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Περίληψη

Στα πλαίσια αυτής της διπλωματικής θα περιγραφούν αρχικά τα διακριτά ημι-μαρκοβιανά
μοντέλα, ώστε στη συνέχεια να γίνει η σύνδεσή τους με τα κρυμμένα ημι-μαρκοβιανά μοντέλα.
Μετά από αυτή την παρουσίαση θα αναδειχθούν μέθοδοι στατιστικής εκτίμησης με βασικό
εργαλείο τον αλγόριθμο EM (Expectation-Maximization) για τον οποίο γίνεται μια σύντομη
περιγραφή. Έπειτα θα γίνει λεπτομερής παρουσίαση του τελευταίου με συγκεκριμένες υποθέ-
σεις είτε στις κατανομές των παρατηρούμενων καταστάσεων είτε στις κατανομές των χρόνων
παραμονής στις κρυμμένες καταστάσεις. Ειδικότερα εξετάζονται κατανομές παρατήρησης
όπως η κανονική και η student, ενώ για τo χρόνο παραμονής στις κρυμμένες καταστάσεις
εφαρμόζεται η αρνητική διωνυμική . Σε τελευταίο βήμα θα γίνει εφαρμογή σε πραγματικά
δεδομένα από τον δείκτη SnP 500, η οποία θα πραγματοποιηθεί με τη χρήση του λογισμικού
R, εξερευνώντας τα εμπειρικά ευρήματα (Stylized facts) που διατύπωσαν ο Granger και ο
Ding και θα εξεταστεί κατά πόσο τα κρυμμένα ημι-μαρκοβιανά μοντέλα, αναπαράγουν αυτά
τα ευρήματα.
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Chapter 1

Semi-Markov and Hidden
Semi-Markov models

1.1 Markov renewal chains and semi-markov processes

Consider a random system with finite state space E={1,...,J}. We denote by ME the set of
real matrices on E × E and by ME(N) the set of matrix valued functions defined on N, with
values in ME. For A ∈ ME(N), we write A = (A(u); u ∈ N), where, for u ∈ N fixed,
A(u) = (Aij(u); i, j ∈ E) ∈ ME. Set IE ∈ ME for the identity matrix and 0E ∈ ME for the
null matrix. When the space E is clear from the context, we will write I and 0 instead of IE
and 0E.

We assume that the time evolution of the system is described by the following chains:

• The chain J = (Jn)n∈N with state space E, where Jn is the system state at the nth jump
time.

• The chain R = (Rn)n∈N where Rn is the nth jump time.

• The chain U = (Un)n∈N where Un := Rn − Rn−1, n ⩾ 1 is the sojourn time in state
Jn1, before the nth jump.

Definition 1.1.1. A matrix-valued function q = (qij(u)) ∈ ME(N) is said to be a discrete-
time semi-Markov kernel if it satisfies the following three properties:

1. 0 ⩽ qij(u), i, j ∈ E, u ∈ N.

2. qij(0) = 0, i, j ∈ E.

3.
∞

∑
u=0

∑
j∈E

qij(u) = 1, i ∈ E.

Definition 1.1.2. The chain (J, R) = (Jn, Rn)n∈N is said to be a Markov renewal chain if
∀n ∈ N, ∀i, j ∈ E, ∀u ∈ N it satisfies almost surely :

P(Jn+1 = j, Rn+1 − Rn = u|J0, ...Jn, R0, ...Rn) = P(Jn+1 = j, Rn+1 − Rn = u|Jn).
(1.1.1)

Moreover, if Equation (1.1.1) is independent of n, then (J, R) is said to be homogeneous and
the discrete-time semi-Markov kernel q is defined by

qij(u) := P(Jn+1 = j, Rn+1 − Rn = u|Jn = i).
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Remark 1.1.1.

1. Note that, if (J, R) is a (homogeneous) Markov renewal chain, we can easily see that
(Jn)n∈N is a (homogeneous) Markov chain, called the embedded Markov chain (EMC)
associated with the MRC (J, R). We denote by
p = (pij)i,j∈E ∈ ME the transition matrix of (Jn), defined by

pij := P(Jn+1 = j|Jn = i), i, j ∈ E, n ∈ N.

2. The transition probabilities pij can be expressed in terms of the semi Markov kernel by

pij =
∞

∑
u=0

qij(u). (1.1.2)

3. The second property of the definition of the semi- Markov kernel specifies that qij(0) =
0, for all i, j ∈ E. The interpretation of this property is that the instantaneous transi-
tions are not allowed. This is a direct consequence of the fact that the chain (Rn)n∈N

is supposed to be increasing (0 = R0 < R1 < R2 < ...) or, equivalently, the random
variables Un, n ∈ N∗ , are strictly positive. Nor do we allow transitions to the same
state, i.e.,pii = 0, i ∈ E.

Let us also introduce some other interesting characteristics.

Definition 1.1.3. Let Q = (Q(u); u ∈ N) be the matrix-valued function defined by

Qij(u) := P(Jn+1 = j, Un+1u|Jn = i) =
u

∑
l=0

qij(l). (1.1.3)

for all i, j ∈ E and u ∈ N.

It is called the cumulated semi-Markov kernel and it expresses the probability that the
system starting from the state i will move to the state j in at most u time units.

When investigating the evolution of a Markov renewal chain we are interested in two
types of holding time distributions: the sojourn time distributions in a given state and the
conditional distributions depending on the next visited state .

Definition 1.1.4. For all i, j ∈ E, let us define:
1. fij(), the conditional distribution of Un+1 given on the current state Jn = i and the

next visited state Jn+1 = j. In particular, the probability function of this distribution is
given by :

fij(u) := P(Un+1 = u|Jn = i, Jn+1 = j), u ∈ N. (1.1.4)

2. Fij(), the conditional cumulative distribution of Xn+1, n ∈ N given that Jn = i and
Jn+1 = j. In particular,this function is given by :

Fij(u) := P(Un+1 ⩽ u|Jn = i, Jn+1 = j) =
u

∑
l=0

fij(l), u ∈ N. (1.1.5)

Obviously, for all i, j ∈ E and for all u ∈ N, we have

fij(u) =

{ qij(u)
pij

, if pij ̸= 0

0, otherwise
(1.1.6)
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Definition 1.1.5. For all i ∈ E, let us denote by:

1. di() the sojourn time distribution in state i:

di(u) := P(Un+1 = u|Jn = i) = ∑
j∈E

qij(u), u ∈ N. (1.1.7)

2. Di() the sojourn time cumulative distribution in state i:

Di(u) := P(Un+1 ⩽ u|Jn = i) =
u

∑
l=1

di(l), u ∈ N. (1.1.8)

As we saw in Equation (1.1.6), the semi-Markov kernel introduced in Definition 1.1.2
verifies the relation qij(u) = pij fij(u).

We can also define two particular semi-Markov kernels for which fij(u) does not depend
on i or j, by setting the semi-Markov kernels of the form qij(u) = pij f̃ j(u) or qij(u) =
pij fi(u). In particular, if

fij(u) = P(Un+1 = u|Jn = i, Jn+1 = j) = P(Un+1 = u|Jn = i)

then there is no dependence on j. Note that this fi() is simply di(), the sojourn time distri-
bution in state i, as defined above. These particular types of Markov renewal chains could
be adapted for some applications, where practical arguments justify that the sojourn times in
a state only depend on the current state or on the next visited state. Note also that these par-
ticular Markov renewal chains can be obtained by transforming the general Markov renewal
chain (i.e., with the kernel qij(u) = pij fij(u)).

Example 1.1.1. From a Markov chain we can have a particular case of a MRC with semi-
Markov kernel

qij(u) =

{
pij(pii)

u−1 , if i ̸= j and u ∈ N∗,
0 , elsewhere.

(1.1.9)

Proof:
Let Zt be a Markov chain with transition matrix

P =

p11 p12 . . . p1S
... . . . ...

pS1 pS2 . . . pSS

 .

Let Jn be the system state at the nth jump time, Rn be the nth jump time, then

P(Jn+1 = j, Rn+1 − Rn = u|J0, ..., Jn = i; R0, ...Rn) =

= P(Jn+1 = j, Rn+1 − Rn = u|Jn = i) =
= P(ZRn+1 = i, ..., ZRn+u−1 = i, ZRn+u = j|ZRn = i) =

= P(ZRn+1 = i|ZRn = i)...P(ZRn+u = j|ZRn+u−1 = i) =

= pu−1
ii pij.

(1.1.10)

Definition 1.1.6. Let (J, R) be a Markov renewal chain. The chain S = (St)t∈N is said to be
a semi-Markov chain associated with the MRC (J, R) if
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St := JN(t), t ∈ N,

where

N(t) := max{t ∈ N|Rn ⩽ t}, (1.1.11)

corresponds to the discrete-time counting process of the number of jumps in [1, t]⊂ N. Thus
St gives the system state at time t. We have also Jn = SRn and Rn = min{k > Rn−1|Sk ̸=
Sk−1}n ∈ N.

It can be easily shown that (Jn)n∈N is aMarkov chain, also (St)t∈N preserves theMarkov
property at least at jump times (Rn)n∈N. For this reason, Jn is known as an embeddedMarkov
chain and that’s why (Sn)n∈N is referred to as a semi-Markov chain. In what follows the semi-
Markov chain is defined by the semi-Markov kernel

qij(u) = pij fi(u), ∀ i, j ∈ E, (1.1.12)

so the sojourn time in a state depends only on the current state.

1.2 Hidden Semi-Markov Models

Hidden semi-Markov models (HSMMs) are an extension of the well-known class of HMMs.
While the runlength distribution of the HMM implicitly follows a geometric distribution,
HSMMs allow for more general runlength distributions.

