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Abstract

ENGLISH

This thesis investigates the behavior of the Lagrange multipliers at the piecewise monotonic
approximation to spectra of minerals, carbohydrate and thyroid hormone. The spectra
datasets of minerals are provided freely from Labratory of Photoinduced Effects Vibrational
and X-RAY Spectroscopies [25], of thyroid hormone from Human Metabolome Database
[26] and of carbohydrate from SPECARB database [27]. The thesis consists of four
chapter.

In chapter 1 we present the problem of data approximation and especially the case of
least squares data fitting, how the smoothed data are calculated and expound the piecewise
monotonic data approximation. Furthermore, we discuss the non-linear programming
problem and Lagrange multipliers in both cases when the constraints are linear equality
and linear inequality. In chapter 2 we present the piecewise monotonic data approximation
method, we give an example and we state how the Lagrange multipliers are calculated.
In chapter 3 we perform experiments using nine Raman spectra, eight of minerals and
one of carbohydrate, and one MS spectrum of thyroid hormone in order to determine how
Lagrange multipliers are changed as the number of monotonic sections in a piecewise
monotonic data approximation is changed. We define the measures which are needed
to determine this relationship, we fit each data by the LZWPMA software package for
various values of monotonic sections and we present the results. In chapter 4 we present
the conclusions from the experiments which lead to develop a Lagrange multiplier test that

will provide an estimation of a suitable or adequate number of monotonic sections of the

fit.

Keywords: Data smoothing, Least squares method, Lagrange multipliers, Piecewise

monotonic data approximation, LZWPMA algorithm
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GREEK
‘ApriunTind Texufpla Twv Tohaniactactey Lagrange otny xatd TUARATA HOVOTOV

TEOGEYYLON) DEDOUEVWLY

Avuth) ) BimhwpaTd epyacta EpELVE T CUUTERLYPORE TwV ToAaTAuctac TV Lagrange
OTNV XOTA TUAUOTA LOVOTOVY] TROGEYYLON) GE PACUATO OPUXT®Y, LdaTdvipoxa xou Yu-
poewolg opudvng. To cOvoha BEDOUEVWV TWV QPACUITODY TWY OPUXTWY TULEYOVTOL
eheVepa am6d to Labratory of Photoinduced Effects Vibrational and X-RAY Spectro-
scopies [25], tng Yupoetdolc opudvng amd v Bdor dedopévwy Human Metabolome
[26] xou Tou LBaTAVDpUxa amd TNV Bdorn dedouévwy SPECARB [27] .H Simhwportiny
epyaoio anoteAelton and T€ocepa xeQANLAL.

Y10 xe@dhono 1 mapouoidlouue To TEOBANUA TNG TEOCEYYIONG TWV BEBOUEVGLY X
EWOXOTERPY TNV TERIMTWOT TNG TROCEYYIONG EAXYIOTWY TETPUYWVLY, TOV TEOTO UTO-
AoYLopoU TwV €EOHOAUVIEVTWY BEGOUEVWY KOl XAVOUUE Uiot TRMT oVapOEd GTNV Xo-
T8 TUAUOTOL HOVOTOVT TEOCEYYIoT Oedouévwy. Emmiéov, oulntdue to mpdfAnuo tou
U1 YEOUUIXO0) TROYQUUUATIONOU Xl TwV ToAAamhactac Ty Lagrange oTic TEQITTOOELS
OToU oL Ypouuixol Teploplopol elval LIGOTNTES 1) AVICOTNTEG. 2LTO XEQIAALO 2 TUEOUGCH-
GCoupE TNV %ATE TUAUOTO LOVOTOVY TPOGEYYLOT) BEdOUEVLY wall Ue Evar Tapdderyua xou
AVOUPEQOUNE TOV TEOTIO UTOAOYLOUOU TwV TohhamAactactov Lagrange. Xto xe@diaio 3
TEUYUUTOTIOLOVUAL TELOGUOTA YENOWOTOLWVTAG EVVEX pdopata Raman ,oxto opuxtov
xou €vog udatdvipoxa, xon €var @douc MS Yupoeldolc opudvNg, TEOXEWEVOL Vo Xo-
Yopiotel 0 TpéTOC Ye Tov omolo yetadAiovTon ol TohhamAiactactég Lagrange xondg
0 apLIUOC TV HOVOTOVWY TUNUATWY OF Lol XATE TUARNTA HOVOTOVY) TOOGEYYLOT) OEGO-
uévov petofBdiieton. Optlouye To pétpa mou yeetdlovTon yio Vo xadoploOUUE auTh TNV
OYEON, TEEYOLUE Ta BEdOUEVA 0TO TaxETO Aoylouixol L2ZWPMA vy dudgpopeg Tiueg
HOVOTOVWY TUNUATWY Xl TOEOUCLICOUUE Tol AMOTEAECUATA. LTO XEQIAoLo 4 TUpOUCL-
GLOUUE TOL CUUTIEQHOUATA OO TaL MELRGUOTOL ToL OToloL 00MY0UV OTNY AVATTUEY EVOC TECT
Torhamhactoc twyv Lagrange mou Vo napéyet pio extiunom evog xatdhhnhou 1| enapxoic

aptduo) HOVOTOVGY TUNUATWY TNS TEOCEYYLONG.

Aéeic-xhedid: Aetavorn dedopévwy, Médodog ehayiotwy tetparywvev, Koatd tufuata

HOVOTOVY TEOCEYYIoT| 0EdouEVwLY, TTohhaniactaotéc Lagrange, L2ZWPMA alydpriuoc
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Chapter 1

Introduction

1.1 The problem of data approximation

A smooth function f(x), a < x < b is measured at the points a =x; <xp < --- <x, =b and
the measurements {@; ~ f(x;) : i =1,2,...,n} contain random errors. The general problem
of data smoothing on data approximation is to calculate numbers {y; : i = 1,2,...,n} from
the measurements that are smooth and that should be closer than the measurements to the
true function values {f(x;) : i =1,2,...,n}.

There are many approaches to this problem and in section 1.1.2. we present one that
has been used for many years dating to Lagrange. By “close” we mean that one makes
least changes to the data subject to some condition that is defined by the user, and there are

several ways of defining “least”. A useful choice is to minimize the expression

ly=9l5=Y (vi— )% (1.1)

1

~.

where ¢ denotes the vector in R” whose components are @1, ¢y, ..., ¢,. Expression (1.1)
is appropriate when the data errors have a normal distribution (see, Gauss [1]). The

“condition” is related to the smoothing approach that is followed by the user.

1.1.1 Least squares data fitting

The material of this section has been based on Hildebrand [6] and Forsythe, Malcolm &

Moler [7]. Let {(x;,y;) : i =0,1,...,n} be a set of data points. Consider x; the indepentent

13



variable and y; the dependent variable which satisfy the functional relationship

yi = f(x). (1.2)

The function f is an unknown function, which is known to exist, but its type is not
known. The main purpose is to determine a polynomial of hign degree that achieves a
best approximation. This ensues that the error of the approach should be as minimal as
possible.

Furthermore, in the discrete set of points xg, xi,..., X, we suppose that f is to be

approximated by y. Its form is the following

m
x)~ ) oudi(x) =y(x), xR, (1.3)
k=0
where y is linear combination of m coordinate functions ¢, ¢1,..., @,,, although the

coordinate functions may be nonlinear functions of x. In the case of the number of the
unknown coefficients m is lower than the number of data points n, such that m+ 1 < n, the
problem of choosing the coefficients is overdetermined and it is hardly possible to achieve
the best data fitting.

If we determine the residual R(x) as follows
m
= Y oude(x) — f(x) = y(x) — f(2), (1.4)
k=0

the coefficients oy, which are chosen to minimize the sum of squares of the residuals, are

specified by the least squares criterion, that is,

man (xi ] _mlnz Z 04O (xi) — f(xi)]. (1.5)

i=0 k=

In the special case of the model exactly fitting the data, the previous quantity will be zero,
hence interpolation is included.

A unique set of coefficients is defined by the least squares criterion. On condition
that the coordinate functions are linearly dependent at the data points, there are nonzero

coefficients ¢, such that

ch¢k x;) = i=0,1,....n. (1.6)

14



Consequently, any multiple of the c¢; can be added to the og without changing the sum
of squares of the residuals. Detecting and appropriate handling of such dependence and
nonuniqueness constitutes a significant task in the least squares data fitting.

Therefore, taking into account the derivatives as follows

—:07 k:(),l,...,m (17)

and interchanging orders of summation, we result in

m n n
Y oY oc(xi)or(xi)] = Y 0r(xi) f(xi), (1.8)
k=0 i=0 i=0
m+ 1 simultaneous linear equations in m + 1 unknown parameters o, &1, . .., 0, which

are the normal equations. The following linear system is derived from the equation

Qo Po(xo) + o191 (x0) + - -+ + A (x0) = f(x0)
QoPo(x1) + 01 d1(x1) + - - + Wu(x1) = f(x1) (1.9)

This system has a unique solution in the case when {x; : i =0, 1,...,n} are all different. It

can be written in the matrix form as
PC =Q, (1.10)

where

Pir =Y, 0(xi)0r(xi),
i=0

qr = i;,)q)r(xi)f(xi)'

It can be shown that the matrix P, which is symmetrical and depends only on the coordinate
functions, is positive define, so no pivoting is required. Also, the matrix of coefficients C
is symmetrical.

A fundamental drawback to the use of the normal equations should be noticed. The set
of normal equations includes small errors in the coefficients or roundoff errors introduced

during the solution, which may lead to large errors in the solution of the set. Hence, it is

15



crucial the errors in the calculated coefficients be estimated.

However, besides the numerical problems that arise, a serious difficulty is how to
choose the basis {¢;: i =0,1,...,m} so as to provide a suitable approximation to the data.
In Chapter 2, we shall see that the piecewise monotonic method suggests a completely

different approximation to data smoothing or fitting.

1.1.2 Piecewise monotonic approximation

Consider a smooth function f(x) which is measured at abscissae x; < xp < -+ < Xy
and measurements {¢; ~ f(x;) : i = 1,2,...,n} which contain large uncorrelated errors.
Demetriou and Powell proposed a data smoothing method that calculates smoothed values
{yi:i=1,2,...,n} and imposes a prescribed number of sign changes, say k — 1, on the
first differences of the smoothed values. This condition allows k monotonic sections to the
smoothed data, so k — 1 is the number of sign changes in the first derivative of f(x).

The method minimizes the sum of squares of residuals &; as follows
- 2 - 2
min ) & =min)_ (v — ¢;) (1.11)
i=1 i=1
subject to the piecewise monotonicity constraints

Vi < Vij_1+1 < S if jis odd (1.12)

Vi 2 V41 = 2 Y if jis even

where the integers {¢; : j=1,2,...,k}, positions of turning points, satisfy the condition
=t <t < --- < tf=n. (1.13)

Although there are about O(n*) combinations of the integer variables {¢;: j=0,1,...,k—
1} in order for the problem to be solved, a dynamic programming method that generates
the required fit in only O(kn?) computer operations was developed by Demetriou and

Powell [16].
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1.2 Non-linear programming problem and Lagrange multipliers

In this section, we state fundamental conditions that are obtained at the solution of a non-
linear programming problem when the variables satisfy equality and inequality constraints.
These conditions show the importance of the Lagrangian function and of the Lagrange

parameters when feasible changes occur in the constraints.

1.2.1 Non-linear programming problem

Consider the non-linear programming problem minimize the objective function
f(x), xeR" (1.14)
subject to the constraints
ci(x) >0, i=12,....m, m<n (1.15)

where f and each ¢; are real functions of x (for a general reference, see, Fletcher [9]).
We suppose that all functions are twice continuously differentiable. A vector x is called
“feasible” if it satisfies the constraints (1.15).

The vector x* is a local solution of the non-linear programming problem, if x is feasible

and if x is in the set

S, p)={x:[lx—x"|| <p}, (1.16)

then the inequality

f(x) > f(x")

is satisfied.

Suitable conditions are well known in the case when there are no constraints on the
variables. Specifically, if x* is a local solution, then the gradient vector V f(x*) is zero and
the second derivative matrix V2 f(x*) is positive define or positive semi-define. Conversely,
if Vf(x*) is zero and if V2 f(x*) is positive define, then x* is a local solution (see, Powell
[L1D.

It is straightforward to extend these definition to the case when all the constraints on x

17



are only the equality constraints (see, for example, Walsh [10])
ci(x) =0, i=1,2,....m (1.17)
provited that the constraints gradients
{Vei(x*): i=1,2,...,m}
are linearly independent, as we show in the next section.

1.2.2 First order conditions for equality constraints

If the constraints on x, are given by (1.17), i.e. all equality constraints, then x is a local
solution of the non-linear programming problem if the vector V f(x*) and {Vc;(x) : i =
1,2,...,m} are linearly dependent. Specifically, the Lagrangian condition hold. Namely, if
x* is a local solution and if the only constraints are linear equality constraints, then there

exist multipliers {4; : i =1,2,...,m}, such that the equation
m
Vi)=Y AiVei(x") (1.18)
i=1

is satisfied [11].

