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“I’ve been writing for two years now
and I’ve composed just one idyll.”

–C. P. Cavafy, The First Step
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Abstract

We theoretically study the energy structure and the charge transport and transfer prop-
erties of π-conjugated molecular wires, using variants of the Tight-Binding Method.
Charge transport implies the use of leads and the application of external voltage. We
start with an analytical and numerical study of the spectral and transmission properties
of periodic Tight-Binding wires with a generic unit cell, focusing on the effect factors
such as the strength and asymmetry of coupling between the leads an the system in-
duce on the transmission profiles. Our method is then applied to the study of atomic
carbon wires (or carbynes). Carbynes represent the ultimate nanoscale structure, hav-
ing a thickness of just one carbon atom, and are promising for electronic applications.
We show that Ohmic, semiconducting or rectifying behavior occurs, depending on the
carbyne structure and the leads, and we reproduce experimental results regarding the
current-voltage curves. We move on to an examination of the energy structure, local-
ization and charge transport in periodic, deterministic aperiodic and random binary
DNA sequences. The ability to produce nucleic acid sequences of interest provides the
chance to create molecular wires with tailored properties. In our study, we focus on the
interplay between the sequence structure and the aforementioned properties. Charge
transfer means that an extra carrier (hole or electron), created or injected at a specific
location, moves to more favorable locations. We focus on aspects of this phenomenon
such as the frequency content of transfer, the mean over time probabilities to find the
carrier at each site of a DNA segment and the pure mean transfer rates. We start with
small DNA segments (composed of one, two, and three base pairs). Our results are
compared with the more complex, yet more computationally costly, Real-Time Time-
Dependent Density Functional Theory. We move on to the study of several classes of
periodic DNA segments (monomer-polymers, dimer-polymers, polymers with increas-
ing repetition unit). Finally, we compare periodic DNA segments with deterministic
aperiodic and random ones regarding charge transfer, and make some remarks regard-
ing experimental charge transfer rates.
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Περίληψη

Το DNA παίζει καθοριστικό ρόλο στην ανάπτυξη, λειτουργία και αναπαραγωγή των
εμβίων οργανισμών, καθώς η αλληλουχία των αζωτούχων βάσεών του φέρει το γενε-
τικό τους κώδικα. Η μελέτη του συνήθως συνδέεται με επιστημονικούς κλάδους όπως
η γενετική και η μοριακή βιολογία. Ωστόσο, οι αξιοσημείωτες ιδιότητές του έχουν κε-
ντρίσει τα τελευταία χρόνια το ενδιαφέρον μιας ευρείας διεπιστημονικής κοινότητας.
Από τη σκοπιά της Φυσικής Συμπυκνωμένης Ύλης, η ηλεκτρονική δομή και οι ιδιό-
τητες μεταφοράς και μεταβίβασης φορτίου του DNA μελετώνται με σκοπό τόσο την
κατανόηση της σχέσης μεταξύ της ενεργειακής του δομής και των βιολογικών του
λειτουργιών, όσο και τις δυνητικές τους εφαρμογές. Η αλληλουχία των ζευγών βά-
σεών του δημιουργεί έναν σχεδόν μονοδιάστατο π-δρόμο, λόγω της επικάλυψης των
π μοριακών τροχιακών τους, ο οποίος επιτρέπει τη μετακίνηση φορτίου, δηλαδή τη
μεταφορά και τη μεταβίβαση. Ο όρος μεταφορά (transport) αναφέρεται στη μετακίνη-
ση φορτίου μέσω της χρήσης ηλεκτροδίων και της εφαρμογής εξωτερικής διαφοράς
δυναμικού, ενώ ο όρος μεταβίβαση (transfer) αναφέρεται στη μετακίνηση ενός φορέ-
α από μια τοποθεσία όπου δημιουργείται ή εγχέεται αρχικά σε άλλες ευνοϊκότερες
τοποθεσίες.

Πέραν του ενδιαφέροντος που παρουσιάζει από βιολογικής και νανοεπιστημο-
νικής άποψης, το DNA μπορεί να ιδωθεί κι ως ένα πρότυπο μονοδιάστατο μοριακό
σύρμα. Η τεράστια μείωση του μήκους του καναλιού (διαύλου) στις ηλεκτρονικές
διατάξεις κατά τις τελευταίες δεκαετίες (από περίπου 1 μm το 1984 σε περίπου 10
nm το 2014) ήγειρε το ερώτημα εάν και πως μπορούν να χρησιμοποιηθούν σε δια-
τάξεις ως κανάλια ορισμένα πολυμερή, ολιγομερή, (μακρο)μόρια κ.ο.κ.. Μια από τις
πλέον απαραίτητες προϋποθέσεις που θα πρέπει να πληρούν τέτοιες δομές προκειμέ-
νου να χρησιμοποιηθούν είναι η ακαμψία (persistence). Το DNA βρίσκεται ανάμεσα
στα πλέον άκαμπτα (persistent) γνωστά πολυμερή, με μήκος ακαμψίας (persistence
length) περίπου 50 nm – με άλλα λόγια, περίπου 150 ζεύγη βάσεων. Το μήκος ακαμ-
ψίας (persistence length) ποσοτικοποιεί την ακαμψία μια δομής, υπό την έννοια ότι
μια δομή με μήκος μικρότερο από το μήκος ακαμψίας συμπεριφέρεται περίπου ως ε-
λαστική δοκός, ενώ, από την άλλη, δομές με πολύ μεγαλύτερο μήκος είναι πιθανότερο
να καμφθούν. Πέραν όμως του μήκους ακαμψίας του, το DNA παρέχει τη δυνατότητα
κατασκευής επιλεγμένων αλληλουχιών, βασισμένων σε ένα αλφάβητο, π. χ. το {G,
A, C, T} όπου G = Γουανίνη, A = Αδενίνη, C = Κυτοσίνη, T = Θυμίνη]. Συνεπώς υ-
πάρχει η δυνατότητα ρύθμισης των ιδιοτήτων μιας διάταξης μέσω της επιλογής της
κατάλληλης αλληλουχίας βάσεων για μια δεδομένη λειτουργία. Με αυτόν τον τρό-
πο, μπορούν να κατασκευαστούν ποικίλες περιοδικές, ντετερμινιστικές απεριοδικές
(π.χ., οιονεί κρυσταλλικές και μορφοκλασματικές) ή τυχαίες ακολουθίες.
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Εδώ και τουλάχιστον δύο δεκαετίες γίνονται απόπειρες κατανόησης της μετακί-
νησης φορτίου μέσῳ του DNA. Σήμερα, γνωρίζουμε ότι υπάρχουν πολλοί εξωγενείς
παράγοντες (υδαρότητα, παρουσία αντισταθμιστικών ιόντων –counter ions, διαδικα-
σία εξαγωγής από το κύτταρο, ηλεκτρόδια, επαφές, καθαρότητα, υπόστρωμα) αλλά
και ενδογενείς παράγοντες (αλληλουχία ζευγών βάσεων, γεωμετρία), οι οποίοι επη-
ρεάζουν τη μεταφορά και τη μεταβίβαση φορτίου, οδηγώντας σε ποικίλα και πολ-
λές φορές αντικρουόμενα συμπεράσματα. Η παρούσα Διδακτορική Διατριβή εστιάζει
στον σημαντικότερο ίσως ενδογενή παράγοντα, ο οποίος επιπλέον επάγει διάφορους
τύπους τάξης ή αταξίας, δηλαδή στην επίδραση της αλληλουχίας βάσεων, η οποία
επηρεάζει την ηλεκτρονική επικάλυψη κατά μήκος του π-δρόμου.

Μια άλλη, απλούστερη του DNA, π-συζευγμένη δομή, η οποία θα μπορούσε να
είναι υποψήφια ως μοριακό σύρμα είναι τα ατομικά σύρματα άνθρακα ή καρβύνες.
Οι καρβύνες αποτελούν τρόπον τινά την απόλυτη νανοδομή, έχοντας πάχος μόλις
ενός ατόμου, αποτελούμενες από sp υβριδισμένα άτομα άνθρακα. Οι δυο δυνατές
διαμορφώσεις των καρβυνών είναι η κουμουλενική και η πολυυνική. Στην πρώτη, τα
διαδοχικά άτομα άνθρακα ισαπέχουν, ενώ στη δεύτερη όχι. Οι καρβύνες παρουσιά-
ζουν ενδιαφέρουσες ιδιότητες όπως το ρυθμίσιμο ενεργειακό χάσμα, η ανθεκτικότητα
σε θερμοκρασία δωματίου και η μεγάλη ακαμψία. Έχουν μήκος ακαμψίας περίπου 14
nm – με άλλα λόγια, περίπου 100 άτομα άνθρακα, το οποίο τις καθιστά πολλά υπο-
σχόμενες για ηλεκτρονικές εφαρμογές.

Η παρούσα Διδακτορική Διατριβή αποτελεί μια συστηματική θεωρητική (αναλυ-
τική και αριθμητική) μελέτη της ενεργειακής δομής και των ιδιοτήτων μεταφοράς και
μεταβίβασης φορτίου στις προαναφερθείσες δομές (DNA και καρβύνες), στο πλαίσιο
του προτύπου Ισχυρής Δέσμευσης (Tight Binding). Το πρότυπο αυτό αποτελεί μια
γρήγορη και αποτελεσματική μέθοδο, εφαρμόσιμη σε μεγάλο αριθμό προβλημάτων,
τα οποία αφορούν την ηλεκτρονική δομή και τις ιδιότητες της ύλης και απαιτούν
ποικίλους βαθμούς ακρίβειας. Στα βασικά της πλεονεκτήματα περιλαμβάνονται η
διαισθητική απλότητά της, η δυνατότητα εξαγωγής αναλυτικών αποτελεσμάτων σε
πολλές περιπτώσεις, καθώς και το χαμηλό της υπολογιστικό κόστος. Το τελευταίο
καθιστά το πρότυπο Ισχυρής Δέσμευσης εφαρμόσιμο σε μεγάλα συστήματα, τα ο-
ποία επί του παρόντος δεν είναι διαχειρίσιμα με τις –λεπτομερέστερες– μεθόδους
από πρώτες αρχές. Σε αντίθεση με τις μεθόδους αυτές, το πρότυπο Ισχυρής Δέσμευ-
σης είναι ημιεμπειρικό, υπό την έννοια ότι χρειάζεται ένα εξωτερικό σύνολο παρα-
μέτρων προκειμένου να εκτελεστούν υπολογισμοί. Οι παράμετροι αυτές είναι (α΄) οι
επιτόπιες ενέργειες (on-site energies), οι οποίες αντιστοιχούν στην ενέργεια των ηλε-
κτρονίων σε κάθε θέση (site) του πλέγματος, και (β΄) τα ολοκληρώματα μεταπήδησης
(hopping integrals) ή εναλλακτικά ολοκληρώματα μεταβίβασης (transfer integrals),
τα οποία αντιστοιχούν στη σύζευξη μεταξύ των τροχιακών γειτονικών θέσεων του
πλέγματος. Τα τροχιακά που λαμβάνονται υπόψη στην παρούσα Διδακτορική Δια-
τριβή είναι το Υψηλότερο Κατειλημμένο Μοριακό Τροχιακό (HOMO) και το Χαμηλό-
τερο Μη-κατειλημμένο Μοριακό Τροχιακό (LUMO).

Η μετακίνηση φορτίου μπορεί να διακριθεί σε: (i) μη συνεκτική (incoherent) ή θερ-
μική (thermal) μεταπήδηση μεταξύ πλησιεστέρων ή πιο μακρινών θέσεων, και (ii) συ-
νεκτική (coherent) μεταπήδηση ή φαινόμενο σήραγγας (tunneling) ή υπερανταλλαγή
(superexchange). Ο συνεκτικός μηχανισμός αναμένεται να κυριαρχεί σε χαμηλές θερ-



ix

μοκρασίες. Στο θερμικό μηχανισμό ο φορέας εντοπίζεται και ανταλλάσσει ενέργεια με
το περιβάλλον κατά τη μεταβίβασή του. Η παρούσα Διδακτορική Διατριβή αφιερώ-
νεται στη συνεκτική μεταβίβαση και μεταφορά φορτίου. Στη συνεκτική περίπτωση,
υπάρχει πεπερασμένη πιθανότητα παρουσίας του φορέα σε κάθε θέση, παρ’ όλο που
αυτές με τις κατάλληλες επιτόπιες ενέργειες –για δεδομένη αρχική τοποθέτηση του
φορέα– ευνοούνται.

Η Διδακτορική Διατριβή διαρθρώνεται σε τρία Μέρη και αποτελείται από εννέα
Κεφάλαια.

Το Μέρος I (Εισαγωγή) αποτελείται από τα Κεφάλαια 1–2.

Στο Κεφάλαιο 1 αναφέρονται τα γενικά χαρακτηριστικά των υπό μελέτη δομών
(DNA και καρβυνών), παρουσιάζεται το επιστημονικό πλαίσιο, η βασική ορολογία
και τα ερευνητικά ερωτήματα που μελετώνται στο πλαίσιο της Διδακτορικής Διατρι-
βής και παρουσιάζεται η διάρθρωσή της.

Στο Κεφάλαιο 2 παρουσιάζεται το θεωρητικό πλαίσιο του προτύπου Ισχυρής Δέ-
σμευσης και τα μαθηματικά εργαλεία που χρησιμοποιούνται στη Διδακτορική Δια-
τριβή. Εξετάζονται σε γενικές γραμμές μονοδιάστατα πρότυπα Ισχυρής Δέσμευσης,
τα οποία χρησιμοποιούνται για τη μελέτη της ενεργειακής δομής και των ιδιοτήτων
μεταφοράς και μεταβίβασης φορτίου σε οργανικά π-συζευγμένα συστήματα, τα ο-
ποία είναι υποψήφια ως μοριακά σύρματα. Τα μελετώμενα συστήματα αποτελούνται
από N μονομερή και L αλυσίδες (N ≫ L, καθώς εκτείνονται σε μια διάσταση) και
το πρόβλημα ανάγεται στην επίλυση του λεγόμενου στάσιμου συστήματος εξισώ-
σεων Ισχυρής Δέσμευσης, το οποίο ισοδυναμεί με μια διακριτοποιημένη μορφή της
χρονοανεξάρτητης εξίσωσης Schrödinger. Παρουσιάζεται η μέθοδος των Πινάκων
Μεταβίβασης (Transfer Matrix Method) και η χρήση της για τη γενική επίλυση του
συστήματος των εξισώσεων Ισχυρής Δέσμευσης για κυκλική συνοριακή συνθήκη και
για συνοριακή συνθήκη πακτωμένων άκρων. Στη συνέχεια, παρουσιάζονται διάφο-
ρες παραλλαγές του προτύπου Ισχυρής Δέσμευσης οι οποίες χρησιμοποιούνται για
τη μελέτη του DNA: πρότυπο σύρματος (wire), κλίμακας (ladder), επεκταμένης κλί-
μακας (extended ladder), ψαροκόκαλου (fishbone), κλίμακας-ψαροκόκαλου (ladder-
fishbone). Τέλος, παρατίθενται ορισμένα στοιχεία για τις ντετερμινιστικές απεριοδι-
κές, αλληλουχίες, τις ιδιότητές τους και την κατηγοριοποίησή τους.

Το Μέρος II (Μεταφορά φορτίου) αποτελείται από τα Κεφάλαια 3–5.

Στο Κεφάλαιο 3 εφαρμόζεται η μέθοδος των πινάκων μεταβίβασης για τη μελέτη
της ενεργειακής δομής αλλά και της διέλευσης φορτίου σε περιοδικά πρότυπα σύρ-
ματος με μια γενική μονάδα επανάληψης. Δηλαδή N = um, όπου u είναι ο αριθμός
των μονομερών τα οποία δημιουργούν τη μονάδα επανάληψης, η οποία επαναλαμ-
βάνεταιm φορές. Μέσω των ιδιοτήτων των πινάκων μεταβίβασης, προκύπτουν σχέ-
σεις διασποράς και αναδρομικοί τύποι για των προσδιορισμό της ενεργειακής δομής,
για κυκλική συνοριακή συνθήκη και συνοριακή συνθήκη πακτωμένων άκρων, αντί-
στοιχα. Μελετώνται επίσης οι πυκνότητες καταστάσεων. Στη συνέχεια, μελετώνται
συστηματικά οι συντελεστές διέλευσης υπό μηδενική τάση, μέσω της σύνδεσης των
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συστημάτων με ημιάπειρους ακροδέκτες (ηλεκτρόδια, leads). Ερευνάται η επίδραση
παραγόντων όπως η ισχύς και η ασυμμετρία της σύζευξης συστήματος-ακροδεκτών,
το εύρος και το κέντρο της ζώνης των ακροδεκτών και οι μεταπηδήσεις εντός του συ-
στήματος. Εισάγεται η συνθήκη βέλτιστης σύζευξης, για πρώτη φορά στη βιβλιογρα-
φία σε αυτή τη γενική μορφή, μεταξύ του συστήματος των ακροδεκτών και συζητείται
το φυσικό της περιεχόμενο.

Στο Κεφάλαιο 4, ο φορμαλισμός και τα συμπεράσματα του Κεφαλαίου 3 εφαρμό-
ζονται προκειμένου να μελετηθούν η ενεργειακή δομή και η μεταφορά φορτίου σε α-
τομικά σύρματα άνθρακα (κουμουλενικές και πολυυνικές καρβύνες). Δείχνεται ότι το
πρότυπο σύρματος προβλέπει ποικίλες βασικές πτυχές του φαινομένου και αναπαρά-
γει τα συμπεράσματα πρόσφατων πειραματικών αποτελεσμάτων. Τα αποτελέσματα
αυτά περιλαμβάνουν το ενεργειακό χάσμα των πολυυνικών καρβυνών, τη μεταλλι-
κή (ημιαγωγική) συμπεριφορά των χαρακτηριστικών καμπυλών ρεύματος–τάσης σε
κουμουλενικές (πολυυνικές) καρβύνες, την επίδραση της εξασθένησης της σύζευξης
μεταξύ του ενός άκρου του συστήματος με τους ακροδέκτες, καθώς και την ανορθωτι-
κή συμπεριφορά των χαρακτηριστικών ρεύματος–τάσης όταν δεν ευθυγραμμίζονται
τα επίπεδα Fermi των ακροδεκτών και του συστήματος.

Στο Κεφάλαιο 5 μελετώνται συστηματικά και συγκριτικά, στο πλαίσιο του προτύ-
που σύρματος, διάφορες κατηγορίες περιοδικών, ντετερμινιστικών απεριοδικών (οιο-
νεί κρυσταλλικών, μορφοκλασματικών και άλλων) καθώς και τυχαίων δυαδικών αλ-
ληλουχιών DNA ως προς την ενεργειακή δομή, τον εντοπισμό και τη μεταφορά φορ-
τίου. Δυαδικές σημαίνει πως για να δημιουργηθούν οι αλληλουχίες χρησιμοποιού-
νται εναλλαγές των λέξεων {G,A}. Εξετάζεται η σχέση μεταξύ της πολυπλοκότητας
των αλληλουχιών (μέσω της συχνότητας εμφάνισης κάθε παραμέτρου, των τριάδων
ζευγών βάσεων που εμπλέκονται και των συσχετίσεων) και των προαναφερθεισών
ιδιοτήτων. Όσον αφορά την ενεργειακή δομή, προκύπτει ότι η συχνότητα εμφάνισης
των τριάδων ζευγών βάσεων αντανακλάται στην ολοκληρωμένη πυκνότητα κατα-
στάσεων. Η τριάδα ζευγών βάσεων είναι η φυσική μονάδα του προτύπου Ισχυρής
Δέσμευσης, λαμβάνοντας υπ’ όψιν τους πρώτους γείτονες. Επίσης, η τριάδα ζευγών
βάσεων είναι αυτό που στη μοριακή βιολογία αποκαλούν κωδικόνιο (codon), κάθενα
από τα οποία μεταφράζεται σε ένα αμινοξύ. Παρότι οι περιοδικές ακολουθίες αναμε-
νόμενα οδηγούν σε πολύ μεγαλύτερα ρεύματα, προκύπτει ότι ανάλογα με τη δομή και
τις παραμέτρους, υπάρχουν κατηγορίες ντετερμινιστικών απεριοδικών ακολουθιών
οι οποίες είναι αποτελεσματικές όσον αφορά τη μεταφορά, ενώ οι τυχαίες ακολουθί-
ες αποτελούν τη λιγότερο αποτελεσματική περίπτωση.

Το Μέρος III (Μεταβίβαση φορτίου) αποτελείται από τα Κεφάλαια 6–9.

Στο Κεφάλαιο 6 παρουσιάζεται η βασική θεωρία σχετικά με το πρόβλημα της
μεταβίβασης ενός επιπλέον φορτίου (οπής ή ηλεκτρονίου, μέσω των καταστάσεων
HOMO και LUMO, αντίστοιχα) σύμφωνα με το πρότυπο Ισχυρής Δέσμευσης. Επίσης,
εισάγονται τα φυσικά μεγέθη που θα μελετηθούν στα επόμενα κεφάλαια.

Το Κεφάλαιο 7 εστιάζει στη μελέτη της μεταβίβασης φορτίου, μέσω των προτύ-
πων σύρματος και επεκταμένης κλίμακας, σε μικρά τμήματα DNA και συγκεκριμένα
σε όλες τις δυνατές αλληλουχίες που αποτελούνται από ένα, δύο και τρία ζεύγη βά-
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σεων. Συζητούνται πτυχές του φαινομένου όπως οι μέσες πιθανότητες παρουσίας του
επιπλέον φορέα σε κάθε βάση ή ζεύγος βάσεων, το συχνοτικό περιεχόμενο της μεταβί-
βασης φορτίου και οι καθαροί μέσοι ρυθμοί μεταβίβασης. Επιπλέον, περιλαμβάνεται
και μια συγκριτική συζήτηση των προαναφερθέντων προτύπων Ισχυρής Δέσμευσης
με την λεπτομερέστερη ab initio μέθοδο με την ονομασία Real-Time Time-Dependent
Density FunctionalTheory. Τα αποτελέσματα των τριών μεθόδων βρίσκονται σε καλή
συμφωνία.

Στο Κεφάλαιο 8, η μελέτη επεκτείνεται στην εξέταση της μεταβίβασης φορτίου
σε μεγαλύτερες, περιοδικές αλληλουχίες DNA. Αρχικά, εξετάζονται συγκριτικά, στο
πλαίσιο των προτύπων σύρματος κι επεκταμένης κλίμακας, όλες οι πιθανές περιοδι-
κές ακολουθίες DNA με μονάδα επανάληψης ένα ή δύο ζεύγη βάσεων. Μελετώνται
το φάσμα ενεργειακών ιδιοτιμών, οι πυκνότητες καταστάσεων, τα χάσματα HOMO-
LUMO, οι μέσες πιθανότητες παρουσίας του φορέα σε κάθε βάση ή ζεύγος βάσεων, το
συχνοτικό περιεχόμενο της μεταβίβασης και οι καθαροί μέσοι ρυθμοί μεταβίβασης.
Οι δυο μέθοδοι δίνουν συμπληρωματικά αποτελέσματα, με το πρότυπο επεκταμένης
κλίμακας, να παρέχει περισσότερη πληροφορία σχετικά με τη συμπεριφορά του επι-
πλέον φορτίου. Στη συνέχεια η μελέτη προχωρά στην εξέταση ορισμένων περιοδικών
αλληλουχιών DNA με αυξανόμενη μονάδα επανάληψης, οι οποίες αποτελούνται είτε
από το ίδιο είτε από διαφορετικά ζεύγη βάσεων. Στη συνεκτική μεταβίβαση υπάρχει
πεπερασμένη πιθανότητα παρουσίας του φορέα στις διάφορες θέσεις, όμως οι θέσεις
με τις καταλληλότερες επιτόπιες ενέργειες, για δεδομένη αρχική τοποθέτηση του φο-
ρέα, ευνοούνται. Στο φυσικό DNA είναι πιο πιθανό να δημιουργηθεί μια οπή σε μια
Γουανίνη επειδή έχει το υψηλότερο HOMOαπό όλες τις βάσεις και ένα ηλεκτρόνιο εί-
ναι πιο πιθανό να δημιουργηθεί σε μια θυμίνη επειδή αυτή έχει το χαμηλότερο LUMO
από όλες τις βάσεις. Όμως, εδώ δείχνουμε συστηματικά πως – συνεκτικά - εάν, επί πα-
ραδείγματι, μια οπή έχει δημιουργηθεί αρχικά σε μια αδενίνη, η μεταβίβαση φορτίου
θα γίνει κυρίως μέσω των αδενινών και παρομοίως για άλλες αρχικές συνθήκες.

Στο Κεφάλαιο 9 παρουσιάζονται αποτελέσματα για τη μεταβίβαση φορτίου σε
ντετερμινιστικές απεριοδικές (οιονεί κρυσταλλικές και μορφοκλασματικές) και τυ-
χαίες αλληλουχίες DNA, αποτελούμενες είτε από το ίδιο είτε από διαφορετικά ζεύγη
βάσεων, στο πλαίσιο του προτύπου σύρματος. Προκύπτει πως, σε ό,τι αφορά τη μετα-
βίβαση φορτίου από το ένα άκρο της ακολουθίας στο άλλο, η μεταβίβαση διαμέσου
ντετερμινιστικών απεριοδικών αλληλουχιών είναι γενικότερα κατά τάξεις μεγέθους
μικρότερη από ό,τι διαμέσου περιοδικών αλληλουχιών. Επίσης προκύπτει πως τα α-
πλούστερα περιοδικά πολυμερή, δηλαδή τα ομοπολυμερή, αποτελούν απρόσιτο όριο
για τις απεριοδικές αλληλουχίες. Επιπλέον, το τυχαίο ανακάτεμα ζευγών βάσεων των
ντετερμινιστικών απεριοδικών αλληλουχιών οδηγεί γενικά σε αμελητέους ρυθμούς
μεταβίβασης. Ωστόσο, για διαφορετικές αρχικές τοποθετήσεις του επιπλέον φορέα,
προκύπτει ότι στις ντετερμινιστικές απεριοδικές αλληλουχίες υπάρχουν καλά ορι-
σμένες περιοχές στις οποίες υπάρχει πιθανότητα παρουσίας του φορέα. Τέλος, στο
Κεφάλαιο αυτό καταγράφονται και ορισμένες παρατηρήσεις σχετικά με τους πειρα-
ματικούς ρυθμούς μεταβίβασης φορτίου στη βιβλιογραφία.
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1
Charge transport and transfer

in DNA and carbynes

Nucleic acids are polymeric macromolecules consisting of units that are called nu-
cleotides. The term nucleic acids is the collective name of deoxyribonucleic acid (DNA)
and ribonucleic acid (RNA). DNA’s nucleotide sequence carries the genetic instructions
for the development, function, growth and reproduction of living organisms and sev-
eral viruses. Although RNA’s primary role is to carry out the instructions encoded in
DNA for protein synthesis, it also acts like a catalyst of biochemical reactions, while it
is the genetic material of many viruses.

For more than sixty years now, the double-stranded structure of DNA has been
known [1, 2]. The nucleotides of each strand are composed of one of four planar, hete-
rocyclic, nitrogenous bases, i.e., guanine (G), cytosine (C), adenine (A) or thymine (T),
a pentose sugar (deoxyribose), and a phosphate group. The four nitrogenous bases, to-
gether with uracil (U), which is exclusively found in RNA, are depicted in Fig. 1.1. Co-
valent, phosphodiester bonds between pentoses and phosphate groups of adjacent nu-
cleotides form an alternating sugar-phosphate backbone. These phosphodiester bonds
are formed between the 3′ and 5′ carbons of the sugars of successive nucleotides, so the
respective 5′ and 3′ carbons at each end of the strand remain unbonded. Thus, DNA is
said to have directionality. The purines (G or A) of a nucleotide belonging to a strand
are joined together with the pyrimidines of the other strand (C or T, respectively) via
(three or two, respectively) hydrogen bonds, forming the double helix structure. Mov-
ing along the DNA growth axis, if the first strand has directionality 5′ − 3′, the second
strand has directionality 3′ − 5′. The specificity in the way bases match ensures that
G is always bonded with C, and A is always bonded with T. Pairing between non-
complementary bases results in mutations that can be detrimental to the development
of an organism. In RNA, deoxyribose (whose 2-carbon is bonded with a hydrogen)
is replaced by ribose (whose 2-carbon is bonded with a hydroxyl group), and T is re-

3



4 CHAPTER 1. CHARGE TRANSPORT AND TRANSFER IN DNA AND CARBYNES

placed by U. Furthermore, RNA molecules are single-stranded; however, some viruses
possess double-stranded RNA (other viruses can contain even single-stranded DNA).

Figure 1.1: The nitrogenous bases found in nucleic acids. Adenine and Guanine (purines,
composed of two rings) and Cytosine (pyrimidine, composed of one ring) are native in both
DNA and RNA. Thymine / Uracil (pyrimidines) are native only in DNA / RNA. Image source:
https://commons.wikimedia.org/wiki/File:Nucleotides_1.svg. Cropped from the original.

In B-DNA, which is the most common DNA conformation, successive base pairs
are separated and twisted approximately by 3.4 Å and 36◦, respectively, relatively to
the (right-handed) double helix growth axis (Fig. 1.2).

Although the study of nucleic acids is mainly associated with molecular biology
and genetics, today, a broad interdisciplinary community is interested in biological
systems, such as nucleic acids and analogues. The base-pair stack of nucleic acids cre-
ates a nearly one-dimensional π-stack, due to the overlap of their π molecular orbitals,
that allows charge carrier movement, i.e., charge transfer and transport. Let us distin-
guish between these two terms: transfer means that a carrier, created or injected at
a specific location, moves to a more favorable one, while transport implies the use of
electrodes and the application of external voltage between them.

Charge transfer in biological molecules attracts considerable scientific attention,
because it constitutes the basis of many biological processes e.g. in various proteins [3]
including metalloproteins [4] and enzymes [5] with medical and bioengineering appli-
cations [6, 7]. Charge transfer plays a central role in DNA damage and repair [8–10].
Charge transport might be an indicator to distinguish pathogenic from non-pathogenic
mutations at an early stage [11]. It could also probe DNA of different origin or organ-
isms [12], mutations, and diseases [13, 14]. From a physicist’s point of view, the charge
transfer and transport properties of DNA are studied in order to obtain a deeper un-
derstanding of its biological functions as well as for potential applications, such as

https://commons.wikimedia.org/wiki/File:Nucleotides_1.svg
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Figure 1.2: Schematic representa-
tion of B-DNA, i.e., the most com-
mon DNA conformation. (top)
Front view. (bottom) top view.
Since successive base pairs are
separated and twisted approxi-
mately by 3.4 Å and 36◦, respec-
tively, then, approximately, the
helix step is 34 Å and contains 10
base pairs. Image source: Dna-
conformations by Mauroesguer-
roto, used under CC BY-SA 4.0.
Cropped from the original.

nanosensors, nanocircuits or molecular wires, due to their high yield synthesis, near-
unity purification, and nanoscale self-organization [15–17].

Apart from its biological and nanoscientific importance, DNA can be viewed as a
prototype system for one-dimensional molecular wires. The remarkable reduction of
channel lengths in electronics during the past decades (from L ∼ 1 μm in the 1980s to
L ∼ 10 nm in 2014, cf. Fig. 1.3, which for a lattice constant of ∼ 0.5 nm corresponds
to 20 atoms) raises the question whether polymers, oligomers, (macro)molecules etc.
can be recruited in devices as channels. Stiffness is one of the necessary characteris-
tics such structures should posses for this purpose. DNA is among the stiffest known
polymers with ℓp ≈ 50 nm or 150 base pairs [18], where ℓp is the persistence length.
The persistence length of a polymer somehow quantifies its stiffness, in the sense that
a piece shorter than ℓp behaves rather like a flexible elastic beam, while much longer
pieces are more likely to bend. On the other hand, if we stretch and join the DNA of all
chromosomes of a single cell, that would give us a length of the order of a meter and
would consist of billions of base pairs. Apart from its persistence length, DNA pro-
vides the ability to construct sequences of interest based on an alphabet, i.e., {G, A, C,
T}, so to potentially tailor the properties of a device by choosing the appropriate ones
for a given task. This way, e.g. various periodic as well as deterministic aperiodic (e.g.,
quasiperiodic, fractal) or random sequences can be constructed. Hence, this gives us
the opportunity to study various aspects of order or disorder, using DNA sequences,
cf. Fig. 1.4.

For at least 20 years, we try to understand carrier movement through DNA [19–
29]. Today, we know that there are many external (aqueousness, presence of coun-
terions, extraction process, electrodes, contacts, purity, substrate), and internal (such
as the base-pair sequence and geometry) factors that affect carrier motion. Favoring
geometries and base-pair sequences, the use of non-natural bases [30], isomers and

https://commons.wikimedia.org/wiki/File:Dnaconformations.png
https://commons.wikimedia.org/wiki/File:Dnaconformations.png
https://commons.wikimedia.org/wiki/User:Mauroesguerroto
https://commons.wikimedia.org/wiki/User:Mauroesguerroto
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 1.3: Schematic representation of a Source (S)–Channel–Drain (D) device. The urge to achieve
continuously smaller channel lengths, L, in such devices, raises the question whether (macro)molecules
such as DNA oligomers and polymers or carbynes can be recruited.

Figure 1.4: The ability to build nucleic acid sequences of choice, e.g. periodic (top), deterministic ape-
riodic (period doubling, middle) or random (bottom), based on the alphabet constructed by its building
blocks, gives the ability to choose the appropriate segment for a given task. This picture refers, for
simplicity, to binary double-stranded sequences, i.e., built by two letters only, e.g. G and A (with the
complementary bases, C and T, respectively, being implied).

tautomers of the bases [31], the use of the triplet acceptor anthraquinone for hole in-
jection [32], and so on, are being investigated. Structural fluctuations [33] is another
important factor which influences carrier movement through DNA [34–37]. Charge
transport in oxidatively damaged DNA under structural fluctuations has also been in-
vestigated [38]. Also, electric charge oscillations govern the serum response factor-
DNA recognition [39]. G runs support delocalization over four to five G bases and
resistance oscillations in such DNA segments have been observed theoretically and
experimentally [40]. Finally, the carrier transfer rate through DNA can be manipu-
lated by chemical modification [41]. Various degrees of order or disorder are present
in DNA, e.g. random attachment of cations (K+, Ca2+, Na+) due to the presence of neg-
ative charges at the backbone, structural variability, since DNA is soft and its structure
changes, (generally) non periodicity in the base sequence, etc. In this thesis, we mainly
focus on maybe the most important of the intrinsic factors which also induces various
types of order or disorder, i.e. the effect of alternating the base sequence, which affects
the electronic overlaps across the π-stack.

Charge movement is usually ascribed to two types of mechanisms [42]: (i) inco-
herent or thermal hopping between nearest neighboring or more distant sites and (ii)
coherent hopping or tunneling or superexchange. The term tunneling implies quantum
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mechanical tunneling, between two sites, e.g., the carrier donor and the carrier accep-
tor, through a bridge. The term superexchange, not to be confused with the similar
term in magnetism, emanates from the distant interaction between the two sites, e.g.,
the donor and the acceptor, through a bridge. The coherent mechanism is expected
to dominate carrier movement in the low temperature regime. Typically, in thermal
hopping, charge is localized, the carrier exchanges energy with the environment dur-
ing its transfer and this way it can travel far longer than via the coherent mecha-
nism. If d0 is a typical nearest neighbor distance, e.g., 3.4 Å, and two base pairs stand
off ∆r having energy difference ∆E, then, maybe one could presume an equation
like k = k0 exp(−∆E/kBT ) exp(−∆r/d0) –or a similar one with other mathematical
form– to qualitatively describe thermal hopping [43–54]. In this PhD thesis, we will
focus on the coherent case. In this case, all sites have finite occupation probabilities,
but, for a given parametrization, those with adequate on-site energies and for a par-
ticular initial placement of the carrier are more favored [55–60]. In natural DNA, it is
more likely that a hole will be created at guanine because its Highest Occupied Molec-
ular Orbital (HOMO) has the largest energy among all bases and an electron will be
created at thymine because its Lowest Unoccupied Molecular Orbital (LUMO) has the
smallest energy among bases [61]. However, coherently, if, e.g., a hole is created at an
adenine, charge transfer will mainly be through adenines; cf. e.g. Ref. [58].

Another, simpler than DNA, π-conjugated structure that could be candidate for
a molecular wire is atomic carbon wires or carbynes. They represent the ultimate
nanoscale structure, having a thickness of just one atom, and is made of carbon atoms
that adopt sp hybridization. Each one of them is connected to its neighbors with
spzspzσ bonds and has two (one px and one py) electrons that form two, energy-
degenerate, π-stacks. The two possible conformations of carbynes are cumulenic and
polyynic. In the former, there is no difference between the distances of consecutive
atoms [i.e., the bond length alternation (BLA) is zero]; in the latter, BLA is non-zero.
Carbynes possess interesting properties, such as tunable band gap, extreme stiffness
and elastic modulus, high flexibility, and room temperature persistence. They have
a persistence length ℓp ≈ 14 nm, that is, ∼ 100 carbon atoms, which makes them
promising for electronic applications.

Both ab initio calculations [62–70] and model Hamiltonians [14, 71–81] have been
used to theoretically explore the variety of experimental results that predict electrical
behavior, ranging from metallic to insulating, as well as the underlying mechanisms.
In this PhD thesis, we analytically and numerically study the coherent charge trans-
port and transfer properties of DNA sequences, as well as the transport properties of
carbynes, in the context of one of the most widely applied theoretical methods, i.e.,
with Tight-Binding (TB). Our main goal is to gain insight on the interplay between the
sequential order or disorder of DNA segments and their charge transport and transfer
properties, taking into account both diagonal and off-diagonal disorder in the Hamil-
tonian by using realistic TB parametrizations. In Chapter 2, we introduce and discuss
the TB method and its variants that are used to study the properties of molecular wires
more generally, and specifically of DNA. We also present some details regarding one-
dimensional aperiodic substitutional sequences. The second part of this PhD thesis is
dedicated to charge transport. In Chapter 3, we study the spectral and transmission
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properties of periodic wires with a generic unit cell within the simplest variant of TB.
The formalism developed there allows us to theoretically (analytically and numerically)
study and reproduce experimental results of cumulenic and polyynic carbynes; this is
done in Chapter 4. Next, in Chapter 5, we comparatively study the energy structure
and charge transport properties of periodic, deterministic aperiodic and random binary
DNA sequences. The third part of this PhD thesis focuses on charge transfer. In Chap-
ter 6, we delineate the basic theory for TB modeling of the transfer of an extra hole
or electron along DNA, and we also introduce the physical quantities studied. Chap-
ter 7 is dedicated to charge transfer in small DNA segments, i.e., all possible monomers,
dimers, and trimers, which are studied within two TB variants. A discussion regarding
comparison between TB and the more detailed ab-initio Real-Time Time-Dependent
Density Functional Theory (RT-TDDFT) is also included. In Chapter 8, we move on
to examine several classes of periodic DNA polymers; monomer-polymers and dimer-
polymers, comparatively within two TB variants, and polymers with increasing rep-
etition unit. Finally, in Chapter 9, we discuss results regarding charge transfer in de-
terministic aperiodic and random DNA sequences, and make some remarks regarding
experimental charge transfer rates.



2
Theoretical Framework¹

TB is an approximate method widely used in condensed matter physics to determine
the electronic structure of a solid through the expansion of its wavefunction as a super-
position of the wavefunctions corresponding to the isolated moieties located at each
lattice site [83]. As the name of the model suggests, the main hypothesis in TB is that
the system’s orbitals are tightly bound at the sites at which they belong, so that the
overlap with neighboring orbitals is small. Hence, the electronic wavefunction of the
moiety that occupies a lattice site is rather similar to the orbital of the free moiety.
As a result, the corresponding energy of the electron will be somehow close to the
(negative) ionization energy of the free moiety due to the weak interaction with its
neighbors. This picture is applicable at the bands formed by the core electrons of met-
als, the valence and conduction bands of insulators and semiconductors, as well as the
valence and conduction bands arising from localized d or f states (e.g., in transition
metals and rare earths).

Today, several decades after its introduction [84], TB has evolved into a fast and
efficient approach, employable to numerous problems regarding the electronic struc-
ture and properties of matter, requiring various degrees of accuracy [85, 86]. Its main
advantages include its intuitive simplicity, the ability it gives to obtain analytic results
in several cases, and its low computational cost [87]. The latter makes TB applicable
to large systems, currently unreachable by the more sophisticated ab initio methods,
such as Density Functional Theory (DFT). In contrast to those methods, TB is semi-
empirical, in the sense that an external set of parameters is needed in order to perform
calculations. These parameters are (a) the on-site energies that correspond to the en-
ergy of the electrons that belong to each lattice site, and (b) the hopping (or transfer)
integrals that correspond to the coupling of orbitals which belong to neighboring sites.
The orbitals under consideration here are the HOMO and the LUMO.