Hidden semi-Markov chains with nonparametric state occupancy (or sojourn time, dwell
time, runlength) distributions were first proposed in the field of speech recognition by Fergu-
son (1980). They were considered to be an alternative approach to classical HMMs for speech
modeling because the latter are not flexible enough to describe the time spent in a given state,
which necessarily follows a geometric distribution as a consequence of the Markov property
of the underlying Markov chain. In the sequel, the state process of the HSMMs is assumed to
be a semi- Markov chain with finite number of states. The conditional independence assump-
tion for the observation process is similar to a simple hidden Markov chain. A semi-Markov
chain can be constructed as follows: An embedded first-order Markov chain models the tran-
sitions between distinct states, while explicitly given discrete state occupancy distributions
model the sojourn time for each of the states.

The first estimation procedure of Ferguson (1980), which has been applied by several au-
thors, is based on the assumption that the end of a sequence systematically coincides with the
exit from a state. This very specific assumption eases the notation of the likelihood functions
but also has some disadvantages. One of the disadvantages is that the enforced exit from a
state at the last observed data point may not be a realistic assumption in every case. The other
is that the resulting models do not allow absorbing states and can therefore not be considered
to be a true generalization of hiddenMarkov chains. We focus on the theory for right-censored
models introduced by Guédon (2003). His approach allows us to overcome the limitations of
the classical HSMMs by defining HSMMs with an extended state sequence of the underlying
semi- Markov chain. The last observation does not necessarily coincide with an exit from the
last visited state. However, the estimation procedures become more complicated due to the
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inclusion of a right-censoring of the time spent in the last visited state.

An HSMM consists of a pair of discrete-time stochastic processes {St} and {Xt}, ob-
served at times t = 0, . . . , T − 1, so T corresponds to the observations length of the pro-
cesses. The observed process {Xt} is linked to the hidden, unobserved state process {St} by
the conditional distribution depending on the state process, where St is a finite semi-markov
chain. As for the HMMs, the support of the conditional distributions usually overlaps and so,
in general, a specific observation can arise from more than one state. Thus the state process
{St} is not observable directly through the observation process {Xt} but can only be esti-
mated. The observation process {Xt} itself may either be discrete or continuous, univariate
or multivariate.

In the discrete case the output process {Xt} is related to the semi-Markov chain {St} by
the observation (or emission) probabilities

bj(xt) = P(Xt = xt|St = j),

where ∑xt
bj(xt) = 1.

The observation process is characterized by the conditional independence property,

P(XT−1
0 = xT−1

0 |ST1
0 = sT1

0 ) =
T−1

∏
t=0

P(Xt = xt|St = st),

where

{Xt1
t0
= xt1

t0
} := {Xt0 = xt0 , ..., Xt1 = xt1},

{St1
t0
= st1

t0
} := {St0 = st0 , ..., St1 = st1},

which implies the fact that the output process at time t only depends on the state of the un-
derlying semi-Markov chain at time t.

1.3 The Likelihood Function of a Hidden Semi-Markov Model

The crucial step for parameter estimation of HSMMs is the derivation of a tractable expression
for the likelihood function in order to performmaximum likelihood estimation. The difficulty
in deriving the likelihood lies in the fact that we are faced with amissing data problem because
the state sequence remains unobserved. A very convenient approach to deal with this type of
problem is the derivation of the likelihood of the complete data, which allows one to apply
the expectation maximization (EM) algorithm. In the following, we consider the case of a
single observed sequence which is relevant for later applications. As a first step we consider
the classical form of the complete-data likelihood L̃c, introduced by Ferguson (1980), which
only allows for sequences in which the last observation coincides with an exit from the hidden
state. For the complete-data formulation, both the outputs xT−1

0 and the states sT−1
0 of the

underlying semi-Markov chain are known, and thus

L̃c(sT−1
0 , xT−1

0 |θ) = P(ST−1
0 = sT−1

0 , XT−1
0 = xT−1

0 |θ)

= P(ST−1
0 = sT−1

0 |θ)P(XT−1
0 = xT−1

0 |ST−1
0 = sT−1

0 , θ)
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= πs̃0 ds̃0(u0)
R

∏
r=1

ps̃r−1 s̃r ds̃r(ur)
T−1

∏
t=0

bst(xt), (1.3.1)

where the number of visited states, R+1, is a fixed, but unknown number, s̃r is the (r + 1)th

visited state , ur denotes the time spent in state s̃r, θ denotes the vector of all parameters and
dj(u) corresponds to the probability of staying at state j for exactly u time units, that is,

dj(u) := P(St+u+1 ̸= j, St+u−υ = j, υ = 0, . . . , u − 1|St+1 = j, St ̸= j). (1.3.2)

In reality, the underlying state sequence cannot be observed and the number of states visited
is not available. Nevertheless, the state sequence contributes to the likelihood by regarding
all admissible paths from length one to length T, that is, we consider state sequences of the
form:

πs̃0 ds̃0(u0)
R

∏
r=1

ps̃r−1 s̃r ds̃r(ur)1{∑r ur=T}(ur)r≥1 (1.3.3)

Actually,for all possible R,states s̃0, s̃1, . . . , s̃R and durations u0, u1, . . . , uR ,the indicator
function 1{∑r ur=T}(ur)r≥1 guarantees that the lengths of the paths equals the length of the
observations.

The likelihood of a HSMM with exit from the last visited state at T − 1 is obtained by
enumeration of the complete-data likelihood over all possible state sequences, which yields

L̃(θ) = ∑
s0,...,sT−1

L̃c(sT−1
0 , xT−1

0 |θ). (1.3.4)

In this representation, the difficulty of solving equation (1.3.4) explicitly is obvious: the sum
includes all admissible paths of the form given by Equation (1.3.3), which effectively elimi-
nates any chance of obtaining an analytic solution.

1.4 The Partial Likelihood Estimator

The standard formulation (1.3.3) from the classical HSMM assumes that the end of the se-
quence of observations always coincides with the exit from a state because the sojourn times
ur sum to T. This very specific assumption has two main consequences. While on the one
hand, only semi-Markov chains without absorbing states can be considered, on the other hand,
the assumption does not seem to be realistic in most applications. For example, in the con-
text of financial time series the states often represent different economic situations (e.g., bull
and bear markets, or periods of low and high volatility). Obviously, the economic situation
cannot be assumed to end with the last observation.

As a first step to generalize the classical approach, Guédon (2003) proposed to write the
contribution of the state sequence to the complete-data likelihood as

πs̃0 ds̃0(u0){
R−1

∏
r=1

ps̃r−1 s̃r ds̃r(ur)}ps̃R−1 s̃R D̄s̃R(uR)1{∑r ur=T}(ur)r≥0, (1.4.1)
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where

D̄j(u) := ∑
υ⩾u

dj(u).

The main difference with the classical approach presented in Equation (1.3.3) lies in the sub-
stitution of the ordinary sojourn time probability by the survival function D̄ for the last visited
state. The survival function performs a right-censoring of the sojourn time in the last visited
state. In the partial likelihood estimator, the contribution from the survival function is ignored.

1.5 The Complete Likelihood Estimator

In this setting the complete-data likelihood incorporates both the outputs xT−1
0 and the state

sequence sT1
0 . The difference with the partial likelihood estimator is that, in this situation, the

final right-censored sojourn time interval contributes to the estimation procedure. In detail,
the state sequence remains in the last visited state sT−1 from time T − 1 to T − 1 + u, u =
0, 1, . . .. The exit from the last visited state takes place at time T − 1 + u, which yields the
complete-data likelihood of the underlying semi-Markov chain

Lc(sT−1+u
0 , xT−1

0 |θ) = P(ST−1
0 = sT−1

0 , ST−1 + υ = sT−1, υ = 1, ..., u − 1

, ST−1+u ̸= sT−1, XT−1
0 = xT−1

0 |θ).

The estimator based on this specification of the complete-data problem is called complete
likelihood estimator. Compared to formula (1.4.1), the contribution of the state sequence to
the complete-data likelihood has to be modified to

πs̃0 ds̃0(u0)
R−1

∏
r=0

ps̃r−1 s̃r ds̃r(ur)1{∑R−1
r=0 ur<T≤∑R

r=0 ur}(u0, ..., ur). (1.5.1)

Compared to the original likelihood given by Equation (1.5.1), the completed state sequence
complicates the likelihood function by an additional sum over all possible prolongations of
the state sequence, that is,

L(θ) = ∑
s0,...sT−1

∑
uT+

Lc(sT−1+u
0 , xT−1

0 |θ). (1.5.2)

Note that the results of an estimation based on either the complete or the partial likeli-
hood estimator both depend on the contribution of the right-censored last visited state, which
is taken into account or not, respectively. Hence none of the estimators yields the results of
the original algorithms of Ferguson (1980) which consider the time spent in the last visited
state as a typical (uncensored) sojourn time.
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Chapter 2

Estimation in a Hidden Semi-Markov
model

2.1 The EM Algorithm

The estimation problem in HSMMs corresponds to an incomplete-data problem, since the
underlying path of the hidden semi-Markov chain remains inaccessible and only a part of the
data related to another observable process are accessible. Therefore, estimation via the EM
algorithm is a suitable way to perform maximum-likelihood estimation in HSMMs. For this
reason, we first introduce the basic principles of the EM algorithm.

Let Y be the random vector corresponding to the observed data y, with p.d.f. denoted by
g(y; θ), where θ = (θ1, ..., θd) is a vector of unknown parameters with parameter space Ω .
The EM algorithm is a broadly applicable algorithm that provides an iterative procedure for
computing MLE’s in situations where the presence of some additional data would render the
problem of ML estimation straightforward. Hence, in this context, the observed data vector
y can be viewed as being incomplete and thus be regarded as an observable function of the
so-called complete data. The notion of incomplete data includes the conventional sense of
missing data, but it also applies to situations where the complete data represent what would be
available from some hypothetical experiment. In the latter case, the complete data may con-
tain some variables that are never observable in a data sense, but are added only artificially in
order to facilitate the estimation procedure. When a problem does not at first appear to be an
incomplete-data one, computation of the MLE is often greatly facilitated by artificially for-
mulating it to be as such. This is because the EM algorithm exploits the reduced complexity
of ML estimation given the complete data. For many statistical problems the complete-data
likelihood has a nice form.

