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Σύνοψη

Παρουσιάζουμε διάφορες επίσημες προσεγγίσεις στη θεωρία συμψηφισμού απόψεων, όπου οι όχι/ναι θέσεις

μιας ομάδας ατόμων πάνω σε μια σειρά απόm θέματα πρέπει να συναθροιστούν σε μια συλλογική απόφαση,
και δείχνουμε ότι αυτές οι προσεγγίσεις είναι κατά μία έννοια «ισοδύναμες». Στη συνέχεια, εστιάζου-

με σε δύο από αυτές τις προσεγγίσεις: το αφαιρετικό πλαίσιο (abstract framework) όπου το πεδίο της
διαδικασίας συμψηφισμού είναι ένα υποσύνολο του {0, 1}m, το οποίο θεωρείται ότι αντιπροσωπεύει τις
«λογικές» ψήφους και το πλαίσιο που βασίζεται στους περιοριστές της ακαιρεότητας (integrity constraint
based framework), όπου ένας τύπος της προτασιακής λογικής, που ονομάζεται περιοριστής της ακαιρε-
ότητας (integrity constraint), καθορίζει ποια διανύσματα θεωρούνται «λογικά», υπό την έννοια ότι το
πεδίο της διαδικασίας συμψηφισμού είναι το σύνολο των απονομών αληθοτιμών που τον ικανοποιούν.

Ενδιαφερόμαστε μόνο για διαδικασίες συμψηφισμού που διατηρούν αυτή την έννοια λογικότητας, χωρίς

όμως να δίνουν όλη τη δύναμη απόφασης σε έναν μόνο ψηφοφόρο. Αυτές οι διαδικασίες ονομάζονται

μη-δικτατορικοί συμψηφιστές. Παρέχουμε ικανές και αναγκαίες συνθήκες, που αφορούν στη συντακτική

μορφή ενός περιοριστή ακεραιότητας, έτσι ώστε το πεδίο που περιγράφει να δέχεται έναν μη-δικτατορικό

συμψηφιστή. Ονομάζουμε αυτό το είδος τύπων δυνητικούς περιοριστές ακεραιότητας (possibility integrity
constraints). Δείχνουμε ότι οι δυνητικοί περιοριστές ακεραιότητας είναι εύκολα αναγνωρίσιμοι και πα-
ρέχουμε αλγόριθμους οι οποίοι, δοθεντος ενός πεδίου D ∈ {0, 1}m, ελέγχουν σε χρόνο πολυωνυμικό
στο μέγεθός του εάν δέχεται έναν μη-δικτατορικό συμψηφιστή, και παράγουν έναν δυνητικό περιοριστή

ακεραιότητας που το περιγράφει, σε περίπτωση που αυτό συμβαίνει. Μελετάμε επίσης διάφορες υπο-

κατηγορίες μη-δικτατορικών συμψηφιστών, συγκεκριμένα τοπικά μη-δικτατορικούς συμψηφιστές (locally
non-dictatorial aggregators), συμψηφιστές που δεν είναι γενικευμένες δικτατορίες (not generalized dic-
tatorships), ανωνυμικούς (anonymous), μονοτονικούς (monotone), ισχυρά δημοκρατικούς (StrongDem)
και συστηματικούς συμψηφιστές (systematic aggregators). Χαρακτηρίζουμε συντακτικώς τους αντίστοι-
χους περιοριστές ακεραιότητας και αποδεικνύουμε ότι κάθε ένα από αυτά τα είδη περιοριστών ακεραιότητας

μπορεί να αναγνωριστεί αποτελεσματικά. Τέλος, δείχνουμε ότι δοθέντος ενός πεδίου D, μπορούμε αμ-
φότερα να ελέγξουμε αποτελεσματικά αν περιγράφεται από έναν τέτοιο τύπο και, σε περίπτωση που αυτό

συμβαίνει, να τον κατασκευάσουμε.



iii

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

Abstract
Faculty Name

Department of Mathematics

Approaches to the theory of aggregation

by Sofia Kokonezi

We present various formal approaches to the theory of judgement aggregation, where
no/yes positions of a group of individuals over a set of m issues need to be aggre-
gated into a collective one, and show that these approaches are in a sense "equiv-
alent". Then, we focus on two of these approaches: the abstract framework where
the domain of the aggregation process is a subset of {0, 1}m, thought to represent
the "rational" judgements and the integrity constraint framework, where a formula of
propositional logic, called the integrity constraint defines which ballots are consid-
ered "rational", in the sense that the domain of the aggregation process is the set of its
satisfying truth assignments. We are only interested in aggregation procedures that
preserve this notion of rationality, without giving all decision power to a single voter.
These procedures are called non-dictatorial aggregators. We provide necessary and
sufficient conditions, regarding the syntactic type of an integrity constraint, so that
the domain it describes admits a non-dictatorial aggregator. We call this type of for-
mulas possibility integrity constraints. We show that possibility integrity constraints
are easily recognisable and provide algorithms that, given a domain D ⊆ {0, 1}m,
check in time polynomial in its size whether it admits a non-dictatorial aggrega-
tor, and actually produce a possibility integrity constraint that describes it in case it
does. We also study various sub-classes of non-dictatorial aggregators, namely lo-
cally non-dictatorial aggregators, aggregators that are not generalized dictatorships,
anonymous, monotone, StrongDem and systematic aggregators. We syntactically
characterize the corresponding integrity constraints and show that each of these
types of integrity constraints can be recognized efficiently. Finally, we show that
given a domain, we can both efficiently check if it is described by such a formula
and, in case it is, construct it.
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Chapter 1

Preliminaries

1.1 Introduction

Social choice theory is an interdisciplinary research area concerning collective deci-
sion making. In many aspects of our lives individual preferences and opinions need
to be aggregated into a common and coherent thesis, conceived as the social outcome.
This issue arises in many different contexts, ranging from juries to multi-membered
courts, from legislative committees to referenda, from boards of companies to inter-
national organizations, from families and informal social groups to societies at large.
These examples justify the interest shown to social choice theory by scientists from
different fields, such as welfare economics, political science, voting theory, sociology,
and even philosophy. Recently, social choice theory has received a lot of attention
in artificial intelligence and computer science in general, since the methods of social
choice have important applications in A.I., e.g. in multiagent systems.

The challenges of social decisions involving conflicting interests and opinions
have been explored for a long time. As Amartya Kumar Sen [32] pointed out in
his 1998 Nobel lecture, already in the fourth century B.C., Aristotle in Greece and
Kautilya in India explored various ways in which individuals could take social de-
cisions. However, the formal and systematic study of social choice theory got its
own hypostasis only during the French Revolution. The pioneers of this leap were
French mathematicians such as J. C. Borda (1781) and Marquis de Condorcet (1785),
who addressed the problem of deriving the social decision based on the individual
preferences in mathematical terms and declared the inception of social choice theory.

The first mathematical voting theory was formulated by Jean Charles de Borda.
In his Mémoire sur les élections au scrutin, Borda showed that plurality voting the most
common voting method, may elect the wrong candidate. Consider, for example, a
voting procedure where a group of 100 people vote over 3 alternatives x, y and z.
Their preferences are ordered as illustrated in table 1.1. In plurality voting, each
individual votes for his first preference, thus x will be elected. However, it is easy to
notice that x is the least preferable option for a majority of the voters.

First preference Second preference Third preference
45 voters x y z
35 voters y z x
20 voters z y x

TABLE 1.1: A problem with plurality voting.

In order to overcome this problem Borda proposed a voting method that was
based on the preference order of the voters.

Marquis de Condorcet independently observed that plurality voting may result
in the election of the wrong candidate as well. The solution he proposed was based
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on the pairwise comparison of alternatives, provided again that voters would give
an ordering of their preferences. He also discovered a problem with majority vot-
ing, now known as Condorcet’s paradox. Specifically, there are cases where circular
ambiguities occur, i.e., there is no candidate who is preferred by voters to all other
candidates. In such situations the group is unable to single out the "best" option. For
instance, consider a hypothetical voting procedure where a group of 3 people votes
over 3 alternatives, as illustrated in table 1.2. Observe that by pairwise comparison,
option x prevails over y, option y over z and option z over x. In other words, this
group holds an intransitive position and consequently there is no principled way of
deciding the social outcome.

First preference Second preference Third preference
voter 1 x y z
voter 2 y z x
voter 3 z x y

TABLE 1.2: An illustration of Condercet’s paradox.

The same problem was studied by Charles Lutwidge Dodgson in 1874 (better
known as "Lewis Carroll", author of Alice’s Adventures in Wonderland), who con-
tributed considerably in the development of social choice theory. Dodgson proposed
several methods for the aggregation of preferences. His interest was focused on the
circular ambiguities described above, which he called majority cycles, a term that has
been used ever since.1

Besides the problem of selecting the winning candidate in an election, social
choice theory has its origins in the normative analysis of welfare economics [31],
a branch of modern economics that evaluates economic policies based on the wel-
fare of the society at large. To this purpose measures of personal utility as well as the
concept of social welfare function were introduced. In the 1930s, Lionel Robbins [29]
raised several questions concerning the cardinality and interpersonal comparabil-
ity of personal utility. Thereafter, apart from selecting the winning candidate in an
election, social choice theorists also focused on defining social welfare.

This led to the construction of a list of "reasonable" axioms reflecting the desir-
able properties of a social welfare function. This formalization is attributed to the
economist and Nobel Prize winner, John Kenneth Arrow. Concisely, these axioms
are the following:

• Universal domain: a social welfare function has to accept as input any combina-
tion of individual preference orders.

• Pareto condition: whenever all members of a society rank alternative x above
alternative y, then the society must also prefer x to y.

• The independence of irrelevant alternatives: the social preference over any two
alternatives x and y must depend only on the individual preferences over those
alternatives x and y (and not on other irrelevant alternatives).

• Non-dictatorship: requires that there exists no individual in the society such
that, for any domain of the social welfare function, the collective preference is
the same as that individual’s preference (i.e., the dictator).

1For an extensive historical overview of the mathematical theory of voting, the book of D. Black is
suggested [2].
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In 1950, J. K. Arrow [1] proved that these conditions cannot be jointly satisfied.
In particular, a dictator always occurs by solely demanding for the first three condi-
tions to apply. This result, known as "Arrow’s impossibility theorem", triggered a very
extensive research in the field, thus generating many other analogous results, and is
generally acknowledged as the basis of modern social choice theory.

Another catalyst towards the development of modern social choice was the dis-
cursive dilemma, a descendant of the doctrinal paradox.

Doctrinal paradox

The doctrinal paradox may appear when a group of people has to form a collec-
tive decision over logically interconnected propositions. Such decision problems were
not captured by the classical social choice theoretic models. We will illustrate this
paradox through the classic example of Kornhauser and Sager [19]. Suppose that a
three-member court has to rule on a breach of contract case between a plaintiff and a
defendant. According to the contract law, the defendant will be sentenced liable (in
what follows, this proposition is denoted by r) if and only if there was a valid con-
tract (this proposition is denoted by p) and the defendant came in breach of it (this
proposition is denoted by q). In terms of propositional logic this law is described by
the formula (p ∧ q)↔ r. Suppose that the three judges’ views of the merits are as in
table 1.3.

Valid contract Breach Defendant liable
p q r

Judge 1 1 1 1
Judge 2 1 0 0
Judge 3 0 1 0
Majority 1 1 0

TABLE 1.3: An illustration of the doctrinal paradox.

There are two ways in which the court can reach a verdict: either by ignoring the
judges’ reasoning and taking the majority vote directly on the conclusion (conclusion-
based method) or by taking the majority vote on the premises and then deciding the
outcome on r, via the rule(p ∧ q) ↔ r that formalizes the contract law (premise-
based method). The problem is that the two methods of decision-making -on which
the outcome depends- lead to different results. In particular, the defendant would
be declared not liable under the conclusion-based method, whereas the defendant
would be sentenced liable under the premise-based method.

Discursive dilemma

In 2001, the political philosopher Pettit [26] observed that the doctrinal paradox ex-
presses a more extensive problem. As we have already mentioned, in the case illus-
trated in table 1.3 the court faces a dilemma as to which method should be chosen.
In 2004, List and Pettit [22] constructed a new version of the same case where, apart
from the three propositions p, q, r that respectively correspond to the issues "there is
a valid contract", "there is a breach" and "the defendant is liable", they also included
to the list of issues the proposition (p ∧ q) ↔ r, which formalizes the law. Now,
suppose that the three judges cast their votes as illustrated in table 1.4.
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Valid contract Breach Legal doctrine Defendant liable
p q (p ∧ q)↔ r r

Judge 1 1 1 1 1
Judge 2 1 0 1 0
Judge 3 0 1 1 0
Majority 1 1 1 0

TABLE 1.4: An illustration of the discursive dilemma.

Note that the judges unanimously accept the legal doctrine (p ∧ q)↔ r and that
by a majority of two out of three the court also accepts the propositions p, q,¬r. In
other words, the court’s decision includes the propositions {p, q, (p ∧ q)↔ r,¬r}.

The problem is that this set is inconsistent, as it logically implies both propositions
r and ¬r. Indeed, both conditions for the defendant’s liability are accepted, while at
the same time the conclusion r is rejected and the defendant would be released.
Moreover, it should be stressed out that this inconsistency appears despite the fact
that each judge holds a consistent position.

Such a reconstruction of the doctrinal paradox is known as the discursive dilemma
and, as Mongin observed, has a great consequence:

The discursive dilemma shifts the stress away from the conflict of meth-
ods to the logical contradiction within the total set of propositions that
the group accepts. [. . . ] Trivial as this shift seems, it has far-reaching con-
sequences, because all propositions are now being treated alike; indeed,
the very distinction between premises and conclusions vanishes. This
may be a questionable simplification to make in the legal context, but if
one is concerned with developing a general theory, the move has clear
analytical advantages. [24, p.2].

This shift prompted the formal investigation on the conditions under which con-
sistent individual judgments may collapse into an inconsistent collective judgment,
and aggregation theory stemmed.

The object of judgment aggregation is to study the class of aggregators. An n-ary
aggregator is a function that on input a sequence of n feasible judgment assignments
(the choices of the individuals) returns a feasible judgment assignment. The output
of the aggregator is considered to be the social outcome. Intuitively, the aggregator
corresponds to the "rule" by which, given the society’s votes, the outcome is pro-
duced. Given a number of agents/voters that take positions over a set of logically
interrelated propositions, the aim is to aggregate these positions in a logically con-
sistent manner. Therefore, it stands to reason that these rules ought to satisfy some
conditions. For instance, if all individuals agree on a certain issue, then this common
position should be the social outcome for this issue. We could also demand some-
thing weaker: if none of the individuals supports a certain position then it cannot
be the society’s choice; or something stronger: if a position is embraced by the ma-
jority of the voters, then this position should be adopted by the society as well. As
we have already discussed, the latter demand, which lies at the heart of democratic
decisions and is in line with the desired fairness a voting procedure should have,
may be rather problematic, as it affiliates with the paradoxes illustrated above.

In the remaining sections of this chapter, we present several formal approaches
to the theory of judgment aggregation, for the Boolean framework. Namely, the logic
based framework, where each issue corresponds to a logical formula; the property based
framework, where an issue is thought of as a pair of properties (Hj, H{i ); the integrity
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constraint framework, where the issues to be decided are represented by variables of
a single logical formula, called the integrity constraint; and the abstract framework,
where the only relative to the issues information is numerical. Furthermore, we
show that these approaches are "equivalent", in the sense that there exists no aggre-
gation problem that can be posed in one of these frameworks and not in another.
However, it should be noted that each framework entails distinctive information
that are usually lost while passing from one framework to another.

In Chapter 2, we proceed with some characterization results. In particular, in
Section 2.1, we present a characterization result of Kirousis et al. [17] for possibility
domains in the abstract framework. The results presented in Sections 2.2 and 2.3,
comprise a more detailed presentation, including proofs, of the characterization re-
sults in the work of Dìaz et al. [9], for possibility domains in the integrity constraint
framework.

In Chapter 3, we look into several categories of aggregation procedures that
have been introduced in the field of judgment aggregation. Specifically, locally non-
dictatorial aggregators in Section 3.1, aggregators that are not generalized dictator-
ships in Section 3.2, and anonymous, monotone and StrongDem aggregators in 3.3.
We, furthermore, provide characterizations for the domains that are closed under
each of those types of aggregation rules. Then, in Section 3.4 we study the notion of
systematicity and investigate how it effects our results.

In Chapter 4, we show that the integrity constraints that characterize each type
of domains mentioned above, can be recognised efficiently. Then we use this fact
to prove that the identification problem for each of these types of domains can be
solved in time polynomial in the size of the domain. The results presented in Chap-
ters 3 and 4 have so far appeared only in the work of Dìaz et al. [9].

In what follows we work in the Boolean framework, unless explicitly mentioned
otherwise.

1.2 Logic based judgment aggregation

In order to find a solution to the problem of inconsistent collective judgments that
may be generated by majority voting, we have to work within a more general frame-
work which abstracts from the specific characteristics of the decision problem in
question, as well as endeavor to come up with other aggregation rules that are liber-
ated from such inconsistencies.

In the logic based framework approach, which is the classical approach to judg-
ment aggregation (see e.g. [15]) we start with a propositional languageL. A judgment
aggregation problem for L is a tuple J = 〈N, A〉 where:

• N is a finite non-empty set;

• A ⊆ L, such that A = {φ|φ ∈ I} ∪ {¬φ|φ ∈ I} for some finite I ⊆ L which
contains only positive contingent formulas.

We denote by N the set of individuals (or agents or voters), and by I the set of issues
to be decided; I is also called the pre-agenda of A. In the Boolean framework2, the
individuals can either accept or reject an issue in I, hence the set A -called the agenda-
contains all possible positions toward the issues in I. The agenda A is, by definition,

2This model can be generalized so that instead of propositional logic, any logic satisfying some
basic properties, like many-valued or modal logics, can be used.
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a set of formulas closed under negation, i.e., ∀φ : φ ∈ A if and only if ¬φ ∈ A, where
double negations are eliminated, i.e., ∀φ : ¬(¬φ) = φ.

For example, the doctrinal paradox agenda {p, q, p ∧ q} ∪ {¬p,¬q,¬(p ∧ q)} ex-
presses all the acceptance/rejection positions that one individual can adopt over the
set of issues {p, q, p ∧ q}.

Given a judgment aggregation problem, the individuals express their opinions
on the issues of the agenda. These opinions are called judgment sets and are defined
as follows:

Definition 1 (Judgment set). Let J = 〈N, A〉 be a judgment aggregation problem. A
judgment set forJ is a set of formulas J ⊆ A such that:

• J is consistent;

• J is complete, i.e.,∀φ ∈ A, either φ ∈ J or ¬φ ∈ J.

The formulas that belong to the judgment set are the ones accepted by the in-
dividual and those that do not are the ones rejected. The demand for consistency
excludes self-contradictory judgments; the demand for completeness assures that
all individuals express their views on all issues posed by the agenda, and together
reflect the desired "rationality" for the positions that might be adopted by an individ-
ual. In other words, these two conditions determine which subsets of A are rational
positions that could potentially be held by a voter toward the issues.

The set of all judgment sets is denoted by J ⊆ P(A), where P(·) denotes the
power-set function. A judgment profile P = 〈Ji〉i∈N ∈ J|N| is an |N|-tuple of judgment
sets. By Pi we denote the ith entry of P, i.e., the judgment set of agent i in P, and by
P the set of all judgment profiles.

As we have already discussed, an aggregation rule should aggregate the opinions
of the individuals, i.e., a profile P into a "rational" collective judgment.

Definition 2. Let J = 〈N, A〉 be a judgment aggregation problem. An aggregation rule
for J is a function f : P −→ P(A). The output set f (P), where P = 〈Ji〉i∈N , is sometimes
denoted by J. The set J is then called a collective set. A collective set J which is a judgment
set is called a collective judgment set.

So, an aggregation rule takes as input any N-tuple of judgment sets (i.e. con-
sistent and complete judgments) and outputs a subset of the agenda. As we have
already seen, e.g. in the doctrinal paradox, such a subset is not necessarily con-
sistent. In general the "rationality" of the individual judgment sets is not always
transferred to the collective outcome. However, only aggregation rules that do pre-
serve this type of rationality, i.e., rules of the form f : P −→ J, are of interest. These
aggregation rules, whose output is a collective judgment set, are called rational.

A judgment set provides information about which propositions/issues of the
agenda are rejected and which are accepted. Hence, a judgment set can be seen as
a no/yes or 0/1 ballot, where the values 0 and 1 stand for rejection and acceptance,
respectively. From this point of view, J, the set of all judgment sets, is a subset of
{0, 1}m, where m is the number of issues the agenda is built on. This leads to a much
simpler version of the logic based framework, where we can ignore the nature of the
agenda.

More precisely, instead of the agenda, we have an m-sequence of propositional
formulas, one for each issue, φ̄ = (φ1, . . . , φm). For notational convenience, if φ is a
formula of propositional logic and x ∈ {0, 1}, let

φx :=

{
φ if x = 1,
¬φ if x = 0.

.
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As the domain of an aggregation rule, we then consider the set

Xφ̄ :=

x̄ = (x1, . . . , xm) ∈ {0, 1}m |
m∧

j=1

φ
xj
j is satisfiable

 .

Observe that, by definition, the consistency and completeness criteria are satis-
fied and Xφ̄ is comprised (exactly) by the "rational" ballots. Clearly, this formulation
of the logic based framework has many practical advantages. In what follows, we
use this formulation whenever we refer to the logic based framework.

This idea naturally leads us to the next section, where the framework presented
does not rely on the context in which the judgments were collected and is focused
on the judgments per se.

1.3 Abstract judgment aggregation.

In the abstract framework approach, introduced by Dokow and Holzman [10], we
consider a nonempty finite set of issues I = {1, . . . , m} and a nonempty finite set of
of n individuals/voters N = {1, . . . , n}. Each voter expresses their position on every
issue in I. In the Boolean framework, these positions may be of two types and are
denoted by 0 and 1.

So, the set of all conceivable evaluations is {0, 1}m, where the jth coordinate rep-
resents the position taken on issue j. In view of our previous discussion, one would
justifiably expect some of these evaluations to be excluded. In this approach, this is
determined by an exogenously given set X ⊆ {0, 1}m, which is called the set of feasible
voting patterns, or simply, the domain. The evaluations that belong to X are called
feasible; the rest are infeasible. Feasibility is an abstract property and its interpretation
may vary according to the characteristics of the decision problem or the context in
which it is presented .

For example, given a sequence of propositional formulas φ̄ = (φ1, . . . , φm), we
can view φ1, . . . , φm as the issues, and define X = Xφ̄, so that feasibility means logical
consistency. Thus, every aggregation problem posed in the logic based framework
can be expressed in the abstract framework.

Returning to the abstract approach, the domain X is taken to be an arbitrary non-
empty subset of {0, 1}m. As a non-degeneracy condition, the projection of X on each
issue is assumed to be {0, 1}. This requirement is easily justified, as there is no reason
to include an issue in a voting process, and then allow only a single position over it.
Hence, this assumption is typically accepted in the field of social choice theory.

Let n ≥ 2 be an integer representing the number of voters. The elements of
({0, 1}m)n can be viewed as n × m matrices whose rows correspond to voters and
whose columns correspond to issues. We write xi

j to denote the entry of the matrix
in row i and column j, i.e., xi

j represents the vote of voter i on issue j. The row vec-
tors will be denoted as x1, . . . , xn, and the column vectors as x1, . . . , xm. The social
vote in this framework is assumed to be extracted issue-by-issue, i.e., the social out-
come on each issue does not depend on voting data on other issues. This property,
though useful and desirable slightly complicates the definition of an aggregator for
an abstract domain:

Definition 3. Let f = ( f1, . . . , fm) be an m-tuple of n-ary functions, where f j : {0, 1}n −→
{0, 1}, for j ∈ {1, . . . , m}.



8 Chapter 1. Preliminaries

1. We say that f is supportive (or conservative) if for all j ∈ {1, . . . , m} we have that

if xj = (x1
j , . . . , xn

j ) ∈ {0, 1}n, then f j(xj) = f j(x1
j , . . . , xn

j ) ∈ {x1
j , . . . , xn

j }.

2. We say that f is an aggregator for X if it is supportive and, for all j = {1, . . . , m}
and for all xj ∈ {0, 1}n, satisfies the condition bellow:

If (x1, . . . , xn) ∈ Xn, then ( f1(x1), . . . , fm(xm)) ∈ X.

3. An aggregator f is dictatorial on X if there is a number d ∈ {1, . . . , n} such that
( f1, . . . , fm) = (prn

d , . . . , prn
d), where prn

d is the n-ary projection on the dth coordinate.
In this case we say that voter d is a dictator.

Supportiveness reflects the justified demand for the social position over each is-
sue to be the choice of at least one voter for this issue. An aggregator, apart from
being supportive, assigns to every possible n-tuple of feasible voting patterns a so-
cial position, which is also feasible.

Let b1 = . . . = bn ∈ {0, 1}. Observe that f = ( f1, . . . , fm) is supportive if and
only if each f j is unanimous, i.e. f j(b1, . . . , bn) = b1 = . . . = bn, for all j ∈ {1, . . . , m}.

Definition 4. A set X of feasible voting patterns is called a possibility domain if it has a
non-dictatorial aggregator of some arity, and an impossibility domain otherwise.

As we have already mentioned, a judgment aggregation problem posed in the
logic based framework can be expressed in the abstract framework. The following
theorem states that the reverse is also true and amounts to the equivalence of abstract
judgment aggregation with logic based aggregation .

Theorem 1. (Dokow and Holzman [10]) For every non-empty subset X of {0, 1}m there
exists an m-sequence of propositional formulas φ̄ = (φ1, . . . , φm), so that Xφ̄ = X.

Proof. We will prove the result inductively on m, the dimension of X. In case m = 1
we have that X ⊆ {0, 1}. Let φ̄ = φ1 be the formula

φ1 :=


y1, if X = {0, 1}
y1 ∧ ¬y1, if X = {0}
y1 ∨ ¬y1, if X = {1}

,

where y1 is a Boolean variable. It can be easily established that for each of the three
cases above, φx1

1 is satisfiable if and only if x1 ∈ X, which means that Xφ̄ = X. We
shall thus prove the result for m > 1 assuming it holds for m− 1.

Let X be an arbitrary subset of {0, 1}m and let X− be its projection onto the first
m− 1 coordinates. By the inductive hypothesis applied on X− ⊆ {0, 1}m−1, we get
an m− 1 sequence of propositional formulas ψ̄ = (φ1, . . . , φm−1), so that Xψ̄ = X−,
i.e.,

∧m−1
j=1 φj

xj is satisfiable if and only if (x1, . . . , xm−1) ∈ X− .
For notational convenience, if x̄ ∈ {0, 1}m−1, we denote by x̄0 (x̄1, respectively)

the concatenation of x̄ with (0) (with (1), respectively). Now consider the subsets of
X−:

X−0 := {x̄ ∈ X− | x̄1 /∈ X},
X−1 := {x̄ ∈ X− | x̄0 /∈ X} and
X−01 := {x̄ ∈ X− | x̄0 ∈ Xφ and x̄1 ∈ Xφ}.



1.3. Abstract judgment aggregation. 9

Remark 1. X−0 , X−1 and X−01 are three (possibly empty) pairwise disjoint subsets of X−, such
that X− = X−0 ∪ X−1 ∪ X−01. Moreover, X = (X−0 × {0})∪ (X−1 × {1})∪ (X−01× {0, 1}).

