a best fit y, we have the interpolation conditions

yt j = φt j j = 1,2, . . . ,k−1. (2.4)

Each monotonic section in a best piecewise monotonic fit can be obtained by a seperate

calculation, since it is the optimal fit itself to the corresponding data. The components

{yi : i = t j−1, t j−1 +1, . . . , t j} on [xt j−1,xt j ] minimize the sum of squares

t j

∑
i=t j−1

(yi−φi)
2 (2.5)

subject to the constraints

yi ≤ yi+1 i = t j−1, . . . , t j−1, if j is odd (2.6)
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or subject to the constraints

yi ≥ yi+1 i = t j−1, . . . , t j−1, if j is even, (2.7)

which is a strictly convex quadratic programming problem with a unique solution. In the

former case the sequence {yi : i = t j−1, t j−1+1, . . . , t j} is the best monotonic increasing fit

to {φi : i = t j−1, t j−1+1, . . . , t j}. Respectively, in the latter case it is the best decreasing fit.

Therefore, under the condition that {t j : j = 1,2, . . . ,k−1} are known, solving a seperate

monotonic problem on each section [xt j−1,xt j ] is required to calculate the components of y.

2.2 The monotonic problem

The monotonic increasing problem seeks a vector y in Rn that minimizes the sum of

squares of the errors, defined by (2.1), subject to the monotonic constraints

y1 ≤ y2 ≤ ·· · ≤ yn. (2.8)

This problem appeared first by van Eeden [17] in 1956, and since then many publications

have appeared because it has many applications in statistics, operations and operation

research, for instance. It is a strictly quadratic programming problem (see, [9]) because the

Hessian matrix of the objective function with respect to y is twice the unit matrix and the

constraints on y are linear. Therefore, it has a unique solution.

Several algorithms are available, but in our method we use the algorithm of Demetriou

& Powell (1991) which is suited to the problem and is very efficient. To be specific, the

algorithm is based on van Eeden’s method and generates a sequence of estimates of the

solution. Initially, it sets y = φ , so it relaxes all the constraints (2.8) and subsequently any

violated constraint is satisfied as an equation. The process finishes when all constraints are

considered and also makes some backtracking to avoid possible constraint violations for

the estimates. The most important feature of this approach is that we can obtain the best

monotonic approximation in only O(n) operations.

The following example gives the best approximation to data from sin(πx)+ εi, x ∈

[0,0.5] at equally spaced abscissae, when εi ∼ U[−1,1]. Figure 2.1 illustrates the best

monotonic increasing approximation. We see that the components are piecewise constants

on the intervals [1,2]∪ [3,4]∪ [5,17]∪ [18,28]∪ [29,35]∪ [36,40].
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Figure 2.1: Graphical representation of the data given in Table 2.1. Best monotonic fit with k = 1 to 40 data points (plus signs)
of sin(πx) + εi. The solid line illustrates the best fit.

The best monotonic decreasing approximation is tested as the increasing one if the

order of the data is reversed. We feed the data to L2WPMA with k = 1 and obtain the

results we present in Table 2.1.

Table 2.1: Best fits with k = 1 monotonic sections to measurements of sin(πx) + εi

i xi φi yi ∆yi λi i xi φi yi ∆yi λi

1 0.000 -0.313 -0.318 - - 21 0.256 0.831 0.646 0.000 2.040
2 0.013 -0.323 -0.318 0.000 0.010 22 0.269 1.079 0.646 0.000 2.409
3 0.026 0.803 0.203 -0.521 0.000 23 0.282 0.972 0.646 0.000 3.274
4 0.038 -0.397 -0.203 0.000 1.200 24 0.295 0.739 0.646 0.000 3.926
5 0.051 1.135 0.489 -0.286 0.000 25 0.308 -0.090 0.646 0.000 4.111
6 0.064 1.097 0.489 0.000 1.291 26 0.321 -0.109 0.646 0.000 2.638
7 0.077 0.740 0.489 0.000 2.506 27 0.333 0.808 0.646 0.000 1.127
8 0.090 -0.518 0.489 0.000 3.007 28 0.346 -0.079 0.646 0.000 1.451
9 0.103 1.086 0.489 0.000 0.992 29 0.359 1.535 1.070 -0.423 0.000

10 0.115 0.934 0.489 0.000 2.185 30 0.372 1.667 1.070 0.000 0.931
11 0.128 0.252 0.489 0.000 3.074 31 0.385 0.394 1.070 0.000 2.126
12 0.141 0.432 0.489 0.000 2.600 32 0.397 1.919 1.070 0.000 0.775
13 0.154 0.792 0.489 0.000 2.485 33 0.410 0.159 1.070 0.000 2.473
14 0.167 -0.216 0.489 0.000 3.090 34 0.423 1.272 1.070 0.000 0.652
15 0.179 1.187 0.489 0.000 1.679 35 0.436 0.541 1.070 0.000 1.057
16 0.192 -0.361 0.489 0.000 3.074 36 0.449 1.942 1.340 -0.270 0.000
17 0.205 -0.197 0.489 0.000 1.373 37 0.462 1.009 1.340 0.000 1.204
18 0.218 1.603 0.646 -0.157 0.000 38 0.474 1.076 1.340 0.000 0.543
19 0.231 0.164 0.646 0.000 1.913 39 0.487 1.663 1.340 0.000 0.015
20 0.244 1.192 0.646 0.000 0.949 40 0.500 1.009 1.340 0.000 0.662
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2.3 Lagrange multipliers in the monotonic case

In this section we state how the Lagrange multipliers are calculated by the piecewise

monotonic approximation, although they are not required for obtaining the optimal fit (see,

[14]).

Consider {λi : i = 2,3, . . . ,n} as the Lagrange multipliers. Also consider {ti : i =

1,2, . . . ,k−1} as the optimal sequence of integers and the associated optimal fit y which

have been obtained. Let E be a subset of the active constraint indices {2,3, . . . ,n}, such

that E = {i : yi−1− yi = 0}.

The Karush-Kuhn-Tucker conditions for the problem that minimizes the objective

function (2.1) subject to (2.2) lead to

grad Φ(y) = ∑
i∈E

λi(ei−1− ei), (2.9)

where ei is the ith coordinate vector in Rn. The Lagrange multipliers {λi : i ∈ E} are

nonnegative in the increasing case, when i ∈ [2, t1]∩E and i ∈ [t j−1 +1, t j]∩E for j odd,

and respectively they are nonpositive in the decreasing case, when i ∈ [t j−1 +1, t j]∩E for

j even. Essentially, the Lagrange multipliers of the piecewise monotonic approximation

case alternate in the sign along with the intervals [t0, t1], [t1, t2], and so on of optimal integer

variables. Furthermore, they are equal to zero λi = 0 for all integers i in [2,n], so that λ is

a (n−1)-vector.

The Lagrange multipliers are calculated due to the equations in E that the components

of y occur in ranges of values on which they are equal. Without loss of generality we

assume that j is an odd integer in [1,k]. We regard {yi : i = t j−1, . . . , t j} as the best

monotonic increasing approximation to {φi : i = t j−1, . . . , t j} and s and t any integers

such that t j−1 ≤ s < t ≤ t j. Considering the above, {λi : i = s+1,s+2, . . . , t} satisfy the

following relations

2(ys−φs) =−λs+1

2(ys+1−φs+1) = λs+1−λs+2

· · ·

2(yt−1−φt−1) = λt−1−λt

2(yt−φt) = λt

(2.10)
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We let ηst be the value that minimizes the expression ∑
t
i=s(η−φi)

2 and by a straightforward

calculation we obtain

ηst =
1

t− s+1

t

∑
i=s

φi

In the case that ys = ys+1 = · · · = yt , s = t j−1 or ys−1 < ys and t = t j or yt < yt+1, it

follows that ys = ηst . As a result the Lagrange multipliers can be calculated recursively by

equations (2.10) in only O(t− s) computer operations as follows

λs+1 = − 2(ηst−φs)

λs+2 = λs+1−2(ηst−φs+1)

· · ·

λt = λt−1−2(ηst−φt−1).

(2.11)

Since Langrange multipliers came from the solution of a quadratic programming problem,

they have the properties that have been given in the quadratic programming case, which

has been studied in chapter 1.

We use the data of the example of section 2.2, we calculate the Lagrange multipliers

and present their values in Table 2.1. As we expected about the Karush-Kuhn-Tucker

conditions all λi are nonnegative. We note that in our example λi are zero for i such that

yi−1 = yi.
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Chapter 3

Experimental Results

In this chapter we perform experiments to study how the Lagrange multipliers are changed

as the number of monotonic sections in a piecewise monotonic approximation is changed.

3.1 Setting the experiment

In order to present the behavior of Lagrange multipliers λi when the number of monotonic

sections k increases, we have to define those measures that present important information

about this correlation.

For this purpose, we will use nine Raman spectrum datafiles, eight datafiles of mineral

which are downloaded from Laboratory of Photoinduced Effects Vibrational and X-RAY

Spectroscopies, a freely available database on the website [25], of the Department of

Physics, University of Parma, and one datafile of carbohydrate which is downloaded from

SPECARB, a freely available database on the website [27], of the Department of Food

Science, Faculty of Science, University of Copenhagen. In addition, we will use a MS

spectrum datafile of thyroid hormone which is downloaded from Human Metabolome

Database, a freely available electronic database on [26], supported by the Canadian

Institutes of Health Research, Canada Foundation for Innovation, and by The Metabolomics

Innovation Centre.

