
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

MASTER THESIS

Statistical techniques for improving prediction in

crop progress stages with meteorological and

satellite data

Author:

Christina GIANNADAKI

Supervisor:

Dr. Samis TREVEZAS

Department of Mathematics

December 18, 2019

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://department.university.com




3

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

Abstract

Department of Mathematics
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Statistical techniques for improving prediction in crop progress stages with meteorological and

satellite data

by Christina GIANNADAKI

Crop Progress Reports (CPRs) of the USDA are listing the weekly progress made in the different

phenological stages of selected crops and in particular of corn. In this thesis, our goal was to pre-

dict the CPRs of a full year by taking into account available data from related features in a way

that we can beat the predictions based on empirical means from historical data. For this reason, we

used two features, the mean Normalized Difference Vegetation Index (NDVI) and the Accumulated

Growing Degree Days (AGDDs). In order to achieve our target we implemented several modeling

approaches, including Independent Mixture Models and Hidden Markov Models HMMs and we

compared different type of estimators and predictors by taking into account both features or treat-

ing them separately, or making data transformations, such as differences. The results showed that

the aforementioned models cannot predict better than the historical data. Finally, we managed to

obtain better predictions by using Simple Linear Regression. This study can be extended in several

directions for future work.

HTTP://WWW.UNIVERSITY.COM
http://department.university.com


4

Περίληψη

Στατιστικές τεχνικές για τη βελτίωση της πρόβλεψης στα στάδια προόδου της καλλιέργειας με με-

τεορολογικά και δορυφορικά δεδομένα

Οι εκθέσεις προόδου της καλλιέργειας (CPR) του USDA παρουσιάζουν την εβδομαδιαία πρόοδο

που σημειώθηκε στα διάφορα φαινολογικά στάδια των επιλεγμένων καλλιεργειών και ιδιαίτερα του

καλαμποκιού.Σε αυτή την διπλωματική, ο στόχος μας ήταν να προβλέψουμε ταCPR ενός ολόκληρου

έτους λαμβάνοντας υπόψη διαθέσιμα δεδομένα από συναφή χαρακτηριστικά με τρόπο που να μπορούμε

να νικήσουμε τις προβλέψεις βάσει εμπειρικών μέσων από ιστορικά δεδομένα. Για το λόγο αυτό,

χρησιμοποιήσαμε δύο χαρακτηριστικά, τον δείκτη κανονικοποιημένης βλάστησης (NDVI) και τις

συγκεντρωτικές ημέρες καλλιέργειας (AGDDs). Προκειμένου να επιτευχθεί ο στόχος μας, εφαρ-

μόσαμε αρκετές προσεγγίσεις μοντελοποίησης, συμπεριλαμβανομένων μοντέλων ανεξάρτητων μήξ-

εων και κρυμμένα μοντέλα HMMs και συγκρίναμε διαφορετικούς τύπους εκτιμητών και προγνω-

στικών λαμβάνοντας υπόψη και τα δύο χαρακτηριστικά ή τη χωριστή επεξεργασία τους ή πραγ-

ματοποιώντας μετασχηματισμούς δεδομένων, όπως διαφορές. Τα αποτελέσματα έδειξαν ότι τα προανα-

φερθέντα μοντέλα δεν μπορούν να προβλέψουν καλύτερα από τα ιστορικά δεδομένα. Τέλος, κατορ-

θώσαμε να λάβουμε καλύτερες προβλέψεις χρησιμοποιώντας απλή γραμμική παλινδρόμηση. Αυτή η

μελέτη μπορεί να επεκταθεί σε διάφορες κατευθύνσεις για μελλοντικές εργασίες.
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Chapter 1

Features Description

1 Corn Progress Reports

The National Agricultural Statistics Service (NASS) of the United States Department of Agriculture

(USDA) issues Crop Progress Reports (CPRs) weekly during the growing season, listing the progress

made in the different phenological stages of selected crops in major producing states and Agricultural

Statistics Districts (ASDs) through field survey. Crop progress is based on survey data that are col-

lected each week from early April to the end of November. The Crop progress percent values indicate

the cumulative progress for each crop at key stages and is a non-probability survey which includes a

sample of more than 5,000 reporters whose occupations provide them opportunities to make visual

observations and frequently bring them in contact with farmers in their counties. Based on standard

definitions, these reporters subjectively estimate progress of farmers’ activities and progress of crops

through their stages of development. They also provide subjective evaluations of crop conditions.

Because of this complex data collection process and the accuracy of the values we receive, we can

collect information on a limited geographical area. Historical data are available via CPRs of NASS.

Since on-site research is time-consuming and cost-effective, it is necessary to provide efficient and

accurate estimation of crop progress stages. In this report, we focus on a particular type of crop.

More specifically, we are interested in corn. This choice is motivated by recent papers on this subject

([56], [57]), where the authors used Hidden Markov models to predict CPR combining historical data,

meteorological conditions and satellite data. Below we give a brief analysis of the corn phenological

stages.
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1.1 Phenological Stages Of Corn

Producers have several methods of staging corn. The leaf collar method uses a counting system of

"collared" leaves during the vegetative growth stages and includes the first emerging round-tipped

leaf in the count. Another method is similar but does not count the first emerging leaf, only the

later, pointed-tipped leaves. A third method of staging is commonly used by the crop insurance

industry and simply counts all visible leaves, whether rounded or pointed and collared or not. The

knowledge of the later staging method, used to describe the stages of plant growth, is essential and

with this method we will deal.

Detailed knowledge of the plant’s growth process provides the means to improve the quantity

and the quality of the yield. Additionally, plant symptoms occurring during certain growth stages

help the grower determine the cause and effect of a deficiency, disease or other crop problem and

take timely measures.

The duration of the organic cycle of corn ranges from 110-150 days depending on the type of

hybrid and the environmental conditions. The development of hybrid seed corns is a very special-

ized procedure. Its production requires more time, expenses and expertise to produce than other

commercial crops. Hybrid seed corn production involves the crossing of two inbred lines; that is hy-

bridization. The two inbreds that are used in the process are referred to as male (the plant responsible

for producing pollen) and female (the plant which produces the hybrid seed). Throughout the pro-

cess extreme measures are taken to ensure the quality and purity of the seed being produced. Inbreds

are crossed to create a variety that demonstrates certain characteristics, such as drought resistance or

standability, or a variety that is produced for planting specifically in various conditions and climates.

While it is true that hybrids have allowed for an increase in corn production, they have done much

more. Hybrids allow for an efficient use of applied fertilizers. They also allow for resistance to a

variety of insects and diseases, leading to higher quality corn.

Corn is a fixed growth plant with distinct stages of germination and reproductive development.

The following basic stages of the biological cycle are identified :

Germination stage of development :

• S1 : Pre-Season

• S2 : Planted

• S3 : Emerged
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Reproductive stage of development :

• S4 : Silking

• S5 : Dough

• S6 : Dent

• S7 : Mature

• S8 : Harvested

For a better understanding of the biological background we analyze each phenological stage of

corn development.

Pre-Season (S1)

The Pre-Season stage is added artificially as a phenological stage, but in reality it represents the time

period from the beginning of CPR recordings until corn seed planting takes place. This approach is

followed by [57] in order to facilitate the design of the model. In particular, this allows synchroniza-

tion of CPR recordings from different years by initializing them at a common hypothetical stage.

Planted (S2)

Planting time can vary depending on the climate and the weather, but generally will begin in early

Mid-April and will continue until mid to late May.

FIGURE 1.1: Percentage of Yield Po-
tential relative to planting date [8].

Corn is planted for different uses such as grain, silage (grass or

other green fodder compacted and stored in airtight conditions,

typically in a silo, without first being dried, and used as animal

feed in the winter), sweet corn etc. Early planting usually, but

not always, results in maximum corn yields. Corn planted in late

April or early May typically outyield either grain or silage corn

planted after mid-May (see Figure 1.1). A general guideline for

the best time to begin planting corn is about 10 days before the

average date of the last 32◦F (0◦C) temperature in the spring.



12

Corn planted in late May under dry soil conditions will consistently outyield corn planted in late

April under wet soil conditions. Modern corn hybrids tolerate cold soil conditions and seed treat-

ments protect corn from soil pest problems under extended emergence time due to cold soil temper-

atures. Planting depths of about 1.5 inches (3.81 cm) for silty clay or clay loam soils and 1.75 to 2.0

inches (4.445 to 5.08 cm) for silt loam and gravelly loam soils are recommended for April or early

May-planted corn. Planting depths of about 1.75 to 2.0 inches for silty clay or clay loam soils and

2.0 to 2.5 inches (5.08 to 6.35 cm) for silt loam and gravelly loam soils are recommended for most

planting dates in May. If soil conditions are dry in the top 2 inches in late May and early June, corn

can be safely planted to a depth of 3 inches (7.62 cm) on silt loam and gravelly loam soils.

To achieve the full yield potential of an early planting date, full-season hybrids are necessary (see

Figure 1.1). After the first or second week of May, however, the yield advantage of full-season vs.

medium-season hybrids decreases when planted for grain. Furthermore, full-season hybrids may

not mature, resulting in low test weight, and/or will have high grain moisture at harvest, if planted

after the second week of May. Therefore, for grain production, full-season hybrids should be planted

only in late April or during the first 2 weeks of May. For silage production, full-season hybrids can

be planted until about May 20. Growers should not plant more than 30% of their crop to full-season

hybrids (see Figure 1.1). The majority of corn acreage (∼ 60%) should be planted to medium-season

hybrids (100 and 200 growing degree days less than the growing degree days in a region for silage

and grain, respectively). Finally, if planting must be delayed until early June, early-season hybrids

(300-400 growing degree days less than the growing degree days in a region for silage and grain,

respectively) are recommended.

Emerged (S3)

Once planted, the seed will eventually germinate and then emerge from the ground in approximately

7 days after germination (see Figure 1.3). Small variations exist and are mostly due to local environ-

mental conditions. Below we analyze the two phases of plant growth, germination and emergence.
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FIGURE 1.2: Corn Plant Structure [9] Germination

Corn seed begins germination when the seed con-

tains at least 30 percent moisture. The first seedling

structure to emerge from the corn seed is the radicle

(root), followed by the coleoptile (shoot) with the en-

closed plumule (first leaves and growing point). (In Fig-

ure 1.2 we give an illustration of these characteristics.)

Emergence

Emergence of the radicle first allows the young

seedling to anchor in the soil and obtain an adequate sup-

ply of water and for further development obtain extra

water and nutrients. To emerge, the first internode on

the corn plant (the mesocotyl (see Figure 1.2)) elongates

toward the soil surface and continues until the coleoptile

reaches light.

At this stage, the growing point is normally 1 to 1.5 inches below the soil surface.

The growing point remains below the soil surface for three to four weeks (during the period of

Germination), protecting this growing point from physical injury, including frost, surface insects or

grazing animals.

FIGURE 1.3: The size of corn at the Emerged stage [37]



14

Silking (S4)

The first stage of reproductive stages is the Silking stage. The plant is about 55 to 66 days after

emergence. This stage begins when silks are visible and pollination occurs.

Pollination takes place when pollen grains contact the new, moist silks. A pollen grain grows down

the silk and fertilizes the ovule in about 24 hours. Upon this fertilization, the ovule is a kernel. Silks

grow about 1 to 1.5 inches per day. Normally, it takes two to three days for all silks on a single ear

(see Figure 1.5) to emerge and be pollinated. Once this occurs, the kernels will develop and the grain

will fill out (see Figure 1.4).

FIGURE 1.4: Corn development at Silking stage [41]

After the «Silking» stage and before the «Dough» stage, two other stages «Blister» and «Milk»

are mediated. In summary, during these stages the development of corn is achieved as follows. The

kernels are white and shaped like a blister. The cob is close to full size. Silks darken and dry. Kernels

are in a steady and rapid period of seed-fill (this continues to Mature stage) (see Figure 1.5). Kernels

are beginning to yellow on the outside but contain a milky white inner fluid (starch accumulation)

(see Figure 1.6). Most of the kernels have grown out from the surrounding cob material. The en-

dosperm cell division in each seed is complete and growth will be due to cell expansion and starch

accumulation.
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FIGURE 1.5: Blister:
ear and shank [53]

FIGURE 1.6: Milk:
ear and shank [53]

Dough (S5)

Bypassing the two intermediate stages, the next stage for us is the Dough stage. This stage ap-

pears approximately 26 days after Silking. The kernel has thickened to a pasty (doughy) consistency

from the earlier milky state (starch has continued to accumulate and kernel moisture content has

decreased). The embryo of the seed is growing while the kernels are just beginning to dry at the top

(dent). Kernels have accumulated 50 percent of their dry weight and have about 70 percent moisture.

During the Dough stage kernels become more yellow, but the appearance remain dull and matte (see

Figure 1.7).

FIGURE 1.7: Corn Kernels Appearance [41]
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Dent (S6)

This stage is about 36 days after Silking. Nearly all kernels are dented or denting. Drying kernels

show a small, hard, white layer on top. A white line (known as the milk line or starch line) can be

seen across the kernel shortly after denting (starch line indicates maturity; it will advance toward the

kernel tip with maturity). Kernels at this stage have about 55 percent moisture. At around 48 days

after silking, all the kernels should be fully dented. The seed embryo is morphologically mature.

Dry-matter accumulation in the kernels will cease soon. Dent stage occurs when the kernel crown

turns the bright, shiny, dark yellow color of mature kernels and obtain a firm consistency (see Figure

1.8).

FIGURE 1.8: The kernel crown at Dent stage [41]

Mature (S7)

This stage is about 55 days after midsilk. All kernels have attained maximum dry weight. The starch

line has advanced completely to the kernel tip and a brown or black layer is present (black layer

progresses on the ear from the tip kernels to the basal kernels in about 10 days (see Figure 1.9) ). At

black layer, the average kernel moisture is 30 to 35 percent (varying with hybrids and environmental

conditions). Maturity is when the kernel development is finished and "the crop is made".
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FIGURE 1.9: The characteristic black layer in the basal kernel [41]

Harvested (S8)

Harvest time will vary based on the variety of the corn and its intended use. Some corn used for

silage may be harvested towards the end of August, while corn planted for animal feed needs to "dry

down" before being harvested. This corn can be harvested and placed in a dryer, or it can be left in

the field until it reaches approximately 15% moisture.

FIGURE 1.10: A representation for the corn growth and size on each phenological stage.
[10]
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As we mentioned above, our goal is to predict next years’ CPRs. At this point we need to import

two features that will be used for the prediction. The multisource features include the mean Normal-

ized Difference Vegetation Index (NDVI) and Accumulated Growing Degree Days (AGDDs). The

NDVI data are obtained from satellite data and for this reason we will describe in the next section the

use of MODIS, specialized products which are used for this purpose.

2 MODIS

MODIS or Moderate Resolution Imaging Spectroradiometer is a key instrument aboard the Terra

(originally known as "EOS AM-1") and Aqua (originally known as "EOS PM-1") satellites. Terra’s

orbit around the Earth is timed so that it passes from north to south across the equator in the morning,

while Aqua passes south to north over the equator in the afternoon. With its sweeping 2,330-km-wide

viewing swath, MODIS sees every point on our world every 1-2 days, acquiring data in 36 discrete

spectral bands, or groups of wavelengths. These data will improve our understanding of global

dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere [1].

The first MODIS Flight Instrument, ProtoFlight Model or PFM, is integrated on the Terra (EOS

AM-1) spacecraft. Terra successfully launched on December 18, 1999. The second MODIS flight

instrument, Flight Model 1 or FM1, is integrated on the Aqua (EOS PM-1) spacecraft; it was success-

fully launched on May 4, 2002. These MODIS instruments offer an unprecedented look at terrestrial,

atmospheric, and ocean phenomenology for a wide and diverse community of users throughout the

world. The next image, shows the "EOS AM-1" scanning the Earth :

FIGURE 1.11: [6], NASA: Scientific Visualization Studio
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Almost every day over the entire globe, the sensor monitors changes on the land surface, thereby

building upon and extending the heritage begun by Landsat. MODIS sees changes in the Pacific

phytoplankton populations that may signal the onset of the famous El Niño/La Niña climatic siblings

well ahead of their arrival. MODIS also has a unique channel for measuring chlorophyll fluorescence.

