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ABSTRACT 

 

Complex Event Recognition is the subdivision of Artificial Intelligence that aims to design 
and construct systems that quickly process large and often heterogeneous streams of 
data and timely deduce – based on definitions set by domain experts – the occurrence of 
non-trivial and interesting incidents. The purpose of such systems is to provide useful 
insights into involved and demanding situations that would otherwise be difficult to 
monitor, and to assist decision making. Uncertainty and noise are inherent in such data 
streams and therefore, Probability Theory becomes necessary in order to deal with them. 
The probabilistic recognition of Complex Events can be done in a timepoint-based or an 
interval-based manner. 

This thesis focuses on PIEC, a state-of-the-art probabilistic, interval-based Complex 
Event Recognition algorithm. We present the algorithm and examine it in detail. We study 
its correctness through a series of mathematical proofs of its soundness and 
completeness. Afterwards, we provide thorough experimental evaluation and comparison 
to point-based probabilistic Event Recognition methods. Our evaluation shows that PIEC 
consistently displays better Recall measures, often at the expense of a generally worse 
Precision. We then focus on cases where PIEC performs significantly better and cases 
where it falls short, in an effort to detect and state its main strengths and weaknesses. 
We also set the general directions for further research on the topic, parts of which are 
already in progress. 
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ΠΕΡΙΛΗΨΗ 

 

Η Αναγνώριση Σύνθετων Γεγονότων είναι το πεδίο εκείνο της Τεχνητής Νοημοσύνης το 
οποίο αποσκοπεί στο σχεδιασμό και την κατασκευή συστημάτων τα οποία 
επεξεργάζονται γρήγορα μεγάλες και πιθανώς ετερογενείς ροές δεδομένων και τα οποία 
είναι σε θέση να αναγνωρίζουν εγκαίρως μη τετριμμένα και ενδιαφέροντα συμβάντα, 
βάσει κατάλληλων ορισμών που προέρχονται από ειδικούς. Σκοπός ενός τέτοιου 
συστήματος είναι η αυτοματοποιημένη εποπτεία πολύπλοκων και απαιτητικών 
καταστάσεων και η υποβοήθηση της λήψης αποφάσεων από τον άνθρωπο. Η 
αβεβαιότητα και ο θόρυβος είναι έννοιες που υπεισέρχονται φυσικά σε τέτοιες ροές 
δεδομένων και συνεπώς, καθίσταται απαραίτητη η χρήση της Θεωρίας Πιθανοτήτων για 
την αντιμετώπισή τους. Η πιθανοτική Αναγνώριση Σύνθετων Γεγονότων μπορεί να 
πραγματοποιηθεί σε επίπεδο χρονικής στιγμής ή σε επίπεδο χρονικού διαστήματος. 

Η παρούσα εργασία εστιάζει στον PIEC, έναν σύγχρονο αλγόριθμο για την Αναγνώριση 
Σύνθετων Γεγονότων με τη χρήση πιθανοτικών, μέγιστων διαστημάτων. Αρχικά 
παρουσιάζουμε τον αλγόριθμο και τον ερευνούμε ενδελεχώς. Μελετούμε την ορθότητά 
του μέσα από μια σειρά μαθηματικών αποδείξεων περί της ευρωστίας (soundness) και 
της πληρότητάς του (completeness). Κατόπιν, παραθέτουμε εκτενή πειραματική 
αποτίμηση του υπό μελέτη αλγορίθμου και σύγκρισή του με συστήματα πιθανοτικής 
Αναγνώρισης Γεγονότων σε επίπεδο χρονικών σημείων. Τα αποτελέσματά μας δείχνουν 
ότι ο PIEC επιδεικνύει σταθερά καλύτερη Ανάκληση (Recall), παρουσιάζοντας, ωστόσο 
κάποιες απώλειες σε Ακρίβεια (Precision) σε ορισμένες περιπτώσεις. Για τον λόγο αυτόν, 
εμβαθύνουμε και εξετάζουμε συγκεκριμένες περιπτώσεις στις οποίες ο PIEC αποδίδει 
καλύτερα, καθώς και άλλες στις οποίες παράγει αποτελέσματα υποδεέστερα των 
παραδοσιακών μεθόδων σημειακής αναγνώρισης, σε μια προσπάθεια να εντοπίσουμε 
και να διατυπώσουμε τις δυνατότητες αλλά και τις αδυναμίες του αλγορίθμου. Τέλος, 
θέτουμε τις γενικές κατευθυντήριες γραμμές για περαιτέρω έρευνα στο εν λόγω ζήτημα, 
τμήματα της οποίας βρίσκονται ήδη σε εξέλιξη.  
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1. INTRODUCTION 

 

1.1 Motivation 

As technology advances, more and more procedures and tasks that would traditionally 
be carried out using human labor tend to become automated using proper computational 
power and appropriate software. As a consequence, the amount, the formats, and the 
domain range of the data produced and stored keep increasing. Therefore, the efficient 
processing and knowledge extraction from these data becomes a necessity in an 
increasing number of different tasks. We need to be able to automatically detect and 
portray the occurrence of activities of interest in a wide range of domains, from city traffic 
monitoring to household activity supervision and from public space surveillance to fraud 
detection in credit card transactions. 

Complex Event Recognition is an area of Artificial Intelligence that provides tools and 
algorithms that meet the need described above. More specifically, it focuses on detecting 
the occurrence of composite, non-trivial activities from data. These activities may vary 
depending on the context. For instance, we may be interested in detecting when two or 
more people are gathering together, or when two vessels are displaying suspicious 
activity. In order to recognize these activities, we need a set of rules that define them as 
temporal combinations of time-stamped data. These rules can be written by hand by 
domain experts or automatically learnt, using machine learning algorithms. The 
necessary data is collected from several heterogeneous, noisy and possibly 
interdependent sources. Examples of such sources are sensors, cameras, and the Web. 
The data may be subject to preprocessing before being given as input to a Complex Event 
Recognition mechanism. 

Having to do with many and heterogeneous sources of data increases the risk of 
mutations or even loss of data. Sensors may fail, various hardware issues may impose 
delays to the transmission of the needed data. These are some of the factors that 
introduce noise in the event recognition procedure. In order to deal with noise and 
uncertainty in the data and the activity definitions, several probabilistic event activity 
recognition systems have been proposed (see [1], [2], [3]). These systems compute the 
probability that an activity of interest takes place at a specific timepoint. The work of 
Artikis, Makris and Paliouras [4] extends this approach to calculating probabilistic maximal 
intervals during which such an activity takes place, as well as a credibility rate for each 
one of them. Makris et al. incorporate the notions of probabilistic maximal interval and the 
credibility thereof into an algorithm called PIEC (Probabilistic Interval-based Event 
Calculus).  

 

1.2 Contribution 

The main contribution of this thesis is the reimplementation, correctness analysis and 
evaluation of the PIEC algorithm. More specifically: 

• We implement the PIEC algorithm, from scratch, using the Scala programming 
language. 

• We perform the correctness analysis of the PIEC algorithm. Specifically, we 
provide mathematical proofs that the algorithm is correct. To that direction, explicit 
proofs on PIEC’s soundness and completeness are given. 
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• We assess the performance of the proposed algorithm, using a benchmark dataset 
for human activity recognition. Special care has been taken for the experimental 
evaluation to be as exhaustive as possible. In particular, we compare our approach 
against three state-of-the-art probabilistic activity recognition methods. Our 
comparison is done in two ways: In an overall manner, where we run the involved 
algorithms over the entire testing dataset and compare the cumulative results, and 
in a case-by-case manner, where we isolate certain interesting scenarios from 
within the dataset and observe the behavior of the algorithms in these specific 
cases. Detailed discussion accompanies the evaluation results. 

• We propose improvements to the PIEC algorithm, by providing alternative 
definitions for the credibility of a probabilistic maximal interval. We assess the new, 
proposed credibility definitions in a way similar to the assessment of the original 
version of the algorithm and we show that these alternative credibility definitions 
can lead to improved recognition results. 

• The entire code developed during this M.Sc. project (i.e. the Scala implementation 
of PIEC, along with the code and data used in our experiments), as well as the 
respective documentation, are publicly available on GitHub1.  

 

1.3 Outline 

The remainder of this thesis is organized as follows: First, we provide the theoretical 
foundations, the theories, methods and definitions upon which our research has been 
based and whose understanding is imperative for the study of our contribution. 
Subsequently, we give a brief overview of the latest literature and the current scientific 
advances that are related to our research. Afterwards, we proceed to our main 
contribution. We make an in-depth presentation and analysis of our methodology and 
algorithms, including mathematical proofs for the correctness of our method and thorough 
discussion. Next, we display a comprehensive assessment of the algorithms presented 
and examined, through extensive experimentation. We depict the outcome of our 
experiments using an abundance of diagrams, accompanied by detailed discussion. 
Finally, we conclude and set the general directions for future work. 

   

                                            

1 https://github.com/cvlas/Scala-PIEC 
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2. BACKGROUND 

In the previous section, we introduced the concept of Complex Event Recognition, either 
with or without uncertainty. In this section, we discuss fundamental state-of-the-art 
techniques and algorithms that are used in Complex Event Recognition and upon which 
the contribution of this thesis is based. 

 

2.1 The Event Calculus 

The Event Calculus [5] is a Logic Programming formalism that allows for the efficient 
representation and reasoning about events and their effects ([6], [7]). It comprises events, 
fluents, a time model, and a set of core axioms. An event can be instantaneous or 
durative. A fluent 𝐹 is a property and it is always accompanied by a value 𝑉 that may 
change over time. The occurrence of an event can initiate or terminate a fluent. There are 
two ways of terminating a fluent: Either explicitly, using a termination statement for 𝐹 = 𝑉 
or implicitly, initiating 𝐹 with a new value, for instance 𝐹 = 𝑉′, with 𝑉 ≠ 𝑉′. The notion of 
time is crucial for the happening of events and the changing of fluents. In most cases, we 
use a linear time model with time points expressed as real or integer numbers. Finally, 
there is a set of core, domain-independent Event Calculus axioms that govern the holding 
of a fluent, based on the common sense law of inertia, i.e. a fluent 𝐹 = 𝑉 that has been 
initiated at some point, continuously holds until it is terminated, either explicitly or 
implicitly. 

We can use the Event Calculus to express involved dependencies between events and 
fluents. Fluents play the role of Long-term Activities (LTA), whereas events will be 
considered Short-term Activities (STA). LTA definitions along with the domain-
independent core axioms of the Event Calculus can be expressed as first-order logic 
formulae. 

In [1], a dialect of the Event Calculus is defined, called Crisp-EC. The main predicates of 
this dialect are shown in Table 1. Given this set of predicates, one can construct both the 
domain-independent Event Calculus axioms and the domain-specific LTA initiation and 
termination statements, as follows: 

 

 holdsAt(F = V, T) ← 

     initially(F = V), 

     not broken(F = V, 0, T). 

(1) 

 

 holdsAt(F = V, T) ← 

     initiatedAt(F = V, Ts), 

     Ts < T, 

     not broken(F = V, Ts, T). 

(2) 

 

 broken(F = V, Ts, T) ← 

     terminatedAt(F = V, Te), 

     Ts < Te < T. 

(3) 
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 broken(F = V1, Ts, T) ← 

     initiatedAt(F = V2, Te), 

     V1 ≠ V2, 

     Ts < Te < T. 

(4) 

 

Axioms (1) and (2) dictate that a fluent holds at a time point 𝑇 if it has been initiated at 
some point earlier and it has not been “broken” since. Axioms (3) and (4) describe what 
“broken” means. A fluent can be broken by explicit termination or implicitly, by initiating 
the same fluent with another value in the meantime. Here, “not” implements negation as 
failure. All axioms above implement the law of inertia described earlier. 

Apart from the domain-independent axioms that govern the holding of a fluent, Crisp-EC 
also offers domain-specific axioms that describe the initiation and termination conditions 
for an LTA. An initiation statement looks like the following: 

 

 initiatedAt(F = V, T) ← 

     happens(E, T), 

     conditions[T]. 

(5) 

 

This statement declares that if event 𝐸 happens at time point 𝑇 and a (possibly empty) 

group of other temporal conditions is satisfied, then fluent 𝐹 = 𝑉 is initiated at time 𝑇. Note 
that this does not, by any means, imply that 𝐹 ≠ 𝑉 at time point 𝑇. Similarly, a termination 
statement does not necessarily mean that 𝐹 = 𝑉 at the time of termination. 

 

Table 1: Main predicates of Crisp-EC 

Predicate Meaning 

happens(E, T) Event E occurs at time T 

initially(F = V) The value of fluent F is V at time 0 

holdsAt(F = V, T) The value of fluent F is V at time T 

initiatedAt(F = V, T) At time T a period of time for which F = V is initiated 

terminatedAt(F = V, T) At time T a period of time for which F = V is terminated 

 

2.2 Probabilistic Event Calculus 

The Event Calculus can express complex event dependencies, where events correspond 
to STA and fluents correspond to LTA. Domain-independent axioms, as well as LTA 
definitions can be expressed as first-order logic formulae. Despite its high expressive 
power, the Event Calculus cannot efficiently handle noise, either in the input or in the LTA 
definitions. Noise and uncertainty are inherent in data coming from sensors and can 
naturally occur in many settings. To this direction, Skarlatidis et al. [1] have extended their 
Crisp-EC dialect, added probabilities to it and created a Probabilistic Event Calculus 
dialect called Prob-EC. This dialect has been built using the ProbLog Probabilistic Logic 
Programming language [8]. ProbLog is a probabilistic extension to Prolog, it allows for 
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probabilistic facts of the form 𝑝𝑖 ∷ 𝑓𝑖, where 𝑝𝑖 is a real number between 0 and 1, and 𝑓𝑖 
is a (not necessarily ground) Prolog fact. 

ProbLog’s probabilistic facts are treated as independent random variables. This means 
that the probability of a clause that contains a lot of probabilistic facts in its body will be 
the product of the probabilities of these facts. Moreover, if an atom appears in the head 
of more than one rules, then its probability will be that of the disjunction of the respective 
rules. As described in [1] and [8], if we address a query 𝑞 to a ProbLog program, its 
success probability is: 

 

 

𝑃(𝑞) = 𝑃 ( ⋁ ⋀ 𝑓𝑖

𝑓𝑖 ∈ 𝑒𝑒 ∈ 𝑝𝑟𝑜𝑜𝑓𝑠(𝑞)

) (6) 

 

ProbLog has an efficient way of computing this probability, using Binary Decision 
Diagrams (BDD). 

Crisp-EC axioms remain valid for the Prob-EC case, albeit with subtle modifications that 
have to do with ProbLog’s negation [1]. 

Figure 1 shows an example of how Prob-EC performs its reasoning. Suppose that there 
are two people, Mike and Sarah and start walking together, at time 1. One frame later, 
Sarah stops walking and becomes “active” (recall the respective STA mentioned earlier 
in this chapter). Sarah remains active until time point 21, where she starts walking with 
Mike again. Then, at time 41 Sarah starts moving away from Mike. 