L2WPMA, as we have mentioned, calculates a least squares piecewise approximation

to univariate data which contain random errors. The datafiles consist of two-column data,

where the first column keeps the Raman shift, providing the values {xi : i = 1,2, . . . ,n}

as the abscissae, which are irrelevant to the calculation, and the second column keeps the

intensity, providing the values {φi : i = 1,2, . . . ,n}. The method supplies the smoothed
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data of the best fit {yi : i = 1,2, . . . ,n}, the positions of the turning points of the best fit

{t j : j = 1,2, . . . ,k−1}, the value of the objective function and the Lagrange multipliers,

one multiplier for each constraint, which are also irrelevant to the actual calculation of the

best fit.

The Lagrange multipliers are interpreted as rates of change of the objective function

(2.1). A possible relaxation of an inactive constraint reduces the value of the objective

function (2.1) by an amount equal to the value of the multiplier λi. It is known that the

nonzero Lagrange multipliers correspond to active constraints, so a sensitivity analysis

concludes that the best fit is strongly dependent upon the placement of all active constraints.

Before we state the experiment, it is necessary to define that E is the subset of active

constraints indices {2, . . . ,n}, such that λi ∈ E are nonzero Lagrange multipliers. We

determine that Y(k,n) is the set of the feasible vectors y in Rn with k monotonic sections

increasing and decreasing alternately. Therefore, in this experiment for the optimal y in

Y(k,n) we calculate the following measures

1. SSR = ‖y−φ‖2, the sum of squares of residuals, the value of the objective function,

that is the square distance between the smoothed values yi and the function values φi,

i = 1,2, . . . ,n

2. D = max
1≤i≤n

|yi− φi|, the maximum estimated error, that is the maximum absolute

difference between the smoothed values yi and the function values φi, i = 1,2, . . . ,n

3. L = max
λi∈E
|λi|, the maximum absolute value of the nonzero Lagrange multipliers, that

is of the active constraints

4. `= min
λi∈E
|λi|, the minimum absolute value of the nonzero Lagrange multipliers, that

is of the active constraints

5. log10L and log10`, the decadic logarithms of the maximum and minimum absolute

values of the nonzero Lagrange multipliers

for different values of the monotonic sections k, with the aim of examining how these

measures are changed in connection with k.
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3.2 The Raman spectrum of zircon

The first Raman spectrum datafile regards mineral zircon. The file contains 1024 pairs of

data and is tested for k in {1,2, . . . ,16}. We start feeding the data, without any preliminary

analysis, to L2WPMA, for k = 1, one monotonic section. The best fit and the corresponding

Lagrange multipliers, as well as the calculations of the measures which are examined, are

far too many to be presented as raw numbers in the pages, so refer to Zicron.xlsx, sheet

k = 1. Nevertheless, we may capture the main features of the data set by looking at Fig.

3.1. The data are denoted by plus sign “+” and the piecewise linear interpolant to the

smoothed values illustrates the fit.
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Piecewise Monotonic Fit (k = 1) to Zircon Raman Spectrum 

Figure 3.1: Detected peaks (circles) by a best monotonic fit with k = 1 to 1024 data points (plus signs) of the zircon Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

The measures which we mentioned in section 3.1 can be calculated by the results of

the running program. First, the sum of squares of residuals and the maximun absolute

value of estimated error are equal to 1.33×109 and 9.70×103 respectively. Second, the

maximum and minimum absolute value of nonzero Lagrange multipliers are equal to

2.42× 105 and 2.10× 100 respectively. Last, the corresponding decadic logarithms of

the above maximum and minimum values of nonzero Lagrange multipliers are equal to

5.38×100 and 3.22×10−1 respectively.

The experiment continues for k = 2, two monotonic sections. The corresponding best fit

and Lagrange multipliers refer to Zicron.xlsx, sheet k=2. The data and the best fit for k = 2

are displayed in Fig. 3.2. In this case the measures are SSR = 5.72×108, D = 7.13×103,

L = 1.40×105, `= 4.20×10−1, log10L = 5.15×100 and log10`=−3.77×10−1.
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Piecewise Monotonic Fit (k = 2) to Zircon Raman Spectrum 

Figure 3.2: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 2. The peak is indicated by circle.

For k = 3, three monotonic sections, the results of the running program and the

calculations are presented in Zircon.xlsx, sheet k = 3. Therefore, the corresponding data

and the best fit are displayed in Fig. 3.3. The measures are equal to the case when k = 2,

except for the sum of squares of residuals, the minimum nonzero Lagrange multipliers

and the corresponding decadic logarithms, which are equal to 5.42×108, 2.10×100 and

3.22×10−1 respectively.
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Piecewise Monotonic Fit (k = 3) to Zircon Raman Spectrum 

Figure 3.3: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 3. The peak is indicated by circle.

When k = 4, four monotonic sections, the results from the running program and the

calculations are presented in Zircon.xlsx, sheet 4. The data, the resultant fit and the peaks

are shown in Fig. 3.4. The values of measures are SSR = 2.75× 108, D = 5.43× 103,

L = 1.40×105, `= 4.20×10−1, log10L = 5.15×100 and log10`=−2.73×10−1.
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Piecewise Monotonic Fit (k = 4) to Zircon Raman Spectrum 

Figure 3.4: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 4. The peaks are indicated by circle.

It is observed that Raman spectrum data sets consist of increasing and decreasing

monotonic sections alternately. They start with an increasing monotonic section and end

with a decreasing monotonic section. As a result, in this case, the piecewise monotonic

approximation detects the most important peaks only when k is even. Despite the fact

that we continue to consider all cases for k in {5,6, . . . ,16}, we will present only figures

in which the piecewise monotonic approximation detects the most important peaks for

even monotonic sections. It is usual in practice that the turning points of an optimal fit

with k monotonic sections are preserved by the optimal fit with k+2 monotonic sections.

However, it should be noted that this depends on the specific calculation and does not

necessarily happen generally (see, for example, [12]).
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Piecewise Monotonic Fit (k = 6) to Zircon Raman Spectrum 

Figure 3.5: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 6. The peaks are indicated by circle.
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Piecewise Monotonic Fit (k = 8) to Zircon Raman Spectrum 

Figure 3.6: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 8. The peaks are indicated by circle.
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Piecewise Monotonic Fit (k = 10) to Zircon Raman Spectrum 

Figure 3.7: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 10. The peaks are indicated by circle.

The piecewise monotonic approximation makes the sum of squares of the residuals

smaller, while k increases, maintaining the most important turning points. Having a

known underlying function enables us to see whether the fit is more accurate than the

measurements and it is. For k = 12 the method captures effectively the trends of the data

and detects appropriate peaks (see Fig. 3.8). However, we continue increasing the number

of monotonic sections k, in which the method detects not so important peaks, in order to

examine the behavior of the measures that are mentioned in section 3.1. By increasing

the number of sections k, it is observed that the method detects subtle trends in the data,

which are not detected for smaller values of k, because they are rather conservative (see

Fig 3.9 and 3.10). Therefore, for k = 16 the method detects 15 turning points, 8 of which
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are peaks.
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Piecewise Monotonic Fit (k = 12) to Zircon Raman Spectrum 

Figure 3.8: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 12. The peaks are indicated by circle.
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Piecewise Monotonic Fit (k = 14) to Zircon Raman Spectrum 

Figure 3.9: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 14. The peaks are indicated by circle.

Thus, following the above procedure, we calculate the best fit and the corresponding

Lagrange multipliers, which are presented in Zircon.xlsx with the absolute value of

Lagrange multipliers and estimated errors, with L2WPMA. The main features of the data

sets may be captured by the figures, when k increases.

The behavior of the approximation is explored by presenting in Table 3.1 the positions

of the turning points by piecewise monotonic fits to the zircon data for values of k in

{2,4, . . . ,16}. In the right part of Table 3.1 we indicate the turning point positions of each

optimal fit for k in {2,4, . . . ,16} in corresponce with the column labeled “t j”, derived

when k = 16. For instance, when k = 6 the turning points occur at the positions 188, 232,
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265, 716 and 795 as indicated by the times signs in the column labeled “6”. We notice that

the extra turning points of the optimal approximation with k+2 monotonic sections occur

between adjacent turning points of the optimal approximation with k monotonic sections.
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Piecewise Monotonic Fit (k = 16) to Zircon Raman Spectrum 

Figure 3.10: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 16. The peaks are indicated by circle.

Table 3.1: Left four columns: Turning points in the zircon spectrum by a best fit with k = 16 monotonic
sections. Right eight columns: The turning point positions of the optimal fit for k in {2,4, . . . ,16} are
indicated by the times sign

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14 16
0 1 1.53×102 2.98×103 × × × × × × × ×
1 46 2.02×102 5.11×103 × × ×
2 51 2.08×102 3.61×103 × × ×
3 66 2.24×102 5.95×103 × × × × ×
4 144 3.09×102 2.64×103 × × × × ×
5 188 3.56×102 1.12×104 × × × × × × ×
6 232 4.03×102 2.86×103 × × × × × × ×
7 265 4.38×102 1.36×104 × × × × × × × ×
8 402 5.80×102 2.40×103 × ×
9 459 6.39×102 2.74×103 × ×
10 582 7.63×102 2.26×103 ×
11 643 8.24×102 2.62×103 ×
12 716 8.96×102 2.25×103 × × × × × ×
13 795 9.73×102 7.14×103 × × × × × ×
14 814 9.91×102 2.61×103 × × × ×
15 829 1.01×103 6.99×103 × × × ×
16 1024 1.19×103 2.21×103 × × × × × × × ×

38



In Table 3.2 are displayed the centralized measures of the experiment, which are

mentioned in section 3.1 for k monotonic sections, k in {1,2, . . . ,16}. It is observed that

the sum of squares of residuals decreases while the value of the monotonic sections k

increases. More specifically, the order of magnitude of SSR is 109 for k in {1,2, . . . ,6}

and it decreases to 108 from k in {7,8,9}. For k in {10,11, . . . ,15} it falls to 106. For

k = 16 the order of magnitude falls more to 105. A reduction in the order of magnitude also

occurs in the maximum absolute value of estimated errors, as the number of monotonic

sections increases. For k in {1,2, . . . ,11} it is equal to 103 while for k in {12,13, . . . ,16}

it reduces to 2.3× 102. The maximun absolute value of nonzero Lagrange multipliers

reduces while k increases. More specifically, the order of magnitude starts from 105, for k

in {1,2, . . . ,5}, decreases to 104, for k in {6,7,8,9}, and to 103 for k in {10,11, . . . ,16}.