All plants bombarded with light begin to glow, or fluoresce, but in wavelengths that our eyes cannot

see. The more plants fluoresce, the less energy they are using for photosynthesis. Thus, MODIS not

only maps the distribution of phytoplankton, it also helps us gauge its health [2].

MODIS detectors measure 36 spectral bands between 0.405 and 14.385 μm, and it acquires data at

three spatial resolutions – 250m, 500m, and 1,000m. Along with all the data from other instruments

on board the Terra spacecraft and Aqua Spacecraft, MODIS data are transferred to ground stations

in White Sands, New Mexico, via the Tracking and Data Relay Satellite System (TDRSS). The data

are then sent to the EOS Data and Operations System (EDOS) at the Goddard Space Flight Center.

The Level 1A, Level 1B, geolocation and cloud mask products and the Higher-level MODIS land

and atmosphere products are produced by the MODIS Adaptive Processing System (MODAPS), and

then are parceled out among three DAACs for distribution. Ocean color products are produced by

the Ocean Color Data Processing System (OCDPS) and distributed to the science and applications

community.

As just noted, MODIS products are available from several sources. MODIS Level 1 and atmo-

sphere products are available through the LAADS web. Land Products are available through the

Land Processes DAAC at the U. S. Geological Survey EROS Data Center (EDC). Cryosphere data

products (snow and sea ice cover) are available from the National Snow and Ice Data Center (NSIDC)

in Boulder, Colorado. Ocean color products and sea surface temperature products along with in-

formation about these products are obtainable at the OCDPS at GSFC. Users with an appropriate

x-band receiving system may capture regional data directly from the spacecraft using the MODIS

Direct Broadcast signal [1].

The following MODAPS–LAADS diagram provides a synoptic view of MODAPS’ data flow dy-

namics stemming from its production activities that generate various data products that are archived

and distributed by LAADS and other data centers. The primary objective of this diagram is to por-

tray MODAPS as a central data provider, whose evolving SIPS components support and sustain

both Level-1 and higher-level atmosphere and land data processing requirements for LAADS and its

various NASA stakeholders [3].
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FIGURE 1.12: MODAPS-LAADS diagram [11]

The many data products derived from MODIS observations describe features of the land, oceans

and the atmosphere that can be used for studies of processes and trends on local to global scales.

MODIS is playing a vital role in the development of validated, global, interactive Earth system mod-

els able to predict global change accurately enough to assist policy makers in making sound decisions

concerning the protection of our environment.

The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance

as it would be measured at ground level in the absence of atmospheric scattering or absorption. Low-

level data are corrected for atmospheric gases and aerosols, yielding a level-2 basis for several higher-

order gridded level-2 (L2G) and level-3 products. MOD09GQ provides Bands 1 and 2 at a 250-meter

resolution in a daily gridded L2G product in the Sinusoidal projection. Science Data Sets provided

for this product include reflectance for Bands 1 and 2, a quality assurance rating and observation

coverage [3].

Next is an example of MOD09GQ surface reflectance product. The corresponding MODIS data

were collected on December 3, 2000 over Alabama, Mississippi and Florida. In the following image

Band 2 (near-infrared) surface reflectance shown on a gray scale :
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FIGURE 1.13: Image from MOD09GQ [63]

The MOD09GQ Version 6 product provides an estimate of the surface spectral reflectance of Terra

MODIS 250 m bands 1 and 2 corrected for atmospheric conditions such as gasses, aerosols, and

Rayleigh scattering. Along with the 250 m bands are the QC 250 m layer and five observation lay-

ers. This product is meant to be used in conjunction with the 500 m product (MOD09GA) where

important quality and viewing geometry information is stored.

Some improvements and changes from previous versions are :

• Improvements to the aerosol retrieval and correction algorithm, and use of new aerosol retrieval

look-up tables.

• Refinements to the internal snow, cloud, and cloud shadow detection algorithms. Uses BRDF

database to better constraint the different threshold used.

• Processes ocean bands to create a new Surface Reflectance Ocean product and provide QA data

sets for these bands.

• Improved discrimination of salt pans from cloud and snow, and flag salt pans in QA band.

Although crop progress metrics derived from satellite data may not necessarily correspond di-

rectly to conventional terrestrial phenological events [51], they implicitly link to the specific crop

growth status. Vegetation Indices (VIs), especially the Normalized Difference Vegetation Index (NDVI),

which reflects terrestrial crop cover and growth condition [52], are frequently utilized in crop progress

studies. The methods of crop progress stage detection using VIs time series can be broadly grouped

into four categories [26]: thresholds, derivatives, smoothing functions, and fitted models [15]. To be

able to continue at the crop progress study we must analyze these indexes.
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3 Vegetation Index

The exploration of outer space started in earnest with the launch of Sputnik 1 by the Soviet Union

on 4 October 1957, which was the first man-made satellite orbiting the Earth. Subsequent successful

launches, both in the Soviet Union, and in the U.S., quickly led to the design and operation of ded-

icated meteorological satellites. Starting in 1960, the TIROS series of satellites embarked television

cameras and radiometers. This was later (1964) followed by the Nimbus satellites and the family of

Advanced Very High Resolution Radiometer instruments on board the National Oceanic and Atmo-

spheric Administration (NOAA) platforms. The latter measures the reflectance of the planet in red

and near-infrared bands, as well as in the thermal infrared.

FIGURE 1.14: Television and Infrared Observations Satellites (TIROS) [12]

In parallel, NASA developed the Earth Resources Technology Satellite (ERTS), which became the

precursor to the Landsat program. Despite the fact that these first sensors had minimal spectral

analysis, they could distinguish germination and clouds among other targets, due to the fact that

they included bands in the red and near the superficial radiation.

With the launch of the first ERTS satellite – which was soon to be renamed Landsat 1, on July 23,

1972 with its MultiSpectral Scanner (MSS)- NASA funded a number of investigations to determine

its capabilities to remote sensing Earth. In a research conducted from the southern trip of Texas to the
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US-Canada border, researchers Donald Deering and Robert Hass with the help of a mathematician

Dr. John Schell subsequently developed the ratio of the difference of the red and infrared radiances

over their sum as a means to adjust for or "normalize" the effects of the solar zenith angle. Originally,

they called this ratio the "Vegetation Index" (and another variant, the square-root transformation of

the difference-sum ratio, the "Transformed Vegetation Index"); but as several other remote sensing

researchers were identifying the simple red/infrared ratio and other spectral ratios as the "vegetation

index" they eventually began to identify the difference/sum ratio formulation as the normalized

difference vegetation index.

4 NDVI

The normalized difference vegetation index (NDVI) is a simple graphical indicator that can be

used to analyze remote sensing measurements, typically, but not necessarily, from a space platform,

and assess whether the target being observed contains live green vegetation or not. NDVI was one

of the most successful of many attempts to simply and quickly identify vegetated areas and their

"condition".

Once the feasibility to detect vegetation had been demonstrated, users tended to also use the

NDVI to quantify the photosynthetic capacity of plant canopies.

Since early instruments of Earth Observation, such as NASA’s ERTS and NOAA’s AVHRR, ac-

quired data in visible and near-infrared, it was natural to exploit the strong differences in plant re-

flectance to determine their spatial distribution in these satellite images. The NOAA AVHRR instru-

ment has five detectors, two of which are sensitive to the wavelengths of light ranging from 0.55–0.70

and 0.73–1.0 micrometers. With AVHRR’s detectors, researchers can measure the intensity of light

coming off the Earth in visible and near-infrared wavelengths and quantify the photosynthetic ca-

pacity of the vegetation in a given pixel (an AVHRR pixel is 1 square km) of land surface. In general,

if there is much more reflected radiation in near-infrared wavelengths than in visible wavelengths,

then the vegetation in that pixel is likely to be dense and may contain some type of forest. If there

is very little difference in the intensity of visible and near-infrared wavelengths reflected, then the

vegetation is probably sparse and may consist of grassland, tundra, or desert [5].
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Definition 1.1. Let Red and NIR stand for the spectral reflectance measurements acquired in the red

(visible) and near-infrared regions, respectively. Then, the Normalized Difference Vegetation Index

(NDVI) is given by :

NDVI =
NIR− Red
NIR + Red

(1.1)

Remark. Since Red and NIR take values in [0, 1], the NDVI index takes values in [−1, 1]. Negative values of

NDVI (values approaching −1) correspond to water. Values close to zero (−0.1 to 0.1) generally correspond

to barren areas of rock, sand, or snow. Low, positive values represent shrub and grassland (approximately 0.2

to 0.4), while high values indicate temperate and tropical rainforests (values approaching 1) [7].

FIGURE 1.15: Example of an NDVI image calculated from an Ikonos image on an ap-
proximately 1 mi2 area in Owyhee County, Idaho. The "true" color image (upper-left)
shows encroaching juniper woodlands grading into a mosaic of montane sagebrush and
semi-wet meadows. The Red (upper-right) and Near Infrared (lower-left) bands for this
area each highlight different aspects of the area. From the NDVI image (lower-right),

however, the junipers and semi-wet meadows are easily distinguishable.[4]
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It should be noted that NDVI is functionally, but not linearly, equivalent to the simple infrared/red

ratio (NIR/VIS). The advantage of NDVI over a simple infrared/red ratio is therefore generally lim-

ited to any possible linearity of its functional relationship with vegetation properties (e.g. biomass).

It can be seen from its mathematical definition that the NDVI of an area containing a dense vegetation

canopy will tend to positive values (say 0.3 to 0.8) while clouds and snow fields will be characterized

by negative values of this index. The most important concept in the understanding of the NDVI al-

gebraic formula is that, despite its name, it is a transformation of a spectral ratio (NIR/VIS), and it

has no functional relationship to a spectral difference (NIR-VIS).

Also, the calculation of the NDVI value turns out to be sensitive to a number of perturbing factors

including : atmospheric effects, clouds, soil effects, anisotropic effects and spectral effects. For these

reasons, the NDVI should be used with great caution. In any quantitative application that necessi-

tates a given level of accuracy, all the perturbing factors that could result in errors or uncertainties of

that order of magnitude should be explicitly taken into account; this may require extensive process-

ing based on ancillary data and other sources of information. More recent versions of NDVI datasets

have attempted to account for these complicating factors through processing. In spite of many possi-

ble perturbing factors upon the NDVI, it remains a valuable quantitative vegetation monitoring tool

when the photosynthetic capacity of the land surface needs to be studied at the appropriate spatial

scale for various phenomena.

In addition, NDVI is often used around the world to monitor drought, forecast agricultural pro-

duction, assist in forecasting fire zones and desert offensive maps. NDVI is preferable for global

vegetation monitoring since it helps to compensate for changes in lighting conditions, surface slope,

exposure, and other external factors. NDVI is a measure of the state of plant health based on how

the plant reflects light at certain frequencies. For example, chlorophyll (a health indicator) strongly

absorbs visible light, and the cellular structure of the leaves strongly reflect near-infrared light. When

the plant becomes dehydrated, sick, afflicted with disease, etc., the spongy layer deteriorates, and the

plant absorbs more of the near-infrared light, rather than reflecting it [59].
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FIGURE 1.16: Plant health through wavelengths [59]

Thus, observing how NIR changes compared to red light provides an accurate indication of the

presence of chlorophyll, which correlates with plant health. So, healthy vegetation (chlorophyll)

reflects more near-infrared (NIR) and green light compared to other wavelengths. When you have

high NDVI values, you have healthier vegetation. When you have low NDVI, you have less or no

vegetation. Generally, if you want to see vegetation change over time, then you will have to perform

atmospheric correction.

FIGURE 1.17: NDVI is calculated from the visible and near-infrared light reflected by
vegetation. Healthy vegetation (left) absorbs most of the visible light that hits it, and
reflects a large portion of the near-infrared light. Unhealthy or sparse vegetation (right)
reflects more visible light and less near-infrared light. The numbers on the figure above
are representative of actual values, but real vegetation is much more varied. (Illustration

by Robert Simmon)
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By transforming raw satellite data into NDVI values, researchers can create images and other

products that give a rough measure of vegetation type, amount, and condition on land surfaces

around the world. NDVI values can be averaged over time to establish «normal» growing conditions

in a region for a given time of year. The uses of NDVI include assessing or monitoring: vegetation dy-

namics, biomass production, grazing impacts or attributes related to grazing management, changes

in rangeland condition, vegetation or land cover classification, soil moisture, carbon sequestration or

CO2 flux etc. Further analysis can then characterize the health of vegetation in that place relative to

the norm. When analyzed through time, NDVI can reveal where vegetation is thriving and where it

is under stress, as well as changes in vegetation due to human activities such as deforestation, natural

disturbances such as wild fires, or changes in plants’ phenological stages.

5 Data Preprocessing

As we mentioned above, the NDVI is a measure of greenness of crop on spectral response of remote

sensing image. Its measurements are dependent on the crop progress stage. We need to study the

evolution of corn phenological stages and we have to be able to use NDVI as data. So, the raw daily

pixel-based data need to be preprocessed. For this reason, a crop based mask should be applied. The

data pre-processing mainly includes : image compositing, which composites daily NDVI images

into weekly composite products by Maximum Value Composite (MVC) [39], and image masking,

which eliminates non-corn pixels from weekly NDVI image with the mask of NASS’s CDL.

5.1 Image Compositing

The current data are images from each day of the year. Our study is limited to specific weeks of the

year, from the 13th to the 47th week. For each day, therefore, we have an NDVI image consisting of

pixels. Instead of reasoning on a daily basis, it is common to work with weekly data. For this rea-

son, weekly NDVI images are formed by computing for each pixel, the maximum value of the NDVI

which was attained during the week. This practice allows for noise reduction and time synchroniza-

tion with the CPR data which are reported on a weekly basis. In order to obtain the final aggregate

data, the mean NDVI (per pixel) is computed only upon the pixels which are characterized as corn

pixels. This is feasible by removing from the weekly NDVI image all the non-corn pixels with the

help of image masking. [57].
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5.2 Image Masking

Since 1997, the US Department Agriculture (USDA) National Agricultural Statistics Service (NASS)

in conjunction with the Spatial Analysis Research Section (SARS), have worked together to provide

timely, accurate and useful statistics for US agriculture. The National Agricultural Statistics Service

(NASS) of the US Department of Agriculture (USDA) produces the Cropland Data Layer (CDL) prod-

uct, which is a raster-formatted, geo-referenced, crop-specific, land cover classification with a spatial

resolution of 56 m . The CDL product utilizes rectified imagery to accurately and geospatially identify

field crop types. CDL program inputs include medium resolution satellite imagery. USDA collected

ground truth and other ancillary data, such as the National Land Cover Data set. It is a standardized

GIS data layer of the nation’s farms and fields and it was established to provide information for crop

forecasting, estimation and data presentation for many agencies.

In 2009, the NASS Cropland Data Layer (CDL) program played an important role toward ful-

filling this mission by providing operational in-season acreage estimates to the NASS Agricultural

Statistics Board (ASB) and Field Offices (FOs) for 15 crops in 27 states. The 2009 CDL program cov-

ered many different crops, such as corn, soybeans, wheat, rice, cotton, etc. It provided updated

acreage estimates throughout the growing season as increased quantities of farmers reported and

satellite data became available [23].

CDL products have been used in a variety of research applications including assessing the utility

of 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) Time-Series Data for mapping

corn and soybeans in the US [25], validating plant functional type maps developed from MODIS

data using multisource evidential reasoning [60], examining the relationship between agricultural

chemical exposure and cancer [44] to flood mapping assessment with satellite images [55].

