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ABSTRACT 

 

With the evolution of Artificial Intelligence (AI), every aspect in everyday life keeps 
changing. Multiple industries like education, transportation, health, gaming, social life, 
space industry and much more keep adjusting their way of working using AI techniques 
that provide automated procedures, less human errors and more efficiency and accuracy 
to delivering good products and services. The data plays a very important role to help the 
machine learn from the past, and to understand better the present and the future. 

The role of deep learning shows up in the need to make good use of text documents, 
journals, papers, and everything textual that can be found in the web (or not) and that is 
difficult to extract knowledge from it. Neural networks are applied via deep learning, and 
aim to recognize patterns by interpreting data through machine perception, data pre-
processing, clustering and classification.  

Named Entity Recognition (NER) is one of the main tasks required for information 
extraction which targets on recognizing entities from unstructured text, and translating 
them into pre-defined subcategories, such as Person, Location, Organization, and more. 

The research that has been done around this domain is large enough to question and 
analyse what is the best technique or combination of techniques applied to extract the 
best result on NER. The goal of this thesis, is to investigate the existing progress in NLP, 
aiming at NER. Following publicly available documents and applications, we are exploring 
the differences among them, and we evaluate the extracted final results. We analyse 
multiple Natural Language Processing (NLP) techniques that have been implemented for 
NER shared tasks.  

We will compare and estimate state-of-the-art architectures for Neural networks (LSTM, 
CNN, RNN, CRF) aiming at identifying the following entity types: Person, Location, 
Organization, Misc (Miscellaneous, general term). Additionally, we will study the 
importance of using or not, hand-crafted or lexical features. For a fair comparison, we will 
use the same dataset to train the models, as described in the actual papers. Each 
approach is evaluated using precision, recall and F1 score. 
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ΠΕΡΙΛΗΨΗ 

 

Με την εξέλιξη της Τεχνητής Νοημοσύνης (ΤΝ), κάθε πτυχή της καθημερινότητας αλλάζει 
συνεχώς. Πολλοί τομείς του επαγγελματικού κλάδου, προσαρμόζουν συνεχώς τον τρόπο 
εφαρμογής των υπηρεσιών και προϊόντων τους με χρήση τεχνικών ΤΝ επιτυγχάνοντας 
πιο αυτοματοποιημένες διαδικασίες, λιγότερα ανθρώπινα σφάλματα, και μεγαλύτερη 
αποτελεσματικότητα και ακρίβεια. Τέτοιες εφαρμογές υπάρχουν στην εκπαίδευση, στους 
τρόπους μεταφοράς και μετακίνησης, στην υγεία, στην ψυχαγωγία, αλλά και σε 
οποιοδήποτε εργαλείο που μπορεί να συμβάλλει στην κοινωνική ζωή και δικτύωση. Τα 
δεδομένα παίζουν πολύ σημαντικό ρόλο, βοηθώντας τον υπολογιστή να μάθει από το 
παρελθόν, και να κατανοήσει καλύτερα το παρόν και το μέλλον. 

Ο ρόλος της Πολυεπίπεδης ή Βαθιάς Μάθησης εμφανίζεται μαζί με την ανάγκη της 
αξιοποίησης της γραπτής πληροφορίας και κειμένου, εγγράφων, περιοδικών, και 
οτιδήποτε γραπτού υπάρχει στο διαδίκτυο. Τα Νευρωνικά Δίκτυα εφαρμόζονται μέσω της 
βαθιάς μάθησης και αποσκοπούν στην αναγνώριση προτύπων, μέσα από προ-
επεξεργασία, ομαδοποίηση, και ταξινόμηση των δεδομένων. 

Η Αναγνώριση Ονομασμένων Οντοτήτων αποτελεί μια από τις κύριες μεθόδους που 
απαιτούνται για την εξαγωγή πληροφοριών, η οποία στοχεύει στον εντοπισμό οντοτήτων 
μέσα από μη δομημένο κείμενο, και στην μετατροπή της σχετικής πληροφορίας σε 
συγκεκριμένες προ-δηλωμένες κατηγορίες, όπως για παράδειγμα Άτομο, Τοποθεσία, 
Οργανισμός και άλλα. 

Το εύρος της έρευνας και των αλγορίθμων που έχουν εφαρμοστεί στον συγκεκριμένο 
κλάδο έχει εξελιχθεί σε τέτοιο βαθμό, που μας δίνει τη δυνατότητα να μελετήσουμε σε 
βάθος την κάθε εφαρμογή, και να εξάγουμε το καλύτερο δυνατό αποτέλεσμα. Στόχος της 
διπλωματικής εργασίας, είναι η μελέτη της προόδου που έχει γίνει στην Επεξεργασία 
Φυσικής Γλώσσας με σκοπό την Αναγνώριση Ονομασμένων Οντοτήτων. Ακολουθώντας 
ευρέως διαδεδομένα δημοσιεύματα και εφαρμογές, επιχειρούμε να βρούμε την 
εγκυρότητα των εφαρμοσμένων μοντέλων, τις διαφορές μεταξύ τους, και πως 
αξιολογείται το τελικό αποτέλεσμα. 

Μελετάμε τις τεχνικές της Επεξεργασίας της Φυσικής Γλώσσας, που έχουν εφαρμοστεί 
για την κοινή έρευνα της Αναγνώρισης Ονομασμένων Οντοτήτων. Θα συγκρίνουμε και 
θα αποτιμήσουμε state-of-the-art αρχιτεκτονικές Νευρωνικών Δικτύων (LSTM, CNN, 
RNN, CRF) με σκοπό να αναγνωρίσουμε τους παρακάτω τύπους οντοτήτων: Άτομο, 
Τοποθεσία, Οργανισμός, Διάφορα (γενικός όρος). Ακόμα θα μελετήσουμε τη σημασία 
χρήσης ή μη, νέων χαρακτηριστικών μέσα από το σύνολο των δεδομένων, ειδικά εκείνων 
που δημιουργούνται από το ανθρώπινο χέρι. Για σωστή σύγκριση, χρησιμοποιούμε το 
ίδιο σύνολο δεδομένων για την εκπαίδευση του μοντέλου, με τον ίδιο τρόπο όπως 
χρησιμοποιείται και στα αντίστοιχα δημοσιεύματα. Η κάθε προσέγγιση αξιολογείται με 
βάση τις μετρήσεις ακρίβειας και ανάκλησης του F1-σκορ ανά τύπο οντότητας για κάθε 
νευρωνικό δίκτυο. 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Φυσικής Γλώσσας, Τεχνητή Νοημοσύνη 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αναγνώριση Ονομασμένων Οντοτήτων, Παραγωγή Οντοτήτων,  

         Εξαγωγή νέων χαρακτηριστικών, Νευρωνικά Δίκτυα, Πολυεπίπεδη ή 

βαθιά μάθηση 
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PREFACE 

 

The present thesis is part of the requirements for the acquisition of a Master’s degree in 

the Department of Informatics and Telecommunications of the National and Kapodistrian 

University of Athens. The main goal is to provide a way to extract (semi-) automatically 

entities from literature documents, of all types of fields, using the technologies of neural 

networks, and NLP. The number of datasets that was used is well-known to the wider 

area of public information, and contains enough annotations so that we can have a 

satisfying result of accuracy in the model.  

The implementation of this thesis, is a study on existing implementations, trying to 

investigate the best approach out of which we can have the optimal accuracy by training 

approximately the same dataset.  

The implementation and training of the investigated models was done on a Windows 

machine of a 32GB usage RAM with NVIDIA GPU. The selected models that were 

implemented were built using Python 3.7 and the features provided used PyTorch1, 

TensorFlow2, NumPy3, Scikit-learn4 and Keras5, for the data preparation, training and 

prediction. The CUDA6 library for NVIDIA was necessary to achieve a fast execution and 

a successful training of the data. 

Working on this subject was a very interesting experience, as I managed to learn a lot on 

the field of neural networks and NER. In combination with my background knowledge 

which was mostly focused on software engineering, I was able to reproduce the applied 

models using machine learning libraries, and understand the big impact we can achieve 

by having available data, a big help for the field of science and text literature.  

 

1 https://pytorch.org/ 

2 https://www.tensorflow.org/ 

3 https://numpy.org/ 

4 https://scikit-learn.org/stable/ 

5 https://keras.io/ 

6 https://docs.nvidia.com/cuda/ 

https://pytorch.org/
https://www.tensorflow.org/
https://numpy.org/
https://scikit-learn.org/stable/
https://keras.io/
https://docs.nvidia.com/cuda/
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1. INTRODUCTION 

 

In the last years, studies around Natural Language Processing (NLP) have been 

expanded a lot. End users are flooded with a huge amount of information and news of 

diverse nature, e.g. politics, physics, environmental, informatics, educational, historical, 

et cetera. The amount of data is big enough, that it can be delivered in a time-series 

mode, and thus, it requires a series of analysis and studies, in order to extract the proper 

knowledge depending on the domain. Via all the appropriate analysis that is constantly 

being achieved by scientists and researchers, a big number of documents, papers and 

books are published, providing all this information to the relevant users, industries, or 

services.  

The big step that has been achieved with this data, is the contribution from multiple people 

and sources to annotate it and translate it to something more meaningful for the machine 

to read. Annotated data can connect the common parts of a variety of content around and 

help on the creation of a constant path from one data source to another. Figure 1 shows 

a representation of this need in a clearer way. 

 

 

Figure 1: The main problem that NER tackles 

 

How this annotated data is used though? Deep learning has already contributed a lot, 

with the pre-processing of different types of data, applied to multiple applications. Deep 

learning is a subarea of machine learning referring to the application of a set of algorithms 

called neural networks and their variants. In such techniques, one provides the network 

with a set of labeled examples which it learns, or trains on. Labeling these examples is 

done in many ways. Machine learning feature extraction is done manually, and 
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classification is done by machine. In deep learning both the feature extraction and the 

classification are done by machine [9].  

The goal of this thesis, is to analyse studies of applied models that use deep learning 

techniques, in order to pre-process text, and recognize entities out of this text, creating a 

continuous source of information that can only be fed by more data which can be found 

everywhere. 

In Chapter 2, we provide background information about the problem at hand, describing 

the main building blocks that compose our study. 

In Chapter 3, we present our analysis of the related work and the main building blocks 

that compose our approach, showing the evolution of the task the thesis tackles more in 

detail. 

In Chapter 4, we examine three alternatives and we provide all the theoretical approach 

followed by the authors, as well as the final presented results. 

In Chapter 5, we reproduce and build the applied models of the three cases that were 

analyzed in Chapter 4. We conduct the training, testing and interlinking experiments 

according to the specifications given. We finally evaluate our approach, by analyzing the 

results of the models, and by comparing them across each other.  

In Chapter 6, we summarize what was contributed and what could exist in a potential 

future work. 
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2. BACKGROUND ON NATURAL LANGUAGE PROCESSING AND 
NEURAL NETWORKS 

 

In the previous chapter, we reviewed some main reasons for the importance to identify 

and map any literature part that is available and relevant to data coming from multiple 

sources. With the evolution of the technologies, we constantly come closer to more and 

more information of text coming from PDFs, websites, excel data files, social media 

comments, posts, emails and more. Named Entity Recognition (NER) is an important task 

for identifying all the necessary entities (e.g., persons, organizations, locations, et cetera) 

coming out of such text.  

In this chapter we provide information on the historical background on NLP, and neural 

networks, their origins and evolution. Further on, we explain some of the main topics that 

will be used to address this thesis, focusing on an in-depth theory about their functionality. 