Now, we define

φm :=

Z ∧ ¬

 ∨
(x1,...,xm−1)∈X−0

m−1∧
j=1

φ
xj
j

 ∨
 ∨

(x1,...,xm−1)∈X−1

m−1∧
j=1

φ
xj
j

 ,

with the provision that if any of the setsX−0 , X−1 is empty then the corresponding part
of φm is dropped, and where Z is a new Boolean variable. What remains to be shown
is that, for an x̄ = (x1, . . . , xm) ∈ {0, 1}m,

∧m
j=1 φ

xj
j is satisfiable if and only if x̄ ∈ X.

We prove this result assuming that both X−0 , X−1 are non empty, since this case is the
most complicated; the remaining cases easily follow as an immediate consequence
of the definition of φm.

For the forward direction, let an arbitrary x̄ = (x1, . . . , xm) ∈ {0, 1}m such that∧m
j=1 φ

xj
j is satisfiable. Then

∧m−1
j=1 φ

xj
j is satisfiable which, using the inductive hy-

pothesis means that (x1, . . . , xm−1) ∈ X−. Let a be a truth assignment that satisfies∧m
j=1 φ

xj
j =

∧m−1
j=1 φ

xj
j ∧ φxm

m . We will show that (x1, . . . , xm) ∈ X. Keeping in mind
Remark 1, we distinguish the following cases:

1. (x1, . . . , xm−1) ∈ X−0 . Then it suffices to show that xm = 0. Assume towards
a contradiction that xm = 1, i.e., a satisfies φm. Observe that a does not satisfy
the formula

¬

 ∨
(x1,...,xm−1)∈X−0

m−1∧
j=1

φ
xj
j

 ,

thus, by definition of φm, there is a vector (y1, . . . , ym−1) ∈ X−1 such that a
satisfies

∧m−1
j=1 φ

yj
j . Since X−0 ∩ X−1 = ∅, there is an index i such that yi 6= xi,

i.e., φ
yi
i = ¬φxi

i . Consequently, a does not satisfy
∧m−1

j=1 φ
xj
j , which contradicts

the selection of a. So, xm = 0.

2. (x1, . . . , xm−1) ∈ X−1 . We show that xm = 1 must hold. Indeed, a satisfies the
formula ∨

(x1,...,xm−1)∈X−1

m−1∧
j=1

φ
xj
j

 ,

which, by definition of φm, means that xm = 1.

3. (x1, . . . , xm−1) ∈ X−01. In this case we have to show that both xm = 0 and xm = 1
may hold. Recall that a satisfies

∧m−1
j=1 φ

xj
j and that X−01 ∩ (X−0 ∪ X−1 ) = ∅. So,

for all (y1, . . . , ym) ∈ X−0 ∪ X−1 there exists an index i such that yi 6= xi, i.e.,
φ

yi
i = ¬φxi

i . Consequently a does not satisfy either of the formulas:

∨
(x1,...,xm−1)∈X−0

m−1∧
j=1

φ
xj
j

 and
∨

(x1,...,xm−1)∈X−1

m−1∧
j=1

φ
xj
j

 .

Thus, by taking the new variable Z to be false, we get that a does not satisfy
φm, or equivalently, xm = 0. On the other hand, if we take the new variable Z
to be true, we have that a satisfies φm, which implies that xm = 1.
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For the inverse direction, we start with an x̄ = (x1, . . . , xm) ∈ X and we shall
prove that the formula

∧m
j=1 φ

xj
j is satisfiable. Since (x1 . . . , xm) ∈ X, we have that

(x1 . . . , xm−1) ∈ X− which, by the inductive hypothesis, means that
∧m−1

j=1 φ
xj
j is sat-

isfiable. Let a be such a truth assignment. We will show that a also satisfies φxm
m . We

distinguish the following cases:

1. If xm = 0, then (x1, . . . , xm−1) ∈ X−0 ∪ X−01. Since (X−0 ∪ X−01) ∩ X−1 = ∅, for all
(y1, . . . , ym) ∈ X−1 there exists an index i such that yi 6= xi, i.e., φ

yi
i = ¬φxi

i . Re-
call that a satisfies

∧m−1
j=1 φ

xj
j , which implies that a does not satisfy the formula

∨
(x1,...,xm−1)∈X−1

m−1∧
j=1

φ
xj
j


or, equivalently, a satisfies the formula

¬

 ∨
(x1,...,xm−1)∈X−1

m−1∧
j=1

φ
xj
j

 .

Thus, taking the new variable Z to be false ensures that a satisfies ¬φm = φxm
m .

2. If xm = 1, then (x1, . . . , xm−1) ∈ X−1 ∪ X−01. Using the argument above and the
fact that (X−1 ∪ X−01)∩ X−0 = ∅, as well as that a satisfies

∧m−1
j=1 φ

xj
j , we can infer

that a satisfies the formula

¬

 ∨
(x1,...,xm−1)∈X−0

m−1∧
j=1

φ
xj
j

 .

In addition, taking the new variable Z to be true, we get that a satisfies φm =
φxm

m .

So, we have established that if (x1, . . . , xm) ∈ X, then
∧m

j=1 φ
xj
j is satisfiable, which

completes the proof of this direction.

At this point, it should be mentioned that List and Puppe in [23, Section 2.3] give
the following remark:

There is a loss of information by moving from the logic-based framework
to the abstract one.

They base their remark on the fact that a single X ⊆ {0, 1}m may correspond to dif-
ferent sets of issues. These differences may concern the interpretation as well as the
syntax of the formulas that comprise the issues. Indeed, the formula φ̄ that Theo-
rem 1 asserts to exist is not uniquely defined, therefore the abstract framework does
not offer information as to which formulas comprise the issues in the corresponding
logic-based formulation.

1.4 Property based judgment aggregation.

This approach was introduced by Nehring and Puppe [25]. We are given a non-
empty finite set E and a set of properties (unary relations)H = {H1, H{1 , . . . , Hm, H{m}
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defined over E, i.e., each H ∈ H is a subset of E. The elements of E are called evalu-
ations and a pair (Hj, H{j ) is thought of as an issue. At a first glance, this framework
is rather detached from the classic interpretation of the concepts issues, votes and
voters. In order to obtain a deeper understanding of the nature of the set E, one can
think of an evaluation as an individual’s vote, while the evaluations that comprise
a property coincide with the positions of the individuals that accept it. Since each
property is a subset of evaluations in E, the issues are logically interrelated. This
means that some combinations of evaluations are inconsistent. The domain of an
aggregation problem is the property space (E,H) and is defined as follows:

Definition 5. A property space is a pair (E,H), where E is a non-empty and finite set of
objects ("evaluations"), andH is a collection of subsets of E satisfying

1. H ∈ H =⇒ H 6= ∅,

2. H ∈ H =⇒ H{ ∈ H,

3. for all evaluations x, y ∈ E, if x 6= y there exists H ∈ H such that x ∈ H and y /∈ H.

Condition 1 is a non-degeneracy condition. Intuitively, if an evaluation x ∈ Hj,
then issue j is accepted; on the other hand x ∈ H{j means that issue j is rejected. Con-
dition 2 therefore ensures that a property space is closed under negation. Condition
3 is a separation condition, in the sense that different evaluations are distinguished
by at least one property. From another point of view, this implies that an evaluation
is characterized by a unique set of properties in the sense that for all evaluations
x ∈ E, {x} = ⋂{H ∈ H | x ∈ H}.

Definition 6. Let N = {1, . . . , n} be a set of individuals with n ≥ 2. An aggregator is a
mapping f : En −→ E.

So, given the individuals’ evaluations, an aggregator outputs the “social” out-
come that is also an evaluation. As Nehring and Puppe pointed out in [25], property
spaces can be identified with particular subsets of {0, 1}m, for a suitable m, as illus-
trated in the next theorem. First, some notation:
If H is a property and x ∈ {0, 1}, let

Hx :=

{
H, if x = 1
H{, if x = 0

.

We then define the set

XH :=

x̄ = (x1, . . . , xm) ∈ {0, 1}m |
m⋂

j=1

H
xj
j 6= ∅

 .

Theorem 2 (Nehring and Puppe [25]). Let (E,H) be a property space. There is an one-to
one and onto correspondence between E and XH.

Proof. Let E be a finite non-empty set and let H = {H1, H{1 , . . . , Hm, H{m} be a set of
unary relations over E, satisfying conditions 1 to 3. For 1 ≤ j ≤ m we define the
function f j : E→ {0, 1} as follows:

f j :=

{
1, if x ∈ Hj

0, if x ∈ H{j .
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Now, let f : E → {0, 1}m, where f (x) = ( f1(x), . . . , fm(x)). Observe that for all

j ∈ {1, . . . , m}, by definition of f j, x ∈ H
f j(x)
j , i.e.,

⋂m
j=1 H

f j(x)
j 6= ∅. Thus f : E→ XH.

We will prove that f is an one-to-one and onto correspondence.
Let x, y ∈ E, with x 6= y. By condition 3, there exists j ∈ {1, . . . , m} such that

either (i) x ∈ Hj and y ∈ H{j or (ii) x ∈ H{j and y ∈ Hj. In both cases we have, by
definition, that f j(x) 6= f j(y), which implies that f (x) 6= f (y). Hence, f is indeed
one-to-one.

Now, we show that f is onto. Let x̄ = (x1, . . . , xm) ∈ XH. By the definition of XH,
we have that

⋂m
j=1 H

xj
j 6= ∅. So, there exists an element y ∈ ⋂m

j=1 H
xj
j ⊆ E. We claim

that f (y) = x̄ = (x1, . . . , xm), i.e., f j(y) = xj for all j ∈ {1, . . . , m}. Assume, towards
a contradiction, that there exists j ∈ {1, . . . , m} such that f j(y) 6= xj. Without loss
of generality, suppose that xj = 1 and f j(y) = 0. By definition, we have that y ∈
H{j = (H

xj
j ){ or, equivalently, y /∈ H

xj
j , which contradicts the fact that y ∈ ⋂m

j=1 H
xj
j ⊆

H
xj
j .

This allows us to identify (E,H) with XH ⊆ {0, 1}m and, therefore, an aggre-
gation problem in the property based framework can always be expressed in the
abstract framework. The next theorem proves that the property based framework is
as general as the abstract one.

Theorem 3 (Nehring and Puppe [25]). For every non-empty X ⊆ {0, 1}m, there exists a
non-empty set E and a classH of unary relations over E, so that X = XH.

Proof. Let ∅ 6= X ⊆ {0, 1}m. For 1 ≤ j ≤ m, we define the following unary relations
over X:

Hj := {x̄ = (x1, . . . , xm) ∈ X | xj = 1}.

Note that H{j = X \ Hj = {x̄ = (x1, . . . , xm) ∈ X | xj = 0}.
LetH = {H1, H{1 , . . . , Hm, H{m} be the class of these unary relations. Then X = XH,
i.e.,

X =

x̄ = (x1, . . . , xm) ∈ {0, 1}m |
m⋂

j=1

H
xj
j 6= ∅

 .

To establish this, let x̄ = (x1, . . . , xm) ∈ X be arbitrary. We claim that x̄ ∈
H

xj
j for all j ∈ {1, . . . , m}. Indeed, by the definition of Hj, we have that if xj = 1,

then x̄ ∈ Hj = H
xj
j and if xj = 0, then x̄ ∈ H{j = H

xj
j . Therefore, x̄ ∈ ⋂m

j=1 H
xj
j , i.e.,⋂m

j=1 H
xj
j 6= ∅. So, x̄ ∈ XH. Hence, X ⊆ XH.

For the reverse inclusion, let an arbitrary x̄ = (x1, . . . , xm) ∈ XH . By definition,⋂m
j=1 H

xj
j 6= ∅, i.e., there exists an element ȳ = (y1, . . . , ym) such that ȳ ∈ ⋂m

j=1 H
xj
j ⊆

X. Hence, ȳ ∈ X and for all j ∈ {1, . . . , m} ȳ ∈ H
xj
j . Moreover, we have already

proved that ȳ ∈ H
yj
j for all j ∈ {1, . . . , m}. Thus, ȳ ∈ X and ȳ ∈ H

xj
j ∩ H

yj
j for

all j ∈ {1, . . . , m}, i.e.,ȳ ∈ X and xj = yj for all j ∈ {1, . . . , m}, or equivalently,
x̄ = ȳ ∈ X. So, XH ⊆ X.

Remark 2. If we additionally assume that X ⊆ {0, 1}m is non-degenerate, i.e., its projection
on each coordinate is the set {0, 1}, then for all j ∈ {1, . . . , m} we have that Hj 6= ∅ and
H{j 6= ∅. Hence, H is non-degenerate as well. This ensures that Conditions 1 and 2 are
satisfied. The separation Condition 3 can be trivially verified using the definition of the Hj’s.

Thus, we have established the equivalence between abstract and property based
aggregation.
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1.5 Integrity constraint based judgment aggregation

In this approach, introduced by Grandi and Endriss [14], an aggregation problem is
characterized by a formula φ of propositional calculus on m variables {x1, . . . , xm},
one for each of the issues in I = {1, . . . , m}. A group of individuals N = {1, . . . , n}
has to reach a collective decision based on the no/yes choices each individual makes
regarding each issue. An individual’s choice is a ballot in {0, 1}m and it is considered
rational if and only if it satisfies φ. Therefore, an individual’s choice is identified
with a truth assignment to the variables of φ. The truth value of a formula for an
assignment is computed by the usual rules that apply to logical connectives. In what
follows, the set of satisfying (returning the value 1) truth assignments, or models,
of a formula φ, is denoted by Mod(φ). This means that the requisite rationality
depends exclusively on φ. Hence, the formula φ is called an integrity constraint.

Definition 7. The domain of an aggregation problem with integrity constraint the formula
φ is Mod(φ).

A profile P is a vector of rational ballots, one for each individual in N. An aggre-
gation procedure is a function f : Mod(φ)n −→ {0, 1}m that maps each profile to an
element of {0, 1}m, considered to be the collective outcome. Clearly, the rationality
of the individual choices may not be preserved in the collective level.

Definition 8. An aggregation procedure f : Mod(φ)n −→ {0, 1}m is called collectively
rational or simply an aggregator for Mod(φ) if, for all profiles P ∈ Mod(φ)n, we have that
f (P) ∈ Mod(φ).

It is worth mentioning that since Mod(φ) is a subset of {0, 1}m, it can be viewed
as a set of feasible evaluations X in the sense described in section 1.3. In other
words, every integrity constraint aggregation problem can be expressed in the ab-
stract framework. The next theorem is an immediate corollary of well known results
(see e.g. Enderton [12, Theorem 15B]).

Theorem 4. For any X ⊆ {0, 1}m there is a formula φ of m variables such that X =
Mod(φ).

Proof. If X = ∅, let φ be the formula φ = y∧¬y that is comprised of a single variable.
Then, φ is not satisfiable, i.e. Mod(φ) = ∅ = X.

If X 6= ∅, let X = {x̄1, . . . , x̄k} ⊆ {0, 1}m be a numeration of its elements where,
for i ∈ {1, . . . , k}, we have that x̄i = (xi1, . . . , x̄im).
For i ∈ {1, . . . , k} and j ∈ {1, . . . , m}, let us set

ψij :=

{
yj if xij = 1
¬yj if xij = 0

,

χi := ψi1 ∧ . . . ∧ ψim and
φ := χ1 ∨ . . . ∨ χk.

Note that φ is a formula of m variables, so Mod(φ) ⊆ {0, 1}m. We claim that X =
Mod(φ).

To see this, let x̄i = (xi1, . . . , xim) ∈ X. By definition, x̄i = (xi1, . . . , xim) satisfies
χi and consequently x̄i satisfies φ, i.e. x̄i ∈ Mod(φ). Hence, X ⊆ Mod(φ).

We shall prove that Mod(φ) ⊆ X also holds. Let a = (a1, . . . , am) ∈ Mod(φ) be a
truth assignment. Since a satisfies φ = χ1 ∨ . . . ∨ χk, there is an index i ∈ {1, . . . , k}
such that a satisfies χi = ψi1 ∧ . . . ∧ ψim. Therefore, for all j ∈ {1, . . . , m}, a satisfies
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ψij. This means that for all j ∈ {1, . . . , m}, if ψij = yj then aj = 1, whereas if ψij = ¬yj
then aj = 0. By definition of ψij, for all j ∈ {1, . . . , m} we get that aj = xij , i.e.
a = x̄i ∈ X. So, Mod(φ) ⊆ X.

Thus, any set of feasible voting patterns can be seen as the set of satisfying truth
assignments of an integrity constraint φ. This result completes the equivalence of the
integrity constraint approach with the abstract one.

Note that an integrity constraint φ gives rise to a possibility domain if Mod(φ)
admits a non-dictatorial aggregator in the sense of Definition 3.
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Chapter 2

Characterization of possibility
domains via integrity constraints

2.1 Possibility domains: a characterization

In this section we focus on the abstract based framework. As we have already men-
tioned, a set of feasible voting patterns X ⊆ {0, 1}m is a possibility domain if it
accepts a non-dictatorial aggregator of some arity. A question that arises here is the
following: Given a set X of feasible voting patterns, are there any necessary and/or
sufficient conditions on X that allow us to determine whether or not it is a possibility
domain? In other words, is there a way to determine if X is a possibility domain by
solely taking into account its form? There is a vast literature studying this question.
Before illustrating some of the results, let us first present the terminology, as well as
some basic remarks and examples.

Let X ⊆ {0, 1}m be a possibility domain and let f = ( f1, . . . , fm) be an aggregator
for X. We say that f is of arity n if for all j ∈ {1, . . . , m}, f j : {0, 1}n −→ {0, 1}, i.e. the
arity of the aggregator is the arity of its component functions. As we will establish
bellow, aggregators of arity two and three, called binary and ternary aggregators
respectively, have a special role in the characterization of possibility domains.

Let f = ( f1, . . . , fm) be a binary aggregator for X. Since f is by definition support-
ive, there are 22 possible binary operations for each f j. Namely, for all j ∈ {1, . . . , m},
f j must be one of the binary operations ∨,∧, pr2

1, pr2
2, where ∨ and ∧ are the standard

binary logical operations and pr2
i is the binary projection on the i-th coordinate.

On the other hand, for a (supportive) ternary aggregator f = ( f1, . . . , fm), there
are 26 possible ternary operations for each f j. So, we will be content to present only
those that appear in the characterizations that follow, as well as those that appear in
the next chapters.

Let x, y, z be three elements of {0, 1}. We define the following ternary operations:

∨3(x, y, z) := x ∨ y ∨ z and ∧3 (x, y, z) := x ∧ y ∧ z,

maj(x, y, z) :=

{
x if x = y or x = z
y if y = z

,

min(x, y, z) :=


x if y = z
y if x = z
z if x = y

and

pr3
i , the ternary projection on the i-th coordinate where i = 1, 2, 3.
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The operations maj and min are called majority and minority operations, respec-
tively. A minority operation coincides with the ternary direct sum mod 2, which
from now on will be denoted as ⊕. A ternary aggregator f = ( f1, . . . , fm) is called
a majority aggregator if f j = maj for all j ∈ {1, . . . , m} and a minority aggregator if
f j = ⊕ for all j ∈ {1, . . . , m}. An n-ary aggregator f = ( f1, . . . , fm) is called a projec-
tion aggregator if for all j ∈ {1, . . . , m}, f j = prn

i for some i ∈ {1, . . . , n}. Using the
well known results of Schaefer’s work [30] in the field of constraint satisfaction prob-
lems and the fact that a set X of feasible voting patterns in the Boolean framework is
a subset of {0, 1}m, we have that:

• X admits a majority aggregator if and only if X is a bijunctive logical relation,
i.e. the set of satisfying assignments of a 2CNF-formula.

• X admits a minority aggregator, or equivalently X is component-wise closed
under the direct sum mod 2, if and only if X is an affine logical relation, i.e. the
set of solutions of linear equations over the two-element field.

Example 1. The set X = {(0, 1, 1), (1, 0, 0), (1, 1, 0)} admits the binary aggregator f =
(∨,∨,∧), as well as the majority aggregator g = (maj, maj, maj).

Since the binary aggregator f is by definition supportive, it suffices to confirm that
X is closed under f . Indeed, one can easily check that for all x, y ∈ X, we have that
f (x, x) = x ∈ X and f (x, y) = f (y, x) = (1, 1, 0) ∈ X.

The majority aggregator g is also supportive and for the pairwise distinct x, y, z ∈
X it holds that

g(x, x, x) = x ∈ X,
g(x, x, y) = x ∈ X and
g(x, y, z) = (1, 1, 0) ∈ X.

Since permutations of the input do not affect g, we have that g is an aggregator for
X.

Example 2. The set X = {(0, 1, 1), (1, 0, 0), (1, 1, 0), (0, 0, 1)} admits the minority aggre-
gator f = (⊕,⊕,⊕).

First, observe that f is supportive and that for all the pairwise distinct x, y, z ∈ X
we have that

f (x, x, x) = x ∈ X,
f (x, x, y) = y ∈ X and
f (x, y, z) ∈ X.

Indeed,

f ((0, 1, 1), (1, 0, 0), (1, 1, 0)) = (⊕(0, 1, 1),⊕(1, 0, 1),⊕(1, 0, 0)) = (0, 0, 1) ∈ X.

Similarly, it holds that

f ((0, 1, 1), (1, 0, 0), (0, 0, 1)) = (1, 1, 0) ∈ X,
f ((0, 1, 1), (1, 1, 0), (0, 0, 1)) = (1, 0, 0) ∈ X and
f ((1, 0, 0), (1, 1, 0), (0, 0, 1)) = (0, 1, 1) ∈ X.

Since permutations of the input do not affect f , we have that f is an aggregator for
X.
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Example 3. Let X = X1 × X2 be a set of feasible voting patterns, where X1 ⊆ {0, 1}k

and X2 ⊆ {0, 1}m−k for some 1 ≤ k ≤ m− 1. Then X admits a non-dictatorial projection
aggregator.

Indeed, for n ≥ 2 and for some d 6= d′ so that d, d′ ∈ {1, . . . , n}, the n-ary projec-
tion aggregator f = ( f1, . . . , fk, fk+1, . . . , fm) where

f j =

{
prn

d for 1 ≤ j ≤ k
prn

d′ for k + 1 ≤ j ≤ m

is an aggregator for X. To establish this, let xi = (x1
i , . . . , xk

i , xk+1
i , . . . , xm

i ) ∈ X, for
all i ∈ {1, . . . , n}, be arbitrary. Then f (x1, . . . , xn) = (x1

d , . . . , xk
d , xk+1

d′ , . . . , xm
d′) ∈

X1 × X2 = X. Also, observe that since d 6= d′, f is not dictatorial. So, X admits a
non-dictatorial projection aggregator, which in turn means that every set of feasible
voting patterns that is a Cartesian product is a possibility domain.

Before delving into Dokow and Holtzman’s characterization of possibility do-
mains for the Boolean framework, there is one more notion we need to get ac-
quainted with, namely the notion of total blockedness. Generally speaking, a set
X ⊆ {0, 1}m is called totally blocked if a certain directed graph GX, associated with X,
is strongly connected. Following Dokow and Holzman’s [10] symbolism, the vertex
set of GX is the set {01, 11, 02, 12, . . . , 0m, 1m}, where the vertex uj stands for holding
position u on issue j. We say that GX is strongly connected if and only if every two
distinct vertices of GX are connected by a directed path. An alternative interpreta-
tion for this is that every two possible positions ui, uj on any issue are connected by
a directed path denoted ui −→ uj. Intuitively, rephrasing Dokow and Holzman [10],
"a set X is totally blocked if it is possible to deduce any position on any issue from
any position on any issue, via a chain of deductions". This informal description of
the notion of total blockedness is adequate for the purpose of this paper, thus the
formal definition will be omitted.

We are now ready to state some relatively new results that provide necessary
and sufficient conditions for a set X of feasible voting patterns to be a possibility
domain. We remind the reader that throughout this paper X is considered to be
non-degenerate.

Theorem 5. (Dokow and Holzman [10, Theorem 2.2]) Let X ⊆ {0, 1}m be a set of feasible
voting patterns. Then, X is a possibility domain if and only if

• X is affine, or

• X is not totally blocked.

Theorem 6. (Dokow and Holzman [10, Claim 3.6]) Let X ⊆ {0, 1}m be a set of feasible
voting patterns. If X is not totally blocked then it is a possibility domain. In fact, for every
n ≥ 2 X admits an n-ary non-dictatorial aggregator.

The following result provides a characterization of Boolean possibility domains
that does not refer to the notion of total blockedness1. This result, although not
explicitly stated previously, is easily derivable from Theorems 5 and 6.

Theorem 7. (Dokow and Holzman [10]) Let X ⊆ {0, 1}m be a set of feasible voting pat-
terns. Then, X is a possibility domain if and only if

1For a corresponding characterization of possibility domains for the non-Boolean framework, see
Kirousis et al. [18].
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• X is affine, or

• X admits a binary non-dictatorial aggregator.

Proof. Let X ⊆ {0, 1}m be a set of feasible voting patterns. If X is affine or admits
a binary non-dictatorial aggregator, then X is a possibility domain, by definition.
Conversely, if X is a possibility domain then, by Theorem 5, X is affine or X is not
totally blocked. This means that X is affine or, using Theorem 6, X admits a binary
non-dictatorial aggregator.

Theorem 7 constitutes a characterization of Boolean possibility domains. As we
have already seen, a given subset of {0, 1}m is a possibility domain if and only if it ac-
cepts a non-dictatorial aggregator of some arity. So, if we tried to determine whether
a set X ⊆ {0, 1}m is a possibility domain without using Theorem 7, the number of
aggregators that should be taken into account would be exceedingly large. In fact,
for each n, there are 2(2

n−2)·m − n potential non-dictatorial aggregators of arity n.
Indeed, an n-ary supportive operator f : {0, 1}m×n → {0, 1}m, is of the form

f = ( f1, . . . , fm), where for j ∈ {1, . . . , m}, f j : {0, 1}n → {0, 1}, i.e., f j maps each
element of {0, 1}n to 0 or 1. Since we have assumed that f is supportive, it holds
that f j(0, . . . , 0) = 0 and f j(1, . . . , 1) = 1, for all j ∈ {1, . . . , m}. Thus, there are two
possible selections for each element of {0, 1}n \ {(0, . . . , 0), (1, . . . , 1)} and by extent

2(2
n−2)

different selections for each f j, for all j ∈ {1, . . . , m}. So, there are

(2(2
n−2))m

possible supportive operations f : {0, 1}m×n → {0, 1}m. Of those, exactly n are
dictatorial (one for each d ∈ {1, . . . , n}, in case f j = prn

d for all j ∈ {1, . . . , m}).
Hence, there exist

(2(2
n−2))m − n = 2(2

n−2)·m − n

potential n-ary supportive, non-dictatorial aggregators for a subset X of {0, 1}m.
Theorem 7 restricts this check to aggregators of a specific form, namely minor-

ity aggregators and non-dictatorial aggregators of arity two, instead of aggregators
of any arity. Despite this improvement, deciding whether a set of feasible voting
patterns is a possibility domain by a direct check of the aggregators indicated by
Theorem 7 remains an exponential-time procedure in m, the number of issues.

Indeed, for n = 2, the cardinality of all potential binary non-dictatorial (support-
ive) aggregators is

2(2
2−2)·m − 2 = 4m − 2.

However, Kirousis et al. [17, Theorem 2], using the characterization above, proved
that given a set X ⊆ {0, 1}m of feasible voting patterns, it can be determined in time
polynomial in the size of X whether it is a possibility domain.