Moving is defined as follows: 

 

 

 initiatedAt(moving(P1, P2) = true, T) ← 

     happens(walking(P1), T), 

     happens(walking(P2), T), 

     holdsAt(close(P1, P2, 34) = true, T), 

     holdsAt (similarOrientation(P1, P2, 45) = true, T). 

(7) 

 

 

 terminatedAt(moving(P1, P2) = true, T) ← 

     happens(walking(P1), T), 

     holdsAt(close(P1, P2, 34) = false, T). 

(8) 
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Consider an input STA stream that looks like this: 

 

0.70 :: happensAt(walking(mike), 1) 0.46 :: happensAt(walking(sarah), 1) 

0.73 :: happensAt(walking(mike), 2) 0.55 :: happensAt(active(sarah), 2) 

… … 

0.69 :: happensAt(walking(mike), 21) 0.58 :: happensAt(walking(sarah), 21) 

… … 

0.18 :: happensAt(inactive(mike), 41) 0.32 :: happensAt(walking(sarah), 41) 

 

Supposing that orientation and coordinates are computed with probability 1, we can see 
that at frame number 2 moving has already been initiated once. This means that rule (7) 
has been triggered and its probability is the product: 

 

𝑃(holdsAt(𝑚𝑜𝑣𝑖𝑛𝑔(mike, sarah) = true, 2)) =  

P(initiatedAt(𝑚𝑜𝑣𝑖𝑛𝑔(mike, sarah) = true, 1)) =  

P(happens(𝑤𝑎𝑙𝑘𝑖𝑛𝑔(mike), 1)) × P(happens(𝑤𝑎𝑙𝑘𝑖𝑛𝑔(sarah), 1)) =  

0.70 × 0.46 = 0.322 

 

and thus, probability rises from 0 to 0.322. Then, rule (7) stops being triggered and no 
more moving initiations occur until frame 21. At the same time, there are no terminations 
for the moving LTA as rule (8) is not triggered, either. Thus, the probability remains as is, 
due to the law of inertia. At frame 21, Sarah appears to be walking with Mike again. They 
are still close to each other, therefore rule (7) will be fired again. This causes the 
probability of moving to further rise. Specifically, at the next frame, Prob-EC tries to 
calculate the probability of holdsAt(𝑚𝑜𝑣𝑖𝑛𝑔(mike, sarah) = true, 22). Rule (2) forces Prob-
EC to scan all previous timepoints in search for initiation conditions. In this particular case, 
Prob-EC finds two initiations. One at time point 1 – for brevity, let us name it “𝑖𝑛𝑖𝑡1” – and 

one at time point 21 – for brevity, let us name it “𝑖𝑛𝑖𝑡21”. Subsequently, Prob-EC calculates 
the probability of their disjunction. 

 

𝑃(𝑖𝑛𝑖𝑡1 ∪ 𝑖𝑛𝑖𝑡21) = P(𝑖𝑛𝑖𝑡1) + P(𝑖𝑛𝑖𝑡21) − P(𝑖𝑛𝑖𝑡1 ∩ 𝑖𝑛𝑖𝑡21) 

 = 0.70 × 0.46 + 0.69 × 0.58 − 0.70 × 0.46 × 0.69 × 0.58 

 = 0.593 
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Figure 1: Example illustrating how repeated initiations and terminations of an LTA affect its 
probability calculated by Prob-EC. 

 

We observe that the probability has further risen. As the initiation conditions persist, more 
initiations will be added to the disjunction and, therefore the probability that Mike and 
Sarah perform the moving LTA will increase. This behavior is compatible with our intuition. 
The more we receive indications that something has happened the more prompted we 
feel to accept that it has indeed happened. 

At frame 41, the probability of “moving” between Mike and Sarah reaches 0.8. This is the 
point where Mike starts displaying inactive body movement and Sarah is walking away 
from him. As the distance between them exceeds the threshold imposed by rule (8), a 
termination for the moving LTA is triggered. Supposing that the distance between the 
actors involves no uncertainty at all – that is, the probability of 
holdsAt(𝑐𝑙𝑜𝑠𝑒(mike, sarah, 34) = true, 22) is 1 – the probability of this termination is  

 

P(happensAt(𝑤𝑎𝑙𝑘𝑖𝑛𝑔(sarah), 41)) = 0.32 

 

Prob-EC calculates the probability of “moving” by taking into account all possible worlds 
in which Sarah did not walk away from Mike. The probability of these worlds is 1 − 0.32 =
0.68. From rule (2), we have: 

 

P(holdsAt(𝑚𝑜𝑣𝑖𝑛𝑔(mike, sarah) = true, 42)) = 0.8 × 0.68 = 0.544 

 

Similarly to the multiple initiation case, we can have multiple terminations for an LTA. In 
this case the probability steadily drops approaching zero. Until the end of the video, Sarah 
keeps walking away from Mike and eventually leaves the scene. Therefore, the probability 
of “moving” drops to 0 and remains there until the end of the video. The probability 
fluctuations, as the result of the LTA initiations and terminations are evident in Figure 1. 
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2.3 Markov Logic Networks 

Markov Logic Networks (MLNs) [9] is a state-of-the-art Statistical Relational Learning 
(SRL) framework that combines first-order logic representation with Markov Network 
modelling (see [10], [3]). Just as ProbLog does, Markov Logic Networks serve the need 
of supplementing the expressive powers of the Event Calculus with the ability to 
adequately handle uncertainty in the data or the LTA patterns. 

MLNs perform probabilistic inference by softening the constraints imposed by the 
formulae of a knowledge base to the set of possible worlds, i.e. Herbrand interpretations. 
Every formula 𝐹𝑖 is represented as a first-order formula and is associated with a weight 
value 𝑤𝑖 ∈ ℝ. The higher the value of the weight 𝑤𝑖, the stronger the constraint 
represented by formula 𝐹𝑖. Contrary to classical logic, in MLN all worlds are possible with 
a certain probability. The probability of a world increases as the amount of formulae it 
violates decreases. 

An MLN knowledge base may contain both hard and soft-constrained formulae. Hard 
constraints have an infinite weight and correspond to the part of knowledge that is 
considered to be certain. On the other hand, soft constraints correspond to imperfect 
knowledge the violation of which does not incur the exclusion of a world from the set of 
possible worlds. An acceptable world must at least satisfy the hard constraints. 

Formally, a knowledge base 𝐿 of weighted formulae, along with a finite domain of 

constants 𝒞, is transformed into a ground Markov Network 𝑀𝐿,𝒞. All formulae are 

converted into clausal form and each clause is ground according to the domain of its 
variables. The nodes of 𝑀𝐿,𝒞 are Boolean random variables, each corresponding to a 

possible grounding of a predicate that appears in 𝐿. The predicates of a ground clause 
form a clique in 𝑀𝐿,𝒞. Each clique has its own weight 𝑤𝑖, as well as a Boolean feature that 

takes a value of 1 when the ground clause is true and a value of 0 otherwise. The ground 
𝑀𝐿,𝒞 defines a probability distribution over possible worlds and is represented as a log-

linear model. 

As with every event recognition mechanism, our goal is to recognize LTA of interest, given 
streams of STA. For instance, we want to be able to recognize the “moving” LTA, based 
on a narrative of STA that represent people walking, running, etc. To that effect, 
discriminative MLNs [11] are used. Specifically, the random variables in 𝑀𝐿,𝒞 are split in 

two subsets: evidence variables 𝑋 and query variables 𝑌. The former subset corresponds 
to the input ground “happensAt” predicates, i.e. the STA stream. The latter corresponds 
to groundings of the “holdsAt”, “initiatedAt”, and “terminatedAt” predicates. The joint 
probability distribution of a possible query assignment 𝑌 = 𝐲, conditioned over a given 
assignment 𝑋 = 𝐱 is defined as follows: 

 

 

𝑃(𝑌 = 𝑦|𝑋 = 𝑥) =
1

𝑍(𝐱)
𝑒𝑥𝑝 (∑ 𝑤𝑖𝑛𝑖(𝐱, 𝐲)

|𝐹𝑐|

𝑖=1

) (9) 

 

Vectors 𝐱 ∈ 𝒳 and 𝐲 ∈ 𝒴 represent a possible assignment of evidence 𝑋 and query 

variables 𝑌, respectively. 𝒳 and 𝒴 are the sets of possible assignments that the evidence 
variables X and the query variables Y can take. 𝐹𝑐 is the set of clauses produced from the 
knowledge base 𝐿 and the domain constants 𝒞. The scalar value 𝑤𝑖 is the weight of the 
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i-th clause and 𝑛𝑖(𝒙, 𝒚) is the number of satisfied groundings of the i-th clause in 𝒙 and 𝒚. 

𝑍(𝒙) is the partition function that normalises over all possible assignments 𝒚′ ∈ 𝒴 of query 
variables given the assignment 𝒙: 

𝑍(𝐱) = ∑ 𝑒𝑥𝑝 (∑ 𝑤𝑖𝑛𝑖(𝐱, 𝐲′)

|𝐹𝑐|

𝑖=1

)

𝐲′∈𝒴

 

2.3.1 MLN-EC 

A dialect of the Event Calculus that incorporates MLNs is MLN-EC [2]. MLN-EC combines 
the expressive powers of the Event Calculus with the probabilistic framework of Markov 
Logic Networks in order to deal with uncertainty. As with Prob-EC, the input to MLN-EC 
is a stream of STA, as well as a set of domain-specific LTA definitions. Then, along with 
a set of domain-independent axioms, MLN-EC generates a compact knowledge base 
upon which Markov Networks will be produced and probabilistic inference and learning 
can be performed (see [2] for more details). 

 

Table 2: MLN-EC predicates 

Predicate Meaning 

happens(E, T) Event E occurs at time T 

holdsAt(F = V, T) The value of fluent F is V at time T 

initiatedAt(F = V, T) At time T a period of time for which F = V is initiated 

terminatedAt(F = V, T) At time T a period of time for which F = V is terminated 

 

Table 2 presents the basic predicates used in MLN-EC. We can see that they are the 
same as those of Prob-EC without the “initially” predicate. The “happensAt” predicate 
expresses input evidence, i.e. the occurrence of a STA. The input stream of STA is 
delivered in the form of a narrative of “happensAt” predicates. Also, similarly to what we 
have already seen in Prob-EC, “initiatedAt” and “terminatedAt” predicates are used in the 
domain-specific LTA definitions to denote the initiation and termination points for the 
various LTA. 

The domain-independent, internal MLN-EC axioms are the following: 

 

 holdsAt(F = V, T+1) ← 

     initiatedAt(F = V, T). 
(10) 

 

 holdsAt(F = V, T+1) ← 

     holdsAt(F = V, T), 

     not terminatedAt(F = V, T). 

(11) 
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not holdsAt(F = V, T+1) ← 

     terminatedAt(F = V, T). 
(12) 

 

 not holdsAt(F = V, T+1) ← 

     not holdsAt(F = V, T), 

     not initiatedAt(F = V, T). 

(13) 

 

Axiom (10) dictates that a fluent holds right after it has been initiated. Axiom (11) indicates 
that if a fluent holds at a specific time point and it is not terminated at this very time point, 
then it will hold in the following time point, as well. Axiom (12) states that if a fluent is 
terminated then it does not hold at the next time point and, finally, axiom (13) suggests 
that a fluent that does not hold and is not initiated, will continue not holding. 

 

2.3.2 Inference in MLN-EC 

Equation (9) cannot be directly computed, due to the normalization constant 𝑍(𝒙). In order 
to perform inference in MLN-EC, two types of inference are used, namely marginal 
inference and maximum a-posteriori (MAP) inference. 

Marginal inference computes the conditional probability that LTAs hold given a narrative 
of observed STA 

 

𝑃(ℎ𝑜𝑙𝑑𝑠𝐴𝑡(𝐿𝑇𝐴, 𝑇) = 𝑡𝑟𝑢𝑒 | 𝑛𝑎𝑟𝑟𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑆𝑇𝐴) 

 

In other words, this probability value measures the confidence that the LTA is recognized. 
Given the high complexity of this computation, we can employ Markov Chain Monte Carlo 
(MCMC) sampling algorithms to approximate it. However, as pointed out in [2], the 
presence of deterministic dependencies (i.e. formulae with infinite weights) violates two 
very important properties of a Markov chain, namely ergodicity and detailed balance. This 
violation produces isolated regions in the chain, due to the existence of transitions with 
zero or near-zero probabilities. Traditional MCMC methods, like the Gibbs sampler [12], 
get trapped in regions and give poor results. 

To overcome this issue, the state-of-the-art MC-SAT algorithm [13] is used. MC-SAT is a 
MCMC algorithm that combines satisfiability testing with slice-sampling [14]. Initially, a 
satisfiability solver is used to find the assignments that satisfy all the hard constraints -- 
i.e. clauses with infinite weights. Subsequently, a series of sampling steps takes place. 
At each step, the algorithm chooses the clauses that must be satisfied in the next step 
from the set of ground clauses that are satisfied at the current step, with probability 
proportional to their weight. Therefore, clauses with infinite or strong weights will be 
chosen with certainty or with high probability, respectively. Afterwards, instead of 
sampling from all possible states, MC-SAT restricts sampling only to the states that satisfy 
at least all chosen clauses. Thus, the algorithm does not get trapped in local regions and 
the resulting Markov chain satisfies both ergodicity and detailed balance. 
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Another type of inference used in MLNs is MAP inference. MAP inference determines the 
most probable assignment among all “holdsAt” instantiations that are compatible with the 
given narrative of STA, that is: 

 

argmax
ℎ𝑜𝑙𝑑𝑠𝐴𝑡

{𝑃(ℎ𝑜𝑙𝑑𝑠𝐴𝑡(𝐿𝑇𝐴, 𝑇) = 𝑡𝑟𝑢𝑒 | 𝑛𝑎𝑟𝑟𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑆𝑇𝐴)} 

 

In MLNs this task is equivalent to finding the truth assignment of all “holdsAt” 
instantiations that maximizes the sum of weights of satisfied ground clauses. This 
problem is equivalent to the NP-hard weighted maximum satisfiability problem. There has 
been a lot of effort in finding an approximate solution using local search algorithms, like 
MaxWalkSAT ([15], [16]) or using linear programming methods ([17], [18], [19]). Special 
attention has been paid to the LP-relaxed Integer Linear Programming method, proposed 
by Huynh and Mooney [17]. This method takes a Markov network, translates it into a set 
of linear constraints and solves it using standard linear optimization algorithms. See [20], 
[3], and [17] for more details. 

 

2.4 Probabilistic Interval-based Event Recognition 

Probabilistic Event Recognition methods like Prob-EC and MLN-EC, which were 
discussed above produce point-based output. In other words, these methods produce 
sequences of ground probabilistic “holdsAt” atoms, accompanied by a probability value, 
denoting that an LTA is deduced to have taken place at a certain time point with a specific 
probability. 

However, as Artikis, Makris and Paliouras point out [4], an instantaneous indication of an 
activity through a sequence of probabilistic ProbLog “holdsAt” facts may be misleading, 
due to a possibly unreliable sensor or an inaccurate LTA definition or several other factors 
that may introduce noise. Erroneous LTA recognition may cause delays and impede the 
monitoring process. Therefore, we need a more robust recognition method. Reasoning in 
terms of temporal intervals instead of time points can add robustness to the recognition 
process. 