 

2.1 Natural Language Processing 

NLP is a subfield of linguistics, computer science, information engineering, and artificial 

intelligence, that deals with analyzing, understanding and generating the languages that 

humans use naturally in order to interface with computers in both written and spoken 

contexts. The machine interprets the important elements of the human language 

sentence, such as those that might correspond to specific features in a data set, and 

returns an answer. NLP can be used to interpret free text and make it decomposable and 

understandable. 

A few examples where NLP is daily used is on practices like spell checking, 

autocomplete, spam filters, extracting information, classifying, machine translation, voice 

text messaging, complex question answering, and more. 

 

2.2 Deep Learning 

Most of the NLP technologies are powered by deep learning – a subfield of machine 

learning. Deep learning facilitates a lot any kind of implementation that requires large 

amounts of training data, as well as faster machines and multicore CPU/GPUs. New 

models are extracted with advanced capabilities and improved performance. More 

flexible learning of intermediate representations, more effective learning methods for 

using context and transferring between tasks, and also, better regularization and 

optimization methods. 

Machine learning includes a lot of manually designed features, which are often over-

specified, incomplete, or time consuming. Deep learning on the opposite, can 

automatically learn good features or representations from raw inputs. It makes it easy for 

the model to adapt fast and learn. 
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Deep learning provides a very flexible, universal, and learnable framework for 

representing the world, for both visual and linguistic information. The contribution of deep 

learning in NLP tasks, provides the ability to build well trained models that do not require 

traditional, task-specific feature engineering. 

 

2.2.1 Feature representation for NLP tasks 

In machine learning, feature learning or representation learning [24] is a set of techniques 

that allows a system to automatically discover the representations needed for feature 

detection or classification from raw data. This replaces manual feature engineering and 

allows a machine to both learn the features and use them to perform a specific task. 

Feature learning is motivated by the fact that machine learning tasks such as 

classification [25] often require input that is mathematically and computationally 

convenient to process. However, real-world data such as images, video, and sensor data 

has not yielded yet to algorithmically define specific features. An alternative way is to 

discover such features or representations through examination, without relying on explicit 

algorithms. 

Feature learning can either be: 

o Supervised: features are learned using labeled input data 

o Unsupervised: features are learned with unlabeled input data 

Neural networks are a family of learning algorithms that use a “network” consisting of 

multiple layers of inter-connected nodes. Multilayer neural networks can be used to 

perform feature learning, since they learn a representation of their input at the hidden 

layer(s) which is subsequently used for classification or regression at the output layer. 

 

2.2.2 NLP techniques 

One of the first steps that need to be performed on the analysis of our data, depend a lot 

on what type of data we have, meaning what is the format of the data to be trained, and 

where we extract it from. The main steps to apply a successful NLP technique are: 

• Tokenization: breaking text into words and sentences 

• Stop-word Removal: filtering common words 

• N-Grams: identifying commonly occurring groups of words 

• Word-sense disambiguation: identifying he context in which the word occurs 

• Part-of-speech: identifying Part-of-Speech 

• Stemming: removing ends of the words 
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Figure 2: Simple NLP approach vs. Deep Learning NLP approach 

 

In Figure 2 (taken from [50]) we see the difference between a classical and a deep 

learning NLP approach. In classical NLP techniques (upper part of the figure) we pre-

process the data in the early stages before generating features out of the data. In the 

next phase, we use hand-crafted features that are generated using NER tools, POS 

taggers, and parsers. We feed these features as input to the ML algorithm and train the 

model. We check the accuracy, and if it is not good, we optimize some of the parameters 

of the algorithm and try to generate a more accurate result. Depending on the NLP 

application, we can include the module that detects the language and then generates 

features. 

In case of deep learning techniques (lower part of the figure) for an NLP application, we 

do some basic pre-processing on the data we have. Then, we convert our text input data 

to a form of dense vectors. To generate the dense vectors, we use word-embedding 

techniques such as Word2Vec, GloVe and so on, and feed these dense vectors 

embedding to the deep neural network. Here we do not use hand-crafted features but 

different types of deep neural networks as per the NLP application. The multiple layers of 

deep neural networks generalize the goal and learn the steps to achieve the defined goal. 

In this process, the machine learns the hierarchical representation and gives us the result 

that we validate and tune the model as per the necessity. 

 

2.3 Text Embeddings 

Any classification method [25] uses a set of features or parameters to characterize each 

object, where these features should be relevant to the task in hand. Sentences are 

classified according to their syntax or structure, their form and how complete they are. 



Named Entity Recognition using Neural Networks  

V. Moschou 32 

Depending on the type of each sentence, the model can separate the declarative 

sentences, from the interrogative and the imperative sentences. 

There are several rule-based approaches that classify text into organized groups by using 

a set of handcrafted linguistic rules. These rules set the system in a way so that it can 

use semantically relevant elements of a text to identify relevant categories based on its 

content. 

Text embeddings [27] are real values of vector representations of strings. We build a 

dense vector for each word, chosen in a way that it’s similar to vectors of words that 

appear in similar contexts. 

Word embeddings are considered a great starting point for most deep NLP tasks. They 

are the result of unsupervised learning of word representation and they can be considered 

as a distributed semantic model. It is globally assumed, that words that belong to similar 

context share semantic meaning. They allow deep learning to be effective on smaller 

datasets, as they are often the first inputs to a deep learning architecture and the most 

popular way of transfer learning in NLP. Each word can be represented as a vector in 

power of N, where N is a unique number of words in the given dictionary. 

The most popular names in word embeddings are Word2Vec by Google [28], and GloVe 

by Stanford [19]. Additionally, there are more applied techniques, like DFastText7, 

Poincare Embeddings8, sense2vec9, Skip-Thought10, Adaptive Skip-Gram11. 

 

 

Figure 3: Examples of Word Representations 

 

In Figure 3 (taken from [28]) we see some interesting word associations captured by 

embeddings. Once the word vectors are reduced to two dimensions, it is possible to see 

relationships between certain words. Examples of a semantic relationship are 

 
7 https://fasttext.cc/ 

8 https://github.com/facebookresearch/poincare-embeddings 

9 https://github.com/explosion/sense2vec 

10 https://pypi.org/project/skip-thoughts/ 

11 https://github.com/sbos/AdaGram.jl 

https://fasttext.cc/
https://github.com/facebookresearch/poincare-embeddings
https://github.com/explosion/sense2vec
https://pypi.org/project/skip-thoughts/
https://github.com/sbos/AdaGram.jl
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male/female designations and country/capital relationships, while an example of syntactic 

relationship is past vs. present tense. Words that share semantic or syntactic 

relationships will be represented by vectors of similar magnitude and be mapped in close 

proximity to each other in the word embedding. This actually opens up an entirely new 

dimension of possibilities for finding patterns or other insights in the data. 

 

2.3.1 Word2Vec Embeddings 

In Word2Vec [28], we have a large corpus of text in which every word in a fixed vocabulary 

is represented by a vector. We then go through each position t in the text, which has a 

center word c and context words o. Next, we use the similarity of the word vectors for c 

and o to calculate the probability of o given c (or vice versa). We keep adjusting the word 

vectors to maximize this probability. 

For efficient training of Word2vec, we can eliminate meaningless (or higher frequency) 

words from the dataset (e.g. a, the, of, then). This helps improve model accuracy and 

training time. Additionally, we can use negative sampling for every input by updating the 

weights for all the correct labels, but only on a small number of incorrect labels. 

Word2vec has 2 model variants worth mentioning:  

• Skip-Gram: [22] We consider a context window containing k consecutive terms. 

Then we skip one of these words and try to learn a neural network that gets all 

terms except the one skipped and predicts the skipped term. Therefore, if two 

words repeatedly share similar contexts in a large corpus, the embedding vectors 

of those terms will have close vectors. 

• Continuous Bag of Words: [28] We take multiple sentences in a large corpus. 

Every time we see a word, we take the surrounding word. Then we input the 

context words to a neural network and predict the word in the center of this context. 

When we have thousands of such context words and the center word, we have 

one instance of a dataset for the neural network. We train the neural network and 

finally the encoded hidden layer output represents the embedding for a particular 

word. It so happens that when we train this over a large number of sentences, 

words in similar context get similar vectors. 

Both the variants are window-based models, meaning that the co-occurrence statistics of 

the corpus are not used efficiently, resulting in suboptimal embeddings. 

 

2.3.2 GloVe Embeddings 

The GloVe [19] model captures the meaning of one word embedding with the structure 

of the whole observed corpus. For that reason, the model trains on global co-occurrence 

counts of words and makes a sufficient use of statistics by minimizing least-squares error 

and, as a result, produces a word vector space with meaningful substructure. With this 

way, an outline sufficiently preserves words’ similarities with vector distance. 
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2.4 POS Tagging 

POS tagging [29] is essential for building lemmatizers12 which are used to reduce a word 

to its root form. POS tagging is the process of making up a word in a corpus to a 

corresponding part of speech tag, based on its context and definition. 

 

2.5 Named Entity Recognition 

NER [17] is the task of identifying textual mentions and classifying them into a predefined 

set of types of various approaches which have been proposed to tackle the task, from 

hand-crafted feature-based machine learning models, like conditional random fields [37] 

and perceptron [36], to deep neural models [15, 7]. 

In order to properly map and recognize label entities, we need to apply NER on text. 

Named entities provide a small, tractable set of elements carrying a well-defined 

semantics. Generic named entities are names of persons, locations, organizations, 

phone numbers, and dates, while domain-specific named entities include names of like, 

sensor, modern, nature, media, et cetera. 

For the requirements of the thesis, this step plays a very important role in the high quality 

of the search results and the better detailed way of expressing desired knowledge graphs. 

In order to have proper results, the amount of data that is required, is huge. Hence, the 

identification of entities like the ones mentioned above, must be done in an automatized 

way, which will help achieving the optimal output of NER. There are several techniques, 

which need to be analyzed, and be combined in such a way that the best results will come 

out after the implementation. 

 

2.6 Neural Networks 

Neural Networks (NN) [30] have been around since 1943 when the subject was first 

initialized. They can be described as a finite subset of units (or nodes or neurons) N = 

{n1, n2, . . .,} and a finite set H ⊆ N × N of directed edges or connections between nodes. 

Forward-Neural-Networks (FNNs) [31] are acyclic graphs, though Recurrent Neural 

Networks (RNNs) [48] are cyclic. There are several layers that define a NN. The first layer 

is always the input layer, and it is represented as a set of input units, a subset of N. 

This artificial neuron inside a NN is modelled mathematically, as shown in Table 1. 

 

Table 1: Mathematical logic of an artificial neuron 

1. Each neuron is modeled as a set of inputs to the neuron (x1, x2, x3), and as a set of outputs y to other 

neurons 

2. Numeric values are fed into the neuron, which represent the strength of the input signal 

 
12 https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html 

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
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3. The neuron produces a numeric output value, which represents the strength of the signal leaving the 

neuron 

4. Information flow through the neuron from its inputs to its output 

5. The connections leading into the neuron have weights that can be either increased or decreased (w1, 

w2, w3) 

6. When a neuron received input from its connections, it sums together all of the input values 

7. The neuron has an activation function which determines how much output it will produce given the 

summed input values. There are several types of activation functions, each one being appropriate for 

various applications. Activation functions can be considered as mathematical ways to squash the output 

so that they stay within a certain range of values. 