¹A brief version of the content of this chapter can be found published in Ref. [82], under CC BY 4.0.
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Over the last few decades, TB has been widely used to describe, among others,
polymers and organic systems. One-dimensional TB models are commonly applied
to study the energy structure and thermal, magnetic as well as charge transfer and
transport properties of π-conjugated organic systems that are candidates for molecu-
lar wires, such as nucleic acids and analogues. Those models have varying degrees of
complexity, and each one of them requires a different number of parameters. Gener-
ally, the studied systems consist of N monomers extended at L chains (L ≪ N , since
nucleic acids are approximately one-dimensional). The problem is reduced to the solu-
tion of the so-called TB system of equations, which is a system of coupled stationary,
algebraic equations or differential equations of first order, equivalent to a discretized
form of the time-independent or time-dependent Schrödinger equation.

2.1 The stationary Tight-Binding system of
equations

The HOMO or LUMO Hamiltonian of a system consisting of N × L sites is

Ĥ =
∑
n,l

Ĥ l(at)
n + V̂ , (2.1)

where Ĥ l(at)
n is the Hamiltonian of the isolated moiety that lies at monomer n (n =

1, 2, . . . , N ) and at chain l (l = 1, 2, . . . , L), and V̂ is the difference between the ac-
tual energy of the system and the total energy of the isolated moieties. Within TB,
we consider the states {|n, l⟩} of the isolated moieties as localized enough so that
⟨n′, l′|n, l⟩ = δn′,nδl′,l, i.e., so that they form a complete orthonormal basis. If this was
not the case, an overlap matrix should be taken into account. Due to completeness of
{|n, l⟩}, Ĥ can be written as

Ĥ =
∑
n,l

ϵl(at)n |n, l⟩⟨n, l|+
∑

n,l,n′,l′

⟨n, l|V̂ |n′, l′⟩ |n, l⟩⟨n′, l′| (2.2)

where ϵl(at)n is the eigenenergy of the isolated moiety. If we suppose the vacuum state
|∅⟩, and define the operators

â†n,l = |n, l⟩⟨∅| (2.3a)

ân,l = |∅⟩⟨n, l| (2.3b)

as creation and annihilation operators, respectively, of state |n, l⟩, then Eq. (2.2) takes
the form

Ĥ =
∑
n,l

ϵl(at)n â†n,lân,l +
∑

n,l,n′,l′

⟨n, l|V̂ |n′, l′⟩ â†n,lân′,l′ . (2.4)

If, within TB, we consider as non-negligible only the interactions between the moieties
in two successive chains in the same monomer (i.e., between n, l and n, l±1), between
the moieties in two successive monomers in the same chain (i.e, between n, l and n±
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1, l), and between diagonally located moieties in the previous and next chain of two
successive monomers (i.e., between n, l and n + 1, l ± 1 as well as n − 1, l ± 1), then
the following hopping integrals can be defined:

⟨n, l|V̂ |n, l⟩ = tln
⟨n, l|V̂ |n, l ± 1⟩ = tl,l±1

n

⟨n, l|V̂ |n± 1, l⟩ = tln,n±1

⟨n, l|V̂ |n+ 1, l ± 1⟩ = tl,l±1
n,n+1

⟨n, l|V̂ |n− 1, l ± 1⟩ = tl,l±1
n,n−1.

(2.5)

Hence, Eq. (2.4) becomes

Ĥ =
∑
n,l

(ϵlnâ
†
n,lân,l + tl,l+1

n â†n,lân,l+1 + tl,l−1
n â†n,lân,l−1 +

+ tln,n+1â
†
n,lân+1,l + tln,n−1â

†
n,lân−1,l +

+ tl,l+1
n,n+1â

†
n,lân+1,l+1 + tl,l+1

n,n−1â
†
n,lân−1,l+1 +

+ tl,l−1
n,n+1â

†
n,lân+1,l−1 + tl,l−1

n,n−1â
†
n,lân−1,l−1),

(2.6)

where
ϵln = ϵl(at)n + tln (2.7)

is the on-site energy of the moiety. It is common in TB models to consider only the
energy of the isolated moiety as the on-site energy, without the correction that comes
from its presence in the lattice, since, typically, in numeric calculations, the param-
eters are recruited from experimental data obtained for isolated moieties. This is a
first approach, but it is not always the case. For example, in Ref. [61], in which a TB
parametrization that will be used in this PhD thesis was presented, the on-site energies
of Carbon, Nitrogen and Oxygen within planar organic molecules with sp2 hybridiza-
tion were obtained (and are different from the isolated atoms ionization energies) by
fitting with TB experimental data of the ionization energy and the first π − π∗ transi-
tion of those molecules. This experimental data was obtained e.g. by absorption and
photoelectron spectroscopy; see, e.g., Refs. [133-148] of Ref. [61], and Ref [88].

From Eq. (2.6) it can be seen that, if we define the matrices

ϵn =


ϵ1n t1,2n

t2,1n ϵ2n t2,3n
. . . . . . . . .

tL−2,L−1
n ϵL−1

n tL−1,L
n

tL,L−1
n ϵLn

 , (2.8)

which represents the “on-site energy” of the monomer,

τn,n±1 =


t1n,n±1 t1,2n,n±1

t2,1n,n±1 t2n,n±1 t2,3n,n±1
. . . . . . . . .

tL−2,L−1
n,n±1 tL−1

n,n±1 tL−1,L
n,n±1

tL,L−1
n,n±1 tLn,n±1

 , (2.9)
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which represents the “transfer parameter” from monomer n to monomer n± 1, and

ân =


α̂n,1

α̂n,2
...

α̂n,L

 , (2.10)

which represents the annihilation operator of monomer n, then the Hamiltonian can
by compactly written as

Ĥ =
N∑

n=1

â†
nϵnân + â†

nτn,n+1ân+1 + â†
nτn,n−1ân−1. (2.11)

Since Ĥ is an Hermitian operator, i.e.,

Ĥ = Ĥ†, (2.12)

and given that the on-site energies and the hopping integrals are real numbers, it holds
that

ϵn = ϵTn , (2.13a)
τn,n±1 = τ T

n±1,n. (2.13b)
Hence, ϵn is a symmetric matrix containing the on-site energies of all moieties belong-
ing to monomer n, ϵln, in its main diagonal, and the hopping integrals, tll′n , between the
sites of the monomer that belong to different chains in its superdiagonal and subdiag-
onal. τn,n±1 are (generally) not symmetric matrices containing the hopping integrals
between successive monomers, i.e. between the moieties of a monomer and the ones
that lie in the same (main diagonal), next (superdiagonal), and previous (subdiagonal)
chain of the next (n + 1) or previous (n − 1) monomer, i.e. tln,n±1, t

l,l+1
n,n±1, and t

l−1,l
n,n±1,

respectively. Both ϵn and τn,n±1 are tridiagonal matrices of order L. We notice that
if we took interactions between more chains into account, the number of non-zero
off-diagonals of the matrices in Eqs. (2.8) and (2.9) would increase (by 2 for each ad-
ditional chain), while, if we took interactions between more monomers into account,
the number of τ matrices would increase (by 2 for each additional monomer).

To simplify the matrix notation, we define

τn,n+1 := τn. (2.14)

Hence, given Eq. (2.13b)
τn,n−1 = τ T

n−1,n := τ T
n−1. (2.15)

Thus, the Hamiltonian of Eq. (2.11) is rewritten as

Ĥ =
N∑

n=1

â†
nϵnân + â†

nτnân+1 + â†
nτ

T
n−1ân−1. (2.16)

The situation is schematically presented in Fig. 2.1.
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Figure 2.1: Schematic representation of a TB model consisting of N monomers, extended at L chains.
Within the model, we take into account (a) the on-site energies of each site, ϵln, and the inter-chain
hopping integrals, tll′n , i.e., between the sites of the monomer (blue), as well as (b) the inter-monomer
hopping integrals, tll′nn′ , i.e., between each site of a monomer and the neighboring sites of the previous
(red) and the next (green) monomers. The former are contained in the matrix ϵn, while the latter in the
matrices τn−1 and τn, respectively.

Since the states of the isolated moieties, {|n, l⟩}, constitute a complete basis, the
state of the whole system, |Ψ⟩, can be written as a linear combination of them, i.e.,

|Ψ⟩ =
∑
n,l

ψl
n |n, l⟩ , (2.17)

where ψl
n is the occupation probability amplitude in the moiety that lies in strand l of

monomer n. If we define the state of the isolated monomer n as

|n⟩ =
(
|n, 1⟩ |n, 2⟩ . . . |n, L⟩

)
(2.18)

and the probability amplitudes that correspond to monomer n as

Ψ⃗n =


ψ1
n

ψ2
n
...
ψL
n

 , (2.19)

then |Ψ⟩ can be written as

|Ψ⟩ =
(
|1⟩ |2⟩ . . . |N⟩

)


Ψ⃗1

Ψ⃗2
...

Ψ⃗N

 (2.20)
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or

|Ψ⟩ =
N∑

n=1

|n⟩ Ψ⃗n. (2.21)

Since, obviously, ⟨n′|n⟩ = Iδn′,n, where I is the identity matrix of order L, {|n⟩}, form
a complete basis, on which the operators â†

n and ân act.
Substituting Eqs. (2.16) and (2.21) in the time-independent Schrödinger equation

Ĥ |Ψ⟩ = E |Ψ⟩ (2.22)

we get ∑
n′

|n′⟩EΨ⃗n′ =
∑
n,n′

(â†
nϵnân + â†

nτnân+1 + â†
nτ

T
n−1ân−1) |n′⟩ Ψ⃗n′

=
∑
n

|n⟩ ϵnΨ⃗n + |n⟩ τnΨ⃗n+1 + |n⟩ τ T
n−1Ψ⃗n−1. (2.23)

Hence, multiplying by ⟨n′′| from the left, we conclude that the derivation of the eigenen-
ergies and eigenstates of the system is reduced to the solution of a system ofN coupled
L-order matrix equations of the form

EΨ⃗n = ϵnΨ⃗n + τ T
n−1Ψ⃗n−1 + τnΨ⃗n+1, (2.24)

for all n = 1, 2, . . . , N .

2.2 Solution of the system of equations
The solution of Eq. (2.24) is equivalent with the solution of the problem

EI − ϵ1 −τ1
−τ T

1 EI − ϵ2 −τ2
. . . . . . . . .

−τ T
N−2 EI − ϵN−1 −τN−1

−τ T
N−1 EI − ϵN




Ψ⃗1

Ψ⃗2
...

Ψ⃗N−1

Ψ⃗N

 =


τ T
0 Ψ⃗0

τNΨ⃗N+1

 . (2.25)

The boundaries of the problem are determined by Ψ⃗0 and Ψ⃗N+1. From Bloch’s theo-
rem, it holds that Ψ⃗N+n = ζΨ⃗n, where ζ represents a phase factor. We will use this
general form for ζ and then impose either fixed of cyclic boundaries (ζ = 0 or ζ = 1,
respectively). So, Eq. (2.25) reaches the form of the eigenvalue-eigenvector problem

HΨ⃗ = EΨ⃗, (2.26)

where

H =


ϵ1 τ1 ζ∗τ T

0

τ T
1 ϵ2 τ2

. . . . . . . . .
τ T
N−2 ϵN−1 τN−1

ζτN τ T
N−1 ϵN

 (2.27)
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is the Hamiltonian matrix, which is a block-tridiagonal matrix of orderN (with blocks
of order L) with perturbed corners, and

Ψ⃗ =


Ψ⃗1

Ψ⃗2
...

Ψ⃗N

 . (2.28)

Since H is Hermitian, it must hold that τN = τ0. This matrix can be numerically
diagonalized for either fixed or cyclic boundaries.

2.2.1 The Transfer Matrix method
Another way to address the problem, is to write Eq. (2.24) in the alternate form(

Ψ⃗n+1

Ψ⃗n

)
= Pn(E)

(
Ψ⃗n

Ψ⃗n−1

)
, (2.29)

with
Pn(E) =

(
τ−1
n (EI − ϵn) −τ−1

n τ T
n−1

I 0

)
, (2.30)

where 0 is the zero matrix of order L. The block matrix of order 2 (with elements of
order L), Pn, is called the Transfer Matrix of monomer n. From Eq. (2.30) it is obvious
that, in order forPn to be well-defined, τn must be invertible for all n, i.e., it must hold
that det(τn) ̸= 0². Since we have N monomers, we can write(

Ψ⃗N+1

Ψ⃗N

)
= MN(E)

(
Ψ⃗1

Ψ⃗0

)
, (2.31)

where

MN(E) =
1∏

n=N

Pn(E) = PNPN−1 . . . P2P1 (2.32)

is called the Global Transfer Matrix (GTM) of the system. For Ψ⃗N+1 = ζΨ⃗1 and Ψ⃗0 =
ζ∗Ψ⃗N , Eq. (2.31) takes the form

MN(E)

(
Ψ⃗1

Ψ⃗0

)
= ζ

(
Ψ⃗1

Ψ⃗0

)
. (2.33)

Hence, ζ is an eigenvalue of the GTM with an eigenvector composed of Ψ⃗1 and Ψ⃗0.
Then, given the eigenvector of the GTM, and through successive applications of Eq.
(2.29), the full eigenvector Ψ⃗ of the Hamiltonian for E can be constructed. Thus E
corresponds to an eigenvalue of H . In other words, Eq. (2.26), which gives the eigen-
values and eigenvectors of H is satisfied if and only if Eq. (2.33) is simultaneously
satisfied [90].

²There are cases in which a transfer matrix can be constructed for non-invertible τn, but this holds
when only τn is nilpotent of index 2, i.e., when τ 2

n = 0 [89]. However, this is not generally true for
those models presented for DNA in Sec. 2.3 that include a non-invertible τn.



16 CHAPTER 2. THEORETICAL FRAMEWORK

2.2.2 Properties of the GTM

Recursive relations

The block elements of the GTM are recursively given by

M
11(12)
N = τ−1

N (EI − ϵN)M
11(12)
N−1 − τ−1

N τ T
N−1M

11(12)
N−2 , (2.34a)

M
21(22)
N = M

11(12)
N−1 , (2.34b)

with initial conditions
M 11

1 = τ−1
1 (EI − ϵ1), (2.35a)

M 12
1 = −τ−1

1 τ T
N , (2.35b)

M 11
0 = I, (2.35c)

M 12
0 = 0. (2.35d)

From Eqs. (2.34) and (2.35) it is obvious that the elements of MN occur, for every N ,
from the knowledge of the first row of MN−1 and MN−2.

Determinant

The determinant of the GTM is

det(MN) =
1∏

n=N

det(Pn) =
1∏

n=N

det
(
τ T
n−1

)
det(τn)

=
det
(
τ T
0

)
det(τN)

= 1. (2.36)

In other words, the Hermitianity of the Hamiltonian imposes that the GTM is unimod-
ular by construction.

Symplectic property

The inverse Transfer Matrix of a monomer has the form [91]

Pn(E)
−1 =

(
0 I

−(τ T
n−1)

−1τn (τ T
n−1)

−1(EI − ϵn)

)
. (2.37)

The inverse GTM is

M−1
N (E) = (PNPN−1 . . . P2P1)

−1 = P−1
1 P−1

2 . . . P−1
N−1P

−1
N . (2.38)

If we define the matrices
sn =

(
O τ T

n

−τn O

)
, ∀n, (2.39)

for which it holds that [91]

s−1
n =

(
O −τ−1

n

(τ T
n )

−1 O

)
, (2.40)
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we notice that
P−1

n = s−1
n−1P

T
n sn. (2.41)

Hence, the inverse GTM becomes

M−1
N = s−1

0 P T
1 P T

2 . . . P T
N−1P

T
N sN . (2.42)

Thus, since sN = s0, we conclude that

M−1
N = s−1

N MT
NsN . (2.43)

From Eq. (2.43), it also follows that

MT
NsNMN = sN . (2.44)

Eq. (2.44) defines the symplectic property of the GTM.The GTM itself is called symplec-
tic. This is the property that imposes that the GTM is unimodular. Hence, the GTM
belongs in the real symplectic group Sp(2L,R), which is a subgroup of the special lin-
ear group SL(2L,R) of the unimodular real square matrices of order 2L.

Furthermore, the symplectic property [Eq. (2.44)] implies that

MT
NsNMN

(
Ψ⃗1

Ψ⃗0

)
= sN

(
Ψ⃗1

Ψ⃗0

)
Eq. (2.33)
====⇒

MT
NsNζ

(
Ψ⃗1

Ψ⃗0

)
= sN

(
Ψ⃗1

Ψ⃗0

)
⇒

MT
NsN

(
Ψ⃗1

Ψ⃗0

)
= ζ∗sN

(
Ψ⃗1

Ψ⃗0

)
. (2.45)

Thus ζ∗ is an eigenvalue ofMT
N . Due to Eq. (2.43),MT

N andM−1
N are similar, hence ζ∗ is

also an eigenvalue ofM−1
N . Then, given thatMN andMT

N have the same eigenvalues
(since they are transpose to one another), then the eigenvalues of GTM, its transpose
and its inverse will come in the pairs ζ and ζ∗.

2.2.3 Imposing the boundaries

Fixed Boundaries

For fixed boundaries, i.e. when ζ = ζ∗ = 0 (Ψ⃗0 = Ψ⃗N+1 = 0), Eq. (2.33) takes the
form

M11
N Ψ⃗1 = 0Ψ⃗1, (2.46)

hence, the energy eigenvalues of the system can be found by the condition

det
(
M 11

N

)
= 0. (2.47)
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Cyclic Boundaries

For non-trivial ζ , the general form of the characteristic polynomial of MN is

det(ζI2L −MN) = 0, (2.48)
det(ζ∗I2L −MN) = 0, (2.49)

since MN is symplectic. Eq. (2.48) can equivalently be written as [92]

2L∑
l=0

(−1)lAl(E)ζ
l = 0, (2.50)

where

Al(E) =
1

l

l∑
p=1

(−1)p+1Al−p(E)Tr((MN)
p), ∀l > 0 (2.51)

with initial condition A0(E) = 1. Tr(MN) is the trace ofMN . The coefficients Al(E)
are 2L+1 in number. However, if we multiply Eq. (2.50) by (ζ∗)2L we can deduce that

Al(E) = A2L−l(E), ∀l. (2.52)

Thus, the characteristic polynomial is palindromic and their number of differentAl(E)
coefficients is reduced to L+1. Exploiting this fact, we multiply Eq. (2.50) by (ζ∗)l, to
get

(−1)LAL(E) +
L−1∑
l=0

(−1)lAl(E)[ζ
L−l + (ζ∗)(L−l)] = 0. (2.53)

Hence, for cyclic boundaries (ζ = ζ∗ = 1), the eigenvalues of the system are given by
solving the polynomial

(−1)L
AL(E)

2
+

L−1∑
l=0

(−1)lAl(E) = 0, (2.54)

i.e., only GTM traces up to the Lth power are needed.
If the cyclically bounded system is periodic, with a unit cell of umonomers repeated

m times, thenMN = (Mu)
m,Mu is theUnit Cell Transfer Matrix (UCTM). In this case,

Bloch theorem implies that ζ = eikua, where ua is the lattice constant, so Eq. (2.53) for
the UCTM takes the form of the dispersion relation (with a change in indices)

(−1)L
AL(E)

2
+

L∑
l=1

(−1)L−lAL−l(E) cos(kual) = 0. (2.55)

Furthermore, by definition,
cos(kual) = Tl(x), (2.56)
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where Tl(x) are the Chebyshev polynomials of the first kind, of degree lwith respect to
the variable x := cos(kua), which occur from the determinant of a tridiagonal matrix
of order l that has the form

Tl(x) =

∣∣∣∣∣∣∣∣∣
x 1
1 2x 1

. . . . . . . . .
1 2x

∣∣∣∣∣∣∣∣∣ . (2.57)

They are recurrently given by

Tl(x) = 2xTl−1(x)− Tl−2(x), ∀l ≥ 2, (2.58)

with initial conditions
T1(x) = x, (2.59a)

T0(x) = 1. (2.59b)

The coefficients of the Chebyshev polynomials of the first kind up to degree 21 can be
found, e.g., in Tables C.2a and C.2b of Ref. [93].

Hence, Eq. (2.53) reaches the form

(−1)L
AL(E)

2
+

L∑
l=1

(−1)L−lAL−l(E)Tl(x) = 0. (2.60)

Eq. (2.60) is a polynomial of degree L with respect to x = cos(kua), the solutions of
which give the energy eigenvalues of the system in the form of a dispersion relation.
The only things to determine are the traces of the powers of the UCTM (cf. Eq. (2.51))
and the Chebyshev polynomials of the first kind up to degree L. For each of the –m
in number– values of k, the dispersion relation gives L solutions for x, each of which
is a polynomial of energy of degree u, thus creating uL energy bands. Furthermore,
since cos(kua) = cos(−kua), the number of discrete eigenvalues will be N+2u

2
L for

evenm and N+u
2
L for oddm. In other words, there are N−2u

2
L degenerate eigenvalues

for evenm and N−u
2
L degenerate eigenvalues for oddm.

2.3 Models for DNA
The above analysis holds for any TB system composed of N monomers and L chains.
As far as nucleic acids –and especially DNA– are concerned, the most widely applied
models employed include, inter alia, the Wire Model (WM), the Ladder Model (LM),
the Extended Ladder Model (ELM), the Fishbone Model (FM) and the Fishbone Ladder
Model (FLM), which are briefly described below. The form of the matrices involved in
Eq. (2.24) for each of these models is presented in Table 2.1.
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Table 2.1: Form of the matrices Ψ⃗n, ϵn, and τn in the TB system of equations [Eq. (2.24)] for several
models used to describe nucleic acids and especially DNA: the Wire Model (WM), the Ladder Model
(LM), the Extended Ladder Model (ELM), the Fishbone Model (FM) and the Fishbone Ladder Model
(FLM).

Model L Ψ⃗n ϵn τn

WM 1 ψn ϵn tn,n+1

LM 2

(
ψ1
n

ψ2
n

) (
ϵ1n t1,2n

t2,1n ϵ2n

) (
t1n,n+1 0
0 t2n,n+1

)
ELM 2

(
ψ1
n

ψ2
n

) (
ϵ1n t1,2n

t2,1n ϵ2n

) (
t1n,n+1 t1,2n,n+1

t2,1n,n+1 t2n,n+1

)
FM 3

ψ1
n

ψ2
n

ψ3
n

  ϵ1n t1,2n 0
t2,1n ϵ2n t2,3n

0 t3,2n ϵ3n

 0 0 0
0 t2n,n+1 0
0 0 0


FLM 4


ψ1
n

ψ2
n

ψ3
n

ψ4
n



ϵ1n t1,2n 0 0
t2,1n ϵ2n t2,3n 0
0 t3,2n ϵ3n t3,4n

0 0 t4,3n ϵ4n



0 0 0 0
0 t2n,n+1 0 0
0 0 t3n,n+1 0
0 0 0 0



2.3.1 Wire Model
WM is the simplest TBmodel to describe nucleic acids and analogues [94, 95]. It can be
applied to mimic either single-stranded nucleic acids and hairpins at the single-base
level [96] or double-stranded ones [55] at the base-pair level. In other words, if the
WM refers to a single-stranded nucleic acid, then the on-site energies are related to
the energy levels of the four possible bases and the hopping integrals to the interaction
between bases, while, if it refers to a double-stranded nucleic acid, then the on-site en-
ergies are related to the energy levels of the two possible base-pairs (incorporating the
hydrogen bonding) and the hopping integrals to the interaction between base-pairs. It
consists of just one chain (L = 1) and the parameters needed for its employment are
the on-site energies of the bases or base pairs, ϵn, and the hopping integrals between
successive bases or base pairs, tn. A schematic representation of the WM is shown in
Figure 2.2(a).

2.3.2 Ladder Model
LM is the simplest model that can address the influence of base-pairing in the ener-
getics of nucleic acids [94, 97]. It consists of two chains (L = 2) and the parameters
needed for its employment are the on-site energies of the bases, ϵln, the intra-strand
hopping integrals between successive bases, tlln,n±1, and the intra-base-pair hopping
integrals, tll′n , due to the hydrogen bonds between the complementary bases in a pair.
A schematic representation of the LM is shown in Figure 2.2(b).



2.3. MODELS FOR DNA 21

2.3.3 Extended Ladder Model
ELM is a more detailed version of the LM, including the inter-strand hopping integrals,
tll

′
n,n±1, between the bases of successive base pairs [58, 97]. A schematic representation
of the ELM is shown in Figure 2.2(c).

2.3.4 Fishbone Model
FM is the simplest model that can take into account the effect of the sugar-phosphate
backbone [71, 77, 94]. It consists of three chains (L = 3). The central one corresponds
to the base pairs, with each one being interconnected with the top and bottom chains,
which represent the backbone sites. The latter are not connected with each other since
the sugars are separated by phosphate groups from one another [15, 98, 99]. Hence,
the parameters needed for its employment are the on-site energies, ϵln, of the base pairs
(l = 2) and of the backbone sites (l = 1, 3), the intra-strand hopping integrals between
successive base pairs, t2,2n,n±1, and the inter-strand hopping integrals, tll′n , between the
base pairs and the backbone sites. A schematic representation of the FM is shown in
Figure 2.2(d).

2.3.5 Fishbone Ladder Model
FLM is a combination of the LM and the FM [77, 94]. It thus includes both the effect
of base-pairing and the presence of the sugar-phosphate backbone. It consists of four
chains (L = 4). The two central ones (l = 2, 3) correspond to the nitrogenous bases
and the edge ones (l = 1, 4) to the backbone sites. Hence, the parameters needed for its
employment are the on-site energies, ϵln, of the base pairs (l = 2, 3) and the backbone
(l = 1, 4), the intra-strand hopping integrals between base pairs, tlln,n±1 (l = 2, 3) and
the inter-strand hopping integrals between the bases of a base pair as well as between
each base and the backbone, tll′n . A schematic representation of the FLM is shown in
Figure 2.2(e).

2.3.6 Additional Remarks
Apart from the models described above, one can introduce several other variants to
describe nucleic acids. For example, an obvious extension would be a fishbone ex-
tended ladder model. Additionally, several other models have been proposed, in-
cluding intra-backbone interactions [75, 97, 100], single-stranded nucleic acids with
a backbone [100] and explicit inclusion of helicity [101] strain [102], and spin–orbit
coupling [103] effects. We also mention that more complex models can be reduced
to simpler ones via a renormalization scheme, which reduces the degrees of freedom
of the system. Then, the on-site energies of the renormalized Hamiltonian become
energy-dependent. This procedure is important when environmentally induced effects
are considered [77]. For example, the FLM can be reduced into an LM via a one-step
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Figure 2.2: Schematic representation of the TB models listed in Table 2.1. (a) Wire Model (WM); (b)
Ladder Model (LM); (c) Extended Ladder Model (ELM); (d) Fishbone Model (FM); (e) Fishbone Ladder
Model (FLM).

renormalization procedure [104], or to an even simpler WM via a two-step renormal-
ization procedure [105, 106].

Several techniques can be applied to solve the models, depending on what is stud-
ied, such as the numerical diagonalization of the Hamiltonian in Equation (2.16) [56, 58,
59], the transfer matrix method [89, 107, 108] outlined above, and the Non-Equilibrium
Green’s Function technique [109]. As discussed in Subsec. 2.2.1, the transfer matrix
method is not applicable if the matrices τn are singular. Generally, this is the case,
e.g., for the FM and the FLM (cf. Table 2.1). Then, a renormalization scheme is needed
to apply the transfer matrix method.

Relevant parametrizations for nucleic acids have been proposed in many works
and used within various TB models. For example, for on-site energies and hopping in-
tegrals, cf. Refs. [61, 64, 65, 68, 110], for on-site energies, cf. Refs. [31, 111–116], and for
hopping integrals, cf. Refs. [117–119]. Such parametrizations allow researchers to go
beyond chemically unrealistic treatments, such as the assumptions that all hopping
integrals or on-site energies are equal, i.e., disorder in the Hamiltonian is either purely
diagonal or off-diagonal, respectively, and address in more detail the complexity of
nucleic acid energy structure. In this PhD thesis, we take into account both diagonal
and off-diagonal disorder using such realistic TB parametrizations.

2.4 Aperiodic One-Dimensional Wires
The dichotomy between the notions of order and disorder has expanded beyond a
simple distinction between periodicity and aperiodicity, since the first observation of
icosahedral diffraction patterns in the spectrum of an Al0.86Mn0.14 alloys [120] (2011
Nobel Prize in Chemistry for Prof. Dan Shechtman). The discussion that opened in
the scientific community following this and other relevant discoveries led to a change
in the very definition of the term crystal by the International Union of Crystallogra-
phy in 1992, expanding it from referring solely to periodically arranged structures to
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“any solid having an essentially discrete diffraction diagram” [121]. This extended no-
tion of crystals encompasses a whole family of structures, called quasi-periodic crys-
tals or quasicrystals. Quasicrystals do not possess the translation symmetry that is
inherent to classical (periodic) crystals; however, they possess inflation/deflation sym-
metry which leads to long-range order as well. Since their first discovery, more than
100 types of synthetic quasicrystals have been grown. Up to 2016, three naturally
formed quasicrystals have been discovered in the Khatyrka meteorite; the first one,
i.e., Al63Cu24Fe14 has icosahedral symmetry, and is called icosahedrite [122]; the sec-
ond one, Al71Ni24Fe5, has decagonal symmetry, and is called decagonite [123]; the
third one, Al62.0(8)Cu31.2(8)Fe6.8(4), has also icosahedral symmetry, and is the first ex-
ample of a quasicrystal discovered in nature prior to being synthesized in the labora-
tory [124]. The electron and X-ray diffraction patterns of natural quasicrystals show
a higher degree of structural perfection than their synthetic counterparts [125]. The
electron diffraction spectra of icosahedrite and decagonite are presented in Fig. 2.3.

Figure 2.3: (left) The electron diffraction pattern of icosahedrite, the first discovered natural quasicrys-
tal. Image source: https://commons.wikimedia.org/wiki/File:Icosahedrite_Diffraction_Pattern.jpg, used
under CC BY-SA 4.0. (right)The electron diffraction pattern of decagonite, the second discovered natural
quasicrystal. Image reproduced from Ref. [126], used under CC BY 4.0. Cropped from the original.

Another interesting category of structures are fractals. Fractals do posses infla-
tion/deflation symmetry. However, structurally, fractals constitute a class of aperiodic
systems that is distinct from quasicrystals. A quasicrystalline lattice is composed by
two (or more) incommensurate lattices, while a fractal one is not [127].

Advances in the field of quasicrystals and other related structures have turned sci-
entific interest into the study of specific one-dimensional aperiodic lattices, modeled
with TB [128], that is, described by Eq. (2.24). The lattices are typically created us-
ing substitutional sequences. Apart from the interest the study of such systems has
in itself, it is applicable, among other systems of physical relevance, in nucleic acids.
The ability to produce synthetic, de novo, nucleic acid sequences of interest [129],
using mainly the phosphoramidite method [130] (although other promising methods
have recently been proposed [131]), provides a chance not only to examine theoreti-

https://commons.wikimedia.org/wiki/File:Icosahedrite_Diffraction_Pattern.jpg
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/4.0/
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cal predictions regarding aperiodic structures, but also to create molecular wires with
tailored properties. Below, we present some details about substitutional sequences as
well as some of the most commonly used ones in the literature of one-dimensional
wires generally, and nucleic acids specifically.

2.4.1 Substitutional Sequences
Aperiodic substitutional sequences are based on an alphabet, e.g.,A = {A, B, C, D, . . . }
equipped with substitution rules that apply to each of its letters, s(j),∀j ∈ A. In the
case of nucleic acids, the alphabet letters correspond to nitrogenous bases, i.e., G, C,
A, T, U (for double-stranded chains, the complementary strand is implied). The se-
quences start with a seed, i.e., a letter belonging to the alphabet (0th generation of the
sequence). The substitution rules replace each alphabet letter by finite words consist-
ing of alphabet letters, i.e., s(j) = j′1j

′
2, . . . j

′
k,∀j ∈ A. Iterating this procedure g times

constructs the gth generation of the sequence.
Substitutional sequences can, in most cases, be described by introducing the substi-

tution matrix, S. It is a square, non-negative matrix of order card(A) (the cardinality
of a set is the number of elements of the set), and its elements areSij = ni[s(j)], where
ni[s(j)] is the number of times the letter i is present in the substitution rule s(j). No-
tice that, by definition, S does not contain information about the ordering of letters in
the sequence, hence more than one substitutions can have the same substitution ma-
trix. However, the substitution matrix reveals much information about the underlying
order and other properties of the corresponding sequence at the thermodynamic limit.
Below we present some details about the most widely-known deterministic aperiodic
sequences. Those, as well as some other sequences, together with their substitution
rules and matrices, are presented in Table 2.2.

Fibonacci

The Fibonacci sequence, named after the Italian mathematician Leonardo Pisano (Fi-
bonacci) who introduced it in his 1212 book Liber Abaci, in a study of the population
growth of rabbits [132], is a number sequence the terms of which are generated by
the addition of the two previous terms, with given initial conditions. However, this
sequence appears many centuries before in Indian mathematics, in connection with
Sanskrit prosody [133]. For example, the possible ways to arrange short (S) and double,
long (L) syllables with given total duration measured as g S syllables is the Fibonacci
number of the g + 1 generation. If Ng is the Fibonacci number of generation g, and
we setN0 = N1 = 1, the recurrence relationNg = Ng−1+Ng−2 produces the number
sequence 1, 1, 2, 3, 5, 8, 13, 21, 34 . . . . Using the two-letter alphabet {A, B}, we can de-
fine the Fibonacci word Fg by the substitution rule s(A) = AB, s(B) = A, starting with
F0 = B. F1 = A, F2 = AB, F3 = ABA, F4 = ABAAB, etc. Obviously, the length of the
word Fg is Ng.



2.4. APERIODIC ONE-DIMENSIONAL WIRES 25

Thue-Morse

The Thue-Morse (TM) sequence (aka Prouhet-Thue-Morse sequence) was studied by
Eugene Prouhet in the field of number theory [134], defined by Alex Thue in the field
of combinatorics [135], and rediscovered by Marston Morse in the context of differen-
tial geometry [136]. It is a binary sequence of 0s and 1s, starting with 0, with its gth
generation constructed by appending the Boolean complement of the previous gener-
ation to the sequence. With the two-letter alphabet {A, B}, we can define the TMword
TMg by the substitution rule s(A)= AB, s(B)= BA, starting with TM0 = A. TM1 = AB,
TM2 = ABBA, TM3 = ABBABAAB, etc. The length of the word TMg is 2g.

Period-Doubling

ThePeriod-Doubling (PD) sequence is closely connectedwith the TM sequence. Specif-
ically, its elements are given by the first differences of the elements of the TM binary
sequence modulo 2. Using the two-letter alphabet {A, B}, we can define the PD word
PDg by the substitution rule s(A) = AB, s(B) = AA, starting with PD0 = A. PD1 = AB,
PD2 = ABAA, PD3 = ABAAABAB, etc. The length of the word PDg is 2g.

Rudin-Shapiro

The Rudin-Shapiro (RS, aka Golay-Rudin-Shapiro) sequence is the sequence of the ap-
pended coefficients of the RS polynomials [137, 138]. It contains only ±1 and is gen-
erated by starting with +1,+1 and employing the rules

+1,+1 → +1,+1,+1,−1

+1,−1 → +1,+1,−1,+1

−1,+1 → −1,−1,+1,−1

−1,−1 → −1,−1,−1,+1.

Using the four-letter alphabet {A, B, C , D}, we can define the RS word RSg by the
substitution rule s(A) = AB, s(B) = AC, s(C) = DB, s(D) = DC, starting with RS0 = A.
RS1 = AB, RS2 = ABAC, etc. The length of the word RSg is 2g.

Cantor Set

TheCantor Set (CS), named aftermathematician Georg Cantor who introduced it [139],
is one of the most well-known deterministic fractals. It is obtained as follows: given
the continuous interval [0, 1], the middle third, (1

3
, 2
3
) is deleted, resulting in the union

[0, 1
3
]∪ [2

3
, 1]. Then, the open middle third of each remaining interval is deleted, and the

process is repeated ad infinitum. Using the two-letter alphabet {Α, Β}, we can define
the CS word CSg by the substitution rule s(Α)= ΑΒΑ, s(Β)= ΒΒΒ, starting with CS0 =
Α. CS1 = ΑΒΑ, CS2 = ΑΒΑΒΒΒΑΒΑ, etc. All generations are palindromic words. The
length of the word CSg is 3g.
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Generalized Cantor Set

In accordance with the rationale described above, one can imagine the construction of
a generalized CS word, GCSg(t, d), produced by the two-letter alphabet {A, B}, where
t is the total number of letters substituting each letter of the sequence in the next gen-
eration and d is the number of letters that correspond to the “deleted” middle segment
(t > d). t and d are mutually odd or even, to preserve the palindromicity of the words.
For example, the generalized word GCSg(4, 2) is given by the rule s(A) = ABBA, s(B)
= BBBB, starting with GCS0(4, 2) = A. The length of the word GCSg is tg.

Asymmetric Cantor Set

Similarly, the Asymmetric Cantor Set (ACS) is built by splitting a straight line segment
in four, removing the second quarter, then removing the second quarter of each of the
three new straight line segments, and the process is repeated ad infinitum. Using, e.g.,
the two-letter alphabet {A, B}, the ACSwordACSg is defined by the substitution rules
s(A)=ABAA, s(B)= BBBB, starting withACS0(4, 2) =A.The length of the wordGCSg
is tg.

Kolakoski

The Kolakoski {p, q} sequences are a family of sequences of the integers p ̸= q that
are their own run length encodings (a run is defined here as the maximal subsequence
of identical numbers). The classic and most well-known sequence of this class, i.e.,
Kolakoski(1, 2) [140], also referred to as Oldenburger-Kolakoski sequence, was pop-
ularized by recreational mathematician William Kolakoski [141], but it was indepen-
dently introduced by Rufus Oldenburger [142]. This family of sequences possesses
different properties in different cases. For example, for specific values of p and q,
they may show pure-point or continuous diffraction spectra [143]. Each generation,
KOLg(p, q), of the sequences can be seen as the run length encoding of the next gen-
eration, starting with KOL0(p, q) = qp and following the substitution rule

s(q) = pq if q was at odd n,
s(q) = qq if q was at even n,
s(p) = pp if p was at odd n,
s(p) = qp if p was at even n.

For example KOL0(1, 2) = 2, KOL1(1, 2) = 11, KOL2(1, 2) = 12, KOL3(1, 2) = 122,
KOL4(1, 2) = 12211, KOL5(1, 2) = 1221121, etc. Accordingly, using the two-letter
alphabet {A, B}, we can define the KOL(p, q) word KOLg(p, q) by assigning A to p and
B to q. Thus, e.g., KOL5(1, 2) = ABBAABA. The length of KOL(1, 2) as the generation
increases is given by the OEIS sequence A001083 [144]. Generally, the length of the
word KOLg(p, q) is equal to the sum of the terms of KOLg−1(p, q).
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Table 2.2: Some of the most well-known substitutional sequences, together with the alphabets through
which they are defined and the corresponding substitution rules and substitution matrices. In the last
row, the subscripts o and e denote substitutions that are applied on odd and even positions in the se-
quence, respectively.

Sequence A Substitution Rule S

Fibonacci {A, B} s(A) = AB s(B) = A
(
1 1

1 0

)

Precious means {A, B} s(A) = AnB s(B) = A
(
n 1

1 0

)

Fibonacci-class {A, B} s(A) = Bn−1AB s(B) = Bn−1A
(
1 1

n n− 1

)

Mixed means {A, B} s(A) = AnBm s(B) = A
(
n 1

m 0

)

Metallic means {A, B} s(A) = ABn s(B) = A
(
1 1

n 0

)

Period-Doubling {A, B} s(A) = AB s(B) = AA
(
1 2

1 0

)

Thue-Morse {A, B} s(A) = AB s(B) = BA
(
1 1

1 1

)

Rudin-Shapiro {A, B, C, D}
s(A) = AB s(B) = AC
s(C) = DB s(D) = DC


1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1


Cantor set {A, B} s(A) = ABA s(B) = BBB

(
2 0

1 3

)
Asymmetric
Cantor set {A, B} s(A) = ABAA s(B) = BBBB

(
3 0

1 4

)
Generalized
Cantor set {A, B} s(A) = A

t−d
2 BdA

t−d
2 s(B) = Bt

(
t− d 0

d t

)
Kolakoski
(p=2m, q=2n) {A=pp, B=qq} s(A) = AmBm s(B) = AnBn

(
m n

m n

)

Kolakoski
(p=2m+1, q=2n+1)

{A=pp, B=pq,
C=qq}

s(A) = AmBCm s(B) = AmBCn

s(C) =AnBCn


m m n

1 1 1

m n n


Kolakoski
(p=2m, q=2m+1)
or (p=2m+1, q=2m)

{p, q}
so(q) = pq so(p) = pp

se(q) = qq se(p) = qp
undefinable
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2.4.2 Primitive Substitutions and the Perron–Frobenius
Eigenvalue

The substitution matrix S (and, hence, the substitution) is called primitive if there ex-
ists a natural number k such that Sk is a positive matrix. For primitive substitutions,
the Perron–Frobenius theorem [145, 146] guarantees that S has a largest, unique, real,
positive eigenvalue, λPF , and its corresponding (left and right) eigenvectors can be
chosen to have strictly positive entries. The components of the right eigenvector associ-
ated with λPF , normalized such as their sum is unity, give the asymptotic (g → ∞) rel-
ative frequencies of the letters in A. Hence, using S, one can determine the asymptotic
occurrence percentage of each nucleotide in a substitutional nucleic acid sequence.