It is very important that Crop Data Layers are available. In our case, in order to apply the CDL

mask to weekly NDVI images, which would remove non-corn pixels, we used two packages of R :

"cdlTools" and "Modistsp".
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6 NDVI dataset

After the procedure of image compositing and masking (see previous section), masked weekly NDVI

images are available. So, we can use 35 images, one for each week, where each one is formed by com-

bining the pixels with the maximum value in each week and then submitted to the CDL mask. There-

fore, in order to obtain our final NDVI dataset, we compute the average value of the pixels from each

masked weekly NDVI image. Note that, finally, for each week we have a single observation which

corresponds to the average (over all pixels) of the maximum weekly NDVI values. Consequently, the

final NDVI dataset consists of 35 observations per year, one for each week, and this for every year of

study. In order to emphasize this procedure, we also refer to this dataset as mean-max NDVI.

The preceding analysis concerning the NDVI is followed here by some illustrations. In Figure

1.18, we present the weekly maximum NDVI values at the pixel-level for some weeks of interest. As

the colour becomes more green, NDVI values increase. In Figure 1.19 the mean maximum values

of the NDVI are recorded. We can easily see again that in the weeks where the values have green

colour, we take large mean max values. In Figure 1.20a the daily mean NDVI values are depicted.

It is obvious that this curve is more variable and unstable, as compared to the weekly curve (Figure

1.20b). Finally, in Figure 1.21 we compare the smoothness of the curves between those formed by the

weekly maximum NDVI values at the pixel-level and that of the mean max NDVI at the state-level.

It is clear that the latter curve is smoother, with smaller deviations between observations.
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FIGURE 1.18: Presentation of the
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FIGURE 1.20: Comparison of daily and weekly data
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FIGURE 1.21: In this figure we have three dotted lines that stem from the maximum
weekly values in three specific pixels and one line which is derived from the mean

maximum values in all the state (2013, Nebraska).
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7 Accumulated Growing Degree Days (AGDDs)

7.1 Individual AGDD curves

For many plants and animals, there is a specific number of growing degree days that must be ac-

cumulated to trigger a change in phenological status such as budburst in plants or egg hatching in

insects. These are referred to as growing degree thresholds. If a growing degree threshold for a phe-

nological transition in a particular organism is known, it is possible to assess how soon that transition

is likely to be reached, by computing the accumulated growing degree days (AGDDs) over the course

of the season.

In the studies of crop growth, temperature is often presented as growing degree days. The Grow-

ing Degree Day (GDD) corresponds to a measure of the daily accumulated heat. Accumulated grow-

ing degree days (AGDD) result from the summation of GDD within a specific period (it usually starts

from the beginning of heating accumulation). The AGDD is a very important index and it is mainly

used as an objective and stable way to estimate plant development rate and growing stages. This role

will also be highlighted by the results of our study.

Now, we describe the basic elements for computing the AGDD, with the help of data obtained

by meteorological stations. The stations that we used in this study for the states Nebraska, Illinois

and Iowa are listed in Appendix B. The only temperatures that we need in order to extract the global

AGDD are the ambient minimum and maximum temperatures and these are given by the meteo-

rological stations. However, some other biological restrictions have to be taken into account. This,

in particular, concerns the base temperature Tb. The lower developmental threshold temperature or

base temperature for an organism is the temperature below which development stops. This threshold

is determined by the organism’s physiology and is independent of the method used to compute the

degree days. Base thresholds vary with different organisms, but for cool crops grown in Nebraska,

Illinois and Iowa 10oC is often the best base temperature for predicting plant development [46]. In

fact, there is also a restriction in the other direction. The development also ceases when temperatures

exceed an upper threshold Tu. We will refer to this as an empirical maximum temperature threshold.

In fact, evidence in this direction comes from previous studies, where results show that corn growth

slows considerably at temperatures above 30oC [57], [58], [62]. By taking into account all these factors

we are now able to define our quantities of interest.

Definition 1.2. If Tb is the base temperature of the plant, Tu the empirical maximum temperature

threshold, Tmin(t) and Tmax(t) the minimum and the maximum temperature at day t, then
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(i) the Growing Degree Days at day t, denoted by GDDt are defined by

GDDt :=
T∗max(t) + T∗min(t)

2
− Tb, (1.2)

where T∗max(t) = min{Tmax, Tu} and T∗min(t) = max{Tmin, Tb},

(ii) the Accumulated Growing Degree Days until day t, denoted by AGDDt are defined by

AGDDt :=
t

∑
u=1

GDDu. (1.3)

Note that in this definition of GDD, the daily maximum and minimum temperatures are trun-

cated by the empirical maximum temperature threshold Tu (in this study, Tu = 30oC) and the base

temperature Tb (in this study, Tb = 10oC) respectively. This happens because crop growth is highly

sensitive to temperature as explained in the previous paragraph.

Finally, the AGDDt is defined above to be the accumulated GDD until day t, since it corresponds

to the sum of the GDD values until day t. In fact, another way to interpret the AGDD is as the feature

which measures the thermal age of the plant, which is more adapted to capture plant’s evolution than

the usual calendar time. In Figure 1.22 we give two examples from the state Nebraska. The first one

depicts three different daily AGDD curves corresponding to three different meteorological stations

(12th, 25th, 33rd see Appendix B) for the same year (2002). The second one depicts three different daily

AGDD curves corresponding to three different years (2002, 2004, 2008) for the same meteorological

station (33rd see Appendix B). Notice that there is a two-fold variability in the AGDD, inter-region

and inter-year variability.
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(B) Three different years for one me-

teorological station

FIGURE 1.22: Daily AGDDs

The AGDD curve is region specific, since it corresponds to the thermal time evolution associated

to a specific region of interest. In order to be able to obtain a representative mean AGDD curve

characteristic for all the state level (one for each state), we first have to introduce the concept of

Thiessen Polygon.

7.2 Thiessen Polygon

As explained in the previous sections temperatures are not known in the pixel level, but only via

recordings from the meteorological stations. Every recording can be represented as a point corre-

sponding to the pixel which is associated to the specific coordinates of the meteorological station

from which it was derived. With this procedure, we can form for each state and for each year of

study so many AGDD curves as the number of selected meteorological stations. A natural question

that arises is how we combine these curves in order to form a single mean curve representative for

all the state. The sample mean may not be appropriate, since in this way each curve is considered to

be equally important, which could be far from reality for several reasons. In fact, corn-pixels could

be underrepresented or overrepresented in the vicinity of a specific meteorological station and this
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could affect the overall mean. Another reason concerns the specific spatial distribution of the selected

meteorological stations, which could be far from uniform.

A formal way to account for this problem is to associate a weight to each curve, which should be

characteristic to its influence to the mean curve. This brings the problem of partitioning the state in

such a way that each pixel is assigned to a specific meteorological station. In order to perform the

partition, we could use the framework of Thiessen polygons, also known as Voronoi diagram.

Let us denote by N = {C1, C2, ..., Cn} a set of n points, which are called centroids and correspond

here to the coordinates of the meteorological stations. Each centroid Cs is associated with a polygon Ps

which corresponds to the set of points of the region of interest (here the pixels of the state) which are

closer to Cs, than any other centroid. The set of n centroids determines a set of n Thiessen polygons.

The set of all polygons is called a Thiessen diagram [24]. In other words, Thiessen polygons are

constructed around a set of climatological stations in such a way that all locations within a given

polygon boundary are closer to the station enclosed by the polygon than to any other station.

With this approach, we are able to classify the pixels within polygons of supposedly constant

temperature, the one of the nearest meteorological station, and this will serve as the basis for weight-

ing the individual AGDD curves (one for each station). This will be discussed in more detail in the

next subsection. Here is an illustration of the Thiessen Tessellation of Nebraska, Illinois and Iowa,

with respect to the selected meteorological stations :
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7.3 State-level AGDD

In the previous subsection, we described the use of Thiessen polygons as a means to partition the

state in substates of spatially constant temperature and derive a weighted mean AGDD curve. Now,

we describe two ways to obtain a mean curve.

For a given year, let us denote by AGDD(t, s) the value of AGDD, as defined in (1.3), for DOY

(day of year) t and substate s, for a specific enumeration of the meteorological stations. We will

refer to AGDD(t, s) as the substate-level AGDD. A weighted mean AGDD curve at the state level is

formed by combining the substate-level AGDD curves as follows:

AGDD(t) = ∑
s

ws AGDD(t, s), (1.4)

where ws corresponds to the weight associated to substate s. The weights are considered to be nor-

malised, in the sense that ∑s ws = 1. Different ways of selecting the weights result in different

state-level AGDD curves. We can opt for two natural choices of selecting the weights, and then com-

pare their performance in the prediction problem. If we denote by As the area of the polygon Ps in

the Thiessen Tesselation and Ns the number of corn pixels which are inside Ps, then the weights can

be selected as follows:

(A) ws ∝ As, that is, each weight is proportional to the area occupied by Polygon Ps,

(B) ws ∝ Ns, that is, each weight is proportional to the number of corn pixels that can be found

inside Ps.

The disadvantage of method A is that it does not take into account the number of corn pixels being

inside each polygon. This could be a serious drawback, since an averaged AGDD curve should be

representative for the crop for which it is destined for. On one hand, method B seems to surpass this

problem, but on the other hand, it has the disadvantage that it does not take into account the area of

the polygon. This could be important for example in the case that the corn pixels are very far from

the centroid. The difference between these methods in the determination of the mean AGDD curve

is illustrated in Figures 1.26 and 1.27 for two arbitrarily selected years.
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FIGURE 1.26: AGDDs val-
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FIGURE 1.27: AGDDs val-
ues (2008, Nebraska)

Note that the AGDD values are systematically higher when we use the weights of method B

(proportional to the number of corn pixels). This could be explained by the fact that corn planting

is more dense in regions of higher temperatures to ensure better yield and consequently the mean

thermal age should be higher when method B is selected. These methods of computing the AGDD

will be compared in terms of their ability to predict the CPR at the state level.

8 Long-Term Daily and Monthly Climate Records from Stations Across

the Contiguous United States

The United States Historical Climatology Network (USHCN) is a high-quality data set of daily and

monthly records of basic meteorological variables from 1218 observing stations across the 48 con-

tiguous United States. Daily data include observations of maximum and minimum temperature,

precipitation amount, snowfall amount, and snow depth; monthly data consist of monthly-averaged

maximum, minimum, and mean temperature and total monthly precipitation. Most of these stations

are U.S. Cooperative Observing Network stations located generally in rural locations, while some are
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National Weather Service First-Order stations that are often located in more urbanized environments.

The USHCN has been developed over the years at the National Oceanic and Atmospheric Adminis-

tration’s (NOAA) National Climatic Data Center (NCDC) to assist in the detection of regional climate

change. Furthermore, it has been widely used in analyzing U.S. climate. The period of record varies

for each station. USHCN stations were chosen using a number of criteria including length of record,

percent of missing data, number of station moves and other station changes that may affect data

homogeneity, and resulting network spatial coverage.

Collaboration between NCDC and CDIAC on the USHCN project dates to the 1980s ([21]). At

that time, in response to the need for an accurate, unbiased, modern historical climate record for the

United States, the Global Change Research Program of the U.S. Department of Energy and NCDC

chose a network of 1219 stations in the contiguous United States that would become a key baseline

data set for monitoring U.S. climate. This initial USHCN data set contained monthly data and was

made available free of charge from CDIAC. Since then it has been comprehensively updated several

times [e.g., [22] and [28]]. The initial USHCN daily data set was made available through CDIAC

via [40] and contained a 138-station subset of the USHCN. This product was updated by [29] and

expanded to include 1062 stations. In 2009 the daily USHCN dataset was expanded to include all

1218 stations in the USHCN.

For our research, we find the daily records from three state of US : Nebraska, Illinois and Iowa.

The number of meteorological stations of Iowa , Illinois , and Nebraska is 23, 33, and 37, respectively.

Their meteorological stations that we use and we extract our data are represented in Table 1. ( see

Appendix B ). For this thesis, we finally use data only from state Nebraska.

An illustration of these three states and the selected meteorological stations is following (see Fig-

ure 1.28). Stations are marked as circle dots, and colors are labeled for different states [57] ( meteoro-

logical stations of Iowa (blue dots), Illinois (green dots), and Nebraska (red dots) ).

FIGURE 1.28: Illustration of three states of US and the meteorological stations
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Chapter 2

Hidden Markov Models

Although initially introduced in the late 1960s, Hidden Markov Models have become very popular

in the last several years. This has occurred, since this type of modeling works very well in practice

for important applications, when applied properly. Also, the models are very rich in mathematical

structure and hence can provide a theoretical base to a wide range of applications. The first applica-

tion of Hidden Markov Models was in speech recognition (see L.Rabiner [48]). These models are also

referred to as Markov sources or probabilistic functions of Markov chains in the literature.

However, neither the theory of Hidden Markov Models (HMMs), nor its applications is new. The

basic theory was first introduced in a series of statistical papers by Leonard E. Baum and his col-

leagues in the late 1960s ([17],[18],[19], [20], [16]). Therefore, the theoretical properties of the simplest

cases are proved in a series of papers by Baum et al. The term Hidden Markov Process mainly corre-

sponds to a couple of stochastic processes (Xt, Yt)t≥0, where (Xt) is assumed to be an unobservable

Markov chain that can be observed only indirectly through the process (Yt). In this work we restrict

ourselves to the case where the hidden processes have finite state space. The term Hidden Markov

Model, instead of process, is used in the case where some parameters are unknown and have to be

estimated from available data.

In the simplest case, where the observable process has also a finite spate space, the hidden Markov

model can be characterized by the following five elements.

• The number of states N in the model. This corresponds to the number of states of the underlying

hidden Markov process. The states often have some relation to the phenomena being modeled.

• The sample size M corresponding to the number of observations from the output variable of

the system being modeled.

• The state transition probability matrix P = (pij) , 1 ≤ i, j ≤ N .

• The emission probabilities from state i : R = (Ri(k)) , 1 ≤ i ≤ N , 1 ≤ k ≤ M.

• The initial state probability vector π = (πi), 1 ≤ i ≤ N.
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So, we can obtain an HMM as a two-layered process consisting of a hidden layer and an observ-

able layer. The hidden layer produces a state sequence that is discrete and not observable ("hidden"),

but generates the observation sequence on the basis of the state-dependent probability/density func-

tions, where the latter possibility corresponds to the case where the observable sequence has a con-

tinuous state space. The first layer of an HMM is a Markov chain as introduced above. To define

the second layer of an HMM, we need to specify a space of possible output values and a probabil-

ity/density function for each state. In general, the output space can be any set including the real

numbers, a vector space, or any kind of feature space. Also, there is a possibility for different state

types. The observable variables can either be continuous or discrete, or mixed in some rare cases.

Now, we give a formal definition of the simplest case of a Hidden Markov Model.

Definition 0.1. A hidden Markov Model is a bivariate discrete time stochastic process (Xt, Yt)t≥0,

where

• (Xt) is an unobservable Markov chain and,

• (Yt) is an observable sequence of conditionally independent random variables such that the

conditional distribution of Yt given (Xt), depends only on Xt.