Theorem 8. (Kirousis et al. [17, Theorem 2]) There is a polynomial-time algorithm for the
following decision problem: Given a set X ⊆ {0, 1}m of feasible voting patterns in the
Boolean framework, determine whether or not it is a possibility domain and, if it is, produce
a binary non-dictatorial aggregator for X or a minority aggregator for X.
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Therefore, the decision problem of whether a set of feasible voting patterns, in
the Boolean framework2, is a possibility domain is tractable. This result concerns the
case where the domain X ⊆ {0, 1}m is explicitly given.

In Section 1.5, we established that the abstract framework is equivalent with the
integrity constraint based framework, in the sense that every aggregation problem
posed in the abstract framework can be expressed in the integrity constraint based
framework and vise versa. This brings into the picture a new question: Is there
an analogous characterization for integrity constraints? Specifically, are there any
sufficient and necessary conditions concerning the syntactical form of an integrity
constraint φ, so that Mod(φ) is a possibility domain?

The purpose of sections 2.2 and 2.3 is to examine this question in detail and to
progressively lead us to the answer.

2.2 Syntactic characterization of integrity constraints: Con-
jectures and counterexamples

In this section, we work in the integrity constraint based framework and we try to
detect necessary and sufficient syntactic characteristics of a propositional formula
φ that yields a possibility domain. This question was answered by Díaz, Kirousis,
Kokonezi and Livieratos [9] in 2019. Following Díaz et al., we call this problem
"syntactic characterization of integrity constraints". The aim of the present section is
to analyze this problem in detail and present the conjectures that preceded the final
result which will, in turn, be presented is section 2.3. Even though these conjectures
have been disproved, their contribution was crucial to the uncovering of the final
result and a close examination will provide a fruitful insight.

Let D ⊆ {0, 1}m be the domain of an aggregation problem with integrity con-
straint the formula φ. Then D = Mod(φ), i.e. D is the set of all truth assignments
that satisfy the formula φ. As we have seen (Theorem 7), a subset D ⊆ {0, 1}m is
a possibility domain if and only if it is closed under certain operators, namely mi-
nority aggregators and binary non-dictatorial aggregators. It is well known from
Propositional Logic that closure properties of D = Mod(φ) may correspond to syn-
tactic characteristics of φ. Our goal is to prove that D is a possibility domain if and
only if it is the set of satisfying truth assignments of a formula φ of a specific syntactic
type that is to be determined.

From now on, we focus on the integrity constraint based framework and, by ex-
tent, on formulas of propositional logic. As we have seen in Section 1.5, given an
integrity constraint φ, we can easily acquire an aggregation problem whose domain
is Mod(φ) and vise versa. Bearing on this view, we will detach ourselves from the
aggregation theoretic interpretation and will approach the problem in terms of clo-
sure properties of logical relations. In other words, we no longer need to keep in
mind the number of issues nor the number of voters; while the question of whether
a domain D is a possibility domain will be tantamount to checking whether D is a
logical relation closed under certain operators.

Let us first introduce the necessary definitions along with the notation that we
will use.

We start with set of Boolean variables V = {x1, . . . , xm}. A literal is a variable x ∈
V (positive literal) or its negation ¬x (negative literal). A disjunction (li1 ∨ · · · ∨ lir)
of literals from different variables is a clause. We say that a formula is in Conjunctive

2Kirousis et al. proved in [17, Theorem 3] that this result is valid for the non-Boolean framework as
well.
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Normal Form (CNF) if it is a conjunction of clauses. A formula is called 2-CNF if
every clause of it contains exactly 2 literals. A clause is called Horn if it is a clause
with at most one positive literal and dual Horn if it is a clause with at most one
negative literal.

Definition 9. Let φ be a formula in CNF.

1. The formula φ is called Horn if every clause of φ is a Horn clause.

2. The formula φ is called dual Horn if every clause of φ is a dual Horn clause.

3. The formula φ is called bijunctive if every clause of φ contains at most two literals.

Example 4. Consider the set V = {x1, x2, x3, x4} of variables and the formulas

φ1 = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x3 ∨ ¬x4),
φ2 = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ ¬x4), and
φ3 = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4)

defined over V. It can be easily verified that the formula φ1 is Horn and φ2 is dual Horn,
whereas the formula φ3 is neither a Horn nor a dual Horn formula, since it is comprised of
both Horn and dual Horn clauses. The formula φ3 is bijunctive as every clause of it contains
no more than two literals.

Definition 10. A formula is called affine if it is a conjunction of sub-formulas each of which
is an exclusive OR formula, i.e. a set of literals connected with⊕, the exclusive OR operation.

Generalizing the notion of a clause, exclusive OR formulas will be called clauses
as well.

Example 5. The formula φ4 = (x1 ⊕¬x2 ⊕ x3) ∧ (¬x1 ⊕¬x3 ⊕ x4) ∧ (x2 ⊕ x4) defined
over V = {x1, x2, x3, x4} is an affine formula comprised of three (generalized) clauses.

Bellow, we present a list of well known results of syntactic characterization prob-
lems for classes of relations with given closure properties, which are relevant to our
problem.

Proposition 1. (see Dechter and Pearl [7]) Let D be a subset of {0, 1}m. Then,

1. D is component-wise closed under ∧ if and only if D = Mod(φ), where φ is a Horn
formula.

2. D is component-wise closed under ∨ if and only if D = Mod(φ), where φ is a Dual
Horn formula.

Proposition 2 (Schaefer [30]). Let D be a subset of {0, 1}m. Then,

1. D is component-wise closed under ⊕, the direct sum mod 2, if and only if D =
Mod(φ), where φ is an affine formula.

2. D is component-wise closed under maj if and only if D = Mod(φ), where φ is a
bijunctive formula.



2.2. Syntactic characterization of integrity constraints: Conjectures and
counterexamples

21

To illustrate a concrete application of the above, consider the formulas φ1, φ2, φ3
and φ4 of examples 4 and 5. The corresponding domains are

D1 = {0, 1}4 \ {(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)},
D2 = {(0, 1, 0, 0), (1, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 1), (1, 1, 1, 0), (1, 1, 1, 1)},
D3 = {(0, 1, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1), (1, 0, 1, 1), (1, 1, 0, 1)} and
D4 = {(0, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 1, 1)},

respectively. All of the above sets are possibility domains. In particular, D1 accepts
the aggregator f1 = (∧,∧,∧,∧), as φ1 is a Horn formula; D2 accepts the aggregator
f2 = (∨,∨,∨,∨), as φ2 is a dual Horn formula; D3 accepts the majority aggregator
f3 = (maj, maj, maj, maj), as φ3 is a bijunctive formula; and D4 accepts the minority
aggregator f4 = (⊕,⊕,⊕,⊕), as φ4 is an affine formula.

In what follows, a domain D ⊆ {0, 1}m is called Horn, dual Horn, affine or bi-
junctive if there is a Horn, dual Horn, affine or bijunctive formula φ of m variables
such that Mod(φ) = D, respectively. We furthermore assume, except if specifically
noted, that m denotes the number of variables of a CNF formula φ and k the number
of its clauses. Since every propositional formula can be converted into an equiva-
lent formula that is in CNF, all formulas bellow are assumed to be in CNF, unless
explicitly stated otherwise.

We are now ready to endeavor to approach the problem of syntactic characteri-
zation of integrity constraints. The starting point is Theorem 7, according to which
a domain D ⊆ {0, 1}m is a possibility domain if and only if D admits an aggregator
f = ( f1, . . . , fm), where

(i) f is a minority aggregator, or

(ii) f is a non-dictatorial binary projection aggregator, or

(iii) f is a non-projection binary aggregator.

To obtain the characterization, we work separately for each of the cases above.
Recall that domains of type (i) have already been identified as models of affine for-
mulas (Schaefer [30]). Characterizing domains of the second type is rather "easy". In
fact, we show that D admits an aggregator of type (ii) if and only if there exists a for-
mula φ with specific syntactic characteristics such that D = Mod(φ). We call those
formulas separable. The remaining case is the most challenging and will concern
us the most. In order to deal with it, we will distinguish some sub-cases depending
on the type of the component functions that may comprise a non-projection binary
aggregator and then (Section 2.3) evolve those results into a unified result.

We will need some additional notation. Let D be a subset of {0, 1}m. For a set
of indices I ⊆ {1, . . . , m}, let DI := {(ai)i∈I | a ∈ D} be the projection of D to the
indices of I, and D−I := D{1,...,m}\I . Also, for two (partial) vectors a = (a1, . . . , ak) ∈
D{1,...,k}, k < m and b = (b1, . . . , bm−k) ∈ D{k+1,...,m}, we define their concatenation
to be the vector ab = (a1, . . . , ak, b1, . . . , bm−k). Finally, given two subsets D, D′ ⊆
{0, 1}m, we write D ≈ D′ if we can obtain D by permuting the coordinates of D′, i.e.
if D = {(dj1 , . . . , djm) | (d1, . . . , dm) ∈ D′}, where {j1, . . . , jm} = {1, . . . , m}. Observe
that in this case, if D′ accepts the aggregator f = ( f1, . . . , fm) then D accepts the
aggregator g = ( f j1 , . . . , f jm), which emerges from the corresponding permutation of
the component functions of f .

We begin with characterizing the domains of type (ii), i.e. domains closed under
a non-dictatorial binary projection aggregator.
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Definition 11. A formula is called separable if its variables can be partitioned into two
non-empty disjoint subsets so that no clause of it contains literals from both subsets.

Example 6. The formula φ5 = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x4 ∨ x5) defined
over V = {x1, x2, x3, x4, x5} is separable. Indeed, for the partition V1 = {x1, x2, x3},
V2 = {x4, x5} of V, we have that no clause of φ5 contains variables from both subsets of the
partition. On the other hand, there is no such partition of {x1, x2, x3, x4} for neither of the
formulas φ1, φ2, φ3 and φ4 of the previous examples.

Recall that for a non-dictatorial binary projection aggregator f = ( f1, . . . , fm),
we have that for j = 1, . . . , m, f j ∈ {pr2

1, pr2
2} and there exist indices i 6= j such

that fi 6= f j. The following lemma is an immediate consequence of the fact that an
aggregator is, by definition, supportive.

Lemma 1. A domain D is closed under a binary non-dictatorial projection aggregator if and
only if there exists a partition (I, J) of {1, . . . , m} such that D ≈ DI × DJ .

Proof. (⇒) Let f = ( f1, . . . , fm) be a binary non-dictatorial projection aggregator
for D. We may assume, without loss of generality, that fi = pr2

1, i = 1, . . . , k and
f j = pr2

2, j = k + 1, . . . , m. Let also I := {1, . . . , k} and J := {k + 1, . . . , m}. Since f
is non-dictatorial we have that k < m, which in turn means that (I, J) is a partition
of {1, . . . , m}. We will prove that D = DI × DJ . First observe that, by definition,
D ⊆ DI × DJ .

For the reverse inclusion, let a ∈ DI and b ∈ DJ . It holds that there exist partial
vectors a′ ∈ DI and a b′ ∈ DJ such that both ab′, a′b ∈ D. Since f = ( f1, . . . , fm) is an
aggregator for D, fi = pr2

1, i ∈ I and f j = pr2
2, j ∈ J, we have that:

f (ab′, a′b) = ab ∈ D,

which implies that DI × DJ ⊆ D is also true.
(⇐) Suppose that D ≈ DI ×DJ , where (I, J) is a partition of {1, . . . , m}. Assume,

without loss of generality, that I = {1, . . . , k}, k < m and J = {k + 1, . . . , m} (thus
D = DI × DJ). Let also ab′, a′b ∈ D, where a, a′ ∈ DI and b, b′ ∈ DJ .

Obviously, if f = ( f1, . . . , fm) is an m-tuple of projections such that fi = pr2
1, i ∈ I

and f j = pr2
2, j ∈ J, then f (ab′, a′b) = ab ∈ D, since a ∈ DI and b ∈ DJ . Thus,

f = ( f1, . . . , fm) is a non-dictatorial projection aggregator for D.

The proposition bellow realizes the syntactic characterization of possibility do-
mains that accept a binary non-dictatorial projection aggregator.

Proposition 3. A domain D admits a binary non-dictatorial projection aggregator
( f1, . . . , fm) if and only if there exists a separable formula φ whose set of models equals
D.

Proof. (⇒) Since D admits a binary non-dictatorial projection aggregator
( f1, . . . , fm), by Lemma 1, D ≈ DI × DJ , where (I, J) is a partition of {1, . . . , m}
such that I = {i | fi = pr2

1} and J = {j | f j = pr2
2}. Let φ1 and φ2 be formulas

defined on {xi | i ∈ I} and {xj | j ∈ J}, respectively, such that Mod(φ1) = DI and
Mod(φ2) = DJ . Let also φ = φ1 ∧ φ2. It is straightforward to observe that, since φ1
and φ2 contain no common variables,

Mod(φ) ≈ Mod(φ1)×Mod(φ2) = DI × DJ ≈ D.
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(⇐) Assume that φ is separable and that Mod(φ) = D. Since φ is separable, we
can find a partition (I, J) of {1, . . . , m}, a formula φ1 defined on {xi | i ∈ I} and a
formula φ2 defined on {xj | j ∈ J}, such that φ = φ1 ∧ φ2. Easily, it holds that

D = Mod(φ) ≈ Mod(φ1)×Mod(φ2) = DI × DJ .

The required now follows by Lemma 1.

We now turn our attention to domains of type (iii), i.e. domains that accept a
non-projection binary aggregator. Since this case is the most arduous, we will first
examine certain specific sub-cases where the type of operations that may comprise
a binary non projection aggregator is restricted. Recall that a binary non-projection
aggregator f = ( f1, . . . , fm) may be comprised of any combination of the operators
∧,∨, pr2

1, pr2
2, as long as at least one f j is the operator ∧ or ∨. As we have already

mentioned (Proposition 1), domains closed under an aggregator f = ( f1, . . . , fm),
where { f j | 1 ≤ j ≤ m} = {∧} or {∨}, have been syntactically characterized as
models of Horn and dual Horn formulas, respectively. The next step is to syntac-
tically characterize domains closed under an aggregator f = ( f1, . . . , fm), where
{ f j | 1 ≤ j ≤ m} = {∧,∨}. We will then examine what happens if we allow some of
the f j’s to be projection operations.

Definition 12. A formula φ defined over the set of variables V = {x1, . . . , xm} is called
renamable Horn if there is a subset V0 ⊆ V so that, if we replace every appearance of every
negated literal from V0 with the corresponding positive one and vice versa, φ is transformed
to a Horn formula.

The process of replacing the literals of some variables with their logical opposite
ones is called a renaming of the variables of φ.

Example 7. Consider the formulas

φ6 = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x2 ∨ x3 ∨ ¬x5)

φ7 = (¬x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x4 ∨ x5)

defined over V = {x1, x2, x3, x4, x5}.
The formula φ6 is renamable Horn. To see this, let V0 = {x1, x2, x3, x4}. By renaming

these variables, we get the Horn formula

φ∗6 = (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ ¬x5).

On the other hand, it is easy to check that φ7 cannot be transformed into a Horn formula
for any subset of V since, for the first clause to become Horn, at least two variables from
{x2, x3, x4} have to be renamed, making the second clause not Horn.

Notice that Horn and dual Horn formulas are, trivially, renamable Horn. Indeed, it
suffices to take as V0 = ∅ the empty set for Horn formulas, and V0 = V for dual Horn
formulas. Thus, both formulas φ1 and φ2 of example 4 are renamable Horn. The formula

φ3 = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4)

defined over V = {x1, x2, x3, x4} of the aforementioned example is renamable Horn as well.
Indeed, by renaming the variables in V0 = {x1, x4} we get the Horn formula

φ∗3 = (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ ¬x4).

Observe also, that the variables the renaming of which transforms a formula into a Horn
one are not uniquely defined. For instance, for the formula φ3 above, we could have chosen
as V0 the singleton {x2} and thus obtain the Horn formula

φ∗3
′ = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ x4).
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As it will be established bellow (Proposition 4), renamable Horn formulas syntac-
tically characterize domains closed under aggregators of the form f = ( f1, . . . , fm),
where { f j | 1 ≤ j ≤ m} ⊆ {∧,∨}. Let us mention here that a binary Boolean func-
tion f j : {0, 1}2 → {0, 1} is called symmetric if for all pairs of bits b1, b2, we have that
f j(b1, b2) = f j(b2, b1). A binary aggregator comprised exclusively of symmetric com-
ponents is called symmetric. We have already seen that the only binary functions
that may comprise a supportive binary aggregator are ∧,∨ and the two projection
functions pr2

1, pr2
2. Of those four, only the first two are symmetric. Thus, the set of

binary aggregators f = ( f1, . . . , fm), where { f j | 1 ≤ j ≤ m} ⊆ {∧,∨}, is exactly the
set of symmetric binary aggregators.

Proposition 4. A domain D admits a symmetric binary aggregator if and only if there exists
a renamable Horn formula φ whose set of models equals D.

Proof. (⇒) Suppose D admits the symmetric binary aggregator f = ( f1, . . . , fm).
Let ψ be a formula defined over V = {x1, . . . , xm} so that Mod(ψ) = D. Let also
V0 = {xj ∈ V | f j = ∨} and ψ∗ be the formula obtained by renaming the variables
of V0 in ψ. The first step is to prove that Mod(ψ∗) is Horn.

For each d = (d1, . . . dm) ∈ D, let d∗ = (d∗1 , . . . , d∗m) be such that

d∗j =

{
1− dj if xj ∈ V0,
dj if xj ∈ V \V0,

for j = 1, . . . , m, and set D∗ = {d∗ | d ∈ D}. Observe that by renaming xj in ψ
we cause all of its literals to be satisfied by the opposite value, which implies that
d∗ satisfies ψ∗ if and only if d satisfies ψ or, equivalently, Mod(ψ∗) = D∗. Thus,
it suffices to show that D∗ admits the aggregator g = (∧, . . . ,∧). The latter is an
immediate consequence of the fact that D admits the aggregator f = ( f1, . . . , fm),
where

f j =

{
∨, if xj ∈ V0,
∧, if xj ∈ V \V0,

and that ∧(1− dj, 1− d′j) = 1− ∨(dj, d′j), for any d, d′ ∈ D. Since D∗ is Horn, there
exists a Horn formula φ∗ so that Mod(φ∗) = D∗. Let φ := (φ∗)∗ be the formula that
occurs by renaming the variables of V0 in φ∗. Clearly, φ is a renamable Horn formula.
To complete the proof of this direction, it suffices to show that D = Mod(φ). This
follows from the observation that by renaming xj in φ we cause all of its literals to
be satisfied by the opposite value, which implies that d satisfies φ if and only if d∗

satisfies φ∗, which in turn implies that

Mod(φ) = {d | d∗ ∈ Mod(φ∗)} = {d | d∗ ∈ D∗} = D.

(⇐) Let φ be a renamable Horn formula defined over V = {x1, . . . , xm} so that
Mod(φ) = D. By definition, there exists a subset V0 ⊆ V so that by renaming
its variables in φ, we get the Horn formula φ∗. We will prove that D admits the
symmetric aggregator f = ( f1, . . . , fm), where

f j =

{
∨, if xj ∈ V0,
∧, if xj ∈ V \V0.

Let again D∗ be defined as above. Then, using the same argument, we have
that D∗ = Mod(φ∗). The required now follows from the fact that 1− ∨(dj, d′j) =

∧(1− dj, 1− d′j), for any d, d′ ∈ D and that D∗ admits the aggregator g = (∧, . . . ,∧),
since φ∗ is Horn.
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It should be stressed that whenever a domain D admits a symmetric binary ag-
gregator, following the process described in the proof of Proposition 4, we can al-
ways acquire a domain D∗ that admits an aggregator g = (g1, . . . , gm) with gj = ∧,
for all j = 1, . . . , m. Reversely, given a Horn domain D′ = Mod(φ), where φ is a
Horn formula, by renaming some of the variables in φ, we can acquire a (renamable
Horn) formula φ∗ and in turn a domain (D′)∗ = Mod(φ∗) that admits a symmetric
binary aggregator f = ( f1, . . . , fm). The components of f that are ∨ correspond to
the variables of φ we choose to rename. Intuitively, the process of renaming pro-
vides a way to interchange the symmetric components of an aggregator, provided
that some necessary but very specific alternations of the related domain are taken
into account3.

Bearing on this view, we may temporarily set aside aggregators with compo-
nent functions ∨, and focus on aggregators of the form f = ( f1, . . . , fm), where
f j ∈ {∧, pr2

1, pr2
2}. Following the course of thought of Díaz et al., we illustrate bellow

the main attempts towards the syntactical characterization of integrity constraints
for domains that admit aggregators of this type. These early attempts are presented
bellow as conjectures. Even though they were disproved, a close examination of the
corresponding counterexamples allows us to comprehend the complexity of possi-
bility domains and pinpoint the deviant cases. To this purpose, we first need to take
a step back and try to identify, if possible, the structural features of such possibility
domains as subsets of {0, 1}m.

Let d ∈ {1, 2} and an aggregator f = ( f1, . . . , fm) with { f j | 1 ≤ j ≤ m} =
{∧, pr2

d}. Naturally, the first thing tested was whether a domain D that admits f is a
Cartesian product.

Conjecture 1. [To be disproved] The following statements are equivalent:

1. The domain D is closed under f = ( f1, . . . , fm) with |{j | f j = ∧}| = k and
|{j | f j = pr2

d}| = m− k.

2. There is a partition (I, J) of {1, . . . , m} where |I| = k, so that DI is Horn and D ≈
DI × DJ .

Direction 2 ⇒ 1 is straightforward: For notational convenience, we assume that
I = {1, . . . , k} and J = {k + 1, . . . , m} and, by extent, that D = DI × DJ . We show
that D admits f = ( f1, . . . , fm) with f j = ∧ for j ∈ I and f j = pr2

d for j ∈ J. Let a =
(a1, . . . , am) and b = (b1, . . . , bm) be two arbitrary elements of D, with (a1, . . . , ak),
(b1, . . . , bk) ∈ DI and (ak+1, . . . , am), (bk+1, . . . , bm) ∈ DJ . Since DI is Horn, we have
that (a1 ∧ b1, . . . , ak ∧ bk) ∈ DI . Moreover, (pr2

d(ak+1, bk+1), . . . , pr2
d(am, bm)) ∈ DJ

and thus f (a, b) = (a1 ∧ b1, . . . , ak ∧ bk, pr2
d(ak+1, bk+1), . . . , pr2

d(am, bm)) ∈ DI ×DJ =
D.

This means that whenever a domain D satisfies the conditions described in 2, it
admits an aggregator of the form described in 1. However, the reverse direction does
not hold, since there exist possibility domains that admit aggregators of this type
that are not Cartesian products. We can establish this using the following example.

Counterexample 1. Consider the set D1 = {(0, 0, 0, 1), (0, 0, 1, 0), (1, 1, 0, 1)}. Let x =
(0, 0, 0, 1), y = (0, 0, 1, 0), z = (1, 1, 0, 1) and the aggregator f 1 = (∧,∧, pr2

1, pr2
1). We

3A formal proof of this statement is provided in Section 2.3. This intuitive approach suffices for
now.
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can easily establish that

f 1(x, x) = x, f 1(y, y) = y, f 1(z, z) = z ∈ D1,

f 1(x, y) = f 1(x, z) = f 1(z, x) = f 1(z, y) = (0, 0, 0, 1) ∈ D1 and

f 1(y, x) = f 1(y, z) = (0, 0, 1, 0) ∈ D1,

which means that D1 is closed under f 1. Nonetheless, D1 is not a Cartesian product (not
even after permutation of its coordinates) as its cardinality (|D1| = 3) is a prime number,
and its projection on each j ∈ {1, 2, 3, 4} is the two-element set D1

j = {0, 1}.
Hence, Conjecture 1 does not hold.

In view of our discussion above, it should be clear that the structure of Cartesian
products as described in Conjecture 1 is too restrictive, as it fails to characterize the
domains at hand in total. Therefore, the next attempt of Díaz et al. towards the char-
acterization of those domains proposes a less constrained condition, as illustrated in
Conjecture 2.

The idea behind this conjecture is to correlate the component functions of the
aggregator that are the logical operation ∧with propositional variables that carry the
same indices, and then check whether the notion of Horn formulas can be somehow
generalized so that it properly describes the domains at issue. Intuitively, the aim
is to obtain a formula φ with a "Horn part" comprised of the variables of φ that
correspond to the ∧ components of the aggregator, so that Mod(φ) = D. Therefore,
we introduce the following notion.

Definition 13. Let φ be a formula defined over the variable set V. We say that φ is Horn
ignoring a set of variables V ′ ⊆ V, if it is Horn ignoring the variables from V ′ (i.e. when we
delete all literals whose variable is in V ′).

Observe that a formula is Horn ignoring a set of variables V ′ if and only if it is
Horn ignoring the positive occurrences of variables from V ′ (i.e. when we delete all
positive literals whose variable is in V ′).

Conjecture 2. [To be disproved] The following statements are equivalent:

1. The domain D is closed under f = ( f1, . . . , fm) with { f j | 1 ≤ j ≤ m} = {∧, pr2
d}

and |{j | f j = pr2
d}| = k.

2. There is a formula φ defined over V = {x1, . . . , xm} and a subset V ′ ⊆ V of cardinal-
ity k, so that φ is Horn ignoring V ′ and D = Mod(φ).

As it will be established bellow, the second condition of Conjecture 2 is too
generic, in the sense that there are domains adherent to it while they do not admit
aggregators of the form described in the first condition.

Counterexample 2. Consider the formula ψ = x1 ∨ x2 ∨ x3 and take as D2 the set of its
satisfying truth assignments, i.e. D2 = Mod(ψ). Note that the formula ψ is Horn ignoring
the variables of the set V ′ = {x2, x3}.

Now, observe that D2 is not closed under the aggregator f 2 = (∧, pr2
1, pr2

1). Indeed, we
have that both (1, 0, 0) and (0, 1, 0) ∈ D2 but f 2((1, 0, 0), (0, 1, 0)) = (0, 0, 0) /∈ D2.

Due to the fact that ψ is symmetric, D2 is not closed under any aggregator with two
projection components. Therefore, Conjecture 2 does not hold.
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This simple counterexample indicates that whenever variables that correspond
to ∧ components of the aggregator appear in the same clause with variables that cor-
respond to projection components, things tend to become more complex. One pos-
sible way out of this problem is to find a way so that the simultaneous appearance
of these two types of variables in a clause of φ does not result in such dysfunctional
outcomes. This could be achieved by demanding that the formula φ satisfies some
additional structural restrictions. However, every adjustment ventured at that time
fell in vein, as similar counterexamples were constructed.

Then, the observations illustrated bellow gave birth to the third main conjecture.

Observation 1. The domain D1 = {(0, 0, 0, 1), (0, 0, 1, 0), (1, 1, 0, 1)} of Counterex-
ample 1, apart from the aggregator f 1 = (∧,∧, pr2

1, pr2
1), also admits the aggregator

g1 = (∧,∧,∧,∨). Indeed, for all u 6= v ∈ D1 we have that g1(u, u) = u ∈ D1 and
g1(u, v) = (0, 0, 0, 1) ∈ D1.

Observation 2. Consider the formula ψ = x1 ∨ x2 ∨ x3 of Counterexample 2. We estab-
lished above that D2 = Mod(ψ) does not admit the aggregator f 2 = (∧, pr2

1, pr2
1). However,

D2 = Mod(ψ) is a possibility domain as it admits the symmetric aggregator g2 = (∨,∨,∨).
The latter holds due to the fact that ψ is a dual Horn formula.