The minimum absolute value of nonzero Lagrange multipliers presents a fluctuation, that is

for k in {1,3,5} the value is 2.1×100 and for k in {7,9,11,13,15} is 5.60×10−1, while

for k even is equal to 4.20×10−1. Their decadic logarithms have a corresponding behavior.

Table 3.2: Measures for Zircon.

k SSR D L ` log10L log10`

1 1.33×109 9.70×103 2.42×105 2.10×100 5.38×100 3.22×10−1

2 5.72×108 7.13×103 1.40×105 4.20×10−1 5.15×100 −3.77×10−1

3 5.42×108 7.13×103 1.40×105 2.10×100 5.15×100 3.22×10−1

4 2.75×108 4.53×103 1.40×105 4.20×10−1 5.15×100 −2.73×10−1

5 2.45×108 4.53×103 1.40×105 2.10×100 5.15×100 3.22×10−1

6 1.24×108 3.37×103 7.19×104 4.20×10−1 4.86×100 −3.77×10−1

7 9.34×107 3.37×103 4.06×104 5.60×10−1 4.61×100 −2.52×10−1

8 5.82×107 3.37×103 3.29×104 4.20×10−1 4.52×100 −3.77×10−1

9 4.04×107 2.30×103 4.06×104 5.60×10−1 4.61×100 −2.52×10−1

10 5.25×106 1.07×103 7.99×103 4.20×10−1 3.90×100 −3.77×10−1

11 5.25×106 1.07×103 7.99×103 5.60×10−1 3.90×100 −2.52×10−1

12 2.05×106 2.30×102 7.99×103 4.20×10−1 3.90×100 −3.77×10−1

13 2.05×106 2.30×102 7.99×103 5.60×10−1 3.90×100 −2.52×10−1

14 1.30×106 2.30×102 5.55×103 4.20×10−1 3.74×100 −3.77×10−1

15 1.30×106 2.30×102 5.55×103 5.60×10−1 3.74×100 −2.52×10−1

16 7.75×105 2.30×102 1.38×103 4.20×10−1 3.14×100 −3.77×10−1
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3.3 Experiments with Raman spectra of minerals

We examine another seven experiments with Raman spectrum datafiles of minerals. The

process is exactly the same as in section 3.2.

3.3.1 The Raman spectrum of datolite

The datafile of Raman spectrum of mineral datolite is the datafile through which we

continue the experiments. This datafile contains 1024 pairs of data which are fed to

L2WPMA with different values of k, k in {1,2, . . . ,20}. The corresponding results are

presented in Datolite.xlsx. Fig. 3.11 is the corresponding figure in which are shown the

data and the best fit for k = 14.

In addition, for k = 20 the method detects 19 turning points, 10 of which are peaks.

Table 3.3 presents the turning points positions by piecewise monotonic fits to the datolite

data for values of k in {2,4, . . . ,20}, so that we explore the behavior of the approximation.

In the right part of Table 3.3 we indicate the positions of the turning points of each optimal

fit for k in {2,4, . . . ,20} in correspondence with the column labaled “t j”, derived when

k = 20. For instance, when k = 6 the turning points occur at the positions 18, 103, 517,

618 and 909 as indicated by the times signs in the column labeled “6” and when k = 8 the

method detects two more turning points at the positions 227 and 392 as indicated by the

times signs in the column labeled “8”.
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Piecewise Monotonic Fit (k = 14) to Datolite Raman Spectrum 

Figure 3.11: Detected peaks (circles) by a best monotonic fit with k = 14 to 1024 data points (plus signs) of the datolite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.
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Table 3.3: Left four columns: Turning points in the datolite spectrum by a best fit with k = 20 mono-
tonic sections. Right ten columns: The turning point positions of the optimal fit for k in {2,4, . . . ,20}
are indicated by the times sign

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14 16 18 20
0 1 1.48×102 3.38×103 × × × × × × × × × ×
1 18 1.66×102 4.11×104 × × × × × × × × ×
2 55 2.07×102 3.61×103 × × × × ×
3 66 2.19×102 1.48×104 × × × × ×
4 103 2.59×102 3.47×103 × × × × × × × × ×
5 199 3.62×102 8.10×103 × ×
6 212 3.76×102 4.14×103 × ×
7 227 3.92×102 1.31×104 × × × × × × ×
8 242 4.08×102 3.81×103 ×
9 257 4.24×102 7.12×103 ×

10 304 4.73×102 3.81×103 × × ×
11 321 4.91×102 7.62×103 × × ×
12 392 5.65×102 3.18×103 × × × × × × ×
13 517 6.93×102 3.89×104 × × × × × × × × × ×
14 618 7.94×102 3.52×103 × × × × × × × ×
15 743 9.17×102 1.14×104 × × × × × ×
16 789 9.62×102 3.91×103 × × × ×
17 812 9.84×102 9.04×103 × × × ×
18 857 1.03×103 3.57×103 × × × × × ×
19 909 1.08×103 1.32×104 × × × × × × × ×
20 1024 1.18×103 3.66×103 × × × × × × × × × ×

The value of centralized measures which are mentioned in section 3.1 when k in

{1,2, . . . ,20} are presented in Table 3.4. The values of the measures decrease while the

number of monotonic sections increases. More specifically, the order of magnitude of

the sum of squares of residuals starts from 109 for k in {1,2, . . . ,7}, decreases to 108 for

k in {8,9, . . . ,17} and to 107 for k in {18,19,20}. For k in {2,3, . . . ,19} the values are

equal per two. The order of magnitude of maximum absolute value of estimated errors is

104 and it reduces to 103, 9.70×103 for k in {4,5, . . . ,11}, 4.27×103 for k in {12,13},

3.15×103 for k in {14,15}, 2.88×103 for k in {16,17}, 2.48×103 for k in {18,19} and

1.63× 103 for k = 20. The order of magnitude of the maximum absolute value of the

Lagrange multipliers declines from 105 for k in {1,2, . . . ,9} to 104 for k in {10,11, . . . ,20}.

More specifically, for k in {6,7, . . . ,17} the values are equal per two, for k in {3,4,5} and

{18,19,20} are equal per three and for k in {1,2} are different. The minimum absolute

value of nonzero Lagrange multipliers is 1.10× 101 for k in {1,2}, 2.00× 100 for k in

{3,4, . . . ,9} and 1.00×100 for k in {10,11, . . . ,20}. Their decadic logarithms display a

corresponding behavior.
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Table 3.4: Measures for Datolite

k SSR D L ` log10L log10`

1 9.51×109 3.39×104 5.39×105 1.10×101 5.73×100 1.04×100

2 5.41×109 3.63×104 3.31×105 1.10×101 5.52×100 1.04×100

3 4.49×109 3.02×104 2.13×105 2.00×100 5.33×100 3.01×10−1

4 1.61×109 9.70×103 2.13×105 2.00×100 5.33×100 3.01×10−1

5 1.61×109 9.70×103 2.13×105 2.00×100 5.33×100 3.01×10−1

6 1.15×109 9.70×103 1.45×105 2.00×100 5.16×100 3.01×10−1

7 1.15×109 9.70×103 1.45×105 2.00×100 5.16×100 3.01×10−1

8 8.15×108 9.70×103 1.23×105 2.00×100 5.09×100 3.01×10−1

9 8.15×108 9.70×103 1.23×105 2.00×100 5.09×100 3.01×10−1

10 5.28×108 9.70×103 6.17×104 1.00×100 4.79×100 0.00×100

11 5.28×108 9.70×103 6.17×104 1.00×100 4.79×100 0.00×100

12 2.76×108 4.27×103 5.80×104 1.00×100 4.76×100 0.00×100

13 2.76×108 4.27×103 5.80×104 1.00×100 4.76×100 0.00×100

14 1.71×108 3.15×103 3.11×104 1.00×100 4.49×100 0.00×100

15 1.71×108 3.15×103 3.11×104 1.00×100 4.49×100 0.00×100

16 1.29×108 2.88×103 2.69×104 1.00×100 4.43×100 0.00×100

17 1.29×108 2.88×103 2.69×104 1.00×100 4.43×100 0.00×100

18 9.03×107 2.48×103 2.46×104 1.00×100 4.39×100 0.00×100

19 9.03×107 2.48×103 2.46×104 1.00×100 4.39×100 0.00×100

20 6.81×107 1.63×103 2.46×104 1.00×100 4.39×100 0.00×100

3.3.2 The Raman spectrum of olivenite

We continue the experiments with the Raman spectrum datafile of the mineral olivenite

in which the number of pairs of data is 1024. We feed the data to L2WPMA with k

in {1,2 . . . ,16} and the results are presented in Olivenite.xlsx with the corresponding

measures which we calculate. The main features of this data set may easily be captured by

Fig. 3.12 which shows the data and the best fit for k = 14.

