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Abstract

Our goal is to describe the splitting theorems of Riemannian and Lorentzian
geometry. In the first chapter we present a brief overview of some basic
definitions and results about Riemannian and, more importantly, Lorentzian
manifolds.

In 1971 Cheeger and Gromoll [5] proved that
a complete Riemannian manifold M which contains a line and has non-
negative Ricci curvature is isometric to the product R ×M ′ for some Rie-
mannian manifold M ′.
Similar results had been published earlier by other authors for special cases
or using stronger conditions, like Toponogov’s theorem for non-negative sec-
tional curvature. A more elementary proof for the Cheeger-Gromoll theorem
was given by Eschenburg and Heintze [7]. They made use of smooth support
functions along with a maximum principle theorem proved by Calabi. We
present this proof in the first half of the second chapter.

The theorem led Yau to postulate the following analogue for Lorentzian
manifolds:
A timelike complete Lorentz manifold M which contains a line and has non-
negative Ricci curvature, splits isometrically as R ×M ′ where M ′ is a Rie-
mannian manifold.

Again, many weaker and different versions of the theorem were proved.
At some point the Lorentzian conjecture came to the attention of Eschen-
burg and in 1988 he proved the splitting theorem while also assuming global
hyperbolicity for the manifold. Soon after that, Galloway proved the theorem
assuming only global hyperbolicity. In the second half of chapter 2, we prove
the Lorentzian theorem as stated by Eschenburg, but we will use some ideas
from the proof of Galloway.

The conjecture made by Yau was finally proved by Newmann in [15].





Περίληψη

Σκοπός μας είναι να περιγράψουμε και να αποδείξουμε τα θεωρήματα διάσπασης

για πολλαπλότητες τύπου Riemann και Lorentz. Στο πρώτο κεφάλαιο παρουσι-
άζουμε μια σύντομη υπενθύμιση μερικών βασικών ορισμών και αποτελεσμάτων

για πολλαπλότητες τύπου Riemann και, πιο σημαντικά, τύπου Lorentz.
Το 1971 οι Cheeger και Gromoll [5] απέδειξαν ότι

Μια πλήρης πολλαπλότητα Riemann που περιέχει ένα line και έχει μη-αρνητική
Ricci καμπυλότητα είναι ισομετρική με το Καρτεσιανό γινόμενο R×M ′

, όπου

M ′
είναι μια πολλαπλότητα Riemann.
Παρόμοια αποτελέσματα είχαν αποδειχθεί νωρίτερα από άλλους για ειδικές

περιπτώσεις ή με ισχυρότερες υποθέσεις, όπως το θεώρημα του Toponogov για
μη-αρνητική sectional curvature. Μια πιο στοιχειώδης απόδειξη του θεωρήμα-
τος των Cheeger και Gromoll δόθηκε από τους Eschenburg και Heintze [7].
Χρησιμοποίησαν λείες συναρτήσεις στήριξης μαζί με ένα θεώρημα αρχής με-

γίστου που απέδειξε ο Calabi. Θα παρουσιάσουμε την απόδειξη αυτή στο
πρώτο μισό του δεύτερου κεφαλαίου.

Το θεώρημα οδήγησε τον Yau να διατυπώσει μια ανάλογη εικασία για την
περίπτωση πολλαπλοτήτων Lorentz
Μια timelike-complete πολλαπλότητα Lorentz M που περιέχει ένα line και έχει
μη-αρνητική καμπυλότητα Ricci, διασπάται ισομετρικά σε Καρτεσιανό γινόμενο
R×M ′

όπου M ′
είναι μια πολλαπλότητα Riemann.

Πάλι, αρκετές ασθενέστερες εκδοχές του θεωρήματος αποδείχθηκαν. Κάποια

στιγμή, η εικασία έπεσε στην προσοχή του Eschenburg και το 1988 απέδειξε
ένα θεώρημα διάσπασης υποθέτοντας επι-πλέον ότι η πολλαπλότητα είναι glob-
ally hyperbolic. Σύντομα μετά, ο Galloway απέδειξε την διάσπαση υποθέτοντας
μόνο global hyperbolicity. Στο δεύτερο μισό του δεύτερου κεφαλαίου αποδει-
κνύουμε το θεώρημα όπως το διατύπωσε ο Eschenburg, αλλά θα χρησιμοποι-
ήσουμε μερικές ιδέες από την απόδειξη του Galloway.
Η εικασία που διατύπωσε ο Yau αποδείχθηκε τελικά από τον Newmann [15]
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Chapter 1

Introduction

In this chapter we will give some basic definitions and examples and present
some elementary results. Our goal is to provide the necessary notation and
results to prove the splitting theorems in the next chapter, as well as give a
quick overview of semi-Riemannian geometry, focusing on Riemannian and
Lorentzian manifolds.

As we shall see, most of the local theory is identical for Riemannian and
and Lorentz manifolds. This is because often, the positive-definite of the Rie-
mannian metric is not needed, so with only a non-degenerate metric, many
definitions and proofs work just the same. However, there are some very im-
portant results of Riemannian geometry where the positive-definite property
is essential, so these results don’t hold in general in the semi-Riemannian
case. At the end of the chapter we discuss some of those results, how they
fail and -in some cases- what additional conditions we need to assume.

1.1 Definitions and Examples

Inner Product Spaces

The objects we are interested in, are semi-Riemannian manifolds. These are
C∞ manifolds equipped with an semi-Riemannian metric. We are all familiar
with the natural inner product on Rn. We remind that an inner product on
a vector space V is a map g : V × V → R such that:

• g(x, y) = g(y, x)
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• g(λx+ y, z) = λg(x, z) + g(y, z)

• ∀x g(x, x) ≥ 0 and g(x, x) = 0 =⇒ x = 0

The first two properties mean g is a symmetric bi-linear form. For the
third property we say g is positive-definite.

It turns out that a weaker type of inner product is of great significance
in the theory of relativity, as it describes the geometry of spacetime in the
same way that the canonical inner product of Rn describes the Euclidean
geometry.

Definition 1. A symmetric bilinear form g : V × V → R is called a (non-
degenerate) inner product if

∀x g(x, u) = 0 =⇒ u = 0

It is clear that any positive-definite inner product is non-degenerate. We
can also define a negative-definite inner product for ∀x g(x, x) ≤ 0. A sub-
space of a non-degerneate inner product space can be positive or negative-
definite. It can also be non-degenerate itself or it can be degenerate! This
means we have to be carefull when we consider subspaces of non-degenerate
inner product spaces.

From now, by inner product, we shall mean a non-degenerate, symmetric
bilinear form, not necessarily positive definite- unless we mention it. We will
often use the common notation 〈·, ·〉 for g(·, ·).

Let’s present some more definitions before we give some examples.
A vector v 6= 0 in an inner product space V is called:

• spacelike, if 〈v, v〉 > 0

• null or lightlike, if 〈v, v〉 = 0

• timelike, if 〈v, v〉 < 0

This is called the causal character of the vector.
With small pertubations of a timelike vector we can create an entire base

of the vector space. That however gives us no information on the inner
product. On the contrary the dimension of a negative-definite subspace is
more interesting. The maximal dimension of a negative-definte subspace is
called the index of the inner product
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It can be proved that two inner product vector spaces of the same dimen-
sion and index are isomorphic.

Two vectors v, w are called orthogonal if 〈v, w〉 = 0
The norm of a vector v is defined as ‖v‖ =

√
|〈v, v〉|

A vector is called normal or to be of unit length if ‖v‖ = 1
A set of vecotrs is called orthonormal if they are all normal and pairwise

orthogonal.
The quadratic form of the inner product is a map q : V → R such that

q(v) = 〈v, v〉
Let (V, g) be an inner product space and b1, b2, . . . , bn be a basis of V .

The matrix of g related to that base is

(g)ij = g(bi, bj) = 〈bi, bj〉

Lemma 2. The matrix of a non-degenerate inner product is symmetric and
invertible.

Proof. The summetry is clear. Notice that, for every j, g(v, bj) = 0 is equiv-
alent to

∑
i vigij = 0. This is equivalent to a linear system vt(g) = 0, or

that v lists coefficients that make the linear combination of the rows of g
equal zero. From that, non-degeneracy gives that the rows of g are indepen-
dent and, conversely, if g were invertible the only solution of the system is
v = 0

From the definition we have that the inner product defines the quadratic
form. The following shows that the quadratic form also defines the inner
product. That means the two are equivalent structures

Lemma 3 (Polarization Identity). For any two vectors v, w in an inner prod-
uct space, we have

〈v, w〉 =
1

2

(
q(v + w)− q(v)− q(w)

)
=

1

4

(
q(v + w)− q(v − w)

)
Proof. The proof is a straightforward calculation

q(v + w)− q(v)− q(w) = 〈v + w, v + w〉 − q(v)− q(w)

= q(v) + 2〈v, w〉+ q(w)− q(v)− q(w)

= 2〈v, w〉

Similarly the other identity
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Lemma 4. In an inner product space (V, g), there is a natural isometry T
between V and its dual space V ∗, given by the formula

v 7→ Tv = g(v, ·)

Proof. It is easy to show the map T is linear. Consider a basis {bi} of V and
and take some θ ∈ V ∗. Then Tv = θ is equivalent to

Tv(bj) = θ(bj) , for all j∑
i

vigij = θj , for all j

But, from Lemma 2, the matrix (g) is invertible and so there is a unique
solution. This makes T a bijection and gives a formula for v

vi =
∑
j

θjg
ij

where (gij) = (gij)
−1

This lemma gives us a way to calculate the components of a vector v in
a given base {bi}, because it is usually is easier to calculate the components
of the respective one-form 〈v, ·〉

v =
∑
ij

gij〈v, bj〉bi

Proposition 5. In an inner product space of index ν, all orthonormal bases
have exactly ν timelike vectors

Proof. LetW be a maximal negative-definite subspace and b1, . . . , bm, bm+1, . . . , bn
be an orthonormal base with b1, . . . , bm timelike. The components of the inner
product are then gij = εiδij, where δij is the Kronecker delta and εi = 〈bi, bi〉
the "sign" of bi.

From orthonormality, the vectors b1, . . . , bm span a negative-definite sub-
space of dimension m. Therefore m ≤ ν = dim(W ).

For the reverse inequality consider the linear map

π : W → span(b1, . . . , bm) : w 7→
m∑
i=1

εi〈w, bi〉bi
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It sufices to show that it is an injection. For this we show that its kernel is
trivial. Let π(w) = 0, we have

π(w) = 0⇔ ∀i = 1, . . . ,m 〈w, bi〉 = 0

Then from orthonormality we have

w =
n∑

i=m+1

εi〈w, bi〉bi

⇒ 〈w,w〉 =
n∑

i=m+1

〈w, bi〉2 ≥ 0

But w ∈ W and therefore 〈w,w〉 = 0, from which follows that 〈w, bi〉 = 0
for i = m+ 1, . . . , n. Thus w = 0

The existence of an orthonormal basis is proved in [16]. If the index is 1,
we can apply a variation of the Gram-Schmidt process. The trick is to start
with a timelike vector as the normal subspace will be positive definite and
Gram-Schmidt applies normally. From now on we are mostly interested in
inner products of index 1 (or 0), though, for the sake of generality we will
formulate some results in terms of arbitrary index.

Lemma 6. The timelike vectors of an inner product space of index 1 are
divided in two disjoint convex sets and two timelike vectors v, w are on the
same component iff 〈v, w〉 < 0

Proof. Let u be a timelike vector. Consider the linear form

φu : V → R : v 7→ 〈v, u〉

Then u⊥ = φ−1
u (0) and it is a positive-definite subspace, therefore it contains

no timelike vectors. If

C− = {v|v timelike and φu(v) < 0}

C+ = {v|v timelike and φu(v) > 0}

then u ∈ C− and −u ∈ C+. Therefore the set of timelike vectors is composed
of two disjoint sets.
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Take two timelike vectors v, w. Without loss of generality, v ∈ C−. To
show that φu(w) < 0 iff 〈v, w〉 < 0, it sufices to show that for three timelike
vectors v, u, w, if two pairs have negative inner product, so will the third
pair. Let 〈v, w〉 < 0. First, for r ∈ [0, 1] it’s a straightforward calculation
to see that rv + (1− r)w is timelike. If we assume that 〈w, u〉 ≥ 0, then for
some r0 we will have 〈r0v+(1−r0)w, u〉 = 0, that is two linearly independent
timelike vectors. This contradicts the assumption that the index is 1.