In the sequel we refer to f (x0:n, y0:n) as the joint density of (X0:n, Y0:n) w.r.t. to the product measure

νn+1 ⊗ µn+1, where νn+1 refers to the (n + 1)-dimensional counting measure and µn+1 to the (n + 1)-

dimensional Lebesgue measure or counting measure, depending on the choice of the conditional

distributions of [Yt | Xt = i]. The joint density of a sequence of states and observations for the

first-order HMM can be written as :

f (x0:n, y0:n) = f (x0) f (y0|x0)
n

∏
t=1

f (xt|xt−1) f (yt|xt), (2.1)

where the notation y0:n is used as a shorthand for y0, . . . , yn and probabilities or conditional proba-

bilities/densities are simplified by the notation f (x0), f (xt | xt−1) or f (yt | xt), as a shorthand for

P(X0 = x0), P(Xt = xt | Xt−1 = xt−1) or P(Yt = yt | Xt = xt), when the observable variables

are discrete or in the latter case this could also refer to a density fYt|Xt(yt | xt), when the observable

variables are continuous. The above equation can be rewritten as :

f (x0:n, y0:n) = f (x0)
n

∏
t=1

f (xt|xt−1)
n

∏
t=0

f (yt|xt) (2.2)
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1 Non-Homogeneous Normal Hidden Markov Model

Hidden Markov models (HMMs) are frequently used to analyse longitudinal data, where the same

set of subjects is repeatedly observed over time. In this context, several sources of heterogeneity may

arise at individual and/or time level, which affect the hidden process, that is, the transition proba-

bilities between the hidden states. In this thesis, we use non-homogeneous HMMs (NH-HMMs) to

face the heterogeneity problem. The non-homogeneity of the model allows us to take into account

heterogeneity in time of the transition probabilities. So, the NH-HMM is categorized by the as-

sumed existence of a finite, discrete-valued, hidden state process which follows a nonhomogeneous

Markov chain. The basic Markov chain model (MC) consists of a time-invariant transition matrix

which records the probabilities of a state change. Here, these transitions are also dependent on time

t. Additionally, we also assume that the observations are continuous and the conditional densities

correspond to that of a normal distribution. The resulting model is a non-homogeneous Normal Hid-

den Markov Model. In particular :

[Yt|Xt = j] ∼ Nd(µj, Σj),

where

fYt|Xt(yt | xt = j) = (2π)−(d/2) det(Σj)
−1/2 exp{(−0.5)(yt − µj)

>(Σj)
−1(yt − µj)}, (2.3)

and the state-dependent mean vector µj and covariance matrix Σj are generally unknown and have

to be estimated from the data.

Hidden Markov models consist of two kinds of variables, observable and hidden. Because of the

existence of hidden variables, we can not directly maximize the resulting likelihood function. How-

ever, there are indirect maximization methods that are appropriate in such kinds of situations. The

most popular method is maximizing with the EM algorithm [61].
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2 Expectation Maximization Algorithm

The Expectation-Maximization (EM) algorithm is a general method of finding the maximum-likelihood

estimate of the parameters of an underlying distribution from a given data set when the data are in-

complete or have missing values. There are two main applications of the EM algorithm. The first

occurs when the data indeed have missing values, due to problems or limitations of the observation

process. The second occurs when optimizing the likelihood function is analytically intractable but

the likelihood function can be simplified. This likelihood is greatly simplified by using data augmen-

tation. Data augmentation and related Markov chain Monte Carlo algorithms enable us to perform

either parameter simulation, multiple imputation or both. Parameter simulation and multiple impu-

tation can be viewed merely as two different ways of extracting information from the same Markov

chain. The latter application is more common in the computational pattern recognition community.

Let Z consist of observed variables Y = (Y1, ..., Yk) and unobserved (missing or latent variables)

X = (X1, ..., XN−k). We write Z = (Y, X). With this notation the log-likelihood function for the ob-

served data Y is `Y(θ). The problem here is that the direct maximization of the likelihood may be

very difficult. To maximize `Y(θ) with respect to θ the idea is to follow an iterative procedure. The

EM algorithm is an iterative way to approximate the maximum likelihood function. While maximum

likelihood estimation can find the "best fit" model for a set of data, it does not work particularly well

for incomplete data sets. Instead, the more complex EM algorithm can find model parameters even

if you have missing data. It works by choosing random values for the missing data points, and using

those guesses to estimate a second set of data. The new values are used to create a better guess for the

first set, and the process continues until the algorithm converges to a fixed point. The EM estimate is

only guaranteed to never get worse. Usually, it will find a peak in the likelihood but if the likelihood

function has multiple peaks, the EM will not necessarily find the global maximum of the likelihood.

In practice, it is common to start EM from multiple random initial guesses, and choose the one with

the largest likelihood as the final guess for θ ([38], [13]).

We are particularly interested in the application of the EM algorithm for two types of models, the

Independent Mixture Models (IMM) and hidden Markov models, where the unobserved data corre-

spond directly to the unknown realisations of the underlying Markov chain.

Generally, we always start with an initial value θ(0) and then we continue with the two basic steps

of this algorithm, the E-step and the M-step.
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• E-step : Compute Eθ(m) [`y,X(θ) | Y = y] =: Q(θ; θ(m)).

• M-step : Update parameter θ(m) → θ(m+1)

θ(m+1) ∈ argmaxθQθ(m)(θ).

The convergence of the EM algorithm is guaranteed under some regularity conditions that can be

found in [27] and [64].

2.1 EM in IMMs

The Independent Mixture Models correspond to the special case of an HMM, where the hidden vari-

ables are independent and identically distributed. Their distribution determines the mixing coeffi-

cients in the mixture model. The two steps of the EM-algorithm in the special case of Independent

Mixture Models (IMM) are analyzed here.

The data are in the form Z = (X, Y), where Y = Y0:n and X = X0:n and the parameter θ = (ρ, φ),

where ρ = (pi)1≤i≤s with pi = P(Xk = i), and φ = (φi)1≤i≤s, where φi corresponds to a parame-

terization of the probability/density function of [Yk | Xk = i]. First we compute the complete data

likelihood :

Ly,x(θ) = f (x0:n; ρ) f (y0:n | x0:n; φ) =

=

(
n

∏
k=0

f (xk; ρ)

)(
n

∏
k=0

f (yk|xk; φ)

)
=

=

(
n

∏
k=0

pxk

)(
n

∏
k=0

f (yk | xk; φ)

)
=

=

(
n

∏
k=0

∏
i

p
1{xk=i}
i

)(
n

∏
k=0

∏
i
( fi(yk; φ))1{xk=i}

)
.

(2.4)

Then, we have :

`y,x(θ) = logLy,x(θ) =
n

∑
k=0

[log f (xk; ρ)] +
n

∑
k=0

[log f (yk|xk; φ)] =

= ∑
i

(
n

∑
k=0

1{xk=i}

)
log pi + ∑

i

(
n

∑
k=0

1{xk=i}

)
log fi(yk; φ).

(2.5)
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• E-step: Compute the Expectation

Q(θ; θ(m)) = Q(ρ, φ; θ(m)) =: Eθ(m)(`y,X(θ) | Y = y)

= ∑
i

(
n

∑
k=0

Eθ(m) [1{Xk=i} | Yk = yk]

)
log pi + ∑

i

(
n

∑
k=0

Eθ(m) [1{Xk=i} | Yk = yk]

)
log fi(yk; φ)

= ∑
i

(
n

∑
k=0

w(m)
k,i

)
log pi + ∑

i

(
n

∑
k=0

w(m)
k,i

)
log fi(yk; φ),

(2.6)

where Eθ(m) [1{Xk=i} | Yk = yk] = Pθ(m)(Xk = i | Yk = yk) = w(m)
k,i . From Bayes’ Theorem we can

compute the quantity w(m)
k,i , so :

w(m)
k,i = Pθ(m)(Xk = i | Yk = yk)

=
Pθ(m)(Xk = i) fi(yk; φ

(m)
i )

∑i Pθ(m)(Xk = i) fi(yk; φ
(m)
i )

.
(2.7)

In the case of a Gaussian IMM and since φi = (µi, Σi) we have :

fi(yk; φi) = (2π)−(d/2) det(Σi)
−1/2 exp{(−0.5)(yk − µi)

>(Σi)
−1(yk − µi)}.

M-step : The update equations for the parameters of the model are :

µ
(m+1)
i =

∑n
k=0 w(m)

k,i yk

∑n
k=0 w(m)

k,i

, (2.8)

Σi
(m+1) =

∑n
k=0 w(m)

k,i (yk − µ
(m+1)
i )>(yk − µ

(m+1)
i )

∑n
k=0 w(m)

k,i

. (2.9)
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2.2 EM in HMMs

In this case θ = (α, ρ, φ), where an additional parameter vector α is needed for the initial probabilities.

The two steps of the EM-algorithm in the case of an HMM are analyzed here. Again, the algorithm

starts with an initial value θ(0) and then continues with the E-step and the M-step [43].

E-step : Compute the Expectation :

Eθ(m)

[
logLy0:n,X0:n(θ) | y

]
= Qθ(m)(θ).

The evaluation of the Q-function given above necessitates the decomposition of the joint density

f (x0:n, y0:n). So,

f (x0:n, y0:n; θ) = f (x0; α)
n

∏
k=1

f (xk | xk−1; ρ)
n

∏
k=0

f (yk | xk; φ) =

=

(
∏

i
α

1{x0=i}
i

)(
n

∏
k=1

∏
i,j

p
1{xk−1=i,xk=j}
ij

)(
n

∏
k=0

∏
i
( fi(yk; φi))

1{xk=i}

)
, (2.10)

where α is the initial vector of probabilities. Then,

log f (x0:n, y0:n; θ) =

(
s

∑
i=1

1{x0=i} log αi

)
+

(
n

∑
k=1

∑
i,j

1{xk−1=i,xk=j} log pij

)
+

(
n

∑
k=0

∑
i

1{xk=i} log fi(yk; φi)

)
.

This leads to a Q-function which is equivalent to :

Qθ(m)(θ) = Eθ(m) [log f (X0:n, y0:n)) | Y = y] =
s

∑
i=1

Eθ(m) [1{X0=i} | y] log αi+

+
s

∑
i,j=1

(
n

∑
k=1

Eθ(m) [1{Xk−1=i,Xk=j} | y]

)
log pij +

s

∑
i=1

(
n

∑
k=0

Eθ(m) [1{Xk=i} | y]

)
log fi(yk; φi) =

=
s

∑
i=1

w(m)
0,i log αi +

s

∑
i,j=1

(
n

∑
k=1

w(m)
k,i,j

)
log pij +

s

∑
i=1

n

∑
k=0

w(m)
k,i log fi(yk; φi),

(2.11)
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where

w(m)
k,i = P

(m)
θ (Xk = i | y), (2.12)

w(m)
k,i,j = P

(m)
θ (Xk−1 = i, Xk = j | y). (2.13)

In the case of a Gaussian HMM and since φi = (µi, Σi) :

fi(yk; φi) = (2π)−(d/2) det(Σi)
−1/2 exp{(−0.5)(yk − µi)

>(Σi)
−1(yk − µi)}.

M-step : The update equations for the parameters of the model are :

µ
(m+1)
i =

∑n
k=0 w(m)

k,i yk

∑n
k=0 w(m)

k,i

, (2.14)

Σi
(m+1) =

∑n
k=0 w(m)

k,i (yk − µ
(m+1)
i )>(yk − µ

(m+1)
i )

∑n
k=0 w(m)

k,i

. (2.15)

2.3 The Baum-Welch Algorithm

The Baum–Welch algorithm uses the well known EM algorithm to find the maximum likelihood

estimate of the parameters of a hidden Markov model given a set of observed feature vectors. Its

application can be found principally in electrical engineering, computer science, statistical computing

and bioinformatics. It makes use of the forward-backward algorithm [45].

All we need to compute in order to have explicit solutions in the maximization problem are the

two following quantities which emerged from the E-step of the EM algorithm (see Equation (2.7) in

the case of IMMs and Equations (3.19) and (3.20) in the case of HMMs) :

w(m)
k,i = Pθ(m)(Xk = i | y),

w(m)
k,i,j = Pθ(m)(Xk−1 = i, Xk = j | y).

The basic idea is to compute efficiently the above quantities (and consequently their sums) by a

forward-backward decomposition.



47

2.4 Forward-Backward Analysis

The Forward and Backward decomposition needed to compute the weights derived from the E-step

of the EM algorithm in HMMs, is analyzed here. The basic decompositions are given by the following

equations :

wk,i =
αk(i)bk(i)
Ln

, (2.16)

wk,i,j =
αk−1(i)pij f j(yk)bk(j)

Ln
, (2.17)

where

αk(i) = P(Xk = i, y0:k), (2.18)

bk(i) = f (y(k+1):n | xk = i), (2.19)

Ln = f (y0:n), (2.20)

f j(yk) = f (yk | xk = j). (2.21)

For simplicity of interpretation, we keep the symbol P, whenever a hidden variable appears in

an event, as in Equation (2.18).

Proof.

wk,i = P(Xk = i | y0:n) =
P(Xk = i, y0:n)

f (y0:n)
=

P(Xk = i, y0:k) f (y(k+1):n | xk = i,��y0:k)

f (y0:n)
=

=
αk(i) f (y(k+1):n | xk = i)

f (y0:n)
.

So,

wk,i =
αk(i)bk(i)
Ln

.

Now, we prove Equation (2.17).

wk,i,j = P(Xk−1 = i, Xk = j | y0:(k−1), yk, y(k+1):n) =
P(Xk−1 = i, Xk = j, y0:(k−1), yk, y(k+1):n)

f (y0:n)
,
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and consequently,

wk,i,j =
A× B
Ln

,

where

A = P(Xk−1 = i, y0:(k−1))P(Xk = j | Xk−1 = i,����y0:(k−1)),

B = f (yk |�����xk−1 = i,����y0:(k−1), xk = j) f (y(k+1):n |�����xk−1 = i, xk = j,����y0:(k−1),��yk).

So,

wk,i,j =
αk−1(i)pij f j(yk)bk(j)

Ln

2.5 Forward-Backward Equations

In the previous section we decomposed the weights wk,i and wk,i,j with the help of αk(i) and bk(j).

These quantities are computed recursively via the forward-backward equations. In particular, a for-

ward step is needed to compute the αk(i), for all k = 0, 1, . . . , n, and then a backward step, to com-

pute the bk(i), for k = n, n− 1, . . . , 0. This algorithm is known as the Forward-Backward algorithm

in HMMs. First we analyse the Forward step.

Forward Equations

α0(j) = P(X0 = j) f j(y0)

αk(j) = (
s

∑
i=1

αk−1(i)pij) f j(yk), k = 1, 2, . . . , n.
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Proof.

α0(j) = P(X0 = j, y0) = P(X0 = j) f (y0|x0 = j) = P(X0 = j) f j(y0),

αk(j) = P(Xk = j, y0:k) =
s

∑
i=1

P(Xk−1 = i, Xk = j, y0:(k−1), yk) =

=
s

∑
i=1

(P(Xk−1 = i, y0:(k−1))P(Xk = j | Xk−1 = i,����y0:(k−1)) f (yk | xk = j,�����xk−1 = i,����y0:(k−1))) =

=

(
s

∑
i=1

αk−1(i)pij

)
f j(yk).

Then, we analyze the Backward step.

Backward Equations

bn(1) = 1, ∀1 ≤ i ≤ s,

bk(i) =
s

∑
j=1

pij f j(yk+1)bk+1(j), k = n− 1, n− 2, . . . , 0.

Proof.

bn(i) = f (y(n+1):n | xn = i) = 1, k = n, since n + 1 > n,

bn−1(i) = f (yn:n | xn−1 = i) = f (yn | xn−1 = i), k = n− 1,

bk(i) = f (y(k+1):n | xk = i) =
s

∑
j=1

P(Xk+1 = j, y(k+1):n | Xk = i) =

=
s

∑
j=1

P(Xk+1 = j | Xk = i) f (yk+1, y(k+2):n | xk+1 = j, xk = i) =

=
s

∑
j=1

pij f (yk+1 | xk+1 = j) f (y(k+2):n | xk+1 = j,������yk+1, xk = i) =

=
s

∑
i=1

pij f j(yk+1)bk+1(j), k < n− 1.
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In the Non-Homogeneous case the only difference is the dependence of pij on time. In this case,

the equations are :

wk,i =
αk(i)bk(i)
Ln

,

wk,i,j =
αk−1(i)pij(k) f j(yk)bk(j)

Ln
,

for the weights and

α0(j) = P(X0 = j) f j(y0),

αk(j) =

(
s

∑
i=1

αk−1(i)pij(k)

)
f j(yk), k = 1, 2, . . . , n,

bn(1) = 1, ∀1 ≤ i ≤ s,

bk(i) =
s

∑
j=1

pij(k) f j(yk+1)bk+1(j), k = n− 1, n− 2, . . . , 0,

for the Forward and Backward equations respectively.