 

2.4.1 The PIEC algorithm 

The proposed method that performs event recognition and extracts probabilistic maximal 
intervals within which an LTA is deduced to have taken place is called Probabilistic 
Interval-based Event Calculus (PIEC) [4]. Figure 2 illustrates the big picture of the 
inference procedure. 

Specifically, the process is split in two phases, the Point-based recognition phase and the 
Interval-based recognition phase. In the Point-based recognition phase, we take a stream 
of probabilistic ground facts (i.e. the STA) and give them as input to a point-based activity 
recognition method, like the ones presented in Chapter 2: Prob-EC or MLN-EC. Along 
with the input STA, we must provide the necessary domain-specific LTA definitions, in 
the form of initiation and termination rules. The output of Prob-EC or MLN-EC is a 
sequence of ground probabilistic “holdsAt” atoms that display the inferred probability that 
an LTA takes place at a specific time point. Afterwards, this sequence of probabilistic 
instantaneous LTA is forwarded to the Interval-based recognition phase, where the user 
supplies a probability threshold above which the probabilistic intervals are considered 
important and receives an output of probabilistic maximal intervals. 
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Figure 2: The big picture of Probabilistic Interval-based Activity Recognition 

 

In the bottom left part of Figure 2 there is a visualized simple example of the extraction of 
intervals from points using PIEC. Specifically, the barplots show the instantaneous 
probabilities that LTA “meeting” and “moving” take place in a 10-timepoint-long time 
period. Below the barplots there are the probabilistic maximal intervals extracted by PIEC. 
It becomes evident that there can be more than one overlapping probabilistic maximal 
intervals. In that case, PIEC has a tie breaking mechanism by calculating a measure 
called the credibility of each of the candidate overlapping intervals and choosing the most 
credible amongst them. Solid lines correspond to credible intervals. Both the probability 
and the credibility of a probabilistic maximal interval will receive plenty of attention in the 
remainder of this thesis. 

Before proceeding with the presentation of the PIEC algorithm, we provide a set of 
definitions that will appear useful later on. 

 

Definition 1. The probability of interval 𝐼𝐿𝑇𝐴 = [𝑖, 𝑗] of an LTA with 𝑙𝑒𝑛𝑔𝑡ℎ(𝐼𝐿𝑇𝐴) = 𝑗 − 𝑖 +
1 time points is defined as 

 

𝑃(𝐼𝐿𝑇𝐴) =
∑ 𝑃(ℎ𝑜𝑙𝑑𝑠𝐴𝑡(𝐿𝑇𝐴 = 𝑡𝑟𝑢𝑒, 𝑘))

𝑗
𝑘=𝑖

𝑙𝑒𝑛𝑔𝑡ℎ(𝐼𝐿𝑇𝐴)
 

 

In other words, the probability of an interval is equal to the average of the probabilities of 
the time points that it contains. 

Another key concept of PIEC is that of a probabilistic maximal interval:  

 

Definition 2. A probabilistic maximal interval 𝐼𝐿𝑇𝐴 = [𝑖, 𝑗] of an LTA is an interval such 

that, given some threshold 𝒯 ∈ [0,1], 𝑃(𝐼𝐿𝑇𝐴) ≥ 𝒯, and there is no other interval 𝐼′𝐿𝑇𝐴 such 
that 𝑃(𝐼′𝐿𝑇𝐴) ≥ 𝒯 and 𝐼𝐿𝑇𝐴 is a sub-interval of 𝐼′𝐿𝑇𝐴. 
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A consequence of the definition of a probabilistic maximal interval is that such intervals 
may be overlapping. Two examples are shown in Figure 2 – see the overlapping lines 
under the instantaneous probability evolution diagrams of “meeting” and “moving”. From 
a set of overlapping probabilistic maximal intervals, we keep only one, using interval 
credibility, defined as the product of interval length and probability: 

 

 
𝐶𝑟𝑒𝑑(𝐼𝐿𝑇𝐴) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐼𝐿𝑇𝐴) ∙ 𝑃(𝐼𝐿𝑇𝐴) = ∑ 𝑃(ℎ𝑜𝑙𝑑𝑠𝐴𝑡(𝐿𝑇𝐴 = 𝑡𝑟𝑢𝑒, 𝑘))

𝑘

 (14) 

 

where k are the time-points of the interval 𝐼𝐿𝑇𝐴. 

Algorithm 1 contains the steps of the Interval-based activity recognition procedure, in 
detail. First of all, the PIEC algorithm keeps four data structures (lists, in particular) to 
help keep the calculations simple and the complexity of the algorithm linear. These lists 
are presented in Table 3. Specifically, PIEC keeps a list of all the input instantaneous 
probabilities, named 𝐼𝑛, a list of the input probabilities subtracted by a user-specified 
probability threshold 𝒯, named 𝐿, a list of the progressive sums of list 𝐿, named 𝑝𝑟𝑒𝑓𝑖𝑥, 
as well as a list of the progressive maximum prefixes from a certain time point until the 
end of the input, named 𝑑𝑝. 

For efficient interval estimation, PIEC relies on the following construct: 

 

 
𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗] = {

𝑑𝑝[𝑗] − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1], 𝑖𝑓 𝑖 > 0

𝑑𝑝[𝑗],                                         𝑖𝑓 𝑖 = 0
 (15) 

 

𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗] expresses the maximum sum that may be computed by adding all elements 
of 𝐿 starting from 𝑖 and ending in some 𝑗∗ ≥ 𝑗, i.e.max

𝑗∗
(𝐿[𝑖] + ⋯ + 𝐿[𝑗∗]). Intuitively, 

𝑑𝑝𝑟𝑎𝑛𝑔𝑒 is a maximality indicator for a certain interval [𝑖, 𝑗]. 𝑑𝑝𝑟𝑎𝑛𝑔𝑒 ≥ 0 means that the 
interval [𝑖, 𝑗] is indeed a valid probabilistic interval, but it cannot be considered maximal 
yet, so the algorithm needs to further expand it and re-calculate the 𝑑𝑝𝑟𝑎𝑛𝑔𝑒 for the 

expanded interval [𝑖, 𝑗 + 1]. 𝑑𝑝𝑟𝑎𝑛𝑔𝑒 < 0 means that the interval [𝑖, 𝑗] is not a valid 
probabilistic maximal interval and the algorithm needs to keep searching, by sliding the 
current interval to the right and focusing on [𝑖 + 1, 𝑗]. Algorithm 1 presents this procedure 
in detail. 

In lines 2 – 9 of Algorithm 1, there is the initialization of the data structures enumerated 
earlier, as well as two pointers start and end, a data structure for the output intervals, and 
the 𝑑𝑝𝑟𝑎𝑛𝑔𝑒 matrix. Then, the algorithm starts sliding pointers start and end to the right, 

starting from 0 until the end of the input, calculating the 𝑑𝑝𝑟𝑎𝑛𝑔𝑒 at each (start, end) pair, 
according to (15). Line 12 of the algorithm implements the first branch of the definition of 
𝑑𝑝𝑟𝑎𝑛𝑔𝑒, while line 14 implements the second one. 

Depending on the value of 𝑑𝑝𝑟𝑎𝑛𝑔𝑒, the algorithm distinguishes two main cases, namely 
𝑑𝑝𝑟𝑎𝑛𝑔𝑒 being negative or non-negative. In the non-negative case (see line 15), the 
algorithm knows that [start, end] is either a probabilistic maximal interval or, at least, the 
foremost sub-interval thereof. Therefore, it “flags” [start, end] (i.e. it labels it as a 
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potentially maximal probabilistic interval) and slides the end pointer one step to the right 
of the timeline. In the corner case that the end pointer is pointing at the end of the timeline, 
PIEC has no means of expanding this interval, therefore it simply adds it to the output, as 
is (see line 17). In the negative 𝑑𝑝𝑟𝑎𝑛𝑔𝑒 case (line 20), PIEC knows that there is no 

element 𝑒𝑛𝑑∗ ≥ 𝑒𝑛𝑑 s.t. 𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑∗] ≥ 0. If we take a look at the definition of 
𝑑𝑝𝑟𝑎𝑛𝑔𝑒, we will see that it depends on the value of 𝑑𝑝, which – by definition – is a 
decreasing function. As a result, when PIEC computes a negative 𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] 
and the previously examined interval, [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 − 1], is flagged, then it deduces that the 
previous interval (that is, [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 − 1]) is indeed a probabilistic maximal interval and 
adds it to the output (line 22). In the corner case where both pointers start and end are 
pointing at the last time point of the timeline and the instantaneous probability at this point 
is greater than the threshold, then PIEC considers singleton interval [𝑛, 𝑛] to be 
probabilistic maximal (see line 24}). Either case, if PIEC comes across an interval with a 
negative 𝑑𝑝𝑟𝑎𝑛𝑔𝑒 it knows that it is neither a probabilistic maximal interval nor the 
foremost sub-interval thereof. Hence, it turns the binary flag to “false” (line 25) and slides 
the start pointer one step to the right (line 26). Full mathematical proof of the correctness 
of this procedure is provided later on. 

 

2.4.2 Interval credibility 

In the last line of Algorithm 1, we can see a call to a routine named “getCredible”, that 
takes as input the full list of probabilistic maximal intervals that PIEC has produced. As 
we have already discussed, the way that PIEC performs its computations, leads to the 
existence of possibly overlapping probabilistic maximal intervals. The activity recognition 
task requires that every occurrence of an LTA be unambiguously represented. 
Overlapping intervals contain some level of ambiguity. If, for instance, we are in a situation 
similar to that depicted in Figure 3, where PIEC suggests that a certain LTA take place 
during the temporal intervals {[3, 25], [2, 27], [5, 28], [6, 29]}, we want to be able to keep 
just one of these intervals: the one that best fits to the actual occurrence of this LTA. In 
the specific case of Figure 3, the most credible interval is [5, 28], shown in bold. 

 

Table 3: The lists of PIEC 

Notation Meaning 

𝒯 Probability threshold 

𝐼𝑛[0. . 𝑛] The list of input instantaneous LTA probabilities 

𝐿[𝑖] = 𝐼𝑛[𝑖] − 𝒯, i.e. each element of 𝐼𝑛 is subtracted by 𝒯 

𝑝𝑟𝑒𝑓𝑖𝑥[𝑖] = ∑ 𝐿[𝑗]𝑖
𝑗=0 , i.e. the cumulative sum over 𝐿 

𝑑𝑝[𝑖] = max
𝑗

(𝑝𝑟𝑒𝑓𝑖𝑥[𝑗]), 𝑗 ∈ [𝑖, 𝑛], i.e. the maximum prefix sum that can be 

reached from element 𝑖 to 𝑛 
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To achieve this, PIEC is accompanied by an auxiliary mechanism that takes all sets of 
overlapping probabilistic maximal intervals, computes their 𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 measure, and from 
each set picks the most credible interval. The ultimately chosen intervals are the final 
estimation of the algorithm as to when did an LTA take place, according to the input STA. 

This mechanism is presented step-by-step in Algorithm 2. “getCredible” takes one 
argument, namely the list of possibly overlapping probabilistic maximal intervals, while it 
returns the list of credible probabilistic maximal intervals. If the input list contains more 
than one element, the algorithm first initializes some variables that are going to be needed 
later on. Specifically, in lines 5 – 8, “getCredible” initializes its output list to be empty, 
takes the first interval from the input and calculates its credibility. currentEnd is an 
auxiliary pointer that marks the end of the last interval examined and is useful in detecting 
overlaps. In line 7 currentEnd points to the end of the first input interval, while in line 8 
maxCredibility is set to the credibility of the first input interval. 

For every other input interval, “getCredible” checks if it is overlapping with the previous 
one (line 10). If there is an overlap, then it updates pointer currentEnd accordingly (line 
14) and checks the credibility of the new interval. If the credibility is greater than the 
maximum credibility seen so far in the current group of overlapping intervals, then it 
appropriately updates the maxCredibility and the maxCredInterval (see lines 12, 13). If 
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there is no overlap with the previous interval, this means that the algorithm has reached 
the end of a group and has already found the most credible among them. Therefore, in 
line 16 it adds maxCredInterval to the output and starts a new overlapping group, 
considering the current interval as the maxCredInterval, and its credibility as the 
maxCredibility. At the same time, it updates currentEnd to point to the last timepoint of 
the current interval. These actions can be seen in lines 17 – 19 of Algorithm 2. Ultimately, 
when the entire input has been processed, “getCredible” adds the last maxCredInterval 
to the output and returns it (lines 20, 21). 

 

 

 

2.4.3 Time and space complexity 

In [4] it is maintained that PIEC has 𝑂(𝑛) time and space complexity, where 𝑛 is the length 
of the input. Indeed, the data structures and pointers involved have been carefully chosen 
so as to aid the algorithm perform its calculation in at most two passes over the input 
probability array. More specifically, arrays 𝐿, 𝑝𝑟𝑒𝑓𝑖𝑥, and 𝑑𝑝 are computed in 𝛩(𝑛) time. 
The detection of all the probabilistic maximal intervals requires a 𝑂(2𝑛) time because, at 
the worst case, pointers start and end will both have to slide through the entire input. The 
choice of the most credible interval is also a linear process, as the candidate intervals are 
temporally sorted based on their initial timepoint. Finally, as far as the memory is 
concerned, the sizes of the auxiliary data structures are linear with respect to 𝑛, therefore 

the entire memory consumption remains a linear function of 𝑛. 
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Figure 3: Sample case where PIEC computes several overlapping maximal intervals and chooses 
one of them as the most credible. The probability threshold has been set to 0.5 and is shown in 

the dashed line. 

 

2.5 The CAVIAR dataset 

All the experiments presented in this thesis have been conducted using the CAVIAR 
dataset2 for human activity recognition. This dataset features 28 staged public space 
surveillance videos, totaling 26419 video frames. There are actors that perform several 
activities like walking, running, meeting, fighting, among others. The dataset has been 
fully annotated by its creators to provide the ground truth for all the activities included. 

There are two categories of activities that appear in the CAVIAR dataset, namely Short-
term activities and Long-term activities. The former, abbreviated as STA are simple 
actions that take place in a short period of time. The latter, abbreviated as LTA are 
composite activities, often combinations of STA and last longer. STA include walking, 
running, making gestures or being in motion without changing one’s location (active), 
resting, appearing and disappearing from the video frame. On the other hand, LTA include 
meeting, two or more persons moving together, a person leaving an object unattended 
and two or more people fighting. 

There are also auxiliary measurements concerning the position and orientation of the 
various tracked people and objects at each time point. This type of information is 
necessary for computing the distance between two entities, as well as the direction to 
which a person might be moving. Both distance and orientation are crucial for the 
definition of LTA like “meeting”, “moving”, “leaving object”, and “fighting”, because all of 
them involve people approaching other people or objects. 