The two sets of timelike vectors of the above lemma are called the time-
cones of V . In a way they represent the future and the past of the observer
at the start, though in a general inner product space there is no natural way
to differentiate one from the other. To specify one timecone to represent the
future is to time-orient the space.

As we see in the next example the triangle and the Cauchy-Schwarz in-
equalities don’t hold for inner product spaces. Of course, if we restrict our-
selves to a posive definite subspace, everything works as usual. Furthermore,
some analogues can be proved for timelike vectors.

Lemma 7. For v, w timelike vectors in an inner product space of index 1,
we have the reverse Cauchy-Schwarz

|〈v, w〉| ≥ ‖v‖‖w‖

Furthermore, if the vectors belong to the same timecone, we also have the
reverse triangle inequality

‖v + w‖ ≥ ‖v‖+ ‖w‖

Proof. For α = 〈v,w〉
〈v,v〉 we have w = αv + w, with w ⊥ v

〈w,w〉 = α2〈v, v〉+ 〈w,w〉
α2〈v, v〉 = 〈w,w〉 − 〈w,w〉

Applying that to α〈v, v〉 = 〈v, w〉

〈v, w〉2 = α2〈v, v〉2 = (α2〈v, v〉)〈v, v〉
=
(
〈w,w〉 − 〈w,w〉

)
〈v, v〉

≥ 〈w,w〉〈v, v〉
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Where the last inequality is due to the fact that w is spacelike, threfore
〈w,w〉 ≥ 0. Since both v and w are timelike the last term is positive, thus
taking square roots, we get the reverse C-S inequality.

For the reverse triangle inequality we need to additionaly assume that v
and w lie on the same timecone, i.e. 〈v, w〉 < 0. The reverse C-S then gives
〈v, w〉 ≤ −‖v‖‖w‖.

‖v + w‖2 = −〈v, v〉 − 2〈v, w〉 − 〈w,w〉
≥ ‖v‖+ 2‖v‖‖w‖+ ‖w‖ = (‖v‖+ ‖w‖)2

Taking square roots finishes the proof.

The above result is counterintuitive, but it probably should not be sur-
prising, The negative nature of timelike vectors is expected to reverse things

Example 8. On Rn for any ν < n we have the inner product of index ν

〈x, y〉 = −x1y1 − x2y2 − · · · − xνyν + xν+1yν+1 + · · ·+ xnyn

Another way to write this is using the "sign" of i-th place

εi =

{
−1 , for i ≤ ν
1 , for i > ν

Then we can write

〈x, y〉 =
n∑
i=1

εixiyi

We refere to this inner product space as Rn
ν . For the canonical base of Rn,

the matrix of the inner product is:(
−Iν 0

0 In−ν

)
It is common to call R4

1 the Minkowski space for he introduced it as a
mathematical model of the geometry of special relativity.

It should already be clear that orthogonality does not work in the same
way as in Euclidean geometry. Null vectors are orthogonal to themselves and
generally we don’t have the "90 degree" angles we used to.

It is not true that a subspace of a non-degenerate vector space is non-
degenerate. For example consider the subspace {x1 = xn} of Rn

1 , the non-zero
vector (1, 0, ..., 0, 1) in orthogonal to all vectors of the subspace

7



Figure 1.1: Pairs of orthogonal vectors in R2
1

Consider the vectors (5, 4) and (1, 0) of R2
1. We have

‖(6, 4)‖ = 2
√

5 > 4 = ‖(5, 4)‖+ ‖(1, 0)‖

and ∣∣〈(5, 4), (1, 0)〉
∣∣ = 5 > 3 = ‖(5, 4)‖‖(1, 0)‖

Semi-Riemannian Manifolds

We assume some familiarity with the basic concepts of differential and Rie-
mannian geometry. In Riemannian geometry we equip each tangent space of
a C∞ manifold with a positive definite inner product. Now we will do the
same with our more general notion of inner product.

Definition 9. A semi-Riemannian manifold is a pair (M, g) of a C∞

manifold M with an inner product gp for each tangent space TpM . This
field of inner product is called semi-Riemannian metric and is required to
vary smoothly from point to point in the sense that if X, Y ∈ X(M), then
g(X, Y ) : M → R : p 7→ gp(Xp, Yp) is a smooth function on M

Lemma 10. In a connected semi-Riemannian manifold, the index of gp is
independent of the point p

Proof. We will show that the set of points of the same index is open and
closed. It suffices to show that the index is a locally constant function.

Let ν be the index of gp for some point p, and let X1, . . . , Xn be an
orthonormal base with X1, . . . , Xν timelike. Consider a coordinate neigh-
bourhood U , in wich we have

Xi =
∑
j

λij
∂

∂xj

∣∣∣∣ p
8



Expand them to vextor fields on U

Xi =
∑
j

λij
∂

∂xj

The vector fields are linearly independent, but not orthonormal away from
p. For ε < 1

n
, from the continuity of the metric we can find a neighbourhood

of p, such that

〈Xi, Xi〉 ≤ −1 + ε, for i = 1, . . . , ν

〈Xi, Xi〉 ≥ 1− ε, for i = ν + 1, . . . , n

|〈Xi, Xj〉| ≤ ε, for i 6= j

Then for any q in this neighbourhood X1, . . . , Xν span a negative definite
subspace and Xν+1, . . . , Xn span a positive definite subspace. Indeed, for
0 6= Y =

∑ν
i=1 αiXi we’ll prove Y is timelike.

〈Y, Y 〉 =
ν∑

i,j=1

αiαj〈Xi, Xj〉

=
ν∑
1

α2
i 〈Xi, Xi〉+

∑
i 6=j

αiαj〈Xi, Xj〉

≤ −
ν∑
1

α2
i +

ν∑
i,j=1

αiαjε

= −
ν∑
1

α2
i +

(
ν∑
1

αi

)2

ε

≤ −
ν∑
1

α2
i +

(
ν∑
1

|αi|

)2

ε

Treating the coefficients αi as components of a vector α ∈ Rn, we get from a
known inequality that

‖α‖1 ≤
√
n‖α‖2

Ans since ε < 1
n
, we have 〈Y, Y 〉 < 0.

The two most important cases of Semi-Riemannian manifolds are those of
index 0, these are the Riemannian manifolds, and those of index 1, we call
them Lorentzian manifolds or timespaces because of their use in relativity
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Definition 11. A Lorentzian manifold is called time-orientable if there
exists a global non-zero timelike vector field X. Thus at each point we have
the future timecone (resp. past timecone) wich contains X (resp. doesn’t)

A curve in M is called timelike (resp. spacelike, lightlike) if the tangent
velocities are timelike vectors (resp. spacelike, lightlike). Accordingly, a
submanifold will be called timelike (resp. spacelike, lightlike) if all tangent
vectors are timelike (resp. spacelike, lightlike). A vector or curve which is
not spacelike will be called causal

In a time oriented Lorentz manifold we say two points are chronolog-
ically related p � q (resp. causally related p < q) if there is a future
pointing timelike (resp. causal) curve from p to q. This means in a way that
p happened "before" q, and thus what happens in p can cause events in q.
This notion is non-existent in Riemann geometry and we have to keep track
of how the points are causally related between them.

Using these relations we define the chronological future (resp. causal
future) of a point p as

I+(p) = {x ∈M : p� x} (resp. J+(p) = {x ∈M : p < x})

and by revesring the relations we have the chronological past I−(p) and causal
past I−(p).

A Lorentz manifold is called chronological (resp. causal), if there is no
closed timelike (resp. causal) curve. It is called strongly causal if there exist
no "almost closed" causal curves, namely no causal curves with arbitrarily
close endpoints which extends arbitrarily far from them. It is clear from the
definitions, that

strongly causal⇒ causal⇒ chronological

None of the inverses above hold though as there are counterexamples. For
more details, see [16]

A Lorentz manifold is called globally hyperbolic if it is strongly causal
and the set J+(p) ∩ J−(q) is compact for all points p, q.

Let f : M → N be an embedding of M in a Riemannian manifold (N, g).
Then the pull-back f ∗g is a Riemannian metric on M .

f ∗g(v, w) = g(df(v), df(w))
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Generaly the pull-back of a non-degenerate metric is not a non-degenerate
metric on M . The problem is the subspace df(TpM) might not be a non-
degenerate subspace of Tf(p)N , so we can’t benefit from g being non-degenerate.

Proposition 12. Let (M, τ) and (N, σ) be two semi-Riemannian manifolds
of index µ and ν respectively. Consider π1 and π2 the projections of M ×N
on M and N respectively. Then

g = π∗1τ + π∗2σ

Is a semi-Riemannian metric on M ×N of index µ+ ν

Proof. Symmetry and bilinearity are straightforward. We will prove the non-
degeneracy. Let

g(v, w) = 0, for all w ∈ T(p,q)(M ×N)

Then g(v, w) = 0, specifically for those w ∈ TpM ⊕{0} ≤ T(p,q)(M ×N), and
since dπ2w = 0 for w ∈ TpM ⊕ {0}. We have

σ(dπ1(v), dπ1(w)) = 0

But these dπ1(w) span all of TpM , and therefore from non-degeneracy of σ

dπ1v = 0

Likewise dπ2v = 0, hence v = 0. This proves the non-degeneracy. For
the index, consider two orthonormal bases of TpM and of TqN . Their union
creates an orthonormal base of T(p,q)(M×N). Thus the index of g is µ+ν

Example 13. The n-sphere is an example of a Riemannian manifold. Its
metric is derived from its embedding in Rn+1

Obviously all Rn
1 are Lorentz manifolds. Less trivial examples can be

obtained if we take Cartesian products. Take R1
1 × S1 for example. In fact

for any Riemann manifold M the product R1
1 ×M is a Lorentzian manifold

Our main goal in the next chapter is to prove a sort of inverse of Propo-
sition 12. We will give appropriate conditions for a manifold to be writen
as the product of two manifolds. These are called Splitting Theorems. We
will prove the standard Riemannian Splitting Theorem, and one of many
Lorentzian Splitting Theorems.
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1.2 Some Aspects of semi-Riemannian Geome-
try

In the rest of this chapter we focus on some topics from the theory of Rie-
mannian and Lorentzian manifolds. We will develop the necessary tools we
need for the next chapters and highlight some interesting simmilarities and
differences between Riemannian and Lorentzian Geometry.

Recall that a connection on a smooth manifoldM is a map ∇ : X(M)×
X(M)→ X(M) such that

∇Y (·) : X 7→ ∇YX is R-linear and Leibniz

∇(·)Y : X 7→ ∇XY is F(M)-linear

Furthermore, we say the connection is torsion free if it satisfies

∇XY −∇YX = [X, Y ]

Theorem 14. In any semi-Riemannian manifold M there exists a unique,
torsion free connection that is compatible with the metric, i.e.

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

Proof. The theorem is proved in the same way as in Riemannian geometry.
We take the Koszul formulla

2〈∇XY, Z〉 =X〈Y, Z〉+ Y 〈X,Z〉 − Z〈X, Y 〉
+ 〈[X, Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉

and set F (X, Y, Z) to be the right hand side of the formula, then we observe
that the map Z 7→ F (X, Y, Z) is a one form, therefore, from lemma 4, there
exists a unique vector field ∇XY such that 〈∇XY, ·〉 = F (X, Y, ·)

All the notions of Riemannian geometry based on the connection are
developed in the same way for semi-Riemannian manifolds. We can use
the connection to define parallel translation along curves, define geodesics
and construct normal neighbourhoods using the exponential map. The
Riemann curvature tensor is given by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

12



For a frame field {Ei} the components of R are

Rm
ijk = E∗m(R(Ej, Ek)Ei)

Where E∗m is the dual frame.
The Ricci curvature is defined to be the contraction of the Riemann

tensor

Ricij =
∑
k

Rk
ikj

=
∑
k

E∗k
(
R(Ek, Ej)Ei

)
=
∑
km

gkm〈R(Ek, Ej)Ei, Em〉

For an orthonormal frame field Ei the Ricci curvature tensor becomes

Ricc(X, Y ) =
∑
i

εi〈R(Ei, X)Y,Ei〉

Where εi = 〈Ei, Ei〉 is the "sign"of Ei.
Next, consider a smooth hypersurface N in a semi-Riemannian manifold

M . We will give the definition of mean curvaure. First, for any two vector
fields V, W in N , the second fundamental form of N is defined as

II(V,W ) = nor(∇VW )

where nor is the orthogonal projection to the normal bundle of N in M . Let
U be a unit length local vector field normal to N . The shape operator of
N with respect to U is defined by

〈S(V ),W 〉 = 〈II(V,W ), U〉 = 〈∇VW,U〉 = −〈∇VU,W 〉

The mean curvature of N with respect to U is defined as the trace of the
shape operator. which, for an orthonormal frame {Ei} of N , becomes

HN = trS =
∑
〈∇Ei

Ei, U〉 = −
∑
〈∇Ei

U,Ei〉

Let f be a real valued smooth function on M , and X, Y be vector fields.
The Hessian of f , is defined to be the two-form given by

Hf (X, Y ) = X(Y f)− (∇XY )f

13



Proposition 15. Let ∇f is the gradient of a smooth function f The Hessian
is a symmetric bilinear form such that

Hessf (X, Y ) = 〈∇X∇f, Y 〉

The Hessian is also R-linear with respect to f and it depends on the values
of X and Y only at the point where it is estimated.