The assumption that constraint gradients are linearly independent at the solution x*
implies that the exist unique values of the Lagrange multipliers {A; : i =1,2,...,m} such
that the equation (1.18) holds. We note that this equation implies that the Lagrangian

function

L(x,A) = f(x) — AT c(x) (1.19)

is stationary at x*. An interesting interpretation of the Lagrange multipliers is given below
[11].
We assume at the moment that equation (1.17) become
ci(x) =b

Y

i=1,2,...,m. (1.20)

Then (1.19) becomes
(1.21)

18



From (1.21) we deduce the interesting result

V¥ (x,A) = % =1 (1.22)
or
d¥(x,A) .
S ea im12m (1.23)

This provides an interpretation of the Lagrange multiplier A; as a number measuring the
marginal potential change in W(x,A) = f(x), when b; is changed by a small amount.
Here, of course, we assume that x = x*. It is of great importance that the implication of
(1.23) is deeply understood. The same result is obtained in a different way. Suppose that
the right-hand side of (1.20), 1.e. the vector b, is changed a little by amounts given by the

vector

by
b,
b= 1. (1.24)

by,

Then the vector x has to change by a vector d say, such that x +  satisfy the constraints
(1.20)
ci()_c—i—é) = b; + db;, (1.25)

where ||d|| is small.

We seek an estimate of the change { f(x*+ 6) — f(x*)} that is caused by the change in
the constraints. Even though that there may be much freedom in o after the constraints are
satisfied, we have the very useful property that the Lagrangian condition (1.18) provides
a first order estimate of the change to the objective function. Because the constraint

conditions give the approximations

bi = ci(x"+9)
= ¢i(x*) + 8" Vei(x*) +0(]|8]1%)
=8'Vei(x)+ 0|8 i=12,...,m, (1.26)
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where x* is a local solution of the equality constrained problem, we deduce the estimate

f&* +8) - fla) = 8TVF(x") +O(|18])

=8"Y AVei(x*)+0(||5]*)
i=1

=Y Abi+0(||8]%). (1.27)
i=1

Thus the Lagrange multiplier A; is just a multiplier factor in the change to the objective
function that occurs if the right-hand side of the constraint ¢;(x) = 0 is altered from zero to

b;.
1.2.3 Quadratic objective function and linear equality constraints

In this section, we replace the general objective function f(x) by a quadratic function
and obtain analogous conditions to (1.27). Consider next the problem of minimizing the
objective function

x" By, (1.28)

cfx=0 i=1,2,...,m, (1.29)

where x € R",a € R",¢; € R" and B is a positive definite n X n matrix. As usual, the
constraint gradients are linearly independent (see, Boot [8]).

The Lagrangian function (1.19) now takes the form
®(x,A) = Q(x) - A C"x, (1.30)

where C is the n X n matrix of the constraints ¢; = 1,2,...,m and the minimizing procedure
again amounts to the taking the first order pantial derivatives with respect to x and A and

then equating the results to zero.This gives the system of the n 4 m equations
oa+Bx—CA=0 (1.31)

cTx=0. (1.32)
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If we change the right-hand side of (1.29) from zero to b;,
Tx=b; i=1,2,....m, (1.33)

equation (1.32) becomes

CTx=b. (1.34)

But from (1.30) we deduce for this case as well that (1.22) and (1.23) hold, while (1.25)

gives
¢/ (x+8) = bi+ b (1.35)
or for all 7,
CT(x+8) =b+b. (1.36)
Hence
c'6§ =096 (1.37)

The vector § of changes in the components of x is not fully determined by db, because
the system C’ § = 9§ has m equations in n unknowns m < n. Now by neglecting terms of

second order of magnitude, we have

of = f(x+9) — f(x)
= (a+Bx)"8, (1.38)

where for uniformity of notation we let f(x) = Q(x).
Next suppose that we are at a minimum point. Thus the equation (1.31) is satisfied and

we obtain from (1.38) the equation
(a+Bx — C3)"8=0. (1.39)
Substituting (1.39) into (1.28) and, in view of (1.27), by using
ATCTs =" op,

we obtain

of =AT9b=Y Aidb;
i=1
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or
af

Thus, as long as we are in a minimum point, a small change db; in the component b;
changes the value of f by an amount A;. The m values of the Lagrangian multipliers
are associated with the m constraints, one multiplier for each constraint. The sign of the
multiplier is particularly important.

If the sign is positive, a unit increase in b; is positively valued. One would obtain a
smaller value of the objective function if more of b; were available. In fact the minimum
would, according to the argument given above, decrease by an amount A;, which is in
economics is referred to as the shadow price. If the sign is negative, then a unit less of b;
would decrease the value of the objective function by A;. One has too much b; to be good,
and would be willing to pay up to A; to get rid of one unit b;. The special case when A; =0
means that one has the right amount of b; available. The minimization of the objective
function subject to CTx = b leads to the same result £, say, whether giT)_c = b; 1s present
or not. That is, if we disregard the constraint gl-Tg = b;, if we do not impose it, and then
proceed to minimize the objective function subject to the remaining constraints we obtain
a solution £ which happens to be such that

T A
¢ £=b;.

This is a degenerate constraint and we are at degeneracy when it occurs (see, for example,

[8] and [9]).

1.2.4 First order conditions for inequality constraints

In this section we admit both equality and inequality constraints on the vector of variables,
thus we consider the general non-linear problem of section 1.2.1. We consider the case
when the vectors ¢;(x), i = 1,2,...,m, are linearly independent. If x* is a local minimum,
then it is also a local minimum of the problem of minimizing f(x) subject to the equality
conditions

ci(x) =0, i€E, (1.40)

22



where E is a subset of the constraints indices {1,2,...,m}. It follows that the first order

conditions are

Vi) = Y AVe(x), (L41)

i€E
where the values of the multipliers are uniquely determined because the constraint gradients
are linearly independent. Further, the remarks of the last paragraph of section 1.2.2 show
that, if A; is negative, then the objective function can be reduced by changing x* by a small
amount, so that the constraint function c¢;(x) becomes positive, which preserves feasibility.
Therefore, if x* is a local solution to the main non-linear programming problem, then not

only is Vf(x*) in the linear space spanned by the vectors
{Vci(x") :i € E},

but also the multipliers {A; : i € E} in expression (1.41) are nonnegative. This is stated by

the following fundamental theorem [9].

Theorem (Karush-Kuhn-Tucker conditions).
If x* is a local solution of the problem that minimizes the objective function (1.14) subject

to (1.15), then there exist multipliers {A; : i € E}, where
Ai>0 icE

and

A=0  ie{l,2,...,mN\E,

such that the gradient of the objective function at x* has the form
Vi) =Y AVe(x*). O (1.42)
i€E

It follows from this theorem that

Ai=0 if C,'()_C*)>O, iE{l,Z,...,m}\E.
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Thus, if there exist multipliers {A; : i € E} that satisfy equation (1.42) and the conditions

Ai>0 i€E
(1.43)

Ai=0,c¢(X")>0
then x* is a Karush-Kuhn-Tucker points. These points correspond to stationary points
of the objective function when there are no constraints, because any more away from a
Karush-Kuhn-Tucker point that maintains feasibility and that reduces the objective function
can only reduce the objective function by an amount that is of second order in the change
of variables. Specifically, if d is small and if (x* 4 d) is feasible, then expressions (1.42)
and (1.43) imply the band

f*+d)— f(x*) =d" V(") +0(||d])?)
=d" Y AVei(x*)+0(|d|]*)

icE
—ZE,wTVcl( ) +o(|4]1%)
_ZEA ci(x* +d) —ci(x)] +0(||d||*)
> 0(||d|]*),

where the penultimate equality follows from the first order approximation to the constraint

functions.

Thus, any feasible change to a local solution is bounded below by a second order change

to the objective function [11].
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Chapter 2

Piecewise monotonic data

approximation

2.1 Definition of piecewise monotonic data approximation

The piecewise monotonic data approximation is a data smoothing method. Introduced by
Demetriou and Powell [16] and it provides some useful applications in image processing,
signal restoration and spectroscopy(see, for example, [3] and [18]). This method has
some significant advantages over others currently used smoothing methods. The method
is particularly suitable when the errors are large and uncorrelated and choosing a set of
approximation functions is not needed. Also, the smoothing process is a projection because,
if it is applied to smoothed data, then there is no need for changes.

Let n, k be positive integers,where n is the number of data and & is a prescribed integer,
such that k < n and let {¢; = ¢ (x;) : i=1,2,...,n} be a sequence of measured values of a
signal f(x) at the abscissae x; < x < --- < x,. The measurements contain uncorrelated
random errors (noise) & such that ¢ (x;) = f(x;) + &. We assume that if the signal has
turning points, their number is much lower than the number of measurements. Also,
let {y;: i=1,2,...,n} be a sequence of smoothed values. Some algorithms have been
developed by Demetriou & Powell [16] and also by Demetriou [13] and [14] that modify
the measurements if their first differences {y;+1 —y;: i=1,2,...,n— 1} contain more than
k — 1 sign changes. This is a condition that allows & monotonic sections to the smoothed
data.

We regard {¢; : i=1,2,...,n} as components of n-vector ¢, {y;: i =1,2,...,n} as

components of n-vector y and for the present that k is known. The method [16] calculates
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a vector y that minimizes tha sum of squares of the errors

(yi — ¢:)* 2.1)

-

O(y) =

i=1

subject to the piecewise monotonicity constraints

ytj,l < yl‘_,'_1+1 < ... < ytjv lf_]IS odd (22)
Ytj_y > Ytj_1+1 > e 2 Yijs lfJIS even
where {t;: j=0,1,...,k} are integers, that is to say the positions of the turning points or
extrema of the fit, satisfy the conditions
=<t <.--- <f=n (2.3)
The integers {z;: j=1,2,...,k— 1} which not known originally, are variables in the

optimization calculation that gives a best fit. While the number of combinations of integer
variables is raised to the order O(n¥), the piecewise monotonic approximation method
allows an efficient and automatic calculation of an optimal fit y in only O(kn*) computer
operations. Especially, when k = 1 or k = 2, this complexity reduces to O(n).

When the number of extrema in the data is less than £k — 1, Q satisfies the piecewise
monotonicity constraints, so y = ¢. On the contrary the case of y not satisfying the
piecewise monotonicity constraints, the turning point indices {¢;: j=1,2,...,k—1} are

all different. At the turning points of a best fit y, we have the interpolation conditions
yi, = @ j=12,...k—1. (2.4)

Each monotonic section in a best piecewise monotonic fit can be obtained by a seperate
calculation, since it is the optimal fit itself to the corresponding data. The components

{yiti=tj_1,tj-1+1,...,t;} on [th,l ,X;;] minimize the sum of squares

Y (yi— ¢:)* (2.5)
subject to the constraints

y,-§y,~+1 i:l‘j_l,...,l‘j—l, ifjiSOdd (26)
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or subject to the constraints
ViZ Yyl i=tjq,...,tj—1, if j is even, 2.7

which is a strictly convex quadratic programming problem with a unique solution. In the
former case the sequence {y;: i=t;_1,tj_1+1,...,t;} is the best monotonic increasing fit
to{¢i: i=tj_1,tj_1+1,...,t;}. Respectively, in the latter case it is the best decreasing fit.
Therefore, under the condition that {¢;: j=1,2,...,k— 1} are known, solving a seperate

monotonic problem on each section [th,l ,Xz;] is required to calculate the components of y.

2.2 The monotonic problem

The monotonic increasing problem seeks a vector y in R” that minimizes the sum of

squares of the errors, defined by (2.1), subject to the monotonic constraints

i <y < s <y (2.8)

This problem appeared first by van Eeden [17] in 1956, and since then many publications
have appeared because it has many applications in statistics, operations and operation
research, for instance. It is a strictly quadratic programming problem (see, [9]) because the
Hessian matrix of the objective function with respect to y is twice the unit matrix and the
constraints on y are linear. Therefore, it has a unique solution.

Several algorithms are available, but in our method we use the algorithm of Demetriou
& Powell (1991) which is suited to the problem and is very efficient. To be specific, the
algorithm is based on van Eeden’s method and generates a sequence of estimates of the
solution. Initially, it sets y = @, so it relaxes all the constraints (2.8) and subsequently any
violated constraint is satisfied as an equation. The process finishes when all constraints are
considered and also makes some backtracking to avoid possible constraint violations for
the estimates. The most important feature of this approach is that we can obtain the best
monotonic approximation in only O(n) operations.

