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MepiAinym

H epyaoia mpayupatevetal Bépata amd tnv meploxn tou Aoylopolu MetoafoAwv.
JUYKEKPLUEVA apxiloupe TNV Tapouciacn pag pe tnv €€aywyn Tng Paocikotatng
e€lowong Euler-Lagrange, n omnola dtadpapatilel kuplapxo poAo o OAn TNV €pyacia, wg
HLa avaykaio cuvenkn yla akpotata. Oa cUVEXIOOUUE LE YEVIKEUOELG KAl pLa TTAOUCLAL
napdBeon MOAAWV EGAPUOYWY KAl TOPASELYLATWY, OTIWG XOPOKTNPLOTIKA avadEPOUE
TO MPOPANUA TOU Bpaxuotoxpovou, autd TNG €AAXLOTNG €TPAVELAG, TNV OpX TOu
Dirichlet, kaBwg emiong kot epoapUoyEG 0TN KAOOOLKN) UNXQAVIKH, OTNV OTTIKN, OTNV
olkovopia KA. OAOKANPWVOULE TO MPWTO KePAAAlo Pe pla avadopd otn Seutepn
UETABOAN, HE KATOLO OXOALQL OXETIKA HE PBOOIKA ONMOTEAEOUATA CUUTMAYELAG, TIOAU
XPNowa oto TL Ba emakoAouBnoel, kabBwg emiong Kal plo cUvVIopn avodopd ot
UTTOAOYLOTIKEG pEBOSOUG, Omwe TG pueBodoug twv Ritz kat Galerkin, oL omoieg pag
BonBouv CUOTNUATIKA OTO VA UAOTIOLOUME TIC TIPAKTIKEC UTIOAOYLOTIKEG TITUXEC TWV
HeB6dwv BeAtiotonoinonc.

Jtn ouvéxela Ba aoxoAnBoupe pe to BewpnTikd TMPOPANUA TNG UTMAPENG KAl TNG
HOVASIKOTNTAC TWV EAQXLOTOTIOLNTWY KOL UTIO TIOLEC CUVONKEG aUTA Ta SUO EpWTHUATA
erubéxovtal katadatikn amavtnon, Kabwg emiong kat pe Tg aobevel¢ AVCELS TNG
eflowong E-L. 'Yotepa Ba oculntiooupe BEpOTa OXETIKA HE TNV OUOAOTNTA TETOLWV
AUCEWV KOL OV HUIMOPOUME VA OMOLTACOUUE TEPATEPW OMaAOTNTA. Eva Aakpwg
ONUAVTLKO KoL evolapEpov ANV SUCKOAO EpWTNHAL.

Adrepwvoupe to 3° kepdlato ota TPOPAAUATA TTOU UTIOKELVTAL OE TIEPLOPLOMOUC. Mpog
ToUTOo Ba KataduUyouue otn Xprnon twv MNMoAlamAactactwy Lagrange yla va e€dyoups
po “BeAtiwpévn” E-L, AapBavovtag unmoyn Kal ToV TEPLOPLOUO KAl TTPOCUPUOIOVTAC
™V avaAuonl poG avodoyws. Oa  emikevipwBoUpe Kuplwg o€ OAOKANPWTIKOUG
TEPLOPLOMOUG, Sixwg wotdoo va mapaleipoupe TV mepintwon twv alyeBpkwy. Ma
oKoun gl dopd n mapoucioor pag Ba akolouBrjoel pla eVAnmTn Kot dtadavn pon,
SlavOlopévn pe TOAAEC edappoyEC Kal mapadeiypata. EmAéyoupe va kKAslooupe to
kedpalalo auto pe ta Aeyopeva mpoPAnpata eAsuBépou cuvopou, Omou edw eAAelPeL
TWV OUVOPLOKWYV TLUWV, Ba TTAPOUCLACOUNE UE TIOLOV TPOTIO Ba emIBAAOUE EUELS TIG
OUVOPLOKEG CUVONKEG.

3to 4° keddhawo oaoxoloUpaote pe TN Xophtoviavyy Oeswpnon kot Ba TNV
avtutapafBaiovpe pe tn Neuvtwvela Bswpnon, evrtomilovtag mapdAAnAa ta Kowad
onueia , aAAG kat Ta onpeia 6mou ot Suo Bewpliec Stadopormotovvral, mapabétovrag ta
UTEP KOl KaTd. Ev ouvexeia Ba XpnOLUOTOLOOUUE TNV opxn Tou XAUATov yla vo



KataAn&oupe otn SLATUMWOoN TWV KAVOVIKWY €EL0WOEWY, YWWOTWV Kal WG “KAVOVLKOC
dopUaAlopog”. Autég ol eflowoelg eival Kevtplkng onuaciog otn Quokn kot Ba
ETUSOLWEOUE, LEOW ULOG EKTEVOUC TTApABeong MOAWY aVAAUTIKWY TAPASELYUATWY va
avadeléoupe TOV KEVTIPLKO aUTO POAo. H avaAuon HOG CUUTTANPWVETAL UE KATOLO
evlladpEpovta LoTopLKA oTolxela, Omwe n apxn eAaxiotng 6paong tou Maupertuis, ou
QIMOOKOTIOUV OTNV KAAUTEPN CUVOXH KOL CUVEKTIKOTNTA TWV TIAPOUCLAlOUEVWY LOEWV.
KAelvoupe to keddAalo pe pla ektevhy avadopd ota aviiotpoda mpofAnuata, n
onuaocia Twv onoiwv cuvoiletal oto epwtnua: “av pag 6o6el pla dtadopikn e€icwon,
LLE TTOLO TPOTIO UMopoU e va ipoadlopiooupe tn Aaykpavliavr cuvaptnon;”.

To 5° keddawo sival ablepwpévo ota Kpiotpa onueia. EEetdlovpe €5W CUVAPTAOELS
TIOU VOl PEV KaBloToUVv Kamola S00HEVO CUVOPTNOLOKA OTAoLta, dixwe oUW va ival
oKpOTaTA aUTWV. Ev ouvexeia mapabétoupe éva BewpnTikO AMOTEAECUA, TO Oswpnua
MNapapopdwoswy, To omoio Ba XpnNOLUOMOL|COUE Yyl va amodeifoupe 10 Oswpnua
Opelvig AlaBaong, To omoio oucLaoTIKA €lvatl pLa apxy minimax. Emelta HeAETOUUE TNV
epapuoy) autol TOU ONUAVIIKOU Bewpriuato¢ otnv amodelén umapéng aobevoulg
AUONC YOG NULYPOMULKAG (quasilinear) eAAEUTTIKAG HEPLKNC SLadoplkig e€lowang TUTIOU
Poisson kal kAelvoupe to KepaAalo autd pe TNV e€aywyn TnG TautotNTaG Twv Derrick-
Pohozaev.

Téhog oto 6° kat teheutaio kepdhalo aoyxoloUpaote pe ta avaAloiwta Kol To
Baokotato Oewpnua tng Noether, éva koupdtt peilovog onuaociag otn Ouolkn Kot
WOlaitepa 6 otnv Mnxavikr, amoAuvta ouvUPACUEVO HE TI( OUMMETPLEG TwV
OUOTNUATWYV Kal Toug Vopoucg dlatrpnong. MNa tnv akpifela peAetol e nwg emnpealouv
HUETAOYXNHUATIOUOL XWPLWV Kal CUVOPTHOEWV TO TPOPANUA HOC, HEOW TNG eMibpaonc
toug otn Swadopikn eflowon Euler-Lagrange kol KATAARYOUHUE O TOANA XproLua
ouunepdopata GuoLkoU TEPLEXOUEVOU, LECW EKTEVWV TIOPASELYUATWV KoL EGOPUOYWV.



Preface

Generally, the Calculus of Variations is concerned with the optimization (minimization
or maximization) of variable quantities, called functional, over some admissible class of
competing objects. Many of its methods, ideas and techniques were developed over 200
years ago by many great mathematicians like Euler, Lagrange, Bernoulli and many
others. Its own development owes its existence to a constant and fruitful interaction
between a strict mathematical theory and a continuous changing, and challenging as
well physical consideration of the world. It continues to the present day to bring
important techniques to many branches of physics, engineering, economics, optimal
control theory, biological sciences, etc

We begin the presentation of this Master Thesis by referring to Euler-Lagrange
equation and presenting how we can derive this equation. The techniques are based on
the generalization of respective ideas from the calculus of real functions (perhaps in
some cases slightly converted to fit with the basis where we shall develop our theory).
This equation is of central significance throughout this thesis, since it provides us with a
necessary condition for determining extrema. Of course we will accompany our
presentation with plenty of examples which lead to a better/deeper comprehension of
the ideas and with a wide variety of application as well, like the brachistochrone
problem, the minimal surface problem, applications arising in economics and physics,
like the plate equation or the equilibrium shape of a membrane overload, the Dirichlet’s
Principle and its connection to the minimal surface problem and many other interesting
topics. We will close the first section by a short reference to the second variation,
omitting however to further develop the related theory. Finally we will mention and
analyze some results relevant to compactness. These will play a major role later in the
presentation of the existence theory of minimizers. We also briefly present some
computational methods like Ritz’s and Galerkin’s.

Next we devote a significant part of our work to the existence-uniqueness theory of
minimizers for certain minimization problems and we investigate under which
conditions the existence (and uniqueness) is possible. Here the material becomes a bit
more “advanced” or abstract, since for our analysis we need to employ many
techniques and results from Sobolev spaces. Moreover we shall deal with the weak
solutions of the E-L equation, which could be regarded to be additional evidence which
advocates in favor of using Sobolev spaces, being the suitable spaces for weak
formulations. Afterwards we shall discuss the very important, but difficult too, topic of
regularity and we will make some remarks regarding higher regularity. A reasonable
guestion which may arise here is whether the theory is analogous to the one developed
for linear, 2" order, elliptic pdes and under which conditions higher regularity can be
achieved. Nonetheless we avoid further developing the theory as being beyond the
scope of our thesis.

We continue by referring to minimization problems subject to constraints. This class of
minimization problems is also known as isoperimetric problems. In this chapter, given
the fact that we are dealing with constraints, we need to employ the Lagrange multiplier



rule and to derive a slightly converted (or adjusted) E-L equation, by taking into
consideration the constraints this time. We mostly dedicate our analysis to integral
constraints which dominate the vast majority of our discussion, but we shall not neglect
to refer to the algebraic constraints as well. Next we discuss topics related to unilateral
constraints and variational inequalities. And eventually we choose to close this chapter
by presenting the free boundaries. Once again, we accompany our presentation with
lots of applications, like the shape of hanging rope, Schrodinger’s equation from
Quantum Mechanics, the classical isoperimetric problem from which the alternative
name of this class of problems is derived and we close the chapter by referring to the
Rayleigh Quotient and the eigenvalue minimization problem.

As mentioned earlier above, the theory that associates optimization with pdes is the
calculus of variations. It can be used for both static and dynamic problems as well.
Moreover the dynamical aspects of calculus of variations are based on Hamilton’s
principle and it is the central theme of our next chapter. We will derive Hamilton’s
canonical equations (what is known as Hamilton’s Formalism) and we will apply
Hamilton’s principle for the wave propagation in elastic strings, membranes, vibrations
of rods etc. We will also demonstrate how to handle Hamilton’s formalism through
many characteristic examples derived from classical mechanics. Next we will compare
the Hamiltonian with the Newtonian approach and we shall present some
supplementary material followed by interesting historical notes. We close the chapter
with a discussion dedicated to the inverse problem, accompanied by many examples
which illustrate a method of determining the Lagrangian from a given differential
equation.

Regarding the two last sections now, one is devoted to the critical points of a
functional. There by employing the results of the deformation theorem, we prove a very
important theorem, the Mountain Pass Theorem, abbreviated as MPT, and we use it to
prove the existence of a weak solution of a given, semi-linear Poisson b.v.p. In relation
to the latter, we demonstrate extra material, the so called Derrick-Pohozaev identity.
Lastly, we have chosen to close this master thesis with an extensive report and analysis
to Invariance and Noether’s Theorem which plays a very crucial and centralized role in
the conservation laws in Physics. This last part is enriched with lots of applications which
highlight the great significance of Noether’s theorem. We indicatively mention the
scaling invariance, the monotonicity formulas, conservation of energy for non-linear
wave equations and the conformal energy for the wave equations as well, accompanied
by an application to local energy decay.

We have tried to cover an important range of topics relevant to the calculus of
variations. This may have led to some partial repetition of the material (to some extent)
in some parts of the text inevitably. We would like to apologize for this, although we
recognize the benefits of the revision. On the other hand, there are some topics which
unfortunately we omitted to present here, something we regret for. Nevertheless, given
the restrictions in time (mostly), but in space (limitations in the thesis’ extent) as well,
something like that seems to be inevitable if someone does not wish to “sacrifice” the
analyticity and the clarity of his presentation, without neglecting or omitting the crucial
parts and making “discounts”. Indicatively we mention some topics we wish to have



covered like Legendre’s and Jacobi’s conditions regarding the 2" variation, the
Hamilton-Jacobi equation and the Hopf-Lax resolving formula, the Legendre transform
which highlights the duality of Lagrangian and Hamiltonian functions, the alternative
derivation of Hamilton’s canonical equations as the characteristics of the Hamilton-
Jacobi equation as well as Pontryagin’s Maximum Principle, which is used in optimal
control theory to find the best possible control for taking a dynamical system from one
state to another, especially in the presence of constraints for the state or input controls.
As far for the notation, it is a nightmare. We have tried to simplify (if possible) the
notation where it is necessary and we hope that we have achieved it at least a bit. In
some cases, it was rather difficult given the wide range of different bibliography we
have used.

Furthermore, although in some parts the presentation may seem a bit more technical
at first sight, we have tried not to sacrifice the clarity and the simplicity of the ideas,
focusing on the deep comprehension of the main results, and keep our approach very
concrete, following a “clear path”. Part of our philosophy is also to give sometimes a
more practical-intuitive first approach which serves a more educational, say, character
and shortly afterwards to profound to a deeper and more abstract level providing all the
necessary details and “machinery”. We hope that the work at hand serves faithfully this
scope.

We wish and hope as well that each potential reader will find the current work
interesting or at least a bit of “something” so as to turn his attention on it, at least for a
while. Moreover, we would like to deeply thank the careful reader who may notice
some errors in the text in advance. Errors are an inevitable part of human life. Needless
to say that any suggestion targeting to improve this work is more than welcome!

Last but not least, | would like to thank all these people who significantly helped me
during this journey till completing the work at hand. First | would like to deeply thank
the Alexandros Onassis Foundation for the confidence and support to me all these two
years of this Master and the very valuable scholarship it provided me with during the
duration of my graduate studies. This made my entire life much easier these two years. |
will always be grateful, recognizing at the same time this valuable source of funding my
studies.

| would also like to thank my supervisor professor loannis Stratis for his help, his
valuable remarks, suggestions and advices and all his guidance and supervision during
this work at hand and for all the opportunities he has offered to me so far. Additionally |
would also like to thank the other two members of my jury-committee, professor
Gerassimos Barbatis and assistant professor Panagiotis Gianniotis for all the advice and
suggestions targeting the improvement, when needed. Lastly a big thank to the
secretary of the graduate studies in our department, Mrs Alkistis Ntai for all her help,
her suggestions and her advice regarding bureaucratic and/or procedural issues and all
her polite willingness to offer information relevant to my studies.

Next | would like to thank some close friends for their support all these years like
Angelos Gikas, Giorgos Katopodis, Thodoris Giannopoulos and Giannis Arkoudis, four
really good persons and good mathematicians | had the luck and the privilege meet and
know during our postgraduate studies in the Department of Mathematics in the



National and Kapodistrian University of Athens.

As a young mathematician | owe a great thank to my teacher and mentor Vasilios
Dougalis, who taught me, the most important of all according to my personal opinion in
my mathematical life, how to think mathematically. | also feel a great and profound
need to also thank him for his valuable advice, suggestions and remarks, as well as all
these invaluable teaching moments during his lectures, moments of true inspiration,
moments of true learning. This kind of moments which motivates you to get better, to
try harder, this kind of moments which changes your life. As a person now, | owe
another great thank to this great man, because he was present for me wherever and
whenever | needed him. And one last thing. According to American author William
Arthur Ward the mediocre teacher tells, the good teacher explains, the superior teacher
demonstrates and the great teacher inspires!

Lastly among the persons | would like to thank and without them this work would
never have come true, is actually a very important person in my life. My very best friend
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these inspiring and motivating discussions we have had and for his so much alive
qguestioning spirit, full of peculiar curiosity and fruitful creativity.

Finally, the biggest thank of all is dedicated to the joy of my life, my wife Katerina for
her support, her comprehension, her devotion, her faith in me, her patience with me,
her insist on making me a better person, her tolerance, her encouragement, her
enthusiasm and above all her love for me. Because she was, is and will be on my side in
every challenge, in every difficulty, even in the darkest moments, believing in me and
supporting me. Because she has offered the most precious and encouraging smiles to
me, this kind of smiles which enriches you with optimism and hope for the future. This
work would never have seen the light without Katerina, my heroine !

Athens
February 2020



1. The Euler-Lagrange Equation

1.1 The Euler-Lagrange Equation

Below we shall introduce the main ideas, methods and techniques in order to derive
the Euler-Lagrange equation which plays a major and very central role in the calculus of
variations and the optimization problems related to it. Our goal here is to make the
reader familiar with the main concepts, to provide some further generalizations,
accompanied by plenty of interesting examples and applications. As mentioned above,
the core of this first section will be computational and our principal target will be to deal
with the E-L equation and to use it extensively to applications.

To start with:

We consider the Lagrangian: L=L(p,z,X)=L(p,--s Py Z, %, X,): R'xRxU > R
(for U < R" bounded, open with smooth oU.)
peR",zeR,xeU.
p is the symbol of the variable for which we substitute Dw(x) below, and z is the variable
for which we substitute w(x). We also set:

DyL=(L, L)
_OL_

D.L=5=L

DL=(L,..L).

Now for smooth functionsw:U — R such that u = g on 60U, we define the functional

I[w] = [ L| x,w(x), Dw(x) |dx.
U — T
If we suppose now that there is a smooth function u that is equal to g on the

boundary which happens
to satisfy : I[u] = mi/[l I[w] , Ais regarded to be a kind of functions'

admissible set. Then, we will demonstrate that u is automatically the solution of
a certain non-linear p.d.e , called E-L equation.

To confirm this statement, choose any smooth u € C°(U) and consider

the real-valued functioni(z) = lfu+zv], 7€ R.

Since u is a minimizer of I[-]andu+zv=g+7-0=g on dU, we notice

that i(-) has a minimum at z = 0. Therefore by

Fermat's theorem = i'(0) = 0. So we explicitly

compute this derivative (called the 1st variation).



i(z)=1u+zv]= j L(X,u+zv,Du+zDv)dx =

i'(r) = j[ (L (x,u+zv,Du+zDv)v, )+ L, (x,u+zv,Du +rDv)v}dx
Therefore we have for 7 =0

0=i'(0) = j[il L, (x,u, Du)vXi +L, (xu, Du)v}dx

and after aLrjl ilr;tegration by parts

0= j[ (L (x,u, Du)) v+L,(x,u,Du)v }dx+iEL (x,u, Du))/ n,dS

since ve C/(U), the last integral equals to zero.

0= j{ (L (x,u, Du)) +Lz(x,u,Du)}vdx vweCr(U)=

E-L equation associated to the energy functional I[-]

—i(Lpi (x,u, Du)) +L,(xu,Du)=0=L, —div(VpL):O

in U, wich is a non-linear PDE. Actually it is a quasilinear, 2nd order pde

in divergence form.
In summary, any smooth minimizer of I[-] is a solution of E-L and thus conversly

we can try to find a solution of E-L by searching for minimizers.

2.2 The Euler-Lagrange equation for systems

Systems:

Assume the smooth Lagrangian function L :M™" x R™ xU — R where M™" is the space of

real mxn matrices. Hereafter we shall notate L = L(P, z,X) = L(Py5, ProseePrns Ziseeos Zigs Xpseees X))
P v Pi

foramatrix PeM™", zeR, xeU cR", whereP=| : :

pml e pmn mxn
Consider now the functional

I[w] = j L (Dw(x), w(x), x)dx defined for smooth functions w:U - R"™ withw=(W,,...,w, )
U

satisfying the boundary condition w= g on oU for g :6U — R™ being given. Here we denote
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oX,
Dw(x)= : . the gradient matrix of w at x. For simplicity we will write this
W, W,
0X, X )
matrix in a bit peculiar way as Dw(x)=| : "-. . This will help us significantly with the
W W
calculations.

We will show now that any smooth minimizer u = (u,,...,u,,) of I[-], taken among functions
equal to g on 6U must solve a certain system of non linear pdes. We therefore fix a
v=(v,..,Vv,)eC;(U;R"™) and write as usual i(z) = I[u +zVv]. As before we have that i'(0) =0,
from which we may deduce (as above) the equality:

:%{IL(X u+rzv, DU+TDV } J{ZL (X,u, Du)v, +

U =0

0=i,(0)=%|[U+TV]

=0

(NgE

n
+ L. (x.u, Du)v, }dx, since Du+7Dv = (u‘x‘ +7Vy )k’i . Now we notice that since this identity

i=1

=
Il
N

s valid for all choices of v*,v?,...,v" , we conclude after integrating by parts that:

0= J{ZL (x,u, Du)v, +Zn:ZmZLplk (x,u, Du)v! }dx J{ZL (x,u,Du) - (anzm: L (x.u, Du)j }vkdx

i=1 k=1 i=1 k=1
n 0
+ Z L A6 ,Du) v, n.dS , due to the compact support of v, . Therefore, we obtain:

Z[sz (x,u, Du) —Z(Lp_k (x,u, Du)) } = 0. Thus we have the system of E-L equations
k=1 =1 %i

L, (x,u, Du)—i(Lpik (x,u, Du)) inU fork=12,...m
i=1 %




1.3 The Null Lagrangian

Null Lagrangians:

Surprisingly, it turns out to be interesting to study certain systems of non linear pdes for which
every smooth function is a solution. Before developing the idea of null Lagrangian let us first
define what a null Lagrangian is:
Definition:
The function L is called a null Lagrangian if the system of E-L equations
L, (x.u, Du)—Z(Lp‘k (x,u, Du)) =0 for k=1,2,...,m, in U is automatically solved by all
i=1 ' Xi
smooth functions u:U — R".

The importance of null Lagrangians is that the corresponding energy: I[w] = I L(x, w, Dw)dx
U

depends only on the boundary conditions. Specifically, we have the following result.

Let L be a null Lagrangian. Assume u, 0 are two functions C2(U;R™) such that u =G on dU.
Then 1{u] = I[d].

Proof.

Define i(z) = I[zu+ (1—-7)0], 0 <z <1. Then we have that

i'(7) =;—T I[zu+(1—7)0] =%j L(x, zu+(1-7)d, zDu+(1l-7)Did)dx =

I{isz(x , tu+(1-7)0, rDu+(1—-7)D0)(u, 0, )+
u Lk=1
+anzm: L. (x, zu+@-7)a, TDU+(1—T)DU)(U)'; 0 )}dx: after applying integration by

i=1 k=1
parts and taking into consideration as well that u =0 on U we obtain:
=Zj{sz (x, zu+(@-7)d, rDu+(1-7)Dd)~-

k=1y

_Zn:(Lp‘K (x, ru+(@-7)0, TDU+(1—T)DU)) }(uk — 0, )dx = 0. The last equality holds since
i=1 '

X

the system of E-L equations is satisfied by the function zu + (1—7)d. Remember that L is assumed

to be a null Lagrangian. In other words: L, (x,w, DW)—Z(ka (%, w, DW)) =0fork=12,..,m
i1

in U, where w=zu + (1—)0. Concluding we have shown that i'(z)=0 = i(r) = constant and
therefore i(z) =i(0) =i(1) where i(0) = I[U] and i(1) = I [u] which proves the required result o
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1.4 Applications

Below we shall refer to some simplified expressions of the E-L equation, which we will
use quite often later, when we will present a lot of applications. We will present the
simplest E-L solving the simplest problem, some generalizations and what we call first
integral which simplify significantly the E-L under certain cases.

First we will mention the simplest form of E-L. For this purpose we introduce the
following definition

Simplified E-L, the simplest problem

Definition
Let J: A— R be a functional on A, where AcV, and V a normed linear space.

Lety, e Aand heV suchthaty, + ¢he A for all ¢ sufficiently small. Then
the first variation (also called the Gateaux derivative) of J at y, in the direction

of h is defined by: 5J(yo,h):diJ (Yo +¢h)
&

£=0

provided the derivative exists. Such a direction h for which the derivative above
exists is called an admissible variation at y,.

Borrowing the idea from classic calculus, and to be more specific by Fermat's
Theorem, we can proceed by introducing a necessary condition for minimizing
a given functional which could be considered to be a direct analogue to the classic

calculus. Therefore, we demand: [5J (y,,h) = di‘] (Yo+eh) = 0]fory,eA
&

=0

and for all admissible variations h. This is a necessary minimizing condition.

11



Now we are ready to develope the principal and necessary for our needs theory
b
of minimizing the functional J[y] = '[ L(x, y(x),y'(x))dx , wherey € C*[a,b]

y(a) =y, and y(b) =y,. L is a given, twice continuously differentiable function
on [a, b] x R*. Moreover, h e C;'[a,b] such that h(a) = h(b) =0 and the admissible
set is considered to be the following: A = {y eC” |y(a) =y(b) = O}

Afterwards we will follow the usual procedure, by considering the first variation,
which will lead us to derive the E-L equation.

b
J(y+eh)=[L(x,y+eh,y'+&h')dx = ;—EJ(ergh)

= j.(Lyh +L,h)dx =
=0 a

by applying integration by parts, we obtain:

b d (t)hdueto . b
e compaci
:I(Ly—&Lth dx {Ly,(x, Y, ') D) suspor } J(L ——L jh(x) dx=0

vh(x) € C, [a,b] . Now we note that since this equality holds for every h(x) with the

properties mentioned above, we can conclude the E-L: |L, _di L, =0
X

Where in the last step we have used the following lemma:

i f (x)h(x)dx = 0 with f,h smooth and h(a) =h(b) =0 = f(x)=0 in [a,b]

Hereafter we shall refer to this lemma as the fundamental lemma of calculus of variations.

We will prove the general case of this lemma later in the chapter. But let us make a short

remark for its proof. The important thing here is which h(x) (satisfying the required property)

to choose. If we choose it properly , we can use the method of contradiction to prove the lemma, by
restricting f to a small interval, where without loss of generality, it will have been suppossed

to be, say, positive. Then by considering, for example, the 6-spline,

3 3
which is h(x) = (x=x) (% =x)", xelx, ] < [ab] we will be led to a contradiction.
0 , Otherwise

12



We wish h(x) to be smooth at x, and x, so as to be C?, with compact support as well.
Then, it's straightforward to see that:

b X
Ozj f (X)h(x)dx = j f(x)(x- xl)3 (x, - x)3 dx > 0 which is a contradiction if we suppose
that f is not identically zero, but on the contrary, there exists a x, € (a,b) such that f (x,) = 0.
Why? Because then, by employing the continuity of f, we would be able to find an interval,

say, [X;, X,] where (wlg) f would be, say, positive.

The graph of h(x) is of the following form:
4
¥
h(x)

a % Xy Ky X

The E-L is a second order, non linear pde, provided that L, = 0, because:

L, —% L,(%Yy,y)=0 = L, +L,y'+L,y"-L =0 =

y'L,, +yL,+L,-L, =0 (L, #0). Below we will discuss shortly about

first integrals. In general, a first integral of a second order differential equation, say
F(x,y,y,y")=0 isan expression of the form g(x, y, y") involving only lower deriva-

tive, which is constant whenever y is the solution of the original equation F(x,y,y’,y") =0.
Hence g(Xx, Y, y') = ¢ represents an integration of the second order equation. In Mechanics

first integrals are called conservation laws.
One of the reasons for which we widely and quite often use first integrals is that they simplify

significantly the E-L equation which otherwise would be quite complicated to be solved. They
depend on the form of the Lagrangian, therefore we separate the following cases:

13



eL=L(x,y) = L, =const.

L=L(x,y) = Ly—s—x%(’:o = L, =0

L=L(y,y) = L-y'L, =const.| The proof is in fact quite simple:

%(L—y’Ly,):O = }/Xo+y'Ly+M—y’{y'Ly,y+y”Ly,y,}:O =

0 as the

d E-L equation
y{Ly_yLy'y_yLy’y’}:O:y Ly/_dx/l‘y =0

Finally we would like to make a last remark regarding the E-L, by referring to an

alternative way to represent the E-L: |L, —%{ L- y’Ly,} = 0| because:

L[_%{L_yll_yl}:%_%_%_yly-i- y y' +y,{Ly’t+Ly'yy’+ Ly’y’y”}:

0 due to E-L
d equation

L —=L
Y dt

_y’{Ly —Ly—Lyy'- Ly’y’y”} ==Y =0

y'

Generalizations

¢ More variables

L=L(x,y,u,u,,u,) for u=u(x,y) a given smooth function

Let us now consider a function h = h(x, y) e CZ(U), where U — R? an open and
bounded set. Moreover, as usual, we 'll take the first variation to obtain:

J[u+gh]:.[L(x,y,u+gh,ux+ghx,uy+ghy)dxdy: diJ[u+gh] =0 =
&
U

=0

0

J(Lthr L,h+L,h, Jdxdy =0 = L'!'{Lthr&(Luxh)—h%Lux +%(Luyh)—h%Luy}ixdy=0

0(*)

0 b o 0
:J{H—&Lux—agy}h dxdy+£ a_( > Luyh) dxdy=0 =

Hlm —% L, _9 Luy}h(x, y)dxdy =0 V heCZ(U). From the Fundamental lemma =
U

oy

14



L, _2 L, _9 L, =0and in general] L, —Zi L, =0|E-L equation.
Loy i1 0%
It remains to justify the (*) deduction: By applying Green's Theorem for

Q(x,y)=L, h and P(x, y):—Luyh we have that:

7
—

I{%(Hxh)Jr%(Luyh)}dxdy f —L, hdx+L, hdy = I( L, LU)G?,%)}{O"W%:O'

u

e Higher derivatives

Once again we consider a function h e C;[a,b] (at least), then

= 0 the necessary

b
Jy+eh]l= j L(x,y+&h,y' +&h’,y"+&h")dx = :—gJ[y+gh]

=0

b
condition for extrema :>I L h+L,h'+L h”)dx =0= integration by parts =

b
j{l_ —dil_ +—L }h(x)dx+M +M =0 the last term

the last term equals zero since h(a) =h’(a) =h(b) =h’(b) =0 = Now by applying
the fundamental lemma (which still holds true, it suffices to consider here the 10-spline,
5 5
which is: h(x) = (X %) (e =x)", x<Dx, %]
0, otherwise
as h(x) and to be led to a contradiction as previously) to obtain:

d d? u
L, -——L, +—L, =0 and in general, (if it's C"-differentiable) |L, + -1y —L, =
dx dx? 9 ( ) é( ) dxk v
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e More functions

L=L(X, Y, ¥,s ¥y »ooer Y, ) SMoOt as usual and we consider h,...,h. smooth with compact
support in [a,b]. Again, by taking the first variation we will be able to obtain a necessary
condition for extrema, i.e. the E-L equation:

b
Iy, +eh,....y, +ghn]:IL(x, y,+eh, ..,y +eh,y +eh’ ..y +ehdx ::—EJ[ergﬁ] =0

=0

{L h+..+L, h +L h1 +.. +L h, }dx:O = integration by parts to obtain:

{ (L h, ——L hﬂdx:OWhich is valid for every h, = L, —diLy =0|fori=12,...,n
I X i

|
|

Remarks

Below we will examine some special cases of first integrals regarding the general cases of E-L
as well as the necessary condition for the existence of extremals for the special case where L
depends only on the first derivatives of the functionsy and z, i.e. L = L(y’, z"). Remember, since
we have more than one functions, we are talking about a system of E-L equations, where an

equivalent to the necessary condition L, = 0 for the existence of the extremals is : L, L, — L}, #0.

L. L,
In other words det[ L” Lyz J;ﬁ 0| Now since L = L(y’,z') (depends only ony’ and z'),

z’y’ 217"

the E-L system has the following form:

d
L, - dt L, =0 y'L,, +2'L,, =0 ) _
. Now we know from elementary Linear Algebra that this
d y'L,., +2"L,, =
L,——L, =0 y
dt

system can be uniquely solved iff det = 0 and since it is homogenuous there exists only the null

. :0 = y(t), z(t) are linear polynomials

solution, i.e. {

16



First integrals for the generalized cases:

oL =L(y,Z) where y =(y,, Y,,..., ¥,) and analogously Z € R".