Proof. Bilinearity is obvious. For the symmetry we have

Hessf (X, Y )−Hessf (Y,X) =
(
XY − Y X

)
f −

(
∇XY −∇YX

)
f

= [X, Y ]f − [X, Y ]f = 0

Next we have

〈∇X∇f, Y 〉 = X〈∇f, Y 〉 − 〈∇f,∇XY 〉
= X(Y f)−

(
∇XY

)
f = Hessf (X, Y )

Using this formula we can also easily see that Hessf (X, Y ) is also F(M)-
linear with respect to X and Y , i.e.

Hessf (gX, Y ) = Hessf (X, gY ) = gHessf (X, Y )

This shows Hessf (X, Y ) depends on X and Y only on their values on the
point of estimation. Finally, it is straightforward to verify Hessaf+g =
aHessf +Hessg for a ∈ R
Proposition 16. Let γ be the geodesic with initial velocity vector v at the
point p. Then Hessf (v, v) is the second derivative of the real function (f ◦γ)
at zero

Hessf (v, v) = (f ◦ γ)′′(0)

Proof. Let X be a vector field defined in a neighbourhood of p such that X
extends the velocity vector field γ′ on γ. We have

(f ◦ γ)′(t) = df(γ′(t)) = X(f)
(
γ(t)

)
The function X(f) is defined in a neighbourhood of p, thus, we can differen-
tiate it along v = X|p = γ′(0) and we get

Xp(X(f)) = (X(f) ◦ γ)′(0) = (f ◦ γ)′′(0)

On the other hand

Hessf (v, v) = Hessf (X,X)|p = Xp(X(f))−∇XpX(f) = Xp(X(f))

Where ∇XpX = 0 because γ is a geodesic.

14



The Laplacian ∆f of a function f is defined as the metric contraction
of its Hessian. That means, given a frame {ei} it is

∆f = trHessf =
∑

gijHessf (ei, ej)

The following is known as the Bochner formula

Proposition 17. Let f be a smooth function on a semi-Riemannian mani-
fold. Then

∆

(
1

2
g
(
∇f,∇f

))
= ∇f(∆f) + ‖Hessf‖2 +Ricc(∇f,∇f)

Proof. Let p ∈ M and take an orthonormal frame {Ei} near p which is
parallel along the integral curve of ∇f that passes through p. We have

Ricc(∇f,∇f)(p) =
∑
i

εi〈R(Ei,∇f)∇f, Ei〉|p

=
∑
i

εi

〈
∇Ei
∇∇f∇f −∇∇f∇Ei

∇f −∇[Ei,∇f ]∇f, Ei
〉
|p

(1)

Where as usual εi = 〈Ei, Ei〉. From construction of {Ei}, they satisfy
∇∇f(p)Ei = 0 this follows [Ei,∇f ](p) = ∇Ei(p)∇f . This then gives∑
i

εi
〈
∇[Ei,∇f ]∇f, Ei

〉
|p =

∑
i

εi〈∇∇Ei
∇f∇f, Ei〉|p (symmetry of Hessf )

=
∑
i

εi〈∇Ei
∇f,∇Ei

∇f〉|p (orthonormality of {Ei})

=
∑
ij

εiεj〈∇Ei
∇f, Ej〉2|p

= ‖Hessf‖2(p) (2)

In the calculation we used the symmetric nature of the Hessian and the
last identity is due to the fact that for an orthonormal frame, the tensor
norm of Hessf coincides with the Frobenius norm of its components.

15



∑
i

εi〈∇∇f∇Ei
∇f, Ei〉|p =

∑
i

εi
(
∇f〈∇Ei

∇f, Ei〉 − 0
)
(p)

= ∇f |p

(∑
i

εi〈∇Ei
∇f, Ei〉

)
= ∇f |p

(
∆f
)

(3)

Observe that for any vector field X

〈∇∇f∇f,X〉 = 〈∇X∇f,∇f〉

=
1

2
X
(
g
(
∇f,∇f

))
=

1

2

〈
grad

(
g
(
∇f,∇f

))
, X
〉

Since X was arbitrary, it follows that ∇∇f∇f = 1
2
grad

(
g
(
∇f,∇f

))
. Ap-

plying that to the last remaining term gives∑
i

εi〈∇Ei
∇∇f∇f, Ei〉|p =

∑
i

εi

〈
grad

(1

2
g
(
∇f,∇f

))
, Ei

〉
|p

= ∆
(1

2
g
(
∇f,∇f

))
(p) (4)

Substituting equations (2), (3) and (4) to equation (1) gives the Bochner
formula. Since p was arbitrary, the formula holds for any point in the domain
of f .

Some Special Aspects of Lorentz Manifolds

In this subsection we present some topics from the theory of Lorentz mani-
folds that either reveal essential differences from Riemannian manifolds or re-
quire special treatment. Many of these are going to be used in the Lorentzian
case of the spitting theorem, but the result about the existence of Lorentz
metric is here for informative reasons.

As we saw, the definition of gradient is the same for Lorentz and Riemann
manifolds. We are used to thinking that the gradient points at the direction
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in which the function increases the fastest. That is not the case in general
semi-Riemannian manifolds. If f a smooth function on a Lorentz manifold
with timelike gradient, then

∇f
‖∇f‖

(f) =

〈
∇f
‖∇f‖

,∇f
〉

= −‖∇f‖

On the other hand, for any timelike unit vector v, by the reverse Cauchy-
Schwartz inequality

|v(f)| =
∣∣〈v,∇f〉∣∣

≥ ‖v‖‖∇f‖ = ‖∇f‖

This means that of all the directions where f decreases, it decreases the
slowest at ∇f and, accordingly, of all increasing direction, f increases the
slowest in the direction of −∇f .

With regard to the norm of a vector, the timelike and spacelike compo-
nents tend to cancel each other out. As a result, from all timelike curves
in a normal neighbourhood, the timelike geodesic is the one that actually
maximizes the length between two points, rather than minimize it.

Indeed, if α is a timelike curve in a normal neighbourhood and U = −∇r
is the unit radial vector field (where r =

√
−t2 + x2

1 + ...+ x2
n−1 in normal

coordinates around α(0)),

α′(t) = −〈α′(t), U〉U +N

with N ⊥ U . For the norm of α′(t) this means

|α′(t)| =
√
−〈α′(t), α′(t)〉 =

√
〈α′(t), U〉2 − 〈N,N〉

≤ |〈α′(t), U〉| = −〈α′(t), U〉

=
d(r ◦ α)(t)

dt

Where the second to last equality holds because at any t, α′(t) and U(α(t))
have the same causality, hence 〈α′(t), U〉 < 0. With equality iff N = 0 iff α
is radial. Then

L(α) =

∫ s

0

|α′(t)|dt ≤
∫ s

0

d(r ◦ α)(t)

dt
dt = r(α(s))

Observe that the right hand side is the length of the radial geodesic segment
from α(0) to α(s).
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Lemma 18. Let f be a smooth function on a Lorentz manifold with unit
length timelike gradient. Then the integral curves of ∇f are locally maxi-
mizing timelike geodesics.

Proof. Let γ be an integral curve of ∇f , from p to q ∈ I+(p) in a small
enough neighbourhood of p.

f(q)− f(p) = f ◦ γ(β)− f ◦ γ(α) =

∫ β

α

(f ◦ γ)′

=

∫ β

α

df(γ′)γ =

∫ β

α

〈∇f, γ′〉γ

=

∫ β

α

−‖∇f‖2
γ

Since ‖∇f‖ = 1, this follows length(γ) = −(f(q)− f(p)). Let δ : I →M be
another timelike curve from p to q, defined on the interval I. Since δ lives
in a small neighbourhood of p, δ must have the same causal character as γ
and ∇f , which means 〈∇f, δ′〉 ≤ 0. Thus, from the reverse Cauchy-Schwartz
inequality, 〈∇f, δ′〉 ≤ −‖∇f‖‖δ′‖ which gives

length(γ) = −(f(q)− f(p)) = −
∫
I

〈∇f, δ′〉 ≥
∫
I

‖∇f‖‖δ′‖ = length(δ)

The fact that γ maximizes the length between local timelike curves shows it
is indeed a locally maximizing geodesic.

These ideas motivate the definition of the time-separation in a time
oriented Lorentz manifold

d(p, q) =

{
sup{L(α) : α timelike curve from p to q} , p� q
0 , otherwise

The time separation is well defined, but it is not a distance. It is not sym-
metric, if p 6� q, then d(p, q) = 0, for non-chronological manifolds there are
points with d(p, p) =∞, and d might not even be continuous

Example 19. Consider R2
1 with the interval [(2, 2), (0, 2)] removed. For

p = (0, 0) and q = (1, 3), d is discontinuous at (p, q). There are points
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arbitrarily close to q that are unaproachable by p via timelike curves, thus
the time separation is zero. On the other hand there are points arbitrarily
close to q that, by the route on the left, have time separation close to 2.

However, if the manifold is globally hyperbolic, d is continuous and finite
valued. This is a a consequence of the following which is proved in [16].

Lemma 20. For a globally hyperbolic time oriented Lorentz manifold for
two causally related points, there exists a causal geodesic that realises the
distance

Consider a normal coordinate neigbourhood U of a point p. The time-
separation from p, d = dp = d(·, p) is defined in I−(p) In the intersection
U ∩ I−(p) we have the expression dp(x) =

√
−
∑
εix2

i where as usual εi =
〈∂i, ∂i〉. The minus sign in the coordinate expression is because

∑
εix

2
i < 0

for x in I−(p). This shows dp is smooth in U ∩ I−(p). Since ‖∇d‖ = 1, the
integral curves of ∇d are unit speed timelike geodesics.

Proposition 21. Let d(x) = d(x, p) and γ be an integral curve of ∇d,
starting from q ∈ I−(p) in a normal coordinate neighbourhood of p. If
r = d(q), then γ(t) −−→

t→r
p and

∆d(γ(t)) −−→
t→r

+∞

Proof. Take v′ ∈ TpM such that exp(v′) = q, and let v = v′

‖v′‖ =
∑
vi∂i(p).

Consider the radial unit speed geodesic δ(t) = exp
(
(r − t)v

)
. We show

that the integral curve γ is the radial geodesic δ. In coordinates δ(t) =(
(r − t)v1, ..., (r − t)vn

)
. This gives d(δ(t)) = r − t and

δ′(t) = −
∑

vi∂i
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while at the same time

∇d =
∑

εi∂i(d)∂i =
∑
−ε2

i

xi
d
∂i = −

∑ xi
d
∂i

Then we compute the gradient along δ

∇d(δ(t)) = −
∑ (r − t)vi

r − t
∂i = δ′(t)

Thus δ is indeed an integral curve of ∇d. The uniqueness of geodesics gives
δ = γ, and by construction γ(t) −−→

t→r
p Now we move on to the computation

of the Laplacian of the time separation.