2.4.3 Induced Substitutions
In addition to the previous discussion, it is also possible to determine the letter fre-
quencies of the legal words of length k in a substitutional sequence with primitive
S (corresponding to nucleotide k-plets). This can be done as follows [147]; let W =
{w = j1j2 . . . jk, ∀j ∈ A} be the set of the legal k-letter words in the sequence
and s(w) = s(j1)s(j2) . . . s(jk) = j′1j

′
2 . . . j

′
n the word constructed from a letter-by-

letter substitution of the word w. Then, the induced substitution of a k-letter word,
sk(w) = (j′1j

′
2 . . . j

′
k)(j

′
2j

′
3 . . . j

′
k+1) . . . (j

′
lj

′
l+1 . . . j

′
l+k−1), where l is the number of let-

ters in s(j1), is also primitive. Hence, an induced primitive substitution matrix Sk can
be defined, from which the asymptotic letter frequencies of the legal k-letter words of the
sequence can be determined using the Perron–Frobenius theorem. For sequences in which
S is defined via a helping alphabet (see, Chapter 5), k-letter word frequencies can be
deduced in the same fashion from the legal 2k-letter words of the helping alphabet.

Let us demonstrate, for illustration, the procedure to determine the induced sub-
stitution matrix S3 of the possible 3-letter words of the Period-Doubling sequence, for
illustration. In this case, k = 3, W = {AAA, AAB, ABA, BAA, BAB} and l is always
2. Hence,

s(AAA) = ABABAB → s3(AAA) = (ABA)(BAB),
s(AAB) = ABABAA → s3(AAB) = (ABA)(BAB),
s(ABA) = ABAAAB → s3(ABA) = (ABA)(BAA),
s(BAA) = AAABAB → s3(BAA) = (AAA)(AAB),
s(BAB) = AAABAA → s3(BAB) = (AAA)(AAB).

So, the induced primitive substitution matrix S3 reads

S3 =


0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
0 0 1 0 0
1 1 0 0 0

 . (2.61)
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2.4.4 The Pisot Property
A real algebraic integer (i.e., a real solution of a monic integer polynomial) is said
to be a Pisot–Vijayaraghavan number if its modulus is larger than unity, and all its
algebraic conjugates (i.e., the other solutions of the polynomial) have modulus strictly
less than unity [148]. A substitution has the Pisot property if thematrixS has a largest,
unique, real, positive eigenvalue which is a Pisot–Vijayaraghavan number, and for all
the other eigenvalues, λ, it holds that |λ| < 1. If the characteristic polynomial of S
is irreducible over the rationals, the Pisot substitution is called irreducible. Irreducible
Pisot substitutions are a subclass of primitive substitutions [149].

Let us remember some definitions. Given n linearly independent vectors b⃗1, b⃗2, . . .
b⃗n ∈ Rm, the lattice generated by them is defined as L(⃗b1, b⃗2, . . . b⃗n) =

∑
i xibi, xi ∈

Z. We call the set b⃗1, b⃗2, . . . b⃗n a basis of the lattice. We say that the rank of the lattice
is n and its dimension is m. The Fourier transform of the (direct) lattice is a lattice
called the reciprocal lattice.

Furthermore, according to the Lebesgue’s decomposition theorem [150], any mea-
sure on R can be decomposed into three parts: a pure point (or discrete) part, an ab-
solutely continuous part, and singularly continuous part. This theorem helps to cate-
gorize the energy or Fourier spectra of aperiodic substitutional sequences.

The first connections between the irreducible Pisot property and the Fourier spec-
trum of a substitutional sequence were reported in Refs. [151, 152], where it was con-
jectured that if the Perron–Frobenius eigenvalue of a substitutional system is a Pisot–
Vijayaraghavan number, then the system is quasiperiodic. Later studies have revealed
more details, providing a more sophisticated classification of substitutional systems
with respect to the nature of their diffraction spectrum. In the one-dimensional case,
sequences produced from irreducible Pisot substitutions have pure point Fourier spec-
tra [153]. (I) The Pisot property, together with (II) the extra condition λ ̸= 0, provide
the means to distinguish between:

(1) strictly quasiperiodic sequences, in which the rank of the reciprocal lattice nr is
finite and larger than the dimension of the physical space of the sequence m,
and

(2) limit-quasiperiodic sequences, in which the rank of reciprocal lattice nr is count-
ably infinite (i.e., in a 1–1 correspondence with the natural numbers or integers).

The distinction criterion between categories (1) and (2) is the value of the determi-
nant of S: unimodular S [i.e. det(S) = ±1] implies strict quasiperiodicity, otherwise
the structure is limit-quasiperiodic [154–156]. Limit-quasiperiodic structures can be
interpreted as a superposition of an infinite number of strictly quasiperiodic structures.
Examples of strictly quasiperiodic structures are the classical Fibonacci sequence as
well as all the precious means sequences [157] and the Fibonacci-class sequences [158]
(cf. Table 2.2). Limit-quasiperiodic structure representatives are the mixed means se-
quences with n ≥ m [159] (cf. Table 2.2).

For substitutions not satisfying the above-mentioned conditions (I) and (II), the sit-
uation is more complex. In such cases, the Fourier spectrum can be:
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(3) limit-periodic, i.e., a superposition of countably infinite periodic structures. Some
examples are the Period-Doubling sequence and metallic means sequences with
n = l(l + 1) [160],

(4) singular continuous, i.e., non-constant, non-decreasing, continuous and has zero
derivative, everywhere that the derivative exists. Examples are the Thue–Morse
sequence [134–136] and metallic means sequences with n ̸= l(l + 1) [160],
or even

(5) absolutely continuous, such as the Rudin–Shapiro sequence.

Apart from the above-mentioned sequences, there are others for which the sub-
stitution is not primitive or the matrix S cannot even be defined at all. Examples of
non-primitive substitutions include the sequences inspired by the Cantor set (cf. Ta-
ble 2.2). A sequence for which a substitution matrix cannot be defined is the classical
Kolakoski(1, 2) sequence, and generally Kolakoski(p, q) sequences where p is odd and
q even or vice versa [143]. The situation is different when p and q are both even or odd;
then, a primitiveS can be defined (cf. Table 2.2). In the former case, the sequences have
been classified as limit-periodic [161]. In the latter case, the irreducible Pisot property
holds when 2(p+ q) ≥ (p− q)2, and S is also unimodular when p = q ± 2 [143].
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3
Periodic Wire Model

with a generic unit cell³

As mentioned previously, the one-dimensional TB lattice with one orbital per site and
nearest neighbor hoppings, i.e., the WM, can be applied to study, among others, the
charge transfer and transport properties of π-conjugated organic systems which are
candidates for molecular or atomic wires, such as single- and double- stranded DNA
chains, as well as cumulenic and polyynic carbynes . In this chapter, we focus on
the periodic WM with a generic unit cell composed of u cites, which is repeated m
times. Hence, we have u different on-site energies and u different hopping integrals.
Many works that study the electronic structure of periodic TB models refer only to
specific cases and make a number of simplifying assumptions, such as supposing equal
hoppings within the lattice and/or between the lattice and the leads. Here, we address
the matter in its generality. We explicitly take into account the difference in the on-
site energies and the hopping integrals between different moieties inside the unit cell, as
well as between the lattice and the leads. The solution of the TB system of equations is
equivalent to the diagonalization of a real symmetric tridiagonal u-Toeplitz matrix of
orderN = muwith (cyclic boundaries) or without (fixed boundaries) perturbed upper
right and lower left corners. The properties of such matrices have been extensively
studied in the literature [162–166] due to their theoretical interest and their many
applications. Apart from the interest these systems have in themselves, they could also
serve as a starting point to gain more understanding about the inclusion of chemical
complexity effects in the electronic structure of periodic lattices, as well as of quasi-
periodic, fractal and amorphous atomic or molecular lattices.

Various quantum chain models, studied in the context of low-dimensional systems,
have been treated with the transfer matrix method [89, 167–170]. Here, we use the

³Part of this chapter can be found published in Ref. [108], under CC BY 3.0.
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transfer matrix method [171, 172] to solve the TB system of equations and determine
expressions for its eigenvalues, for both cyclic and fixed boundary conditions, by com-
bining the spectral duality relations [90, 173] with the connection of the elements of
the powers of a 2 × 2 unimodular matrix to the Chebyshev polynomials of the second
kind [127, 174]. For cyclic boundaries, we derive the dispersion relation, while, for
fixed boundaries, we show that the spectrum of eigenvalues (eigenspectrum) is pro-
duced by a recurrent relation containing the Chebyshev polynomials of the second
kind and the elements of the transfer matrix of the unit cell. We discuss the disper-
sion relations and eigenspectra through representative examples for systems with unit
cells composed by u = 1, 2, 3, 4 sites, supposing different on-site energies and hopping
integrals, that is, the most general case. We examine the density of states (DOS) and
the occurrence of van Hove Singularities (vHS) and provide analytical relations for
u = 1, 2, 3, 4. We determine the transmission coefficient (TC) at zero bias, by inter-
connecting the systems to semi-infinite leads The situation is interpreted in Fig 3.1.
Many works have been dedicated to the TC determination, within various contexts cf.
e.g. Refs. [175–181]. Here, we analyze in detail the transmission profiles of periodic TB
systems, examining the influence of the strength and asymmetry of the system-leads
coupling, the leads bandwidth and band center, and the intrinsic hoppings of the system.
Such a systematic study reveals the significant effects each parameter induces to the
transmission profile, and addresses aspects, such as the coupling asymmetry, that, al-
though are not regularly taken into account in the literature, play a crucial role in the
degree of the system’s transparency to the incident waves. The number and position
of the transmission peaks is determined in all cases, and representative examples are
given for unit cells consisting up to u = 6 sites. We introduce a generic optimal cou-
pling condition and demonstrate its physical meaning. This condition generalizes for
any periodic one-dimensional TB chain the condition reported in Ref. [180], where a
periodic single-stranded DNA chain with u = 4 and symmetric coupling to the leads
was studied, with the hopping integrals of the system assumed identical.

εm εm εm εm εm εmε1 ε2 ε3 … εu ε1 ε2 ε3 … εu ε1 ε2 ε3 … εu

t1 t2 … tu t1 t2
… ……tu t1 t2tu …

… …

tL tRtm tm tm tm
……

Figure 3.1: Schematic representation of a WM with a generic unit cell of u sites, sandwiched between
two semi-infinite metallic leads, and connected to them from the left (right) side with hopping integral
tL (tR). This setup addresses the situation in its generality, going beyond simplifying assumptions, such
as supposing equal hoppings within the lattice and/or between the lattice and the leads.
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3.1 Transfer matrix method – Wire Model
The TB system of equations of a WM with N sites is

Eψn = ϵnψn + tn,n−1ψn−1 + tn,n+1ψn+1, (3.1)

If the system is periodic, with a unit cell composed of u sites, and repeated m times,
so that N = mu, the solution of Eq. (3.1) is reduced to the diagonalization of the
Hamiltonian matrix [cf. Eq. (2.27)]

H(ζ) =



ϵ1 t1 ζ∗tu
t1 ϵ2 t2

. . . . . . . . .
tu−2 ϵu−1 tu−1

tu−1 ϵu tu
tu ϵ1 t1

. . . . . . . . .
. . . . . . . . .

ζtu tu−1 ϵu


, (3.2)

which is a tridiagonal real symmetric u-Toeplitz matrix of orderN , with (for ζ = 1, i.e.
for cyclic boundaries) or without (for ζ = 0, i.e. for fixed boundaries) perturbed upper
left and lower right corners. Here, we have simplified the notation for the hopping
integrals, so that tn,n+1 := tn, tn,n−1 := tn−1. Hence, for the site with index n = u+1,
it holds that tu+1 = t1. The condition det(EIN −H(ζ)) = 0, i.e. the roots of the
characteristic polynomial ofH(ζ), which is a polynomial of energy of degreeN , gives
the eigenvalues of the system.

Within the transfer matrix method, Eq. (3.1) can equivalently be written in the
form (cf. Table 2.1)(

ψn+1

ψn

)
=

(
E−ϵn
tn

− tn−1

tn

1 0

)(
ψn

ψn−1

)
= Pn(E)

(
ψn

ψn−1

)
, (3.3)

hence, the GTM, MN(E), of the periodic system is(
ψN+1

ψN

)
= MN(E)

(
ψ1

ψ0

)
:= Mu(E)

m

(
ψ1

ψ0

)
. (3.4)

Mu(E) is the UCTM, i.e.,

Mu(E) =
1∏

n=u

Pn(E). (3.5)

Starting from the fact that MK = PKMK−1 , see Eq. (3.5), the elements of the 2×2
UCTM are recurrently given by (for u ≥ 2)

M11(12)
u =

E − ϵu
tu

M
11(12)
u−1 − tu−1

tu
M

11(12)
u−2 (3.6a)
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M21(22)
u =M

11(12)
u−1 (3.6b)

with initial conditions M11
1 = (E − ϵ1)/t1, M12

1 = −tu/t1, M11
0 = M21

0 = 1, M12
0 =

M22
0 = 0. M ij is the element ij of matrix M . Hence, M11

u , M12
u , M21

u , and M22
u , are

polynomials of energy of degree u, u− 1, u− 1, and u− 2, respectively⁴.

3.1.1 Cyclic Boundaries
For the cyclically bounded periodic system, Bloch theorem implies that ζ = 1 = eikmua,
where ua is the lattice constant of the system. Hence, k = 2πν

mua
, where ν is an integer

taking m values, such that k belongs to the 1st Brillouin Zone. Thus, Eq. (2.33) takes
the form

Mu(E)

(
ψ1

ψ0

)
= eikua

(
ψ1

ψ0

)
. (3.7)

From the symplectic property, we know that if eikua is an eigenvalue ofMu, so is e−ikua

(see Subsec. 2.2.2). Hence, the eigenvalues of Mu are given by the condition

det
(
eikuaI2 −Mu

)
= det

(
e−ikuaI2 −Mu

)
= 0, (3.8)

from which we can easily arrive at the dispersion relation

cos(kua) = Tr(Mu)

2
:= z(E). (3.9)

Substituting each of the N energy eigenvalues obtained by the above dispersion re-
lation to Eq. (3.3), leads, via its iterative application, to the construction of the full
corresponding eigenvector of the Hamiltonian matrix H(ζ = 1) [90]. Hence, the so-
lutions of Eq. (3.9) produce the eigenvalues of the tridiagonal symmetric u-Toeplitz
matrix of size mu with perturbed corners. Additionally, from Eq. (3.9) it follows that
all eigenvalues are symmetric around the center of the 1st Brillouin Zone.

From the eigenvalues and eigenvectors of Eq. (3.7), it can also easily be shown
(details, e.g., in Ref. [174]) that them-th power of the unimodular UCTM, Mu(E), i.e.
the GTM, MN(E), is given by [127]

(Mu)
m = Um−1(z)Mu − Um−2(z)I2, (3.10)

where Um(z) are the Chebyshev polynomials of the second kind of degree m that
satisfy the recurrence relation

Um(z)− 2zUm−1(z) + Um−2(z) = 0,∀m ≥ 1, (3.11)

with initial conditions U1(z) = 2z, U0(z) = 1 [93]. Hence, the GTM of the cyclic
system can be written as

MN =

(
Um−1M

11
u − Um−2 Um−1M

12
u

Um−1M
21
u Um−1M

22
u − Um−2

)
(3.12)

⁴Of course, the same relationships hold for the determination of the GTM of either periodic or ape-
riodic systems, if u is substituted by N .
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or, alternatively, using Eq. (3.11), as

MN =

(
Um − Um−1M

22
u Um−1M

12
u

Um−1M
21
u Um−1M

22
u − Um−2

)
. (3.13)

Eq. (3.13) and the formula connecting the Chebyshev polynomials of the first and sec-
ond kind, 2Tm(z) = Um(z)− Um−2(z) [93], lead to an alternate form from which the
eigenvalues for cyclic boundaries can be found, i.e.

Tm(z) = 1. (3.14)

3.1.2 Fixed Boundaries
For the system with fixed boundaries, i.e. when ζ = 0, Eq. (2.33) takes the form

MN

(
ψ1

0

)
= 0

(
ψ1

0

)
⇒M11

N ψ1 = 0ψ1. (3.15)

Hence, ψ1 is an element of the eigenvector of H(ζ = 0) [cf. Eqs. (2.26), (2.28)] if the
eigenvalues E of H(ζ = 0) satisfy the condition M11

N (E) = 0. Since both M11
N = 0

and det(EIN −M (0)) = 0 are polynomial equations ofE of the same degree (N ) that
are mutually satisfied [173], Eq. (3.15) produces the eigenvalues of the tridiagonal sym-
metric u-Toeplitz matrix of sizemu. Exploiting Eqs. (3.12)-(3.13), the determination of
these eigenvalues is reduced to the solution of

Um−1(z)M
11
u = Um−2(z), (3.16)

or, alternatively,
Um(z) = Um−1(z)M

22
u . (3.17)

3.1.3 Phonons
Closing this Section, we should notice that the above analysis holds also for the prob-
lem of phonon dispersion relations in periodic one-dimensional Lattices with nearest
neighbor hoppings. The only thing that changes is the form of the transfer matrix of
the sites, i.e. Pn in Eq. (3.3) takes the form

Pn(ωph) =

(
1 + Kn−1

Kn
−mnω2

ph
Kn

Kn−1

Kn

1 0

)
. (3.18)

ωph is the phonon frequency, mn is the mass at site n, Kn (Kn−1) are the spring con-
stants connecting sites n and n+ 1 (n− 1), and then ψn correspond to the oscillation
amplitudes.
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3.2 Dispersion relations and Eigenspectra
As shown in Sec. 3.1, the eigenvalues of any periodic WM, for either cyclic or fixed
boundary conditions, can be determined by Eqs. (3.9) or (3.16)-(3.17), respectively, via
which, the problem is reduced to the determination of the elements of UCTM using
Eqs. (3.6). We have verified that the eigenvalues obtained by the above mentioned
equations coincide with those obtained by the numerical diagonalization of matrix
H(ζ = 0, 1). Below, we discuss the eigenvalues of such systems, as the simplest ex-
amples of the generic periodic system. Similar expressions to the ones presented below
can be produced for larger values of u, using Eqs. (3.6).

3.2.1 Unit cell of one site (u = 1,m = N)
The UCTM is

M1(E) =

(
E−ϵ1
t1

−1

1 0

)
. (3.19)

For cyclic boundaries, the dispersion relation of Eq. (3.9) takes the well known form

E = ϵ1 + 2t1 cos(ka) = ϵ1 + 2t1 cos
(
2πν

N

)
. (3.20)

ν = 1, 2, . . . , N . The dispersion relation is presented in Fig. 3.2, for a fixed on-site
energy, ϵ1 = 0, where the effect of the hopping integral, t1, alteration is also demon-
strated. Increasing |t1| linearly increases the bandwidth. Although changing the sign
of t1 does not affect the eigenenergies’ values, it moves the position of their extrema
from the middle to the edge of the 1st Brillouin Zone.

Figure 3.2: Band structure of the one-dimensional periodic lattice with cyclic boundaries [Eq. (3.20)],
with a unit cell of one site (u = 1), for a fixed on-site energy ϵ1 = 0, as a function of the hopping
integral t1.

For fixed boundaries, it follows from Eq. (3.17) that the eigenvalues are produced
by the zeros of UN(z), i.e. z(E) = cos

(
µπ

N+1

)
, ∀µ = 1, 2, . . . , N [93], hence

E = ϵ1 + 2t1 cos
(

µπ

N + 1

)
. (3.21)
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Figure 3.3: Eigenspectrum of the one-dimensional periodic lattice with fixed boundaries [Eq. (3.21)],
with a unit cell of one site (u = 1), for N up to 30 sites, for a fixed on-site energy ϵ1 = 0, as a function
of the absolute value of the hopping integral |t1|.

The eigenspectrum for fixed boundaries as N increases, is presented in Fig. 3.3, for a
fixed on-site energy, ϵ1 = 0, where the effect of the hopping integral absolute value
|t1| alteration is also demonstrated. Eq. (3.21) is similar to Eq. (3.20) regarding the band
center and bandwidth, and both equations tend to the same DOS as N → ∞.

Eqs. (3.20) and (3.21) can be derived analytically by direct diagonalization of the
Hamiltonian matrices cf. e.g. Ref. [56]. Here, we just demonstrated how they are
derived with the transfer matrix method.

3.2.2 Unit cell of two sites (u = 2,m = N
2 )

The UCTM is

M2(E) =

(
(E−ϵ2)(E−ϵ1)

t2t1
− t1

t2
−E−ϵ2

t1

E−ϵ1
t1

− t2
t1

)
. (3.22)

For cyclic boundaries, Eq. (3.9) takes the form

E =
ϵ1 + ϵ2

2
±

√(
ϵ1 − ϵ2

2

)2

+ t21 + t22 + 2t1t2 cos(k2a). (3.23)

This dispersion relation is presented in Fig. 3.4, for fixed on-site energies (ϵ1, ϵ2) =
(−0.5, 0.5) eV, where the effect of altering the ratio between the hopping integrals
t1
t2
, is also demonstrated. Again, changing the sign of t1

t2
moves the position of the

eigenvalues’ extrema from the middle to the edge of the 1st Brillouin Zone. As
∣∣∣ t1t2 ∣∣∣

increases from 0 to 1 the widths of the two bands (which are equal to each other)
increase and the bandgap decreases until it gets equal to the energy gap between the
on-site energies (for

∣∣∣ t1t2 ∣∣∣ = 1). For
∣∣∣ t1t2 ∣∣∣ > 1 the bandwidths continue to increase, albeit

much slower, and the bandgap starts to increase as well.
For fixed boundaries, it follows from Eq. (3.17) that the eigenvalues are the solutions
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Figure 3.4: Band structure of the one-dimensional periodic lattice with a unit cell of two sites (u = 2)
with cyclic boundaries [Eq. (3.23)], for fixed on-site energies (ϵ1, ϵ2) = (−0.5, 0.5) eV, as a function of
the ratio between the hopping integrals t1

t2
. (Inset) The bandwidths and the bandgap as a function of

|t1/t2|.

of
Um−1(z) = −t1

t2
Um(z). (3.24)

The eigenspectrum for m up to 15 unit cells (N=30) is shown in Fig. 3.5, for fixed on-
site energies (ϵ1, ϵ2) = (−0.5, 0.5) eV, where the effect of the absolute ratio between
the hopping integrals

∣∣∣ t1t2 ∣∣∣ alteration is also demonstrated. From Fig. 3.5 we notice that

as the value of
∣∣∣ t1t2 ∣∣∣ decreases down to 1, the bandgap decreases until it gets equal, for

largeN , to the energy gap between the on-site energies (for
∣∣∣ t1t2 ∣∣∣ = 1). Further decrease

of
∣∣∣ t1t2 ∣∣∣ below 1 leads to an increase in the gap between the main bands, but there is a

single additional eigenvalue in the upper (lower) band that, for large N , reaches the
value ϵ1 (ϵ2). This behavior does not occur for cyclic boundaries, hence these states
inside the band gap arise solely from the boundary effect. As it will be shown below,
this effect occurs generally for fixed boundaries, although it arises from more complex
relations between the parameters of the system.

3.2.3 Unit cell of three sites (u = 3,m = N
3 )

The UCTM is

M3(E) =

 (E−ϵ3)(E−ϵ2)(E−ϵ1)
t3t2t1

− (E−ϵ3)t1
t2t3

− (E−ϵ1)t2
t3t1

− (E−ϵ3)(E−ϵ2)
t1t2

+ t2
t1

(E−ϵ2)(E−ϵ1)
t1t2

− t1
t2

− (E−ϵ2)t3
t1t2

 . (3.25)

For cyclic boundaries, Eq. (3.9) takes the form

cos(k3a) = 1

2

3∏
i=1

(E − ϵi)

ti
−

⃝3∑
ijk

(E − ϵi)tj
2tkti

, (3.26)
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Figure 3.5: Eigenspectrum of the one-dimensional periodic lattice with a unit cell of two sites (u = 2)
with fixed boundaries [Eq.(3.24)], form up to 15 unit cells (N = 30), for fixed on-site energies (ϵ1, ϵ2) =
(−0.5, 0.5) eV, as a function of the absolute ratio between the hopping integrals |t1/t2|.

where ⃝3 denotes all cyclic permutations of the indices i ̸= j ̸= k ∈ {1, 2, 3}. This
dispersion relation is presented in Fig 3.6 (left), for the example of a system with
on-site energies (ϵ1, ϵ2, ϵ3) = (6.3, 5.8, 6.1) eV and hopping integrals (t1, t2, t3) =
(0.5, 0.6, 0.8) eV.The three bands that occur for this systemhavewidths≈ 0.51, 0.89, 0.38
eV (from lower to higher energy) and the corresponding gaps are ≈ 0.22, 0.60 eV.

For fixed boundaries, it follows from Eq. (3.17) that the eigenvalues are the solutions
of

Um(z) = −(E − ϵ2)t3
t2t1

Um−1(z). (3.27)

The eigenspectrum for m up to 20 unit cells (N = 60) is presented in Fig. 3.6 (right),
for the same system as in Fig. 3.6 (left). The bands that are shaped as N increases
have widths ≈ 0.51, 0.88, 0.37 eV, in agreement with the cyclic boundaries, but there
are also three eigenvalues that exceed these bands, two of which lie well within the
second gap. Generally, our calculations for u = 3 show that these mid-gap eigenvalues
are three at most and their exact number and position depends on complex relations
between the TB parameters. Such relations for 3-Toeplitz matrices of orderN = 3m+2
can be found in Ref. [164], where the authors obtain in that case two such eigenvalues
at most. In our case, where N = 3m, we find that, as N increases, these eigenvalues
converge at most to three of the zeros ofM12

3 ×M21
3 . Specifically, for the parameters of

Fig. 3.6, the positions of the mid-gap eigenvalues, which are shown in Fig. 3.6 (right),
converge quickly, as N increases, to ϵ2+ϵ3

2
±
√

( ϵ2−ϵ3
2

)2 + t22, i.e. the zeros ofM12
3 , and

ϵ1+ϵ2
2

+
√

( ϵ1−ϵ2
2

)2 + t21, i.e. the maximum of the zeros ofM21
3 .
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Figure 3.6: (left) Dispersion relation for cyclic boundaries and (right) eigenspectrum for fixed boundaries
for m up to 20 unit cells (N = 60) of a one-dimensional periodic lattice with a unit cell of three sites,
with on-site energies (ϵ1, ϵ2, ϵ3) = (6.3, 5.8, 6.1) eV and hopping integrals (t1, t2, t3) = (0.5, 0.6, 0.8)
eV, as determined by Eqs. (3.26) and (3.27), respectively.

3.2.4 Unit cell of four sites ( u = 4,m = N
4 )

The UCTM is

M4 =



(E−ϵ4)(E−ϵ3)(E−ϵ2)(E−ϵ1)
t4t3t2t1

− (E−ϵ4)(E−ϵ3)t1
t2t3t4

− (E−ϵ4)(E−ϵ3)(E−ϵ2)
t3t2t1

+ (E−ϵ4)t2
t3t1

− (E−ϵ4)(E−ϵ1)t2
t1t3t4

− (E−ϵ2)(E−ϵ1)t3
t1t2t4

+ t1t3
t2t4

+ (E−ϵ2)t3
t2t1

(E−ϵ3)(E−ϵ2)(E−ϵ1)
t3t2t1

− (E−ϵ3)t1
t3t2

− (E−ϵ1)t2
t1t3

− (E−ϵ3)(E−ϵ2)t4
t3t2t1

+ t2t4
t1t3


.

(3.28)
For cyclic boundaries, Eq. (3.9) takes the form

cos(k4a) =1

2

4∏
i=1

(E − ϵi)

ti
−

⃝4∑
ijkl

(E − ϵi)(E − ϵj)tk
2titjtl

+
t1t3
2t2t4

+
t2t4
2t1t3

, (3.29)

where ⃝4 denotes all cyclic permutations of the indices i ̸= j ̸= k ̸= l ∈ {1, 2, 3, 4}.
This dispersion relation is presented in Fig 3.7 (left), for a system with on-site en-
ergies (ϵ1, ϵ2, ϵ3, ϵ4) = (7.0, 9.0, 7.5, 8.5) eV and hopping integrals (t1, t2, t3, t4) =
(1.2, 0.9, 1.0, 0.8) eV.The four bands that occur for this systemhavewidths≈ 0.33, 0.61,
0.58, 0.30 eV (from lower to higher energy) and the corresponding gaps are≈ 0.42, 1.50,
0.53 eV.

For fixed boundaries, it follows from Eq. (3.17) that the eigenvalues are solutions of

Um(z) =

(
−(E − ϵ3)(E − ϵ2)t4

t3t2t1
+
t2t4
t1t3

)
Um−1(z). (3.30)

The eigenspectrum for m up to 20 unit cells (N = 80) is presented in Fig. 3.7 (right),
for the same system as in Fig. 3.7 (left). The bands that are shaped as N increases
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Figure 3.7: (left) Dispersion relation for cyclic boundaries and (right) eigenspectrum for fixed boundaries
for m up to 20 unit cells (N = 80) of a one-dimensional periodic lattice with a unit cell of four sites,
with on-site energies (ϵ1, ϵ2, ϵ3, ϵ4) = (7.0, 9.0, 7.5, 8.5) eV and hopping integrals (t1, t2, t3, t4) =
(1.2, 0.9, 1.0, 0.8) eV, as determined by Eqs. (3.29) and (3.30), respectively.

have widths ≈ 0.33, 0.61, 0.57, 0.30 eV, in agreement with the cyclic boundaries, but
there is also one eigenvalue that exceeds the first band. Generally, there are four mid-
gap eigenvalues at most, the exact number and position of which depends on com-
plex relations between the TB parameters. Again, we find that, as N increases, these
eigenvalues converge at most to four of the zeros ofM12

4 ×M21
4 . Specifically, for the

parameters of Fig. 3.7, the position of the mid-gap eigenvalue, which is shown in Fig.
3.7 (right), converges quickly, as N increases, to the minimum zero ofM21

4 .

3.3 Density of states
For a periodic WM with cyclic boundaries, the DOS can be obtained with the help of
the UCTM as

g(E) =
m

π

d
dE |acos(z)| = m

π

∣∣ dz
dE

∣∣
√
1− z2

, (3.31)

where no spin degeneracies are taken into account. It is obvious that 2u vHS are
expected at the points where z(E) = ±1, i.e. at the energies that lie at the center and
edges of the 1st Brillouin Zone. Below, we provide analytical expressions of the DOS
for systems with unit cell of 1, 2, 3, and 4 sites, as the simplest examples of the generic
periodic system. For large N , the DOS for cyclic boundaries converges with the DOS
for fixed boundaries.

3.3.1 Unit cell of one site (u = 1,m = N)
Eq. (3.31) takes the form [58]

g(E) =
N

π
√

4t21 − (E − ϵ1)2
. (3.32)

Two vHS occur atE = ϵ1±2|t1|. The DOS (over the total number of sitesN ) for u = 1
is presented in Fig. 3.8, for a fixed on-site energy, ϵ1 = 0, where the effect of alternating
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Figure 3.8: DOS (overN ) of the one-dimensional periodic lattice with a unit cell of one site [Eq. (3.32)],
for a fixed on-site energy ϵ1 = 0, as a function of the magnitude of the hopping integral |t1|.

the magnitude of the hopping integral, |t1|, is also demonstrated. Increasing the value
of |t1| linearly increases the bandwidth and reduces the sharpness of the vHS that occur
at the band edges.

3.3.2 Unit cell of two sites (u = 2,m = N
2 )

Eq. (3.31) takes the form

g(E) =
N

2π

|2E − ϵ1 − ϵ2|√
4t21t

2
2 − [(E − ϵ1)(E − ϵ2)− t21 − t22]

2
. (3.33)

Figure 3.9: DOS (over N ) of the one-dimensional periodic lattice with a unit cell of two sites [Eq.
(3.33)], for fixed on-site energies (ϵ1, ϵ2) = (−0.5, 0.5) eV, as a function of the absolute ratio between
the hopping integrals,

∣∣∣ t1t2 ∣∣∣.
Four vHS occur at E = ϵ1+ϵ2

2
±
√(

ϵ1−ϵ2
2

)2
+ (t1 ± t2)2. The DOS (over the total

number of sitesN ) for u = 2 is presented in Fig. 3.9, for fixed on-site energies (ϵ1, ϵ2) =
(−0.5, 0.5) eV, where the effect of altering the magnitude of the ratio between the
hopping integrals,

∣∣∣ t1t2 ∣∣∣, is also demonstrated. The DOS is symmetric around the mean

of the on-site energies. Furthermore, the effect of altering
∣∣∣ t1t2 ∣∣∣ on the bandwidths and
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bandgap, discussed in Subsec. 3.2.2 (cf. inset of Fig. 3.4) is clearly illustrated. The vHS
that are closer to the gap are less sharp. The sharpness of all vHS decreases dramatically
as
∣∣∣ t1t2 ∣∣∣ goes from 0 to 1, and slower for

∣∣∣ t1t2 ∣∣∣ > 1.

3.3.3 Unit cell of three sites (u = 3,m = N
3 )

Eq. (3.31) takes the form

g(E) =
N

3π

∣∣∣∣∣∣
⃝3∑
ijk

(E − ϵi)(E − ϵj)

2titjtk
− tj

2tkti

∣∣∣∣∣∣√√√√√1−

1
2

3∏
i=1

(E − ϵi)

ti
−

⃝3∑
ijk

(E − ϵi)tj
2tkti

2
. (3.34)

In Fig. 3.10, we illustrate the DOS of a system with three sites per unit cell, for
the parameters used in Fig. 3.6, as obtained by Eq. (3.34). As a careful comparison
of Figs. 3.6 (right) and 3.10 suggests, the relative sharpness of the vHS as well as the
position of each band’s DOS minimum can be expected from the density of points in
the eigenspectrum, as N increases. This is another demonstration that in the large
N limit, the boundary effects play insignificant role in the electronic structure of the
system, since the mid-gap eigenvalues that occur for fixed boundaries are negligible
in number compared to those that lie within the bands.
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Figure 3.10: DOS (overN ) of a one-dimensional periodic lattice with a unit cell of three sites [Eq. (3.34)],
with on-site energies (ϵ1, ϵ2, ϵ3) = (6.3, 5.8, 6.1) eV and hopping integrals (t1, t2, t3) = (0.5, 0.6, 0.8)
eV.

3.3.4 Unit cell of four sites (u = 4,m = N
4 )

Eq. (3.31) takes the form
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g(E) =
N

4π

∣∣∣∣∣∣
⃝4∑
ijkl

(E − ϵi)(E − ϵj)(E − ϵk)

2titjtktl
− (2E − ϵi − ϵj)tk

2titjtl

∣∣∣∣∣∣√√√√√1−

1
2

4∏
i=1

(E − ϵi)

ti
−

⃝4∑
ijkl

(E − ϵi)(E − ϵj)tk
2titjtl

+
t1t3
2t2t4

+
t2t4
2t1t3

2
.

(3.35)
In Fig. 3.11, we illustrate the DOS of a system with four sites per unit cell, for the

parameters used in Fig. 3.7, as obtained by Eq. (3.35).
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Figure 3.11: DOS (overN ) of a one-dimensional periodic lattice with a unit cell of four sites [Eq. (3.35)],
with on-site energies (ϵ1, ϵ2, ϵ3, ϵ4) = (7.0, 9.0, 7.5, 8.5) eV and hopping integrals (t1, t2, t3, t4) =
(1.2, 0.9, 1.0, 0.8) eV.

3.4 Transmission coefficient
TheTC describes the probability that a carrier, incident to a quantum system, transmits
through its eigenstates. To obtain the TC of a one-dimensional TB lattice, we connect
the ends of the system under examination to semi-infinite homogeneous leads, which
play the role of a carrier bath. Hence, sites [−∞, 0]∪ [N +1,∞] belong to the left and
right lead, respectively. Within sites [1, N ] lies the periodic lattice under examination,
which is considered as a perturbation in the homogeneous infinite lead. The coupling
between the ends of the periodic wire and the left and right lead is described by the
effective parameters tL and tR, respectively. Here, we generally choose them to be
different, as a reflection of the difference in coupling of the same material (lead) with
differentmoieties (the end sites of the system). The effect of this asymmetry in coupling
will be discussed in detail below. The leads’ band lies in the energy interval [ϵm −
2|tm|, ϵm + 2|tm|], where ϵm is the on-site energy of the leads and tm the hopping
integral between the leads’ sites, since their dispersion relation at zero bias is identical
to Eq. (3.20). Hence, the energy center and bandwidth of the leads are ϵm and 4|tm|,
respectively. If we imagine the lead as a homogeneous system with one electron per
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site, then the band is half-filled (hence the leads are metallic), and ϵm is the Fermi
energy of the metal. The GTM of the whole lead-system-lead complex isMRM̃NML,
where ML/R represents the sites of the ideal, cyclically bounded left/right lead, and
M̃N = PRMNPL, where

PR =

( tu
tR

0

0 tR
tm

)
, PL =

( tm
tL

0

0 tL
tu

)
(3.36)

are the matrices that describe the coupling of the three subsystems. The waves at the
left and the right lead can be expanded as

ψ{n}<1 = eiqLna + re−iqLna, ψ{n}>N = teiqRna, (3.37)

where qL/R is the wavenumber. We have assumed, without any loss of generality, that
the incident waves come from the left and we have normalized their amplitude. Hence,
the TC at zero bias (where qR = qL := q) is defined as T (E) = |t|2. The GTM of the
perturbation’s region obeys to the equation(

ψN+1

ψN

)
= M̃N

(
ψ1

ψ0

)
. (3.38)

Substituting Eq. (3.37) to Eq. (3.38) yields(
t
0

)
= M̃N

(
1
r

)
, (3.39)

where

M̃N =

(
eiqNa 0
0 e−iqNa

)−1(
eiqa e−iqa

1 1

)−1

M̃N

(
eiqa e−iqa

1 1

)
. (3.40)

Hence,

t =
det
(
M̃N

)
M̃22

N

, (3.41)

After some manipulations, we find that the TC at zero bias is given by

T (E) =
4 sin2(qa)

Tr
(
M̃N

)2
sin2(qa) +

[
M̃12

N − M̃21
N + (M̃11

N − M̃22
N ) cos(qa)

]2 . (3.42)

Substituting the elements of M̃N , and taking into account the unimodularity of MN ,
leads to the form

T (E) =
1

1 + Λ(E)
, (3.43)

where

Λ(E) =

[
WN(E) +X+

N(E) cos(qa)
]2

4 sin2(qa)
+
X−

N(E)
2

4
, (3.44)
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and
WN(E) =M11

N ω −M22
N ω

−1, (3.45)

X±
N(E) =M12

N χ±M21
N χ

−1. (3.46)

The term
ω =

tm tN
tR tL

, (3.47)

which is included only in WN(E), expresses the coupling strength (specifically, the
less the value of ω, the stronger the coupling), in means of the deviation of the real
coupling of the system to the leads from the ideal coupling [in which the product of
the coupling hopping integrals (tL, tR) becomes equal to the product of the hopping
integrals of the isolated lead (tm = tL) and the isolated system (tN = tR) as if each was
cyclically bounded to itself]. The term

χ =
tL
tR
, (3.48)

which is included only in X±
N(E), expresses the coupling asymmetry, i.e. the dif-

ference in coupling strength between the leads and the left/right end of the system.
The maxima/minima of TC are the minima/maxima of Λ(E), which is a polynomial of
energy of degree N .

For a periodic system, taking into account Eq. (3.13), it holds that

WN(E) = Um(z)ω − Um−1(z)M
22
u (ω + ω−1) + Um−2(z)ω

−1, (3.49)

X±
N(E) = Um−1(z)X

±
u (E), (3.50)

X±
u (E) = (M12

u χ±M21
u χ

−1), (3.51)

and tN in Eq. (3.47) replaced by tu.
In the following Subsections, we discuss in detail the effect of the coupling strength

and asymmetry, as well as the lead properties, to the transmission profile of any peri-
odic system. In all cases considered below, we will assume that the bandwidth of the
leads, as determined by |tm|, is such that it contains all the eigenstates of the system,
in order to gain the full picture of the transmission profiles.