Within this framework, let x denote the vector containing the augmented or the so-called
complete data, and let z denote the vector containing the additional data, referred to as the
unobservable, or missing, or latent data. We let gc(x; θ) denote the p.d.f. of the random vector
X corresponding to the complete data vector x. The complete-data log-likelihood function is
given by

log Lc(θ) = log gc(x; θ).

Formally, we have two sample spaces X and Y and a many-to-one mapping from X to Y .
Instead of observing the complete-data vector x inX , we observe the incomplete-data vector
y = y(z) in Y . It follows that

g(y; θ) =
∫

X (y)
gc(x; θ)dx,
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whereX (y) is the subset of X determined by the equation y = y(x).

The EM algorithm intends to solve the problem of maximising the incomplete-data like-
lihood indirectly by proceeding iteratively in terms of the complete-data log–likelihood func-
tion, log Lc(θ). Since the complete data are unobservable, and hence the complete-data log–
likelihood function is a random variable (for a given value of θ), it is replaced by its condi-
tional expectation given the observed data y, where the expectation is computed under the
current fit for θ.

More specifically, let θ0 be some initial value for θ. Then, at the first iteration, the E-step
requires the computation of

Q(θ; θ0) = Eθ(0){log Lc(θ)|y}. (2.1.1)

The M-step requires the maximization of Q(θ; θ0) with respect to θ over the parameter space
Ω, that is, we choose θ1 such that

Q(θ1; θ0) ≥ Q(θ; θ0),

for all θ ∈ Ω. The E- and M-steps are then carried out again, but this time with θ(0) replaced
by the current fit θ(1).

The iterative scheme of the EM-algorithim can be summarized as follows:

• E-step: Calculate Q(θ; θ(k)) where

Q(θ; θ(k)) = Eθ(k){log Lc(θ)|y}.

• M-Step: Choose θ(k+1) to be any value of θ ∈ Ω that maximizes Q(θ; θ(k)) that is,

Q(θ(k+1); θ(k)) ≥ Q(θ; θ(k)),

for all θ ∈ Ω.

• Repeat until L(θ(k+1))− L(θ(k)) < ϵ

The E- and M-steps are alternated repeatedly until convergence, which is assumed to
be achieved if the difference L(θ(k+1))− L(θ(k)) is lower than an arbitrarily small value ϵ.
Dempster, Laird and Rubin (1977) have shown that the (incomplete-data) likelihood function
L(θ) does not decrease after an EM iteration; that is,

L(θ(k+1)) ≥ L(θ(k)),

for k = 0, 1, 2 . . .

Remark 2.1.1. If bounded from above, the sequence L(θ(k)) converges to some L∗. Fur-
thermore, under certain regularity conditions, L∗ is a stationary value of the likelihood. To
ensure that L∗ is a stationary value, the Q-function must be continuous in both arguments.
This holds true, e.g. in the case of the curved exponential family.
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Remark 2.1.2. Another issue is the dependence on the initial value. Very often the log-
likelihood function has multiple maxima or even other type of stationary points. Hence the
convergence of the EM algorithm depends strongly on the initial value. To increase the prob-
ability of obtaining good estimates, different initial values should be tried.

2.2 The Q function of an HSMM

Let θ(k) denote the current value of θ at iteration k. The Q-function is defined by the condi-
tional expectation of the complete-data log-likelihood which yields

Q(θ; θ(k)) = E{log Lc(ST−1+u
0 , XT−1

0 ; θ)|XT−1
0 = xT−1

0 ; θ(k)}
= ∑

s0,...sT−1

∑
uT+

log Lc(sT−1+u
0 , xT−1

0 ; θ)P(ST−1+u
0 = sT−1+u

0 |XT−1
0 = xT−1

0 ; θ(k)).

For the remainder of this work we change the notation and we replace {Xt
0 = xt

0} by {xt
0}

for notational convenience.

To obtain a mathematically tractable formulation of the Q-function, the conditional ex-
pectation has to be rewritten path-wise. In fact,

Lc(sT−1+u
0 , xT−1

0 ; θ) = P(ST−1+u
0 = sT−1+u

0 , xT−1
0 ; θ)

= πs̃0 ds̃0(u0)

(
T−1

∏
t=0

bst(xt)

)(
R

∏
r=1

ps̃r−1 s̃r ds̃r(ur)

)
, (2.2.1)

and consequently

Q(θ; θ(k)) =

∑
s0,...sT−1

∑
uT+

P(ST−1+u
0 = sT−1+u

0 |xT−1
0 ; θ(k)) log πs̃0

+ ∑
s0,...sT−1

∑
uT+

R

∑
r=1

P(ST−1+u
0 = sT−1+u

0 |xT−1
0 ; θ(k)) log ps̃r−1 s̃r

+ ∑
s0,...sT−1

∑
uT+

R

∑
r=0

P(ST−1+u
0 = sT−1+u

0 |xT−1
0 ; θ(k)) log ds̃r(ur)

+ ∑
s0,...sT−1

∑
uT+

T−1

∑
t=0

P(ST−1+u
0 = sT−1+u

0 |xT−1
0 ; θ(k)) log bst(xt). (2.2.2)

We have decomposed the Q-function into four terms that we can maximize individually. So
the first term of (2.2.2) becomes

J−1

∑
j=0

P(S0 = j|xT−1
0 ; θ(k)) log πj,

because summing over all possible paths is equivalent to repeatedly selecting the different
πj (j = 0, . . . , J − 1) and can therefore be marginalized to t = 0. The second term in
Equation (2.2.2) is transformed similarly by marginalizing the full paths to the transitions
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from i to j at time t for all t ∈ {0, . . . , T − 2} :

J−1

∑
i=0

∑
j ̸=i

T−2

∑
t=0

P(St+1 = j, St = i|xT−1
0 , θ(k)) log pij. (2.2.3)

The third term containing the sojourn time distribution is also marginalized to the different
runlengths dj(u) of length u arising in state j and can be split up into the two summands:

J−1

∑
j=0

∑
u

{
T−2

∑
t=0

P(St+u+1 ̸= j, St+u−υ = j, υ = 0, ...u − 1, St ̸= j|xT−1
0 , θ(k))+

P(Su ̸= j, Su−υ = j, υ = 1, ..., u|xT−1
0 , θ(k))

}
log dj(u). (2.2.4)

The last term of equation (2.2.2) including the conditional distributions is also transformed
to the sum of the marginal distributions of the observations at time t in state j by

J−1

∑
j=0

T−1

∑
t=0

P(St = j|xT−1
0 , θ(k)) log bj(xt). (2.2.5)

At this point, we introduce the re-estimation quantities for the initial probabilities, the transi-
tion probabilities, the sojourn times and observation components respectively:

Q1(π; θ(k)) :=
J−1

∑
j=0

P(S0 = j|XT−1
0 = xT−1

0 ; θ(k)) log πj, (2.2.6)

Q2(p; θ(k)) :=
J−1

∑
i=0

∑
j ̸=i

T−2

∑
t=0

P(St+1 = j, St = i|xT−1
0 , θ(k)) log pij, (2.2.7)

Q3(d; θ(k)) :=

J−1

∑
j=0

∑
u

{
T−2

∑
t=0

P(St+u+1 ̸= j, St+u−υ = j, υ = 0, ...u − 1, St ̸= j|xT−1
0 , θ(k))

+ P(Su ̸= j, Su−υ = j, υ = 1, ..., u|xT−1
0 , θ(k)) } log dj(u), (2.2.8)

Q4(b; θ(k)) :=
J−1

∑
j=0

T−1

∑
t=0

P(St = j|xT−1
0 , θ(k)) log bj(xt). (2.2.9)

The implementation of the E-step of the EM algorithm is performed by the forward-backward
algorithm. It computes all the re-estimation quantities for all times t and for all couples of
states i and j.

Subsequently, the M-step maximizes each of the terms with respect to the corresponding
parameters to obtain the next set of initial values for the E-step of the following iteration. The
difficulty of the maximization varies with the choice of the component distributions and may
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also involve numerical maximization methods when an explicit solution is not available.

2.3 The Forward-Backward Algorithm

The implementation of the E-step of the EM algorithm is performed by the forward-backward
algorithm. It computes all the re-estimation quantities for all times t and for all couple of
states. First, we present the forward-backward algorithm in the case of a HMM to make it
smoother for the reader. The comptutations are performed under the same parameter value
θ(k), so it is supressed for simplicity of notation.

2.3.1 HMM-Model

In the case of an HMM-model the basic idea is the decomposition of the probabilities Lj(t) :=
P(St = j|xT−1

0 ) and Lij(t) := P(St−1 = i, St = j|xT−1
0 ).

Lj(t) = P(St = j|xT−1
0 )

=
P(St = j, xt

0, xT−1
t+1 )

P(xT−1
0 )

=
P(St = j, xt

0)P(xT−1
t+1 |St = j,�

�xt
0)

P(xT−1
0 )

=
Aj(t)Bj(t)

Ln
, (2.3.1)

and

Lij(t) = P(St−1 = i, St = j|xT−1
0 )

=
P(St−1 = i, St = j, xt−1

0 , xt, xT−1
t+1 )

P(xT−1
0 )

=
P(St−1 = i, xt−1

0 )P(St = j|St−1 = i,�
��xt−1

0 )

Ln

× P(xt|�����St−1 = i,�
��xt−1

0 , St = j)P(xT−1
t+1 |�����St−1 = i,��xt, ,�

��xt−1
0 , St = j)

=
At−1(i)pijbj(xt)Bt(j)

Ln

where

Aj(t) = P(St = j, xt
0)

Bj(t) = P(xT−1
t+1 |St = j)

bj(xt) = P(xt|St = j)

Ln = P(xT−1
0 )

The forward iteration for an HMM

The forward iteration involves the computation of the forward-probabilities Aj(t) = P(St =
j, xt

0) for each state j forward from time 0 to time T − 1 and can be given as follows.