∆d =
∑
ij

gijHessd(∂i, ∂j) =
∑
ij

gij
(
∂i∂jd−

∑
k

Γkij∂kd
)

(1)

Calculating this along γ while keeping in mind that Γkij(p) = 0 we have∑
ijk

Γkij∂id(γ(t)) =
∑
ijk

−Γkij
εixi
d

(γ(t)) =
∑
ijk

−Γkij(γ(t))
εi(r − t)vi
r − t

=
∑
ijk

−Γkij(γ(t))εivi −−→
t→r

0 (2)

and ∑
ij

gij∂i∂jd =
∑
ij

(gij − εiδij)∂i∂jd+
∑
ij

εiδij∂i∂jd

Since |gij − εiδij| ≤ C
∑
x2
k for some C > 0 near p, along γ this gives

|gij − εiδij|(γ(t)) ≤ C
∑

(r − t)2v2
k = C0(r − t)2 Therefore∑

ij

(gij − εiδij)∂i∂jd(γ(t)) ≤ C0

∑
ij

(r − t)2∂i∂jd(γ(t))

= C0

∑
ij

(r − t)2

(
εjδij
d
− εixiεjxj

d3

)
(γ(t))

= C0

∑
ij

(r − t)2

(
εjδij
r − t

− εi(r − t)viεj(r − t)vj
(r − t)3

)

= C0

(∑
ij

εjδij − εiviεjvj

)
(r − t) −−→

t→r
0 (3)
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Finally calculating the last term∑
ij

εiδij∂i∂jd(γ(t)) =
∑
i

εi

(
εi
d
− ε2

ix
2
i

d3

)
(γ(t))

=
∑
i

(
1

r − t
− εiv

2
i

r − t

)
=
n− 1

r − t
−−→
t→r

+∞ (4)

Applying (2), (3) and (4) to (1) gives ∆d(γ(t)) −−→
t→r

+∞.

A very important theorem in Riemann geometry is the existence of a
Riemannian structure in any smooth manifold. The same is not true for
Lorentz metrics. The following theorem was first proved by L. Markus in [14].
More details can be found in [16].

Theorem 22. A smooth manifold admits a Lorentz metric iff it is either
non-compact or the Euler characteristic vanishes χ(M) = 0

Scetch of proof. It is a known result that non-compact manifolds admit
nowhere vanishing vector fields (see theorem 4.8 of [11]). For compact man-
ifolds the existence of such vector field is equivalent to χ(M) = 0 (see [12]).
In any case we have a non-vanishing vector field X Lets consider an auxil-
iary Riemannian metric g on M . Without loss of generality we assume that
|X| = 1, then we can take the (0, 2) form g− 2θ⊗ θ, where θ = g(·, X). This
can be proved to be a Lorentz metric.

For the inverse, if M is orientable, there is a timelike vector field. Hence
if M is compact, it must have χ(M) = 0.

If is not time orientable, we can create a two sheeted covering M̃ , by
taking M̃ to be the set of timecones for each point of M . This M̃ can be
equipped with a Lorentz metric and is time orientable. Therefore, there is a
non-vanishing vector field on M̃ . The proof is completed by observing that
M̃ is compact iff M is compact and χ(M̃) = 2χ(M)
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Chapter 2

The Splitting Theorems

2.1 The Riemannian Case
Here we will prove the splitting theorem for Riemannian manifolds, which
states that under certain curvature condidions, we can ’split’ the Riemma-
nian manifold in a Cartesian product of Rm, for some m ≤ n, and some
Riemannian manifold M ′ which contains no lines. This is done by induction
removing one line at a time. Several versions of this result were proved in
special cases or with stronger conditions. The result as presented here was
first proved by Cheeger and Gromoll [5], but their proof uses some heavy
machinery and does not provide much insight in the Lorentz case. We follow
the proof given by Eschenburg and Heintze [7].

Busemann Functions

Definition 23. A line (resp. ray) is a geodesic curve γ : R → M (resp.
γ : [0,∞)→M which preserves length

d(γ(r), γ(r′)) = |r − r′|

where d denotes the Riemannian distance.

Consider a ray γ starting from p and for each n ∈ N let vn be the initial
unit velocity of a minimal geodesic from p to γ(n). From the compactness of
the unit sphere of TpM , there is a subsequence which converges to some v

Definition 24. A ray with initial velocity such a v is called an asymptote
of γ
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Let γ : [0,∞)→M be a ray in a Riemannian manifold M . For r ≥ 0 we
define the functions

br(x) = r − d(x, γ(r))

Lemma 25. The directed family {br}r≥0 is pointwise non-decreasing and
bounded. The pointwise limit, b, is Lipschitz continuous

Proof. For r ≤ r′ we have from the triangle inequality

br(x)− br′(x) = r − r′ − d(x, γ(r)) + d(x, γ(r′))

≤ r − r′ + d(γ(r), γ(r′)) = 0

Again from the triangle inequality we have

br(x) = d(γ(0), γ(r))− d(x, γ(r)) ≤ d(x, γ(0))

Thus the functions br converge pointwise to some function b. The Lips-
chitz continuity of b again follows from the triangle inequality.

|b(x)− b(y)| = lim
r→∞
|br(x)− br(y)|

= lim
r→∞
|r − r − d(x, γ(r)) + d(y, γ(r))|

≤ lim
r→∞
|d(x, y)| = d(x, y)
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The function b = lim br is called the Busemann function associated to
the ray γ and the functions br are called the pre-Busemann functions. The
Busemann function need not behave nicely, but it has a simple formula on
an asymptote of γ

Lemma 26. Let α be an asymptote of γ. Then

b(α(t)) = t+ b(α(0))

Proof. Let p = α(0), v be the initial velocity of α, and vn the initial velocities
of the minimal geodesics from p to γ(n) with vn → v

Let ε > 0 and fix some t, there is n such that

• |b(p)−
(
n− d(p, γ(n))

)
| < ε

• |d
(
exp(tv), γ(n)

)
− d
(
exp(tvn), γ(n)

)
| < ε

• |b(exp(tv))−
(
n− d(exp(tv), γ(n))

)
| < ε

We have

|b(p) + t− b(α(t))| ≤ ε+ |n− d(p, γ(n)) + t− b(α(t))|
= |n− d

(
exp(tvn), γ(n)

)
− b(α(t))|+ ε

≤ |d
(
exp(tv), γ(n)

)
− d
(
exp(tvn), γ(n)

)
|+

|n− d
(
exp(tv), γ(n)

)
− b(α(t))|+ ε

≤ 3ε

Since ε was arbitrary, b(α(t)) = t+ b(α(0))

Now consider the case where γ is a line. It consists of two rays, γ+ and
γ−, and the corresponding Busemann functions are b+ and b−

Lemma 27. For a line γ it is b+ + b− ≤ 0 and b+ + b− = 0 on γ

Proof.

b+(x) + b−(x) = lim
r→∞

(
2r − d(x, γ+(r))− d(x, γ−(r))

)
= lim

r→∞

(
2r − d(x, γ(r))− d(x, γ(−r))

)
≤ lim

r→∞

(
2r − d(γ(r), γ(−r))

)
= 0

Where the inequality becomes equality when x lies on the line, for big enough
r ≥ 0
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A problem with the Busemann functions is that they might not be differ-
entiable. This makes working with them challenging. It will instead prove
usefull to use support functions. These have good differential behaviour and
are still closelly related to the original function.

Consider an asymptote of the ray γ with initial velocity v, starting at the
point p. We define the functions

bp,r(x) = b(p) + r − d(x, exp(rv))

Lemma 28. The functions {bp,r} are support functions of b, at the point p

Proof.
bp,r(p) = b(p) + r − d(p, exp(rv)) = d(p)

b(x) + d(x, exp(rv)) = lim
t→∞

(
t− d(x, γ(t)) + d(x, exp(rv))

)
≥ lim

t→∞

(
t− d(exp(rv), γ(t))

)
= b
(
exp(rv)

)
= b(p) + r

Thus b(x) ≥ bp,r(x)

Preliminaries

Lemma 29. Let f be a smooth function on a Riemannian manifold with
‖∇f‖ = 1. Then the integral curves of ∇f are minimizing geodesics

The proof is similar to the analogous result (lemma 18) for Lorentz man-
ifolds.

Proof. Let γ : (α, β)→M be an integral curve of ∇f , from p to q.

f(q)− f(p) = f ◦ γ(β)− f ◦ γ(α) =

∫ β

α

(f ◦ γ)′

=

∫ β

α

df(γ′)γ =

∫ β

α

〈∇f, γ′〉|γ

=

∫ β

α

‖∇f‖2|γ
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Since ‖∇f‖ = 1, this follows length(γ) = f(q) − f(p). Let δ : I → M
be another curve from p to q, defined on the interval I. From the Cauchy-
Schwartz inequality 〈∇f, δ′〉 ≤ ‖∇f‖‖δ′‖ which gives

length(γ) = f(q)− f(p) =

∫
I

〈∇f, δ′〉 ≤
∫
I

‖∇f‖‖δ′‖ = length(δ)

The fact that γ minimizes the length shows it is indeed a minimizing geodesic.

Lemma 30. Let f be a smooth function with ‖∇f‖ constant, on a Rieman-
nian manifold. Then

−Ricc(∇f,∇f) = ∇f(∆f) + ‖Hessf‖2

≥ ∇f(∆f) +
(∆f)2

n− 1

Proof. The equality follows immediately from the Bochner formula (propo-
sition 17). Just observe that (∆f ◦ γ)′ = γ′(∆f) and ∆

(
1
2
‖∇f‖2

)
= 0.

Notice that since the gradient of f has constant norm, it is parallel to
itself. We take an orthonormal frame {Ei}, such that En = ∇f

||∇f || . Since
‖∇f‖ is constant, En is parallel along itself and since Hessf is symmetric,
the non-zero entries of the Hessian matrix lie in an (n − 1) × (n − 1) sub-
matrix. Treating Hessf as an (n−1)2 vector, we can use the canonical inner
product of R(n−1)2 to write the trace of Hessf as

tr(Hessf ) = 〈Hessf , In−1〉

Then from the Cauchy-Schwartz inequality we get

∆f = tr(Hessf ) ≤ ‖Hessf‖‖In−1‖ =
√
n− 1‖Hessf‖

Applying that to the equation gives the conclusion.

The following result is analogous to proposition 21. The proof of this
however is somewhat simpler.

Proposition 31. Let p a point in M , and d(x) = d(p, x) = ‖expp − 1(x)‖
the Riemannian distance. d is smooth in a small neighbourhood around p
(except at p) and

∆d(x) −−→
x→p

+∞
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Proof. Take a normal coordinate neighbourhood centered around p. In co-
ordinates d(x) =

√∑
x2
i , which is smooth in a neighbourhood around p,

excluding p, and gives ∂id = xi
d
. Also, because we use normal coordinates,

Γkij(p) = 0 and there is some C > 0 such that

|gij − δij| ≤ Cd2

The coordinate expression of the Laplacian is

∆d =
∑
ij

gij

(
∂i∂jd−

∑
k

Γkij∂kd

)
First we calculate the Christoffel symbol term∣∣∣∣∣∑

ij

gijΓkij∂kd

∣∣∣∣∣ =

∣∣∣∣∣∑
ij

gijΓkij
xi
d

∣∣∣∣∣
≤
∑
ij

∣∣gijΓkij∣∣ −−→
x→p

0

The other term we split in two, as in the Lorentzian proof∑
ij

gij∂i∂jd =
∑
ij

(gij − δij)∂i∂jd+
∑
ij

δij∂i∂jd

For the first of those therms we get∣∣∣∣∣∑
ij

(gij − δij)∂i∂jd

∣∣∣∣∣ ≤ C
∑
ij

d2

∣∣∣∣δijd − xjxi
d3

∣∣∣∣
= C

∑
ij

∣∣∣δijd− xixj
d

∣∣∣
≤ C

∑
ij

|δijd− xi| −−→
x→p

0

Finally, the last term becomes∑
ij

δij∂i∂jd =
∑
i

(
1

d
− x2

i

d3

)
=
n− 1

d
−−→
x→p

+∞
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Corollary 32. For a complete Riemannian manifold of non-negative Ricci
curvature, if dp is the Riemannian distance from p, then

∆dp ≤
n− 1

dp

Proof. Let c be an integral curve of ∇dp with c(0) = p. We take φ = ∆dp ◦ c.
Then from the above proposition 31, lim

t→0
φ(t) = ∞, and from lemma 30,

φ′

φ2
+ 1

n−1
≤ 0. We integrate

(
1
φ

)′
∫ r

0

− φ(t)′

φ2(t)
dt ≥

∫ r

0

1

n− 1
dt∫ r

0

(
1

φ(t)

)′
dt ≥ r

n− 1
1

φ(r)
− 1

φ(0)
≥ r

n− 1

As we mentioned φ(0) =∞, therefore φ(r) ≤ n−1
r

Lemma 33. Let α be a line on a complete Riemannian manifold with non-
negative Ricci curvature, then for any t ∈ R

lim
r→∞

Hessb±r (α(t)) = 0

Proof. Let t ∈ R, v ∈ Tα(t)M and H±r (t) = Hessb±r (α(t)). From the polar-
ization property, the Hessian is equivalent to h±r (t)(v) = Hess±r (t)(v, v) and
proposition 16 says h±r (v) = (b±r ◦γv)′′(0), where γv is the geodesic with initial
velocity v. From lemma 25 (b±r )r is non-decreasing with r, which combined
with lemma 27 implies that for any r, b+

r ≤ −b−r , with equality along α. It
follows that the second derivatives of (b±r ◦ γv)r at t are non-decreasing with
r and that (b+

r ◦ γv)′′(t) ≤ −(b−r ◦ γv)′′(t). Therefore, as r →∞ we can define

h±(v) = limh±r (v)

As a limit of quadratic forms, h± is itself a quadratic form, which defines a
bilinear form H±. This bilinear form is also the limit of H±r as r →∞.