3.4.1 Ideal coupling
For ideal coupling between the leads and the system, i.e. when |ω| = |ω−1| = 1, the
recurrent formula Eq. (3.11) results inWN = sgn(ω)Um−1(z)(M

11
u −M22

u ). Hence,

Λ(E) =

{
[sgn(ω)(M11

u −M22
u ) +X+

u (E) cos(qa)]
2

4 sin2(qa)
+
X−

u (E)
2

4

}
Um−1(z)

2. (3.52)

From Eqs. (3.52) and (3.43) it is obvious that if Um−1(z) = 0, then T (E) = 1. Hence,
for ideal coupling, there are (m − 1)u = N − u energies in which transmission be-
comes full. These energies lie in the zeros of Um−1(z), i.e., they are the solutions of
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Figure 3.12: Transmission coefficient of a periodic system with u = 3 and m = 5 (N = 15), for the
ideal coupling condition ω = 1. The TB parameters of the system are (ϵ1, ϵ2, ϵ3) = (3, 4, 5.5) eV and
(t1, t2, t3) = (1, 0.8, 1.5) eV. The energies that correspond to full transmission do not depend on the
energy center and bandwidth of the leads or the coupling asymmetry; they depend solely on the energy
structure of the system, their number is (m− 1)u = 12, and they are given by the zeros of U4(z).
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Figure 3.13: Dependence of the transmission coefficient on the coupling asymmetryχ for a periodic sys-
temwithu = 3 sites per unit cell andm = 6 unit cells (N = 18), for the ideal coupling condition |ω| = 1.
The TB parameters of the system are (ϵ1, ϵ2, ϵ3) = (6.3, 5.8, 6.1) eV and (t1, t2, t3) = (0.5, 0.6, 0.8) eV.
The on-site energy and hopping integral of the leads are chosen Em = 6 eV, tm = 2 eV. [Top] T (E) for
|χ| > 1. [Bottom] T (E) for |χ| < 1. The transmission becomes full in (m− 1)u = 15 energies, which
are given by the zeros of U5(z). As |χ| increases (decreases) above (below) 1, u − 1 secondary peaks
occur, the energy of which is related to the zeros of M12

u (M21
u ).
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z(E) = cos
(
µπ
m

)
, µ = 1, 2, . . . ,m − 1. Thus, their position depends solely on the

energy structure of the system and not on the energy center/bandwidth of the leads
or the coupling asymmetry. This is depicted in Fig. 3.12, for a periodic system with
u = 3 sites per unit cell and m = 5 unit cells (N = 15). Finally, we should mention
that this full transmission condition that occurs for ideal coupling is solely a result of
the periodicity of the system, i.e. of the fact that the elements of MN are related to
the Chebyshev polynomials of the second kind. The effect of the energy center and
bandwidth of the leads will be separately addressed below.

The role of coupling asymmetry

The role of coupling asymmetry is depicted on Fig. 3.13, for the system of Fig. 3.6 with
m = 6 unit cells (N = 18). We notice that increasing (decreasing) |χ| above (below) 1
leads to a significant decrease in the lower envelope of T (E), i.e., the “curve” shaped by
the local minima of T (E), and a sharpening of the transmission peaks, which reflects
the enhancement of backscattering effects. Furthermore, such an increase (decrease)
of |χ| above (below) 1 leads to the appearance of u− 1 secondary peaks, the positions
of which are related to the zeros ofM12

u (M21
u ). These peaks occur because this increase

(decrease) of |χ| leads to the domination of the termsX±(E) inside the curly brackets
of Eq. (3.52).

The role of the leads

Let us take as an example the system of Fig. 3.7 with m = 30 unit cells (N = 120)
and suppose symmetric coupling, |χ| = 1. For a fixed bandwidth of the leads, 4|tm|,
we observe that changing the energy center of the leads, ϵm, has a significant effect on
the lower envelopes of T (E) (Fig. 3.14 [Top]). Generally, the increase of ϵm leads to a
shift of the maxima of the lower envelopes to smaller energies. In Ref. [181], where
the TC of a periodic single-stranded DNA segment with u = 2 is studied, the authors
state that the position of the maxima of the lower envelopes increases with ϵm (cf. Fig.
3 of Ref. [181]), i.e., the reverse behavior. With our treatment, we found that this holds
only if ∀tm ≷ 0, cos(qa) > 0 ⇐⇒ E − ϵm ≶ 0, i.e., if the dispersion relation of
the leads is inconsistently incorporated into the calculations. Taking the dispersion
relation in such a manner, we were able to reproduce Fig. 3 of Ref. [181], and noticed
that the transmission profiles are generally alternated, giving rise to the behavior the
authors mention. If we fix ϵm, we find that the increase of the leads’ bandwidth, 4|tm|,
has significantly smaller effect on the transmission profiles, compared to the increase
of ϵm (Fig. 3.14 [Bottom]).

3.4.2 Strong or weak coupling
From Eq. (3.49) it follows that in the very strong coupling regime (|ω−1| ≫ 1)

WN(E) ≃ ω−1(Um−2(z)− Um−1(z)M
22
u ), (3.53)
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Figure 3.14: Dependence of the transmission coefficient on the leads properties for a periodic system
with u = 4 sites per unit cell and m = 30 unit cells (N = 120), for the ideal coupling condition and
symmetric coupling |ω| = |χ| = 1. The TB parameters of the system are (ϵ1, ϵ2, ϵ3, ϵ4) = (7, 9, 7.5, 8.5)
eV and (t1, t2, t3, t4) = (1.2, 0.9, 1, 0.8) eV. [Top] T (E) for fixed bandwidth 4|tm| (tm = 3 eV) and
varying energy center ϵm. [Bottom] T (E) for fixed energy center (ϵm = 8 eV) and varying tm. The
transmission becomes full in (m− 1)u = 116 energies, which are given by the zeros of U29(z).

while, in the very weak coupling regime (|ω| ≫ 1)

WN(E) ≃ ω(Um(z)− Um−1(z)M
22
u ). (3.54)

If the coupling is strong or weak and symmetric, the term WN(E) becomes domi-
nant in Eq. (3.44). Hence, for very strong or weak symmetric coupling, the trans-
mission peaks occur in the region of the zeros of WN(E), as given by Eq. (3.53) or
(3.54), hence, N − 2 orN peaks are expected, respectively. A depiction of the effect of
the decrease (increase) of coupling strength factor ω below (above) the ideal coupling
condition, for symmetric coupling, is presented in Fig. 3.15 (3.16), for a system with
u = 6 and m = 4 (N = 24). The TB parameters of the system are (ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6)
= (10, 8.3, 9.7, 8.8, 9.1, 8) eV and (t1, t2, t3, t4, t5, t6) = (0.9, 1, 0.8, 0.6, 1.1, 0.7) eV.
The leads’ parameters are ϵm = 9 eV, tm = 2 eV.

The role of coupling asymmetry

If the coupling is strong (weak) and asymmetric, three cases can be distinguished:

(a) If the coupling asymmetry is significantly smaller than the coupling strength or
weakness [max(|χ|, |χ−1|) ≪ |ω−1| for strong coupling or max(|χ|, |χ−1|) ≪
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Figure 3.15: (a) Dependence of the transmission coefficient T (E) on the coupling strength factor ω,
in the strong coupling regime (

∣∣ω−1
∣∣ > 1), for symmetric coupling (|χ| = 1), for a periodic system

with u = 6 and m = 4 (N = 24). (b) Transmission coefficients for strong (|ω| = 1
5 ) and very strong

(|ω| = 1
100 ) coupling in logarithmic scale. As the coupling strength

∣∣ω−1
∣∣ increases above the ideal

coupling condition, N − 2 peaks arise. For very strong coupling, the peaks’ positions are determined
by the zeros of Eq. (3.53), depicted in dashed lines, in the bottom panel of (b).

|ω| for weak coupling], WN(E) continues to be dominant in Eq. (3.44), hence,
the transmission peaks occur again in the region of the zeros ofWN(E) as given
by Eq. (3.53) for strong coupling or by Eq. (3.54) for weak coupling.

(b) If the coupling asymmetry is of comparablemagnitudewith the coupling strength
or weakness [max(|χ|, |χ−1|) ≈ |ω−1| for strong coupling or max(|χ|, |χ−1|) ≈
|ω| for weak coupling], the peaks position cannot be determined without the full
solution of Eq. (3.44).

(c) If the coupling asymmetry is significantly larger than the coupling strength or
weakness [max(|χ|, |χ−1|) ≫ |ω−1| for strong coupling or max(|χ|, |χ−1|) ≫
|ω| for weak coupling], the terms X±(E) become dominant in Eq. (3.44), hence
the transmission peaks occur in the region of the zeros of Um−1(z)M

12
u for |χ| >

1 or of Um−1(z)M
21
u for |χ| < 1. The peaks number in this case is N − 1.

This behavior is depicted in Fig. 3.17, in the case of weak and asymmetric coupling,
for the same system as in Figs. 3.15 and 3.16.
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Figure 3.16: (a) Dependence of the transmission coefficient T (E) on the coupling strength factor ω,
in the weak coupling regime (|ω| > 1), for symmetric coupling (|χ| = 1), for a periodic system with
u = 6 and m = 4 (N = 24). (b) Transmission coefficients for weak (|ω| = 5) and very weak (|ω| =
100) coupling in logarithmic scale. As the coupling weakness |ω| increases above the ideal coupling
condition, N peaks arise. For very weak coupling, the peaks’ positions are determined by the zeros of
Eq. (3.54), depicted in dashed lines, in the bottom panel of (b).
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Figure 3.17: Dependence of the transmission coefficient T (E) on the coupling asymmetry |χ|, in the
weak coupling regime (|ω| = 10), for |χ| = 2 (top), 10 (middle), 100 (bottom), for a periodic system
with u = 6 and m = 4 (N = 24). For |χ| ≪ |ω|, the transmission peaks occur in the region of the
N zeros of Eq. (3.54), which are also depicted in the top panel. For |χ| ≫ |ω|, the transmission peaks
occur in the region of the N − 1 zeros of Um−1(z)M

12
u , which are also depicted in the bottom panel.

The case in which the asymmetry of coupling is comparable to is weakness, is an intermediate regime.
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The role of the leads
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Figure 3.18: Dependence of the upper envelope of the transmission coefficient on the energy center of
the leads, ϵm, for a system u = 4 sites per unit cell andm = 30 unit cells (N = 120), for symmetric cou-
pling |χ| = 1, in the strong (top left), very strong (top right), weak (bottom left) and very weak (bottom
right) coupling regimes. The TB parameters of the system are (ϵ1, ϵ2, ϵ3, ϵ4) = (7, 9, 7.5, 8.5) eV and
(t1, t2, t3, t4) = (1.2, 0.9, 1, 0.8) eV. As the strength/weakness of coupling increases, the transmission
profile becomes less dependent on the increase of ϵm.
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Figure 3.19: Dependence of the upper envelope of the transmission coefficient on the bandwidth of
the leads, as determined by |tm|, for a system u = 4 sites per unit cell and m = 30 unit cells
(N = 120), for symmetric coupling |χ| = 1, in the strong (top left), very strong (top right), weak
(bottom left) and very weak (bottom right) coupling regimes. The TB parameters of the system are
(ϵ1, ϵ2, ϵ3, ϵ4) = (7, 9, 7.5, 8.5) eV and (t1, t2, t3, t4) = (1.2, 0.9, 1, 0.8) eV. As the strength/weakness
of coupling increases, the transmission profile becomes less dependent on the increase of |tm|. Gener-
ally, increasing |tm| has less effect on the transmission profiles than increasing ϵm.

As it is obvious from the previous discussion, the term that incorporates the prop-
erties of the leads, cos(qa), is significant in Eq. (3.44) only if the coupling asymmetry
is of comparable magnitude with the coupling strength or weakness. In this case, the
effect of the alteration of the leads’ energy center and bandwidth to the transmission
profile is not negligible. Both the upper and the lower envelope are affected. The lower
envelope is affected in the same manner as for the ideal coupling condition. The upper
envelope is alsomore affected by altering of ϵm that it is by altering |tm|. If the coupling
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asymmetry is much larger than its strength or weakness, the transmission profiles re-
main almost unchanged. The above remarks are summarized in Figs. 3.18 and 3.19,
where the effect of increasing ϵm and |tm|, respectively, to the upper envelopes of the
TC in the strong and weak coupling regime, is displayed, for the system of Fig. 3.7
withm = 30 unit cells (N = 120).

3.4.3 Optimal Coupling Condition
From the above discussion, we conclude that in the strong and weak coupling regimes,
the transmission peaks sharpen and the TC does not generally reach the full transmis-
sion condition T (E) = 1. Hence, stronger coupling does not generally lead to larger
transmission and the ideal coupling condition |ω| = 1, together with the symmetric cou-
pling condition, provides the optimal coupling condition. This remark generalizes, for
any periodic one-dimensional lattice, and provides with a physical meaning, the opti-
mal coupling condition reported in Ref. [180], for a single stranded DNA segment with
four sites per unit cell, in which all the hopping integrals of the DNA system were as-
sumed to be equal. In Ref. [180], the authors analytically derive the TC for this system,
impose the condition Um−1(z) = 0 and apply extreme conditions to T (Ep), where p
is indexing the energies in which the above condition holds. This treatment allows for
the determination of the TC value in the specific energies, Ep, and the authors find
that this value is 1 for the condition |ω| = 1 (in our nomenclature). As we have also
shown, this is true. For |ω| = 1, when Um−1(z) = 0, then T (Ep) = 1. But, as we
also have shown in the above discussion, the condition Um−1(z) = 0 does not gener-
ally correspond to the transmission peaks, i.e. Ep are not always the positions of the
maxima. Hence, in fact, the treatment of Ref. [180] rather examines the transmission
values in the specific energies Ep and not the general occurrence of the transmission
peaks. The condition |ω| = 1 is optimal, not because in any other case T (Ep) ≤ 1,
since Ep are not generally the positions of peaks, but because in any other condition
the transmission peaks are not generally confined to reach the value 1, as shown above.
For |ω| = 1 this value is reached, because it is only then that Λ(E) is exactly propor-
tional to the Chebyshev polynomials of the second kind, as shown in Eq. (3.52). This
discussion demonstrates that our treatment of the coupling condition in terms of the
transmission peaks’ position, rather than the study of the specific energies for which
Um−1(z) = 0, addresses the effect properly.

Analogous conclusions regarding the coupling conditions can be obtained for more
complex TB models [82]. In Ref. [78], a poly(G)-poly(C) DNA oligomer (N = 5) was
studied within the FM. The authors report that for small values of coupling the trans-
mission shows sharp and narrow unit resonances due to the localization of states,
while, as the coupling increases, the well-arranged resonant peaks overlap. An in-
spection of Fig. 7 of Ref. [78] indicates that there are intermediate values of tL(= tR)
in which the overall transmission is more enhanced compared to smaller and larger
values.

In Ref. [182], the authors study a poly(G)-poly(C) DNA chain within an extension
of the FLM, which allows hopping between backbone sites as well as all possible di-
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agonal hoppings (between the nitrogenous bases as well as between the bases and the
backbone). Each of the two strands containing the DNA bases is connected with each
lead with equal coupling parameters. For diagonal hoppings being switched either on
or off, it can again be concluded that stronger coupling with the leads does not neces-
sarily lead to enhanced transmission (cf. the panels in the first two rows in Fig. 2 of
Ref. [182]). This is also evident by comparing the averaged TC, which is defined as

Ta(E) =

∫ E

Emin

T (e)de

E − Emin
, (3.55)

cf. the panels in third row in Fig. 2 of Ref. [182]. Although T (E) and Ta(E) are indeed
much smaller for tL = tR = 0.1 eV, an increase from 0.5 eV to 0.9 eV, does not lead to
transmission enhancement. In fact, for diagonal hoppings switched both on and off,
Ta reaches larger values for the intermediate coupling tL = tR = 0.5 eV.

3.4.4 The intrinsic hoppings of the system
The previous discussion for the effect of the coupling strength ω and the coupling
asymmetry χ on the transmission profiles is specified in this Subsection for the two
simplest cases of periodic one-dimensional TB lattices (u = 1, 2). The effect of the
intrinsic hoppings of the system is also demonstrated.

In Fig. 3.20, we present the TC of a system with u = 1 site per unit cell and
m = N = 10 unit cells, for the ideal, strong and weak coupling conditions, with or
without coupling asymmetry, as the magnitude of the hopping integral of the system,
|t1|, increases up to |tm|. We have chosen ϵ1 = ϵm. The number of peaks is always 9
for ideal coupling, 8 for strong coupling and 10 for weak coupling, as expected by the
above discussion. It is also evident that the ideal and symmetric coupling conditions
lead to the most efficient transmission, although in this simple case, the full transmis-
sion condition T (E) = 1 is reached in all cases of symmetric coupling. In the upper
left panel of Fig. 3.20 it can be seen that when |t1| = |tm| the structures of the leads
and the system become identical, hence the system is totally transparent.

In Fig. 3.21, we present the TC of a system with u = 2 sites per unit cell and
m = 5 unit cells (N = 10), for the ideal, strong and weak coupling conditions, with
or without coupling asymmetry, as the magnitude of the ratio between the hopping
integrals of the system,

∣∣∣ t1t2 ∣∣∣, increases. We have chosen ϵm = ϵ1+ϵ2
2

and the bandwidth
of the leads, as determined by |tm|, is chosen so as to contain all the eigenstates of
the system. Again, it is evident that the ideal and symmetric coupling condition leads
to the most efficient transmission. For ideal and asymmetric coupling, except for the
peaks of magnitude 1 that occur in the zeros of U4(z), there is one additional peak near
E = ϵ1 (E = ϵ2), when χ > 1 (χ < 1), i.e. in the region of the zeros ofM12

2 (M21
2 ). This

peak is of significant magnitude only when |t1| ≈ |t2|. In the strong (weak) coupling
regime, 8 (10) peaks occur, as expected; the peaks that are closer to the band gap vanish
(emerge) as

∣∣ t1
t2

∣∣ increases. When the coupling is asymmetric, transmission is enhanced
only in one of the two bands.



3.5. CONCLUSION 57

Figure 3.20: Transmission coefficient of a periodic systemwith u = 1 site per unit cell andm = N = 10
unit cells, for ideal (top), strong (middle) and weak (bottom) coupling with the leads. (Left column)
Symmetric coupling. (Right column) Asymmetric coupling. The on-site energy of the system coincides
with that of the leads (ϵ1 = ϵm) and the hopping integral of the system increases until it is equal to that
of the leads.

Figure 3.21: Transmission coefficient of a periodic system with u = 2 sites per unit cell andm = 5 unit
cells (N = 10), for ideal (top), strong (middle) and weak (bottom) coupling with the leads. (Left column)
Symmetric coupling. (Middle column) Asymmetric coupling with |χ| > 1. (Right column) Asymmetric
coupling with |χ| < 1. We have chosen ϵm = ϵ1+ϵ2

2 and the bandwidth of the leads is chosen so as to
contain all the eigenstates of the system.

3.5 Conclusion
We employed the transfer matrixmethod to obtain the energy eigenvalues of a periodic
WM, with a single orbital per site, u sites per unit cell, and nearest neighbor hoppings,
for either cyclic or fixed boundaries. The solution of such a system is identical to the
diagonalization of a real symmetric u-Toeplitz matrix of order mu, with or without
perturbed upper left/lower right corners. The dispersion relation (cyclic boundaries)
and the eigenspectrum (fixed boundaries) can be obtained with the help of the ele-
ments of the UCTM and the Chebyshev polynomials of the second kind. The DOS
was also obtained with the help of the UCTM. The properties of the eigenvalues and
the DOS were discussed through representative examples for the simplest cases, i.e.
for systems with u = 1, 2, 3, 4, where the difference in the hopping integrals between
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different sites inside the unit cell was explicitly taken into account. Furthermore, we
attached the periodic systems under examination to semi-infinite homogeneous leads,
and determined the TC at zero bias. We showed that in general the ideal and symmet-
ric coupling condition is also the optimal coupling condition, and demonstrated the
role of the coupling strength/weakness and asymmetry, as well as of the leads’ prop-
erties, to the transmission profiles (number, position, sharpness of peaks). Finally, we
demonstrated the effect of the intrinsic hoppings of the system to the TC, for systems
with u = 1, 2, as representative examples.



4
Atomic carbon wires⁵

During the past years, the great scientific advances and achievements in the field of
carbon allotropes, launched by the discovery of fullerenes in 1985 [184], the synthesis
and determination of the structure of carbon nanotubes in 1991 [185] (although the
first report on them can be traced back to 1952 [186]), and the rediscovery of graphene
in 2004 [187], have drawn attention to other forms of carbon such as graphyne [188]
and atomic carbon wires (also called carbynes). Carbynes are one-dimensional sp-
hybridized chains of carbon and represent the ultimate nanoscale structure, a molec-
ular wire with one-atom thickness [189, 190]. The very interesting properties these
structures hold (tunable band gap, extreme stiffness and elastic modulus, high flexi-
bility, room temperature persistence) have drawn a large scientific attention during
this decade. The first direct electrical characterization of atomic carbon chains was re-
ported in 2013 [191], and, although up until 2016 the longest synthesized carbon chain
consisted of 44 atoms [192], more than 6,000 contiguous acetylenic carbons have been
produced inside double-walled carbon nanotubes [193]. The thermal [194–197], vibra-
tional [198–200], mechanical [196, 201], and electronic and charge transport proper-
ties [191, 202–211] of atomic carbon wires are fields of intense contemporary research.

The carbyne structure is characterized by the BLA (in the cumulenic case, BLA= 0,
while in the polyynic case, BLA ̸= 0). Although it has been demonstrated that Peierls
distortion [212], the driving force of which is the electron phonon-coupling [213], en-
ergetically favors the polyynic configuration [214, 215], leading the state with BLA
̸= 0 to be more stable, it has been theoretically shown [216] and experimentally ob-
served [210] that under no strain, the cumulenic phase is also possible. This preser-
vation of the cumulenic symmetry over the broken-symmetry polyynic carbyne in an
unstrained chain has been attributed to the elimination of the Peierls distortion due to
the zero-point atomic vibrations [216]. Another recent work has shown that capping a

⁵Reproduced from Ref. [183] with permission from the PCCP Owner Societies.
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small finite atomic carbon wire between sp2 conjugated end groups with a small num-
ber of aromatic units leads to a reduction of the BLA and the band gap, and hence to a
more cumulene-like structure [217].

The aim of this Chapter is to apply theWM in order to study the electronic structure
and charge transport properties of cumulenic and polyynic carbynes, using the formu-
lation presented in Chapter 3. We show that TB predicts various key aspects and can
efficiently catch and explain some of the most important recent experimental results.
These results include the metallic (semiconducting) behavior of the current-voltage
(I − V ) characteristics for cumulenic (polyynic) carbynes, the effect of weakening the
coupling between the leads and one end of the system, as well as the rectifying be-
havior polyynic carbynes demonstrate when there is a mismatch between their Fermi
levels and the ones of the leads.

The cumulenic form of carbyne, in which BLA = 0, can be interpreted as

· · · = C = C = C = C = C = C = · · · .

Hence, in a TB treatment, cumulenic carbyne can be considered as a homogeneous
chain with one px electron per atom and one atom per unit cell, with on-site energy
ϵC, and a single hopping integral, t. On the contrary, its polyynic form, in which BLA
̸= 0, the structure can be interpreted as

· · · ≡ C− C ≡ C− C ≡ C− C ≡ · · · .

Hence, in a TB treatment, polyynic carbyne can be considered as a chain with one px
electron per atom and two atoms per unit cell, again with on-site energy ϵC, and two
hopping integrals, ts and tℓ, for the short (s) and long (ℓ) separations, respectively. An
identical treatment holds for the py electrons, due to energy degeneracy.

4.1 Electronic structure of carbynes
Let us suppose a carbyne chain made up ofN carbon atoms. According to the analysis
presented in Chapter 3, the GTM of the chain is PN

1 for cumulenic carbynes, while,
for polyynic carbynes, it is (P2P1)

N/2. Taking into account the spectral duality re-
lations [90, 173] and the relation of the elements of the (unimodular) global transfer
matrix with the Chebyshev polynomials of second kind [127, 174], we can determine
the electronic structure of carbynes for either cyclic or fixed boundary conditions [183].

To obtain physically valid numerical results from a TB approach, an appropriate
set of external parameters (on-site energies and hopping integrals) is necessary. In
Ref. [218], the authors have calculated by ab initio methods the bond lengths of atomic
carbon wire structures, i.e. d = 1.282 Å for the cumulenic form of carbyne, and dℓ =
1.301 Å, ds = 1.265 Å for the polyynic form. Taking these values, we obtain the
hopping integrals we will use below to calculate the I−V characteristics of cumulenic
and polyynic carbynes via the Harrison formula [85] for the ppπ bond, i.e.,

t = −0.63
h̄2

md2
, (4.1)



4.1. ELECTRONIC STRUCTURE OF CARBYNES 61

where h̄ is the reduced Planck constant and m is the electron mass. Hence, for cu-
mulenic carbynes, t = −2.92 eV, while, for polyynic carbynes tℓ = −2.84 eV and
ts = −3.00 eV. We should mention that the inclusion of longer-range terms (second,
third, etc neighbors) is not expected to have a significant effect of the energy structure.
The Harrison formula that we employed is valid for interatomic distances of the order
of the covalent bond. In the case of larger distances, other, exponentially decaying
formulas are more accurate [219, 220]. Using such an exponential law, in the fashion
done in Ref. [221], e.g. for the bond length we have used for cumulenic carbynes, we
find that the hopping integral for the second neighbors would be smaller by one order
of magnitude. The on-site energy of the HOMO of the sp-hybridized carbon is set to
zero. As it will be shown below, altering ϵC does not affect the energy structure of
the carbynes, apart from an energy shift, but, when their transport properties are con-
sidered, the choice of the metallic leads’ on-site energy relative to that of carbon is of
major significance.

For cyclic boundaries (ψ0 = ψN , ψN+1 = ψ1), the following dispersion relations
hold for carbynes

E = ϵC + 2t cos(kcac), cumulenic, (4.2a)

E = ϵC ±
√
t21 + t22 + 2t1t2 cos

(
kpap

)
, polyynic, (4.2b)

where kc,p ∈ 1st Brillouin Zone, ac = d, and ap = ds + dℓ. Since there is only one
electron per atom, cumulenic carbynes display metallic behavior (there is one half-
filled band), while polyynic carbynes display semiconducting behavior (one filled and
one empty band). The Fermi level is ϵC. The transition from metal to semiconductor is
displayed in Fig. 4.1(a), where Eq. (4.2b) is plotted as a function of the ratio t1/t2. We
have fixed t2 = tℓ = −2.84 eV, and let t1 gain values in the interval that corresponds to
distances 1.20 - 1.53 Å, i.e. for bond lengths varying from the triple to the single bond
in individual gas-phase carbonmolecules [222], using the Harrison formula. We notice
that for t1 = ts = −3.00 eV, i.e. for the set of parameters used below for the calculation
of the I − V characteristics [black curve in Fig. 4.1(a)], the bandgap is Eg = 0.32 eV,
in perfect accordance with the gap reported in Ref. [218], from which the bond lengths
were taken. Hence, our treatment is in excellent agreement with the much more time-
consuming and complicated ab initio method [218]. Generally, as t1/t2 increases up to
1 (i.e. the cumulenic case), the width of each band linearly increases and the bandgap
linearly decreases to zero. For t1/t2 > 1, the width of each band remains constant and
the gap starts to increase linearly (see inset of Fig. 4.1(a)).

For fixed boundaries (ψ0 = ψN+1 = 0), the eigenenergies of carbynes can be
obtained recursively via the relations

UN(zc) = 0, cumulenic, (4.3a)

t1
t2
UN

2
(zp) = −UN

2
−1(zp), polyynic, (4.3b)

where zc = Tr(P1)/2 = E−ϵC
2t

, and zp = Tr(P2P1)/2 =
(E−ϵC)2−t21−t22

2t1t2
. The eigenspec-

trum, i.e. the spectrum of eigenvalues, as derived by Eq. (4.3b), for polyynic carbynes
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Figure 4.1: (a) Dispersion relation [(inset) width of each band and bandgap], (b) eigenspectra for up to
N = 60, (c) density of states of polyynic carbynes as a function of the hopping integral ratio, t1/t2.
”Used” corresponds to the ratio ts/tℓ (see text).

is displayed in Fig. 4.1(b), as a function of t1/t2, for up to N = 60 atoms. It is again
evident that, as t1/t2 increases above 1, an increasing gap occurs. This gap vanishes
when t1/t2 = 1, i.e. when the transition to cumulenic carbyne occurs. For t1/t2 < 1 a
bandgap starts to open again, but there is an additional eigenvalue in each band that
asN increases, reaches ϵC. This effect occurs straight from the choice of the boundary
conditions. The eigenspectra of such systems have also been discussed, from a math-
ematical point of view, in Refs. [162, 164, 223]. The fixed boundary conditions corre-
spond to a finite carbon wire structure, the ends of which induce a length-dependent
modulation in the BLA [190]. In our model, this would result in an alteration of the
ratio t1/t2. Hence, for a finite structure, the modulation of the BLA could cause a shift
along the horizontal axis of Fig. 4.1(b), as N increases.

The DOS of carbynes is given by the expressions

g(E) =
N

π
√
4t2 − (E − ϵC)2

, cumulenic, (4.4a)

g(E) =
N |E − ϵC|

π
√

4t21t
2
2 − [(E − ϵC)2 − t21 − t22]

2
, polyynic, (4.4b)
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where the double spin and double band degeneracies are not incorporated. Two van
Hove singularities occur in cumulenic carbynes exactly at the band edges, i.e. for E =
ϵC ± 2t. In polyynic carbynes, the singularities increase to four, again at the band
edges, i.e. for E = ϵC ± |t1 ± t2|. The DOS of polyynic carbynes is displayed in Fig.
4.1(c) as a function of t1/t2. We observe that the singularities at the top (bottom) of the
valence (conduction) band are much less sharp that the ones at the bottom (top). These
less sharp singularities vanish as t1/t2 reaches 1, i.e. when the transition to cumulenic
carbyne occurs.

4.2 Transmission coefficient
Suppose we interconnect the ends of a given atomic carbonwire with two semi-infinite
homogeneous leads with lattice constant a and one electron per site, so that they are
metallic. Let ϵmL(R) and tmL(R) be the on-site energy and the hopping integral of the
left (right) lead, so that their energy structure is described by the dispersion relation
E = ϵmL(R) + 2tmL(R) cos

(
qL(R)a

)
. Hence ϵmL(R) = EF,L(R), i.e. the Fermi level of the

leads, and the bandwidth is 4
∣∣tmL(R)

∣∣. The coupling of the leads with the end carbon
atoms is described by the hopping integrals tL(R). If we suppose identical leads and,
without any loss of generality, that the incident waves come from the left lead, then
T (E) = 1

1+Λ(E)
and the polynomials WN(E), and X±

N(E) involved in the Λ(E) (cf.
Eqs. (3.49, 3.50) take the form

WN(E) = UN(zc)ω + UN−2(zc)ω
−1, (4.5a)

X±
N(E) = UN−1(zc)(±χ−1 − χ), (4.5b)

for cumulenic carbynes, and

WN(E) = UN
2
(zp)ω +

t2
t1
UN

2
−1(zp)(ω + ω−1) + UN

2
−2(zp)ω

−1, (4.6a)

X±
N(E) = UN

2
−1(zp)(E − ϵC)(±

χ−1

t2
− χ

t1
), (4.6b)

for polyynic carbynes.
The zero-bias TC of a polyynic carbynewithN = 10 is plotted as a function of t1/t2

in Fig. 4.2, for various coupling strength and asymmetry conditions. We have chosen
the Fermi level of the leads, EF (= ϵm) to be equal to that of the carbyne, ϵC. The cou-
pling integral of the leads is taken tm = −4 eV, so that their bandwidth contains all the
eigenstates of the polyynic chain. As it is evident from Fig. 4.2, the ideal and symmetric
coupling conditions (ω = χ = 1) leads to the most enhanced transmission. When the
coupling strength factor deviates from the ideal case, the transmission peaks sharpen
and the transparency of the system is significantly reduced. If the not-ideal coupling
is also asymmetric, then the value of the transmission peaks also reduces, leading to a
further decrease of the system’s transparency. The exact number, as well as the posi-
tion of the transmission peaks in each coupling strength and asymmetry condition can
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Figure 4.2: Zero-bias TC for a polyynic carbyne with N = 10 atoms, as a function of the ratio t1/t2.
Identical leads have been assumed, with ϵm = ϵC and tm = −4 eV. (Top) Ideal coupling condition.
(Middle) Strong coupling condition with ω = 1/2. (Bottom) Weak coupling condition with ω = 2.
(Left column) Symmetric coupling condition. (Right column) Asymmetric coupling condition, with
χ = 2, 1/2. The TC that corresponds to the parameters t1 = ts = −3.00 eV, t2 = tℓ = −2.84 eV,
as derived by the bond distances of Ref. [218], is noted with horizontal dashed lines in each panel.

be determined by examining the degree of the terms that become dominant in Λ(E)
(cf. Chapter 3). In other words, the number and position of the transmission peaks
are strongly related to the coupling strength and asymmetry, as well the ratio t1/t2.
This suggests that the peaks are not exclusively determined by the energy levels of the
system.

4.3 Current-Voltage curves
The I − V curve of a one-dimensional TB model can be given, using the Landauer-
Büttiker formalism [109, 224–227], by the relation

I(V ) =
2e

h

∫ ∞

−∞
T (E, V )[fL(E − µL)− fR(E − µR)]dE, (4.7)

under the assumption that charges propagate from left to right. µL(R) and fL(R)(E) are
the chemical potential and the Fermi-Dirac distribution at the left (right) lead, respec-
tively. The factor 2 comes from spin degeneracy. From Eq. (4.7) we deduce that, apart
from the energy structure of the system under examination, which is reflected in the
TC, as well as the coupling strength and asymmetry, which have a significant effect
on the transmission profile (c.f. Sec. 3.4), there are several factors that have an effect
on the magnitude of currents, the bias regime and the shape of the I − V curves [82].
These factors include:

1) Whether or not the TC is considered as bias-dependent. Although assuming bias-
independent TC could be a justified choice at the small bias regime, and it is indeed
less computationally costly, this assumption cannot lead, under any circumstances,
to the occurrence of negative differential resistance, since an increasingly larger part
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(as V increases) of a nonnegative function is integrated. If an external bias is applied
between the (generally, not identical) leads, then the transmission coefficient takes the
form

T (E, V ) =
2 sin(qLa) sin(qRa)

tmL

tmR

Tr
(
M̃T

NM̃N

)
/2 + (M̃T

NM̃N)
12 cos(qLa)− (M̃NM̃

T
N)

12 cos(qRa)
− M̃11

N M̃
22
N cos[(qR + qL)a]− M̃12

N M̃
21
N cos[(qR − qL)a]

.

(4.8)
This equation can be derived by calculating the probability current at each lead through
the continuity equation and is used throughout the present thesis everywhere the I−V
curves are presented. For identical leads and V = 0, Eq. (4.8) leads to Eq. (3.42).

2) The way the external bias is applied. For example, (a) only one of the leads’ energy
bands can be shifted, so that µL = EF + eV , and µR = EF , or, alternatively, (b) both
leads’ bands can be symmetrically shifted so that µL

R
= EF ± eV

2
. This choice affects

both the way the voltage drop is induced in the examined system and the energy limits
of the conductance channel. At finite temperatures, Eq. (4.7) can be written in the form

I(V ) =
2e

h
sinh

(
eV

2kBT

)∫ ∞

−∞

T (E, V )dE

cosh
(

E−EF

kBT

)
+ cosh

(
eV

2kBT

) , (4.9)

i.e., the I−V curve occurs from themodulation of the hyperbolic function sinh
(

eV
2kBT

)
by the integral factor expression [228], while, at zero temperature, the Fermi-Dirac
distributions become Heaviside step functions and determine the limits of integration.
Hence, Eq. (4.7) can be simplified to

I(V ) =
2e

h

∫ µL

µR

T (E, V )dE. (4.10)

3) The choice of the Fermi level of the leads. If this level is not aligned with a transmis-
sion resonance, then no currents occur in the vicinity of V = 0, while a metallic-like
behavior can be expected otherwise.

Here, we assume that a constant bias V is applied at the left lead, so that its disper-
sion relation is shifted by Vb = eV , and a voltage drop within the carbyne system, so
that the TC becomes voltage-dependent, i.e. T (E) = T (E, V ), cf. Eq. (4.8). We apply a
linear voltage drop between the end sites of the leads, separated by a distanceL, so that
the on-site energy ϵC of the nth carbon atom is shifted by Vb(n) = Vb

dn
L
, where dn is the

distance of the nth atom from the end of the left lead. At zero temperature, the Fermi-
Dirac distributions at the leads are fL(E) = θ(EF

L + Vb − E), fR(E) = θ(EF
R − E),

where θ denotes the Heaviside step function. The conducting states lie in the intersec-
tion of the common energies between the leads and the bandwidth of carbyne chains.
Then, the electrical current can be computed using the Landauer-Büttiker formalism
as

I(V ) =
4e

h

∫ EF
L+Vb

EF
R

T (E, V )dE, (4.11)
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cf. Eq. (4.10). Here, the factor 2 changes to 4 due to the additional double degeneracy
of the bands formed by the px and py electrons. As shown in the previous section, the
coupling strength and asymmetry play a significant role in the transmission profile.
So, when quantitative reproduction of experimental results is considered, explicit in-
formation about the size of the chain, electronic structure of the leads and the strength
of coupling between the leads and the chain is necessary. In the following, we study
some of the experimental results of Ref. [210], showing that our model can catch some
key aspects of the experimental observations, and focus on the influence of the leads’
parameters to the I − V characteristics. Since we have no explicit information about
the above mentioned details, we will display our results for N = 100, as a representa-
tive case of relatively long atomic carbon wires (the recruitment of which in devices is
experimentally sought) that can be treated with TB. Our calculations show that alter-
ingN has only some quantitative and not qualitative effect on the physical properties.
Although the currents observed in Ref. [210] are no larger than some nA, later experi-
mental findings report currents that lie in the µA regime [211], as our below discussed
results indicate. Quantitative differences could also be attributed to the temperature
effects, since the experiments were carried out at room temperatures. Without specify-
ing the nature of the leads, we will chooseEF

L,R = ϵC and tmL,R = 3.16 eV, a value that
corresponds to the overlap of neighboring atoms in a single graphitic layer plane [229].
For the carbon chain, we will use t, for the cumulenic case, and t1 = ts, t2 = tℓ for
the polyynic case. As for the coupling hopping integrals, we choose tL = tR = −2.67
eV for cumulenic carbynes, and tL = −2.05 eV, tR = −3.33 eV for polyynic carbynes,
i.e. values that correspond to double, single and triple bonds, respectively, between
gas-phase carbon molecules [222], according to the Harrison formula (see Sec. 4.1).
The results for the I − V characteristics for cumulenic and polyynic carbynes with
N = 100 for the above mentioned parameters are shown in Fig. 4.3.
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Figure 4.3: I − V characteristics of (a) cumulenic (b) polyynic carbynes with N = 100 carbon atoms.
The effect of enlarging the distance between the end of the chain and the right lead, dcR (continuous
blue curves), is also demonstrated, for 10% (red dashed curves) and 40% (green dotted curves) increase.

From Fig. 4.3 it is evident that cumulenic carbynes display a typical Ohmic behav-
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Figure 4.4: (top) TEM image and (b) the corresponding I − V curve for an unstrained atomic carbon
chain, corresponding to the cumulenic phase. The I − V curve is linear, corresponding to Ohmic con-
ductivity. (bottom) The temporal evolution of a strained carbon chain, corresponding to the polyynic
phase (a) at an arbitrary time zero; (b) after 9 s; (c) after 13 s, i.e., as the carbyne chains coupling with
one of the leads becomes increasingly poorer. The corresponding I − V curves illustrate indicate semi-
conducting behavior, although with a decreasing conductivity from (a) to (c). Images reproduced from
Ref. [210], used under CC BY 4.0.

ior (linear curves), while the S-shaped curves of polyynic carbynes are indicative of
a semiconducting behavior. Furthermore, the currents for cumulenic carbynes are of
larger magnitude than for polyynic carbynes, in the same bias regime, in agreement
with Ref. [210]; see Fig. 4.4. In the same work, the experimental I − V curves were
measured at different times, as the carbyne chains coupling with one of the leads be-
comes increasingly poorer, resulting to reduced currents. We interpreted this effect by
calculating the I −V curves for increasing values of dcR, i.e. the distance between the
last carbon atom and the left lead. This results in a decrease of the coupling hopping

https://creativecommons.org/licenses/by/4.0/
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integral tR, which is determined by the Harrison formula. In Fig. 4.3 we show that
the decrease of the carbyne coupling to the right lead results in reduced currents, in
agreement with the experimental observation of Ref. [210], cf. Fig. 4.4.

Let us now examine the influence of the leads’ properties to the I −V characteris-
tics. Suppose that there is a mismatch between the Fermi level of a polyynic carbyne
and that of the leads, which is defined as ∆ = ϵm − ϵC, and all the rest parameters are
kept the same. The calculated I − V curves and the differential conductance, dI

dV , for
different values of ∆ are presented in Fig. 4.5. From the I − V curves (left panel of
Fig. 4.5) it can be observed that increasing |∆| from zero leads to a reduction of the
gap region in the vicinity of V = 0, until |∆| exceeds Eg

2
= 0.16 eV, in which case

the gap region around V = 0 vanishes. This happens because for ∆ > Eg

2
(< −Eg

2
),

the Fermi level of the metal lies within the conduction (valence) band of the polyynic
carbyne, leading to non-vanishing currents for small biases. The alternation of the
gap region due to the energetic difference between the contacts and the leads has also
been suggested by recent ab initio calculations, where a significant difference in the
I − V curves is found when the atom chain is sandwiched between graphene layers
and end-capped carbon nanotubes [211]. From the right panel of Fig. 4.5 it can be seen
that the differential conductance has an oscillatory behavior. Although for ∆ = 0,
dI
dV

is symmetric around V = 0, the increase of |∆| induces an increasing asymmetry,
such that dI

dV
(∆, V ) = dI

dV
(−∆,−V ). Furthermore, it is evident that, for |∆| > Eg

2
,

the valley of the differential conductance in the vicinity V = 0 vanishes, giving rise to
large conductance in the small bias regime.
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Figure 4.5: I − V characteristics (left) and differential conductance (right) of a polyynic carbyne with
N = 100 atoms for different values of the energy difference between the Fermi level of the carbyne and
the metallic leads.

