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Περίληψη Διατριβής

Η διατριβή αποτελείται από τέσσερα Κεφάλαια.
1. Το πρώτο κεφάλαιο, “Εισαγωγή”, ξεκινά από τις εξισώσεις του Euler για

την περιγραφή των κυμάτων επιφανείας ενός τέλειου ρευστού (π.χ. νερού) σε δι­
διάστατο κυματοδηγό πεπερασμένου βάθους με μεταβλητή τπογραφία πυθμένα. Οι
εξισώσεις γράφονται σε αδιάστατη, κανονικοποιημένη μορφή με χρήση των παρα­
μέτρων κλίμακας ε = α0/λ0, µ = (D0/λ0)

2, όπου α0 είναι ένα τυπικό πλάτος
των κυμάτων επιφανείας, λ0 ένα τυπικό μήκος κύματος, και D0 ένα μέσο βάθος
πυθμένα.

Από τις εξισώσεις του Euler παράγεται συστηματικά μια σειρά από απλούστερα
μαθηματικά μοντέλα που αποτελούν προσεγγίσεις των εξισώσεων του Euler για
την περιγραφή της κίνησης μη γραμμικών, διασπειρομένων κυμάτων επιφανείας σε
δύο κατευθύνσεις σε μία διάσταση, τα οποία έχουν μεγάλο μήκος κύματος σχετικά
με το μέσο βάθος του πυθμένα (“κύματα ρηχών υδάτων”), δηλ. για τα οποία ισχύει
µ ≪ 1. Το βασικό μοντέλο (ένα μη γραμμικό σύστημα Μ.Δ.Ε.) που εξάγεται είναι
οι λεγόμενες εξισώσεις Serre­Green­Naghdi (SGN) με μεταβλητό πυθμένα, από τις
οποίες παράγονται εν συνεχεία τρία απλούστερα μαθηματικά μοντέλα (μη γραμ­
μικά συστήματα Μ.Δ.Ε.) σε ειδικές περιοχές των παραμέτρων κλίμακας, και τα
οποία εξετάζονται λεπτομερώς στη διατριβή. Το πρώτο μοντέλο είναι το κλασσικό
σύστημα Boussinesq με μεταβλητό πυθμένα γενικής τοπογραφίας (CBs), γνωστό
και ως σύστημα του Peregrine, το οποίο, σε κανονικοποιημένες αδιάστατες μετα­
βλητές, είναι της μορφής

ζt + (ηu)x = 0,

ut + ζx + εuux + µ
(
β
2 ηbb

′′ut + βηbb
′uxt − 1

3η
2
buxxt

)
= 0,

(CBs)

όπου εζ = εζ(x, t) η μεταβολή της ελεύθερης επιφάνειας του ρευστού ως προς
μία ηρεμούσα κατάσταση, ηb(x) = 1 − βb(x) > 0 (όπου β = B

D0
, B ένα τυπικό

μέγεθος της μεταβολής της τοπογραφίας του πυθμένα, και b(x) η συνάρτηση της
τοπογραφίας του πυθμένα), u = u(x, t) η μέση ως προς το βάθος οριζόντια ταχύ­
τητα του ρευστού, και η = εζ + ηb > 0 το συνολικό βάθος της στήλης του νερού.
Η περιοχή των παραμέτρων για την οποία το (CBs) είναι καλή προσέγγιση του
(SGN) είναι η λεγόμενη περιοχή της “προσέγγισης Boussinesq” ε = O(µ), δηλ.
διασπειρόμενων κυμάτων κατάλληλα μικρού πλάτους και μεγάλου μήκους. Το β
είναι της τάξης O(1), δηλ. η τοπογραφία μπορεί να μεταβάλλεται ισχυρά.
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Αν στο (CBs) υποτεθεί επιπλέον ότι β = O(ε), δηλ. ότι ο πυθμένας παρουσιά­
ζει σχετικά μικρή μεταβολή, προκύπτει, αν παραλείψουμε όρους ανωτέρας τάξης,
ένα ακόμα πιο απλουστευμένο κλασσικό σύστημα Boussinesq μεταβλητού πυθ­
μένα, της μορφής

ζt + (ηu)x = 0,

ut + ζx + εuux − µ
3uxxt = 0,

(CBw)

με η = εζ+ηb. Τέλος, αν π.χ. στο (CBw) υποτεθεί ότιµ = 0, δηλ. ότι τα κύματα δεν
παρουσιάζουν διασπορά, προκύπτει το (υπερβολικό) σύστημα των ρηχών υδάτων,
για το οποίο το ε μπορεί να είναι της τάξης του 1. Το σύστημα αυτό εξετάζεται
επίσης στην διατριβή και είναι της μορφής

ηt + (ηu)x = 0,

ut + ζx + εuux = 0.
(SW)

Η υπόλοιπη διατριβή αφορά την αριθμητική ανάλυση και αριθμητικές προσομοιώ­
σεις των λύσεων των τριών συστημάτων (CBs), (CBw), (SW) με μεθόδουςGalerkin­
πεπερασμένων στοιχείων, συμπεριλαμβανομένης και της μεταξύ τους σύγκρισης,
καθώς και της σύγκρισης με αντίστοιχες λύσεις του συστήματος (SGN).

2. Το δεύτερο κεφάλαιο αφορά την αριθμητική ανάλυση προβλημάτων αρχι­
κών και συνοριακών συνθηκών για τα συστήματα (CBs), (CBw), σε πεπερασμένο
διάστημα με u = 0 στο σύνορο. Συγκεκριμένα, αφού γίνει μία ανασκόπηση της
θεωρίας ύπαρξης­μοναδικότητας των λύσεων των προβλημάτων αυτών, τα συ­
στήματα διακριτοποιούνται ως προς την χωρική συνιστώσα με την συνήθη μέ­
θοδο Galerkin­πεπερασμένων στοιχείων επί ημι­ομοιόμορφων διαμερισμών {xi}
με max  (xi+1−xi) = h με κατά τμήματα πολυωνυμικές συναρτήσεις τάξης r ≥ 3
(δηλ. βαθμού r − 1 ≥ 2) και εκτιμάται το σφάλμα της ημιδιακριτοποίησης αυτής
στον L2×H1. Και για τα δύο συστήματα αποδεικνύονται με την μέθοδο της ενέρ­
γειας εκτιμήσεις των σφαλμάτων της μορφής

max
0≤t≤T

(∥ζ − ζh∥+ ∥u− uh∥1) ≤ C hr−1, (2.1)

(όπου ζh, uh είναι οι ημιδιακριτές προσεγγίσεις των ζ, u, αντίστοιχα), υπό την προ­
ϋπόθεση ότι οι ζ, u είναι αρκετά ομαλές από t = 0 μέχρι t = και έχουν προσεγ­
γιστεί κατάλληλα οι αρχικές συνθήκες ζ(x, 0), u(x, 0). Στην παραπάνω ανισότητα
το C είναι μια σταθερά ανεξάρτητη του h. Στα αριθμητικά πειράματα που παρα­
τίθενται επίσης στο δεύτερο κεφάλαιο (παράγραφος 2.3), οι αριθμητικές μέθοδοι
υλοποιούνται με διαφόρου βαθμού splines ως προςx και με τη κλασσική, άμεση μέ­
θοδο Runge­Kutta τέταρτης τάξης ακρίβειας ως προς t (η οποία είναι ευσταθής υπό
την μη περιοριστική συνθήκη k

h ≤ c όπου k το βήμα της διακριτοποίησης ως προς
t). Στην παράγραφο 2.3.1 επιβεβαιώνεται υπολογιστικά η εκτίμηση (2.1) για γενικό
διαμερισμό και παρατηρείται ότι ισχύει και για κατά τμήματα γραμμικά πολυώνυμα
(δηλ. για r = 2). Για ομοιόμορφη χωρική διαμέριση η τάξη ακρίβειας βελτιώνεται.
Τα αριθμητικά πειράματα γίνονται με μεγάλη (τετραπλή) υπολογιστική ακρίβεια
και επιτρέπουν λεπτές παρατηρήσεις όπως π.χ. την κατά τα φαινόμενα απουσία
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λογαριθμικών όρων στα αντίστοιχα σφάλματα των κυβικών splines για το κλασ­
σικό σύστημα Boussinesq με οριζόντιο πυθμένα (δηλ. β = 0) που υπάρχουν στην
βιβλιογραφία.