Then a first integral is |L— > y/'L,, = c| because:

d n
d_[l‘_zyi'l-y{j:%o
t i1

2
eL=L(xY,y)=L, —diL +d—L =0= L,+d—L,,:c.

dx?

eL=L(y,y',y") = afirstintegral is |[L— y’[Ly, —dd— Ly,,]— y'L,. =c| In order to prove this result,
X

we need to take thederivative with respect to x. This must be equal to zero. The required identity
follows after some elementary computations.

Some examples:

o J[u]= J'.[ uf —c?u? ) dxdt = > ——Lu ——Lu -0 =>— (Zu) (—Zczux):O:

u, —c’u, = 0| wave equation.

e J[u]l= '[ [u —u; —uy —u’ mzuz]dtdxdydz = L, - 24:6?( L, =0 o
u, —Au = -m?u?
L, =p(x,y)
eJ[u]= H[ |Vu| + p(x, y)u}dxdy = LU——L ——Lu =0 = L, =u, =
L, =u,

y

p(X,y)=u, +u, = Poisson's pde.
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4
oK[u]:J'{|Vu|2+%}dxdy = ;—gK[u+gy/] :I(ZVU-VW+Zgu3w)dxdy:O:
D D

=0

Ozj(Vu-Vw+gu3t//)dxdy: Iw%ds +'[(—Au+gu3)z//dxdy:0 Yy € HY(D). For
D ob D

% =0 on D now, we conclude that: J(—Au + gu3)y/dxdy =0 VyeH'(D) =
n D

Au—gu*=0,inD

ou It remains to justify the first integral implication:
—=0o0naoD

on

9 vureve) =[2vusevy| L (vusevy))| =

g Tur vl =(AVur vl (vurvvl)) =

(VU+MO)-VW‘
ZZM v -

result by just expanding [Vu + &V y

=2Vu-Vy. Otherwise we could obtain the same

=0

2= |Vu|2 +2eVU-Vy + &2V ://|2 and operating finally

the differentation with respect to &.

Historical notes

Leonard Euler (1701-1783), a Swiss mathematician who spent much of his professional
life in St. Petersburg, was perhaps one of the most prolific contributors to mathematics
and science of all time. His collected works fill 92 volumes, more than anyone else in the
field. Some may rank him at the top of all mathematicians. His name is attached to
major results in nearly every area of study in mathematics. A statement attributed to
Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read
Euler, he is the master of us all."
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Joseph Louis Lagrange (1736-1813) was a Franco-Italian mathematician, physicist and
astronomer, one of the great mathematicians in the 18th century, whose work had a
deep influence on subsequent research. In 1766, on the recommendation of Swiss
Leonhard Euler and French d'Alembert, Lagrange succeeded Euler as the director of
mathematics at the Prussian Academy of Sciences in Berlin, Prussia, where he stayed for
over twenty years, producing volumes of work and winning several prizes of the French
Academy of Sciences. In 1787, at age 51, he moved from Berlin to Paris and became a
member of the French Academy of Sciences. He remained in France until the end of his
life. He was significantly involved in the decimalisation in Revolutionary France, became
the first professor of analysis at the Ecole Polytechnique upon its opening in 1794, was a
founding member of the Bureau des Longitudes, and became Senator in 1799.

Dirichlet's Principle:

If we take L( p, z, X =1 pz,thenL_zp. fori=12,...n, L =0
2 Pi

1 A

and so the E-L associated with the functional |I[w] = %”VWFdX is [Au =0],

i.e the solutions of Laplace equation (harmonic functions) minimize the energy's
functional or Dirichlet's Integral.
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Below we shall employ what is called the energy method to present

a different but equivalent proof of the Dirichlet's Principle.

I[w]=£%|Vw|2—wfdx, where w e AZZ{WECZ(U) lw=g on ou }

admissible set.

N -Au=f,inU
Dirichlet's principle now asserts that if u  C? (U) solves , then:
u=g, onou

(*) Iul= min 1[w]

Conversely, if u € A satisfies the relation (*) then u solves the Poisson b.v.p.

Proof:

—Au=f,inU
Choose w € A, then the b.v.p implies:
u=g, onou

0:jwo(u—w)dx:j—Au(u—w)dx+j—f(u—w)dx:
| —MO%dS+IVU-V(U—W)dX—I f (u-w)dx = [[Vu-(Vu=vw)- f (u-w)]dx.

ouU
The surface integral equals to zero since u =w =g on oU.

Hence: [|Vu|* - fudx = IVu -Vw-— fwdx which implies that
v U

_ absﬂ
[|Vuf’ = fudx = [ Vu-Vw— fwdx Cssj [Vul[Vw|— fwdx <’
U U U

|2

I|vu|2dX+IIV;v ~widx = 1[u]< 1 [w]

u 2 U
and w e A was chosen arbitrarily.

Sinceue Aand I [u]<I[w] Ywe A= I[u]=minl[w].

weA
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Now let us suppose that | [u] = mi/g I [w] holds.
Then fixanyue C;(U) and write i(7)=I[u+zv] (7 €R)
since u+7v e A because u,veC?(U)

infactveC”(U) andu+rv|,, =g+70=g

because supp(v) = compact

= Uu+7ve Aindeed V7 eR.

Therefore,we conclude that the scalar function i(z) has got a minimum

at r=0.Thus i'(0)=0. Buti(r) = I [u+zv]= j%Wu + er|2 —(U+7v)fdx =
U
j%|Vu|2 +%12 VW[ +2Vu - Vv —(u +7v) fdx
U
Consequently:
u

0
i"(0)=0=0=[Vu-Vv—vfdx= | ¥ gdS—iju+vfdx =
U au on U

[(Au—fydx=0 VveC’(U) = —Au=finU. o
U

Generalized Dirichlet's Principle

Consider |L(p,z,x) = % > a'(x)p,p; —zf (x)| where a’(x)=a’(x) (symmetric)

i,j=1

G,j=12..,n)

due to symmetry of @ii(x) o* ,
Then L, = a’(x)p; and L, =—f(x). Hence the E-L equation

)=

associated with the functional: I[w] = j[l Y al(w,w, —wf ] , where w, = p; and

u\ 4ij=1

w, =p;, is the divergence-structure, linear, 2nd order pde:

->"(@",), = f =|-div(A(Xx)Vu) = f | in U (note that in the simplest case

i,j=1

where the matrix A(x) =1 = —div(Vu) =-V-Vu =—-Au and we return back to
the classical problem).We will see later that the uniform ellipticity condition on the
a” (x) is a natural further assumption, required to prove the existence of minimizers.

Consequently, from the non-linear viewpoint of calculus of variations, the divergence
structure form of a linear, 2nd order elliptic pde is completely natural.
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Remark: (Non-linear Poisson equation)
Given a smooth function f : R — R and its antiderivative

F(z) :f f (y)dy (such that F'(z) = f) = E-L of the energy's functional
0

I[w]= I%|VW|2 —F(w)dx is given by: L, (x,w,Vw) = p, =
U

andL,=L,=f(w)=> _i(Lm (x,w,Vw), +L,(x,w,Vw) =0=

—Z—+ f(w)=0= in U, which is the non-linear Poisson equation.

Minimal Surface

1

1 =
Let L(p,x,2) = (1+|p[")? sothat I[w] =.[(1+|Vw|2)2 dx is the area of the
U
graph of the functionw:U — R.

U

L,=0andL, =L, =——— =1, Z(L )y —o:z =0=
L+|vu )2 = (1+|Vu| )
- . . Vu :
minimal surface equation: |div| ————— |=0]| in U.
@+[vul)?
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Remark

the expression div is n times the mean curvature of the graph

1
(1+|Vu|2>2
of u. Thus the minimal surface has zero mean curvature. A way to define the
mean curvature of a function's graph is through the divergence of the unit
outward normal vector , i.e. H :—lv-ﬁ :—EV- Vo where

n n (|[Vg
Vo= (—uxl,...,—uxn ,1) =[-Vuil]
p=7-U(X,...,X,) and ¢ = (X;2) = 1
Vo|= [1+|w|2}2

Therefore: H :_ldiv(ﬂ __Laiv vud] |

noVel) n vl

1., Vu 10 1
(L+[vul')? “[vuf )
div Ll =nH.
(1+|Vu|2)E

Additionally, there is a very interesting result: |a surface is a minimal surface <> mean curvature =0 |
We will omit the proof of the statement above, because this is beyond the scope of this work.

Minimal surface curvature planes. On a minimal surface, the curvature along the principal
curvature planes are equal and opposite at every point. This makes the mean curvature zero.

23



Surface area of graph = I[u]

A minimal surface
Some further remarks regarding the surface measure:

Let I' be a simple, closed curve in R®. Now a surface whose boundary is T,
is said to be spanned by I'. Let us now consider a surface S = S(u)
characterized by a graph of function u = u(x, y) defined over a region D in
R?, such that the boundary oD is mapped by u to 8S =T (in particular S(u)

is spanned by I'(figurel)). E[u] = A[S[u]] = j, [1+u? +Uu dxdy because:

T, xT, [dxdy = _[.Hl+u +uZdxdy =

Area S[u]

oD=S

H,f1+|Vu| dxdy
D

For a given surface now which is the graph of a function, say u(x,y), i.e.
o(X,Y,2) =z-u(X,Yy), we have that V(p=(—ux,—uy,l). Now we know that
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T xT,|| =V o = J1+|Vu[". See figure below.

In general for a given, smooth surface parametrized by

@(u,v)=(x(u,v), y(u,v),z(u,v)) : R* > R®, we know that the following hold:

2 2 2
T, xT,[|= \/‘a(x, ) +‘6(X' 2) +‘a(y, 2) , where we denote :

6(u,v)| 6(u,v)| a(u,v)|

x o
M:|det(\]acobian)|:det o ov . Analogously for the other.

o(u,v) y

ou ov

Finally the admissible set: A ={y € C*((D) mC(B)), w(x,y)=0
V(x,y) e oD}
In other words y e C; (D). From the Calculus of Variations' point of view,

we define v=u+e&w and we try to minimize the functional E, i.e. to find
a "u" such that E[u] < E[v] = E[v + ] for a small variation € and for all i € A.

surface spammel

Z2=Uky)

25



Comment :
We should notice that both catenoid and helicoid surfaces cannot be
represented as global graphs. Rather, they can be written explicitly in a
parametric form.

X=pcosld, 0<60<2r
Helicoid :<y=psing, a<p<b

z=dp

x=d coshgcose

Catenoid :< y =d cosh gsin 9

Z=p

We can see below how the catenoid and helicoid surfaces respectively look like:
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Other examples of minimal surfaces taken by the great book of Hildebrandt-Giaquinta

are the following:

- t\....b...-r...-._:.l.}....,.

4

). (1) Catenowd. (2} Heli-
coid. (3) Enneper's surface (#) Scherk's surface. (5] Catalan’s

surface, (&) Henneberg's surface.

Fig. 10n. Minimal surfaces (H
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And a bit weird one, which is called Costa's minimal surface: Famous conjecture disproof.
Described in 1982 by Celso Costa and later visualized by Jim Hoffman. Jim Hoffman, David
Hoffman and William Meeks Ill then extended the definition to produce a family of surfaces with
different rotational symmetries.

Joseph Antoine Plateau (1801-1883) was a Belgian mathematician and physicist with
considerable contribution to optics as well as to the calculus of variation. He was also
one of the first people to demonstrate the illusion of a moving image. To accomplish
this, he used counter rotating disks with repeating drawn images in small increments of
motion on one and regularly spaced slits in the other. He called this device of 1832 the
phenakistiscope.

Additionally, he was widely known for the Physics of soap bubbles (Plateau's Laws) and
Plateau's problem related to the minimal surface problem through the soap film
experiments.

Incidentally, while such experiments are now frequently performed by children in
science museums around the world, Plateau himself did not see a single minimal
surface! He was blinded early in his scientific career as a result of looking directly at the
sun while performing optical experiments.

~ “ K -?f o & »
Bubbles in a foam of soap. Soap films meet in threes at about 120° along Plateau
borders and these borders meet at vertices at about the tetrahedral angle.
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A boy blowing a soap bubble. Painting by the French artist Jean Baptiste Siméon Chardin
(1699-1779), The Metropolitan Museum of Art, New York.

The connection between the minimal surface problem and the Dirichlet's principle

We shall follow a slightly different approach to our analysis below.

To be more specific, let us demonstrate our thought.

Assuming that the minimal surface u has "small derivatives”, we could
approximate the functional E[u] by a siimpler functional, deducing
parallelly the problem to a simpler one as well. Using the approximation
(derived by using the Taylor's theorem)

J1+x = 1+§+... (Taylor around zero), we expand:

E[u]:|D|+%j(uf +u})dxdy +... Neglecting now the terms of higher order,

D
we replace now the problem of minimizing E[u] with the problem of

minimizing the functional: G[u]=% j Vul’ dxdy which is called the
Dirichlet's energy functional. By reguarding, as usual, the first variation of E
atu, i.e. dd—g E[u+eéw] _, =0, which is a necessary minimization condition,
we obtain the following:

Glu + gyx]z%ﬂVu +&V :,//|2 dxdy = %I|Vu|2 dxdy + %jgz v y/|2 dxdy +
U U

U
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+ngu-dexdy = G[u+gw]:G[u]+ngu-Vy/dxdy+ng[1//] =
U U

iG[u+,91//]
de

=IVu-dexdy+ZgG[w] :IVu~dexdy =
U

&=0 e=0 D

As denoted above, the necessary condition for u to be a local minimizer
is to satisfy: IVu -Vwdxdy =0 Vi € A, where A is the admissible set.
U

But we notice that:

integration
by parts

O:J'Vu Vydxdy = J. w%ds - Iz//Audxdy ,where we observe that
U ou n U

the surface integral equals 0 since =0 on dU. Therefore we have that

IwAudXdy =0 Vw e A = (if Auis continuous) Au =0 in D, which is the
U

Laplace linear, elliptic pde which coincides here with the E-L pde.
Moreover, by construction, u must satisfy the boundary condition
u(x,y)=g(x,y), (x,y) eaD. In other words, if a smooth function u minimizes
the energy’s functional, then u is a solution to the very well-known b.v.p. :
Au=0inD ) . . -
. There is only one last thing which needs to be clarified.
u=gonaoD

Lemma:

Let h(x,y, z) be a continuous function satisfying J.h(x, y,z)dV =0 V domain Q = h=0
Q

The proof is quite simple. For contradiction, let us assume that there exists

a point P =(x,, Y,, z,) Where h(P) = 0 there. Without loss of generality, let's assume
that h(P) > 0. Then, since h is continuous, there exists a domain (perhaps very small)
D,, containing P and &£>0 such that h > ¢ > 0 at each point of the domain D,.

Therefore O:J.h(x, y,z)dV = J h(x,y,z)dV > &Vol(D,) > 0 ,contradiction! QED
Q

Do

Reconstruction of a function from its gradient

Many applications in optics and other image analysis problems require a
surface u(x, y) to be computed from measurements of its gradient.
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This procedure is extremely useful determining the phase of light or sound
waves. If the measurements are precise, then the solution is straight forward.
However, there is almost always an experimental error. Therefore the
measurements can be considered at best as an approximation of the gradient.
Denote the measure vector that approximates the gradient by f 7 = (f,, f,).
Typically a given vector field is not the gradient of a scalar function. To be

a gradient, f must satisfy the comppatibility condition %fl = oy because:

OX
ou
, B, h=2% ou ol of  of
fT=(f,f,)=Vu = - _ _, o _d,
f_ou oXoy  Oyox oy o
Loy

If this holds, then we can compute u by a single integral, indeed:

u(x,y):j f,(x, y)dx+j f,(x, y)dy. Nonetheless, very often,
D, D,

the measurements' errors will corrupt the compatibility condition, we are
obliged to seek other means for estimating the phase u. For example, the least

square approximation: min K[u] = I|Vu —f |2 dxdy and we notice that
D

Wu— fr :|Vu|2+‘f‘2—2Vu-Vf =

=

2 =0

K[u +g(//]=J'{]Vu +&V ly|2 +| f |2 —2Vu-f =26V - f }dxdy = di
D
oK[u]= jZVu -V —2Vy - fdxdy = 0, where with "8" we denote the first
D

variation of K, or the Gateaux Variation. The above leads to the following:

integrating
by parts
[(Vu=1)-Vyoxdy=0 = [y(Vu-f)-idS - [pdiv(Vu-f)dxdy=0
b D

D
where i is the outer unit vector to oU. Finally we have ended up with:

I(—Au +divf)y1dxdy+ j W(%— f-ﬁj dS =0. Now, since the first variation
D ob n
must vanish, in particular for functions y that are identically zero at oD, we have

to equate the first integral to zero to obtain the E-L equation:
Au = divf (where we denote divf =V - f) for (x,y) e D.
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Then the surface integral reduces to

_[ (%— F-ﬁj dS =0, but this equation holds for every i that is non zero

oD
on oD as well, thus we obtain: % = f -f for (x,y) € &D. Such boundary

conditions which are inherent to a variational problem (in contrast to being
supplied from outside) are called natural boundary conditions. We shall refer
to them more analytically later to the sequel.

The shortest way to go from a point to another: (straight line)

The arclength functional is J[y]=[" {1+ (y')*dx = [dS = ["1|T'(t)|dt,

T't)=Ly'(t)= ||T’(t)||=,f1+(y'('[))2 where curve's parametrization

T(t)=(t,y(t)) here, the curve is a function's graph.
L(X,Y,y)=y1+(Y)

ly=OandLy =——Y " Y _ Vo=c 1+ (y')
Ak vy vk e B

(1-c’)(y)Y =c'= (y) =
y(t)=kt+4 k,A1eR,
after applying the boundary conditions, we end up with a straight line equation:

:yl_yo byo_ay1
" b-a " b-a

C
= y'(t) = constant =
A

which in fact connects (a, y,) with (b, y,).
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Brachistochrone

T t dt
T=[dt=[—ds= —d

S : total arclength of the curve
v : velocity

=0, s=0

curve y=y(x)

4fl+
Since ds:«/1+( (x) I%x and by using the energy

conservation principle: K, +U, =K, +U, = %mv2 +mgy =0+mgb =

v-af2g(b y(x)) = T[y]I o HY )) dx. Additionally here the set of

2429 (b-y(x))

admissible functions A is the following:
A onisocnrone =LY € C'[0,a] : y(0) =b and y(a) =0 and the conditions y <b

a 1
and '[(b —y) 2 dx < +oo} (the last holds in order to be able to guarantee that
0

the functional T (y) will be finite)
Now we observe that:

33



I\JH—‘

1+ (y) Ly e O0)
L= E=L)L, - L =

N R A SR e Ve ey
= (ﬂj _1-c'b-y) = dx=——_2 *’b_ydy (where cl:i and

d)  c*(b-y) - Ja-b-y) c?

=C

is because of dy <0) =
dx

sign” -

b-y=u
du=-dy

y:>x+cj du =

fax=]- =Y 4

u:sinz(p

Ju
,/cl -u
du=sin2¢de

= Cl(X+C)=J.SIn—(/)ZCOS(DSin(pdgp =

cl(x+c)=IJ1/_iudu

c,(x+c) = 2I3|n pdp =c(Xx+C)= ZIMd

sin’ @

c,(x+c)=¢p— = X:E(go—sinZgo)HE as well as

b-y=c,sin? % which are the parametric equations for the cycloid curve.

Here, in contrast to the problem of finding the curve of shortest length between two
points, it's not clear that the cycloids just obtained actually minimize the given
functional. Further calculations are required for confirmation.

Fermat's Principle in Geometric optics

T(y):T%:}Zn(x, y)«f1+(y'(x))2dx = where n(x,y) = 1/¢c =
P X

7,6 YNL+(Y' ()Y [”(X Ny }—o
«f1+ y(x))

In the limit of geometric optics the Principle of Fermat states that the time elapsed
in the passage of light between two fixed points in the medium is the extremun
with respect to all possible paths connecting the two points. For simplicity,

we consider only light rays that lie xy plane. Let ¢ =c(X, y) be a positive, C
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function representing the velocity of the light in the medium. It's reciprocal

n=c™ is called the index of refraction of the medium. If P(x,y,) and Q(X,,y,) are
two fixed points in the plane, then the time required for the light to travel along a given
path y = y(x) (connecting the two points) is :

T(y) = T% = jzn(x, y).f1+(y’(x))2dx .Therefore the actual light path connecting P
P %

and Q is the one that extremizes the integral T (y). E-L =

2, O YW (Y () { 1Y)y J 0 = 7,(x YI+H(Y (X))
dX| fi+ (y'(0)

—n.(X, Y)Y’ 1 1, y)( y') oxy) y" )Y
\/1+ (X) \/1+ (X) 1+(y'(x))2 |:1+(y'(x))2}5

' 2\ " 12 ﬂy” — —_v' L:
7, (1+(Y09)) =y =7, (') T Y0y o= Y o)

which is the simplified E-L equation for the Fermat's Principle.

=0 =

Minimal area of a surface of revolution (catenary)

2 7.4.3 The curve y= 1(x) rotated

z—o.\ about the x axis.

ae
e

S

Circumference = 2x i_,"(:;)]

J[y]:jZﬁyaf1+(y'(x))2dx = L=L(y, y'):27zya/1+(y’(x))2

independent of x = 1stintegral isL-y'L, =c = 2;zy./1+(y'(x))2
27y(y'Y

—L)Z =Cc = 27ry(1+(y’(x))2)—27ry(y')2 =C 1+(y’(x))2 =

1+(y'(x))
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47z_2y2 _CZ
C2

of generality). Therefore we obtain:

=(y")? where k =27/ ¢ and sign" + " due to % > 0 (without loss
X

dy=x+c = du=kx+¢ =

1 1
N oA N

cosh™u=kx+¢ = u(x)=cosh(kx+¢) = y(x):w

which is
the catenary.

Remark: (analytic computation of the integral above)

By taking into consideration the following identities:

cosh® —sinh® =1 as well as sinh’=cosh and cosh’=sinh , we obtain:

j 1 du = J. 1 sinht
Ju?—1 oyt < \Jcosh?t -1

sinhtdt = _[—dt —t=coshu
ht
t=cosh*u

Sin

Economics

Let us consider y = y(t) to be an individual's total capital at time t and let r =r(t)
be the rate that capital is spent. If U =U (r) is the rate of enjoyment, then his

.
total enjoyment over a lifetime with 0<t<T iSE = J' e U (r(t) )dt where the
0

exponential factor reflects the fact that future enjoyment is discounted over time.
Initially his capital is Y, and he desires y(T) = 0. His capital gains interest

at arate y' =ay - r(t). Furthermore, we assume (for simplicity's reason) that
a<2p < 2a. And we shall determine r(t) and y(t) for which the individual's

total enjoyment is maximized, if his enjoyment function is U (r) = 24r.
After some computations we will obtain:
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;
E(y) = Zj e*”‘,/ay —y'dt. We shall employ once again the E-L equation
0

in order to maximize this quantity. So we have:

d e™a d e/t
L-—L,=0=> —2 +°| 2 |20 =
y dt y ay_yr dt[ ’ay_y!]

e’a  pe” +e—ﬁti(;J=0 N
Jay-y  JJay-y' dt| Jay -y’

a_p +i( L J:o =
G-y a ey

a-g 1 ay'-y’

-y 2(ay_y):
y'+(a+28-2)y +2a(l- £)y =0 which is a linear equation with constant
coefficients. By taking into consideration the characteristic polynomial of

=0 =

this linear equation, which is : r* + (a+24 - 2)r + 2a(1l— ) = 0, where
r, and r, are the roots, we have that: y(t) = c,e™ +c,e™. This is the solution
given that r(t) = ay(t) - y'(t).

Equilibrium shape of a membrane underload

Physical systems in equilibrium are often characterized by a function that is a local
minimum of the potential energy of the system. This is one of the reasons for the great
value of variational methods. Below we consider two classical problems from the theory

of elasticity.

e Consider a thin membrane occupying a domain D — R? being at a
horizontal rest position and denote its vertical displacement by u(x,y). Assume
also that the membrane is subject to a trasverse force (called in elasticity

load) /(x,y) and constrained to satisfy u(x, y) = g(x, y) for (x,y) € oD.
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Since the membrane is assumed to be in equilibrium, its potential energy must
be at a minimum. The potential energy consists of the energy stored in the
stretching of the membrane and the work done by membrane against the

load ¢. The local stretching of the membrane from its horizontalrest shape

is given by d(, /1+ u’ + uj —1), where d is the elasticity constant of the

membrane. Assuming that the membrane’s slopes are small, we approximate
. 1
the local stretching by Ed (uf +u§).

The work against the load is — ¢u. Therefore, we have to minimize:

Qu]l= J'[%(uf + uj ) —(u }dxdy. Consequently, as usual, regarding the
D

Gateaux Variation, we obtain:

d
da

Q[uww:!{%[ u, +sy, ) (u, + ey, 1 ((u+ey) }dxdy =
D

5Q[U]=£{d[(u 4 «//X)wx (u,4£%, Ju, |-}y =

0
5Q[u]:j(qu-vw—w)dxdy N jdw% dS—I(dAu+£)wdxdy:O
D oD D

Fundamental
lemma of cov

but y=00on oD = I(dAu+€)z//dxdy:0 =
D

Au :—%E(x, y), (x,y)eD

u(x,y)=g(xy), (xy) e b
it is the Poisson equation. An alternative way to obtain the above result is

which is the E-L for the membrane. In fact

by directly considering the E-L equation, i.e. L, —glm _%Lu =0 =
X v
—E—i(du )—g(du )=0 = ¢(x,y)+d[u,+u, |=0 = Au:—lf(x,y)
OX X 8}/ y XX yy d
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The Plate equation

e Now let us consider a thin plate under a load ¢ whose amplitude with respect
to a planar domain D is given by u(x, y). Integration of the elasticity equation
gives the following expression for the plate's energy.

P[u]:j{%[(Au)Z +2(1-2)" (ujy —u,uy, )} —fu}dxdy where A is called the
D

Poisson ratio and d is called the flexural rigidity of the plate.

The Poisson ratio is a characteristic of the medium composing the plate.

It measures the transversal compression of an element of the plate when

it is stretched longitudinally. For example, A = 0.5 for rubber, and 4 = 0.27

for steel. The parameter d depends not only on the material constituting the plate,
but also on its thickness.

To find the Euler—Lagrange equations for the plate we compute the first
variation of P. To simplify the calculations we assume that the plate is

clamped, i.e. both u and % are given on oD. This means that the boundary
i

conditions imply that y and %_1%/ =0 on oD. By employing the usual procedure

Plu+ EW]ZJ{%[(UXX + 8'//xx)+(uyy TEY,, )T +%[(uxy TEYy )2 -

4]
de =0

—(Uy +€l//xx)(uyy tey,, )]—Eu —&l l//} dxdy =

id[(““+’“/O"’XX)+(“W“O'/’wﬂ(%x+ww)+
d [2(uxy+/01//xy)wxy—l//xx(uw+g°y,yy)_,/,yy(uxx+ﬁzowxx)}_

1-1
—(ydxdy = 0. Consequently we obtain:

I{d AUAY + %[ZUWWXy /e —wwuxx]—ﬁw}dxdy =0 =

D
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|
2
Iy

I dAuAy —(y}dxdy + _[— AV VNl VAN TN V/WuXX]dxdy 0 =
D

I,+1, =0 Now we will caIcuIate each integral separately, thus:

|1=—jdv(Au)-wdxdy + jolAu%ﬁZ ds :-j d y(x9) 'V (Au)-f dS +
D oD oD

+Idz//(x, y) A(Au)dxdy , since div(Vf) =V -Vf = Af. Finally we obtain
D

= I(d APu— (X, y))w(x, y)dxdy| and we proceed to compute the second

D

integral below.

where I, :I[%{

take into consideration the following useful identity:

U, —w,U, —n//yyuxx} dxdy . For this purpose we need to

P

6 f—/% 6 f—L R —_
2uxyl//xy - uxxV/yy _V/xxuyy = & uxyl//y _uyyl//x + 5 uxyl//x - uxxvly =divF

for the vector field F = (P, Q). Thanks to this identity and the divergence theorem
of Gauss, we can convert the integral I, into a boundary integral. Hence:

Green

d .
|2 :—1_2 Jle(nyV/y _Uyyl//x ) uxyl//x _Uxxl//y)dXdy =
D

/_j%

e L AR A A | e S L

However the boundary integral involves the first derivatives of . But since

oy dy
-V =

on AT

the normal and the tangential derivatives of y vanish there. The tangential

2 3 =0 and w=0 also at the boundary, then both

I . _ dx dy dx dy
derivative of v isVy T =(v,, =, = =y, — — =0. Therefore
wisVy T=(y.v,) (dt dtj Vigt TV gt

we obtain the following system:
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d dx
!//x_y_l//

y _—=
g)t( :; So we have that the of this linear system is
Vg Y ae

det[z —ny - (37)2 +(>'<)2 # 0, which means that it's solvable, so

86_1// = %// =0 on the boundary D. This explains why the boundary integral
X

is identically zero. At last we are able to have a representation expression for
oP[u]= j(d A%u —ﬁ)w(x, y)dxdy which implies that the E-L for this plate
D

is given by : [A%u = @ ,where we denote by A? the biharmonic
4 4 4
operator, which is : A® = a—+ 2 0 0

Tt é T T
OX ox“oy: oy
Alternatively we can get the same results by employing directly the E-L equation
0

. 2, 0 2, 0° 0
e L, -Y —K +>—L + L, =0,wherex, =xandx,=y =
i1 i i Xy

T ox v oxoy
2 2 2
_g+6_2[d (uXX+uW)— d uw}+ az{d (uxx+uyy)—iuxx}+ 0 [ﬂuw}:o
ox 1-1 oy 1-1 oxay | 1- 4
d d 2d
= —/(X, y)+dum—muxxweruyyyy——l_/luwy+1_/1 Uy, +2du, =0 =

4 4 4
5 82u2+8 tj+8 lj zé(x,y) - A2u=é(x,y)
oxoy. ox' oy d
Another way to see that the plate's expression middle term does not
contribute to the E-L equation is to observe that the corresponding

which actually is the divergence of a vector field;

which is the required equation.

integrand is in fact the Hessian uu, —u®,

Gauss

l.e.itequals V -(uu,,-uu,) = J' oy — y)dxdy:.[div(uxuyy U, )dxdy =
D

e dy dx
j(uX o —U U)o T dS_ajD(uxuyy it —u,u,, m ]dt

What we think that it's really interesting here is the fact that the Poisson ratio does not
play any role to the final equation! In order to avoid a misunderstanding though, let us
clarify that this does not mean that clamped rubber plates and clamped steel plates
bend in the same way under the same load because the coefficient d does depend on
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the material (in addition of course to its dependence on the plate’s thickness). However,
we could conclude the surprising fact that for any given steel plate, there is a rubber
plate that bends in exactly the same way. And one last comment. We just derived a
fourth order equation above. As it turns out, the fourth-order equations are relatively
rare in applications. Among the exceptions are the plate equation, the equation for the
vibrations of rods that we shall derive later, and certain equations in lens design.

1.5 Second Variation

It is well known that equating the first derivative of a real (scalar) function f (x)

to zero only provides a necessary condition for potential minimizers of f. To determine whether
a stationary point x, (where f'(x,) = 0) is indeed a local minimizer, we have to examine higher
derivatives of f. For example, if f"(x,) > 0, we can conclude that indeed X, is a local minimizer.

Similarly, to verify that a function u is a local minimum of some functional, we must compute
the second variation of the functional, and evaluate it at u. When considering a general

=0

=0

functional Q(u), the first variation was defined as: |0Q[u] = diQ[u +ey]
&

for w in an appropriate function space. Similarly, if the first variation of Q at u is zero, we

2

=0][. Just like

define the second variation of Q there through: |5°Q[u] = d

= Qlu+ey]

=0

the case of the first variation, the second variation is a functional of y that depends on u.

A functional Q such that §*Q(u)() >0 for all appropriate u and v is caIIed(strictIy)w(.
Such functionals are particularly useful to identify since they have a unique minimizer as we will
see later in the existence theory of minimizers. However, a very reasonable question one may

ask is if there always exists a unique minimum. We shall try to answer this particularly interesting
question later.
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This question has far reaching implications in many branches of science and technology. In fact,
it is also raised in unexpected disciplines such as philosophy and even theology. In contrast to the
ethical monotheism of the Prophets of Israel, the Hellenic monotheism was based on logical arguments,
basically claiming that since God is the best, i.e. optimal, and since the best must be unique, then there
is only one god. This argument did not convince the ancient Greeks (were they aware of the possibility
of many local extrema?), who stuck to their belief in a plurality of gods.