51

Chapter 3

Predictions with HMM

1 Introduction

With the aim of real-time estimation and prediction of crop progress stages, in this thesis, a Hid-

den Markov Model (HMM) based method, including also an Independent Mixture Model (IMM),

combining multisource features is being presented. The multisource features include the mean Nor-

malized Difference Vegetation Index (NDVI) and the Accumulated Growing Degree Days (AGDDs)

already analyzed in Chapter 1. As we shall see later, these methods will not give us satisfying results

and for this reason we will also employ Linear Regression in order to achieve better results.

The study area covers Nebraska, which is a state of the United States. Also, similar research can

be carried out in other states of the United States, like Illinois and Iowa, as can be found in [57].

The results of the experiments which were conducted in [57] were assessed and validated by the

Crop Progress Reports (CPRs) of the National Agricultural Statistics Service (NASS) as described

in Chapter 1. In this chapter we will illustrate the proposed methodology, but we will also consider

some improvements on the initial modeling approach in order to increase its predictive performance.

We will also discuss some problems related to this methodology.

The features that we include in this study concern the Accumulated Growth Degree Days (AGDDs)

and the mean NDVI. It would be better if we could insert one more feature to this problem which

is derived from the masked weekly NDVI images. This is called fractal dimension and it measures

the roughness of the corn NDVI image. It can be used as an index of heterogeneity to reflect corn

growth status. Unfortunately, we remarked a certain instability in computing the values of this index

and, hence, we preferred to exclude this index from our analysis. According to the NASS’s CPRs,

crop progress stages in the state-level are represented as progress percentages. Below, we present

some models designed to estimate corn progress percentages at the state-level. Among these mod-

els, a Hidden Markov Model based method is presented. This is highlighted because, in the field of

agriculture, numerous researches are concerned with the use of HMMs and multi-temporal remote
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sensing images for automatic land cover classification incorporating knowledge of phenology into

the classification process.

2 Specifying an HMM

Motivated by the work of [57], we present the modeling of the evolution of the CPR statistics via

an appropriate HMM. In this model, the observable variables (multisource features) include the

mean NDVI and the AGDDs, while the unobservable (hidden) variables are the corn progress stages.

Specifically, the corn progress stage can be assumed as the state of a non-homogeneous Markov pro-

cess. The hidden stages consist of : pre-season, planted, emerged, silking, dough, dent, mature and

harvested (see Chapter 1). The stage which represents the period when corn hasn’t been planted,

that is the pre-season stage, is added as an artificial stage to facilitate the design of the model.

In a typical Gaussian HMM, where the underlying Markov chain is homogeneous, the unknown

parameter vector θ, contains the initial probability vector α, the transition matrix P and a vector φ,

related to the means and the covariance matrices of the state dependent Gaussian distributions.

Now, if we assumed a time invariant transition probability matrix P, then all weeks along life cycle

would share the same transition probability matrix. However, this is not appropriate to model corn

growth. Indeed, in corn life cycle the probability of moving from the current stage to the next one

generally increases with the week index depending on biophysical mechanisms and external factors

driving corn plant growth. Thus, the transition probabilities are time dependent and the resulting

Markov chain is non-homogeneous.

In a non-homogeneous HMM, the transition probabilities pij(t) should also be added as unknown

parameters. In this application’s context though, there are some specificities which can simplify

parameter estimation. In particular, the HMM is of the left-right type and, consequently, once a state

is abandoned the system cannot return to this state again. Additionally, when in state i, the system

can only move to state i + 1 or remain in its current state. For this reason, the non-zero probabilities

in the ith row of the transition matrix P(t) are pii(t) and pi,i+1(t) and, since they sum to one, there is a

single unknown parameter in each row of P(t).

Another characteristic feature of this application, which simplifies the estimation procedure, is the

possibility to estimate the aforementioned transition probabilities directly from the historical data of

CPR statistics. This is possible, since the CPR statistics actually correspond to the estimated values of

the marginal probabilities pi(t) = P(Xt = i). From these probabilities we can estimate the transition

probabilities pii(t) and pi,i+1(t) as it will be described in the sequel.
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In this model, the normalized CPR or stage prior wt,i ≡ pi(t) can be interpreted as the area ratio

of stage i occupancy at time t for a specific administrative unit. As we mentioned earlier, the NASS’s

CPRs record the progress percentages of each growth stage by the percent complete (area ratio) in the

state-level. Here we denote the percent complete of stage i at time t by αt
i . Corn phenological stages

are unimodal in the life cycle. In Figure 3.1 we illustrate the percent complete of the eight stages at

weeks 13 to 47, in Nebraska, in year 2011, as well as the corresponding wt,i (Figure 3.2) that can be

computed from the following relation :

wt,i =


αt

i if i = N,

αt
i − αt

i+1 if 1 < i < N,

1− αt
i+1 if i = 1.

(3.1)
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FIGURE 3.1: Percent Com-
plete of stages, Nebraska

(2011)
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FIGURE 3.2: Occupancy
Statistics with CPR, Ne-

braska (2011)

A representation of the features that we use in this study ( Mean Max NDVI, AGDD ) is also given

for the years 2002-2008 in Figures 3.3 and 3.4.
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FIGURE 3.3: Weekly NDVI
for 2002-2008
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FIGURE 3.4: Weekly
AGDD for 2002-2008

3 Estimation with the Independent Mixture Model

A degenerate HMM model of type M0-M0, which is the special case when (Xn) is an i.i.d. sequence

of random variables, is called Independent Mixture Model (see Chapter 2). In this case, the serial

dependence is irrelevant and the model is characterized by independent repetitions of

Yt =



Yt,1∼ N (µ1, Σ1), if Xt = 1

Yt,2∼ N (µ2, Σ2), if Xt = 2
...

Yt,N∼ N (µN , ΣN), if Xt = N,

(3.2)

where

P(Xt = i) = wt,i,
N

∑
i=1

wt,i = 1. (3.3)

So, the observation density is given by

f (yt) =
N

∑
i=1

wt,i fi(yt; φi), (3.4)

where wt,i can be regarded as the weight (or the mixing coefficient) of the ith component, φi = (µi, Σi)

and fi(·) is the density of the Normal distribution N(µi, Σi).
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Note that in this model, we do not assume that (Yt) are identically distributed, since the non-homogeneity

is reflected here to the possibility of having time-dependent mixing coefficients.

In a Gaussian IMM, the serial dependence is ignored and the unknown parameters for the degen-

erate Markov chain correspond only to the unknown mixing coefficients. The latter can be estimated

directly from the historical data of the CPR statistics, by taking the mean over all possible available

years which are considered for the estimation process.

In addition, in a Gaussian IMM, the parameters that have to be estimated are the means and the

covariance matrices. As we saw in Chapter 2, in this type of model, and since φi = (µi, Σi), we have :

fi(yt; φi) = (2π)−(d/2) det(Σi)
−1/2 exp {(−0.5)(yt − µi)

>Σ−1
i (yt − µi)},

and the updates from the (m + 1)th iteration of the EM algorithm are :

µ
(m+1)
i =

∑n
t=0 w(m)

t,i yt

∑n
t=0 w(m)

t,i

, i = 1, . . . , N, (3.5)

Σ(m+1)
i =

∑n
t=0 w(m)

t,i (yt − µ
(m+1)
i )>(yt − µ

(m+1)
i )

∑n
t=0 w(m)

t,i

, i = 1, . . . , N. (3.6)

In this special case of IMM, the weights are computed as follows :

w(m)
t,i =

ŵt,i fi(yt; φ
(m)
i )

∑N
j=1 ŵt,j f j(yt; φ

(m)
j )

, i = 1, . . . , N, (3.7)

where ŵt,i correspond to the estimated values of wt,i which we obtain directly from the CPR statistics.

The above algorithm can be easily extended when we have observations from multiple years specifi-

cally, if we assume that data for L training years are available, then the procedure is the same as with

that described in Chapter 2. So, the new updates from the (m + 1)th iteration of the EM algorithm are

:

µ
(m+1)
i =

∑L
`=1 ∑n

t=0 w(m)
`,t,i y`,t

∑L
`=1 ∑n

t=0 w(m)
`,t,i

, i = 1, . . . , N, (3.8)

Σ(m+1)
i =

∑L
`=1 ∑n

t=0 w(m)
`,t,i (y`,t − µ

(m+1)
i )>(y`,t − µ

(m+1)
i )

∑L
`=1 ∑n

t=0 w(m)
`,t,i

, i = 1, . . . , N, (3.9)
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and the weights are computed as follows :

w(m)
`,t,i =

ŵt,i fi(y`,t; φ
(m)
i )

∑N
j=1 ŵt,j f j(y`,t; φ

(m)
j )

, (3.10)

where ŵt,i =
1
L ∑L

`=1 ŵ`,t,i, where ŵ`,t,i is the value obtained from the CPR statistics for stage i occu-

pancy, at year ` and week t.

4 Estimation with the HMM

In the following Proposition we indicate the way that the transition probabilities can be computed

based on the marginal probabilities.

Proposition 1. Let (Xn) be an N-state Markov chain, with the property that pij(t) = 0, for j /∈

{i, i + 1}, i = 1, 2, . . . , N − 1 and pNN(t) = 1. Then, the remaining transition probabilities can be

computed from the marginal probabilities wt,i as follows :

pii(t) = 1− ∑N
k=i+1(wt,k − wt−1,k)

wt−1,i
, if i 6= N and wt−1,i 6= 0, (3.11)

pi,i+1(t) =
∑N

k=i+1(wt,k − wt−1,k)

wt−1,i
, if wt−1,i 6= 0. (3.12)

Proof. The last stage, N, is absorbent, since no other state follows. Consequently,

pNN(t) = 1 .

Now,

P(Xt = N) = P(Xt−1 = N − 1)pN−1,N(t) + P(Xt−1 = N)pNN(t)⇒

wt,N = wt−1,N−1 pN−1,N(t) + wt−1,N ⇒

pN−1,N(t) =
wt,N − wt−1,N

wt−1,N−1
,



57

assuming wt−1,N−1 6= 0. Consequently,

pN−1,N−1(t) = 1− wt,N − wt−1,N

wt−1,N−1
.

Let us now assume that the assertion holds for the ith state, and we will prove that it holds for state

i− 1.

P(Xt = i) = P(Xt−1 = i− 1)pi−1,i(t) + P(Xt−1 = i)pi,i(t)⇒

wt,i = wt−1,i−1 pi−1,i(t) + wt−1,i pi,i(t).

Since (3.11) holds, by the inductive hypothesis, we get

wt,i = wt−1,i−1 pi−1,i(t) + wt−1,i −
N

∑
k=i+1

(wt,k − wt−1,k).

We conclude that :

pi−1,i(t) =
wt,i − wt−1,i + ∑N

k=i+1(wt,k − wt−1,k)

wt−1,i−1
,

provided that wt−1,i−1 6= 0. The above expression coincides with (3.12) for i− 1 and thus the assertion

holds for state i− 1. This completes the proof, since (3.11) follows directly from (3.12).

As we saw earlier, f (yt) is a mixture of Gaussian distributions, where fi(yt) is given by :

fi(yt) = Ni(yt | µi, Σi) =
1√

(2π)d | Σi |
exp {−

(yt − µi)
>Σ−1

i (yt − µi)

2
}, (3.13)

where µi is the mean vector, Σi is the covariance matrix and d is the dimension of the observation

space. In our work, d = 2 since two kinds of features were selected in this study, the mean NDVI and

the AGDDs.

In this model, the only parameters that have to be estimated are the means and the covariance

matrices. Given an observation sequence Y0, ..., Yn, we can estimate µi and Σi using the EM algo-

rithm. The initial parameter vector θ = (ρ, φ) where ρ includes the initial probability vector and all

unknown transition probabilities together with φ = {µ, Σ}. Since ρ is estimated differently from the

historical data, it can be excluded from the likelihood function corresponding to the HMM.
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Estimation with the EM algorithm, will be done in the same way as in Chapter 2. So, the updated

equations of the EM-algorithm take the following form:

µ
(m+1)
i =

∑n
t=0 w(m)

t,i yt

∑n
t=0 w(m)

t,i

, (3.14)

Σ(m+1)
i =

∑n
t=0 w(m)

t,i (yt − µ
(m+1)
i )>(yt − µ

(m+1)
i )

∑n
t=0 w(m)

t,i

. (3.15)

Notice that all we need to compute in order to obtain explicit solutions in the maximization prob-

lem is the following quantity :

w(m)
t,i = Pθ(m)(Xt = i | y). (3.16)

The above probability corresponds to the posterior probability of occupying stage i at time t,

given all available data from a certain year. It also corresponds to the estimated area proportion

occupied by stage i at time t. In contrast with a certain year, among different years observations

can be considered independent. In the sequel, since the data concern observations from different

years,we describe the corresponding estimation.

In order to present the two steps of the EM-algorithm we start with the joint density which is now

modified and takes the form f (x1:L,0:n, y1:L,0:n). So,

f (x1:L,0:n, y1:L,0:n; θ) =

(
∏
`

f (x`,0; α)

)(
∏
`

n

∏
k=1

f (x`,k | x`,k−1; ρ)

)(
∏
`

n

∏
k=0

f (y`,k | x`,k; φ)

)
=

=

(
∏
`

∏
i

α
1{x`,0=i}
i

)(
∏
`

n

∏
k=1

∏
i,j

p
1{x`,k−1=i,x`,k=j}
ij

)(
∏
`

n

∏
k=0

∏
i
( fi(y`,k; φi))

1{x`,k=i}

)
, (3.17)

where α is the initial vector of probabilities. So,

log f (x1:L,0:n, y1:L,0:n; θ) =

(
∑
`

s

∑
i=1

1{x`,0=i} log αi

)
+

(
∑
`

n

∑
k=1

∑
i,j

1{x`,k−1=i,x`,k=j} log pij

)
+

+

(
∑
`

n

∑
k=0

∑
i

1{x`,k=i} log fi(y`,k; φi)

)
.
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This leads to a Q-function which is equivalent to :

Qθ(m)(θ) = Eθ(m) [log f (X1:L,0:n, y1:L,0:n)) | Y = y] =
s

∑
i=1

∑
`

Eθ(m) [1{X`,0=i} | y] log αi+

+
s

∑
i,j=1

(
∑
`

n

∑
k=1

Eθ(m) [1{X`,k−1=i,X`,k=j} | y]

)
log pij +

s

∑
i=1

(
∑
`

n

∑
k=0

Eθ(m) [1{X`,k=i} | y]

)
log fi(y`,k; φi) =

=
s

∑
i=1

∑
`

w(m)
`,0,i log αi +

s

∑
i,j=1

(
∑
`

n

∑
k=1

w(m)
`,k,i,j

)
log pij +

s

∑
i=1

∑
`

n

∑
k=0

w(m)
`,k,i log fi(y`,k; φi),

(3.18)

where

w(m)
`,k,i = P

(m)
θ (X`,k = i | y), (3.19)

w(m)
`,k,i,j = P

(m)
θ (X`,k−1 = i, X`,k = j | y). (3.20)

Since the parameters which correspond to the Markov chain are estimated in a different way from

the historical data and are considered here to be fixed, the only parameters that have to be estimated

with the EM algorithm are φi, 1 ≤ i ≤ s. In the M-step of the algorithm we take the following update

equations :

µ
(m+1)
i =

∑L
`=1 ∑n

k=0 w(m)
`,k,i y`,k

∑L
`=1 ∑n

k=0 w(m)
`,k,i

, (3.21)

Σi
(m+1) =

∑L
`=1 ∑n

k=0 w(m)
`,k,i (y`,k − µ

(m+1)
i )>(y`,k − µ

(m+1)
i )

∑L
`=1 ∑n

k=0 w(m)
`,k,i

. (3.22)
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5 Predictions with the IMM and the HMM

For real-time estimation of the corn progress stages, we implement a general HMM (including an

IMM) framework with multi-source features. The results concern the state of Nebraska of the United

States with selected years from 2002 to 2011 during the corn growing seasons, with the 13th week as

the starting time point and the 47th week as the last time point.