In other words, both D1 and D2 admit aggregators comprised solely of symmet-
ric components. The question that arises here is whether this common feature could
lead to useful results. So, the general idea behind Conjecture 3 is to characterize
domains that admit a binary non-dictatorial aggregator, as models of separable for-
mulas that satisfy an additional condition: the set of variables that correspond to
the symmetric components can not be extended. Intuitively, given a domain D ⊆
{0, 1}m that admits a binary non-dictatorial aggregator, we could consider a maxi-
mal, with respect to set inclusion, set of ∧/∨-variables V0 and then check whether
D is the Cartesian product D ≈ DI0 × D−I0 , where I0 = {i ∈ {1, . . . , m} | xi ∈ V0}.
Specifically:

Conjecture 3. [To be disproved] Let D ⊆ {0, 1}m be a domain and I = {1, . . . , m} be a set
of indices. The following statements are equivalent.

1. The domain D admits a binary non-dictatorial aggregator.

2. There exist pairwise disjoint subsets I0, I1, I2 ⊆ I, some of which might be empty,
whose union is I, such that:

• If I0 = ∅ then both I1 and I2 are non empty, and

• DI0 admits a binary aggregator all the components of which are symmetric func-
tions, and

• D ≈ DI0 × DI1 × DI2 .

It should be noted here that we, intentionally, do not state the form of the ag-
gregator explicitly. The reason we do not specify which component functions of
the aggregator are ∧,∨, pr2

1 or pr2
2 is that the structure of D (described in the sec-

ond condition) is realized, if at all, only for certain aggregators, i.e. the aggrega-
tors f = ( f1, . . . , fm) for which the set I f

0 = {i ∈ I | fi ∈ {∧,∨}} is a maxi-
mal (with respect to set inclusion) element of the partially ordered set I = {I f

0 |
f is an aggregator for D}. Of course, the aforementioned pertain to the argumenta-
tion for direction 1 ⇒ 2, where it was intended to take as I0 any such maximal set;
the reverse direction is rather obvious.
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By the discussion above, the fact that Conjecture 3 does not conflict with any of
the Counterexamples 1 or 2 should not come as a surprise. Indeed, for the former we
can take I0 = {1, 2, 3, 4} and I1, I2 = ∅; then, D1 = DI0 which admits the symmetric
aggregator g1 = (∧,∧,∧,∨). For the latter, we take I0 = {1, 2, 3} and again I1, I2 =
∅. Then, D2 = DI0 and we have that D2 admits the symmetric aggregator g2 =
(∨,∨,∨).

However, Conjecture 3 does not hold, since there exist domains that admit binary
non-dictatorial aggregators while at the same time they do not satisfy the require-
ments of the second condition of Conjecture 3.

Counterexample 3. Let D3 ⊆ {0, 1}5 be the following domain, over the set of indices
I = {1, 2, 3, 4, 5}:

D3 = {(0, 1, 0, 0, 1), (1, 0, 0, 0, 1), (0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0)}.

We can easily establish that D3 is a possibility domain, as it admits the binary non-dictatorial
aggregator f 3 = (∧,∧, pr2

1, pr2
1, pr2

1). Indeed, for any two distinct x = (x1, x2, x3, x4, x5),
y = (y1, y2, y3, y4, y5) ∈ D3, we have that f 3(x, y) = (0, 0, x3, x4, x5), which is also an
element of D3.

Now, observe that the cardinality of D3 is a prime number (|D3| = 5) and its projection
to each j ∈ I is the two element set D3

j = {0, 1}. In order to obtain a partition of I that
satisfies the limitations of the second condition of Conjecture 3, we are obligated to set I0 = I
and both I1, I2 = ∅. In this case we have that D3 = DI0 . The latter set, though, in
opposition to Conjecture 3, does not admit a symmetric aggregator. Indeed, we have that
D3
{3,4,5} = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} which is closed only under dictatorial aggregators.

At this point we should be convinced that the structure of Cartesian products
and, by extent, the syntactical type of separable4 formulas, is unfit to describe the
entirety of possibility domains that admit a binary non-dictatorial aggregator. This
brings us back to the concept of the second conjecture. Recall that the aim is, given
a domain D ⊆ {0, 1}m that admits a binary non-dictatorial aggregator, to find a syn-
tactic type of a formula φ defined over the set of variables V = {x1, . . . , xm}, so that
D = Mod(φ). And, reversely, given such a formula φ we want Mod(φ) to admit a
binary non-dictatorial aggregator. What we have established so far is that this search
should be narrowed down to formulas whose clauses may simultaneously contain
variables that correspond to symmetric components and variables that correspond
to projection components of an aggregator. So, the efforts of Díaz et al. were there-
after concentrated to the identification of this syntactic type of formulas, being aware
of this extra piece of information.

The next conjecture was also generated by Observations 1 and 2 and is in fact
an improved version of Conjecture 2 in the following sense: The syntactic type pro-
posed is an analogous generalization of renamable Horn formulas where after the
renaming we acquire a formula with a generalized maximal "Horn part". Intuitively,
the variables that constitute the "Horn part" are supposed to correspond to a maximal
set of symmetric components of a binary non-dictatorial aggregator and the rest to
projection components.

In order to be able to express this notion of maximality in terms of syntactic
properties of a formula, we need the following.

Definition 14. Let φ be a propositional formula defined over the set of variables V. We
say that a variable x ∈ V is positively (respectively negatively) pure if x has only positive

4The notion of separable formulas here is used in a broader sense, where the different types of
variables (apart from not appearing in the same clauses) may satisfy some additional conditions.
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(respectively negative) appearances in φ. In general, positively or negatively pure variables
are simply called pure.

We are now ready to state the fourth conjecture.

Conjecture 4. [To be disproved] Let D ⊆ {0, 1}m be a domain defined over the set of issues
I = {1, . . . , m} and V = {x1, . . . , xm} be a set of Boolean variables. The following are
equivalent.

1. The domain D admits a binary non-dictatorial aggregator

2. There exists a CNF formula φ on V whose set of models equals D and for which there
exist pairwise disjoint subsets V0, V1, V2 ⊆ V, with union V such that all the following
conditions are satisfied:

(a) For some renaming V∗0 , of the variables in V0, every clause of the formula φ∗ ob-
tained from φ by this renaming contains at most one positive literal of a variable
in V∗0 .

(b) No clause of φ contains literals from both V1 and V2.

(c) The formula φ contains no pure variables from either V1 or V2.

(d) If V0 = ∅ then both V1, V2 6= ∅.

Observe that we do not demand every variable of V0 to be renamed.

Proof. (Only direction 1 ⇒ 2). Assume that D admits a binary non-dictatorial ag-
gregator. If f is any such, let I f

0 be the set of issues where the components of f are
symmetric. Consider an f where I f

0 is maximal, meaning that there is no binary non-

dictatorial f ′ with I f
0 ( I f ′

0 . Let also I f
1 be the subset of I \ I f

0 where the components
of f are pr1

2 and similarly for I f
2 . In what follows, we drop the superscript f because

f remains fixed. Assume, without loss of generality, that I0 is comprised of the is-
sues {1, . . . , k}, with k ≥ 0, I1 of the issues {k + 1, . . . , k + l}, with l ≥ 0 and I2 of
the issues {k + l + 1, . . . , m}. Also, let V0, V1, V2 be the subsets of V corresponding
to I0, I1, I2, respectively. Observe that k = 0 and l = 0 correspond to V0 = ∅ and
V1 = ∅, respectively, whereas V2 = ∅ corresponds to k + l = m. Since f was a
non-dictatorial aggregator, we have that Condition (d) is satisfied.

For notational convenience, let D0, D1, D2 be the projections of D on I0, I1, I2,
respectively. Obviously, D0 admits the symmetric aggregator g = ( f1, . . . , fk) hence,
there is a formula ψ0 on the variables V0, such that ψ0 can be renamed into a Horn
ψ∗0 and Mod(ψ0) = D0. Let V∗0 := {x∗1 , . . . , x∗k} be the renaming of V0, where

x∗j =

{
¬xj if f j = ∨,
xj if f j = ∧,

for 1 ≤ j ≤ k and let V∗ := V∗0 ∪ V1 ∪ V2. Let D∗, D∗0 be the corresponding to
D, D0 flipped domains, and f ∗ be the non-dictatorial aggregator on D∗ obtained by
flipping the components of f that are ∨ into ∧.

Henceforth, if a, b are sequences of bits, then ab denotes their concatenation.
Also, when no confusion could arise, we denote by the same symbol a bit and a
sequence that has this bit as its only term. Finally, for two equal-length sequences of
bits a, b, let a ∧ b denote the sequence obtained by taking the ∧ of a bit of a and a bit
of b, component-wise.
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The proof will be complete if we construct a formula ψ∗1,2 on V∗, such that none of
its clauses contains more than one positive literal from the variables in V∗0 , and none
contains literals from both V1 and V2 and, moreover, the conjunction of ψ∗1,2 with ψ∗0
gives a formula φ∗ such that Mod(φ∗) = D∗. Observe that the Condition (c) about
no pure literals of φ from V1 ∪V2 will be satisfied because of the maximality of I0 (φ
is the formula obtained from φ∗ by giving to the variables their former name).

First, a claim:

Claim 1. Let u = u0u1u2, u′ = u′0u′1u′2 ∈ D∗, where the indices denote the projections of
u, u′ on the equally indexed, respectively, sets of issues, respectively for u, u′. Then, it holds
that (u0 ∧ u′0)v1v2 ∈ D∗, where v1 is either u1 or u′1 and v2 is either u′2 or u2.

The proof of the claim can be obtained by repeatedly applying f ∗ to u and u′ in
various orders.

We now continue with the proof of this direction. For each element u 6∈ D∗whose
projection on I0 is in D∗0 , we will construct a clause c on V∗ which, if conjuncted with
ψ∗0 , will give a formula whose models do not contain u (for linguistic convenience,
we say that c "excludes" u), but any truth assignment u′ ∈ D∗ is a model of ψ∗0 ∧ c
(we say that c does not exclude anything that should not be excluded). The clause c
will contain at most one positive literal from V∗0 , and either will not contain literals
from V2 or c will not contain literals from V1. The conjunction of all these clauses c
will give ψ∗1,2.

First, some notation: If a, b are sequences of bits of the same length, then we write
a � b if at every coordinate where a is 1, so is b. If, furthermore, a 6= b, we write
a ≺ b.

Assume now that u = u0u1u2 /∈ D∗ with u0 ∈ D∗0 . We start by observing that by
the claim above, one of the following is true:

(i) For all truth assignments u′2 to the variables in V2, u0u1u′2 /∈ D∗.

(ii) For all truth assignments u′1 to the variables in V1, u0u′1u2 /∈ D∗.

Without loss of generality, we assume bellow that the fist is true. The following
is crucial in constructing the clause c.

Claim 2. Let u = u0u1u2 /∈ D∗ with u0 ∈ D∗0 . If (i) holds, there exists no u′ ∈ D∗ of the
form u′0u1u′2, with u0 � u′0 and u′2 an arbitrary sequence of bits that is a truth assignment
of the variables in V2.

To establish this, assume that there exists u′ ∈ D∗ of the above form. Since
u0 ∈ D∗0 , there is w = u0w1w2 ∈ D∗. Then, f ∗(u′, w) = u0u1w2 ∈ D∗, which
contradicts assumption (i).

Now, we construct the clause c that excludes u but not anything that should not
be excluded. Let a0 be the conjunction of positive literals from V∗0 corresponding to
the variables where u0 takes the value 1 and a1 be the conjunction of literals from V1
that is satisfied by exactly u1. Let l0 be a single positive literal of a variable from V∗0 ,
where u0 takes the value 0 (if there is none, instead of l0 take the empty disjunction of
literals). Define c to be a0 ∧ a1 → l05. Obviously, c excludes from D∗ only sequences
of the form u′0u1u′2, for some u′0 � u0, where u′2 is some truth assignment to the
variables in V2. So, by Claim 2, no sequence that should not be excluded is excluded
by c. Moreover, u is excluded, as it should.

5Note that for any Boolean variables x, y, z the formula x ∧ y → z is logically equivalent to (has the
same models as) the clause ¬x ∨ ¬y ∨ z.
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So, we proved that whenever D admits a binary non-dictatorial aggregator, there
is a formula φ of the form described in condition 2 so that Mod(φ) = D. For the
reverse direction, given a formula φ with Mod(φ) = D and sets V0, V1, V2, so that
all conditions (a) to (d) are satisfied, we want to construct a binary non-dictatorial
aggregator for D. We concisely describe the purpose each of these conditions was
hoped (and in some cases actually managed) to serve.

The validity of condition (a) ensures that the formula φ∗ is Horn ignoring the
set of variables V \V∗0 , which in turn implies that the symmetric components of the
(under construction) aggregator should be in a one-to-one correspondence with the
variables of V0. Note that some of the variables in V0 may not be renamed; in fact,
from the variables of V0, those that are renamed would correspond to ∨ and those
that are not to ∧ components of the aggregator. The sets V1 and V2 were destined to
include the variables that correspond to pr2

1 and pr2
2 components of the aggregator

respectively. Therefore, Condition (b), imitating the definition of separable formulas
that characterize domains closed under non-dictatorial projection aggregators, was
expected to ensure the closure of D under the projection components. Condition
(c), as we have seen, is in line with the requirement of maximality of the symmetric
components of the aggregator that is adumbrated. Lastly, the purpose of Condition
(d) is to ensure that the aggregator is non-dictatorial, even if it has no symmetric
components.

Nonetheless, Conditions (a) to (d) failed to meet the expectations of Díaz et al.,
as a counterexample for direction 2⇒ 1 was constructed.

Counterexample 4. Let D4 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ {0, 1}3 be a domain de-
fined over the set of issues I = {1, 2, 3}. We have already mentioned that this set is an
impossibility domain, i.e it only admits dictatorial aggregators. Also, consider the formula

φ = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3),

defined over V = {x1, x2, x3} and let V0 = {x1}, V1 = {x2, x3} and V2 = ∅. Since
V2 = ∅ and V0 6= ∅, we have that Conditions (b) and (d) are trivially satisfied. Moreover,
φ contains no pure literals from V1 ∪V2 thus Condition (c) is satisfied as well. Now, observe
that taking x∗1 = x1, i.e. V∗0 = V0 = {x1}, every clause of the formula

φ∗ = φ = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3)

contains at most one positive literal from V∗0 , hence Condition (a) is also satisfied. Moreover,
we can easily establish that Mod(φ) = D4, in contrast to Conjecture 4.

Let us get a more detailed review of this example in the light of the discussion
that precedes it. Since V0 = {x1}, V1 = {x2, x3} and V2 = ∅, the prospective ag-
gregator implicitly indicated by Conjecture 4 is f 4 = (∧, pr2

1, pr2
1). We have already

argued that D4 is not closed under f 4, but a closer investigation has a lot to reveal.
Consider the elements u = (1, 0, 0) and v = (0, 1, 0) of D4. Since D4 = Mod(φ),

both u, v satisfy every clause of φ. Applying f 4 to u and v with this order, we get
the element w = (0, 0, 0) /∈ D4, which satisfies every clause of φ except for the
clause c = (x1 ∨ x2 ∨ x3). Now, observe that the variable x1 ∈ V0 appears negatively
in every clause of φ that contains literals from both V0, V1, aside from the clause c
where it appears positively. This, of course, could be just a coincidence, however if
-hypothetically- x1 appeared negatively in c as well, then φ would be satisfied by w.

This observation triggered the next attempt towards the characterization of pos-
sibility domains. The main idea behind it is very well captured by the following
lemma.
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Lemma 2. Let φ be a formula in CNF defined over the variable set V = {x1, . . . , xm}. If
there exists a non-empty subset V0 ⊆ V so that

• every clause of φ that contains only variables from V0 is Horn and

• every appearance of a variable from V0 to the clauses that contain variables from V \V0
is negative,

then Mod(φ) admits the aggregator f = ( f1, . . . , fm), where f j =

{
∧ if xj ∈ V0,
pr2

1 if xj ∈ V \V0.

Proof. To enable notation, we may assume without loss of generality, that the set
of indices of variables in V0 is I0 = {1, . . . , k} and we also set D := Mod(φ). In
order to establish the claim above, we have to show that for two arbitrary elements
u = u0u1, v = v0v1 ∈ D, where u0, v0 ∈ DI0 and u1, v1 ∈ D−I0 we get that f (u, v) =
(u0 ∧ v0)u1 ∈ D. This amounts to showing that every clause of φ is satisfied by
(u0 ∧ v0)u1. Let c be an arbitrary clause of φ. We distinguish the following cases
according to the claim above:

• The clause c contains only variables from V0. Then, by the hypothesis, c is
Horn and since both u0, v0 satisfy c, so does u0 ∧ v0 and, by extent, (u0 ∧ v0)u1.

• The clause c contains variables from V \V0. If any literal of c that corresponds
to a variable of V \V0 is satisfied by u1, we have nothing to prove. If there is no
such literal, since u0u1 satisfies c, it must hold that a negative literal ¬xi, i ∈ I0
is satisfied by u0. Thus, u0(xi) = 0, which means that (u0 ∧ v0)(xi) = 0 as well.
Consequently, c is satisfied by (u0 ∧ v0)u1.

Since the clause c was arbitrary, we have that D = Mod(φ) is indeed closed under
f .

So, roughly speaking, the syntactic type we are looking for ought to include for-
mulas in CNF that (possibly after some renaming) have a "Horn part" so that the
variables that comprise it appear only negatively (if at all) in the rest of the clauses.
Furthermore, this syntactic type should be liberated from the prohibition of the ap-
pearance of pure literals of variables that correspond to projection components; this
is because this requirement was added in view of the maximality requirement, which
appears to fail ruling out impossibility domains.

2.3 Syntactic characterization of integrity constraints

In this section, we present the answer to the problem of the syntactic characteri-
zation of possibility domains, proposed by Díaz et al. [9]. In order to address this
problem, by Theorem 7, it suffices to characterize domains that admit (i) a minor-
ity aggregator, or (ii) a non-dictatorial binary projection aggregator or (iii) a binary
non-projection aggregator. So far we have established that domains of types (i) and
(ii) are characterized as the sets of models of affine formulas and separable formulas,
respectively. We have also acquired a rough sketch of the syntactic type of formu-
las that characterize the domains of type (iii). Following Díaz et al. we call these
formulas renamable partially Horn. In short, a renamable partially Horn formula, is
a formula such that if we change the logical sign of some of its variables, we get a
formula that has a Horn part and whose remaining clauses contain only negative
occurrences of the variables in the Horn part.

We first introduce the necessary definitions and examples.
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Definition 15. A formula φ defined over the variable set V is called partially Horn if there
is a nonempty subset V0 ⊆ V such that

(i) the clauses containing only variables from V0 are Horn and

(ii) the variables of V0 appear only negatively (if at all) in a clause containing also variables
not in V0.

If a formula φ is partially Horn, then any non-empty subset V0 ⊆ V that satisfies
the requirements of Definition 15 will be called an admissible set of variables. Also
the Horn clauses that contain variables only from V0 will be called admissible clauses.
It should be stressed out that the set of admissible clauses might be empty. A Horn
clause with a variable in V \V0 will be called inadmissible. The reason for the possible
existence of such clauses will be made clear in the following example, but let as
briefly state that this discrimination between the Horn clauses is derived from the
requirement for only negative occurrences of the admissible variables in the non-
admissible clauses.

Observe that a Horn formula is, trivially, partially Horn too, as the set of its
variables is itself an admissible set of variables. Also, a formula that contains at
least one negative pure literal, ¬xi, is partially Horn. Indeed, by setting V0 to be the
singleton {xi} the requirements of Definition 15 are trivially satisfied.

Example 8. We first examine the formulas of the previous examples. Both formulas

φ6 = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x2 ∨ x3 ∨ ¬x5) and
φ∗6 = (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ ¬x5)

are partially Horn. Indeed, φ6 contains the negative pure literal ¬x5 and φ∗6 is Horn. On the
other hand, the formulas

φ5 = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x4 ∨ x5) and
φ7 = (¬x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x4 ∨ x5)

are not, since for every possible V0 ⊆ {x1, x2, x3, x4, x5}, we either get non-Horn clauses
containing variables only from V0, or variables of V0 that appear positively in inadmissible
clauses.

The formula

φ8 = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4)

is partially Horn. Its first three clauses are Horn, yet the third has to be put in every inad-
missible set, since x3 appears positively in the fourth clause which is not Horn. The first two
clauses though constitute an admissible set of Horn clauses. Finally, the formula

φ9 = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4)

is not partially Horn. Indeed, since all its variables appear positively in some clause, we
need at least one clause to be admissible. The first two clauses of φ9 are Horn, but we will
show that they both have to be included in an inadmissible set. Indeed, the second has to
belong to every inadmissible set since x3 appears positively in the third, not Horn, clause.
Furthermore, x2 appears positively in the second clause, which we just showed to belong to
every inadmissible set. Thus, the first clause also has to be included in every inadmissible
set, and therefore φ9 is not partially Horn.

Accordingly to the case of renamable Horn formulas, we define:
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Definition 16. A formula is called renamable partially Horn if some of its variables can be
renamed (in the sense of Definition 12) so that it becomes partially Horn.

Observe that any Horn, renamable horn or partially Horn formula is trivially
renamable partially Horn. Also, a formula with at least one pure positive literal is
renamable partially Horn, since by renaming the corresponding variable, we get a
formula with a pure negative literal.

Example 9. All formulas of the previous example are renamable partially Horn: φ∗6 , φ6 and
φ8 correspond to the trivial cases we discussed above, whereas φ5, φ7 and φ9 all contain the
pure positive literal x4.

Lastly, we examine two more formulas:

φ10 = (¬x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ ¬x4 and
φ11 = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3).

Easily, the formula φ10 is not partially Horn, but by renaming x1 and x4, we obtain the
partially Horn formula

φ∗10 = (x1 ∨ x2 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ x4,

where V0 = {x4} is the set of admissible variables. One the other hand, the formula φ11
is not renamable partially Horn. Indeed, whichever variables we rename, we end up with
one Horn and one non-Horn clause, with at least one variable of the Horn clause appearing
positively in the non-Horn clause.

Observe that the definition of renamable partially Horn formulas provides no
information about the relation between the set of the renamed variables and that of
the admissible ones. The following remark clarifies any ambiguity regarding this
issue.

Remark 3. Let φ be a renamable partially Horn formula, and let φ∗ be a partially Horn
formula obtained by renaming some of the variables of φ, with V0 being the admissible set of
variables. Let also C0 be an admissible set of Horn clauses in φ∗. We can assume that only
variables of V0 have been renamed, since the other variables are not involved in the definition
of being partially Horn. Also, we can assume that a Horn clause of φ∗ all the variables of
which are in V0 belongs to C0. Indeed, if not, we can add it to C0.

Example 10. Consider the renamable partially Horn formula of the previous example, de-
fined over the variable set V = {x1, x2, x3, x4},

φ10 = (¬x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ ¬x4.

Recall that by renaming the variables x1, x4 we obtain the partially Horn formula

φ∗10 = (x1 ∨ x2 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ x4,

where the set of admissible variables is V0 = {x4}. In addition, we can trivially take the
empty set as a set of admissible clauses, C0 = ∅. Observe that while establishing whether
φ∗10 is in fact a partially Horn formula, we need not to take the variable x1 into account. In
other words, the logical sign of the literals of x1 is insignificant, which in turn implies that
there was no reason to rename this variable in the first place.

Indeed, by renaming in φ10 only the variable x4 we obtain the partially Horn formula

φ∗10
′ = (¬x1 ∨ x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ x4,

where the set of admissible variables is again the set V0 = {x4}. Moreover, we can as-
sume that the Horn clause, x4 which contains variables only from V0, belongs to the set of
admissible clauses, i.e., C ′0 = {x4}.
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Definition 17. A formula is called a possibility integrity constraint if it is either affine,
or separable, or renamable partially Horn.

We will prove that possibility integrity constraints are the answer to the prob-
lem of the syntactic characterization of possibility domains. To this purpose, we first
prove that renamable partially Horn formulas characterize domains closed under
binary non projection aggregators. We will first need two lemmas. Lemma 3, allows
us to work - if necessary- with binary non-projection aggregators whose compo-
nents contain at most one of the projection operations pr2

1 and pr2
2. Lemma 4, is a

generalization of Proposition 4 and provides us the ability to interchange between
the symmetric components of a binary aggregator, according to desideratum, at the
small cost of working with a slightly altered domain.

Lemma 3. Suppose D admits a binary aggregator f = ( f1, . . . , fm) such that there exists
a partition (H, I, J) of {1, . . . , m} where fh is symmetric for all h ∈ H, fi = pr2

s , for all
i ∈ I and f j = pr2

t , with t 6= s, for all j ∈ J. Then, D also admits a binary aggregator
g = (g1, . . . , gm), such that gh = fh, for all h ∈ H and gi = pr2

s , for all i ∈ I ∪ J.

Proof. Without loss of generality, assume that there exist 1 ≤ k < l < m such that
H = {1, . . . , k}, I = {k + 1, . . . , l} and J = {l + 1, . . . , m} and that s = 1 (and thus
t = 2). It suffices to prove that, for two arbitrary vectors a, b ∈ D, g(a, b) ∈ D, where
(g1, . . . , gm) is defined as in the statement of the lemma.

Assume that for all i ∈ H, fi(ai, bi) = ci. Since f is an aggregator for D,
it holds that f (a, b) and f (b, a) are both vectors in D. By the same token, so is
f ( f (a, b), f (b, a)). The result is now obtained by noticing that:

f (a, b) =(c1, . . . , ck, ak+1, . . . , al , bl+1, . . . , bm),
f (b, a) =(c1, . . . , ck, bk+1, . . . , bl , al+1, . . . , am),

and thus: f ( f (a, b), f (b, a)) = (c1, . . . , ck, ak+1, . . . , am) = g(a, b).

Lemma 4. Suppose D admits a binary aggregator ( f1, . . . , fm) such that, for some J ⊆
{1, . . . , m}, f j is symmetric for all j ∈ J. For each d = (d1, . . . , dm) ∈ D, let d∗ =
(d∗1 , . . . , d∗m) be such that:

d∗j =

{
1− dj if j ∈ J,
dj else,

or j = 1, . . . , m and set D∗ = {d∗ | d ∈ D}. Then D∗ admits the binary aggregator
(g1, . . . , gm), where: (i) gj = ∧ or all j ∈ J such that f j = ∨, (ii) gj = ∨ for all j ∈ J such
that f j = ∧ and (iii) gj = f j for the rest.

Note that we do not assume that the set J ⊆ {1, . . . , m} includes every coordinate
j such that f j is symmetric.

Proof. The proof immediately follows from the fact that ∧(1 − dj, 1 − d′j) = 1 −
∨(dj, d′j) (resp. ∨(1− dj, 1− d′j) = 1− ∧(dj, d′j)), for any d, d′ ∈ D; and that by re-
naming xj, j ∈ J, in φ, we cause all of its literals to be satisfied by the opposite value.
Thus, d satisfies φ if and only if d∗ satisfies φ∗, where φ∗ is the formula obtained from
φ by this renaming.

Theorem 9 (Dìaz et al. [9]). D admits a binary aggregator f = ( f1, . . . , fm) which is not a
projection aggregator if and only if there exists a renamable partially Horn formula φ whose
set of models equals D.
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Recall that for two vectors a, b ∈ D, we define a � b to mean that if ai = 1 then
bi = 1, for all i ∈ {1, . . . , m} and a � b when a � b and a 6= b.