The following example gives the best approximation to data from sin(zx) + &, x €
[0,0.5] at equally spaced abscissae, when & ~ U[—1,1]. Figure 2.1 illustrates the best
monotonic increasing approximation. We see that the components are piecewise constants

on the intervals [1,2] U [3,4] U[5,17] U[18,28] U[29,35] U[36,40].
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1,7
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0,5
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Piecewise Monotonic Fit (k =1)
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Figure 2.1: Graphical representation of the data given in Table 2.1. Best monotonic fit with £ = 1 to 40 data points (plus signs)
of sin(7x) + €. The solid line illustrates the best fit.

The best monotonic decreasing approximation is tested as the increasing one if the

order of the data is reversed. We feed the data to L2ZWPMA with k£ = 1 and obtain the

results we present in Table 2.1.

Table 2.1: Best fits with £ = 1 monotonic sections to measurements of sin(7x) + &

i X; ;i Vi Ay; Ai i X; i Vi Ay; Ai
1 0.000 -0.313 -0.318 - - 21 0.256 0.831 0.646 0.000 2.040
2 0013 -0.323 -0.318 0.000 0.010 |22 0.269 1.079 0.646 0.000 2.409
3 0.026 0.803 0203 -0.521 0.000 | 23 0.282 0.972 0.646 0.000 3.274
4 0.038 -0.397 -0.203 0.000 1.200 |24 0.295 0.739 0.646 0.000 3.926
5 0.051 1.135 0489 -0.286 0.000 | 25 0.308 -0.090 0.646 0.000 4.111
6 0.064 1.097 0489 0.000 1.291 |26 0.321 -0.109 0.646 0.000 2.638
7 0077 0.740 0489 0.000 2.506 |27 0.333 0.808 0.646 0.000 1.127
8 0.090 -0.518 0.489 0.000 3.007 | 28 0.346 -0.079 0.646 0.000 1.451
9 0.103 1.086 0489 0.000 0.992 |29 0.359 1535 1.070 -0.423 0.000
10 0.115 0934 0489 0.000 2.185 |30 0.372 1.667 1.070 0.000 0.931
11 0.128 0.252 0.489 0.000 3.074 | 31 0.385 0.394 1.070 0.000 2.126
12 0.141 0432 0489 0.000 2.600 |32 0.397 1919 1.070 0.000 0.775
13 0.154 0.792 0489 0.000 2485 |33 0410 0.159 1.070 0.000 2.473
14 0.167 -0.216 0.489 0.000 3.090 | 34 0423 1272 1.070 0.000 0.652
15 0.179 1.187 0489 0.000 1.679 | 35 0436 0.541 1.070 0.000 1.057
16 0.192 -0.361 0.489 0.000 3.074 | 36 0449 1942 1.340 -0.270 0.000
17 0.205 -0.197 0489 0.000 1373 |37 0462 1.009 1.340 0.000 1.204
18 0.218 1.603 0.646 -0.157 0.000 | 38 0474 1.076 1.340 0.000 0.543
19 0.231 0.164 0.646 0.000 1913 |39 0487 1.663 1.340 0.000 0.015
20 0244 1.192 0646 0.000 0.949 | 40 0.500 1.009 1.340 0.000 0.662
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2.3 Lagrange multipliers in the monotonic case

In this section we state how the Lagrange multipliers are calculated by the piecewise
monotonic approximation, although they are not required for obtaining the optimal fit (see,
[14]).

Consider {A;: i =2,3,...,n} as the Lagrange multipliers. Also consider {t;: i =
1,2,...,k— 1} as the optimal sequence of integers and the associated optimal fit y which
have been obtained. Let E be a subset of the active constraint indices {2,3,...,n}, such
that E={i: y,_1 —y; =0}.

The Karush-Kuhn-Tucker conditions for the problem that minimizes the objective

function (2.1) subject to (2.2) lead to

grad @(y) = Y 4i(e' =€), (2.9)
i€E

where ¢’ is the ith coordinate vector in R”. The Lagrange multipliers {A; : i € E} are
nonnegative in the increasing case, when i € [2,7{]NE and i € [tj_; + 1,¢;)NE for j odd,
and respectively they are nonpositive in the decreasing case, when i € [tj_; + 1,¢;]NE for
j even. Essentially, the Lagrange multipliers of the piecewise monotonic approximation
case alternate in the sign along with the intervals [ty,#], [f1,72], and so on of optimal integer
variables. Furthermore, they are equal to zero A; = 0 for all integers i in [2,n], so that A is
a (n—1)-vector.

The Lagrange multipliers are calculated due to the equations in E that the components
of y occur in ranges of values on which they are equal. Without loss of generality we
assume that j is an odd integer in [1,k]. We regard {y; : i =t;_1,...,t;} as the best
monotonic increasing approximation to {¢; : i =;_1,...,¢;} and s and ¢ any integers
such that#;_1 < s <t <t;. Considering the above, {A; :i=s+1,5+2,...,¢} satisfy the

following relations

2(ys - (Ps) = T As+1

Z(YS—H - ¢s+1) = )Ls—o—l - )Ls—i—Z
(2.10)

2001 —O—1)=A1—A
20y —¢r) = A
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We let 1), be the value that minimizes the expression Yi_ (1 — ¢;)? and by a straightforward

calculation we obtain

1 1t
nst— I—S—l—li:Z;(Pl
In the case that y; =y, 1 ==y, s=tj_jory,; <ysand t =t; or y; < y11, it

follows that y; = 1. As a result the Lagrange multipliers can be calculated recursively by

equations (2.10) in only O(¢ — s) computer operations as follows

As—ﬁ—l — - z(rlsl - ¢s>

Asia =Asi1—2(Ns — Gs11) @2.11)

A =M1 —2(Ns — Pr—1).

Since Langrange multipliers came from the solution of a quadratic programming problem,
they have the properties that have been given in the quadratic programming case, which
has been studied in chapter 1.

We use the data of the example of section 2.2, we calculate the Lagrange multipliers
and present their values in Table 2.1. As we expected about the Karush-Kuhn-Tucker

conditions all A; are nonnegative. We note that in our example A; are zero for i such that

Yi—1 = )Yi.
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Chapter 3

Experimental Results

In this chapter we perform experiments to study how the Lagrange multipliers are changed

as the number of monotonic sections in a piecewise monotonic approximation is changed.

3.1 Setting the experiment

In order to present the behavior of Lagrange multipliers A; when the number of monotonic
sections k increases, we have to define those measures that present important information
about this correlation.

For this purpose, we will use nine Raman spectrum datafiles, eight datafiles of mineral
which are downloaded from Laboratory of Photoinduced Effects Vibrational and X-RAY
Spectroscopies, a freely available database on the website [25], of the Department of
Physics, University of Parma, and one datafile of carbohydrate which is downloaded from
SPECARB, a freely available database on the website [27], of the Department of Food
Science, Faculty of Science, University of Copenhagen. In addition, we will use a MS
spectrum datafile of thyroid hormone which is downloaded from Human Metabolome
Database, a freely available electronic database on [26], supported by the Canadian
Institutes of Health Research, Canada Foundation for Innovation, and by The Metabolomics
Innovation Centre.

L2WPMA, as we have mentioned, calculates a least squares piecewise approximation
to univariate data which contain random errors. The datafiles consist of two-column data,
where the first column keeps the Raman shift, providing the values {x; : i =1,2,...,n}
as the abscissae, which are irrelevant to the calculation, and the second column keeps the

intensity, providing the values {¢; : i = 1,2,...,n}. The method supplies the smoothed
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data of the best fit {y; : i = 1,2,...,n}, the positions of the turning points of the best fit
{tj: j=1,2,...,k— 1}, the value of the objective function and the Lagrange multipliers,
one multiplier for each constraint, which are also irrelevant to the actual calculation of the
best fit.

The Lagrange multipliers are interpreted as rates of change of the objective function
(2.1). A possible relaxation of an inactive constraint reduces the value of the objective
function (2.1) by an amount equal to the value of the multiplier A;. It is known that the
nonzero Lagrange multipliers correspond to active constraints, so a sensitivity analysis
concludes that the best fit is strongly dependent upon the placement of all active constraints.

Before we state the experiment, it is necessary to define that E is the subset of active
constraints indices {2,...,n}, such that A; € E are nonzero Lagrange multipliers. We
determine that Y (k,n) is the set of the feasible vectors y in R" with k monotonic sections
increasing and decreasing alternately. Therefore, in this experiment for the optimal y in

Y (k,n) we calculate the following measures

1. SSR=|[y—¢ |?, the sum of squares of residuals, the value of the objective function,

that is the square distance between the smoothed values y; and the function values ¢;,

i=1,2,....n
2. D= 1max lyi — ¢;], the maximum estimated error, that is the maximum absolute
<i<n
difference between the smoothed values y; and the function values ¢;,i =1,2,...,n

3. L= r){lax |Ai|, the maximum absolute value of the nonzero Lagrange multipliers, that
€E

is of the active constraints

4. (= anin |A;], the minimum absolute value of the nonzero Lagrange multipliers, that
i€E
is of the active constraints

5. log;oL and log,y¢, the decadic logarithms of the maximum and minimum absolute

values of the nonzero Lagrange multipliers

for different values of the monotonic sections k, with the aim of examining how these

measures are changed in connection with k.
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3.2 The Raman spectrum of zircon

The first Raman spectrum datafile regards mineral zircon. The file contains 1024 pairs of
data and is tested for k in {1,2,...,16}. We start feeding the data, without any preliminary
analysis, to LZWPMA, for k = 1, one monotonic section. The best fit and the corresponding
Lagrange multipliers, as well as the calculations of the measures which are examined, are
far too many to be presented as raw numbers in the pages, so refer to Zicron.xlsx, sheet
k = 1. Nevertheless, we may capture the main features of the data set by looking at Fig.
3.1. The data are denoted by plus sign “+” and the piecewise linear interpolant to the

smoothed values illustrates the fit.

15000 - Piecewise Monotonic Fit (k = 1) to Zircon Raman Spectrum
13000 -

11000 -

9000 -

+

7000 - =
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Figure 3.1: Detected peaks (circles) by a best monotonic fit with k = 1 to 1024 data points (plus signs) of the zircon Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

The measures which we mentioned in section 3.1 can be calculated by the results of
the running program. First, the sum of squares of residuals and the maximun absolute
value of estimated error are equal to 1.33 x 10° and 9.70 x 103 respectively. Second, the
maximum and minimum absolute value of nonzero Lagrange multipliers are equal to
2.42 % 10° and 2.10 x 10° respectively. Last, the corresponding decadic logarithms of
the above maximum and minimum values of nonzero Lagrange multipliers are equal to
5.38 x 10° and 3.22 x 10~! respectively.

The experiment continues for k = 2, two monotonic sections. The corresponding best fit
and Lagrange multipliers refer to Zicron.xlsx, sheet k=2. The data and the best fit for k =2
are displayed in Fig. 3.2. In this case the measures are SSR = 5.72 x 108, D = 7.13 x 103,
L=1.40x10%¢=4.20x 1071, log;oL = 5.15 x 10° and log,o¢ = —3.77 x 1071,
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15000 + Piecewise Monotonic Fit (k = 2) to Zircon Raman Spectrum
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Figure 3.2: As in Fig. 3.1, but detected peaks by a best monotonic fit with k£ = 2. The peak is indicated by circle.

For k = 3, three monotonic sections, the results of the running program and the
calculations are presented in Zircon.xlsx, sheet k = 3. Therefore, the corresponding data
and the best fit are displayed in Fig. 3.3. The measures are equal to the case when k = 2,
except for the sum of squares of residuals, the minimum nonzero Lagrange multipliers
and the corresponding decadic logarithms, which are equal to 5.42 x 108, 2.10 x 10° and
3.22 x 10~ ! respectively.

15000 Piecewise Monotonic Fit (k = 3) to Zircon Raman Spectrum
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Figure 3.3: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 3. The peak is indicated by circle.

When k = 4, four monotonic sections, the results from the running program and the
calculations are presented in Zircon.xIsx, sheet 4. The data, the resultant fit and the peaks
are shown in Fig. 3.4. The values of measures are SSR = 2.75 x 103, D =5.43 x 103,
L=1.40x 103, ¢=4.20x 107!, log;,L = 5.15 x 10° and log,of = —2.73 x 10~1,
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15000 - Piecewise Monotonic Fit (k = 4) to Zircon Raman Spectrum
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Figure 3.4: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 4. The peaks are indicated by circle.

It is observed that Raman spectrum data sets consist of increasing and decreasing
monotonic sections alternately. They start with an increasing monotonic section and end
with a decreasing monotonic section. As a result, in this case, the piecewise monotonic
approximation detects the most important peaks only when k is even. Despite the fact
that we continue to consider all cases for k in {5,6,...,16}, we will present only figures
in which the piecewise monotonic approximation detects the most important peaks for
even monotonic sections. It is usual in practice that the turning points of an optimal fit
with k£ monotonic sections are preserved by the optimal fit with £+ 2 monotonic sections.
However, it should be noted that this depends on the specific calculation and does not

necessarily happen generally (see, for example, [12]).