Στην παράγραφο 2.3.2 εξετάζονται αριθμητικές μέθοδοι Galerkin­πεπερασμένων
στοιχείων για τα παραπάνω συστήματα Boussinesq και τις εξισώσεις ρηχών υδά­
των (SW) με απορροφητικές συνθήκες στο σύνορο, που επιτρέπουν την έξοδο κυ­
ματισμών από το υπ’ όψιν πεπερασμένο υπολογιστικό διάστημα χωρίς την εμφά­
νιση αριθμητικών φαινομένων ανάκλασης από το σύνορο. Στην περίπτωση του
(SW) υπάρχουν ακριβείς απορροφητικές (δηλ. πλήρως διαφανείς) συνθήκες, που
βασίζονται στην κλασσική θεωρία των χαρακτηριστικών, ενώ στην περίπτωση των
συστημάτων Boussinesq θα ήταν δυνατή ίσως η εξαγωγή απορροφητικών συνθη­
κών, αλλά μη τοπικών, πράγμα που θα τις καθιστούσε δύσχρηστες. Αντ’ αυτού,
επειδή στα συστήματα Boussinesq το µ είναι πολύ μικρό μπορεί να υποτεθεί ότι οι
αναλλοίωτοι του Riemann (στις οποίες στηρίζεται η μέθοδος των χαρακτηριστικών
για τις (SW)) δεν μεταβάλλονται πολύ τοπικά κοντά στο σύνορο, πράγμα που επι­
τρέπει την επέκταση των χαρακτηριστικών απορροφητικών συνθηκών των (SW)
στα συστήματα Boussinesq (ακόμα και στις (SGN))· οι νέες συνθήκες είναι κατά
προσέγγιση απορροφητικές για τα (CB) και στην παρ. 2.3.2 διερευνάται λεπτομε­
ρώς (υπολογιστικά) η ακρίβεια τους και το μέγεθος των αριθμητικών ανακλάσεων
από το σύνορο στην περίπτωση εξερχομένων μοναχικών κυμάτων του κλασσικού
συστήματος Boussinesq στην περίπτωση οριζόντιου πυθμένα. Επιβεβαιώνεται ότι
οι χαρακτηριστικές συνθήκες απορρόφησης είναι καλές προσεγγίσεις διαφανών
συνθηκών για αρκετά μικρό μ ακόμη και στην περίπτωση πυθμένων μεταβλητής
τοπογραφίας.

Στην παράγραφο 2.3.3 εξετάζονται υπολογιστικά, με βάση κυρίως το μοντέλο
(CBs), διάφορα φαινόμενα που αφορούν τις μεταβολές που υφίσταται ένα αρχικά
μοναχικό κύμα όταν κινείται σε περιβάλλον με πυθμένα μεταβλητής τοπογραφίας.
Χρησιμοποιείται το (CBs) διακριτοποιημένο με κυβικές splines και την 4ης τάξης
μέθοδο RK για την αριθμητική προσομοίωση ενός μοναχικού κύματος που αναρ­
ριχάται σε κεκλιμένο επίπεδο, καθώς και σε βυθό που είναι αρχικά κεκλιμένος και
μετά οριζόντιος (υφαλοκρηπίς). Αριθμητικές λύσεις για τα δύο αυτά προβλήματα
είναι γνωστές από τη βιβλιογραφία. Γίνεται, μεταξύ των άλλων, λεπτομερής με­
λέτη της μεταβολής του σχήματος και του πλάτους του μοναχικού κύματος κατά
την εξέλιξη του φαινομένου, των ανακλάσεων που δημιουργούνται λόγω της με­
ταβολής της τοπογραφίας του πυθμένα, καθώς και του φαινομένου της ανάλυσης
του αρχικού μοναχικού κύματος (αφού αναρριχηθεί στην υφαλοκρηπίδα) σε σειρά
μοναχικών κυμάτων. Εξετάζεται η επιρροή της μεταβολής της τοπογραφίας του
πυθμένα και συγκρίνονται οι αριθμητικές λύσεις που προκύπτουν από τα δύο μο­
ντέλα (CBs) και (CBw) καθώς το μοναχικό κύμα διέρχεται πάνω από μεταβλητό
πυθμένα όταν το β αυξάνει σε μέγεθος από O(ε) σε O(1)· επιβεβαιώνεται ότι το
(CBw) δεν δίνει σωστή ποιοτική εικόνα της ροής για β = O(1). Τέλος, συγκρίνο­
νται αριθμητικά αποτελέσματα που λαμβάνονται από το (CBs) και τις εξισώσεις
SGN στην περίπτωση δύο ρεαλιστικών προβλημάτων δοκιμής της βιβλιογραφίας
για τα οποία υπάρχουν αριθμητικά και πειραματικά αποτελέσματα. Όπως αναμένε­
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ται το μοντέλο (SGN) είναι πιο κοντά στα πειραματικά δεδομένα αλλά διαπιστώ­
νεται ότι και το (CBs) δίνει γενικά αρκετά καλά αποτελέσματα.

3. Στο τρίτο κεφάλαιο της διατριβής εξετάζεται το σύστημα (SW) των εξισώ­
σεων ρηχών υδάτων με μεταβλητό πυθμένα υπό την προϋπόθεση ότι έχει ομαλές
λύσεις. (Ως γνωστόν το πρόβλημα αρχικών τιμών για τις (SW) έχει, αν οι αρχικές
συνθήκες είναι ομαλές, μόνο τοπικές ως προς t ομαλές λύσεις και, γενικά, εμφα­
νίζει ασυνέχειες καθώς ο χρόνος αυξάνει.) Κατ’ αρχάς αποδεικνύονται εκτιμήσεις
σφαλμάτων στον χώρο L2 ×L2 για το πρόβλημα αρχικών­συνοριακών συνθηκών
για τις (SW) με u = 0 στα άκρα πεπερασμένου διαστήματος όταν διακριτοποιείται
ως προς x με την συνήθη μέθοδο Galerkin­πεπερασμένων στοιχείων. Τα σφάλματα
έχουν φράγμα της μορφής C hr−1 αν r ≥ 3. Στη συνέχεια αποδεικνύονται παρό­
μοιες εκτιμήσεις σφαλμάτων για το πρόβλημα αρχικών­συνοριακών τιμών για τις
(SW) με χαρακτηριστικές συνοριακές συνθήκες απορρόφησης όπου οι ροές είναι
υπερκρίσιμες ή υποκρίσιμες. Ακολουθεί η υπολογιστική μελέτη των συστημάτων,
τα οποία διακριτοποιούνται ως προς t πάλι με την κλασσική, άμεση (4, 4) μέθοδο
RK. Τα αριθμητικά πειράματα δείχνουν ότι οι εκτιμήσεις των σφαλμάτων της ημι­
διακριτής προσέγγισης για όλες τις σ.σ. υπό μελέτη ισχύουν και για r = 2 (δηλ.
και για διακριτοποίησεις με συνεχείς, κατά τμήματα γραμμικές συναρτήσεις). Μά­
λιστα για r = 2 και στην περίπτωση ομοιόμορφου διαμερισμού φαίνεται ότι τα
σφάλματα είναι βέλτιστης τάξης ακρίβειας, δηλ. O(h2).

Το σύστημα (SW) έχει λύσεις σταθερής μορφής, ανεξάρτητες του χρόνου, στις
οποίες π.χ. τείνουν ομαλές ολικές λύσεις καθώς ο χρόνος αυξάνει. Εξετάζεται υπο­
λογιστικά η ικανότητα της συνήθους μεθόδου Galerkin να προσεγγίζει τις χρονικά
ανεξάρτητες αυτές καταστάσεις· τα αποτελέσματα είναι πολύ ικανοποιητικά και τα
σφάλματα εξετάζονται ποσοτικά στην περίπτωση αρκετών παραδειγμάτων. Τέλος,
εξετάζεται αν η διακριτοποίηση με την συνήθη μέθοδο Galerkin του συστήματος
(SW), γραμμένου σε μορφή νόμου ισορροπίας, διατηρεί τις λύσεις του συστήματος
της μορφής “ηρεμουσών ροών”, δηλ. με u = 0 και οριζόντια ελεύθερη επιφάνεια.
(Αυτό δεν είναι προφανές για τυχαία αριθμητική μέθοδο στην περίπτωση μετα­
βλητού πυθμένα). Αν όμως κάτι τέτοιο συμβαίνει, οι μέθοδοι λέγονται “καλώς εξι­
σορροπημένες”). Αποδεικνύεται ότι η συνήθης μέθοδος Galerkin είναι καλώς εξι­
σορροπημένη όταν ο όρος πηγής υπολογιστεί με μεγαλύτερης ακρίβειας κανόνα
αριθμητικής ολοκλήρωσης, σε σύγκριση με την ακρίβεια του κανόνα αριθμητικής
ολοκλήρωσης που διατηρεί απλώς το σφάλμα διακριτοποίησης της μεθόδου.