Indeed one of the intriguing questions raised by Plateau and many mathematicians after him was
whether the minimal surface problem has a unique solution for any given spanning curve . The answer is
no! In the figure below we depict an example of a spanning curve for which there exist more than one

minimal surfaces.

Next we will try to derive a necessary condition for deciding if a critical point is indeed an
extremum or not.
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With respect to the discussion above, since I[-] admits a minimum at the function u,
i.e. i(z) admits a minimum at z=0=1'(0) =0, 1"(0) > 0. Now in view of

2
i(7) = J. L(x,u+zv, Du+zDv)dx , we calculate that [ = di and analogously "= %J
U T T

ir(r) = HZ L, (x,u+zv,Du+zDv)v, +L,(X,u+zv,Du+ rDv)v}dx . Analogously:

u Li=l
i"(r) = j{z Lpipi (X,u+zv,Du+ rDv)invXj + 22 L,.(X,u+zv,Du+zDv)v,v+
u lij=t i=1

+L,(x,u+7v,Du+ rDv)vZ} dx . By setting now 7=0 , we obtain the following expression:

0<i"(0) = I{Z Loy, (6 U, DUV, v, +2) L, (x,u,Du)v, v+L,,(x,u, Du)vz}dx wWeCrU). (¥
U Lij i1

i,j=1
We can extract useful information from the inequality above. First note, after a routine approximation
argument, that estimate () is valid for any Lipschitz continuous function v vanishing on dU. We then fix
& eR" and by borrowing the idea from the mollifiers as an inspiration here, we define:

v(X) = 8p():—§jé’(x) (xeU) where & €C;(U) and p:R — R is the periodic

) _ ) X, 0<x<1/2 e
"zig-zag" function, defined by p(x) = ("1-periodic”, i.e. p(x+1)=p(x) Vx e R).
1-x,1/2<x<1

Thus |p’|=1a.e. Observe further that

v, = zp'(xiji;(x)wp(ﬁjg = v, =p'[xijé4(x)+0(e> as &0,
1 g /g g 1 1 (9
and so our substitution of the new, well-defined function v(x) into the inequality (*) yields:

0< jz Lpipi (x,u, Du) (,o')2 §i§j§2dx +0(&) (all the other remaining terms involve at least the

ui.j=l
first power of "¢" , which justifies the existence of O(¢g) ). At this point we recall that | p’| =1la.e.

and send ¢ — 0, thereby obtaining the following inequality:

0< J'Z Lpipj (x,u, Du)@fjgzdx . Now, since this estimate holds true for all § € C;(U), we deduce

uij=l

Z Lpipj (x,u,Du)éé; >0 (5 eR", xeU ) Actually this necessary condition contains a clue as to the

i,j=1

basic convexity assumption on the Lagrangian L required for the existence theory which we shall
examine analytically later.
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1.6 A few words and remarks regarding compactness

When we studied in calculus the problem of minimizing real valued functions, we had at
our disposal a theorem that guaranteed that a continuous function in a closed bounded
set K must achieve its maximum and minimum in K . Establishing a priori the existence
of a minimizer for a functional is much harder. To understand the difficulty involved, let
us recall from calculus that if A is a set of real numbers bounded from below, then it has
a well-defined infimum. Moreover, there exists at least one sequence an ¢ A that
converges to the infimum. Consider now, for example, the Dirichlet integral G(u) defined
over the functions in:

B:{u eCl(D)ﬂC([_)), u=g fOI’XeaD}

for some domain D. Clearly G is bounded from below by 0. Therefore, there exists
a sequence:

{u,} such that limG(u,) =inf G(u)| Sucha {u,} is called a minimizing sequence.

The trouble is that a priori it is not clear that the infimum is achieved, and in fact,

it is not even clear that the minimizing sequence u, has convergent subsequences in B.

Achieving the infimum is not always possible even for a sequence of numbers

(for example if they are defined over an open interval), but we do like to retain some sort

of convergence. In R" we know that any bounded sequence has at least one convergent
subsequence. This is the compactness property of bounded sets in R". Is it also true for the

space B? The answer is no. There are examples in which a Fourier series converges strongly

to a discontinuous function. This is a case in which a sequence of functions in B— the partial sums

of the Fourier series —does not have any subsequence converging to a function in B.
It turns out that, if we consider infinite bounded sequences of functions in Hilbert

spaces, we can still maintain to some extent the property of compactness. Unfortunately
we have to weaken the meaning of convergence.
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Definition:
A sequence of functions { fn} in a Hilbert space H is said to converge strongly to a function f
inH, if Iim||fn— f||=0

A sequence of functions { f,} in a Hilbert space H is said to converge weakly to a function f

inH, if |lim(f,,g)=(f,g) Vg eH.

Note that by the Riemann — Lebesgue lemma , any (inﬁnite) orthonormal sequence in a given
infinite-dimensional inner product space converges weakly to 0. The following theorem explains
why we call the property presented above, weak convergence, and also provides the fundamental
compactness property of Hilbert spaces.

Let H be a Hilbert space. Then the following statements hold:
(i) Every strongly convergent sequence {u, }

..y InH also converges weakly. But the converse

IS not necessarily true. Moreover the weak limit is unique.
(ii) If {u,} _, converges weakly to u, then |u||<liminf|ju,|. The equality can be achieved iff

u, — 4 in H.

n—oo

(iii) Every sequence {u,} _inH that is bounded, in the sense that |u,[<C VneN, has at least one

neN
convergent Subsequence.

Note: Normally H is supposed to also be separable (i.e. it has a dense and countable subset). This
statement (iii) is a special case of the Banach - Alaoglu theorem.
(iv) Every weakly convergent subsequence in H is bounded.

Proof:

(i) We need to show that if |u, —u|———0inH, then u, —u—**% 0. For this purpose we write
linearity of
inner product _

for an arbitrary function f e H : \(un, f>—<u, f>‘ z t‘(un —u, f>‘cgs||un _u||||f||v>0 —

(Uy, f)———(u, f) Vi eH = u, —=0.

n—oo
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We shall prove now that the converse is not always true. For doing so, we use a counterexample.
Let us consider the sequence {sinnx} < L’ ([0 27z]). Then by using the Riemann - Lebesque lemma

ne

b
we get that jsin nx f (x)dx =(sinnx, f (x))———>0 Vf e H. Hence we obtain sin nx—=2% 0,

a

while ||sin nx||:,/7z/2 and therefore {sin nx} does not converge strongly to 0, otherwise we would have

had /7z/2 =0, by the limit's uniqueness, which is of course a contradiction if we select f (x) = sin nx.

weakly
H : . Un u strongly .
owever let us note here that the following holds true: o = ] = u,——U , because:
u, || —flu

lu, —u[* = (u, —u,u, —u) = (u,u)+{u,,u,)~2(u,,u)——=—0, since (u,,u) - (u,u) and also
(upouy) =[u [ = ol = (uu).

(i) Supposing now that u, —*“**—su , then in particular (u,,u)— ||u||2 , since by the definition of
weak convergence (u,, f)— (u, f) Vf e H, so after selecting f =u , we get the result above. Now

by employing the Cauchy — Schwarz inequality we get the required as following:

monotonicity

2 . of the lim o
Ju|"=(u,u)=lim{u,,u} < |u[liminf |u,].
(iii) Let (h, ), be abounded sequence in H. Morover let H, = span(h;, h,,...) . Then H, is separable

as the set of all finite linear combinations of points in (h,) with rational coefficients is a countable and

dense subset of H,. For eachne N let f :H, — R be defined for allhe H, by | f,(h)=(h,,h)|.

Afterwards, we observe that each f_ is a linear functional on H,, something that it follows from the
linearity of the inner product. Furthermore, f, is bounded with | f | <|h,[. since for eachhe H, we

f,(1) A0 P
<lh| = <|h fl<[hl.
o <l = selrtinl = 16l<lhl

have that |, (1] =|(h,.hY| < [h,Jl] =

Consequently, { fn}neN is a bounded sequence of linear functionals on the separable space H,. By

employing now Helly's theorem , we get that { fn}neN has a weak*-convergent subsequence,

say {fnk }kGN , Which weak*-converges to f, € H,. The Riesz representation theorem for Hilbert spaces
now states that there exists an h, € H, such that f (h)=(h,h;) YheH,. So {fnk }keN weak*-converges
to f,(h) and so for everyhe H = lim f, (h)=(h,h;) and also limo<h,hnk )=(h.h,)

The reader can find more about the Helly's Theorem, the Riemann-Lebesgue Lemma and the Riesz
representation Theorem in [B1].
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Finally let P be the orthogonal projection of H onto H,. Then for each k € N , we have that:
((1=P)(h),h, )=(1 =P(h),h;). Hence for each h  H we have that lim (h, ,h)=(h,h,). At the
end, from the characteriziation of weak convergence in Hilbert spaces, we obtain that

h,, %ﬁ'ﬁ) h, € H. So every bounded sequence in H has a weakly convergent subsequnce.

n

(iv) we omit the proof of the last statement, since we need to use the principle of uniform
boundness which is beyond the scope of the work at hand. o

Remark
If a Hilbert space is finite-dimensional, e.g. an Euclidean space, then the concepts of weak and

strong convergence are the same!

Part "c" actually states that we do have compactness in Hilbert spaces with strong convergence
replaced by weak.

An alternative way to prove "c" would be by using a "diagonal argument”. We will shortly
sketch this alternative proof. Employ the C-S inequality to obtain:

Kuj v>‘ <lu; || and by our assumptions we get |u;||<c VjeN, since {u,} is bounded. Hence
(<uj ,v>)jeN is a bounded sequence of real numbers for each fixed v e H. The "trick” now is to apply

a diagonal argument, by first constructing subsequences for v,,v,,.... and then take the diagonal

sequence. So first we note that {<uj ,vl>}_ . is a bounded sequence of real numbers (R is a complete
je

space), so it has had a convergent subsequence {<uj ,v1>} with, say, Kuj ,v1> —al‘ <2*L, and
1.k keN 1.k
k < j,, = oo. And we continue in this way. Inductively, with exactly the same argument,we get for

<271, for

m = 2,3,... subsequences {uj } with j ., <, > ask —ooand Kujm ,vn>—an

m.k

n=12,....,m. Finally we take the diagonal sequence {u.

J } . Then as usual

jm,m

<2™"L, forn=1,2,...,m. Hence the subsequence <u ,vn> Is convergent for each n.

Kujm‘m,vn>—an

Moreover all the discussion above (especially the theorem) can also be regarded as an
introductory section or a first approach-touch to the next section dedicated to the
theory of existence of minimizers where we shall extensively deal with such matters and
ideas.
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1.7 A short reference to computational methods (Ritz-Galerkin)

Below we shall refer to two very important methods. We begin with a brief
presentation of the main ideas and concept of what we call the Ritz method, avoiding a
technical presentation, but instead prefering a more intuitive approach.

Ritz method

Consider the problem of minimizing a functional G(u), where u is taken from some
Hilbert space H. The Ritz method is based on selecting a basis B (preferably orthonormal)
for H, and expressing the unknown minimizer u in terms of the elements ¢, of B:

u= Zangpn .The functional minimization problem has been transformed to an algebraic
=1

(infinite-dimensional) minimization problem in the unknown coefficients a,. This process
is similar to our discussion after the introduction of the Rayleigh quotient later in the context.
Practically, we can use the fact that since the series expansion for u is convergent, we expect
the coefficients to decay as n — «. We can therefore truncate the expansion at some finite

N
term N and write: |u~ Zangon . (see the Rayleigh Quotient, developed later below, for more
=1

details regarding the convergence of the generalized Fourier series and the conditions under which
we can achieve it. Briefly we mention that if we consider an orthonormal and complete sequence

of eigenfunctions as a basis, and u to be continuous and piecewise differentiable, this can guarantee
uniform convergence of the generalized Fourier series to the function. Under our assumptions, many
interesting qualitative properties hold, like the Parseval equality and the Riemann-Lebesque lemma).
This approximation leads to a finite-dimensional algebraic system that can be handled by a

variety of numerical tools, like the Finite Elements Method which is regarded to be among the most
important methods.

In general, an interesting question is: what would be an optimal basis?

It is clear that some bases are superior to others. For example, the series above might
converge much faster in one basis than in another basis. In fact, the series might even
be finite if we are fortunate (or clever). For instance, suppose that we happened to
choose a basis that contains the minimizing function u itself. Then the series expansion
would consist of just one term!

On the other hand, we might face the problem of not having any obvious candidate for
a basis. This would happen when we consider a Hilbert space of functions defined over a
general domain that has no symmetries.
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To better demonstrate the Ritz method (and illustrate our comment above), we return to the

problem of reconstruction of a function from its gradient (or you may have seen it as phase
reconstruction problem). In typical applications D is the unit disk. We shall seek the minimizer of

K (u) in the space H* (D). What would be a good basis for this space? The first candidate that comes
normally to mind, or at least what we would expect at first sight is: (in polar coordinates)

a a
{Jn( — r]cos nS}U{Jn( — r]cos ng} , Which are the eigenfunctions of the Dirichlet problem
o a

for the eigenvalue problem of Laplacian operator in the disk. The corresponding eigenvalues are given by:

2
a
Ao :( Ll ] forn=0,12,....and m=1,2,.... where each eigenvalue is of multiplicity 2, except for
o

the case n=0. J, now is the Bessel 's function of 1st kind in honor of the German mathematician and
astronomer Friedrich Wilhelm Bessel (1784—1846)who was among the first to study these functions.
Below we will briefly refer to the Bessel functions and some basic properties they have as a remind.

So, we know that the sequence of eigenfunctions, form a complete and orthonormal system for the space
of continuous functions in the disk of radius & with respect to the inner product (with weight r):

2r a

< f, g) = j J‘ f(r,9g(r,9)r drd9 and the generalized Fourier-Bessel expansion for a function,
00

say h(r,9) , over that disk is given by: [h(r, $) = ZZJH[

n=0 m=1

](An cosng+B,  sinng)

and the Fourier-Bessel coefficients are given by:

27

A= ] %(am)w« [

]cos nS rdrd 9

27

B, = — _Hh(r L9, (

n+l n m

]sm ng rdrd 4
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The careful reader may wonder why we obtain this representation of the Fourier-Bessel coefficients.

It may seem to be weird at first sight, but it makes sense after taking into consideration the result below,
whose proof we omit here (it is neither technical nor difficult, just for space's economy):
Forn=0,12,..,m=12,.. and a,, be the zeros of the Bessel's function of first kind J , we have that

T a ? : : : o

J'ran [ - rjdr = % J2 (@, )| - Another interesting fact is that for every nonnegative integer
(24

0

n, the zeros of J, form a sequence of real positive numbers a,  that diverge to co as m — co.
Furthermore, the difference between two consecutive zeros converges to z in the limit m — oo,

We close this brief reference to the Bessel functions and some of their properties by the observation
that the following recursive formula holds: [sJ,.,(s) =nJ, (s) —sJ; (s)| Notice that according to this

formula it is enough to compute J,, and then use this function to evaluate J, for n > 0. The Bessel
functions J,, and J, are depicted in the figure below:

0 5 10 15 ag o5 3

The Bessel functions Jo (solid line) and J1 (dashed line)

After this short break in order to present some facts about Bessel functions, let us
return to our initial investigation about a suitable basis. Let us also recall that we have
considered this candidate as a basis:

a a
{Jn( LU chosnS}U{Jn( Ll choan}
(04 o

While this basis would certainly do the work, it turns out that in practice physicists use
another basis. Phase reconstruction is an important step in a process called adaptive
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optics, in which astronomers correct images obtained by telescopes. These images are
corrupted by atmospheric turbulence (this is similar to scintillation of stars when they
are observed by a naked eye). Thus astronomers measure the phase and use these
measurements to adjust flexible mirrors to correct the image. The Dutch physicist Frits
Zernike (1888-1966) proposed in 1934 to expand the phase in a basis in which he
replaced the Bessel functions above by radial functions that are polynomials in r.

The Zernike basis for the space L2 over the unit disk consists of functions that
have the same angular form as the Bessel basis above. The radial Bessel functions,
though, are replaced by orthogonal polynomials. Using complex number notation,
we write the Zernike functions as

Z"(r,9) = R"(r)e™ | where the polynomials R™ are orthogonal over the interval (0,1) with

1
respect to the inner product < f(r), g(r)) :j f (r)g(r)rdr. For some reason Zernike did not
0

choose the polynomials to be orthogonal, but rather set <R,§“, R:?> =[1/2(n+1)]s,, . In fact

one can write the polynomials explicitly (they are only defined for n> |m| > 0) :

(n-n2 (-1) (n-1)!
R™(r) = " I!(;(n+|m|)—|)!(;(n—|m|)—lj!

0 , for n—|m| odd.

r"?, for n—|m| even

The phase is expanded in the form: |u(r,$) = Zanymzrf“ (r,9)| . We then substitute this expansion

into our minimization problem to obtain an infinite dimensional quadratic minimization problem
for the unkown coefficients {an,m}. In practice the series is truncated at some finite term, and then,

since the functional is quadratic in the unknown coefficients, the minimization problem is reduced to
solving a system of linear algebraic equations. Notice that this method has a fundamental practical

flaw: since the functional involves derivatives of u, and the derivatives of the Zernike functions are

not orthogonal, we need to evaluate all the inner products of these derivatives. Moreover, this implies
that the matrix associated with the linear algebraic system we mentioned above is generically full; in
contrast if we select a clever basis, we can obtain linear algebraic systems that are associated with sparse
matrices, whose solution can be computed much faster.
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Galerkin method - weak solutions

Let us consider the following minimization problem:

1
2

minY[u] = I(%WUF +=u+ fujdx where D is a bounded domain in R" and f is a given
D

continuous function, satisfying without loss of generality | f | <1in D. Next we shall compute
the first variation Y[u + eyw] = J(%Wu +&V ://|2 +%(u + 51/1)2 +fu+ef ://jdx = diY[u +ey]
D 2 =0

= and taking into account the identity: [Vu[ +&*|[Vy/[ +2sVu-Vy =[Vu+&Vy| =
5Y[u]:j(/1|v://|2+Vu-Vt//+(u+;;%0)y/+ fw)dx=j(Vu-Vw+(u+ f )y ) dx
D D

We seek a minimizer in the space H'(D) and take the variation i also to belong to this space as well.
So the problem takes the following variational form: () [(Vu-Vy +uy + fy)dx=0Vy e H'(D).

D
Additionally we assume that the minimizer u e CZ([_)) and that oD is also smooth. Consequently we get:
div(Vu)=Au

O:I(Vu-vw+(u+f)w)dx=_[w% dS+I —y V- (Vu)+Uu+ fy dx:j{—Au+u+f}wdx =

oD

Fundamental
lemma

J'{—Au+u+f}wdx:0,vweHl(D) = (# forxe D and %:O on oD.

D
Equation (*) however, is more general than (#), since it also holds under the weaker assumption that

ueC*(D)NC(D) and not u e C?(D) as demanded previously, or at least is a suitable limit of functions

in C' (D). Therefore, we call (*) the weak formulation of (#).

Boris Grigoryevich Galerkin (4 March 1871 — 12 July 1945), born in Polotsk, Vitebsk
Governorate, Russian Empire, was a Soviet mathematician and an engineer.
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The weak formulation (*) has a unique solution u™ which is a minimizer of the minimization
problem we presented above.

Proof:
2 2 2

Since |f|<1inD, f? 31:—%2—% and 2 +f +uf >0 (since(u+ f)2 20). Therefore

2 2 vul? 2 vul? 2
u—+uf Z—f—Z—E Vvx e D. ConsequentIyY[u]:j &+u_+ fu dxz.[ &—f— dx >

2 2 2 2 2 L2 2

2
Vu D D . .

> v 1 dx > I—ldx:—u =N Y[u]z—u and thus the functional is bounded from below.

2 2 2 2 2
Now let {un}neN be a minimizing sequence, i.e. limY[u ]=1 =infY[u]. The C-S inequality implies:

n—oo UEHl(D)

y
<[D* Juls oy

J.fu dx
D

jfu dx
D

[fl<1 c-$ Y2 Y2
s£|f||u|dx < £|u|dx < (Jl;lzdxj (.£|u|2de =\ﬁ||u||L2(D) =N
D]

Now we note that it suffices to consider u, such that Y[u, ] <Y[0]=0. That's because Y[u] > - (which

IS a negative quantity) Yu € Admissible set and 3 inf since there exists a lower bound. So we can choose
u,, such that the minimizing sequense is negative. Now it follows that:

<|pf? M = [|unz(o) <C| bounded where C = 2J/D. Let us

1 X 1
E”un”E(D) SE”un”iﬂ(D) < .[[ fu,dx

now illustrate how we made the transit in the first and the second inequality. Regarding the first:

1/2
oy =10l o IV g = Tl <l g # IO ) = - A o the second

=

2 2 assumption
Y[un]:J‘ M+“_n+ fu, |dx < Y[0]=0 = EJ‘(|Vun|2+|un|2)dxg—J. fu,dx <
D 2 2 20 D

j fu.dx
D
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1
§||Un

2 <
Hi(D)

j fu,dx
D

But we also discover (again from the inequalities above) that %||un||2Hl(D) < |D|]/2 ||un||L2(D) <

C

—
<[pf*2|pf* = |u,

< C fas well for the same constant C. Now we

ZI(D)S4|D| = ”un

H'(D)

in H*(D), in the sense that ||un||H1(D) <C VneN,

know that every bounded sequence {u,} .

has got at least one weakly convergent subsequence. Let us denote this subsequence by

{u } cHl(D).Moreoverwe shall denote its weak limit by u®. But since {u } converges
M ) keN M ) keN

u ,

weakly to u”, i.e. <unk ,v>——><u*,v> vveH'(D), we also know that

k—o0

\ <liminf

k—o0

Unk

HY(D H(D)
furthermore the fact that weak convergence in H* (D) implies weak convergence in L* (D), (something

that can be verified very easy (it is almost obvious), because <u,v>H1(D) :j(uv+ Vu-Vv)dx = <u’V>L2(D) +
D

+<Vu,Vv>L2 o)’ the continuity of inner product and the uniqueness of the limit) it follows that:

(
(Below we denote the subsequence {unk }k & {un}neN ,this notation simplifies the computations a Iot)

"Im<un ) f>L2(D) minimizing
* 1 <112 . 1.. . 2 ’_/% . sequence ) .
Y[u ]:E u Hl(o)+J|; fu dXSEI'rnanf ||un||H1(D)+Lm_£ fundxs!le[un] = :UEIF?{D)Y[U]SY[U ]

sinceu” e Hl(D). At this point, in order to fully justify the inequalities above, let us note that:
6

2 n—w 2 n—w

_ (v o, o [l
limY[u,]=lim| [¢| =—t——=" |+ fu, tdx |=lim——-2+ lim | fu,dx , where we observe that;

2 2
u 1 u |l
|im|| oo zlim” o > Lliminf Ju |2 . Thus indeed: limY[u 1> < timinf Ju [+ lim { fu dx .
n L(D) n 2 n L(D) n
n—ow n—o0 n—o
D

n—o 2 n—o 2 2 now
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These computations lead to Y[u"]< I <Y[u"] = Y[u']=1=infY[u]. Hence u” is indeed a
ueH!(D)

minimizer of the problem.
Uniqueness

Now we fix y € H* (D) and we observe that

2
* * & 2 * H
g(e)=Y[u +ew]=Y[u ]+?||z// Hl(D)+g<u ’V/>H1(D)+g.£ fydx . We saw previously that g(¢)

has got a minimum at £ = 0. Thus g'(0) = 0. As a consequence we get
'(0)=0

g,(‘c“):g”'//HZHl(D)+<u*’W>H1(D)+.£ fydx g:> <u*’w>H1(D)+.D'- fydx=0 = <u*’l//>H1(D) :_.I[ fydx

Vy e H'(D), which is the weak formulation.

Because this relation holds for every w e Hl(D), we have established the existence

of a weak solution of the weak formulation above. Now let us for contradiction assume that there
exists two solutions u;,u; . Then we form the difference v"=u, —u, and obtain for v* that

<v*,://>H1(D) :—E[ fydx+ ! fydx =0. Thus <V*"//>H1(D) ¥y € H'(D). In particular we choose

*

* H * 1 *
w =V",sincev" e H'(D), so |v o =0= v'=0. o

Remarks:

« If we are able to prove that u” € C* (D) C* (D), then by the previous problem, we have the

—-Au+u=-f,inD
existence of a classical solution to the elliptic b.v.p. § au
ra 0,onadD
n

¢ Disadvantage and cure:

The proof was not constructive. The limit u” was identified as a limit of an as yet unknown
sequence. We therefore introduce now a practical method for computing the solution. The idea is

to construct a chain of subspaces H® H® ... H® ... with the property that H* = H*** and
dimH® =k , such that their union exhausts the full H' (D), i.e. there exists a basis {¢,}~ of H'(D)

with ¢ e H"). In each subspace H") now, we select a basis {¢f,¢},...,pf | and we write the weak

ioninH® ko k __ K -
formulation in H' as <v o) >H1(D) = lf(pi dx|,fori=12,..,k.

If we further express the unknown function v* in terms of the basis ¢*, i.e. |V = a%o! | we obtain

for the unknown coefficient vector & the following algebraic (system) fori=1,2,...k :
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K
<Vk1§0ik>H1(D) = _'|.3. f¢ikdx = <jz;,a'j<(0;<1(/7ik>

=—[ fofdx =
D

H'(D)

Kilj( :<¢7ik!€0;<>H1(D) c

=YKkt =d,| (i=1...k)

k
k/ k _k __ k i=
Zaj <(0| ’¢j>H1(D)_ Jl;f§0. dX,forl l,2,...,k = di:—jf¢ikdx =
D

=L

K is called stiffness matrix and the vector d is called the force vector.
The algebraic system above has got a unique solution for all k and the sequence v* converges strongly

to u” (for more about Galerkin and Finite Elements Methods see [B3] and/or [L3]). This practical method,
which we just presented above, is called the Galerkin method after the Russian mathematician and
engineer Boris Galerkin (1871-1945). Actually, for the minimization problem at hand, Galerkin and

Ritz methods happen to be identical. Sometimes, these two methods are confused (or perhaps just fused)
with each other and go together under the title Galerkin-Ritz method. We point out however that the
Galerkin method is more general than the Ritz method in the sense that it is not limited to problems where
the weak formulation is derived from a variation of a functional. In fact, given any pde of the abstract
from L[u] = f, where L is a linear or even a non linear operator,we are able to apply the Galerkin method
by writing the equation to the form <L[u]— f ,1//> =0 YV € H, for a suitbale Hilbert space H. Afterwards,
by integrating by parts, we will be able to throw some derivatives of u to  and thus obtain a formulation
which requires less regularity, for its solution.

This is the central idea and the hard core of the weak formulation into the well known Sobolev spaces.

The last but not the least is an important question regarding how we will choose the subspaces H ),

A very important class of such subspaces forms a numerical method called finite elements. A very useful
choice for the subspace’s basis is the splines (piecewise continuous, or continuous, differentiable functions)
like linear, cubic, hermitian splines etc.

2. Existence of minimizers

In the current section we shall identify some conditions on the Lagrangian L which
ensure the functional | does indeed have a minimizer, at least within an appropriate
Sobolev space.
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2.1 Coercivity, lower semi-continuity

e Coercivity

Before proceeding to stating the "strict” defintions, let us make a short "intuitive” remark,

to better introduce the reader to the subject of coercivity and the reason why it is necessary for

our job here. Let us note that even a smooth function f : R — R and bounded below need not
attain its infimum. Take for example e*. This example (intuitive approach) suggests that we in
general will need some hypothesis controlling I[w] for "large” functions w. Certainly the most
effective way to ensure this will be to assume that I[w] "grows rapidly as [w| — ",

More specifically, let us assume 1< p <o is fixed. We will then suppose that there exist constants

a>0, #=0suchthat|L(x,z,p)>a|p|'— p|forallpeR",zeR,xeU. Therefore:

I[w] = J' L(x, w, Vw)dx > j{a| p[’ —ﬂ} dx p_:ij.[a|Vw|q —ﬁ} dx = aJ.|VW|q dx —ﬁ’J. dx =

]

=, — B[ = |Iwl=a| VW, -] fora>0, 0.

Thus I[w] - o as ||VW||LQ(U) — oo, It is customary to call this estimate coercivity condition on I[].
Furthermore, this inequality leads us to assume that it is quite reasonable to define 1[w] not only for
smooth functions u, but also for functions w belonging to the Sobolev space W** (U ) where

W (U)= {u e L'(U)| 3Vu in the weak sense and Vu e L* (U )} , that satisfy the boundary condition

w =g on dU in the trace sense. After all, the wider the class of functions w for which I[w] is defined,
the more candidates we will have for a minimizer. We will henceforth write:

A= {w eW? (U) | w=g on dU in the trace sense¢| in order to denote the class of admissible

——

functions w. Note here in view of inequality L(x,z, p) 2 a|p[* - B that I[w] is defined
(but may equal +0) for each w e A. For a detailed presentation of the Traces in Sobolev Spaces see [B1].

¢ Lower semi-continuity

Next, let us observe that although a continuous functions R — R satisfying a coercivity condition
does indeed attain its infimum, our integral function 1[-] in general will not. To better understand the

problem, set |/m =inf I[w]| and choose functions u, € A (k=1,2,...) so that I[u, ] ———m. We call

weA

©

{u,},_, aminimizing sequence. We would like to show now that some subsequence of {u,} "

58



converges to an actual minimizer. For this purpose, however, we need some kind of compactness and
this is defintely a problem, since W*¢ (U ) is an infinite dimensional space. Indeed, if we utilize the
coercivity inequality above, it turns out (we will see that shortly afterwards) that we can only

conclude that the minimizing subsequence lies in a bounded subset of W*? (U ). But this does not imply
that there exists any subsequence which converges in W™ (U ) !

We therefore turn our attention to the weak topology. Since we are assuming 1< g < o so that L (U )
is reflexive, we conclude that there exists a subsequence (ukj }w c {uk}f_1 and a functionu eW**(U)
=1 -

u, —==—>uinl'(U)

such that: . Hereafter we will abbreviate it by saying that

Vu, — 5 Vuin LY (U;R")

weakly

U, ————>uin W*9(U). Furthermore, u =g on oU in the trace sense and so u € A.

Consequently by shifting to the weak topology we have recovered enough compactness from the

coercivity inequality to deduce that Uy, — ey sy in W (U) for an appropriate subsequence. But

now another difficulty arises, for in essentially all cases of interest the functional I[-] is not continuous

with respect to weak convergence! In other words, we cannot deduce from I[u, ] ———>m and
Uy, —weakly sy in W (U) that (X) I[u]=Ilim I[ukj] and thus that u is a minimizer. The problem in
]
weakly

fact here is that Vu, —==— Vu does not imply that Vu, ——Vu a.e. Itis quite possible for

instance that the gradients Vukj , although bounded in L* (U ) are oscillating more and more widely

as k — oo. What saves us is the final, key observation that we don't really need the full strength of

[fu]=limI[u, ], but it would suffice instead to know only |I[u] < liminf I[u, ]|. Then we could
jow J joo i

deduce that 1Ju] <m, but owing to m =inf I[w] , m<1[u] = u is indeed a minimizer.

weA

Definition:
I[-] is (sequentially) weakly lower semicontinuous on W*° (U) , provided I[u] < Iirkninf Iu, 1,

weakly

whenever u, —=* 5 u in W (U).
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Convexity

Let us look instantly back to our second variation analysis and recall we derived there the

Z Los, (x,u(x),Vu(x))&&; 20| for £ eR",x €U holding as a necessary

n
inequality
i=1l j=1

condition, whenever u is a smooth minimizer. In fact this inequality strongly suggests that it is
very reasonable to assume that L is convex in its third argument.

(Weak lower semi-continuity)

Assume that L is smooth, bounded below and in addition the mapping p — L(x, z, p) is convex
with respect to p for each ze R, x eU. Then I[-] is weakly lower semicontinuous on W** (U )
e I[u]l< Iirkninf Iu,]

For the proof the reader can see [B5] and [B8].