Furthermore, for k = 16 the method detects 15 turning points, 8 of which are peaks.

In order to examine the behavior of the approximation, we display the turning points by

piecewise monotonic fits to the olivenite data for values of k in {2,4, . . . ,16} in Table 3.5.

In the right part of the table 3.5 are indicated the positions of the turning points of each

optimal fit for k in {2,4, . . . ,16} in correspondence with the column labeled “t j”, derived

when k = 16. For example, for k = 6 the turning points occur at the positions 66, 99, 121,

527 and 710 as shown by the times signs in the column labeled “6”, while for k = 8 two

more turning points occur at the positions 158 and 177 as indicated by the times signs in

the column labeled “8”.
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Piecewise monotonic (k=14) to Olivenite Raman Spectrum 

Figure 3.12: Detected peaks (circles) by a best monotonic fit with k = 14 to 1024 data points (plus signs) of the olivenite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.5: Left four columns: Turning points in the olivenite spectrum by a best fit with k = 16
monotonic sections. Right eight columns: The turning point positions of the optimal fit for k in
{2,4, . . . ,16} are indicated by the times sign

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14 16
0 1 8.25×101 1.60×103 × × × × × × × ×
1 8 9.02×101 3.34×103 × × × ×
2 38 1.25×102 9.32×102 × × × ×
3 66 1.57×102 9.95×103 × × × × × × ×
4 99 1.94×102 8.06×102 × × × × × ×
5 121 2.19×102 3.35×103 × × × × × ×
6 158 2.61×102 8.57×102 × × × × ×
7 177 2.83×102 3.46×103 × × × × ×
8 216 3.26×102 1.09×103 × ×
9 233 3.45×102 2.19×103 × ×
10 276 3.93×102 6.43×102 × × ×
11 302 4.21×102 1.79×103 × × ×
12 352 4.76×102 5.79×102 ×
13 397 5.25×102 1.26×103 ×
14 527 6.33×102 4.71×102 × × × × × × ×
15 710 8.54×102 1.80×104 × × × × × × × ×
16 1024 1.17×103 4.32×102 × × × × × × × ×

Table 3.6 presents the measures which we examine for each k in {1,2, . . . ,16}. It

is observed that the values of the sum of squares of errors decreases while the number

of monotonic sections k increases. More specifically, its order of magnitude starts from

109 for k = 1, decreases to 108 for k in {2,3} and to 107 for k in {4,5, . . . ,11}. Then it

decreases to 106 for k in {12,13,14,15} and to 105 for k = 16. The order of magnitude

of maximum absolute values of estimated errors decreases gradually for k in {1,2,3},
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from 1.69×104 to 7.53×103. For k in {4,5,6,7} the value is 1.99×103 and for k = 8

is 1.90×103. Then it presents a fluctuation while k increases, that is for k in {9,11,13}

the value is 9.42×102 and for k = 10 and k = 12 the values are 8.24×102 and 7.48×102

respectively. The value for k = 14 and k = 15 is 5.52×102 and for k = 16 is 2.94×102.

The order of magnitude of the maximum absolute value of nonzero Lagrange multipliers

for k in {1,2,3} is 105. Then its order of magnitude for k in {4,5, . . . ,12} decreases to 103.

Its values are equal per two except for k = 8. For k in {13,14,15} its value is 8.72×103

and for k = 16 is 3.23×103. The minimun absolute value of nonzero Lagrange multipliers

for k in {1,2} is equal to 1.00× 100 and for k in {3,4, . . . ,16} is equal to 5.33× 10−1.

Their decadic logarithms have a corresponding bahavior.

Table 3.6: Measures for Olivenite

k SSR D L ` log10L log10`

1 2.27×109 1.69×104 3.71×105 1.00×100 5.57×100 0.00×100

2 6.62×108 8.87×103 3.44×105 1.00×100 5.54×100 0.00×100

3 4.13×108 7.53×103 1.09×105 5.33×10−1 5.04×100 −2.73×10−1

4 9.52×107 1.99×103 3.32×104 5.33×10−1 4.52×100 −2.73×10−1

5 7.80×107 1.99×103 3.32×104 5.33×10−1 4.52×100 −2.73×10−1

6 6.38×107 1.99×103 2.94×104 5.33×10−1 4.47×100 −2.73×10−1

7 4.67×107 1.99×103 2.94×104 5.33×10−1 4.47×100 −2.73×10−1

8 3.51×107 1.90×103 2.48×104 5.33×10−1 4.40×100 −2.73×10−1

9 1.79×107 9.42×102 1.79×104 5.33×10−1 4.25×100 −2.73×10−1

10 1.41×107 8.24×102 1.79×104 5.33×10−1 4.25×100 −2.73×10−1

11 1.06×107 9.42×102 1.06×104 5.33×10−1 4.02×100 −2.73×10−1

12 6.76×106 7.48×102 1.06×104 5.33×10−1 4.02×100 −2.73×10−1

13 6.35×106 9.42×102 8.72×103 5.33×10−1 3.94×100 −2.73×10−1

14 2.48×106 5.52×102 8.72×103 5.33×10−1 3.94×100 −2.73×10−1

15 2.48×106 5.52×102 8.72×103 5.33×10−1 3.94×100 −2.73×10−1

16 9.83×105 2.94×102 3.23×103 5.33×10−1 3.51×100 −2.73×10−1

3.3.3 The Raman spectrum of clintonite

The next datafile which we deal with is a Raman spectrum of mineral clintonite. The

number of pairs of data is 1024. We test it for k in {1,2, . . . ,14}. For each value of

{1,2, . . . ,14} we feed the data to L2WPMA and the corresponding results are presented in

fourteen different sheets, one sheet for each k, in Clintonite.xlsx. In order to capture the

main features of the data set, we present Fig. 3.13 for k = 12.

Moreover, for k = 14 the method detects 13 turning points, 6 of which are peaks. In

Table 3.7 are presented the turning point positions by piecewise monotonic fits to the

clintonite data for values of k in {2,4, . . . ,14} in order to investigate the behavior of the
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approximation. In the right part of Table 3.7 we indicate the positions of the turning points

of each optimal fit for k in {2,4, . . . ,14} in correspondence with the column labeled “t j”,

derived when k = 14. For example, when k = 6 the turning points occur at the positions

125, 165, 511, 587 and 989 as indicated by the times signs in the column labeled “6”.
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Figure 3.13: Detected peaks (circles) by a best monotonic fit with k = 12 to 1024 data points (plus signs) of the clintonite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.7: Left four columns: Turning points in the clintonite spectrum by a best fit with k = 14
monotonic sections. Right seven columns: The turning point positions of the optimal fit for k in
{2,4, . . . ,14} are indicated by the times sign

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14
0 1 9.34×101 4.39×102 × × × × × × ×
1 30 1.26×102 2.15×103 ×
2 47 1.46×102 1.84×103 ×
3 125 2.35×102 8.85×103 × × × × × ×
4 165 2.80×102 2.43×103 × × × × × ×
5 272 3.99×102 5.00×103 × × × ×
6 315 4.46×102 3.24×103 × × × ×
7 511 6.57×102 8.21×103 × × × × ×
8 587 7.36×102 3.57×103 × × × × ×
9 739 8.93×102 5.60×103 × × ×
10 780 9.34×102 3.98×103 × × ×
11 834 9.88×102 5.46×103 × ×
12 863 1.02×103 3.98×103 × ×
13 989 1.14×103 6.07×103 × × × × × × ×
14 1024 1.17×103 5.48×103 × × × × × × ×

The centralized measures which we examine and calculate from the above results are

presented in Table 3.8. It is observed that the value of measures decrease while the number

of monotonic sections increases. More specifically, the order of magnitude of the sum of
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squares of residuals starts from 109 for k = 1, then decreases to 108 for k in {2,3,4,5}

and to 107 for k in {6,7, . . . ,11}. For k in {12,13,14} it falls to 106. Except for k = 1 and

k = 14 the values are equal per two. A reduction is noted in the maximum absolute values

of the estimated error. The order of magnitude is 103 for k in {1,2, . . . ,11} and falls to 102

for k in {12,13,14}. The same condition as above is detected. The order of magnitude

of maximun absolute value of nonzero Lagrange multipliers is 105 for k in {1,2, . . . ,5}

and decreases to 104 for k in {6,7, . . . ,11}. In the latter case the values are equal per two.

For k in {12,13,14} the values are equal to 1.68×103. The minimum absolute value of

nonzero Lagrange multipliers is 3.29×103 for k = 1, decreases to 8.00×10−1 for k in

{2,3, . . . ,7} and to 5.00×10−1 for k in {8,9, . . . ,14}. Their decadic logarithms have the

same behavior respectively.