4. Στο τέταρτο κεφάλαιο της διατριβής εξετάζεται η ασυνεχής μέθοδοςGalerkin­
πεπερασμένων στοιχείων (DG) για το σύστημα εξισώσεων ρηχών υδάτων, γραμ­
μένο σε μορφή νόμου ισορροπίας. Οι μέθοδοι αυτές χρησιμοποιούνται ευρέως σή­
μερα, μεταξύ των άλλων για την διακριτοποίηση μη γραμμικών υπερβολικών προ­
βλημάτων στα οποία δημιουργούνται ασυνέχειες (ωστικά κύματα, υδραυλικά άλ­
ματα, κ.α.). Στην παράγραφο 4.1.1 γίνεται μία ανασκόπηση των μεθόδων RKDG,
(δηλ. ασυνεχών μεθόδων Galerkin για την ημιδιακριτοποίηση ως προς την χωρική
συνιστώσα και αμέσων μεθόδων RK για την διακριτοποίηση ως προς t· επιλέγεται
η μέθοδος Shu­Osher η οποία είναι άμεση RK τρίτης τάξης ακρίβειας), όταν εφαρ­
μόζονται σε υπερβολικά συστήματα νόμων διατήρησης σε μία χωρική διάσταση.
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Εξετάζονται οι επιλογές για τεχνικές περιορισμού κλίσης (slope limiter), απαραί­
τητου εξαρτήματος της μεθόδου DG για την επιτυχή προσομοίωση ασυνεχειών και
γίνεται επιλογή του λεγόμενου minmod limiter.

Στην παράγραφο 4.2 εξετάζεται η εφαρμογή των μεθόδων RKDG στην περί­
πτωση των εξισώσεων ρηχών υδάτων με μεταβλητό πυθμένα, οι οποίες γράφο­
νται σε μορφή νόμου ισορροπίας με την συνάρτηση τοπογραφίας πυθμένα σε όρο
“πηγής” στο δεύτερο μέλος. Παρ’ ότι οι βασικές αρχές της μεθόδου DG για τις
SW είναι γνωστές από τη βιβλιογραφία, στη διατριβή γίνεται ενδελεχής εξέταση
της μεθόδου και λεπτομερής κατασκευή του αλγορίθμου της με συμπλήρωση και
έλεγχο με αριθμητικά πειράματα όλων των βημάτων του ώστε να μπορεί να εφαρ­
μόζεται σε πολύπλοκα μονοδιάστατα προβλήματα. Εξετάζονται θέματα και αλγό­
ριθμοι καλής εξισορρόπησης, διατήρησης του μη­αρνητικού βάθους της στήλης
νερού στην περίπτωση που η τοπογραφία του πυθμένα πλησιάζει ή υπερβαίνει την
ελεύθερη επιφάνεια, περιορισμού της κλίσης σε περίπτωση ασυνεχειών κ.α.. Τέλος
παρατίθεται μια σειρά αριθμητικών παραδειγμάτων της βιβλιογραφίας τα οποία ο
αλγόριθμος της διατριβής προσεγγίζει με μεγάλη ακρίβεια, συμπεριλαμβανομένων
προβλημάτων Riemann και θραυομένου φράγματος, προβλημάτων όπου το νερό
αποσύρεται από κεκλιμένο πυθμένα, σχεδόν περιοδικών προβλημάτων ταλαντώ­
σεων σε παραβολικό δοχείο, κ.α. Παρουσιάζεται και ένα νέο πρόβλημα δοκιμής
με πολύπλοκη τοπογραφία πυθμένα, του οποίοι η επίλυση απαιτεί τον συνδυασμό
όλων των τεχνικών που προαναφέρθηκαν.
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Chapter 1

Introduction

In this dissertation we will study numerical methods for some nonlinear systems
of pde’s that model two­way propagation of long (i.e. shallow­water) surface water
waves in a channel with variable­bottom topography. The systems that will be con­
sidered are two Boussinesq­type models with dispersive terms and also the Shallow
Water equations that are a quasilinear hyperbolic system of pde’s of balance­law
form (i.e. with a source term).

The systems are derived in appropriate scaling regimes from the Euler equa­
tions of water­wave theory. They all follow from a more general “fully nonlinear”
dispersive model of two­way long­wave propagation, the Serre­Green­Naghdi sys­
tem of equations. This system was first derived by Serre [Ser53a],[Ser53b], in the
case of horizontal bottom in one space dimension, and subsequently rederived by
Su and Gardner, [SG69], and Green, Laws, and Naghdi, [GLN74], and Green and
Naghdi, [GN76]; In the latter two references the system was extended to two­space
dimensions. We will call it therefore Serre­Green­Naghdi (SGN) system.

In what follows we will formally derive the (SGN) in one space dimension from
the 2D Euler equations with variable bottom and then formally derive from (SGN)
the two ‘classical’ Boussinesq type systems and the Shallow Water equations that
will be considered in the rest of the thesis.

1.1 Derivation of the SGN system

(i) The Euler equations
The 2D Euler equations of water wave theory, [Whi74], for an ideal (incom­

pressible, irrotational) fluid, say water, in a finite­depth channel, are given for
x ∈ R, t ≥ 0, in the case of dimensional, unscaled variables, by the following
equations
Conservation of horizontal momentum:

ut + (u2)x + (wu)z = −1

ρ
px, −D ≤ z ≤ ζ, (1.1)

1
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z

0
x

λ0

a0 z = ζ(x, t)

w

u, p

z = −D(x)

−D0

Figure 1.1: Notation for 2D Euler equations in dimensional, unscaled variables

Conservation of vertical momentum:

wt + uwx + wwz = −g − 1

ρ
pz, −D ≤ z ≤ ζ, (1.2)

Incompressibility condition (continuity equation):

ux + wz = 0, −D ≤ z ≤ ζ, (1.3)

Irrotationality condition:

uz − wx = 0, −D ≤ z ≤ ζ, (1.4)

Kinematic surface boundary condition:

ζt + uζx − w = 0, at z = ζ(x, t), (1.5)

Dynamic surface boundary condition:

p = 0, at z = ζ(x, t), (1.6)

Bottom boundary condition:

uDx + w = 0, at z = −D(x). (1.7)

Here x is distance along the channel and t ≥ 0 the time. The depth variable z
(positive upwards) ranges, in the domain of interest, for given (x, t), between the
given bottom topography function z = −D(x) and the free surface which is given
by the unknown function z = ζ(x, t). The undistributed water surface will be at
z = 0. We will assume that D is sufficiently smooth for our purposes and that
always D > 0 and ζ > −D. In (1.1)–(1.7) u = u(x, z, t) and w = w(x, z, t)
denote the horizontal and vertical component, respectively, of the velocity of the
fluid at (x, z, t), p = p(x, z, t) is the pressure and ρ he density of the fluid, assumed
constant. We note that the conservation of horizontalmomentum equation is usually
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written as ut + uux + wuz = −1
ρpx. Using the continuity equation we see that

(u2)x+(wu)z = 2uux+wtu+wux = u(ux+wz)+uux+wuz = uux+wuz . The
form of these terms in (1.1) is more useful in the derivation of the (SGN) equations
to follow.

(ii) Nondimensional variables and scaling parameters
In order to study surface wave propagation phenomena in detail, one usually

derives model equations from the full 2D Euler system; these simplified equations
are valid approximation of the Euler equations in specific scaling regimes of inter­
est. To derive these models, we first write (1.1)–(1.7) in nondimensional and scaled
variables following [Per72], [Dou14], [ADM].

We first nondimensionalize the Euler equations. LetD0 denote a characteristic
length of the problem, chosen here naturally as the mean depth of the channel. Then
c0 =

√
gD0 defines a characteristic velocity,

√
D0/g a characteristic time and

ρgD0 a characteristic pressure. We introduce nondimensional (unscaled) variables,
denoted by ′, by the equations

x′ =
x

D0
, t′ =

t√
D0/g

=
c0t

D0
, z′ =

z

D0
,

u′ =
u

c0
, w′ =

w

c0
, ζ ′ =

ζ

D0
, D′ =

D

D0
, p′ =

p

ρgD0
=

p

ρc20
.

Since long wavelength will be typical in our models (and in some, small am­
plitude,) we define the scaling parameters

σ =
D0

λ0
, ε =

a0
D0

,

where λ0 is a typical wavelength of the problem and a0 a typical amplitude of the
surface waves. For the time being we make no assumption about their magnitude.
The nondimensional, scaled variables will be denoted by ∗, and they are derived
in terms of the nondimensional (unscaled) variables denoted by ′, and the usual
dimensional variables bearing no superscript, by the formulas

x∗ = σx′ =
σ

D0
x =

x

λ0
, z∗ = z′ =

z

D0
, ζ∗ =

ζ ′

ε
=

ζ

D0ε
=

ζ

a0
,

D∗ = D′ =
D

D0
, t∗ = σt′ =

c0
λ0

t, u∗ =
1

ε
u′ =

u

εc0
=

D0u

a0c0
,

w∗ =
1

εσ
w′ =

λ0

a0c0
w, p∗ = p′ =

p

ρgD0
.