We have h+ ≤ −h− which implies trH+ ≤ −trH−. On the other hand,

trH±r (t) = ∆b±r (α(t)) = −∆dα(t)(α(r)) ≥ − n− 1

dα(t)(α(r))
−−−→
r→∞

0
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This gives trH± ≥ 0, which in combination with trH+ ≤ −trH−, gives
trH± = 0. Specifically, (trH+ + trH−) =

∑
(h+ + h−)(Ei) = 0 for some

orthonormal frame {Ei}. Since h+ +h− ≤ 0 it follows that (h+ +h−)(Ei) = 0
for all i. This implies that H+ +H− = 0

If H+(t) 6= 0, there is a vector field V around α(t) such that h+(t)(V ) 6= 0
and, for big enough r, h+

r (t)(V ) 6= 0. From the continuity of h+
r with respect

to t, we can find an interval I around t, such that ‖H+
r ‖2 ≥ |h+

r (V )|2/‖V ‖4 >
ε. The monotonicity with respect to r secures this holds for all larger r.
Lemma 30 gives d

dt
(trH+

r ) ≤ −‖H+
r ‖2 < −ε. But acording to the above

trH+
r −−−→

r→∞
0. This contradiction completes the proof.

Before we go on with the splitting theorem itself, we will prove a version
of the maximum principle due to Calabi [3]

Lemma 34. (The Hopf-Calabi Maximum Principle) Let M be a connected
Riemannian manifold, f ∈ C0(M) such that ∀ p ∈M ∀ε > 0 ∃fp,ε ∈ C2(M)
support function with ∆fp,ε ≥ −ε. Then f attains no maximum or it is
constant.

Proof. We prove the set of points where f attains maximum is open and
closed, therefore f is either constant or has no maximum. As the inverse
image of a singleton, the set is closed.

Let f attain local maximum at a point p where f is not constant in any
neighbourhood of p. Choose a neighbourhood U of p, diffeomorphic to an
open ball B of Rn. Let K = {x ∈ ∂B|f(x) = f(p)}

We claim there is a real function φ defined in a neighbourhood of B such
that

φ(p) = 0

φ|K < 0

∇φ 6= 0 at B

Indeed, let q ∈ ∂B\K, SinceK is a closed set, there is an open neighbourhood
U of q which does not intersect it. For an appropriate coordinate system
(x1, ..., xn), we can have x1(p) = 0 and the pre-image x−1

1 (R+) ∩ ∂B ⊂ U .
Thus φ = x1 is an appropriate function.

Now we define h = eαφ − 1, with α > − ∆φ
‖∇φ‖2 . Notice that since B is

compact, both ∆φ and ‖∇φ‖ are bounded on B. This means the number α
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is well defined. This h satisfies

h(p) = 0

h|K < 0

∆h > 0 on B

The first two are clear. Lets consider an orthonormal frame {Ei}. Observe
that Ei(eαφ) = d(eαφ)(Ei) = αEi(φ)eαφ Now we calculate the Laplacian

∆(eαφ − 1) = ∆(eαφ) =
∑
i

(
EiEi(e

αφ)− (∇Ei
Ei)(e

αφ)
)

=
(
α∆φ+ α2‖∇φ‖2

)
eαφ

Which is positive since we chose α > − ∆φ
‖∇φ‖2 . h might have a positive

maximum at ∂B but since ∂B is compact, for a small enough η > 0 we get
(f + ηh)(x) < f(p) for any x ∈ ∂B. At the same time (f + ηh)(p) = f(p),
therefore (f + ηh) attains maximum at some point z in the interior of B.
But ∆(fz,ε + ηh) ≥ η∆h − ε, which is positive for small enough ε. This
contradicts the fact that the Hessian must be negative-definite at a local
maximum. Thus f is maximised in a neighbourhood of p.

The Splitting Theorem

Theorem 35. Let (M, g) be a complete connected Riemannian manifold
with non-negative Ricci curvature, and γ : R → M be a line. If b± are the
Busemann functions associated with the rays γ±, then M is isometric with
R× (b+)−1(0)
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Proof. Let p be a point of M . Consider two aymptotes of γ+ and γ− staring
at p with initial velocities v+ and v−. First we prove that the Busemann
functions b± are differentiable on p, with ‖∇b±‖ = 1. We take the support
functions b±p,r of b± with respect to those initial velocities. We have that
(b+
p,r + b−p,r) is a support function of b+ + b−. From lemma 32 we get

∆(b+
p,r + b−p,r) = −∆

(
dp(exp(rv+)) + dp(exp(rv−))

)
≥ −2(n− 1)

r

By lemma 27 the function (b+ + b−) attains maximum on the points of γ.
From the maximum principle b+ + b− = 0 everywhere. We have b+

p,r ≤ b+ =
−b− ≤ −b−p,r with equality at p, therefore b+, b− are differentiable at p with
∇b+(p) = ∇b+

p,r(p) = −∇b−p,r(p) = −∇b−(p), and since p was arbitrary, b±
are differentiable in M .

The gradient of the support functions is

∇b±p,r|p = ∇(b+(p) + r − d(p, exp(rv±)))|p = −∇ρp(exp(rv±))|p = −v±.

Therefore, v+ = −v−, which means there is only one asymptote per orien-
tation of γ and they fit together to make a line passing from p. From the
above we can also see that the gradient of the Busemann function at p has
‖∇b±‖ = 1 since v± is initial velocity for asymptote.

Next we will prove the Busemann functions are "linear", meaning they
have vanishing Hessian. If β±r are the pre-Busemann functions of the new
line, then β±r = b±p,r − b±(p). Hence from lemma 33

lim
r→∞

Hess(b±p,r(p)) = lim
r→∞

Hess(β±r + b±(p)) = 0

Consider a geodesic c of M and take b± ◦ c : I → R. The above means there
are support functions for b±◦c with arbitrarily small second derivative. From
the maximum principle for one dimention we get that b±◦c is either constant
or has no maximum. The same holds for (b± ◦ c− l) with l : I → R any affine
function. This can be shown to be true only when b± ◦c is convex. And since
b+ = −b−, b± ◦ c are both convex and concave. In othe words b± ◦ c is affine.
Therefore, for the initial velocity v = c′(0) of c, Hessb±(v, v) = (b± ◦ c)′′(0) =
0. Since the geodesic was arbitrary, this last identity holds for any tangent
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vector. From polarization it follows that Hessb± = 0. This in turn means the
Lie derivative of the metric along ∇b± vanishes L∇bg = 0. Hence the flow Φ
of b acts by isometries. The integral curves of ∇b± are lines composed of two
asymptotes as we saw above. This means they are defined on all of R, and
also b(Φ(t, x)) = t + b(x). Using these we take a map F : R × b−1(0) → M
which is a diffeomorphism and an isometry along level sets and the integral
curves.

2.2 The Lorentzian Case
The interest and success of the Riemannian splitting theorem led S.T. Yau
to formulate an analogue for the Lorentzian Geometry in 1982. Specifically,
he speculated that a Lorentzian manifold M with non-negative Ricci cur-
vature that is timelike geodesically complete and has a timelike line, splits
isometrically as a cartesian product R1

1 × M ′, where M ′ is a Riemannian
manifold. Various versions of splitting were proved for Lorentzian manifolds
using stronger conditions.

In 1988 J. Eschenburg proved a splitting theorem for space-times which
were timelike geodesically complete and globally hyperbolic. In 1989 G.
Galloway proved the thorem without the timelike completeness assumption.
In 1990 R. Newman finally proved the original conjecture by Yau

Here we study the theorem as proved by Eschenburg, but in proving it we
will use techniques utilized by Galloway in his proof. Like in the Riemannian
proof, we make heavy use of support functions

Lorentz Busemann Functions

In this section (M, g) denotes a time oriented, globally hyperbolic, timelike
geodesically complete Lorentz manifold. We will require some objects anal-
ogous to the Riemannian case. A timelike ray (line) is a timelike geodesic
defined on [0,∞) (resp. on R) that respects the Lorentz distance. In defin-
ing the Busemann function with respect to a timelike ray γ, in order for
d(x, γ(r)) to make sense x must lie in the past of γ and since we also want
to have d(γ(0), x) we also require that x lies in the future of γ(0). thus we
define for x ∈ I+(γ(0)) ∩ I−(γ) = I(γ)

b(x) = lim
r→∞

(
r − d(x, γ(r))

)
32



Lemma 36. b(p) ≥ d(p, q) + b(q)

Proof. From the revesre triagle inequality, the pre-Busemann functions br(x) =
r−d(x, γ(r)) are non-increasing and bounded from bellow by d(γ(0), x). Thus
the Busemann function b is indeed well defined. Also by the reverse triangle
inequality, for p� q � γ(r) we have

br(q) = r − d(q, γ(r))

≥ r − d(p, γ(r)) + d(p, q)

= br(p) + d(p, q)

, which, taking limits becomes

b(q) ≥ d(p, q) + b(p)

This is the Lorentzian equivalent of the Riemannian Busemann function
being Lipschitz continuous, so we will call this property "reverse Lipschitz"
property, even though this has nothing to do with continuity at all.

Asympotes from p can also be defined as limits of maximal timelike
geodesic segments from p to γ(rn) with rn → ∞, though as the limit of
timelike curves need not be timelike, asymptotes to γ might be timelike or
lightlike. As in the Riemannian case, the Busemann function has a nice
behaviour on asymptotes

Lemma 37. If α is an asymptote to γ and b is its Busemann function, then

b(α(t)) = t+ b(α(0))

Proof. The inequality b(α(t)) ≥ t + b(α(0)), follows immediately from the
"reverse Lipschitz" property above. For the reverse inequality, take maximal
segments αs : [0, rs]→M from α(0) to γ(s) with αs → α as s→∞. Notice
that rs →∞. This means that if u > 0 then for all big enough s > 0, αs(u)
is defined with αs(u)→ α(u)

Fix some t > 0. We will prove the inequality for α(t). Take u > t. Then
αs(u) → α(u) ∈ I+(α(t)) which is open. Therefore, for all big enough s,
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αs(u) ∈ I+(α(t)) and

bs(α(t)) = s− d(α(t), γ(s))

≤ s− d(α(t), αs(u))− d(αs(u), γ(s))

= s− d(αs(u), αs(rs))− d(α(t), αs(u))

= s− rs + u− d(α(t), αs(u))

= s− d(α(0), αs(rs)) + u− d(α(t), αs(u))

= s− d(α(0), γ(s)) + u− d(α(t), αs(u))

= bs(α(0)) + u− d(α(t), αs(u))

letting s→∞, this becomes

b(α(t)) ≤ b(α(0)) + u− d(α(t), α(u)) = b(α(0)) + t

The proof of Lemma 30 can be transfered to Lorentz manifolds. This
gives us the following

Lemma 38. Let f be a smooth function on a Lorentz manifold with ‖∇f‖ =
constant. Then

−Ricc(∇f,∇f) = ∇f(∆f) + ‖Hessf‖2

≥ ∇(∆f) +
(∆f)2

n− 1

As in the Riemannian case, the identity is immediate from the Bochner
formula (proposition 17) and the inequality follows from a Caushy-Schwartz
inequality

Lemma 39. Let p be a point in a Lorentz manifold with non-negative Ricci
curvature and d = dp be the time separation from p, defined in I−(p) and
smooth in a small enough neighbourhood of p. Then