Table 3.8: Measures for Clintonite

k SSR D L ` log10L log10`

1 1.41×109 5.01×103 7.11×105 3.29×103 5.85×100 3.52×100

2 4.81×108 5.48×103 1.12×105 8.00×10−1 5.09×100 −9.70×10−2

3 4.81×108 5.48×103 1.12×105 8.00×10−1 5.09×100 −9.70×10−2

4 2.34×108 4.09×103 1.06×105 8.00×10−1 5.02×100 −9.70×10−2

5 2.34×108 4.09×103 1.06×105 8.00×10−1 5.02×100 −9.70×10−2

6 7.78×107 1.45×103 5.90×104 8.00×10−1 4.77×100 −9.70×10−2

7 7.78×107 1.45×103 5.90×104 8.00×10−1 4.77×100 −9.70×10−2

8 4.18×107 1.19×103 3.69×104 5.00×10−1 4.57×100 −3.01×10−1

9 4.18×107 1.19×103 3.69×104 5.00×10−1 4.57×100 −3.01×10−1

10 2.06×107 1.05×103 3.64×104 5.00×10−1 4.56×100 −3.01×10−1

11 2.06×107 1.05×103 3.64×104 5.00×10−1 4.56×100 −3.01×10−1

12 1.23×106 2.33×102 1.68×103 5.00×10−1 3.22×100 −3.01×10−1

13 1.23×106 2.33×102 1.68×103 5.00×10−1 3.22×100 −3.01×10−1

14 1.06×106 1.63×102 1.68×103 5.00×10−1 3.22×100 −3.01×10−1

3.3.4 The Raman spectrum of beryl

In the next experiment we use the datafile of Raman spectrum of mineral beryl. It consists

of 1000 pairs of data and is tested for k in {1,2, . . . ,14}. Feeding the data to L2WPMA,

the results are presented in fourteen different sheets, in Beryl.xlsx, with the corresponding

calculations of measures which are studied. Fig. 3.14 displays the data and the best fit for

k = 14, so as to capture the main features.

Moreover, for k = 14 the method detects 13 turning points, 7 of which are peaks. The

behavior of the approximation is explored by presenting in Table 3.9 the turning point

positions by piecewise monotonic fits to the beryl data for values of k in {2,4, . . . ,14}. In
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the right part of Table 3.9 we indicate the positions of the turning points of each optimal

fit for k in {2,4, . . . ,14} in correspondence with the column labeled “t j”, derived when

k = 14. For example, when k = 4 the turning points occur at the positions 534, 681 and

926 as displayed by the times signs in the column labeled “4”.
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Figure 3.14: Detected peaks (circles) by a best monotonic fit with textitk = 14 to 1000 data points (plus signs) of the beryl
Raman spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.9: Left four columns: Turning points in the beryl spectrum by a best fit with k = 14 monotonic
sections. Right seven columns: The turning point positions of the optimal fit for k in {2,4, . . . ,14} are
indicated by the times sign

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14
0 1 1.19×102 −2.81×101 × × × × × × ×
1 25 1.46×102 1.14×103 × × ×
2 39 1.61×102 −4.33×102 × × ×
3 187 3.22×102 3.76×103 × × × ×
4 230 3.68×102 −9.95×101 × × × ×
5 256 3.96×102 5.21×103 × × × × ×
6 352 4.97×102 −2.22×102 ×
7 381 5.27×102 1.39×103 ×
8 456 6.05×102 −3.98×102 × × × × ×
9 534 6.84×102 1.44×104 × × × × × × ×
10 681 8.32×102 −3.87×102 × × × × × ×
11 868 1.01×103 2.00×103 × ×
12 889 1.03×103 4.62×102 × ×
13 926 1.07×103 7.19×103 × × × × × ×
14 1000 1.14×103 −7.11×102 × × × × × × ×

In Table 3.10 we present the value of centralized measures which are studied as k

increases, k in {1,2, . . . ,14}. While the number of monotonic sections increases the

order of magnitude of the sum of squares of residuals goes down. For k = 1 is 109, for
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k in {2,3, . . . ,6} is 108 and for k in {7,8, . . . ,14} is 107. Respectively, a decrease is

observed in absolute values of estimated errors. More specifically, the corresponding

order of magnitude is 104 for k = 1, 103 for k in {2,3, . . . ,7}, equal per two, and for k

in {8,9, . . . ,12}, all equal, and 102 for k in {13,14}. The maximum absolute value of

nonzero Lagrange multipliers is 2.88×105, 2.83×105 for k in {2,3} and 1.19×105 for

k in {4,5}. It drops to 4.16×104 for k in {6,7}, 2.92×104 for k = 8 and 2.06×104 for

k in {9,10,11,12}. For k in{13,14} is 7.49×103. The minimum absolute value of the

nonzero Lagrange multipliers is equal to 2.84×100 for all values of k. The behavior of

their decadic logarithms follows the same pattern.

Table 3.10: Measures for Beryl

k SSR D L ` log10L log10`

1 1.91×109 1.38×104 2.88×105 2.84×100 5.46×100 4.54×10−1

2 8.32×108 6.62×103 2.83×105 2.84×100 5.45×100 4.54×10−1

3 8.22×108 6.62×103 2.83×105 2.84×100 5.45×100 4.54×10−1

4 2.52×108 4.82×103 1.19×105 2.84×100 5.08×100 4.54×10−1

5 2.42×108 4.82×103 1.19×105 2.84×100 5.08×100 4.54×10−1

6 1.02×108 3.18×103 4.16×104 2.84×100 4.62×100 4.54×10−1

7 9.26×107 3.18×103 4.16×104 2.84×100 4.62×100 4.54×10−1

8 4.87×107 1.17×103 2.92×104 2.84×100 4.47×100 4.54×10−1

9 3.91×107 1.17×103 2.06×104 2.84×100 4.31×100 4.54×10−1

10 3.71×107 1.17×103 2.06×104 2.84×100 4.31×100 4.54×10−1

11 2.88×107 1.17×103 2.06×104 2.84×100 4.31×100 4.54×10−1

12 2.68×107 1.17×103 2.06×104 2.84×100 4.31×100 4.54×10−1

13 1.92×107 6.65×102 7.49×103 2.84×100 3.87×100 4.54×10−1

14 1.71×107 5.21×102 7.49×103 2.84×100 3.87×100 4.54×10−1

3.3.5 The Raman spectrum of lizardite

Continuing the experiments, we use the Raman spectrum datafile of mineral lizardite which

consists of 1008 pairs of data. For each value of k in {1,2, . . . ,14} we feed the data to

L2WPMA. The corresponding results are presented in fourteen sheets, one for each k, in

Lizardite.xlsx. The data and the best fit for k = 14 are displayed in Fig. 3.15, with the aim

of detecting the main features of the data.

Furthermore, for k = 14 the method detects 13 turning points, 7 of which are peaks.

Table 3.11 presents the turning point positions by piecewise monotonic fits to the lizardite

data for values of k in {2,4, . . . ,14}, so that we explore the behavior of the approximation.

In the right part of Table 3.11 we indicate the positions of the turning points of each optimal

fit for k in {2,4, . . . ,14} in correspondence with the column labeled “t j”, derived when
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k = 14. For instance, when k = 8 the turning points occur at the positions 18, 59, 102, 129,

240, 288 and 523 as indicated by the times signs in the column labeled “8”.
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Figure 3.15: Detected peaks (circles) by a best monotonic fit with k = 14 to 1008 data points (plus signs) of the lizardite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.11: Left four columns: Turning points in the lizardite spectrum by a best fit with k = 14
monotonic sections. Right seven columns: The turning point positions of the optimal fit for k in
{2,4, . . . ,14} are indicated by the times sign

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14
0 1 1.17×102 −2.28×103 × × × × × × ×
1 18 1.37×102 8.58×103 × × × ×
2 59 1.84×102 −5.19×102 × × × ×
3 102 2.33×102 1.35×104 × × × × × × ×
4 129 2.63×102 −1.70×103 × × × × × ×
5 240 3.87×102 1.06×104 × × × × × ×
6 288 4.40×102 −1.07×103 × × × × ×
7 384 5.44×102 9.18×102 ×
8 423 5.87×102 −5.53×102 ×
9 523 6.92×102 6.74×103 × × × × ×
10 685 8.60×102 −6.65×102 × × ×
11 770 9.46×102 1.73×103 × × ×
12 839 1.02×103 −1.18×103 × ×
13 916 1.09×103 1.46×103 × ×
14 1008 1.18×103 3.40×102 × × × × × × ×

The measures which we study derive from the calculations of the above results and are

presented in Table 3.12. While the value of k increases the order of magnitude of the sum of

squares of residuals decreases gradually. For k in {1,2,3,4} is 109, for k in {5,6, . . . ,11}

decreases to 108 and for k in {12,13,14} to 107. For k in {8,9, . . . ,13} the values are

equal per two. The maximum absolute value of estimated errors starts from 1.11×104
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for k = 1 and reduces to 9.27× 103 for k = 2 and k = 3. For k in {4,5,6,7} the values

are 6.49×103 and 6.60×103 alternately. Then it decreases to 1.60×103 for k = 8 and

k = 9 and 1.40×103 for k in {10,11, . . . ,14}. The maximum absolute value of nonzero

Lagrange multipliers decreases from 2.60× 105 for k in {1,2, . . . ,5}, to 1.64× 105 for

k in {6,7,8} and to 2.97× 104. Then it decreases to 2.42× 104 and to 1.46× 104. The

absolute value of the nonzero Lagrange multipliers is 9.44× 10−1 in all cases. Their

decadic logarithms have the same behavior respectively.