(iii) The Euler equations in nondimensional, scaled variables
Using the chain rule and some simple algebra one may easily transform the
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2D­Euler equations (1.1)–(1.7) into the following equations, respectively:

(1.1) ⇔ εu∗t∗ + ε2(u∗2)x∗ + ε2(w∗u∗)z∗ = −p∗x∗ , −D∗ ≤ z∗ ≤ εζ∗,

(1.2) ⇔ εσ2w∗
t∗ + ε2σ2u∗w∗

x∗ + ε2σ2w∗w∗
z∗ = −1− p∗z∗ , −D∗ ≤ z∗ ≤ εζ∗,

(1.3) ⇔ u∗x∗ + w∗
z∗ = 0, −D∗ ≤ z∗ ≤ εζ∗,

(1.4) ⇔ u∗z∗ − σ2w∗
x∗ = 0, −D∗ ≤ z∗ ≤ εζ∗,

(1.5) ⇔ ζ∗t∗ + εu∗ζ∗x∗ − w∗ = 0, at z∗ = εζ∗,

(1.6) ⇔ p∗ = 0, at z∗ = εζ∗,

(1.7) ⇔ u∗D∗
x∗ + w∗ = 0, at z∗ = −D∗.

Here u∗, w∗, p∗, are functions of (x∗, z∗, t∗), ζ∗ = ζ∗(x∗, t∗), D∗ = D∗(x∗).
The main advantage of the equations written in their nondimensional, scaled form
is that when specific assumptions of the magnitudes of the scaling parameters ε,
σ are made, then the order of magnitude of each specific term of the equation is
determined by the order of magnitude of the monomial εασβ that multiplies it as
coefficient. The starred variables, independent or dependent, along with their spa­
tial or temporal derivatives will all be of O(1).

Finally, since using the starred variables throughout the rest of the chapter will
be typographically cumbersome, we simplify the notation and revert to denoting by
unstarred variables the nondimensional, scaled quantities. Hence, finally, the 2D
Euler equations in nondimensional, scaled form are given by

Horizontal momentum: εut + ε2(u2)x + ε2(wu)z = px, −D ≤ z ≤ εζ,
(1.1′)

Vertical momentum: εσ2wt + ε2σ2uwx + ε2σ2wwz = −1− pz, −D ≤ z ≤ εζ,
(1.2′)

Continuity: ux + wz = 0, −D ≤ z ≤ εζ, (1.3′)
Irrotationality: uz − σ2wx = 0, −D ≤ z ≤ εζ, (1.4′)
Kinematic b.c. surface: ζt + εuζx − w = 0, at z = εζ, (1.5′)
Dynamic b.c. surface: p = 0, at z = εζ, (1.6′)
Bottom b.c.: Dxu+ w = 0, at x = −D, (1.7′)

(iv) Depth­averaged quantities; mass conservation in depth­averaged form
For a continuous function v(x, z, t) defined for −∞ < x < ∞, t ≥ 0, −D ≤

z ≤ εζ we define its depth­averaged v = v(x, t) as the mean

v(x, t) =
1

η(x, t)

∫ εζ(x,t)

−D(x)
v(x, z, t) dz, (1.8)

where the water depth η = η(x, t) is defined by η = εζ + D and will always be
positive. For fixed x, t, integrating (1.3′) with respect to z in the interval [−D, εζ]
we obtain

0 =

∫ εζ

−D
ux dz +

∫ εζ

−D
wz dz =

∫ εζ

−D
uz dz + w

∣∣
z=εζ

− w
∣∣
z=D

.
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z

0
x

η(x, t) = εζ(x, t) +D(x)

z = εζ(x, t)

w

u, p

z = −D(x)

−1

Figure 1.1′: Notation for 2D Euler equations in nondimensional, scaled variables

Let u be the depth­averaged u. Then ηu =
∫ εζ
−D u dz. Therefore, by Leibniz’s rule

for differentiation of integrals,

(ηu)x =

∫ εζ

−D
ux dz + u

∣∣
z=εζ

εζx − u
∣∣
z=−D

(−Dx).

Therefore, by the two above relations we have

ηt + ε(ηu)x = εζt + ε

∫ εζ

−D
ux dz + ε2ζxu

∣∣
z=εζ

+ εDxu
∣∣
z=−D

= εζt − εw
∣∣
z=εζ

+ εw
∣∣
z=−D

+ ε2ζxu
∣∣
z=εζ

+ εDxu
∣∣
z=−D

= ε
(
ζt + εζxu

∣∣
z=εζ

− w
∣∣
z=εζ

)
+ ε

(
Dxu

∣∣
z=−D

+ w
∣∣
z=−D

)
= 0,

where in the last equality we used the surface kinematic b.c. (1.5′) and the bottom
b.c. (1.7′). We conclude that the continuity equation (1.3′) and the b.c.’s (1.5′) and
(1.7′) imply the continuity equation in depth­averaged form:

ηt + ε(ηu)x = 0 (1.9)

which is an exact equation, whose terms in the l.h.s. depend on x, and since D =
D(x) it is sometimes written as ζt + ε(ζu)x + (Du)x = 0.

(v) Horizontal momentum equation in integrodifferential form with a pressure term
Integrating the horizontal equation (1.1′) w.r.t. z in the interval [−D, εζ] we

obtain

ε

∫ εζ

−D
ut dz + ε2

∫ εζ

−D
(u2)x dz + ε2

∫ εζ

−D
(wu)z dz = −

∫ εζ

−D
px dz. (1.10)

For the third term in the l.h.s. of (1.10) we have

ε2
∫ εζ

−D
(wu)z dz = ε2(wu)

∣∣
z=εζ

− ε2(wu)
∣∣
z=−D

. (1.11)
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For the first term in the l.h.s. of (1.10) we obtain, using Leibniz’s rule:

ε

∫ εζ

−D
ut dz = ε

d

dt

∫ εζ

−D
u dz − ε2ζtu

∣∣
z=εζ

= ε(ηu)t − ε2ζtu
∣∣
z=εζ

. (1.12)

For the second term in the l.h.s. of (1.10) we get, using again Leibniz’s rule

ε2
∫ εζ

−D
(u2)x dz = ε2

(∫ εζ

−D
u2 dz

)
x

− ε3ζxu
2
∣∣
z=εζ

− ε2Dxu
2
∣∣
z=−D

. (1.13)

Inserting the expressions (1.11)–(1.13) in (1.10) gives

ε(ηu)t + ε2
(∫ εζ

−D
u2 dz

)
x

+ ε2(wu)
∣∣
z=εζ

− ε2(wu)
∣∣
z=−D

− ε2ζtu
∣∣
z=εζ

− ε3ζxu
2
∣∣
z=εζ

− ε2Dxu
2
∣∣
z=−D

=

∫ εζ

−D
px dz.

Note that the boundary terms in the above vanish (due to the b.c. (1.5′), (1.7′)),
since they may be written as

ε2u
∣∣
z=εζ

(
−ζt − εζxu

∣∣
z=εζ

+ w
∣∣
z=εζ

)
− ε2u

∣∣
z=−d

(
w
∣∣
z=−D

+Dxu
∣∣
z=−D

)
.

Therefore the depth­integrated horizontal momentum equation (1.10) gives, in view
of the b.c. (1.5′), (1.7′), that

ε(ηu)t + ε2
(∫ εζ

−D
u2 dz

)
x

= −
∫ εζ

−D
px dz. (1.14)

Using the depth­averaged form (1.9) of the continuity equation gives now

ε(ηu)t = εηtu+ εηut = −ε2(ηu)xu+ εηut =

= −ε2(ηu2)x + ε2ηūūx + εηut = −ε2
(∫ εζ

−D
u2 dz

)
x

+ ε2ηūūx + εηut,

where of course ux = (u)x, ut = (u)t. Therefore (1.14) is finally written as

εηut + ε2ηūūx + ε2
(∫ εζ

−D
(u2 − u2) dz

)
x

= −
∫ εζ

−D
px dz. (1.15)

which is an exact integrodifferential equationwith a pressure integral term, obtained
from (1.10) using (1.9) and the b.c.’s (1.5′), (1.7′).