The assessment of the predictive ability of the models is based on the RMSPE (Root Mean Square

Prediction Error). The RMSPE is a measure of discrepancy between the predicted and the observed

values, thus lower values indicate a better predictive performance. As we mentioned earlier (see

Chapter 1), the pre-season stage is not included in the error evaluation since it corresponds to an

artificial stage, and it is added only to facilitate the design of the model.

For prediction purposes we first computed the RMSPE for 120 different scenaria corresponding

to 120 = (10
7 ) different combinations of 7 among 10 possible years (2002-2011). For each scenario we

used the 7 selected years to train the model (training set) and the 3 remaining years (testing set) for

prediction. Then, the predictive performance is assessed by this sample of RMSPE values, by com-

puting the empirical mean and 95% empirical confidence intervals over all possible 120 evaluations

for each week. Furthermore, note that the sample size is small (120), so we preferred not to make

random selections. In the sequel, we present this procedure formally.

Let MSPE(k, t), k = 1, 2, . . . , 120, t = 1, 2, . . . , 35, be the Mean Square Prediction Error for sce-

nario k and week t. Then, if we denote by Tk and Pk the sets of the 7 training years and 3 testing years

(used for prediction) for scenario k, respectively, we have

MSPE(k, t) =
∑8

i=2 ∑`∈Pk
(ŵ(k)

`,t,i − w`,t,i)
2

21
, (3.23)

where ŵ(k)
`,t,i denotes the prediction that we take for w`,t,i (depending on the method) from scenario

k and for year `, week t and state i. We recall also that w`,t,i refers to the observed value of the

corresponding CPR statistic.

There are different methods to obtain the prediction ŵ(k)
`,t,i. First of all, this depends on the mod-

eling approach, here, the IMM or the HMM approach. But, it could also depend on the type of the

estimator or/and the predictor that we choose for a given modeling approach. This will be high-

lighted in the sequel. In any case, the final measure for each week t and scenario k is computed as

follows:

RMSPE(k, t) =
√

MSPE(k, t). (3.24)
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The sample {RMSPE(k, t)}1≤k≤120 can then be used for assessing the overall predictive perfor-

mance by evaluating for each week t, the value of RMSPE(t) = 1
120 ∑120

k=1 RMSPE(k, t), that is the

average value of the measure over all available scenaria, and the associated empirical 95% confi-

dence interval.

As previously mentioned, independently of the selected modeling approach, we can get different

predictions by choosing different estimators in the training phase. Here, we opted for two types of es-

timators, a simple one that we call Moment Estimator (ME) and the Maximum Likelihood Estimator

(MLE). In the sequel, we present both estimators and we compare their performance.

Moment Estimator

A very simple way to estimate µi and Σi results from their interpretation as expectations in the fol-

lowing sense :

µi = E[Y`,t | X`,t = i], (3.25)

Σi = E[(Y`,t − µi)
>(Y`,t − µi) | X`,t = i]. (3.26)

Since the sample {y`,t}`,t can provide information for each one of them, and for all 1 ≤ i ≤ 8, we

need an empirical estimator which takes into account this particular setting.

The above conditional expectations can be naturally estimated as weighted averages, with the

weights being proportional to w`,t,i, which corresponds to the probability of the event that we condi-

tion on. This results in a type of moment estimator of the form :

µ̃i =
∑`∈T ∑35

t=1 w`,t,iy`,t

∑`∈T ∑35
t=1 w`,t,i

, (3.27)

Σ̃i =
∑`∈T ∑35

t=1 w`,t,i(y`,t − µ̃i)
>(y`,t − µ̃i)

∑`∈T ∑35
t=1 w`,t,i

, (3.28)

where T denotes the training set.
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Note: The above equations can be rewritten in the form :

µ̃i = ∑
`∈T

35

∑
t=1

w̃`,t,iy`,t,

Σ̃i = ∑
`∈T

35

∑
t=1

w̃`,t,i(y`,t − µ̃i)
>(y`,t − µ̃i),

where w̃`,t,i =
w`,t,i

∑`∈T ∑35
t=1 w`,t,i

and expresses the percentage of information given by y`,t for the parame-

ters µi and Σi.

Note also that the resulting estimators have exactly the same form with those obtained in the

update equations of the EM algorithm, which are identical in the IMM and the HMM methods. The

principal difference lies in the way that the w`,t,i’s are estimated. In the moment estimator, w`,t,i is

estimated directly by the empirical mean of the historical data, without appealing to a recursive eval-

uation as in the case of the EM algorithm.

Maximum Likelihood Estimator

As we mentioned in the previous paragraph the update equations of the EM algorithm are identical

for both type of models, the IMM and the HMM. Nevertheless, the resulting MLEs differ since the

weights w(m)
`,t,i are computed differently in these models. For a training set T, the update equations are

given by :

µ
(m+1)
i =

∑`∈T ∑35
t=1 w(m)

`,t,iy`,t

∑`∈T ∑35
t=1 w(m)

`,t,i

, (3.29)

Σ(m+1)
i =

∑`∈T ∑35
t=1 w(m)

`,t,i(y`,t − µ
(m+1)
i )>(y`,t − µ

(m+1)
i )

∑`∈T ∑35
t=1 w(m)

`,t,i

. (3.30)

In the case of an IMM (see Equation (3.10)),

w(m)
`,t,i =

ŵt,i fi(y`,t; φ
(m)
i )

∑8
j=1 ŵt,j f j(y`,t; φ

(m)
j )

, (3.31)

while in the case of an HMM,

w(m)
`,t,i = Pθ(m)(X`,t = i | y`,1:35), (3.32)
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and they are computed by the forward-backward algorithm (see Section 2.4 from Chapter 2). Instead

of (3.32), one could also opt for an alternative evaluation of the weights. In particular, the smoothing

probability could be substituted with the corresponding filtering probability given by

w(m)
`,t,i = Pθ(m)(X`,t = i | y`,1:t). (3.33)

Last but not least, since the initialization for the EM-algorithm could be important in order to obtain a

solution very near to the MLE, a good choice for the initial value is a critical issue. In this application,

the moment estimator can be obtained directly and a good solution for initialization.

Predictions

The final procedure needed to evaluate the predictive performance of each method, is described at

the beginning of Section 5 ( Chapter 3 ) and Equations (3.23) and (3.24). For each scenario k, the

predictions are denoted by ŵ(k)
`,t,i. If θ(k) = (ρ(k), φ(k)) refers to the parameter estimate obtained from

the k-th training set (independently of the type of model or estimator), then we consider 3 types of

predictors :

(A)

ŵ(k)
`,t,i =

ŵ(k)
t,i fi(y`,t; φ

(k)
i )

∑j ŵt,j f j(y`,t; φ
(k)
j )

, ` ∈ Pk, t = 1, . . . , 35, (3.34)

where the prediction is based on an IMM approach,

(B)

ŵ(k)
`,t,i = Pθ(k)(X`,t = i | y`,1:35), ` ∈ Pk, t = 1, . . . , 35, (3.35)

where the prediction corresponds to the smoothing probability by taking into account all the

available data for year `, and

(C)

ŵ(k)
`,t,i = Pθ(k)(X`,t = i | y`,1:t), (3.36)

where the prediction corresponds to the filtering probability by taking into account only the

observations until the current time t, for year `.
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Blind Predictions

All the above types of predictors (A)-(C) use the data of a specific year in the testing set to predict the

marginal distribution of the hidden stages. Since historical data through the CPR are available, they

can be used directly to estimate the unknown probabilities P(X`,t = i), without taking into account

the data {y`,t}`,t. In particular,

ŵ(k)
`,t,i =

∑`∈Tk
w`,t,i

7
, ∀` ∈ Pk, ∀t = 1, . . . , 35, ∀i = 1, . . . , 8. (3.37)

We refer to these predictions as blind predictions, since the data are ignored.

15 20 25 30 35 40 45

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

RMSPE for predicted CPR blindly

week

R
M

S
P

E

● ●
●

●

●
● ●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●
● ●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

FIGURE 3.5: Results with the Blind Predictions. The dots correspond to the mean RM-
SPE computed for all 120 scenaria and the bars to 95% empirical confidence intervals.

In Figure 3.5 we illustrate the RMSPE values derived only from historical data by taking into ac-

count at each scenario only the CPR data from the 7 years of the training set and associated predicted

values given by (3.37). Note that the prediction errors can be separated into 2 phases. The first con-

cerns the data from week 13 to week 25, where the prediction error is relatively small with a peak at

week 20, while it vanishes at week 25. The second one concerns the data from week 26 to week 47,

where the prediction error is generally higher and more variable than that of the first phase.

The goal of this thesis is to compare the blind predictions with the predictions obtained by dif-

ferent modeling approaches, estimators and predictors, such as the HMM, the IMM and the types
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of estimators and predictors described in this section. A modeling approach will be successful if it

succeeds in "beating" the prediction errors obtained by the blind predictions.

6 Full Data Model

In this section we give the results that we obtained using some of the previously described mod-

els/estimators/predictors, when the observed data consist of both the NDVI and the AGDD values.

Maximum Likelihood Estimator

In this part of the thesis we show and discuss the results that we obtained using the MLE, both in the

case of an IMM and in the case of an HMM. First, in Figure 3.6 we present the results from the IMM

method, where both the estimator and the predictor are of type (A). Then, in Figure 3.7 we present the

results from the HMM, where both the estimation and the prediction are performed through filtering

and not smoothing.
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From Figure 3.6, we observe that the RMSPE increases gradually, and reaches the first maximum

around the 20th week, and then it decreases gradually until the 25th week. In this period the propor-

tion of the ’emerged stage’ increases gradually. In this week, results are less affected by overlaps of

stages, since the only appeared stage is the "Emerged" phenological stage (see Chapter 1). After the

emerged stage, the RMSPE reaches another maximum around the 28th week, which is likely caused

by progress stage overlaps. In Figure 3.7 the prediction error is more variable and the values around

the weeks 26-47 are higher than those from the first weeks.

In Figure 3.8 we can see the RMSPE results when the weights are computed with filtering and

the predictor is of type (A). The results show that predicting as an IMM decreases considerably the

prediction errors.

In Figure 3.9 we compare the results of Figure 3.8 with those obtained by the blind predictions.

The comparison shows that even if the former combination is the best one in the case of the MLE

approach, the predictions are generally worse than the blind predictions, with the exception of some

weeks at the end of the growing season (37-39, 44-47).
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We conclude that this model is not able to beat the predictions based only on historical data. But,

we can observe that when we estimate the weights through filtering and use the predictor of type (A)

we get lower RMSPE values which are closer to the values that we want to surpass. The other com-

binations neither have low RMSPE values (so they don’t estimate the observed values well enough)

nor are able to beat the Blind Prediction RMSPE values.

Moment Estimator

In an attempt to find a better estimator than that based on the historical data, we have experimented

with a simpler estimator, the Moment Estimator. In this subsection we provide and discuss the results

obtained from the ME, when the estimation is performed through filtering and the predictor is of type

(A).

Since predicting as an IMM reduces the prediction errors, which means that the RMSPE values are

lower, in Figure 3.10 we compare the curves from MLE and ME. The former gives us better RMSPE

values, closer to zero and to those of the blind predictions. However, neither with MLE nor with ME

we can beat predictions based only on historical data.
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To develop effective methods, in trying to defeat predictions based on historical data, we must

follow a series of experiments. A start is to design a model which will include only the feature NDVI

as an observed variable. The idea is to create a simpler model which may have similar behaviour to

the more complex model. Below we describe the results analytically.

7 Single Feature Model and Comparisons

7.1 NDVI model

In this section, we discuss the results that we obtained using the same methods as in Section 6, when

the observed data only consist of the NDVI.

Maximum Likelihood Estimation

In this subsection we provide and discuss the results that we obtained using MLE. In Figure 3.11 we

illustrate the method in which the estimator and the predictor are both of type (A). Nearby, in Figure

3.12 we present the case where the estimation is performed through filtering but the predictor is of

type (A).
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We observe that the RMSPE values in the latter case are lower than those from the first method, so

in Figure 3.13 we compare the Figure 3.12 with this from Blind Predictions. We note that predicting

as an IMM amounts to substantially lower values of the prediction errors just as in the case of the full

data model.
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FIGURE 3.13: Blind Prediction vs Figure 3.12

Below, we compare the full data model with the one that includes only the NDVI as observed

data. The interesting point here is that for a large number of weeks the exclusion of AGDD does

not seem to play a significant role, but for weeks 27-37 the inclusion of AGDD seems to improve the

prediction errors considerably. This could be explained by the fact that the thermal time substantially

increases during the summer period and it becomes the most important predictive factor exactly at

that period.

15 20 25 30 35 40 45

0.
0

0.
1

0.
2

0.
3

0.
4

RMSPE for predicted CPR with MLE + filter + IMM

week

R
M

S
P

E

Line Types

based on historical data

NDVI and AGDDs as data

NDVI as data

FIGURE 3.14: Comparison of the Figures 3.12, 3.8 and 3.5
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Moment Estimator

In this subsection we make some experiments based on the results that stemmed from the above

methods and from the use of the ME. From Figure 3.15 we observe that in the full data model the

RMSPE values are closer to zero and to the blind predictions’ respective RMSPE values.
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FIGURE 3.15: Comparison between the model based on historical data, the full data
model and the single variable model, using the ME and with the estimators and predic-

tors being of type (A).

Afterwards in Figure 3.16 we make a comparison between the full data model and the single

variable model, when the estimation is performed through filtering and the predictor is of type (A).

As we can see, the full model works better in this case since its RMSPE values are closer to zero than

those of the NDVI-model. Then, in Figure 3.17 we stick to the single variable model and we compare

the curves obtained from the use of the MLE or the ME. In this combination, the MLE works better

and gives us lower RMSE values than the ME. However, the difference between the values is small,

so a simpler estimator gives us almost the same values with the more complex estimator except for a

small number of weeks (27, 28, 37).
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The above experiment was performed with the aim to find an appropriate model that can beat the

predictions based on historical data. In the experiments we considered the full data model and the

reduced data model. Unfortunately neither the full model nor the reduced one managed to achieve

better results than the Blind Predictions. It is interesting to note that a simpler estimator, the ME,

gave us results comparable to those of the MLE but not good enough to achieve our target.

7.2 AGDD model

In this section, we show the results that we obtained using the same methods as in Section 6, based

on the AGDD as a single observed variable.

Maximum Likelihood Estimation

Here we present and discuss the results that we obtained using the MLE. In Figure 3.18 we illustrate

the results from the method in which the estimator and the predictor are both of type (A) and we

compare them with those from the Blind Predictions. In Figure 3.19 we present the results from the
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method in which the estimation is performed through filtering but the predictor is of type (A) and

we make the comparison with Blind Predictions.
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mator and predictor
of type (A). Compar-
ison with Blind Pre-
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From Figure 3.18 we observe that, except of the weeks 46, 45 and 44 where the RMSPE values are

lower than those from blind predictions, for all other weeks the prediction error is higher than that

of the predictions based on the historical data. On the other hand, with the implementation of the

second method we achieve better results as shown in Figure 3.19. The values, especially after week

22, are lower than the values that we want to surpass. This could be explained by the fact that the

Thermal Time becomes more important over these weeks.

Below, we compare the NDVI model with the one including only the AGDD data. As we can see,

the values from the latter model are lower than those from the NDVI model. This could be explained

by the fact that the thermal time is more significant in corn’s life cycle and, as it increases in the

summer, it becomes the most important predictive factor.
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FIGURE 3.20: Comparison between Figures 3.12, 3.19 and 3.5

Moment Estimator

In this subsection we provide and discuss the results obtained with the use of the ME. We will illus-

trate the method in which the estimation is performed through filtering and the predictor is of type

(A), since in this case we took the better results.