Table 3.12: Measures for Lizardite

k SSR D L ` log10L log10`

1 2.69×109 1.11×104 2.60×105 9.44×10−1 5.42×100 −2.49×10−2

2 1.94×109 9.27×103 2.60×105 9.44×10−1 5.42×100 −2.49×10−2

3 1.68×109 9.27×103 2.60×105 9.44×10−1 5.42×100 −2.49×10−2

4 1.15×109 6.49×103 2.60×105 9.44×10−1 5.42×100 −2.49×10−2

5 8.91×108 6.60×103 2.60×105 9.44×10−1 5.42×100 −2.49×10−2

6 5.54×108 6.49×103 1.64×105 9.44×10−1 5.21×100 −2.49×10−2

7 2.96×108 6.60×103 6.79×104 9.44×10−1 4.83×100 −2.49×10−2

8 1.31×108 1.60×103 6.79×104 9.44×10−1 4.83×100 −2.49×10−2

9 1.31×108 1.60×103 6.79×104 9.44×10−1 4.83×100 −2.49×10−2

10 1.04×108 1.40×103 2.97×104 9.44×10−1 4.47×100 −2.49×10−2

11 1.04×108 1.40×103 2.97×104 9.44×10−1 4.47×100 −2.49×10−2

12 9.10×107 1.40×103 2.42×104 9.44×10−1 4.38×100 −2.49×10−2

13 9.10×107 1.40×103 2.42×104 9.44×10−1 4.38×100 −2.49×10−2

14 8.02×107 1.40×103 1.46×104 9.44×10−1 4.17×100 −2.49×10−2

3.3.6 The Raman spectrum of hemimorphite

The next experiment with Raman spectrum datafiles of minerals which we use is the

datafile of hemimorphite. This datafile contains 1025 pairs of data. The data are fed

to L2WPMA with k in {1,2, . . . ,18} and we obtain the results which are presented in

Hemimorphite.xlsx, one sheet for each k. Fig. 3.16 shows the corresponding data and the

best fit for k = 16.

In addition, for k = 18 the method detects 17 turning points, 9 of which are peaks. In

Table 3.13 are presented the turning point positions by piecewise monotonic fits to the

hemimorphite data for values of k in {2,4, . . . ,18} in order to investigate the behavior

of the approximation. In the right part of Table 3.13 are indicated the positions of the

turning points of each optimal fit for k in {2,4, . . . ,18} in correspondence with the column

labeled “t j”, derived when k = 18. For example, when k = 6 the turning points occur at the

positions 20, 33, 52, 693 and 787 as indicated by the times signs in the column labeled “6”.
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Figure 3.16: Detected peaks (circles) by a best monotonic fit with k = 16 to 1024 data points (plus signs) of the hemimorphite
Raman spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.13: Left four columns: Turning points in the hemimorphite spectrum by a best fit with k =
18 monotonic sections. Right nine columns: The turning point positions of the optimal fit for k in
{2,4, . . . ,18} are indicated by the times sign

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14 16 18
0 1 1.15×102 5.86×103 × × × × × × × × ×
1 1 1.15×102 5.86×103 ×
2 5 1.19×102 2.94×103 ×
3 20 1.36×102 2.32×104 × × × × × × × ×
4 33 1.50×102 2.53×102 × × × × × × ×
5 52 1.71×102 1.63×104 × × × × × × ×
6 77 1.98×102 −1.81×102 × × ×
7 92 2.15×102 3.50×103 × × ×
8 146 2.74×102 7.60×101 × × × × × ×
9 202 3.34×102 7.34×103 × × × ×

10 226 3.60×102 1.72×103 × × × ×
11 267 4.03×102 7.08×103 × × × × × ×
12 350 4.91×102 1.71×102 × ×
13 435 5.79×102 1.93×103 × ×
14 488 6.33×102 1.41×102 × × × × ×
15 538 6.84×102 5.24×103 × × × × ×
16 693 8.39×102 −2.32×102 × × × × × × × ×
17 787 9.31×102 3.25×104 × × × × × × × × ×
18 1024 1.16×103 −1.58×102 × × × × × × × × ×

In Table 3.14 are presented the centrelized measures which we examine and calculate

from the above results. It is observed that the sum of squares of residuals decreases while

the number of monotonic sections k increases. Its order of magnitude starts from 109 for k

in {1,2, . . . ,7}, decreases to 108 for k in {8,9,10,11} and to 107 for k in {12,13, . . . ,18}.

The maximum absolute value of estimated errors falls as k increases. Its order of magnitude
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is 104 for k in {1,2, . . . ,5}. Then it falls to 103 for k in {6,7, . . . ,16} and to 1.83× 103

and 1.29×103 for k in {14,15,16} alternately. More specifically, for k in {6,7, . . . ,13}

the values are equal per two. Then it decreases to 6.61×102 for k = 15 and k = 16. The

maximum absolute value of nonzero Lagrange multipliers starts from 6.93×105 for k = 1,

increases to 9.48×105 for k = 2 and decreases to 3.11×105 for k in {3,4, . . . ,7}. For k

in {8,9, . . . ,15} the values decrease and are equal per two. For k in {16,17,18} the values

are equal to 8.38× 103. The minimum absolute value of nonzero Lagrange multipliers

starts from 1.07× 101 for k = 1 and falls to 8.44× 100 for k = 2. Then it falls more to

4.43×100 for k in {3,4, . . . ,7} and to 8.75×10−1 for k in {8,9, . . . ,18}. Their decadic

logarithms display a corresponding behavior.

Table 3.14: Measures for Hemimorphite

k SSR D L ` log10L log10`

1 9.98×109 3.11×104 6.93×105 1.07×101 5.84×100 1.03×100

2 6.00×109 2.15×104 9.48×105 8.44×100 5.98×100 9.26×10−1

3 3.17×109 1.29×104 3.11×105 4.43×100 5.49×100 6.46×10−1

4 2.18×109 1.03×104 3.11×105 4.43×100 5.49×100 6.46×10−1

5 2.07×109 1.29×104 3.11×105 4.43×100 5.49×100 6.46×10−1

6 1.08×109 5.08×103 3.11×105 4.43×100 5.49×100 6.46×10−1

7 1.07×109 5.08×103 3.11×105 4.43×100 5.49×100 6.46×10−1

8 4.35×108 4.32×103 1.35×105 8.75×10−1 5.13×100 −5.78×10−1

9 4.29×108 4.32×103 1.35×105 8.75×10−1 5.13×100 −5.78×10−1

10 2.22×108 4.21×103 6.19×104 8.75×10−1 4.79×100 −5.78×10−1

11 2.16×108 4.21×103 6.19×104 8.75×10−1 4.79×100 −5.78×10−1

12 9.41×107 2.18×103 4.25×104 8.75×10−1 4.63×100 −5.78×10−1

13 8.82×107 2.18×103 4.25×104 8.75×10−1 4.63×100 −5.78×10−1

14 3.89×107 1.83×103 3.10×104 8.75×10−1 4.49×100 −5.78×10−1

15 3.30×107 1.29×103 3.10×104 8.75×10−1 4.49×100 −5.78×10−1

16 2.38×107 1.83×103 8.38×103 8.75×10−1 3.92×100 −5.78×10−1

17 1.79×107 6.61×102 8.38×103 8.75×10−1 3.92×100 −5.78×10−1

18 1.79×107 6.61×102 8.38×103 8.75×10−1 3.92×100 −5.78×10−1

3.3.7 The Raman spectrum of wulfenite

The last Raman spectrum datafile of minerals which we examine is of wulfenite. It

consists of 1024 pairs of data which are fed to L2WPMA for each k in {1,2, . . . ,16}. The

corresponding results are presented in Wulfenite.xlsx. In Fig. 3.17 we display the data and

the best fit for k = 14 in order to capture the main features of the data sets.

Moreover, for k = 16 the method detects 15 turning points, 8 of which are peaks. In

order to examine the behavior of the approximation, we display the turning point positions

by piecewise monotonic fits to the wulfenite data for values of k in {2,4, . . . ,16} in Table
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3.15. In the right part of Table 3.15 we indicate the positions of the turning points of each

optimal fit for k in {2,4, . . . ,16} in correspondence with the column labeled “t j”, derived

when k = 16. For instance, when k = 4 the turning points occur at the positions 167, 224

and 704 as indicated by the times signs in the column labeled “4”, while for k = 6 two

more turning points occur at the positions 600 and 637 as indicated by the times signs in

the column labeled “6”.
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Figure 3.17: Detected peaks (circles) by a best monotonic fit with k = 8 to 1024 data points (plus signs) of the wulfenite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.15: Left four columns: Turning points in the wulfenite spectrum by a best fit with k = 16
monotonic sections. Right eight columns: The turning point positions of the optimal fit for k in
{2,4, . . . ,16} are indicated by the times sign

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14 16
0 1 1.37×102 8.78×103 × × × × × × × ×
1 30 1.68×102 1.38×104 × × × × ×
2 61 2.02×102 1.04×104 × × × × ×
3 167 3.17×102 2.50×104 × × × × × × ×
4 188 3.40×102 1.22×104 × × × ×
5 197 3.49×102 1.40×104 × × × ×
6 224 3.78×102 1.18×104 × × × × × × ×
7 578 7.44×102 1.45×104 × ×
8 586 7.52×102 1.39×104 × ×
9 600 7.66×102 1.99×104 × × × × × ×
10 637 8.03×102 1.34×104 × × × × × ×
11 704 8.69×102 5.18×104 × × × × × × × ×
12 815 9.78×102 1.30×104 ×
13 857 1.02×103 1.35×104 ×
14 889 1.05×103 1.29×104 × × ×
15 958 1.11×103 1.37×104 × × ×
16 1024 1.18×103 1.33×104 × × × × × × × ×
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Table 3.16 presents the results of the centralized measures which are mentioned to

section 3.1. It is observed that the order of magnitude of the sum of squares starts from

1010 for k = 1, decreases to 109 for k = 2 and k = 3 and to 108 for k = 4 and k = 5. Then

it falls to 107 for k in {6,7,8,9} and to 106 for k in {10,11, . . . ,16}. For k in {2,3, . . . ,9}

it is equal per two. The maximum absolute value of the estimated errors starts from

3.85×104 for k = 1 and ends to 3.07×102 for k in {14,15,16}. For k in {2,3, . . . ,13} the

values are equal per two. The maximum absolute value of nonzero Lagrange multipliers

starts from 1.07× 106 for k = 1. For k in {2,3, . . . ,7} it decreases and the values are

equal per two. It decreases more to 1.29×104 for k in {8,9,10,11} and to 2.59×103 for

k in {12,13,14,15}. For k = 16 it falls to 1.94× 103. The minimum absolute value of

nonzero Lagrange multipliers is 1.88×101 for k = 1 and it decreases to 2.00×100 for k

in {2,3, . . . ,16}. Their decadic logarithms have a corresponding behavior.