 

2.6.1 Convolutional Neural Networks 

A Convolutional Neural Network (ConvNet / CNN) [42] is a deep learning algorithm which 

can take in an input image, assign importance (learnable weights and biases) to various 

aspects / objects in the image and be able to differentiate one from the other. The pre-

processing required in a ConvNet is much lower as compared to other classification 

algorithms. While in primitive methods, filters are hand-engineered, with enough training, 

ConvNets have the ability to learn these filters / characteristics. 

A convolutional neural network consists of an input and an output layer, as well as multiple 

hidden layers. The hidden layers of a CNN typically consist of a series of convolutional 

layers that convolve with a multiplication or another operation (dot product). The 

activation function is commonly a RELU layer [26], and is subsequently followed by 

additional convolutions such as pooling layers, fully connected layers, and normalization 

layers, referred to as hidden layers because their inputs and outputs are masked by the 

activation function and final convolution. The final convolution, in turn, often involves 

backpropagation in order to weight the end product more accurately. 

CNNs can use more hyper-parameters than a standard multilayer perceptron. While the 

usual rules for learning rates and regularization constants still apply, the following should 

be kept in mind when optimizing. 
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Figure 4: A visual representation of a convolutional layer 

 

In Figure 4 (taken from [42]), we see how the movement of the first part of the 

convolutional layer (kernel), is moving in carrying out the operation of an image pre-

processing. The center element of the kernel is placed over the input vector, of which is 

then calculated and replaced with a weighted sum of itself and any nearby pixels. 

2.6.2 Recurrent Neural Networks 

Recurrent Neural Networks (RNN) [48] simply address the issue of classifying what kind 

of event is the next one to occur based on reasoning on previous events. RNN is a looping 

mechanism that acts as a highway to allow information to flow from one step to the next. 

It is a neural sequence model that achieves state-of-the-art performance on important 

tasks that include language modeling [32], speech recognition [34], and machine 

translation [33]. The RNN dynamics can be described using deterministic transitions from 

previous to current hidden states. 

In practice, RNNs accept an input vector x, and give an output vector y. However, this 

output vector’s contents are crucially influenced not only by the input that was fed in, but 

also by the entire history of inputs that were fed in the past. 

In an example of character-level language models (Figure 513), RNN receives a huge 

chunk of text, and tries to calculate the probability distribution of the next character in the 

sequence given a sequence of previous characters. This will then allow to generate new 

text one character at a time. 

Each character will be encoded into a vector using 1-of-k encoding, and will be fed into 

the RNN one at a time with the help of a step function. We can then observe a sequence 

of 4-dimensional output vectors (one dimension per character), which interpret as the 

confidence the RNN currently assigns to each character coming next in the sequence. 

  

 
13 https://karpathy.github.io/2015/05/21/rnn-effectiveness/ 

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Figure 5: RNN with 4-dimensional I/O layers, and a hidden layer of 3 units (neurons) 

 

The diagram in Figure 5, shows the activations in the forward pass when the RNN is fed 

the characters “hell” as input. The output layer contains confidences the RNN assigns for 

the next character (the vocabulary is “h,e,l,o”). The green numbers are expected to be 

high and the red numbers to be low. 

This process is repeated over and over many times, until the network converges and its 

predictions are eventually consistent with the training data in that correct characters are 

always predicted text. 

 

2.6.3 Long Short-Term Memory Neural Networks 

Long Short-Term Memory networks – usually just called LSTMs – are a special kind of 

RNN, capable of learning long-term dependencies. They were introduced by [41], and 

were refined and popularized by many people in following work. LSTMs are explicitly 

designed to avoid the long-term dependency problem. Remembering information for long 

periods of time is practically their default behavior. LSTMs support the structure of a chain 

of repeating modules, but each module, like in RNNs, with the difference that each 

module has a different structure. Instead of having a single neural network layer, there 

are four, interacting in a very special way (Figure 614). 

 

 

 

 
14 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 6: The four neural network layers in LSTM 

 

There are several architectures of LSTM units. A common LSTM architecture is 

composed of a “cell” (the memory part of the LSTM unit), and three “regulators”, usually 

called gates of the flow of information inside the LSTM unit: an “input gate”, an “output 

gate”, and a “forget gate”. Some variations of the LSTM unit do not have one or more of 

these gates or maybe have other gates. 

The cell, is responsible for keeping track of the dependencies between the elements in 

the input sequence. The input gate, controls the extent to which a new value flows into 

the cell, and the forget gate controls the extent to which a value remains in the cell. Finally, 

the output gate controls the extent to which the value in the cell is used to compute the 

output activation of the LSTM unit. The activation function of the LSTM gates is often the 

logistic sigmoid function. 

 

 

Figure 7: A peephole LSTM unit with input, output, and forget gates 

 

In Figure 7 (taken from [34, 51]) we see an example of peephole LSTM unit with input, 

output and forget gates. We observe that each one of the gates can be thought as a 

“standard” neuron in a feed-forward (or multi-layer) neural network. They compute an 

activation (using an activation function) of a weighted sum, and represent the activations 
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of respectively the input, output, and forget gates, at time step. The 3 exit arrows from 

the memory cell to the 3 gates and represent the peephole connections. These peephole 

connections denote the contributions of the activation of the memory cell at time step. 

The little circles containing a symbol represent an element – wise multiplication between 

its inputs. The big circles containing an S-like curve represent the application of a 

differentiable function to a weighted sum. 

 

2.6.4 Bi-LSTM 

Bi-directional Recurrent Neural Networks (BRNNs) [35] connect two hidden layers of 

opposite directions to the same output. With this form of generative deep learning, the 

output layer can get information from past (backwards) and future (forward) states 

simultaneously.  

BRNNs were introduced to increase the amount of input information available to the 

network. Standard RNNs may have restrictions as the future input information cannot be 

reached from the current state. On the contrary, BRNNs do not require their input data to 

be fixed. Moreover, their future input information is reachable from the current state. 

In comparison with unidirectional (Figure 814) is that in the LSTM that runs backwards, 

we preserve the information from the future. In bidirectional though, we use two hidden 

states combined so that we are able to preserve information from both past and future in 

any point in time. 

 

 

 

 

Figure 8: LSTM vs Bi-LSTM views 

 

2.7 Activation functions 

In artificial neural networks, the activation function of a node defines the output of that 

node given an input or set of inputs. Activation functions are mathematical equations that 

determine the output of a neural network. The function is attached to each neuron in the 

network, and determines whether it should be activated or not, based on whether each 

neuron’s input is relevant for the model’s prediction. Activation functions also help 

normalize the output of each neuron to a range between 1 and 0 or between -1 and 1. 

An additional aspect of activation functions is that they must be computationally efficient 

because they are calculated across thousands or even millions of neurons for each data 
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sample. Modern neural networks use a technique called backpropagation to train the 

model, which places an increased computational strain on the activation function, and its 

derivative function.  

 

 

Figure 9: The activation function in a neural network 

 

Figure 9 shows how the activation function is structured with regards to the neural 

network. It is a mathematical “gate” in between the input feeding the current neuron and 

its output going to the next layer. It can be as simple as a step function that turns the 

neuron output on and off, depending on a rule or a threshold. It can also be a 

transformation that maps the input signals into output that are needed for the neural 

network to function. 

The need for speed has led to the development of new functions such as sigmoid / 

logistic, tanh / hyperbolic tangent, ReLU (Rectified Linear Unit), leaky ReLU, parametric 

ReLU, SoftMax, swish. There are three types of Activation Functions: 

• The binary step function, which is a threshold-based activation function, but it 

doesn’t allow multi-value outputs. 

• The linear activation function, which takes the inputs, multiplied by the weights for 

each neuron, and created an output signal proportional to the input. In one sense, 

a linear function is better than a step function, because it allows multiple outputs, 

not just yes and no. It is not possible to use backpropagation to train the model, 

and all layers of the neural network collapse into one. 

• The non-linear activation functions, which are mostly used by modern neural 

network models. They allow the model to create complex mappings between the 

network’s inputs and outputs, which are essential for learning and modeling 

complex data, such audio, video, or even datasets which are non-linear or have 

high dimensionality. Non-linear functions address the problems of a linear 

activation function:  
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o They allow backpropagation because they have a derivative function which 

is related to the inputs. 

o They allow “stacking” of multiple layers of neurons to create a deep neural 

network. Multiple hidden layers of neurons are needed to learn complex 

datasets with high levels of accuracy. 

 

2.8 Dropout 

Dropout15 [40] is a regularization technique patented by Google for reducing overfitting in 

neural networks by preventing complex co-adaptations on training data. It is a very 

efficient way of performing model averaging with neural networks. The term dropout 

refers to dropping out units (both hidden and visible) in a neural network. 

A good example is during training, where dropout layer randomly sets some of the inputs 

it received to 0 – effectively removing the contribution of these inputs to the network. This 

has the effect of generalizing the model, which reduces the overfitting and results on 

better performance on real word data. The percentage of the inputs that get to 0 can also 

be set. The setting of values to 0 is done in a random fashion as sets of data are passed. 

This ensures the model is forced to learn the relationship between all possible paths of 

data through the network. 

 

2.9 Logistic Regression 

With the regression, we attempt to predict a numeric outcome based on one or more input 

variables. The “classic” application of logistic regression model is binary classification 

(binomial classifier) – we translate input into one of two categories. Neural networks are 

used for the purpose of clustering through unsupervised learning, classification through 

unsupervised learning, or regression. That is, they help group unlabeled data, categorize 

labeled data or predict continuous values. Classifiers typically use a form of logistic 

regression in the net’s final layer to convert continuous data into dummy variables like 0 

and 1. For example, given someone’s height, weight and age, he might be bucketed as 

a heart-disease candidate or not. 

The results of the logistic regression can be interpreted as the likelihood that the data in 

question is the targeted value or not. The main category is known as the default class, 

usually the represented as the 1 in the classifier. Logistic regression can also be 

expressed in a Bayesian way16. 

 

 
15 https://en.wikipedia.org/wiki/Dropout_(neural_networks) 

16 https://en.wikipedia.org/wiki/Bayesian_probability 

https://en.wikipedia.org/wiki/Dropout_(neural_networks)
https://en.wikipedia.org/wiki/Bayesian_probability
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2.10 Conditional Random Fields 

Conditional random fields (CRFs) are a class of statistical modeling method often applied 

in pattern recognition and machine learning, and used for structured prediction. CRFs fall 

into the sequence modeling family. Whereas a discrete classifier predicts a label for a 

single sample without considering “neighboring” samples, a CRF can take context into 

account. An example to this explanation, is the linear chain CRF, shown in Figure 10, 

which predicts sequences of labels for sequences of input samples. 

 

 

Figure 10: Structure of linear chain conditional random field 

 

CRFs are a type of discriminative undirected probabilistic graphical model. They are used 

to encode known relationships between observations and construct consistent 

interpretations and are often used for labeling or parsing of sequential data, such as NLP 

shared tasks. Specifically, CRFs find applications in POS tagging, shallow parsing, 

named entity recognition, dense finding, and more. 

 

Conclusion 

In this chapter, we provided background information about the subject being studied, 

describing the main components that play an important role to the next steps of our 

analysis. 

Specifically, we focused on the theory of NLP, neural networks, and deep learning. With 

regards to deep learning, we presented different NLP techniques, in combination with 

feature representation NLP tasks. In addition, we explained how text embeddings work, 

emphasizing to the Word2Vec and GloVe embeddings, as well as POS tagging. 