Next, we examine the effect of altering the leads’ bandwidth on the I − V curves.
For a specific value of bias, the increase of leads’ bandwidth, in terms of increasing
|tm|, for fixed coupling hopping integrals, results in increasing ω (thus weakening the
coupling), so the transmission peaks become sharper. This is evident by comparing
the peaks that occur for V = 0.36 V and for V = 0.50 V in Fig.4.6(a), where T (E) is
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plotted in the interval of the incident carrier energies in each case. Furthermore, from
Fig. 4.6(a) it can be seen that for V = 0.50 V, the peaks become wider, their posi-
tion alters, and their value is smaller. The synergetic effect of these changes to T (E)
can quantitatively be demonstrated by simply taking the average of the TC, T̄ (E), in
each case [inset of Fig. 4.6(a)]. By observing the inset of Fig. 4.6(a), we can expect
that the increase of the leads’ bandwidth results in reduced current, for the same value
of bias. Finally, we can expect that the increase of the current value between 0.36
and 0.50 V will be significantly smaller for increased leads’ bandwidth, i.e. the I − V
curve in this case will have a more step-like behavior. These observations are sup-
ported by the explicit calculation of the current-voltage curves via Eq. (4.11), which
are presented in Fig. 4.6(b). The progressive increase of the leads’ bandwidth results
generally in reduced currents and gradually to a step-like increase of the current with
applied bias. The occurrence of this step-like behavior can be explained in terms of
the ”molecular eigenvalue staircase” [230]. As the bias increases, more transmission
peaks (resonances) are included in the broadening conductance channel, resulting in
gradual jumps in the I − V curves.
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Figure 4.6: (a) Transmission coefficients of a polyynic carbyne with N = 100 atoms for V = 0.36 V
and V = 0.50 V for different leads’ bandwidths (tm = 3.16 eV and 2.5tm). The average values of the
transmission coefficient in the energy interval of the incident carriers are presented in the inset. (b)
I − V characteristics of the same system, for different leads’ bandwidths, as determined by tm.

Finally, we examine how considering different contacts affects the I−V character-
istic of the carbon chain. We assume that the Fermi level of the left (right) lead is shifted
0.2 eV above (below) the Fermi level of the polyynic carbyne and that tmL = 3.16 eV
= 0.5tmR. The calculated I − V curve under these conditions, which is presented in
Fig. 4.7, displays a rectifying behavior. This is in accordance with the experimental
findings of Ref. [210], also shown in Fig. 4.7, in which a rectifying behavior is observed
when the carbyne chains are lying between two different contacts.

The significant influence the contacts have on the charge transport properties of
carbon wires demonstrated by our results is in accordance with the conclusions of
experimental works using the Scanning tunneling microscope break junction (STM-
BJ) technique in order to study the conductance of end-capped oligoynes [204, 205].
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Figure 4.7: (top) Carbon chain between two dissimilar electrodes. The bottom electrode is Fe; the top
electrode is C. (a) TEM image. Scale bar, 5 nm. (b) I −V curve. Image reproduced from Ref. [210], used
under CC BY 4.0. (bottom) Our calculated I − V curve of a polyynic carbyne with N = 100 atoms,
sandwiched between two different leads.

4.4 Conclusion
We employed a WM using the formulation of Chapter 3 in order to obtain the elec-
tronic structure of cumulenic and polyynic carbynes, in terms of their dispersion re-
lations (for cyclic boundaries), eigenspectra (fixed boundaries), and DOS, obtaining a
bandgap for polyynic carbynes at 0.32 eV, in agreement with more complex ab initio
calculations. We analytically determined the TC at zero-bias by attaching the car-
bynes to semi-infinite metallic leads, and displayed the effect of the coupling strength
and asymmetry to the transparency of the system to the incident carriers. Then, we
calculated the I-V characteristics of cumulenic and polyynic carbynes, which display
metallic and semiconducting behavior, respectively. Furthermore, we studied the ef-
fect on the I-V curves of factors such as the weakening of the coupling of the system to
one of the leads, the relative position of the Fermi levels of the carbyne and the leads,

https://creativecommons.org/licenses/by/4.0/
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the leads’ bandwidth and, finally, the difference in the energy structure between the
leads. Weakening the coupling of the system to the leads reduced currents. Altering
the relative position of the Fermi levels of the carbyne and the leads has an effect in
the gap region and significantly changes the differential conductance. Increasing the
bandwidth reduces the currents and leads to a more step-like increase with bias. Fi-
nally, introducing a difference in the energy structure of the leads results in rectifying
I-V curves. Our results account for the main experimental features reported in the
most recent experimental findings.
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5
Periodic, deterministic aperiodic,

and random binary DNA segments⁶

In this Chapter, we focus on the energy structure and charge transport properties of
periodic, deterministic aperiodic and random binary DNA sequences, i.e., sequences
based on the binary alphabet {G,A}. This means that in the 5′-3′ strand of double helix
B-DNA we have either G or A. We will use this strand to denote the segments. In the
complementary, 3′-5′, strand we have C and T, respectively. For example, the notation
GGAGmeans that we have the GGAG bases in the 5′-3′ strand and the complementary
ones, CCTC, in the 3′-5′ strand. All studied sequences start with G.

Several works have been devoted to the study of transfer and transport in specific
DNA structures (periodic [56, 180, 232], quasiperiodic [95, 105, 233], random and nat-
ural [12, 72, 73, 234, 235]) using variants of the Tight-Binding (TB) method. Here, we
employ the WM, with the sites of the chain being the base pairs (i.e., the on-site ener-
gies refer to a base pair and the hopping integrals correspond to adjacent base-pairs in
the 5’-3’ direction), to study the spectral, localization and charge transport properties
of periodic, deterministic aperiodic [Thue-Morse (TM), Fibonacci (F), Period Doubling
(PD), Rudin-Shapiro (RS), Cantor set (CS), generalized Cantor set (GCS(4, 2)), Kolakoski
(KOL(1, 2) and KOL(1, 3)); see Sec. 2.4] and random DNA binary segments.

TB parameters may change at different levels of theory, and their values can tune
the results, having both quantitative and qualitative effects. In Ref. [236] there are
some nice tables showing the variance of on-site energies and coupling parameters for
different triplets (or triads) of base pairs. When dealing with charge transport prop-
erties, it is usual in the literature to use only one hopping parameter and/or on-site
energy, to simplify the problem. Here, we go beyond these simplifying hypotheses.

⁶The content of this chapter can be found published in Ref. [231]: K. Lambropoulos and C. Simserides,
Phys. Rev. E 99, 032415 (2019). © 2019 by the American Physical Society.
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We use a TB parametrization that allows for different hopping (or transfer or cou-
pling) parameters (or integrals). Specifically, we use the parametrization of presented
in Ref. [55] for HOMO (see Table A.1 in Appendix A), which will be henceforth referred
to as S parametrization. This leads to quantitative and qualitative consequences. Our
treatment gives a clearer picture, as it will be discussed below. In this spirit, we calcu-
late –among other quantities– autocorrelation functions, integrated density of states,
Lyapunov exponents, TC and I − V curves, taking into account the different on-site
energies as well as the different hopping parameters.

We notice that, in what follows, for substitutional sequences based on a binary al-
phabet, the substitution rules of Table 2.2 hold as such, that is, A = {G, A}, while for
the rest, and, specifically, RS and KOL(1, 3) helping alphabets are defined. In the for-
mer,A = {GG, GA, AG, AA}. In the latter, where 1 → G, 3 → A,A = {GG, GA, AA}
(cf. Table 2.2).

5.1 Sequence properties

Figure 5.1: Classification of the DNA segments studied in this chapter based on the number and occur-
rence percentage of base-pair triplets. The boxes correspond to each of the 8 possible triplets. For each
segment, white boxes correspond to forbidden triplets, and the color of the rest corresponds to their
occurrence percentage (calculated for large N ).

To obtain a clear picture of the interplay between sequence intricacy and energy
profile of the segments, as well as its effect on localization and transport properties,
we present some details on the sequence characteristics of the studied segments. Since
we deal with binary DNA sequences, a useful classification of their properties can
be done through the study of the different base-pair triplets that are found in each
category [159]. A triplet is made of a base pair and its next and previous neighbors.
Since in a realistic treatment we need to simultaneously consider the difference in the
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on-site energies and the hopping integrals (as done here), the total number of possible
triplets (23 for a binary sequence) corresponds to the total number of different transfer
matrices that can be found in the GTM. Thus, a triplet is a natural unit in TB nearest
neighbor interactions. Furthermore, triplets are of great importance in nucleic acids
themselves. Codons are sequences of three DNA or RNA nucleotides that correspond
with a specific amino acid or stop signal during protein synthesis. Each of the 34 = 64
codons corresponds to a single amino acid (or stop signal), and the full set of codons
is the genetic code. Finally, we notice, it has been claimed that the on-site energy of a
base depends on its flanking bases, an idea beyond the scope of our present calculations
[236].

The number of triplets in each studied category of DNA segments as well as the oc-
currence percentage of each triplet (for large N ) are depicted in Fig. 5.1. From Fig. 5.1
it is obvious that the periodic (GA)m segment represents the most ordered case (2
triplets with equal occurrence percentages). F and PD segments possess 4 and 5 dif-
ferent triplets, respectively, and have one dominant GAG triplet. TM and KOL(1, 2)
segments posses 6 equidistributed triplets. RS, random and KOL(1, 3) segments posses
all possible triplets; in the first two cases they are equidistributed; in the latter there
are some predominant triplets. Finally, the Cantor Set family segments posses many
of the possible triplets [7 for CS, 6 for GCS(4, 2)]. However, the AAA triplets are pre-
dominant, asymptotically reaching 100% occurrence percentage as N increases. For
segments with primitive substitution rules, the values at which the occurrence per-
centage of each possible triplet converge can analytically be found from the procedure
described in Subsec. 2.4.1. For example, the occurrence percentages of the possible
triplets in PD segments converge to the components of the normalized right eigen-
vector corresponding to λPF = 2 of matrix S3 [Eq. (2.61)], i.e. [1

6
, 1
6
, 1
3
, 1
6
, 1
6
]T .

The intricacy of the sequence determines the total number of TB parameters (on-
site energies and hopping integrals) and the occurrence percentage of each inside a
given segment. In Fig. 5.2, we present the scaling of each TB parameter occurrence
percentage for all studied segments. Among other things, we observe: The occurrence
percentage of tGA is always equal to that of tAG. In all deterministic aperiodic cases,
the occurrence percentages reach specific values as the generation, g, increases. Com-
paring F and PD sequences, although the former sequence is simpler (cf. Fig. 5.1), it
has the same total number of TB parameters with the latter, since it has the additional
triplet GGG. Again, we notice that, for sequences with primitive substitution rules, the
values at which the occurrence percentage of each on-site energy and hopping integral
converge coincide with the letter frequencies of the possible one- and two-letter words
in the sequence, which can be found from the procedure described in Subsec. 2.4.1.

Having obtained an estimate of the intricacy of the sequences, we move to the
estimation of the correlations of their energy landscape. We will do this by calculating
the autocorrelation function (ACF) [97] for the quantities ϵn

tn
, n = 1, . . . , N . This ratio

is used to fully capture the energy intricacy of the sequences. The degree the base pairs
are correlated with their jth order neighbors, i.e., the correlation between sites with
indices n and n + j for fixed j, is expressed by the lag-j normalized ACF, ACF (j).
Using the notation yk = ϵk

tk
, with ȳ being the mean value of y{n}, it is given by
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Figure 5.2: Scaling of the occurrence percentage of each TB parameter in various categories of DNA
segments. (a) Periodic (GA)m. (b) TMg . (c) Fg . (d) PDg . (e) RSg . (f) CSg . (g) GCSg . (h) KOLg(1, 2). (i)
KOLg(1, 3). (j) Random (50% G, 50% A).
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Figure 5.3: Scaling of the autocorrelation function of various categories of DNA segments. (a) Periodic
(GA)m. (b) TMg . (c) Fg . (d) PDg (e) RSg . (f) CSg . (j) GCSg(4, 2). (h) KOLg(1, 2). (i) KOLg(1, 3). (j)
Random (50% G content, 50% A content).

ACF (j) =

N−j∑
k=1

(yk − ȳ)(yj+k − ȳ)

N∑
k=1

(yk − ȳ)2
. (5.1)

In Fig. 5.3, we present the ACF all the categories of studied segments, for three
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different lengths for each. The horizontal axes are normalized over the total number
of neighbors (N − 1), thus corresponding to the relative neighbor distances. We no-
tice that the ACF of each category has a characteristic shape. Furthermore, from the
inspection of Fig. 5.3, we observe that there is a correspondence between the degree of
intricacy of the segments and the strength of correlations. Random and RS sequences,
which posses 8 equidistributed triplets, display weak correlations. KOL(1, 2) and TM
sequences, which posses 6 equidistributed triplets, display somehow stronger corre-
lations. Then follow KOL(1, 3), CS, and GCS(4, 2) sequences, which posses predom-
inant triplets. The fractal sequences of the Cantor Set family possess strong correla-
tions in the regions where G is present, interrupted by long, largely homogeneous,
regions where it is not present. Deterministic aperiodic segments with the least pos-
sible triplets (F and PD, with 4 and 5 triplets, respectively) display strong correlations,
and the periodic case is the dominant one.

Finally, wemention that by comparing the ACF of each category for differentN , we
can come to conclusions about their inflation/deflation symmetry. Sequences with this
symmetry have similar autocorrelations at similar relative neighbor distances. This is
the case for all studied aperiodic sequences, apart from KOL(1, 2), for which a substitu-
tionmatrix cannot be defined, and the randomones [cf. Fig. 5.3(h) and (j), respectively].
As far as the KOL(p, q) family segments are concerned, we have checked no inflation
or deflation symmetry exists when |p− q| = 2ν+1, ν ∈ N , in contrast with the cases
|p− q| = 2ν, such as KOL(1, 3), shown in Fig. 5.3(i).

5.2 Eigenspectra and density of states
The energy structure of a physical system is closely connected to many of its prop-
erties (electrical, magnetic, thermal, optical, et cetera). In this Section, we study the
eigenspectra, DOS, and integrated density of states (IDOS) of the above mentioned cat-
egories of DNA segments. The DOS shows the number of states that can be occupied
by electrons at each energy, and can be formally defined as

g(E) =
∑
k

δ(E − Ek), (5.2)

where no spin degeneracies are included. The sum runs over all allowed states, each
of which has an eigenenergy Ek. A closely related quantity is the integrated density
of states (IDOS), defined as

IDOS(E) =

∫ E

−∞
g(E ′)dE ′, (5.3)

i.e., it is the number of states that have energy smaller than E. Discontinuities in
the IDOS indicate the presence of energy gaps, and the height of an IDOS step gives
information about the level population. For periodic systems, the regions of allowed
energies lead to smooth parts in DOS or IDOS curves, separated by well defined gaps at
specific energies, thus reflecting the continuous electronic band structure of a periodic
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crystal. On the contrary, the DOS and IDOS of random systems are rough, indicative
of the presence of a multitude of gaps between the allowed energy levels. As it has to
do with deterministic aperiodic sequences with a substitution rule, which reflects their
self-similarity, it has been conjectured (and proven, in several specific cases) that their
energy spectrum is singular continuous, i.e., in the thermodynamic limit, it exhibits an
infinity of gaps and vanishing bandwidths [237].

Furthermore, for primitive substitutions described by a Hamiltonian correspond-
ing to the WM, the following gap-labeling theorem has been introduced by Bellis-
sard et al. [238]:

Theorem 5.13 of Ref [238]. Let Ĥ be a Hamiltonian corresponding to the
WM, where the coefficients (i.e., parameters) are determined by a primitive
substitution on a finite alphabet. Then, the values of the IDOS of Ĥ on the
spectral gaps in [0, 1] belong to the Z(λ−1

PF ) module generated by the com-
ponents of the eigenvectors v⃗PF and v⃗PF,2 of the substitution matrices S and
S2, respectively.

From the above theorem, it follows that, in order to obtain the position of the gaps
in the (normalized) IDOS of a primitive substitutional sequence within the WM, it
is sufficient to know the substitution matrices of its legal 1- and 2-letter words (c.f.
Subsec. 2.4.3). Specifically, the gaps can be labeled by the negative powers of λPF

times integral linear combinations of the components of v⃗PF and v⃗PF,2 that lie within
the interval [0, 1] [238, 239]. For example, in the case of Fibonacci sequences, from the
diagonalization of S (cf. Table 2.2), we get λPF = ϕ and v⃗PF = [ϕ−1 ϕ−2]T (where
ϕ is the golden ratio). Hence, the sequence consists of ≈61.8% G letters and ≈38.2%
A letters [cf. the numerically obtained occurrence percentages of on-site energies in
Fig. 5.2(c)]. The legal 2-letter words in the Fibonacci sequence are AG, GA, and GG
(i.e., AA is forbidden), thus the induced 2-substitution reads (cf. Subsec. 2.4.3) s2(GG)
= (GA)(AG), s2(GA) = (GA)(AG), s2(AG) = (GG), leading to the induced substitution
matrix

S2 =

0 0 1
1 1 0
1 1 0

 . (5.4)

ThePerron–Frobenius eigenvector (cf. Subsec. 2.4.2) of S2 is v⃗PF,2 = [ϕ−3 ϕ−2 ϕ−2]T

[cf. the numerically obtained occurrence percentages of hopping integrals energies in
Fig. 5.2(c)] . Hence, the gaps can be labeled by integer linear combinations of negative
powers of ϕ. Since every positive power of ϕ can be reduced to a linear expression
of the form ϕg = Ngϕ + Ng−1, where Ng is the Fibonacci number of generation g,
and it also holds that ϕg + ϕ−g ∈ N∗, the situation can be reduced to an integral linear
combination of 1 and ϕ. Thus, the positions of the gaps in the IDOS of a Fibonacci
sequence within the WM can by given by

{Gn} = {nϕ mod 1,∀n ∈ Z}. (5.5)

Another interesting remark, arising from theDOS values of a single-stranded Fibonacci
DNA sequence consisting of G and C, is that the ratio among the distances between
DOS of consecutive generations tends to ϕ [240].
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Figure 5.4: Eigenspectra and DOS of periodic and various deterministic DNA sequences. (a) Periodic
(GA)m. (b) TMg . (c) Fg . (d) PDg . (e) RSg .
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Figure 5.5: Eigenspectra and DOS of various fractal, Kolakoski and random DNA sequences. (a) CSg .
(b) GCSg(4, 2). (c) KOLg(1, 2). (d) KOLg(1, 3). (e) Random (50% G and 50% A).
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For fixed boundary conditions (ψN+1 = ψ0 = 0), the eigenspectrum, i.e., the
eigenenergies Ej , j = 1, 2, . . . , N of a sequence, can be given by the roots of the
polynomial M11

N (E) (see Chapter 2). Here, the eigenspectra of the sequences have
been calculated by numerical diagonalization of the Hamiltonian matrix, which is real,
tridiagonal and symmetric. For periodic sequences with a repetition unit composed of
u sites, i.e., for N = mu, the matrix is u-Toeplitz, i.e., its elements have the prop-
erty hi,j = hi+u,j+u. The eigenspectra of such sequences can alternatively be obtained
recursively with the help of the Chebyshev polynomials of the second kind (see Chap-
ter 3). The eigenspectra and the corresponding DOS for all the categories of DNA
segments studied in this work are presented in Figs. 5.4-5.5. We notice that for all
studied deterministic aperiodic sequences, the allowed energies do not exceed the en-
ergy interval defined by the eigenspectrum of the random sequence. This also holds
for periodic polymers with only G and A in the 5′-3′ strand, as their repetition unit
increases [59] (see Chapter 8). Hence, the above mentioned interval of the random se-
quence represents a limit. Two subsets of the aforementioned interval gather around
the on-site energies of G and A, so will be henceforth referred to as G and A energy
regions. Comparing Fig. 5.4 which shows periodic and various deterministic aperi-
odic sequences with Fig. 5.5 which shows fractal, Kolakoski and random sequences,
we observe that the former form subbands which are rather acute in the deterministic
aperiodic cases, while in the latter the DOS is more fragmented and spiky. Regarding
the random case, the plots correspond to a single realization of the lattice; thus, several
DOS peaks are likely related to Azbel resonances, most of which would fade away by
averaging over many realizations.

The normalized IDOS for all categories of DNA segments, for largeN , is presented
in Fig. 5.6. In each panel, the largest energy gap, i.e., the region between two con-
secutive discontinuities of the IDOS, corresponds to the separation between the upper
limit of the allowed energies in the A region and the lower limit of the allowed ener-
gies in the G region. The value of the normalized IDOS in this gap corresponds to the
relative number of A in the sequence. Periodic (GA)m segments possess two narrow,
well defined, continuous bands, which can be recursively obtained; also, an analytical
expression for the DOS exists [Eq. (3.33)]. TM, F, PD, RS, and KOL family sequences
posses step-like IDOS, which indicates that the eigenenergies concentrate at specific
energy regimes, separated by small gaps. TM and KOL(1, 2) sequences resembling
IDOS features, in accordance with their similar triplet number and occurrence per-
centages. Cantor set family sequences have allowed energies predominantly in the A
region. Although at fist glance, the IDOS in this regionmay seem rather homogeneous,
it can be seen from the insets of Fig. 5.6(f)-(g), that the spectrum is very rough. The
random sequence IDOS has a shape that resembles to that of the RS sequence, although
it is much more disrupted. We have also observed that all periodic and deterministic
aperiodic segments possess IDOS steps such that their relative value is equal to the
occurrence percentages of the possible base-pair triplets (cf. Fig. 5.1). These steps
and the corresponding relative IDOS values are marked in the corresponding panels of
Fig. 5.6 (except for the fractal segments in which the non-AAA triplets have very small
occurrence percentages and cannot be depicted). For example, in the F segments there
are four clear IDOS steps with relative heights ϕ−2, ϕ−3, ϕ−4, ϕ−3, respectively, where
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Figure 5.6: Normalized IDOS of various categories of DNA segments. (a) Periodic (GA)m. (b) TM. (c) F
(ϕ is the golden ratio.). (d) PD. (e) RS. (f) CS. (g) GCS. (h) KOL(1, 2). (i) KOL(1, 3). (j) Random (50% G,
50% A).
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ϕ is the golden ratio; this has also been reported before [241]. Our observation holds
for all categories of deterministic aperiodic sequences, either generated by a primitive
substitution matrix or not, such as KOL(1, 2), further connecting the specific base-pair
sequence of a DNA segment with its energy structure.

5.3 Localization
For the GTM of a given segment, MN(E), there exists a limiting matrix L(E) such
that

L(E) = lim
N→∞

[MN(E)
TMN(E)]

1
2N . (5.6)

The existence of L(E) is guaranteed by the Oseledec multiplicative ergodic theo-
rem [242]. The Lyapunov Exponents of the segment are connected with the νth eigen-
value of L(E), Lν(E), through

γν(E) = ln[Lν(E)]. (5.7)
If the GTM is a 2d × 2d symplectic matrix, as in our case (d = 1), the Lyapunov
exponents are distinct and have the property −γ1 < −γ2 < · · · < −γd < γd <

· · · < γ2 < γ1, hence
2d∑
ν=1

γν = 0[243, 244]. Since the Lyapunov exponents control the

growth/decay rate of the solutions of Eq. (2.24), they are associated with the system’s
inverse localization length. In the case of symplectic GTMs, the localization length is
given by the inverse of the smallest positive Lyapunov exponent, γd(E) [244].

Since we deal with finite segments, the numerical Lyapunov exponents presented
below correspond to finite values ofN , hence the limit is dropped. To avoid numerical
overflowswhen thematrix product is constructed, we use a QR decomposition scheme:
We start with the initial matrix MN(E)

TMN(E) = P T
1 P T

2 . . .P
T
NPN . . .P2P1. We

perform a QR decomposition of P1, i.e. P1 = Q
(1)
1 R

(1)
1 , so that MN(E)

TMN(E) =

P T
1 P T

2 . . .P
T
NPN . . .(P2Q

(1)
1 )R

(1)
1 . By consecutively performing QR decompositions

at PjQ
(1)
j−1, we arrive at MN(E)

TMN(E) = Q
(1)
2N

1∏
j=2N

R
(1)
j := Q(1)R(1). Hence, the

matrixR(1)Q(1) and the initial matrix are similar, i.e., they have the same eigenvalues.
By iterating this procedure, we arrive at a form R(k)Q(k), where Q(k) converges to

a unit matrix and R(k) =
1∏

j=2N

R
(k)
j , i.e., a product of upper triangular matrices with

positive diagonal entries in descending order. Hence, the eigenvalue Lν(E) is given
by the 1

2N
th power of the diagonal element of R(k), R(k)νν . The Lyapunov exponents

are thus

γν(E) =
1

2N

2N∑
j=1

ln[R(k)νν
j ]. (5.8)

In our case, where d = 1, the only exponent to be determined is γ1(E). The index 1
will be dropped below.
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Figure 5.7: Lyapunov exponents of various categories of DNA segments. (Top) Segments with 50% G
content: periodic (GA)m (red-dashed), TM (pink-filled), KOL (1, 2) (blue-dotted) and random (black-
filled). (Middle) Segments with more than 50% G content: F (61.82%, black-filled), RS (56.25%, pink-
filled), PD (67.19%, red-dashed) and random (56.25%, blue-dotted). (Bottom) Segments with less than
50% G content: KOL(1, 3) (40.00%, pink-dashed), CS (13.17%, black-filled), GCS(4, 2) (6.25%, red-
dashed) and two random (40.00% blue-dotted, 10.00% cyan-filled).

The Lyapunov exponents of all categories of periodic and deterministic aperiodic
DNA segments, for large N , are presented in Fig. 5.7, together with some sequences
with randomly rearranged base pairs. We have grouped together the segments accord-
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ing to the percentages of G and A they posses. Cases with similar G and A content
are depicted in Fig. 5.7(a), with dominant G content in Fig. 5.7(b) and with dominant
A content in Fig. 5.7(c). Segments grouped together have similar sizes where possible.

Starting with Fig. 5.7(a), we notice that the Lyapunov exponents follow the trend
of the autocorrelation functions; stronger correlations lead generally to less localized
states. Periodic (GA)m segments have vanishing exponents inside their bands; this is
a signature of the Bloch character of the wavefunctions. TM and KOL(1, 2) sequences
have non-vanishing exponents of similar magnitude. This similarity is direct conse-
quence of the similar base-pair triplet distribution those two categories possess (cf.
Fig. 5.1). The random sequence has generally much more localized states. As a gen-
eral remark, we notice that the Lyapunov exponents in the A energy region are rather
smaller than the ones in the G energy region.

The conclusion that segmentswith stronger correlations possess less localized states
is also evident from Fig. 5.7(b). Furthermore, the Lyapunov exponents of F and PD seg-
ments reach very small values in both base-pair energy regions, while those of RS and
random segments do not. F (PD) segments posses larger energy intervals of less lo-
calized states in the A (G) region than PD (F), while for RS and random segments the
exponents follow resembling trends. The dominance of smaller exponents in PD seg-
ments over F segments in the G region can be explained by the enhanced presence of
tGG (which is of large magnitude) in the former, induced by the occurrence of GGG
triplets (cf. Fig. 5.1).

In segments with dominant A content, which are depicted in Fig. 5.7(c), the Lya-
punov exponents in the A energy region are much smaller than those in the G region.
KOL(1, 3) segments posses less localized states than random ones with similar G con-
tent in their common allowed energy intervals. The more dominant A becomes, the
less (more) localized are the states in the A (G) region; this is the case for segments
CS, GCS(4, 2) and random sequences with similar G content. In these cases, there are
large A-rich regions within the segments, interrupted by Gs, which act like a disorder.
The more homogeneous regions the segments possess, the less localized their eigen-
states will be in the A energy region. Comparing these segments in Fig. 5.7(c), we can
see that, generally, as the percentage of G decreases, the exponents become smaller
in the A region; however, there are always energies at which the fractal sequences,
which possess stronger correlations, are more delocalized than the random one. The
very small percentage of G leads to highly localized states in the corresponding energy
interval.

5.4 Transmission coefficient
We connect the segments under examination to semi-infinite homogeneous metallic
leads, which act as carrier baths. The leads’ energy spectrum is given by the dispersion
relation E = EM + 2tM cos(qa), where EM is the on-site energy of the leads and tM
is the hopping integral between the leads’ sites. The coupling between the segment
and the left (right) lead is described by the effective parameters tL(R). We choose ϵm =
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Figure 5.8: Transmission coefficients of various categories of DNA segments. (Top) Segments with
50% G content: periodic (GA)m (red/dashed), TM (pink-filled), KOL (1, 2) (blue-dotted) and random
(black-filled). (Middle) Segments with more than 50% G content: F (61.82%, black-filled), RS (56.25%,
pink-filled), PD (67.19%, red-dashed) and random (56.25%, blue-dotted). (Bottom) Segments with less
than 50% G content: KOL(1, 3) (40.00%, pink-dotted), CS (13.17%, black-filled), GCS(4, 2) (6.25%, red-
dashed), and two random (40.00% blue- dotted, 10.00% cyan-filled).

(ϵA−T+ϵG−C)

2
= −8.15 eV and tM = −0.25 eV, so that all eigenstates of the systems

under examination are contained within the leads’ bandwidth. We also choose the
coupling parameters tL(R) to satisfy the ideal and symmetric coupling conditions, |ω| =
|χ| = 1, which have been shown in Chapter 3 to be the optimal coupling conditions
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for periodic segments.
In Fig. 5.8 we present the TC. At first glance, TC qualitatively follows the trend of

the Lyapunov exponents (cf. Fig. 5.7). The less localized the eigenstates are, the more
transparent the segments are to the incident waves at their energy region. Periodic
(GA)m segments display the most enhanced transmission, and reach the full transmis-
sion condition at specific energies (see Subsec. 3.4.1); this does not hold in general
for deterministic aperiodic and random segments. Furthermore, apart from periodic
(GA)m, F, and PD segments, transmission in the G energy region is from very small
to negligible. These categories, together with the Cantor Set family ones, display the
most enhanced transmission. TM and KOL(1, 2) sequences display some energies at
which transmission is rather significant. Deterministic aperiodic segments are more
transparent than random ones with similar base-pair content, with the exception of
RS, that generally follows the trend of its randomly redistributed counterpart. Finally,
we notice that the sequences shown in Fig. 5.8(c) have negligible transmission in the
G energy region. This is due to the small role tGG plays, since it rarely occurs within
the segments.

5.5 Current-Voltage Curves
We apply a symmetric constant bias voltage Vb between the leads, so that their chemi-
cal potential takes the form µL

R
= EM± Vb

2
. Then, a linear voltage drop within the DNA

segment is induced and the transmission coefficient becomes bias-dependent. The
energy regime between the leads’ chemical potentials defines the conductance chan-
nel. The electrical current at zero temperature can be computed using the Landauer-
Büttiker formalism [109, 224, 226] as

I(V ) =
2e

h

EM+
Vb
2∫

EM−Vb
2

T (E, Vb) dE, (5.9)

since the Fermi-Dirac distributions, f(EM ± Vb

2
), are Heaviside step-functions [cf.

Eq. (4.10)]. The factor 2 in Eq. (5.9) comes from the double spin-degeneracy of each
electronic level.

Again, we choose the coupling parameters to satisfy the ideal and symmetric cou-
pling conditions, |ω| = |χ| = 1. We set the leads hopping integral tM = −0.5 eV to
ensure that the leads’ bands are wide enough to capture the whole picture. The choice
of the leads Fermi level, EM , plays a major role in both the shape of the I − V curves
and the magnitude of the currents. This is demonstrated in Fig. 5.9, where the I − V
curve of a periodic (GA)16 segment is determined as a function of EM . It is evident
that larger currents (∼ 0.1 µA) occur at small biases when EM lies within the bands
of the segment. When this is not the case, voltage thresholds appear, and the (smaller
in magnitude) turn-on currents emerge at biases that increase in a linear fashion with
changingEM . The magnitude of the currents becomes gradually smaller asEM moves
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further away from the segments’ bands, and is negligible when EM lies well outside
the bands. Finally, we should mention that the I − V curves are symmetric with re-
spect to the difference betweenEM and (ϵA−T+ϵG−C)

2
. The abovementioned conclusions

hold also qualitatively for segments consisting of identical monomers with crosswise
purines, such as (GC)m, where only one on-site energy (ϵG−C) is involved, with the
difference that the curves are symmetric with respect to the difference between EM

and ϵG−C .
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Figure 5.9: The role of the leads’ Fermi level, EM , to the I − V curve of a (GA)16 segment. The vertical
dotted lines encompass the bands of the segment.

Given the previous discussion and Fig. 5.9, we chose to study the I − V curves
of all segments for two values of EM , specifically −7.95 eV and −8.35 eV (i.e. at the
center of the periodic segment’s bands), to capture both G and A energy regions. In
the following, we will only present curves the currents of which reach the pA regime.
Our results are depicted in Figs. 5.10 and 5.11, for EM = −8.35 eV and EM = −7.95
eV, respectively.

From Fig 5.10(a), it is evident that periodic segments can carry significantly larger
currents (∼ 0.1µA) than other categories. The deterministic aperiodic TM andKOL(1, 2)
segments display quite smaller currents than the periodic ones, of similar magnitude
(∼ 1 nA), but with clearly distinct shapes. The similarity of current magnitudes be-
tween TM and KOL(1, 2) segments is in accordance with the similarity in the values
of the Lyapunov exponents and zero-bias transmission coefficient for these cases, cf.
Figs. 5.7(a) and 5.8(a), respectively. The random segment displays significantly smaller
currents compared to the rest categories, reaching ∼ 10 pA.

As far as segments with dominant G content are concerned, we can see in Fig.
5.10(b) that F and PD segments can carry significantly larger currents than the RS and
random ones. This is again in accordance with the magnitude of the Lyapunov expo-
nents and the transmission coefficients for these cases, cf. Figs. 5.7(b) and 5.8(b). In
the A energy region, there is a larger energy range in which F segments display less
localized states and higher transmission than PD ones. This is fact is reflected on the
magnitude of the currents (∼ 1 nA for F, ∼ 0.1 nA for PD). RS and random segments
display currents in the ∼ 10 pA regime, but their curves have different shapes.



90 CHAPTER 5. PERIODIC, DETERMINISTIC APERIODIC, AND RANDOM BINARY DNA SEGMENTS

-0.2 -0.1 0 0.1 0.2

-2

0

2

I
(A

)

×10 -7

-0.2 -0.1 0 0.1 0.2
-2

0

2
×10 -9

-0.2 -0.1 0 0.1 0.2
-2

0

2
×10 -9

-0.2 -0.1 0 0.1 0.2

V (V)

-8

-4

0

4

8
×10 -11

(GA)16

Random

(a)

TM5

KOL9(1, 2)

-0.2 -0.1 0 0.1 0.2
-10

-5
0
5

10

-0.2 -0.1 0 0.1 0.2
-1

0

1
×10 -9

-0.2 -0.1 0 0.1 0.2
-8
-4
0
4
8

I
(A

)

×10 -11

-0.2 -0.1 0 0.1 0.2
V (V)

-8
-4
0
4
8
×10 -11

Random

(b)

F9 PD5

RS4

×10 -9

-0.2 -0.1 0 0.1 0.2
-1

-0.5

0

0.5

1
×10 -11

-0.2 -0.1 0 0.1 0.2
-1

0

1
×10 -9

-0.2 -0.1 0 0.1 0.2
-4

-2

0

2

4
×10 -8

-0.2 -0.1 0 0.1 0.2
-4

-2

0

2

4
×10 -9

-0.2 -0.1 0 0.1 0.2
V (V)

-1

0

1
×10 -8

-0.2 -0.1 0 0.1 0.2
-1

-0.5
0

0.5
1I

(A
)

×10 -12

(c)

KOL6(1, 3)

CS3 GCS3(4, 2)

Random1 Random2 Random3

Figure 5.10: I − V curves of various categories of DNA segments for EM = −8.35 eV. Categories as
in Figs. 5.7 and 5.8. (a) Periodic (GA)m, TM, KOL (1, 2) segments and a random segment with similar G
content. (b) F, PD, RS segments, and a random segment with similar G content. (c) (top) KOL(1, 3), CS,
GCS(4, 2) segments. (Bottom) Random rearrangements of KOL(1, 3), CS, GCS(4, 2) segments, respec-
tively.
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Sequences with dominant A content are depicted in Fig. 5.10(c). KOL(1, 3) se-
quences display rather small currents, that hardly reach 10 pA, due to the fact that the
hopping integral with the largest occurrence percentage, i.e. tAA, is of rather small
value. Albeit their small magnitude, the currents of KOL(1, 3) sequences are larger
than of their random rearrangement, which hardly reach 1 pA. In Cantor set family
sequences, A content is much larger than G content, leading to large parts of the seg-
ment being essentially homogeneous. Hence, although tAA has a small value, rather
large currents occur (∼ 10 nA for CS,∼ 1 nA for GCS(4, 2)). In this class of sequences,
G, which, due to its small presence acts as a disorder in an otherwise homogeneous
segment, is gathered in specific regions. Therefore, the currents they display are about
one order of magnitude larger than their random rearrangements (∼ 1 nA and ∼ 10
nA, respectively).
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Figure 5.11: I − V curves of various categories of DNA segments for EM = −7.95 eV.

As discussed in previous Sections, in the G energy region the eigenstates of most
segment categories are highly localized and display very small or negligible transmis-
sion. This, for EM = −7.95 eV, leads to currents that lie well below the pA regime.
The only cases that do not follow this trend are the periodic, F, and PD segments, the
I − V curves of which are depicted in Fig. 5.11. The periodic segments curve in this
case is identical to the one for EM = −8.35 eV, due to the symmetry of the I − V

curves with respect to the difference between EM and (ϵA−T+ϵG−C)

2
, cf. Fig. 5.9. The

rest two cases display energy intervals in the G region for which less localized states
and enhanced transmission occur, as shown in previous Sections. Close to EM , the
interval for F segments is much smaller than the one for PD segments, leading to a
great difference in the current magnitudes between the two cases: a single spike of
∼ 100 pA for F segments, currents in the∼ 10 nA regime for PD segments. This is due
to the presence of GGG triplets in PD segments, which leads to enhanced presence of
tGG (the magnitude of which is large), compared to F segments, cf. Fig 5.2(c)-(d).
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5.6 Effect of parameters

It is common in the literature that all hopping parameters between different moieties
are considered equal, for simplicity. Let us provide some example results occurring for
identical hopping parameters, with reference to the Lyapunov exponents: In this case,
F segments posses more delocalized states in the G region (results not presented here),
in contrast with the discussion of Fig. 5.7(b). Additionally, for all studied sequences,
if we take equal hopping parameters, the act of substituting G with A and vice versa
leads to a mere reflection of γ(E) relative to the mean value of the on-site energies,
(ϵA−T+ϵG−C)

2
(results not presented here). This is not the case when different hopping

parameters are considered. Their relative presence and magnitude can lead to signifi-
cant differences in the electronic properties. Another example is the TM sequence. If
we equalize all hopping parameters, the Lyapunov exponent is also symmetric relative
to (ϵA−T+ϵG−C)

2
(results not presented here), a scenario that does not hold for differ-

ent hopping parameters, cf. Fig. 5.7(a). Of course, the inclusion of different hopping
parameters plays significant role not only in the Lyapunov exponents, but also in all
properties that are determined by the electronic structure, such as the transmission co-
efficient and the I − V curves. To conclude, besides the fact that, in terms of chemical
complexity, taking identical hopping parameters is unrealistic, our treatment reveals
that considering different hopping parameters leads to a better understanding of the
interplay between sequence intricacy and transport properties, both quantitatively and
qualitatively.

Furthermore, as far as transport properties are concerned, different results occur
for different parameter values. For example, we have been able to reproduce the results
reported for the transmission coefficients in Refs. [73, 180, 245], and for the I−V curves
in Ref. [180], using the corresponding parametrizations, which are different from the
S parametrization used here (all with equal hopping integrals). Different shapes as
well as current-voltage regimes can be obtained, if the parameters are modified. For
example, in Ref. [13] where microRNA chains are studied, taking different hopping in-
tegrals between nucleotides but of significantly larger magnitude than the ones used
here, the authors report currents in the nA regime for voltages up to 16 V.These curves
have been reproduced as well. The difference in the current-voltage regimes can also
be seen be comparing the I − V curves of the homogeneous (G)m and (A)m segments
(Fig.5.12), which, due to their sequential simplicity, represent the most efficient cases
for charge transport. The curves have been calculated for EM = ϵG−C (ϵA−T ) for the
former (latter) case, i.e., in the center of the bands, with tM = −0.5 eV, and ideal and
symmetric coupling conditions. Since the leads are aligned with the band centers, the
only defining factor of the current-voltage regime is the value of the hopping param-
eter tGG (tAA). Since tGG > tAA, (G)m segments display greater currents than (A)m
segments (∼ 10 µA vs. ∼ 1 µA) and lie in a larger bias regime. Generally, increasing
the value of the hopping parameter results in increase of both the current magnitude
and the voltage regime, until the states of the segment reach the bandwidth of the
leads. For both I − V curves, the conductance at zero bias is equal to the quantum of
conductance, i.e., ∂I

∂V

∣∣
V=0

= G0 =
2e2

h
≈ 7.748×10−5 S.
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Figure 5.12: I − V curves of (G)32 and (A)32 segments.