∆dp ≥ −
n− 1

dp

Proof. Let c be an integral curve of∇d starting at c(0) = q. Then if r = d(q),
c(t) tends to p as t tends to r. We take φ = ∆dp ◦ c. Then from proposition

34



21, lim
t→r

φ(t) =∞, and from the above lemma 38, φ′

φ2
+ 1

n−1
≤ 0. We integrate(

1
φ

)′
∫ r

0

− φ(t)′

φ2(t)
dt ≥

∫ r

0

1

n− 1
dt∫ r

0

(
1

φ(t)

)′
dt ≥ r

n− 1
1

φ(r)
− 1

φ(0)
≥ r

n− 1

It follows that φ(0) ≥ −n−1
r

Lemma 40. Assume Ricc(v, v) ≥ 0 for all timelike vectors v. If the Buse-
mann function is smooth in an open U ⊂ I(γ) and has unit length, past
directed timelike gradient, then ∆b ≤ 0 (super-harmonic)

Proof. Assume ∆b(p) > 0 for some point p ∈ U and consider the level
surface b−1(c) with c = b(p). For some r0 we have p ∈ I−(γ(r0)), we define
U0 = U ∩ I−(γ(r0)) and Σ = {b = c} ∩U0. We calculate the mean curvature
HΣ of Σ with respect to the future pointing timelike normal to Σ. The fact
that b has unit length past timelike gradient implies

HΣ =
∑ 〈∇Ei

∇b, Ei〉
|∇b|

=
∑
〈∇Ei

∇b, Ei〉 −
1

2
∇b〈∇b,∇b〉

= ∆b

This gives H = HΣ(p) = ∆b(p) > 0. We choose a q ∈ I+(p) ∩ U0 close
enough to p that HΣ ≥ H/2. We can slightly deform Σ around p so that the
new surface Σ′ satisfies

• A = Σ′ \ Σ ⊂ I−(q)

• A ∩ I−(p) 6= ∅

• HΣ′(x) ≥ H/3 for all x ∈ A
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By the reverse "Lipchitz" inequality, there is a big enough r ≥ 0 such that
br < c for some points in A. Thus, br|Σ′ attains a minimum c′ < c at some
point z ∈ A, hence Σ′ ⊂ {br ≥ c′}.

Let ηr : I → M be a maximal geodesic from z to γ(r) with yr being the
halfway point. Notice that d(z, γ(r)) = r − c′, therefore η : [0, r − c′] → M
and yr = η

(
r−c′

2

)
. We define the function

βr(x) = r −
(
r − c′

2
+ d(x, yr)

)
Observe that βr(z) = c′, βr is smooth around z and βr ≥ br by the reverse

triangle inequality. The above Lorentzian inequality for the Laplacian gives

∆βr(z) ≤ 2(n− 1)

r − c′
−−−→
r→∞

0

However, Σ′ can be the level set set of an appropriate future increasing
smooth function f ≤ br. Then f(z) = br(z) = βr(z) = c′ and we have f ≤
br ≤ βr, which implies ∆f(z) ≤ ∆br(z) ≤ ∆βr(z). But the last inequality
gives HΣr ≥ HΣ′ ≥ H/3 > 0 This is a contradiction. Therefore ∆b ≤ 0

Nice Neighbourhoods

The proof of the Lorentzian splitting theorem follows a different approach
than the Riemannian one. The local splitting will be proved using small
enough neighbourhoods of the line γ called "nice neighbourhoods". In
this section we introduce nice neighbourhoods and show they exist around
each point of the line.

Definition 41. A nice neighbourhood of a ray γ is an open set U ⊂ I(γ),
for which there exists K > 0 and T > 0 such that for any q ∈ U , r > T any
unit speed maximal geodesic from q to γ(r) with initial velocity v, satisfies

gR(v, v) ≤ K

where gR is some auxiliary Riemannian metric

Proposition 42. Nice neighbourhoods of γ exist

The proof is by construction. Consider the interval I = [−T, T ] and a
tubular neighbourhood of γ|I , diffeomorphic to I ×B(R) ⊂ Rn, where B(R)
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is the ball of radius R > 0 in Rn. We take an orthonormal frame {ei} parallel
along γ, such that e1(γ(t)) = γ′(t). Then we define the Fermi coordinates
using the exponential map. If (x1, x2..., xn) ∈ I ×B(R)

Φ(x1, x2..., xn) = exp

(∑
i 6=1

xiei(x1)

)

This Φ is the normal exponential map of γ|I , with Φ(γ(t), 0) = γ(t). Since
DΦ is a linear isomorphism at each point of γ(t) and from the compactness
of I = [−T, T ], there exists a small enough R > 0 such that Φ : I ×B(R)→
U(T,R) = Φ(I × B(R)) is a smooth diffeomorphism. Then Φ−1 = χ =
(x1, x2, ..., xn) is the Fermi coordinates with ∂i = ei on γ

In a way simmilar to the normal coordinates at a point, it can be proved
that, along γ, we have gij = εiδij (where εi the sign of g(ei, ei)), and Γkij = 0,
the last one implies that dgij = 0 at γ and thus

|gij − εiδij| ≤ c|x|2

where |x|2 =
∑
x2
i . But for each x ∈ U , we may assume that x1(x) = 0 (shift

the starting point of γ, if necessary), this means

|gij − εiδij| ≤ c
∑
i 6=1

x2
i

This essentially means that the given metric g is close to a flat Minkowski
metric g0 associated to the Fermi coordinates g ≈

∑
εidx

2
i = −dx2

1 + dx2
2 +

... + dx2
n = g0. More precisely, for some ε > 0 and small enough R > 0, we

have
‖g − g0‖ ≤ Cε

At this point we introduce the flat Riemannian metric g1 associated to
the Fermi coordinates, as we shall need it later. It is defined as g1 =

∑
dx2

i =
dx2

1 + dx2
2 + ... + dx2

n. By ∇0 and ∇1 we denote the respective Levi-Civita
connections of g0 and g1. Observe that the Christoffel symbols for both of
them are all zero, because the coordinate components of both metrics are
constant. This means ∇0 = ∇1.

Even though a connection is not a tensor, the difference of connections is,
as the non-linear factors from the Leibniz properties cancel each other out.
This allows us to take the tensor norm of the deifference of two connections.
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We measure the difference ∇ − ∇0 with respect to the tensor norm that
extends the Riemann metric g1. The components of (∇−∇0) are

Γkij − Γ̃kij

Where Γkij and Γ̃kij are the Christoffel symbols of ∇ and ∇0 respectively. But
as we mentioned Γ̃kij = 0, therefore

‖∇ −∇0‖2
g1

=
∑

(g1)k1k2(g1)i1i2(g1)j1j2Γk1i1j1Γ
k2
i2j2

=
∑

(Γkij)
2

we recall that Γkij = 0 on γ. From the continuity of Γkij and the compactness
of I, there is a small enough R that

‖∇ −∇0‖1 ≤ ε, in U(R, T )

The next step to prove the existence of nice neighbourhoods is an aprox-
imation result:

Lemma 43. For small enough R > 0, there is a C > 0, such that for all
s > 2T

|bs − x1| ≤ C‖x‖2, where ‖x‖2 =
∑
i 6=1

x2
i

Proof of lemma. Take x ∈ U(T,R) and consider the functions

f(x) = 2T − d(x, γ(2T )) and e(x) = −2T + d(γ(−2T ), x)

These functions are smooth for x outside of the cut-locus of γ(2T ) (or of
γ(−2T )). No point of the cut locus lies on γ, therefore, from compactness of
I, for a small enough R > 0 both f and e are smooth in U . Also notice that
along γ, ∇f |γ = −∇dγ(2T ) = γ′ and thus Df vanishes on the normal space of
γ. The same can be proved for e. Furthermore f(γ(t)) = t = e(γ(t)). That
implies

|f − x1| ≤ c1‖x‖2 and |e− x1| ≤ c2‖x‖2

Finally, observe that f ≥ bs ≥ e, this implies that for any s ≥ 2T

|bs − x1| ≤
{
bs − x1 ≤ f − x1 ≤ c1‖x‖2

x1 − bs ≤ x1 − e ≤ c2‖x‖2

Thus indeed |bs − x1| ≤ C‖x‖2 for some C > 0.
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(lemma) �

Continuing, we will show that U(T,R) is a nice neighbourhood if R is
small enough. Take U(T,R0) as in the previous lemma 43. Let R1 ≤ R0 and
R1 ≤ T such that µ = CR1 ≤ R1/10. In U1 = U(T,R1) we have

|bs − x1| ≤ µ

We define U = U(T/2, R1/2), take q ∈ U and s > 2T and let a be a maximal
unit speed geodesic from q to γ(s). While a is in U1 we have the coordinate
expression a(t) = (a1(t), a(t)) and since ||a′(t)|| = 1 and ‖g − g0‖ ≤ ε we
have

|g(a′(t), a′(t))− g0(a′(t), a′(t))| ≤ ε

−1 + a′0(t)2 − ‖a′(t)‖2
0 ≥ −ε

a′0(t) ≥ 1− ε

a′0(t) ≥ 1

2
,

where ε is small enough. If ‖g − g0‖ < 1, then the causal character of any
vector coincides for the two metrics. This means a is also a timelike curve
with respect to the metric g0 and since the starting point is a(0) = q ∈
U(T/2, R1/2), a cannot escape from U1 as long as

a0(τ)− a0(0) < R1/2.

Recall that R1 < T . The function

t(τ) = a0(τ)− a0(0)

has positive derivative as a′0(τ) > 1/2, i.e. t is strictly increasing. Therefore,
for some t0 ∈ (4µ,R1/2) there is a unique τ0 such that

t(τ0) = t0 = a0(τ0)− a0(0)

This implies that a|[0,τ0] ⊂ U1. From the definitions of bs and a we have

bs(a(τ))− bs(a(0)) = τ
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Also, applying lemma 43 in U1

|bs(a(τ0))− a0(τ0)| ≤ µ

|bs(a(0))− a0(0)| ≤ µ

Combining the above we get

|bs(a(τ0))− bs(a(0))− a0(τ0) + a0(0)| < 2µ

|τ0 − t0| < 2µ

τ0 − t0 > −2µ

τ0 > t0 − 2µ

τ0 >
t0
2

t0
τ0

< 2

a0(τ0)− a0(0)

τ0

< 2

This means the average speed of a0 is less than 2 in [0, τ0]. By the interme-
diate value theorem, there is a τ1 ∈ (0, τ0) such that

a′0(τ1) < 2

and since a′0(τ) > ‖a′(τ)‖0 we have

‖a′(τ1)‖1 = a′0(τ1)2 + ‖a′(τ1)‖2
0 < 4

As we mentioned we have ‖∇ − ∇0‖ < ε. Consider the function f(τ) =
‖a′(τ)‖1. Whose derivative satisfies

|f ′(τ)| =
∣∣∣∣ ddτ√〈a′(τ), a′(τ)〉1

∣∣∣∣
=

1

2‖a′(τ)‖1

∣∣∣∣ ddτ 〈a′(τ), a′(τ)〉1
∣∣∣∣

=
1

2‖a′(τ)‖1

∣∣2〈∇1
a′(τ)a

′(τ), a′(τ)〉1
∣∣

≤ 1

‖a′(τ)‖1

‖a′(τ)‖1‖∇1
a′(τ)a

′(τ)‖1

= ‖(∇1 −∇)a′(τ)a
′(τ) +∇a′(τ)a

′(τ)‖1

≤ ε‖a′(τ)‖2
1

= εf(τ)2

40



It follows
(

1
f

)′
(τ) = f ′(τ)

f(τ)2
≤ ε. Integrating we get∫ τ1

0

(
1

f

)′
(τ)dτ ≤

∫ τ1

0

εdτ

1

f(τ1)
− 1

f(0)
≤ ετ1

1

f(0)
≥ 1

f(τ1)
− ετ1 ≥

1

4
ετ0

Notice that from |τ0 − t0| ≤ 2µ we get τ0 ≤ t0 + 2µ ≤ R1/2 + R1/5 < R1.
Therefore, if R1 is small enough that 1

4
− εR1 >

1
10
, then we have

‖a′(0)‖1 ≤
1

1
4
− εR1

≤ 10

And that proves the existence of nice neighbourhoods for γ
The first important consequence of the existence of nice neighbourhoods

is that, although the Minkowski unit ball on TqM is unbounded, the initial
velocities of maximal segments from the neighbourhood to γ(s), for any s,
live in a compact subset. This allows us to have limits of maximal segments
and form timelike asymptotes like in the Riemannian case.