We gave a thorough explanation on some neural networks, that will be also used in our 

analysis in the next chapters. Important types of neural networks, like CNNs, RNNs, 

LSTMs, Bi-LSTMs. We also provided information about necessary functions and 
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methods, that are used in neural networks, and affect critically the result of the training 

data. Methods like dropout, logistic regression, CRFs. 
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3. BACKGROUND AND RELATED WORK 

 

In this chapter, we provide a short review of the related work around NER, for multiple 

tagging entities and training datasets. The main datasets used in the models we analyse 

are the CoNLL-2003 [18] dataset and the OntoNotes v5 [5, 6] dataset, both in the English 

language. 

The CoNLL-2003 task consists of newswire text from the Reuters RCV1 corpus tagged 

with four different entity types (PER, LOC, ORG, MISC). Models are evaluated based on 

a span-based F1 on the test set, where both the train and development splits are used 

for training. 

The OntoNotes corpus v5 [5, 6] is a richly annotated corpus with several layers of 

annotation, including named entities, coreference, part of speech, word sense, 

propositions, and syntactic parse trees. These annotations are over a large number of 

tokens, a broad cross-section of domains, and 3 languages (English, Arabic and 

Chinese). The NER dataset (of interest here and only in English) includes 18 tags, 

consisting of 11 types (Person, Organization, et cetera) and 7 values (Date, Percent, et 

cetera), and contains 2 million tokens. 

 

3.1 Word representations 

Pre-trained word representations [20] play an important role in many neural language 

understanding models. [10] provide a deeper analysis on the topic by learning high quality 

representations. They introduce a new type of deep contextualized word representation 

that significantly improves the state-of-the-art in every considered case across a range of 

challenging language understanding problems. They model complex characteristics of 

word use, like syntax and semantics, and evaluate how these uses vary across linguistic 

contexts, such as model polysemy.  

The vectors that are used are referred as Embeddings from Language Models (ELMo) 

representations, expressing that they derive a bidirectional LSTM that is trained with a 

coupled language model (LM) objective on a large text corpus. Extensive experiments 

show that ELMo representations work extremely well in practice, as (a) they can be easily 

added to existing models for language understanding problems, (b) they improve the 

state-of-the-art in every case, including up to 20% relative error reductions, and (c) they 

outperform the representations derived from the just the top layer of an LSTM. 

 

3.2 Feature Engineering and hand-crafted features 

A big part of what deep learning contributes to, is feature engineering. The NER task 

requires both lexical and syntactic knowledge, something that creates a huge need of 

manually engineered features to most statistical sequential labeling models. The authors 
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of paper [15] actually started the trend of feature engineering-free modelling, by learning 

internal representations of compositional components of text (e.g. word embeddings) 

However, the general opinion supports that hand-crafted features are redundant for deep 

learning models, as they already learn adequate representations of text automatically 

from corpora. [9] proposes a hybrid neural architecture method for exploring handcrafted 

features applied to NER tasks. They extend a Bi-LSTM-CNN-CRF [7] model by 

incorporating an auto-encoder loss to take manual features as input, and then reconstruct 

them. IOBES was used as a tagging scheme, and word embeddings were initialized with 

GloVe [19]. As a result, they present significant improvements over a collection of 

competitive baselines. They obtain 91.89 F1 score for CoNLL-2003 English shared task, 

which outperforms a collection of highly competitive baseline models. Additionally, they 

present an abstract study which analyses the impacts of each manually hand-crafted 

feature, showing a performance degradation when eliminating POS, word shape and 

gazetteer features. This means that each feature contributes to NER performance beyond 

what is learned through deep learning alone. 

Another approach was applied by [14] in order to present a multilingual and robust NER 

and Classification (NERC) system, which depends on general features to apply word 

representation features for high performance. Three types of simple clustering features 

are used, based on unigram matching: (a) Brown, (b) Clark and (c) Word2vec features. 

All three types contribute to very competitive results in both in-domain and out-of-domain 

settings. The study reports state-of-the-art results in multiple languages (Dutch, English, 

German, Spanish and Basque). It is also reported that the system’s performance remains 

high even when reducing the supervised data by half or more.  

Keeping in mind that language-specific resources and features are costly to develop in 

new languages and new domains, NER finds it challenging to adapt. Unsupervised 

learning from unannotated corpora offers an alternative strategy for obtaining better 

generalization from small amounts of supervision. Character-based word representations 

learned from a supervised corpus, in combination with unsupervised word 

representations learned from unannotated corpora, contribute to the approach presented 

by [16] where two neural models are presented that don’t use at all any language-specific 

knowledge or even resources. The models are designed to capture two needs: 

• Reasoning jointly over tagging decision for each token 

o A Bi-LSTM with a sequential conditional random factor layer above it 

(LSTM-CRF), is compared with a new model that constructs and labels 

chunks of input sentences using an algorithm inspired by transition-based 

parsing with states represented by stack LSTMs (s-LSTM). 

• If token-level evidence for “being a name” includes both orthographic and 

distributional evidence 

o A character-based word representation model [21] is used to capture 

orthographic sensitivity 
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o A combination of representations with distributional representations [22] is 

used to capture distributional sensitivity 

The first model is based on Bi-LSTMs and CRFs, and requires less orthographic 

information since it gets more contextual information out of the bidirectional LSTMs. A 

state-of-the-art performance is obtained in Dutch, German and Spanish, and a near state-

of-the-art performance is obtained in English, without any hand-engineered features or 

gazetteers. 

The second model constructs and labels segments using a transition-based approach 

inspired by shift-reduce parsers. It is more dependent on character-based 

representations, in order to achieve a competitive performance. It consumes the words 

one by one and it just relies on the word representations when it chunks words. In this 

case, the best previously published results are surpassed in several languages, but the 

performance is less high than the LSTM-CRF model. Near state-of-the-art results are 

reported when compared to systems that do not use external data. 

 

3.3 Sequence labeling on neural models 

[2] present an open-source neural sequence labeling toolkit, where three layers are used 

for the implementation: (a) a character sequence layer, (b) a word sequence layer, and 

(c) an inference layer. NCRF++ is designed for quick implementation of different neural 

sequence labeling models with a CRF inference layer. Built with PyTorch and a custom 

model structure, it can be configured very easily, and can be very flexible with features. 

It supports user-defined features via distributed representations, and it also integrates 

several state-of-the-art automatic feature extractors, such as CNN and LSTM. NCRF++ 

uses batch calculation, which helps on the acceleration of the GPU, and can provide fast 

results which are equally comparable to other state-of-the-art neural models.  

The Character Sequence Layer integrates several typical neural encoders for character 

sequence information, such as RNN and CNN. The Word Sequence Layer supports both 

RNN and CNN as the word sequence feature extractor. It can be stacked, building a 

deeper feature extractor. The Inference Layer takes the extracted word sequence 

representations as features and assigns labels to the word sequence. Both softmax and 

CRF are supported as the output layer. 

Regarding the evaluation, the experiments were conducted on (a) CoNLL-2003 dataset 

with the standard split, for the NER task, and on (b) CoNLL-2000 shared task with the 

split of [23], for the chunking task. It is shown that it can achieve stat-of-the-art results 

with an efficient running speed. 

 

3.3.1 Contextual string embeddings for sequence labeling 

Using string embeddings for sequence labeling is another approach followed by [8] where 

they present a method for producing them using neural character LM. In more details, the 

study suggests to leverage the internal states of a trained character language model, to 
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product a novel type of word embedding which we refer to as contextual string 

embeddings. These embeddings are trained without any explicit notion of words and 

model words, and are contextualized by their surrounding text, meaning that the same 

word will have different embeddings depending on its contextual use. 

They are also highly useful for downstream tasks, by outperforming the previous state-

of-the-art word on English and German NER tasks, using the CoNLL-2003 shared task. 

 

3.3.2 Empower sequence labeling with task-aware language model 

A different study explores once more the impact of sequence labeling in the use of neural 

networks. [3] proposes an effective sequence labeling framework, called ML-LSTM-CRF, 

which extracts knowledge from self-contained order information of training sequences. It 

leverages both word-level and character-level knowledge in an efficient way.  

In deeper analysis, for character-level knowledge, a neural language model is 

incorporated, with the sequence labeling task, and multi-task learning guides the 

language model towards task-specific key knowledge. For word-level knowledge, there 

is fine-tune applied for pre-trained word embeddings, without co-training or pre-training 

of the word-level layers 

With regards to the evaluation, the CoNLL-2003 NER task was used for the experiments, 

reaching a F1 score of 91.71 without the addition of any extra annotations. 

 

3.3.3 Hybrid semi-Markov CRF for sequence labeling 

[1] present the improvement of SCRF methods by employing word-level and segment-

level information in parallel, for segment score calculation. A joint decoding algorithm is 

proposed for neural sequence labeling. The two basic steps that are applied are (a) the 

word-level labels that are utilized to derived the segment scores in SCRFs, and (b) the 

CRF and SCRF output layers that are integrated into a unified neural network on CoNLL-

2003 NER shared task. The final result gives a state-of-the-art performance when no 

external knowledge is used. 

 

3.3.4 Semi-supervised sequence tagging with bidirectional language models 

In addition to the aforementioned practices, another study investigates an alternate semi-

supervised approach which does not require additional labeled data. [12] presents a 

simple and general semi-supervised method for augmenting token representations in 

sequence tagging models. A neural language model (LM) is used, pre-trained on a large, 

unlabeled corpus, to compute an encoding of the context at each position in the sequence 

and use it in the supervised sequence tagging model. This makes the context sensitive 

representation captured in the LM embeddings, very useful for the supervised sequence 

tagging schema. 
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By applying this method and adding LM embeddings in the main system, the overall 

performance is increased with a total F1 score of 91.93 on the CoNLL-2003 shared NER 

task. A new state-of-the-art F1 score of 96.37 is also achieved on the CoNLL-2000 

Chunking task. 

The analysis shows as well, that adding a backward LM in addition to traditional forward 

LMs consistently robust, even when the LM is trained on unlabeled data from a different 

domain, or when the baseline model is trained on a large number of labeled examples. 

 

3.3.5 Transfer learning for sequence tagging with hierarchical recurrent networks 

Last but not least, it makes sense to mention one more practice applied for sequence 

tagging by [13]. The main task challenges how to transfer knowledge from one task to 

another – often referred as transfer learning. The problem is originated from the need of 

knowledge transfer for neural sequence taggers where a source task with plentiful 

annotations is used to improve performance on a target task with fewer available 

annotations. 

The transfer learning approach that is presented, depends on a deep hierarchical 

recurrent neural network, which shares the hidden feature representation and part of the 

model parameters between the source task and the target task. The new approach 

combines the objectives of the two tasks and uses gradient-based methods for efficient 

training. Three neural network architectures are designed for the settings of cross-

domain, cross-application, and cross-lingual transfer. 

Evaluating the performance, the new transfer learning method achieves significant 

improvements on various datasets under low-resource conditions, as well as new state-

of-the-art results on some of the benchmarks. In the performance, (a) the label 

abundance for the target task, (b) the relatedness between the source and target tasks, 

and (c) the number of parameters that can be shared, are the main factors that eventually 

contribute to the final outperforming results. 