2.2 Existence and uniqueness

Now we have developed all the necessary ideas and tools in order to be able to continue
by presenting the basic theorems regarding the existence and unigqueness
of minimizers

(Existence of minimizers)

Assume 1[] satisfies the coercivity condition L(x, z, p) > a| p|q — 3 for constants a >0, § >0 and

VpeR",zeR,xeU and is also convex in the variable p. Suppose also that A = &. Then there
exists at least one function u € A solving I[u] = min I]w]

weA

Proof.
Set m= im; I[w]. If m =+ we are done. Therefore let us assume that m is finite. Select a
we
minimizing sequence {u,}, . Then I[u,]———m.
We may take £ =0 in the convexity condition inequality, since (as previously above) we could

otherwise just consider L= L+ 4. Thus L > a|p|* and so I[w]> aJ'|Vw|qu. Now since m < +oo, we
U

conclude (in combination with I[u, ] ———> m) that: sup|Vu, ||Lq(u) < 40 because of the fact
k

a>0

a||Vuk||iq(U) = aI|Vuk|qu < 1[u,]——=—>m<+o = we obtain clearly that SL:p"VUk"Lq(U) < +ool(1).
u

60



Now fix any function w € A. Since w,u, both equal g on dU in the trace sense, we have
u, —weW,(U) (by the definition of the set A it follows that w,u, eW"* (U )) Therefore we are

able to apply the Poincaré 's inequality, i.e. ||v||Lq(U) < c||Vv||LQ(U) vveW,(U),so in the case at hand:

triangular triangular
inequality Poincaré inequalit,

y
”uk”L“(U) < ||uk—W|||_‘4(u)+”W”|_q(u) < C”vuk_VW||Lq(U)+C||VW||Lq(U) < 2C||VW||Lq(U)+C||Vuk||Lq(U)S

sup|Vu HLq(U y<He

s20||Vw||Lq(U)+csup||Vuk||Lq(U) " < C, since ||Vw||Lq(U) <|vw| 0 <@ because w e W4 (U).
k

wa

Consequently we conclude that: sup||uk||Lq(U) < +o0|(2). Estimates (1) and (2) now imply that
k

{u.},, is bounded in W**(U).

0

As a consequence there exists a subsequence {ukj} <{u,},, and afunctionuew (U)

j=1
such that u, —2Y 50 in W (U ). We assert next that u e A. To see that, note that for w e A as
above, u, —weW;?(U). Now W, ? (U) is closed, linear subspace of W (U ) and so, by Mazur's

theorem we conclude that it is weakly closed. At this point let us remind the statement of Mazur, i.e.
a convex and closed subset of reflexive Banach space, say X, is weakly closed.

Hence u—w e W, (U ) Consequently the trace of u on dU is g. In view of the previous theorem now
(remember that by assumption L = L(Xx, z, p) is convex with respect to the variable p and obviously
bounded below by the convexity condition) = I[] is lower semi-continuous,

e Iful< Iirpﬁigf I[ukj] =m. But since u € A, it follows that: I[u]=m = Tlg Iw]. o

We turn our attention now to the problem of uniqueness. In general there can be many minimizers,
so we need to require further assumptions in order to ensure uniqueness. Suppose for instance

L = L(x, p) (does not depend on z) and there exists 9>0 such that | >’ Los, (P X)&E; 2 9|§|2 for

i,j=1

uniformly convex condition

p,< eR" and x eU. This condition says that the mapping p — L(x, p) is uniformly convex Vx eU.

(Uniqueness of minimizers)
Suppose that L = L(x, p) and also that the uniformly convex condition, i.e.

> Lop, (P.X)EE; 2 9|§|2 hold. Then a minimizer u € A of the functional I[-] is unique.

i,j=1
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Proof:

~ L u+da .
Assume u, 0 € A are both minimizers of I[-] over A. Thenv = € A as well and we claim:

|[U]+ [a]

IV < ————

To see l'hIS, note from the uniform convexity assumption that we have

with strict inequality unless u =0 a.e.

uniform
Taylor convexity

L(p.X) =L(q+(p-q).x) = L(q,x)+vpL(q,x)-(p—q)+%( q) DG (p-q) >

> L(q,x)+VpL(q,x).(p_q)+§|p—q|2 forxeU and p,q e R". Here by D7L(q, x) we denote

the Hessian matrix of the second partial derivatives, ¢ e B(q x) and we justify the last inequality

by noting that: —(p q)' D2L(G,x)(p- q)——ZLpp(q x)(p; —a,)(p; - q)>—|p af-

| j=1

Vu+Vi
Setnow q =

, p =Vu in this inequality and integrate over U to get:

NE |[v]+jvp|_(V“;V“ ,x)-(vu;vujdx+§j|Vu—VG|2 dx . Similarly by setting again
U U

_Vu+via

, but p =V this time, we obtain:

112 1] - [ v, L[ YV ) [ YUV gy s 2 v - vaf? dx. Finally, if we add them and
T2 2 8}

divide by 2, we deduce: w > |[v]+§j|w —vaf dx I[v]|(+) = 1v]< '[U]+ 1]

[3] As I[ul= I[a]=min W] < I[v] = '[“]“[“]

<] = I[U]ZI[U]:I[V] = (*) and 9>0
I|Vu—Vl]|2 dx=0 = [Vu-Vi|=0 = Vu=VidinU ae. Finally. sinceu=0=g ondU inthe
U

trace sense, it follows thatu=0 a.e. inU. o
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2.3 Weak solutions of E-L equations

We wish next to demonstrate that any minimizer u € A of 1[-] solves the E-L equation in some
suitable sense. We will need some growth conditions on L and its derivatives. Let us hereafter
suppose the growth conditions:

IL(x,z, p)|< c(|p|q +2[ +1) and also ||V,L(x,z, p)| < c(| p|q_1+|z|q_l+1) (i=z and p) ,for all

peR",zeR,xeU. Let us now refer to the motivation for the definition of weak solution.
Consider the b.v.p. for the E-L pde, associated with our functional L, which for a smooth

— L L _ .
minimizer u reads: (*) .Zﬂ:( P (x,u,Vu))Xi +L,(xu,vu)=0inU
u=g onou

If we multiply now this b.v.p. by a test function ve C; (U ) and next integrate by parts, we arrive
at the equality J{Z L, (x,u,Vu)v, +L,(xu,Vu )v}dx =0 (due to the compact support of v).
u Li=l

Of course this is the identity we first obtained in our derivation of this equality in the introductory
chapter. Now assume u e W™ (U ) Then using one of the growth conditions, to be more specific

VL 2z, p) <c(|p " +[2 " +1)fori=z orp, s0 |V, L0 u, V)| <c(uf T +[Vu[T +1)e LY (U)

forq' = ﬁ and %+$ =1. Similarly we obtain |VZL(x,u,Vu)| < c(|u|‘H +|Vu|q’l +1) c LY (U)

Consequently, we see using a standard approximation argument that the equality

n L x,u,Vu)v, +L X,u,Vu x =0 is valid for anyVEW (U .Actuallywe getthis result
p; X; 4 0lq
i=1

u

because of the fact that C;' (U ) is dense to W,* (U).
Definition :
We say u € A is a weak solution of the b.v.p. (*) for the E-L equation provided

I{Z: L, (U, Vu)v, +L, (X’U,VU)\/}dXZO for all ve W, (U)

u
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(Solution of E-L equation)

Assume L verifies the growth conditions above and u € A satisfies 1[u] = mi/p I[w]. Thenu is

a weak solution of the b.v.p. (*).
Proof

Fix ve W, (U ) and set i(z) = I[u+zv] for = € R. In view of the first growth condition, i.e.

IL(x,z, p)|< c(| p|* +|z[* +1) , we see that i(z) is finite for all 7, due to the fact that
li(z)|< ﬂL(x,u +7v,VUu +er)‘dx < '[c(|u +7v' +|Vu+ vy +1)dx and since u,veW* (U )=
U U

|i(r)| < +o0. Let now 7 = 0 and write the difference quotient:
i(z)—i(0) __[ L(X,u+7v,Vu+7vv)—L(x,u,Vu)
U

dx and in order to simplify a bit the notation we

T T

L(x,u+zv,Vu+7Vv)-L(x,u,Vu)

T

denote the difference quotient: L (x) = fora.e. xeU. Clearly

L (X)T)Zn: L, (x,u,Vu)v, +L,(x,u,Vu) ae.and this because of:
i=1

L=L(xu+zv,Vu+Vv)= du =L, (x,u,Vu)v+V L(x,u,Vu)-Vv and also (by definition)
T 7=0
L = Iirr01 L (x) = Iirrol L(x,u v, Vu +NV)_ L(x,u,Vu) . Furthermore we observe that
T 20 7 T T
L’ (x) = EJ.% L(x,u+sv,Vu+sVv)ds = (Which is the fundamental theorem of calculus)
T

0

- EI{Z: L, (X,u+sv,Vu+svv)v, +L,(x,u+sv,Vu +va)v}ds .

o

a qQ
Now we will use Young's identity ab < a—+b—,, where £+l, =1. Then, since u,v eW*(U)
a q q q

growth inequalities and Young 's inequality imply after some elementary calculations that:

L”(x)‘ < c(1+|u|q +v[* +[vul* +|vy|* ) e L'(U) for each 7 = 0. Consequently, we may invoke

Lebesque's dominated convergence theorem to conclude that i'(0) exists and equals

I{z L, (xu,Vu)v, +L,(x, u,Vu)v}dx =0 . But then since i(-) has a minimum at 7 =0, we
u Li=l
know that i'(0) = 0 and thus u is a weak solution according to our definition above. o
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Remarks:

« In general E-L equation will have other solutions which do not correspond to minima of I[-]
(we shall discuss it analytically later, in the section of “critical points"). However, in the special
case that the joint mapping (p, z) — L(x,z, p) is convex for each x, then each weak solution is

n

-> (L U,V L (x,u,Vu)=0, U
in fact a minimizer. To see this, suppose u € A solves ,Z_l:( pi(xu u))xi+ (xu,Vu)

u=g, ou
in the weak sense and select any w € A. Utilizing now the convexity of the mapping (p, z) — L(x,z, p)
we have L(x,z, p)+V L(X z,p)-(q-p)+V,L(X,z,p)-(W—2) <L(x,w,q) (convexity's identity)
and let p=Vu(x), q=Vw(x), z=u(x) and w=w(x) and integrate over U to find that:
I[u]+J{VpL(x,u,Vu)-(VW—VU)+VZL(X,U,VU)-(W—u)}dx < I[w] . Now in view of the E-L
U

equation the integral is zero and therefore I[u] < I[v] for each w e A. Let us now clarify why the

integral equals zero. (remember here the notation: div(V L)=V-(V,L)= Zn:(Lpi )X_ J
I{VpL(x,u,Vu)-(Vw—Vu)}dx = j MoﬁpL(x,u,Vu) -fidS —J‘div(ﬁpL)(w—u)dx , SO We get:
U ou U
I{VPL(X,U,VU)-(VW—Vu)+VZL(x,u,Vu)-(W—u)}dx = J'{—div(?pL)+VZL}(W—u)dx =0.

]

U

E-L
« In the case of systems, we have exactly the same results as here. Also the growth, the convexity and

the coercivity conditions are the same, as well as the assumptions in existence, uniqueness and the
weak solution theorems. Needless to say that the results are the same too :)

2.4 Regularity

In the current section we shall discuss the smoothness of minimizers to our energy functionals.
This is generally a quite difficult topic and so we shall make a number of strong simplifying
assumptions, most notably that L depends only on p. Thus we henceforth assume that our

functional 1[] has got the following form. I[w] = j{L(VW)—Wf }dx forf e *(U). We also
U
take g = 2 and suppose as well the growth condition |V ,L(p)| <c(|p|+1) for peR". Then, any

minimizer u e A is a weak solution of E-L equation —"(L, (Vu)) = f inU,

i=1 %
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dueto [, =—f,
here L = L(Vw) —wf
simply integration by parts to obtain

] = —div(V,L(Vu))= f in U that is (in weak formulation): we employ

jzn: L, (Vu)v, dx :I fvdx = ijL(Vu)-Vv dx :j fv dx Vve Hg(U), where Hy (U ) =W;?*(U)
U U U

u i=l

Second derivative estimates

We now intend to show that if u € H'(U) is a weak solution of the non-linear pde

(E-L equation) —Z(Lpi (Vu))x_ =f inU ,thenueHZ (U)! This is the main regularity's

result. But in order to establish this, we need to strengthen our growth conditions on L. Let us

first of all assume that ‘DZL(p)‘ < c|,where here D2L(p) is the Hessian matrix of second derivatives,

for p e R". In addition, we also suppose that L is uniformly convex, i.e. there exists a constant 9>0

such that z Lpipj (p)&¢; 2 3|§|2 for all p,& € R". Clearly this is some sort of non-linear analogue of

i,j=1

the uniform ellipticity condition for linear pdes, where we have had z al (&S, 2 3|§|2 fora.e. xeU
i j=1

and all £ e R" for the partial differential operator L such that (in divergence form):

Lu=->a" (XU, + Pl (X)u, +c(x)u, because we observe that :
i,j=1 i=1

div(AVU) = div{ia” (x)u, ] =3 (@0u,) =D aeou,, + Y, (a°00) =D a0y, +

i,j=1 i, =l i,j=1 N

+D U, (zaia”(x)j , 50 after a change of the index from j to i in the last some, we justify why
i \im OX,

b (x)

the above expression is indeed in divergence form.
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(Second derivatives for minimizers)

(i) Let u e H'(U) be aweak solution of the E-L " (L, (Vu)) = f in U, where L satisfies

X:
i=1 !

2

the growth condition |D2L(p)| <c and the uniform convexity condition »_ Los, (P)ES; 2 &

Then: ue HZ (U)

i,j=1
(i) If in addition u € H;(U) and oU is C?, then: with the estimate ||u||H2(U) <c|f ||L2(U

)

Proof:

Fix any open set V. cc U and choose then an open set W so thatV ccW ccU.
=1 onV

Select a smooth cut off function ¢ satisfying 1 =0, in R"\W
0< <1, inbetween

(for the cut off function, see figure 1 below)

: A7 é‘\’“\“"“

e Figure 1 illustrates how we define our “cut off” function over these three sets,
the two of them are compactly contained to the third.

e Figure 2 illustrates one assertion we will make below, in our attempt to prove a
significant for our proof statement, according to which a suitable selected
change of variables will still belong to the superset U.
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The purpose of a cut off function in the subsequent calculations will be to restrict all expressions
to the subset W which is a positive distance away from oU. This is necessary, as we have no
information concerning the behaviour of u near oU.

Let now |h|>0 be small, choose k € {1,2,...,n} and substitute [v = -D," ((*Dju)| into the weak

formulation of E-L equation, i.e. Iz L, (Vu)v, dx :j fvdx ,vveH; (U ) We are employing
— )

u i=

u(x+he,)—-u(x)

here the notation for the difference quotient |D'u(x) = ™

for x eW. As a result

u(x—he,)—u(x)
-h
after applying the change of variables x —he, =y so dx =dy , taking into consideration that the

D, "u(x) =

. Moreover the following identity juDk’hvdx = —IvDQudx holds, since
U U

domain U does not change since we have taken |h| > 0 sufficiently small and selecting k appropriately

50 as to still be inside the domain U we get that: .[uDk*“vdx = —J'u(x) vix- heﬁ) ~V0) G
U U

_ =x-+he,
:—Iu(y+hek)v(y) v:\y+hek)dyz_Iu(x+hhek)v(x) dx+_[u(x+hek)hv(x+hek)dxy -
u

U V)

= wdx +| %dx =— [vDJludx. As a consequence we deduce that:

U U ]
[> L, (vu)(-D;" (¢°Dfu)) dx=[f(-D,"(¢*Dju))dx = (obviously (Dff) =D/(f, )) =
U

n
: X
i=1 X u '

M=

N

D} (L, (Vu))(&’Dju) dx = —j fD," (&*Dyu)dx. Now let us observe that
' u

Fundamental

D! (L, (V1)) = L, (Vu(x+he,))—L, (Vu(x)) teorem %j% L, (sVu(x+he,)+(1-s)Vu(x))ds =

' h

1 n

J'Z Los, (sVu(x+he)+(1- s)Vu(x))(uXj (x+he,)-u, (x))ds = Zn:ai*j‘(x) Dfuxj (x)| for

0 ij=1

[EEY

= |

1
ai?(x) = I Lpipj (sVu(x+ hek)+(1—s)Vu(x))ds (i, j =1,2,...,n). Now we must substitute this suitable
0

expression of D (Lpi (Vu)) above and perform simple calculations, to arrive at the identity:
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Zn:IDf(L (Vu))(&*Du). dx——j D" (¢*Dju)dx =

i=1
n

J.a”(x)DkuX (x)( Dy u) dx_—J' fD," C D u)dx =

i,j=1y

ZJau (x)Dgu, C*Dyu, dx+ Zj‘a,J (x)Dgu, 2¢¢, Diu dx_—j fD," (¢*Dyu)dx , where
i,j=1y i,j=ly

we denote the last equality’s terms as A, A, and B respectlvely. So the equality above can be

abbreviated as A + A, = B. Now the uniform convexity condition 2 Lpipj (p)&<,; 2 3|§|2 (actually
i j=1
£#0
this is equivalent to &' D’L(p)¢& > ,9|§|2 < (by definition) D*L(p) > 0 < the Hessian matrix is
positive definite < convex) implies that:
§i 51‘
A= ”Z(; L., sVu(x+hek)+(1 s)Vu(x))DkuX D u, dsdx > IC S‘D (Vu)‘ dx =

uoij=t

A > SI - ‘DQ (Vu)‘ dx| . Furthermore, by employing the growth condition ‘DZL(p)‘ <c,
U

lonV
(remember that V ccW —c U and the fact that {=40< <1 isasmooth cut off function)
0,inR"\W

1

A< H

uo

sVu(x+he )+(@Q— s)Vu(x))DkuX D/ «U2CC, dsdx , but we observe that

Zn: Lyp, (SVU(x+he)+(1-s)Vu(x)) D:ijCxi = (VZ;)T D’L(sVu(x+he,) +(1-s)Vu(x)) D (Vu) =
| ‘DZL(D)‘SC

Zn: Ly DQ(uXJ)DQUZQZ;Xi :‘(vg)T DZL(p)D;‘(Vu)Dk“uzgrnd < c|v¢||Dy (Vu)| 26| Dju| <

i,j=1

< CC‘DQ (Vu)

ZQ‘DM, where the last inequality holds since ¢ is smooth over a closed and bounded

domain c R" and dimR" = n < +oo (finite dimensional) = compact = 3¢ > 0 such that |VC| <¢, in
other words, a continuous function over a compact domain is bounded. As a consequence, we obtain
the following estimate for the integral A, : (note first that since =0 in R"\W, {=0 outside W, that's
why we choose to restrict our analysis below inside W)

cauchy

|A2|SICZQ‘DE(VU)“DQu‘dx s IC ‘D (Vu)‘ dx +— HD u‘ dx , where we have employed the
W
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2
Cauchy inequality with ¢, i.e. ab < ga® +Z— (a,b>0and & >0). At last we obtain:
&

A< e[ [Drvu)l dx+ S [|ppuf” dx| Finally we shall find an estimation for the quantity B
w gW

as well. To be more specific, we will try to show that the following estimate holds true:

|B|< gjgz [=4 (Vu)|2 dx + EJ' f2+|Vu[* dx . For this purpose we first need to establish that the
U & V]

following inequality is indeed valid: j|Dk“u|2 dx < I|Vu|2 dx
W U

The procedure we will follow below is quite similar with the proof of Poincaré 's inequality.

Observe first that %u(x +the, ) =u, (x+the,)he,, therefore it follows that:

Fundamental
theorem

1
u(x+he)-u(x) = %u(xﬂhek)dt = quk (x+the, )he dt =
0

O L

Nlgvul

%
u, (x+the)|dt < h.[|Vu(x+thek)|dt:>
0

!
u(x+he,) —u(x)| < hj
0

u(x+he,) —u(x)|

1 1 _
< [[Vu(x+the,)|dt = D[ < [1[vu(x+the,)|dt <
0 0
1

1 1 Y2 1
< jlz t (J.|Vu(x+thek)|2 dtJ = ‘Dfu‘z < J'|Vu(x+thek)|2 dt. Therefore
0 0

2 1 ) Fubini 1 ) )
HDfu‘ dx < ”|Vu(x+thek)| didx = ”|Vu(x+thek)| dxdt and now we will proceed by
w W 0 ow

making the following change of variables y = x +the, , so dy = dx. Moreover we note that since
xeW, y eU because of the choice of h. Remember that we have selected |h| >0 small enough. A

convenient selection would be 0<|h| <%dist (W,8U ). In that way, we would be able to a-priori

guarantee that for a given x e W, the change of variables y = x + hte, would still belong to U, since
te[0,1]

ly—x|=|hte,| < |h| <%dist(W,aU ) = y €U (in the worst case).

(see figure 2 above)
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Consequently _HDli‘u‘z dx < j. [IVu(x+the, )| dxdt < .1“'|Vu(y)|2 dydt = [[Vu(x)[" dx , where
w ow ou U

the last step holds since we integrate a non-negative function, hence the extention of the domain
of integration does not affect in any way the inequality (we have assumed V ccW ccU). Thus

we have proved the required estimation, i.e. J“thu‘2 dx < I|Vu(x)|2 dx (*) This inequality will be
i U

proved very useful in our computation below. Now that we have established this result, we are
ready to continue by proving the estimate for B. And last but not the least, let us note that

it still holds true for D, and W =U, because first D," apparently does not change anything at all
and secondly we can consider W =U (in the sense that we extend it), since =0 in R"\W,

Cauchy

|B| = s.f|f||v|dx Its j|v| dx+—.[|f| dx. At this point we need to further estimate the

j fudx

j|v| dx, therefore we observe that: j|v| dx = ”D £*D{u) ‘ X<HV (¢’Dy u)‘ dx <

< cI(|Dk“u| +¢°|Dy (Vu)| )dx < cI(|Vu|2 +¢[oyf (Vu)| )dx. Now the pre-last inequality does
w U

indeed hold true since: V(CZDEU) =2CVEDu+ PV ( Dfu) =2¢VED.u+ %D (Vu), because the

difference quotient operator is linear and as such it can be converted with V during the derivation.

trlangular
inequality

\v(gzopu) < 26)ve]|Dful+&* D) (V)| < ¢ (2¢" Dy

) where [V¢|<c”, since ¢

is smooth, so V( is continuous in a bounded domain = |VQ| is bounded. Now we get:

(a+b) <2(a +b?)

+¢|D) (Vu)|) (2c )
£6|Dku| +2¢° |Dk (Vu)| Sc(|Dku| +¢? |Dk (Vu)| ) ,forc:max{é,Z}.Thereforewe have proved

\v (S u)‘ <¢*(2c|Dy

the required: ‘V(QZDEU)‘Z < c(|Dfu|2 +¢*|Dy (Vu)|2), which verifies that indeed the following

j|v|2 dx < cj‘(|Vu|2 +¢? |D;? (Vu)|2)dx holds true. Applying now this estimate in the estimate for B,
U U
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we obtain: |B| < g£|v|2 dx+i£| f[ dx<cef[vu dx+&:g£§2 D (Vu)‘2 dx+i£| £ dx.

U

We conclude |B|<&[¢’|D] (vu)[ dx+§j|1‘|2 dx+cz[|vul* dx< [ ¢ |Df (Vu)[ dx+
U u u v

+£I( f? +|Vu|2)dx ,for ¢= max{gz,l}c , which was the required estimation for the quantity B.
EU

|B| < gJ.CZ‘Dk“ (Vu)‘2 dx+£j( f? +|Vu|2)dx . We select now ¢ :% to deduce from the foregoing
U EU

bounds on A, A,, B the estimate:

[c|or (Vu)| dx < cj( £2 +\Dk“u\2)dx < cj( £2 +|Vu|2)dx , the last inequality holds by the

U w U

application of (*) and the fact that for given non-negative functions, we can extend the domain

of integration.

Now from our estimate above, i.e. jgz ‘Dk“ (Vu)‘2 dx < cJ'( f? +|Vu|2)dx and from the fact
U U

that ¢ =1 on V, we find that: HDE (Vu)‘2 dxgcJ.(f2+|Vu|2)dx fork =12,..,n and all
\% U

sufficiently small |h| > 0. Consequently, by applying the following theorem from the Sobolev
spaces, we can deduce that Vu e H'(V) and so u € H*(V). This is true for each V cc U, thus
ue Hlf)c (U )

Theorem

(i) Suppose that 1< p <o and W*?(U). Then for eachV cc U = ||D“u

<c ||Vu||Lp(U) for some

L°(v)

constant ¢ > 0 and for all 0< || < %dist (V,0U). Here we denote D"u = (D/'u, Dju,..., Dju) where

_ u(x+he)—u(x)

Dlu the difference quotient for 0 < |h| < %dist (V,0U) andk =1,2,...,n.

(i) Assume now 1< p <oo and u e L (V) and also that there exists a constant ¢ > 0 such that

||D“u

,<¢ for all O<|h|<%dist(v,au). Then [ueW"P(V) with |Vu]|

<
LP v L (V) = C.
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If now u e H}(U) is a weak solution of E-L equation —Z(L (Vu)) = f inU and the

i=1

boundary U is C?, we can then prove that u € H?(U) with estimate:

||u||H2(U) < c(|| f ||L2(U) + ||u||H1(U)) . However we shall omit the proof of this statement here as it is

rather longish and technical as well. Now let us observe that from the condition

i Loo, (P&, 2 3|§|2 follows the inequality (VL(p)—VL(0))- p= 9| p|2 forpeR". To see

ij=1
that let us note that it is a straightforward result from the Mean Value Theorem, because

VL(p)-VL(0)=DL(p)p for peB(0,p) = (VL(p)-VL(0))-p=p DL(P)p=Y|p|

If we then put v =u in the variational formulation of the E-L equation, i.e.

| z L, (Vu)v, dx J' fvdx for all ve H}(U), we can employ the estimate above to derive the

u i=l

bound ||u||H1(U) < c|| ||L2(U) and so finish the proof of the theorem, i.e. ||u||H2(U) <c|f ||L2(U) , because
apparently we have ”u”H ) — C(” ||L2(U) +”u”H (U)) (” ||L2(U) +C” ”LZ(U)) LZ(U)
¢ = max {1,¢} c. Finally, in order to complete the proof, let us justify the bound at |u] ,. o S c||f 20"

sz (Vu)u, dx—j fudx < _[fudx jVL(p) pdx>j(3|p| +VL(0)- p)dx - j9|Vu| dx +

u i=l
+IVL(O)-VU dx. Consequently we get I(9|Vu| +VL(0)-Vu)dx SI fudx =
U U

SIVUL.,, < [(fu=-VLE©)-Vu)dx < [|fu-VLE©)-Vuldx < [ (| ful+[VL©)- Vujox <
U U

U

) —

I(| f [|ul+|VL(0)]|Vul)dx < |f ||L2(U) ||u||L2(U) +c||Vu||L2(U) , Where the constant ¢ appears because L is
U

smooth and thus VL is continuous in a bounded domain U < R", so 3 ¢ > 0 such that |VL| <c. Now

remember the assuumption in the third step of the proof, i.e. u e H;. So we are able to apply Poincaré

C

——
inequality [u . oS c(U)|Vul.. o Therefore ||f . " Jul,: e I " [Vul .. o Psa result, we get:

L(U)ﬁ'm?mcmg )

e archimedean property actually asserts that 3 € such that

3||Vu

<|f

||U 2()

e SCI

*(u) *(U) LZU)|

o<l

archimedean

property
) ) <

o>

Q::
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c<c|f| Now we shall apply Poincaré 's inequality once again and in combination with what we

2(U) _c(U)||Vu L2) <cU)e ”f

)’

just showed, we get: ||u

2 (U)

ull

M) (||u||L2(U) +||Vu||L2(U)) SC||f||L2(U) , which proves the required. QED o

Remarks on higher regularity

We would like to show that if L is infinitely differentiable, then so is u. By analogy with the
regularity theory for second order linear elliptic pdes, it may seem natural to extend the H?

loc

estimate from the previous section to obtain further estimates in higher Sobolev spaces HY_(U)
for k =3,4,5,... Unfortunately, this method will not work :( for the non-linear E-L pde! The
reason is this. For linear equations, we could, roughly speaking, differentiate the equation many
times and still obtain a linear pde of the same general form. Whereas if we differentiate a non-
linear pde many times, the resulting increasingly complicated expression quickly becomes
impossible to handle! In general, much deeper ideas and techniques are called for, the full develop-
ment of which is beyond the scope of the work at hand. We will nevertheless at least outline the
basic plan.

To start with, choose a test function we C;'(U), selectk € {1,2,...,n} and setv=-w, in the

identity IZ L, (Vu)v, dx = J fvdx , where for simplicity we now take f = 0. So we get that

u i=l

IZLpl(Vu)(—W ), dx= IZLpl(VU)( ), d x=[-F w, dx=0 =

u i=l u i=l

Jz L, (Vu)(—wxl) dx =0 . Since we know that u e H?

u i=l

=- .[ZL (Vu)y nds +Iw [ZL (Vu)j dx = .[W (ZL (Vu)j dx =0, because the

ou i=l Xg

(U), we can integrate by parts to find:

loc

surface integral above is zero, since we C;’(U) and so w, e Cy"(U). But now we note that

n

™ {Z L, (Vu )} Z{a% L, (uxl,...,uxn)} = Zn:{zn: Loo (VU |= Z L,.p, (VU)U, , . Therefore

i=1 k i,j=1

(a) j 2 Ly, (VU)U, W, dx =0] . Next we write (b) and (c)|a’ =L,, (Vu)| (i.j=12,...,n)

ui,j=l
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Fix also any V cc U. Then after approximating we find from (a), (b) and (c) that:

IZ a' (x)ij w, dx =0 forallwe H(V) || and this is true because C;° (V) is dense to H (V).

uij=l

This is to say that G e H'(V) is a weak solution of the linear, second order, elliptic pde:

—Zn:(a‘i(x)axj ) =0inV = ||div(Ava)=0in V]|, for A= (a’ (), =(Lpipj ) = D?L = Hess(L).

i,j=1

But pay attention to the fact that we cannot just apply the regularity theory developed for linear, 2nd
order, elliptic pdes to conclude from the equation div(AVl]) =01inV that 0 is smooth! The reason

being that we can deduce from the growth condition ‘DZL(p)‘ <candthea’ = Lpipj (Vu) only (1)

that ‘a”(x)‘s c,ie thata’ e (V) for (i, j=1,2,..,n), whereas according to the regularity
theory for linear, 2nd order, elliptic pdes a’ needs at least be C* if we wish to achieve H?-regularity,
while we must demand a” € C™" in the case we would like to attain higher regularity. Finally in order

to obtain infinite differentiability, a’ needs apparently be C*.
However, a deep theorem, due independently to De Giorgi and Nash, asserts that any weak solution

of div(AVl]):O in V must in fact be locally Holder continuous for some exponent y. (see [B11],

chapter 8, for more details and results related to this theorem). Thus if W ccV, we have G e C*" (W)
and so u e C7 (U). Return to the definition a = L,,,, (Vu) fori, j=1,2,...,n. If L is smooth, we now

loc

n

know that a’ € C27(U). Then the relation —Z(Lpi (Vu)) = f in U and the Schauder's fixed point

loc
" X
i=1 '

theorem (see again [B11] , chapters 4 and 6) assert in fact that u  C2/ (U). But then a’ e C;/ (U) and

loc

so another version of Schauder's estimate implies that u € C>7 (U). We can continue this so-called

loc

"hootstrap" argument, eventually to deduce that u e C'” (U) for k =1,2,3,.... and consequently .
For even more information and a deeper analysis regarding topics of regularity in the calculus of
variations see [B10]. Finally we shall close this section by presenting, as a reminder, the definition of the

Holder space.
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The Holder space C*” (U) consists of all functions u e C*(U) for which the norm |ju] chr(g) <O
where ||ul (o +Z[D u] . Now ||u|| _ _sup|u(x)| , the ™ — Holder semi-
‘ ‘_ xeU

norm is [u]

cor() = SU {M} and the ™ — Holder norm is (0) _||u|| +[u]c0/

X, yeU |X y|

X#Y

So the space C*” (U) consists of those functions u that are k — times continuous differentiable and
whose k™ -partial derivatives are Holder continuous with exponent y.

Such functions are well behaved and furthermore the space C*” (U) itself possesses a good mathema-

tical structure. Finally we would like to mention that C*” (U) is a Banach space.