Also we notice that even though the construction was done for a nice
neighbourhood around γ(0), a shift of the starting point can give us a nice
neighbourhood at any point of γ.

Preliminaries

In this section we give the necessary results concerning the behaviour of the
Busemann function and the structure of the manifold in a nice neighbour-
hood.

Lemma 44. The Busemann function, in a nice neighbourhood U , is Lipschitz
continuous with respect to the auxiliary Riemannian metric

Sketch of proof We show that the pre-Busemann functions bs are all Lipschitz
continuous with respect to g1 and with the same constant. The function
ds(x) = d(x, γ(s)) is defined on I−(γ(s)) and continuous but not smooth
everywhere. Take p ∈ I−(γ(s)) and let a be a maximal unit speed geodesic
from p to γ(s). Consider a point q on a close enough to p so that p is not in
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the cut locus of q. Then d(·, q) is smooth in a neighbourhood of p. Take the
function

fp(x) = d(x, q) + d(q, γ(s))

It is smooth near p because both p.
We have fp(p) = ds(p) and by the reverse triangle inequality, ds ≥ fp.

This means fp is a lower support function of ds at p with ∇fp(p) = a′(0).
For this support function, for any v ∈ TpM we get

|Dfp(v)| = |g(a′(o), v)|
≤ ‖g‖1‖a′(0)‖1‖v‖1

≤ GM‖v‖1

where M > 0 is from the definition of a nice neighbourhood and G is an
upper bound for ‖g‖1 in U . This means that ‖Dfp‖1 ≤ GM , and since p was
arbitrary, we the same constant GM for any point in I−(γ(s)). It can be
proved that under these conditions bs is Lipschitz continuous with constant
GM . And since the constant does not depend of s either we have b Lipschitz
continuous as well

For details see [8]. In summary, nice neighbourhoods have the following
properties

1. for any t, γ(t) is contained in a nice neighbourhood
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2. Asymptotes from points in a nice neighbourhood are timelike

3. {br} converges locally uniformly to b, therefore b is continuous on a nice
neighbourhood

Before the next lemma, we need a definition

Definition 45. Let A be a chronological set in a Lorentzian manifold. The
edge of A, denoted by edge{A}, is the set of points p in A such that for any
neighbourhood U of p there is a timelike curve from U ∩ I−(p) to U ∩ I+(p)
which does not intersect A.

Lemma 46. Let U be a nice neighbourhood of γ. The level sets of the
Busemann function are partial Cauchy surfaces i.e. Σc = {b = c} ∩ U is
closed and edgeless in U and acausal

Proof. Since b is continuous in U , Σc is closed in U . From the "reverse Lips-
chitz" property of the Busemann function, it is impossible for two chronolog-
ically related points to live on the same level set. Thus Σc is chronological.

From the continuity it follows that it is edgeless i.e. the edge is the empty
set. Indeed, if p ∈ I−(U) and q ∈ I+(U) and β a timelike curve in U from p
to q, remember that the reverse triangle inequality gives b(y) ≥ b(x)+d(x, y),
for x� y. This gives b(p) < c and b(q) > c. Applying the intermidiate value
theorem to b ◦ β, we see that β meets Σc

Suppose that Σc is not acausal, and let p, q ∈ Σc be connected by a null
geodesic α from p to q. If ηn are maximal geodesic segments from q to γ(rn)
(with rn → ∞), such that ηn converge to an asymptote η, then by cutting
the corners of α ∪ η and α ∪ ηn, we have that, for big enough n ∈ N

brn(q)− brn(p) = d(p, γ(rn))− d(q, γ(rn)) > ε

But this contradicts the fact that p, q ∈ Σc ⊂ {b = c}

The last preliminary result is a convexity lemma. To prove it we make
use of a technical result. Suppose q ∈ I−(γ(r)) for some r, then η = ηq,r :
[0, lq,r]→M is a maximal geodesic segment from q to γ(r) and for 0 ≤ s ≤ lq,r
we define dsq,r(x) = d(x, ηq,r(s))
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Lemma 47. There is a small enough nice neighbourhood U of γ|[α,r0] for
which, given any compact, spacelike hypersurface S with boundary in U ,
there is C > 0, τ > 0 and r1 > r0 such that ∀q ∈ S, r > r1, τ < s < lq,r

Hessdsq,r(w,w) ≥ −C

for all w ∈ TqM with 〈w,w〉 ≤ 1

Sketch of proof. Let X = τγ′(t) for α < t < r0 and let V be a neighbour-
hood of X in TU . If v ∈ V we define ρv(x) = d(x, exp(v)). For appropriate
choice of U , V , τ we have that the map (v, w) 7→ Hessρv(w,w) is smooth for
v ∈ V , w ∈ TU . Therefore, there is C > 0 such that

Hessρv(w,w) ≥ −C

for gR(w,w) ≤ 1, where gR is an auxiliary Riemannian metric. Then by
continuity, for some r1 > r0 we have ∀r > r1 it is

Hessdsq,r(w,w) ≥ −C

for gR(w,w) ≤ 1. Finally, restricting ourselves to an spacelike hypersurface,
by compactness of S, the auxiliary metric is uniformly equivalent to the given
Lorentz metric on S

For details on the proof, see the Appendix in [9]. We now present and
prove the convexity lemma, which is a maximum principle type result
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Lemma 48. Assume Ricc ≥ 0 for all timelike vectors. Let Σ be a connected,
smooth, spacelike hypersurface in a nice neighbourhood U as in the technical
lemma above. Assume HΣ ≥ 0 with respect to the future pointing unit
normal. Then if b achieves a minimum on Σ, it is constant.

Proof. Let U ⊂ I−(γ(r0)) a nice neighbourhood as in the technical lemma
and Σ ⊂ U . Assume b achieves a minimum at q ∈ Σ but b is not constant
and let α = b(q). Then there is a coordinate ball centered at q with

∂0B = {x ∈ ∂B : b(x) = α} 6= ∅

There is a smooth function h : Σ→ R with

• h(q) = 0

• ∆Σh ≤ −D for some D > 0, where ∆Σ is the induced Laplacian on Σ

• h > 0 on ∂0B

• |∇Σh| ≤ 1 where ∇Σ is the gradient along Σ

The construction of such a function is just like in the proof of the Hopf-Calabi
maximum principle (lemma 34).

For a small enough ε > 0, consider the function fε = b + εh. It has
fε(q) = α and fε > α on ∂0B. Then, for big enough r > 0, the function
fr,ε = br + εh also has fr,ε(q) = α and fr,ε > α on ∂0B. Therefore, fr,ε
minimizes at some point p ∈ B.

From the technical lemma, for B we have ηr : [0, l] → M maximal
geodesic from p to γ(r). The reverse triangle inequality gives l = d(p, γ(r)) ≥
d(p, γ(r0))+d(γ(r0), γ(r)) ≥ r−r0. Thus we can assume that r is big enough
that l/2 > τ , where τ is as in the technical lemma.

Let yr = ηr(l/2) and define βr = r −
(
l/2 + d(x, yr)

)
. From the reverse

triangle inequality, βr is an upper support function of br at p. Thus the
function φr,ε = βr + εh is an upper support of fr,ε at p. As a consequence of
that φr,ε minimizes at p, which means that Hessφr,ε is positive definite at p
and thus ∆Σφr,ε(p) ≥ 0

The contradiction arises by calculating the Laplacian of φr,ε and showing
that for small enough ε > 0 and big enough r > 0 it becomes negative. We
have

∆Σφr,ε = ∆Σβr + ε∆Σh (2.1)
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Calculating ∆Σβr =
∑
〈∇Ei

∇Σβr, Ei〉 for an orthonormal frame {Ei} of Σ
gives

∆Σβr = ∆βr +Hessβr(N,N)−HΣ〈∇βr, N〉 (2.2)

From the Lorentzian inequality for the Laplacian we get

∆βr(p) ≤
n− 1

dyr(p)
=

2(n− 1)

l
≤ 2(n− 1)

r − r0

(2.3)

Observe that ∇βr = −∇dyr . This combined with the fact that ηr is a
maximal geodesic from p to γ(r) gives ∇βr = −η′r(0), in particular, past
directed timelike. Using the assumption for the mean curvature HΣ ≥ 0 we
have

HΣ〈∇βr, N〉|p ≥ 0 (2.4)

Since φr,ε minimizes at p,∇Σφr,ε(p) = 0, which implies∇Σβr(p)+ε∇Σh(p) =
0. By projecting ∇βr to TpΣ, we get the expression

∇Σβr(p) = ∇βr(p) + 〈∇βr, N〉|pNp

The plus sign is due to the timelike nature of Np. The above gives an ex-
pression for Np, combined with ∇β(p) = −η′r(0):

Np =
1

〈η′r(0), Np〉

(
η′r(0) + ε∇Σh(p)

)
We use this expression to calculate the Hessian of βr at p

Hessβr(N,N) =
1

〈η′r(0), Np〉

(
Hessβr

(
η′r(0), η′r(0)

)
+ εHessβr

(
η′r(0),∇Σh(p)

)
+ ε2Hessβr

(
∇Σh(p),∇Σh(p)

))
βr has unit length gradient, therefore its integral curves are geodesics. This
toghether with the fact that ∇βr = −η′r(0) implies Hessβr

(
η′r(0), η′r(0)

)
=

Hessβr
(
η′r(0),∇Σh(p)

)
= 0. Thus

Hessβr(N,N) =
ε2

〈η′r(0), Np〉
Hessβr

(
∇Σh(p),∇Σh(p)

)
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By the reverse Cauchy-Schwartz inequality, 〈η′r(0), Np〉 ≥ 1. Also, since
Hessβr = −Hessdyr and |∇Σh| ≤ 1, from the technical lemma we have

Hessβr(N,N) ≤ ε2C (2.5)

Substituting the inequalities 2.3, 2.4 and 2.5 to equation 2.2

∆Σβr(p) ≤
2(n− 1)

r − r0

+ ε2C

By its construction, h satisfies ∆|Σh ≤ −D. Substituting to equation 2.1 we
get

∆Σφr,ε(p) ≤
2(n− 1)

r − r0

+ ε2C − εD

Notice that the dominant factor of the right hand side is −εD. This means
for r big enough and ε small enough, ∆Σφr,ε(p) is negative, which is our
contradiction.

We have proved that b is constant in a neighbourhood of the minimizing
point q. A connectivity argument finishes the proof

An immediate consequence of the convexity lemma is the following

Corollary 49. Let Σ be a smooth, maximal (HΣ = 0), spacelike hypersurface
in a small enough nice neighbourhood U . If edge(Σ) ⊂ {b ≥ c}, then Σ ⊂
{b ≥ c}.

Local Splitting

Theorem 50. LetM be a time-oriented, globally hyperbolic, timelike-complete
Lorentz manifold which contains a timelike line γ and satisfies Ricc(v, v) ≥ 0
for all timelike vectors. There is a neighbourhood of γ in which the Buse-
mann function is smooth, the integral curves of its gradient form asymptotes
to γ, and the flow of its gradient acts by isometries.

The proof is divided in 4 steps. In the process we construct a map E using
the normal exponential map of a well behaved smooth spacelike hypersurface.
This map will give the splitting of the nice neighbourhood. It turns out the
hypersurface is a subset of the level set of b, and the map defined is the
restriction of the flow of ∇b
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So far the Busemann function b need not be smooth, so its level sets might
have bad behaviour. However a result by Bartnik [1] can guarantee the
existence of some smooth spacelike hypersurface for appropriate boundary
data

Step 1. Existence of a spacelike hypersurface.
Let U be a nice neigbourhood of γ and consider the level sets S+ = {b+ =
0} ∩ U and S− = {b− = 0} ∩ U . By lemma 2.2, S+ is causal and edgeless
in U . This implies that it is an imbeded topological submanifold (see [16]).
Let W be a small coordinate neighbourhood of γ(0) in S+.

Bartnik’s result (theorem 4.1 in [1]) implies that there exists a smooth
maximal surface Σ such that Σ is achronal in U , Σ is compact, edge(Σ) =
edge(W ) and Σ meets γ. We note that the acausality of S+ ensures the
smoothness of Σ.