Table 3.16: Measures for Wulfenite

k SSR D L ` log10L log10`

1 1.14×1010 3.85×104 1.07×106 1.88×101 6.03×100 1.27×100

2 1.28×109 1.22×104 2.32×105 2.00×100 5.36×100 3.01×10−1

3 1.28×109 1.22×104 2.32×105 2.00×100 5.36×100 3.01×10−1

4 2.83×108 5.38×103 9.18×104 2.00×100 4.96×100 3.01×10−1

5 2.83×108 5.38×103 9.18×104 2.00×100 4.96×100 3.01×10−1

6 7.46×107 2.64×103 5.12×104 2.00×100 4.71×100 3.01×10−1

7 7.46×107 2.64×103 5.12×104 2.00×100 4.71×100 3.01×10−1

8 1.39×107 1.16×103 1.29×104 2.00×100 4.11×100 3.01×10−1

9 1.39×107 1.16×103 1.29×104 2.00×100 4.11×100 3.01×10−1

10 9.17×106 4.19×102 1.29×104 2.00×100 4.11×100 3.01×10−1

11 9.14×106 4.19×102 1.29×104 2.00×100 4.11×100 3.01×10−1

12 8.07×106 3.70×102 2.59×103 2.00×100 3.41×100 3.01×10−1

13 8.04×106 3.70×102 2.59×103 2.00×100 3.41×100 3.01×10−1

14 7.62×106 3.07×102 2.59×103 2.00×100 3.41×100 3.01×10−1

15 7.59×106 3.07×102 2.59×103 2.00×100 3.41×100 3.01×10−1

16 7.37×106 3.07×102 1.94×103 2.00×100 3.29×100 3.01×10−1

3.4 Experiments on turning point separation

In this section we present two more experiments, one of MS spectrum datafile and one of

Raman spectrum datafile, which show a different behavior than the corresponding datafiles

of sections 3.2 and 3.3. We have seen in these sections that as k increases by 2, the turning

points are maintained. Nonetheless, we notice here, that is behavior no longer holds.
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3.4.1 The MS spectrum of diiodothyronine

In the next experiment we use a MS spectrum datafile of thyroid hormone diiodothyronine.

The number of pairs of data is 2167. Feeding the data to L2WPMA for k in {1,2, . . . ,16},

we obtain the results which are presented in Diiodothyronine.xlsx, one sheet for each k,

with the calculations of the measures which we study. Fig. 3.18 shows the main features

of the data sets, that is the data and the best fit for k = 16.

In addition, for k = 16 the method detects 15 turning points, 8 of which are peaks. Table

3.17 presents the turning point positions by piecewise monotonic fits to the diiodothyronine

data for values of k in {2,4, . . . ,16}, so that we explore the behavior of the approximation.

In the right part of Table 3.17 we indicate the positions of the turning points of each optimal

fit for k in {2,4, . . . ,16} in correspondence with the column labeled “t j”, derived when

k = 16. For instance, when k = 6 the turning points occur at the positions 1569, 1743,

1910, 2000 and 2107 as indicated by the times signs in the column labeled “6”. When

k = 8 two more turning points occur at the positions 2050 and 2087 as indicated by the

times signs in the column labeled “8”. The turning point at the position 2000 when k = 6

is shifting into the position 1990 when k = 8.
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Figure 3.18: Detected peaks (circles) by a best monotonic fit with k = 16 to 2167 data points (plus signs) of the diiodothyronine
Raman spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

So far we have been seen that as k increases to k+2 the positions of the turning points

are maintained. It is quite interesting that the fit to this data set shows a shifting of some

turning points as k increases by 2. For instance, we see in Table 3.17 that the fourth turning

point when k = 10 has moved from position 1889 to position 1891 when k = 12. Similarly,
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the fourth turning point when k = 6 has moved from position 2000 to position 1990 when

k = 8. This phenomenon is explained by the property that the optimal turning point for

given k is separated by the optimal turning point when k+1 (see [15]).

Table 3.17: Left four columns: Turning points in the diiodothyronine spectrum by a best fit with k
= 16 monotonic sections. Right eight columns: The turning point positions of the optimal fit for k in
{2,4, . . . ,16} are indicated by the times signa

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14 16
0 1 5.03×101 4.58×102 × × × × × × × ×
1 899 2.88×102 9.13×104 ×
2 938 2.92×102 1.96×102 ×
3 1076 3.25×102 1.37×105 × ×
4 1253 3.43×102 1.96×102 × ×
5 1297 3.53×102 3.80×105 × × ×
6 1453 3.66×102 1.96×102 × × ×
7 1569 3.82×102 2.10×106 × × × × × ×
8 1743 4.17×102 1.96×102 × × × × × ×
9 1848 4.67×102 4.35×105 × × × ×
10 1891 4.70×102 2.48×102 � × × ×
11 1910 4.80×102 7.03×106 × × × × × × × ×
12 1990 4.85×102 2.41×102 ◦ ◦ × × × × ×
13 2050 5.09×102 1.02×106 × × × × ×
14 2089 5.16×102 1.96×102 � � × × ×
15 2107 5.26×102 5.73×106 × × × × × × ×
16 2167 5.49×102 2.75×102 × × × × × × × ×

a×= the number in column labeled “t j”, �= 1889, ◦= 2000, �= 2087

Table 3.18 presents the values of the centralized measures for each k in {1,2, . . . ,16} of

the above results and their calculations. It is observed that the sum of squares of residuals

decreases while the number of monotonic sections increases. More specifically, its order

of magnitude is 1014 for k in {1,2,3}. It decreases to 2.37×1013 for k = 4 and k = 5 and

to 4.26× 1012 for k = 6 and k = 7. Then it falls to 1.53× 1012 for k = 8 and k = 9, to

8.37×1011 for k = 10 and k = 11 and to 2.10×1011 for k = 12 and k = 13. For k = 14

and k = 15 it decreases more to 1.38×1011 and for k = 16 to 1.07×1011. The maximum

absolute value of estimated errors falls as k increases. Its order of magnitude is 106 for k in

{1,2, . . . ,5}. Then it falls to 105 for k in {6,7, . . . ,13} and 104 for k in {14,15,16}. The

values for k in {4,5, . . . ,16} are equal per two. A reduction in the order of magnitude also

occurs in the maximum absolute value of nonzero Lagrange multiplies. More specifically,

it starts from 107 for k in {1,2, . . . ,5}, it decreases to 106 for k in {7,8, . . . ,15} and

to 105 for k = 16. The minimum absolute value of the nonzero Lagrange multipliers

presents a fluctuation for k in {1,2, . . . ,11}, that is for k = 1 and k = 3 the value is equal

56



to 1.78×101, for k = 5 and k = 7 is equal to 1.07×101 and for k = 9 and k = 11 is equal

to 4.56×100. For k in {2,4,6,8,10} the value is equal to 5.70×100. The value falls for k

in {12,13, . . . ,16} to 4.02×100. Their decadic logarithms have a corresponding behavior.

Table 3.18: Measures for Diiodothyronine

k SSR D L ` log10L log10`

1 3.30×1014 6.74×106 8.58×107 1.78×101 7.93×100 1.25×100

2 1.43×1014 5.50×106 6.28×107 5.70×100 7.80×100 7.56×10−1

3 1.32×1014 5.20×106 5.30×107 1.78×101 7.72×100 1.25×100

4 2.37×1013 2.04×106 2.84×107 5.70×100 7.45×100 7.56×10−1

5 2.37×1013 2.04×106 2.84×107 1.07×101 7.45×100 1.03×100

6 4.26×1012 9.19×105 7.38×106 5.70×100 6.87×100 7.56×10−1

7 4.26×1012 9.19×105 7.38×106 1.07×101 6.87×100 1.03×100

8 1.53×1012 3.80×105 5.19×106 5.70×100 6.72×100 7.56×10−1

9 1.53×1012 3.80×105 5.19×106 4.56×100 6.72×100 6.59×10−1

10 8.37×1011 3.65×105 5.19×106 5.70×100 6.72×100 7.56×10−1

11 8.37×1011 3.65×105 5.19×106 4.56×100 6.72×100 6.59×10−1

12 2.10×1011 1.26×105 1.70×106 4.02×100 6.23×100 6.04×10−1

13 2.10×1011 1.26×105 1.70×106 4.02×100 6.23×100 6.04×10−1

14 1.38×1011 8.53×104 1.13×106 4.02×100 6.05×100 6.04×10−1

15 1.38×1011 8.53×104 1.13×106 4.02×100 6.05×100 6.04×10−1

16 1.07×1011 6.94×104 7.09×105 4.02×100 5.85×100 6.04×10−1

3.4.2 The Raman spectrum of cellulose

The last Raman spectrum datafile is of carbohydrate cellulose. It consists of 3590 pairs of

data sets and is tested for k in {1,2, . . . ,18}. We feed the data to L2WPMA for each value

of k. The corresponding results are presented in Cellulose.xlsx, one sheet for each k. The

main features of the data sets for k = 16 may be captured by looking at Fig. 3.19.