As discussed in Sec. 5.5 (cf. Fig. 5.9), the occurrence of voltage gaps in the I − V
curves depends on the relative position of the Fermi level of the leads and the eigenen-
ergies of the segments. For example, a typical semiconducting I-V curve occurs for
(G)30 segments, if we set EM − ϵG−C = 0.3 eV (i.e. for EM lying outside the band
of the segment), with a voltage gap of ≈ 0.7 V and currents ∼ 1 nA. This is in ac-
cordance with the experimental I-V curves reported for the same system in Ref. [20],
where the authors also attribute the voltage gap to the offset between the Fermi level
of the electrode and the energy levels of the (G)30 segment.

5.7 Conclusion
We comparatively studied periodic, deterministic aperiodic, and random binary DNA
sequences within the framework of the WM. We used B-DNA and as a prototype sys-
tem and the binary alphabet {G,A}. All segments had their purines on the same strand.
We gained a better understanding of the interplay between the intricacy of the seg-
ments and their spectral, localization and charge transport properties. We took differ-
ences in hopping parameters between successive monomers into account. This led to a
more realistic evaluation of the role the sequence intricacy plays in the aforementioned
properties.

We determined the number and occurrence percentage of all possible base-pair
triplets that can be found within these segments, as well as their autocorrelation func-
tions. Our results showed that there is a relation between the number of possible
triplets, the existence of dominant triplets and the strength of correlations.

We calculated the eigenenergies, the DOS, and the IDOS. The allowed eigenen-
ergies of all studied deterministic aperiodic segments lie within the interval defined
by the eigenspectrum of random sequences. In all deterministic aperiodic segments,
either if a substitution matrix can be defined or not, there exist energy steps in the rel-
ative normalized IDOS, equal to the occurrence percentages of the possible monomer
triplets. This observation establishes a clear relation between the sequence intricacy
and the spectral properties.

Furthermore, we calculated the Lyapunov exponents and showed that the sequence
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intricacy, the relative presence of each monomer, and the values of the TB parameters
play major role in the degree of eigenstates localization. Generally, sequences with
strong correlations posses less localized states.

Next, we connected the segments to semi-infinite homogeneous leads and studied
the zero-bias TC, reaching similar conclusions regarding their transparency to incident
carriers.

We also studied the I − V characteristics of the segments, using the Landauer-
Büttiker formalism. We showed that the shape of the curves and the magnitude of
the currents strongly depends on the leads’ on-site energy (Fermi level). The current-
voltage characteristics were calculated for two values of the latter, corresponding to
positions that catch the energy regions of interest. For the parametrization used, we
found that periodic binary segments can carry currents in the µA regime. Several de-
terministic aperiodic segments (specifically, Fibonacci, Period-doubling, Cantor and
generalized Cantor) can also display rather large currents, namely in the nA regime,
depending on the Fermi level of the leads. Random sequences hold the smallest cur-
rents, in accordance with the weak correlations they posses.

Finally, the I − V curves of the homogeneous (G)m and (A)m segments, due to
their sequential simplicity, represent the most efficient cases for charge transport with
conductance at zero bias equal to the quantum of conductance. Typical semiconduct-
ing I − V curves occur for these segments when there is a mismatch between their
eigenstates and Fermi level of the leads, in accordance with experimental results.
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6
The time-dependent problem

In this Chapter, we briefly present the theoretical framework of unbiased coherent
transfer of an extra charge carrier initially inserted (e.g. by oxidation or reduction
for holes or electrons, respectively) in one-dimensional molecular wires modeled with
TB, as well as the physical quantities studied in the rest of this part of the present
PhD thesis, which are employed to study short DNA segments (monomers, dimers,
and trimers), several classes of periodic DNA polymers, and deterministic aperiodic
and random DNA polymers. We assume that an extra hole moves through HOMOs,
while an extra electron moves through LUMOs.

To describe the spatiotemporal evolution of an extra carrier created at a particular
site of the polymer, we consider the state of the polymer, |Ψn(t)⟩, as a linear combi-
nation of the monomer’s states with time dependent coefficients, i.e.,

|Ψ(t)⟩ =
N∑

n=1

|n⟩ Ψ⃗n(t), (6.1)

where

Ψ⃗n(t) =


ψ1
n(t)

ψ2
n(t)
...

ψL
n (t)

 . (6.2)

ψl
n(t) is the probability amplitude to find the carrier at the lth chain of thenthmonomer

at time t. Plugging Eq. (6.1) and the TB Hamiltonian of Eq. (2.16) into the time-
dependent Schrödinger equation

ih̄
∂

∂t
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ , (6.3)

97
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we arrive at a system of N × L (:= M) coupled differential matrix equations of the
form

ih̄
dΨ⃗n(t)

dt = ϵnΨ⃗n + τ T
n−1Ψ⃗n−1 + τnΨ⃗n+1, (6.4)

i.e., the time-dependent TB system of equations. Eq. (6.4) is equivalent to a 1st order
matrix differential equation of the form

dΨ⃗(t)

dt = − i

h̄
HΨ⃗(t), (6.5)

where Ψ⃗(t) is a vectormatrix composed of the vector-coefficients Ψ⃗n(t), n = 1, 2, . . . , N ,
or, alternatively, the coefficients ψl

n(t) := ψµ(t), µ = 1, 2, . . . ,M , with the indices
µ, n, l being connected via the relation

µ = L(n− 1) + l. (6.6)

This indexing will be used in the following. Eq. (6.5) can be solved with the eigenvalue
method, i.e., by looking for solutions of the form

Ψ⃗(t) = Ψ⃗e−
i
h̄
Et ⇒ dΨ⃗(t)

dt = − i

h̄
EΨ⃗e−

i
h̄
Et. (6.7)

Hence, Eq. (6.5) leads to the eigenvalue problem of Eq. (2.26), that is, HΨ⃗ = EΨ⃗.
Having determined the eigenvalues and eigenvectors of H , the general solution of
Eq. (6.5) is

Ψ⃗(t) =
M∑
k=1

ckψke
− i

h̄
Ekt. (6.8)

In other words, the coefficients Ψµ(t), µ = 1, 2, . . . ,M are given by a superposition
of the time evolution of the stationary states with time-independent coefficients ck.
Hence, this is a coherent phenomenon. The coefficients ck are determined from the
initial conditions. In particular, if we define theM ×Meigenvector matrix V , with el-
ements ψµk, then it can be shown that the vector matrix c⃗, composed of the coefficients
ck, k = 1, 2, . . . ,M , is given by the expression

c⃗ = V T Ψ⃗(0). (6.9)

Suppose that initially the extra carrier is placed at the λth site, i.e.,Ψλ(0) = 1,Ψµ(0) =
0, ∀µ ̸= λ. Then,

c⃗ =


ψλ1
...
ψλk
...

ψλN

 . (6.10)

In other words, the coefficients ck are given by the row of the eigenvector matrix which
corresponds to the monomer the carrier is initially placed at.



6.1. PHYSICAL QUANTITIES 99

We also mention that changing the view of a polymer from one (e.g., top) to the
other (e.g., bottom) side of the growth axis, reflects the Hamiltonian matrix H of
the polymer on its main antidiagonal. This reflected Hamiltonian, Hequiv, describes
the equivalent polymer. H and Hequiv are connected by the similarity transformation
Hequiv = J−1HJ , whereJ(= J−1) is the unit antidiagonal matrix of orderM . There-
fore, H and Hequiv have identical eigenspectra (hence the equivalent polymers’ DOS
is identical) and their eigenvectors are connected by ψµk = ψ

equiv
(N−µ+1)k. Generally,

equiv(YX…Z) = Zcompl . . .YcomplXcompl, (6.11)

where, e.g., Xcompl denotes the complementary base of X.

6.1 Physical Quantities
FromEq. (6.8), it follows that the probability to find the extra carrier at theµthmonomer
is

|Ψµ(t)|2 =
M∑
k=1

c2kψ
2
µk + 2

M∑
k=1

M∑
k′=1
k′<k

ckck′ψµkψµk′ cos(2πfkk′t), (6.12)

where
fkk′ =

1

Tkk′
=
Ek − Ek′

h
, ∀k > k′ (6.13)

are the frequencies (fkk′) or periods (Tkk′) involved in charge transfer. If there are no
degenerate eigenenergies (which holds for all cases studied in this part of this PhD
thesis) then the number of different fkk′ or Tkk′ involved in carrier transfer is S =(
M
2

)
= M !

2!(M−2)!
= M(M−1)

2
. If eigenenergies are symmetric relative to some central

value, then S decreases (there exist degenerate fkk′ or Tkk′). Specifically, in that case,
S = M2

4
, for evenM and S = M2−1

4
for oddM .

From Eq. (6.12), in the absence of degeneracy and for real ck, ψµk, it follows that
the mean over time probability to find the extra carrier at the µ-th monomer is

〈
|Ψµ(t)|2

〉
=

M∑
k=1

c2kψ
2
µk. (6.14)

In the following Chapters, we will deal with fixed boundaries, for which the above
equation always holds.

Furthermore, from Eq. (6.12), it can be shown that the one-sided Fourier amplitude
spectrum that corresponds to the probability |Ψµ(t)|2 is given by

|Fµ(f)| =
M∑
k=1

c2kψ
2
µkδ(f) + 2

M∑
k=1

M∑
k′=1
k′<k

|ckck′ψµkψµk′ |δ(f − fkk′). (6.15)
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Hence, the Fourier amplitude of frequency fkk′ is 2|ckvµkck′vµk′ |. We can further
define the weighted mean frequency (WMF) of monomer µ as

fµ
WM =

M∑
k=1

M∑
k′=1
k′<k

|ckψµkck′ψµk′ |fkk′

N∑
k=1

M∑
k′=1
k′<k

|ckψµkck′ψµk′ |
. (6.16)

WMF expresses themean frequency content of the extra carrier oscillation at monomer
µ. Having determined the WMF for all monomers, we can now obtain a measure of
the overall frequency content of carrier oscillations in the polymer: Since fµ

WM is the
weighted mean frequency of monomer µ and ⟨|Ψµ(t)|2⟩ is the mean probability of
finding the extra carrier at monomer µ, we define the total weighted mean frequency
(TWMF) as

fTWM =
M∑
µ=1

fµ
WM

〈
|Ψµ(t)|2

〉
. (6.17)

A quantity that evaluates simultaneously the magnitude of coherent charge trans-
fer and the time scale of the phenomenon is the pure mean transfer rate [55]

kλµ =

〈
|Ψµ(t)|2

〉
tλµ

. (6.18)

tλµ is the mean transfer time, i.e., having placed the carrier initially at monomer λ,
the time it takes for the probability to find the extra carrier at monomer µ, |Cµ(t)|2,
to become equal to its mean value,

〈
|Ψµ(t)|2

〉
, for the first time. For the pure mean

transfer rates,

kλµ = kµλ =

k
equiv
(N−λ+1)(N−µ+1) = k

equiv
(N−µ+1)(N−λ+1), (6.19)

where the superscript “equiv” refers to the equivalent polymer in the sense of Eq.(6.11).



7
Short DNA segments:

monomers, dimers, and trimers

In this Chapter, we recruit the formulation presented in Chapter 6 to comparatively
study extra electron or hole oscillations in DNA monomers (single base pairs), dimers
(two base-pair sequences), and trimers (three base-pair sequences) within two vari-
ants of the TB model, i.e., the WM and the ELM⁷. We also compare aspects our TB
results with RT-TDDFT⁸. As previously, we denote the segments using only the 5′− 3′

strand, while the other one is implied. Themean over time probability, to find the extra
carrier at a specific base (base pair) within the WM (ELM) is denoted with ⟨|An(t)|2⟩
(⟨|An(t)|2⟩ for the 1st, 5′ − 3′, strand or ⟨|Bn(t)|2⟩ for the 2nd, 3′ − 5′, strand), with
n = 1, 2, . . . , N ; cf. Eqs. (6.12), (6.14), (6.6).

7.1 Monomers
The WM cannot be used for charge transfer in monomers, since it considers a base
pair as a single site. Hence, we use only the ELM, supposing that initially we place the
carrier at one of the bases. A snapshot of electron oscillations between G and C in the
base pair G-C, according to the HKS parametrization (see Table. A.2 in Appendix A),
is given in Fig. 7.1.

⁷The content of Secs. 7.1, 7.2, and 7.3, as well as of Appendix B can be found published in Ref. [57]:
K. Lambropoulos, K. Kaklamanis, A. Morphis, M. Tassi, R. Lopp, G. Georgiadis, M. Theodorakou, M.
Chatzieleftheriou, and C. Simserides, “Wire and extended ladder model predict THz oscillations in DNA
monomers, dimers and trimers”, J. Phys. Condens. Matter 28, 595101 (2016). © 2016 IOP Publishing. All
rights reserved.

⁸The content of Sec. 7.4 can be found published in Ref. [66], under CC BY 4.0, where more results
and computational details are included.
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Figure 7.1: Electron oscillations within G-C, within the ELM and with the HKS parametrization.

It can be proven that an extra hole or electron oscillates between the bases of the
two possible monomers (G-C and A-T) with frequency (or period)

f =
1

T
=

√
(2t)2 +∆2

h
, (7.1)

where t is the hopping integral between the complementary bases and∆ is the energy
offset between the on-site energies of the complementary bases. Our results for A-T
and G-C, both for holes and electrons, are shown in Fig. 7.2, with the HKS parametriza-
tion (Table A.2) as well as a parametrization taken from Ref. [68] (“MA parametriza-
tion”). For the HKS parametrization, f ≈ 50-200 THz (T ≈ 5-20 fs), while for MA
parametrization, f ≈ 250-550 THz (T ≈ 2-4 fs). These ranges correspond to wave-
lengths≈ 545 nm - 6000 nm i.e. from visible to near-infrared and mid-infrared⁹. It can
also be proven that the maximum transfer percentage p [e.g., max (|B1(t)|2) for initial
conditions A1(0) = 1, B1(0) = 0, or vice versa], is given by

p =
(2t)2

(2t)2 +∆2
. (7.2)

We observe that the carrier is not very likely to be transferred between the monomer
bases (p is very small in all cases). The pure maximum transfer rate defined as pf is
also here very small in all cases. The pure mean transfer rate k is also shown. It can
be analytically proven and numerically shown that here k = 2pf . T , f , p, pf and k do
not depend on which base the carrier is initially placed at.

DNA base pairs within the ELM are two-level system of given stationary states
(the two HOMOs or the two LUMOs) with a “perturbation” represented by the hop-
ping integral, which impels an extra carrier to oscillate between these stationary states.
Mathematically, the problem is equivalent to a two-level system (e.g. atom) under the

⁹ISO 20473 specifies: Near-Infrared (NIR) 0.78− 3 μm, Mid-Infrared (MIR) 3− 50 μm, Far-Infrared
(FIR) 50− 1000 μm
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Figure 7.2: Charge oscillations in A-T and G-C base pairs within the ELM: period T , frequency f ,
maximum transfer percentage p, pure maximum transfer rate pf and pure mean transfer rate k. 1st
row: HKS parametrization. 2nd row: MA parametrization.

influence of an electric field, which impels an electron to oscillate between the two
eigenstates [semiclassical approach after Rotating Wave Approximation or the time-
dependent problem with a Jaynes-Cummings Hamiltonian in a full quantummechani-
cal approach]. These problems are well known in the context of quantum optics [246].
The same applies to the dimer problem within the WM, which is discussed below.

7.2 Dimers
The possible dimers result from the combination by two of the four bases, since at
the base located in the 5′ − 3′ strand always corresponds its complementary base.
The number of possible combinations of four nitrogenous bases elements by two is
ap = 16. However, six of them are equivalent to other six i.e. GG≡CC, AA≡TT,
AG≡CT, AC≡GT, TG≡CA, TC≡GA; cf. Eq. (6.11). Hence, the possible dimers are 10.

Within the WM, it has been shown that carrier movement in all dimers is strictly
periodic [55, 247, 248]. The frequencies (or periods) are given by Eq. (6.13), where,
now t is the hopping integral between the base pairs and∆ is the energy gap between
the on-site energies of the base pairs. Using the the S parametrization (Table A.1), we
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found [55, 247, 248] f ≈ 0.25-100 THz, i.e. T ≈ 10-4000 fs, i.e. wavelengths≈ 3−1200
μm, in other words mainly in the MIR and the FIR range. We also found that the
maximum transfer percentage p = 1 for dimers made of identical monomers, but p < 1
for dimers made of different monomers and that the values of f, T, p, pf, k do not
depend on which of the two monomers the carrier is initially placed at. Using the
HKS parametrization (Table A.1) results in the same frequency range, although, the
predicted frequencies vary slightly due to the different values of the TB parameters. A
summarizing graph is given in Fig. 7.3.
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Figure 7.3: Charge oscillations in all possible DNA dimers within the WM and with the HKS
parametrization: period T , frequency f , maximum transfer percentage p, pure maximum transfer rate
pf and pure mean transfer rate k. It can be analytically proven and numerically shown that here
k = 2pf .

Within the ELM, examples of snapshots of hole oscillations in GG, GC and CT
dimers, using the HKS parametrization (Table A.2), are given in Fig. 7.4. Here, one
cannot strictly determine periodicity in the carrier movement between the four bases,
since there are more than one frequencies involved in charge transfer, hence f , T , p
and pf cannot strictly be defined in the way they are within the WM.

Both TB models allow to determine the mean over time probability to find the
carrier at a site (base pair for the WM or base for the ELM). A comparison between
the mean probabilities obtained with the two TB models is shown in Fig. 7.5, using the
HKS parametrization (Tables A.1, A.2). Comparing the two TB approaches, we reach
the following conclusions: (a) Carrier transfer is large in dimers made of identical
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Figure 7.4: From top to bottom: Hole oscillations within the GG dimer, the GC dimer and the CT dimer,
according within the ELM and with the HKS parametrization. Continuous black (dashed red) lines
correspond to the 1st (2nd) base pair.

monomers: the carrier is shared between the twomonomers which make up the dimer.
(b) For dimers made of identical monomers, if purines are crosswise to purines, the
carrier changes strand (from strand 1 to strand 2 or vice versa), while if purines are on
the same strand, the carrier is transferred through the strand it was initially placed at.
(c) For dimers made of different monomers, the carrier is transferred mainly through
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the strand it was initially placed at. Transfer is very small; the carrier basically remains
in the base it was initially placed at, while a small percentage passes to the other base
of the same strand.
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Figure 7.5: Mean over time probabilities to find an extra carrier [hole (1st row) or electron (2nd row)] at
each site of a DNA dimer, as determined within the WM (left column) and and the ELM (right column),
using the HKS parametrization. In the former, the carrier is initially placed at the 1st monomer, while,
in the latter, it is initially placed at the base of the 1st monomer that belongs to the 1st strand.

Let us now compare the two TB models with respect to the frequency content. As
mentioned above, within the ELM, but Fourier analysis using Eq. (6.15) shows similar
frequency content in the THz domain. The Fourier spectra of three representative
examples of DNA dimers, using the ELM andwith the HKS parametrization (Table A.2)
are depicted in Appendix B, Figs. B.1, B.2, B.3.

We start with GG, a dimer made of identical monomers with purines on purines
(Fig. B.1). If we initially place the hole at A1(G) or A2(G), we obtain the main Fourier
amplitude at f ≈ 30 THz. If we initially place the hole at B1 (C) or B2 (C), we obtain
the main Fourier amplitude at f ≈ 32 THz. The rest of the frequencies show up with
almost negligible amplitudes. These results are in accordance with the WM and HKS
parametrization, where for the GG dimer we obtain f ≈ 30 THz. Within the WM and
with the S parametrization we had obtained f ≈ 48 THz [55, 247]. The amplitudes at
the main frequencies are ≈ 0.5, expressing the fact that for GG the mean probability
to find the hole at a base is almost exclusively equally divided between the base the
carrier was initially placed at and the other base of the same strand, cf. also Fig. 7.5.
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We continue with GC, a dimer made of identical monomers with crosswise purines
(Fig. B.2). If we initially place the hole at A1(G) or B2(G), we obtain the main Fourier
amplitude at f ≈ 0.3 THz. If we initially place the hole at B1 (C) or A2 (C), we obtain
the main Fourier amplitude peak at f ≈ 1.6 THz. The rest of the frequencies show
up with almost negligible amplitudes. These results are in accordance with the WM
and HKS parametrization, where for the GC dimer we obtain f ≈ 0.5 THz. Within
the WM and with the S parametrization we had obtained f ≈ 4.8 THz [55, 247]. The
amplitudes at the main frequencies are≈ 0.5, expressing the fact that for GC the mean
probability to find the hole at a base is, approximately, almost exclusively, equally
divided between the base the carrier was initially placed at and the diagonally located
base at the opposite strand, cf. also Fig. 7.5.

We finish with CT, a dimermade of different monomers (Fig. B.3). Themain Fourier
amplitude is at f ≈ 70.75 THz, if the hole is initially placed at C or T, otherwise hole
transfer is negligibly small. Within the WM and HKS parametrization, for the CT
dimer we obtain f ≈ 72.5 THz. Within the WM and with the S parametrization we
had obtained f ≈ 74 THz [55, 247]. The amplitudes at the main frequencies are≈ 0.25,
when the hole is initially placed at C or T and tiny when the hole is initially placed at
G or A, expressing the fact that for CT the mean probability to find the hole at a base
is approximately 0.75 at the base the carrier was initially placed at and approximately
0.25 at the other base of the same strandwhen these bases are C and T, but, hole transfer
is negligibly small when the hole is initially placed at G or A.

Generally, a careful inspection in Figs. B.1, B.2 and B.3 shows that the Fourier anal-
ysis confirms conclusions (a),(b),(c).

We now turn our discussion to carrier puremean transfer rates kλµ, within the ELM
andwith theHKS parametrization (Table A.2). Our results are presented in Fig. 7.6. The
specific values of kλµ depend, of course, on the TB hopping parameters used [249]. For
dimers made of identical monomers with purine on purine (GG≡CC, AA≡TT), hole
transfer is almost entirely of intrastrand character i.e. it is along the 5′-3′ or 3′-5′ direc-
tions. Moreover, since k13 and k24 satisfy Eq. (6.18), in Fig. 7.6 we observe a symmetry
in the alternation of colors for the couples of equivalent dimers GG≡CC and AA≡TT.
For dimersmade of identical monomerswith crosswise purines (CG, GC, TA, AT), there
is significant diagonal hole transfer, and furthermore, for CG and TA the stronger hole
transfer is along the 3′-3′ direction. For dimers made of different monomers (AG≡CT,
AC≡GT, TG≡CA, TC≡GA), hole transfer is almost exclusively of intrastrand character
i.e. along the 5′-3′ or 3′-5′ directions; since k13 and k24 satisfy Eq. (6.18), we observe the
same symmetry in the alternation of colors. For the couple TG≡CA, although k13 and
k24 are the biggest among all other kλµ, they are very small. Electron transfer in dimers
made of identical monomers with purine on purine (GG≡CC, AA≡TT) is qualitatively
similar to hole transfer in such dimers. For dimers made of identical monomers with
crosswise purines (GC, CG, AT, TA), electron transfer is slightly different than hole
transfer, in the sense that diagonal channels are important but are not, quantitatively,
identically important. Electron transfer in dimers made of different monomers has
a significant intrastrand character, but there is also intra-base-pair character in some
cases. For the same reasons described above, we observe symmetry in color alternation
for kij of equivalent dimers.
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Figure 7.6: Puremean transfer rates kλµ between bases λ and µ either for HOMO (hole transfer, 1st row)
or for LUMO (electron transfer, 2nd row), for all dimers, within the ELM and with HKS parametrization.
The 1st column corresponds to dimers made of identical monomers and the 2nd column to dimers made
of different monomers.

7.3 Trimers
We compare the WM and the ELM for trimers made of identical monomers. Within
the WM, we have shown [55, 247] that these trimers an extra carrier oscillates strictly
periodically with

f =
1

T
=

√
t2 + t′2

h
, (7.3)

where t, t′ are the hopping integrals between the base pairs (when all purines are on
the same strand, t = t′). Using the S parametrization (Table A.1), we found f ≈ 0.5-33
THz (T ≈ 30-2000 fs) [247]; using the HKS parametrization (Table A.1), we find f ≈
0.5-21 THz (T ≈ 48-2000 fs). In other words, for trimers made of identical monomers,
the frequency range is narrower than for dimers. For 0 times crosswise purines, the
maximum transfer percentage p = 1, while for 1 or 2 times crosswise purines p < 1
[55, 247]. For trimers made of different monomers, carrier movement is not strictly
periodic within the WM. Generally, increasing the number of monomers above three,
the system becomes more complex and periodicity is lost [247]; even in the simplest
cases, e.g. tetramers made of identical monomers with all the purines on the same
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strand, there is no periodicity [248]. Within the ELM, as in dimers, strict periodicity
cannot be determined for any trimer, hence T, f, p, and pf cannot be defined.

The mean probabilities to find an extra carrier at a base and the mean transfer rates
in GGG and AAA, within the ELM and with the HKS parametrization (Table A.1), are
shown in Fig. 7.7. Remarkably, the probabilities to find the carrier at each base pair are
either≈ 0.375, 0.25, 0.375 or≈ 0.25, 0.5, 0.25 depending on the initial placement of the
carrier, in agreement with the rules we have established in Ref. [56] for the WM.
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Figure 7.7: Mean over time probabilities to find the carrier at each base of GGG and AAA trimers after
having placed it initially at a particular base, within the ELM and with the HKS parametrization. 100000
means that the carrier was initially placed at base A1, 010000 at base B1, etc.

The Fourier spectra show that the two models predict similar frequency content.
Specific examples of Fourier spectra for oscillations in trimers within the ELM and
with the HKS parametrization are presented in Appendix B, for three representative
categories; made of identical monomers with no crosswise purines, i.e., GGG, Fig. B.4,
made of identical monomers with crosswise purines, i.e., GCG, and made of different
monomers with and without crosswise purines, i.e., CAC and CTC, Fig. B.5. For hole
transfer in GGG, within the WM and with the S parametrization we found f ≈ 34.2
THz [55, 247], with the HKS parametrization, we find f ≈ 21.2 THz. This is in re-
markable agreement with the frequencies obtained by Fourier Transform, within the
ELM and with the HKS parametrization shown in Fig. B.4. Specifically, e.g. for initial
placement of the hole at base A1(G), the main frequencies are around 21.2 THz (a dou-
ble peak) and 42.4 THz (a single peak), while, e.g. for initial placement of the hole at
base B1(C), the main frequencies are around 22.5 THz (a double peak) and 45 THz (a
single peak). In other words, for hole transfer in GGG, with the HKS parametrization,
the period predicted by the WM agrees with the approximate period predicted by the
ELM.

The pure mean transfer rates kλµ (Fig. 7.8) confirm the intrastrand character of
charge transfer in GGG and AAA. For hole transfer in GCG, with the HKS parametriza-
tion, the two models give similar results, indicating rather weak transfer. For example,
placing the hole initially at the first base pair (within the WM) or placing the hole ini-
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tially at the first base (within the ELM), the probability to find the hole at the first base
pair is≈ 0.9990 for the WM and 0.9848 for the ELM; at the last base pair, it is≈ 0.0008
for the WM and 0.0006 for the ELM. This is also mirrored in the very small Fourier
amplitudes for GCG (cf. Fig. B.5).
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Figure 7.8: Pure mean transfer rates, kλµ, from base λ to base µ, of GGG and AAA trimers, after having
placed the charge initially at a particular base, within the ELM and with the HKS parametrization. The
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7.4 Comparison with RT-TDDFT
The results presented above for TB are in accordance with the more exact, yet more
computationally costly, ab initio method, RT-TDDFT. Years after its initial develop-
ment, DFT [250, 251], an efficient method for treating ground state properties of many
electron systems, e.g., molecules or solids, was extended [252] to time dependent sys-
tems (TDDFT). Specifically, the Time-Dependent Kohn-Sham equations with an ef-
fective potential energy υKS(r, t), uniquely described by the time-dependent charge
density, ρ(r, t), are, in atomic units,

i
∂

∂t
Ψj(r, t) =

[
− 1

2
∇2 + υKS(r, t)

]
Ψj(r, t) = (7.4)[

− 1

2
∇2 + υext(r, t) + υH(r, t) + υxc[ρ](r, t)

]
Ψj(r, t).

The charge density is the sum over all occupied orbitals j = 1, 2, . . . Nocc, i.e.,

ρ(r, t) =
Nocc∑
j=1

|Ψj(r, t)|2. (7.5)
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υext(r, t) includes external fields and nuclear potentials, υH(r, t) is the Hartree potential
energy. Exchange and correlation effects are included in υxc[ρ](r, t). RT-TDDFT is
based on a direct numerical integration of Eq. (7.4). This differs from the traditional
linear-response approach, which is not actually a time-resolved method but instead
solves Eq. (7.4) in the frequency domain for the excitation energies of a system subject
to a small perturbation [253]. Within RT-TDDFT, the Time-Dependent Kohn-Sham
equations are solved and the electron density is obtained at each time step. The electron
density is then used for the calculation of the Hamiltonian in the next cycle of the self-
consistent process.

Here, we restrict ourselves in a comparison of RT-TDDFT results for hole transfer
in DNA monomers and dimers with TB. The calculations have been conducted using
the, range-separated, CAM-B3LYP functional [254], and the the 6-31++G** [255] basis
set. Larger systems have not been studied yet within RT-TDDFT due to computational
restrictions. Computational results as well as additional results within RT-TDDFT can
be found in Ref. [66].

Regarding monomers, RT-TDDFT predicts hole oscillations between the two bases
of negligible magnitude and in the THz regime, in agreement with the TB results.

In Fig. 7.9, we present themean probabilities to find the extra hole at eachmonomer
of a DNA dimer, having placed it initially either at the 1st monomer (10) or at the 2nd
monomer (01). We observe that for dimers made of identical monomers, there are
almost equal probabilities to find the carrier at each monomer, while for dimers made
of different monomers the probabilities to not find the carrier at the monomer of initial
placement are very small, with the exception of the GA dimer where it is ≈ 0.3. This,
again, agrees qualitatively with the TB picture, and especially with the WM (cf. the
upper left panel of Fig 7.5).
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Figure 7.9: The mean probabilities to find the hole at each base pair of a dimer, having placed it initially
at the 1st (10) or at the 2nd (01) base pair.

In Fig. 7.10 we depict the maximum transfer percentage, p, as well as the electronic
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coupling energy (also called the electron transfer matrix element), |VRP|, between the
reactant and product statesR and P [51, 256–258], which reflects the magnitude of the
interaction between the two monomers. In our case, the reactant state corresponds to
the hole at the monomer of initial placement and the product state corresponds to the
hole at the other monomer. We also show the energy difference |δE| between reactant
and product states. For dimers made of identical monomers, |δE| ≈ 0, hence p is
indeed close to 1. For dimers made of different monomers, we observe that AC, CA
and AG have large |δE| ≈ 0.45-0.75 eV and small |VRP| ≈ 0− 1 eV, therefore their the
maximum transfer percentage is insignificant. An exception is the dimer GA which
not only has a large |δE| ≈ 0.65 eV, but also the largest |VRP| of all dimers≈ 5 eVwhich
makes charge transfer significant, with the maximum transfer percentage ≈ 0.3. This
is in analogywith TB Eq. (7.2), where the energy difference between the twomonomers
is represented by ∆, and the strength of the interaction by t.
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Figure 7.10: Maximum transfer percentage, i.e., oscillation amplitude, electron transfer coupling energy,
|VRP|, and energy difference |δE| between reactant and product states. Initially, the hole is placed at the
1st monomer (10) or at the 2nd monomer (01). Dotted lines serve as guides to the eye.

The frequencies of hole transfer have been obtained by Fourier analysis (Fig. 7.11).
As expected by TB, for dimers made of different monomers, we generally get higher
frequencies than for dimers made of identical monomers. Furthermore, from Fig. 7.11
we observe that for dimers made of identical monomers the frequencies follow |VRP|,
which does not hold for dimers made of different monomers. This, again, agrees with
the TB prediction [Eq. (7.1)].

Finally, in Fig. 7.12 we compare our RT-TDDFT results with those obtained within
the TB WM (a) with the HKS parametrization, and (b) with the HKS parametriza-
tion (Table A.1). We observe that the maximum transfer percentages obtained by RT-
TDDFT are in good agreement with those obtained by TB. For the periods, the results,
both for RT-TDDFT and TB are quite close especially when we compare them with (b)
the S parametrization.
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Figure 7.11: Hole oscillation frequency versus |VRP| for DNA dimers. Dotted lines serve as guides to
the eye.
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Figure 7.12: Comparison of RT-TDDFT and the WM with (a) the HKS parametrization and (b) the S
parametrization: maximum transfer percentage (left panel) and oscillation period (right panel). Dotted
lines serve as guides to the eye.

7.5 Conclusion
Using two TB approaches, i,e, the WM, in which a site coincides with a DNA base
pair, and and the ELM, in which a site coincides with a DNA base, we studied vari-
ous aspects of charge transfer in DNA monomers, dimers and trimers„ e.g. frequency
content, maximum transfer percentages and transfer rates between sites, and mean
probabilities to find the carrier at a particular site. We also successfully compared the
two TB approaches. Naturally, the ELM allows for greater detail.

For DNAmonomers, i.e. for A-T and G-C, within the ELM, we predicted electron or
hole oscillations in the range f ≈ 50-550 THz (T ≈ 2-20 fs), i.e. wavelengths≈ 545 nm
- 6 μm, from visible to NIR and MIR. We found that the maximum transfer percentage
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p and the pure maximum transfer rate pf between the bases are very small.
For DNA dimers, within the WM, we predicted electron or hole oscillations in the

range f ≈ 0.25-100 THz (T ≈ 10-4000 fs) i.e. wavelengths≈ 3-1200 μm, approximately
in theMIR and FIR. For dimers made of identical monomers the maximum transfer per-
centage p = 1, but for dimers made of different monomers p < 1. Within the ELM,
carrier oscillations are not strictly periodic but the frequency content is similar to that
predicted within the WM. For the mean probabilities to find the carrier at a particular
site, the two approaches give coherent, complementary results. The ELM shows that
for dimers made of identical monomers, when purines are crosswise to purines, inter-
strand carrier transfer dominates, i.e. we have significant diagonal transfer, justifying
the inclusion of diagonal hoppings, while if purines are on the same strand, intrastrand
carrier transfer dominates. For dimers made of different monomers, we carrier transfer
is mainly intrastrand character but the transfer percentage is small.

Within the WM, for trimers made of identical monomers, the carrier oscillates pe-
riodically with f ≈ 0.5-33 THz (T ≈ 30-2000 fs) if we use the S parametrization. Using
the HKS parametrization, f ≈ 0.5-21 THz. For 0 times crosswise purines p = 1, for 1
or 2 times crosswise purines p < 1. Within the ELM, the carrier oscillations are not
strictly periodic but the frequency content is similar to that predicted within the WM.
For the mean probabilities to find the carrier at a particular site, the two approaches
give coherent, complementary results.

Finally, we compared our TB results for monomers and dimers with RT-TDDFT,
demonstrating that they are in good agreement.



8
Periodic DNA polymers

After our study of the excess charge transfer in short DNA segments, we move on
to larger systems, i.e., periodic DNA polymers. Specifically, in this Chapter we will
focus on some specific classes: monomer-polymers and dimer polymers¹⁰, as well as
polymers with increasing repetition unit¹¹. As previously, only the 5′ − 3′ strand is
used to denote the segments. Furthermore, polymers made of identical monomers are
denoted by I, while polymersmade of differentmonomers are denotedwith D, followed
by u, i.e., the number of monomers in the repetition unit. For example, D2 denotes a
polymer made up by different monomers with a repetition unit of 2 monomers (in
other words, the symbolism encompasses GA≡TC, GT≡AC, TG≡CA, AG≡CT).

8.1 Monomer-polymers and dimer polymers
In this Section, we perform a comparative study of aspects of charge transfer within all
possible I1, I2, and D2 polymers, using theWM, with the S parametrization (Table A.1),
and the ELM with the HKS parametrization (Table A.2).

8.1.1 Energy structure
Using the HOMO or LUMO energies of the bases that constitute a base pair, we can
estimate the HOMO or LUMO energy of the base pair [61]. Specifically, suppos-
ing that |Ψbp⟩ = ψb1 |ψb1⟩ + ψb2 |ψb2⟩, and taking the time-independent Schrödinger

¹⁰The content of Sec. 8.1 can be found published in Ref. [58]: K. Lambropoulos, M. Chatzieleftheriou,
A. Morphis, K. Kaklamanis, R. Lopp, M. Theodorakou, M. Tassi, and C. Simserides, Phys. Rev. E 94,
062403 (2016). © 2016 by the American Physical Society.

¹¹The content of Sec. 8.2 can be found published in Ref. [59]: K. Lambropoulos, C. Vantaraki, P. Bilia,
M. Mantela, and C. Simserides, Phys. Rev. E 98 032412 (2018). © 2018 by the American Physical Society.
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equation Ĥ |Ψbp⟩ = ϵbp |Ψbp⟩ we find that the base pair eigenenergies are ϵbp1,2 =

ϵb1+ϵb2
2

±
√

( ϵb1−ϵb2
2

)2 + t2, where ϵb1 and ϵb2 are the on-site energies of the bases and
t = ⟨ψb1|Ĥ|ψb2⟩ is the intra-base-pair hopping integral i.e. between the two bases that
constitute a base pair. However, due to the weak hydrogen bonding between the bases
that constitute a base pair, t is very small, of the order of 10 meV (cf. Table A.2). As
a result, practically, ϵbp1,2 ≈ ϵb1, ϵb2 (with accuracy of 1 meV). Hence, we make the fol-
lowing Observation: Approximately, the HOMO of the base pair is the highest HOMO
of the two bases and the LUMO of the base pair is the lowest LUMO of the two bases.
This is expressed in Table 8.1, where we show all energies in eV with accuracy of 0.1
eV.

Table 8.1: On-site HOMO/LUMO energies of B-DNA bases and base pairs. All energies are given in eV.

base A T G C

ϵbH −8.3 −9.0 −8.0 −8.8
ϵbL −4.4 −4.9 −4.5 −4.3
gap 3.9 4.1 3.5 4.5

base pair A-T G-C

ϵbpH −8.3 −8.0

ϵbpL −4.9 −4.5
gap 3.4 3.5

Our numerical results for the eigenspectra of representative examples of I1, I2, and
D2 polymers, which are presented in Figs. 8.1, 8.2, and 8.3, respectively, indicate that,
as, increasing N , a polymer is formed, the energy eigenvalues are distributed around
the on-site energies of the base pairs within WM or the bases within the ELM. Hence,
the HOMO (LUMO) eigenspectrum of a given polymer within the WM corresponds to
the upper (lower) part of its eigenspectrum within the ELM. We also mention that it
can be proven (Appendix C, Theorem 1) within the WM, any sign alternation of the
hopping integrals does not have any effect on the energy structure of the systems.

For I1 polymers, an analytical expression for the eigenvalues exists within theWM
(cf. Eq. (3.21)). All eigenvalues are symmetric around the on-site energy ϵbp of the
monomers and lie in the interval

[
ϵbp − 2

∣∣tbp∣∣, ϵbp + 2
∣∣tbp∣∣]. For odd N , the trivial

eigenvalue, ϵbp, exists. The symmetry of the eigenvalues and the presence of the trivial
one for odd N hold for all possible cases of I polymers within the WM, as it is shown
in Appendix C,Theorem 2. Within theWM, an analytical expression can also be found
for the eigenvectors [56]. The eigenvectors (hence, the occupation probabilities, too)
are eigenspectrum independent [56], i.e., they do not depend on the TB parameters
ϵbp, tbp. Furthermore, the occupation probabilities display palindromicity [56], i.e., the
occupation probability of each eigenstate of the µ-th monomer is equal to that of the
(N − µ+ 1)-th monomer (|ψµk|2 =

∣∣ψ(N−µ+1)k

∣∣2). Within the ELM, up to our knowl-
edge, there are no analytical expressions for eigenvalues and eigenvectors. The eigen-
values are distributed in two subbands of different width, around the on-site energies
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of the bases. Furthermore, in accordance with the above mentioned Observation, the
upper (lower) subband of the HOMO (LUMO) eigenspectrum corresponds to the band
calculated within the WM. Furthermore, our numerical results for the eigenvectors
within the ELM indicate that, for µ odd (5′ − 3′ strand), |ψµk|2 ≈

∣∣ψ(2N−µ)k

∣∣2, while,
for µ even (3′ − 5′ strand), |ψµk|2 ≈

∣∣ψ(2N−µ+2)k

∣∣2, i.e., the occupation probabilities
of the eigenstates display approximate strand-palindromicity. For HOMO poly(dG)-
poly(dC), a case where, according to the HKS parametrization, the hopping integrals
between diagonally located bases of successive monomers in the 3′-3′ and 5′-5′ direc-
tions are equal, strand palindromicity is strict. This also holds for all types of I1 poly-
mers, if the ELM is reduced to the simpler LM by neglecting 3′-3′ and 5′-5′ inter-strand
interactions.
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Figure 8.1: An example of Ι1 polymers: LUMO (first row) and HOMO (second row) eigenspectra of
poly(dA)-poly(dT), within the WM (first column) and the ELM (second column).