Proof. (⇒) We will work with the corresponding domain D∗ of Lemma 4 that ad-
mits an aggregator (g1, . . . , gm) whose symmetric components, corresponding to the
symmetric components of ( f1, . . . , fm), are all equal to ∧. Suppose that V0 = {xi |
gi = ∧}. For D∗, we compute a formula φ = φ0 ∧ φ1, where φ0 is defined on the
variables of V0 and is Horn and where φ1 has only negative appearances of variables
of V0. The result is then derived by renaming all the variables xj, where j is such that
f j = ∨.

Let I := {i | fi is symmetric} (by the hypothesis, I 6= ∅). Let also J := {j | f j =
∨} (J might be empty). Obviously J ⊆ I. For each d = (d1, . . . , dm) ∈ D, let d∗ =
(d∗1 , . . . , d∗m), where d∗j = 1− dj if j ∈ J and d∗i = di else. Easily, if D∗ = {d∗ | d ∈ D},
by Lemmas 3 and 4 it admits an aggregator (g1, . . . , gm) such that gi = ∧, for all i ∈ I
and gj = pr2

1, j /∈ I. Thus, there is a Horn formula φ0 on {xi | i ∈ I} := V0, such that
Mod(φ0) = D∗I .

If I = {1, . . . , m}, we have nothing to prove. Thus, suppose, without loss of
generality, that I = {1, . . . , k}, k < m. For each a = (a1, . . . , ak) ∈ D∗I , let Ba := {b ∈
D∗−I | ab ∈ D∗} be the set containing all partial vectors that can extend a. For each
a ∈ D∗I , let ψa be a formula on {xj | j /∈ I}, such that Mod(ψa) = Ba. Finally, let
Ia := {i ∈ I | ai = 1} and define:

φa :=

( ∧
i∈Ia

xi

)
→ ψa,

for all a ∈ D∗I .
Consider the formula:

φ = φ0 ∧
( ∧

a∈D∗I

φa

)
.

We will prove that φ is partially Horn and that Mod(φ) = D∗. By Lemma 4, the
renamable partially Horn formula for D can be obtained by renaming in φ the vari-
ables xi such that i ∈ J.

We have already argued that φ0 is Horn. Also, since φa is logically equivalent to
(has exactly the same models as):( ∨

i∈Ia

¬xi

)
∨ ψa,

any variable of V0 that appears in the clauses of some φa, does so negatively. It
follows that φ is partially Horn.

Next we show that D∗ ⊆ Mod(φ) and that Mod(φ) ⊆ D∗. For the former inclu-
sion, let ab ∈ D∗, where a ∈ D∗I and b ∈ Ba. Then, it holds that a satisfies φ0 and b
satisfies ψa. Thus ab satisfies φa.

Now, let a′ ∈ D∗I : a 6� a′. Then, a does not satisfy
∧

i∈Ia′
xi, since there exists

some coordinate i ∈ Ia′ such that ai = 0 and a′i = 1. Thus, ab satisfies φa′ . Finally, let
a′′ ∈ D∗I : a′′ ≺ a. Then, a satisfies

∧
i∈Ia′′

xi and thus we must prove that b satisfies
ψa′′ .
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Since a′′ ∈ D∗I , there exists a c ∈ D∗−I such that a′′c ∈ D∗. Then, since (g1, . . . , gm)
is an aggregator for D∗:

(g1, . . . , gm)(ab, a′′c) =

(∧(a1, a′′1 ), . . . ,∧(ak, a′′k ), pr2
1(b1, c1), . . . , pr2

1(bm−k, cm−k)) = a′′b ∈ D∗,

since a′′ ≺ a. Thus, b ∈ B(a′′) and, consequently, it satisfies ψa′′ .
We will prove the opposite inclusion by showing that an assignment not in D∗

cannot satisfy φ. Let ab /∈ D∗. If a /∈ D∗I , we have nothing to prove, since a does not
satisfy φ0 and thus ab /∈ Mod(φ). So, let a ∈ D∗I . Then, b /∈ Ba, lest ab ∈ D∗. But then,
b does not satisfy ψa and thus ab does not satisfy φa. Consequently, ab /∈ Mod(φ).

Thus, by renaming the variables xi, i ∈ J, we produce a renamable partially Horn
formula, call it ψ, such that Mod(ψ) = D.

(⇐) Let ψ be a renamable partially Horn formula with Mod(ψ) = D. Let
J ⊆ {1, . . . , m} such that, by renaming all the xi, i ∈ J, in ψ, we obtain a partially
Horn formula φ. Let V0 be the set of variables such that any clause containing only
variables from V0 is Horn, and that appear only negatively in clauses that contain
variables from V \ V0. By Remark 3, we can assume that {xi | i ∈ J} ⊆ V0. Let also
C0 be the set of admissible Horn clauses of φ.

Let again D∗ = {d∗ | d ∈ D}, where d∗j = 1− dj if j ∈ J and d∗i = di else, for
all d ∈ D. By Lemma 4, Mod(φ) = D∗. By the same Lemma, and by noticing that
whichever the choice of J ⊆ {1, . . . , n}, (D∗)∗ = D, it suffices to prove that D∗ is
closed under a binary aggregator ( f1, . . . , fm), where fi = ∧ for all i such that xi ∈ V0
and f j = pr2

1 for the rest.
Without loss of generality, let I = {1, . . . , k}, k < m (lest we have nothing to

show) be the set of indices of the variables in V0. We need to show that if ab, a′b′ ∈ D,
where a, a′ ∈ D∗I and b, b′ ∈ D∗−I , then (a∧ a′)b ∈ D, where a∧ a′ = (a1 ∧ a′1, . . . , ak ∧
a′k).

Let φ = φ0 ∧ φ1, where φ0 is the conjunction of the clauses in C0 and φ1 the
conjunction of the rest of the clauses of φ. By the hypothesis, φ0 is Horn and thus,
since a, a′ satisfy φ0, so does a ∧ a′. Now, let Cr be a clause of φ1. If any literal of Cr
that corresponds to a variable not in φ0 is satisfied by b, we have nothing to prove.
If there is no such literal, since ab satisfies Cr, it must hold that a negative literal ¬xi,
i ∈ I, is satisfied by a. Thus, ai = 0, which means that ai ∧ a′i = 0 too. Consequently,
Cr is satisfied by (a ∧ a′)b. Since Cr was arbitrary, the proof is complete.

Finally, we are ready to prove that possibility integrity constraints are the answer
to the problem of the syntactic characterization of possibility domains.

Theorem 10 ( Díaz et al. [9]). D is a possibility domain if and only if there exists a possi-
bility integrity constraint φ whose set of models equals D.

Proof. (⇒) If D is a possibility domain, then, by Theorem 7, it either admits a ternary
aggregator all components of which are the binary addition mod 2, i.e., a minor-
ity aggregator, or a non-dictatorial binary projection aggregator, or a non-projection
binary aggregator. In the first case, by Proposition 2, D is the model set of an affine
formula. In the second, by Proposition 3, it is the model set of a separable formula
and in the third, by Theorem 9, that of a renamable partially Horn formula. Thus, in
all cases, D is the model set of a possibility integrity constraint.

(⇐) Let φ be a possibility integrity constraint such that Mod(φ) = D. If φ is affine
then, by Proposition 2, D admits a ternary aggregator all components of which are
the binary addition mod 2, i.e., a minority aggregator. If φ is separable then, by
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Proposition 3, D admits a non-dictatorial binary projection aggregator. Finally, by
Theorem 9, if φ is renamable partially Horn then D admits a non-projection binary
aggregator. In every case, D is a possibility domain.

Remark 4. At this point we should note that in case a domain is a singleton, D = {x̄},
then for every (supportive) aggregator it holds that f [Dn] = {x̄}, which implies that any
aggregator, restricted on D, degenerates into a dictatorial one. An analogous issue is raised
whenever the projection Dj of D on issue j ∈ {1, . . . , m} is a singleton, as in this case the
corresponding component of any aggregator degenerates to a projection operation.

To avoid such degeneracies, in Computational Social Choice domains are usually as-
sumed to have at least two elements and that their projection on each coordinate is {0, 1}.
In this context, we assume that the class of possibility integrity constraints is restricted to
contain only those whose set of satisfying truth assignments is also non-degenerate.
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Chapter 3

Other forms of non-dictatorial
aggregation- Characterizations of
the corresponding domains

In this chapter, we study several different sub-classes of non-dictatorial aggregators
that have been introduced in the field of judgment aggregation. Namely, locally non-
dictatorial aggregators (which have no projection components), aggregators that are
not generalized dictatorships (whose output is not always one of the vectors of their
input), anonymous aggregators (which are not affected by any permutation of their
input), monotone aggregators (whose output does not change if more voters agree
with it) and StrongDem aggregators (where the votes of any k− 1 voters can be fixed
in a way such that the k-th voter cannot change the result). Furthermore, we syntac-
tically characterize domains that admit each of the above five kinds of aggregators.
Then, we consider the property of systematicity and examine how our results change
if the aggregators are required to satisfy this property.

3.1 Local possibility domains

In this section, we consider a subclass of non-dictatorial aggregators, that consists of
aggregators which are not a projection function, even when restricted to any given is-
sue. This type of aggregators, called locally non-dictatorial aggregators was introduced
by Nehring and Puppe [25]. In what follows, we present the syntactic characteriza-
tion of Díaz et al. [9], for local possibility domains, i.e., Boolean domains that admit a
locally non-dictatorial aggregator.

The stimulus for studying this class of aggregators was that, in some cases, a non-
dictatorial aggregator may not comply with our sense of social fairness. As Nehring
and Puppe state:

Non-dictatorial aggregation rules can still be rather degenerate, e.g. by
giving almost all decision power to one agent (voter), or by specifying
different "local" dictators for different issues. [25, p.478]

Since this type of authoritarianism may be unfit for certain decision making pro-
cesses, locally non-dictatorial aggregators were introduced.

Definition 18. A n-ary aggregator ( f1, . . . , fm) is locally non-dictatorial if f j 6= prn
d , for

all d ∈ {1, . . . , n} and j = 1, . . . , m.

Definition 19. D is a local possibility domain (lpd) if it admits a locally non-dictatorial
aggregator.
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corresponding domains

It is straightforward to establish that the class of lpd’s is a proper subclass of that
of possibility domains. Indeed, every locally non-dictatorial aggregator is, clearly,
non-dictatorial, hence every lpd is a possibility domain. On the other hand, any non-
dictatorial aggregator with at least one projection component is locally dictatorial.
The following is an example of a possibility domain that is not an lpd.

Example 11. Let D be the Cartesian product D = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ×
{0, 1}. We can easily establish that D is a possibility domain, as it is closed under
the non-dictatorial projection aggregator f = (pr2

1, pr2
1, pr2

1, pr2
2). However, the set

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} only admits dictatorial aggregators, therefore D admits no lo-
cally non-dictatorial aggregators.

Local possibility domains were also introduced by Kirousis et al. in [18], as uni-
form non-dictatorial domains1, where the following characterization2 was proven:

Theorem 11 (Kirousis et al. [18]). D ⊆ {0, 1}m is a local possibility domain if and only
if it admits a ternary aggregator ( f1, . . . , fm) such that f j ∈ {∧(3),∨(3), maj,⊕}, for j =
1, . . . , m.

Theorem 11 consists a characterization of local possibility domains in terms of the
aggregators they admit. As in the case of possibility domains, we want to verify how
these closure properties are reflected on the syntactic properties of the corresponding
integrity constraints. In other words, we seek a certain syntactic type of formulas -
that is to be determined- whose sets of models describe local possibility domains in
total. Following Díaz et al. [9] we call this type of formulas local possibility integrity
constraints.

We will first address a technical issue. Let V, V ′ be two disjoint sets of vari-
ables. By further generalizing the notion of a clause of a CNF formula, we say that a
(V, V ′)-generalized clause is a clause of the form:

(l1 ∨ · · · ∨ ls ∨ (ls+1 ⊕ · · · ⊕ lt)),

where the literal lj corresponds to variable vj, j = 1, . . . , t, v1, . . . , vs ∈ V,
vs+1, . . . , vt ∈ V ′ and 0 ≤ s < t. Such a clause is falsified by exactly those assign-
ments that falsify every literal li, i = 1, . . . , s and satisfy an even number of literals
lj, j = s + 1, . . . , t. An affine clause is trivially a (V, V ′)-generalized clause, where all
its literals correspond to variables from V ′.

Consider now the following definition, which is analogous to Definition 17.

Definition 20. A formula φ is a local possibility integrity constraint (lpic) if there are three
pairwise disjoint subsets V0, V1, V2 ⊆ V, with V0 ∪V1 ∪V2 = V, where no clause contains
variables both from V1 and V2 and such that:

1. by renaming some variables of V0, we obtain a partially Horn formula φ∗, whose set of
admissible variables is V0,

2. any clause contains at most two variables from V1 and

3. the clauses containing variables from V2 are (V0, V2)-generalized clauses.
1The notion of uniform non-dictatorial domains is broader than this of lpd’s in the sense that in

their work Kirousis et al. in [18], refer to both Boolean and non-Boolean frameworks.
2For a corresponding characterization for the non-Boolean case see Kirousis et al. [18]
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Example 12. Easily, every (renamable) Horn, bijunctive or affine formula is an lpic. On the
other hand, consider the following possibility integrity constraint:

φ = (¬x1 ∨ x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4).

φ is partially Horn, since it has the pure negative literal ¬x1 and thus a possibility integrity
constraint. But, it is not an lpic, since however we define V0, V1, either there will be a variable
of V0 with a positive appearance in a non-admissible clause (even after any possible renaming
of the variables of V0) and/or there will be a clause with more than two literals from V1.

We will prove that local possibility integrity constraints syntactically characterize
local possibility domains. Our approach is entirely analogous to this of possibility
domains, only this time the starting point is Theorem 11. Intuitively, we want the
different types of coordinate functions of an aggregator to correspond to different
types of variables of an lpic. In fact, the set V0 is destined to contain variables that
correspond to ∧3 and ∨3 components, V1 variables that correspond to maj compo-
nents, and V2 those that correspond to ⊕ components of an aggregator. From this
perspective, Definition 20 becomes less cumbersome and we can easily acquire the
following corollary:

Corollary 1. If φ is a local possibility integrity constraint, then it is also a possibility in-
tegrity constraint.

Proof. Let V0, V1 and V2 be as in Definition 20. If V0 6= ∅, φ is renamable partially
Horn. Else, if V0 = V1 = ∅, then φ is affine. On the other hand, if V0 = ∅ and V1 and
V2 are not, φ is separable. Finally, if V1 = V, then φ is bijunctive and equivalently,
2-SAT. The result now follows from the fact that any 2-SAT formula is renamable
Horn. Indeed, let α be an assignment satisfying φ and rename all the variables x ∈
V such that α(x) = 1. Then, every clause of φ either has a positive literal that is
renamed, or a negative one that is not renamed.

Before we syntactically characterize lpd’s as the sets of models of lpic’s, we first
need two lemmas.

Lemma 5. Let D ⊆ {0, 1}m and I = {j1, . . . , jt} ⊆ {1, . . . , m}. If f = ( f1, . . . , fm) is a
k-ary aggregator for D, then ( f j1 , . . . , f jt) is a k-ary aggregator for DI .

Proof. Without loss of generality, assume I = {1, . . . , s}, s ≤ m, and that a1, . . . , ak ∈
DI . It follows that there exist b1, . . . , bk ∈ D−I such that c1, . . . , ck ∈ D, where ci =
aibi, i = 1, . . . k. Since f is an aggregator for D:

f (c1, . . . , ck) := ( f1(c1
1, . . . , ck

1), . . . , fm(c1
m, . . . ck

m)) ∈ D.

Thus, ( f1(c1
1, . . . , ck

1), . . . , fs(c1
s , . . . , ck

s)) ∈ DI .

Lemma 6. Suppose that D admits a ternary aggregator f = ( f1, . . . , fm), where f j ∈
{∧(3), maj,⊕}, j = 1, . . . , m. Then D admits a binary aggregator g = (g1, . . . , gm) such
that gi = ∧, for all i such that fi = ∧(3), gj = pr2

1, for all j such that f j = maj and
gk = pr2

2, for all k such that fk = ⊕.

Proof. The result is immediate, by defining g = (g1, . . . , gm) such that:

gj(x, y) = f j(x, x, y),

for j = 1, . . . , m.
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Theorem 12 (Dìaz et al. [9]). A domain D ⊆ {0, 1}m is a local possibility domain if and
only if there is a local possibility integrity constraint φ such that Mod(φ) = D.

Proof. (⇒) In all that follows, we assume that an empty domain is described by the
empty formula, which is trivially Horn, bijunctive and affine. The proof will closely
follow that of Theorem 9.

Since D is an lpd, by Theorem 11, there is a ternary aggregator f = ( f1, . . . , fm)
such that every component f j ∈ {∧(3),∨(3), maj,⊕}, j = 1, . . . , m. Again, let D∗ =
{d∗ | d ∈ D}, where d∗j = 1− dj if j is such that f j = ∨(3), and d∗j = dj in any other
case. Thus, by Lemma 4, D∗ admits a ternary aggregator g = (g1, . . . , gm) such that
gj ∈ {∧(3), maj,⊕}, for j = 1, . . . , m. Thus, by showing that D∗ is described by a lpic
φ, we will obtain the same result for D by renaming all the variables xj, where j is
such that f j = ∨(3).

Without loss of generality, assume that I := {i | gi = ∧(3)} = {1, . . . , s}, J := {j |
gj = maj} = {s + 1, . . . , t} and K := {k | gk = ⊕} = {t + 1, . . . , m}, where 0 ≤ s ≤
t ≤ m. Since D∗I is Horn, there is a Horn formula φ0 such that Mod(D∗I ) = φ0.

If s = t = m, we have nothing to prove. Thus, suppose s < t ≤ m. For each a =
(a1, . . . , as) ∈ D∗I , let B1

a := {b ∈ D∗J | ab ∈ D∗I∪J} and B2
a := {c ∈ D∗J | ac ∈ D∗I∪K} be

the sets of partial vectors extending a to the indices of J and K respectively.

Claim 3. For each a ∈ D∗I , B1
a and B2

a are bijunctive and affine respectively.

Proof. We will prove the claim for B1
a . The proof for B2

a is the same.
Let b1, b2, b3 ∈ B1

a . Then ab1, ab2, ab3 ∈ D∗I∪J . By Lemma 5, (g1, . . . , gt) is an
aggregator for D∗I∪J and by the definition of g, it holds that ab ∈ D∗I∪J , where b =

maj(b1, b2, b3). Thus, b ∈ B1
a and the result follows.

Thus, for each a ∈ D∗I , there is a bijunctive formula ψa and an affine χa, such that
Mod(ψa) = B1

a and Mod(χa) = B2
a . Let Ia := {i ∈ I | ai = 1} and define:

φ1
a :=

( ∧
i∈Ia

xi

)
→ ψa

and

φ2
a :=

( ∧
i∈Ia

xi

)
→ χa,

for all a ∈ D∗I .
Consider the formula:

φ = φ0 ∧
( ∧

a∈D∗I

φ1
a

)
∧
( ∧

a∈D∗I

φ2
a

)
.

Let V0 = {xi | i ∈ I}, V1 = {xj | j ∈ J} and V2 = {xk | k ∈ K}. The fact that φ is
partially Horn with admissible set V0, can be seen in the same way as in Theorem 9.
Now, consider ψa, for some a ∈ D∗I . Since it is bijunctive, it is of the form:

ψa =
r∧

j=1

(
lj1 ∨ lj2

)
,
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where lji are literals of variables from V1. Thus, φ1
a is equivalent to:

r∧
j=1

(( ∨
i∈Ia

¬xi

)
∨ lj1 ∨ lj2

)
.

Thus, the clauses of φ1
a contain at most two literals from V1.

In the analogous way, we can see that the clauses of φ2
a are (V0, V1)-generalized

clauses. Finally, by construction, there is no clause in φ that contains variables both
from V1 and V2. It follows that φ is an lpic. What remains now is to show that
Mod(φ) = D∗.

Observe that by Lemmas 6 and 3, D∗ admits a binary aggregator h = (h1, . . . , hm)
such that hi = ∧, for all i ∈ I and hj = pr2

1, for all j ∈ J ∪ K. The proof now is exactly
like the one of Theorem 9, by letting Ba = {bc | b ∈ B1

a and c ∈ B2
a} and

φa = φ1
a ∧ φ2

a .

(⇐) Let ψ be an lpic, with Mod(ψ) = D. Let V0, V1 and V2 be subsets of V as in
Definition 20. Let also φ be the partially Horn formula obtained by ψ by renaming
the variables of a subset V∗ ⊆ V0. Again, assume D∗ = {d∗ | d ∈ D}, where
d∗j = 1− dj if xj ∈ V∗ and d∗i = di else, for all d ∈ D. By Lemma 4, Mod(φ) = D∗.
Thus, by Theorem 11, it suffices to prove that D∗ is closed under a ternary aggregator
( f1, . . . , fm), where fi ∈ {∧(3), maj,⊕} for i = 1, . . . , m.

Without loss of generality, let I = {1, . . . , s}, be the set of indices of the variables
in V0, J = {s+ 1 . . . , t} be that of the indices of variables in V1 and K = {t+ 1, . . . , m}
that of the indices of variables in V2. We need to show that if abc, a′b′c′, a′′b′′c′′ ∈ D∗,
where a, a′, a′′ ∈ D∗I , b, b′, b′′ ∈ D∗J and c, c′, c′′ ∈ D∗K, then

d := (∧(3)(a, a′, a′′), maj(b, b′, b′′),⊕(c, c′, c′′)) ∈ D∗.

Let φ = φ0 ∧ φ1 ∧ φ2, where φ0 is the conjunction of the clauses containing only
variables from V0, φ1 the conjunction of clauses containing variables from V1 and
where φ2 contains the rest of the clauses of φ. Observe that by the hypothesis, there
is no variable appearing both in a clause of φ1 and φ2.

By the hypothesis, φ0 is Horn and thus, since a, a′, a′′ satisfy φ0, so does a∧ a′ ∧ a′′.
Now, let Cr be a clause of φ1. Suppose that there is a literal of a variable xi ∈ V0

in Cr that is satisfied by a. Since φ is partially Horn with respect to V0, it must hold
that this literal was ¬xi. This means that ai = 0 and thus ∧(3)(ai, a′i, a′′i ) = 0. The
same holds if ¬xi is satisfied by a′ or a′′. Thus, Cr is satisfied.

Now, suppose there is no such literal and that the literals of Cr corresponding to
variables of V1 are li, lj. Since abc, a′b′c′, a′′b′′c′′ satisfy φ, it holds that (bi, bj), (b′i , b′j)
and (b′′i , b′′j ) satisfy li ∨ lj. Without loss of generality, Assume that maj(bi, b′i , b′′i ) = bi

and that bi does not satisfy li (lest we have nothing to prove). Then, bi = b′i or bi = b′′i .
Assume the former (again without loss of generality). Then, it must be the case that
bj, b′j satisfy lj. Thus bj = b′j and maj(bj, b′j, b′′j ) = bj, which satisfies lj. In every case,
Cr is satisfied by d.

Now, let Cq be a clause of φ2. Again, if there there is a literal of a variable xi ∈ V0
in Cq that is satisfied by a, we obtain the required result as in the case of Cr. Thus,
suppose there is no such literal and that the sub-clause of Cq obtained by deleting
the variables of V0 is:

C′q = (l1 ⊕ · · · ⊕ lz).
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Since abc, a′b′c′, a′′b′′c′′ satisfy φ, it holds that c, c′ and c′′ satisfy C′q. Since C′q is affine,
it holds that ⊕(c, c′, c′′), and satisfies it.

In all cases, we proved that d satisfies φ and thus the proof is complete.

Remark 5. Note that, due to the non-degeneracy conditions, we have assumed that all the
formulas we consider have non-degenerate domains (see Remark 4).

3.2 Generalized Dictatorships

We now turn to the aggregation procedures called generalized dictatorships. In our
framework, a n-ary aggregator is a generalized dictatorship if, on input any n vec-
tors from a domain D, always returns one of those vectors as its output. These ag-
gregators are a natural generalization of the notion of dictatorial aggregators, in the
sense that they select a possibly different "dictator" for each set of n feasible voting
patters, instead of a single global one.

However, these aggregators were originally introduced by Cariani et al. [5] as
rolling dictatorships, under the stronger requirement that the above property holds
for any n vectors of {0, 1}m. Under this requirement, a generalized dictatorship se-
lects for each n-tuple of vectors from {0, 1}m one of these vectors as its outcome
(though not necessarily always the same one), hence the denomination "rolling" dic-
tatorships. In that framework, Grandi and Endriss [13] showed that the class of
generalized dictatorships coincides with the class of operators that are aggregators
for every Boolean domain D ⊆ {0, 1}m.

The difference with our framework is that generalized dictatorships -and all ag-
gregators in general- even though they are defined over {0, 1}n×m, they are studied
within the "rationality restrictions" of a given domain, in the sense that we are not
interested in how they behave on irrational inputs, i.e. inputs outside of the domain.
In this section, we show that domains admitting aggregators which are not general-
ized dictatorships are exactly the possibility domains (apart from some trivial cases),
and are thus described by possibility integrity constraints, a result proved by Díaz
et al. [9].

Definition 21. Let f = ( f1, . . . , fm) be an m-tuple of n-ary conservative functions. We say
that f is a generalized dictatorship for a domain D ⊆ {0, 1}m, if, for any x1, . . . , xn ∈
D, it holds that:

f (x1, . . . , xn) := ( f1(x1), . . . , fm(xm)) ∈ {x1, . . . , xn}. (3.1)

Much like dictatorial functions, it is straightforward to observe that if f is a gen-
eralized dictatorship for D, then it is also an aggregator for D.

The following example shows that the result of Grandi and Endriss [13, Theorem
16] does not hold in our setting, as it illustrates an aggregator that is a generalized
dictatorship for one domain and not for another.

Let us first introduce some additional notation. In what follows, we will denote
by f̄ an n-ary aggregator ( f1, . . . , fm), where f1 = . . . = fm := f . Such aggregators
are called systematic (see Section 3.4).

Example 13. Consider the binary aggregator ∧̄ = (∧,∧,∧) and the the Horn formulas:

φ12 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3),

and
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φ13 = (¬x1 ∨ x2) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

The set of satisfying assignments of φ12 is:

Mod(φ12) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}.

By definition, Mod(φ12) is a Horn domain and it thus admits the binary symmetric aggre-
gator ∧̄ = (∧,∧,∧). Furthermore, ∧̄ is not a generalized dictatorship for Mod(φ12), since
∧̄((0, 0, 1), (0, 1, 0)) = (0, 0, 0) /∈ {(0, 0, 1), (0, 1, 0)}.

On the other hand, ∧̄ is again an aggregator for the Horn domain:

Mod(φ13) = {(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)},

but, contrary to the previous case, ∧̄ is a generalized dictatorship for Mod(φ13), since it is
easy to verify that for any x, y ∈ Mod(φ13), ∧̄(x, y) ∈ {x, y}.

Finally, observe that (∧,∨,∨) is an aggregator for Mod(φ13) that is not a generalized
dictatorship. The latter claim follows from the fact that:

(∧,∨,∨)((0, 1, 0), (1, 1, 1)) = (0, 1, 1) /∈ {(0, 1, 0), (1, 1, 1)},

while the former is left to the reader. Thus, interestingly enough, φ13 describes a domain ad-
mitting an aggregator that is not a generalized dictatorship, although it is not the aggregator
that “corresponds” to the formula.