From the reverse triangle inequality b+ + b− ≥ 0. Since S+ ⊂ {b+ = 0}
we have edge(W ) = edge(Σ) ⊂ {b− ≥ 0}. Applying corollary 49 for b+ and
b− on Σ we get Σ ⊂ {b+ ≥ 0} ∩ {b− ≥ 0}. This implies that Σ must meet
γ at γ(0) since b+ + b− = 0 on γ and b+(γ(t)) = t But his means b+ and b−
minimize at γ(0) ∈ Σ. From the convexity lemma follows that b+ = b− = 0
on Σ, so Σ ⊂ {b± = 0}. We haven’t proven that b+ or b− is smooth yet.

Step 2. For each point of Σ there is a unique asympote to γ+ and a
unique asympotoe to γ−. Furthermore, these asympotes fit toghether to
lines orthogonal to Σ.
Let α+ and α− be asymptotes of γ+ and γ− respectively, both starting at q.
By the formula for the Busemann functions on asymtpotes we have

b+(α+(t)) = b+(α+(0)) + t = t

b−(α−(t)) = t

From the "reverse Lipschitz" property of the Busemann function

b+(α−(t)) ≤ b+(α−(0))− d(α−(t), α−(0)) = −t

b−(α+(t)) ≤ b−(α+(0))− d(α+(0), α+(t)) = −t

Also, from the fact that b+ + b− ≥ 0 follows

b+(α+(t)) + b−(α+(t)) ≥ 0 ⇐⇒ b−(α+(t)) ≥ −t

b+(α−(t)) + b−(α−(t)) ≥ 0 ⇐⇒ b+(α−(t)) ≥ −t
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Combining the above, we see that b−(α+(t)) = −t and b+(α−(t)) = −t.
We denote by α the (possibly) broken geodesic

α(t) =

{
α+(t), t ≥ 0
α−(−t), t ≤ 0

The above can be written as b±(α(t)) = t.
For s < 0 < t, the length of the curve α|(s,t) is

length(α|(s,t)) = t− s = b+(t)− b+(s) ≥ d(α(s), α(t))

where the last inequality is obtained from the "reverse Lipschitz" property.
This shows the length of α|(s,t) is maximal and thus it is an unbroken geodesic.

For the orthogonality, we show that b+ is smooth at the point q. For
some r > 0, we consider the functions defined near q given by the formulas

fr(x) = b+(q) + r − d(x, α(r))
gr(x) = b+(q) + r − d(α(−r), x)

These are upper and lower support function respectively of b+ at q = α(0)
We verify this for fr

fr(q) = b+(q) + r − d(α(0), α(r)) = b+(q)

A consequence from the proof of lemma 37 is that the asymptotes of γ live
inside of I(γ). This means that for big enough s, we have α(r) � γ(s) and
so, we can use the reverse triangle inequality

fr(x)− b+(x) = lim
s

(
b+(q) + r − d(x, α(r))− s+ d(x, γ(s))

)
≥ b+(q) + r − lim

s

(
s− d(α(r), γ(s))

)
= b+(q) + r − b+(α(r)) = 0

This shows fr is an upper support function. Similarly, gr is a lower
support function of b+ at q. Notice that for appropriate choice of r, both
fr and gr are smooth at q and as we showed gr ≤ b+ ≤ fr with equality
at q. It follows that b+ is smooth at the point q with ∇b+(q) = ∇fr(q) =
−∇dα(r)(q) = −α′(0)

Finally, since Σ ⊂ {b+ = 0}, and the gradient of b+ must be orthogonal
to the level set, the line α is also orthogonal to Σ.
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We now introduce the map that will give the local splitting. Take B ⊂ Σ
be a small ball of radius R centered at γ(0). Let N be the unit length
future pointing vector field normal to B. As we saw, N consists of the initial
velocities of the asymptote lines starting at B. Set U = R1

1 × B and define
the map E : U →M

E(t, p) = exp(tNp)

Notice that by timelike completeness, the map E is indeed defined on the
entire U .

Step 3. The map E is a diffeomorphism
We know the map E is smooth, we need to show it is injective and non-
singlular.

First, we assume E is not injective, this means E(t, p) = E(s, q) for some
points p, q in B and t, s ∈ R. This is equivalent to α(t) = β(s), where α
and β are asymptotes starting at p and q respectively. In the previous step,
we proved that b+ is smooth at p = α(0). In fact we proved it for any line
that satisfies the formula b+(α(t)) = b+(α(0)) + t. By shifting the initial
point of the line, the formula still holds for the new reparametrized line. It
follows that b+ is smooth at α(t) with α′(t) = ∇b+(α(t)). And also that b+

is smooth at β(s) with β′(s) = ∇b+(β(s)) = ∇b+(α(t)) = α′(t). From the
uniqueness of geodesics, α = β, thus (t, p) = (s, q).

It is known that E has non-singular points iff B has no focal points
(see [16] pr. 10.30). Let α(t0) be the first focal point along the future pointing
normal α. Then there is a neighbourhood V of α|[0, t0] which contains no
focal points of B. Thus E is a diffeomorphism to V and b+ = pr2 ◦E−1 on V .
Where the last comes from the behaviour of b+ on asymptotes. This implies
b+ is smooth at V , with unit length past-directed gradient. Denote by Σt =
{b+ = t} ∩ V , then this follows ∆b+|Σt = HΣt . From the superharmonicity
of the Lorentz Busemann function (lemma 40), HΣt = ∆b+ ≤ 0.

On the other hand, the mean curvature of Σt is the trace of the shape
operator St, and the fact that α(t0) is a focal point of B and of Σt, implies
that 1

t−t0 is an eigenvalue of St. Therefore, as t→ t0, trSt →∞ This gives a
contradiction and shows there are no future focal points. A similar argument
for b− shows there are no past focal points.

Step 4. The map E : U →M is an isometry
First, notice that b± = ±pr2 ◦ E−1 on E(U), which implies b+, and b− are
smooth on E(U), with b+ having past directed unit length gradient and b−
having future pointing unit length gradient. We can apply the superhamonic-
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ity lemma 40 for b+ directly, and, after reversing the time orientation, we can
apply it to b− as well. This gives ∆b± ≤ 0. But, we have b+ + b− = 0 on
E(U), thus ∆b+ = ∆b− = 0.

Since b has unit length gradient, applying the Bochner formula (proposi-
tion 17) to b we get

∇b+(∆b+) + |Hessb+|2 +Ricc(∇b+,∇b+) = 0

Combining ∆b+ = 0 with the hypothesis Ricc ≥ 0 for timelike vectors, gives
|Hessb+|2 = 0 which implies that ∇b+ is parallel and Hessb+ = 0. For
gradient fields this is equivalent to the gradient of b+ being a Killing vector
field, i.e. L∇b+g = 0. This is implies that the flow of ∇b+ acts by isometries
on E(U). We only need to notice that E is the flow of ∇b+ restricted to
R×B

Global Splitting

Theorem 51. LetM be a time-oriented, globally hyperbolic, timelike-complete
Lorentz manifold which contains a timelike line γ and satisfies Ricc(v, v) ≥ 0
for all timelike vectors. There is a spacelike hypersurface M ′ of M such that
M is isometric to R1

1 ×M ′

A flat strip is an isometric immersion f : R1
1 × [0, α] → M . As a

consequence, for all s ∈ [0, α] the curve t 7→ f(t, s) is a timelike line in M .
Two timelike lines γ and γ′ are called strictly parallel, if they bound a
flat strip and parallel if there is a finite sequence of lines {γn}Nn=1 such that
γ1 = γ, γN = γ′ and for any 1 ≤ n < N γn and γn+1 are strictly parallel.

Step 1. If γ1 and γ2 are strictly parallel, then I(γ1) = I(γ2) and their
Busemann functions agree b1 = b2

Let f : R1
1 × [0, α]→ M be a flat strip with γ1 and γ2 as its boundaries.

We will utilize the well behaved geometry of the Cartesian product R1
1×[0, α].

Take some s ∈ R. We identify γ1(s) as (s, 0) ∈ R1
1 × [0, α]. It is clear

we can find future and past pointing timelike curves from (s, 0) to the line
R1

1 × {α}. Therefore γ1 ⊂ I(γ2). Similarly γ2 ⊂ I(γ1). Thus I(γ1) = I(γ2).
We will show that b1 ≤ b2 and b2 ≤ b1. To do that, we show that for

any r ∈ R the pre-Busemann function satisfies b1,r ≥ b2 and vice versa. But
before that we need to show that for any t ∈ R b1(γ2(t)) = t and vice versa.
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Again we identify R1
1 × [0, α] with its image and use it’s nice geometry.

b1(γ2(t)) = lim
r→∞

(
r − d

(
γ2(t), γ1(r)

))
= lim

r→∞

(
r − d

(
(t, α), (r, 0)

))
= lim

r→∞

(
r − |(r − t,−α)|

)
= lim

r→∞

(
r −

√
(r − t)2 − α2

)
= t+ lim

r→∞

(
(r − t)−

√
(r − t)2 − α2

)
= t

Similarly we show b2(γ1(t) = t. Now, for any r > 0 we have

b1,r(x)− b2(x) = lim
s→∞

(
r − d

(
x, γ1(r)

)
− s+ d

(
x, γ2(s)

))
≥ lim

s→∞

(
r − s+ d

(
γ1(r), γ2(s)

))
= r − b2(γ1(r)) = 0

Thus b1,r ≥ b2 and similarly we show b2,r ≥ b1. Letting for r → ∞, we get
b1 ≥ b2 and b2 ≥ b1. Therefore b1 = b2.

Step 2. Let c : [0, 1] → M be a geodesic starting at γ(0) with c 6= γ.
Then, there is a flat strip containing both γ and c.

From the local splitting, there is an isometry E : R1
1 × B → M . The

geodesic c might not lie in B, but is decomposed, near γ, as c = (c1, c2) with
c1 and c2 geodesics in R1

1 and B respectively. For s ∈ R, c1(s) = ks for some
k ∈ R and is m is the speed of c2, the reparametrization s 7→ c2

(
s
m

)
is a

unit speed geodesic (m 6= 0 since c 6= γ). Restricting the isometry E on the
image of c2 gives a flat strip

f(t, s) = E
(
t, c2

( s
m

))
defined for t ∈ R and s in some interval [0, ε]. With this flat strip γ(t) =
f(t, 0) and c(s) = f(ks,ms).

The problem is that this flat strip is not defined beyond a nice neighbour-
hood of γ. We extend the flat strip. Take X to be the parallel translation
of γ′(0) along c. Notice that in the nice neighbourhood, X is a restriction of
∇b which is parallel. Now define γs to be the geodesic with initial velocity
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X(s). Timelike completeness ensures each γs are defined on all of R. In the
nice neighbourhood we have

γs(t) = f(t+ ks,ms)

This allows us to describe f in terms of γs’s

f(t, s) = γs/m

(
t− k

m
s

)
Take A = {s ∈ [0, 1] : f |R×[0,s] is an isometry} and let α = supA. As we saw,
α > 0. This means

f : R× [0, α)→M

is a flat strip. The extension to α is smooth, since for any t ∈ R

f(t, s) = γs/m

(
t− k

m
s

)
−→ γα/m

(
t− k

m
α

)
= f(t, α)

and it is an isometry because the geodesic γα/m is of unit speed.
This shows that f |R×[0,α] is indeed a flat strip and from the local splitting

for the line γα/m, the flat strip can be extended beyond α. Therefore the flat
strip can be defined on the entire R× [0, 1], which means, it contains both γ
and c.

Step 3. The split
Consider the set Pγ ⊂ M of points that lie on some parallel line of γ and
let p ∈ Pγ. This means there are some consecutive strictly parallel lines
with the first one passing through p and the last one being γ. Utilizing
the respective flat strips, we can construct future-pointing and past-pointing
piece-wise smooth timelike curves from p to γ. Thus p ∈ I(γ) and since p
was arbitrary, Pγ ⊂ I(γ).

Taking this argument one step further, we can connect any p ∈ Pγ to
γ(0) by a piece-wise smooth curve in Pγ. This makes Pγ connected. from
step 2, we see that Pγ is open. These imply that Pγ = M

This means the Busemann function b is defined in all of M . Also, for any
point p ∈ M , by induction on step 1, b agrees with the Busemann function
of the parallel line γp through p, which is smooth near p. Furthermore, the
gradient of bp is parallel near p and γp is an integral curve of bp.

It follows that b is smooth everywhere and the parallel lines are the inte-
gral curves of ∇b, which is parallel. This gives the desired isometry

j : R× b−1(0)→M : (t, p) 7→ exp(−t∇b(p))
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