(v) Elimination of the pressure term in (1.15)
We consider now the vertical momentum equation in (1.2′) that we write as

εσ2Γ = −1− pz, −D ≤ z ≤ εζ, (1.16)
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where
Γ = Γ(x, z, t) = wt + εuwx + εwwz. (1.17)

Integrating (1.16) with respect to the depth variable and using the b.c. (1.6′) for the
pressure at the free surface, we have

εσ2

∫ εζ

z
Γ(x, z′, t) dz′ = −

∫ εζ

z
(1 + pz′) dz′ = −(εζ − z) + p(x, z, t),

i.e. that

p(x, z, t) = εζ − z + εσ2

∫ εζ

z
Γ(x, z′, t) dz′, −D ≤ z ≤ εζ. (1.18)

Therefore the pressure in the waveguide is given by the hydrostatic part εζ−z plus
a term involving the indefinite integral of Γ with respect to z. Note that (1.18) and
a little algebra (recalling that η = εζ + D) gives for the depth­averaged pressure
that

ηp =

∫ εζ

−D
p(x, z, t) dz =

η2

2
+ εσ2

∫ εζ

−D
dz
∫ εζ

z
Γ(x, z′, t) dz′. (1.19)

(Note that both sides of (1.19) are functions of x and t.) By Leibniz’s formula we
have for the term in the r.h.s. of (1.15), using (1.6′), and the formula (1.18) for the
pressure, that∫ εζ

−D
px dz =

(∫ εζ

−D
p dz

)
z

−Dxp
∣∣
z=−D

= (ηp)x −Dxp
∣∣
z=−D

= (ηp)x −Dx

(
εζ +D + εσ2

∫ εζ

−D
Γ(x, z′, t) dz′

)
= (ηp)x −Dxη − εσ2Dx

∫ εζ

−D
Γ(x, z′, t) dz′.

Hence, from (1.19)∫ εζ

−D
px dz = ηηx+εσ2∂x

∫ εζ

−D
dz
∫ εζ

z
Γ(x, z′, t) dz′−Dxη−εσ2Dx

∫ εζ

−D
Γ(x, z′, t) dz′.

Substituting this expression in (1.15) we see that

ε η ut + ε2η u ux + ε2
(∫ εζ

−D
(u2 − u2) dz

)
x

+ ε η ζx =

= −εσ2∂x

∫ εζ

−D
dz
∫ εζ

z
Γ(x, z′, t) dz′ + εσ2Dx

∫ εζ

−D
Γ(x, z′, t) dz′

(1.20)

The equation (1.20) is an integrodifferential equation, both of the sides of which
are functions ofx and t. Like (1.9) it is an exact equation, i.e. it holds for the solution
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of the Euler equations exactly. It was obtained by the depth­integrated horizontal
momentum equation (1.15), and has no pressure term at the expense of involving
a single and a double integral of Γ and the integral of u2 − u2. Thus, in addition
of η (or ζ) and u it involves two more unknowns, the components of the pointwise
velocity u and w in the fluid domain. In order to obtain a system of two equations
of two unknown functions of x and t (we will choose as such the functions η and u),
i.e. a simpler model than the Euler equations that involve four unknown functions
and a third independent variable, we need to make hypotheses on the magnitude of
ε and/or σ, i.e. select a scaling regime to which ε and/or σ will belong.

(vi) Asymptotic expansions of u, w in powers of σ2 in the scaling regime σ ≪ 1.
The scaling regime that we will consider is σ ≪ 1, i.e. that of long (or “shallow­

water”) waves. At this stage we make no assumptions about ε, which could be
O(1). Thusfar we have not used the irrotationality condition (1.4′). We note that
(1.4′) and (1.3′) form an elliptic system of equations for u and w that could be
formally solved if we had one more suitable datum on u or w, say at z = −D. So
we introduce the (unknown) function ub = ub(x, t) = u

∣∣
z=−D

and try to express
u and w in terms of ub in expansions of powers of σ.

For this purpose we integrate with respect to z both sides of (1.4′) to get

u = ub + σ2

∫ z

−D
wx dz′, −D ≤ z ≤ εζ. (1.21)

Integrating now with respect to z the continuity equation (1.3′) we obtain

w = w
∣∣
z=−D

−
∫ z

−D
ux dz′,

and using the bottom b.c. (1.7′) we conclude

w = −ubDx −
∫ z

−D
ux dz′. (1.22)

We now proceed iteratively. From (1.21) we get by Leibniz’s rule

ux = ub,x + σ2∂x

∫ z

−D
wx dz′ = ub,x + σ2

∫ z

−D
wxx dz′ + σ2Dxwx

∣∣
z=−D

.

Then, inserting this in (1.22) we see that

w = −ubDx − ub,x(z +D) +O(σ2), (1.23)

which, in view of (1.21), yields

u = ub + σ2

∫ z

−D

[
−(ubDx)x − ub,xx(z

′ +D)− ub,xDx

]
dz′ +O(σ4),

i.e.

u = ub−σ2

[(
ub,xDx + (ubDx)x

)
(z +D) + ub,xx

(z +D)2

2

]
+O(σ4). (1.24)
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The expansions (1.23), (1.24) suffice for our purposes. Now, since we want to work
with η (or ζ) and u as dependent variables, we should express ub in terms of u and
then use (1.23) and (1.24) to express u and w in terms of u.

Since, from (1.24), ub = u+O(σ2) and ub = ub(x, t), it follows that

ub = u+O(σ2). (1.25)

This suffices to give us, in view of (1.23), the required expression for w in terms
of u with O(σ2) remainder:

w = −uDx − ux(z +D) +O(σ2). (1.26)

Now, from (1.24)

ub = u+ σ2

[(
ub,xDx + (ubDx)x

)
(z +D) + ub,xx

(z +D)2

2

]
+O(σ4),

and in view of (1.25)

ub = u+ σ2

[(
uxDx + (uDx)

)
(z +D) + uxx

(z +D)2

2

]
+O(σ4).

Therefore, since ub = ub(x, t), u = u(x, t), depth­averaging in the above gives

ub = u+ σ2

[(
uxDx + (uDx)x

)η
2
+ uxx

η2

6

]
+O(σ4),

which is the required expansion of ub in terms of u. Inserting this in (1.24) and
simplifying the resulting expression, we get

u = u+σ2
(
uxDx+(uDx)x

) (η
2
− (z +D)

)
+σ2uxx

(
η2

6
− (z +D)2

2

)
+O(σ4),

(1.27)
which is the desired expansion of uwithO(σ4) remainder with u in the coefficients.

(vii) Asymptotic expansions in powers of σ2 of the three integrals in (1.20)
We now use the expansions (1.23) and (1.27) in the three integral terms in (1.20)

with the aim of getting a pde involving only η (or ζ) and u upon neglecting O(σ4)
terms.

First, squaring both sides of (1.27) gives

u2 = u2+σ2u
(
uxDx+(uDx)x

)(
η−2(z+D)

)
+σ2uuxx

(
η2

3
− (z +D)2

)
+O(σ4).

Integrating then the difference u2 − u2 with respect to z on the interval [−D, εζ]
we see that the O(σ2) terms of the integral vanish. Therefore∫ εζ

−D
(u2 − u2) dz = O(σ4). (1.28)
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The two integrals involving Γ in (1.20) have O(σ2) coefficients, so we need their
expansions up to O(σ2) terms. Using the definition of Γ, i.e. equation (1.17),
(1.26), and the fact that u = u + O(σ2) (which follows form (1.27)), we obtain,
for −D ≤ z ≤ εζ

Γ(x, z, t) = −Dx(ut + ε u ux)− uxt(z +D)

− ε(u)2Dxx − ε(z +D)(uuxx − (ux)
2) +O(σ2).

Therefore integration gives∫ εζ

−D
Γ(x, z′, t) dz′ = −Dxη(ut + ε u ux)− εη(u)2Dxx

− (uxt + ε u uxx − ε(ux)
2)
η2

2
+O(σ2). (1.29)

Finally, for the double integral we get, after straightforward calculations:∫ εζ

−D
dz
∫ εζ

z
Γ(x, z′, t) dz′ = −

[
Dx(ut + ε u ux) + ε(u)2Dxx

] η2
2

−
[
uxt + ε u uxx − ε(ux)

2
] η3
3

+O(σ2). (1.30)

(viii) Derivation of an O(σ4) approximation of (1.20)
Inserting now the expressions (1.28)–(1.30) into (1.20) we obtain

εηut+ε2η u ux+εηζx = εσ2

(
A
η2

2
+B

η3

3

)
x

−εσ2Dx

(
Aη +B

η2

2

)
+O(σ4),

(1.31)
where

A = Dx(ut + ε u ux) + ε(u)2Dxx, (1.32)
B = uxt + ε u uxx − ε(ux)

2. (1.33)

If we disregard the O(σ4) term in (1.31) we obtain a pde that involves η (or ζ)
and u, and which, together with the (exact) pde (1.9) gives us the SGN system
over variable bottom, which is formally an O(σ4) approximation to the 2D Euler
equations (1.1′)–(1.7′), formally valid if σ ≪ 1.