For I2 polymers, analytical expressions for the eigenvalues when N is odd exist
within theWM [56]. ForN odd, the eigenvalues can be expressed explicitly in terms of
Chebyshev zeros [162]. The eigenvalues lie in the interval

[
ϵbp −

√
t21 + t22 + 2|t1t2| ,

ϵbp +
√
t21 + t22 + 2|t1t2|

]
. ForN even, there is no explicit formula, although the eigen-

values can be produced from Eq. (3.24). The eigenvalues lie in the same interval as for
N odd. As mentioned above, all eigenvalues are symmetric around the on-site en-
ergy of the monomers, ϵbp, which is also an eigenvalue for N odd. The calculated
HOMO/LUMO eigenspectrum for an example of I2 polymers, (GCGC…), displaying all
the above mentioned properties, is shown in the left column of Fig. 8.2. Furthermore,
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within the WM and for N odd, analytical expressions for the eigenvectors exist [163].
These eigenvectors (hence, the occupation probabilities, too) are partially eigenspec-
trum dependent [56], i.e., they depend on t1, t2 but not on ϵbp. Furthermore, for µ
even, the occupation probability of each eigenstate of the µ-th monomer is equal to
that of the (N − µ + 1)-th monomer (|ψµk|2 =

∣∣ψ(N−µ+1)k

∣∣2), i.e., for N odd, the
occupation probabilities of I2 polymers display partial palindromicity [56]. Finally,
for N odd, polymer equivalence [Eq. (6.11)] leads to the property |ψµk|2(YX. . .) =∣∣ψ(N−µ+1)k

∣∣2(XY. . .). For N even, we are aware of no analytical expressions for the
eigenvectors, but our numerical results show that the occupation probabilities display
palindromicity [56], i.e., for each eigenstate, the occupation probability of the µ-th
monomer is equal to that of the (N − µ + 1)-th monomer (|ψµk|2 =

∣∣ψ(N−µ+1)k

∣∣2).
Within the ELM, up to our knowledge, there are no analytical expressions for eigen-
values and eigenvectors. As an example of I2 polymers, we show in the right col-
umn of Fig. 8.2 the calculated HOMO/LUMO eigenspectra for GCGC…. The eigen-
values are distributed in two subbands of different width, around the on-site ener-
gies of the bases. Moreover, in accordance with the Observation, the upper (lower)
subband of the HOMO (LUMO) eigenspectrum corresponds to the band calculated
within the WM. For the eigenvectors within the ELM, for N odd, equivalence leads
to the property |ψµk|2(YX. . .) =

∣∣ψ(2N−µ+1)k

∣∣2(XY. . .), while for N even, |ψµk|2 =∣∣ψ(2N−µ+1)k

∣∣2. In other words, the occupation probabilities of the eigenstates display
base-palindromicity.
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Figure 8.2: An example of Ι2 polymers: LUMO (first row) and HOMO (second row) eigenspectra of
GCGC…, within the WM (first column) and the ELM (second column).
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Figure 8.3: An example of D2 polymers: LUMO (first row) and HOMO (second row) eigenspectra of
TCTC…, within the WM (first column) and the ELM (second column).

For D2 polymers, analytical expressions for the eigenvalues when N is odd ex-
ist within the WM [56]. Let us denote Σ = (ϵbp1 + ϵbp2 )/2 and ∆ = (ϵbp1 − ϵbp2 )/2.
Then, the eigenvalues include ϵbp1 , while the rest eigenvalues lie in the interval [Σ −√

∆2 + t21 + t22 + 2|t1t2|,Σ +
√

∆2 + t21 + t22 + 2|t1t2|]. For N even, there is no ex-
plicit formula, although the eigenvalues can be produced from Eq. (3.24). Our numer-
ical results show that all eigenvalues are symmetric around Σ, and lie in the same
interval as for N odd. The calculated HOMO/LUMO eigenspectrum for an example
of D2 polymers (TCTC…), displaying all the above mentioned properties, is shown
in the left column of Fig. 8.3. Within the WM and for N odd, analytical expressions
can also be found for the eigenvectors [164]. The eigenvectors (hence, the occupation
probabilities, too) are eigenspectrum dependent [56], i.e., they depend on all ϵbp1 , ϵ

bp
2 , t1,

t2. Furthermore, for µ even, the occupation probability of each eigenstate of the µ-th
monomer is equal to that of the (N −µ+1)-th monomer (|ψµk|2 =

∣∣ψ(N−µ+1)k

∣∣2), i.e.,
for N , odd, the occupation probabilities of D2 polymers display partial palindromic-
ity. For N odd, equivalence leads to |ψµk|2(YX. . .) =

∣∣ψ(N−µ+1)k

∣∣2(YcomplXcompl . . . ).
For N even, up to our knowledge, no analytical expressions for the eigenvectors ex-
ist, but equivalence leads to |ψµk|2(YX. . .) =

∣∣ψ(N−µ+1)k

∣∣2(XcomplYcompl . . . ). Our nu-
merical results show that, for all µ, |ψµk|2(YX. . .) =

∣∣ψµ(N−k+1)

∣∣2(XcomplYcompl . . . ).
Within the ELM, there are no analytical expressions in the literature for eigenval-
ues and eigenvectors, as far as we know. The calculated HOMO/LUMO eigenspec-
tra for an example of D2 polymers (TCTC…) are demonstrated in the right column of
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Fig. 8.3. The eigenvalues are distributed in four subbands of different width, around
the on-site energies of the bases. Moreover, in accordance with the Observation, the
two upper (lower) subbands of the HOMO (LUMO) eigenspectrum correspond to the
bands calculated within the WM. For the eigenvectors within the ELM, equivalence
leads to the properties |ψµk|2(YX. . .) =

∣∣ψ(2N−µ+1)k

∣∣2(YcomplXcompl . . . ), for N odd,
and |ψµk|2(YX. . .) =

∣∣ψ(2N−β+1)k

∣∣2(XcomplYcompl . . . ), for N even. Our numerical re-
sults indicate that there are no palindromic properties.

The DOS can be determined directly by the eigenspectra. It nicely represents the
corresponding eigenspectral properties mentioned above. In Figs. 8.4, 8.5, and 8.6, we
illustrate the numerically determined DOS for some representative examples of I1, I2
and D2 polymers, respectively, in the large N limit. We observe that, due to the fact
that the eigenenergies become denser and denser as we approach the band or subband
edges, vHS occur at the edges of each band or subband. We also notice that, in the
largeN limit, the polymer boundaries play insignificant role in the electronic structure,
hence, for the same set of TB parameters, the polymers’ DOS is essentially the same.
For example, in the large N limit, either GCGC… or CGCG…, for either N odd or N
even have practically the same DOS.

The numerically derived DOS for an example of I1 polymers is presented in Fig. 8.4.
Within the WM, there is no minigap, but within the ELM there is a minigap of ≈
0.545 eV; in accordance with the Observation, the upper subband of the HOMO band
calculated within the ELM, corresponds to the HOMO band calculated within theWM.
The minigap is due to the different HOMO on-site energies of the two bases (−8.0 eV
for G, −8.8 eV for C).
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Figure 8.4: DOS for an example of I1 polymers, poly(dG)-poly(dC) (N = 105, HOMO), within the WM
(top) and the ELM (bottom).

ADOS example of I2 polymers is shown in Fig. 8.5. Within theWM, there is a small
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(≈ 0.004 eV ) minigap. Within the ELM, there is a minigap of≈ 0.200 eV; in accordance
with the Observation, the lower subband of the LUMO band calculated within the ELM
corresponds to the LUMO band calculated within the WM. Within the ELM, there are
two additional small (≈ 0.003 eV, 0.001 eV) minigaps, hardly noticeable at this scale.
The italicized ELMminigap corresponds to theWMminigap, also italicized. Within the
ELM, apart from the vHS at the subband edges, there is an additional singularity inside
the second subband, which is hardly seen at this scale and an additional singularity
inside the third subband, which is almost invisible at this scale.
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Figure 8.5: DOS for an example of I2 polymers, CGCG… (N = 105, LUMO), within the WM (top) and
the ELM (bottom).

A DOS example of D2 polymers is shown in Fig. 8.6. Within the WM, there is a
minigap a little greater than 0.340 eV, due to the different HOMO on-site energies of the
two base pairs (−8.0 eV for G-C, −8.3 eV for A-T). Within the ELM, four minibands
are formed approximately around the HOMO on-site energies of the four bases (−9.0
eV for T,−8.8 eV for C,−8.3 eV for A and−8.0 eV for G), with three relevant minigaps
(0.205 eV, 0.362 eV, 0.334 eV ). Two of these minibands are very narrow. In accordance
with the Observation, the higher two subbands of the HOMO band calculated within
the ELM correspond to theHOMOband calculatedwithin theWM.Again, the italicized
ELM minigap corresponds to the WM minigap.

Finally, in Fig. 8.7, we present the HOMO-LUMO energy gaps, in the largeN limit,
for all three types of polymers. The energy gap of a monomer is the difference between
its LUMO andHOMO levels. The energy gap of a polymer is the difference between the
lowest level of the LUMO regime and the highest level of the HOMO regime, because
we assume that the orbitals –one per site– which contribute to the HOMO (LUMO)
band are occupied (empty), since in both possible monomers there is an even number
of pz electrons contributing to the π stack [61]. Both TB approaches predict similar
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Figure 8.6: DOS for an example of D2 polymers, CTCT… ≡ AGAG… (N = 105, HOMO), within the
WM (top) and the ELM (bottom).

gaps, in the range≈ 3.04−−3.42 eV. We also compare the polymer gaps with the two
possible monomer gaps. The decrease of the energy gap, as we move from monomer
to polymer, is larger for D2 polymers.
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Figure 8.7: HOMO-LUMO gaps for all possible I1, I2, and D2 polymers, within the WM (blue dots)
and the ELM (purple squares). The horizontal lines denote the HOMO-LUMO gaps of the two possible
monomers.
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8.1.2 Mean over time probabilities
We will study the mean over time probabilities to find an extra hole (HOMO) or elec-
tron (LUMO) at each site of all possible I1, I2, and D2 polymers within both TB ap-
proaches. For the WM, we initially place the carrier at the first monomer, while for
the ELM we place it at each base of the first monomer (we call them initial condition 1
for the base in the 5′−3′ strand and initial condition 2 for the base in the 3′−5′ strand).
Within the WM, from Eqs. (6.12), (6.10), it follows that the mean over time probability
to find the extra carrier at the µ-th monomer is

〈
|Ψµ(t)|2

〉
=

N∑
k=1

ψ2
1kψ

2
µk. (8.1)

Within the ELM, from Eq. (6.12) and the initial condition 1 or the initial condition 2 it
follows that the mean probability to find the extra carrier at the µ-th base is

〈
|Ψµ(t)|2

〉
=


2N∑
k=1

ψ2
1kψ

2
µk

2N∑
k=1

ψ2
2kψ

2
µk

. (8.2)

From Eqs. (8.1) and (8.2), we conclude that the palindromicity and eigenspectrum
(in)dependence properties for the occupation probabilities, discussed in the previous
subsection, hold also for the mean over time probabilities. Finally, for equivalent poly-
mers it can be shown that for theWM it holds that ⟨|ΨN(t)|2⟩YX… = ⟨|ΨN(t)|2⟩equiv(YX…),
while for the ELM ⟨|Ψ2N(t)|2⟩YX… = ⟨|Ψ2N(t)|2⟩equiv(YXYX…) (initial condition 1) and
⟨|Ψ2N−1(t)|2⟩YXYX… = ⟨|Ψ2N−1(t)|2⟩equiv(YXYX…) (initial condition 2).

For I1 polymers, examples of our numerical results (forN = 12) for the mean over
time probabilities to find an extra hole or electron at each base pair, within the WM,
or at each base, within the ELM, are shown in Fig. 8.8. Within the WM (top panel
of Fig. 8.8), the mean over time probabilities to find the carrier at a specific monomer
display palindromicity and eigenspectrum independence [56]. Specifically, it can ana-
lytically be shown that

〈
|Ψ1(t)|2

〉
=
〈
|ΨN(t)|2

〉
=

3

2(N + 1)
,∀N ≥ 2, (8.3a)

〈
|Ψ2(t)|2

〉
= · · · =

〈
|ΨN−1(t)|2

〉
=

1

N + 1
,∀N ≥ 3. (8.3b)

Within the ELM, the mean over time probabilities to find the carrier at a specific base
display approximate strand-palindromicity. Moreover, adding the mean probabilities of
the bases that constitute each monomer, it follows that the mean probabilities to find
the carrier at a specific monomer are approximately palindromes and almost iden-
tically equal, for all cases, to the mean probabilities within TB I, which are strictly
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palindromes (cf. Eq. (8.3)). This quantitative agreement suggests that the eigenspec-
trum independence predicted within the simpler WM approach, leads to essentially
the same results as those derived by the more complicated ELM. From Fig. 8.8 we ob-
serve that, within the ELM, the carrier moves almost exclusively through the strand it
was initially placed at, i.e. carrier movement is mainly of intra-strand character. Fur-
thermore, within the ELM, our results for the two initial conditions are in complete
agreement.
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Figure 8.8: Mean over time probabilities to find an extra hole (HOMO) or electron (LUMO) at each base
pair, within theWM (top), or at each base, within the ELM (bottom left: initial condition 1, bottom right:
initial condition 2) for all I1 polymers, for N = 12.

For I2 polymers, examples of our numerical results for the mean over time proba-
bilities to find an extra hole or electron at each base pair, within the WM, or at each
base, within the ELM, are shown in Figs. 8.9 and 8.10, for odd or and even N , respec-
tively. Within theWM, the mean probabilities to find the carrier at a specific monomer
display [56] partial eigenspectrum dependence (i.e., dependence on the hopping param-
eters but not on the on-site energy), partial palindromicity (i.e., only for even µ) for
N odd and palindromicity (i.e., for all µ) for N even. Within the ELM, for N even,
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the mean probabilities to find the carrier at a specific base display base-palindromicity.
Moreover, adding the mean probabilities of the bases that constitute each base pair,
the mean probabilities to find the carrier at a specific base pair are palindromes, in ac-
cordance with the prediction of the WM. From the bottom panels of Figs. 8.9 and 8.10,
we observe that, within the ELM, the carrier moves preferably through the bases that
are identical with the one it was initially placed at, in other words it moves crosswise
through identical bases, i.e., carrier movement is mainly of inter-strand character. For
N odd, both TB approaches show that there are some cases, in which the carrier hardly
moves from its initial site. If we add or subtract amonomer, i.e. forN even, both TB ap-
proaches show that a large percentage of the carrier is transferred at the end monomer.
Furthermore, both TB approaches show that the mean probability to find the carrier
at the last monomer is generally bigger for N even than for N odd.
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Figure 8.9: Mean over time probabilities to find an extra hole (HOMO) or electron (LUMO) at each base
pair, within theWM (top), or at each base, within the ELM (bottom left: initial condition 1, bottom right:
initial condition 2) for all I2 polymers, for N = 12.

For D2 polymers, examples of our numerical results for the mean over time prob-
abilities to find an extra hole or electron at each base pair, within the WM, or at each
base, within the ELM, are shown in Figs. 8.11 and 8.12, for odd or and even N , respec-
tively. Within the WM, given that |ψµk|2(YX. . .) =

∣∣ψµ(N−k+1)

∣∣2(XcomplYcompl . . . ), for
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Figure 8.10: Same as in Fig. 8.9, but for N = 13.

all µ, Eq. (8.1) leads to identical mean probabilities for (i) TCTC… and GAGA…, (ii)
CTCT… and AGAG…, (iii) ACAC… and GTGT…, and (iv) CACA… and TGTG…. Also,
within the WM, we observe that the carrier moves preferably through the monomers
that are identical with the one it was initially placed at, i.e., from the first monomer to
the third, and so forth. Within the ELM, it carrier moves preferably through the bases
that are identical with the one it was initially placed at, i.e., through the same strand
from the one or the other base of the first monomer to the identical base of the third
monomer, and so forth, i.e., carrier movement is mainly of inter-strand character. Both
TB approaches show that the mean probability to find the carrier at the last monomer
is bigger for N odd than for N even, cf. Figs. 8.11-8.12.

8.1.3 Frequency content
We mentioned above that within the WM, for I1 and I2 polymers, all eigenvalues are
symmetric around the on-site energy of the base pairs (cf. Theorem 2). Hence, the
total number of frequencies involved in charge transfer is N2−1

4
for N odd and N2

4

for N even. For D2 polymers with N even, the eigenvalues are symmetric around
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Figure 8.11: Mean over time probabilities to find an extra hole (HOMO) or electron (LUMO) at each
base pair, within the WM (top), or at each base, within the ELM (bottom left: initial condition 1, bottom
right: initial condition 2) for all D2 polymers, for N = 12.

Ebp
1 +Ebp

2

2
, hence the total number of frequencies is N2

4
, too. For type D2 polymers with

N odd, the eigenvalues include Ebp
1 and the total number of frequencies is (N−1)(N+3)

4
.

Within the ELM, there are no symmetries like those mentioned for the WM, hence
the total number of frequencies for all three types of polymers is N(2N − 1). From
Eq. (6.15) it follows that all the palindromicity and equivalence properties presented
in the above subsection for the mean over time probabilities, ⟨|Ψj(t)|2⟩, hold for the
Fourier spectra, |Fj(f)|, too. In the following, we focus on the Fourier spectra that
correspond to charge transfer from the first to the last monomer i.e. on |F1(f)| and
|FN(f)| for the WM, and on |F1(f)|, |F2(f)|, |F2N−1(f)| and |F2N(f)| for the ELM.
Both TB approaches show that the frequency content is mainly in the THz domain, cf.
Figs. 8.13, 8.14, 8.15, for examples of I1, I2, and D2 polymers.

For I1 polymers, the main frequencies within the WM are in the range ≈ 0.3 - 97
THz. Within the ELM, they are in the range ≈ 0.1 - 110 THz. The main frequency
content is between the FIR the MIR. As an example, we show in Fig. 8.13 the Fourier
spectra, at the first and the last monomer, of an extra hole in poly(dA)-poly(dT) with
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Figure 8.12: Same as in Fig. 8.11, but for N = 13.

N = 20. From the top panel of Fig. 8.13, we observe that the Fourier amplitudes
for the first and the last monomer are equal, mirroring the efficient hole transfer in
poly(dA)-poly(dT), cf. also Fig. 8.8. The same conclusion can also be drawn from the
bottom panels of Fig. 8.13, for both initial conditions; additionally, the ELM underlines
the intra-strand character of carrier transfer and shows that initial conditions 1 and 2
lead to similar form of Fourier spectra.

For I2 polymers, the main frequencies within the WM are in the range ≈ 0.01 - 40
THz, i.e., between microwaves and the MIR. Within the ELM, they are in the range
≈ 0.01 - 210 THz, i.e., between microwaves and the NIR. As an example, we show in
Fig. 8.14, the Fourier spectra, at the first and the last monomer, of an extra electron
in ATAT… with N = 14. From the top panel of Fig. 8.14 we observe that the Fourier
amplitudes for the first and the last monomer are approximately equal, mirroring the
finally large electron transfer in ATAT… for N even, cf. also Fig. 8.9. However, this
large transfer is very slow, its main frequency is very small but with a large amplitude.
The same conclusion can also be drawn from the bottom panels of Fig. 8.14, where we
can additionally observe the inter-strand character of charge transfer and that initial
conditions 1 and 2 lead to similar form of Fourier spectra.

For D2 polymers, the main frequencies within the WM are in the range ≈ 0.4
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Figure 8.13: Hole transfer Fourier spectra at the first and the last monomer (WM, top) or at the bases
of the first and the last monomer (ELM, bottom) for an example of I1 polymers, poly(dA)-poly(dT) with
N = 20.

GHz - 40 THz, i.e., between radiowaves and the MIR. Within the ELM, they are in
the range ≈ 0.02 - 190 THz, i.e., between microwaves and the FIR. As an example, we
show in Fig. 8.15 the Fourier spectra, at the first and the last monomer, of an extra hole
in TCTC… with N = 21.From the top panel of Fig. 8.15 we observe that the Fourier
amplitudes for the first monomer are much larger than the ones for the last monomer,
mirroring the inefficient hole transfer in TCTC… for N odd, cf. also Fig. 8.12. From
the bottom panels of Fig. 8.15, we can additionally observe the intra-strand character
of charge transfer and that initial conditions 1 and 2 lead to somehow different form
of Fourier spectra, initial condition 1 being more efficient than initial condition 2 for
hole transfer, cf. also Figs. 8.12.
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Figure 8.14: Electron transfer Fourier spectra at the first and the last monomer (WM, top) or at the bases
of the first and the last monomer (ELM, bottom) for an example of I1 polymers, ATAT… with N = 14.

8.1.4 Pure mean transfer rates
As previously, we focus on pure mean transfer rates between the first and the last
monomer, within either the WM or the ELM.

As a characteristic example of I1 polymers, we present in Fig. 8.16 the hole pure
mean transfer rates for poly(dG)-poly(dC), from the first to the last monomer, within
the WM and the ELM. Specifically, (I) for the WM we illustrate k1,N on the left panel,
and (II) for the ELM we illustrate the pairs k1,2 = k2N−1,2N (cf. Eq. 6.19), k1,2N−1 and
k2,2N , k1,2N and k2,2N−1, on the right panel. We have already noticed that, within the
ELM, carrier transfer is almost exclusively of intra-strand character. Hence, k1,2N−1 ≈
k2,2N are the largest transfer rates. Comparing k1,N for the WM with k1,2N−1 ≈ k2,2N
for the ELM, we observe an excellent agreement, both qualitatively and quantitatively.
Within the ELM, the intra-base-pair rates k1,2 = k2N−1,2N are small and the inter-
strand rates k1,2N ≈ k2,2N−1 insignificant. Increasing N , the intra-strand transfer
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Figure 8.15: Hole transfer Fourier spectra at the first and the last monomer (WM, top) or at the bases
of the first and the last monomer (ELM, bottom) for an example of I1 polymers, TCTC… with N = 21.

rates k1,2N−1 ≈ k2,2N decrease reaching gradually the level of the the intra-base-pair
rates k1,2 = k2N−1,2N , at which point, finally, charge transfer along the polymer is
insignificant. Increasing N , the insignificant inter-strand rates k1,2N ≈ k2,2N−1 also
gradually decrease further.

We have already mentioned that both TB approaches predict that for some cases
of Ι2 polymers, for N even, the carrier is transferred at a large percentage to the last
monomer but the transfer is very slow. Such a case is presented in Fig. 8.17. Specifi-
cally, we show the electron pure mean transfer rates for ATAT…, from the first to the
last monomer, the WM and the ELM. Specifically, (I) for the WM, we illustrate k1,N
on the left panel, and (II) for the ELM, we illustrate the largest transfer rates on the
right panel. We have already demonstrated that, within the ELM, the extra carrier is
transferred almost exclusively crosswise, through identical bases. Hence, for the ELM,
the largest transfer rates are k1,2N−1 and k2,2N for N odd, and k1,2N and k2,2N−1 for
N even. We depict these largest transfer rates in the right panel of Fig. 8.17. In other
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Figure 8.16: Hole pure mean transfer rates (I) k1,N for the WM (left), and (II) k1,2, k2N−1,2N , k1,2N−1,
k2,2N , k1,2N , and k2,2N−1 for the ELM (right), for an example of I1 polymers, poly(dG)-poly(dC).

cases of I2 polymers the pure mean transfer rates fall over N in a different manner,
which is somehow similar to D2 polymers (see below).
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Figure 8.17: Electron pure mean transfer rates (I) k1,N for the WM (left), and, k1,2N−1 forN odd, k1,2N
for N even, k2,2N for N odd, k2,2N−1 for N even, for an example of I2 polymers in which, for N even,
the carrier is transferred at a large percentage to the last monomer but the transfer is very slow, ATAT….

As a characteristic example of D2 polymers, we present in Fig. 8.18 the hole pure
mean transfer rates for TCTC…, from the first to the last monomer, within theWM and
the ELM. Specifically, (I) for the WMwe illustrate k1,N on the left panel, and (II) for the
ELM we illustrate k1,2N−1 and k2,2N on the right panel. We have already mentioned
that, within the ELM, the extra carrier is transferred almost exclusively through the
strand it was initially placed at, i.e., for D2 polymers the charge transfer is mainly of
intra-strand character. Hence, for the ELM, we show k1,2N−1 and k2,2N , which are the
largest transfer rates. Above, we demonstrated that, for I1 polymers, k1,2N−1 = k2,2N ;
as shown in Fig. 8.18, this does not hold for D2 polymers.
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Figure 8.18: Hole pure mean transfer rates k1,N for the WM (left), and k1,2N−1, k2,2N for the ELM
(right), for an example of D2 polymers, TCTC….

8.2 Polymers with increasing repetition unit
After our comparative study of all possible I1, I2, and D2 polymers within the WM and
the ELM, we move on to the study of DNA polymers with increasing repetition unit.
As demonstrated in Sec. 8.1, the two TB models give coherent, complementary results,
so now we will focus on the simpler WM using the S parametrization (Table A.1). The
types of segments studied are presented in Table 8.2.

Table 8.2: The types of polymers mentioned in this Section. I (D) denotes polymers made of the identical
(different) monomers. u is the number of monomers in the repetition unit. We only mention the 5′− 3′

strand.

(I,D)u sequence example
I1 G… or A…
I2 GC…
I3 GGC…
I4 GGCC…
I6 GGGCCC…
I8 GGGGCCCC…
I10 GGGGGCCCCC…
I20 GGGGGGGGGGCCCCCCCCCC…
D2 GA…
D4 GGAA…
D6 GGGAAA…
D8 GGGGAAAA…
D10 GGGGGAAAAA…
D20 GGGGGGGGGGAAAAAAAAAA…
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8.2.1 Energy structure
In Figs. 8.19 and 8.20, we show the HOMO and LUMO eigenspectra of [I2, I4, I6, I8, I10,
I20 and I1 polymers] and [D2, D4, D6, D8, D10, D20 and I1 (G…), I1 (A…) polymers], and
in Figs. 8.21 and 8.22 we plot the corresponding DOS. The HOMO and LUMO bands
of each polymer consist of u subbands, e.g., for I6 or D6 polymers, the number of
subbands is 6. Some eigenenergies protrude periodically from the subbands at certain
relationships between N and u. At the limits of subbands, vHS occur. The subbands
are separated by small energy gaps, which, increasing u, decrease.

For I polymers (cf. Figs. 8.19, 8.21), all eigenvalues are symmetric around the
monomer on-site energy and for N odd the trivial eigenvalue, equal to the monomer
on-site energy, exists (Theorem 2). Increasing u, the eigenspectra tend to the eigen-
spectra of I1 polymers, and, of course, the DOS tends to the DOS of I1 polymers.

For D polymers (cf. Figs. 8.20, 8.22), increasing u, the eigenenergies gather around
the two monomer on-site energies. Increasing u, the eigenspectra gather within the
limits defined by the union of eigenspectra of I1 (G…) and I2 (A…) polymers. In
Fig. 8.21, increasing u, the subbands become narrower, but they are wide enough (e.g.
for I10 of a few meV) so that their DOS minima remain low enough; therefore we
don’t have to change the vertical presentation scale. In Fig. 8.22, the already very
narrow subbands, increasing u, become even narrower (e.g for D10 two to nine orders
of magnitude narrower than for I10), which drives the DOS minima in each subband
much higher; therefore, to depict theDOS, we have to increase the vertical presentation
scale. Finally, we remind that the eigenvalues forN = mu can be obtained analytically
and recursively with the help of the Chebyshev polynomials of the second kind, via
the Transfer Matrix Method (see Chapter 3).

We now turn our attention to the HOMO-LUMO gaps. At the large-N limit, in-
creasing u, the gaps of I2, I4, I6, … polymers approach the gap of I1 polymer (cf.
left panel of Fig. 8.23). Indeed, increasing the repetition unit in the mode GC, GGCC,
GGGCCC, …, finally results in a G…GC…C polymer which is almost G… with just a
switch from G to C at the middle of the polymer. Hence, at the large-N limit, the
energy gap of I1 polymers is the smallest of these series of polymers. For the same
reason, increasing u, the eigenspectra and the DOS of I2, I4, I6, … polymers tend to the
eigenspectra and the DOS of I1 polymers (cf. Figs. 8.19, 8.21).

At the large-N limit, increasing u, the gaps of D2, D4, D6, … polymers approach the
gap of the union of I1 (G…) and I1 (A…) polymers (cf. right panel of Fig. 8.23), which is
≈ 0.5 eV lower than the gaps of the relevant homopolymers (G…, A…). Increasing the
repetition unit in the mode GA…, GGAA…, GGGAAA… and so on, finally results in
a G…GA…A polymer which is energetically almost a union of separated G… and A…
polymers. This happens due to the large difference of G-C and A-T on-site energies in
comparison with the tGA hopping integral. Increasing u, the lowering of the energy
gap in the case of D polymers [≈ 0.6 (0.7) eV relative to the A-T (G-C) monomer gap]
is much bigger than in the case of I polymers [≈ 0.25 eV relative to the G-C monomer
gap].
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Figure 8.19: Eigenspectra of periodic I polymers. HOMO regime (left) and LUMO regime (right).
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Figure 8.20: Eigenspectra of periodic D polymers as well as of I1 (G…) and I1 (A…) polymers plotted
together. HOMO regime (left) and LUMO regime (right).
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Figure 8.21: DOS of periodic I polymers for the HOMO (left) and the LUMO (right) regime.

Figure 8.22: DOS of periodic D polymers as well as of I1 (G…) and I1 (A…) polymers plotted together,
for the HOMO (left) and the LUMO (right) regime.
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Figure 8.23: HOMO-LUMO gaps. Left: I2 (GC…), I4 (GGCC…), I6 (GGGCCC…), I8 (GGGGCCCC…), I10
(GGGGGCCCCC…), I20 (GGGGGGGGGGCCCCCCCCCC…) polymers, as well as I1 (G…) polymers.
The horizontal green line at 3.5 eV shows the energy gap of G-C base pair. Inset: HOMO and LUMO
band upper and lower limits. Other variants of I polymers follow the same trend, e.g. the gap of I3
(GGC…) is ≈ 3.36 eV. Right: D2 (GA…), D4 (GGAA…), D6 (GGGAAA…), D8 (GGGGAAAA…), D10
(GGGGGAAAAA…), D20 (GGGGGGGGGGAAAAAAAAAA…) polymers, as well as the union of I1
(G…) and I1 (A…) polymers. The horizontal green line at 3.5 eV (purple line at 3.4 eV) shows the energy
gap of the G-C (A-T) base pair. Inset: HOMO and LUMO band upper and lower limits.

8.2.2 Mean over time Probabilities
The main aspects of our results for the mean over time probabilities for I2, I4, … poly-
mers are summarized in Figs. 8.24 and 8.25 for some example cases. For N equal to
natural multiples of u (N = mu,m ∈ N∗), palindromicity holds, i.e., the probabilities
are palindromic. This is due to the fact that for N = mu, the Hamiltonian matrices
of these polymers are palindromic, i.e. reading them from top left to bottom right and
vice versa gives the same result. The palindromicity forN = mu is shown in Fig. 8.24,
for an example I8 (GGGGCCCC) polymer, for all possible initial placements of an extra
hole. It is evident that palindromicity holds for all initial conditions. Hence, in these
polymer cases, the appropriate choice of the monomer the carrier is injected to, can
lead to enhanced presence at specific sites at its other end, leading to more efficient
transfer. For N ̸= mu, palindromicity is lost. This is shown in Fig. 8.25, for an exam-
ple case of an I6 (GGGCCC) polymer. In the HOMO regime, all studied polymers with
N ̸= mu, show increased mean (over time) probabilities at the u

2
initial monomers.

For example, for type I6 polymers, forN ̸= 6m, we have increased probabilities at the
first, second and third monomer (left panel of Fig. 8.25). This property is so evident in
the HOMO regime due to the magnitude of the hopping integrals: tGG is the greater
of all, and tGC is much smaller than tCG. In the LUMO regime, this property cannot be
clearly seen, because tGG is the greater of all, but tCG and tGC have similar values. For
the same reason, in the LUMO regime, forN = mu+ u

2
, we have an almost palindromic

behavior (see e.g. the right panel of Fig. 8.25). As seen previously, for I1 polymers and
initial placement of the carrier at the first monomer, the mean over time probabilities
are given by Eq. (8.3). Increasing u, the relevant probabilities of I2, I4, I6, … polymers
tend to the I1 probabilities.
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Figure 8.24: Mean (over time) probabilities to find an extra hole in a GGGGCCCC polymer for all
possible initial placements.
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Figure 8.25: Mean over time probabilities to find an extra hole (left) and electron (right), initially placed
at the first monomer, in a GGGCCC… polymer (u = 6) made up ofN = u+τ , τ = 1, . . . , umonomers.

The main features of our results for the mean over time probabilities for D2, D4,
… polymers are summarized in Fig. 8.26 for the example case of an I8 (GGGGAAAA)
polymer, for all possible initial placements of an extra hole. A basic observation for
polymers made of different monomers is that if we initially place the carrier at a G-C
monomer the probability to find it at an A-T monomer is small, and vice versa.

Detailed numerical results displaying all the above mentioned features, having
placed the hole or electron initially at the firstmonomer, forN = u+τ , τ = 0, 1, . . . , u−
1, can be found in the Supplemental Material of Ref. [59], and specifically in Figs. A.1-
A.5 for periodic I polymers, and in Figs. A.6-A.10, for periodic D polymers.

8.2.3 Frequency Content
TheFourier spectra of the time-dependent probability to find the carrier at eachmonomer,
are, generally, in the THz regime.

For N = mu, m ∈ N∗, for I1, I2, I4, I6, … polymers, the Fourier spectra of the
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Figure 8.26: Mean (over time) probabilities to find an extra hole in a GGGGAAAA polymer for all
possible initial placements.

time-dependent probability to find an extra carrier at the various monomers, either
for the HOMO or the LUMO regime, are palindromic, i.e., they are identical for the
µ-th and (N −µ+1)-th monomer. This stems from the palindromicity characterizing
the Hamiltonian matrices for N = mu, n ∈ N∗. The Fourier spectra of the probability
to find an extra carrier at the first and at the last monomer, having placed it initially
at the first monomer, for I and D polymers, for the HOMO and the LUMO regime, for
N = u + τ , τ = 0, 1, . . . , u − 1, as well as similar diagrams for greater N , can be
found in Refs. [259, 260]. Since forN ̸= mu, n ∈ N∗ the Hamiltonian matrices are not
palindromic, the Fourier spectra are also not palindromic. Preliminary analysis of the
frequency content of I1, I2, D2, I3, I4 and I6 polymers, within the WM and the ELM,
including the Fourier spectra, the WMFs and the TWMF as a function of N can be
found in Ref. [261], with the HKS parametrization.

Next, we focus on the TWMF as a function of N for various types of periodic I
polymers (cf. Fig. 8.27). In I2 (GC…) polymers, only two hopping integrals are in-
volved: tGC, tCG. In I4 (GGCC…), I6 (GGGCCC…), … polymers, three hopping integrals
are involved: tGG, tGC, tCG. This is the reason that in the limit of largeN , the TWMF for
I2 polymers tends to a different frequency region than for I4, I6, … polymers. For I4,
I6, … polymers, increasing u, the role of tGG gradually increases, hence, this series of
polymers has as a limit I1 (G…) polymers, where only one hopping integral is involved:
tGG. In particular, the TWMF of I4, I6, … polymers, in the limit of largeN , tends to the
TWMF of I1 polymers.

Next, we focus on the TWMF as a function of N for various types of periodic
D polymers (cf. Fig. 8.28). In D2 (GA…) polymers, only two hopping integrals are
involved: tGA, tAG. In D4 (GGAA…), D6 (GGGAAA…), … polymers, four hopping
integrals are involved: tGG, tGA, tAG, tAA. This is the reason that in the limit of large N ,
the TWMF for D2 polymers tends to a different frequency region than for D4, D6, …
polymers. For D4, D6, … polymers, increasing u, the role of tGG gradually increases;
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Figure 8.27: Total Weighted Mean Frequency (TWMF) as a function of the number of monomers N
in the polymer, having placed the carrier initially at the first monomer, for I1 (G…), I2 (GC…), I4
(GGCC…), I6 (GGGCCC…), I8 (GGGGCCCC…), I10 (GGGGGCCCCC…), and I20 (GGGGGGGGGGC-
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the same happens with the role of tAA. However, if we place the carrier initially at
the first G-C monomer, the probability to find it at any A-T monomer is very small
(e.g., cf. Fig. 8.26). Hence, for initial placement of the carrier at a G-C monomer (like
in Fig. 8.28), the TWMF of D4, D6, … polymers, in the limit of large N , tends to the
TWMF of I1 (G…) polymers, where only one hopping integral is involved: tGG.
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Figure 8.28: Total Weighted Mean Frequency (TWMF) as a function of the number of monomers
N in the polymer, having placed the carrier initially at the first monomer, for I1 (G…), I1 (A…),
D2 (GA…), D4 (GGAA…), D6 (GGGAAA…), D8 (GGGGAAAA…), D10 (GGGGGAAAAA…), and D20
(GGGGGGGGGGAAAAAAAAAA…) polymers, for the HOMO and the LUMO regime.

The frequencies involved in charge transfer are given by Eq. (6.13). Hence, the
maximum frequency is determined by the maximum difference of eigenenergies, i.e.,
by the upper and lower limits of the HOMO or LUMO band. Since increasing u, the
eigenspectra of I2, I4, I6, … polymers tend to the eigenspectra of I1 polymers, the
maximum frequencies of these polymers also tend to the maximum frequency of I1
polymers. Furthermore, since increasing u, the eigenspectra of D2, D4, D6, … polymers
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tend to the eigenspectra of the union of I1 (G…) and I1 (A…) polymers, the maximum
frequencies of these polymers also tend to the maximum frequency of the union of I1
(G…) and I1 (A…) polymers. Numerical results regarding the behavior of maximum
frequency can be found in Fig. A.11 in the Supplemental Material of Ref. [59].

8.2.4 Pure mean transfer rates
Next, we study the pure mean transfer rates, k1,N , from the first to the last monomer.
For simplicity, we drop the indices. An impressive case where appropriate sequence
choice can increase k by many orders of magnitude is shown in Fig. 8.29, where we
depict k(N) forN = mu, either for HOMO or for LUMO, for type I1 (G…), I2 (GC…), I4
(GGCC…), I6 (GGGCCC…), I8 (GGGGCCCC…) and I10 (GGGGGCCCCC…) polymers.
These polymers are palindromic, hence there is enhanced presence of the extra carrier
at the last monomer. Results for any N can be found elsewhere [259].

In all cases, k(N) is a decreasing function. The electron k range is many orders of
magnitude narrower than the hole k range, due to themuch smaller difference between
the hopping integrals (tGG, tGC, tCG) involved.
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Figure 8.29: Pure mean transfer rate k of type I1 (G…), I2 (GC…), I4 (GGCC…), I6 (GGGCCC…), I8
(GGGGCCCC…) and I10 (GGGGGCCCCC…) polymers, as function of the number of monomers N in
the polymer, for N equal to natural multiples of their u, for HOMO (upper panel) and LUMO (lower
panel).

In Fig. 8.29 we observe that for N = mu, starting from type I2 (GC…) polymers
and increasing u, i.e. for types I4 (GGCC…), I6 (GGGCCC…), … polymers, k takes
increasingly larger values. In other words, the degree of transfer difficulty is greater
for type I2 (GC…) polymers and decreases gradually for types I4, I6, … I10 polymers.
And so it will be if we still increase u taking similar types of polymers. However,
k(N) has an upper limit which is k(N) of type I1 polymers. The latter polymers are
structurally simpler (more precisely, they have the simplest possible structure), a fact
that favors charge transfer along them, so their transfer rates are higher than those of
the other polymer types. As u increases, the influence of tGC and tCG becomes less
significant, hence this upper limit appears.
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Generally, for an extra electron (LUMO), lnk(lnN) is approximately linear, of the
form lnk = lnk0 − η lnN , a relation that generally does not hold for an extra hole
(HOMO). However, for type I1 (G…) polymers the above mentioned linear relation
holds both for HOMO and LUMO. For HOMO, generally k(d), where d = (N−1)×3.4
Å is the charge transfer distance, is approximately of the form lnk = lnk0 − βd, a
relation that does not generally hold for an extra electron (LUMO).

To gain further insight, we have performed the exponential fits k = k0e
−βd and

k = A+k0e
−βd as well as the power-law fit k = k′0N

−η. In all cases we studied k from
the first to the last monomer, under the condition N = mu, N < 40. We observe that
for I2 (GC…), I4 (GGCC…), I6 (GGGCCC…), I8 (GGGGCCCC…), I10 (GGGGGCCCCC…)
polymers the HOMO regime is better characterized by exponential fits and the LUMO
regime by power-law fits. For type I1 (G…) polymers the power-law fits are better
both for the HOMO and the LUMO regimes. his fact can also be easily seen in Fig. 8.29,
where in theHOMO regime all I2, I4, I6, I8, I10 polymers show a linear relation between
lnk and d, while, type I1 polymers do not satisfy this linear relation. In the LUMO
regime, none of I2, I4, I6, I8, I10 polymers satisfies a linear relation between lnk and
d. In the LUMO regime, all I2, I4, I6, I8, I10 polymers as well as I1 polymers satisfy an
almost linear lnk - lnN relation.