3. Constraints

3.1 Non linear eigenvalue problems

We first investigate problems subject to integral constraints. To be more specific let us

look at the following problem of minimizing the energy functional I[w] = %“VWF dx

over all functions w with, say, w=0 on dU, but subject now also to the side condition

that J[w] = J-G(W)dX =0, where G:R — R is a given, smooth function . We will
U

henceforth write g = G'. Assume that |g(z)| < c(1+|z|) and so |G(z)| < c(1+|z|2), zeR,
for some constant c. Finally we introduce as well an appropriate admissible class
A={weHg(U) | J[w]=0}, where U is an open, bounded and simply connected set with

oU e Cl,i.e. it has a smooth boundary.
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Theorem| (existence of constrained minimizers)

Assuming that A = . Then there exists u € A satisfying I[u] = rvrvuil I[w]

Proof.

Choose, as usual, a minimizing sequence {uk}:):l < A with the property I[u ] > m= m I[w].
Then we know that we can extract a subsequence Uy, — 25 uin HI(U) with I[u]<m.

We will be done once we show that J[u] =0 so that u € A. Then if u € A and
I[usm= ian I[lw] = I[u]=m and since there is an element of the class A that attains the

infimum, this means that it is indeed a minimum. Utilizing the Rellich-Kondrachov compactness

weakly

Theorem, we deduce from the fact that u, —***—u in H;(U) that u, ——u in L".

Consequently:

0 since
9[u] =|[u] - JherT ™

& is between u and u, ) = I|g(§)||u —u,]dx < (because lg(u)|< c(1+|u|)) <
U

G'(&)||lu-u,|dx= (G eC" and

< [l6W-Gu)x < |

j¢f<max{lulu}
jc|u—uk|(|§|+1)dx§ < cj|u—uk|(|u|+|uk|+l)dxﬁ>0 = J[u]=00o
U U

(E-L equation through Lagrange-multiplier)

Let u € A satisfy I[u] = miArJ I[w]. Then there exists a real number A such that

jVu-Vv dx=/1_[g(u)v dx| Vv e Hy(U).
U U

Proof.
Fix any function v e H,(U). Assume first g(u) = 0 a.e. within U. Choose then

any function we H;(U) with J'g(u)w dx = 0. This is possible because of our assumption
V)

g(u) =0 a.e. in U. Now write

j(z,o)=J[u+7v+ow]= jG(u +7v+ow)dx (7,0 € R). Clearly
U
j(0,0) =J[u] = _[G(u)dx =0. In addition, j is C* as a composition of a C* function G and
U

the linear u + zv+ ow. Moreover we compute that

ﬂ(r,a) :Ig(u+rv+aw)v dx
or o

ﬂ(r,a):_|.g(u+rv+ow)w dx
o U

Consequently jg(u)w dx = 0 implies that S—J(O, 0)=0
U O

0
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As a result we can apply the Implicit Function Theorem . Therefore, there exists a C'-function
¢R - R (we write o=¢(r)) such that ¢(0) =0 and j(z,¢#(r)) =0 for all sufficiently small ,

say |2'| <7, Differentiating implicitly now, we discover that:

( (7)) = (r #(r )) (r #(z)) #'(r)=0. So for =0 we have that ¢(0) =0 and

861 (0,0) j g(u)v dx
whence ¢'(0)=-<% "(0)=—Y— .
’ ;‘(0,0) =70 [auyw dx
O U

Now set w(z) = zv+¢(7)w, (|r]<7,)

and write i (7) = I[u+w(z)]. Since j(z,¢(r)) =0 V|| <7, implies that
Ju+w(r)] = jG (u+w(r))dx=0 (by the definition of j) we see that u+w(r) € A,
U

So the C' function i(-) has a minimum at 0. Thus we have that:

ozi'(O)z(f—Ti[mw(r)]

:il[u + 7V +Wep(7)]
dr

:di%IiVu+1Vv+go(r)Vwi2 dx =
T

=0

(/’(0) 0

=0
jVu Vv +¢'(0)Vw)dx

:%LJ;Z(VU+MO+WO)-(VV+¢)’(1)VW)dx : U

At this point recall the previous calculation, where we have found that

jg(u)v dx J'Vu -Vw dx
"(0)=—Y¥Y——— and define |1 = Y———| to deduce the desired equality which is
7(0) J.g(u)wdx J.g(u)wdx ey
V] V]

IVu-Vv dx:ljg(u)v dx VveHg(U).
U U

Suppose now that g(u) =0 a.e. in U.
Approximating g by bounded functions, we deduce that VG(u) = g(u)Vu =0 a.e.
Hence, since U is simply connected, G(u) is constant a.e. It follows then that G(u) =0 a.e.

because J[u] = IG(w)dx =0.As u=0o0ndU in the trace sense, it follows that G(0) =0.
U

But then u =0 a.e. as otherwise I1[u] > 1[0] = 0. Since g(u) =0 a.e., the identity
jVu Vv dx = ﬂj g(uvdx YveH; (U ) is trivially valids in the case at hand, for any A o
U U
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Remark
According to the identity above, u is a weak solution of the non linear b.v.p.

—Au=A1g(u), inU ) o . .
{ 0 or?éu) where A is the Lagrange multiplier corresponding to the integral
u=0,

constraint J[u] = 0. A problem of the form above for the pair of the unknowns (u, 1), with
u =0 isanon linear eigenvalue problem.

3.2 Unilateral constraints, variational inequalities
We study now calculus of variations problems with certain pointwise, one-sided constraints
on the values of u(x) for each x e U. For definiteness, let us consider the problem of minimizing,
say, the energy functional: I[w] = J'%|Vw|2 — fw dx among all functions w belonging to the
U
"admissible" set: A:{We Hg (U )‘WZ h ae.in U} for h:U — R is a given smooth function,

called the obstacle.

The convex admissible set A thus comprises those functionswe H; (U ) satisfying the one-side,
or unilateral, constraint that w > h. We suppose as well that f is a given, smooth function.
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(Existence of minimizers)

Assume that A = &. Then there exists a unique function u € A such that I[u] = TT I[w].
Proof :

The existence of a minimizer follows very easily from the general ideas discussed so far.
We need only note explicitly that if {ukj }; < A is a minimizing sequence with

Uy, — ey s uin Hé(U ) then by employing (as usual) compactness, we have that

U, —"®¥—uinL*(U). Since u, >h ae. , it follows that u > h a.e. Therefore u € A.

[2.] We now prove uniqueness. Assume u and (0 € A are two minimizers with u = . Then

Lvu+var_ ¢ (‘”“j dx=IE(|VU|2+2VU~VU+|VG|2)—
2 2 18

LI+U

eA and I[w]= _[

—f (u ;uj dx . Now by employing the equality: 2a-b=|a| +|b| —[a—b|*, we obtain

1 N 2 u+a 101
I[w]:£§{2|Vu|2+2|Vu|2_‘v(u—u)‘ }—f (T) dx<ELJ;E|Vu|2_ fu dx +

+%j%|va|2 —fadx = |I[w]< M , the "strict" inequality holds since u = 0. However
U

this is a contradiction since u and U have been both considered to be minimizers o

Now our target is to compute the analogue of E-L equation, which for the case at hand
turns out to be an inequality.

Theorem| (Variational characterization of minimizers)

Let u € A be the unique solution of I[u] = mip I[w]. Then we have the variational inequality:

IVuV(w—u) dxzjf(w—u) dx| Yw e A.
U

Proof:

Fix any element w e A. Then for each 0 <z <1, we consider the convex combination
u+7(w-u)=(1-7)u+7rw which belongs apparently to A, since A is a convex set. Thus if we
seti(z)=I[u+z(w—u)], we see that i(0) <i(z) V 0<z<1andi(z) is also smooth. Therefore
i'(0)>0.

80



Now if 0 < 7 <1, then we've got that:

i(r)—i(0) =1I{‘VU+N(W—U)‘2 —|vu[* y (n/+r(wu)”/)}dxz

T Ty 2
T‘V(W—U)‘z
—I{Vu-v(wu)vtf f (wu)}dx . Thus i’(0) > 0 implies (by taking"lim")
U

0<i'(0)= _[{Vu V(w-u)-f (W—u)}dx , which proves the theorem's assertion o
U

Interpretation of the variational inequality

To gain some insight into the above variational inequality, let us quote without proof a
regularity assertion, which states u e W >~ (U ) provided oU is smooth. Hence the set

O ={xeU|u(x)>h(x)} is open and C = {x eU|u(x) =h(x)} is relatively close. We claim
that in factu e C”(0O) and —Au = f inO.

To see this, fix any test functionve C; (O) Then if |z'| is sufficiently small,
W=u+7Vv>h, and so u € A. Thus the variational inequality

IVuV(w—u) dx > I f (w—u) dx, Ywe A implies that TI{VU'VV_ fv}dx>0.

] U

(6]
This inequality is valid for all sufficiently small z, both positive and negative, and so in fact

[{Vu-vv—fv}dx=0 ¥ veC;(O). Hence u is a weak solution —Au = f in O, whence
o

linear regularity theory shows that u € C*(0).
Now if ve C; (U) satisfies v>0 and if 0<z <1, thenw=u+7ve A, whence

I(Vu -Vv— fv)dx > 0. But since u eW** (U ), we can integrate by parts to deduce that
U

I(—Au — f)v dx >0 for all nonnegative functionsve Cy (U). Thus —Au> f ae.in U.
U

We summarize our conclusions by observing from —Au=f inO, —Au> f in U that
u>h, —Au>f ae. inU »
—Au=f onUN{u>h} )
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3.3 Free boundaries

free boundary

The free boundary for the obstacle problem

The set |F =00 (U | is called the free boundary. Many interesting problems in applied
mathematics involve pdes with free boundaries. Such of these problems as can be recast as

variational inequalities become relatively easy to study, especially since there is no explicit
mention of the free boundary in the inequalities (#). Applications arise in stopping time optimal
control problems for Brownian motion, in groundwater hydrology, in plasticity theory etc. For
more about this topic see the great book of Kinderlehrer-Stampacchia.

Now we shall present some applications regarding both the constraints problem and
the free boundary problems. What follows is based on our discussion above. In the most
cases we have chosen to deal with simple cases for simplicity in our calculations. In the
vast majority of such problems the main idea as well as the basic methods used to solve
the problems are quite the same with what we have already presented.

Integral constraints, the simplest case

As mentioned above, in this part of the chapter we are basically dealing with the
procedure of minimizing a given functional in which the '"competing" functions are
required to conform to certain integral restrictions, in addition to the normal endpoint-
boundary conditions. We shall present how to handle the case of the simplest problem
below by using the Lagrange multipliers method.
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(D) 30yl = L%y, y)dx

b where L,G e C*[a,b] and y € C*[a,b] with y(a) = y, and
(2) WIyl=[G(x,y,y)dx =k °

isoperimetric constraint

y(b) =y, , k fixed constant. An one-parameter family y(x) + £h(x) is not a suitable choice here,
because some curves may not maintain the constancy of W. Therefore we will introduce a two-
-parameter family z(x) = y(x) + &h, (x) + &,h, (x), where h,,h, e C*[a,b] and h, (a) = h(b) =

h,(a) =h,(b) =0. And ¢, ¢, € R. Additionally, we assume that W does not have an extremum at y.
Then for any choice of h;, h, there will be values of &, ¢, in the neighborhood of (0,0) for which
W (z) =k. Evaluating now J and W at z =y +¢gh +&,h, gives:

3(e,6,) =3d[y+eh +&,h]=3[z]= j' L(x,z,2")dx

R(e,6,)=W[y+gh +&h,]=W[z] = _TG(X, z,2")dx =k

Now we know that y is a local minimum (by our assumption) for (1) subject to the constraint (2).
Thus the point (g,,&,) = (0,0) must be a local minimum for 3(¢,, &,) subject to the constraint
R(e,, ,) =k. Hence, by applying the lagrange multiplier rule, we have that:

03"
o,

03
os,

b
=0 where 3° =3+ AR = j L*(x,z,z")dx and L' =L+ AG (we denote here by

(0,0 (0,0

integration
by parts

b
= | {L’;(x, Y,y + L (X, Y, y’)hi'}dx (fori=12) —

o~k

A the Lagrange multiplier) =

i 100,0)

Fundamental
lemma d

03" S R ~ . . . o
. (0,0):!{Ly—&Ly}hi(x) dx=0 for i=1,2. = Ly—&Ly,_O which is the

necessary condition for extremals. The last implication holds since h;, h, are arbitrary.

At this point let us remark that in order to be able to evaluate both A and the solution of the
problem, we need the two boundary conditions in combination with the substitution of
y(x) into the isoperimetric constraint.
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3.4 Applications and examples

Shape of a hanging rope

A rope of length | with constant density p hangs from two fixed points (a, y,) and
(b, y,) in the plane. Let y(x) be an arbitrary configuration of the rope with the y axis
adjusted so that y(x) > 0. A small element of length ds at (X, y) has mass pds and
potential energy pgy ds relative to y = 0. Therefore, the total potential energy of the
rope hanging in the arbitrary configuration y = y(x) is given by the functional:

1 b
Jyl= J'pgyds = ngy1/1+ ( y’)zdx. We also know that the actual configuration
0 a

minimizes the potential energy. Therefore, the constraint will be :

b
W[y]= I4/1+(y')2dx = (. Hence we obtain: L' = L+ AG = pgy\/1+(y')2 +ﬂ\/1+(y )2

(L" does not depend explicitly on x, thus we can use a first integral despite the direct E-L)

2
* n * ’ ' d dX
L'—y'L,=c = (pgy+41) 1+(y)2—(y—)’2 =Cc = y —==
1+(y") \/(pgy+/1) +c
. u=pgy+41 du X
change ofvarlable{ = =—+C, =
du = pgdy J-x/u2+cz c

icoshl(EJziml . Finally this leads to: y:—i+icosh (&m j catenary .
el c/ ¢ P9 pY c -

Only one thing remains to be clarified. The computation of the left-hand integral above:

du _ t=coshy
< dt= smhy

j sinh y dy:jdy= y:cosh‘lt:cosh‘l(E]
c

; § ismh y

The constants c,c, and A may be determined from the isoperimetric constraint
and the endpoint conditionsy(a) =y, and y(b) =y,. In practice this calculation is difficult,
and there may not be a smooth solution for large values of ¢ .
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Schrédinger's Equation

w’ . probability density function
)= T(;_Z(l//,)z +V(x)z//2]dx w: wave function |
oL zm m: mass of the particle
Wip]= Tz//z(x)dx _1 V: potential o -
< W{w]=1 normalization condition for the
wave function

where

By employing the E-L equation subject to integral constraints we obtain:
2

L":f—(l//')2 +V (X)p? —Ey?(x) , where —E is the Lagrange multiplier =
m

2

L, —— L =0 = —5—1//”+V(x)1// = Ew | which is Schrodinger 's equation
m

for the wave function in quantum mechanics for a particle of mass m under

the influence of a potential V. In general, solutions of Schrdédinger's equation will exist
only for discrete values of the multiplier E, which are identified with the possible energy
levels of the particle and are the eigenvalues.

Generalizing the above to R® we get:

2
Jw]= I(f—m|v :,//|2 +Vy? ] dxdydz , subject to integral constraint (probability density function
D
must be integrated to 1) W[y ] = I w’dxdydz =1. Then, as usual, by employing the Lagrange
D

- h? 2 0 0 0
multiplier rule; L'=L + AG = —|Vuy!| +Vyi+ipy? = L' ——L ——L° ——L =0 =
p S Vv VYt ay v vl el

2

2(V+ 1)y [y/xx Yy W, |=0 = —;l—At// +Vy =—Ay| Schadinger 's equation.
m
2
The Laplace multiplier is the eigenvalue of Schodinger's operator: |K :;—A -V, ie.
m

Ky = Ay and represents the particle's energy level.
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Connections between Isoperimetric and Sturm-Liouville problem

Below we will examine the connection between the integral constraint and Sturm-Liouville
problem. For this purpose let us consider, as usual, the functional and the integral constraint:

Iyl :f{p(x)(y')z +a(Qy? o

L =2qy +2Ar
i Thenfor{l_*y 2qy, y:>L*:L+AG:
WLyl = [r(x)y’dx =1 oo
N o gl N ~(py') +(q+4r)y=0
=p(y) +ay’+Ary* = 2qy+2ary-2(py’) =0 =
y(@)=y(b)=0

which is a typical S-L b.v.p.

The classical Isoperimetric Problem

P(x,y)=-

Given a vector field F :IR* — R? such that F(x, y) =(P(x, y) , Q(x,y)) with {QEX );/; _,
Y

and considering the functional J[x, y] = %J'(xy’ — yx')dt, we 'll show that it represents the

t

area of a domain in R?, say D. Indeed that is true because:

t

(/o dy  dx creen . 0Q  OP
xy'—yx')dt = (x——y jdt_ Fds = (———jdxdyz

J'( ) J; d d CC-ED ! aX 6y

f
L’}

jl—(—l)dxdy = ZI dxdy = 2Area(D) = Area(D) :%J'(xy'— yx')dt = J[x, y].

f

Moreover we know that the length of a given smooth curve C is given by:

cﬁds

o'(t)|dt = j \/’ x(t) +(y'(1) 2dt , where o(t) = (x(t), y(t)): R —> R? Thus

Lo o
J[X, y]_—J'(xy —yx')dt
the problem is in fact the problem of determining which

W[x,y]= M

curve of a specified perimeter encloses the maximum area. The term Isoperimetric , meaning

same perimeter, originated in this context. Hence by employing the same techninques we have
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L'=L+AG=xy' —yx'+ 1 (x')2 +(y’)2 =L"(x,y,x,y") which is independent of t and

depends on two functions x = x(t) and y = y(t) at the same time. As a consequence a

first integral is: |L" = x'L’, — y'L:, =c/|, however after some elementary calculations we
X y

observe that this equality holds as an identity. Therefore we prefer to do the computations
by using the system of E-L equations instead. So:

yr d y AX' AX
N e R N CTeTi (<) +(y)
(#) ! - = Ay =
L-25=0 | x_d[x __ ay O+ ===
t 2w 2 ovaiov (X) +(y)
() +(y)

2 12 (X’)2
T N2 N2
X') + )
(x) (Z ) = (x—c)2 +(y—d)2 = A%, which are circles! Finally we only
2 A(Y)
(X_C) =T 2 RV
() +(y)
need to show that the system of E-L (#) is indeed a necessary condition for extrema regarding
the minimization problem subject to the integral constraint above.

(y-d)
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For this purpose let us consider the following problem:

b
Y, Y.1= j L(X, Yo Yoo Yy o yz')dx subject to
| . As before we

or {yl(a):Ai’yl(b): 1
Y2(a)=A21y2(b):Bz

b
WILy,, yz]:IG(X, Y1 Yo y1" yzl)dXZC

define a two-parameter family of "competing" functions, which are;

)=yt t h, (t
{Zl() nO+ahM) 0 and all h,,h,,h,,h, € C2[a,b]. As usual, we proceed like in the

Z,(t) = Y, (t) + &,hs(t) + &,h, (1)
simplest case demonstrated above earlier, by defining L' = L + AG, where A is the Lagrange
multiplier (the classical calculus technique for minimization subject to certain constraint). So

4
3 z,

~% b
o3 (0,0)= 2 IL* ty,+eh +&h,,y, +eh +&h,,y +eh' +&h),
881 agl 51 52)=6 a
z integration
, , , b . . . . L by parts b
Y, +eh +e,h, |dt =£(Lylhl+Ly2h3+ L, hy+ Lyt = j{L - yl} h +
{L*y _d L, }m}dt =0 . Similarly we obtain that:
2 dt 2
exactly the
a~* 8 b Ziggoc\?éculatlons b d d
> (0,0)=— I ...... = {Ly ——L*y}hz+{L’; ——L"‘y,}h4 dt=0
oe, o, ()= 2 4 todt odt
I L
i - todt
Finally by employing the Fundamental Lemma = 4
L, ——L, =0
2 dt 2

88



Minimization subject to integral constraint that leads to the eigenvalue problem for the
Laplacian operator.

J[u]l= I|Vu|2 dxdy for U < R? with C' —boundary.
D
W[u]= juzdxdy =land u=0o0noD
We shaIIDintroduce the Lagrange's multiplier 2 and we shall solve the following
minimization problem: min{‘|.|Vu|2 dxdy +/’L(1—J'u2dxdyj} for all u that vanish on éD.
D D

Afterwards, we 'll equate the first variation to zero to find the E-L equation. The careful reader
may have already noticed that this is an equal expression of the tactic (Lagrange's multiplier) we
used above to approach the minimization problem subject to constraints.

Alternatively, we shall consider L" = L + AG and the functional 3(¢,,&,) = J[u+ gy, + &,w,]
where the quantity inside the branches is the two-parametrized variational family as usual.

Moreover, 3(s,,¢,) = j L' (X,2,Z)d% , for Z=u+ &y, +&y, . Then, by Lagrange's multipliers
D

< 2
Theorem we obtain that: 2(51,32) =0 fori=12 = zi =0 =
agi (e1,62)=0 i=1 aX
2 2 * a * a *
=vu +* = U'-——L;, —L, =0 = 2Au-2u,-2u, =0 =
oX, " OX,
Au=Au, inD . . .
0. on 2D which is actually the eigenvalue problem for the Laplacian operator. We shall
u=0,

notice the similarities with the Rayleigh quatient in the sequel.

Algebraic constraints

We have only seen integral constraints where the Lagrange's multiplier is a real number
so far. A reasonable question which may rise here is that the only possible constraints are
of integral form? The answer is no. They may as well be of algebraic form. But the
multiplier this time will be a function rather than a real number. Let us specialize what we
are discussing here. For this purpose we consider the minimization problem:
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b
Iy, z]= I L(t,y,z,y',z')dt

G(t,y,z) =0 with (88—6 # Oj , Where y(t), z(t) sufficiently smooth and provide a local
z

y(@)=y(b)=z(a) =z(b) =0

d
L, ——L, = A(t)G,

minimum. Then the above implies that 3 A(t) such that .
L, ——L, =A(1)G,
dt

The proof is quite simple and actually we will take advantage of the IFT, since 2—6 #0
z

(Implicit Function Theorem). Thus we are able to solve the constraint equation to

obtain: z = g(t, y). Substituting now this into the J[y, z] expression to see:
b

b
W[y]= I F(t,y,y)dt= _[ L(t.y,9(t,y). Y. 9, +9,Yy')dt and as usual the E-L is

a

Fy—%Fy;o = Ly+ngy+|—zr(9ty+9yyy')—%('-y'+'-z'gv)=o -

Ly—%Ly,+gy(Lz—%Lz,j+ LZ,(W)—LZ,%:O =

(Ly —% Ly,j+ g, (LZ —% LZ,] =0. Now let us note that by the IFT we may also obtain

g, = —G—y and this is valid, since if we derivate the equation G [t, AT y)} =0 with respect to

z

y,i.e. 0=G, +G,g, , we obtain the required. Thus by substituting this to the last equality above:

L, a4 L, L, Sy
dt ~ _ dt " and these two expressions must be equal to the same function of t, that is
G, G,
d
L—EL, L—EL, L ——L,=A()G
Y d Lot '
= = A(t). Therefore we get:
G, G, d

L, ——L, =A(t)G
Z dt Z () z
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3.5 Natural boundary condition (supplementary remarks)

Let us consider the following problem: A river with parallel straight banks b units
apart has stream velocity given by v(x, y) =v(x) j, where j is the unit vector in the
y direction (see Figure below). Assuming that one of the banks is the y axis and that
the point (0,0) is the point of departure, what route should a boat take to reach
the opposite bank in the shortest possible time? Assume that the speed of the
boat in still water is ¢, where ¢ > v.

This problem differs from those in earlier sections in that the right-hand endpoint,
the point of arrival on the line x = b, is not specified; it must be determined as
part of the solution to the problem.

Such a problem is called a free endpoint problem, and if y(x) is an extremal, then
a certain condition must hold at x = b. Conditions of these types, called natural
boundary conditions, are the subject of this section. Just as common are problems
where both endpoints are unspecified.

y=y(x)

>

b X

A classical natural boundary condition problem
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b
Consider the functional J[y] = I L(x,y,y")dx and lety e C*[a,b] with y(a) = y,, y(b) free,

be a local minimum. Then the variation h must be C? and must also satisfy the single
condition h(a) = 0. But pay attention to the fact that no condition on h at x =b is required
due to the fact that the admissible functions here are not specified at the right endpoint. So:

integration

T Lh+L,h) o T(Ly-%Lth(x)dx+h(b)Ly,(b, y(0),y'(b))=0

a

—J[y+eh]

vheC[a, b] W|th additionally h(a) = 0. Therefore, it also holds for those "h" which satisfy
the condition h(b) =0 and by the Fundamental lemma we get: L, _di L, =0 and finally by

X
substituting the E-L above, we obtain: L, (b, y(b), y’(b)) h(b) =0, valid for any choice of h(b).

Thus |L, (b, y(b),y'(b)) =
which is a condition on the extremal y at x=b. This is called a natural boundary condition.
The E-L equation, the fixed boundary condition y(a) = y,,and the natural boundary condition
are enough to determine the extremal for the variational we presented earlier above. By similar
arguments if the left endpoint y(a) is unspecified, then the natural boundary condition on an

extremal y atx=a is: |L, (a, y(a),y'(a)) =

Variations vy = y(x) + £h(x) of y(x) satisfying h(a) =0
4
Vv

-

y=yx)

.
-

X

Below we shall present a few examples of natural (or free) boundary condition problems:
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Sturm-Liouville equation as a condition for extremals

Jlyl= j'[ p(x)(y’)2 — q(x)yz}dx with boundary conditions {

y(0)=0
y(1) free
We shall compute the E-L equation for the functional above. For this
purpose we compute: L, =-2q(x)y and L, =2p(x)y" =
=2q(X)y+2p'(x)y"+2p(x)y'(x) = 0 with natural boundary condition:
2p(1)y’'(M) =0 and because p(x) >0 = c;j_x( pP(X)y")+0a(x)y =0 with

y(0)=0and y'(1) =0.

Ramsey's Growth Model

One version of Ramsey's Growth model in Economics involves minimizing
T

the total product J[M ] = I(aM — M’ —Db)dt for a,b>0, over a fixed
0

planning period [0,T] , where M = M (t) is the capital at time t and M (0) = M,
is the initial capital. If M (t) minimizes J, the capital M (t) at the end of the

planning period can be obtained as : L,, —% L, =0 =
2a(aM -M'-b)+%2(aM -M'-b)=0 = M’"(t)-a’M(t)+ab=0 =

M(t) = Ae®™ + Be™ +E with M (0) = M, and the natural boundary condition
a

L, (T,M(T),M'(T))=0, oraM(T)-M'(T) =b = Therefore, the required
result can be obtained by simple computations which will be omitted here.

Supplements to the theory (more variables)

J[u]= J'J. L(x, y,u,ux,uy)dxdy , Where u e C?(D), but undefined on &D. For this purpose,
D

we define the test functions with compact support h e C2 (D) which means that h e C*(D)
and additionally h =0 on &D.

first
variation

s
&=0

J[u+gh]=L[L(x, y,u+gh,ux+ghx,uy+ghy)dxdy :;—8

g['—uh +L, h, + Luyhy]dxdy =0 and by employing the identity %(Luxh) =L, h + h% L,
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Q -p
. 0 0 0 0] '

(similarly for L, h,) = ij{LU - L, 5 Luy}h(x, y)dxdy+ij &(Luxh)+5(l_uyh) dxdy

Now we are ready to apply Green's Theorem for the vector field F(x, y) =(P(x y), Q(x, y)) X

g{%(gxhﬁi(gyh)}dxdy=i[—Luy %+ L, %}h dtmtegralcﬁF T h(x, y)ds , where

T=p(t) = [dx ?tlj For the smooth curve y(t) = (x(t), y(t)) and the vector field
= (—Luy Ly ) Now the typical argument can be applied. Therefore, since the equality
above is valid for every h e C (D), then it is also valid for those h =0 on &D. Consequently

it is reduced to the following equality: ”{ L, +—LU Lu} hdxdy =0

where by applying, as usual, the fundamental lemma, we obtain the typical E-L equation.
Finally, by substituting the E-L above, we get the natural boundary condition.

FT=0= (-LJV, LUX)J_'I: — (X(), y(t)) or equivalently (—Luy,Lux)ll i = (Y (1), ~X(t))

\\
\

\ e+ )
Sk
A1
N

This figure depicts the orthogonality of tangential and normal vectors and justifies our
underlined assertion_example for a given Lagrangian:
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J[u]= j [ { uZ +u’ }dxdy where a = a(x, y) and b =b(x, y) smooth.

necessary

Ju+eh]= J.J.{a u,+eh,) (uy+8hy)1—b(u+€h)2}dxdy :>dd—g ) — Qeondition —,
”{a(x y)[Z(UX+/$/h )h +Z(u +£h,)h ) }—Zb(x,y)(u+/h)h}dxdy -0 =

H{auxhx +au h, - buh} dxdy = 0. Now we can either proceed exactly as above, in other
D

words by writing au h, = g(auxh)—ai(aux)h, similarly for au h,, and apply Green's
X X

Theorem, or we could equivalently integrate by parts. We shall demonstrate both ways here.

a)

0 0 0 0
g{&(auxh)—&(aux)h+5(auyh)—5(auy)h—buh}dxdy=O =
U—{b(x, y)u+§(aux)+%(auy)}hdxdy+ﬂ (au h)+%(au h) dxdy

Now the E-L equation is I_u—ailm —QLU =0 with L=a(u}+u})-bu’, therefore
X ;

oy
L, =—2bu
L,, =2au, and apply Green's theorem for the second double integral =
L, =2au,

(the first double integral is zero due to E-L)
lin
|ntegral

dx dy
gg{—a(x, y)uyhajta(x, y)uxhoI }dt = qSh(x y)F -Tds , where F =(-au,,au, )

oD

Consequently the natural boundary condition would be F - T =0, since the line integral
must be zero for every h e CZ (D) and therefore the condition above is justified. But

because the
inner product
equals to zero

TLli=F|fi= (-au,au)Ll(au,au,) = avu. SosinceaVu L F whichis
parallel to outward unit normal i, we get that aVu L n, i.e. a% =0].
n
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b) integration by parts

ij [a(x, y)u,h, Jdxdy = jD ahu n,dS — ij [h(x, y)%(aux)}dxdy -
this implies:

ij [a(x,y)u,h, Jdxdy = jD ahu,n,ds - ij [h(x, y)%(auy)}dxdy

d
—JJu+¢h
dg[ eh]

0
:” {-au,-a sy=au, —bu} h(x, y)dxdy + f ha(u,n, +u,n,)ds =0
€0 D )
the first integral eqauls to zero due to E-L and the second in fact equals:

natural
boundary condition

Iha(x, y)(Vu-f)dS=0 (h isarbitrary)= a(Vu-f)=0=l|a(x, y)%:o

oD

3.6 Rayleigh Quotient

In this section we will define the Rayleigh Quotient and we will present some
properties of the eigenvalues and the eigenfunctions of the Dirichlet's problem for the
eigenvalue problem of Laplacian operator (the 1-dimensional case of which is the S-L
b.v.p.) as well as the connection with the calculus of variations.

An important problem that arises frequently in chemistry and physics is how to
compute the spectrum of a quantum system. The system is modeled by a Schrodinger
operator. In the one-dimensional case such operators are of the Sturm-Liouville type.
For instance, the information from the spectrum of the Schrédinger operator enables us
to determine the discrete frequencies of the radiation from excited atoms. In addition,
using the information from the spectrum, one can understand the stability of atoms and
molecules. We do not present here a precise definition of the spectrum of a given linear
operator, but roughly speaking, the (point) spectrum of a quantum system is given by
the eigenvalues of the corresponding Schrédinger operator. It is particularly important
to find the first (minimal) eigenvalue, or at least a good approximation of it. The
minimal eigenvalue of the eigenvalue problem for the Laplacian operator, which we
shall examine blow, is called the principal eigenvalue (or the ground state energy), and
the corresponding eigenfunction is called the principal eigenfunction (or the ground
state).
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The British scientist John William Strutt (Lord Rayleigh) (1842—1919) observed that the
expression:

J UAU dx
R[u]= _QI—Zd (Rayleigh Quotient) plays a very imprtant role in this context.
u“dx
Q
2
J.|Vu| dx
It is also equal to this expression: Q'[—zd which we shall use below. We will see that
u“dx
Q

actually are the same (by integrating by parts) in the following sections.

John William Strutt (3rd Baron of Rayleigh) (1842-1919) was a British scientist who made
extensive contributions to both theoretical and experimental Physics. He spent all of his
academic career at the University of Cambridge. Among many honors, he received the 1904
Nobel Prize in Physics for his investigations of the densities of the most important gases and for
his discovery of Argon, in connection to his studies. He served as president of the Royal Society
from 1905-1908 and as a Chancellor of Cambridge from 1908-19189.