                                            

2 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/ 
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3. RELATED WORK 

There is a wide spectrum of technologies developed with view to detecting incidents or 
activities of interest from data streams. According to [21], these technologies form the 
field of Complex Event Processing (CEP). Unlike Active Database Systems (ADSMS) 
and Data Stream Management Systems (DSMS) (see, for instance [22], [23]), which run 
relational queries over data streams, CEP systems consider data streams as streams of 
(instantaneous or durative) events and use the temporal relations between them to detect 
interesting patterns. 

In the literature ([24], [25]), CEP query languages are often divided into three categories, 
namely Logic-based, Tree-based and Automata-based. All dialects presented in the 
previous section are founded on the Event Calculus and pertain to the Logic-based 
category. Other examples of Logic-based languages include ([26], [7], and [27]). Tree-
based models can be found in [28] and [29], whereas [30], [31], [32], [33], and [34] are 
examples of Automata-based languages. Bucchi et al. [21] state that state-of-the-art CEP 
query languages suffer from obscure semantics and problematic query evaluation. 
Specifically, the semantics of most CEP query languages tend to be too complicated, 
unintuitive or severely restricted and this makes the languages difficult to understand and 
evaluate. In order to deal with this issue, Bucchi et al. propose Complex Event Logic – 
CEL, a formal CEP language with well-defined semantics, as well as a formal evaluation 
framework for CEL, using an automata-based computational model called Complex Event 
Automata – CEA. In their work, Bucchi et al. present efficient evaluation algorithms and 
provide experimental results that suggest that their framework outperforms other state-
of-the-art CEP systems. 

According to [35], CEP is considered a subset of the Event Processing (EP) paradigm. 
Dayarathna et al. define EP as the computing that captures and processes the happening 
of real-world incidents, whereas they define CEP as the computing that performs 
calculations on complex events. Complex events are defined as aggregations or 
derivations on groups of events, and events are just real-world incidents. In this work, the 
software tools for EP are divided into three categories, namely Event Processing 
Platforms (EPP) (see, for instance SQLstream3 and DataTorrent RTS4 ([36], [37], and 
[38])), Distributed Stream Computing Platforms (DSCP) ([39] and [40]), and CEP 
Libraries. A CEP library should be an immediately responsive component, capable of 
identifying non-trivial, meaningful patterns among heterogeneous and seemingly 
unrelated events. Examples of CEP libraries are Esper5, Siddhi [41] and Cayuga [42]. 
According to the work of Dayarathna et al., CEP has been used in a wide spectrum of 
modern, real-world applications, associated with the Internet of Things, as well as text, 
video and graph data stream processing and analytics. 

This thesis focuses on probabilistic event recognition, and therefore we should take some 
time to briefly discuss systems that were designed with view to handling noise, either in 
the STA or in the LTA definitions. The parameters that must be taken into consideration 
when studying a complex event recognition system are: 

                                            

3 https://sqlstream.com/ 

4 http://web.datatorrent.com/2014-Hadoop-World-Strata.html 

5 http://www.espertech.com/esper 
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• How knowledge is represented 

• How time is modelled 

 

In many systems, including the ones mentioned in the previous section, the knowledge is 
represented by means of Logic. For instance, Prob-EC is an event recognition system 
that applies the Event Calculus and the Probabilistic Logic Programming language 
ProbLog for the representation of knowledge. As far as the modelling of time is 
concerned, several event recognition systems calculate the probability of occurrence for 
an LTA at each timepoint, separately. These methods are called timepoint-based. On the 
other hand, there are other methods that try to recognize the occurrence of an LTA in 
terms of temporal intervals. These are called interval-based methods. Prob-EC is a 
timepoint-based probabilistic event recognition system that receives a sequence of 
timestamped STA with probabilities attached for every occurring instant. 

Another MLN-based approach, presented by [10], is DEC-MLN. This dialect addresses 
the uncertainty that is caused by using incomplete LTA definitions. This uncertainty is 
expressed by means of weighted LTA definitions, which in turn are expressed using the 
Event Calculus, like the methods discussed in the previous Chapter. MLNs were also 
used in [43], where the LTA recognition was based on noisy STA, stemming from lower-
level sensors-classifiers. A logic-based LTA recognition system is available on [44], where 
the proposed system attempts handling noise that is a result of unreliable sensors. The 
LTA definitions are uncertain, thus denoting an estimation of the credibility degree of a 
rule, whereas the STA are accompanied by a correct detection probability. Another logic-
based uncertainty handling approach, called PEC, can be found in [45]. PEC presents a 
version of the Event Calculus appropriate for probabilistic recognition. It introduces an 
extension that maintains the format of the Event Calculus clauses, as well as the notion 
of possible worlds for the calculation of the activities. 

Typically, in order to address uncertainty, systems that incorporate probabilistic graphical 
models are being used. These systems apply probabilistic graphical models during the 
processing of the data corresponding to the STA and aim at inferring LTA. Hidden Markov 
Models are used [46] with view to recognizing digits in speech signals. Moreover, 
Dynamic Bayesian Networks have been used for the recognition of audio-visual speech 
signals [47]. Also, in [48] we observe the application of Conditional Random Fields. The 
aforementioned models provide important information, even at the presence of noise, 
since they can handle it in a natural way. However, their ability to compactly and 
effectively define complex activities deteriorates, due to their increased complexity. 

In addition to discrete time-point-based systems, temporal-relation-based systems have 
also been proposed in the Complex Event Recognition literature. For instance, in [49] 
data generated from low-level classifiers are being used in order to compute the most 
likely sequence of LTA. This system uses MLN for the LTA representation and the Allen’s 
Interval Algebra for the reasoning upon temporal intervals. Another similar work is 
presented in [50]. This Event Recognition system considers LTA beginning and ending at 
uncertain timepoints. These uncertain timepoints are represented by means of uniformly 
distributed random variables, which are used in computing the LTA probabilities. Time is 
represented using an extended version of Allen’s interval algebra that uses segmented 
intervals. The probability estimation is performed with respect to the LTA sequences, by 
calculating the probability sum of every mutually exclusive possible world. Pruning and 
caching techniques are also used in order to optimize the process. 

In this work we focus on calculating the probability of an LTA taking place in a temporal 
interval. We model this probability as the arithmetic mean of the instantaneous 
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probabilities of the LTA under examination. These instantaneous probabilities are 
computed using Prob-EC, which incorporates the Event Calculus axioms and the 
expressive powers of the ProbLog language. Afterwards, in order to deal with the noisy 
recognition, we apply the Probabilistic Interval-based Event Calculus (PIEC) algorithm, 
which is the main focus of this thesis. This algorithm computes probabilistic maximal 
intervals – that is, sets of one or more consecutive timepoints, which have a probability 
greater than or equal to a certain probability threshold and, at the same time, they are of 
maximum length. The algorithm is based upon the longest non-negative sum interval 
(LNNSI) computation problem [51], as well as the maximum sum interval (MSI). According 
to the LNNSI problem, we are asked, given a sequence of real numbers, to find a 
maximum length contiguous subsequence that has a non-negative sum. Hence, we 
transform our LTA recognition problem into a maximum length non-negative sum interval 
computation problem and, subsequently, we identify all maximal intervals whose 
probability is greater than or equal to a user-specified probability threshold. 
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4. CORRECTNESS OF THE PIEC ALGORITHM 

In this chapter, we provide a series of mathematical proofs that the PIEC algorithm is 
correct. We investigate its soundness and completeness and try to prove that all intervals 
produced by PIEC are indeed probabilistic maximal and there are also no probabilistic 
maximal intervals that PIEC does not compute, given an input sequence of instantaneous 
probabilities. In what follows, we consider the full output of PIEC, without the filtering of 
the credibility mechanism. 

 

4.1 Soundness 

An interval 𝐼𝐿𝑇𝐴 = [𝑖, 𝑗] satisfies the condition of a probabilistic maximal interval that 

𝑃(𝐼𝐿𝑇𝐴) ≥ 𝒯, if and only if the sum of the corresponding elements of list 𝐿 is non-negative: 

 

 
𝑃(𝐼𝐿𝑇𝐴) ≥ 𝒯 ⇔ 𝑃([𝑖, 𝑗]) ≥ 𝒯 ⇔

∑ 𝐼𝑛[𝑘]
𝑗
𝑘=𝑖

𝑗 − 𝑖 + 1
≥ 𝒯 ⇔ 

∑ 𝐼𝑛[𝑘]
𝑗

𝑘=𝑖
≥ 𝒯(𝑗 − 𝑖 + 1) ⇔ ∑ 𝐼𝑛[𝑘]

𝑗

𝑘=𝑖
− 𝒯(𝑗 − 𝑖 + 1) ≥ 0 ⇔ 

(𝐼𝑛[𝑖] − 𝒯) + ⋯ + (𝐼𝑛[𝑗] − 𝒯) ≥ 0 ⇔ ∑ 𝐿[𝑘]
𝑗

𝑘=𝑖
≥ 0 

(16) 

 

For brevity, in all proofs below, we assume intervals [𝑖, 𝑗] with 0 < 𝑖 < 𝑗 < 𝑛, where 𝑛 is 
the last time-point of the dataset. Therefore, such an interval may only be produced by 
line 22 of the Algorithm of PIEC. 

 

Proposition 1. Every interval computed by PIEC has probability greater or equal to the 

given threshold 𝒯. 

 

Proof. Assume that PIEC computes the interval [𝑖, 𝑗] and that 𝑃([𝑖, 𝑗]) < 𝒯. Since PIEC 
computes [𝑖, 𝑗], then, by Algorithm 1, we have that: 

 

 
𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗] ≥ 0 ⇔ 𝑑𝑝[𝑗] − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] ≥ 0 ⇔ 

max
𝑘∈[𝑗,𝑛]

(𝑝𝑟𝑒𝑓𝑖𝑥[𝑘]) − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] ≥ 0 ⇔ max
𝑘∈[𝑗,𝑛]

(𝑝𝑟𝑒𝑓𝑖𝑥[𝑘]) ≥ 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] 

(17) 

 

Moreover, since PIEC computes [𝑖, 𝑗], then: 
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𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗 + 1] < 0 ⇔ 𝑑𝑝[𝑗 + 1] − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] < 0 ⇔ 

max
𝑙∈[𝑗+1,𝑛]

(𝑝𝑟𝑒𝑓𝑖𝑥[𝑙]) − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] < 0 ⇔ max
𝑙∈[𝑗+1,𝑛]

(𝑝𝑟𝑒𝑓𝑖𝑥[𝑙]) < 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] 

(18) 

 

From inequalities (17) and (18), we have that: 

 

 
max

𝑙∈[𝑗+1,𝑛]
(𝑝𝑟𝑒𝑓𝑖𝑥[𝑙]) < 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] ≤ max

𝑘∈[𝑗,𝑛]
(𝑝𝑟𝑒𝑓𝑖𝑥[𝑘]) (19) 

 

Consequently: 

 

 
max

𝑙∈[𝑗+1,𝑛]
(𝑝𝑟𝑒𝑓𝑖𝑥[𝑙]) < max

𝑘∈[𝑗,𝑛]
(𝑝𝑟𝑒𝑓𝑖𝑥[𝑘]) ⇔ max

𝑘∈[𝑗,𝑛]
(𝑝𝑟𝑒𝑓𝑖𝑥[𝑘]) = 𝑝𝑟𝑒𝑓𝑖𝑥[𝑗] (20) 

 

From formulas (19) and (20), we have: 

 

 
𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] ≤ 𝑝𝑟𝑒𝑓𝑖𝑥[𝑗] (21) 

 

However, according to our assumptions, we have 𝑃([𝑖, 𝑗]) < 𝒯, and according to formula 
(16), we have that: 

 

 
∑ 𝐿[𝑘]

𝑗

𝑘=𝑖
< 𝒯 ⇔ 𝑝𝑟𝑒𝑓𝑖𝑥[𝑗] − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] < 0 ⇔ 𝑝𝑟𝑒𝑓𝑖𝑥[𝑗] < 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] (22) 

 

Formulas (21) and (22) are contradicting and thus our initial assumption that 𝑃([𝑖, 𝑗]) < 𝒯 
does not hold. ■ 

 

 

 

 



A study on the Probabilistic Interval-based Event Calculus 

C. G. Vlassopoulos   43 

Proposition 2. For every interval [𝑖, 𝑗] computed by PIEC, there is no interval [𝑘, 𝑙] with 

• 𝑘 = 𝑖 and 𝑙 > 𝑗, or 

• 𝑘 < 𝑖 and 𝑙 = 𝑗, or 

• 𝑘 < 𝑖 and 𝑙 > 𝑗, 

and 𝑃([𝑘, 𝑙]) ≥ 𝒯. 

 

Proof. First case: 

Assume that PIEC computes the interval [𝑖, 𝑗] and that there is an interval [𝑖, 𝑙] with 𝑙 > 𝑗 
and 𝑃([𝑖, 𝑙]) ≥ 𝒯. Since PIEC computes [𝑖, 𝑗], then we have from formula (19) that: 

 

 
max

𝑚∈[𝑗+1,𝑛]
(𝑝𝑟𝑒𝑓𝑖𝑥[𝑚]) < 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] (23) 

 

However, according to our assumptions, 𝑃([𝑖, 𝑙]) ≥ 𝒯, which, according to formula (22), 
implies that: 

 

 
𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] ≤ 𝑝𝑟𝑒𝑓𝑖𝑥[𝑙] (24) 

 

Formulas (23) and (24) are contradicting, as max
𝑚∈[𝑗+1,𝑛]

(𝑝𝑟𝑒𝑓𝑖𝑥[𝑚]) < 𝑝𝑟𝑒𝑓𝑖𝑥[𝑙] does not 

hold since 𝑙 > 𝑗, and thus our initial assumption that there is an interval [𝑖, 𝑙] with 𝑙 > 𝑗 and 
𝑃([𝑖, 𝑙]) ≥ 𝒯 does not hold. 

 

Second case: 

Assume that PIEC computes the interval [𝑖, 𝑗] and that there is an interval [𝑘, 𝑗] with 𝑘 < 𝑖 
and 𝑃([𝑘, 𝑗]) ≥ 𝒯. 

By taking a closer look on the PIEC algorithm, we observe that whenever it comes across 
an interval [𝑖, 𝑗] with 𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗] < 0, it ignores it and slides the beginning of the interval 
one step to the right (see line 26 of the algorithm). If the dprange is non-negative, PIEC 
“flags” this interval and tries to expand it by sliding the end of the interval to the right (see 
line 19). If dprange becomes negative, while expanding a flagged interval, PIEC 
recognizes that it has just exceeded the ending of the desired interval and shapes its 
output accordingly (see line 22). 

Therefore, since PIEC computes [𝑖, 𝑗], it must have gone through at least one negative 
dprange before it moves its start index to timepoint 𝑖. So, there has to be a timepoint 𝑘 
and a timepoint 𝑗′, with 𝑘 < 𝑖 and 𝑗′ ≤ 𝑗, such that: 
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𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑘, 𝑗′] < 0 ⇔ 𝑑𝑝[𝑗′] − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑘 − 1] < 0 (25) 

 

Also, since 𝑗′ ≤ 𝑗, we have that: 

 

 
𝑑𝑝[𝑗′] ≥ 𝑝𝑟𝑒𝑓𝑖𝑥[𝑗] (26) 

 

From (25), (26), we obtain: 

 

𝑝𝑟𝑒𝑓𝑖𝑥[𝑗] − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑘 − 1] < 0 ⇔ 𝑃([𝑘, 𝑗]) < 𝒯 

 

which is incompatible with our assumption that 𝑃([𝑘, 𝑗]) ≥ 𝒯. 