15000 + Piecewise Monotonic Fit (k = 6) to Zircon Raman Spectrum
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Figure 3.5: As in Fig. 3.1, but detected peaks by a best monotonic fit with £ = 6. The peaks are indicated by circle.
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15000 + Piecewise Monotonic Fit (k = 8) to Zircon Raman Spectrum
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Figure 3.6: As in Fig. 3.1, but detected peaks by a best monotonic fit with k£ = 8. The peaks are indicated by circle.
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Figure 3.7: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 10. The peaks are indicated by circle.

The piecewise monotonic approximation makes the sum of squares of the residuals
smaller, while k increases, maintaining the most important turning points. Having a
known underlying function enables us to see whether the fit is more accurate than the
measurements and it is. For k = 12 the method captures effectively the trends of the data
and detects appropriate peaks (see Fig. 3.8). However, we continue increasing the number
of monotonic sections k, in which the method detects not so important peaks, in order to
examine the behavior of the measures that are mentioned in section 3.1. By increasing
the number of sections k, it is observed that the method detects subtle trends in the data,
which are not detected for smaller values of k, because they are rather conservative (see

Fig 3.9 and 3.10). Therefore, for k = 16 the method detects 15 turning points, 8 of which
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are peaks.

15000 1 Piecewise Monotonic Fit (k = 12) to Zircon Raman Spectrum
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Figure 3.8: As in Fig. 3.1, but detected peaks by a best monotonic fit with £ = 12. The peaks are indicated by circle.

15000 Piecewise Monotonic Fit (k = 14) to Zircon Raman Spectrum
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Figure 3.9: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 14. The peaks are indicated by circle.

Thus, following the above procedure, we calculate the best fit and the corresponding
Lagrange multipliers, which are presented in Zircon.xIsx with the absolute value of
Lagrange multipliers and estimated errors, with LZWPMA. The main features of the data
sets may be captured by the figures, when k increases.

The behavior of the approximation is explored by presenting in Table 3.1 the positions
of the turning points by piecewise monotonic fits to the zircon data for values of k in
{2,4,...,16}. In the right part of Table 3.1 we indicate the turning point positions of each
optimal fit for k in {2,4,...,16} in corresponce with the column labeled “;”, derived

when k = 16. For instance, when k = 6 the turning points occur at the positions 188, 232,
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265, 716 and 795 as indicated by the times signs in the column labeled “6”. We notice that
the extra turning points of the optimal approximation with k 4+ 2 monotonic sections occur

between adjacent turning points of the optimal approximation with kK monotonic sections.

15000 1 Piecewise Monotonic Fit (k = 16) to Zircon Raman Spectrum
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Figure 3.10: As in Fig. 3.1, but detected peaks by a best monotonic fit with k = 16. The peaks are indicated by circle.

Table 3.1: Left four columns: Turning points in the zircon spectrum by a best fit with k¥ = 16 monotonic
sections. Right eight columns: The turning point positions of the optimal fit for k in {2.4,...,16} are
indicated by the times sign

j tj X Intensity (¢) | k= 2 4 6 8 10 12 14 16
0 1 153x10*> 298x10° X | x [ x[x[ x| x| x] x
1 46 2.02x102  5.11x10° X | x| x
2 51 2.08x10> 3.61x10° X | x| x
3 66 2.24x10* 5.95x10° X | x| x| x| x
4 144 3.09x10> 2.64x10° X | x| x| x| x
5 188 3.56x 10> 1.12x10* X | x| x| x| x| x| x
6 232 4.03x10> 2.86x10° X | X | x| x| x| x| x
7 265 438x10* 1.36x10* X | x| x| x| x| x| x| x
8 402 5.80x10* 2.40x10° X | x
9 459 6.39x10> 2.74x10° X | x
10 582 7.63x10* 2.26x10° X
11 643 8.24x10> 2.62x10° X
12 716 896x10> 2.25x10° X | x| x| x| x| x
13 795 9.73x10> 7.14x103 X | x| x| x| x| x
14 814 991x10> 2.61x10° X | x| x| x
15 829 1.01x10° 6.99x103 X | x| x| x
16 1024 1.19x 103 221 %103 X | X | X | x| x| x| x| %
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In Table 3.2 are displayed the centralized measures of the experiment, which are
mentioned in section 3.1 for k monotonic sections, k in {1,2,...,16}. It is observed that
the sum of squares of residuals decreases while the value of the monotonic sections k
increases. More specifically, the order of magnitude of SSR is 10° for k in {1,2,...,6}
and it decreases to 10% from k in {7,8,9}. For k in {10,11,...,15} it falls to 10°. For
k = 16 the order of magnitude falls more to 10°. A reduction in the order of magnitude also
occurs in the maximum absolute value of estimated errors, as the number of monotonic
sections increases. For kin {1,2,...,11} it is equal to 103 while for k in {12,13,...,16}
it reduces to 2.3 x 102. The maximun absolute value of nonzero Lagrange multipliers
reduces while k increases. More specifically, the order of magnitude starts from 10, for k
in {1,2,...,5}, decreases to 10*, for k in {6,7,8,9}, and to 10® for k in {10,11,...,16}.
The minimum absolute value of nonzero Lagrange multipliers presents a fluctuation, that is
for kin {1,3,5} the value is 2.1 x 10" and for k in {7,9,11,13,15} is 5.60 x 10!, while

for k even is equal to 4.20 x 10~!. Their decadic logarithms have a corresponding behavior.

Table 3.2: Measures for Zircon.

SSR D L 14 log;oL log ;¢
1.33x10° 9.70x10° 242x10° 2.10x10° 538x10° 3.22x10°!
572x 108 7.13x10° 1.40x10° 420x107' 515x10° —3.77x 107!
542x10% 7.13x10° 1.40x10° 2.10x10° 5.15x10° 3.22x107!
275x 108 453x10° 1.40x10° 420x107' 5.15x10° —2.73x 107!
245x 108 453x10° 1.40x10° 2.10x10° 5.15x10° 3.22x107!
1.24x 108 3.37x10° 7.19x10* 420x107' 4.86x10° —3.77x 107!
9.34x 107 337x10° 4.06x10* 560x107" 4.61x10° —2.52x107!
582x 107 3.37x10° 3.29x10* 420x107' 4.52x10° —3.77x 107!
4.04x 107 230x10° 4.06x10* 560x107" 4.61x10° —2.52x107!
10 | 5.25x10° 1.07x10° 7.99x10° 420x107" 390x10° —3.77x10°!
11 |525%x10° 1.07x10° 7.99x10° 560x10""' 3.90x10° —2.52x10"!
12 | 205x10° 230x 10> 7.99x10° 420x107' 390x10° —3.77x10°!
13| 2.05x10° 230x 102 7.99x10° 560x10~" 3.90x10° —2.52x10"!
14 | 1.30x 10° 230x 10> 555x10° 420x107" 3.74x10° —3.77x 107!
15| 1.30x 106 230x 102 555x10° 5.60x107' 3.74x10° —2.52x 107!
16 | 775 x 10° 230x 10> 1.38x10° 420x107" 3.14x10° —3.77x 107!

O 00 1O\ N bW =X

39



3.3 Experiments with Raman spectra of minerals

We examine another seven experiments with Raman spectrum datafiles of minerals. The

process is exactly the same as in section 3.2.

3.3.1 The Raman spectrum of datolite

The datafile of Raman spectrum of mineral datolite is the datafile through which we
continue the experiments. This datafile contains 1024 pairs of data which are fed to
L2WPMA with different values of k, k in {1,2,...,20}. The corresponding results are
presented in Datolite.xIsx. Fig. 3.11 is the corresponding figure in which are shown the
data and the best fit for k = 14.

In addition, for k = 20 the method detects 19 turning points, 10 of which are peaks.
Table 3.3 presents the turning points positions by piecewise monotonic fits to the datolite
data for values of k in {2,4,...,20}, so that we explore the behavior of the approximation.
In the right part of Table 3.3 we indicate the positions of the turning points of each optimal
fit for kin {2,4,...,20} in correspondence with the column labaled “¢;”, derived when
k = 20. For instance, when k = 6 the turning points occur at the positions 18, 103, 517,
618 and 909 as indicated by the times signs in the column labeled “6” and when k = 8 the
method detects two more turning points at the positions 227 and 392 as indicated by the

times signs in the column labeled “8”.

42000 1 e Piecewise Monotonic Fit (k = 14) to Datolite Raman Spectrum
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Figure 3.11: Detected peaks (circles) by a best monotonic fit with k = 14 to 1024 data points (plus signs) of the datolite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.
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Table 3.3: Left four columns: Turning points in the datolite spectrum by a best fit with k£ = 20 mono-
tonic sections. Right ten columns: The turning point positions of the optimal fit for k in {2.4,...,20}
are indicated by the times sign

j t; Xt, Intensity (¢) [ k= 2 4 6 8 10 12 14 16 18 20
0 1 148x10*> 3.38x10° x [ x [ x[x[ x| x[x]x]x]x
1 18 1.66x10%>  4.11 x 10* x| x| x| x| x| x| x| x| x
2 55 2.07x10> 3.61x10° X | x| x| x| x
3 66 2.19x10>  1.48x10* X | x| x| x| x
4 103 2.59%x 10> 3.47x103 X | x| x| x| x| x| x| x|x
5 199 3.62x10> 8.10x10° X | x
6 212 3.76x10* 4.14x10° X | x
7 227 3.92x10*> 1.31x10* X | x| x| x| x| x| x
8 242 4.08x10* 3.81x10° X
9 257 424x10> 7.12x10° X
10 304 4.73x10> 3.81x10° X | x| x
11 321 491x10> 7.62x10° X | x| x
12 392 565x10> 3.18x10° X | x| x| x| x| x| x
13 517 6.93 x 102 3.89 x 10* X | X | X | x| X X X X X X
14 618 7.94x 10% 3.52x 103 X | X | X | x| X | x| x| X
15 743 9.17x10*  1.14x10* X | x| x| x| x| x
16 789 9.62x10> 391x10° X | x| x| x
17 812 9.84x10> 9.04x10° X | x| x| x
18 857 1.03x10° 3.57x10° X | x| x| x| x| x
19 909 1.08x10° 1.32x10* X | x| x| x| x| x| x| x
20 1024 1.18x10° 3.66x 103 X | x| x| x| x| x| x|x]x] x

The value of centralized measures which are mentioned in section 3.1 when k in
{1,2,...,20} are presented in Table 3.4. The values of the measures decrease while the
number of monotonic sections increases. More specifically, the order of magnitude of
the sum of squares of residuals starts from 10° for k in {1,2,...,7}, decreases to 108 for
kin {8,9,...,17} and to 107 for k in {18,19,20}. For k in {2,3,...,19} the values are
equal per two. The order of magnitude of maximum absolute value of estimated errors is
10* and it reduces to 103, 9.70 x 103 for k in {4,5,...,11}, 4.27 x 10° for k in {12, 13},
3.15 x 103 for k in {14, 15}, 2.88 x 10> for k in {16,17}, 2.48 x 10> for k in {18,19} and
1.63 x 10° for k = 20. The order of magnitude of the maximum absolute value of the
Lagrange multipliers declines from 10° for kin {1,2,...,9} to 10* for k in {10, 11,...,20}.
More specifically, for k in {6,7,...,17} the values are equal per two, for k in {3,4,5} and
{18,19,20} are equal per three and for k in {1,2} are different. The minimum absolute
value of nonzero Lagrange multipliers is 1.10 x 10! for k in {1,2}, 2.00 x 10° for k in
{3,4,...,9} and 1.00 x 10° for k in {10,11,...,20}. Their decadic logarithms display a

corresponding behavior.
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Table 3.4: Measures for Datolite

SSR D L 14 logoL logo?
9.51x10° 3.39x10* 5.39x10° 1.10x 10" 5.73x10°  1.04 x 10°
541x10° 3.63x10* 3.31x10° 1.10x10' 5.52x10°  1.04x 10°
449x10° 3.02x10* 2.13x10° 2.00x10° 5.33x10° 3.0l x 10!
1.61 x10° 9.70x10° 2.13x10° 2.00x10° 5.33x10° 3.01x 10!
1.61 x10° 9.70x 10° 2.13x10° 2.00x10° 5.33x10° 3.01 x 107!
1.15x10° 9.70x10° 1.45x10° 2.00x10° 5.16x10° 3.01 x 107!
1.15x10° 9.70x10° 1.45x10° 2.00x10° 5.16x10°  3.01 x 107!
8.15x 108 9.70x10° 1.23x10° 2.00x10° 5.09x10°  3.01 x 107!
8.15x 108 9.70x 10> 1.23x10° 2.00x10° 5.09%x10° 3.01x 107!
10 | 528 x 108 9.70x10° 6.17x10* 1.00x10° 4.79x10°  0.00 x 10°
11 | 528x10% 9.70x10° 6.17x10* 1.00x10° 4.79x10°  0.00 x 10°
12 | 276 x 108 427 x10° 580x10* 1.00x10° 4.76x10°  0.00 x 10°
13 | 276 x 108 427 x10° 5.80x10* 1.00x10° 4.76x10°  0.00 x 10°
14| 1.71x 108 3.15x10° 3.11x10* 1.00x10° 4.49x10°  0.00 x 10°
15| 1.71x 108 3.15x10° 3.11x10* 1.00x10° 4.49x10°  0.00x 10°
16 | 1.29x 108 2.88x10° 2.69x10* 1.00x10° 4.43x10°  0.00x 10°
17 | 1.29x 108 2.88x10° 2.69x10* 1.00x10° 4.43x10°  0.00x 10°
18 | 9.03x 107 248 x10° 2.46x10* 1.00x10° 4.39x10°  0.00x 10°
19 | 9.03x 107 248 x10° 246x10* 1.00x10° 4.39x10°  0.00x 10°
20 | 6.81x 107 1.63x10° 246x10* 1.00x10° 4.39x10°  0.00 x 10°
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3.3.2 The Raman spectrum of olivenite

We continue the experiments with the Raman spectrum datafile of the mineral olivenite
in which the number of pairs of data is 1024. We feed the data to LZWPMA with &
in {1,2...,16} and the results are presented in Olivenite.xlsx with the corresponding
measures which we calculate. The main features of this data set may easily be captured by
Fig. 3.12 which shows the data and the best fit for k = 14.