• Start:
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Aj(0) = P(S0 = j, x0) = P(S0 = j)P(x0|S0 = j) = πjbj(x0).

• Iteration:

Aj(t) =
J−1

∑
i=0

Ai(t − 1)pijbj(xt), (2.3.2)

for all t ∈ {1, . . . , T − 1} and all j ∈ {0, . . . , J − 1}. This holds due to the following
decomposition:

Aj(t) = P(St = j, xt
0) =

J−1

∑
i=0

P(St−1 = i, St = j, xt−1
0 , xt)

=
J−1

∑
i=0

P(St−1 = i, xt−1
0 )P(St = j|St−1 = i,�

��xt−1
0 )P(xk|�����St−1 = i, St = j,�

��xt−1
0 )

=
J−1

∑
i=0

Ai(t − 1)pijbj(xt).

The Backward Iteration for an HMM

The backward iteration performs the computation of the conditional probabilities Bj(t) =

P(xT−1
t+1 |St = j) for each state j , backwards from time T − 1 to time 0.

• Start: The backward iteration starts at t = T − 1 with

Bj(T − 1) = 1 ∀ j.

• Iteration:

Bi(t) =
J−1

∑
j=0

pijbj(xt+1)Bj(t + 1)

∀ t = T − 2, . . . , 0.

the above recursion holds due to the following decompositions.

Bi(t) = P(xT
t+1|St = i) =

J−1

∑
j=0

P(St+1 = j, xT−1
t+1 |St = i)

=
J−1

∑
j=0

P(St+1 = j|St = i)P(xt+1, xT−1
t+2 |St+1 = j, St = i)

=
J−1

∑
j=0

pijP(xt+1|St+1 = j)P(xT−1
t+2 |St+1 = j, St = i, xt+1)

=
J−1

∑
j=0

pijbj(xt+1)Bj(t + 1).
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Finally, the term Ln is computed with the help of the intermediate quantities Ai(t) and Bi(t).
In particular,

Ln = P(xT−1
0 ) =

J−1

∑
i=0

Ai(n) =
J−1

∑
i=0

Ai(t)Bi(t). (2.3.3)

2.3.2 HSMM-Model

In addition to the quantities Lj(t) and their associated decompositions, the forward-backward
algorithm for HSMMs requires the computation of the quantities.

L1j(t) := P(St+1 ̸= j, St = j|XT−1
0 = xT−1

0 ).

The subsequent decompositions are possible:

L1j(t) = P(St+1 ̸= j, St = j|XT−1
0 = xT−1

0 )

=
P(XT−1

t+1 = xT−1
t+1 |St+1 ̸= j, St = j)

P(XT−1
t+1 = xT−1

t+1 |xt
0)

P(St+1 ̸= j, St = j|xt
0)

= B̄j(t)Fj(t),

where

Fj(t) = P(St+1 ̸= j, St = j|xt
0)

B̄j(t) =
P(XT−1

t+1 = xT−1
t+1 |St+1 ̸= j, St = j)

P(XT−1
t+1 = xT−1

t+1 |xt
0)

.

The forward iteration

To utilize the forward iteration we have to decompose Fj(t) in the following way:

Fj(t) = P(St+1 ̸= j, St = j|xt
0)

=
t

∑
u=1

∑
i ̸=j

P(St+1 ̸= j, St−υ = j, υ = 0, . . . , u − 1, St−u = i|xt
0)

+ P(St+1 ̸= j, St−υ = j, υ = 0, . . . , t|xt
0)

= F1j(t) + F2j(t).
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where F2j(t) corresponds to the possibility that the system started at state j, and no transition
was made until time t, followed by a state change at time t + 1. For the term F1j(t) we have:

F1j(t) =
t

∑
u=1

∑
i ̸=j

P(St+1 ̸= j, St−υ = j, υ = 0, . . . , u − 1, St−u = i|xt
0)

=
t

∑
u=1

[
P(xt

t−u+1|St−υ = j, υ = 0, . . . , u − 1)

P(xt
t−u+1|x

t−u
0 )

× P(St+1 ̸= j, St−υ = j, υ = 0, . . . , u − 2|St−u+1 = j, St−u ̸= j)

× ∑
i ̸=j

{P(St−u+1 = j|St−u+1 ̸= i, St−u = i)

× P(St−u+1 ̸= i, St−u = i)|xt−u
0 ) }]

=
t

∑
u=1

u−1

∏
υ=0

P(xt−υ|St−υ = j)
P(xt−υ|xt−υ−1

0 )

× P(St+1 ̸= j, St−υ = j, υ = 0, . . . , u − 2|St−u+1 = j, St−u ̸= j)

× ∑
i ̸=j

{P(St−u+1 = j|St−u+1 ̸= i, St−u = i)

× P(St−u+1 ̸= i, St−u = i)|xt−u
0 ) }

=
bj(xt)

Nt

t

∑
u=1

{
u−1

∏
υ=1

bj(xt−υ)

Nt−υ

}
dj(u)∑

i ̸=j
pijFi(t − u) ,

and for F2j(t) we have

F2j(t) = P(St+1 ̸= j, St−υ = j, υ = 0, . . . , t|xt
0)

=
P(xt

o|St−υ = j, υ = 0. . . . , t)
P(xt

0)

× P(St+1 ̸= j, St−υ = j, υ = 0, . . . , t)

=
bj(xt)

Nt

(
t

∏
υ=1

bj(xt−υ)

Nt−υ

)
dj(t + 1)πj,

where

bj(xt) = P(xt|St = j),

dj(u) = P(St+u+1 ̸= j, St+u−υ = j, υ = 0, . . . , u − 2|St+1 = j, St ̸= j),

Nt := P(xt|xt−1
0 ).

The quantity Nt is the so-called normalizing factor.
The forward iteration involves the computation of the forward-probabilities for each state j
forward from time 0 to time T − 1 and can be given as follows.

• The start of the loop at t = 0

Fj(0) = P(S1 ̸= j, S0 = j|X0 = x0) = πjdj(1).

• The iteration procedure is:
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Fj(t) = P(St+1 ̸= j, St = j|xt
0) =

bj(xt)

Nt

[
t

∑
u=1

{
u−1

∏
υ=1

bj(xt−υ)

Nt−υ

}
dj(u)∑

i ̸=j
pijFi(t − u) +

{
t

∏
υ=1

bj(xt−υ)

Nt−υ

}
dj(t + 1)πj

]
,

(2.3.4)

for all t ∈ {0, ...T − 2} and j ∈ {0, ..., J − 1}. Using arguments similar to those for the
derivation of (2.3.4), the last step of the iteration can be written as

Fj(T − 1) = P(ST−1 = j|Xt
0 = xt

0) =

bj(xT−1)

NT−1

[
T−1

∑
u=1

{
u−1

∏
υ=1

bj(xT−1−υ)

NT−1−υ

}
D̄j(u)∑

i ̸=j
pijFi(T − 1 − u)

+

{
T−1

∏
υ=1

bj(xT−1−υ)

NT−1−υ

}
D̄j(T)πj,

for j ∈ {0, ..., J − 1}. The exact time spent in this last state is unknown; however, the mini-
mum time is known. Thus the probability mass functions dj(u) of the sojourn times in state
j of the general forward iteration formula (2.3.4) is replaced by the corresponding survival
functions D̄j(u).

Note that Nt are directly obtained during the forward recursion.

Nt = P(xt|xt−1
0 ) = ∑

j
P(St = j, xt|xt−1

0 ) =

= ∑
j

P(xt|St = j,�
��xt−1

0 )P(St = j|xt−1
0 ) =

= ∑
j

bj(xt)

[
t

∑
u=1

∑
i ̸=j

P(St−υ = j, υ = 0, . . . , u − 1, St−u = i|xt−1
0 )

+ P(St−υ = j, υ = 0, . . . , t|xt−1
0 )]

= ∑
j

bj(xt)

[
t

∑
u=1

[
P(xt−1

t−u+1|St−υ = j, υ = 0, . . . , u − 1)

P(xt−1
t−u+1|x

t−u
0 )

× P(St−υ = j, υ = 0, . . . , u − 2|St−u+1 = j, St−u ̸= j)

× ∑
i ̸=j

{P(St−u+1 = j|St−u+1 ̸= i, St−u = i)

× P(St−u = i)|xt−u
0 ) }

]
+

P(xt−1
o |St−υ = j, υ = 0. . . . , t)

P(xt−1
0 )

× P(St−υ = j, υ = 0, . . . , t)
]
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= ∑
j

bj(xt)

[
t

∑
u=1

{
u−1

∏
υ=1

bj(xt−υ)

Nt−υ

}
D̄j(u)∑

i ̸=j
pijFi(t − u)

+

{
t

∏
υ=1

bj(xt−υ)

Nt−υ

}
D̄j(t + 1)πj

]
(2.3.5)

and can be used for forecasting procedures by setting t = T.

The Backward Iteration

The backward iteration performs the computation of the smoothing probabilities Lj(t) =

P(St−1 = j|xT−1
0 ) for each state j, backward from time T − 1 to time 0.

• Start: The backward iteration starts at t = T − 1 with

Lj(T − 1) = P(ST−1 = j|xT−1
0 ) = Fj(T − 1).

• Iteration: The key point in this step lies in rewriting the quantity Lj(t) as a sum of
three terms.