(ix) The final form of the SGN system.
We simplify now somewhat the SGN system. We will henceforth put µ = σ2

and drop the bar from the depth­averaged horizontal velocity which will be denoted
simply by u = u(x, t).

We replace the O(σ4) terms of (1.31) by zero and (since η will always be pos­
itive) we divide both sides of the resulting equation by εη. Straightforward but
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long calculations in the r.h.s. of this equation yield the first form of the system in
nondimensional, scaled variables

ηt + ε(ηu)x = 0,(
I +

µ

η
T̃ [η,D]

)
ut + ζx + εuux

+ µε

{
− 1

3η

(
η3(uuxx − u2x)

)
x
+ Q̃[η,D]u

}
= 0,

(SGN′)

where η = εζ +D, and the differential operators T̃ [η,D] and Q̃[η,D] are defined
by

T̃ [η,D]w = −1

3
(η3wx)x −

1

2
(Dxη

2w)x +
1

2
Dxη

2wx +D2
xηw,

Q̃[η,D]w = − 1

2η

{[
(Dxwwx +Dxxw

2)η2
]
x
−Dx(wwxx − w2

x)η
2
}

+D2
xwwx +DxDxxw

2.

Alternative derivations of the Serre­Green­Naghdi system have been given in
the literature, in one or two space dimensions. For example in [Lan13] and [LB09]
the starting point is not the Euler equations written in the ‘primitive’ variables u,w,
p, ζ, i.e. equalities (1.1)–(1.7), but an equivalent system of nonlocal equations (the
Zakharov formulation, cf. [Lan13]). In the sequel wewill use the SGN system in the
final form obtained in [LB09]. To this end, we introduce another scaling parameter
β, defined as β = B

D0
, where B is a characteristic measure of the variation of the

bottom, and put D(x) = 1 − βb(x), still in scaled, nondimensional variables. A
little algebra shows that (SGN′) may be written using the new bottom topography
function in the form used in [LB09], i.e. as

ηt + ε(ηu)x = 0,(
I +

µ

η
T [η, βb]

)
ut + ζx + εuux

+ µε

{
− 1

3η

(
η3(uuxx − u2x)

)
x
+Q[η, βb]u

}
= 0,

(SGN)

where the variables u, ζ and the constants ε, µ are as before, the water depth is now
defined as η = εζ + 1 − βb, and the operators T and Q, obtained by T̃ and Q̃ by
putting D = 1− βb(x), are given by

T [η, βb]w = −1

3
(η3wx)x +

β

2

[
(b′η2w)x − b′η2wx

]
+ β2(b′)2ηw,

Q[η, βb]w =
β

2η

{
(b′η2wwx)x + (b′′η2w2)x − b′η2(wwxx − w2

x)
}

+ β2(b′)2wwx + β2b′b′′w2.
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Note that in the derivation of (SGN) or (SGN′) it was tacitly assumed that b (or
D) is three times differentiable. Note also that Q̃ or Q is a purely bathymetric
term, i.e. is zero for horizontal bottoms, while T contains also the dispersive term
−1

3(η
3wx)x.

When the bottom is horizontal, i.e. when β = 0, T [η, 0]w = −1
3(η

3wx)x,
Q[h, 0] = 0, and (SGN) becomes (with η = 1 + εζ):

ηt + (ηu)x = 0, (1.34)[
1− µ

3η
∂x(η

3∂x)

]
ut + ζx + εuux −

εµ

3η

[
η3(uuxx − (ux)

2)
]
x
= 0. (1.35)

The last equation may be written in the form

ut + ζx + εuux −
µ

3η

[
η3(uxt + εuuxx − εu2x)

]
x
= 0, (1.36)

and we see that the system given by (1.34), (1.36) is indeed the classical system
of the Serre equations for a horizontal bottom in their scaled form, cf. [Ser53a],
[Ser53b].

1.2 Derivation of two ‘classical’ Boussinesq type systems
with variable bottom

Wenow simplify the SGN systemwhen the scaling parameters belong to theBoussi­
nesq regime, i.e. when ε = O(µ), µ ≪ 1, following [LB09]. We will recover the
two ‘classical’ Boussinesq (CB) models with bottom topography variation, called
(a) and (b) in [LB09, section III C].

(a) CB system with strongly varying bottom topography, β = O(1) (CBs)
Using ε = O(µ), µ ≪ 1, β = O(1) in (SGN) we see that the continuity

equation does not change since η = εζ + 1− βb. In addition note that

η = εζ + 1− βb = (1− βb)

(
1 +

ε

1− βb

)
= ηb

(
1 +

ε

ηb

)
,

where ηb = 1− βb, following now the notation of [LB09], i.e. using ηb instead of
D(x). Then

µ

η
=

µ

ηb

(
1 +

ε

ηb

)−1

=
µ

ηb

(
1− ε

ηb
+O(ε2)

)
=

µ

ηb
+O(µ2). (1.37)
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Now, since η = ηb +O(µ), we have by (1.37) and the definition of T [η, βb] that
µ

η
T [η, βb]w =

µ

ηb
T [η, βb]w +O(µ2) =

=
µ

ηb

{
− 1

3

[
(η3b +O(µ))wx

]
x
+

β

2

{[
(η2b +O(µ))b′w

]
x
− (η2b +O(µ))b′wx

}
+ β2(ηb +O(µ))(b′)2w +O(µ2)

}
=

=
µ

ηb

{
−1

3
(η3bwx)x +

β

2

[
(η2b b

′w)x − η2b b
′wx

]
+ β2ηb(b

′)2w +O(µ2)

}
=

µ

ηb
T [ηb, βb] +O(µ2).

Therefore, since µε = O(µ2), if we ignore O(µ2) terms, the second pde in (SGN)
becomes (

1 +
µ

ηb
T [ηb, βb]

)
ut + ζx + εuux = 0. (1.38)

The system consisting of the continuity equation and (1.38) is precisely system (a)
of [LB09, section III C] and will be called (CBs) in the sequel.
Notice that by the definition of T we have

T [ηb, βb]w = −1

3
(η3bwx)x +

β

2

[
(η2b b

′w)x − η2b b
′wx

]
+ β2ηb(b

′)2w. (1.39)

Therefore (1.38) may be written as

ut −
µ

3ηb
(η3buxt)x +

βµ

2ηb

[
(η2b b

′ut)x − η2bβ
′uxt

]
+ β2µ(b′)2ut + ζx + εuux = 0.

Simplifying the above a bit further, we finally see that the system (CBs) is:
ζt + (ηu)x = 0,

ut + ζx + εuux + µ

(
β

2
ηbb

′′ut + βηbb
′uxt −

1

3
η2buxxt

)
linear, dispersive terms
depending on bottom topography

= 0,

(1.40)

(1.41)

where
η = ηb + εζ > 0, ηb = 1− βb > 0.

This system reduces to the scaled nondimensional ‘classical’ Boussinesq system
(CB) in the case of horizontal bottom (β = 0, ηb = 1).

It is easy to see that (1.40)–(1.41) is the usual ‘Peregrine’ system, [Per67], in
its nondimensional, scaled form. The first equation of the Peregrine system is just
(1.40). The second equation of the Peregrine system is usually written as

ut + ζx + εuux + µ

(
−γ

2
(γut)xx +

γ2

6
uxxt

)
= 0, (1.42)
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where γ turns out, cf. [Per67], to be just ηb. Therefore, the dispersive term in (1.42)
is µ times

− γ

2
(γut)xx +

γ2

6
uxxt = −γ

2
(γxxut + 2γxuxt + γuxxt) +

γ2

6
uxxt

= −1

2
γγxxut − γγxuxt −

1

3
γ2uxxt.

Since γ = ηb, γx = −βb′, γxx = −βb′′, we see that (1.42) is precisely (1.41).

(b) CB system with weakly varying bottom topography, β = O(µ) (CBw)
The second system (b) in [LB09] is derived under the additional assumption that

β = O(µ). (Recall thatµ ≪ 1 and that ε = O(µ).) This means that the new system
has small topography variation. Under these assumptions (1.40)–(1.41) become

ζt + (ηu)x = 0, (1.43)
ut + ζx + εuux − µ

3uxxt = 0, (1.44)

since now ηb = 1+O(µ) and the right­hand side of (1.44) consists ofO(µ2) terms
that are ignored. In the new system, the bottom topography appears only in (1.43),
since η = 1 + εζ − βb. Hence, the system may be written asζt + ux + ε(ζu)x − β(bu)x = 0,

ut + ζx + εuux −
µ

3
uxxt = 0,

(CBw)

which is just the CB system with a O(µ) perturbation due to the bottom topogra­
phy in the first pde. We will consider numerical methods for (CBs) and (CBw) in
Chapter 2.