 

Third case: 

Assume that PIEC computes the interval [𝑖, 𝑗] and that there is an interval [𝑘, 𝑙] with 𝑘 < 𝑖  
and 𝑙 > 𝑗 and 𝑃([𝑘, 𝑙]) ≥ 𝒯. 

Similarly to the second case, since PIEC computes [𝑖, 𝑗], there has to be a timepoint 𝑘 
and a timepoint 𝑗′, with 𝑘 < 𝑖 and 𝑗′ ≤ 𝑗 < 𝑙, such that: 

 

 

𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑘, 𝑗′] < 0 ⇔ 𝑑𝑝[𝑗′] − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑘 − 1] < 0 (27) 

 

Also, since 𝑗′ ≤ 𝑗 < 𝑙, there has to be: 

 

 
𝑑𝑝[𝑗′] ≥ 𝑝𝑟𝑒𝑓𝑖𝑥[𝑙] (28) 

 

From (27), (28), we obtain: 

 

𝑝𝑟𝑒𝑓𝑖𝑥[𝑙] − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑘 − 1] < 0 ⇔ 𝑃([𝑘, 𝑙]) < 𝒯 
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which is incompatible with our assumption that 𝑃([𝑘, 𝑗]) ≥ 𝒯. ■ 

 

Proposition 3 (Soundness). Every interval computed by PIEC is a probabilistic maximal 
interval. 

 

Proof. From Proposition 1 we obtain that every interval 𝛪 = [𝑖, 𝑗] computed by PIEC has 
a probability above the specified threshold 𝒯. From Proposition 2 we obtain that there is 
no other interval 𝐼′ such that 𝑃(𝐼′) ≥ 𝒯 and 𝐼 is a sub-interval of 𝐼′. Therefore, [𝑖, 𝑗] is a 

probabilistic maximal interval. ■ 

 

4.2 Completeness 

 

Proposition 4 (Completeness). There is no probabilistic maximal interval that PIEC does 
not compute. 

 

Proof. First of all, we must observe that the last step of the PIEC algorithm (line 27) 
consists of taking all overlapping probabilistic maximal intervals and choosing the most 
credible among them. This, by definition, makes the algorithm incomplete with respect to 
probabilistic maximal intervals. Therefore, we will study the algorithm’s completeness 
without filtering out the non-credible intervals. 

Let us assume that there is a probabilistic maximal interval [𝑖, 𝑗] that is not computed by 

PIEC. As we have seen in Propositions 1 and 2, this assumption implies that 𝑃([𝑖, 𝑗]) ≥ 𝒯 
and that there is no super-interval [𝑘, 𝑙] whose probability is 𝑃([𝑘, 𝑗]) ≥ 𝒯. 

Whenever PIEC comes across an interval [𝑖, 𝑗] with 𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗] ≥ 0, which becomes 
𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗 + 1] < 0 at the next step, the algorithm deduces that [𝑖, 𝑗] is a probabilistic 
maximal interval and adds it to its output. 

So, if interval [𝑖, 𝑗] is not computed by PIEC, then we must have either 

 

 
𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗] < 0 (29) 

 

or 

 

 
𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗 + 1] ≥ 0 (30) 

 

From inequality (29), we have: 
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 𝑑𝑝𝑟𝑎𝑛𝑔𝑒[𝑖, 𝑗] < 0 ⟺ 

𝑑𝑝[𝑗] − 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] < 0 ⟺ 

𝑑𝑝[𝑗] < 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] ⟺ 

max
𝑘∈[𝑗,𝑛]

(𝑝𝑟𝑒𝑓𝑖𝑥[𝑘]) < 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] 

(31) 

 

However, since 𝑝𝑟𝑒𝑓𝑖𝑥[𝑙] ≤ max
𝑘∈[𝑗,𝑛]

(𝑝𝑟𝑒𝑓𝑖𝑥[𝑘]), for every 𝑙 ≥ 𝑗, we obtain: 

 

𝑝𝑟𝑒𝑓𝑖𝑥[𝑗] ≤ max
𝑘∈[𝑗,𝑛]

(𝑝𝑟𝑒𝑓𝑖𝑥[𝑘]) 

 

Thus, (31) becomes: 

 

𝑝𝑟𝑒𝑓𝑖𝑥[𝑗] < 𝑝𝑟𝑒𝑓𝑖𝑥[𝑖 − 1] ⟺ 
𝑃([𝑖, 𝑗]) < 𝒯 

 

which is not compatible with our assumption that 𝑃([𝑖, 𝑗]) ≥ 𝒯. 

Now, as far as inequality (30) is concerned, if we take a look at lines 15-19 of Algorithm 
1, we can see that, whenever the PIEC algorithm detects a non-negative dprange, it sets 
the flag to true and starts expanding the interval by incrementing its end point. Hence, 
inequality (30) means that our algorithm has flagged the interval [𝑖, 𝑗 + 1] and moves its 
end pointer to 𝑗 + 2. But if this was true, it would mean that there is an interval [𝑖, 𝑗′], with 

𝑗′ > 𝑗 and 𝑃([𝑖, 𝑗′]) ≥ 𝒯. However, this is contradicting with our assumption that [𝑖, 𝑗] is 
maximal. 

Therefore, both our initial assumptions that [𝑖, 𝑗] is maximal and 𝑃([𝑖, 𝑗]) ≥ 𝒯 have 

collapsed. ■ 
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5. EXPERIMENTAL EVALUATION 

After having completed the correctness analysis of our algorithm, we focus on evaluating 
it on a benchmark dataset for video activity recognition. Specifically, we use the – publicly 
available – CAVIAR dataset6. Our goal is to check and illustrate the algorithm’s ability to 
produce probabilistic, maximal intervals which correspond to the actual occurrences of 
the respective LTA’s as accurately as possible. 

We took Makris’ Python implementation of PIEC and re-implemented it using the Scala 
programming language. We then repeated the experiments conducted in [4] in order to 
verify the equivalence between the two PIEC implementations. The results are presented 
below and appear to be identical to those in [4]. However, Makris’ evaluation is limited to 
comparing PIEC to Prob-EC. We need to involve other state-of-the-art probabilistic Event 
Calculi, as well, in order to make the comparison more thorough and to achieve deeper 
understanding of our algorithm. To that effect, we further extended the evaluation by 
juxtaposing PIEC to MLN-based methods, like the ones discussed in Chapter 2. This 
comparison is performed in two levels: A general level, aggregating information from all 
30 videos of the CAVIAR dataset, and a detailed level, focusing on interesting cases 
taken from one video at a time. Finally, we start exploring the field of alternative credibility 
definitions. The original interval credibility definition, made by Makris et al., is just one of 
many possible credibility strategies. We try several different ways to calculate interval 
credibility and observe how the performance of our algorithm is affected each time. 

 

5.1 Comparison to Prob-EC 

For the first round of experiments we used the state-of-the-art activity recognition system 
Prob-EC [1]. Prob-EC works in a timepoint-based manner, receiving a set of noisy7, 
timestamped STA’s and producing a similar set of probabilistic LTA timepoints. However, 
it is intuitively more convenient and less error prone to talk about intervals during which 
an activity takes place, rather than a collection of timepoints and this is exactly what PIEC 
algorithm does: Receiving a collection of probabilistic timepoints and producing 
probabilistic maximal intervals. 

In all probabilistic point-based methods, like Prob-EC and MLN-EC, the intervals are 
being estimated by filtering the timepoints whose probability lies above a threshold, say 
0.5, specified by the user. 

In order to test the accuracy of PIEC, we ran our algorithm on the output of Prob-EC for 
the CAVIAR dataset, calculated its Precision, Recall and F-measure and compared its F-
measure with that of the older, plain threshold approach. Figures Figure 4, Figure 5 and 
Figure 6 illustrate this comparison. 

We are interested in observing the behavior of the two approaches over various levels of 
noise in the data. In other words, we want to see which setting is more accurate and 
noise-tolerant. To that effect, we have added artificial noise, using the Gamma probability 
distribution, with Gamma mean values ranging from 0.0 (no artificial noise) to 8.0 (high 
artificial noise), with a step of 0.5 in between. 

                                            

6 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/ 

7 Noise is expressed by means of a number 𝑛 ∈ [0,1] which is attached to each timestamped STA, denoting 
the probability that this STA actually happens at the given timepoint 
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The following figures display F-measures for both approaches with respect to noise 
levels. Specifically, Figure 4 shows the comparison between PIEC and the plain threshold 
approach for the “fighting” LTA. The 3 blue lines represent the results of the PIEC 
approach with 3 different thresholds: 0.5 (light slate blue), 0.7 (blue), and 0.9 (navy blue). 
Similarly, the 3 red lines correspond to the results of the simpler approach with threshold 
values of 0.5 (light coral), 0.7 (red), and 0.9 (maroon). Figures Figure 5 and Figure 6 show 
the comparison results for the “meeting” and “moving” LTA’s, respectively. 

 

 

Figure 4: Testing results for the "fighting" LTA 

 

 

Figure 5: Testing results for the "meeting" LTA 

 

 

Figure 6: Testing results for the "moving" LTA 

 

We observe that, in general, PIEC appears to achieve higher accuracy. Especially in the 
“fighting” case, blue lines are never below red lines that correspond to the same threshold 
value. They only become equal to each other in the rightmost part of Figure Figure 4, 
where the noise is so strong that, from some point onwards, both methods fail to 
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recognize anything. Nevertheless, for milder noise levels, PIEC seems to consistently 
produce more accurate intervals for the occurrences of “fighting”. 

On top of that, we can see higher PIEC thresholds leading to even better results, while 
on the simpler approach higher thresholds exhibit less noise-tolerant behavior. But this 
pattern only holds for the smooth noise scenario, on the left of Figure 4. When noise 
becomes significantly stronger, the smallest PIEC threshold appears to be the best 
option. 

For the “meeting” LTA, the pattern seems somehow different. On the left of Figure 5, we 
observe that PIEC results are consistently worse than those of the plain threshold 
approach. We still witness, though, that higher PIEC thresholds lead to better results, 
while in the older approach thresholds work contrariwise. For a probability threshold of 
0.9, the two approaches produce very similar results. 

If we take a look at the right-hand part of Figure 5, we witness that, as noise becomes 
significantly stronger, PIEC surpasses the older approach for all 3 threshold values, while, 
at the same time, the smallest PIEC threshold once again proves to be the most noise-
tolerant, for very high levels of noise. On the other hand, the effectiveness of the plain 
threshold approach drops quicker towards 0, especially for a threshold value of 0.9. 

Finally, as far as the “moving” LTA is concerned, for smooth noise (Figure 6, on the left) 
the pattern seems similar to that of Figure 5, on the right. That is, for very small amounts 
of noise, the older approach gives better results, while, as noise gets stronger, blue lines 
surpass the corresponding red ones and, eventually, yet again PIEC with a threshold of 
0.5 does best for the highest amounts of noise. The same pattern repeats on the right of 
Figure 6 with the only difference that, since the noise is very strong, both approaches 
quickly drop to 0. 

Another interesting observation is that, no matter how better does PIEC behave, when 
the plain threshold approach reaches 0, for a given thresholds value, so does the PIEC 
approach, too. In other words, there is no case where, for a given noise amount and 
threshold value, one approach gives an F-measure of 0 and the respective F-measure of 
the other approach is greater than 0. 

Overall, we can state that for moderate or high amounts of noise, PIEC seems to do 
significantly better, whereas for no or little noise, using the plain threshold approach 
seems a slightly better idea. These results are identical to those appearing on the 
evaluation section of [4], thus giving a strong indication that our Scala implementation of 
PIEC is equivalent to Makris’ Python implementation. 

 

5.2 Comparison to MLNs 

We now proceed to the comparison of PIEC to the results of the MLN-EC mechanism. 
We have taken two variants of the MLN-EC point-based probabilistic Event Recognition 
system; one that features manual rules and the Diagonal Newton weight learning method 
(hereinafter DN), and one that features rules learned by the OSLα structure learner 
(hereinafter OSLα) [20]. 

The output of MLN-EC is a sequence of instantaneous CE probabilities. We can take this 
sequence of probabilistic points and transform it into a sequence of intervals by either 
applying a probability threshold and building intervals from the points whose probability 
exceeds this threshold or by using the PIEC algorithm, whose purpose is to produce 
probabilistic maximal intervals from points. 
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In what follows, we start by making a general, overall performance comparison between 
DN/OSLα and PIEC for the LTA “meeting” and “moving” and for probability threshold 
values ranging from 0.1 to 0.9. Subsequently, we make an in-depth comparison, 
presenting specific cases (that is, pairs of entities involved in a LTA within a certain video) 
which appear to be of particular interest, either because PIEC is performing significantly 
better or because it is performing worse. In some of the cases where PIEC performs 
worse, we go to even greater depth by displaying all overlapping probabilistic maximal 
intervals to see if PIEC could have done better, had it used a different credibility definition. 

 

5.2.1 Overall comparison 

Figures Figure 7 to Figure 14 below, compare DN/OLSα with PIEC in terms of Precision, 
Recall and F-measure. 

 

 

Figure 7: Micro Precision, Recall and F-measure comparison between DN and PIEC on CAVIAR's 
"meeting" LTA 

 

 

Figure 8: Macro Precision, Recall and F-measure comparison between DN and PIEC on CAVIAR's 
"meeting" LTA 

 

 

Figure 9: Micro Precision, Recall and F-measure comparison between OSLα and PIEC on 
CAVIAR's "meeting" LTA 
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Figure 10: Macro Precision, Recall and F-measure comparison between OSLα and PIEC on 
CAVIAR's "meeting" LTA 

 

 

Figure 11: Micro Precision, Recall and F-measure comparison between DN and PIEC on CAVIAR's 
"moving" LTA 

 

 

Figure 12: Macro Precision, Recall and F-measure comparison between DN and PIEC on CAVIAR's 
"moving" LTA 

 

 

Figure 13: Micro Precision, Recall and F-measure comparison between OSLα and PIEC on 
CAVIAR's "moving" LTA 

 

 

Figure 14: Macro Precision, Recall and F-measure comparison between OSLα and PIEC on 
CAVIAR's "moving" LTA 
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In Figures Figure 7 and Figure 8 we observe the comparison between PIEC and DN in 
terms of micro and macro Precision, Recall and F-measure, respectively. It is evident 
that, in all occurrences of the “meeting” LTA in the videos of CAVIAR, PIEC misses in 
Precision, while being superior in Recall. Overall, for threshold values ≥ 0.6 PIEC is better 
at recognizing the “meeting” LTA. 