Lj(t) = P(St = j|xT−1
0 )

= P(St+1 ̸= j, St = j|xT−1
0 ) + P(St+1 = j|xT−1

0 )

− P(St+1 = j, St ̸= j|xT−1
0 )

= L1j(t) + Lj(t + 1)− P(St+1 = j, St ̸= j|xT−1
0 ). (2.3.6)

The second term Lj(t+ 1) is obtained directly from the previous iteration step. The first term
L1j(t) and the third term P(St+1 = j, St ̸= j|xT−1

0 ) which represents the entrance into state
j, require a bit more attention.
L1j(t) can be decomposed into two terms:

L1j(t) = P(St+1 ̸= j, St = j|xT−1
0 )

= ∑
k ̸=j

[
T−2−t

∑
u=1

P(St+u+1 ̸= k, St+u−υ = k, υ = 0 . . . , u − 1, St = j|xT−1
0 )

+ P(ST−1−υ = k, υ = 0, . . . T − 2 − t, St = j|xT−1
o )

]
. (2.3.7)
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The first term in Equation (2.3.7) can be decomposed as follows :

P(St+u+1 ̸= k, St+u−υ = k, υ = 0 . . . , u − 1, St = j|xT−1
0 )

=
P(St+u+1 ̸= k, St+u−υ = k, υ = 0 . . . , u − 1, St = j, xT−1

0 )

P(St+u+1 ̸= k, St+u = k, xT−1
0 )

× P(St+u+1 ̸= k, St+u = k|xT−1
0 )

=
P(xT−1

t+u+1|St+u+1 ̸= k, St+u = k)

P(xT−1
t+u+1|St+u+1 ̸= k, St+u = k)

×
P(St+u+1 ̸= k, St+u = k|xT−1

0 )

P(St+u+1 ̸= k, St+u = k|xt+u
0 )

×
P(xt+u

t+1 |St+u−υ = k, υ = 0, . . . , u − 1)

P(xt+u
t+1 |xT

0 )

× P(St+u+1 ̸= k, St+u−υ = k, υ = 0, . . . , u − 2|St+1 = k, St ̸= k)

× P(St+1 = k|St+1 ̸= j, St = j)P(St+1 ̸= j|xt
o)

=
L1k(t + u)
Fk(t + u)

{ u−1

∏
υ=0

bk(xt+u−υ)

Nt+u−υ

}
dk(u)pjkFj(t).

The second term of Equation (2.3.7), corresponding to the last visited state, can be decom-
posed using a similar argument.This yields

P(ST−1−υ = k, υ = 0, . . . T − 2 − t, St = j|xT−1
o )

=
{ T−2−t

∏
υ=0

bk(xT−1−υ)

NT−1−υ

}
D̄k(T − 1 − t)pjkFj(t).

Combining the two decompositions, L1j(t) becomes

[
∑
k ̸=j

[ T−2−t

∑
u=1

L1k(t + u)
Fk(t + u)

{ u−1

∏
υ=0

bk(xt+u−υ)

Nt+u−υ

}
dk(u)

+
{ T−2−t

∏
υ=0

bk(xT−1−υ)

NT−1−υ

}
D̄k(T − 1 − t)

]
pjk

]
Fj(t). (2.3.8)

The third term of Equation (2.3.6) can also be transformed as follows:

P(St+1 = j, St ̸= j|xT−1
0 )

T−2−t

∑
u=1

∑
i ̸=j

P(St+u+1 ̸= j, St+u−υ = j, υ = 0, . . . , u − 1, St = i|xT−1
0 )

+ ∑
i ̸=j

P(ST−1−υ = j, υ = 0, . . . , T − 2 − t, St = i|xT−1
0 )

=
[ T−2−t

∑
u=1

L1j(t + u)
Fj(t + u)

{ u−1

∏
υ=0

bj(xt+u−υ)

Nt+u−υ

}
dj(u)

+
{ T−2−t

∏
υ=0

bj(xT−1−υ)

NT−1−υ

}
D̄j(T − 1 − t)

]
∑
i ̸=j

pijFi(t).
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To perform the calculation we introduce the auxiliary quantities

Gj(t + 1, u) :=
L1j(t + u)
Fj(t + u)

{ u−1

∏
υ=0

bj(xt+u−υ)

Nt+u−υ

}
dj(u), u ∈ {1, ..., T − 2 − t}

Gj(t + 1, T − 1 − t) :=
{ T−2−t

∏
υ=0

bj(xT−1−υ)

NT−1−υ

}
D̄j(T − 1 − t)

Gj(t + 1) :=
P(xT−1

t+1 |St+1 = j, St ̸= j)

P(xT−1
t+1 |xt

0)

=
T−1−t

∑
u=1

Gj(t + 1, u).

Then, the backward iteration can be performed as follows :

• At each time t, Gj(t + 1, u), Gj(t + 1, T − 1 − t) and Gj(t + 1) are precomputed.

• L1j(t) and P(St+1 = j, St ̸= j|xT−1
0 ) can be transformed to

P(St+1 = j, St ̸= j|xT−1
0 )

=
P(xT−1

t+1 |St+1 = j, St ̸= j)

P(xT−1
t+1 |xt

0)
P(St+1 = j, St ̸= j|xt

0)

=Gj(t + 1)∑
i ̸=j

pijFi(t)

and

L1j(t) =
{

∑
k ̸=j

Gk(t + 1)pjk

}
Fj(t).

Thus the quantities involved in the backward iteration can be computed as sums and products
of the auxiliary variables and the forward probabilities.

2.4 The Sojourn Time Distribution

The aim of this section is to show how Q3(d; θ(k)) – the part of the Q-function dealing with
the sojourn time can be computed using the quantities derived in Section 2.2. As long as we
deal with non-stationary HSMMs, this is the part of the estimation procedure which is affected
by the use of either the partial likelihood estimator or the complete likelihood estimator from
Sections 1.4 and 1.5 . Recall from Equation (2.2.8) that the the state occupancy distribution
for each state j is given by :

Q3(d; θ(k)) :=

∑
u
{

T−2

∑
t=0

P(St+u+1 ̸= j, St+u−υ = j, υ = 0, ...u − 1, St ̸= j|xT−1
0 , θ(k))
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+P(Su ̸= j, Su−υ = j, υ = 1, ..., u|xT−1
0 , θ(k))} log dj(u). (2.4.1)

= ∑
u

n(k)
ju log dj(u). (2.4.2)

The computation of the two terms involved in (2.4.1) can be performed utilizing the quantities
derived for the forward-backward algorithm. We start with the first term, and consider the
following two possible cases

u ≤ T − 2 − t :

P(St+u+1 ̸= j, St+u−υ = j, υ = 0, ...u − 1, St ̸= j|xT−1
0 , θ(k))

= Gj(t + 1, u)∑
i ̸=j

Fi(t),

which is directly available from the computation of Lj(t).

u > T − 2 − t :

P(St+u+1 ̸= j, St+u−υ = j, υ = 0, ...u − 1, St ̸= j|xT−1
0 , θ(k))

=
{ T−2−t

∏
υ=0

bj(xT−1−υ)

NT−1−υ

}
dj(u)∑

i ̸=j
pijFi(t).

The second term in (2.4.1) corresponds to the time spent in the initial state from t = 0 , and
it can be computed by the already known quantities from the forward-backward algorithm.
Again, we consider two separate cases.

u ≤ T − 1 :

P(Su ̸= j, Su−υ = j, υ = 1, ..., u|xT−1
0 , θ(k))

=
L1j(u − 1)
Fj(u − 1)

{ u

∏
υ=1

bj(xu−υ)

Nu−υ

}
dj(u)πj,

u > T − 1 :

P(Su ̸= j, Su−υ = j, υ = 1, ..., u|xT−1
0 , θ(k))

=
{ T

∏
υ=1

bj(xT−υ)

NT−υ

}
dj(u)πj.

2.5 Parameter Re-estimation

Now that we defined the Q-function it is time for the re-estimation procedure of the EM
algorithm, the M-step. This step determines the likelihood-increasing next set of parameters
θ(k+1) by

θ(k+1) = argmax
θ

Q(θ|θ(k))

As we show the Q-function of an HSMM can be decomposed in four terms each depending
on a given subset of θ. Hence, the re-estimation formulae for the parameters can be derived
by maximizing each one of the different terms separately.
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The initial Parameters

We start with the parameters involved in the underlying hidden semi-Markov chain. The term
of the Q-function corresponding to the initial parameters is given by

Q1(π; θ(k)) :=
J−1

∑
j=0

P(S0 = j|xT−1
0 , θ(k)) log πj. (2.5.1)

Adding a Lagrange multiplier with the constraint∑J−1
m=0 πm = 1 differentiating w.r.t (with

respect to) πj and summing over all states, we get

πj = P(S0 = j|XT−1
0 = xT−1

0 , θ(k)),

and the re-estimation formula for the initial parameters is given by

π
(k+1)
j = P(S0 = j|xT−1

0 , θ(k)) = Lj(0). (2.5.2)

The Transition Probabilities

The term of Q(θ; θ(k)) corresponding to the transition probabilities parameters is given by

Q2(p; θ(k)) := ∑
i ̸=j

T−2

∑
t=2

P(St+1 = j, St = i|xT−1
0 , θ(k)) log pij. (2.5.3)

Adding Lagrange multipliers for all i, with the constraint ∑J−1
j=0 pij = 1 differentiating w.r.t.

pij and solving the resulting equations we get

p(k)ij =
∑T−2

t=0 P(St+1 = j, St = i|XT−1
0 = xT−1

0 , θ(k))

∑T−2
t=0 P(St+1 ̸= i, St = i|XT−1

0 = xT−1
0 , θ(k))

. (2.5.4)

The re-estimation formula can be written as

p(k+1)
ij =

∑T−2
t=0 Gj(t + 1)pijFi(t)

∑T−2
t=0 L1i(t)

. (2.5.5)

Note that the quantity in the numerator of the above equation does not require additional
calculations because it can be extracted directly from the computation of L1i(t).