Needless to say, when we omit the dispersive terms in (CBw), i.e. put µ = 0 in
the second equation and let ε, β = O(1), we obtain the Shallow Water equations
with variable bottom. Their numerical solution will be the object of Chapters 3 and
4 of this thesis. Wewill discuss issues of validity and rigorous existence­uniqueness
theory of the ivp’s for those systems at the appropriate places in Chapters 2 and 3.



Chapter 2

Standard Galerkin Finite
Element methods for the
numerical solution of two
classical­Boussinesq type systems
over variable bottom

2.1 Introduction

The ‘Classical’ Boussinesq system, [Whi74], in one spatial dimension is the non­
linear, dispersive system of pde’s

ζt + ux + ε(ζu)x = 0,

ut + ζx + εuux −
µ

3
uxxt = 0.

(CB)

and corresponds to β = 0, i.e. horizontal bottom in (CBw) of Chapter 1. As men­
tioned in Ch. 1, the variables in (CB) are nondimensional and scaled. We recall that
the scaling parameters ε, µ are related under the Boussinesq hypothesis that ε ≪ 1,
µ ≪ 1, and that ε = O(µ). We recall that the first pde in (CB) is exact while the
second is an O(ε2) approximation to a relation obtained from the Euler equations.
We recall that in the variables of (CB), the horizontal bottom lies at z = −1 so that
the water depth is given by η = 1 + εζ(x, t).

The initial­value problem for (CB) with initial data ζ(x, 0) = ζ0(x), u(x, 0) =
u0(x) on the real line has been studied by Schonbek [Sch81] and Amick [Ami84],
who established global existence and uniqueness of smooth solutions under the
assumption that 1 + ε infx ζ0(x) > 0. One conclusion of this theory is that for
all t ≥ 0, 1 + ε infx ζ(x, t) > 0, i.e. that there is always water in the channel.
Existence­uniqueness of solutions globally in time in Sobolev spaces were estab­
lished in [BCS04]. The initial­boundary­value problem (ibvp) for (CB) posed on a

15
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finite interval, say [0, 1], with zero boundary conditions for u at x = 0 and x = 1,
and no boundary conditions for ζ, was proved in [Ada11] to possess global weak
(distributional) solutions.

The system (CB) has been used and solved numerically extensively in the engi­
neering literature. We will refer here just to [AD13] and [AD12] for error estimates
of Galerkin­finite element methods for the ibvp for (CB) mentioned above and a
computational study of the properties of the solitary­wave solutions of the system.
For the numerical analysis of the periodic ivp we refer to [ADM10].

In this chapter we will be interested in the numerical solution of extensions
of (CB) valid in channels of variable­bottom topography. Several such extensions
have been derived in the literature. As mentioned in Chapter 1, we will follow
[LB09] and consider two specific such variable­bottommodels that may be derived
from the Serre­Green­Naghdi (SGN) system of equations. Their formal derivation
was done in Chapter 1. For their rigorous theory of validity we refer to [LB09] and
[Lan13] and their references.

Recalling from Chapter 1 the Serre­Green­Naghdi equations (SGN), we men­
tion that the ivp of the system has been analyzed in some generality in [Lan13].
For initial positive depth, the depth remains positive while solution of (SGN) exist.
Also, in the case of the 1d (SGN) a local in time theory of existence and uniqueness
of solutions of the ivp with energy methods has been given by Israwi, [Isr11].

The model (SGN) has been used in many computational studies of long­surface
wave propagation over uneven bottoms. We refer, for example, to [Bar04], [CBB07]
and [Bon+11] and their references for computations with finite differences and fi­
nite volume methods, and to [MSM17] for a finite element scheme. An error anal­
ysis of the Galerkin­finite element method in the case of a horizontal bottom (i.e.
when β = 0), appears in [ADM17] in the case of periodic ivp.

As was mentioned previously, our aim in this chapter is to consider two sim­
plifications of (SGN) that are variable­bottom extensions of (CB), namely the sys­
tems (CBs) and (CBw). For the convenience of the reader we rewrite the system
here: the ‘Classical’ Boussinesq system with strongly varying bottom topography,
abbreviated as (CBs), is given by the system

ζt + (ηu)x = 0,(
1 +

µ

ηb
T [ηb, βb]

)
ut + ζx + εuux = 0,

(CBs)

where η = ηb + εζ > 0, ηb = 1 − βb > 0, ε = O(µ) ≪ 1, and T [ηb, βb]w is
given by its expression in (SGN) when we replace η by ηb. It was mentioned in
Ch. 1 that (CBs) coincides with the system that was first derived from the Euler
equations by Peregrine in [Per67]; it is usually called the ‘Peregrine system’ in the
literature and has been usedwidely in coastal dynamics computations. Wewill refer
to several computational studies with (CBs) in Section 2.3 in the sequel. We recall
that if we assume in (CBs) following [LB09] that β = O(ε), i.e. that the variation
of bottom is small and specifically of the order ε of the nonlinear and dispersion



2.1. INTRODUCTION 17

terms in (CBs), we obtain a system that we call the ‘Classical’ Boussinesq system
with weakly varying bottom topography, (CBw) which is given by

ζt + (ηu)x = 0,

ut + ζx + εuux −
µ

3
uxxt = 0,

(CBw)

where of course we still assume that ε = O(µ), µ ≪ 1. The dependence on the
bottom topography occurs now explicitly (but weakly) through the first equation,
since η = ηb + εζ = 1− βb+ εζ with β = O(ε). This system has also been used
widely in computations in the engineering literature.

The theory of existence and uniqueness of solutions, at least locally in time, for
the ivp for (CBs) may be easily inferred from the analogous theory of (SGN), cf.
e.g. [Isr11], while that of (CBw) is practically the same as the one for (CB) plus
a ‘source’­type linear term of the form −β(bu)x in the left­hand side of the first
equation.

In this chapter we will discretize in space ibvp’s for the systems (CBs) and
(CBw), with zero b.c. for u at the endpoints of [0, 1] and no b.c. for ζ, by the stan­
dard Galerkin­finite element method on a quasiuniform mesh and prove L2­error
estimates in Section 2.2 for the resulting semidiscretizations. Under certain stan­
dard assumptions on the finite element spaces we will prove error estimates of the
form

∥ζ − ζh∥+ ∥u− uh∥1 ≤ Chr−1,

where ζh, uh are the semidiscrete approximations of ζ and u, respectively, h =
maxi hi, and r − 1 ≥ 2 is the degree of the piecewise polynomials in the finite
element space. (∥·∥ and ∥·∥1 denote, respectively theL2 andH1 norms of functions
on [0, 1].) This type of error estimate is of the same type as the one proved in [AD13]
for the analogous ibvp for (CB) in the case of a quasiuniform mesh.

In Section 2.3 we show the results of several numerical experiments that we
performed with both systems using a fully discrete scheme with the above spatial
discretization and using as a time marching scheme the classical, 4th order, 4­stage
Rugne­Kutta method. The resulting schemes are stable under a mild Courant num­
ber restriction and highly accurate. In Section 2.3.1 we check that the schemes also
work for piecewise linear continuous functions (i.e. for r = 2 and are of optimal
order in L2 for both u and ζ in the case of uniform mesh. In Section 2.3.2 we dis­
cuss the application of simple, approximate, absorbing boundary conditions for the
systems as an alternative to the reflection b.c. u = 0 at the endpoints. In Section
2.3.3 we perform a series of numerical experiments aimed at describing in detail
the changes that solitary waves undergo when evolving under (CBs) or (CBw) in a
variety of variable­bottom environments. We assess the efficacy of these systems in
approximating these flows by comparing them with each other and with the (SGN)
system and available experimental data.

In the sequel, we denote, for integer k ≥ 0, Ck = Ck[0, 1] the spaces of k­
times continuously differentiable functions on [0, 1] and by Hk = Hk(0, 1) the
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usual L2­based Sobolev spaces of functions on (0, 1).
0

H1 will denote the elements
of H1 which vanish at x = 0 and x = 1. The inner product in L2 = L2(0, 1) will
be denoted by (·, ·), its norm by ∥ · ∥, and the norm onHk by ∥ · ∥k. The norms on
W k

∞ and L∞ on (0, 1) are denoted by ∥ · ∥k,∞ and ∥ · ∥∞, respectively. Pr are the
polynomials of degree at most r.