 

Table 2: F1 scores in related work using the CoNLL-2003 dataset 

Index Model F1 score 

Model1 Deep contextualized word representations 92.22 

Model2 Evaluating the Utility of Hand-crafted Features in Sequence 

Labeling 

91.89 

Model3 Robust multilingual Named Entity Recognition with shallow 

semi-supervised features 

91.36 

Model4 Neural Architectures for Named Entity Recognition 90.94 
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Model5 NCRF++: An open-source Neural Sequence Labeling 

Toolkit 

91.35 

Model6 Contextual String Embeddings for Sequence Labeling 93.09 

Model7 Empower Sequence Labeling with Task-Aware Language 

Model 

91.71 

Model8 Hybrid semi-Markov CRF for Neural Sequence Labeling 91.38 

Model9 Semi-supervised sequence tagging with bidirectional 

language models 

91.93 

Model10 Transfer Learning for Sequence Tagging with Hierarchical 

Recurrent Networks 

91.26 

 

Table 2 shows an overview of the related F1 scores that explain the performance 

results on each one of the above analyzed models using the same training dataset. It is 

clear that there are minor differences in some of the results, and it is proven that the 

impact of sequence labeling and managing properly hand-crafted features and word 

embeddings, can contribute to high performances and new defines state-of-the-art 

results, compared to previous works. We can also confirm the variation of the F1 scores 

in Figure 11, where the use of contextual string embeddings provides a clear difference 

in the final result. 

 

 

Figure 11: Evolution of the F1 scores in the related work models 
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Conclusion 

In this chapter we provided all the necessary information about the related work around 

NER, which will be used in the next chapters. We reviewed how word representations 

contribute to neural language understanding models, and how important feature 

engineering and hand-crafted features are for the model. Finally, we analyzed the 

techniques of sequence labeling on neural models, focusing on contextual string 

embeddings, hybrid semi-Markov CRFs, task-aware and bidirectional language models, 

and transfer learning. 
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4. AN EXPERIMENTAL COMPARISON OF THREE ALTERNATIVES 

 

In this chapter, we focus on describing the workflow of three different approaches with 

regards to NER. We provide the theoretical analysis that each approach follows and we 

present the neural network components that define the implementation of the final model 

and conduct the training. 

We also give all the necessary information with regards to the system configuration, and 

the settings that were applied to the experiments, as described by the authors, including 

all the technical characteristics that comprise the model, along with the final results and 

the duration of the training for each dataset. 

The datasets that were used for the training are the same for all the three studies, CoNLL-

2003 and OntoNotes 5.0. This makes the analysis and comparison equal with regards to 

the annotated data, and gives us room to focus only on the different techniques applied. 

 

4.1 Robust lexical features for improved neural network Named-Entity 

Recognition 

The authors of [11], focus on the importance of hand-crafted features in neural network 

approaches to named entity recognition. It is shown that lexical features can be quite 

useful. 

A new method is presented, which suggests to embed words and entity types into a low-

dimensional vector space which is trained from annotated data produced by distant 

supervision from Wikipedia. As an outcome, an offline feature vector is computed, 

representing each word. 

The published results of the study show a new state-of-the-art F1 score of 87.95 on 

OntoNotes 5.0 dataset, and a state-of-the-art performance with a F1 score of 91.73 on 

the over-studied CoNLL-2003 dataset. 

 

4.1.1 Problem definition 

There are some main limitations on the use of gazetteer features. Specifically: 
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• The binary representation of features is not always successful as the gazetteer 

features only encode the presence of an n-gram in each list and omit its relative 

frequency. As a result, the preference of a word is not always captured correctly. 

For example, “Greece” can be considered either as a person, organization or 

location in a text, even if it mainly refers to the country most of the time. 

• The generation of entries is a time-consuming approach, as it depends on 

matching every n-gram in a sentence against entries in the lexicons. 

• There are a lot of non-entity words that might be completely skipped from the 

gazetteer features, even though it can be proven the specific words can appear 

after the mention of a type PER. 

 

4.1.2 Method analysis 

One of the first steps to be defined, is the way to embed words and entity types. Wikipedia 

plays a very important role on this, as it is helped on the generation of WiNER [46] and 

WiFiNE [45], two approaches for generating named entities, which produce coarse (4 

classes) and fine-grained (120 labels) named entity annotations. 

This method uses WiFiNE as the source of annotations. Each entity mention is mapped 

to a pre-defined set of 120 entity types. Types are stored in a 2-level hierarchical structure 

(e.g. /person, and /person/teacher). The corpus consists of 3.2M Wikipedia articles, 

comprising 1.3G tokens that were annotated with 157.4M named entity mentions and 

their types. Leveraging WiFiNE into a joint vector space, we embed words and entity 

types. Via that, we compute for each word a 120-dimensional vector, where each 

dimension encodes the similarity of the word with an entity type. We call this vector a LS 

representation, for lexical similarity. For instance, the embedding for /product/software 

will be trained using context words that surround all entities that were (automatically) 

labelled as /product/software in Wikipedia. Figure 12 (taken from [11]) shows that 

combining words and entity types can become really helpful for word embeddings. 
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Figure 12: Example of the two variants of a given sentence 

 

The FastText toolkit [38] is used to learn the uncased embeddings for both words and 

entity types. A skip-gram [22] model is trained to learn 100-dimensional vectors with a 

minimum word frequency cutoff of 5, and a windows size of 5. It is observed that mentions 

often annotated by a given type, tend to cluster around this entity type (e.g “firefox” close 

to /product/software, or “enzyme” close to /biology). Additionally, words that are labelled 

with different types, tend to appear between types they were annotated with (e.g.”gpx2” 

which can be considered both as software and as a gene, has its embedding between 

/product/software and /biology). 

The lexical representation that is proposed, is computed offline, without adding any 

computation burden at test time. This representation encodes the preference of an entity-

mention word for a given type, an information out of which binary gazetteer features are 

extracted. 

 

4.1.3 NER system 

For the purposes of this implementation, the popular Bi-LSTM-CRF [7] architecture 

system is adopted (Figure 13 taken from [11]), which is mostly used in many sequential 

tagging tasks. Lexical vectors are computed offline and are not adjusted during training. 
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Figure 13: Main architecture of the NER system 

 

In addition to the LS vector, the paper incorporates publicly available pre-trained 

embeddings, as well as character-level, and capitalization features. Publicly available 

word embeddings were also used for the experiments, such as Senna17, Word2Vec [28], 

GloVe [19], and SSKIP [39], where the latter performs the best as indicated from the 

reports. SSKIP embeddings are 100-dimensional case sensitive vectors trained on n-skip-

gram model. CoNLL and OntoNotes also use these embeddings, which are adjusted 

during training and report good performance. 

 

 

Figure 14: Character representation of the word "CAT" to the word-level Bi-LSTM 

 
17 https://ronan.collobert.com/senna/ 

https://ronan.collobert.com/senna/
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A forward and a backward LSTM is used, to derive a representation of each word from 

its characters (Figure 14 taken from [11]). A character lookup is randomly initialized, then 

trained at the same time like the Bi-LSTM model. 

In order to characterize certain categories of capitalization patterns, the system uses 

capitalization features (allUpper, allLower, upperFirst, upperNotFirst, numeric or 

noAlphaNum). 

 

4.1.4 Experiments and evaluation 

The main NER benchmarks where used with regards to the data: CONLL-2003 [18] and 

OntoNotes 5.0 [5]. For both datasets, the IOB encoding is converted to BILOU for better 

performance [49]. 

 

Table 3: Statistics of the CoNLL-2003 and OntoNotes 5.0 datasets 

 

 

CoNLL-2003 is annotated for four entity types: Person (PER), Location (LOC), 

Organization (ORG), and Miscellaneous (MISC). The four entity types are fairly evenly 

distributed, and the train/dev/test datasets present a similar type distribution. OntoNotes 

5.0 dataset is annotated with 18 entity types, and is much larger than CoNLL, as shown 

in Table 3 (taken from [11]) and explained the task definition. Hence, more data is used 

for training and evaluation in comparison to CoNLL. 

 

Table 4: System characteristics for CoNLL and OntoNotes datasets 

Characteristic CoNLL-2003 OntoNotes 5.0 

Mini-batch 10 10 

Learning rates 0.009 0.013 
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Hidden dimensions 128 256 

Character Embedding  25 25 

Forward and Backward character LSTMs 

hidden dimension 

50 50 

Capitalization embeddings dimension 25 25 

Epochs 50 50 

 

The implementation uses TensorFlow18 library and the model run on a GeForce GTX 

TITAN Xp GPU. 

The model characteristics for the training and implementation, are described below, 

combined with the different values applied for CoNLL and OntoNotes (Table 4): 

• A mini-batch stochastic gradient descent (SGD) with a momentum of 0.9 and a 

gradient clipping of 5.0 is used for training. 

• A dropout mask [40] is applied on the input / output vectors of the Bi-LSTM with a 

probability of 0.5, to migrate overfitting. 

• The hyper-parameters are tuned by grid-search, and early stopping is used based 

on the performance on the development set. 

• The applied variations are: 

o Dropout: [0.25, 0.5, 0.65],  

o Hidden units: [50, 128, 256, 300]), 

o Capitalization: [10, 20, 30], 

o Char embedding dimensions: [25, 50, 100], 

o Learning rate: [0.001, 0.015] by step 0.002, 

o Optimization algorithms, 

o Fixing the other hyper-parameters 

• The training time took about 2.5 hours for CoNLL and 8 hours for OntoNotes. 

 
18 https://www.tensor-flow.org/ 

https://www.tensor-flow.org/
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4.2 Named Entity Recognition with Bidirectional LSTM-CNNs 

The authors of [4], focus on the need of feature engineering. A neural network 

architecture is presented which automatically detects word – and character – level 

features using a hybrid bidirectional LSTM and CNN architecture. A novel method of 

encoding partial lexicon matches in neural networks is proposed and is compared to 

existing approaches. 

The published results of the paper show that the system is competitive on the CoNLL-

2003 dataset. Using little feature engineering - two lexicons constructed from publicly – 

available sources, a new state-of-the-art performance is established, with a F1 score of 

91.62 on CoNLL-2003 dataset and 86.28 on OntoNotes – surpassing systems that 

employ heavy feature engineering, proprietary lexicons, and rich entity linking 

information. 

 

4.2.1 Method analysis 

The whole approach is inspired by the work of [15], who proposed an effective neural 

network model that requires little feature engineering. More in details, we work with 

lookup tables that transform discrete features such as words and characters into 

continuous vector representations, which are then concatenated and fed into a neural 

network. Instead of a feed-forward neural network, the Bi-directional Long-Short Term 

Memory network (Bi-LSTM) is used (Figure 15 taken from [4]). In order to induce 

character-level features, a Convolutional Neural Network (CNN) is used, which has been 

successfully applied to Spanish and Portuguese NER, and German POS tagging. 
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Figure 15: The (unrolled) Bi-LSTM for tagging named entities 

 

The main steps that were applied to the model are described separately below. 

 

Sequence labeling with Bi-LSTM 

Deployment of a stacked bi-directional recurrent neural network, with long short-term 

memory units to transform word features into named entity tag scores. The extracted 

features of each word are fed into a forward LSTM network and backward LSTM network. 

Linear and log-softmax layers helped decoding the output of each network at every time 

step into log-probabilities. These two vectors are then simply added together to produce 

the final output. 

 

 

Figure 16: Example of a CNN extracting character features from each word 
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Character features extraction using CNN 

Employing a convolution and a max layer to extract a new feature vector from the per-

character feature vectors. Words are padded with a number of special padding characters 

on both sides depending on the window size of the CNN. The hyper-parameters of the 

CNN are the windows size and the output vector size. In Figure 16 (taken from [4]) we 

are able to see an example of the CNN with padding, for the word “Picasso”. 

 

Word embeddings 

Several publicly available word embeddings were used for the models as listed below: 

• 50-dimensional word embeddings released by [15], which contributed the most for 

the best generated model. 

• GloVe embeddings [19] trained on 6 billion words from Wikipedia and Web text, 

and Google’s word2vec embeddings [28], trained on 100 billion words from Google 

News. 