Furthermore, for k = 16 the method detects 15 turning points, 8 of which are peaks.
In order to examine the behavior of the approximation, we display the turning points by
piecewise monotonic fits to the olivenite data for values of k in {2,4,...,16} in Table 3.5.
In the right part of the table 3.5 are indicated the positions of the turning points of each
optimal fit for k in {2,4,...,16} in correspondence with the column labeled “¢;”, derived
when k = 16. For example, for k = 6 the turning points occur at the positions 66, 99, 121,
527 and 710 as shown by the times signs in the column labeled “6”, while for k = 8 two
more turning points occur at the positions 158 and 177 as indicated by the times signs in

the column labeled 8.
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Figure 3.12: Detected peaks (circles) by a best monotonic fit with k£ = 14 to 1024 data points (plus signs) of the olivenite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.5: Left four columns: Turning points in the olivenite spectrum by a best fit with £k = 16
monotonic sections. Right eight columns: The turning point positions of the optimal fit for k in
{2,4,...,16} are indicated by the times sign

j tj X, Intensity ((Pz,) k= 2 4 6 8 10 12 14 16
0 1 825x10" 1.60x10° X | x [ x[x][ x| x| x] x
1 8 9.02x10' 3.34x10° X | x| x| x
2 38 1.25x10>  9.32x 107 X | x| x| x
3 66 1.57x10> 9.95x103 X | x| x| x| x| x| x
4 99 1.94x10> 8.06x 10? X | x| x| x| x| x
5 121 219x10* 3.35x10° X | x| x| x| x| x
6 158 2.61x10> 8.57x10% x| x| x| x| x
7 177 2.83x10*> 3.46x10° X | x| x| x| x
8 216 3.26x10*> 1.09x10° X | x
9 233 345x10*> 2.19x10° X | x
10 276 3.93x10*> 6.43 x 10? X | x| x
11 302 421x10> 1.79x103 X | x| x
12 352 4.76x10*  5.79 x 10? X
13 397 525x10> 1.26x10° X
14 527 6.33x10> 4.71x10? X | x| x| x| x| x| x
15 710 8.54 x 10? 1.80 x 10* X | X | x| x| X X X X
16 1024 1.17x10°  4.32x10? X | x| x| x| x| x| x| x
Table 3.6 presents the measures which we examine for each k in {1,2,...,16}. It

is observed that the values of the sum of squares of errors decreases while the number
of monotonic sections k increases. More specifically, its order of magnitude starts from
10° for k = 1, decreases to 108 for k in {2,3} and to 107 for k in {4,5,...,11}. Then it
decreases to 10° for k in {12,13,14,15} and to 10° for k = 16. The order of magnitude

of maximum absolute values of estimated errors decreases gradually for & in {1,2,3},
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from 1.69 x 10* to 7.53 x 103. For k in {4,5,6,7} the value is 1.99 x 10* and for k = 8
is 1.90 x 10°. Then it presents a fluctuation while k increases, that is for k in {9, 11,13}
the value is 9.42 x 107 and for k = 10 and k = 12 the values are 8.24 x 10 and 7.48 x 10?
respectively. The value for k = 14 and k = 15 is 5.52 x 10? and for k = 16 is 2.94 x 10°.
The order of magnitude of the maximum absolute value of nonzero Lagrange multipliers
for kin {1,2,3} is 10°. Then its order of magnitude for k in {4,5,...,12} decreases to 10°.
Its values are equal per two except for k = 8. For k in {13,14,15} its value is 8.72 x 10
and for k = 16 is 3.23 x 10°. The minimun absolute value of nonzero Lagrange multipliers
for k in {1,2} is equal to 1.00 x 10° and for k in {3,4,...,16} is equal to 5.33 x 10~

Their decadic logarithms have a corresponding bahavior.

Table 3.6: Measures for Olivenite

SSR D L 14 logoL logo?
227x10° 1.69x10* 3.71x10° 1.00x10° 557x10°  0.00 x 10°
6.62x 108 8.87x10° 3.44x10° 1.00x10° 554x10°  0.00x 10°
413 %108 7.53x10° 1.09x10° 533x107' 504x10° —2.73x107!
9.52x 107 1.99x10° 3.32x10* 533x107' 452x10° —2.73x107!
7.80x 107 1.99x10° 3.32x10* 533x10°" 4.52x10° —2.73x 107!
6.38x 107 1.99x10° 2.94x10* 533x107! 447x10° —2.73x107!
4.67x107 1.99x10° 294x10* 533x107" 447x10° —2.73x107!
3.51x 107 1.90x10° 2.48x10* 533x107' 440x10° —2.73x107!
1.79 x 107 9.42x 10> 1.79x10* 533x107" 4.25x10° —2.73x 107!
10 | 1.41x107 8.24x10> 1.79x10* 533x107' 425x10° —2.73x107!
11| 1.06x107 9.42x10> 1.06x10* 533x107" 4.02x10° —2.73x 107!
12 | 676 x 100 7.48 x 10> 1.06x 10* 5.33x107' 4.02x10° —2.73x 107!
13| 6.35x10° 9.42x10> 872x10° 533x107" 3.94x10° —2.73x107!
14 | 248 x10° 552x 102 872x10° 533x107' 3.94%x10° —2.73x10°!
15 | 248 x10° 5.52x 10> 872x10° 533x107' 3.94x10° —2.73x107!
16 | 9.83x10° 294 x 10> 323x10° 533x107" 351x10° —2.73x10°!
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3.3.3 The Raman spectrum of clintonite

The next datafile which we deal with is a Raman spectrum of mineral clintonite. The
number of pairs of data is 1024. We test it for k in {1,2,...,14}. For each value of
{1,2,...,14} we feed the data to LZWPMA and the corresponding results are presented in
fourteen different sheets, one sheet for each k, in Clintonite.xlsx. In order to capture the
main features of the data set, we present Fig. 3.13 for k = 12.

Moreover, for k = 14 the method detects 13 turning points, 6 of which are peaks. In
Table 3.7 are presented the turning point positions by piecewise monotonic fits to the

clintonite data for values of k in {2,4,...,14} in order to investigate the behavior of the
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approximation. In the right part of Table 3.7 we indicate the positions of the turning points
of each optimal fit for k in {2,4,...,14} in correspondence with the column labeled “z;”,
derived when k = 14. For example, when k = 6 the turning points occur at the positions

125, 165, 511, 587 and 989 as indicated by the times signs in the column labeled “6”.
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Figure 3.13: Detected peaks (circles) by a best monotonic fit with k£ = 12 to 1024 data points (plus signs) of the clintonite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.7: Left four columns: Turning points in the clintonite spectrum by a best fit with k = 14
monotonic sections. Right seven columns: The turning point positions of the optimal fit for k in
{2,4,...,14} are indicated by the times sign

j t X1, Intensity () [ k= 2 4 6 8 10 12 14
0 1 934x10"  4.39x10? x| x| x| x| x] x| x
1 30 1.26x10>  2.15x10° X
2 47 146x10* 1.84x10° X
3 125 235x10*> 8.85x10° X | x| x| x| x| x
4 165 2.80x10*> 2.43x10° X | x| x| x| x| x
5 272 3.99x10*> 5.00x10° x| x| x| x
6 315 446x10*> 3.24x10° X | x| x| x
7 511 657x10> 8.21x10° X | x| x| x| x
8 587 7.36x10> 3.57x10° X | x| x| x| x
9 739 893x10> 5.60x10° X | x| x
10 780 9.34x10> 3.98x10° X | x| x
11 834 9.88x10> 546x10° X | x
12 863 1.02x10° 3.98x10° X | x
13 989 1.14x10° 6.07x103 X | x| x| x| x| x| x
14 1024 1.17x10° 5.48x10° X | x| x| x| x| x| x

The centralized measures which we examine and calculate from the above results are
presented in Table 3.8. It is observed that the value of measures decrease while the number

of monotonic sections increases. More specifically, the order of magnitude of the sum of
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squares of residuals starts from 10° for k = 1, then decreases to 108 for k in {2,3,4,5}
and to 107 for kin {6,7,...,11}. For k in {12,13,14} it falls to 10°. Except for k = 1 and
k = 14 the values are equal per two. A reduction is noted in the maximum absolute values
of the estimated error. The order of magnitude is 103 for k in {1,2,...,11} and falls to 10?
for k in {12,13,14}. The same condition as above is detected. The order of magnitude
of maximun absolute value of nonzero Lagrange multipliers is 10° for k in {1,2,...,5}
and decreases to 10* for k in {6,7,...,11}. In the latter case the values are equal per two.
For k in {12,13,14} the values are equal to 1.68 x 10°. The minimum absolute value of
nonzero Lagrange multipliers is 3.29 x 10 for k = 1, decreases to 8.00 x 10~! for k in
{2,3,...,7} and t0 5.00 x 10~! for k in {8,9,...,14}. Their decadic logarithms have the

same behavior respectively.

Table 3.8: Measures for Clintonite

k SSR D L [ log,,L log, o/

1 | 1.41x10° 501x10° 7.11x10° 3.29x10° 5.85x10° 3.52 x 10V
2 | 481x10% 548x10° 1.12x10° 8.00x 107! 5.09x10° —9.70x 1072
3 1481x10% 548x10° 1.12x10° 8.00x 107! 5.09x10° —9.70x 102
4 | 234%x10% 4.09%x10° 1.06x10° 8.00x107! 502x10° —9.70x 1072
5 1234x10% 4.09%x10° 1.06x10° 8.00x 10~} 5.02x10° —9.70x 1072
6 | 7.78x 107 145x10° 590x10* 8.00x 107! 4.77x10° —9.70x 1072
7 | 7.78x107 1.45x10> 590x10* 8.00x 107! 4.77x10° —9.70x 1072
8 | 4.18x107 1.19x10° 3.69x10* 500x10"!' 457x10° —3.01x107!
9 | 4.18x107 1.19x10> 3.69x10* 5.00x10°! 4.57x10° —3.01x107!
10 | 206 x 107 1.05x10° 3.64x10* 5.00x107"' 4.56x10° —3.01x10"!
11 | 206x 107 1.05x10° 3.64x10* 5.00x107' 456%x10° —3.01x10°!
12 | 1.23x10° 233x10> 1.68x10° 500x107! 322x10° —3.01x10"!
13| 1.23x10° 233x10> 1.68x10° 5.00x10"' 322x10° —3.01x10°!
14 | 1.06 x10° 1.63x10> 1.68x10° 500x107" 3.22x10° —3.01x10°!

3.3.4 The Raman spectrum of beryl

In the next experiment we use the datafile of Raman spectrum of mineral beryl. It consists
of 1000 pairs of data and is tested for k in {1,2,...,14}. Feeding the data to LZWPMA,
the results are presented in fourteen different sheets, in Beryl.xlsx, with the corresponding
calculations of measures which are studied. Fig. 3.14 displays the data and the best fit for
k = 14, so as to capture the main features.

Moreover, for k = 14 the method detects 13 turning points, 7 of which are peaks. The
behavior of the approximation is explored by presenting in Table 3.9 the turning point

positions by piecewise monotonic fits to the beryl data for values of k in {2,4,...,14}. In
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the right part of Table 3.9 we indicate the positions of the turning points of each optimal
fit for k in {2,4,...,14} in correspondence with the column labeled “;”, derived when
k = 14. For example, when k = 4 the turning points occur at the positions 534, 681 and
926 as displayed by the times signs in the column labeled “4”.