In Figure 3.21 we can see that during the first weeks the prediction error increases, until week 20,

and then it decreases until week 25. From this week until the end of the growing season, the RMSPE

values are close to those from blind predictions and especially from week 37 to week 47 the values

surpass the predictions based on historical data. Nearby, in Figure 3.22 we compare the use of the

MLE with the use of the ME when we follow the above procedure. We note that the MLE gives us

better RMSPE values except for some weeks at the end of the growing season where the values from

the ME surpass those stemmed from MLE.
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8 Differences

The previous modeling approaches did not succeed in beating the blind predictions. For this reason,

we tried to improve the performance of the obtained predictions by considering data transforma-

tions, in particular by taking the differences between successive observations. The respective results

showed that the NDVI is the least informative feature. We start by presenting the results that we

obtained when we applied the differences only to the NDVI. More specifically, if we denote the data

in a specific year by Yt , t = 1, 2, ..., 35 then the new data will be the variable Dt = Yt+1 − Yt ,

t = 1, 2, ..., 34. Below, we give the results that we obtained under some of the previously described

models/estimators/predictors.
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Maximum Likelihood Estimator

In this part of the thesis we present and discuss the results obtained under MLE. First, in Figure

3.23 we present the results from the IMM method, where the estimator and the predictor are both of

type (A). Then, in Figure 3.24 we present the method in which the estimation is performed through

filtering but the predictor is of type (A).
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FIGURE 3.23: Mean
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From Figure 3.23 we observe that the prediction error from week 13 until week 25 is close to that

of the blind predictions with some of the values at the start of the growing season being the same

with those of the blinds. In contrast, from week 26 until week 43 the RMSPE values increase and

are higher than the values from the first period. Finally, in the last weeks of the growing season the

RMSPE values are almost the same with those from the blind predictions.

In Figure 3.24 the results are quite satisfying. The prediction errors are almost identical to those of

the blind predictions, except for some weeks (17, 18, 19, 32, 34 and 35) where the values are slightly

higher than those obtained from the blind predictions.
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We carried out the same experiment with the use of the ME but the results showed that the

prediction error was higher than that under MLE.

Below, we compare the method which produced the best results in the case of the NDVI model

(that is, when the estimation is performed through filtering but the predictor is of type (A)), with

the model witch includes the differences from AGDDs and with this from the differences of both

features.

As we may conclude from the very low RMSPE values, the differences work better for all models.

The prediction error in both cases is close to this at the blind prediction. Furthermore, we note that

the differences from the NDVI approach better our target. As we can see in Figure 3.29 the prediction

error from the model derived only from the differences of NDVI is quite close to this at the blind

predictions and lower than those from the other two models.

Finally, in Figure 3.30 we make the comparison between the full data model and the model which

includes the AGDD and the differences from NDVI. We observe that the latter model gives us better

RMSPE values, closer to those from the blind predictions. In particular, in weeks 23, 31, 32, 33 and 43

the values from the latter model surpass the predictions based on historical data.
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FIGURE 3.29: Comparison between differences of NDVI and the two other models
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9 Data From Substates

As we mentioned in Chapter 1, the states Nebraska, Illinois and Iowa, have different numbers of

meteorological stations. We can profit from these stations by inducing substates from each state via

the Thiessen Polygon (see Figures 1.23 , 1.24 and 1.25). This technique will considerably increase

the available datasets with the hope to further reduce the prediction errors. So, first we create the

new data for our research. Now, we have observations from 10 years, 35 weeks and 37 substates for

Nebraska, 33 for Illinois and 23 for Iowa. We will focus on Nebraska and its 37 meteorological sta-

tions. We have already worked with Nebraska’s Thiessen Polygon, so we know exactly the number

of pixels inside each polygon. The procedure of creating the new augmented data set is the same

as before, now performed for each substate separately. The new data are denoted by {y`,t,s}, where

` = 1, . . . , 10, t = 1, . . . , 35 and s = 1, . . . , 37, since s is an additional index added for the substates of

Nebraska which correspond to the 37 meteorological stations selected.

Moment Estimator

We give here the new empirical estimators with the addition of the substates.

µ̃i,s =
∑`∈T ∑35

t=1 w`,t,iy`,t,s

∑`∈T ∑35
t=1 w`,t,i

, (3.38)

Σ̃2
i,s =

∑`∈T ∑35
t=1 w`,t,i(y`,t,s − µ̃i,s)

>(y`,t,s − µ̃i,s)

∑`∈T ∑35
t=1 w`,t,i

, (3.39)

where T denotes the training set. Here, in the case of an IMM, w`,t,i is estimated as follows:

ŵ`,t,i =
37

∑
s=1

(
∑`∈T n`,s

∑`∈T ∑37
s=1 n`,s

)
ŵt,i fi(y`,t,s; φ̃i,s)

∑8
j=1 ŵj,t f j(y`,t,s; φ̃j,s)

, (3.40)

where φ̃i,s = (µ̃i,s, Σ̃2
i,s) and n`,s corresponds to the number of pixels which included in every substate

for the year ` and the state s.

The coefficient ∑`∈T n`,s

∑`∈T ∑37
s=1 n`,s

corresponds to the percentage of total pixels which can be found inside

the s-substate and determines the contribution (weight) of the s-substate to the overall prediction. For

the final computation of the RMSPE the same procedure is followed as in Chapter 3.

In order to illustrate the proposed methodology we compare the results from the model with

substates, with and without the inclusion of the differences ( Figures 3.31 and 3.32 respectively) in

the case of the NDVI dataset.
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FIGURE 3.31: Mean RMSPE from the model derived from NDVI with substates as data,
estimator ME and predictor of type (A). Comparison with Blind Prediction.
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FIGURE 3.32: Mean RMSPE from the model derived from differences of NDVI with
substates, estimator ME and predictor of type (A). Comparison with Blind Prediction.

In Figure 3.31 we observe that the RMSPE increases gradually, and reaches its first maximum

around week 20, and then decreases until week 25. Then, the prediction error is almost identical to

that from the blind prediction.
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In Figure 3.32 we observe that the RMSPE values are close and in many cases equal those of the

blind predictions. In the previous experiments it was obvious that when we used differences the

results were closer to our target which is to beat the predictions based on the historical data. Here,

differences give us a good approximation to blind predictions but the RMSPE values are higher than

those from the NDVI data.

Maximum Likelihood Estimator

The update equations of the EM algorithm are identical for both types of models, the IMM and the

HMM. The resulting MLEs differ since the weights w(m)
`,t,i are computed differently in these models.

For a training set T, the update equations are given by :

µ
(m+1)
i,s =

∑`∈T ∑35
t=1 wm

`,t,iy`,t,s

∑`∈T ∑35
t=1 wm

`,t,i

, (3.41)

Σ(m+1)
i,s =

∑`∈T ∑35
t=1 w(m)

`,t,i(y`,t,s − µ
(m+1)
i,s )>(y`,t,s − µ

(m+1)
i,s )

∑`∈T ∑35
t=1 w(m)

`,t,i

, (3.42)

where T is the training set, t denotes the weeks of our interest (t = 1, 2, ..., 35) , i is for the phenolog-

ical stages (i = 1, 2, ..., 8) and s denotes Nebraska’s substates (s = 1, 2, ..., 37) . In order to have the

recursive evaluation of the parameter estimates, we have to compute the quantities w(m)
`,t,i . There are

two different ways for the computation. In the case of an IMM,

w(m)
`,t,i =

37

∑
s=1

ñs
ŵt,i fi(y`,t,s; φ

(m)
i,s )

∑8
j=1 ŵt,j f j(y`,t,j; φ

(m)
j,s )

, (3.43)

where, φi,s = (µ
(m)
i,s , Σ(m)

i,s ) and ñs =
∑`∈T n`,s

∑`∈T ∑37
s=1 n`,s

. In the case of an HMM,

w(m)
`,t,i = Pθ(m)(X`,t,s = i | y`,1:t,s). (3.44)

This is easily solved with the Baum Welch Algorithm and the Forward-Backward equations (see

Section 2.4) from Chapter 2.

For the prediction stage we follow the same procedure as we saw analytically in Section 5 of

Chapter 3. Below we present the results from the HMM method, where the estimation is performed

through filtering and the predictor is of type (A). This method is applied in the NDVI-model.
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In Figure 3.33 we compare the results of the above method with those obtained by the Blind

Predictions. The comparison shows that the predictions are similar to the blind predictions, except

for some weeks at the start of the growing season (18, 19, 20 and 21).

In an attempt to find an effective model that is able to beat the blind predictions we carry out the

same experiment in the model which includes the differences from NDVI. In Figure 3.34 we show the

comparison between the blind predictions and the predictions under the MLE, estimation through

filtering and predictor of type (A). The results are similar to those of the blind predictions and for

many weeks are identical. Unfortunately, they cannot surpass the predictions from the historical

data.
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In Figures 3.35 and 3.36 we compare the results without and with the inclusion of the substates

in the case of the NDVI dataset and the differences from NDVI, respectively. We conclude that, for

most weeks, the substates achieve lower RMSPE values than the other models, but in some weeks

the prediction error is higher. In the next chapter we will use a different approach based on linear

regression in order to propose a more effective method to beat the blind predictions.
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Chapter 4

Regression

The earliest form of regression was the method of least squares, which was published by Legendre

in 1805 [42], and by Gauss in 1809 [35]. Legendre and Gauss both applied the method to the problem

of determining, from astronomical observations, the orbits of bodies about the Sun (mostly comets,

but also later the then newly discovered minor planets). Gauss published a further development of

the theory of least squares in 1821 [36], including a version of the Gauss–Markov theorem.

The term "regression" was coined by Francis Galton in the nineteenth century to describe a bio-

logical phenomenon. The phenomenon was that the heights of descendants of tall ancestors tend to

regress down towards a normal average. A phenomenon renowned as "regression toward the mean"

([54], [34]). For Galton, regression had only this biological meaning ([32], [33]), but his work was later

extended by Udny Yule and Karl Pearson to a more general statistical context ([65], [47]). In the work

of Yule and Pearson, the joint distribution of the response and explanatory variables is assumed to

be Gaussian. This assumption was weakened by R.A. Fisher in his works of 1922 and 1925 ([30], [31],

[14]). Fisher assumed that the conditional distribution of the response variable is Gaussian, but the

joint distribution need not be. In this respect, Fisher’s assumption is closer to Gauss’s formulation of

1821.

In the 1950s and 1960s, economists used electromechanical desk "calculators" to calculate regres-

sions. Before 1970, it sometimes took up to 24 hours to receive the result from one regression [49].

Regression methods continue to be an area of active research. In recent decades, new methods

have been developed for robust regression, regression involving correlated responses such as time

series and growth curves, regression in which the predictor (independent variable) or response vari-

ables are curves, images, graphs, or other complex data objects, regression methods accommodating

various types of missing data, nonparametric regression, Bayesian methods for regression, regression

in which the predictor variables are measured with error, regression with more predictor variables

than observations, and causal inference with regression.

Modeling refers to the development of mathematical expressions that describe in some sense the
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behavior of a random variable of interest. This variable may be the price of wheat in the world

market, the number of deaths from lung cancer, the rate of growth of a particular type of tumor etc.

In all cases, this variable is called the dependent variable and usually denoted by Y. A subscript on

Y identifies the particular unit from which the observation was taken, the time at which the price was

recorded, the county in which the deaths were recorded, the experimental unit on which the tumor

growth was recorded, and so forth. Most commonly, modeling is aimed at describing how the mean

of the dependent variable E(Y) changes with changing conditions; the variance of the dependent

variable is assumed to be unaffected by the changing conditions.

Other variables which are thought to provide information on the behavior of the dependent vari-

able are incorporated into the model as predictor or explanatory variables. These variables are called

the independent variables and are usually denoted by X with subscripts as needed to identify differ-

ent independent variables. Additional subscripts denote the observational unit from which the data

were taken. In classical regression Xs are assumed to be known constants.[50].

Linear regression is a linear approach to modeling the relationship between a scalar response (or

dependent variable) and one or more explanatory variables (or independent variables). The case of

one explanatory variable is called simple linear regression. For more than one explanatory variable,

the process is called multiple linear regression.

In linear regression, the relationships are modeled using linear predictor functions whose un-

known model parameters are estimated from the data. Such models are called linear models. Like

all forms of regression analysis, linear regression focuses on the conditional probability distribution

of the response given the values of the predictors, rather than on the joint probability distribution of

all of these variables, which is the domain of multivariate analysis.
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1 The linear Regression Model

Given a data set {yi, xi1, ..., xi p}n
i=1 of n statistical units, a linear regression model assumes that the

relationship between the dependent variable y and the p-vector of regressors x is linear. This relation-

ship is modeled through a disturbance term or error variable ε — an unobserved random variable

that adds "noise" to the linear relationship between the dependent variable and regressors. Thus the

model takes the form :

yi = β01 + β1xi1 + β2xi2 + ... + βpxi p + εi = xT
i β + εi, i = 1, . . . , n, (4.1)

where T denote the transpose, so that xT
i β is the inner product between vectors xi and β. Often

these n equations are stacked together and written in matrix notation as :

y = Xβ + ε, (4.2)

where

y =


y1

y2
...

yn

 , X =


xT

1

xT
2
...

xT
n

 =


1 x11 · · · x1 p

1 x21 · · · x2 p
...

...
. . .

...

1 xn1 · · · xn p

 , β =


β0

β1
...

βp

 , ε =


ε1

ε2
...

εn

 .

The random errors εi have zero mean and are assumed to have common variance σ2 and to be

mutually independent. Since the only random element in the model is εi, these assumptions imply

that the yi also have common variance σ2 and are mutually independent. For purposes of inference,

the random errors are usually assumed to be normally distributed, which implies that the yi are also

normally distributed. The random error assumptions are frequently stated as :

εi ∼ NID(0, σ2), (4.3)

where NID stands for "normally and independently distributed". The quantities in parentheses de-

note the mean and the variance, respectively, of the normal distribution.
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2 A simple regression approach

We start by considering predictions from a simple regression approach. For each fixed week t, the

model is trained from the dataset {W`,t,i}L
`=1 by using all the available CPR data from different years

in the training set corresponding to week t and state i. We define as N`,t the data from the NDVI

feature and as T`,t the data from the feature AGDD, in year ` and week t. For ` = 1, . . . , L and

i = 1, . . . , 8 we initially assume that

W`,t,i = αt,i + βt,iN`,t + γt,iT`,t + ε`,t,i, (4.4)

where for each fixed t (t = 1, . . . , 35) and i, {ε`,t,i}L
`=1 are independent normal errors with common

variance σ2
t,i. If α̂t,i, β̂t,i, γ̂t,i are the estimated coefficients in the regression model given by (4.4), then

the predicted values in the testing set Ŵ`,t,i are given by

Ŵ`,t,i = α̂t,i + β̂t,iN`,t + γ̂t,iT`,t. (4.5)

Since the weights take values in [0, 1] and their sum for all different i, equals unity some restrictions

should be taken into account. Our first approach to this problem was the simplest one possible. In

particular, we projected to zero, any predicted weight which attains a negative value and normalised

to one all the positively predicted weights. Many other strategies, including transformations and

multivariate considerations of the weights will be considered in the future, so as to obtain a more

effective method of weights’ prediction.

By following the above procedure, for each scenario corresponding to the chosen training years,

we have derived the prediction of W`,t,i, in year `, week t and state i. Then, we use the Ŵ`,t,i in

order to compute the RMSPE, in the same way as in Equations (3.23) and (3.24) of Chapter 3. Below,

we present the results that stemmed from three different regressions. First, in Figure 4.1, we use

as explanatory variable only the NDVI. Then, in Figure 4.2, we use as explanatory variable only

the AGDD and finally, in Figure 4.3, we use both of these features as explanatory variables and we

compare this curve with those from Figures 4.2 and 3.5. Also, note that, if no feature is included

in the model, then fitting only with the constant corresponds to the blind predictions, based on the

means from the historical data.