• All words are lower-based before passing through the lookup table to convert to 

their corresponding embeddings. The pre-trained embeddings are allowed to be 

modified during training. 

 

Character embeddings 

A lookup table is randomly initialized with values from a uniform distribution with range [-

0.5, 0.5] to output a character embedding of 25 dimensions. The character set includes 

all unique characters in the CoNLL-2003 dataset plus the special tokens padding (used 

for CNN) and unknown (used for all the other characters in OntoNotes). 

 

Word-level capitalization feature 

A separate lookup table is used to add a capitalization feature with the following options: 

allCaps, upperInitial, lowercase, mixedCaps, noinfo. 
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Word-level lexicons feature 

For each of the four categories (PER, LOC, ORG, MISC), a list of known named entities 

is compiled from DBpedia19, by extracting all descendants of DBpedia types 

corresponding to the CoNLL categories. Figure 17 (taken from [4]) below shows an 

example of how the lexicon features are applied. 

 

 

Figure 17: Example of how lexicon features are applied 

 

For each token in the match, the feature is encoded in BIOES annotations (Begin, Inside, 

Outside, End, Single), indicating the position of the token in the matched entry. 

 

Additional character-level features 

A lookup table is used to output a 4-dimensional vector representing the type of the 

character (upper-case, lower-case, punctuation, other).  

 

4.2.2 NER system 

The training and evaluation of the neural network are done on a per-sentence level. The 

initial states of the LSTM are zero vectors, and all lookup tables are randomly initialized 

with values drawn from the standard normal distribution. 

The network is trained to define a tag-transition matrix A where Ai,j represents the score 

of jumping from tag i to tag j in successive tokens, and A0,i as the score for starting with 

tag i. θ is defined as the set of parameters for the neural network, and θ’ = θ ∪ {Ai,j ∀i, j} 

as the set of parameters to be trained. Figure 18 (taken from [4]) shows an example of 

the sum of network and transition scores. 

 
19 https://wiki.dbpedia.org/ 

https://wiki.dbpedia.org/


Named Entity Recognition using Neural Networks  

63 V. Moschou 

 

Figure 18: sum of network and transition scores 

 

The above objective function and its gradients can be efficiently computed by dynamic 

programming [15]. During the inference time, the Viterbi algorithm is applied in order to 

maximize the final score. 

Training is done by mini-batch stochastic gradient (SGD) with a fixed learning rate. Each 

mini-batch consists of multiple sentences with the same number of tokens. Dropout is 

also used to the output node of each LSTM layer, as it becomes very effective in reducing 

overfitting. 

 

4.2.3 Experiments and evaluation 

The datasets that were used for the training, as mentioned above, are the CoNLL-2003 

dataset and the OntoNotes 5.0. The sizes in number of tokens (entities) is shown in Table 

3 (taken from [11]), as it the same one used in the previous analysis. 

For all datasets, all digit sequences are replaced by a single “0”. In addition, before 

training, the sentences are grouped by word length into mini-batches, and then are 

shuffled. As CoNLL-2003 is small, compared to OntoNotes, the model was trained on 

both the training and development sets after performing hyper-parameter optimization on 

the development set. 

 

Table 5: Hyper-parameter search space and final values 
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As far as it concerns the hyper-parameter optimization, two rounds of optimization are 

performed, and based on the development set performance, the best settings are 

selected. Table 5 (taken from [4]) shows the final hyper-parameters, and Table 6 (taken 

from [4]) shows the dev set performance of the best models in each round. 

 

Table 6: Development set F1 score performance of the hyper-parameter settings 

 

 

In the first round, random search is performed, and 500 hyper-parameter settings are 

evaluated on CoNLL-2003. Afterwards, with the same settings, the learning rate is being 

tuned on the OntoNotes development set. 

In the second round, independent hyper-parameter searches are performed for dataset 

using Optunity’s implementation which becomes more effective than random search. 500 

hyper-parameters were also evaluated in this round. 

The training takes about 6 hours for CoNLL-2003 and 10 for OntoNotes, whereas tagging 

set takes about 12 seconds for ConLL-2003 and 60 for OntoNotes. 

 

4.3 End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF 

The authors of [7] introduce a novel neural network architecture that benefits from both 

word-and-character-level representations automatically. This network uses a 

combination of Bi-LSTM, CNN, and CRF. The system doesn’t require neither feature 

engineering not data pre-processing. Hence, it can be applicable to multiple sequence 

labeling tasks. 

The system is evaluated on two datasets for two sequence labeling tasks. CoNLL-2003 

dataset is used for NER, and Penn Treebank WSJ corpus, for part-of-speech (POS) 

tagging. State-of-the-art performance is obtained for both datasets, 97.55% for POS 

tagging, and 91.21% for NER. In this analysis, we will focus more on the approach 

targeted to the NER task. 

 



Named Entity Recognition using Neural Networks  

65 V. Moschou 

4.3.1 Method analysis 

Despite the multiple developments of NER systems, hand-crafted features are still hard 

to be replaced. The performance of every model can drop rapidly when it only depends 

on neural embeddings. 

What is proposed, is a neural network architecture for sequence labeling. What is 

described, is an end-to-end model requiring no task-specific resources, feature 

engineering, or data pre-processing apart from pre-trained word embeddings on 

unlabeled corpora. This configuration makes the model applicable to a wide range of 

sequence labeling tasks, languages, and domains. 

The main components used for the definition of the model are CNNs which are used for 

encoding character-level representation, character - and word-level representations 

which are fed into a Bi-LSTM to model context information of each word, and a sequential 

CRF which is used on top of Bi-LSTM, to jointly decode labels for the whole sentence. 

 

4.3.2 NER system 

In this section, the neural architecture of every component used in the model, is explained 

more in details. 

 

CNN for Character-level representation 

Figure 19 (taken from [7]) shows the CNN that is used for this approach and that helps 

extracting character-level representation of a given word. In this version of CNN, the 

authors use only character embeddings as the inputs, without character type features. A 

dropout layer [40] is applied before character embeddings are input to CNN. 
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Figure 19: CNN for extracting character-level representations of words 

 

Bi-directional LSTM & CRF 

Figure 20 (taken from [7]) shows the basic structure of an LSTM unit. 

 

 

Figure 20: Schematic of LSTM unit 

 

The basic goal for Bi-LSTM is to present each sequence forwards and backwards to two 

separate hidden states to capture past and future information, respectively. Then the two 

hidden states are concatenated to form the final output. 
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For CRF training, the maximum conditional likelihood estimation is used. Maximum 

likelihood chooses parameters such that the log-likelihood (L(W, b) is maximized. The 

logarithm of the likelihood is given by: 

 

 

 

where {(zi, yi)} is the training set. Decoding is to search for the label sequence y* with the 

highest conditional probability. For a sequence CRF model, training and decoding can be 

solved efficiently by adopting the Viterbi algorithm. 

The final constructed neural network model, is fed by the output vectors of Bi-LSTM into 

a CRF layer. The whole architecture can be displayed in Figure 21 (taken from [7]). The 

dashed arrows indicate the dropout layers that are applied on both the input and output 

vectors of Bi-LSTM. 

 

 

Figure 21: Main architecture of the neural network 
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4.3.3 Experiments and evaluation 

In order to validate the effectiveness of pre-trained word embeddings, randomly initialized 

embeddings were used with 100 dimensions, sampled based on the analogy of the 

dimension of embeddings. Matrix parameters are randomly initialized following the 

approach of [47]. 

Mini-batch stochastic gradient descent (SGD) was used in order to optimize the 

parameters. Table 7 shows more details on the configuration of SGD. 

 

Table 7: Optimization Algorithm Parameters 

Field Value 

Batch size 10 

Momentum 0.9 

Learning rare ηo = 0.015 for NER 

Gradient clipping 5.0 

 

Additional methods that were used for better optimization are: 

• Early Stopping [43]: It is based on performance on validation sets. Based on the 

presented experiments, 50 epochs can lead very close to optimal parameters. 

• Fine Tuning [44]: The initial embeddings are fine-tuned, and are modified during 

gradient updates of the neural networks model, by back-propagating gradients. 

• Dropout Training [40]: It is applied in order to control overfitting and to regularize 

the model. It is applied to character embeddings before inputting to CNN, and on 

both the input and output vectors of Bi-LSTM. The dropout rate is fixed at 0.5 for 

all dropout layers through all the experiments. 

The tuning of hyper-parameters contributes as well to the algorithm optimization, via a 

random search. The hyper-parameters are almost the same for both the tasks of POS 

tagging and NER, except the initial learning rate. The state size of LSTM is set to 200. 
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For NER, the experiments are performed on the English data from CoNLL-2003 shared 

task [18] as mentioned above, containing the four main types of entities, PER, LOC, ORG, 

MISC. The BIOES tagging scheme is used as well here. 

 

Table 8: F1 score on NER with and without dropout 

 Train Dev Test 

No 99.97 93.51 89.25 

Yes 99.63 94.74 91.21 

 

The neural network was implemented with the use of Theano library20. The computations 

ran on a GeForce GTX TITAN X GPU machine. The model training requires about 8 

hours for NER, resulting to a F1 score of 91.21 using GloVe embeddings. Table 8 shows 

the final results with and without the use of dropout. 

 

Conclusion 

In this chapter, we focused on describing the workflow of the three different approaches 

we have chosen, with regards to NER, as instructed by the authors in their official 

publications. We provided the theoretical analysis that each approach follows and we 

presented the neural network components that define the implementation of the final 

model and conduct the training. 

Finally, we presented the system configuration of each neural network, together with any 

possible adjustments that we need to be aware of. The published final scores for each 

one of the trained datasets are also presented in this chapter. 

  

 
20 https://github.com/Theano/Theano 

https://github.com/Theano/Theano
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5. EVALUATION RESULTS AND DISCUSSION 

 

Having completed the analysis of each of the three studies in the previous chapter, 

Chapter 5, represents the main contribution of this thesis, by applying all the three 

techniques in practice, following the shared information provided by the authors of each 

study. 

Each study, provides a publicly available GitHub link with the source code of the 

implementation for every study. We provide in details all the steps that were followed for 

the execution of the models, and we describe every adjustment that was required to be 

done in our system, in order to properly apply the training of each model. 

Even though the studied and selected datasets (CoNLL-2003, OntoNotes 5.0), are the 

same for all the three cases, this evaluation uses only the CoNLL-2003 shared dataset, 

for the main reason that it is the only one openly available for usage. OntoNotes 5.0 on 

the other hand, is not taken into consideration, as its’ content is not available to all the 

users in the web, and thus, it restricts us from analyzing the training using its’ data. 

We follow the steps and the tests to-be-performed as described in every repository, in 

order to replicate a similar procedure, so that we have a fair comparison among the 

results as presented in the paper, in the actual repository, and in our own implementation. 

Finally, we provide and evaluate the results of the experiments as generated in our own 

system, and we compare the validity of the execution and the F1 score. 

The experiments were performed on a Windows machine of a 32GB usage RAM with 

NVIDIA HD Graphics P530 Quadro M2000M GPU. Given the fact that the machine 

specifications are not the same, as the ones used for each approach, we take the 

difference of results into consideration for our final conclusions. 

 

5.1 System configuration 

For the purpose of every implementation, a set of libraries needs to be installed. All the 

three repositories use Python 3.x21 as the main programming language, and either 

 
21 https://www.python.org/ 

https://www.python.org/
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PyTorch22 or TensorFlow23 for the neural network procedures. Keras24, which is running 

on top of TensorFlow, is also applied by some models, facilitating the usage of the neural 

network functionalities. Table 9 shows the detailed list for the setup of the libraries for 

every project. 