15000 - Piecewise Monotonic Fit (k = 14) to Beryl Raman Spectrum

5000

3000 -

1000 -

1
-1000 -

Figure 3.14: Detected peaks (circles) by a best monotonic fit with textitk = 14 to 1000 data points (plus signs) of the beryl
Raman spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.9: Left four columns: Turning points in the beryl spectrum by a best fit with £ = 14 monotonic
sections. Right seven columns: The turning point positions of the optimal fit for k in {2,4,...,14} are
indicated by the times sign

j t X1, Intensity () [ k= 2 4 6 8 10 12 14
0 1 1.19x10> —2.81x10! x| x| x| x| x] x| x
1 25 1.46x10? 1.14 x 10° x | x| x
2 39 1.61x10> —4.33x10? X | x| x
3 187 3.22x10? 3.76 x 103 x| x| x| x
4 230 3.68x10> —9.95x10! X | x| x| x
5 256 3.96x 107 5.21 x 103 X | x| x| x| x
6 352 497x10* —2.22x10? X
7 381 5.27x10% 1.39 x 10 X
8 456 6.05x 10> —3.98x10? X | x| x| x| x
9 534 6.84 x 10% 1.44 x 10* X | X | X | x| X X X
10 681 832x10> —3.87x10? X | x| x| x| x| x
11 868 1.01x10° 2.00 x 10° X | x
12 889 1.03x10° 4.62 x 102 X | x
13 926 1.07x10° 7.19 x 103 X | x| x| x| x| x
14 1000 1.14x10° —7.11x10? X | x| x| x| x| x| x

In Table 3.10 we present the value of centralized measures which are studied as k
increases, k in {1,2,...,14}. While the number of monotonic sections increases the

order of magnitude of the sum of squares of residuals goes down. For k = 1 is 10°, for
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kin {2,3,...,6} is 10% and for k in {7,8,...,14} is 107. Respectively, a decrease is
observed in absolute values of estimated errors. More specifically, the corresponding
order of magnitude is 10* for k = 1, 10% for k in {2,3,...,7}, equal per two, and for k
in {8,9,...,12}, all equal, and 10? for k in {13,14}. The maximum absolute value of
nonzero Lagrange multipliers is 2.88 x 107, 2.83 x 10° for k in {2,3} and 1.19 x 10° for
kin {4,5}. It drops to 4.16 x 10* for k in {6,7}, 2.92 x 10* for k = 8 and 2.06 x 10* for
kin {9,10,11,12}. For k in{13,14} is 7.49 x 103. The minimum absolute value of the
nonzero Lagrange multipliers is equal to 2.84 x 10° for all values of k. The behavior of

their decadic logarithms follows the same pattern.

Table 3.10: Measures for Beryl

SSR D L 14 log;,L logo?
1.91 x 107 1.38x10* 2.88x10° 2.84x10° 546x10° 4.54x 107!
8.32x10% 6.62x10° 2.83x10° 2.84x10° 545x10° 4.54x 107!
8.22x 108 6.62x10° 2.83x10° 2.84x10° 545x10° 4.54x 107!
2.52x 108 4.82x10° 1.19x10° 2.84x10° 5.08x10° 4.54x 107!
242x 108 4.82x10° 1.19x10° 2.84x10° 5.08x10° 4.54x 107!
1.02x 108 3.18x10° 4.16x10* 2.84x10° 4.62x10° 4.54x 107!
9.26x 107 3.18x10° 4.16 x 10* 2.84x10° 4.62x10° 4.54x 107!
487 %107 1.17x10° 2.92x10* 2.84x10° 4.47x10° 4.54x 107!
391x 107 1.17x10° 2.06x10* 2.84x10° 4.31x10° 4.54x 107!
3.71x 107 1.17x 10> 2.06x10* 2.84x10° 4.31x10° 4.54x 107!
2.88x 107 1.17x10° 2.06x10* 2.84x10° 4.31x10° 4.54x 107!
2.68x 107 1.17x10° 2.06x10* 2.84x10° 4.31x10° 4.54x 107!
1.92x 107 6.65x 10> 7.49x10° 2.84x10° 3.87x10° 4.54x 107!
1.71 x 107 521 x 102 7.49x10° 2.84x10° 3.87x10° 4.54x 107!
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3.3.5 The Raman spectrum of lizardite

Continuing the experiments, we use the Raman spectrum datafile of mineral lizardite which
consists of 1008 pairs of data. For each value of k in {1,2,...,14} we feed the data to
L2WPMA. The corresponding results are presented in fourteen sheets, one for each &, in
Lizardite.xIsx. The data and the best fit for kK = 14 are displayed in Fig. 3.15, with the aim
of detecting the main features of the data.

Furthermore, for k = 14 the method detects 13 turning points, 7 of which are peaks.
Table 3.11 presents the turning point positions by piecewise monotonic fits to the lizardite
data for values of k in {2,4,...,14}, so that we explore the behavior of the approximation.
In the right part of Table 3.11 we indicate the positions of the turning points of each optimal

fit for k in {2,4,...,14} in correspondence with the column labeled “#;”, derived when
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k = 14. For instance, when k = 8 the turning points occur at the positions 18, 59, 102, 129,
240, 288 and 523 as indicated by the times signs in the column labeled “8”.

15000 Piecewise Monotonic Fit (k = 14) to Lizardite Raman Spectrum
13000
11000
9000
7000

5000

3000
1000

100,
-1000

-3000

Figure 3.15: Detected peaks (circles) by a best monotonic fit with k£ = 14 to 1008 data points (plus signs) of the lizardite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.11: Left four columns: Turning points in the lizardite spectrum by a best fit with k = 14
monotonic sections. Right seven columns: The turning point positions of the optimal fit for k£ in
{2,4,...,14} are indicated by the times sign

j t X1, Intensity () [ k= 2 4 6 8 10 12 14
0 1 1.17x10> —-2.28x10° x| x [ x| x| x| x| x
1 18 1.37 x 10? 8.58 x 10° x| x| x| x
2 59 1.84x10> —5.19x10? x| x| x| x
3 102 2.33 x 10? 1.35 x 10* X | x| x| x| x| x| x
4 129 2.63x10> —-1.70x10? X | x| x| x| x| x
5 240 3.87x10% 1.06 x 10* X | x| x| x| x| x
6 288 440x10*> —1.07x10° X | x| x| x| x
7 384 5.44x10% 9.18 x 10? X
8 423 5.87x10> —5.53x10? X
9 523 6.92x10? 6.74 x 103 X | x| x| x| x
10 685 8.60x10> —6.65x 10? x | x| x
11 770 9.46 x 10? 1.73 x 103 X | x| x
12 839 1.02x10° —1.18x10° X | x
13 916 1.09x10° 1.46 x 103 X | x
14 1008 1.18x10° 3.40 x 10? X | x| x| x| x| x| x

The measures which we study derive from the calculations of the above results and are
presented in Table 3.12. While the value of k increases the order of magnitude of the sum of
squares of residuals decreases gradually. For k in {1,2,3,4} is 10, for k in {5,6,...,11}
decreases to 108 and for k in {12,13,14} to 107. For k in {8,9,...,13} the values are

equal per two. The maximum absolute value of estimated errors starts from 1.11 x 10*
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for k = 1 and reduces to 9.27 x 10° for k =2 and k = 3. For k in {4,5,6,7} the values
are 6.49 x 10 and 6.60 x 10 alternately. Then it decreases to 1.60 x 10 for k = 8 and
k=9 and 1.40 x 10 for k in {10,11,...,14}. The maximum absolute value of nonzero
Lagrange multipliers decreases from 2.60 x 10° for k in {1,2,...,5}, to 1.64 x 10° for
kin {6,7,8} and to 2.97 x 10*. Then it decreases to 2.42 x 10* and to 1.46 x 10*. The
absolute value of the nonzero Lagrange multipliers is 9.44 x 10~! in all cases. Their

decadic logarithms have the same behavior respectively.

Table 3.12: Measures for Lizardite

SSR D L 14 log,oL log,o?
2.69x10° 1.11x10* 2.60x10° 9.44x 10" 542x10° —2.49x 102
1.94 x 10° 9.27x10° 2.60x10° 9.44x10°! 542x10° —2.49x 102
1.68 x 10° 9.27x10° 2.60x10° 9.44x107! 542x10° —2.49x 1072
1.15x 10° 6.49x10° 2.60x10° 9.44x107! 542x10° —2.49x 102
8.91x10% 6.60x10° 2.60x10° 9.44x10~' 542x10° —2.49x1072
554x 108 6.49x10° 1.64x10° 9.44x107"' 521x10° —2.49x 102
296 x 108 6.60x10° 6.79x10* 9.44x10"' 4.83x10° —2.49x1072
1.31x 108 1.60x10° 6.79x10* 9.44x10"" 4.83x10° —2.49x 1072
1.31x10%8 1.60x10° 6.79x10* 9.44x10"! 4.83x10° —2.49x 102
10 | 1.04x 108 1.40x10° 297x10* 9.44x107" 447x10° —2.49x 102
11| 1.04x10% 1.40x10° 297x10* 9.44x 107! 4.47x10° —2.49x 102
12 1 9.10x 107 1.40x10° 242x10* 9.44x107' 4.38x10° —2.49x 102
13 19.10x 107 1.40x10° 2.42x10* 9.44x 107! 4.38x10° —2.49x 102
14 | 8.02x 107 1.40x10° 1.46x10* 9.44x107" 4.17x10° —2.49x 102
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3.3.6 The Raman spectrum of hemimorphite

The next experiment with Raman spectrum datafiles of minerals which we use is the
datafile of hemimorphite. This datafile contains 1025 pairs of data. The data are fed
to LZWPMA with k in {1,2,...,18} and we obtain the results which are presented in
Hemimorphite.xlsx, one sheet for each k. Fig. 3.16 shows the corresponding data and the
best fit for k = 16.

In addition, for k = 18 the method detects 17 turning points, 9 of which are peaks. In
Table 3.13 are presented the turning point positions by piecewise monotonic fits to the
hemimorphite data for values of k in {2,4,...,18} in order to investigate the behavior
of the approximation. In the right part of Table 3.13 are indicated the positions of the
turning points of each optimal fit for k in {2,4,...,18} in correspondence with the column
labeled “#;”, derived when k = 18. For example, when k = 6 the turning points occur at the

positions 20, 33, 52, 693 and 787 as indicated by the times signs in the column labeled “6”.
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35000 Piecewise Monotonic Fit (k = 16) to Hemimorphite Raman Spectrum
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Figure 3.16: Detected peaks (circles) by a best monotonic fit with k = 16 to 1024 data points (plus signs) of the hemimorphite
Raman spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.13: Left four columns: Turning points in the hemimorphite spectrum by a best fit with k =
18 monotonic sections. Right nine columns: The turning point positions of the optimal fit for k£ in
{2,4,...,18} are indicated by the times sign

j t; Xi, Intensity () [ k= 2 4 6 8 10 12 14 16 18
0 1 1.15x10? 5.86 x 10° x| x [ x| x| x| x]x]x]x
1 1 1.15x 10? 5.86 x 10° X
2 5 1.19x10? 2.94 x 10° X
3 20 1.36 x 10? 2.32 x 10* X | x| x| x| x| x| x| x
4 33 1.50 x 102 2.53 x 102 X | X | X X X X X
5 52 1.71x10? 1.63 x 10* X | x| x| x| x| x| x
6 77 198 x 10> —1.81x10? X | x| x
7 92 2.15x10? 3.50 x 103 X | x| x
8 146 2.74x10? 7.60 x 10! X | x| x| x| x| x
9 202 3.34x10% 7.34 x 103 x | x| x| x
10 226 3.60x 107 1.72 x 10° X | x| x| x
11 267 4.03x10? 7.08 x 103 X | x| x| x| x| x
12 350 4.91x10? 1.71 x 10% X | x
13 435 5.79 x 10? 1.93x 103 X | x
14 488 6.33x 102 1.41 x 10% X | x| x| x| x
15 538 6.84 x 10? 5.24 x 10° X | x| x| x| x
16 693 8.39x10*> —2.32x10% X | x| x| x| x| x| x| x
17 787 9.31x10? 3.25 x 10* X | x| x| x| x| x| x| x| x
18 1024 1.16x10° —1.58 x 10? X | X | x| x| x| x| x| x|x

In Table 3.14 are presented the centrelized measures which we examine and calculate
from the above results. It is observed that the sum of squares of residuals decreases while
the number of monotonic sections k increases. Its order of magnitude starts from 10° for k
in {1,2,...,7}, decreases to 108 for k in {8,9,10,11} and to 107 for k in {12,13,...,18}.