For polymers made of different monomers k(N), is depicted in Fig. 8.30. We ob-
serve that, while for type I1 polymers (G… and A…) k drops ≈ by only 2 to 3 orders
of magnitude, increasing N from 2 to 30, as the number of A in the repetition unit
increases, k(N) drops dramatically by many more orders of magnitude. Again, this
behavior shows that the pure mean transfer rate can be increased by many orders of
magnitude by appropriate choice of the repetition unit. All in all, our results suggest
that type I1 polymers are the best for electron or hole transfer.
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Figure 8.30: Pure mean transfer rate k of type I1 (G…), I1 (A…), D2 (GA…), D4 (GGAA…), D6
(GGGAAA…), D8 (GGGGAAAA…) and D10 (GGGGGAAAAA…) polymers, as function of the num-
ber of monomers N in the polymer, for N equal to natural multiples of their u, for HOMO (upper
panel) and LUMO (lower panel).
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8.3 Conclusion

In the first part of this Chapter, we employed two TB approaches, the WM and the
ELM, to examine carrier transfer in DNA monomer polymers (I1) and dimer polymers
(I2 and D2). The two TB approaches give coherent, complementary results.

For the time-independent problem, we studied the HOMO and the LUMO eigen-
spectra and the occupation probabilities, the DOS and the HOMO-LUMO gap. We
saw that the upper (lower) subband of the HOMO (LUMO) eigenspectrum calculated
within the ELM corresponds to the band calculated within the WM. The occupation
probabilities within the WM and the ELM show various degrees of palindromicity and
eigenspectrum (in)dependence of the probabilities to find the carrier at a site. The DOS
displays nice van Hove singularities at the (sub)band edges. As expected, the poly-
mer HOMO-LUMO gaps are smaller than the HOMO-LUMO gaps of the two possible
monomers, reaching a level of 3.4 to 3.0 eV. The smallest HOMO-LUMO gaps occur for
D2 polymers.

We also investigated the mean over time probabilities to find the carrier at each site
(base pair for the WM and base for the ELM), the Fourier spectra and the pure mean
transfer rates from a certain site to another. The mean over time probabilities illustrate
clearly the basically intra-strand character of carrier transfer in I1 and D2 polymers.
However, while in I1 polymers the carrier moves successively through all bases of the
same strand, in D2 polymers it moves through the bases that are identical with the
one it was initially placed at, i.e., it moves through the same strand from the one or
the other base of the first monomer to the identical base of the third monomer, and so
forth. Carrier transfer is basically of inter-strand character in I2 polymers. The Fourier
spectra give us a nice representation of the frequency content of charge transfer. Both
TB approaches show that this frequency content is mainly in the THz domain; the
details depend on the type of polymers and the TB approach used. The pure mean
transfer rates k show both how fast carrier transfer is and how much of the carrier is
transferred from the initial site to the final one. Our results indicate that the fall of k
as a function of N becomes generally steeper as the intricacy of the energy structure
increases.

Having demonstrated the agreement between the two TB approaches, in the sec-
ond part of this Chapter, we employed the –simpler– WM to study the transfer of an
extra carrier, electron or hole, alongN -monomer periodic polymers (made of the same
monomer, i.e. I1, I2, I4, I6, I8, I10, I20, as well as made of different monomers, i.e. D2,
D4, D6, D8, D10, D20).

For periodic I polymers, we show that the eigenenergies are always symmetric
relative to the monomer on-site energy. Increasing the repetition unit, we have wit-
nessed convergence of types I2, I4, I6, … polymers, to type I1 polymers, in terms of
eigenspectra, DOS, energy gaps, mean over time probabilities to find the carrier at the
first and last monomers, frequency content (total weighted mean frequency), and pure
mean transfer rates, i.e. for all the properties we studied. In other words, increasing
the repetition unit, the physical properties of I2, I4, I6, … polymers tend to those of the
relevant homopolymer. The homopolymer has the smallest HOMO-LUMO gap. Gen-
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erally, for homopolymers, the magnitude of k is larger and the fall of k(N) is less steep.
As the repetition unit increases, the influence of tGC and tCG becomes less significant,
hence k of the homopolymer acts as an upper limit. Moreover, we have ascertained
palindromicity of physical properties such as themean (over time) probabilities and the
Fourier spectra, when the number of monomers is a natural multiple of the repetition
unit.

For periodic D polymers, the eigenenergies gather around the two monomers’ on-
site energies. Increasing the repetition unit, the gap decreases, converging to the gap
of the union of the two relevant homopolymers, which is ≈ 0.5 eV lower than the
gaps of the relevant homopolymers. As far as the mean probabilities are regarded, if
we initially place the carrier at a G-C monomer, the probability to find it at an A-T
monomer is small, and vice versa. Increasing the repetition unit, k (from the first to
the last monomer) falls dramatically.

Some further general remarks: For both I and D polymers, the frequency content
of carrier transfer (in terms of the TWMF) lies within the THz regime. For both I and D
polymers, although k(N) is a decreasing function, it can be increased, for the sameN ,
by many orders of magnitude with appropriate sequence choice. The homopolymers
(e.g. G… and A…), i.e. the simplest cases, display higher pure mean transfer rates,
hence they are more efficient in terms of electron and hole transfer.
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9
Deterministic aperiodic and random

DNA polymers

This Chapter is devoted to charge transfer in several categories of deterministic ape-
riodic and in random binary DNA polymers, within the WM. The content of Secs. 9.1
and 9.3 can be found published in Ref. [60], under CC BY 4.0. Since the author of the
present PhD thesis is not the first author of Ref. [60], we will restrict to a presentation
of the main results of this work in Sec. 9.1, we will make some additional remarks re-
garding different initial conditions 9.2, and discuss experimental transfer rates in the
context of our TB approach in Sec. 9.3. As previously, we will use only the 5′ − 3′

strand to denote the segments, and I polymers refer to polymers made up of identical
monomers, while D polymers refer to polymers made up of different monomers. For
deterministic aperiodic binary polymers, the notation X(Y) means that that the first
monomer in the sequence is X, and the other monomer in the sequence is Y.

9.1 Main results

9.1.1 Energy structure
The energy structure various categories of deterministic aperiodic binary I and D DNA
polymers have been calculated using the HKS parametrization (see Appendix A, Ta-
ble A.1). Our numerical results are illustrated in Figs. 1-4 of Ref. [60]. For respective
results for D polymers within the S parametrization, cf. Figs. 5.4, 5.5. For both I and D
polymers, in fractal polymers the DOS is fragmented and spiky, while in the rest cases
the DOS has rather acute subbands. Also, as proven in Appendix C, Theorem 2, for
all I polymers, all eigenvalues are symmetric relative to the monomer’s on-site energy
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(this, obviously, also holds for the DOS). For D polymers, the eigenenergies (and the
DOS) gather around the two monomer’s on-site energies.

Regarding HOMO-LUMO gaps, the G-C (A-T) monomer gap is always greater than
the gaps of I polymers made of G and C (A and T). D polymers have smaller HOMO–
LUMO gaps than I polymers (cf. left panel of Fig. 5 of Ref. [60]). Furthermore, the
lower HOMO (LUMO) band limit of D polymers is always between the lower and upper
HOMO (LUMO) band limit of I polymers consisted of A and T, while the upper HOMO
(LUMO) band limit of D polymers is always between the lower and upper HOMO
(LUMO) band limit of I polymers consisted of G and C (cf. right panel of Fig. 5 of
Ref. [60]).

9.1.2 Mean over time probabilities
The main aspects of our results for the mean over time probabilities for I and D poly-
mers, for initial placement of an extra hole (HOMO) or electron (LUMO) at the first
monomer, are summarized in Figures 6 and 7, as well as in Appendix A of Ref. [60], for
some example cases. Usually, these probabilities are distributed to monomers close to
the one the carrier was initially placed.

The probabilities of finding the extra carrier at each monomer of a polymer de-
pend on the sequence on-site energies and magnitude of hopping parameters between
successive monomers. This can more easily be seen in I polymers, where only the
hopping integrals affect the energy structure. For the TM G(C) polymers, the proba-
bilities are palindromic for odd generation numbers. This is due to the fact that the
Hamiltonian matrices of these polymers are palindromic, i.e., reading them from top
left to bottom right and vice versa gives the same result. This property stems directly
from the sequence structure. For CS A(T) polymers, the mean over time probability
for an extra hole is almost totally distributed at the four (or three for g = 1) starting
monomers, regardless of N , while for an extra electron the probabilities are almost
semi-palindromic, i.e.,

〈
|Ψµ(t)|2

〉
=
〈
|ΨN−µ+1(t)|2

〉
, µ = 2, 4, ..., N − 1. In this case,

even if the sequence structure is the same for HOMO and LUMO, the magnitude of
hopping integrals has a stronger effect on the results. Another example is the RS A(T)
sequence where the mean over time probability for an extra electron is almost totally
distributed at the four starting monomers, regardless of N , while for holes it is ba-
sically distributed at monomers 1, 2, 3 and 6. Regarding the extra hole in ACS C(G)
polymers, the probability is much higher for monomers 1, 2, 9, 10 of every 32-monomer
period. Generally, for I polymers, the mean over time probabilities are significant only
rather close to the first monomer, although in some cases we observe non-negligible
probabilities at more distant monomers.

Generally, for D polymers, the mean over time probabilities are almost negligible
further than the first monomer. An exception is the RS A(G) sequence where the prob-
abilities for both HOMO and LUMO are almost totally distributed at the three starting
monomers of each polymer, regardless its length. Likewise, the mean over time prob-
ability for the extra electron in CS A(G) polymers is almost totally distributed at the
first and third monomer of each polymer, regardless its length. An extra electron in
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PD A(G) reaches somehow more distant monomers.
A general picture is that for deterministic aperiodic polymers, the mean over time

probabilities generally decline a little away from the first monomer, at which the car-
rier is initially placed. This situation is different from the general picture in periodic
polymers studied in Chapter 8 (cf. Refs. [56, 58, 59]), where, as a rule, non-negligible
probabilities exist at distant—from the first—sites.

9.1.3 Frequency content
The frequencies involved in charge transfer are given by Eq. (6.13). The Fourier spectra
of the time-dependent probability to find an extra electron or hole at each monomer
are generally in the THz regime, mainly in the FIR andMIR part of the electromagnetic
spectrum. When the dominant frequencies, i.e., those with greater Fourier amplitudes,
are smaller (larger), the carrier transfer is slower (faster). Extensive examples of the
Fourier spectra of the probability to find an extra carrier at the first and at the last
monomer, having placed it initially at the first monomer, for I and D deterministic
aperiodic polymers, for the HOMO and the LUMO regime, can be found in Refs. [262,
263].

In Fig. 9 of Ref. [60], the TWMF as a function of N for the various types of deter-
ministic aperiodic polymers is depicted. We notice that the TWMF generally stabilizes
as the generation number increases. In all cases of deterministic aperiodic polymers
studied in Ref. [60], the TWMFs are in the region ≈ 10−2–102 THz. We notice, for
comparison, that In various cases of periodic I and D polymers studied in Sec. 8.2 (cf.
Ref. [59]), the TWMFs were found in the region ≈ 100–102 THz.

9.1.4 Pure mean transfer rates
We focus on the pure mean transfer rates from the first to the last monomer, k1,N , or
from now on, just k. k(N) either for HOMO or for LUMO, for I and D deterministic
aperiodic polymers, is depicted in Fig. 10 of Ref. [60]. In all cases, k(N) is a decreasing
function. Generally, the degree of coherent transfer difficulty is greater for D polymers.
Overall, our results suggest that I polymers, which are simpler cases in terms of energy
intricacy, are more efficient regarding coherent hole and electron transfer.

In each panel of Fig. 10 of Ref. [60], k(N) of homopolymers (e.g., A…), which are
the “champions” among periodic polymers in terms of efficiency of coherent carrier
transfer, i.e., in terms of magnitude of k and of slower decrease of k(N) (see Chapter 8),
is included. It seems that k(N) of homopolymers is an unreachable limit for aperiodic
polymers. Comparing the periodic polymers studied in Chapter 8 (cf. Refs. [56, 58, 59])
with deterministic aperiodic polymers, in terms of k(N), we realize that although gen-
erally periodic polymers are more efficient, specific aperiodic polymers can be better
than specific periodic ones. However, the general picture is that charge transfer in
deterministic aperiodic polymers is orders of magnitude worse than in periodic poly-
mers.
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Furthermore, in each panel of Fig. 10 of Ref. [60], a random shuffle of the se-
quence of best deterministic aperiodic polymers, in terms of k(N), is included. In
all cases, except for HOMO CS , this random shuffle deteriorates severely k(N). For
CS, A(T) and T(A) have identical k(N) because the CS rules for A(T) and T(A) pro-
duce equivalent polymers, cf. Eq. (6.11). For equivalent polymers, k(N) from the
first to the last monomer are identical, cf. Eq. (6.19). For example, TAT ≡ ATA,
TATAAATAT ≡ ATATTTATA, TATAAATATAAAAAAAAATATAAATAT ≡ ATATT-
TATATTTTTTTTTATATTTATA, and so on. Similarly, of course, the CS rules for G(C)
and C(G) produce equivalent polymers, which have identical k(N). For CS HOMO,
the best sequences in terms of k(N) are A(T) and T(A), where the hopping integrals
involved are tAA = tTT = − 8 meV, tAT = 20 meV, tTA = 47 meV, and we have just
one on-site energy, that of A-T. From these hopping integrals, tAA has the smallest
absolute value. Given the structure of the CS sequences, making the random shuffle,
the number of tAA decreases, while the numbers of the larger hopping integrals, tAT
and tTA increase. For this reason, in HOMO CS, the random shuffle increases k(N). In
LUMO CS, this argument is inverted because now the best sequences in terms of k(N)
are G(C) and C(G), where the hopping integrals involved are tGG = tCC = 20 meV,
tGC = −10 meV, tCG = −8 meV, and we have just one on-site energy, that of G-C.
In this case, the random shuffle decreases the number of the larger hopping integrals
tGG = tCC and increases the number of the smaller hopping integrals tGC and tCG.
However, apart from the exception of HOMO CS, generally speaking, the conclusion
is that deterministic aperiodic polymers possess some kind of order, i.e., a well-defined
construction rule, that makes them more efficient than random polymers in terms of
k(N); therefore, when this rule is destroyed, transfer efficiency diminishes.

9.2 Different initial conditions
In Figs. 9.1 and 9.2, we present our numerical results for periodic, various deterministic
aperiodic, and random I and D, respectively, DNA polymers, within the WM and with
the S parametrization (see Appendix A, Table A.1), for all possible initial placements
of an extra hole.

Among the first things that can be observed from Figs. 9.1 and 9.2 is that periodic
and random polymers represent the extreme cases; in the former, the carrier is essen-
tially distributed all over the polymer, while, in the latter, the carrier is only present
only very close to the monomer it was initially placed at. Furthermore, for each cat-
egory of deterministic sequences with a definable substitution matrix [i.e., all cases
presented in Figs. 9.1 and 9.2 apart from KOL(1,2)], there are specific regions of the
polymer in which the carrier can be found; the relative length of these regions is scale
invariant, i.e., it does not depend on the generation number; the corresponding rela-
tive regions just become more fragmented (results not shown here). This is another
footprint of inflation/deflation symmetry. These regions seem to be somewhat more
strictly defined for I polymers than for D polymers. The above remark indicates that
the region of a deterministic polymer at which an extra carrier is located can be found
can be predicted, given the site it was initially inserted at. Additionally, regarding de-
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Figure 9.1: Mean over time probabilities of hole transfer for various categories of I DNA polymers and
for all possible initial conditions. First row: periodic GCGC…. (left) and random (50% G, 50& C, right).
Second row: TM (left) and Fibonacci (right). Third row: PD (left) and RS (right). Fourth row: CS (left)
and ACS (right). Fifth row: KOL(1,2) (left) KOL(1,3) (right).

terministic aperiodic sequences, there is a correspondence between the number and
occurrence percentage of possible triplets, as well as the strength of correlations, dis-
cussed in Chapter 5 (cf. Figs. 5.2, 5.3), and the extent of charge charge presence along
the polymer. For example, random and RS sequences are the least efficient cases, in
accordance with the 8 equidistributed triplets and the weak correlations they posses.



152 CHAPTER 9. DETERMINISTIC APERIODIC AND RANDOM DNA POLYMERS

1 10 20 30
1

10

20

30

1 20 40 60
1

20

40

60

1 20 40 60 80
1

20

40

60

80

1 20 40 60
1

20

40

60

1 20 40 60
1

20

40

60

1 20 40 60 80
1

20

40

60

80

1 20 40 60
1

20

40

60

1 25 50 75
1

25

50

75

<-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1 20 40 60 80 100
1

20
40
60
80

100

1 20 40 60 80 100
1

20

40

60

80

100

Figure 9.2: Mean over time probabilities of hole transfer for various categories of D DNA polymers and
for all possible initial conditions. First row: periodic GAGA…. (left) and random (50% G, 50& C, right).
Second row: TM (left) and Fibonacci (right). Third row: PD (left) and RS (right). Fourth row: CS (left)
and ACS (right). Fifth row: KOL(1,2) (left) KOL(1,3) (right).

TM and KOL(1,2) sequences, with similar triplet distribution and similar correlations,
have resembling mean probability distribution (except for I TM polymers with odd
generation numbers, which are palindromic–a case not shown here). The most effi-
cient deterministic aperiodic sequences are Fibonacci, PD and fractal sequences, again
in accordance with the discussion of Chapter 5. All in all, it can be deduced that, al-
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though end-to-end charge transfer in deterministic aperiodic polymers seems to be
rather inefficient, as shown in Sec. 9.1, further investigation shows that there are spe-
cific (for each category) regions at which the the excess carrier can efficiently travel
rather far along the polymer, given its chosen initial placement.

9.3 Some remarks on experimental transfer rates
Comparison of the coherent pure mean transfer rates k of DNA with experimentally
obtained transfer rates is a rather complicated issue. In the past, the experimental
transfer rates in donor—bridge (DNA)—acceptor systems were obtained using the con-
centrations of different products generated e.g., when a hole is (PY) or is not (PN)
transferred. The concentrations of PY and PN were indirectly measured by methods
like polyacrylamide gel electrophoresis and piperidine treatment [264, 265]. Although
thesemethods revealed some aspects of hole transfer like the sequence dependence and
the ability of transfer, they do not provide the kinetics of hole transfer in DNA [266].
Although, generally, greater concentration of PY implies greater charge transfer, there
is no proof that the concentrations of PN and PY are proportional to the degree of
transfer.

Quantum mechanically, only a fraction of the carrier reaches the acceptor through
the bridge. For the same reason, the definition of transfer time is problematic. The
transfer rate should depend both on the amount and the speed of transfer. However,
the concentration of PY is not strictly proportional to the amount of carrier transfer
and not strictly inversely proportional to the time of transfer. A more direct experi-
mental approach is time-resolved spectroscopy, e.g., transient absorption, to observe
the products of charge transfer [266–268].

Our point of view is different, since the quantity we use, the pure mean transfer
rate [55], given by Eq. (6.18), uses simultaneously the magnitude of coherent charge
transfer and the time scale of the phenomenon. However, our method applies to co-
herent transfer only and cannot cover incoherent mechanisms like thermal hopping.

It is a common assertion in the literature that when the fall of the transfer rate
with respect to the length of a given DNA segment is described by an exponential fit,
the mechanism of transfer is superexchange, whereas when it is described by a power
law fit, the mechanism of transfer is multi-step hopping. However, we stress that the
fitted parameters produced this way should be treated with care, especially when it
comes to attributing them to specificmechanisms. For example, in Ref. [266], where the
hole transfer kinetics of various short DNA segments were experimentally investigated
with time-resolved spectroscopy, the authors present an exponential decay length β =
1.6 Å−1 by fitting the experimental hole transfer rates of G(A)nG DNA oligomers (n =
0, 1, 2) to the exponential law K = K0e−βd, where d is the charge transfer distance,
i.e., d = 3.4 × (N − 1) Å. Using the transfer rate values of Ref. [266], we observed
that, although β, determined as the slope of the linear fit ln(K) = ln(K0) − βd is
indeed ∼= 1.6 Å−1, a direct exponential fit gives β ∼= 1.3 Å−1, suggesting that the
law of decay is not exactly exponential. On the contrary, the fits of our theoretically
obtained pure mean transfer rates, k, for the same system, give β ∼= 1.84 Å−1 for β
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determined as the slope of the linear fit ln(k) = ln(k0) − βd, and β ∼= 1.79 Å−1 for
a direct exponential fit k = k0e−βd, suggesting closer convergence to an exponential
decay. Similarly, in Ref. [269], the authors experimentally study, with time-resolved
spectroscopy, hole transfer through (GA)n and (GT)n sequences, where n = 2–12 is the
number of repetition units. The authors fitted the obtained transfer rates to the power
lawK = K

′
0N−η, where N is the number of hopping steps between guanines (in our

notation, N = N
2
− 1), reported the same exponent for both sequences, i.e., η = 2,

and suggested that this value provides evidence that the long-distance hole transfer
occurs by multi-step hopping between guanines. From the rate values provided in
Table I of Ref. [269], we observed that, although η as a slope of the linear fit ln(K) =
ln
(
K

′
0

)
− η ln(N ) is indeed 2 for both sequences, a direct power law fit yields η ∼=

1.4 for (GA)n and η ∼= 1.3 for (GT)n, suggesting that the rate decay does not follow
exactly a power law. On the contrary, the fits of our theoretically obtained pure mean
transfer rates, k, for (GA)n, give η ∼= 1.40 for η determined as the slope of the linear
fit ln(k) = ln

(
k

′
0

)
− η ln(N ), and η ∼= 1.56 Å−1 for a direct power law fit k = k

′
0N−η.

The respective values for (GT)n are η ∼= 2 for both fits. Hence, our theoretical results
suggest that the fall of k, as the length of the bridge increases, convergences to a power
law and that the fall of the transfer rate is less steep when purines are on the same
strand compared to the case when purines are crosswise.
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Figure 9.3: Comparison of experimental hole transfer ratesK for An and A3Gn segments [270] (full cir-
cles) with our theoretical coherent puremean transfer rates k (empty circles), as a function of the number
of monomers N in the polymer. The parametrization is described in the main text.

DNA is a dynamical structure, i.e., the geometry is not fixed. Large variations of
the TB parameters are expected in real situations and also large variations of the TB
parameters have been obtained by different theoretical methods by different authors,
cf. e.g., Ref. [55] and references therein. Hence, the parameters any TB model uses
have to be utilized with care. In Ref. [270], the authors report experimentally deduced
(by transient absorption spectroscopy) charge separation rates, in capped An (n =
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1–7) and A3Gn (n = 1–19) DNA hairpins with a stilbenedicarboxamide hole donor
and a stilbenediether hole acceptor. We computed our theoretical coherent pure mean
transfer rates, k, for the same systems with a modified HKS parametrization: tAA →
1.6tAA, tAG → 2.1tAG, tGG → 2.25tAG, cf. Table A.1). In order to mimic the donor
and the acceptor, we added two sites at the ends of the TB chain, with on-site energies
ϵdon = ϵA−T − 0.1 eV, ϵac = ϵG−C + 0.1 eV. We used for the hopping integral from the
donor (last base pair) to the first base pair (acceptor) 100 meV (250 meV). Our results,
along with the experimental ones, are depicted in Figure 9.3. Apart from the A1 and
A2 systems, for which we find much larger rates, the pure mean transfer rates k are of
the same order of magnitude, in good quantitative agreement with the experimental
transfer rates K . Actually, the same sequences An (n = 1–7) and A3Gn (n = 1–19)
analyzed in Ref. [270] had also been analyzed by the same group in Ref. [271]. In
Ref. [271], the authors mention a time resolution of ca. 180 fs. Hence, roughly, only
transfer rates K < (1/180) PHz ≈ (1/200) PHz = 5 × 10−3 PHz can be detected by
this technique.

9.4 Conclusion
We discussed coherent charge transfer on deterministic aperiodic and random binary
I and D DNA segments, within the WM. Regarding the energy structure of the poly-
mers, the eigenenergies lie around the monomers’ on-site energies. For I polymers,
the eigenenergies are always symmetric relative to the (constant) monomer on-site
energy. For both I and D polymers, in fractal cases the DOS is fragmented and spiky,
while in the rest cases the DOS has rather acute subbands. D polymers pose smaller
HOMO–LUMO gaps than I polymers. The lower HOMO (LUMO) band limit of D poly-
mers is always between the lower and upper HOMO (LUMO) band limit of I polymers
consisted of A and T, while the upper HOMO (LUMO) band limit of D polymers is al-
ways between the lower and upper HOMO (LUMO) band limit of I polymers consisted
of G and C.

Next, we studied the mean over time probabilities to find an extra hole or electron
at each monomer of the polymer, having it initially placed at the first monomer. For
I polymers, the mean over time probabilities are significant only rather close to the
first monomer, although in some cases we observe non-negligible probabilities at more
distant monomers. For D polymers, the mean over time probabilities are generally
negligible further than the first monomer. This is in contrast with periodic polymers,
studied in Chapter 8, where, generally, non-negligible probabilities exist at distant—
from the initial—sites.

Furthermore, we determined the frequency content of coherent extra carrier trans-
fer via the total weighted mean frequency of the polymer, using the weighted mean
frequencies of the Fourier spectra that correspond to the probabilities to find the carrier
at each monomer. The TWMF generally stabilizes after a few generations. In all cases
of deterministic aperiodic polymers studied, the TWMF lies in the regime≈ 10−2−102

THz. This is different from various cases of periodic I and D polymers studied Sec. 8.2,
where the TWMFs were found in the region ≈ 100 − 102 THz.
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The study of the pure mean transfer rates, k(N), shows that I polymers, which
are simpler cases in terms of energy intricacy, are more efficient than D polymers re-
garding coherent hole and electron transfer. Comparing the periodic polymers studied
in Chapter 8 (see also Refs. [56, 58, 59]) with the aperiodic polymers studied here, in
terms of k(N), we realize that, although generally periodic polymers are more effi-
cient, specific aperiodic polymers can be better than specific periodic ones. However,
the general picture is that charge transfer in aperiodic polymers is orders of magni-
tude worse than in periodic polymers. The structurally simplest periodic polymers,
i.e., homopolymers, represent an unreachable limit for all aperiodic polymers. Fur-
thermore, a random shuffle of a deterministic aperiodic monomer sequence destroys
the deterministic character of its construction rules, thus leading to vanishing transfer
rates.

Further comparative investigation of the mean over time probabilities to find a
carrier at each monomer of periodic, deterministic aperiodic, and random polymers
for all possible initial placements reveals that, although end-to-end charge transfer in
deterministic aperiodic polymers seems to be rather inefficient, there are specific (for
each category) regions at which the the excess carrier can efficiently travel rather far
along the polymer, given its chosen initial placement. The extent of these regions is in
accordance with our discussion on the number and occurrence percentage of possible
triplets, as well as the strength of correlations, discussed in Chapter 5. Less number
of triplets, the existence of dominant triplets and stronger correlations lead to larger
regions in which the charge can be found.

As far as comparison with experiments regarding the transfer rates is concerned,
large variations of the TB parameters are expected in real situations, hence modifica-
tions are necessary. Using a modified HKS parametrization, we were able to find hole
pure mean transfer rates k of similar magnitude with experimental transfer rates K
obtained by time-resolved spectroscopy.



Conclusion

This PhD thesis is devoted to a comparative and systematic, both analytical and numer-
ical, study of charge transport and transfer properties π conjugated molecular wires,
and specifically of DNA and carbynes, using variants of the TB method. Regarding
charge transport, the computational code used throughout Part II was solely devel-
oped by the author, while, regarding charge transfer the code used throughout Part III
is a product of several amendments, additions, and optimizations made by the author
to already existing programs that had been developed within the group “Physics of
Nanostructures and Biomaterials”, again, with his participation.

Our first goal regarding charge transport was to study the simplest variant of one-
dimensional TB models, i.e., the WM, in a more generic manner. We focused on peri-
odic systems whose chemical diversity is measured in terms of the number of different
kinds of atoms and bonds in the unit cell, and found out that some properties, which
are usually regarded as specific properties of the systems considered, may turn out
to be quite general consequences of the adopted quantum lattice model instead. We
showed a recipe to produce their energy structure for cyclic and fixed boundaries and
systematically studied all factors that affect their transmission profiles. We introduced
an optimal coupling condition between the considered systems and the leads they are
attached to, based on two factors, i.e., the coupling strength and asymmetry.

Having obtained this knowledge, we moved on to apply our model to cumulenic
and polyynic carbynes. Our numerical results have shown that this model is able to
catch several experimentally detectable features of charge transport, such as the en-
ergy gap of polyynic carbynes, the metallic (semiconducting) behavior of cumulenic
(polyynic) carbynes, and the rectifying behavior of the current-voltage curves when
there is a mismatch between the Fermi levels of the leads to which polyynic carbynes
are attached.

Next, we focused on the interplay between the sequence structure, the energy
structure and the charge transport properties of several categories of DNA segments,
i.e., periodic, various deterministic aperiodic, and random sequences. We have shown
that there is a direct correspondence between the number and occurrence percentage
of the possible base-pair triplets present in each sequence category and the aforemen-
tioned properties. Apart from a natural unit in a TB model with nearest neighbor in-
teractions, base-pair triplets constitute the so-called codons, each one of which corre-
sponds to a specific amino acid or stop signal during protein synthesis. Specifically, for
all deterministic aperiodic sequences studied, we found that there are IDOS steps the
relative height of which is equal to the occurrence percentage of the possible triplets
within them. The strength of correlations within the segments, determined via the ACF
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of the quantities ϵn
tn
, which is also affected by the number of triplets and the possible

presence of dominant ones, is a fingerprint of the sequences’ inflation/deflation sym-
metry and is reflected on the localization and transmission properties of the segments.
By systematically studying the current voltage curves for all segment categories (which
all have distinct shapes), we found that although periodic polymers represent the most
efficient case, there are deterministic aperiodic sequences that can carry significant
currents. Homopolymers are a limiting case in terms of transport efficiency, and ran-
dom sequences are systematically the least efficient. We have also shown that the use
of a realistic parametrization, going beyond the somewhat simplistic assumptions of
solely diagonal or off-diagonal disorder, reveals much more detail about the studied
properties.

In order to understand coherent charge transfer of an extra hole or electron along
DNA, we started by focusing on small segments, within the WM and the ELM. We
showed that the twomodels give complementary results, predicting carrier oscillations
with frequencies in the THz regime for DNA monomers, dimers, and trimers. Within
monomers, charge transfer is very small to negligible. In dimers made up of identical
monomers, the whole extra carrier is transferred from the one monomer to the other
(when purines are on the same strand, transfer is of intra-strand character, while, when
purines are crosswise, transfer is of inter-strand character). In dimers made up of
different monomers, transfer is of intra-strand character, albeit only a small percentage
of the carrier changes monomer. Our results for the above mentioned TB models were
compared with respective ones obtained by RT-TDDFT, and are in good agreement.

The twomodels, i.e. theWM and the ELM, were also compared in a study of charge
transfer along the simplest periodic polymers, monomer- and dimer-polymers. They
give coherent, complementary results regarding the mean over time probabilities to
find the extra carrier at a specific site, the frequency content of transfer, and the pure
mean transfer rates, with the ELM allowing for greater detail. This complementarity
stems from the fact that due to the weak ppπ coupling between the complementary
bases of a base pair, the HOMO (LUMO) of the base pair within the WM is very close
to the highest of the HOMOs (lowest of the LUMOs) of its two constituents within the
ELM. We also studied some other classes of periodic polymers, with increasing repeti-
tion unit in the fashion GC, GGCC, etc, or GA, GGAA, etc, within the WM. We found
that as the repetition unit increases, in the former case, all studied quantities related
to charge transfer (eigenspectra, DOS, energy gaps, mean over time probabilities to
find the extra carrier at each base pair, TWMFs, pure mean transfer rates) have the
homopolymers as a limit, while, in the latter case, the limit is the union of the two
possible homopolymers.

The fact that the -structurally simplest- homopolymers are the most efficient case
for charge transfer is demonstrated by a comparative study of periodic, deterministic
aperiodic, and random DNA segments. However, there are specific aperiodic poly-
mers that can be more efficient than periodic ones. Furthermore, although end-to-end
transfer is generally orders of magnitude worse in deterministic aperiodic polymers,
a further study shows that there are regions of initial carrier placement, specific for
each deterministic aperiodic polymer category, for which the extra carrier can be found
rather far away. The extent of transfer is, just as in charge transport, directly related
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to the number and occurrence percentage of the possible base-pair triplets in each
segment category.

Finally, we have shown that our coherent pure mean transfer rates can quantita-
tively reproduce experimental transfer rates obtained with transient absorption spec-
troscopy techniques.

Qualitatively, the results presented in this PhD thesis are not polymer-specific and
could be applied to study other polymers or, more generally, one-dimensional struc-
tures, as well. DNA, due to the ability it provides to construct sequences of choice,
could be seen as a prototype system. However, its large persistence length, combined
with the fact that, as we have shown, its charge transport and transfer properties are
strongly sequence-dependent, make it a promising candidate as a channel in nano-
electronic applications. Furthermore, the knowledge we have obtained from the sys-
tematic study of periodic DNA polymers could be employed to investigate repeated
nucleic acid oligomers associated with repeat expansion disorders, i.e., inherited dis-
eases caused when the number of nucleotide repeats exceeds a critical threshold.

Although we have focused on what is the most important intrinsic factor that af-
fects charge transfer and transport in DNA, i.e., the base-pair sequence, this is not
the only intrinsic factor that matters. DNA is flexible, and its structural deformations
would have a significant effect on the TB parameters. This is a subject currently studied
within our group.

Finally, having studied the charge transport properties of carbynes within TB,
we are currently extending our investigations to charge transfer in open and closed
polyynic and cumulenic carbon atomic wires and carbon-nitrogen wires, compara-
tively within TB and RT-TDDFT.
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A
Tight-Binding

parametrizations for DNA

We list the parametrizations used in the TB models employed for DNA in the present
thesis.

Wire Model

Table A.1: Hopping integrals for all possible successive DNA base pairs, in the 5′ − 3′ direction, for the
two parametrizations used in this thesis to employ the WM. In each column, the left value corresponds
to HOMO, while the right value to LUMO. All hopping integrals are given in meV. For both parametriza-
tions, the two relevant on-site energies of the two base pairs are ϵG-C = −8.0 eV, ϵA-T = −8.3 eV for
HOMO, and ϵG-C = −4.5 eV, ϵA-T = −4.9 eV for LUMO.

Base-pair
sequence S parametrization [55] HKS parametrization [61]

GG≡CC −100 20 −62 20
AA≡TT −20 −29 −8 −29
GC 10 −10 1 −10
CG −50 −8 −44 −8
AT 35 0.5 20 0.5
TA 50 2 47 2
AG≡CT −30 3 −5 3
GA≡TC −110 −1 −79 −1
CA≡TG −10 17 −4 17
AC≡GT 10 32 2 32
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Extended Ladder Model

Table A.2: Hopping integrals for all adjacent DNA bases, in the 5′−3′, 3′−3′, and 5′−5′ directions, for
the parametrization used in this thesis to employ the ELM. In each column, the left value corresponds
to HOMO, while the right value to LUMO. All hopping integrals are given in meV. The relevant on-site
energies of the four base bases are ϵG = −8.0 eV, ϵC = −8.8 eV, ϵA = −8.3 eV, ϵT = −9.0 eV for HOMO,
and ϵG = −4.5 eV, ϵC = −4.3 eV, ϵA = −4.4 eV, ϵT = −4.9 for LUMO. The intra-base-pair hopping
integrals are tG-C = −12 meV, tA-T = −12 meV for HOMO, and tG-C = −9 meV, tA-T = 16 meV for
LUMO.

HKS parametrization [61]

Adjacent
bases 5′ − 3′ 3′ − 3′ 5′ − 5′

GG −62 20 −44 −5 3 −2
CC −66 −47 1 0.3 1 2
AA −8 16 48 29 2 6
TT −117 −30 0.5 0.2 4 2
GC 80 43 4 −4 4 −3
CG −1 15 4 −4 4 −3
AT 68 7 −3 3 9 2
TA 26 −7 −3 3 9 2
AG −5 1 −3 −6 4 3
CT −107 63 0.5 −0.2 2 −2
GA −79 30 −3 −6 4 3
TC −86 22 0.5 −0.2 2 −2
CA 5 −12 −5 −3 5 −2
TG 28 −17 5 2 5 3
AC 68 −3 −5 −3 5 −2
GT 73 −32 5 2 5 3



B
Fourier Spectra

of DNA dimers and trimers

Wepresent representative Fourier spectra for DNA dimers and trimers within the ELM.
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Figure B.1: Fourier spectra, within the ELM and with the HKS parametrization, of the GG dimer. A
hole is placed initially at a base and we depict the frequency spectrum at all bases, A1(G), B1(C), A2(G),
B2(C).
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Figure B.2: Fourier spectra, within the ELM and with the HKS parametrization, of the GC dimer. A
hole is placed initially at a base and we depict the frequency spectrum at all bases, A1(G), B1(C), A2(C),
B2(G).
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Figure B.3: Fourier spectra, within the ELM and with the HKS parametrization, of the CT dimer. A
hole is placed initially at a base and we depict the frequency spectrum at all bases, A1(C), B1(G), A2(T),
B2(A).
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Figure B.4: Fourier spectra, within the ELM and with the HKS parametrization, of hole transfer in the
GGG trimer. A hole is placed initially at a base and we depict the frequency spectrum at all bases, A1(G),
B1(C), A2(G), B2(C), A3(G), B3(C).
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Figure B.5: Fourier spectra, within the ELM and with the HKS parametrization, of the GCG, CAC, CTC
trimers for initial placement of a hole at base A1.



C
Two theorems

on tridiagonal symmetric matrices

Theorem 1. The eigenvalues of real tridiagonal symmetric matrices do not depend on the
sign of their off-diagonal entries [272]

Proof. Let T be a tridiagonal, irreducible¹², symmetric N × N matrix with diagonal
elements Tk = ak ∀k = 1, . . . N and off-diagonal elements T(k,k+1) = rk+1e

−iθk+1 ,
rk+1 > 0, ∀k = 1, . . . N−1. SinceT is Hermitian, T(k+1,k) = rk+1e

iθk+1 . Now, suppose
a diagonal N × N matrix D, with elements d1 = 1, dk = dk−1e

iθk ,∀k = 2, . . . , N .
Then,D is unitary, and the similarity transformation T̃ = D−1TD leads to thematrix
T̃ with diagonal elements T̃k = ak and non-diagonal elements T̃(k,k+1) = rk+1. Hence,
the tridiagonal Hermitian matrix T has the same eigenvalues with the tridiagonal real
symmetric matrix T̃ , which has positive non-diagonal entries [272]. Let us further
suppose that T is real. Then, θk = 0 or θk = π, depending on whether T(k,k+1) > 0 or
T(k,k+1) < 0. The elements ofD will then be dk = dk−1(±1),∀k = 2, . . . , . Hence, the
matrix T̃ , which has positive entries, has the same eigenvalues with T , which differs
by T̃ in that its off-diagonal elements have negative signs in arbitrary positions. We
also notice, if v⃗ is an eigenvector of T , then D−1v⃗ is an eigenvector of T̃ . ■

Theorem 2. The eigenvalues of real tridiagonal symmetric matrices with the same entry
in the main diagonal are symmetric around the value of this entry.

Proof. Matrices of even order: A tridiagonal symmetric matrix, T , of order N = 2n,
with the same entry in the main diagonal, let us denote it by ϵ, can be written on the

¹²A matrix is called irreducible if it cannot be transformed through permutations into a block triag-
onal. In our case, i.e., tridiagonal matrices, this simply means that all the off-diagonal elements are
non-zero.
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form
T = ϵI + TGK, (C.1)

where

TGK =


0 t1
t1 0 t2

t2
. . . . . .
. . . 0 t2n−1

t2n−1 0

 (C.2)

is called a tridiagonal symmetric Golub-Kahan matrix. It can easily be shown that

TGK = P TBP , (C.3)

where P is the perfect shuffle matrix¹³ and

B =

(
O A
AT O

)
, A =


t1 t2

t3 t4
. . . . . .

t2n−1

 . (C.4)

Furthermore, by performing the Singular Value Decomposition of the upper bidiagonal
matrix A, i.e., by writing it as A = USW T , and replacing in in B, we obtain

B = J

(
−S 0
0 S

)
JT , J =

1√
2

(
U U

−W W

)
. (C.5)

Thus, by combining Eqs. (C.5) and (C.3), we arrive at

TGK = P TJ

(
−S 0
0 S

)
JTP . (C.6)

From Eq. (C.6), we conclude that the eigenvalues of TGK are given by the positive and
negative values of the diagonal matrix S, i.e., they are symmetric around zero [273].
Hence, given Eq. (C.1), the eigenvalues of T are symmetric around ϵ.

Matrices of even order: If T is of order N = 2n + 1, we add a zero row and a zero
column to TGK in the odd-order version of Eq. (C.2), so that it is again of even order,
and follow the aforementioned procedure. Then, two degenerate trivial eigenvalues
will appear apart from the symmetric ones in Eq. (C.6) [274]. Thus, the eigenvalues
of T occur by omitting the zero row and column in TGK , hence they are symmetric
around ϵ, which is also an eigenvalue. ■

¹³P = (ên+1 ê1 ên+2 ê2 . . . ê2n ên), where êk denotes the column-matrix with zero elements
except the kth which is unit.
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