This means that deciding whether an aggregator is a generalized dictatorship
depends on the domain in question. Therefore, generalized dictatorship as a feature
is not necessarily an inbuilt property of an aggregator.

Despite the above, it is easy to see that a dictatorial aggregator (prn
i , . . . , prn

i )
is a generalized dictatorship for any D ⊆ {0, 1}m, for all n ≥ 1 and for all i ∈
{1, . . . , n}. Thus, trivially, every domain admits aggregators which are generalized
dictatorships. The following result is also straightforward.

Lemma 7. Let D ⊆ {0, 1}m, where |D| = 2. Then, every aggregator f for D is a general-
ized dictatorship.

Proof. Assume that D = {x, y}, where x and y are distinct and that f is a n-ary
aggregator for D that is not a generalized dictatorship for D. Then, it must hold
either that f (x, . . . , x) = y or f (y, . . . , y) = x (the output of f must always be x or y
since f is an aggregator of {x, y}). Contradiction, since f is conservative.

Recall that a domain cannot have strictly less than two elements since we have
assumed that it is not degenerate.

Again, the aim is to syntactically characterize domains that admit aggregators
which are not generalized dictatorships. The following result shows that these do-
mains are all the possibility domains with at least three elements, and are thus char-
acterized by possibility integrity constraints.

Theorem 13 (Dìaz et al. [9]). A domain D ⊆ {0, 1}m, with at least three elements, admits
an aggregator that is not a generalized dictatorship if and only if it is a possibility domain.

Proof. The forward direction is obtained by the trivial fact that an aggregator that is
not a generalized dictatorship is also non-dictatorial.

Now, suppose that D is a possibility domain. Then it is either affine or it admits a
binary non-dictatorial aggregator. We begin with the affine case. It is a known result
that D ⊆ {0, 1}m is affine if and only if it is closed under ⊕, or, equivalently, if it
admits the minority aggregator:

⊕̄ = (⊕, . . . ,⊕︸ ︷︷ ︸
m-times

)
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Claim 4. Let D ⊆ {0, 1}m be an affine domain. Then, the minority aggregator:

⊕̄ = (⊕, . . . ,⊕︸ ︷︷ ︸
m-times

)

is not a generalized dictatorship for D.

Proof. Let x, y, z ∈ D be three pairwise distinct vectors. Since y 6= z, there exists a
j ∈ {1, . . . , m} such that yj 6= zj. It follows that yj + zj ≡ 1( mod 2). This means
that ⊕(xj, yj, zj) 6= xj and thus that ⊕̄(x, y, z) 6= x. In the same way we show that
⊕̄(x, y, z) /∈ {x, y, z}, which is a contradiction, since ⊕̄ is an aggregator for D.

Now, recall that if f = ( f1, . . . , fm) is a binary non-dictatorial aggregator, then
f j ∈ {∧,∨, pr2

1, pr2
2}, j = 1, . . . , m. If f j ∈ {∧,∨} for all j ∈ {1, . . . , m}, we call f

symmetric, whereas if f j ∈ {pr2
1, pr2

2} for all j ∈ {1, . . . , m}, we call f a projection
aggregator.

Claim 5. Suppose D ⊆ {0, 1}m admits a binary non-dictatorial non-symmetric aggregator
f = ( f1, . . . , fm). Then f is not a generalized dictatorship.

Proof. Assume, to obtain a contradiction, that f is a generalized dictatorship for D
and let x, y ∈ D. Then, f (x, y) := z ∈ {x, y}. Assume that z = x. The case where
z = y is analogous.

Let J ⊆ {1, . . . , m} such that f j is symmetric, for all j ∈ J and f j is a projection
otherwise. Note that J 6= {1, . . . , m}. Let also I ⊆ {1, . . . , m} \ J, such that fi = pr2

2,
for all i ∈ I and fi = pr2

1 otherwise. If I 6= ∅, then, for all i ∈ I, it holds that:

yi = pr2
2(xi, yi) = fi(xi, yi) = zi = xi.

Since x, y were arbitrary, it follows that Di = {xi}, for all i ∈ I. Contradiction, since
D is non-degenerate.

If I = ∅, then f j = pr2
1, for all j /∈ J. Note that in that case, J 6= ∅, lest f is

dictatorial. Now, consider f (y, x) := w ∈ {x, y} since f is a generalized dictatorship.
By the definition of f , wj = zj = xj, for all j ∈ J, and wi = yi, for all i /∈ J. Thus, if
w = x, D is degenerate on {1, . . . , m} \ J, whereas if w = y, D is degenerate on J. In
both cases, we obtain a contradiction.

The only case left is when D ⊆ {0, 1}m admits a binary symmetric aggregator.
Contrary to the previous cases, where we showed that the respective non-dictatorial
aggregators could not be generalized dictatorships, here we cannot argue this way,
as Example 13 indicates. Interestingly enough, we show that as in Example 13, we
can always find some symmetric aggregator for such a domain that is not a general-
ized dictatorship.

Claim 6. Suppose D ⊆ {0, 1}m admits a binary non-dictatorial symmetric aggregator
f = ( f1, . . . , fm). Then, there is a binary symmetric aggregator g = (g1, . . . , gm) for D
(g can be different from f ) that is not a generalized dictatorship for D.

Proof. If f is not a generalized dictatorship for D, we have nothing to prove. Suppose
it is and let J ⊆ {1, . . . , m}, such that f j = ∨, for all j ∈ J and fi = ∧ for all i /∈ J (J
can be both empty or {1, . . . , m}).

Let D∗ = {d∗ = (d∗1 , . . . , d∗m) | d = (d1, . . . , dm) ∈ D}, where:

d∗j =

{
1− dj if j ∈ J
dj else.
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By Lemma 4, h = (h1, . . . , hm) is a symmetric aggregator for D if and only if
h∗ = (h∗1 , . . . , h∗m) is an aggregator for D∗, where h∗j = hj, for all j /∈ J and, for all
j ∈ J, if hj = ∨, then h∗j = ∧ and vice-versa. As expected, the property of being a
generalized dictatorship carries on this transformation.

Claim 7. The operator h is a generalized dictatorship for D if and only if h∗ is a generalized
dictatorship for D∗.

Proof. Let x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ D and z := h(x, y). Since ∨(xj, yj) =
1−∧(1− xj, 1− yj) and ∧(xj, yj) = 1−∨(1− xj, 1− yj), it holds that zj = h∗j (x∗j , y∗j ),
for all j /∈ J, and 1− zj = h∗j (x∗j , y∗j ), for all j ∈ J. Thus, z∗ = h∗(x∗, y∗). It follows
that z ∈ {x, y} if and only if z∗ ∈ {x∗, y∗}.

Now, since D admits the generalized dictatorship f , it follows that D∗ admits the
binary aggregator ∧̄ = (∧, . . . ,∧)︸ ︷︷ ︸

m-times

, that is also a generalized dictatorship. Our aim

is to show that D∗ admits a symmetric aggregator that is not a generalized dictator-
ship. The result will then follow by Claim 7.

For two elements x∗, y∗ ∈ D∗, we write x∗ ≤ y∗ if, for all j ∈ {1, . . . , m} such that
x∗j = 1, it holds that y∗j = 1.

Claim 8. ≤ is a total ordering for D∗.

Proof. To obtain a contradiction, let x∗, y∗ ∈ D∗ such that neither x∗ ≤ y∗ nor y∗ ≤
x∗. Thus, there exist i, j ∈ {1, . . . , m}, such that x∗i = 1, y∗i = 0, x∗j = 0 and y∗j = 1.
Thus:

∧(x∗i , y∗i ) = ∧(x∗j , y∗j ) = 0.

Then, ∧̄(x∗, y∗) /∈ {x∗, y∗}. Contradiction, since ∧̄ is a generalized dictatorship.

Thus, we can write D∗ = {d1, . . . , dN}, where ds ≤ dt if and only if s ≤ t. Let
I ⊆ {1, . . . , m} be such that, for all j ∈ I: ds

j = 0 for s = 1, . . . , N − 1, and dN
j = 1.

Observe that I cannot be empty, lest dN = dN−1 and that I 6= {1, . . . , m}, since
|D| ≥ 3. Let now g = (g1, . . . , gm) such that gj = ∧, for all j ∈ I and gj = ∨, for all
j /∈ I.

We show that g is an aggregator for D∗. Indeed, let ds, dt ∈ D∗ with s ≤ t ≤
N − 1. Then, for all j /∈ I:

gj(ds
j , dt

j) = ∨(ds
j , dt

j) = dt
j.

Also for all j ∈ I:
gj(ds

j , dt
j) = ∧(ds

j , dt
j) = 0 = dt

j.

Thus, g(ds, dt) = dt ∈ D∗. Finally, consider g(ds, dN). Again, gj(ds
j , dN

j ) =

∧(ds
j , dN

j ) = 0 for all j ∈ I and gj(ds
j , dN

j ) = ∨(ds
j , dN

j ) = dN
j , for all j /∈ I. By

definition of I, g(ds, dN) = dN−1 ∈ D∗. This, last point shows also that g is not a
generalized dictatorship, since, for any s 6= N − 1, dN−1 /∈ {ds, dN}.

This completes the proof of Theorem 13.

By Theorems 10 and 13 we obtain the following characterization.

Corollary 2 (Dìaz et al. [9]). A domain D ⊆ {0, 1}m, with at least three elements, admits
an aggregator that is not a generalized dictatorship if and only if there exists a possibility
integrity constraint whose set of models equals D.
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Remark 6. Apart from the initial issue regarding the non-degeneracy assumptions we dis-
cussed in Remark 4, here we have to deal with the additional requirement for the domain to be
comprised of three or more elements. Thus, for this case only, we implicitly assume that we
only consider possibility integrity constraints whose sets of models are comprised of at least
three elements. In Section 4.3, we argue that it is possible to distinguish such possibility
integrity constraints from the rest (see Remark 9).

3.3 Anonymous, Monotone and StrongDem Aggregators

In this section we turn to three more kinds of non-dictatorial aggregators that have
been studied in the field of Judgement Aggregation, namely anonymous, monotone
and StrongDem aggregators. Each of these types of aggregation procedures, bears an
appealing property, inspired by the features of majority voting.

Definition 22. Let D ⊆ {0, 1}m. A n-ary aggregator f = ( f1, . . . , fm) for D is:

1. Anonymous, if it holds that for all j ∈ {1, . . . , m} and for any permutation p :
{1, . . . , n} 7→ {1, . . . , n}:

f j(a1, . . . , an) = f j(ap(1), . . . , ap(n)),

for all a1, . . . , an ∈ {0, 1}.

2. Monotone, if it holds that for all j ∈ {1, . . . , m} and for all i ∈ {1, . . . , n}:

f j(a1, . . . , ai−1, 0, ai+1, . . . , an) = 1⇒ f j(a1, . . . , ai−1, 1, ai+1, . . . , an) = 1.

3. StrongDem, if it holds that for all j ∈ {1, . . . , m} and for all i ∈ {1, . . . , n}, there
exist a1, . . . , ai−1, ai+1, . . . , an ∈ {0, 1}:

f j(a1, . . . , ai−1, 0, ai+1, . . . , an) = f j(a1, . . . , ai−1, 1, ai+1, . . . , an).

Anonymous aggregators ensure that the outcome is not affected by permutations
of the input and, by extent, that all voters are treated equally. Monotone aggregators
certify that if some voters convert their positions into the aggregator’s result, then
the outcome does not change. At first sight, this interpretation is stronger than what
property 2 asserts, however it can be easily established using the contrapositive and
induction. StrongDem aggregators were introduced by Szegedy and Xu [33]. The
idea here is that there is a way to fix the votes of any n− 1 voters so that the remain-
ing voter has no influence on the outcome of the aggregation procedure. As Szegedy
and Xu [33] argue, "what makes the notion of StrongDem particularly attractive is
that when viewing its minimalistic definition, it seems a necessary condition for
democracy, but it also has equivalent formulations, that are strong enough to ac-
cept it as a sufficient condition". Apart from this, Szegedy and Xu [20, 33] show that
StrongDem aggregators have strong algebraic properties, as they relate to a property
of functions called strong resilience.

It should be noted here that since Definition 22 refers to each component of an
aggregator, we will also call a Boolean operation f : {0, 1}m −→ {0, 1} anonymous or
monotone if it satisfies property 1 or 2 of this definition, respectively. Following Kun
and Szegedy [20], we call Boolean functions that satisfy property 3 of Definition 22
1-immune.

It is straightforward to observe that a majority aggregator is anonymous, mono-
tone, as well as StrongDem. To establish the latter, simply set all votes except the
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vote of voter i on the jth issue to some a ∈ {0, 1}. Then the outcome will be a, re-
gardless the position the position of the ith voter. Another immediate consequence
of Definition 22, is that an anonymous or a StrongDem aggregator is non-dictatorial.
On the other hand, every dictatorial aggregator is monotone, as projection functions
are monotone.

For the convenience of the reader, in Table 3.1 we provide a concise illustration
of the Boolean operations that have appeared in our characterization results, in com-
parison to the properties of Definition 22.

anonymous monotone 1-immune
∨
∧
maj
∨3

∧3

yes yes yes

⊕ yes no no
prn

i no yes no

TABLE 3.1: A classification regarding anonymity, monotonicity and
1-immunity

Since projections are neither anonymous nor 1-immune, we easily obtain the fol-
lowing result.

Corollary 3. Any domain D admitting an anonymous or a StrongDem aggregator is a local
possibility domain.

Also, since all four binary Boolean operators are monotone, Theorem 7 directly
implies that:

Corollary 4. Any possibility domain D either admits a monotone non-dictatorial aggregator
or an anonymous one.

Proof. A possibility domain either admits a binary non-dictatorial aggregator, which
is necessarily monotone, or is affine and thus admits the minority aggregator, which
is anonymous.

As one would expect, there exist non-dictatorial aggregators that are neither
anonymous, nor monotone, nor StrongDem. For example, any ternary aggregator
with at least one component being pr3

1 and another being ⊕, has none of the afore-
mentioned properties, as pr3

1 is not anonymous,⊕ is not monotone and neither of the
two is 1-immune. What Corollary 4 implies is that a domain admitting such an ag-
gregator, also admits another that is monotone or anonymous. From another point
of view, provided that non-dictatorial aggregation is possible for a given domain,
Corollary 4 guarantees the existence of a non-dictatorial aggregator that reflects at
least one property of the majority aggregator, for that domain.

We proceed now with some examples that highlight the various connections be-
tween these types of aggregators. In Example 14, we present some specific formulas,
where the domains they describe admit an aggregator that is at the same time anony-
mous, monotone and StrongDem. In Example 15, an aggregator that is anonymous,
but neither monotone nor StrongDem and in Example 16, a non-dictatorial aggrega-
tor that is monotone, but neither anonymous nor StrongDem. Interestingly, as we
will see in the sequel, there is no domain admitting a StrongDem aggregator and not
an anonymous or monotone one. This not to say that every StrongDem aggregator
is anonymous or monotone.
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Example 14. Any renamable Horn or bijunctive formula describes a domain admitting a
symmetric or majority aggregator respectively. Such aggregators are anonymous, monotone
and StrongDem.

For a more complex example, consider the formula

φ14 = (¬x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4),

whose set of satisfying assignments is the local possibility domain:

Mod(φ14) = {0, 1}4 \ {(1, 0, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (1, 0, 0, 0), (0, 0, 0, 0)}.

It is straightforward to check that Mod(φ14) admits the anonymous, monotone and
StrongDem aggregator (∧(3),∨(3), maj, maj).

Example 15. Consider the affine formula

φ15 = x1 ⊕ x2 ⊕ x3,

whose set of satisfying truth assignments is:

Mod(φ15) = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

Clearly, Mod(φ15) admits the anonymous minority aggregator ⊕̄ = (⊕,⊕,⊕), which is
neither monotone nor StrongDem.

In fact, using a combination of results by Dokow and Holzman [11, Example 3] and
Kirousis et al. [16, Example 4.5], that involve the notion of total blockedness, it can be proven
that Mod(φ15) does not admit any (non-dictatorial) monotone or StrongDem aggregators.

Example 16. Recall the formula

φ11 = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

of Example 9, whose set of satisfying assignments is

Mod(φ11) = {0, 1}3 \ {(1, 0, 0), (0, 1, 1)}.

By checking all 43 different triples of binary supportive operators and since Mod(φ11) is not
affine, by Theorem 7, one can see that Mod(φ11) is an impossibility domain.

Now, consider the separable formula

φ16 := (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x4 ∨ x5 ∨ x6) ∧ (x4 ∨ ¬x5 ∨ ¬x6),

whose set of satisfying assignments is the Cartesian product:

Mod(φ16) = Mod(φ11)×Mod(φ11).

It easily follows that Mod(φ16) is a possibility domain admitting the monotone aggregator

(pr2
1, pr2

1, pr2
1, pr2

2, pr2
2, pr2

2).

Obviously, this aggregator is neither anonymous nor StrongDem.
Furthermore, since Mod(φ16) is not a local possibility domain, by Corollary 3, we can

infer that it admits no anonymous, nor StrongDem aggregators.

We now provide examples of StrongDem aggregators that are either not anony-
mous or not monotone. Nevertheless, it holds that domains admitting such aggre-
gators, also admit aggregators that are anonymous and monotone (see Theorem 16
below).
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Example 17. Let f̄ = ( f , . . . , f )︸ ︷︷ ︸
m-times

, where f is a ternary operation defined as follows:

f (0, 0, 0) = f (0, 0, 1) = f (0, 1, 1) = f (1, 0, 1) = 0,
f (0, 1, 0) = f (1, 0, 0) = f (1, 1, 0) = f (1, 1, 1) = 1.

We can easily establish that f̄ is StrongDem as, for each component of f̄ , it holds that:

f (x, 0, 1) = f (0, x, 1) = f (0, 0, x) = 0,

for all x ∈ {0, 1}. On the other hand, f̄ is neither anonymous nor monotone, since e.g.
f (0, 0, 1) 6= f (0, 1, 0) and f (0, 1, 0) = 1, whereas f (0, 1, 1) = 0.

Now, consider ḡ = (g, . . . , g)︸ ︷︷ ︸
m-times

where g is a ternary operation defined as follows:

g(0, 0, 0) = g(0, 0, 1) = g(0, 1, 0) = g(1, 0, 0) = g(1, 1, 0) = 0,
g(0, 1, 1) = g(1, 0, 1) =g(1, 1, 1) = 1.

Again, ḡ is StrongDem, as each component of ḡ is 1-immune. Indeed, for all x ∈ {0, 1} it
holds that:

g(x, 0, 0) = g(0, x, 0) = g(0, 0, x) = 0.

It is straightforward to establish that ḡ is also monotone. On the other hand, ḡ is not anony-
mous, since g(1, 1, 0) 6= g(0, 1, 1).

Finally, let h̄ = (h, . . . , h)︸ ︷︷ ︸
m-times

, where h is a 4-ary operation defined as follows:

h(x, y, z, w) = 1 if and only if exactly two or all of x, y, z, w are equal to 1.

Since the output of h does not depend on the positions of the input bits, h is anonymous.
Also, h is 1-immune, since:

h(x, 0, 0, 0) = h(0, y, 0, 0) = h(0, 0, z, 0) = h(0, 0, 0, w) = 0,

for all x, y, z, w ∈ {0, 1}. On the other hand, h is not monotone, since h(0, 0, 1, 1) = 1 and
h(0, 1, 1, 1) = 0. Hence, the aggregator h̄ is StrongDem and anonymous but not monotone.

The only combination of properties from Definition 22 we have not seen, is an
anonymous and monotone aggregator that is not StrongDem. The reason is that
such aggregators do not exist, as the following lemma indicates.

Lemma 8. Let f be an n-ary anonymous and monotone Boolean function. Then, f is also
1-immune.

Proof. For n = 2, the only anonymous functions are ∧ and ∨, which are also 1-
immune.

Let n ≥ 3. Since f is anonymous and monotone, it is not difficult to observe that
there is some l ∈ {0, . . . , n}, such that the output of f is 0 if and only if there are at
most l 1’s in the input bits. If l > 0 then for all x ∈ {0, 1}:

f (x, 0, 0 . . . , 0, 0) = f (0, x, 0, . . . , 0, 0) = · · · = f (0, 0, 0, . . . , 0, x) = 0.

If l = 0 then:

f (x, 1, 1 . . . , 1, 1) = f (1, x, 1, . . . , 1, 1) = · · · = f (1, 1, 1, . . . , 1, x) = 1,

for all x ∈ {0, 1}. In both cases, f is 1-immune.
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3.3.1 Characterizations for domains admitting anonymous, monotone
and StrongDem aggregators

In the previous section, we studied three forms of non-dictatorial aggregators, with
appealing properties. Since these properties are of great importance, if not neces-
sity, for democratic voting schemes, we proceed with the syntactic characterization
of domains that admit (i) anonymous, (ii) monotone and (iii) StrongDem aggrega-
tors. In particular, we show that domains admitting anonymous aggregators are
described by local possibility integrity constraints, while domains admitting non-
dictatorial monotone aggregators by separable or renamable partially Horn formu-
las and, lastly, that domains admitting StrongDem aggregators are described by a
subclass of local possibility integrity constraints.

We begin with the case of anonymous aggregators. The starting point is, again, a
result of Nehring and Puppe:

Theorem 14 (Nehring and Puppe [25], Theorem 2). A domain D ⊆ {0, 1}m admits a
monotone locally non-dictatorial aggregator if and only if it admits a monotone anonymous
one.

Kirousis et al. [16] strengthened this result by dropping the monotonicity require-
ment and fixing the arity of the anonymous aggregator, as a direct consequence of
Theorem 11. We first need the following:

Definition 23. We say that a ternary Boolean operator g is commutative if and only if for
all x, y ∈ {0, 1}, it holds that

g(x, x, y) = g(x, y, x) = g(y, x, x).

It is not difficult to see that a ternary operator g is commutative if and only if g ∈
{∧(3),∨(3), maj,⊕} (see e.g. [16, Lemma 5.7]). Another straightforward observation
is that, for the case of ternary Boolean operations, the notions of anonymity and
commutativity coincide.

Corollary 5 (Kirousis et al. [16], Corollary 5.11). D is a local possibility domain if and
only if it admits a ternary anonymous aggregator.

Proof. Theorem 11 asserts that, D is a local possibility domain if and only if D admits
a ternary aggregator ( f1, . . . , fm) where for each j ∈ {1, . . . , m}, f j ∈ {∧3,∨3, maj,⊕}.
The result now follows by simply observing that the latter set coincides with the set
of all ternary (unanimous) commutative Boolean operations.

We obtain the following characterization result as an immediate consequence of
Corollaries 3 and 5.

Corollary 6 (Dìaz et al. [9]). D admits an n-ary anonymous aggregator if and only if there
exists a local possibility integrity constraint whose set of models equals D.

To deal with monotone and StrongDem aggregators we will need some prelimi-
nary work. The first fact we will use is that the set of aggregators of a domain D is
closed under superposition.

Lemma 9 (Superposition of aggregators). Let f = ( f1, . . . , fm) be an n-ary aggregator
for D. If g1, . . . , gn are n l-ary aggregators for D, where gi = (gi

1, . . . , gi
m), i = 1, . . . , n,

then h := f (g1, . . . , gn), where h = (h1, . . . , hm) and:

hj(x1, . . . , xl) = f j(g1
j (x1, . . . , xl), . . . , gn

j (x1, . . . , xl)),

for all j = 1, . . . , m and for all x1, . . . , xl ∈ {0, 1}, is an l-ary aggregator for D.
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Proof. This result is straightforward and can be found in [16, Lemma 5.6].

This fact allows us to press into service a result from the field of Universal Alge-
bra, known as Post’s lattice. Post’s lattice denotes the lattice of all clones on a two-
element set {0, 1}, ordered by inclusion. A clone on a finite set A is a set C of finitary
operations on A (i.e., functions from a finite power of A to A) such that C contains
all projection functions and is closed under superpositions (see e.g. Szendrei [34]).
Post [27] provided a complete classification of all clones of Boolean operations.

Here, we take advantage of the fact that the set of aggregators of a domain D
is closed under superposition and (clearly) contains all dictatorial aggregators, to
obtain the following result.

Lemma 10. For a Boolean domain D ⊆ {0, 1}m, let, for all j ∈ {1, . . . , m}:

Cj := { f | There exists an aggregator ( f1, . . . , fm) for D s.t. f j = f },

be the set of the j-th components of every aggregator for D. Then, Cj is a clone.

This result has already been effectively used by Kirousis et al. [16] in order to ob-
tain the characterizations of possibility and local possibility domains in the Boolean
and non-Boolean framework. Here, we will use it in order to obtain the analogous
results for domains that admit non-dictatorial monotone and StrongDem aggrega-
tors.

One of the main results of Post’s classification that we will use is the following
(see [3] for an easy to follow presentation):

Lemma 11. Let C be a clone containing only unanimous operations. Then, either at least
one of ∧,∨, maj,⊕ is in C, or C contains only projections.

Finally, we will need two more definitions.

Definition 24. We say that an n-ary Boolean operation f is an essentially unary function,
if there exists a unary Boolean function g and an i ∈ {1, . . . , n} such that:

f (x1, . . . , xn) = g(xi),

for all x1, . . . , xn ∈ {0, 1}.

Note that the only unanimous such functions are the projections.

Definition 25. We say that an n-ary Boolean operation f is linear, if there exist constants
c0, . . . , cn ∈ {0, 1} such that:

f (x1, . . . , xn) = c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn,

where ⊕ again denotes binary addition mod 2.

It should be noted here, that an n-ary unanimous linear function with exactly
one ci 6= 0, is an essentially unary function, and by extent the projection operation
prn

i .
Now, we proceed with some basic features of linear functions that we will need.

Lemma 12. Let f : {0, 1}n 7→ {0, 1} be a linear function and let c0, c1, . . . , cn ∈ {0, 1}
such that:

f (x1, . . . , xn) = c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn.

Then f is unanimous if and only if c0 = 0 and ci = 1 for an odd number of indices
i ∈ {1, . . . , n}.
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Proof. The inverse direction is straightforward. For the forward direction, set x1 =
· · · = xn = 0. Then, f (0, . . . , 0) = c0 and since f is unanimous, we have that c0 = 0.
Finally, assume, to obtain a contradiction, that there is an even number of c1 . . . , cn
that are equal to 1. Set x1 = · · · = xn = 1. Then, it holds that f (1, . . . , 1) = 0 and f is
not unanimous. Contradiction.

Since we work only with unanimous functions, from now on we will assume
that a linear function satisfies the conditions of Lemma 12. This implies also that
any linear function has odd arity.

Lemma 13. Let f : {0, 1}n 7→ {0, 1} be a linear function, n ≥ 3. Then, either f is an
essentially unary function or, it is neither monotone nor 1-immune.

Proof. Let c1, . . . , cn ∈ {0, 1} such that:

f (x1, . . . , xn) = c1x1 ⊕ · · · cnxn,

and assume that f is not an essentially unary function. Then, there exist at least three
pairwise different indices i ∈ {1, . . . , n} such that ci = 1. If there are exactly three
then f = ⊕, which is neither monotone nor 1-immune.

Now, assume that there are at least five pairwise different indices i ∈ {1, . . . , n}
such that ci = 1. We need only four of these indices. Let i1, i2, i3, i4 ∈ {1, . . . , n} such
that ci1 , ci2 , ci3 , ci4 = 1.