Figures Figure 9 and Figure 10 show the “meeting” LTA recognition measurements of 
OSLα and PIEC. The MLN-EC mechanism performs slightly better for low threshold 
values (𝑡 ≤ 0.4), while for 𝑡 > 0.4 PIEC performs better. On top of that, PIEC achieves 
the best F-measure of the two methods, for 𝑡 = 0.7. This behavior is explained due to 
PIEC’s ability to achieve significantly higher Recall, despite the marginal superiority of 
OSLα in terms of Precision. 

Subsequently, we shift focus on the “moving” LTA (see Figures Figure 11 and Figure 12). 
We ran DN and PIEC on all “moving” occurrences on the CAVIAR dataset. The results 
show that once again, DN achieves higher Precision, whereas PIEC achieves higher 
Recall. However, the difference in Precision is great, especially for small threshold values, 
which makes DN perform much better in small and intermediate threshold values (𝑡 ≤
0.6). On the other hand, PIEC’s quickly increasing Precision as the thresholds increase, 
combined with its almost perfect and slowly dropping recall lead to it taking the upper 
hand for high probability threshold values (𝑡 ≥ 0.7). This behavior is almost exactly the 
same, both in the micro and in the macro case. 

Finally, we repeat the comparison for the “moving” LTA, using the OSLα MLN-based 
activity recognition method this time. We executed our activity recognition methods on 
the “moving” cases of the dataset and observed a similar pattern as in the “meeting” LTA 
case. That is, as Figures Figure 13 and Figure 14 illustrate, the MLN-based activity 
recognition method achieves higher Precision scores and lower Recall scores, both in the 
micro and in the macro case. Thus, in terms of F-measure, the two methods display 
similar scores with OSLα being slightly better for intermediate threshold values (0.3 ≤ 𝑡 ≤
0.8) and PIEC being slightly better in extreme threshold values (𝑡 ≤ 0.2 and 𝑡 = 0.9). In 
addition, the highest F-measure (micro case) is achieved by PIEC, for a threshold value 
of 𝑡 = 0.9. In the macro case, the highest F-measures for both methods come at 𝑡 = 0.9 
and happen to approximately coincide. 

 

5.2.2 Cases where PIEC performs better 

The overall comparison presented above gives the impression that neither PIEC nor the 
MLN-based activity recognition variants are generally dominant. There are LTA and 
threshold values for which MLN-EC seems to be doing better and other LTA and threshold 
values for which PIEC seems to be doing better. Thus far, we have abstracted away a lot 
of information concerning what happens in specific cases. That is, we are interested in 
investigating at which LTA occurrences does PIEC perform better and at which does it 
perform worse. To that effect, we compare the credible probabilistic maximal intervals 
that PIEC produces with the output of MLN-EC and the ground truth. For the 
completeness of the presentation, we also include the instantaneous probabilities 
produced by MLN-EC. 

In Figures Figure 7: Micro Precision, Recall and F-measure comparison between DN and 
PIEC on CAVIAR's "meeting" LTA to Figure 14 above, we can observe that for threshold 
values ≥ 0.6, PIEC displays its best F-measures, outperforming the point-based 
alternative in all but the last cases. Especially for 𝑡 = 0.7, PIEC’s performance seems 
either optimized or very close to the optimal (see Figures Figure 7, Figure 8, Figure 9, 
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Figure 11, and Figure 12). For this reason, we chose to elaborate more on the 𝑡 = 0.7 
case and explore PIEC’s strengths and weaknesses in that case. 

In the meantime, we have used the MLN-EC’s output instantaneous probabilities to 
extract intervals, by taking all maximal sequences of timepoints in which the MLN-EC 
probability is greater than or equal to 𝑡. The following diagrams illustrate the credible 
probabilistic maximal intervals (i.e. the output of PIEC) in red, the MLN-EC intervals in 
green, the ground truth in blue, the output instantaneous probabilities of MLN-EC in black 
and the threshold 𝑡 in a dashed gray horizontal line. Figures Figure 15 to Figure 26 below 
present an extensive selection of specific cases within videos of the CAVIAR dataset, 
where the PIEC algorithm appears to achieve significantly better activity recognition 
results than a point-based activity recognition method. 

 

 

Figure 15: Video 19 – Meeting action between id1 and id2. 

 

Specifically, in Figure Figure 15, we observe a case where DN produces high 
instantaneous probabilities for the occurrence of the “meeting” LTA outside of the 
annotated interval, shown in blue. This is an example of erroneous recognition by DN. 
However, due to its way of calculating probabilistic maximal intervals, PIEC manages to 
retrieve most of the annotated interval. In other words, PIEC achieves a decent Recall, 
where DN had a Recall of 0. This comes at the cost of a weak Precision, since PIEC also 
falsely recognizes the LTA to have occurred long after it has actually ended. This example 
is a very important one, as it helps us understand that if the underlying timepoint-based 
recognition method makes an erroneous recognition, PIEC can only improve the result to 
a certain extent. 

Similarly, in Figure Figure 16 DN performs very poorly. Again, its instantaneous 
probabilities and its respective interval fall entirely outside of the annotated region. PIEC, 
on the other hand, achieves an excellent Recall, due to the relatively high instantaneous 
probability values that made the algorithm extend its probabilistic maximal intervals more 
to the left, without losing much on Precision. This is another example of erroneous 
timepoint-based recognition, where PIEC manages to significantly reduce the gap 
between the ground truth and the result of the MLN-based recognition mechanism. 

Contrary to the previous two examples, in Figure Figure 17 we observe a more accurate 
recognition by DN. In the second video of the CAVIAR dataset, persons “id1” and “id2” 
appear to be moving together and DN manages to recognize this LTA with an excellent 
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Precision and a decent Recall. Here, PIEC improves the Recall to perfect, at the expense 
of a little worse Precision. Overall, PIEC does significantly better. 

 

 

Figure 16: Video 24 – Meeting action between id0 and id1. 

 

 

Figure 17: Video 02 – Moving action between id1 and id2. 

 

In Figure Figure 18 we observe a case where the output instantaneous probabilities of 
DN display abrupt fluctuations. Video 14 from the CAVIAR dataset features two persons, 
“id1” and “id2” moving together. DN appears to be giving both extremely high and 
extremely low “moving” probability to timepoints where the LTA under examination is 
actually taking place. This results to fragmented DN intervals (shown in green) and, 
consequently, a significant loss on Recall, albeit with an almost perfect Precision. On the 
other hand, PIEC shows significant tolerance towards these abrupt probability oscillations 
and helps bridge the discontiguities of the DN intervals. The result is an enormously 
improved Recall with a slightly weaker Precision. Note that there is also another actual 
occurrence of the “moving” LTA that neither DN nor PIEC were able to detect. 

In video 23 of the dataset, a group of people meets and moves together. There are two 
LTA that are of particular interest, namely “moving” between “id0” and “id1” (Figure Figure 
19 – on the left) and “moving” between “id0” and “id3” (Figure Figure 19 – on the right). 
In the former case, we observe some probability fluctuations that yield multiple, 
discontiguous DN intervals and, hence, a lot of False Negatives and a loss in terms of 
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Recall. As we have already seen in a similar case, in Figure Figure 18, PIEC is able to 
bridge the recognition gaps and produce a single interval, that covers the entire ground 
truth (that is, it achieves 100% Recall) while at the same time sacrificing its Precision. 
Overall, PIEC performs better than DN, because the gain of Recall is greater than the 
loss of Precision. In the latter case, DN recognizes a sub-interval of the actual one, which 
means that DN achieves a perfect Precision, but a not so good Recall, as it only 
recognizes about half of the actual LTA occurrence stint. On the other hand, PIEC, led by 
the high, consecutive instantaneous probability values, produces an extended 
probabilistic maximal interval that corresponds to a much higher Recall, while preserving 
the perfect Precision. 

 

 

Figure 18: Video 14 – Moving action between id1 and id2. 

 

 

Figure 19: Video 23 – Moving action between id0 and id1 (Left). Moving action between id0 and id3 

(Right). 

 

Moving on to results from OSLα, Figure Figure 20 shows another case of heavy 
probability fluctuations. Again, we are confronted with fragmented OSLα intervals that 
cost a lot in terms of Recall. As with the previous two cases, PIEC is able to overcome 
this issue, due to the high instantaneous probability values that promote the recognition 
of longer intervals. Thus, PIEC once again performs better, by enormously improving the 
Recall, while keeping the perfect precision intact. 
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In Figure Figure 21, the “meeting” activity between entities “id1” and “id2” in the second 
video of the dataset leads OSLα to produce instantaneous probabilities that display very 
frequent, intense fluctuations. Hence, the OSLα intervals are heavily fragmented. PIEC, 
on the other hand, is fluctuation-tolerant and produces a long interval that includes the 
ground truth in its entirety. This results in PIEC achieving 100% Recall, albeit losing on 
Precision. Overall, PIEC performs better. 

 

 

Figure 20: Video 01 – Meeting action between id4 and id5. 

 

 

Figure 21: Video 02 – Meeting action between id1 and id2. 

 

The instantaneous OSLα probabilities of Figure Figure 22 fluctuate heavily around the 
threshold, thus creating numerous, very short intervals where the OSLα probability is 
above the threshold. Since the probabilities do not far exceed the threshold, PIEC’s 
tolerance diminishes, making it fluctuate, as well – although less frequently than OSLα. 
Overall, PIEC performs better, with significantly more True Positives and fewer False 
Negatives, at the expense of a few more False Positives. 

If we take a look at Figure Figure 23 we will once again observe heavy instantaneous 
probability fluctuations for OSLα. However, PIEC seems unaffected and much more 
stable than in the previous case. This happens because the upper edges of the 
oscillations far exceed the threshold (probabilities are close to 1) and, as follows from 
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Definition 1, PIEC produces longer intervals. This leads to much fewer False Negatives 
and hence a significantly better Recall, without affecting the Precision. 

 

 

Figure 22: Video 13 – Meeting action between id0 and id1. 

 

 

Figure 23: Video 14 – Meeting action between id1 and id2. 

 

 

 

Figure 24: Video 20 – Meeting action between id1 and id2. 
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In video 20 of the dataset, entities “id1” and “id2” perform the “meeting” activity twice: 
Once around the middle of the video and once more at the end (Figure Figure 24). OSLα 
starts giving probabilities that heavily fluctuate from 1 to 0 around the first “meeting” 
occurrence. The recognition is not precise, as the OSLα intervals are many, small and 
discontiguous, and some of them lay outside of the annotated interval. Near the end of 
the video, the MLN-based algorithm erroneously gives a series of consecutive 
probabilities equal to 1, just before the start of the annotated interval. During the actual 
second occurrence of the “meeting” activity, OSLα again displays this severely oscillating 
behavior, leading to numerous, small and discontiguous intervals and producing a lot of 
False Negatives. In this case, the results of OSLα cost both in terms of Precision and in 
terms of Recall, as there are both False Positives and False Negatives. PIEC, as in most 
cases seen so far, manages to significantly increase the Recall without doing much harm 
in terms of Precision. Therefore, PIEC performs better and helps ameliorate some of the 
imprecisions of OSLα. 

 

 

Figure 25: Video 14 – Moving action between id1 and id2. 

 

In Figure Figure 25 we can see the “moving” activity between persons “id1” and “id2”, 
from the fourteenth video of the CAVIAR dataset. There are two “moving” stints: a longer 
one taking place at the beginning of the video and a shorter one taking place later, 
towards the middle of the video. Although initially OSLα shows stability and correctly 
recognizes the LTA, it soon starts producing oscillating probabilities both within and 
outside the first annotated stint. Both PIEC and OSLα appear to have similar, good 
Precision measures, but PIEC achieves a better Recall. However, none of the two 
methods recognizes the second “moving” stint. 

We now return to video 23, where several people gather and move together, and focus 
on the “moving” activity between persons “id0” and “id2” (Figure Figure 26 – on the left), 
as well as persons “id0” and “id3” (Figure Figure 26 – on the right). In the first case, there 
is a long stint where the activity under examination actually takes place, shown in blue. 
OSLα correctly recognizes the first half of the stint, but then it starts producing abruptly 
fluctuating probabilities that drop as low as 0.2 and cause it to miss the majority of the 
second half of the stint. PIEC, on the other hand, shows better stability, despite it failing 
to recognize about a quarter of the actual LTA. On top of that, PIEC also produces some 
False Positives, as well. In other words, OSLα displays an excellent Precision, but a weak 
Recall, whereas PIEC loses in terms of Precision, but achieves a significantly better 
Recall. Overall, PIEC achieves a better F-measure than OSLα. In the second case, the 



A study on the Probabilistic Interval-based Event Calculus 

C. G. Vlassopoulos   59 

actual “moving” stint is again long, spanning more than half the total duration of the video 
– that is the full length of the horizontal axis. OSLα seems to only recognize small 
fragments of this activity, again due to abruptly fluctuating output. The probabilistic 
maximal intervals of PIEC are discontiguous, as well, albeit fewer and longer. Both 
methods are perfectly precise, but they appear to be very weak in terms of Recall. Overall, 
PIEC performs slightly better, as it recognizes a slightly bigger part of the actual LTA 
occurrence. 

 

 

Figure 26: Video 23 - Moving action between id0 and id2 (Left). Moving action between id0 and id3 

(Right). 

 

Summary 

To sum up, we observe that PIEC appears to be outperforming its point-based 
competition in cases of erroneous or incomplete recognition by the latter. When the 
intervals derived from the instantaneous probabilities calculated by MLN-EC fall partly or 
entirely outside of the corresponding annotated intervals, PIEC manages to achieve 
bigger overlaps, thus resulting in better Recall scores and overall better F-measures. 
PIEC also seems to be the preferred option in cases where the estimation of MLN-EC is 
precise but incomplete. That is, in cases where the intervals derived from point-based 
MLN-EC estimations fall within the annotated region but are fragmented due to abrupt 
probability fluctuations. PIEC then tends to produce more coherent intervals, with fewer 
and longer fragments, thus achieving an overall better performance. 

 

5.2.3 Cases where PIEC performs worse 

We continue the experimental evaluation analysis, by presenting several interesting 
cases where PIEC performs worse than the MLN-EC variations. Figures Figure 27 to 
Figure 40 display the same kind of information as the figures we have seen in the previous 
subsection with the only difference that in some particularly interesting cases, we also 
include the full list of probabilistic maximal intervals, among which PIEC had to choose 
the most credible. These extra intervals are shown in orange in the graphs below. This 
information will provide an extra insight into the cases where PIEC is outperformed and 
help us see the reasons behind this lack of performance. We will be able to see the role 
that the credibility mechanism plays and if the credibility definition appears to be 
suboptimal, we will try to define interval credibility anew. 
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Figure 27: Video 01 – Meeting action between id4 and id5. 

 

We begin this second part of our analysis with the recognition of the “meeting” LTA 
between entities “id4” and “id5”, from the first video of the dataset. The instantaneous 
probabilities are produced by the DN method and can be seen in Figure Figure 27, on the 
left. DN appears to be absolutely precise but misses a significant part from the beginning 
of the actual activity. On the other hand, PIEC achieves 100% Recall, but its precision is 
not perfect. More specifically, PIEC starts recognizing the activity long before it actually 
begins. This lack of Precision causes PIEC to achieve a weaker F-measure than DN in 
this case. On the second part of this figure, on the right, we can see another interval (in 
orange) that entirely coincides with the output of PIEC. This means that PIEC had only 
one candidate probabilistic maximal interval to pick as the most credible. Therefore, in 
this case there was nothing better the algorithm could do, at least in terms of credibility. 