Properties of the eigenvalues and the eigenfunctions :
e Symmetry

IvAu dx=.[uAv dx
Q Q

I VAU dX = — I Vv-Vu dx = I UAv dx symmetry of Laplace operator, because:
Q Q Q

similar

0
. 0 argument
gj;vAu dx:ivdlv(Vu) dx:ivV-(Vu) dx:iv/(a% dS—in-Vu dx = iuAv dx , where

the surface integral is zero because under our assumptions u,v =0 on oQ.
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e Orthogonality
eigenfunctions associated to different eigenvalues are orthogonal to each other.

| IumAun dx:—/ln_fumun dx
AU =-AU :{umAun =-AUU o [ :

(4, # A, ) and consider { =
Au, =-4,U, u,Au, =-A4,u.u, IUnAUm dx = —lmjunum dx
Q Q

by subtracting by parts and using the symmetry property now we get:

P
(/In—}tm)J‘unum dx=0 = (u,,u,)=0 = u, Lu,
Q

e The eigenvalues are real
Let us assume for contradiction that A  C.

Au=-Au,inQ Au+Au=0,inQ AU+ Au=0,inQ AT =-AT,inQ
- - s s
u=0, onoQ u=0, on oQ o=0, on oQ =0, onoQ

(7, 2) is an eigenfunction-eigenvalue pair = (assuming A+ 1) =

0=(u,0) = juﬁdx = j|u|2 dx >0, since u =0, which is a contradiction.
Q Q

e The eigenfunctions are real
The proof is quite simple. It is based on the separation into the real and the imaginary
part and the observation that both the real and the imaginary part of the eigenfunction
solve the differential equation and satisfy the boundary condition as well. Since at least
one of these two functions are not zero, it follows that at least one of them is an
eigenfunction. If now A is simple we have a real eigenfunction. On the contrary if it is of
higher multiplicity, say 2, we can consider the real and imaginary parts of two linearly
independent eigenfunctions. By a simple dimensional consideration, it follows that out
of these four real functions, one can extract at least one pair of linearly independent
functions.

e Multiplicity of the eigenvalues
One of the main differences between the 1-dimensional S-L problem and its multi-

dimensional generalization, which is Dirichlet's b.v.p. for the eigenvalue problem of

Laplace operator, involves multiplicity. In the multidimensional case at hand here,
—-Au=Au, XeQ . . -

(#) - =™ the multiplicity might be larger than one (but always finite!).
u=0, XeoQ

This is a fact of great physical significance.
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e there exists a sequence of eigenvalues diverging to infinity
(a) The set of the eigenvalues for (#) consists of a monotone, non-decreasing sequence that
diverges to +oo, i.e. 0<A; <A <..<A <A, <..——>+om.
(b) The eigenvalues are all positive and they have also finite multiplicity.
We shall only show the positivity (i.e. Vne N, A >0) here. The other results are derived

by the spectral theorem for the Laplace eigenvalue problem.

—AU = AU = —UAU = WU° = Iiuzdx = —juAu dx, but we observe that:
Q Q

J'|Vu|2dx

=2___ I>0foruz0
qu dx
Q

—IuAu dx:—j )Joa—lids +jVu-Vu dx:j|Vu|2dx = |1
Q oQ an Q Q

Since u is constant is not an eigenfunction, it follows that A>0 o

Jean-Baptiste Joseph Fourier (21 March 1768 — 16 May 1830) was a French mathematician and
physicist born in Auxerre and best known for initiating the investigation of Fourier series, which
eventually developed into Fourier analysis and harmonic analysis, and their applications to
problems of heat transfer and vibrations. The Fourier transform and Fourier's law of conduction
are also named in his honor. Fourier is also generally credited with the discovery of the
greenhouse effect.
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e Generalized Fourier Series
We know that the infinite orthonormal set of the eigenfunctions is complete, thus we can

formally expand smooth functions defined in Q2 into a generalized Fourier series, converging
on the average (due to completeness), i.e.

v(x)=>"a,u,(x) , where a, = (u,(x),v(x)) are the generalized Fourier coefficients and
n=0
{u,}~, the orthonormal basis.

e Asymptotic behaviour of the eigenvalues when n tends to infinity
It can be shown that for Q@ = R’ the n" eigenvalue associated with the b.v.p
{—Au =AU inQ

has the following asymptotic behaviour in the limit n — oo
u=0o0noQ

2

i
A, ~ 472'2[ n J forj=1,2,3,... This is called Weyl 's asymptotic formula.

;|9
w, =2
Here o, denotes the volume of the unit ball in R’. For example { @, =7 etc.
_4r
*3

An optimization problem for the first eigenfunction.

We have already developed above an integral formulation for the eigenvalues,

'[|Vu|2 dx
e (A= Q.[—Zd . Let us now denote the smallest (minimal) eigenvalue, which hereafter
u“dx
Q
J.|Vu|2 dx
we shall call principal, by A,. Then we will show that| 4, = inj QI—Zd , Where
ue u X
Q

V= {u eC*(Q) ﬂC(ﬁ)‘u #0and u|ag2 = O}. Moreover 4, is a simple eigenvalue and the

infimum is only achieved for the associated eigenfunction.
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Proof:

Let {ﬁ, }°° be the non-decreasing sequence of the real eigenvalues (not all of them
necessarily simple) , suchthat0< 4, <4 <4, <..<4,<4,,<.., lim4 =+o.

n—oo

Moreover let {gon}::1 be the orthonormal and complete sequence of the corresponding

_A¢n = ﬂ“nwn’ in

Q
Then (see the remarks below) we
¢, =0, on 0Q

eigenfunctions, such that {

know that we are able to expand u eV = {u cC3(Q)NC(Q) ‘ u=0and u|aQ = 0} asa

generalized Fourier series, i.e. |u = Zan(pn where a, =(u, ¢, )| which converges uniformly
n=0

Therefore:

Jvufde  Yaz, Yy
Q =0

Rlu]= > = = > 1, =Y— =1, = R[u]= 4, Y ueV and thus inf R[u] > 4,.
Jutdx 5, g 22
2 . n ~ n
Calculations:
I|Vu| dx = J. (Vu,vu) dx_I<ianV¢n,Za V(pm>dx_ Z aa I<V¢n,V¢m>dX,but
n,m=0 Q

0
I(V(/)H,Vgom)dx = j % ds —IwmA¢n dx = lengom(pndx =2 (@ @1 )yypere - THETEFOTE

Q

Z anamJ.V(pn Vo, dx = Z anam}tnj(pngpmdx Za A >Za 2, due to the non decreasing

n,m=0 n,m=0

sequence of the eigenvalues and also <§0n : (0m> =0, since they are orthonormal.

Hilbert
Regarding the denominator now, since we have a complete and orthonormal system of

eigenfunctions which forms a basis, the Bessel inequality is in fact equality here (Parseval).

Parseval _® o

2(Q) Z z

n=0

So we get: .[uzdx = ||u
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Now it can be easily verified that equality holds iff u = cg,, because then we can achieve
that R[u] = 4, indeed, and by this way we are done. To be more specific we have that:

Vuf =c?|Ve,[" and u? = c?¢? and ||¢O||iz(g) = J.go(fdx =1. So we get that
Q

[ Ve dx  [|ve[dx
R[u] =2 =4 :IV¢O-VgoOdX=—I¢OA¢OdX:IﬂO¢§dX=ﬂ@
Q Q

J%%ZdX 1 )
o

where we have used integration by parts and the fact that ¢, =0 on 0Q o

Remark in completeness:

In general if we have an orthonormal sequence, say {un}::l, finite or infinite, then we know
. . . = 2 2 . .
Bessel's inequality , i.e. Z‘(un,uﬂ <|lu|" . and the Riemann - Lebesgue lemma , i.e.
n=1

lim <un,u> =0 hold true. Now if it is also complete then the Bessel holds as an equality called

n—oo

Parseval.

Remark in convergence:

We shall make two comments regarding the convergence of the eigenfunction expansions,
which we referred to previously above.
If u is piecewise differentiable , then the eigenfunction expansion converges to the average,

u, +u

ie. =, which is the Dirichlet's theorem.

If now u is piecewise differentiable and continuous , then the eigenfunction expansion
converges uniformly to u.
That's why the smooth u we have considered above converges uniformly, as mentioned.
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Connections to the calculus of variations

We shall notice now the similarity of our approach above with the following minimization
problem from the calculus of variations (subject to an integral constraint). For this consider

J[u]l= I|Vu|2dxdy
Q

W[u] = qudxdy =1 . By using the Lagrange multiplier rule we see that for
Q

u=0onoQ as well

L' =L+AG, where L = L(x,y,u,u,,u,) :|Vu|2 and G(x, y,u,u,,u,) =u® the E-L is

Au=A4u, inQ
L —QL;; —QL; =0 = Zﬂu—g(ZuX)—i(Zuy)=0:>

ox > oy OX oy u=0o0noQ
apparently is the eigenvalue problem for the Laplacian operator. Additionally let us
note that here the Lagrange multipliers are in fact the eigenvalues. Regarding the Rayleigh

quotient for this problem, it takes the following form:

IuAu dxdy —J‘ )A/Oa—uds +IVu~Vu dxdy J'|Vu|2dxdy
oQ Q Q

on
R ul=- Q = =
[v] _[uzdxdy _[uzdxdy qudxdy
Q Q Q

which is obviously similar to what we were dealing with previously! As a consequence
the Rayleigh quotient method (10: in\lj R[u]) is an alternative method of finding the minimal

"principal” eigenvalue, in comparison with the variational method of minimization, being
discussed above. In general, both methods are of equal usefulness and perhaps the Rayleigh

quotient (seen as a minimization method) is even more useful in some cases, especially from
the numerical point of view. Nowadays, the vast majority of numerical methods for computing

the eigenvalues is based on what we call Rayleigh-Quotient iteration. We use this method to
obtain an eigenvalue approximation from an eigenfunction initial approximation.

4. Hamilton's Principle-Canonical form

According to the doctrine of classical dynamics, one associates with the system being
described a set of quantities or dynamical variables, each of which has a well-defined
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value at each instant of time and which defines the state of the dynamical system at
that instant. Further, it is assumed that the time evolution of the system is completely
determined if its state is known at some given instant. Analytically this doctrine is
expressed by the fact that the dynamical variables satisfy a set of differential equations
(the equations of motion of the system) as functions of time, along with initial
conditions.

The program of classical dynamics consists of listing the dynamical variables and
formulating the equations of motion that predict the system’s evolution in time.
Newton’s second law of motion describes the dynamics of a mechanical system.

Another method of obtaining the equations of motion is from a variational principle.
This method is based on the idea that a system should evolve along a path of least
resistance.

Principles of this sort have a long history in physical theories dating back to antiquity
when Hero of Alexandria stated a minimum principle concerning the path of reflected
light rays. In the 17th century, Fermat’s principle, that light rays travel along the path of
shortest time, was put forth. For mechanical systems, Maupertuis’s principle of least
action stated that a system should evolve from one state to another in such a way that
the action (a vaguely defined term with the energy x time) is smallest. Lagrange and
Gauss were advocates of similar principles. In the early part of the 19th century,
however, W. R. Hamilton (1805-1865) stated what has become an encompassing,
aesthetic principle that can be generalized to embrace many areas of physics.
Hamilton’s principle states that the time evolution of a mechanical system occurs in such
a manner that the integral of the difference between kinetic and potential energy is
stationary. To be more precise, let
Y.,---, Y, denote a set of generalized coordinates of a given dynamical system. That is,

regarded as functions of time, we assume thaty;,..., y, completely specify the state

of the system at any instant. Further, we assume that there are no relations among

the y;, so that they may be regarded as independent. In general, the y, may be lengths,
angles, or whatever. The time derivativesy,,...,y, are called the generalized velocities.
The kinetic energy T is, in the most general case, a quadratic form in the y;, that is,

n

T= ZZaij (Yy1- Yo ) VY| - where the a;; are known functions of the coordinates

i=L j=1

Yi:-.-, Yo The potential energy V is a scalar function |V =V (t, y;,..., ¥, )| . We define now

the Lagrangian of the system by L = L(t,¥;,..., ¥, V3,0s ¥, ) =T =V, SOL =T =V
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4.1 Hamilton's Principle

Hamilton's principle for these systems may then be stated as follows: Consider a
mechanical system described by generalized coordinates y;,..., y, with Lagrangian as above.
Then the motion of the system from time t, to t; is such that the functional: (action integral)

4
Yo yn]:J'L(t, Yireeor Yoo Yaro-o ¥, Jdt] is stationary for the functions y, (t),..., y, (t), which

f

describe the actual time evolution of the system. If we regard the set of coordinates y,,...,y, as
coordinates in n-dimensional space, then the equations 'y, = y,(t), i=12,...,n (t, <t <t)

are parametric equations of a curve C that joins two states S, : (yl(to), A (to)) and

Syt (Vi (t)s-.., ¥, (t,)). Hamilton’s principle then states that among all paths in configuration
space connecting the initial state S, to the final state S,, the actual motion takes place along the
path that affords an extreme value to the integral presented above. The actual path is an extremal.
In physics and engineering, Hamilton’s principle is often stated concisely as:

Y
S L(t Yarees Yoo Yoo o ) =0

f

Because the curvey, =y, (t) , i=1,...,n, along which the motion occurs, makes
the functional J stationary, it follows from the calculus of variations that the y; (t) must

satisfy the Euler equations, i.e. |L, _d L, =0|fori=1...,n. In Mechanics, the Euler

dt
equations are called Lagrange’s equations. They form the equations of motion, or governing
equations, for the system. We say that the governing equations follow from a variational principle

if we can find an L such that 5_[ Ldt= 0 gives those governing equations as necessary conditions

for an extremum. If the Lagrangian L is independent of time t, that is, L, = 0, or equivalently

L= L(y, y') , then a first integral is given, as we know, by: L—z y;L,, =c | . This equation is
i=1

n
a conservation law. The quantity |-L + z y;L, | is called the Hamiltonian of the system, and it
i=1

frequently represents the total energy. Thus, if L is independent of time, then energy is conserved.

Sir William Rowan Hamilton (4 August 1805 — 2 September 1865) was an lrish
mathematician, Andrews Professor of Astronomy at Trinity College Dublin, and Royal
Astronomer of Ireland. He worked in both pure mathematics and mathematics for
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physics. He made important contributions to optics, classical mechanics and algebra.
Although Hamilton was not a physicist—he regarded himself as a pure mathematician—
his work was of major importance to physics, particularly his reformulation of
Newtonian mechanics, now called Hamiltonian mechanics. This work has proven central
to the modern study of classical field theories such as electromagnetism, and to the
development of quantum mechanics. In pure mathematics, he is best known as the
inventor of quaternions.

3 basic examples

e Harmonic Oscillator
Consider the restoring force (Hooke's Law) F = —ky, k >0, where k is the spring's constant.

1
T=-my’
> y

=L=T-V= Emy2 —lky2 = L, =0, thus the energy is conserved.
1, 2 2
\Y :—'[ Fdy :Eky

'
J[yl= J'B my’® — % kyz} dt is stationary, hence by employing the E-L: L, —% L,=0=
ty

—ky—i(my)zo = y+£y:0 = y(t)=clcos\Et+czsinFt harmonic oscillator
dt m m m

Newton's second law

equation.
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e Pendulum

¢ =length

m = mass

@=angle
frictionless support
t=time

s=/(0

Considering now the kinetic and potential energy of the pendulum

K =2ms?=1me? and v = mg (¢ — ¢ cos &). Now we have seen that the Lagrangian is

b . E-L
given by L =T -V, therefore we consider: J[6] = j{% m¢*6* —mg/(1—cos 9)}dt =
t

d

L ——
“ dt

(sin@ = @), we obtain: é+%¢9:0 =

e Central force field

L,=0 = —mgésin@—%(mézé):o — d+3sino=0. For

1

ot) = clcos\r%t + ¢, sin \Et

small displacements

simple harmonic motion.
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Consider the planar motion of a mass m that is attracted to the origin with a
force inversely proportional to the square of the distance from the origin (see figure above).
For generalized coordinates we take the polar coordinates r and & of the position of the mass.

1 1 1 [d 2 Td 2
The kinetic energy is: T ==mvi==m(x>+y?)==m<| —(rcosd)| +| —(rsin®d =
oy oM =5m(¢+y)=3 {{dt( )} [dt( )”

:%m{(rcose—rsin 99)2 +(r‘sin9+rcos€9)2} :%m(r2 +r292). As a consequence we get

T :%m(r'2 + r292) . Moreover we compute the potential energy as V = —j Fdr = —j—hzdr =
r

V =——|. Thus the E-L gives: L=T -V :%m(r'2 + r29'2)+5 and the corresponding functional
r r

%—QLQ:O mr’d=c
dt I
k which is a

o 29 _
Lr—%Lr:o mi —mré +7_0

coupled system of odes, the solution of which gives the required equations of motion.

J[r 9]=}{lm(f2+r292)+5}dt =
’ 2 r
ty

4.2 Hamilton vs Newton

In summary, Hamilton’s principle gives us a procedure for finding the equations of
motion of a system if we can write down the kinetic and potential energies. This offers
an alternative approach to writing down Newton’s second law for a system, which
requires that we know the forces. Because Hamilton’s principle only results in writing
the equations of motion, why not just directly determine the governing equations and
forgo the variational principle altogether? Actually, this may be a legitimate objection,
particularly in view of the fact that the variational principle is usually derived a
posteriori, that is, from the known equations of motion and not conversely, as would be
relevant from the point of view of the calculus of variations.  Moreover, if a variational
principle is given as the basic principle for the system, then there are complicated
sufficient conditions for extrema that must be considered, and they seem to have little
or no role in physical problems. Finally, although variational principles do to some
extent represent a unifying concept for physical theories, the extent is by no means
universal; it is impossible to state such principles for some systems with constraints or
dissipative forces.

On the other hand, aside from the aesthetic view, the ab initio formulation of the
governing law by a variational principle has arguments on its side. The action integral
plays a fundamental role in the development of numerical methods for solving

108



differential equations (Rayleigh—Ritz method, Galerkin methods, etc. which we shall
present below); it also plays a decisive role in the definition of Hamilton’s characteristic
function, the basis for the Hamilton—Jacobi theory. Furthermore, many variational
problems occur in geometry and other areas apart from physics; in these problems the
action or fundamental integral is an a priori notion. In summary, the calculus of
variations provides a general context in which to study wide classes of problems of
interest in many areas of science, engineering, and mathematics.

Carl Gustav Jacob Jacobi (10 December 1804 — 18 February 1851) was a German mathematician
who made fundamental contributions to elliptic functions, dynamics, differential equations,
determinants, and number theory.

4.3 Hamilton's equations

b
The E-L equations for the variational problem J[y;,...,y,] = I L(t, Yirees Yor Yir oo Vi )dt form

)

form a system of n second-order odes. We now introduce a canonical method for reducing these
equations to a system of 2n first-order equations. For simplicity we examine the case n=1, i.e.

[
Jlyl= j L(t,y, y)dt and the E-L equationis L, —% L, =0 . Furthermore we introduce a new

f

variable p, called the canonical momentum by |p=L,(t,y,y)|. If L, #0, then the IFT guarantees

that the equation p =L, (t, y, y) can be solved fory in terms of t, y and p to get |y =¢

Now we define the Hamiltonian H by:

(t,y, p)}

H(t.y, p)=-L(t.y.e(t.y. p))+o(t.y. p)p

, Which

actually is the expression —L + yL, we defined earlier. In many systems H is the total energy.
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Now we are ready to derive the Hamilton's canonical equations by derivating H partially
with respect first to p and to y. In other words we have:

oH ) . . oH
—=-L/—+ pA+o=0(ty, p)=Yy, because p=L,(t,y,Y) y=—
op //gf /p ' N "

E-L . oH
MH_ | @ ey A4 p=_H
AL Yodt Y dt oy

These equations are called Hamilton's equations or canonical equations and they form a
system of first order differential equations for y and p.

An alternative way to derive the Hamilton's equations is the following: (keep in mind what

we have defined so far, i.e. H(t,y, p)=-L+yL, wherep=L,(t,y, y))

t F

Hamiltonian

t I’}
J[y]:J.L(t,y, y)dt = j{yp—H(t,y, p)}dt:J.F(t,y, p, y)dt and we shall treat y and p
to ty to
d
F=g =0

as independent and will find the E-L equations like previously, i.e. =

0
d
Fp_/d_ﬁ =0

_OH _dp_ _oH
dt “op
% P which is the required canonical form.
LIPS PO |
ap oy

Example (Harmonic oscillator)

Consider the harmonic oscillator whose Lagrangian is: L(t,y, ) = g y? —g y?. Then the

canonical momentumisp=L,=my — y= % Consequently H =-L+yL, = —% my? +
oH p

1 p°_1 p? » ' m y=2 _dp

+=ky? +— = =ky* +— , therefore = m >P___ Y

2 m 2 2m oH . . dy p/m
“o=-p=-L,=-ky [p=-ky
oy

P Pk S R
= mdp— kydy = =5 +C = p°+kmy® =C which is a family of ellipses in the

yp (phase) plane.
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Generalization
4

Once again consider the functional: J = j L(t, v, Yy, Vio-enr ¥, )dt @nd as previously define
t

the generalized momenta: p; = L, (t, ¥y, Yo Y1, ¥y) fOri=1,2,...,n. Assume also that

det(Lyiyj ) #0 | in order to be able to employ the IFT and solve the system of generalized

momenta for y,,..., y, and get (as previously):y, =o. (t,y,,.... ¥,,, Yy, ¥,) fOri=12,...n.

Then H(t, Yy, Yoo P Py) ==L+ D Vil =—L(E Yyooes Voo @110 0,) +
i=1

+Z(pi (t, YVireor Yos @pyeens (pn) p, . Finally using an argument exactly like the one above, we
i=1
,_H

i an.
get FgH for i=1,2,...,n. These are the Hamilton's equations. They represent 2n first

P;

%Y,
order odes for the 2n functions y,,...,y,, p,,-.., P,- More about the role of canonical formalism
in the Calculus of Variations, Geometry, and Physics one could find in [B22].

Applications:

A canonical physical model concerns a system whose kinetic and potential energy are given

2
\%
by: T = %Iuﬁdx andV = J‘{% +V(u)}dx . Here u(x,t) is a function which characterizes
D D

the system, D — R® and V a known, smooth function. Therefore, as usual, we have that:

) Vu2 4 2 w2 +u? +ud EL
L=T—V:u—t—u—V(u) and ofcourseJ[u]:” u—t—w—V(u) dxdt =
2 2 1212 2

3.0 dv o 3.0 .
LU—Z:a—XiLUXi =0 = E—a(ut)—za—xi(uxi)zo 3(

i=1 i=1

d),,
EJ V'(u)-u,-Au=0 =

U, +Au =V'(u)| which is called Klein - Gordon equation.
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(N-particles problem)
Consider a system of n-particles where m, is the mass of the ith particle and (x,, y,,z,) is its

position in space. Then the kinetic energy is T = %Z m, (Xf +yi+ z'iz) and the potential
i=1

energy isV =V (t,X,,.... X,, Y;» - ¥ir Z3,---, Z,) SUCH that the force acting on the ith particle has

components: F :—ﬂ, G, :—%, H, :—ﬂ . Then the Hamilton's principle applied to this
X, o, oz,
ov d .
in _iin =0, _a_x_a(mixi)zo
at | mX = F,
system yields: < L, —%Lyi =0= —Z—V—%(mi y,)=0= imy, =G, fori=12,..,n.
d 6{; d mi'z'i = Hi
LZ~__LZ :O —_ Z :0
ode - oz, dt( )

These apparently are the Newton's equations for a system of n-particles.

4.4 Supplementary material accompanied by some historical
comments

Newton founded his theory of Mechanics in the second part of the seventeenth
Century. The theory was based upon three laws postulated by him. The laws provided a
set of tools for computing the motion of bodies, given their initial positions and initial
velocities, by calculating the forces they exert on each other, and relating these forces
to the acceleration of the bodies. Motivated by the introduction of steam machines
towards the end of the eighteenth century and the beginning of the nineteenth century,
scientists developed the theory of Thermodynamics, and with it the important concept
of energy. Then, in 1824 Hamilton started his systematic derivation of an axiomatic
geometric theory of light. He realized that his theory is equivalent to a variational
principle, called the Fermat principle, (mentioned earlier in the context) which states
that light propagates so as to travel between two arbitrary points in minimal time.
During his Optics research, Hamilton observed that apparently different notions such as
optical travel time and energy are in fact related by another physical object called
action. Moreover, he showed that the entire theory of Newtonian mechanics can be
formulated in terms of actions and energies, instead of in terms of forces and
acceleration. Hamilton’s new theory, now called Hamilton’s principle, enabled the use of
variational methods to study not just static equilibria, but also dynamical problems.

Below we will re-demonstrate Hamilton's principle by applying it to the problem of n
interacting particles, a standard problem in classical mechanics. We have already
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handled this particular problem earlier and inevitably this will lead to a sort of material's
cover.

Our goal here is to explain better (more profoundly) why we consider the difference of
kinetic and potential energy, to present Maupertuis' least action principle (mentioned
also earlier to the context) and lastly to demonstrate Hamilton's principle to the elastic
string and extract the equation for the vibrations of rods.

Newton's

1& .,
E =— m. X: second law :
k 2 ; i d (m dXI j

= el Mg :F:—in(Ep) fori=12,..,n

E, = Ep(xl,..., X,
Now the energy of the system (if it is conserved, it is also called Hamiltonian) is defined by
E = E +E, as we know from the theory of classical mechanics. We additionally define the
Lagrangian of the system as L = E, —E and we shall explain later in the context why we have
made this choice. Finally we shall also define the action in Hamilton's formalism as:

t
J= I Ldt . By taking into consideration the above discussion, we are ready to (re)introduce the
t1

Hamilton's principle. Hamilton postulated that a mechanical system evolves such that 6J =0,
where the variation is taken with respect to all orbits (y, (t), y,(t),..., y,(t)), such that

yi(t) =%(t) , yi(t,) =x(t,) fori=12..,n

L= L(t,xl,..., Xgo Xy Xy ) - IF L= L(X?j_)t(j (i.e. L is independent of time) energy is conserved,

which implies that E H.

total —
L

Y n \
::_gtjo‘{%;mi (Xi +g¢i)2 — Ep(X1+g¢)l,...,Xn +‘9¢’n)}dt -

&=0

51 =2 %+ 9]
de

e=0
integration

t t
tl & dx, dp. OE, byparts %) Q& d?x. OE

m-——1_—Pgp ldt = —E m—-——2 o |dt =0, where ¢ eC[t ,t
J‘{Z( 4t dt . ox ?; I a2 ox ?, ¢, €Colty, 1]

t, L 1=1 i to i=1 i

—

. L. . . . bl d?x  OE
is the variation with respect to the particle x.. Conclusion: —z m, dtzl —a—p @ (t)|dt=0 =
to i=1 Xi

oE :
Fundamental lemma = 6—" =|F =m, dtzl fori=12,...,n, which is the Newton's 2nd law.
X.
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But why should we consider the difference of kinetic and potential energy as L?

The concept of the Lagrangian seems a bit odd at first sight. The sum of the kinetic and
potential energies is the total energy, which is an intuitively natural physical object. But
why should we consider their difference? To give an intuitive meaning to the difference
of the energies, it is useful to look a bit closer at the historical development of
Mechanics. Although Newton wrote clear laws for the dynamics of bodies, he and many
other scientists looked for metaphysical principles behind them.

As the mainstream philosophy of the eighteenth century was based on the idea of a
single God, it was natural to assume that such a God would create a world that is
‘perfect’ in some sense. This prompted the French scientist Pierre de Maupertuis (1698—
1759) to define the notion of action of a moving body. According to Maupertuis, the
action of a body moving from a to b is:

b
A :'[ pdx , where p is the particle’s momentum. He then formulated his principle

of least action, stating that the world is such that action is always minimized.
Converting this definition of action to energy-related terms we write:

A= j pdx = j m— dx j ( jdt 2[ E,dt . The difficulty with this approach

is in fact that it only mcludes the klnetlc energy, while the combination (sum) of both
kinetic and potential energy determines the motion. Therefore, Lagrange used the identity

t
2E, =E , +L = A= I(Etotal +L)dt . But since the energy is a constant of the motion (since
4
t
conserved) , minimizing A is actually the same as minimizing I Ldt .

4

Pierre Louis Moreau de Maupertuis (1698 — 27 Jul‘y 1759) was a French mathematician,
philosopher and man of letters. He became the Director of the Académie des Sciences, and the
first President of the Prussian Academy of Science, at the invitation of Frederick the Great.
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We proceed now to demonstrate Hamilton's principle for the elastic string.

Elastic String

We set u, =u(a,t) and analogously u, = u(b,t). Moreover we define u(x,t) to be the string's
deviation from the horizontal rest position, /(x,t) be the load on the string, d(x,t) be the
string's elasticity and p(x,t) be the mass density. As we know the line element is given by

b
ds =/1+u’dx and E, = %I pu’ds . The potential energy now consists of the sum of the energy
due to the stretching of the string and the work done against a load /(x,t) :

b
E, = Hd (4/1+ u? —1)—£u4/1+ u? } dx . Notice that we allow the density, the elastic coefficient,

a

and the load to depend on x and t. The action is thus given by:

J= :sz 1+u’pu/ —d («/1+ u’ —1)+£u4/1+ u’ }dxdt

Consider variations u + gy such that y vanishes at the string’s endpoints a and b,and also
at the initial and terminal timepoints t, and t,. Neglecting the term that is cubic in the
derivatives u,,u, we get for the first variation:

tb 71
5 = ”{ 140} puy, —d (1+U7 ) 2u,p, + 41+ ufy/}dxdt. Integrating by parts, the boundary

ty a
conditions imply that the boundary terms (both the spatial and the temporal) vanish. Therefore
equating the first variation to zero and integrating by parts:

bbb
( 0| pu, o| pu > L . .
——| —/—= |+ —| === |+ (\J1+u; ;ypdxdt =0. This implies the dynamical equation
!{H 6t[41+uf} 5X[Jl+uf] }
1
(d(1+uf)2uxj
X—¢=0

pu, )t - —¢=0]|. Moreover, if we assume p and d to

\f1+ u?

be constant and also use the small slope approximation |uX| < 1, we obtain the 1-dimensional

for the string's vibration:

—~

d| ——
i
. x ) d £(x,1)
wave equation: pu, ——————%=/(X,t) = |U, _BUXX = T non homogenuous wave eq.
2
u
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Vibrations of Rods

The potential energy of the string is stored in its stretching i.e. a string resists being
stretched. We define a rod as an elastic body that also resists being bent. This means that
we have to add to the elastic energy of the string a term that penalizes bending. The amount

of bending of a curve f (x) is measured by its curvature: |k(x) =

(1+ 12)2

Therefore, the Lagrangian for a rod under a load ¢ can be written as:

b 2
L:I % 1+uy Putz—%(llj%)z—dz(aflwf —1)+£uafl+uf dx . To simplify now the
a +Uu,

calculations, we introduce the small slopes assumption at the outset , i.e. |ux| < 1, therefore

«j1+u =1.Thus J = “{ pu; ——u —d—22u5+£u}dxdt. Computing the first variation now,

we find that: 6J = ”{ puy, —d,u,w, —d,uw, + Ly} dxdt.

t, a

In order to obtain the Euler—Lagrange equation we need to integrate the last integral by parts.
Just as in the case of the plate, we assume that the rod is clamped, i.e. we specify u and u, at

the end points a and b. Therefore, the variation y vanishes at the spatial and temporal endpoints,
and in addition, y, vanishes at a and b. We thus obtain that the vibrations of rods are determined

by the equation: |( pu, ), —(d,u,) +(dyu, ) —¢=0

4.5 Inverse Problem

How can we determine the Lagrangian L if we know the equations of motion? This
problem is known as the inverse problem of the calculus of variations. Next we shall
formulate the inverse problem (keeping our approach in an elementary level) by
considering the case n=1 for simplicity.
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Given a second order ode: (*) y"=F(t,y,y") we will try to find the corresponding Lagrangian

L=L(t,y,y’) such that (*) is the E-L equation L, —% L, =0 . Generally the problem has

infinitely many solutions. In order to determine L , we writethe E-L: L —L , -y'L,, —y"L, =0
or equivalently: L - L, —y'L,, —FL, =0. We assume that L is three times continuous differentiable

in order to be able to change the partial derivatives. Differentiating with respect to y :

d ) .
d—y[—Ly+Ly.t+yLyy+FLW]:—%+L[w+%+yLWy+FLWy+FyLW:O

(vanishing because L, =L, )= L, +yL, +FL, +L, F =0.Setting now u(t,y,y)=L(tV,Y)

we get the first order (With respect to u) pde: |u, +yu, +Fu, +uF, =0[. However it is often much

simpler to proceed directly by matching terms in the E-L equation to terms in the given equation.