 

Table 9: Version of installed libraries per project 

# 

name 

Project 

name 

GitHub repository 

Name 

Packages 

(among other dependencies) 

Repo1 Robust Lexical Features 

for Improved Neural 

Network Named-Entity 

Recognition 

NER-with-LS python 3.7.0, keras 2.x, pyhocon, 

tensorflow / tensorflow-gpu 1.14 

Repo2 Named Entity 

Recognition with 

Bidirectional LSTM CNNs 

Named-Entity-Recognition-

with-Bidirectional-LSTM-

CNNs 

python 3.6.8, keras 2.x, tensorflow 

1.4.1, nltk, numpy 

Repo3 End-to-end Sequence 

Labeling via Bi-directional 

LSTM CNNs CRF tutorial 

End-to-end-Sequence-

Labeling-via-Bi-directional-

LSTM-CNNs-CRF-Tutorial 

python 3.6.8, torch 1.2.0, numpy 

 

As we see in the above table, we give an index number to each one of the studies. For 

the rest of our analysis, we will refer to each one of these repositories, as Repo1, Repo2, 

Repo3 respectively, so that we are able to mention quickly the one needed. 

The procedure that was followed for each of the three projects, is similar. After cloning 

each repository into our system, we installed the necessary libraries, as mentioned 

above, together with additional dependencies that turned up to be required during the 

execution. As a next step, and following the instructions of every project, we downloaded 

the data sources of CoNLL-2003.  

 
22 https://pytorch.org/ 

23 https://www.tensor-flow.org/ 

24 https://keras.io/ 

https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/
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The replicated repositories which include the additional to-be-installed libraries, as well 

as some instructions on the initial steps to follow, are available in their respective 

repositories in GitHub. 

  

5.2 Dataset annotations 

Having cloned the Repo1 GitHub repository, and having installed the technical 

requirements, which are present in our replicated version, it’s time to download our data. 

We follow the steps as provided from the README instructions, and we navigate to the 

respective link to download the data. We move the data to the already existing /data 

directory. The downloaded files are conll.joblib, used to provide a set of lightweight 

pipelining in Python, helping with an easy parallel computing25, and conlleval, which 

represents a Perl26 script that will be used for the evaluation of the model. What is 

currently missing from the directory, are the main data files of CoNLL-2003 for the 

language of English. As both of the next two studies (Repo2, Repo3) already provide the 

CoNLL-2003 dataset in their corresponding repositories, we decided to use their datasets 

for the case of Repo1 too, given the fact that in NER-with-LS, the data was not included 

in the downloaded file. Plus, it is important to have the exact same dataset to train, aiming 

to a final fair comparison. 

As already mentioned in previous chapters, this shared dataset, is already annotated 

using the tags PER, ORG, LOC, MISC which are encoded with the BIOES annotation 

scheme. In the CoNLL-2003 dataset, we observe that each tag is labelled with either the 

prefixed letter B, I, or O. B- denotes the beginning, and I- the inside of an entity. All other 

words, which don’t refer to entities of interest, are labelled with the O- tag. 

In the dataset provided for Repo3 model, the annotated data labels a lot of tags with the 

prefix I- instead of B-, even if the annotated text indicates that the word to be annotated, 

is in the beginning of the text. In addition, the respective miscellaneous label is -X- instead 

of O. Repo2 is properly set-up with the B- and O- prefix wherever is needed. The same 

structure of labels exists in all the three datasets for training, validation and testing. 

 
25 https://en.wikipedia.org/wiki/Parallel_computing 

26 https://www.perl.org/ 

https://en.wikipedia.org/wiki/Parallel_computing
https://www.perl.org/
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The interest that is raised here, is to evaluate how much will this discrepancy affect the 

final result of each of the trainings. As a final decision, we train Repo1 with both the two 

versions that are used in Repo2 and Repo3. Furthermore, we train Repo2 with the 

annotations of Repo3, and Repo3 with the annotations of Repo2 so that we are able to 

have our complete analysis between the studies. In each switch of annotated data, it is 

important to remember to rename the files, so that they can be recognized by each model 

appropriately. 

 

5.3 Model implementation and training 

 

5.3.1 Repo1 model configuration27 

Continuing on Repo1, with the annotated data properly stored in the relevant directory, 

we check and confirm that the configuration file of the project (experiments.conf) has the 

correct paths setup for reading the data. Navigating in the main code where the data will 

be processed and the model will be trained, we realize that we need to rename our 

annotated data to conll.train.txt, conll.dev.txt, conll.test.txt, and there is no use anywhere 

of the suggestion of the authors to use the prefix ”eng”, instead of ”conll”. 

In the same file, we also confirm the hyper-parameters configuration, regarding the 

embeddings dimension, the number of epochs, the batch size, and more. 

First, we experiment the results of the model, by using the annotations as Repo2. We 

copy the annotated train/valid/test files into the respective /data/conll-2003 directory of 

Repo1, and we rename them accordingly.  

The next step is the pre-processing of the data. The different annotations play a very 

important role here, as the part of pre-processing is to read the annotated data, and 

transform it from IOB to IOB2, or else BILOU encoding, as mentioned in the previous 

chapter during the analysis of this study. This will improve the total performance hence it 

is interesting to observe any possible differences due to the discrepancies of the two 

annotated datasets. 

 
27 https://github.com/vasilikivmo/repo1_ner_with_ls_ghaddarAbs 

https://github.com/vasilikivmo/repo1_ner_with_ls_ghaddarAbs
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With the parameters configured as proposed by the authors, the model was trained within 

3-4 hours. Changing the annotated data to the one used by Repo3, we pre-processed 

the data again, and ran the training once more. The training this time took about 3 hours. 

The final F1 scores for both annotations are shown in Table 10 for both Repo2 and Repo3 

respectively. 

 

Table 10: Training results on Repo1 using either the Repo2 or Repo3 annotated data 

Dataset 

Annotations 

F1-score 

DEV 

F1-score 

TEST 

Repo2 94.75 91.87 

Repo3 94.91 91.75 

 

We can confirm that the execution performed equally with what that was described in the 

paper analysis. The F1 score differs slightly from the values presented in the paper, for 

both the annotated datasets. In addition, given the different machine where the training 

was applied, difference can be skipped and we can assume, that the results are equally 

good as the paper presents. 

 

5.3.2 Repo2 model configuration28 

As mentioned in the main paper of Repo2, the authors compare the results of the model 

against various dropout values for each dataset. The models are trained using only the 

training set for each dataset to isolate the effect of dropout on both dev and test sets. 

When using a dropout value of 0.50, the F1 score in test set for CoNLL is 91.14 (±0.35). 

Specifically, the model uses Bi-LSTM – CNN with embeddings and capitalization. 

The repository instructions depend on this set of model configurations, and on top of it, 

they adjust part of the settings by: 

• Not considering lexicons at all, 

 
28 https://github.com/vasilikivmo/repo2_Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs_amalkraj 

https://github.com/vasilikivmo/repo2_Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs_amalkraj
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• Using bucketing to speed up the training, and  

• Using nadam optimizer instead of SGD 

Based on that, they present a final F1 score of 90.9% running on approximately 70 epochs 

for CoNLL-2003 dataset. 

Figure 22 (taken from the repository of [4]) shows the actual constructed network model 

that was used, with the commands of the Keras API, which facilitated the implementation 

and ran on top of TensorFlow. 

 

 

Figure 22: Network Model Constructed using Keras 

 

Continuing to the analysis and implementation from our side, we first observe that the 

annotated dataset is already existing in the repository. So, it makes sense to use this one 

for our training immediately. However, we will run the model two times, in order to change 

the annotated data, to the other version as mentioned above. This will help having a 

complete overview of the effect of the two types of annotations to the three models. 

Following the repository’s instructions, we first download the embedding files so that they 

are properly considered during the training. 

Small adjustments needed to be made in the source files for the model, always by 

respecting the original configurations from the developers. We changed the number of 
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epochs from 50 to 70, so that we are able to compare the final result with the one indicated 

in the description of the repository. In addition, we adjusted the part where the trained 

models are loaded, mostly to respect the packages versions, and to avoid having errors 

in the system, without causing any effect to the F1 scores. 

 

The training of the model with its’ original annotated data, took about 1 hour with 

approximately 70 epochs, with the flexibility to complete the training sooner on successful 

results. The F1 score on dev data was 92.7% and on test data 89.8%. Using the dataset 

annotated as the one from Repo3, the training took about 1 hour as well with 

approximately 70 epochs, and the final F1 score to be 93.1% on dev data and 90.1% on 

test data. Table 11 show all the results for both cases. 

 

Table 11: Training results on Repo2 using either the Repo2 or Repo3 annotated data 

Dataset 

Annotations 

F1-score 

DEV 

F1-score 

TEST 

Repo2 92.7 89.8 

Repo3 93.1 90.1 

 

This indicates that the adjustments occurred in the repository can affect a lot the final 

result compared to the published papers, but on the other hand, the difference of the 

score, can explain the importance of the additional configuration settings that were 

skipped in the implementation. The repository declares a F1 score of 90.9%, even though 

in our implementation the final score is 89.8, where both are a bit less than the F1 score 

presented in the study, which is 91.14. We can obviously confirm that the score values 

are close to each other, which means that the model won’t be influenced a lot in the actual 

entities prediction, but still, it is hard confirm the stability of these values, something that 

makes Repo2 less trust-worthy.  

In addition to the training we tried to have a final inference on the validity of the model, 

by testing some main examples of named entities. Table 12 shows this evaluation. 
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Table 12: Inference table examples for Repo2 using both annotations 

Sentence Original annotations Repo3 annotations 

Steve went to Paris 

Steve PER 

Paris LOC 

 

Steve PER 

Paris LOC 

 

Steve Went to Paris 

Steve PER 

Went PER 

Paris LOC 

 

Steve PER 

Went PER 

Paris LOC 

 

Jay is from India 

Jay PER 

India LOC 

 

Jay PER 

India LOC 

 

Donald is the president of USA 

Donald PER 

USA LOC 

 

Donald PER 

USA LOC 

 

European authorities fined 

Google a record $5.1 billion on 

Wednesday for abusing its 

power in the mobile phone 

market and ordered the company 

to alter its practices 

European MISC 

Google ORG 

 

European MISC 

Google ORG 

 

Dr. Doull from the Royal College 

of Paediatrics in Wales backed 

the Fresh Start 

Dr. PER 

Doull PER 

Royal ORG 

College ORG 

Of ORG 

Paediatrics ORG 

Wales LOC 

Fresh MISC 

Start ORG 

 

Dr. PER 

Doull PER 

Royal ORG 

College ORG 

of ORG 

Paediatrics ORG 

Wales LOC 

Fresh MISC 

Start MISC 

 

The ceremony at Auschwitz 

culminated a week of events 

Auschwitz MISC Auschwitz LOC 
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around the world, including a 

commemoration in Jerusalem 

attended by dozens of world 

leaders, who urged collective 

vigilance against a resurgence of 

anti-Semitism worldwide 

Jerusalem LOC 

anti-

Semitism 

MISC 

 

Jerusalem LOC 

anti-

Semitism 

MISC 

 

As a result, Russia was not 

invited to the anniversary of the 

liberation of Auschwitz, even 

though the Soviet Army liberated 

the camp. 

Russia LOC 

Auschwitz MISC 

Soviet MISC 

Army MISC 

 

Russia LOC 

Auschwitz MISC 

Soviet MISC 

Army ORG 

 

NAEYC asked two researchers 

about what their work tells us 

about toys, children, and play. 