Non-Parametric State Occupancy Distribution with the Complete Likelihood Estimator

The term of the Q-function treating the non-parametric state occupancy distribution is given
by :

Q3(d; θ(k)) :=
J−1

∑
j=0

∑
u

n(k)
ju log dj(u).
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It has to be maximized under the constraint ∑
u

dj(u) = 1, for all j = 0, 1, . . . J − 1, which

leads to the following re-estimation formula for the state occupancy probabilities :

d(k+1)
j (u) =

n(k)
ju

∑
Mj
u=1 n(k)

ju

=
n(k)

ju

∑T−2
t=0 L1j(t) + Lj(T − 1)

. (2.5.6)

Geometric State Occupancy distribution

The geometric state occupancy distribution reduces the HSMM to an ordinary HMM. How-
ever, in this case the probability function of the sojourn times is given by

dj(u) = (1 − pj)
u−1 pj,

where j ∈ {0, 1, . . . , J − 1} and u ∈ {1, . . . , Mj = T − 1}. We rewrite ∑T−1
j=0 Q3(dj; θ(k)),

where for each j = 0, 1, . . . , J − 1, the corresponding part of the Q-function becomes:

Q3(d; θ) =
T−1

∑
u=1

n(k)
ju [(u − 1) log(1 − pj) + log pj].

The re-estimation formula for the parameter pj is thus given by

pj =

T−1

∑
u=1

n(k)
ju

T−1

∑
u=1

un(k)
ju

.

Negative Binomial State Occupancy Distribution

The negative binomial distribution is an extension of the geometric distribution. The resulting
probabity function of the sojourn times given by

dj(u) =
(

u − 2 + r
u − 1

)
πr(1 − π)u−1

=
Γ(u − 1 + r)

Γ(r)Γ(u)
πr(1 − π)u−1

where Γ(·) denotes the Gamma-function; r > 0 and π ∈ (0, 1) are the parameters of the
distribution. Note that it is convenient to rewrite the ratio of the Gamma-functions so as
to increase numerical stability. Then, for each j the corresponding part of the Q-function
becomes

Q3(dj; θ(k)) =
T−1

∑
u=1

n(k)
ju [log Γ(u − 1 + r)− log Γ(r)− log Γ(u)

+r log π + (u − 1) log(1 − π)].
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The maximization w.r.t. to the parameters r and π is not straightforward; numerical methods
have to be applied. Differentiating w.r.t. π yields

π =
r ∑T−1

u=1 n(k)
ju

∑T−1
u=1 n(k)

ju (r + u − 1)
. (2.5.7)

The differentiation w.r.t. r involves terms of the form log Γ(s). Recall that the Digamma
function is defined as ψ(s) := ∂logΓ(s)

∂s . Thus

∂

∂r
Q3(dj; θ(k)) = 0 ⇒

T−1

∑
u=1

n(k)
ju (ψ(u − 1 + r)− ψ(r) + log π) = 0. (2.5.8)

Substituting π from Equation (2.5.7) in Equation (2.5.8) yields the expression

T−1

∑
u=1

n(k)
ju

(
ψ(u − 1 + r)− ψ(r) + log

[ r ∑T−1
u=1 n(k)

ju

∑T−1
u=1 n(k)

ju (r + u − 1)

])
= 0, (2.5.9)

which has to be solved numerically, e.g. by a bisectioning algorithm. The estimation of π
follows directly from Equation (2.5.7).

The Observation Component

The conditional distributions of the observed states given the hidden ones can be modeled
by a large variety of distributions. In the context of financial time series, mixtures of nor-
mal distributions and t distributions are of particular interest for the modeling of phenomena
following skewed or leptokurtic distributions. For each state j, the corresponding part of the
Q-function in Equation (2.2.7) is given by

Q4(bj; θ(k)) =
T−1

∑
t=0

P(St = j|xT−1
0 ; θ(k)) log bj(xt) =

=
T−1

∑
t=0

Lj(t) log bj(xt). (2.5.10)

Depending on the distributional assumptions imposed on bj(xt), the maximization of the
corresponding term of Q(θ|θ(k)) may also involve numerical methods. In the following we
deal with some common distributions, e.g., the Poisson, Bernoulli, normal, and t distribution.
If the conditional distributions are a Bernoulli distributions then

bj(xt) = pxt
j (1 − pj)

1−xt , xt = 0, 1, . . . (2.5.11)

In this section, pj denotes the parameter of the Bernoulli conditional distribution.

Q4(b; θ(k)) =
T−1

∑
t=0

Lj(t)[xt log pj + (1 − xt) log(1 − pj)],

which has to be maximized w.r.t. pj to perform the M-step and we get

p(k+1)
j =

∑T−1
t=0 Lj(t)xt

∑T−1
t=0 Lj(t)

(2.5.12)
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If the component distributions are assumed to be univariate Poisson distributions with param-
eters λj then :

bj(xt) =
λxt

j e−λj

xt!
,

Q4(bj; θ(k)) =
T−1

∑
t=0

Lj(t)[xt log λj − λj − log xt!].

The maximization w.r.t. λj yields

λj =
∑T−1

t=0 Lj(t)xt

∑T−1
t=0 Lj(t)

, (2.5.13)

and the re-estimation quantity is

λ
(k+1)
j =

∑T−1
t=0 Lj(t)xt

∑T−1
t=0 Lj(t)

. (2.5.14)

In the case of multivariate normal component distributions we follow the derivations given
by Bilmes (1998) for HMMs. The density functions are given by

bj(t) =
1

(2π)p/2 exp
(
− 1/2(xt − µj)

TΣ−1
j (xt − µj)

)
with mean µj and positive definite covariance matrix Σj. The dimension of the observations
is denoted by p and all vectors are column vectors. Representing the constant terms by C,
Equation (2.5.10) becomes

Q4(bj; θ(k)) =
T−1

∑
t=0

Lj(t)[C − 1
2

log(|Σj|)−
1
2
(xt − µj)

TΣ−1
j (xt − µj)]. (2.5.15)

We first treat the maximization w.r.t. µj, by taking the derivative of Equation (2.5.15) w.r.t.
µj and setting it equal to zero, this yields

µj =
∑T−1

t=0 Lj(t)xt

∑T−1
t=0 Lj(t)

.

The first step of the maximization w.r.t. Σ consists in transforming Equation (2.5.15) to

1
2

log(|Σ−1
j |)

T−1

∑
t=0

Lj(t)−
1
2

T−1

∑
t=0

Lj(t)tr(Σ−1
j (xt − µj)(xt − µj)

T)

=
1
2

log(|Σ−1
j |)

T−1

∑
t=0

Lj(t)−
1
2

T−1

∑
t=0

Lj(t)tr(Σ−1
j Njt),



26 Chapter 2. Estimation in a Hidden Semi-Markov model

where Njt = (xt − µj)(xt − µj)
T. Differentiating w.r.t. Σ yields

1
2

T−1

∑
t=0

Lj(t)
(
2Σj − diag(Σj)

)
− 1

2

T−1

∑
t=0

Lj(t)(2Njt − diag(Njt))

=
1
2

T−1

∑
t=0

Lj(t)(2Mjt − diagMjt) = 2S − diag(S),

where Mjt := ΣjNjt and S :=
T−1

∑
t=0

Lj(t)(Σj − Njt) . Setting the derivative equal to zero w.r.t

Sigma yields

2S − diag(S) = 0 ⇒ S = 0.

This is equivalent to
T−1

∑
t=0

Lj(t)(Σj − Njt) = 0 and it follows that

Σj =

T−1

∑
t=0

Lj(t)Njt

T−1

∑
t=0

Lj(t)

.

Hence the re-estimation quantities for the normal component distributions are given by

µ
(k+1)
j =

∑T−1
t=0 Lj(t)xt

∑T−1
t=0 Lj(t)

, (2.5.16)

Σ(k+1)
j =

∑T−1
t=0 Lj(t)(xt − µ

(k+1)
j )(xt − µ

(k+1)
j )T

∑T−1
t=0 Lj(t)

. (2.5.17)

For the case of mixtures of normal distributions as component distributions, we do not provide
all the calculations here but instead we give a short overview and report the resulting re-
estimation formulae. We refer to Sansom and Thomson (2000) for the details. The density of
the normal distribution with mean µ and positive definite covariance matrix Σ be given by

f (xt; µ, Σ) =
1

(2π)p/2 exp
{
− 1/2(xt − µ)TΣ−1(xt − µ)

}
,

where p is the dimension of the observations. The component distribution associated with
each state j is assumed to be a finite mixture of M normal densities. Let m ∈ {0, ..., M − 1}
denote the mixture components, thus for each state j, there are M means, denoted by µjm, and
M covariance matrices, denoted by Σjm. Then, Equation (2.5.10) becomes

bj(xt) =
M−1

∑
m=0

ϕjm f (xt; µjm, Σjm),
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where ∑M−1
m=0 ϕjm = 1. To simplify the notation of the re-estimation formulae, it is helpful to

introduce the auxiliary variable

Ljm :=
Lj(t)

∑M−1
m=0 ϕjm f (xt; µjm, Σjm)

ϕjm f (xt; µjm, Σjm),

which can be interpreted as weighted probability of observing xt in the mixing component m
of state j. Then the re-estimation formulae for µ, Σ and ψ can be written as

ϕ
(k+1)
jm =

∑T−1
t=0 Ljm(t)

∑M−1
m=0 ∑T−1

t=0 Ljm(t)
=

∑T−1
t=0 Ljm(t)

∑T−1
t=0 Lj(t)

, (2.5.18)

µ
(k+1)
jm =

∑T−1
t=0 Ljm(t)xt

∑T−1
t=0 Ljm(t)

, (2.5.19)