 

 

Figure 28: Video 01 – Moving action between id4 and id5. 

 

In Figure Figure 28, we can see another case of PIEC underperforming. Again from Video 
01, this time we are interested in recognizing the “moving” LTA between “id4” and “id5”. 
The DN method seems to recognize the LTA with a small delay. Thus, there is a part at 
the beginning of the LTA that DN fails to recognize, as well as a part after the end of the 
actual LTA, where DN keeps recognizing it, despite the fact that it has been terminated. 
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PIEC manages to increase the Recall to almost perfect, but it also increases the falsely 
recognized part after the end of the actual LTA. This behavior leads to a much weaker 
Precision and a weaker F-measure for PIEC. 

 

 

Figure 29: Video 19 – Moving action between id1 and id2. 

 

On the left part of Figure Figure 29, we see the “moving” LTA recognition results using 
the DN method for the moving activity of entities “id1” and “id2”, in video 19. DN appears 
to approximate the ground truth well, with an almost perfect Precision and a very good 
Recall, as it manages to cover almost the entire ground truth interval. PIEC does not 
match the performance of DN. On the contrary, it yields many more False Positives, 
substantially undermining its Precision. Its perfect Recall is not enough to make up for 
the loss of Precision and, therefore, DN outperforms PIEC in terms of F-measure. On the 
right hand side of Figure Figure 29 we can see that, contrariwise to what we have seen 
in Figure Figure 27, there are numerous overlapping probabilistic maximal intervals from 
which PIEC has to choose the best fitting one, i.e. the most credible one. If we look at the 
candidate intervals more carefully, we can see that they form two groups: a group of 
longer intervals at the bottom half of the stack and a group of slightly shorter intervals at 
the top of the stack. The credibility mechanism of PIEC has chosen the latest among the 
longer intervals, that is the interval that lies at the top of the longer interval group. 
However, this is not the optimal choice. Since PIEC has a tendency of producing longer 
intervals when dealing with instantaneous probability values close to or equal to 1, 
sometimes it runs the risk of producing intervals way longer than needed and it, inevitably, 
suffers in terms of Precision. In this particular example, PIEC could have chosen from the 
group of shorter intervals (for instance, the earliest of them), which would lead to slightly 
fewer False Positives and, thus, to a slightly better Precision. In other words, this is a 
case where the credibility mechanism does a suboptimal job for PIEC. 

In the twentieth video, there is the scenario of two people – namely “id1” and “id2” – 
performing the “moving” LTA. The recognition results are shown in Figure Figure 30. In 
this case, which is quite similar to the previous one, DN approximates very well the actual 
LTA occurrence. In fact, it only produces a handful of False Negatives and its Precision 
is perfect. PIEC once again suffers from excessive recognition, which severely 
undermines its performance, despite its perfect Recall.  

In the next video, possibly among other LTA, we have the “moving” LTA between “id1” 
and “id3”. This is a case where none of our probabilistic activity recognition methods does 
well. Both DN and PIEC produce a surplus interval. However, as it can be seen in Figure 
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Figure 31, the output of PIEC is even longer than that of DN, which means that there are 
much more False Positives and, therefore, a much lower Precision. 

 

 

Figure 30: Video 20 – Moving action between id1 and id2. 

 

 

Figure 31: Video 21 – Moving action between id1 and id3. 

 

 

Figure 32: Video 24 – Moving action between id0 and id1. 
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On the left part of Figure Figure 32 we see the recognition results for the “moving” activity 
between “id0” and “id1” that takes place in the twenty-fourth video of the dataset. As far 
as the MLN-based activity recognition mechanism is concerned, we observe two 
recognized stints: one within the annotation and one outside the annotation. Although the 
first interval approaches very well the respective annotation, the existence of the second, 
false recognition damages the precision of DN. PIEC once more produces an excessive 
recognition stint, that includes both DN intervals, along with several other False Positives. 
On top of that, in this case PIEC also misses the very beginning of the actual occurrence 
of the LTA, which means that neither its Recall is perfect. On the right part of the figure, 
we can see all the candidate probabilistic maximal intervals of PIEC. We can observe that 
all candidate intervals are way longer than needed. This is due to the existence of falsely 
assigned very high probability values after the LTA is over. There is even a group of 
probabilistic maximal intervals that focuses solely on the falsely recognized region. 
However, PIEC does not make the optimal choice. There is an interval – the earliest one, 
on the bottom of the stack shown in orange – that begins from timepoint 0 and is slightly 
shorter than the subsequent 6. Had PIEC chosen this interval, it would have avoided all 
False Negatives and it would have slightly reduced its False Positives, thus leading to the 
improvement of both its Precision and its Recall. Therefore, we have come across one 
more case where the credibility mechanism leads to a suboptimal result, the other case 
having been discussed in Figure Figure 29. 

 

 

Figure 33: Video 24 – Meeting action between id0 and id1. 

 

The remainder of this section features results from the OSLα MLN-EC variation. In Figure 
Figure 33 we can see the recognition results for the “meeting” activity between “id0” and 
“id1”, from video 24. On the left of the figure, we observe intense probability oscillations, 
around the annotated interval. These oscillations are translated into several, very small 
intervals, lying before, during and after the annotation. The output of PIEC seems 
fragmented, as well, with the only difference that the intervals are generally longer than 
those of OSLα. This behavior corresponds to fewer False Negatives, but also more False 
Positives. The longest interval that PIEC produces is outside of the annotated region. 
Therefore, the loss in terms of Precision is greater than the gain in terms of Recall and, 
thus, OSLα achieves a higher F-measure than PIEC. On the right of the figure, we can 
see multiple stacks of candidate, overlapping probabilistic maximal intervals for PIEC, 
delineated in orange. There is one such stack per output interval. Recall that the credibility 
mechanism finds groups of overlapping intervals and for every interval in such a group it 
calculates its credibility and then chooses the most credible among them. The rightmost 
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stack comprises five probabilistic maximal intervals. One of them (the earliest) is entirely 
inside the annotated area, the second earliest is partially inside the annotated area and 
the rest lie outside the annotated area. As it can be observed from the figure, PIEC 
chooses the penultimate of this group of intervals, which is entirely outside the annotation. 
This is clearly not the optimal choice, as it could have chosen the earliest of the group, 
which would have led to significantly fewer False Positives and slightly fewer False 
Negatives, which in turn corresponds to a better Precision and Recall. The credibility 
mechanism appears to once again undermine the performance of PIEC. 

 

 

Figure 34: Video 19 – Moving action between id1 and id2. 

 

In Figure Figure 34 we see the response of OSLα and PIEC to the task of recognizing the 
“moving” activity between entities “id1” and “id2”, from video 19. OSLα assigns high 
probabilities with occasional abrupt fluctuations to an area somewhat larger than and fully 
containing the annotation. Eventually, the MLN-based method achieves an almost perfect 
Recall and a decent Precision. PIEC, on the other hand, calculates a much longer interval 
that includes both the annotation and the intervals of OSLα. This may result to an 
absolutely perfect Recall but costs a lot on Precision. This has appeared to be the case 
in many examples so far. Recognizing excessively long intervals is unsolicited behavior 
and seems to be the main drawback of PIEC. To sum up, OSLα heavily outperforms PIEC 
in terms of Precision and PIEC marginally outperforms OSLα in terms of Recall. Hence, 
overall, OSLα does better. 

In Figure Figure 35 we see a case where the MLN-based method achieves an almost 
perfect F-measure. Indeed, it assigns probabilities equal to 1, without abrupt fluctuations 
exactly upon the annotated region. That gives excellent Precision and Recall measures 
and an excellent F-measure, in total. Our interval-based activity recognition method 
shows once again its usual tendency of producing oversized intervals when the 
instantaneous probabilities involved are contiguous and much higher than the threshold, 
thus severely damaging its Precision. Based on what we have seen so far one might be 
wondering if there is any alternative probabilistic maximal interval the choice thereof as 
most credible would yield a better Precision and F-measure. The answer to this question 
can be found in the right-hand diagram of Figure Figure 35. There clearly is just one 
possible probabilistic maximal interval and PIEC can do nothing other than consider it 
credible and giving it to the output. 
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Figure 35: Video 19 – Moving action between id5 and id6. 

 

 

Figure 36: Video 20 – Moving action between id1 and id2. 

 

In a case similar to that seen in Figure Figure 34, we examine the recognition results for 
the “moving” LTA between “id1” and “id2" that takes place in video 20 of the dataset (see 
Figure Figure 36). Here, OSLα starts by making some abrupt probability fluctuations 
before the start of the annotated interval and then produces a sequence of very high 
probabilities (close or equal to 1), during most of the annotation. At some point, towards 
the end of the annotation, it erroneously stops recognizing the LTA, only to produce a 
new series of oscillating probabilities, after the annotation interval has ended. The large 
concentration of probabilities close to 1 – contiguous or not – leads PIEC to produce an 
excessively long probabilistic maximal interval, that may incorporate the entire ground 
truth, but also give numerous False Positives. The gain of PIEC in terms of Recall is 
definitely smaller than its loss in terms of Precision. Therefore, the MLN-based activity 
recognition method performs better. 

Figure Figure 37 shows a rather odd recognition example. Specifically, in video 21, 
entities “id1” and “id3” actually perform the “moving” LTA during a relatively short stint, 
shown in blue. Nevertheless, OSLα erroneously assigns high instantaneous probabilities 
(around 0.8, with mild fluctuations) for the “moving” LTA, long before the actual activity 
begins. Then, around the actual occurrence of the LTA, the MLN-based recognition 
mechanism starts producing probability values, heavily oscillating between 0 and 1. 
Several timepoints after the end of the annotation, OSLα seems to stabilize again around 
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0.8 for quite some time, before dropping to below 0.5. This way, we obtain falsely 
recognized, contiguous intervals outside the annotation and intense fragmentation during 
the annotation. This combination corresponds to poor performance for OSLα, with a 
severely damaged Precision and a poor Recall. PIEC, following its tendency to produce 
longer intervals, it manages to cover the entire second half of the annotation, significantly 
reducing False Negatives, but also Resulting PIEC intervals further expand earlier and 
later than the actual LTA occurrence, thus giving many extra False Positives. In other 
words, both methods suffer from many False Positives. Even though PIEC achieves a 
better Recall, OSLα appears to behave better, overall. 

 

 

Figure 37: Video 21 – Moving action between id1 and id3. 

 

 

Figure 38: Video 22 – Moving action between id0 and id1. 

 

Figure Figure 38 shows the recognition results for the “moving” action between entities 
“id0” and “id1”. Similarly to many of the cases seen so far, OSLα recognizes the LTA fairly 
accurately. We can see that OSLα produces three sequences of stable probability value 
equal to 1, plus some 0-to-1 oscillations, between the second and third sequences. Only 
the second sequence along with the oscillations correspond to the ground truth. The other 
two high probability sequences are false recognitions. In total, there are some False 
Positives before and after the annotation and a few False Negatives in the oscillating stint, 
towards the end of the annotated region. PIEC shows its usual behavior of constructing 
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excessively long intervals that are able to achieve 100% Recall at the expense of many 
False Positives and poor Precision. Hence, OSLα performs better. On the right-hand side 
of the figure we can see a large group of overlapping probabilistic maximal intervals, 
depicted in orange, from which PIEC has to choose the most credible. Just like in Figure 
Figure 32, there are sub-groups of different length. The length of these intervals depends 
on the sequences of high instantaneous probabilities that lie underneath. Specifically, the 
earliest of the overlapping intervals – that is, the one that lies at the bottom of the stack, 
is created by OSLα’s first and second high probability sequences. Above it, there is a 
subgroup of intervals that are affected by the entire probabilistic activity of the region. As 
it can be seen in the figure, PIEC’s credibility mechanism has chosen the earliest interval 
of this subgroup as the most credible. The subgroup of shorter intervals that appear at 
the top of the figure are affected by the second and third high probability stints of OSLα. 
PIEC’s choice appears to be again suboptimal. There are intervals in the top subgroup 
that could lead to much fewer False Positives and, hence, to a significantly increased 
Precision. In conclusion, this is another case where the credibility mechanism does not 
produce the optimal result. 

 

 

Figure 39: Video 23 – Moving action between id0 and id1. 

 

Finally, in video 23 of the CAVIAR dataset, we focus on the “moving” activity between 
entities “id0” and “id1”, as well as “id1” and “id3”. The results of the recognition of these 
LTA is illustrated in Figures Figure 39 and Figure 40, respectively. More specifically, for 
the former case, OSLα seems to detect the LTA fairly accurately, as is produces high 
instantaneous probabilities throughout the annotated interval, albeit with some – milder 
or more abrupt – fluctuations. The more abrupt fluctuations lead to interruptions in the 
resulting OSLα intervals (see the green lines in Figure Figure 39). This means that, in 
spite of achieving a perfect precision, as there are no False Positives, its Recall is not 
Perfect. On the contrary, PIEC shows stability as it seems unaffected by the fluctuations 
of OSLα, but it produces a lot of False Positives. The high amount of probabilities close 
or equal to 1, leads PIEC to compute one, very long interval, which in fact spans the entire 
video. This way, PIEC achieves a perfect Recall, but its Precision is nowhere near the 
Precision of OSLα. On the whole, OSLα reaches a better F-measure than PIEC. 
Moreover, if we take a look at the right hand part of Figure Figure 39, we observe that 
PIEC has no means for improving its performance in this specific case, as there are no 
alternative probabilistic maximal intervals that might lead to improved measurements. In 
the graph, there is just one orange line, which is identical to the red line. This means that 
there is just one credibility contender, which is inevitably picked and shown in the output. 
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This case is similar to those appearing in Figure 27 and Figure 35, where there is only 
one credibility contender. 

For the latter case, entities “id1” and “id3” perform the “moving” LTA. It can be observed 
in Figure Figure 40 that OSLα fails to recognize the majority of the LTA, despite the fact 
that, for the part that it does recognize, it is absolutely precise. As far as our interval-
based activity recognition method is concerned, it starts recognizing the LTA prematurely 
and it stops the recognition at the same instant as OSLα does. This behavior leads to an 
even worse performance for PIEC. Nonetheless, in the right subfigure we can see a large 
stack of overlapping credibility contender intervals, in orange color. The credibility 
mechanism of PIEC chooses the earliest one (that is, the one at the bottom of the stack) 
as the most credible. The problem here is that the chosen interval is the interval with the 
smallest overlap with the ground truth. Since all intervals from the stack appear to be of 
equal size, then each subsequent interval should have a longer overlap with the ground 
truth and a shorter premature recognition stint. Therefore, it seems that the choice that 
would maximize the F-measure of the algorithm is the latest among the overlapping 
intervals (that is, the one at the top of the stack). In other words, the credibility mechanism 
of PIEC has made not only a suboptimal, but rather the worst possible choice. 