NAEYC ORG 

 

NAEYC ORG 

 

 

5.3.3 Repo3 model configuration29 

Following the instructions of the public repository provided by the authors, we were able 

to download the GloVe vectors, and the respective data files of the CoNLL-2003 dataset. 

Pytorch is one of the main plugins that require the execution and the training of the model, 

together with some more libraries, as shown in Table 9. 

The repository contains a Jupyter30 notebook file, which demonstrates step-by-step how 

to construct the model and implement the state-of-the-art Bi-directional LSTM-CNN-CRF 

architecture as described from the study analysis. This helps us become more familiar 

with the whole logic of the model, and more comfortable with the use of PyTorch. The 

essential parts that are covered through this implementation are: 

• The preparation of the final dataset, which includes: 

o The pre-processing of the data, where all the digits in the words are 

replaced by 0, so that we are able to concentrate more on only important 

alphabets 

 
29 https://github.com/vasilikivmo/repo3_End-to-end-Sequence-Labeling-via-Bi-directional-LSTM-CNNs-CRF-Tutorial_jayavardhanr 

30 https://jupyter.org/ 

https://github.com/vasilikivmo/repo3_End-to-end-Sequence-Labeling-via-Bi-directional-LSTM-CNNs-CRF-Tutorial_jayavardhanr
https://jupyter.org/
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o The update of the tagging scheme – The authors in the paper use the 

BIOES tagging Scheme, in opposition to the BIO that is used in the dataset. 

Thus, we convert the tagging scheme from BIO to BIOES 

o The creation of mappings for words, characters and tags 

• The loading of the word embeddings (100-dimension GloVe vectors containing 6 

billion words) 

• The network definition, which includes: 

o The initialization of weights and the initialization scheme for the LSTM 

layers 

o The CNN encoder for character level representation 

o The Bi-directional LSTM for word level encoding 

o The CRF layers for output decoding 

o The addition of helper functions for further calculation of the score 

o The implementation of the Forward and the Viterbi algorithms 

• The definition of the training parameters 

• The training, evaluation and testing of the model 

Accordingly, we create the respective file in the source code, containing all the parts that 

are necessary for the implementation. The only adjustments needed to be done, is to 

choose to train the model from the beginning, so that we generate our own results, without 

using the existing pre-trained model. We also add more examples at the last part of the 

testing, so that we can have a more thorough list of the performance of the model. 

The training of the model took about 7 hours with the final F1 score being 92.3% on DEV 

dataset. The higher result than what the papers present, can be explained, from the 

continuous improvements on the model, as shown in the public repository. In addition to 

that, we can clearly see that the time of training, is less than what is presented in the 

paper, even though the machine we used is not qualified for such procedures. 

Changing the annotated data to the one coming from Repo2, the training took about 7 

hours as well, having a final F1 score of 93.1% on DEV dataset. Table 13 shows the final 

scores by using these two types of datasets. We can also view similar inference validity 

outputs of example sentences on Table 14. 
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Table 13: Training results on Repo3 using either the Repo2 or Repo3 annotated data 

Dataset 

Annotations 

F1-score 

DEV 

F1-score 

TEST 

Repo2 93.1 88.1 

Repo3 92.3 87.3 

 

Table 14: Inference table on Repo2 examples using both annotations 

Sentence Original annotations Repo3 annotations 

Steve went to Paris 

Steve PER 

Paris LOC 

 

Steve PER 

Paris LOC 

 

Steve Went to Paris 

Steve PER 

Paris LOC 

 

Steve PER 

Paris LOC 

 

Jay is from India 

Jay PER 

India LOC 

 

Jay PER 

India LOC 

 

Donald is the president of USA 

Donald PER 

USA LOC 

 

Donald PER 

USA LOC 

 

European authorities fined 

Google a record $5.1 billion on 

Wednesday for abusing its 

power in the mobile phone 

market and ordered the company 

to alter its practices 

European MISC 

Google PER 

 

European MISC 

Google ORG 

 

Dr. Doull from the Royal College 

of Paediatrics in Wales backed 

the Fresh Start 

Royal ORG 

Fresh MISC 

 

Doull ORG 

Royal ORG 

Paediatrics LOC 

Wales LOC 

Fresh ORG, 

MISC 
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The ceremony at Auschwitz 

culminated a week of events 

around the world, including a 

commemoration in Jerusalem 

attended by dozens of world 

leaders, who urged collective 

vigilance against a resurgence of 

anti-Semitism worldwide 

Auschwitz LOC 

Jerusalem LOC 

anti-

Semitism 

 ORG 

 

Auschwitz LOC 

Jerusalem LOC 

 

As a result, Russia was not 

invited to the anniversary of the 

liberation of Auschwitz, even 

though the Soviet Army liberated 

the camp. 

Russia LOC 

Auschwitz PER 

Soviet LOC 

 

Russia LOC 

Auschwitz ORG, 

LOC 

Soviet ORG 

 

NAEYC asked two researchers 

about what their work tells us 

about toys, children, and play. 

NAEYC ORG 

 

NAEYC ORG 

 

 

Having completed the training of all the three models, covering every case of different 

annotation data and respecting the configuration settings of each repository, we come to 

a conclusion that the results may vary across the different annotations, but to a level that 

the final model performance will be affected. Figure 23 shows a comparison of the final 

F1 scores of the TEST dataset, for all the three repositories, using either the annotated 

data of Repo2, or Repo3. We can see that indeed there is a difference, in the final F1 

scores for each Repo, however, the range between our implementation and the paper’s 

implementation remains approximately the same. This indicates, that all the three models 

can perform almost equally as presented by each study, and the focus only remains in 

using the appropriate parameters for an optimal tuning.  

Comparing the inference validity examples though, we can see that the understanding of 

some words within a sentence might change (e.g. Went becomes PER instead of NA, 

Google becomes PER instead of ORG, Auschwitz becomes PER instead of ORG/LOC), 

which shows the importance of well pre-processed documents, with proper capitalization, 

and a good text structure. The annotations affecting the final output of the sentences can 

create a lot of confusion, and have a bigger impact to the final results of the model. 
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Figure 23: Comparison of F1 scores, testing two versions of annotated data 

 

5.4 Final evaluation of the models 

Having analyzed and re-produced the three studied papers and their respective 

implementations, we come to an understanding, that all the three evaluations can 

represent the main study followed by the authors. This makes the comparison across the 

three models to be even, so that we can focus only on the approach followed for each 

case, as described in the previous chapter. As a result, we observe that the use of lexical 

features can indeed be very useful, when we embed words and entity types into a low-

dimensional vector space, as presented in Repo1. This approach using the same training 

dataset, seems to brings very clear improvements in the entity recognition, in comparison 

to the word- and character-level features detection using the Bi-LSTM and CNN 

architectures as explained in Repo2. Similarly, it seems to perform better than Repo3 as 

well, where the latter depends on a similar architecture as Repo2, combining Bi-LSTM, 

CNN and CRF techniques. 

Figure 24 shows the evaluation of the three models, in comparison to the 3 best selected 

techniques, that we described in Chapter 3. 
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Repo1 Repo2 Repo3

Repo2 annotation 91.87 89.8 88.1

Repo3 annotation 91.75 90.1 87.3

Repo2 annotation Repo3 annotation
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Figure 24: Comparison of the main repos with the best 3 models from related work 

 

For the above comparison, we used the best F1 score as it was extracted for the three 

repositories, from either the annotated data on Repo2, or Repo3. We can observe that 

the performance followed by Model6 remains high in difference even in comparison with 

our own implementation. Learning to predict the next character on the basis of previous 

characters (contextual string embeddings) contributes to high F1 score results of 93.09 

for CoNLL-2003. An equal comparison can only be made between Repo3 Model1 or 

Model 9, where Model1 focus on a new type of deep contextualized word representation, 

and Model9 focus on a general semi-supervised approach, for adding pre-trained context 

embeddings. 

  

85 86 87 88 89 90 91 92 93 94

Model1

Model6

Model9

Model1 Model6 Model9

Repos 1, 2, 3 91.87 90.1 88.1

Related Work best models 92.22 93.09 91.93
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6. CONCLUSION AND FUTURE WORK 

 

In this study, we reviewed and analyzed how Natural Language Processing (NLP) 

techniques are applied for Named Entity Recognition (NER) tasks. Deep learning seems 

to play a very important role on the implementation of neural network models, that aim to 

process and manage data from text documents, journals, papers. NER is one of the main 

tasks required for information extraction, which focus on identifying entities from 

unstructured text, and translating them into pre-defined sub-categories, like the main 

ones used, Person, Location, Organization, or Miscellaneous. Based on the existing 

studies and implementations, we investigated the current progress in NLP for NER usage. 

We followed publicly available documents and applications, and we explored the 

differences among them, through evaluation of the presented results. 

As a start, we needed to cover any background information required, so that we can 

understand the concepts throughout the whole study. We described the main building 

blocks that compose our approach, GloVe embeddings, POS tagging, Recurrent Neural 

Networks (RNNS), Long Short-Term Memory Neural Networks (LSTMs), Bidirectional 

LSTMs (Bi-LSTMs), Conditional Random Fields (CRFs). As a next step, we presented 

our analysis on the related work with regards to current models, and the different 

techniques, that try to tackle the problem of the thesis. We reviewed and explained NER 

systems that use feature engineering, and hand-crafted features to train the model. We 

also explored how sequence labeling works on neural models, focusing on contextual 

string embeddings, hybrid semi-Markov CRFs, task-aware and bidirectional language 

models, and transfer learning. 

For our main contribution for this thesis, we applied an experimental comparison of three 

alternative techniques for NER tasks. We explained the approach that each one of the 

studies followed, and what were the final results presented by the authors in each case. 

The first study that was analyzed, uses hand-crafted features, by embedding word and 

entity types into a low-dimensional vector space, trained by annotated data. The second 

study, focus on detecting word- and character - level features using a hybrid bidirectional 

LSTM and CNN architecture. Finally, the third approach, studies a similar technique of 

word-and-character-level feature engineering, by combining a bidirectional LSTM-CNN-

CRF. We evaluated the F1 score of each of the three techniques by re-producing them. 

Regarding the dataset to be trained, we focused on the CoNLL-2003 shared task, and 
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with this type of annotations, we trained the models, extracting all the necessary 

information indicating the validity of each model, compared to the results of the paper. 

The evaluation showed that the papers support the actual F1 scores, with small 

differences. For some of the repositories, we needed to make small adjustments, by 

adjusting the configuration settings, or by adjusting the source code so that it can be 

compatible with our machine. For some cases, we needed to respect the initial tuning of 

hyper-parameters, which could be slightly different from the one presented in the paper. 

As a final result, we can say that the use of low-dimensional vector space, creates an 

interest for further analysis, as it is an indicator of the best F1 score on the same 

annotated dataset. 

Our future plans include further experiments and analysis on the current progress, 

focusing on re-producing some more techniques of interest, like the use of contextual 

string embeddings for sequence labeling [8], which proposes embeddings that are trained 

without any explicit notion of words, and that are contextualized by their surrounding text. 

As this related work seems to produce much higher results on the same CoNLL-2003 

dataset, it raises a lot of interest to examine and evaluate it in comparison to our first 

study. This could provide the ability to combine these techniques, and potentially produce 

better results. 

Furthermore, we could review potential improvements on the fine-tuning of the hyper-

parameters for each one of the studies, which could improve the performance of the pre-

processing of the data. On top of that, we could experiment by training all our models with 

the OntoNotes 5.0 dataset as well, in order to compare and evaluate the produced results 

with the published ones. 
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