Σ(k+1)
jm =

∑T−1
t=0 Ljm(t)(xt − µ

(k+1)
jm )(xt − µ

(k+1)
jm )T

∑T−1
t=0 Ljm(t)

. (2.5.20)

The derivations for (2.5.18), (2.5.19) and (2.5.20) are similar to that of the normal component
distributions. The t distribution falls into the class of the elliptically symmetric distributions.
In contrast to the Normal distribution it has an additional parameter (the degrees of freedom),
which allows one to fit longer tails to deal withmore extreme observations. The derivation and
maximization of the Q-function for this distribution is not entirely straightforward. However,
the techniques presented by Peel and McLachlan (2000) for the estimation of mixtures of t
distributions can be adopted to the case of an HSMM and we follow their approach. Recall
that the t distribution is derived from a Normal mixture model of the form∫

g(x; µ, Σ/u)dU(u) (2.5.21)

where g(·) denotes the density of the Normal distribution. The random variable U follows a
gamma distribution, i.e.,

U ∼ gamma
(1

2
ν,

1
2

ν
)

,

where the density function of the gamma distribution is parameterized as follows:

f (u; a, β) =
βaua−1

Γ(a)
exp(−βu)1{u>0}(u),

where Γ(·) denotes the gamma function. Evaluating the integral given in (2.5.21) yields the
density of the t distribution with location parameter µ, ν degrees of freedom and positive
definite inner product matrix Sigma. The density is given by

f (x; µ, Σ, ν) =
Γ( ν+p

2 )|Σ|−1/2

(πν)1/2Γ( ν
2 ){1 + δ(x, µ, Σ)/ν}1/2(ν+p)

where δ(x,μ,Σ) denotes the Mahalanobis distance

δ(x, µ, Σ) = (x − µ)TΣ−1(x − µ)
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and p corresponds to the dimension of the observations. Note that f converges to the density
function of a Normal distribution with mean μ and covariance Σ as ν tends to infinity. The
mean μ of the t distribution exists for all ν > 1, and the covariance matrix is given by ν/(ν −
2)Σ for ν > 2. In the case of component t distribution, the observation distribution from
Equation (2.5.10) is

bj(xt) =
Γ( νj+p

2 )|Σj|−1/2

(πν)1/2Γ( νj
2 ){1 + δ(xj, µj, Σj)/νj}1/2(νj+p)

. (2.5.22)

Unfortunately, the re-estimation formulae of the parameters involved in (2.5.22) cannot be
derived directly, as was the case for observations following the normal or the Poisson dis-
tribution. We adopt the derivation of the re-estimation formulae from Peel and McLachlan
(2000), details of which can be found in their article. In addition to the observations and the
states of the semi-Markov chain, the complete-data log-likelihood has to be enriched by two
more variables. Firstly, by the indicator function zjt = (zt)j which takes the value one if
the observation xt belongs to component j and zero otherwise. Secondly, the missing data
from the gamma distributed random variable U, denoted by u0, ..., uT−1, has to be added to
the complete-data with

[Xt|ut, zjt = 1] ∼ N(µj, Σj/ut),

for t ∈ {0, .., T − 1}, and

Ut|zjt = 1 ∼ gamma(
1
2

νj,
1
2

νj).

This “enriched” complete-data allows for a modified formulation of the complete-data likeli-
hood. Given z0, ..., zT−1, the quantities U0, ..., UT−1 are conditionally independent, and thus
the complete data likelihood can be factorised into the product of the marginal densities of
Zt, the conditional densities of Ut given zt, and the conditional densities of Xt given ut and
zt. The complete-data log-likelihood of the observations of component j then becomes

log Lc(µj, Σj, νj) = log Lc1(νj) + log Lc2(µj, Σj),

where

log Lc1(νj) =
T−1

∑
t=0

zjt

{
− log Γ(

1
2

νj) +
1
2

νj log(
1
2

νj)

+
1
2

νj(log ut − ut)− log ut

}
, (2.5.23)

with

log Lc2(µj, Σj) =
T−1

∑
t=0

zjt

{1
2

p log(2π)− 1
2

log |Σj|

−1
2

uj(xt − µj)
TΣ−1

j (xt − µj)
}

. (2.5.24)

The calculation of Q(θ|θ(k)) is also affected by the modified complete-data likelihood of
the observation part. The conditional expectation of the complete-data log-likelihood is per-
formed in parts. First, the expectation conditioned on the observations xT−1

0 and z0, ..., zT−1

is taken. Then, the conditional expectation of zt given xT−1
0 is evaluated; hereby P(Zt =
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1|xT−1
0 ) = Lj(t) holds true. From Equations (2.5.23) and (2.5.24), it is clear that

E(Ut|xt, zt, θ(k))

and

E(log Ut|xt, zt, θ(k))

have to be calculated. The calculation of E(Ut|xt, zt, θ(k)) is based on the fact that the con-
jugate prior distribution of Ut is the gamma distribution. It can be shown that the distribution
of Ut given Xt = xt and Zjt = 1 is

[Ut|xt, zjt = 1] ∼ gamma(m1j, m2j),

wherem1j := 1
2 (νj + p) andm2j := 1

2{νj + δ(xt, µt, Σt)}. From the definition of the gamma
distribution, it follows that

E(Ut|xt, zjt = 1) =
ν
(k)
j + p

νj + δ(xt, µ, Σ)
.

which yields the desired result:

E(Ut|xt, zjt = 1, θ(k)) =
ν
(k)
j + p

ν
(k)
j + δ(x(k)t , µ(k), Σ(k))

.

To compute the term E(log Ut|xt, zt, θ(k) we have to use the result that if a random variable
R is distributed as gamma(, ), then E(log R) = ψ(a)− logβ where ψ(s) is the digamma
function. As shown in the derivation of E(Ut|xt, zt, (k)), the conditional density of Ut given
xt and zjt = 1 is in gamma(m1j, m2j). Applying the above result to the conditional density
of Ut yields

E(log Ut|xt, zt, θ(k)) = ψ
(ν

(k)
j + p

2

)
− log

(1
2
{ν

(k)
j + δ(xt, µ

(k)
j , Σ(k)

j )}
)

= log u(k)
jt +

{
ψ(

ν
(k)
j + p

2
)− log(

ν
(k)
j + p

2
)

}
,

where

u(k)
jt :=

ν
(k)
j + p

ν
(k)
j + δ(x(k)t , µ(k), Σ(k))

.

Applying the results for E(log Ut|xt, zt, θ(k)) and E(Ut|xt, zt, θ(k)) the observation part of
the Q-function in Equation (2.5.10) can be split up into two parts:

Q4(bj; θ(k)) =
T−1

∑
t=0

Lj(t)Q1t(νj; θ(k)) +
T−1

∑
t=0

Lj(t)Q2t(µj, Σj; θ(k)), (2.5.25)
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where, ignoring all terms not involving νj, yields

Q1t(νj|θ(k)) = − log Γ(
1
2

νj) +
1
2

νj log(
1
2

νj)

+
1
2

νj

[ T−1

∑
t=0

(log u(k)
jt − u(k)

jt )
]
+

ψ
(ν

(k)
j + p

2

)
− log

(ν
(k)
j + p

2

)
and

Q2t(µj, Σj|θ(k)) =
1
2

p log(2π)− 1
2

log Σj +
1
2

p log u(k)
jt

−1
2

u(k)
jt (xt − µj)

TΣ−1(xt − µj).

The re-estimation procedure consists of themaximization of the two terms of Equation (2.5.25)
w.r.t. the parameters µj , Σj and νj. The re-estimation formulae for µj and Σj can be derived
explicitly, yielding

µ
(k+1)
j =

∑T−1
t=0 Lj(t)u

(k)
jt xt

∑T−1
t=0 Lj(t)u

(k)
jt

(2.5.26)

and

Σ(k+1)
j =

∑T−1
t=0 Lj(t)u

(k)
jt (xt − µ

(k+1)
j )(xt − µ

(k+1)
j )T

∑T−1
t=0 Lj(t)

. (2.5.27)

Note that, according to Kent et al. (1994), for the case of a single component t distribution,
the denominator of (2.5.27) can also be replaced by ∑T−1

t=0 Lj(t)u
(k)
jt to increase the speed of

convergence. The re-estimation of the degrees of freedom νj is a bit more complicated. The
estimator is the (unique) solution of the equation

−ψ(
1
2

ν
(k)
j

)
+ log

(1
2

ν
(k)
j

)
+ 1

+
1

∑T−1
t=0 Lj(t)

[ T−1

∑
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Lj(t)(log u(k)
jt − u(k)

jt )
]

+ψ
(ν

(k)
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2

)
− log

(ν
(k)
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2

)
= 0,

which can be found, e.g., by a bisection algorithm or by quasi-Newton methods as the left
hand side expression is monotonically increasing.
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Chapter 3

Application to Real data of the SnP
500

In this chapter, we employ two-state and three-state hidden semi-Markov models and hidden
Markov models to explain the time-varying distribution of the stock market returns during the
period 1987 until 2006. Our results indicate that the time-varying distribution depends on the
hidden states, which are represented by three market conditions, namely the bear, sidewalk,
and bull markets. We use the R package “hsmm” created by Bulla, J., and Bulla, I.

3.1 Stylized facts

Most of the empirical studies on modelling stock returns focus on certain properties of ab-
solute and squared daily returns. Dating back to Granger and Ding (1995a,b), the temporal
properties can be summarized as follow:

• TP1: returns are not autocorrelated (except for, possibly, the first lag).

• TP2: the autocorrelation function of the absolute and quadratic returns are slow decay-
ing, and cor(|Xt|, |Xtl |) > cor(X2

t , X2
tl), with l being a positive integer denoting the

lag.

• TP3: autocorrelations of powers of absolute returns are highest at power one.
(Taylor effect)

• TP4: the autocorrelations of sign (Xt) are negligibly small.