 

 

Figure 40: Video 23 – Moving action between id1 and id3. 

 

Summary 

To conclude, PIEC seems to be underperforming in the case of long sequences of very 
high (i.e. near 1) instantaneous probabilities. Due to the way interval probabilities are 
computed (recall Definition 1), the length of an estimated interval is directly proportional 
to the sum of the instantaneous probabilities and inversely proportional to the threshold 
value, 𝒯. Long sequences of very high probabilities lead to big probability sums which, 
when combined with relatively low probability thresholds, in turn lead to very long output 
intervals. In almost all of the cases presented in this section, PIEC suffers from a severe 
loss of Precision, due to the existence of many False Positives, as a result of excessively 
long output intervals. Even though PIEC may still achieve better Recall scores, the loss 
in terms of Precision is big enough to overshadow any Recall improvements, leading to 
an overall inferior performance compared to the plain threshold approach. 
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5.3 Alternative credibility definitions for PIEC 

In paragraph 2.4.2 we discussed the definition of credibility and presented the credibility 
mechanism step-by-step. Since maximal probabilistic intervals may be overlapping, the 
PIEC algorithm incorporates a routine for picking one – the most “credible” – amongst 
these overlapping maximal intervals. In PIEC’s original version, the credibility of an 
interval was defined as the product of its probability times its length. From definition (14), 
this is equivalent to the sum of its instantaneous probabilities. We are now experimenting 
with different definitions for credibility. In this report, we present five new credibility 
definitions, namely: 

 

1. “pick first”: Among a group of overlapping probabilistic maximal intervals, pick the 
earliest as the most credible one. 

2. “pick last”: Among a group of overlapping probabilistic maximal intervals, pick the 
latest as the most credible one. 

3. Define credibility as the average of the instantaneous probabilities, i.e.: 
𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 

4. Define credibility as the sum of the squares of the instantaneous probabilities. 

5. Define credibility as the sum of the cubes of the instantaneous probabilities. 

 

This credibility definitions list is by no means exhaustive. These definitions are indicative 
and are mostly based on intuition. For instance, the “pick first” strategy would improve 
PIEC’s performance in cases like the one seen in Figure Figure 33, the “pick last” strategy 
would result in PIEC making the best possible choice in the case of Figure Figure 40, and 
strategies like the “sum of squares” and the “sum of cubes” aim at rewarding an interval 
that contains very high instantaneous probabilities by giving it a higher credibility value 
compared to a – possibly longer – interval with lower instantaneous probabilities. There 
is an abundance of other possible credibility definitions and this is a direction for further 
work, as it will be discussed in the respective section later. 

The experiments whose results are presented below have been conducted with view to 
testing whether these new credibility definitions for PIEC can increase its performance. 
We have implemented each of these five new credibility definitions and tested the 
resulting PIEC variations on the CAVIAR dataset. The performance measurements (F-
measures) for these PIEC variations are compared to these of PIEC with the original 
credibility definition, OSLα and DN. Tables Table 4 and Table 5 display the comparison 
results. 

More specifically, Table Table 4 shows the results of running PIEC and all its variations 
on top of the point-based OSLα output, using a probability threshold 𝑡 = 0.78. As far as 
the “meeting” CE is concerned, the best F-measures are achieved by the original PIEC, 
the sum-of-squares, and the sum-of-cubes variations. These three variations appear to 
make the same credibility choices. Another credibility definition that seems to perform 
almost equally well is “pick last”. It is significantly better than OSLα, although slightly 
worse than the three aforementioned definitions. For the “moving” CE, “pick last” 

                                            

8 As discussed earlier, probability threshold values other than 𝑡 = 0.7 result in PIEC displaying inferior 
performance in this experimental setting, in general. Therefore, we have chosen this threshold value for 
our experiments. 
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credibility definition outperforms every other and is the only PIEC credibility definition that 
manages to surpass OSLα’s F-measure (yet only in the micro F-measure case). Setting 
OSLα performance aside, we observe that all definitions but “pick first” are improvements 
to the original PIEC credibility definition. 

 

Table 4: F-measure comparison between OSLα and PIEC with several different credibility 
definitions, for t = 0.7. Lines 1 and 3 correspond to micro F-measure values, while lines 2 and 4 

correspond to macro F-measure values. 

LTA OSLα Original Pick first Pick last Cred = Prob Sum of squares Sum of cubes 

Meeting 0.7311 0.8711 0.7519 0.8707 0.8020 0.8711 0.8711 

 0.3282 0.3948 0.3149 0.3912 0.3738 0.3948 0.3948 

Moving 0.6003 0.5706 0.5663 0.6095 0.5864 0.5774 0.5857 

 0.5726 0.5149 0.5111 0.5560 0.5343 0.5212 0.5277 

 

Table Table 5 displays the same information, for the DN case. Here, for the “meeting” 
CE, the weakest of the credibility definitions for the OSLα case, “pick first”, seems to beat 
the others, and DN itself. However, not far behind “pick first” there are the original, the 
sum-of-squares, and the sum-of-cubes credibility definitions, again achieving the same 
F-measure. For the “moving” CE, “pick first” loses significant ground, while the original, 
the sum-of-squares, and the sum-of-cubes credibility definitions rise to share the top 
seed. 

 

Table 5: F-measure comparison between DN and PIEC with several different credibility definitions, 
for t = 0.7. Lines 1 and 3 correspond to micro F-measure values, while lines 2 and 4 correspond to 

macro F-measure values. 

LTA OSLα Original Pick first Pick last Cred = Prob Sum of squares Sum of cubes 

Meeting 0.3390 0.4125 0.4161 0.3777 0.4118 0.4125 0.4125 

 0.1246 0.2703 0.2767 0.1517 0.2343 0.2703 0.2703 

Moving 0.7696 0.8218 0.7452 0.7900 0.7727 0.8218 0.8218 

 0.7313 0.7850 0.7210 0.7359 0.7275 0.7850 0.7850 

 

Once more we have observed that the original, the sum-of-squares, and the sum-of-
cubes credibility definitions achieve the exact same performance. However, this is not 
always the case. Specifically, if we take a look on Table Table 4, on the last two rows, 
that correspond to the “moving” CE, these three credibility definitions display different 
behavior. On top of that, the sum-of-squares and the sum-of-cubes variations seem to 
improve over the original. Therefore, measurements from both tables indicate that the 
sum-of-squares and the sum-of-cubes variations perform no worse than the original 
PIEC. On the other hand, “pick last” remains decent, beating DN, but is significantly 
weaker than in the OSLα case. 
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In what follows, we take two of the best performing credibility definitions according to what 
we have seen so far, namely the “pick last” and the “sum-of-cubes” and visualize their 
comparison to the original PIEC and the OSLα/DN methods. For the sake of brevity, from 
this point onwards we will refer to PIEC with the “pick last” credibility definition as “PIEC-
PL” and to PIEC with the “sum-of-cubes” credibility definition as “PIEC-S3”. 

 

 

Figure 41: Micro F-measure comparison between DN with threshold, DN with PIEC (original 
credibility definition – blue), and DN with PIEC (new credibility definitions – green) on CAVIAR's 

meet LTA 

 

 

Figure 42: Macro F-measure comparison between DN with threshold, DN with PIEC (original 
credibility definition – blue), and DN with PIEC (new credibility definitions – green) on CAVIAR's 

meet LTA 

 

 

Figure 43: Micro F-measure comparison between DN with threshold, DN with PIEC (original 
credibility definition – blue), and DN with PIEC (new credibility definitions – green) on CAVIAR's 

move LTA 
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We start with the DN case in Figures Figure 41 and Figure 42, with the “meeting” CE, 
micro and macro F-measures. We can see that, even though DN starts off better, for 
probability thresholds ≥ 0.5 the original PIEC exceeds DN’s performance. PIEC-S3 is 
almost identical to PIEC, while PIEC-PL seems to perform worse, in accordance with the 
first two rows of Table Table 5. Overall, PIEC and PIEC-S3 seem to perform slightly better 
than DN. 

 

 

Figure 44: Macro F-measure comparison between DN with threshold, DN with PIEC (original 
credibility definition – blue), and DN with PIEC (new credibility definitions – green) on CAVIAR's 

move LTA 

 

 

Figure 45: Micro F-measure comparison between OSLα with threshold, OSLα with PIEC (original 
credibility definition – blue), and OSLα with PIEC (new credibility definitions – green) on CAVIAR's 

meet LTA 

 

In Figures Figure 43 and Figure 44, we can see the comparison for the “moving” CE case. 
DN appears to achieve much higher F-measures for small threshold values (≤ 0.5). From 
𝑡 = 0.7 onwards, PIEC and PIEC-S3 achieve better scores. PIEC-S3 shows identical 
behavior to the original PIEC. PIEC-PL shows a similar, yet somewhat inferior 
performance, as compared to PIEC and PIEC-S3. 

As far as the OSLα case is concerned, in Figures Figure 45 and Figure 46 we can see 
that PIEC and PIEC-S3 strongly outperform OSLα, especially for threshold values 0.6 
and 0.7. Also, PIEC-S3 performs no worse than the original PIEC. On the other hand, 
PIEC-PL appears to be somewhat weaker. On top of that, PIEC-PL displays a downward 
spike for 𝑡 = 0.8 which is completely avoided using the original PIEC or its PIEC-S3 
variant. 
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Figure 46: Macro F-measure comparison between OSLα with threshold, OSLα with PIEC (original 
credibility definition – blue), and OSLα with PIEC (new credibility definitions – green) on CAVIAR's 

meet LTA 

 

 

Figure 47: Micro F-measure comparison between OSLα with threshold, OSLα with PIEC (original 
credibility definition – blue), and OSLα with PIEC (new credibility definitions – green) on CAVIAR's 

move LTA 

 

 

Figure 48: Macro F-measure comparison between OSLα with threshold, OSLα with PIEC (original 
credibility definition – blue), and OSLα with PIEC (new credibility definitions – green) on CAVIAR's 

move LTA 

 

Finally, for the “moving” CE on the OSLα case, we observe a different situation. As 
pointed out earlier in Table Table 4, this is a case where PIEC-PL seems to be doing a 
significantly better job than both PIEC and PIEC-S3. In Figures Figure 47 and Figure 48, 
it becomes evident that OSLα generally outperforms PIEC and PIEC-S3, but PIEC-PL 
does better for high probability thresholds (𝑡 ≥ 0.8), achieving equal or marginally higher 
F-measures. More specifically, the highest F-measure is achieved by PIEC and both its 
variants, for 𝑡 = 0.9.  
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6. CONCLUSIONS AND FURTHER WORK 

The Probabilistic Interval-based Event Calculus is a quick, sound, and complete algorithm 
for recognizing the occurrence of complex LTA, in terms of temporal intervals. It is able 
to handle intervals, when other activity recognition methods work in a timepoint-based 
manner, which runs the risk of producing misleading results. Thanks to its efficient data 
structures it is able to run in time linear with respect to the size of its input. It has been 
mathematically proven that every output interval it produces is indeed a probabilistic 
maximal interval and that it is able to correctly recognize all probabilistic maximal intervals 
for a given input of instantaneous LTA probabilities. 

Subsequently, PIEC was thoroughly tested against state-of-the-art probabilistic activity 
recognition frameworks. The results of the comparison show that, even though there are 
cases where PIEC appears not to equal the performance of the traditional, timepoint-
based approaches, in the general case it performs better than the older methods. A 
general pattern that can be observed by looking at the results is that PIEC manages to 
reduce False Negatives at the expense of some extra False Positives. It naturally follows 
that PIEC achieves a better Recall almost everywhere, whereas it seems to be slightly 
inferior in terms of Precision. Overall, PIEC seems to do better than the traditional activity 
recognition methods, especially for high probability thresholds (that is, 𝑡 ≥ 0.7). There 
also seems to be great room for improvement in several cases, if we consider alternative 
credibility definitions, as we have discussed at the end of the empirical evaluation section. 

The work on interval-based event recognition can be extended in several ways. First of 
all, the field of alternative credibility definitions should be further investigated, as it might 
lead to new credibility strategies that increase PIEC’s performance even more. We could 
also apply machine learning techniques in order to automatically specify the optimal 
credibility rule. Another possible future work direction is the introduction of a dynamically 
changing probability threshold, that could adapt to and effectively handle certain involved 
instantaneous probability patterns e.g. the abrupt probability fluctuations that OSLα 
frequently displays. Last but not least, an interesting approach could be to calculate 
maximal intervals of an LTA directly from known maximal intervals of its constituting STA. 
This way, we could recognize composite activities from events that occur in temporal 
intervals instead of timepoints. Such an approach could reduce or even overcome the 
shortcomings of the instantaneous activity recognition. 
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TABLE OF TERMINOLOGY 

Ξενόγλωσσος όρος Ελληνικός Όρος 
Activity Recognition Αναγνώριση Δραστηριοτήτων 

Completeness Πληρότητα 

Complex Event Recognition Αναγνώριση Σύνθετων Γεγονότων 

Correctness Ορθότητα 

Credibility Αξιοπιστία 

Durative Διαρκής 

Event Γεγονός 

Event Calculus Λογισμός Γεγονότων 

Ground Truth Πραγματικότητα 

Heterogeneous Ετερογενής/νείς 

Instantaneous Στιγμιαίος 

Interval Διάστημα 

Long-Term Activities Μακροπρόθεσμες Δραστηριότητες 

Markov Logic Networks Μαρκοβιανά Λογικά Δίκτυα 

Maximal Μέγιστος 

Noise Θόρυβος 

Overlap Επικάλυψη 

Probabilistic Event Calculus Πιθανοτικός Λογισμός Γεγονότων 

Probability Πιθανότητα 

Reasoning Συμπερασμός 

Representation Αναπαράσταση 

Short-Term Activities Βραχυπρόθεσμες Δραστηριότητες 

Soundness Ευρωστία 

Statistical Relational Learning Στατιστική Σχεσιακή Μάθηση 

Threshold Κατώφλι 

Timepoint Χρονικό Σημείο 

Uncertainty Αβεβαιότητα 
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ABBREVIATIONS - ACRONYMS 

ADSMS Active Database Systems 

BDD Binary Decision Diagrams 

CE Complex (or Composite) Events 

CEA Complex Event Automata 

CEL Complex Event Logic 

CEP Complex Event Processing 

CER  Complex (or Composite) Event Recognition 

Crisp-EC Crisp Event Calculus 

DSCP Distributed Stream Computing Platforms 

DSMS Data Stream Management Systems 

EC  Event Calculus 

EP Event Processing 

EPP Event Processing Platform 

HLE High-Level Events 

LLE Low-Level Events 

LNNSI Longest Non-Negative Sum Interval 

LTA Long-Term Activities 

MAP Maximum A Posteriori 

MCMC Markov Chain Monte Carlo 

MLN Markov Logic Networks 

MLN-EC Markov Logic Network Event Calculus 

MSI Maximum Sum Interval 

PIEC  Probabilistic Interval-based Event Calculus 

Prob-EC Probabilistic Event Calculus 

SDE Simple, Derived Events 

SLR Statistical Relational Learning 

SQL Structured Query Language 

STA Short-Term Activities 
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