A representative example

Next let us consider a simple example in order to clarify a bit more the whole procedure.
Motion's equation: my”+Kky +ay’ =0 which is a damped harmonic oscillator. This system is
not conservative due to the damping and there is not a scalar potential. We cannot apply
Hamilton's principle directly here. We seek a Lagrangian such that my” +ay’+ky =0 is an
E-L equation. Multiplying by a nonnegative function f (t), we get (we additionally demand
mf (t)y +af (t)y +kf (t)y=0
Ly +L,y+(L,-L,)=0
mf (t)
2
arbitrary functions. Then it follows that —L +L, +L, y=af (t)y+kf (t)y =
—(W+ Ny)+ mf/(t)y+ M, + M¢¥ =af (t)y +Kf ()y. Thus we have that:

at at

mf'(t)=af (t) = f(t)=e™ and —N,+M, =kye™ , but since M, N are arbitrary, we are able

the equation to coincide with the typical E-L): { =

Ly=mf(t) = L, =mf(t)y+M(t,y) = L= y>+M(t,y)y+N(t,y) where M, N are

at

to select M =0 and get that: N(t, y) = —(g) y?e™ and consequently a Lagrangian for the damped

at

harmonic oscillator is: |L(t, Yy, y) = {% y° —g yz}em . Finally let us make a comment.

at

This expression is the Lagrangian for the undamped oscillator times a time-dependent factor e™.
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Theory supplement

Next we will discover for which Lagrangian functions the E-L equation is satisfied identically.

d y .
Ly—aLy:O = yL,+yL,+L,-L,=0=>L,=0 =L =M(y) =

L=M(t,y)y+N(ty) butl, =M andL, =M, = yM;+M - yM;-N =0 =

oM ©ON
a
satisfying the compatibility condition. For these Lagrangians, which are linear in y, with additionally
coeffiecients which satisfy the compatibility condition, the E-L is identity!

compatibility condition. Thus this leads to |[L = M (t, y)y + N(t, y)| with M, N

Now we continue by presenting below some further examples-applications to Physics,
where we shall practice analytically the method of finding the Lagrangian corresponding
to a given differential equation developed above.

Emden-Fowler equation:

In this example we shall consider the Emden - fowler equation, i.e. y+% y+Yy° =0, and we

will attempt to obtain the Lagrangian (inverse problem) by imitating the procedure above. Hence

<o(t>y+§<o(t)y+<o<t)y5 -0

multiplying by a function ¢(t) >0 = = equalizing term by term

L,y+L,y+L,-L,=0
Ly, =)= L, =pt)y+ Mt y)=>L :%go(t)yz +M(t,y)y+N(t,y) . Equalize now the

remaining parts to obtain: L, y+L, L, :%(p(t)y+§0(t)y5 = M+¢'(t)y+ M, —/yb/(_

-N, = Z(DTG) y+o(t)y’ = (equalizing the coefficients of y) = (jj—gtp - 2‘[_§0 = () =t*,

substitute now the value of ¢ to the equalizing condition above and take into consideration
2

that M is arbitrarily chosen (so we can demand M =0) to get: —N, =g(t)y* = y°t* =

2 2,,6
t° .

Yoo , Ly
Nt y)=—""t"+0t) = |[L==Yy -
(ty)=—"=t+50) PR A
An even faster way to determine the Lagrangian is by using the "integrating factor". This
simplifies a lot the procedure. Below we shall demonstrate this equivalent method through

some examples .

+ @(t) infinitely many Lagrangians.
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Example (i)

A particle's motion in a constant external force field with frictional force proportional to
its velocity:

Consider the linear equation y +ay +b =0 (a,b > 0). The integrating factor is e, thus after

. . . oy ! I—y = eatb
multiplying the equation with it, we get: (eat y’) +e*h=0 =
NI/ —— _

-Ly

L=e"yb+N(t,y) 2
(yr)z = |L=¢e" by——(y)
L:—eatT-i'M(t,y) 2

Example (ii)

Consider the non linear equation y + p(t)y+ f (y) =0, where p and f are continuous functions
with anti-derivatives P(t) and F(t) respectively. Next we will compute a Lagrangian

b
L =L(t,y,y) such that the E-L equation associated with the functional J[y] = j L(t,y,y)dt is

equivalent to the given non linear equation above. Here the integrating factor is e”®, therefore

o : P(t) d/ rpmye) . P L, =e"Vf(y)
multiplying the equation by e”® we get: —(e”¥y)+e”¥f(y)=0 =
dt NI _\L,—J |_y — _eP(t)y
_L y

y
P(t Y i
L=e"OF(y)+ M (t,y) M ativay

& = Now we can either compare the two equations or
L=—e® >+ N(t,y)

_eP(t)yz

equivalently plug the first into the second. So L, =M, ="y = M(t,y) = +(t)

.2
Hence we obtain the Lagrangian: |L = e"® {F (y)- y?} +o(t)
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Example (iii)

Consider an electrical circuit RLC , which satisfies the following differential equation:

Ly +Ry +% =0 where y(t) is the electrical current, R is the resistance, C the capacitance,

R
L is the inductance. By multiplying with the integrating factor et we get that:

Bt. Bt yZ
Bt ' e%t Lyz_eL y L:_eL ?"‘M(t,Y)
yet |+ y—1|=0 = R = — as usual we obtain:
< S T
= —_ :e + ,
L=Yic 2LC y
R
—t
N et o,y
Lty y)=—| YV —2=
ty.y) 5 {y LC}

5. Critical Points and the Mountain Pass Theorem

We have concentrated our study so far on the problem of locating minimizers of
various energy functionals, subject to constraints (perhaps) and of discovering the
appropriate E-L equation they satisfy. For this chapter, we shall turn our attention to the
problem of finding additional solutions of the E-L pde, by looking for other critical
points. These critical points will not in general be minimizers, but rather "saddle points"
of the functional I. We shall develop next some "machinery" that ensures that an
abstract functional | has a critical point.

5.1 Critical points, deformations

Hereafter H denotes a real Hilbert space, with norm | | and inner product (-,-) and let
| :H — R be a non-linear functional on H.

Definition:
> We say | is differentiable at u € H if there exists ve H such that

I[w] = I[u]+(v,w—u)+o(|w—ul})| forwe H. The element v, if it exists, is unique.

We then write
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Definition :
> We say that | belongs to C*(H;R), if 1'[u] exists for each u € H and the mapping
I":H — H is continuous.

The theory we develop below holds if | € Cl(H ;R), but the proofs will be greatly streamlined
provided we additionally assume that the mapping (*) I":H — H is Lipschitz continuous on

bounded subsets of H.
Notation :

(i) We denote by C the collection of functions | e C*(H;R) satisfying (*).
(ii) Ifce R, we write |[A, ={ueH |I[u]<c}|and [K,={ueH [I[u]=c, I'Tu]=0}

Definition
> We say u € H is a critical point if I'lu] =0
> The number c e R is a critical value if K, =

We now wish to prove that if ¢ is not a critical value, we can "nicely" deform the set
A, ={ueH|[I[u]l<c+g} into A_, for some &> 0. The idea will be to solve an appropriate
ode in H and to follow the resulting flow "downhill". As H is generally infinite dimensional, we
will need some kind of compactness condition.

Definition :

> A functional | € Cl(H ;R) satisfies the Palais - Smale compactness condition if each sequence
{u },_, = H such that

(i) {1[u,1},, is bounded

(i) 1'lu,]—>0inH

is precompact in H.
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|Deformation Theorem|

Assume | e C satisfies the Palais — Smale condition. Suppose also K, = .

Then for each sufficiently small £ > 0, there exists a constant 0 < 6 < £ and a function
neC([0,1]xH;H) such that the mappings n (u) =n(t,u) (0<t<1, ueH) satisfy:
(i) ny(u)=u (ueH)

(ii)nu)=u (Uugl ' c-¢&c+el)

@) Ifn, (W] < 1u] (ueH,0<t <)

(V) n(A) = A,

The proof of the theorem can be found in [B21]

5.2 Mountain Pass Theorem

Next we present an interesting ""min-max"' technique and we use the deformation n
built above to the deformation theorem to deduce the existence of a critical point.

(Mountain Pass Theorem)

Assume | € C satisfies the Palais — Smale condition. Suppose also:
(i) 1[0]=0

(ii) There exist constants r,a > 0 such that I[u]>a if ||ju|=r and
(iii) There exists an element v e H with |v|>r, I[v]<0.

Now define T'={g eC([0,1];H) | g(0)=0, g(1) =v}. Then:

c= im; max I[g(t)]| is a critical value of I[] .
ge <t<
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Proof:
Clearly c > a. (why?) Because by applying the IVT (intermediate value theorem), something
we are allowed to do because the real value function g is continuous in [0,1] and
0=g(0) = g(1) =v, since |v|>r >0, we get that 3t" € (0,1) such that g(t") =r, so we have
g(t’) € 8B(0,r), since Hg(t*)H:||r||:r, which according to the theorem's assumptions means that
a<1[g(t")]. Therefore a<I[g(t")]<max I[g(t)] , which is valid vg T
So obviously a <inf max I[g(t)]=c.
gell 0<t<1
Assume now that c is not a critical value of I[-], so that K, = &. Choose then any

- a : : .
sufficiently small number 0< ¢ < ry According to the deformation theorem now, there exists

a constant 0 < & < ¢ and a homeomorphismn:H — H withn(A,,;)c A_; and n(u)=u if
uel'[c—e&,c+&]. Now select g e T satisfying max I[g(t)]<c+ o, something we are allowed

to do because of the J-characterization of infimum, i.e. V 6>0 3 g e I' such that
max I[g(t)] < im; max I[g(t)]+ S =c+ 6. Then we observe that if we define § =no g, this also belongs
ge <t<

0<t<1
to T, since n(g(0))=n(0)=0and n(g(1))=n(v) =v, according to n(u) =u ifue I “[c—&,c+¢].
To be more specific, from our assumptions we have that I1[0] =0 as well as I[v] <0, while we note

that & < % <a<c = c—¢&>0.Hence neither v nor 0 e | ‘[c—¢,c+ ¢]. Consequently we are ok :)
Needless to say that it is continuous as a composition of continuous functions.
But then max I[g(t)]<c+ & implies that max I[§(t)]<c—&, because of the fact that n( A, ;)= A _,

and g =n(g). Again, in order to be more specific, let us justify this assertment.
Fix an arbitrary t €[0,1]. Then g(t) < max I[g(t)]<c+0=g(t) € A.,. But now we observe that

N(As)cAs
g@t)= n(g(t)) e A . ie l[d(t)]<c—o and since t was arbitrarily chosen, we get that

max I[§(t)] <c—o. Finally, since § eT", we have that c = im; max I[g(t)] < max I[§(t)]<c-0o. So:
<t< gell 0<t< <t<:

c= im; max I[g(t)]<c—-&, which is obviously a contradiction, because 0<—-5. o
ge <t<
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Remarks:

> The Mountain Pass Theorem (MPT) is an existence theorem. Given certain conditions on a

function the theorem demonstrates the existence of a saddle point. The theorem is unusual in that

there are many other theorems regarding the existence of extrema, but few regarding saddle points.

> Think of the graph of 1[-] as a landscape with a low spot at zero, surrounded by a ring of mountains.
Beyond these mountains lies another low spot at v. The idea is to look for a "path" g connecting 0 to v,
which passes through a mountain pass, that is a saddle point for I[-]. But note carefully that we are only

asserting the existence of a critical point at the "energy level" ¢, which may not necessarily correspond
to a true saddle point.

This is a photo which depicts the main idea and illustrates the main assertion of our

remark above, however, since it has been taken from the net, the notation does not
match. The same situation seen from above:
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5.3 Application to semilinear elliptic pde

Next, we shall illustrate the utility of MTP. For this purpose let us investigate the following
semilinear b.v.p.

-Au=f(u), inU _
(#) W f is smooth and for some 1< p N2 we have that |f(z)|§c(1+|z|p),
u=0, onouU n-2

f'(z)| < c(1+|z|p71), z e R and c is a constant.We will also suppose that 0< F(z) < yf(z)z for

z

some constant y < % where F(z) = j f (s)ds. We hypothesize finally that for constants 0 <a < A
0

a|z|p+1 <|F(2)|< A|z|p+1 (z € R). Now this implies f (0) = 0, because by applying the mean value
0
F(z)- E
theorem, we obtain a|z|” < % <Al7’ = alz)” < f (&)< Alz|’, for some & between

0 and z. And by letting z — 0, we obtain that f (0) = 0. Obviously then, u =0 is a trivial solution of

the b.v.p. (#). We wish to find another. Observe that the pde —Au=u |u|p_1, where f (u) =ulu
falls under the hypotheses above.

i

(Existence)

—Au= f(u), inU i
has at least one weak solution u = 0.
u=0, onouU
Proof:

Define the energy functional : 1[u] = J-[%|Vu|2 - F(u)jdx for u e Hy(U). We intend to
U

apply the MPT to I[-] . We will also simplify a bit the notation by setting H = H:(U), with norm
12
||u||=(j|Vu|2 dxj and inner product (u,v) = _[Vu -Vv dx . At this point let us note that due to
U U

Poincaré 's inequality (we are able to use it since u e Hé(U)) the norms ||Vu||Lz(U) and ||u||H1(U) are

equivalent, i.e. [Vul| so we can consider the norm above instead of the typical norm.

2u) ”u”Hi(U)'

. . . . . . . 2 2
To check the equivalence is quite easy, if not directly obvious, since |[Vul| cwy S ull Wy =

<cfvuf

) -

_ 2 P Poincaré P P 2
_(||u||L2(U) +||Vu" LZ(U)) < ”Vu" LZ(U)(C(U)+1) = ||VU|| L2() S”u” HY(U)

Then we have that: | 1[u] = %||u||2 - j F(u)dx = I,[u]-1,[u]
U
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We first claim that | belongs to class C. To see that, first note that for each u,we H, we have:
1 1 1 1
] = 2 = Ju-+w—uf” =2+ . w—u) +Z fw—uf

I,[w] = I,[u]+(u,w—u)+o(|w—ul) . Hence, according to the definiton given earlier, we conclude

that 1, is differentiable at u, with [I,[u] =u| Consequently I, € C.

Now we need to examine the term |,. According to the Lax-Milgram theorem we have that for
. a —-Av=V", inU . .
each element v € H™(U) (the dual space of H), the problem has a unique solution
v=0, onoU
ve H;(U)=H. Now we shall justify analytically the assertion above.
—-Au=u", inU

Weak formulatin of b.v.p. { 0 U = we multiply now by a test function p € C;(U) =
u=0, on

j —Augpdx = — J.// —dS +IVu Vdx = ju @dx, where the surface integral equals zero, since ¢
is zero at the boundary due to the compact support. Therefore J'Vu -Vodx = Iu pdx Voe H (U),
U U

because C;"(U) is dense to H; (U). Now by defining the bilinear form: B[u,v] = J'Vu -Vvdx , we get:
U

B[u,go]=<u*,go> Ve H;(U)| weak formulation

We also define f (u) = u which is (obviously linear) continuous <> bounded since u € H*(U),
which is the dual space. Now the bilinear form BJ[u, V] is: (i) bounded, since

c-s ) V2 ) V2
ot = v v vl = vl o | [ <[l 1L, ol
U U u U

and moreover (ii) coercive, since B[u,u] = I|Vu|2 dx = ||Vu||i2(u) = ||u||2 Therefore the assumptions
U

of Lax-Milgram theorem are satisfied and consequently we can proceed by applying it. We now write
, sothat K:H™(U) — H(U) is an isometry. Note in particular that if w e L% (U), then the

linear functional w* defined by |(w",u) = jwudx ,ueHL(U) belonds to H*(U). (we will misuse
U

notation and say "we H™"(U)" ). In order to see this, it suffices to show that it is bounded and this
implies that it is continuous (as linear) as well, thus it belongs to the dual space. Therefore we observe

remarks below
Holder after the proof

K ‘ I|wu|dx < w2

e

Bolulyw, < 2w Jull, from the theorems (Sobolev type
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inequalities) presented shortly afterwards the end of this proof and the fact that 2_r12 and 2" are
n+

conjugate. Consequently: HWH < ||W|| < o0, something that verifies the assertion above.

2n

L"*Z(U)

ZnJ n+2 2n
<

: =2" and so we have that f (u) e L%(U)c HU),
nN+2) n-2 n+2

Observe next that p(

on 2n

2n n+
s_[|f(u)|m2 dx < Ic(1+|u|p) “dx <o , because |u| > <o, since
U U

if U H2(U). Indeed | f (u)]

L2 (U)

if we see again the Sobolev's estimates presented below, ue H;(U) c H*'(U) < L2

We now demonstrate that if u e Hg(U) , then |1;[u] = K[ f (u)]| .

To see this, note first (we expand through Taylor theorem with integral residual,
F'(a)
Taylor

1
i.e. F(a+bh) = F(a)+f(a)b+b2J.(1—s)f’(a+sb)ds ). Thus for each we H;(U), we get that
0

a b
Flu+w—-u)=F(Qu)+f (u)(w—u)+ R, where R is the integral residual. As a result this leads to:

R:j Rdx

IZ[W]:IF(W)dx:jF(u+w—u)dx - j{F(u)+f(u)(w—u)}dx+R= [Iz[u]:IF(u)dx]:

=1,[u]+ .[VK [f ()] V(u-w)dx+R , where the last equality follows from the way we have
U

defined K and the result of Lax-Milgram theorem. Now the remainder term R satisfies,
according to |f(z)|gc(1+|z|p)’ |f!(z)|SC(1+|Z|p—l),

sj{|w—u|2j(1—s)‘f’(u+s(w—u))‘ds}dx£

u 0

1

J‘(w—u)zl‘(l—s) f'(u+s(w—u))dsdx

U

RI=

P

2
(20'[(1+|u|p_1 +|w—u|p'1)|w—u|2 dx(;)c'[(|w—u|2 +|w—u|p+1)dx+cU|u|p+1 dxjp+l U|W—U|p+l dxj "
U U U U

triangular
<s<l

(1) ‘f'(u+s(w—u))‘£c(1+|u+s(w—u)|p71) , where |u+s(w—u)|meq£my|u|+s|w—u|os Jul+w-u| <

ju+s(w-u)|""

o < (max{|u|,|w—u|})pf1 <|uf"" +w—-u["", and thus:

2max {Ju],/w-ul} , consequently:
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¢ N

S6(1+|U|p_l+|W—U|p_1), so we have established that ’(u+s(W_u))‘S6(1+|u|p—1+|w_u|p_1) |

(2) We obtain this by applying the Holder 's inequality, to be more specific we have:

p-1

2
i ND‘*'J- p+1 + il
|upl|W uf dx < luP ) e |w-uy u "dx |w—u|XpT1dx """ because of
o © U U

L")

-1 2
the conjugate exponents: ——+——=1.
p+1 p+1
n+2 2n . -
Now since 2 and p+1< 27, becausep+1<—2 1——2=2 and 2 < 2'since 2n—4<2n,
n— n—

the Sobolev inequalities show that R = o(||w—u||). Again by the Sobolev's inequality:

ifueHg(U) then ||ul|..,, <c[Vul.,, ¥1<q<2" (for more about it see the remark below)

L9(U) 2()

and the fact that ||Vul| , " lul| as we have already noted in the beginning of the proof, we have that:

(w-u)]

D

ufl,,llull .. <cllulll . So now from the relation: |R|< [(lw—u|" +|w—u dx +|lu
Jull: . Jull o <cul] - R < J{(w=uf* +w=ul*)ax+u.
U

|_2

1
e ={ ool % o] -pu-ol<olw-of
U

and (b).[(|w—u|2+|W—u|p+l)dx:||w—u|| Hw—ul’ <c (||w_u||2+||w_u||p+1)
U

L =

we deduce that R =o(|w-u) ,because (a) H w-u)

Thus we see that
I,[w] = Iz[u]+<K [f (u)],w—u>+o(||w—u||) as required , since we have shown earlier above

I,[w]= Iz[u]+IVK[f(u)]-V(u ~w)dx+Rand K :H™(U) — H;(U) is an isometry. In other
U

words we have shown that |I;[u] = K[ f (u)]| . Finally we note that if u,i e Hg(U) with |u], |a] < L

then: |[1;[u]- 1;[a]] = |[K [ f W)]-K[f(@)] o) =|f(u)-f(a <|f - (@] 2, and this

” ()
due to the way we have defined K, i.e. K[ f (u)]=K[u"]=u, and here f (u) =

hence K [ f (u)] = f (u). Moreover the embedding f (u) L (U) c H (), if ue HL(U) justifies the
last inequality. But:

n+2

2n

I )= £ (@] vz, = [ﬂ f(u)-f (l])|n% dx] and we remind ourselves that |f'(z)|< c(1+|z|p’1),
U
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Then by MVT £ (u) - f (@)] =| £ (&) lu—a] < c(L+[¢*" )lu—a] < c(L+[u"" +]a"" ) lu-a] , where the

i

last inequality is justified by: |&] < max {[u] |a]} = 1+]&] "* <14|u|"" +]a|"". Taking into account now

this note, we return to our calculation and observe that:

nt12 n n2+n2 "
”f(U)— f(U) ez gy = [J‘|f(U)— f(U)|n+2 dxl SC(J{(1+|U|P—1+|0|P—1)|U_U|}n+2 dXJ Hg
]
2n T2 % in other
keep in mind that 2* =2 | <¢ 1+|u|"‘1+|g|"‘1)§T d | [u-a ores
p =< J( fo =
4 2 n-2 W21

n+2 n+2 2n T2 20 2

c Lj[(1+|u| )} dx [muumj\z dx] _

[ n+2
2n w2

T n+2 n+2
2n on o 2n
o } [ |U _a|m ns2 J ,Where "U—U”Lz ) { |U u|n+2 2 J :
L4 (U) L2 () "2 ()
_2n m2 Zn
We continue the computation: C[I(l+|u|P—1 +|a|p—1)m 4 dx] Ju=0]» o, <CLfu—dl,, <
U

2n

(Ll

A2

<C(L)|ju—a] , again by Sobolev’s inequality and since |uf,|d]| < L because u,d e Hg(U), we easily

2
n £

explain the bound: cU(l+|u|p'1 +|l]|p'1)5 dx} < C(L). Thus we have established the estimate:

u

£ ()= f (@) 2vnz v SCL) |u—]. Eventually, this leads to the following estimate

15 0u1= 13000 < F (u) = £ @] ur g, <CL)Ju=a] = [1;[u]—1;[0]] < C(L)Ju—a]| . Hence, after

all this longish analysis, we conclude that 1, : H}(U) — H:(U) is Lipschitz continuous on bounded

sets. As a consequence we get that and at last we have established the assertion that
I =1,[u]-1,[u] belongs to class C, since both 1,1, € C.
Now we need to verify the Palais - Smale condition. For this purpose, suppose {uk}:’:l c Hi(U)

with {1[u, ]}, bounded and 1'lu,] — 0 in Hj(U). According to the foregoing now,
u —K[f(u)]—0inH}(U), because I'Tu ]=1,Tu]-1,Tu]=u, —K[f(u,)]—0.
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Thus for each & > 0 we have [(1'[u,],v)| = [(u, — K[ f (u,)1.v)| =[(u,v)— (K[ f (u,)],v)| = (see the defi-
nition of the inner product given in the first step of the proof and remember the way we defined the

isometry K, so that K[ f (u)]= f(u) ) = Another way to see why this equality is

IVuk-Vv—f(uk)v dx|.

true is to observe that |(u, — K[ (u,)],v ‘_ = (K[f]=f) =

Vu, - Vv — V f(u)])-Vv) dx
(K o]

0 since

=|[ Vu, - v f (u,)v dx| and this because [Vf (u,)-Vv dx= [ vWf (u)<fidS VE“é‘W—ijf(uk)dx:
U U U

f(u)=u b.v.p.
= {—Af (u) = —Au, - f(uk)} = jvf (u,)dx . We also note that by C-S inequality:
U

~ (U — KL @)LV < Ju, —KLF @M< 2] forve HAU),

(1'Tu1.v)| = IVuk Vv f (u,)v dx

sinceu, —K[f(u,)]—0inH;(U), i.e. |u —K[f(u)]|<e, fork sufficiently large. Now letv =u
k [f(u, 0 k k ylarg K

above to find < &|u,|| for each &> 0 and for all k sufficiently large. For & =1 in

[Ivu,[* = f (u,)u,dx
U

particular we see that:

—.[|Vuk|2 dx+J' f (u)u dx < J'|Vuk|2 dx—f f (u)u,dx| < |u,|| . however according to our

definition for the inner product which was |u,[ = (u,,u, ) = J|Vuk| dx, the above yields:

(*

(1st Palais-Smale assumption)we get that |I[uk]| < ¢ for all k and some constant c. So:

~—

ff(uk)ukdxs||uk||+||uk||2 for all k large enough. But since {I[u, ]}, is bounded
U

1

2
*_F(u)dx/<c = <c = M-jF(uk)dxsmm

M—jF(u )dx
2 5 "

. 2 ) 2
Finally we deduce that |u,||" <c+ Zf F(u)dx<c+ ZJ.;/f (u)u dx <c+ 27(||uk I+ lull ) Now
U U

since 2y <1, we discover that the sequence {u, }, . < Hy(U) is bounded . Hence there exists a

subsequence {ukj }w and u € Hg(U) such that u, — 22 5y inHi(U) and so Uy, —strongly_
j=1
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in LP"*(U), the latter assertion holding since p+1< 2* and therefore it follows from the Rellich-
Kondrachov compactness theorem, which in our case states that H;(U) cc LP*(U).

But then f (u,) — f (u) in H™*(U), because f is continuous,

since it belongs to the dual space, remember: f € L*"™2 = H™*(U). Whence

K[f(u,)]— K[f(u)]inH;(U) , because we have shown in (3) that K[ f (u)] is Lipschitz continuous.
As a consequence the relation: u, — K[f (u,)]— 0 in H;(U) implies in fact that Uy, — K[f (ukj )]—>0

inH;(U), but KL (u )] = K[fW]=f(u)=uin H,(U) . Therefore we get that U, —>uin H,(U)],

deduced by the uniqueness of the limit.

We finally verify the remaining hypothesis of the MPT. Clearly 1[0] = 0. Suppose now that
2

ueH;(U), with |u|=r, for r >0 to be selected below. Then: I[u] = I,[u] - I,[u] = %— I,[u].

p+1

Now hypothesis a|z|p+1 <|F(z)|< AJz]"” forO<a<AandzeR implies, since p+1< 2", that

p+l
Lp+1 (U )

p+1

1 . . .
7o) | = cr®**, where the first inequality

||2[U]|:

JF(u)dx < J‘c|u|p+l dx =clju
U V]

<l <cly

is because p+1< 2" and consequently the embedding L* < L*** implies that | | ,. <| |~ and the

second inequality is due to Gagliardo-Nirenberg-Sobolev's inequality.
2 2 2
Now in view of I[u]= %— I,[u] we note that 1[u] > r?—cr Pl > % =a >0, provided r >0 is small

enough (archimedean property guarantees that we can find such a small r > 0 to satisfy the inequality
r’ re . . . r’ .
?—cr‘”1 > 7 since p+1> 2). Thus, given this selection of r,we selecta = R Now fix some

elementu e H, u=0. Write for t > 0 to be selected. Then I[v] = I,[v]—-1,[v] =L, [tu]-1,[tu] =

atPu)P <|F ()|

=t’1,[u]- j Fu)dx < t?1[u]- alt"*lj|u|p+1 dx <0 (we demand it in order to satisfy the 3rd
U U
assumption of the MPT) , for t > 0 large enough. On the other hand, we need to take into account that

according to the 3rd assumption, it must be |v|>r,i.e.r <|v|=|tu|=1t> ' These lead to our choice.

Jul
We have at last checked all the hypotheses of the MPT. Therefore it provides us with a critical value,
so there must consequently exist a function u e H;(U), u =0, with I'lu] =u — K[ f (u)] = 0. In particular

for each v e H; we have that 0= (1'[u],v) = (u—K[f (u)],v) = I(Vu -Vv— f (u)v)dx ,as we have proved

u

previously in step 4. So: jVu -Vv dx :j f (u)vdx and therefore u is a weak solution of b.v.p. o
] ]
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Remark:

Because we have referred to the so called Sobolev's inequality many times on the
foregoing proof of the theorem above, we shall shortly present the inequalities of
Gagliardo-Nirenberg- Sobolev type and its different versions as well as the emdeddings
implied by them and we will conclude to the basic compactness result, which is the
Rellich- Kondrachov Compactness theorem.

Definition :

If 1< p <n, the Sobolev conjugate of p is | p* = ——|. Note that i*zi—1 P> p.

n-p pp N
(Gagliardo-Nirenberg-Sobolev

Assume 1< p <n. Then 3 ¢ > 0 (depending only on p and n) such that ||u]| & S c|[Vul|

LP(R")

vu e Cy(R").

(Estimates for W*?,1< p<n)

U cR", open and bounded and oU is C'. Assume u eW"?(U) and 1< p < n. Then we have that:

ueL” (U) with the estimate |||u] vy <C[ullys o, | With ¢ depends only on p,n,U.

(Estimates for W,?,1< p <n)

U < R", open and bounded and u e W, (U) for some 1< p <n, then ||u||Lq(U) <c|vul|

L*(u)

Vvq €[1, p*] with ¢ depends only on p,q,n,U.

Let us now note two things:

> The last estimate is sometime also called Poincaré 's inequality. The difference with the pre-
last estimate above is that only Vu appears on the right hand side of the inequality.

on W,"*(U), if U is

> In view of this theorem, the norm |Vul is equivalent to |ul|

LP(U) WP (U)

bounded of course.
As we have already seen above, the Gagliardo-Nirenberg-Sobolev inequality implies the
embedding of W*P(U) into L” (U) for1<p<n, p"= P \we will now demonstrate that

n-p
W*P(U) is in fact compactly embedded in L*(U) , for1<q< p".
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(Rellich-Kondrachov compactness theorem)

U < R" open and bounded and 0U isC'. For1< p<n = W*?U)cc ') fori<qg< p'.

Finally let us remark that since p* > p and p” — oo, we have in particular W*P(U) cc L°(U) for
1< p <oo. (notice that if n < p <o, this follows from Morrey's inequality and the Ascoli-Arzela
compactness criterion). Note finally that W,"*(U) cc L"(U) even if we do not assume 6U to be C*.

5.4 Complementary material [Derrick-Pohozaev identity]

Closing this section dedicated to Mountain Pass theorem and its applications, we would
like to present the Derrick-Pohozaev identity as an "additional material" topic, relevant
to our discussion regarding the application of MPT to the semilinear elliptic pdes like the
non linear Poisson's equations of the following form:

b.v.p.
p-1 .
@ —Au=ulu["", inU
u=0, onou
of MPT earlier that there exists a non-trivial solution (u = 0) of the b.v.p. (#), provided that

. We know from the theory of existence developed as an application

l<p< nL; Let us now instead suppose that nL; <p<w® (*) Our goal here is to

demonstrate under a certain geometric condition on U that (*) implies u =0 is the only smooth

solution of b.v.p. (#) ! We see therefore that the restriction to the condition above, i.e.

n+2 . n+2 . ..
l<p< PETY was in some sense natural and consequently say p = P is a critical exponent.
n —_
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Lemma [normals to a star - shaped region]

Assume oU is C' and U is a star-shaped set with respect to O (origin). Then |X-fi(X)>0| VX € dU.