Further distributional properties are:

• DP1: |Xt| and sign (Xt) are independent.

• DP2: E(Xt) = Var(Xt).

• DP3: the marginal distribution of |Xt| is exponential.

Note that an exponentially distributed variable (DP3) Xt has the following properties

• E(Xt) =
√

Var(Xt)

• E(Xt − E(Xt))3 = 2

• E(Xt − E(Xt))4 = 9

Distributional properties relate to the non- Gaussianity of the distribution of asset returns,
whilst temporal properties refer to the time dependence of asset returns and of the squared/absolute
asset returns. Rydén et al (1998) and Bulla (2011) showed that an HMM with normal and t
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conditional distributions, respectively, satisfies TP1 and that TP4 is not violated in practice.
The absence of correlation between returns must not be mistaken for a property of indepen-
dence and identical distribution: return fluctuations are not identically distributed and the
properties of the distribution change with time. In particular, absolute returns or squared
returns exhibit a long-range slowly decaying autocorrelation function. This phenomenon
is widely known as “volatility clustering”, as “large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small changes” (Mandel-
brot, 1963)

3.2 Data

The data used here are the daily returns covering the period from 1st January 1987 to 5th
September 2005 . All sector indices are from STOXX Ltd. and the common currency used is
Euro. The daily returns of the period from t to t − 1 are computed continuously by

Rt = ln(Pt)− ln(Pt−1),

where Pt represents the index closing price on day t and ln is the natural logarithm. All
data are obtained from Thomson financial datastream. It was found that all sector indices
are leptokurtic and negatively skewed. The Jarque–Bera statistic confirms the departure from
normality for all return series at the 1% level of significance.

The following plots shows the prices of the index banks and the daily returns.

Figure 3.1: Prices and daily Returns
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3.3 Descriptive Statistics

The following table presents the four moments of the daily returns of the sectors banks and
chemicals. The third moment, skewness, shows that the daily returns are negatively skewed.
The fourth moments, kurtosis, are larger than 3, this implies that the daily returns have the
leptokurtosis and the fat tails. The third and fourth moments indicate that the distribution of
the daily returns deviates from the normal distribution.

Banks Chemicals
Mean 2725 × 10−3 2537 × 10−3

Standard deviation 0.0115 0.01279
Skewness -0.3537 -0.1249

Excess Kurtosis 6.7 5.677949

3.4 The models

In this section, we fit Hidden markov and Hidden-semi Markov models with negative bino-
mial sojourn time distributions because the Hidden Markov models do not capture the be-
havior of the empirical autocorrelation function satisfactorily, mainly due to the much slower
decay of the latter. The temporal dependence properties of a HMM depend on the values of
the transition probability matrix but the sojourn times are always geometrically distributed.

Excess kurtosis of the data and the fitted models
Sector obs HSMMt-3s HSMMn-3s HMMn-3s
Banks 6.7 6.33 4.97 5.02

Chemicals 5.67 9.42 3.14 4.20

Chemicals
model AIC BIC likelihood

HMM-2s -29991.58 -29946.14 15002.79
HSMMn-2s -30080.15 -30021.73 15049.08
HSMMt-2s -30160.05 -30088.64 15091.02
HMM-3s -30199.56 -30108.68 15113.78
HSMMn-3s -30234.43 -30124.08 15134.22
HSMMt-3s -30273.49 -30143.66 15156.74

Banks
model AIC BIC likelihood

HMM-2s -31596.23 -31550.79 15805.11
HSMMn-2s -31690.53 -31632.11 15854.27
HSMMt-2s -31749.02 -31677.61 15885.51
HMM-3s -31936.92 -31846.04 15982.46
HSMMn-3s -31953.513 -31843.15 15993.75
HSMMt-3s -31962.71 -31832.88 16001.35

In the above tables, HMM corresponds to the Hidden Markov Model, HSMMn to the Hidden
Semi-Markov Model ending in n for the normal component distribution and in t for the stu-
dent distribution. In the case of the HMM the component distribution is normally distributed.
Figure (3.2) depicts the autocorrelation plot of the absolute values in the case of the 2-states
models. Figure (3.3) depicts of the autocorrelation plot of squared values in the case of the
2states-models. Finally figures (3.4), (3.5) depict the autocorelation plot of absolute and
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squared values in the case of 2-states and 3-states models, respectively. The HSSMt is repre-
sented by the blue line, the HMM with the green line and the HSMMn with the red line. The
grey bars represent the empirical autocorelations.
All the 2-states models can’t reproduce the long-memory observed in the ACF plots, because
the autocorrelation tends to zero after the 25th lag in contrast to the 3 state models that are
more efficient.

Figure 3.2: absolute values 2 states
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Figure 3.3: Squared values 2 states
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Figure 3.4: Absolute values 3 states
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Figure 3.5: Squared values 3 states

Better fit in autocorrelation plots is perfomed by the 3 states models, with HSSM-n pro-
viding the best fit in contrast to the AIC criterion which displays HSMM-t as the best model.
We used the three state models to intrepret the market conditions. Specifically, state 1 corre-
sponds to the bear market, state 2 corresponds to the bull market and state 3 corresponds to
the sidewalk market . We define the bear, sidewalk, and bull markets from the perspective of
the distributional features.

Definition 3.4.1. A bear market

• The mean of the distribution of the daily returns conditional on a bear market is signif-
icantly less than 0.

• The frequency of the positive returns is expected to be smaller than that of the negative
returns.

• Because of the above statistical properties, the price in a bear market is generally
decreasing.

Definition 3.4.2. A sidewalk market



38 Chapter 3. Application to Real data of the SnP 500

• The mean of the distribution of the daily returns conditional on a sidewalk market
should be insignificantly different from 0.

• It is expected to observe a roughly equal number of positive and negative returns.

• Because of the above statistical properties, the price in a sidewalk market stays in a
band and shows a mean-reversion pattern.

Definition 3.4.3. A Bull Market

• The mean of the distribution of the daily returns conditional on a bull market should
be signifi-cantly larger than 0.

• The frequency of the positive returns is expected to be larger than that of the negative
returns.

• Because of the above statistical properties, the price in a bull market is generally in-
creasing.

3.4.1 HMM

Below we give in all cases of interest, the estimated values from the EΜ-algorithm as de-
scribed in the previous chapter. The transition matrix :

P =

 0 0.1 0.9
0.42 0 0.58
0.46 0.54 0

 ,

the observation component distribution:

[Xt|St = 1] ∼ N1(−28 × 10−4, 74 × 10−5),

[Xt|St = 2] ∼ N2(58 × 10−5, 384 × 10−7),

[Xt|St = 3] ∼ N3(52 × 10−5, 135 × 10−6),

and the sojourn time distributions :

d1(u) = (1 − 0.054)u−10.054,

d2(u) = (1 − 0.007)u−10.007,

d3(u) = (1 − 0.019)u−10.019.

State 1 corresponds to bear market with positive return frequency 44%, state 2 corresponds to
bull market with positive return frequency 54% and state 3 corresponds to sidewalk market
with positive return frequency 50%.

3.4.2 HSMM

The transition matrix for the model with normal component was estimated as:

P =

 0 0 1
0.98 0 0.02
0.75 0.25 0

 ,
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the observation component distribution:

[Xt|St = 1] ∼ N1(−30 × 10−4, 72 × 10−5),

[Xt|St = 2] ∼ N2(63 × 10−5, 383 × 10−7),

[Xt|St = 3] ∼ N3(57 × 10−5, 127 × 10−6),

and the sojourn time distribution

d1(u) =
(

u − 2 + 0.062
u − 1

)
0.0130.062(1 − 0.013)u−1,

d2(u) =
(

u − 2 + 1.18
u − 1

)
0.0831.18(1 − 0.083)u−1,

d3(u) =
(

u − 2 + 0.294
u − 1

)
0.0140.294(1 − 0.014)u−1.

State 1 corresponds to bear market with positive return frequency 45%, state 2 corresponds to
bull market with positive return frequency 53% and state 3 corresponds to sidewalk market
with positive return frequency 49%. The two models had some differences in Hidden states
but the results are pretty similar.

The transition matrix for the model with student component:

P =

 0 0 1
0.95 0 0.05
0.72 0.28 0

 .

The first state follows a Student distribution with mean,variance, and degrees of freedom

(M1, Var1, D f1) = (−30 × 10−3, 723 × 10−7, 100),

the second state :

(M2, Var2, D f2) = (62 × 10−5, 34 × 10−6, 16.63),

and the third state:

(M3, Var3, D f3) = (61 × 10−5, 117 × 10−6, 17.5).

The sojourn time distributions :

d1(u) =
(

u − 2 + 0.092
u − 1

)
0.0140.092(1 − 0.014)u−1,

d2(u) =
(

u − 2 + 1.28
u − 1

)
0.0081.28(1 − 0.008)u−1,

d3(u) =
(

u − 2 + 0.32
u − 1

)
0.0110.32(1 − 0.011)u−1.

Fitting a t-distribution for banks had many computational issues (good initial values were
needed and we had to relax the stopping criterion). When fitting t-distribution with 3-states
the 2 states looks too similar, so to capture the volatility clustering 3-states with normal or
2-states with Student will indicate good results.
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3.5 Conclusion

In this work, we appplied hidden semi-Markov models (HSMM) and hidden Markov models
(HMMs) to explain the time-varying distribution of stock market returns. Our results indicate
that the time-varying distribution of the stock market returns depends on the market condi-
tions, namely the bear, sidewalk, and bull market. Stylized facts, AIC and BIC indicated
different models for best fit but all showed that the 3-states models are performing better than
the 2-states. Through Monte Carlo simulations, we have found that our three-state HSMM
models can reproduce the stylized facts of the long-memory and the Taylor effect, whereas
the 2 state-models can’t.
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