Since the NDVI differences performed better than the raw NDVI values in the case of the IMM

and HMM, we have also considered the combination of AGDD and NDVI differences in the linear

regression setting (see Figure 4.4).

From these Figures we can conclude that Regression works and achieves our target to beat the
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predictions based only on historical data. The results show, especially in the case of the AGDD

being used as a single explanatory variable, that we finally have a model which can surpass the blind

predictions. It is also interesting to notice that the inclusion of the NDVI only deteriorates predictions

(see Figure 4.3). Many tests could be further performed to transform the NDVI in such a way that

this feature becomes more informative.

We would like to carry out more experiments within the Regression approach. So far, we have

achieved our initial target but we also know that we can still produce better results, maybe under a

more complex regression model or with some transformations of the data. Because of time limitations

regarding the completion of this master thesis, we did not explore further possibilities. We hope to

achieve this goal in the future.
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Appendix A

AppendixA

MODIStsp: A Tool for Automatic Preprocessing of MODIS Time Series

1 Introduction

The development of MODIStsp started from modifications of the ModisDownload “R” script by

Thomas Hengl (2010), and successive adaptations by Babak Naimi (2014).MODIStsp is a novel “R”

package allowing to automatize the creation of time series of rasters derived from MODIS Land

Products data. It allows to perform several preprocessing steps on MODIS data available within

a given time period.The basic functionalities for download and preprocessing of MODIS datasets

provided by these scripts were gradually incremented with the aim of developing a stand-alone

application allowing to perform several preprocessing steps on all available MODIS land products

by exploiting a powerful and user-friendly GUI front-end.Also,allowing the creation of time series of

both MODIS original layers and additional Quality Indicators extracted from the aggregated bit-field

QA layer.Finally, allowing the automatic calculation and creation of time series of several additional

Spectral Indexes starting form MODIS surface reflectance products.

Required MODIS HDF files are automatically downloaded from NASA servers and resized, repro-

jected,resampled and processed according to user’s choices. For each desired output layer, outputs

are saved as single-band rasters corresponding to each acquisition date available for the selected

MODIS product within the specified time period. “R” RasterStack objects with temporal information

as well as Virtual raster files (GDAL vrt and ENVI META files) facilitating access to the entire time

series can be also created.

2 Installation

First,install the stable version of MODIStsp,from CRAN :

install.packages(MODIStsp)
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Note that if the “GTK+”library is not already installed on the system, installation may fail. In that

case, install and load the gWidgetsRGtk2 library beforehand :

install.packages(gWidgetsRGtk2)

library(gWidgetsRGtk2)

Upon loading gWidgetsRGtk2 , an error window will probably appear. This signals that library

“GTK+” is not yet installed on the system or is not on the PATH. To install it press “OK”. A new

window dialog window will appear.Select “Install GTK” and then “OK” . Windows will download

and install the “GTK+” library. When it finishes, the RSession should be restarted.

3 Running the tool in Interactive Mode: the MODIStsp GUI

The easiest way to use MODIStsp is to use its powerful GUI (Graphical User Interface) for selection

of processing options, and then run the processing.

To open the GUI, load the package and launch the MODIStsp function, with no parameters :

library(MODIStsp)

MODIStsp()

This opens a GUI from which processing options can be specified and eventually saved (or

loaded).At the first execution of MODIStsp, a Welcome screen will appear,signaling that MODIStsp

is searching for a valid GDAL installation. Press “OK” and wait for GDAL to be found.

The GUI allows selecting all processing options required for the creation of the desired MODIS time

series. The main available processing options are described in detail in the following.
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4 Selecting Processing Parameters

4.1 MODIS Product,Platform and Layers

The top-most menus allow to specify details of the desired output time series :

1. Category and Product :

Selects the MODIS product of interest.In our case,select “Radiation Budget Variables–Land Sur-

face Reflectance ”and “Serf_Ref _Daily _250m”(M∗D09GQ) respectively.
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2. MODIS platform(s) :

Selects if only TERRA, only AQUA or Both MODIS platforms should be considered for download

and creation of the time series.In that case select TERRA.

3. version :

Selects whether processing version 5 or 6 (when available) of MODIS products has to be pro-

cessed.

After selecting the product and version, clicking the “Change Selection ”button opens the Select

Processing Layers GUI panel, from which the user must select which MODIS original layers and/or

derived Quality Indexes (QI) and Spectral Indexes (SI) layers should be processed.

The left-hand frame allows to select which original MODIS layers should be processed.There are

many choices but select :

250m Surface Reflectance Band 1 ( 620-670 nm )

250m Surface Reflectance Band 2 ( 841-876 nm )

The central frame allows to select which Quality Indicators should be extracted from the original

MODIS Quality Assurance layers.Here,choose :

cloud state

atmospheric correction performed

For MODIS products containing surface reflectance data, the right-hand frame allows to select

which additional Spectral Indexes should be computed.The index that we are interested for is :

NDVI (NIR-Red)/(NIR+Red)

Clicking “Done ! ”returns to the main.

4.2 Download Method

Select the method to be used for download. Available choices are :
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http :

Download through ftp from NASA lpdaac http archive (http://e4ftl01.cr.usgs.gov). This re-

quires providing a user name and password, which can be obtained by registering an account at the

address https://urs.earthdata.nasa.gov/profile

offline :

This option allows to process/reprocess HDF files already available on the user’s PC without

downloading from NASA.Is useful if the user already has an archive of HDF images, or to reprocess

data already downloaded via MODIStsp to create time series for an additional layer

Checking the use_aria2c option allows to accelerate the download from NASA archives.

My choice for download was http method.

4.3 Processing Period

Specify the starting and ending dates to be considered for the creation of the time in the series corre-

sponding fields. Dates must be provided in the yyyy–mm–dd format.

To specify the dates,visit the VegScape (Vegetation Condition Explorer) website.The only thing you

have to do,is to decide type,period,year and date.I was interested about type NDVI,weekly pe-

riod,the years(2002-2011)and I ran the dates corresponding to the 13th to 47th week.

The Period drop-down menu allows to choose between two options :

1.full : all available images between the starting and ending dates are downloaded and processed

2.seasonal : data is downloaded only for one part of the year, but for multiple years.This allows

to easily process data concerning a particular season of interest.

My choice was full.

http://e4ftl01.cr.usgs.gov
https://urs.earthdata.nasa.gov/profile
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4.4 Spatial Extent

Allows to define the area of interest for the processing,two main options are possible Select MODIS

Tiles and Define Custom Area.

Define Custom Area : specify a custom spatial extent for the desired outputs either by :

1.Manually inserting the coordinates of the Upper Left and Lower Right corners of the area of

interest in the Bounding Box frame.

2.pressing the “Load Extent from a Spatial File ”and selecting a raster or vector spatial file.

3.pressing the “Select on Map ”button.

The procedure I followed was to use the first of these methods and then press the “Update Tiles

From Bounding Box ”button. In this way, the prices in category Select MODIS Tiles were automat-

ically adjusted.But before completing this procedure I added the next category and then returned to

the completion of this.

4.5 Reprojection and Resize

Specify the options to be used for reprojecting and resizing the MODIS images.There are two options

at the window :

• Output Projection: select either the Native MODIS projection (Default) or specify a user-

defined one

• Output Resolution , Pixel Size and Reprojection Method: specify whether output images

should inherit their spatial resolution from the original MODIS files, or be resampled to a user-

defined resolution.

For the first option I did the following procedure. I chose User Defined , and then I inserted a

valid “Proj4 ”string for LATLON WGS84 in the pop-up window.For the second I chose the Native

option.
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4.6 Output Options

Several processing options can be set using check-boxes:

Output Files Format:Two of the most commonly formats used in remote sensing applications are

available at the moment: “ENVI ”binary and

“GeoTiff ”.My selection was Geotiff.

Save Time Series as : Specify if virtual multitemporal files should be created. These virtual files

allow access to the entire time series of images as a single file without the need of creating large mul-

titemporal raster images. Available virtual files formats are “R”rasterStacks, ENVI meta-files and

GDAL “vrt ”files.The only one that I chose was “R ”rasterStacks.

Modify No Data : Specify if NoData values of MODIS layers should be kept at their original

values, or changed to those specified within the “MODIStsp_Products_Opts ”XML file.

Apply Scale/Offset: Specify if scale and offset values of the different MODIS layers should be

applied.

The last two choices were not selected.

4.7 Main MODIStsp Output Folder

Select the main folder where the pre-processed time series data will be stored.

The Reprocess Existing Data check-box allows to decide if images already available should be re-

processed if a new run of MODIStsp is launched with the same output folder. I set it to “No ”which

means that MODIStsp skips dates for which output files following the MODIStsp naming conven-

tions are already present in the output folder. This allows to incrementally extend MODIS time series

without reprocessing already available dates.

4.8 Folder for permanent storage of original MODIS HDF images

Select the folder where downloaded original MODIS HDF files downloaded from NASA servers will

be stored.

The delete original HDF files check-box allows also to decide if the downloaded images should
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be deleted from the file system at the end of the processing.To avoid accidental file deletion, this is

always set to “No ”by default and I kept it in this option.

4.9 Saving and Loading Processing Options

Specified processing parameters can be saved to a JSON file for later use by clicking on the Save

Options button.Previously saved options can be restored clicking on the Load Options button and

navigating to the previously saved JSON file. I did not choose these options.

4.10 Starting the processing

Click on Start Processing. MODIStsp will start accessing NASA servers to download and process

the MODIS data corresponding to our choices.For each date of the specified time period, MODIStp

downloads and preprocesses all hdf images required to cover the desired spatial extent. Informative

messages concerning the status of the processing are provided on the console, as well as on a self-

updating progress window.The processed time series are saved in specific subfolders of the main

selected output folder.
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Appendix B

Table 1. Basic information of selected meteorological stations. Meteorological data include ID, name,

and the geographic coordinate (i.e., latitude, longitude, and elevation) of each station. SA means US

state abbreviations.

ID SA Name Lat(◦N) Lat(◦W) Elev(m)

130112 IA ALBIA 3 NNE 41.07 92.79 268.2

130133 IA ALGONA 3 W 43.07 94.31 377.6 49

130600 IA BELLE PLAINE 41.88 92.28 246.9

131402 IA CHARLES CITY 43.08 92.67 309.1

131533 IA CLARINDA 40.72 95.02 298.7

131635 IA CLINTON 1 41.79 90.26 178.3

132724 IA ESTHERVILLE 2 N 43.43 94.82 396.8

132789 IA FAIRFIELD 41.02 91.96 225.6

132864 IA FAYETTE 42.85 91.82 344.4

132977 IA FOREST CITY 2 NNE 43.28 93.63 396.2

132999 IA FORT DODGE 5NNW 42.58 94.2 347.5

134063 IA INDIANOLA 2W 41.37 93.65 287.1

134142 IA IOWA FALLS 42.52 93.25 344.4

134735 IA LE MARS 42.78 96.15 364.2

134894 IA LOGAN 41.64 95.79 301.8

135769 IA MT AYR 40.71 94.24 359.7

135796 IA MT PLEASANT 1 SSW 40.95 91.56 222.5

135952 IA NEW HAMPTON 43.05 92.31 349.9
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ID SA Name Lat(◦N) Lat(◦W) Elev(m)

137147 IA ROCK RAPIDS 43.43 96.17 411.5

137161 IA ROCKWELL CITY 42.4 94.63 364.2

137979 IA STORM LAKE 2 E 42.63 95.17 434.3

138296 IA TOLEDO 3N 42.04 92.58 289.3

138688 IA WASHINGTON 41.28 91.71 210.3

110072 IL ALEDO 41.2 90.75 219.5

110187 IL ANNA 2 NNE 37.48 89.23 195.1

110338 IL AURORA 41.78 88.31 201.2

111280 IL CARLINVILLE 39.29 89.87 189.3

111436 IL CHARLESTON 39.48 88.17 198.1

112140 IL DANVILLE 40.14 87.65 170.1

112193 IL DECATUR WTP 39.83 88.95 189

112483 IL DU QUOIN 4 SE 37.99 89.19 128

113335 IL GALVA 41.17 90.04 246.9

113879 IL HARRISBURG 37.74 88.52 111.3

114108 IL HILLSBORO 39.15 89.48 192

114198 IL HOOPESTON 1 NE 40.47 87.66 216.4

114442 IL JACKSONVILLE 2E 39.73 90.2 185.9

114823 IL LA HARPE 40.58 90.97 210.3

115079 IL LINCOLN 40.15 89.34 177.7

115326 IL MARENGO 42.29 88.65 248.4

115712 IL MINONK 40.91 89.03 228.6

115768 IL MONMOUTH 40.92 90.64 227.1

115833 IL MORRISON 41.80 89.97 183.8

115901 IL MT CARROLL 42.1 89.98 195.1

115943 IL MT VERNON 3 NE 38.35 88.85 149.4

116446 IL OLNEY 2S 38.7 88.08 146.3

116526 IL OTTAWA 5SW 41.33 88.91 160

116558 IL PALESTINE 39 87.62 140.2

116579 IL PANA 3E 39.37 89.02 213.4

116610 IL PARIS WTR WKS 39.64 87.69 207.3

116910 IL PONTIAC 40.89 88.64 198.1

117551 IL RUSHVILLE 40.12 90.56 201.2

118147 IL SPARTA 1 W 38.12 89.72 163.1
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ID SA Name Lat(◦N) Lat(◦W) Elev(m)

118740 IL URBANA 40.08 88.24 219.8

118916 IL WALNUT 41.55 89.6 210.3

119241 IL WHITE HALL 1 E 39.44 90.38 176.8

119354 IL WINDSOR 39.44 88.6 210.3

250130 NE ALLIANCE 1WNW 42.11 102.9 1,217.4

250375 NE ASHLAND NO 2 41.04 96.38 326.1

250435 NE AUBURN 5 ESE 40.37 95.75 283.5

250640 NE BEAVER CITY 40.13 99.83 658.4

251145 NE BRIDGEPORT 41.67 103.1 1,117.4

251200 NE BROKEN BOW 2 W 41.41 99.68 762

252020 NE CRETE 40.62 96.95 437.4

252100 NE CURTIS 3NNE 40.67 100.49 829.4

252205 NE DAVID CITY 41.25 97.13 490.7

252820 NE FAIRBURY 5S 40.07 97.17 411.5

252840 NE FAIRMONT 40.64 97.59 499.9

253175 NE GENEVA 40.53 97.6 496.8

253185 NE GENOA 2 W 41.45 97.76 484.6

253365 NE GOTHENBURG 40.94 100.15 787.9

253615 NE HARRISON 42.69 103.88 1,478.3

253630 NE HARTINGTON 42.62 97.26 417.6

253660 NE HASTINGS 4N 40.65 98.38 591.3

253735 NE HEBRON 40.18 97.59 451.1

253910 NE HOLDREGE 40.45 99.38 707.1

254110 NE IMPERIAL 40.52 101.66 999.7

254440 NE KIMBALL 2NE 41.25 103.63 1,435

254900 NE LODGEPOLE 41.15 102.64 1,168

254985 NE LOUP CITY 41.28 98.97 627.3

255080 NE MADISON 41.83 97.45 481.6

255310 NE MC COOK 40.22 100.62 796.1

255470 NE MERRIMAN 42.92 101.71 986

255565 NE MINDEN 40.52 98.95 658.4
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ID SA Name Lat(◦N) Lat(◦W) Elev(m)

256135 NE OAKDALE 42.07 97.97 521.2

256570 NE PAWNEE CITY 40.12 96.16 378

256970 NE PURDUM 42.07 100.25 819.9

257070 NE RED CLOUD 40.1 98.52 524.3

257515 NE SAINT PAUL 4N 41.27 98.47 541

257715 NE SEWARD 40.9 97.09 438.9

258395 NE SYRACUSE 40.68 96.19 335.3

258465 NE TECUMSEH 1S 40.35 96.19 338.3

258480 NE TEKAMAH 41.79 96.23 338.3

258915 NE WAKEFIELD 42.27 96.86 423.7
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