Furthermore, for k = 18 the method detects 17 turning points, 9 of which are peaks.

The behavior of the approximation is explored by presenting in Table 3.19 the turning point

positions by piecewise monotonic fits to the cellulose data for values of k in {2,4, . . . ,18}.

In the right part of Table 3.19 we display the positions of the turning points of each optimal

fit for k in {2,4, . . . ,18} in correspondence with the column labeled ‘t j”, derived when

k = 18. For example, when k = 6 the turning points occur at the positions 368, 795, 1084,

2421 and 2884 as indicated by the times signs in the column labeled “6” and when k = 8

the method detects two more turning points at the positions 1204 and 1368 as indicated by

the times signs in the column labeled “8”.
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Figure 3.19: Detected peaks (circles) by a best monotonic fit with k = 16 to 3590 data points (plus signs) of the cellulose Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.19: Left four columns: Turning points in the cellulose spectrum by a best fit with k = 18 mono-
tonic sections. Right nine columns: The turning point positions of the optimal fit for k in {2,4, . . . ,18}
are indicated by the times sign

j t j xt j Intensity (φt j ) k = 2 4 6 8 10 12 14 16 18
0 1 1.10×101 7.46×10−1 × × × × × × × × ×
1 368 3.78×102 2.11×101 × × × × × × ×
2 402 4.12×102 5.67×100 × × × ×
3 425 4.35×102 1.52×101 × × × ×
4 461 4.71×102 5.25×100 × × ×
5 508 5.18×102 1.02×101 × × ×
6 795 8.05×102 1.14×100 × × × × × × ×
7 1084 1.09×103 2.90×101 × × × × × × × × ×
8 1097 1.11×103 1.67×101 × ×
9 1109 1.12×103 2.29×101 × ×

10 1204 1.21×103 2.25×100 × × × × × ×
11 1326 1.34×103 1.04×101 ×
12 1341 1.35×103 7.06×100 ×
13 1368 1.38×103 1.60×101 × × × × × ×
14 2421 2.43×103 5.40×10−1 × × × × × × × ×
15 2884 2.89×103 1.80×101 × × × × × × × ×
16 3072 3.08×103 5.85×10−1 × × × × ×
17 3335 3.35×103 4.99×100 × × × × ×
18 3590 3.60×103 8.14×10−2 × × × × × × × × ×

The values of measures which are examined are presented in Table 3.20. While the

number of monotonic sections k increases, the order of magnitude of the sum of squares

of errors decreases. More specifically, it starts from 104 for k in {1,2, . . . ,5}, decreases

to 103 for k in {6,7, . . . ,11} and to 102 for k in {12,13, . . . ,18}. Respectively, a decrease

is observed in the maximum absolute values of estimated errors. For k = 1 its value is
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equal to 2.39×101, decreases to 1.66×101 for k in {2,3,4,5} and to 9.79×100 for k = 6

and k = 7. Then it falls to 6.02×100 for k in {8,9,10,11}. For k in {12,13, . . . ,17} the

value is equal per two and for k = 18 it falls to 1.66×100. The maximum value of non

zero Lagrange multipliers is 2.83× 103 for k in {1,2,3}, it decreases to 1.90× 103 for

k = 4 and k = 5, to 6.68×102 for k in {6,7,8,9} and to 1.87×102 for k = 10 and k = 11.

For k in {12,13, . . . ,18} a fluctuation is observed, that is for k in {12,14,16,18} the value

is equal to 4.75× 101, for k = 13 is equal to 6.42× 101 and for k = 15 and k = 17 is

equal to 5.13× 101. The minimum absolute value of nonzero Lagrange multipliers is

3.58×10−4 for k = 1 and k = 2. It falls to 2.15×10−4 for k = 3 and to 4.70×10−5 for k

in {4,5, . . . ,18}. The behavior of their decadic logarithms follows the same pattern.

Table 3.20: Measures for Cellulose

k SSR D L ` log10L log10`

1 4.49×104 2.39×101 2.83×103 3.58×10−4 3.45×100 −3.45×100

2 2.73×104 1.66×101 2.83×103 3.58×10−4 3.45×100 −3.45×100

3 2.72×104 1.66×101 2.83×103 2.15×10−4 3.45×100 −3.67×100

4 1.28×104 1.66×101 1.90×103 4.70×10−5 3.28×100 −4.33×100

5 1.28×104 1.66×101 1.90×103 4.70×10−5 3.28×100 −4.33×100

6 4.65×103 9.79×100 6.68×102 4.70×10−5 2.82×100 −4.33×100

7 4.62×103 9.79×100 6.68×102 4.70×10−5 2.82×100 −4.33×100

8 2.26×103 6.02×100 6.68×102 4.70×10−5 2.82×100 −4.33×100

9 2.22×103 6.02×100 6.68×102 4.70×10−5 2.82×100 −4.33×100

10 1.10×103 6.02×100 1.87×102 4.70×10−5 2.27×100 −4.33×100

11 1.07×103 6.02×100 1.87×102 4.70×10−5 2.27×100 −4.33×100

12 5.06×102 3.78×100 7.45×101 4.70×10−5 1.87×100 −4.33×100

13 4.71×102 3.78×100 6.42×101 4.70×10−5 1.81×100 −4.33×100

14 3.87×102 3.10×100 7.45×101 4.70×10−5 1.87×100 −4.33×100

15 3.52×102 3.10×100 5.13×101 4.70×10−5 1.71×100 −4.33×100

16 2.70×102 1.77×100 7.45×101 4.70×10−5 1.87×100 −4.33×100

17 2.35×102 1.77×100 5.13×101 4.70×10−5 1.71×100 −4.33×100

18 2.26×102 1.66×100 7.45×101 4.70×10−5 1.87×100 −4.33×100
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Chapter 4

Discussion and Conclusions

In this chapter we state the conclusions about the experiments, which are mentioned in

chapter 3, that may lead to the determination of the relationship between the number of

monotonic sections and Lagrange multipliers in a piecewise monotonic approximation.

In chapter 1 we discussed the problem of data approximation and especially the case

of least squares data fitting in which the sum of squares of residuals are minimized. We

presented how the smoothed data are calculated and we made a first reference to the

piecewise monotonic approximation method. Moreover, we discussed the non-linear

programming problem and Lagrange multipliers in both cases when the constraints are

linear equality and linear inequality. More specifically, we stated the case that the objective

function is a quadratic function and the theorem of Karush-Kuhn-Tucker.

In chapter 2 we presented the piecewise monotonic data approximation as a data

smoothing approach which can have many applications. We started with a definition of

the method and its main features. Then we discussed the monotonic problem, which is a

strictly quadratic problem, and we stated an example that gives the best approximation to

data from a function which we created. Last, we stated how the Lagrange multipliers are

calculated in the monotonic case.

In chapter 3 we performed experiments using ten Raman spectrum datafiles, eight of

minerals, one of carbohydrate and one of thyroid hormone, in order to determine how

Lagrange multipliers are changed as the number of monotonic sections in a piecewise

monotonic data approximation is changed. We defined the measures which are needed to

determine this relationship and then we fitted each data by the L2WPMA software package

for various values of monotonic sections. These applications showed the effectiveness of

piecewise monotonic approximation to peak estimation of spectra that are represented by
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some noisy measurements of their values. Although the optimization calculation may have

a very large number of local minima, we have procedures that obtain a global solution in

quadratic complexity with respect to n.

Subsequently, in chapter 3 figures and tables were presented with the results of the

calculations in order to capture the main features of each data set. Furthermore, the

measures which were mentioned in section 3.1 were calculated and presented in centralized

tables in order to compare the behavior of these measures as the number of monotonic

sections is changed.

From the research we concluded that the sum of squares of residuals decreases while

the number of monotonic sections increases, in all cases. Its order of magnitude decreases

while the method detects fewer and fewer not so important peaks. The maximum absolute

value of estimated errors also decreases while the number of monotonic sections increases.

Moreover, the order of magnitude of maximum absolute value of nonzero Lagrange

multipliers while the number of monotonic sections increases and the method detects not so

important peaks. There are cases where the minimum absolute value of nonzero Lagrange

multipliers decreases gradually while the number of monotonic sections increases, as we

saw in Table 3.4, Table 3.6, Table 3.8, Table 3.14, Table 3.16, Table 3.18, cases where there

was a fluctuation in its value while the number of monotonic sections increases, as we

saw in Table 3.2 and Table 3.20, and cases where it remained stable while the monotonic

sections increases, as we saw in Table 3.10 and Table 3.12. The behavior of their decadic

logarithms follows the same pattern.

As it comes from the theory of general non-linear programming, the size of the

Lagrange multipliers provides an indication of the importance of the corresponding con-

straints, and it also shows the magnitude of change of the objective function as k increases.

This will be highly valuable to the development of a Lagrange multiplier test that will

provide an estimate of a suitable or adequate number of monotonic sections of the fit.
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