The maximum absolute value of estimated errors falls as k increases. Its order of magnitude
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is 10% for k in {1,2,...,5}. Then it falls to 10° for k in {6,7,...,16} and to 1.83 x 10°
and 1.29 x 10 for k in {14,15,16} alternately. More specifically, for k in {6,7,...,13}
the values are equal per two. Then it decreases to 6.61 x 10? for k = 15 and k = 16. The
maximum absolute value of nonzero Lagrange multipliers starts from 6.93 x 10° for k = 1,
increases to 9.48 x 10° for k = 2 and decreases to 3.11 x 10° for & in {3,4,...,7}. Fork
in {8,9,...,15} the values decrease and are equal per two. For k in {16, 17,18} the values
are equal to 8.38 x 10°. The minimum absolute value of nonzero Lagrange multipliers
starts from 1.07 x 10! for k = 1 and falls to 8.44 x 10° for k = 2. Then it falls more to
4.43 x 10° for kin {3,4,...,7} and to 8.75 x 10! for k in {8,9,...,18}. Their decadic

logarithms display a corresponding behavior.

Table 3.14: Measures for Hemimorphite

SSR D L 14 log;oL log,o?
998 x 10° 3.11x10* 6.93x10° 1.07x10" 5.84 x 10Y 1.03 x 109
6.00x 10° 2.15x10* 9.48x10° 8.44x10° 598 x10° 9.26 x 10!
3.17x10° 1.29x10* 3.11x10° 4.43x10° 5.49x10° 6.46 x 107!
218 x10° 1.03x10* 3.11x10° 4.43x10° 5.49x10° 6.46 x 107!
2.07x10° 1.29x10* 3.11x10° 4.43x10° 5.49x10° 6.46 x 107!
1.08 x 10° 5.08x10° 3.11x10° 4.43x10° 5.49x10° 6.46 x 107!
1.07 x 10° 5.08x10° 3.11x10° 4.43x10° 5.49x10° 6.46 x 107!
435%x 108 4.32x10° 135x10° 875x107' 513x10° —578x107!
429 %108 4.32x10° 135x10° 875x107" 513x10° —578x 107!
10 | 222108 421x10° 6.19x10* 875x107" 479%x10° —578x10"!
11| 216x108 421x10° 6.19x10* 875x107" 479%x10° —5.78x107!
12 1 941 x107 2.18x10° 4.25x10* 875x107' 4.63x10° —578x10"!
13 | 8.82x 107 2.18x10° 425x10* 875x107' 4.63x10° —578x10"!
14 | 3.89x 107 1.83x10° 3.10x10* 875x10°" 449x10° —578x10"!
15| 330x 107 1.29x10° 3.10x10* 875x107' 449x10° —578x10"!
16 | 238 x 107 1.83x10° 838x10° 875x107" 3.92x10° —578x10"!
17 | 1.79x 107 6.61 x 10> 838x10° 875x107! 3.92x10° —578x10"!
18 | 1.79x 107 6.61 x 10> 8.38x10° 8.75x107! 3.92x10° —5.78x 107!
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3.3.7 The Raman spectrum of wulfenite

The last Raman spectrum datafile of minerals which we examine is of wulfenite. It
consists of 1024 pairs of data which are fed to LZWPMA for each k in {1,2,...,16}. The
corresponding results are presented in Wulfenite.xIsx. In Fig. 3.17 we display the data and
the best fit for k = 14 in order to capture the main features of the data sets.

Moreover, for k = 16 the method detects 15 turning points, 8 of which are peaks. In
order to examine the behavior of the approximation, we display the turning point positions

by piecewise monotonic fits to the wulfenite data for values of k in {2,4,...,16} in Table
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3.15. In the right part of Table 3.15 we indicate the positions of the turning points of each
optimal fit for k in {2,4,...,16} in correspondence with the column labeled “z;”, derived
when k = 16. For instance, when k = 4 the turning points occur at the positions 167, 224
and 704 as indicated by the times signs in the column labeled “4”, while for k = 6 two
more turning points occur at the positions 600 and 637 as indicated by the times signs in

the column labeled “6”.

55000 Piecewise Monotonic Fit (k = 8) to Wulfenite Raman Spectrum
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Figure 3.17: Detected peaks (circles) by a best monotonic fit with k = 8 to 1024 data points (plus signs) of the wulfenite Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.15: Left four columns: Turning points in the wulfenite spectrum by a best fit with k = 16
monotonic sections. Right eight columns: The turning point positions of the optimal fit for k in
{2,4,...,16} are indicated by the times sign

j tj X Intensity ((sz) k= 2 4 6 8 10 12 14 16
0 1 137x10*> 8.78x10° X | x [ x[x[ x| x| x] x
1 30 1.68x 10  1.38x10* X | x| x| x| x
2 61 2.02x10*> 1.04x10% X | x| x| x| x
3 167 3.17x10* 2.50x 10 X | x| x| x| x| x| x
4 188 3.40x10> 1.22x10* X | x| x| x
5 197 3.49x10* 1.40x10* X | x| x| x
6 224 378x10* 1.18x10* X | x| x| x| x| x| x
7 578 7.44x10* 1.45x10* X | x
8 586 7.52x10* 1.39x10* X | %
9 600 7.66x10*> 1.99x10* X | x| x| x| x| x
10 637 8.03x10* 1.34x10* X | x| x| x| x| x
11 704 8.69x10> 5.18x 10 X | x| x| x| x| x| x| x
12 815 9.78x10* 1.30x10* X
13 857 1.02x10° 1.35x10* X
14 889 1.05x10° 1.29x10* X | x| x
15 958 1.11x10® 1.37x10* X | x| x
16 1024 1.18x10° 1.33x10* X | x| x| x| x| x| x| x
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Table 3.16 presents the results of the centralized measures which are mentioned to

section 3.1. It is observed that the order of magnitude of the sum of squares starts from
1019 for k = 1, decreases to 10° for k = 2 and k = 3 and to 108 for k =4 and k = 5. Then
it falls to 107 for k in {6,7,8,9} and to 10° for k in {10,11,...,16}. For kin {2,3,...,9}

it is equal per two. The maximum absolute value of the estimated errors starts from

3.85 x 10* for k = 1 and ends to 3.07 x 10? for k in {14,15,16}. For kin {2,3,...,13} the

values are equal per two. The maximum absolute value of nonzero Lagrange multipliers

starts from 1.07 x 10° for k = 1. For k in {2,3,...,7} it decreases and the values are

equal per two. It decreases more to 1.29 x 10* for k in {8,9,10,11} and to 2.59 x 103 for
kin {12,13,14,15}. For k = 16 it falls to 1.94 x 10°. The minimum absolute value of

nonzero Lagrange multipliers is 1.88 x 10! for k = 1 and it decreases to 2.00 x 10° for k

in {2,3,...,16}. Their decadic logarithms have a corresponding behavior.

Table 3.16: Measures for Wulfenite

k SSR D L 14 log;oL log,?

1 | 1.14x 100 3.85x10* 1.07x10° 1.88x10" 6.03x10° 1.27 x 10°
2 | 1.28x10° 1.22x10* 2.32x10° 2.00x10° 5.36x10° 3.01x 107!
3] 1.28x10° 1.22x10* 2.32x10° 2.00x10° 5.36x10° 3.01x 107!
4 | 2.83x10% 538x10° 9.18x10* 2.00x10° 4.96x10° 3.01 x 107!
5 283x10% 538x10° 9.18x10* 2.00x10° 4.96x10°  3.01x 107!
6 | 7.46x107 2.64x10° 5.12x10* 2.00x10° 4.71x10°  3.01 x 107!
7 | 7.46x107 2.64x10° 5.12x10* 2.00x10° 4.71x10° 3.01x 107!
8 | 1.39x107 1.16x10° 1.29x10* 2.00x10° 4.11x10° 3.01 x 107!
9 | 1.39x107 1.16x10>° 1.29x10* 2.00x10° 4.11x10° 3.01x 107!
10| 9.17x10° 4.19x10> 1.29x10* 2.00x10° 4.11x10°  3.01x 107!
11| 9.14x10° 4.19x10>° 1.29x10* 2.00x10° 4.11x10° 3.0l x107!
12| 8.07x10° 3.70x10> 2.59%x10° 2.00x10° 3.41x10° 3.0l x107!
13| 8.04x10° 3.70x10° 2.59%x10° 2.00x10° 3.41x10° 3.01x107!
14| 7.62x10° 3.07x10> 2.59%x10° 2.00x10° 3.41x10° 3.01x10°!
15| 7.59%10° 3.07x10>° 2.59x10° 2.00x10° 3.41x10° 3.01x107!
16 | 737x10° 3.07x10> 1.94x10° 2.00x10° 3.29x10° 3.01x107!

3.4 Experiments on turning point separation

In this section we present two more experiments, one of MS spectrum datafile and one of

Raman spectrum datafile, which show a different behavior than the corresponding datafiles

of sections 3.2 and 3.3. We have seen in these sections that as k increases by 2, the turning

points are maintained. Nonetheless, we notice here, that is behavior no longer holds.
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3.4.1 The MS spectrum of diiodothyronine

In the next experiment we use a MS spectrum datafile of thyroid hormone diiodothyronine.
The number of pairs of data is 2167. Feeding the data to L2ZWPMA for k in {1,2,...,16},
we obtain the results which are presented in Diiodothyronine.xlIsx, one sheet for each k,
with the calculations of the measures which we study. Fig. 3.18 shows the main features
of the data sets, that is the data and the best fit for k = 16.

In addition, for kK = 16 the method detects 15 turning points, 8 of which are peaks. Table
3.17 presents the turning point positions by piecewise monotonic fits to the diiodothyronine
data for values of k in {2,4,...,16}, so that we explore the behavior of the approximation.
In the right part of Table 3.17 we indicate the positions of the turning points of each optimal
fit for k in {2,4,...,16} in correspondence with the column labeled “;”, derived when
k = 16. For instance, when k = 6 the turning points occur at the positions 1569, 1743,
1910, 2000 and 2107 as indicated by the times signs in the column labeled “6”. When
k = 8 two more turning points occur at the positions 2050 and 2087 as indicated by the
times signs in the column labeled “8”. The turning point at the position 2000 when k = 6

1s shifting into the position 1990 when k = 8.

8000000 Piecewise Monotonic Fit (k = 1) to Diiodothyronine Raman Spectrum
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Figure 3.18: Detected peaks (circles) by a best monotonic fit with k = 16 to 2167 data points (plus signs) of the diiodothyronine
Raman spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.
So far we have been seen that as k increases to k + 2 the positions of the turning points
are maintained. It is quite interesting that the fit to this data set shows a shifting of some
turning points as k increases by 2. For instance, we see in Table 3.17 that the fourth turning

point when k = 10 has moved from position 1889 to position 1891 when k = 12. Similarly,
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the fourth turning point when k = 6 has moved from position 2000 to position 1990 when
k = 8. This phenomenon is explained by the property that the optimal turning point for

given k is separated by the optimal turning point when k+ 1 (see [15]).

Table 3.17: Left four columns: Turning points in the diiodothyronine spectrum by a best fit with &k
= 16 monotonic sections. Right eight columns: The turning point positions of the optimal fit for k in
{2,4,...,16} are indicated by the times sign®

j t X1, Intensity () [ k= 2 4 6 8 10 12 14 16
0 1 5.03x10'  4.58x10% X | X | x| x| x| x| x| x
1 899 288x10> 9.13x10* X
2 938 292x10*>  1.96x 10% X
3 1076 3.25x10*> 137x10° X | x
4 1253 3.43x10>  1.96x10? X | x
5 1297 3.53x10>° 3.80x10° x | x| x
6 1453 3.66x 10>  1.96 x 10? X | x| x
7 1569 3.82x 10> 2.10x 10° x| x| x| x| x| x
8 1743 4.17x10>  1.96 x 10? X | x| x| x| x| x
9 1848 4.67x10> 4.35x10° X | x| x| x
10 1891 4.70x 10> 2.48 x10? o | x| x| x
11 1910 4.80x10*>  7.03 x 10° X | X | x| x| x| x| x| x
12 1990 4.85x 10>  2.41x10? oo | x| x| x| x| x
13 2050 5.09x10% 1.02x10° x| x| x| x| x
14 2089 5.16x10>  1.96x 10? o o | x| x| x
15 2107 5.26x10*> 5.73x10° X | x| x| x| x| x| x
16 2167 5.49 x 10? 2.75 x 10? X | X | X | x| X X X X
4% = the number in column labeled “¢;”, 1 = 1889, o = 2000, © = 2087
Table 3.18 presents the values of the centralized measures for each k in {1,2,...,16} of

the above results and their calculations. It is observed that the sum of squares of residuals
decreases while the number of monotonic sections increases. More specifically, its order
of magnitude is 10'* for k in {1,2,3}. It decreases to 2.37 x 10'3 for k = 4 and k = 5 and
to 4.26 x 10'? for k = 6 and k = 7. Then it falls to 1.53 x 10> for k =8 and k = 9, to
8.37 x 10! for k=10 and k = 11 and to 2.10 x 10'! for k = 12 and k = 13. For k = 14
and k = 15 it decreases more to 1.38 x 10! and for k = 16 to 1.07 x 10'!. The maximum
absolute value of estimated errors falls as k increases. Its order of magnitude is 10° for k in
{1,2,...,5}. Then it falls to 10° for k in {6,7,...,13} and 10* for k in {14,15,16}. The
values for k in {4,5,...,16} are equal per two. A reduction in the order of magnitude also
occurs in the maximum absolute value of nonzero Lagrange multiplies. More specifically,
it starts from 107 for k in {1,2,...,5}, it decreases to 10° for k in {7,8,...,15} and
to 10° for k = 16. The minimum absolute value of the nonzero Lagrange multipliers

presents a fluctuation for k in {1,2,...,11}, that is for k = 1 and k = 3 the value is equal
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to 1.78 x 10!, for k = 5 and k = 7 is equal to 1.07 x 10" and for k = 9 and k = 11 is equal
to 4.56 x 10°. For k in {2,4,6,8,10} the value is equal to 5.70 x 10°. The value falls for k
in {12,13,...,16} to 4.02 x 10°. Their decadic logarithms have a corresponding behavior.