Set xi1 = xi2 = xi3 = 1 and xi = 0, for all i ∈ {1, . . . , n} \ {i1, i2, i3}. Then,
f (x1, . . . , xn) = 1. By letting xi4 = 1 too, we obtain f (x1, . . . , xn) = 0, which shows
that f is not monotone.

Finally, aiming to a contradiction, suppose that f is 1-immune. Then, there exist
d2, . . . , dn ∈ {0, 1} such that:

f (0, d2, . . . , dn) =(1, d2, . . . , dn)⇔
c2d2 ⊕ · · · ⊕ cndn =c1 ⊕ c2d2 ⊕ · · · cndn ⇔

c1 =0.

Continuing in the same way, we can prove that ci = 0, for i = 1, . . . , n, which is a
contradiction.

We are now ready to prove a characterization result concerning non-dictatorial
monotone aggregators.

Theorem 15 (Dìaz et al. [9]). A domain D ⊆ {0, 1}m admits a monotone non-dictatorial
aggregator of some arity if and only if it admits a binary non-dictatorial one.

Proof. That a domain admitting a binary non-dictatorial aggregator, admits also a
non-dictatorial monotone one is obvious, since all binary unanimous functions are
monotone.

For the forward direction, since D admits a monotone non-dictatorial aggregator,
it is a possibility domain. Now, to obtain a contradiction, suppose D does not admit
a binary non-dictatorial aggregator. Kirousis et al. [16, Lemma 3.4] showed that in
this case, every n-ary aggregator, n ≥ 2 for D is systematic3.

Now, since D contains no binary non-dictatorial aggregators, ∧,∨ /∈ Cj, for all
j ∈ {1, . . . , m}. Thus, by Lemma 11 either maj or ⊕ are contained in Cj, for all

3The notion of local monomorphicity Kirousis et al. use in [16], corresponds to systematicity in the
Boolean framework.
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j ∈ {1, . . . , m} (since the aggregators must be systematic), lest each Cj contains only
projections.

Assume that maj is an aggregator for D. Then, by Kirousis et al. [16, Theorem
3.7], D admits also a binary non-dictatorial aggregator. Contradiction.

Thus, we also have that maj /∈ Cj, j = 1, . . . , n. It follows that only ⊕ ∈ Cj,
j = 1, . . . , n. By Post [27], it follows that for all j ∈ {1, . . . , m}, Cj contains only linear
functions (see also [3]). Since ⊕ is not monotone, the contradiction is now obtained
by Lemma 13.

Thus, by Proposition 3 and Theorem 9, we obtain the following syntactic charac-
terization.

Corollary 7 (Dìaz et al. [9]). D admits an n-ary non-dictatorial monotone aggregator if
and only if there exists a separable or renamable partially Horn integrity constraint whose
set of models equals D.

To complete this subsection, we now turn to StrongDem aggregators. As we
have already seen (Corollary 3), any domain that admits a StrongDem aggregator, is
a local possibility domain, i.e. domains admitting a StrongDem aggregator consti-
tute a subclass of local possibility domains. We have also established that a domain
D is a local possibility domain if and only if it admits a ternary aggregator whose
components are necessarily among the operations: ∧3,∨3, maj,⊕. Of those four op-
erations, only ⊕ is not 1-immune. The question that arises here, is whether we can
obtain an analogous characterization for domains admitting StrongDem aggregators
by simply excluding the appearance of ⊕. Dìaz et al. [9] proved that the answer is
positive.

To obtain a proof of the above, we will use two more operators: the "diamond"
operator � of Kirousis et al. [16], which is used to combine ternary aggregators in
order to obtain new ones whose components are commutative functions (see also
Bulatov’s [4, Section 4.3] “Three Operations Lemma”); and the "star" operator ? of
Dìaz et al. [9], which under certain circumstances generates ⊕-free aggregators.

Definition 26. Let f = ( f1, . . . , fm) and g = (g1, . . . , gm) be two m-tuples of ternary
functions. Define h := f � g to be the m-tuple of ternary functions h = (h1, . . . , hm), where:

hj(x, y, z) = f j(gj(x, y, z), gj(y, z, x), gj(z, x, y)),

for all x, y, z ∈ {0, 1}.
It is not hard to observe that if f and g are aggregators for a domain D, then so

is h, since it is produced by a superposition of f and g. Moreover, it is easy to notice
that hj is commutative if and only if either f j or gj are. Thus, we obtain the following
result.

Lemma 14 (Kirousis et al. [16], Lemma 5.10). Let f = ( f1, . . . , fm) and g =
(g1, . . . , gm) be two m-tuples of ternary functions and f � g := h = (h1, . . . , hm). Then, for
each j ∈ {1, . . . , m}:

hj ∈ {∧(3),∨(3), maj,⊕} if and only if either f j or gj ∈ {∧(3),∨(3), maj,⊕}.

Furthermore, if gj is commutative, then hj = gj, j = 1, . . . , m.

Definition 27. Let f = ( f1, . . . , fm) and g = (g1, . . . , gm) be two m-tuples of ternary
functions. Define h := f ? g to be the m-tuple of ternary functions h = (h1, . . . , hm), where:

hj(x, y, z) = f j( f j(x, y, z), f j(x, y, z), gj(x, y, z)),

for all x, y, z ∈ {0, 1}.
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Easily, if f and g are aggregators for a domain D, then so is h, since it is produced
by a superposition of f and g. Also, if f j is commutative, then so is hj. Another useful
feature of this operator is that, even in case gj is commutative, it does not necessarily
dominate ? (in opposition to the � operator). However, the most interesting feature
of ? is that given some assumptions for f and g, h has no components equal to ⊕, as
the following lemma indicates.

Lemma 15 (Dìaz et al. [9]). Let f = ( f1, . . . , fm) be an m-tuple of ternary functions,
such that f j ∈ {∧(3),∨(3), maj,⊕}, j = 1, . . . , m, and let J = {j | f j = ⊕}. Let also
g = (g1, . . . , gm) be an m-tuple of ternary functions, such that gj ∈ {∧(3),∨(3), maj}, for
all j ∈ J. Then, for the m-tuple of ternary functions f ? g := h = (h1, . . . , hm), it holds
that:

hj ∈ {∧(3),∨(3), maj},

for j = 1, . . . , m.

Proof. First, let j ∈ {1, . . . , m} \ J. Then, f j ∈ {∧(3),∨(3), maj} and let x, y, z ∈ {0, 1}
that are not all equal (lest we have nothing to show since all f j, gj are unanimous). If
f j = ∧(3), then easily:

hj(x, y, z) = ∧(3)(∧(3)(x, y, z),∧(3)(x, y, z), gj(x, y, z)) = ∧(3)(0, 0, gj(x, y, z)) = 0,

which shows that hj = ∧(3). Analogously, we show that f j = ∨(3) implies that
hj = ∨(3). Finally, let f j = maj and let maj(x, y, z) := z ∈ {0, 1}. Then:

hj(x, y, z) = maj(maj(x, y, z), maj(x, y, z), gj(x, y, z)) = maj(z, z, gj(x, y, z)) = z,

which shows that hj = maj.
Thus, we can now assume that J 6= ∅. Let j ∈ J. Then, we have that f j = ⊕ and

gj ∈ {∧(3),∨(3), maj}. Thus, we have that:

hj(x, y, z) = ⊕(⊕(x, y, z),⊕(x, y, z), gj(x, y, z)) = gj(x, y, z),

from which it follows that hj ∈ {∧(3),∨(3), maj}. The proof is now complete.

We now proceed with the characterization results of Dìaz et al., for domains ad-
mitting StrongDem aggregators.

Theorem 16 (Dìaz et al. [9]). A Boolean domain D ⊆ {0, 1}m admits an n-ary StrongDem
aggregator if and only if it admits a ternary aggregator f = ( f1, . . . , fm) such that f j ∈
{∧(3),∨(3), maj}, for j = 1, . . . , m.

Proof. It is very easy to see that all the functions in {∧(3),∨, maj} are 1-immune.
Thus, we only need to prove the forward direction of the theorem.

To that end, let f = ( f1, . . . , fm) be an n-ary StrongDem aggregator for D. Then,
by Theorem 11, there exists a ternary aggregator g = (g1, . . . , gm) such that gj ∈
{∧(3),∨(3), maj,⊕} for j = 1, . . . , m. Let J = {j | f j = ⊕}. If J = ∅, then we have
nothing to prove. Otherwise, consider the clones Cj, for each j ∈ J.

Suppose now that there exists a j ∈ J, such that Cj contains neither ∧, nor ∨, nor
maj. By Post’s classification of clones of Boolean functions (see [3, 27]) and since Cj
contains ⊕ and only unanimous functions, Cj contains only linear unanimous func-
tions. By Lemma 13, Cj does not contain any 1-immune aggregator. Contradiction.

Thus, for each j ∈ J, it holds that Cj contains either ∧, or ∨ or maj. In the first two
cases, Cj obviously contains ∧(3) or ∨(3) too respectively. Then, it holds that for each
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j ∈ J there exists an aggregator hj = (hj
1, . . . , hj

n), such that hj
j ∈ {∧(3),∨(3), maj}. Let

J := {j1, . . . , jt}.
We will now perform a series of iterative combinations between g and the various

hj’s, using the � and ? operators, in order to obtain the required aggregator.
First, let gj = g � hj, for all j ∈ J. Lemma 14 now implies that

gj
i ∈ {∧

(3),∨(3), maj,⊕},

for all i ∈ {1, . . . , m} and j ∈ J. Furthermore,

gjs
js ∈ {∧

(3),∨(3), maj},

for s = 1, . . . , t. Thus for the aggregator:

G := (· · · ((g ? gj1) ? gj2) ? · · · ? gjt),

we have, by Lemma 15:
Gj ∈ {∧(3),∨(3), maj},

for j = 1, . . . , m, which concludes the proof.

Definition 28. A local possibility integrity constraint is⊕-free, if the set V2 of Definition 20
is the empty set, V2 = ∅.

So, by Theorems 12 and 16, we obtain the following syntactic characterization of
domains admitting StrongDem aggregators.

Corollary 8 (Dìaz et al. [9]). A Boolean domain D ⊆ {0, 1}m admits an n-ary StrongDem
aggregator if and only if there exists an⊕-free local possibility integrity constraint whose set
of satisfying assignments equals D.

3.4 Systematic Aggregators

In this section, we look into systematic aggregators. Recall that ( f1, . . . , fm) is sys-
tematic if f1 = f2 = . . . = fm := f , and is denoted by f̄ , i.e., an aggregator is
systematic when it aggregates the votes over each issue with a common rule. This
property has appeared also as (issue-)neutrality in the bibliography (see e.g. Grandi
and Endriss [13] and Nehring and Puppe [25]). From a Social Choice point of view,
systematicity is a natural requirement, provided that the issues that need to be de-
cided are of the same nature. In what follows, we syntactically characterize do-
mains admitting (non-dictatorial) systematic aggregators as models of specific types
of local possibility integrity constraints. Then, we present analogous characteriza-
tions for domains that are closed under the various kinds of non-dictatorial voting
schemes we examined, under the additional requirement that these aggregators are
also systematic. To this purpose, we employ known results and tools from the field
of Universal Algebra.

Definition 29. Let D ⊆ {0, 1}m be a Boolean domain and f : {0, 1}n 7→ {0, 1} a n-ary
Boolean operation. We say that f is a polymorphism for D (or f preserves D, or D is closed
under f ) if, for all x1, . . . , xn ∈ D:

( f (x1), . . . , f (xm)) ∈ D,

where xi = (xi
1, . . . , xi

m) and xj = (x1
j , . . . , xn

j ), i = 1, . . . , n, j = 1, . . . , m.
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As is well known, the notion of polymorphisms plays an important role in Uni-
versal Algebra (see e.g. Szendrei [34]). In fact, polymorphisms were fundamentally
used to obtain Post’s classification results [27]. One cannot help but notice the clear
correlation between the notions of a polymorphism and a systematic aggregator. The
following lemma is straightforward, by considering the definitions of an aggregator
and a polymorphism.

Lemma 16. Let D ⊆ {0, 1}m be a Boolean domain and f̄ = ( f , . . . , f ) a systematic m-tuple
of n-ary Boolean functions. Then f̄ is an aggregator for D if and only if f is a polymorphism
for D.

In order to obtain the syntactic characterization of domains that admit (non-
dictatorial) systematic aggregators, we use a result that can be directly acquired by
Post’s Lattice4.

Corollary 9. Let D ⊆ {0, 1}m be a Boolean domain. Then, either D admits only essentially
unary functions, or it is closed under ∧, ∨, maj or ⊕.

This directly implies that domains admitting non-dictatorial systematic aggre-
gators are either Horn, dual-Horn, bijunctive or affine. Since the only unanimous
essentially unary functions are projections, we immediately obtain the following
characterization.

Corollary 10. A Boolean domain D ⊆ {0, 1}m admits an n-ary non-dictatorial systematic
aggregator if and only if there exists an integrity constraint which is either Horn, dual Horn,
bijunctive or affine, whose set of satisfying assignments equals D.

Remark 7. Note that the majority aggregator maj appears in the characterization of domains
admitting systematic aggregators, whereas aggregators with even one component being maj
do not appear in the characterization of possibility domains in general.

More specifically, Theorem 7 asserts that a domain D is a possibility domain if and only
if it admits the ternary (and systematic) minority aggregator ⊕̄, or a binary non-dictatorial
aggregator ( f1, . . . , fm), where f j ∈ {∧,∨, pr2

1, pr2
2} for all j ∈ {1, . . . , m}. Thus, the

appearance of Horn, dual-Horn and affine formulas in the syntactic characterization of do-
mains admitting systematic aggregators is completely justifiable and expected, as ∧̄ and ∨̄
are the only binary non-dictatorial and systematic aggregators, and D is affine if and only if
it admits ⊕̄.

The reason why bijunctive formulas appear in Corollary 10 and not in Theorem 7 is that,
in the Boolean case, a domain admitting the aggregator maj, also admits a binary aggregator
f = ( f1, . . . , fm), such that f j ∈ {∧,∨}, j = 1, . . . , m. For the proof, see Kirousis et
al. [16, Theorem 3.7]. The problem is that this aggregator need not be systematic. In fact, the
proof of the aforementioned theorem would produce a systematic aggregator only if (0, . . . , 0)
or (1, . . . , 1) ∈ D.

Now we proceed with the characterizations for domains that admit the various
non-dictatorial aggregators we examined in the previous sections, under the addi-
tional assumption that they also satisfy systematicity.

The case of domains that admit locally non-dictatorial or anonymous aggrega-
tors that are systematic is easy. Indeed, all the aggregators of Corollary 9 are locally
non-dictatorial and anonymous. Thus the syntactic characterization of Corollary 10
applies for domains admitting systematic locally non-dictatorial or anonymous ag-
gregators, as well.

4 For a direct algebraic approach, see also Szendrei [34, Proposition 1.12] (by noting that the only
Boolean semi-projections of arity at least 3 are projections).
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As it comes to the class of domains admitting aggregators that are not general-
ized dictatorships, by Theorem 13, we have that it coincides with that of possibility
domains with at least three elements. Thus, Corollary 10 works for domains admit-
ting systematic aggregators that are not generalized dictatorships too.

In order to obtain a characterization for domains admitting monotone or Strong-
Dem systematic aggregators, we will again use the terminology of polymorphisms,
as well as Lemma 13 and Post’s Lattice.

Corollary 11. A domain D ⊆ {0, 1}m admits an n-ary systematic non-dictatorial mono-
tone or StrongDem aggregator if and only if it is closed under ∧, ∨ or maj.

Proof. It is known (and straightforward to see) that the set of polymorphisms of a
domain is a clone. Let C be the Boolean clone of polymorphisms of D. Since it
admits a non-dictatorial aggregator, at least one operator from ∧,∨, maj,⊕ is in C.
By Lemma 13, this cannot be only ⊕.

Thus, we obtain the following result, which completes this section.

Corollary 12. A Boolean domain D ⊆ {0, 1}m admits an n-ary systematic non-dictatorial
monotone or StrongDem aggregator if and only if there exists an integrity constraint which
is either Horn, dual Horn or bijunctive, whose set of satisfying assignments equals D.
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Chapter 4

Algorithmic identification results

In this chapter, we approach the problem of the syntactic characterization of possi-
bility domains and local possibility domains from the perspective of computational
complexity. The results we present are of two types. First we show how to recog-
nize a (local) possibility integrity constraint efficiently, that is, in polynomial time
to its length. Then we proceed to show that given a domain D we can efficiently
decide whether it is a (local) possibility domain and in case it is, produce a (local)
possibility integrity constraint φ, such that D = Mod(φ). These results have so far
appeared only in the work of Dìaz et al. [9]. Then we turn to the different notions of
non-dictatorial aggregators we discussed in the previous chapter and show that the
corresponding domains can be efficiently identified us well.

4.1 Identification of possibility integrity constraints &
possibility domains

In section 2.3 we saw that a subset D ⊆ {0, 1}m is a possibility domain if and only
if there exists a possibility integrity constraint φ such that D = Mod(φ). In this
section, we show that given a formula φ, we can decide in time linear in the length of
the formula whether it is a possibility integrity constraint. Then we use this -among
other known results- to construct an algorithm that on input a domain D halts in
time polynomial in the size of D and either decides that D is not a possibility domain
or otherwise returns a possibility integrity constraint that describes D. The utility of
this result becomes clear, in view of Arrow’s impossibility theorem, since given a
domain explicitly, as a listing of its elements, we can determine in time polynomial
in its the size whether non-dictatorial aggregation is possible.

Possibility integrity constraints

Recall that, according to Definition 17, a formula is a possibility integrity constraint
if it is either separable or partially renamable Horn or affine. Thus, in order to show that
possibility integrity constraints are easily recognizable, it suffices to do that for each
of the aforementioned syntactic types.

A similar classic result, is that the identification problem for renamable Horn
formulas is solvable in linear time (see e.g. del Val [8] for a relatively recent such
algorithm and Lewis [21] for the original non-linear one). Observe also that for Horn,
dual-Horn and affine formulas, the same result also holds.

Henceforth, we assume that we have a set of variables V := {x1, . . . , xm} and
a formula φ defined on V that is a conjunction of r clauses C1, . . . , Cr, where Cj =
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(lj1 , . . . , ljkj
), j = 1, . . . , r, and ljs is a positive or negative literal of xjs , s = 1, . . . , k j.

We denote the set of variables corresponding to the literals of a clause Cj by vbl(Cj).
The fact that separable formulas can be recognized in linear time is relatively

straightforward:

Proposition 5 (Dìaz et al. [9]). There is an algorithm that, on input a formula φ, halts
in time linear in the length of φ and either returns that the formula is not separable, or
alternatively produces a partition of V in two non-empty and disjoint subsets V1, V2 ⊆ V,
such that no clause of φ contains variables from both V1 and V2.

Proof. Suppose the variables of each clause of a formula are ordered by the indices
of their corresponding literals in the clause. Thus, we say that xjs , xjt are consecutive
in Cj, if t = s + 1, s = 1, . . . , k j − 1.

Now, given a formula φ, construct an undirected graph G = (V, E), where:

• V is the set of variables of φ, and

• two vertices are connected if they appear consecutively in a common clause of
φ.

It is easy to see that each clause Cj, where vbl(Cj) = {xj1 , . . . , xjkj
} induces the path

{xj1 , . . . , xjkj
} in G.

The result is then obtained by showing that φ is separable if and only if G is not
connected. To establish the latter, simply observe that two connected vertices of G
cannot be separated in φ. Indeed, consider a path P := {xs, . . . , xt} in G (this need
not be a path induced by a single clause). Then, each couple xi, xi+1 of vertices in P
belongs in a common clause of φ, i = r, . . . , s− 1. Thus, φ is separable if and only if
G is not connected. For the sake of completeness, we also provide the pseudocode
of this algorithm (see Algorithm 1).

For the proof of linearity, notice that the set of edges can be constructed in linear
time with respect to the length of φ, since we simply need to read once each clause
of φ and connect its consecutive vertices. Also, there are standard techniques to
check connectivity in linear time in the number of edges (e.g. by a depth-first search
algorithm).

Algorithm 1 SEPARABILITY

Input: φ(x1, . . . , xm) = C1 ∧ · · · ∧ Cr.
1: Create a graph G = (V = {x1, . . . , xm}, E := ∅).
2: for j = 1, . . . , r do
3: Add to E all {xjs , xjs+1} such that xjs , xjs+1 ∈ vbl(Cj).
4: end for
5: if G is connected then
6: return fail and exit
7: else
8: Let A1, . . . , Ap ⊆ V be the connected components of G in some arbitrary

ordering.
9: V1 := {xs | xs ∈ A1}, V2 := V \V1.

10: return (V1, V2).
11: end if

For the case of renamable partially Horn formulas, things are far more compli-
cated. As stepping stones, we will use Lewis’ technique [21] of constructing, for a
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given formula φ, a 2-CNF formula which is satisfiable if and only if φ is renamable
Horn. This very idea is how the identification problem for renamable Horn formulas
was originally solved by Lewis [21], since 2SAT instances can be solved in polyno-
mial time. To deal with renamable partially Horn formulas though, one has to

(i) look for a renaming that might transform only some clauses into Horn and

(ii) take into account the inadmissible Horn clauses, as they may cause other Horn
clauses to become inadmissible too.

Let us first introduce some notation. Let φ be a renamable partially Horn formula
defined over V. Assume that after renaming some of the variables in V, we get the
partially Horn formula φ∗, with V0 being the admissible set of variables. Let C0 be an
admissible set of clauses for φ∗. By Remark 3, we assume below that only a subset
V∗ ⊆ V0 has been renamed and that all Horn clauses of φ∗ with variables exclusively
from V0 belong to C0. The clauses of φ∗, which are in a one to one correspondence
with those of φ, are denoted by C∗1 , . . . , C∗r , where C∗j corresponds to Cj, j = 1, . . . , r.
We also denote by V1 the set V1 := V \V0.

The following proposition relates the property of a formula φ being partially
renamable Horn with the satisfiability of a formula φ′. It should be noted here that,
we do not actually need to construct this formula in order to obtain the identification
result for partially renamable Horn formulas. It is only introduced as an expedient
towards Theorem 17.

Proposition 6 (Dìaz et al. [9]). For every formula φ, there is a formula φ′ such that φ is
renamable partially Horn if and only if φ′ is satisfiable.

Proof. For each variable x ∈ V, we introduce a new variable x′. Intuitively, setting
x = 1 means that x is renamed (and therefore x ∈ V∗), whereas setting x′ = 1 means
that x is in V0, but is not renamed. Finally we set both x and x′ equal to 0 in case x is
not in V0. Obviously, we should not not allow the assignment x = x′ = 1 (a variable
in V0 cannot be renamed and not renamed). Let V ′ = V ∪ {x′ | x ∈ V}.

Consider the formula φ′ below, defined over the variable set V ′. For each clause
C of φ and for each x ∈ vbl(C): if x appears positively in C, introduce the literals x
and ¬x′ and if it appears negatively, the literals ¬x and x′. φ′ is the conjunction of the
following clauses: for each clause C of φ and for each two variables x, y ∈ vbl(C), φ′

contains the disjunctions of the positive with the negative literals introduced above.
Thus:

(i) if C contains the literals x, y, then φ′ contains the clauses (x ∨ ¬y′) and
(¬x′ ∨ y),

(ii) if C contains the literals x,¬y, then φ′ contains the clauses (x ∨ ¬y) and
(¬x′ ∨ y′)

(iii) if C contains the literals ¬x, y, then φ′ contains the clauses (¬x ∨ y) and
(x′ ∨ ¬y′) and

(iv) if C contains the literals ¬x,¬y, then φ′ contains the clauses (¬x ∨ y′) and
(x′ ∨ ¬y).

Finally, we add the following clauses to φ′:

(v) (¬xi ∨ ¬x′i), i = 1, . . . , m and
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(vi)
∨

x∈V′ x.

The clauses of items (i)–(v) correspond to the intuition we explained in the begin-
ning. For example, consider the case where a clause Cj of φ has the literals x,¬y. If
we add x to V0 without renaming it, we should not rename y, since we would have
two positive literals in a clause of C0. Also, we should not add the latter to V1, since
we would have a variable of V0 appearing positively in a clause containing a vari-
able of V1. Thus, we have that x′ → y′, which is expressed by the equivalent clause
(¬x′ ∨ y′) of item (ii). The clauses of item (v) exclude the assignment x = x′ = 1 for
any x ∈ V. Finally, since we want V0 to be non-empty, we need at least one variable
of V ′ to be set to 1.

To complete the proof of Proposition 6, we now proceed as follows.
(⇒) First, suppose φ is renamable partially Horn. Let V0, V1, V∗ and V ′ as above.

Suppose also that V0 6= ∅.
Set a = (a1, . . . , a2m) to be the following assignment of values to the variables of

V ′:

a(x) =

{
1, if x ∈ V∗,
0, else,

and a(x′) =

{
0, if x ∈ V∗ ∪V1,
1, else,

for all x ∈ V. To obtain a contradiction, suppose a does not satisfy φ′.
Obviously, the clauses of items (v) and (vi) above are satisfied, by the definition

of a and the fact that V0 is not empty.
Now, consider the remaining clauses of items (i)–(iv) above and suppose for ex-

ample that some (¬x∨ y′) is not satisfied. By the definition of φ′, there exists a clause
C which, before the renaming takes place, contains the literals ¬x,¬y (see item (iv)).
Since the clause is not satisfied, a(x) = 1 and a(y′) = 0, which in turn means that
x ∈ V∗ and y ∈ V∗ ∪ V1. If y ∈ V1, C∗ contains, after the renaming, a variable in
V1 and a positive appearance of a variable in V0. If y ∈ V∗, C∗ contains two pos-
itive literals of variables in V0. Contradiction. The remaining cases can be proven
analogously and are left to the reader.

(⇐) Suppose now that a = (a1, . . . , a2m) is an assignment of values to the vari-
ables of V ′ that satisfies φ′. We define the following subsets of V ′:

- V∗ = {x | a(x) = 1},

- V0 = {x | a(x) = 1 or a(x′) = 1} and

- V1 = {x | a(x) = a(x′) = 0}.

Let φ∗ be the formula obtained by φ, after renaming the variables of V∗.
Obviously, V0 is not empty, since a satisfies the clause of item (v).
Suppose that a clause C∗, containing only variables from V0, is not Horn. Then,

C∗ contains two positive literals x, y. If x, y ∈ V0 \ V∗, then neither variable was
renamed and thus C also contains the literals x, y. This means that, by item (i) above,
φ′ contains the clauses (x ∨ ¬y′) and (¬x′ ∨ y). Now, since x, y ∈ V0 \ V∗, it holds
that a(x) = a(y) = 0 and a(x′) = a(y′) = 1. Then, a does not satisfy these two
clauses. Contradiction. In the same way, we obtain contradictions in cases that at
least one of x and y is in V∗.

Finally, suppose that there is a variable x ∈ V0 that appears positively in a clause
C∗ /∈ C0. Let y ∈ V1 be a variable in C∗ (there is at least one such variable, lest
C∗ ∈ C0). Suppose also that y appears positively in C∗.

Assume x ∈ V∗. Then, C contains the literals ¬x, y. Thus, by item (ii), φ′ contains
the clause (¬x ∨ y). Furthermore, since x ∈ V∗, a(x) = 1 and since y ∈ V1, a(y) = 0.
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Thus the above clause is not satisfied. Contradiction. In the same way, we obtain
contradictions in all the remaining cases.