Proof:
Since 0U is C* , if xe U then for each £>0, there exists >0 such that |y —x| <& andy €U imply

A(x)- (y-x )Sg In particular limsup| fi(x)- (y=x) <0. (why?) Because:
|y X| y—oX |y—X|

yeU
Due to the fact that oU is C*, i.e. ﬁ(x) is well defined, we have from C* definition of oU that for
given x e U : Ve>0 36>0 such that, if yeU andy € B(x,5), then

n (y X) Wl . cos (y=x) < ¢ ,because this angle is larger than Z(seefigure)
Ty=x [ 2

i.e. that for given x € oU and an arbitrarily small number &, we are always able to find a number
(radius) >0, so as to be able to select ay (y €U (B(x,0)) such that the angle of the vectors

— X A
iand 2% tobe larger than Zrad, i.e. cos<0=> limsup A(x)- M] <0. Finally let
ly— x| 2 yox ly—x|
yeU
y = Ax for 0< A <1. Then, apparently y €U, since U is a star-shaped set and each line segment lies

in it. Hence ﬁ(X)-ﬁy;X—!iT ﬁ(x)-(ﬁi—_if—

In this figure we illustrate our assertion in the Lemma’s proof above that the angle
between these two vectors is indeed obtuse
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We next prove that there can exist no trivial solution to the b.v.p. (#) for for supercritical growth,
provided U is star-shaped. The proof is a remarkable calculation initiated by multiplying the pde

—Au = |u|p_1 u by x-Vu and continually integrating by parts.

[Nonexistence of non-trivial solutions]
~Au=ulu)"inU
u=0, onou

Assume that u e C* (U) is a solution of { and the exponent p satisfies

nL; < p <o . Suppose further that U is a star-shaped set with respect to the origin and the

boundary U is C*. Then u =0 within U.
Proof:

We multiply the pde by x-Vu and integrate over U, to find (f = |u|p71u ):

I—Au(x-Vu)dx=If(x-Vu)dx = .[|u|pflu(x~Vu)dx J.(x Vu)g—nds +IVu -V (x-Vu)dx
U V] V] oU
B P A

where A= A + A,. At this point let us note the followings:

X- Vu—Zx u, :— (x-Vu) (ijux j Z(X,-ij) :i[djuxj + XU } Consequently

i=1 A

n

Vu-V(x-Vu) Zu x-Vu) Zn:uxl [Z[éijuxj + XUy ]j Z{éuuxuX +xJuXuXX} Therefore

i= i,j=1

these calculations lead to:

A= jVu -V(x-Vu)dx = Izn:{éljuxux + XU, Uy }dx:> A1=anj{5uuxuX + XU, Uy }dx

uij=l i,j=lu

Analogously, we have after similar computation, a representation expression for A, quantity as well.

A =-— I (x-Vu —dS——I(ZxJuX ](Zuxn,jds_ IZan,xJux ds = AZ:Zn: J'uxn,xjux ds

ou i, j=1 i, j=1au
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Now we shall proceed by computing a little better representation forms for the quantities
A, A,,B. To start with:

n n 2
A=3 I{djux Uy, XU Uy }dX = I|VU|2 +Z{[@J xj]dx , because of the fact that:

i,j=lu U j=1

3 (o )=S0, E 0, |-l )-5 0, -vovu-f wnees, -0 )

i1 i-1 0,1=]

0 f Zux uxx . 3
observe that 5_[7} =U, U, J = Z{xj Z(“xi“xixj )} -

sfafd] it o

2
& X; [dx = '|.|Vu| dx+'|'
2 X; ou

—
X
e
2
c
2
o
~—
I
7~ N\

7
[ J J . Finally we continue by noticing that

( andS Zj&dx_j@(i-ﬁ)d8+

j=lu ou

2
+(1—EJI|VU|2 dx. As a consequence: A1:[1—EJI|VU|2 dx+jm(f< fi)ds
2 V] 2 U oU 2

On the other hand now, since u =0 on dU, Vu(x) is parallel to the outward normal fi(x)
at each x € oU. In other words this expresses what we know from multivariable calculus, i.e.

n= iﬂ = Vu(x)= i‘ﬁu(x)‘ fi(x). Using this equality in the A, above, we calculate:

[Vul
A, = _[(x -Vu) —dS = z J'uX nx;u, ds = Zn: .[i|Vu|ni2xj (£[Vul)n,ds =

ou i,j=lau i,j=lgu
:_Zn:lj'|vu|2 nizxjn,-dS :—j|vu|2 (i'nirj[zxmjjds = I|Vu| W X-1i)dS =
L1=lou ou i=

o A=A+l n 2 v U| oo 2,5 =
A = j|Vu| (X-f) = A:(l—zj£|Vu| dx+a£T(x-n)dS—a£|Vu| (x-A)dS =

A= j|Vu| dx—§j|Vu| (X-A)ds|(1)

ouU
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Returning to the initial relation now, obtained after multiplying the pde by x-Vu and integrating
over U, i.e. [—Au(X-Vu Jdx=[[u]""u(X-Vu )dx , we compute that:
U U

A=A +A, B
B—j|u|p_1u(i vu )dx—znlj'u|u|p XU, Jdx= Z_[ ™ |p+l X dx—znlj |U|p+lx n.ds —
U 10 i1y i p+1
n p+1 p+1
— dx— —— | |u|” dx , where the surface integral vanishes because
ZI ju S L
=ty au +
u=00ndU = |u"" =00naU. Finally all the above lead to: |B = r 1J.|u x| (1)
+
An alternative way to get this result would be the following:
n p+1 | |p+1 |U p+ 0 | |P+1 n L
x,dx = |V X dx = (X-fi)dS - dlvidx:—— ul”" dx
155) reetr S rae 15 e Blmima o
. . o 1 OX: L . -
since div(X) = za—x' =1+1...+1=n. Moreover let us also justify the previous-step derivation:
i=1 i

sgn(u)
p+1
(TH} =ul” x (|u|) |u|psgn(u)§7u=|u|p |E—| u,, :u|u|p_1uXj , where we have made use of the
j
X

following known properties of the function "sgn": §(|x|) =sgnx and sgnx=— :ﬁ
X X X

X]

. This calculation and the initial relation I—Au(x -Vu )dx I|u p N ()? vu )dx yield:

ﬂu |”" dx|| Derrick - Pohozaev identity.

n;_|‘|Vu|2 dx+ 2 J. |Vu|2 (X-?u)d
2 U 2 ouU

p+1;

In view of the lemma presented above, i.e. X-f(X)>0 VX edU, giventhatoU isC'and U isa
star-shaped set with respect to the origin, we then obtain the inequality:
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J'|Vu| dx <—— .|'|u|p+l dx . But once we multiply the pde —Au=ulu|”" by u and integrate

p+

by parts, we produce the equality: I—uAudx = qu |u|p_1 ax = — _[ u/ggi ds + IVu -Vudx =
U U ou n U

:J.|u|2 ufTdx = I|Vu|2 dx = _|.|u|':Hl dx| and substituting this above, we conclude that:
U

n—_2j|u|p+ldx:n;2j|Vu|2dxglj|u|p+ldx - [D=2_n I|u P dx < 0. Hence if u =0,
2 2 p+1y 2 p+1
it follows that n_2_L1<0 = psnL; which is a contradiction, thereforeu=0inU o
p+ n—

6. Invariance - Noether's theorem

Next we study variational integrands that are invariant under appropriate domain and
function variations and show that solutions of the corresponding E-L equations then
automatically solve also certain divergence structure conservation laws.

Amalie Emmy Noether (23 March 1882 — 14 April 1935) was a German mathematician
who made important contributions to abstract algebra and theoretical physics. She
invariably used the name "Emmy Noether" in her life and publications. She was
described by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl and
Norbert Wiener as the most important woman in the history of mathematics. As one of
the leading mathematicians of her time, she developed the theories of rings, fields, and
algebras. In physics, Noether's theorem explains the connection between symmetry and
conservation laws.
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6.1 Invariant variational problems - Noether’s Theorem

We again turn our attention to the functional I[w] = j L(x,w, Vw)dx where U c R" and
U

w:U — R. We as usual write L = L(x,z, p) (z e R).

Notation :

(i) Letx:R"xR - R", x =x(x,7), be a smooth family of vector fields satisfying x(x, 0)=x

for all x e R". Then for small |r| the mapping x — x(x, 7) is a smooth diffeomorphism. We call

the mapping x — x(x,7) a domain variation. Define also |v(x) = x,(x,0)| and |U (r) =x (U, 7)|

(i) Next, given a smooth u:RR" — R, we consider a smooth family of function variation

wiR"xR — R", w(x,7)=w such that |w(x,0) =u(x) | Write [m(x) = w, (x,0)|. For reasons that

will be clear shortly, we call m a multiplier.
Task :

Given a functional 1[-] of the upper form (i.e. I[w]= '[ L(x,z, p) forz=w and p = Vw), we ask if
U

we can find domain and function variations that are compatible with the Lagrangian L , in the sense that
I[-] is unchanged under these variations.

Definition :

We say that a functional I[-] is invariant under both the domain variation x and the

function variation w provided (#) jL(x,W(x,r),VW(x,r))dx = I L(x,u, Vu)dx| for all small

U U(7)=%( )

|7| and all open sets U = R". (Here we write Vw =V w)

The idea behind this definition is that given a domain variation x and a function u , we
will look for w as some expression involving u(x(x,t)). We will try to check (#) by
changing variables in the integral term on the left side, after which the integration will
be over the region U(t). Below we will show that invariance of the functional implies
that the corresponding E-L equation can be transformed into divergence form!
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[Noether 's theorem|

Suppose that the functional 1[-] is invariant under the domain variation % and the function

variation w corresponding to a smooth function u, i.e. jL(x,w(x, 7),YW(X,7))dx = I L(x,u,Vu)dx
U U (7)

Then:

(i) Zn:[mLpi (x,u,Vu) — L(x,u,Vu)vi]Xv = m[ _n (Lpi (x,u,Vu))X_ - Lz(x,u,Vu)} ,which has the vector

form: div[mﬁpL—LV}:m[div(?pL)—Lz} (*) , where V = (v,,V,,...,v,) is defined by

V=v=yx.(x,0) and the multiplier m by m(x) =w, (x,0) .

(ii) In particular, if u is a critical point of 1[-] and so solves the E-L equation, i.e.

—div(V,L)+L, =0, we have the divergence identity »" (mL, (x,u,Vu)—L(x,u,Vu)v;) =0, which

- X;
i=1 '

has the following vector form: div[mﬂL - LV] =0/, known as Noether's divergence identity.

Proof:
Differentiating the invariance identity j L(x,w(x,7), VW(x,7))dx = I L(x,u,Vu)dx with
U U (9)=1(U.7)
respect to 7 and then setting = =0 yields the identity:
(remember our notation according to which: z=w(x,7) , p=Vw(x,7) and U(z) =y (U, r))
d

jL(x,w(x,r),Vw(x,r))dx: _[ L(x,u, Vu)dx i

6] U(r)
I{LZ (X, W(X,7), VW(X,7) )W, (X, 7) + ) L, (% w(x,7), Vw(x,7))(w,(x,7)), }dx = (we can obtain
U i=1 '
this result, because we can change the derivatives, i.e. (wXi (x, r)) =(WT(X:T))X, )=

j L(x,u,Vu) V(x)-i dS + I Modx , Where here we applied the differentiation formula
au (r) U(r)
> outward normal
. velocity of the
moving boundary
of oU(7)
By setting now 7 =0 and by taking into consideration that w(x,0) = u(x), m(x) =w. (x,O),
V=v(x)=%.(x,0)and x(U,7)=U () = x(U,0)=U , we get that:

< o

for moving regions, i.e. a4 j f(x,7)dx = I f (x,7)dx+ I f V-ndS|where
dr, () ule) U (r)

j{Lz(x,u,Vu)m(x)Jan:Lpi(x,u,Vu)(m(x))x}dx: j L(x,u,Vu)v-i dS =

i
u au(0)=u
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I[Lzm +?pLﬁm}dx = I LV -n dS| Now by applying integration by parts and the Gauss-Green
U oU
theorem = j m(x)(?pL-ﬁ)dS +J._Lzm—(V-VpL)m]dx: J. LV-fiidS =

VA au

ouU

Gauss

J[L, =div(V,L)|m(x)dx = [ (-mV,L+Lv)-fidS = [div(-mV L+ Lv)dx . This identity is
U ou U

valid for all regions U, and so the identity () in (i) follows. Therefore:

div[m?pL— LV} = m[div(?pL)— LZ} which leads to (i) and (ii) respectively:

Zn:[mLpi (x,u, Vu) = L(x, u,Vu)vi]X = m[zn:(LpI (x,u,Vu))x_ - Lz(x,u,Vu)} where apparently if

i=1

u is a critical point, i.e. the E-L equation div(ﬁpL) —L, =0 is satisfied, then we have that:
div[mﬁpL— LV]=O = Z[mLpi (x,u,Vu)— L(x,u,Vu)vi] =0 which is the required. o©
i=1

X

As noted earlier, we can sometimes first guess a domain variation x and then look for a
corresponding function variation w as some formula involving u(x(x,7)). Then we will be
able to compute the multiplier m in terms of u and its partial derivatives. Next we shall
present numerous "examples-applications" illustrating this procedure.

6.2 Examples- Applications

(1) Lagrangian independent of

If L=L(p,z) does not depend upon the independent variable x, then the functional

I[w]= I L(w, Vw)dx is invariant under translations in space. To be more specific, let us
U

selectk € {1,2,...,n} and define |y(x,7) = x+7e, |, W(x,7) =u(x+7e,)| . Then

v() =x.(x,0 =g, = [v=eandsimilarly m(x) =w,(x,0) = [m(x)=u, | since

u(x+ze ) =u(X,... % +7,..., X, ). As a consequence, if u is a critical point, the Noether's

X

Theorem provides us with the identity: div(m?pL - L\7) =0 = Z[uxk L, — L@k] =0 for
i=1

k=12,...,n. Aswe have seen, these formulas follow directly from the E-L equation (confirmed also
by the result (ii) of Noether's theorem as well) by simple calculation and they are known as "first integral".
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Let us remind the relation L — z y;L,, = constant. The point here is that Noether's theorem provides us
i=1

with a systematic procedure for finding first integrals and in general such identities.

(1) Scaling Invariance

The functional I[w] = I|Vw|p dx , smooth minimizers of which solve the p-Laplacian equation
U

M
div(|Vu|p_2 Vu) = 0| is invariant under the scaling transformation x > Ax and [u > A4 ? u(4Ax)|.

First let us note (in order to justify the statement above) the following:

E-L= '-w‘Z%wai =0 = LW:div(LWXl,...,LWXn),Wherewe note
i=1 i

pisa
constant

thatL, =0 and L, =w, p|vw|*" :>div(p|Vw|p’2 Vw)zo = div(|Vu|p’2 w):o.

Now in order to be consistent with previous notation, we put and define: x(x,7) =e"x as well
0 n-p

p
The corresponding divergence identity div(m?pL — L\7) = 0 derived by the Noether's theorem takes the

asw(x,z)=e P u(e’x). Then as a result we obtain: v(x)=xand m=Vu-X+ u.

following form (for a minimizer which is in fact a solution of the p-Laplacian equation
. —p 1- L, =u, p[Vul"”so:
div(|Vu|p 2Vu)=0): div{Vu-THn pu}VpL—|Vu|p7<}=o =" | |_2
P V,L=p|vu""vu

div{ vu.x+21=P u} p[vu]”* vu—|vul° 7(} = 0. Therefore this leads to
p

n

Z[ VU %40 ; P u} p[vu|”? u, —[Vu|” xi} =0 | It is again straightforward to check this identity

i=1| |

X

by a direct calculation from the E-L equation.

Application: Monotonicity formulas

Assume that u is a smooth solution f the p-Laplacian div(|Vu|p72 Vu) =0 A(|Vu|p ) =0 within

some region U and that the ball B(0O, r) lies within U. If we integrate the divergence identity we
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found above, i.e. ZHVU x4 D=P } p[vu|”” 2—“—|Vu|” xi} =0 over the ball B(0,r) and

i=1

simplify using Gauss theorem, we discover that:

: _ n- = _
I le{(VU x+ =P j p[Vul’ 2Vu —[vul? x}dx =0= Gauss theorem on the ball's surface
B(O,r)

oB(0,r) where if X € 0B(0,r) then i = Xis apparently the outward unit normal and moreover we set:
r
=a—u:? o Yu-x , since [X|=r for X € 6B(0,r). =

X pIVUI ?u—|Vu|p7<}-ﬁ dS=0=

aB(o r

jp|Vu|p2Vu fi dS = I Vul’ %-i dS =

aB(0,r) oB(0,r)

J

aB(0,r)

(v
(V“ X) p[vul? (Vu-A)[fds+ [ (n-p)u[vy

aB(0,r)

2 gg [ vufx-ads=
on

aB(0,r)

u

fi —_—
- 2
I |Vu|p>”<§—(Vu X) p[Vu|"* x-fi }dS = I (n— p)u|Vu|pza dS = (||x||=rforXEéB(0,r))

aB(0,r) oB(0,r)

“a—“ds

(2
Vu ——u 2oivu 2L }ds (n-p) | ulvVu
EB(J(.),r){| | / | | /l/ aB(J(.) r) | |
r j (|Vu|p —p|vul”? uf)dS =(n-p) _[ u[vul"* vu-A dS =
oB(0,r) aB(0,r)

r [ (Vo - plvu vz )ds =(n-p) [ [Vul’dx| ()

B(0.r)

aB(0,r)

At this point we need to prove that (n— p) J. IVul® dx = (n—p) I

B(0,r) oB(0,r)
For this purpose, we observe that the E-L equation in divergence form can be written

V(|Vu|p)= p|Vu|'HV(|Vu|) p[vu|”” |Vu| = p|Vu|"* Vu , because of the fact that

u[vul"u, ds.

"* u, . Therefore we can rewrite the quantity |[Vu|”* Vu inside

0 Uy
v = el o= vl
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This figure depicts the outward unit normal

the "div" operator in the E-L equation div(|Vu|p'2 Vu) =0 as following: (p is constant)

0= div(|Vu|p*2 Vu) = div( p|Vu|p72Vu): div(V(|Vu|p)): V.V(|Vu|p):A(|Vu|p). So we have

div(|Vu|p72 Vu) =0 A(|Vu|p> =0/ . Now we are ready to obtain the required by employing the

Green's identity:
=0
0= | UW de= | u§(|Vu|p)~ﬁ ds— | ?(|Vu|p)~?u dx , but we have shown that
B(0,r) aB(0,r) B(0,r)
V(|Vu|p): p|Vu|" Vu, therefore we get:

u ‘V“‘Z

,—— e
J' Bulvu/ " Vu-fids = I Bvul” (Vu -Vu)dx . Consequently we have shown the required
oB(0,r) B(0,r)
which is: f [Vu|” dx = I u |Vu|p'2 u, dS. As a result from all the calculations above, after
B(0,r) aB(0,r)
differentiating with respect to r, we obtain:

. n-p n-p+1
dr r B(0,r) r B(0,r) aB(0,r)

d { ! J |Vu|pde:E I |Vu|pdx+ni7p J [Vu|” dS , where we have used the integration

formula in polar coordinates: a j fdx=ij f f dSdp = j fdS. Now we would also like to note
dr dr

B(r) 0 3B(p) oB(r)

p—n J |Vu|pdx(i)_r"‘n j {|Vu|p - p|Vu|p72uf}dS , (due to the relation (#) above). Consequently:

r.n—p+l

B(0,r) oB(0,r)
i[ Co |Vu|pdx]: DD [ Nufaxe— [ [ufds-rtn {W_p|w|”uf}d5+
drir B(0,r) r B(0,r) r aB(0,r) 2B(0,r)
+r"i’” I vuds = r”?" j |Vu|p'2ufd8 > 0. Therefore we have proved the following monotonicity
IBLOT) aB(0,r)
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d

formula: —( 1

r"°

dr r

j |Vu|pde: npp I Vul"*uds >0 |mply|ngthatr|—>ri j Vu|” dx is

B(0,r) - aB(0,r) B(0,r)

non decreasing.

6.3 Time dependent problems

If one of the dependent variables is identified with time, then we can interpret the equation in the
second leg of Noether's Theorem div| mV,L— LV | =0 as a conservation law resulting from the

invariance of our variational integral.

Conservation of energy for non-linear wave equations:

Consider the integral expression |1[w] = '[ j {——( |VW| +F (w)j} dxdt| (*) defined for

0R"

functions w = w(x, t) with, say, compact support. As usual, we write Vw =V _w. We can interpret
the Lagrangian as representing the kinetic energy minus the potential energy (L=T —V). The

corresponding E-L equation is the semi-linear wave equation: |utt —Au+ f(u)= 0| where f = F'.

The integrand of (*) does not depend on the time variable t and is consequently invariant under
shifts on this variable. Noether's theorem implies that this invariance forces a conservation law, in the
case at hand conservation of energy. More precisely we define: x(x,t,7) = (x,t+7) ,

w(x,t,7) =u(x,t+7) sothatv=e_,
% (X,0)=(01) eR"xR = v(x)=e

because v(x) =y, (x,0) and x(x,t,7) = (X,t+7) e R"xR =
. Finally, again as usual, we find that m = u,. Remember now

n+l

2

. U, 1 2 ——
that the Lagrangian is L =5 §|Vu| +F(u) |. Moreover L = L(x,u,u,,V,u)=V L=

. L .
=V, L+e,,L, =—Vu+e, U, ,where V, L=-Vu, since a—=—u _.Here by writing Vu we mean
Uy n+1"-u, n+l Uy au X

X

)Then dlv[mV L- Lv] 0 implies that:

2
dIV|: ~-Vu+e,,u}—e +1{u?‘—(%|vu|2+ F(u)JH:O =

dIV —u au u2—£+(1|Vu|Z+F(u)J = 0. Consequently div—Zn:i =
fox, 't 2 \2 ' ox,

n i=1
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Zn:(—uxi u). +(u§ —%[uﬁ —|Vu|2} +F (u)j = 0. Of course this can be rewritten as:

t

2 n
{%+%|Vu|2 + F(u)} —Z(utuxi) =0 = |g —div(uﬁu) =0 (* *) considering the energy density :
A X
div(u,Vu)

2
u- 1
e= —‘+—|Vu|2 +F(u).
2 2
The divergence operator in relation (* *) now acts in the X variables only if u has compact support
in space at each time, it follows that the total energy is conserved in time, i.e.

compact
d Gauss support

d 1 t)e ou
aRne dx:aﬂi[z[ufqvuﬂﬂz(u) dx=}£ﬂetdx :Hi[ndlv[utVu]dx = a_[ u, %ds = 0, where

U =supp(u). Consequently, we have conservation of energy!

Scaling invariance for the wave equation

Consider the linear wave equation ou = u,, —Au = 0 which corresponds to the action functional

-
I[w]= %I j W —|VW|2 dxdt|. Similarly to the case above, this functional is invariant under the
0R"

n-1

scaling transformation (x,t) > (Ax, At) and u - A 2 u(Ax, At). As before we put and define

n-1
x(X,t,7) = (efx, e’t) as well as w(x,t,z)=e 2u (e’x,eft). Therefore, taking into consideration that

v(x) =y, (x,0) and y, (x,0) = (x,t) we obtain obviously that v=(x,t) and m(x) = w_(x,0), so we have:
n-1 n-1 n-1
w,(x,t,7)=e 2 nT_lu(eTx,eft)Jrer 2 Vu(e'x,et)-Xe’ +e 2 u,(e'xet)te” and for 7=0=>

m=tu, +x-Vu+ nT_lu . The conservation law now provided by div[mﬁpL - LVJ =0 asserts that:

2 2
div{(tut +Xx-Vu +n—_1uj(—§u,ut)+[—u—t+ﬂj()‘(’,t)}: 0 =
2 2 2

n _ _ 2 2
{—[tut+x-Vu+n—l Juxb—l(uf—|Vu|z)xi} +{[tut+x-Vu+n—1uJul+[—u—t+&Jt} =0
i1 2 b2 . 2 2 2
! t

q:(tut +X-Vu +n;uj?u +%(uf —|Vu|2)>?

= | p,—divg =0]|, where ) 2
2\ = _
p:E(uf+|Vu| )+(X'Vu)ut+7uut
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Conformal energy for wave equation

The following much more sophisticated example illustrates how Noether's theorem, even when
not directly applicable, can sometimes help us identify useful multipliers. The mapping

— t . .. . .
(x,t) > (7,t):[| |2X . | |2 - ] where |x|2 =t° | is called hyperbolic inversion. It is related
X — —t

n-1
to the hyperbolic Kelvin transform defined by T(x,t) = u(i,t‘)“i2 -
X t 1
—UL | o | | o } . Moreover, after a lot of long calculations (see [B5])

we can derive that: if obu =u, —Au=0 = ol =0. Our intention here is to use hyperbolic inversion
and hyperbolic Kelvin transform to help us design variations in (x,t) and in u. For the first let us map
(x,t) to (X,t) , then add ze, and lastly apply hyperbolic inversion again. A rather long calculation

n+l

(omitted here :() shows that the result is the mapping x(x,t,7) = y(x,t +r(|x|2 —t2)) for

X[ —t? - L
y = > . We next employ a similar procedure to build variations of u. In fact we

X~ (e e (0 -2))

apply the Kelvin hyperbolic transform to compute Ku =, then add (as above) ze, ., within the
argument of 0 and lastly apply once again Kelvin transform. Another (quite similar) calculation reveals

n-1
the resulting function variation to be w(x,t,z) = 2 u(x(x,t,7)). We next compute the corresponding

multiplier dy differentiating with respect to z and then setting = =0 to obtain:

v(X) = (2xt,|x|2 +t2) , m(x) = (|x|2 +t2)ut +2tX-Vu +(n—1)tu. Now we don't assert () that the energy

T 2 2

. u- |Vu . . . . .

functional 1{u] :J' j {?—%} dxdt is invariant under these domain and function variations.
0R"

Rather, we guess that since the hyperbolic Kelvin transformation preserves solutions of the

wave equation, then it might be useful to multiply the wave equation ou = 0 by the multiplier m

we have computed above. This turns out to be so, and after a longish calculation we derive the

Morawetz's identity m where "c" is the density of the so-called conformal energy

which is: (x| +t )( |Vu| )+2t )u +(n-1)tuu, —nT_luz and 1 is given by:

r= {(|x|2 +t2)ut + 2t(>”<-§u)+(n —1)tu}§u +t(uf —|Vu|2)7< , Morawetz's identity is important
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since the conformal energy density ¢ can be written for n = 2 as a sum of non-negative terms plus

<!

a divergence in the X-variables, which is precisely the following: {We denote: u, = |u|x = %J
X R

A A Ay

2 2 2 2 \
_ t— _ 2 _ _
A|fX|) (ut+ur+—n 1uj +( |X|) Lut—ur——n 1u] +|X| *t [|Vu|2—uf+—(n 3)(n 1)u2J—

2|x| 4 2|x| 2 4|x°

2 42

- X +t

—n41div£| || |2 uXJ . This is the conformal energy density. (We shall use below A, A,, A, notation)
X

+

(t

CcC=

Application: Local energy decay

A star-shaped domain
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Definition: (Star —shaped )

An open set U is called Star —shaped set with respect to O provided for each x eU, the line segment
{/1x [0<A< 1} lies in U. For a graphical representation of such sets, see the figure above.

Remark:

Clearly if U is convex and O €U, then U is star-shaped with respect to O. But a general star-shaped
region needn't be convex.

Suppose that O = R" denotes a bounded, smooth, open subset of R" that is star-shaped with respect
to the origin. Define the exterior region U =RR"\O . Assume in addition that u is a smooth solution
u,—Au=0, in U x(0,+oo)
of this i.b.v.p. for the wave equation , outside of the "obstacle" O: (#)<u =0, on oU x{t = O}
u=g,u =h, onUx{t=0}
for which the initial data h, g have compact support. We assert that if n>3 and if O < B(0,R),

. c
there exists a constant ¢ such that j {uf +|Vu|2} dx < 7 for t > 2R. Consequently the energy
B(0,R)\O

within any bounded region decays to zero as t — oo , although the total energy is conserved. This
statement is the local energy decay!
In order to prove that, we first observe from the conservation law c, —divr = 0 (Morawetz's identity)

d Morawetz i Gauss . .
that —jcdx :J.ctdx = j divi dx = J. r-n dS , where ii denotes the inward unit normal
dt U U U=R"O oU=00

to 00.

ROR)
N

>’B(0,R) \0

A figure which demonstrates how to consider the outward unit normal in the interior
boundary.
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Now (from the compact support of the initial data), u =u, =0 on 0O and hence we are able to
compute from the representation formula of r, which is the following (computed earlier above)

F= {(|x|2 +t2)}1t/0 + 2t(>*<-§u)+(n —1)J;u/o}§u +t(ut2 —|Vu|2)>? , these terms vanish on 6U =00,

that F -l = 2t(>”<-?u)(§u-ﬁ)—t|Vu|2(>?-ﬁ) along 0. Since u =0 on 80, we have that

Vu = (?u . ﬁ)ﬁ there. Using this observation in the formula above leads to: 1 - :t|Vu|2 (Y(ﬁ) <0

since O is a star-shaped set with respect to the origin and fi is the inward pointing unit normal.
From the representation formula for the conformal energy density and our relation (seen above)

E.[cdx= I F-fAdS = J.t|Vu|2(>*<-ﬁ)dS <0 we have that: chx£const =
dtU 00 00 V]

A A

2 2 _ 2 2 2 )
I = J. GiL), Ut+Ur+n_1U +(t ) ut—ur—n_lu +|X| +t (|Vu|2—uf) dx < const.
4 2 2

B(0,R)\O 4 2|X|

foreacht >0.

|Let us now fully justify the implication to the integral I. Therefore:

2 .2
t
_[ cdx < const = j A+A+A)dx- In l [|X| - UXJ dx < const. , but we observe that

2
U=R"\O |X|

2
j div{'x| * J ’ J |X| +t (i‘ﬁ)dS =0, because u =0 on 90, due to the compact

00
support (here ii denotes the mward normal). Thus we get that:

>0

Im dx < const.

u

X +t7)((Vu| -y,
Now because A, A,, A, >0 we get: J' A1+A2+(|| )(| | )dxs(bymonotonicity

B(0,R)\0 2

of the integral) < J. [A+A +AJdx< (since A + A, + A, >0, we expand the integration's domain)

B(0,R)\O

X+t )|Vu| —u; _
I(A+A2+A3)dx , because of the fact that (| | )(2| | )SA3 and B(0,R)\OcU =R"\0
U

and the required implication follows.|
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Taking now t > 2R and making some simple estimates, we derive from this the estimates:

) j (|Vu| —u)

B(0,R)\O

5
ik

: , (where here c is the constant and not the conformal energy density)

because |x| <R in the region B(0,R)\O and t is taken to be greater than or equal to 2R. So t > |x| =

2 ~
t_(|Vu|2 —uf)dx <l<c = I (|Vu|2 —uf)dx St% (where € = 2c) and this due to the fact

B(0,R)\O B(0,R)\O

2
that |Vu| —u’ _|Vu| ( nj |Vu| (ﬁu-ﬁ)z:|Vu|2—(|Vu|JﬁT1cosl9) :|Vu|2(1—c0523)20.

— n-1)° C . . .
And we have also: (2) J' {uf +U’ + n| |1uu +( ) uz}dx < % . (this estimate follows by simple
X
B(0,R)\O

algebraic inequalities regarding the squares of sums).

25
But now = div| — X2 _{n- 2)— because of the fact that :
R P
T "9 | u’x LUu X & u? UK - u’ u’
div — |= ) — == —— + - Vu ——n—— and
R R R B e i
u, = V|uxi X. As a consequence, we notice: (here we have chosen to denote QQ=B(0, R)\O)

:5

u’ 0
=B o (-1 (%-M)dS = [ (1-1) 4 (X1, )ds +
I ( |X| J 69—60({58(03) 2|X| ( »[ Z{ (

ut oo , , : :
+ j | ~(X-n,)dS >0, the first surface integral vanishes since u =0 on 9O and moreover
aB(0.R) X

_—

the second surface integral is non-negative since X || i, = cos(x )> 0 = X-f, >0 (see figure)

Therefore we are able to conclude that:

j m uu dx = J'(n 1)d|v[ o Jd —wj—dx =(from our computation with surface

- W s (0 1)( 2) v
integrals above) = J. (n-1)—; (x -1, ) dS—~—————~= I —dx As a consequence:
aB(0,R) 2|X| 2 B(0,R)\O |X

>0

=(n-1)(Af -1- f +2)=n-120

i{n_luur+(n_12) u2}dx= ] (n—1)2“—2(%'ﬁ2)d8+£$:|2 (n-1)" ~(n-1(n-2)  dx=0

2|| o8(0.R) |X|2

>0
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As a conclusion we have that

i{uf+uf}dx | X

IA
—
<
N
+
c
=N
+
[
[
+

estimate (estimate (1) ) leads to:

is the energy decay estimate. o

.0 =BloR)\O

In this figure we demonstrate how to consider the inward and outward normals we used
in the computations of the surface integrals above.

o
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