Table 3.18: Measures for Diiodothyronine

k SSR D L 14 log,oL log,o?

1 [330x10™ 6.74x10° 8.58x107 1.78x 10" 7.93x10° 1.25x 10°
2 | 143x10 550%x10° 6.28x107 570x10° 7.80x10° 7.56x 107!
3 [ 1.32x10" 520x10° 530x107 1.78x10' 7.72x10° 1.25x10°
4 | 237x108 2.04%x10° 2.84x107 570x10° 7.45x10° 7.56x 107!
5 1237x1083 2.04x10° 2.84x107 1.07x10" 7.45x10° 1.03x10°
6 | 426x10"2 9.19x10° 7.38x10° 570x10° 6.87x10° 7.56x 107!
7 | 426x10% 9.19%x10° 7.38x10° 1.07x10' 6.87x10° 1.03x10°
8 | 1.53x10"% 3.80x10° 5.19x10° 570x10° 6.72x10° 7.56x107!
9 | 1.53x10"% 3.80x10° 5.19x10° 4.56x10° 6.72x10° 6.59x 10!
10 | 8.37x 10" 3.65%x10° 5.19x10° 5.70x10° 6.72x10° 7.56x 107!
11 | 837x 10" 3.65x10° 5.19x10° 4.56x10° 6.72x10° 6.59x 10~}
12 | 210 x 10" 1.26x10° 1.70x10° 4.02x10° 6.23x10°  6.04 x 107!
13 | 210 x 107 1.26x10° 1.70x10° 4.02x10° 6.23x10°  6.04 x 107!
14 | 1.38x 10" 8.53x10* 1.13x10° 4.02x10° 6.05x10° 6.04x 107!
15| 1.38x 10" 8.53x10* 1.13x10° 4.02x10° 6.05x10° 6.04 x 107!
16 | 1.07x 10" 6.94x10* 7.09x10° 4.02x10° 5.85x10° 6.04x 107!

3.4.2 The Raman spectrum of cellulose

The last Raman spectrum datafile is of carbohydrate cellulose. It consists of 3590 pairs of
data sets and is tested for k in {1,2,...,18}. We feed the data to LZWPMA for each value
of k. The corresponding results are presented in Cellulose.xlsx, one sheet for each k. The
main features of the data sets for k = 16 may be captured by looking at Fig. 3.19.
Furthermore, for kK = 18 the method detects 17 turning points, 9 of which are peaks.
The behavior of the approximation is explored by presenting in Table 3.19 the turning point
positions by piecewise monotonic fits to the cellulose data for values of k in {2,4,...,18}.
In the right part of Table 3.19 we display the positions of the turning points of each optimal
fit for k in {2,4,...,18} in correspondence with the column labeled ‘¢;”, derived when
k = 18. For example, when k = 6 the turning points occur at the positions 368, 795, 1084,
2421 and 2884 as indicated by the times signs in the column labeled “6” and when k = 8
the method detects two more turning points at the positions 1204 and 1368 as indicated by

the times signs in the column labeled “8”.
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32 4 Piecewise Monotonioc Fit (k = 16) to Cellulose Raman Spectrum
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Figure 3.19: Detected peaks (circles) by a best monotonic fit with k = 16 to 3590 data points (plus signs) of the cellulose Raman
spectrum. The solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts.

Table 3.19: Left four columns: Turning points in the cellulose spectrum by a best fit with £ = 18 mono-
tonic sections. Right nine columns: The turning point positions of the optimal fit for k in {2,4,...,18}
are indicated by the times sign

j t; Xi, Intensity (¢,) | k= 2 6 10 12 14 16 18
0 1 1.10x10" 7.46x107! X X x | x [ x| x| x
1 368 3.78 x 102  2.11 x 10! X x| x| x| x| x
2 402 4.12x10*>  5.67x10° X | x| x| x
3 425 435x10* 1.52x 10! X | x| x| x
4 461 4.71x10> 5.25x10° X | x| x
5 508 5.18x10% 1.02x 10! X | x| x
6 795 8.05x10> 1.14x10° X X | x| x| x| x
7 1084 1.09x10° 2.90x 10 X X X | x| x| x| x
8 1097 1.11x10° 1.67x10 X | x
9 1109 1.12x10° 2.29x10! X | x
10 1204 1.21x10°  2.25x10° X | x| x| x| x
11 1326 1.34x10°  1.04x 10! X
12 1341 1.35x10°  7.06 x 10° X
13 1368 1.38x10°  1.60 x 10! X | x| x| x| x
14 2421 243x10° 540x10°! X X | x| x| x| x
15 2884 2.89x10° 1.80x 10! X X | x| x| x| x
16 3072 3.08x10° 5.85x 107! X | x| x| x| x
17 3335 3.35x10°  4.99 x10° X | x| x| x| x
18 3590 3.60x10° 8.14x 1072 X X X | x| x| x| x

The values of measures which are examined are presented in Table 3.20. While the
number of monotonic sections k increases, the order of magnitude of the sum of squares
of errors decreases. More specifically, it starts from 10* for k in {1,2,...,5}, decreases
to 10° for kin {6,7,...,11} and to 10? for k in {12,13,...,18}. Respectively, a decrease

is observed in the maximum absolute values of estimated errors. For k = 1 its value is
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equal to 2.39 x 10!, decreases to 1.66 x 10! for k in {2,3,4,5} and t0 9.79 x 10° for k = 6
and k = 7. Then it falls to 6.02 x 10" for k in {8,9,10,11}. For k in {12,13,...,17} the
value is equal per two and for k = 18 it falls to 1.66 x 10°. The maximum value of non
zero Lagrange multipliers is 2.83 x 10% for k in {1,2,3}, it decreases to 1.90 x 10° for
k=4and k=25, to 6.68 x 102 for k in {6,7,8,9} and to 1.87 x 10> fork=10and k = 11.
For kin {12,13,...,18} a fluctuation is observed, that is for k in {12,14,16, 18} the value
is equal to 4.75 x 10!, for k = 13 is equal to 6.42 x 10! and for k = 15 and k = 17 is
equal to 5.13 x 10'. The minimum absolute value of nonzero Lagrange multipliers is

3.58 x 10 *fork=1and k= 2. It falls to 2.15 x 10~* for k = 3 and to 4.70 x 1073 for k

in {4,5,...,18}. The behavior of their decadic logarithms follows the same pattern.

Table 3.20: Measures for Cellulose

k SSR D L 14 log;oL log,o?

1 [ 449x10* 2.39x10' 2.83x10° 3.58x10* 3.45x10° —3.45x10°
2 [ 273x10% 1.66x10" 283x10° 3.58x107* 3.45x10° —3.45x10°
3 1272x10% 1.66x10" 283x10° 2.15x107* 3.45x10° —3.67x10°
4 | 1.28x10* 1.66x10' 1.90x10° 4.70x107° 3.28x10° —4.33x10°
5 [ 1.28x10% 1.66x10' 1.90x10° 4.70x107° 3.28x10° —4.33 x10°
6 | 4.65x10° 9.79x10° 6.68x 10> 4.70x107° 2.82x10° —4.33x10°
7 | 4.62x10° 9.79x10° 6.68x 10> 4.70x107° 2.82x10° —4.33x10°
8 [226%x10° 6.02x10° 6.68x 10> 4.70x 107> 2.82x10° —4.33x10°
9 | 222x10° 6.02x10° 6.68x 10> 4.70x107° 2.82x10° —4.33x10°
10 | 1.10x 10° 6.02x10° 1.87x102 4.70x 107> 2.27x10° —4.33x10°
11| 1.07x10° 6.02x10° 1.87x10> 4.70x 10> 2.27x10° —4.33x10°
12 | 5.06 x 10> 3.78 x10° 7.45x 10" 4.70x 107> 1.87x10° —4.33x10°
13 | 471 x 102 3.78x10° 6.42x 10" 4.70x 107> 1.81x10° —4.33x10°
14 | 3.87x 10> 3.10x10° 7.45x10" 4.70x 107> 1.87x10° —4.33x10°
15| 3.52x 102 3.10x10° 5.13x 10" 4.70x 1075 1.71x10° —4.33x 10°
16 | 2.70x 102 1.77x10° 7.45x 10" 4.70x 1075 1.87x10° —4.33x 10°
17 | 235x 102 1.77x10° 5.13x 10" 4.70x 1075 1.71x10° —4.33x 10°
18 | 226 x 10> 1.66x10° 7.45x 10" 4.70x 107> 1.87x10° —4.33x10°
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Chapter 4

Discussion and Conclusions

In this chapter we state the conclusions about the experiments, which are mentioned in
chapter 3, that may lead to the determination of the relationship between the number of
monotonic sections and Lagrange multipliers in a piecewise monotonic approximation.

In chapter 1 we discussed the problem of data approximation and especially the case
of least squares data fitting in which the sum of squares of residuals are minimized. We
presented how the smoothed data are calculated and we made a first reference to the
piecewise monotonic approximation method. Moreover, we discussed the non-linear
programming problem and Lagrange multipliers in both cases when the constraints are
linear equality and linear inequality. More specifically, we stated the case that the objective
function is a quadratic function and the theorem of Karush-Kuhn-Tucker.

In chapter 2 we presented the piecewise monotonic data approximation as a data
smoothing approach which can have many applications. We started with a definition of
the method and its main features. Then we discussed the monotonic problem, which is a
strictly quadratic problem, and we stated an example that gives the best approximation to
data from a function which we created. Last, we stated how the Lagrange multipliers are
calculated in the monotonic case.

In chapter 3 we performed experiments using ten Raman spectrum datafiles, eight of
minerals, one of carbohydrate and one of thyroid hormone, in order to determine how
Lagrange multipliers are changed as the number of monotonic sections in a piecewise
monotonic data approximation is changed. We defined the measures which are needed to
determine this relationship and then we fitted each data by the L2ZWPMA software package
for various values of monotonic sections. These applications showed the effectiveness of

piecewise monotonic approximation to peak estimation of spectra that are represented by
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some noisy measurements of their values. Although the optimization calculation may have
a very large number of local minima, we have procedures that obtain a global solution in
quadratic complexity with respect to n.

Subsequently, in chapter 3 figures and tables were presented with the results of the
calculations in order to capture the main features of each data set. Furthermore, the
measures which were mentioned in section 3.1 were calculated and presented in centralized
tables in order to compare the behavior of these measures as the number of monotonic
sections is changed.

From the research we concluded that the sum of squares of residuals decreases while
the number of monotonic sections increases, in all cases. Its order of magnitude decreases
while the method detects fewer and fewer not so important peaks. The maximum absolute
value of estimated errors also decreases while the number of monotonic sections increases.
Moreover, the order of magnitude of maximum absolute value of nonzero Lagrange
multipliers while the number of monotonic sections increases and the method detects not so
important peaks. There are cases where the minimum absolute value of nonzero Lagrange
multipliers decreases gradually while the number of monotonic sections increases, as we
saw in Table 3.4, Table 3.6, Table 3.8, Table 3.14, Table 3.16, Table 3.18, cases where there
was a fluctuation in its value while the number of monotonic sections increases, as we
saw in Table 3.2 and Table 3.20, and cases where it remained stable while the monotonic
sections increases, as we saw in Table 3.10 and Table 3.12. The behavior of their decadic
logarithms follows the same pattern.

As it comes from the theory of general non-linear programming, the size of the
Lagrange multipliers provides an indication of the importance of the corresponding con-
straints, and it also shows the magnitude of change of the objective function as k increases.
This will be highly valuable to the development of a Lagrange multiplier test that will

provide an estimate of a suitable or adequate number of monotonic sections of the fit.
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