Observe that in order to compute φ′ from φ, one would need quadratic time in
the length of φ. To obtain a linear time algorithm which given a formula φ decides
whether or not it is renamable partially Horn, we will work as follows: First, based
on φ, we construct a directed bipartite graph G, i.e. a directed graph whose set of
vertices is partitioned in two sets such that no vertices belonging in the same part
are adjacent. Then, without computing φ′, we show that φ′ is satisfiable if and only
if at least one of the strongly connected components (scc) of G, i.e. its maximal sets
of vertices such that every two of them are connected by a directed path, is not
“bad” (this term is specified bellow). The result is then acquired as an immediate
consequence of Proposition 6.

Let us first introduce some auxiliary notation and terminology. For a directed
graph G, we will denote a directed edge from a vertex u to a vertex v by (u, v).
A (directed) path from u to v, containing the vertices u = u0, . . . , us = v, will be
denoted by (u, u1, . . . , us−1, v) and its existence by u → v. If both u → v and v → u
exist, we will sometimes write u↔ v.

Note also that there are several algorithms in the literature that, given a directed
graph G = (V, E), can compute the scc of G in time O(|V|+ |E|), where |V| denotes
the number of vertices of G and |E| that of its edges (see e.g. [35, Theorem 12]).
By identifying the vertices of each scc, we obtain a directed acyclic graph (DAG). An
ordering (u1, . . . , un) of the vertices of a graph is called topological if there are no
edges (ui, uj) such that i ≥ j, for all i, j ∈ {1, . . . , n}.

Theorem 17 (Dìaz et al. [9]). There is an algorithm that, on input a formula φ, halts in
time linear in the length of φ and either returns that φ is not renamable partially Horn
or alternatively produces a subset V∗ ⊆ V such that the formula φ∗ obtained from φ by
renaming the literals of variables in V∗ is partially Horn.

Proof. Given φ defined on V, whose set of clauses is C and let again V ′ = V ∪ {x′ |
x ∈ V}. We define the graph G, with vertex set V ′ ∪ C and edge set E such that, if
C ∈ C and x ∈ vbl(C), then:

• if x appears negatively in C, E contains (x, C) and (C, x′),

• if x appears positively in C, E contains (x′, C) and (C, x) and

• E contains no other edges.

Intuitively, if x, y ∈ V ′, then a path (x, C, y) corresponds to the clause x → y which
is logically equivalent to (¬x ∨ y). The intuition behind x and x′ is exactly the same
as in Proposition 6. We will thus show that the bipartite graph G defined above,
contains all the necessary information to decide if φ′ is satisfiable, with the difference
that G can obviously be constructed in time linear in the length of the input formula.

There is a slight technicality arising here since, by the construction above, G al-
ways contains either the path (x, C, x′) or (x′, C, x), for any clause C and x ∈ vbl(C),
whereas neither (¬x ∨ x′) nor (x ∨ ¬x′) are ever clauses of φ′. Thus, from now on,
we will assume that no path can contain the vertices x, C and x′ or x′, C and x con-
secutively, for any clause C and x ∈ vbl(C).

Observe that by construction,

(i) (x, C) or (C, x) is an edge of G if and only if x ∈ vbl(C), x ∈ V ′ and

(ii) (x, C) (resp. (x′, C)) is an edge of G if and only if (C, x′) (resp.(C, x)) is one too.
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We now prove several claims concerning the structure of G. To make notation
less cumbersome, assume that for an x ∈ V, x′′ = x. Consider the formula φ′ of
Proposition 6.

Claim 9. Let x, y ∈ V ′. For z1, . . . , zk ∈ V ′ and C1, . . . , Ck+1 ∈ C, it holds that
(x, C1, z1, C2, . . . , zk, Ck+1, y) is a path of G if and only if (¬x ∨ z1), (¬zi ∨ zi+1), i =
1, . . . , k− 1 and (¬zk ∨ y) are all clauses of φ′.

Proof of Claim. Can be easily proved inductively to the length of the path, by
recalling that a path (u, C, v) corresponds to the clause (¬u∨ v), for all u, v ∈ V ′ and
C ∈ C. �

Claim 10. Let x, y ∈ V ′. If x → y, then y′ → x′.

Proof of Claim. Since x → y, there exist z1, . . . , zk ∈ V ′ and C1, . . . , Ck+1 ∈ C, such
that (x, C1, z1, C2, . . . , zk, Ck+1, y) is a path of G. By Claim 9, (¬x ∨ z1), (¬zi ∨ zi+1),
i = 1, . . . , k− 1 and (¬zk ∨ y) are all clauses of φ′. By Proposition 6, so do (¬y′ ∨ z′k),
(¬z′i+1 ∨ z′i), i = 1, . . . , k− 1 and (¬z′1 ∨ x′) and the result is obtained using Claim 9
again. �

We can obtain the scc’s of G using a variation of a depth-first search (DFS) algo-
rithm, that, whenever it goes from a vertex x (resp. x′) to a vertex C, it cannot then go
to x′ (resp. x) at the next step. Since the algorithm runs in time linear in the number
of the vertices and the edges of G, it is also linear in the length of the input formula
φ.

Let S be a scc of G. We say that S is bad, if, for some x ∈ V, S contains both x and
x′. We can decide if each of the scc’s is bad or not again in time linear in the length
of the input formula.

Claim 11. Let S be a bad scc of G and y ∈ V ′ be a vertex of S. Then, y′ is in S.

Proof of Claim. Since S is bad, there exist two vertices x, x′ of V ′ in S. If x = y we
have nothing to prove, so we assume that x 6= y. Then, we have that y → x, which,
by Claim 10 implies that x′ → y′. Since x → x′, we get that y → y′. That y′ → y can
be proven analogously. �.

Recall that by identifying the vertices of each sccof a graph, we can obtain a DAG.
There are known algorithms in the literature for constructing a topological ordering
of any DAG in linear time.

So, let S1, . . . .St be the scc’s of G, in reverse topological order. We describe a process
of assigning values to the variables of V ′:

1. Set every variable that appears in a bad scc of G to 0.

2. For each j = 1, . . . , t assign value 1 to every variable of Sj that has not already
received one (if Sj is bad no such variable exists). If some x ∈ V ′ of Sj takes
value 1, then assign value 0 to x′.

3. Let a be the resulting assignment to the variables of V ′.

Now, the last claim we prove is the following:

Claim 12. There is at least one variable z ∈ V ′ that does not appear in a bad scc of G if and
only if φ′ is satisfiable.
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Proof of Claim. (⇒) We prove that every clause of type (i)–(vi) is satisfied. First,
by the construction of a, every clause ¬xi ∨¬x′i , i = 1, . . . , m, of type (v) is obviously
satisfied. Also, since by the hypothesis, z is not in a bad scc, it holds, by step 2 above,
that either z or z′ are set to 1. Thus, the clause

∨
x∈V′ x of type (vi) is also satisfied.

Now, suppose some clause (x∨¬y′) (type (i)) of φ′ is not satisfied. Then a(x) = 0
and a(y′) = 1. Furthermore, there is a vertex C such that (y′, C) and (C, x) are edges
of G. By the construction of G, (x′, C) and (C, y) are also edges of G.

Since a(x) = 0, it must hold either that x is in a bad scc of G, or that a(x′) = 1.
In the former case, we have that x → x′, which, together with (y′, C, x) and (x′, C, y)
gives us that y′ → y. Contradiction, since then a(y′) should be 0. In the latter case,
we have that there are two scc’s Sp, Sr of G such that x ∈ Sp, x′ ∈ Sr and p < r in
their topological order. But then, there is some q : p ≤ q ≤ r such that C in Sq. Now,
if p = q, we obtain a contradiction due to the existence of (x′, C), else, due to (C, x).

The proof for the rest of the clauses of types (i)–(iv) are left to the reader.
(⇐) First, recall that for two propositional formulas φ, ψ, we say that φ logically

entails ψ, and write φ |= ψ, if any assignment that satisfies φ, satisfies ψ too.
Now observe that, if x, y are two vertices in V ′ such that x → y, then φ′ |=

(¬x ∨ y). Indeed, suppose β is an assignment of values that satisfies φ′. If
β(y) = 1, we have nothing to prove. Thus, assume that β(y) = 0. By Claim 9,
if (x, C1, z1, C2, z2, . . . , zk, Ck+1, y) is the path x → y, then (¬x ∨ z1), (¬zi ∨ zi+1),
i = 1, . . . , k− 1 and (¬zk ∨ y) are all clauses of φ′ and are thus satisfied by β. Since
β(y) = 0, we have β(zk) = 0. Continuing in this way, β(zi) = 0, i = 1, . . . , k and
thus β(x) = 0 too, which implies that β(¬x ∨ y) = 1.

Now, for the proof of the claim, suppose again that φ′ is satisfiable, and let β
be an assignment (possibly different than α) that satisfies φ′. Since β satisfies φ′, it
satisfies

∨
x∈V′ x. This means that there exists some x ∈ V ′ such that β(x) = 1. But

β also satisfies (¬x ∨ ¬x′), so we get that β(x′) = 0. Thus β((¬x ∨ x′)) = 0, which
means that φ′ does not logically entail ¬x ∨ x′. By the discussion above, there exists
no path from x to x′, so x is not in a bad scc of G. �

By Proposition 6, we have seen that φ is renamable partially Horn if and only if
φ′ is satisfiable. Also, in case φ′ is satisfiable, a variable x ∈ V is renamed if and only
if a(x) = 1.

Thus, by the above and Claim 12, φ is renamable partially Horn if and only if
there is some variable x that does not appear in a bad scc of G. Furthermore, the
process described in order to obtain assignment a is linear in the length of the input
formula, and a provides the information about which variables to rename.

So far, we have established that the identification problem for separable and re-
namable partially Horn formulas is solvable in linear time. Also, it is obvious that
the same holds for affine formulas as well. What should be noted here, is that the
satisfiability problem remains NP-complete for the case of formulas that are separa-
ble or renamable partially Horn. Indeed, any formula φ in CNF can be extended to a
separable or a renamable partially Horn φ ∧ ¬x, where x is a new variable. Despite
this, in Computational Social Choice, domains are considered to be non-empty as a
non-degeneracy condition. Actually, it is usually assumed that the projection of a
domain to any one of the m issues is the set {0, 1}.

From the above we obtain the following theorem, which states that checking
whether a formula is a possibility integrity constraint can be done in polynomial
time in the size of the formula.

Theorem 18 (Dìaz et al. [9]). There is an algorithm that, on input a formula φ, halts in
linear time in the length of φ and either returns that φ is not a possibility integrity constraint,



68 Chapter 4. Algorithmic identification results

or alternatively, (i) either it returns that φ is affine or (ii) in case φ is separable, it produces
two non-empty and disjoint subsets V1, V2 ⊆ V such that no clause of φ contains variables
from both V1 and V2 and (iii) in case φ is renamable partially Horn, it produces a subset
V∗ ⊆ V such that the formula φ∗ obtained from φ by renaming the literals of variables in
V∗ is partially Horn.

Remark 8. Regarding the non-degeneracy assumptions, we ought to note here that the al-
gorithms of Theorem 18 cannot distinguish formulas with non-degenerate sets of satisfying
truth assignments from others with degenerate ones. An algorithm that could efficiently
decide that, would effectively be (due e.g. to the syntactic form of separable formulas) an
algorithm that could decide on input any given formula, which variables are satisfied by ex-
actly one Boolean value and which admit both. It is quite plausible that no such efficient
algorithm exists, as it could be used to solve known computationally hard problems, such like
the unique satisfiability problem.

Possibility domains

We proceed with the identification problem for possibility domains and show that
given a domain D ⊆ {0, 1}m, we can efficiently decide whether or not D is a possibil-
ity domain. To this purpose, apart from Theorem 18, we substantially use Zanuttini
and Hébrard’s “unified framework” [36], that employs the notions of prime impli-
cants and prime formulas to produce polynomial time algorithms for several structure
identification problems.

Given a clause C of a formula φ, we say that a sub-clause of C is any non-empty
clause created by deleting at least one literal of C.

Definition 30. A clause C of a formula φ is a prime implicate of φ if no sub-clause of C is
logically implied by φ. Furthermore, φ is prime if all its clauses are prime implicates of it.

Given a non-empty subset D ⊆ {0, 1}m, Zanuttini and Hébrard [36, Proposition
5] provide an algorithm that produces a prime formula with O(|D|m) clauses that
describes D, in time O(|D|2m2). They also provide an algorithm [36, Proposition 8],
decides whether or not D is affine in time O(|D|2m2) and in case it is produces an
affine formula φ with O(|D|m) clauses, that describes it.

The following proposition is the last necessary ingredient towards the identifi-
cation of possibility domains, as well as the efficient construction of formulas that
describe them.

Proposition 7 (Dìaz et al. [9]). Let φP be a prime formula and φ be a formula logically
equivalent to φP. Then:

1. if φ is separable, φP is also separable and

2. if φ is renamable partially Horn, φP is also renamable partially Horn.

Proof. Let φP be a prime formula. Quine [28] showed that the prime implicates of
φP can be obtained from any formula φ logically equivalent to φP, by repeated (i)
resolution and (ii) omission of the clauses that have sub-clauses already created.
Thus, using the procedures (i) and (ii) on φ, we can obtain every clause of φP.

If φ is separable, where (V ′, V \ V ′) is the partition of its vertex set such that no
clause contains variables from both V ′ and V \ V ′, it is obvious that neither resolu-
tion or omission can create a clause that destroys that property. Thus, φP is separable.



4.2. Local possibility integrity constraints & Local possibility domains 69

Now, let φ be a renamable partially Horn formula where, by renaming the vari-
ables of V∗ ⊆ V, we obtain the partially Horn formula φ∗, whose admissible set of
variables is V0. Let also φ∗P be the formula obtained by renaming the variables of V∗

in φP. Easily, φ∗P is prime too.
Observe that the prime implicates of a partially Horn formula, are also partially

Horn. Indeed, it is not difficult to observe that neither resolution, nor omission can
cause a variable to seize being admissible: suppose x ∈ V0. Then, the only way that
it can appear in an inadmissible clause due to resolution is if there is an admissible
Horn clause C containing ¬x, y, where y ∈ V0 too and an inadmissible clause C′

containing ¬y. But then, after using resolution, x appears negatively to the newly
obtained clause. Thus, φ∗P is partially Horn, which means that φP is renamable par-
tially Horn.

We are now ready to prove the following:

Theorem 19. There is an algorithm that, on input D ⊆ {0, 1}m, halts in time O(|D|2m2)
and either returns that D is not a possibility domain, or alternatively outputs a possibility in-
tegrity constraint φ, containing O(|D|m) clauses, whose set of satisfying truth assignments
is D.

Proof. Given a domain D, we first use Zanuttini and Hébrard’s algorithm to check
if it is affine [36, Proposition 8], and if it is, produce, in time O(|D|2m2) an affine
formula φ with O(|D|m) clauses, such that Mod(φ) = D. If it isn’t, we use again
Zanuttini and Hébrard’s algorithm [36] to produce, in time O(|D|2m2), a prime for-
mula φ with O(|D|m) clauses, such that Mod(φ) = D. Then, we use the linear
algorithms of Proposition 5 and Theorem 17 to check if φ is separable or renamable
partially Horn. If it is either of the two, then φ is a possibility integrity constraint
and, by Theorem 10, D is a possibility domain. Else, by Proposition 7, D is not a
possibility domain.

4.2 Local possibility integrity constraints & Local possibility
domains

In this section, we examine the identification problem for local possibility integrity
constraints (lpic’s) and local possibility domains (lpd’s). For the former, we provide
a linear time algorithm in the length of the formula and for the latter an algorithm
polynomial in the size of the domain. In addition, we show that in case a domain D
is an lpd we can efficiently construct an lpic that describes it.

Local possibility integrity constraints

As we have already mentioned (Corollary 1), every lpic is a possibility integrity
constraint. Keeping this and Definition 20 in mind, we show that we can recognize
lpic’s efficiently.

Theorem 20 (Dìaz et al. [9]). There is an algorithm that, on input a formula φ, halts in
linear time in the length of φ and either returns that φ is not a local possibility constraint, or
alternatively, produces the sets V0, V1, V2 described in Definition 20.

Proof. First, we check if φ is bijunctive or affine (this can be trivially done in linear
time). If it is, then φ is an lpic. Else, we use the algorithm of Theorem 17 to obtain V0.
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Note that, by the construction of G and the way we obtain V0, there is no variable in
V \V0 that can belong in an admissible set.

If V0 = ∅, then either φ is not an lpic, or there is a partition (V1, V2) of V such that
no clause of φ contains variables from both V1 and V2. Thus, we use the algorithm
of Proposition 5 to check if φ is separable. If it is not, then φ is not an lpic. If it is, we
obtain two sub-formulas φ1, φ2 such that φ = φ1 ∧ φ2. We can then trivially check,
in linear time to their lengths, if φ1 and φ2 are bijunctive and affine respectively, or
vice-versa. If they are, then φ is an lpic. Else, it is not.

Obviously, if V0 = V, then φ is (renamable) Horn and thus an lpic. Now, suppose
that (V0, V \V0) is a partition of V. Add all the variables of V \V0 that appear in an
(V, V \ V0)-generalized clause to V2, and set V1 = V \ (V0 ∪ V2). Now, if any clause
of φ contains more that two variables from V1, or variables from both V1 and V2, then
φ is not an lpic. Else, it is.

It should be noted that the issue about the non-degeneracy assumptions dis-
cussed in Remark 8 applies here too.

Local possibility domains

We end this section by showing that, given a domain D, we can efficiently determine
whether it is an lpd and construct an lpic φ such that Mod(φ) = D in case it is.

Again, we employ results of Zanuttini and Hébrard’s "unified framework". The
first fact we use is that a prime formula that is logically equivalent to a bijunctive
one, is also bijunctive [36, Proposition 3]. The second is that given a prime formula
that describes an affine domain D we can construct, in linear time in the size of
the input formula, an affine formula that describes D. In particular, for a clause
C = l1 ∨ . . . ∨ lt, where lj are literals, j = 1, . . . , t, let E(C) := l1 ⊕ . . .⊕ lt. For a CNF
formula φ =

∧m
j=1 Cj, let A(φ) :=

∧m
j=1 E(C). In [36, Proposition 8] Zanuttini and

Hébrard show that if φ is prime, Mod(φ) = D and D is affine, then Mod(A(φ)) = D.

Theorem 21 (Dìaz et al. [9]). There is an algorithm that, on input D ⊆ {0, 1}m, halts in
time O(|D|2m2) and either returns that D is not a local possibility domain, or alternatively
outputs a local possibility integrity constraint φ, containing O(|D|m) clauses, whose set of
satisfying truth assignments is D.

Proof. Given a domain D, we first use Zanuttini and Hébrard’s algorithm [36] to
produce, in time O(|D|2m2), a prime formula φ with O(|D|m) clauses, such that
Mod(φ) = D. Note that at this point, φ does not contain any generalized clauses.
We then use the linear algorithm of Theorem 17 to check if φ is renamable partially
Horn. If not, by Proposition 7, D is not an lpic. Otherwise, the algorithm produces a
set V0 such that φ is renamable partially Horn with admissible set V0.

If V0 = V we have nothing to prove. Thus, suppose that φ = φ0 ∧ φ1, where
φ0 contains only variables from V0. Let φ′1 be the sub-formula of φ1, obtained by
deleting all variables of V0 from φ. We use the algorithm of Proposition 5 to check if
φ′1 is separable.

Suppose that φ′1 is not separable. We then check, with Zanuttini and Hébrard’s
algorithm, if φ′1 is either bijunctive or affine. If it is neither, then D is not an lpd.
If it is bijunctive, then φ is a lpic. If it is affine, we construct the formula A∗(φ1)
as follows. For each clause C = (l1 ∨ · · · ∨ ls ∨ (ls+1 ∨ · · · ∨ lt)), where l1, . . . , ls are
literals of variables in V0, let:

E∗(C) = (l1 ∨ · · · ∨ ls ∨ (ls+1 ⊕ · · · ⊕ lt))
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and A∗(φ1) =
∧m

j=1 E∗(Cj). Then, the lpic that describes D is φ0 ∧ A∗(φ1).
In case φ′1 is separable, assume that φ′1 = φ′2 ∧ φ′3, where no variable appears in

both φ′2 and φ′3. Let also φ2 be φ′2 with the variables from V0 and respectively for
φ3. We now proceed exactly as with φ′1, but separately for φ′2 and φ′3. If either one
is neither bijunctive nor affine, D is not an lpd. Else, we produce the corresponding
lpic as above.

4.3 Domains closed under other forms of non-dictatorial
aggregators

In Sections 3.2, 3.3 and 3.4 we examined several forms of non-dictatorial aggregators,
namely aggregators that are not generalized dictatorships, anonymous, monotone,
StrongDem and systematic aggregators. We also provided syntactic characteriza-
tions for the class of domains closed under each of these types of aggregation pro-
cedures. In this final section, we show that given a domain D ⊆ {0, 1}m we can
efficiently decide whether or not it belongs to one of these classes.

Aggregators that are not generalized dictatorships

By Corollary 2, we have that a domain D ⊆ {0, 1}m with at least three elements,
admits an aggregator that is not a generalized dictatorship if and only if there ex-
ists a possibility integrity constraint whose set of models equals D. Thus, given
D ⊆ {0, 1}m with at least three elements, using the algorithm of Theorem 19 we
can determine in time O(|D|2m2) whether or not D admits an aggregator that is
not a generalized dictatorship, and produce a possibility integrity constraint with
O(|D|m) clauses that describes it, in case it is.

Remark 9. Recall that in order to decide whether a given possibility integrity constraint
really describes a domain that admits an aggregator that is not a generalized dictatorship, we
additionally have to ensure that its set of models is comprised of at least three elements.

It is easy to see that (non-degenerate) possibility domains with at least tree elements
can only arise as the truth sets of possibility integrity constraints that are Horn, renamable
Horn or affine. In all these cases, Creignou and Hébrard [6] have devised polynomial-delay
algorithms that generate all the solutions of such formulas, which can easily be implemented
to terminate if they find more than two solutions.

Anonymous aggregators

By Corollary 6, we have that D admits an n-ary anonymous aggregator if and only
if there exists a local possibility integrity constraint whose set of models equals
D. Therefore, given D ⊆ {0, 1}m, the algorithm of Theorem 4.3 provides, in time
O(|D|2m2), an answer to the identification problem for these domains, as well.

Non-dictatorial Monotone aggregators

Recall that by Corollary 6 a domain D admits an n-ary non-dictatorial monotone ag-
gregator if and only if there exists a separable or renamable partially Horn integrity
constraint whose set of models equals D.
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Corollary 13. There is an algorithm that, on input D ⊆ {0, 1}m, halts in time O(|D|2m2)
and either returns that D does not admit a non-dictatorial monotone aggregator, or alter-
natively outputs a separable or renamable partially Horn formula φ, containing O(|D|m)
clauses, whose set of satisfying truth assignments is D.

Proof. Given a domain D, we use Zanuttini and Hébrard’s algorithm [36] to produce,
in time O(|D|2m2), a prime formula φ with O(|D|m) clauses, such that Mod(φ) = D.
Then, we use the linear algorithms of Proposition 5 and Theorem 17 to check if φ is
separable or renamable partially Horn. If it is either of the two, D admits a non-
dictatorial monotone aggregator. Otherwise, by Proposition 7, it does not.

StrongDem aggregators

According to Corollary 8, a Boolean domain D ⊆ {0, 1}m admits an n-ary Strong-
Dem aggregator if and only if there exists an ⊕-free local possibility integrity con-
straint whose set of satisfying assignments equals D.

Corollary 14. There is an algorithm that, on input D ⊆ {0, 1}m, halts in time O(|D|2m2)
and either returns that D does not admit a StrongDem aggregator, or alternatively outputs
a ⊕-free local possibility integrity constraint φ, containing O(|D|m) clauses, whose set of
satisfying truth assignments is D.

Proof. Given a domain D, we first use Zanuttini and Hébrard’s algorithm [36] to
produce, in time O(|D|2m2), a prime formula φ with O(|D|m) clauses, such that
Mod(φ) = D. Note that at this point, φ does not contain any generalized clauses.
We then use the linear algorithm of Theorem 17 to check if φ is renamable partially
Horn. If not, by Proposition 7, D is not an lpic. Otherwise, the algorithm produces a
set V0 such that φ is renamable partially Horn with admissible set V0.

If V0 = V we have nothing to prove. Thus, suppose that φ = φ0 ∧ φ1, where
φ0 contains only variables from V0. Let φ′1 be the sub-formula of φ1, obtained by
deleting all variables of V0 from φ.

We then check, with Zanuttini and Hébrard’s algorithm, if φ′1 is bijunctive. If it
is bijunctive, then φ is a ⊕-free lpic, thus D admits a StrongDem aggregator. Else, it
does not.

Non-dictatorial systematic aggregators

By Corollary 10, we have that a Boolean domain D ⊆ {0, 1}m admits an n-ary non-
dictatorial systematic aggregator if and only if there exists an integrity constraint
which is either Horn, dual Horn, bijunctive or affine, whose set of satisfying assign-
ments equals D.

Given D ⊆ {0, 1}m, we use use Zanuttini and Hébrard’s algorithm [36] to
produce, in time O(|D|2m2), a prime formula φ with O(|D|m) clauses, such that
Mod(φ) = D. To efficiently decide whether D admits a systematic non-dictatorial
aggregator, we use two facts. First, that each the syntactic types above is known
to be easily recognisable and second, that a prime formula logically equivalent to a
Horn, dual Horn, bijunctive or affine is itself Horn, dual Horn, bijunctive or affine,
respectively (again, see Zanuttini and Hébrard [36]).
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Concluding remarks

The cornerstone of every decision making process is the urgency to aggregate vari-
ous individual positions over a set of issues, into a single collective one. J.K. Arrow
proved that, non-dictatorial aggregation is not always an option. In this work, we
presented the classical frameworks used to formalize aggregation problems and fo-
cused on the integrity constraint based approach, where a domain of m issues is rep-
resented by a single Boolean formula of m variables, called the integrity constraint.
We gave necessary and sufficient conditions, regarding the syntactic form of a for-
mula, to describe a possibility domain, i.e. a domain where non-dictatorial aggre-
gation is possible. We call these formulas possibility integrity constraints. Further-
more, we examined other forms of non-dictatorial aggregators that have appeared in
the literature, and presented syntactic characterizations of the integrity constraints
that describe the corresponding domains. In particular, we showed that domains
that admit locally non-dictatorial aggregators, called local possibility domains, and
domains admitting anonymous aggregators coincide and are described by local pos-
sibility integrity constraints. Domains admitting aggregators that are not general-
ized dictatorships are characterized as models of possibility integrity constraints,
while domains that admit monotone non-dictatorial aggregators are described by
a subclass of such formulas, the separable and renamable partially Horn formulas.
Domains admitting StrongDem aggregators are described by a subclass of local pos-
sibility integrity constraints, called ⊕-free. Then, we discussed how these results are
effected if we further require that these aggregators are systematic. Additionally, we
showed that every integrity constraint of the above types, is easily (in linear time in
the length of the input formula) recognisable. We also provided algorithms which,
given a domain D ⊆ {0, 1}m can determine in time polynomial in the size of the
domain whether or not D admits a non-dictatorial aggregator of each of the types
mentioned above, and in case it does, construct an integrity constraint that describes
it, whose number of clauses is linear in the size of the domain. Apart from, knowing
whether non-dictatorial aggregation is possible for a given domain, these algorithms
also provide specific information on how to construct such an aggregator.
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