2.2 Error analysis of the Galekin semidiscretization

2.2.1 The finite element spaces

Let 0 ≤ x1 < x2 < . . . < xN+1 = 1 be a quasiuniform partition of [0, 1] with
h := maxi(xi+1−xi). For integers r ≥ 2 and 0 ≤ k ≤ r−2we consider the finite
element space Sh = {ϕ ∈ Ck : ϕ

∣∣
[xi,xi+1]

∈ Pr−1} and Sh,0 = {ϕ ∈ Sh : ϕ(0) =

ϕ(1) = 0}. It is well known, see [Cia78], that if w ∈ Hr there exists χ ∈ Sh such
that

∥w − χ∥+ h∥w′ − χ′∥ ≤ Chr∥w∥r (2.1)

for some constant C independent of h and w, and that a similar property holds in
Sh,0 provided w ∈ Hr ∩ H1

0 . In addition, if P is the L2 prejection operator onto
Sh, then it holds, cf. [DDW75], that

∥P v∥∞ ≤ C∥v∥∞, ∀v ∈ L∞, (2.2a)
∥P v − v∥∞ ≤ Chr∥v∥r,∞, ∀v ∈ Cr. (2.2b)

Due to the quasiuniformity of the mesh, cf. [Cia78], the inverse inequalities

∥χ∥1 ≤ Ch−1∥χ∥, ∥χ∥∞ ≤ Ch−1/2∥χ∥ (2.3)

are valid for χ ∈ Sh (or χ ∈ Sh,0).

2.2.2 Semidiscretization in the case of a strongly varying bottom

Using the notation of Chapter 1 we consider the following initial­boundary­value
problem (ibvp) for (CBs). For T > 0 we seek ζ = ζ(x, t), u = u(x, t), for
(x, t) ∈ [0, 1]× [0, T ], such that

ζt + (ηu)x = 0,(
1 +

µ

ηb
T [ηb, βb]

)
ut + ζx + εuux = 0,

0 ≤ x ≤ 1, 0 ≤ t ≤ T,

ζ(x, 0) = ζ0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

(2.4)

where
η = εζ + ηb > 0, ηb(x) = 1− βb(x) > 0,
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ε, µ, β, are positive constants with ε = O(µ), µ ≪ 1, β = O(1), and b ∈ C2[0, 1].
The operator T [ηb, βb] is defined as in Chapter 1 by

T [ηb, βb]w = −1

3
(η3bwx)x +

β

2
[(η2b b

′w)x − η2b b
′wx] + β2ηb(b

′)2w.

All the variables above are nondimensional and scaled. We will assume that the
ibvp (2.4) has a unique solution that is smooth enough for the purposes of the error
estimates to follow. Taking into account that

T [ηb, βb]w = −1

3
(η3bwx)x +

β

2
(η2b b

′)′w + β2ηb(b
′)2w,

and that η′b = −βb′, we have

T [ηb, βb]w = −1

3
(η3bwx)x −

1

2
η2bη

′′
bw. (2.5)

Using in first equation of (2.4) the definition of η, multiplying the second equa­
tion by ηb, and taking into account (2.5), we rewrite the ibvp (2.4) in the form

ζt + ε(ζu)x + (ηbu)x = 0,(
ηb −

µ

2
η2bη

′′
b

)
ut −

µ

3
(η3butx)x + ηbζx + εηbuux = 0,

(x, t) ∈ [0, 1]× [0, T ],

ζ(x, 0) = ζ0(x), u(x, 0) = u0(x), x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, T ].
(2.6)

We assume that there are positive constants c1 and c2 such that

ηb(x) ≥ c1, (2.7a)

ηb(x)−
µ

2
η2b (x)η

′′
b (x) ≥ c2, (2.7b)

for all x ∈ [0, 1]. Since ηb and its derivatives are O(1), (2.7b) holds for µ suf­
ficiently small. We also consider the bilinear form A : H1

0 × H1
0 → R defined

by
A(v, w) =

(
(ηb −

µ

2
η2bη

′′
b )v, w

)
+

µ

3
(η3bv

′, w′), (2.8)

which is symmetric, bounded onH1 ×H1, and, because of (2.7), coercive, with

A(v, v) ≥ c2∥v∥2 +
µc31
3

∥v′∥2 ≥ cµ∥v∥21, ∀v ∈ H1, (2.9)

where cµ := min(c2, µc31/3). Consider now a weighted H1 (‘elliptic’) projection
associated with the bilinear form (2.9) as the map Rh :

0

H1 → Sh,0 defined by

A(Rh v, χ) = A(v, χ), ∀χ ∈ Sh,0, (2.10)
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for which, cf. e.g. [DDW75], it holds that

∥Rh v − v∥+ h∥Rh v − v∥1 ≤ Chr∥v∥r, if v ∈ Hr ∩H1
0 , (2.11)

∥Rh v − v∥∞ ≤ Chr∥v∥r,∞, if v ∈ W r,∞ ∩H1
0 . (2.12)

We now define the standard Galerkin finite element semidiscretization of the
ibvp (2.6). We seek ζh : [0, T ] → Sh, uh : [0, T ] → Sh,0 such that

(ζht, ϕ) + ε
(
(ζhuh, ϕ)x, ϕ

)
+
(
(ηbuh)x, ϕ

)
= 0, ∀ϕ ∈ Sh,

0 ≤ t ≤ T ,(2.13)
A(uht, χ) + (ηbζhx, χ) + ε(ηbuhuhx, χ) = 0, ∀χ ∈ Sh,0, (2.14)

with initial conditions

ζh(0) = P ζ0, uh(0) = Rh u0. (2.15)

The ode ivp given by (2.13)–(2.15) has a unique solution locally in time. As part
of Theorem 2.1 below we will prove that for sufficiently small h, its solution may
be extended up to t = T .

Theorem 2.1. Suppose that the solution (ζ, u) of (2.6) is sufficiently smooth and
that the conditions (2.7) hold. Then, if h sufficiently small, there exists a constant
C independent of h such that the semidiscrete problem (2.13)–(2.15) has a unique
solution (ζh, uh) for 0 ≤ t ≤ T , that satisfies

max
0≤t≤T

(∥ζ(t)− ζh(t)∥+ ∥u(t)− uh(t)∥1) ≤ Chr−1. (2.16)

Proof. Let ρ = ζ − P ζ, θ = P ζ − ζh, σ = u− Rh u, ξ = Rh u− uh. From (2.6)
and (2.13)–(2.15) we get

(θt, ϕ) + ε
(
(ζu− ζhuh)x, ϕ

)
+
(
(ηbσ + ηbξ)x, ϕ) = 0, ∀ϕ ∈ Sh, (2.17)

A(ξt, χ) +
(
ηb(ρx + θx), χ

)
+ ε
(
ηb(uux − uhuhx), χ

)
= 0, ∀χ ∈ Sh,0,

(2.18)

that are valid while the semidiscrete problem has a unique solution. For the non­
linear terms we have

ζu− ζhuh = ζ(σ + ξ) + u(ρ+ θ)− (ρ+ θ)(σ + ξ),

uux − uhuhx = (uσ)x + (uξ)x − (σξ)x − σσx − ξξx.

Let now th ∈ (0, T ] be the maximal temporal instance for which the solution of
(2.6) exists and it holds that ∥θ(t)∥∞ + ∥ξ(t)∥∞ ≤ 1, for t ≤ th. Putting ϕ = θ
in (2.17), using (2.1), (2.2b), (2.11), (2.12), (2.3), and integrating by parts we have
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for t ≤ th

1
2
d
dt∥θ∥

2 =− ε
(
(ζσ)x, θ

)
− ε
(
(ζξ)x, θ

)
− ε
(
(uρ)x, θ

)
− ε
(
(uθ)x, θ

)
+ ε
(
(ρσ)x, θ

)
+ ε
(
(ρξ)x, θ) + ε

(
(σθ)x, θ

)
+ ε
(
(θξ)x, θ

)
−
(
(ηbσ)x, θ

)
−
(
(ηbξ)x, θ

)
≤ ε(∥ζx∥∞∥σ∥+ ∥ζ∥∞∥σx∥)∥θ∥+ ε(∥ζx∥∞∥ξ∥+ ∥ζ∥∞∥ξx∥)∥θ∥

+ ε(∥ux∥∞∥ρ∥+ ∥u∥∞∥ρx∥)∥θ∥+ ε
2∥ux∥∞∥θ∥2

+ ε(∥σ∥∞∥ρx∥+ ∥ρ∥∞∥σx∥)∥θ∥+ ε(∥ξ∥∞∥ρx∥+ ∥ρ∥∞∥ξx∥)∥θ∥
+ ε

2∥θ∥∞∥σx∥∥θ∥+ ε
2∥θ∥∞∥ξx∥∥θ∥+ (∥η′β∥∞∥σ∥+ ∥ηb∥∞∥σx∥)∥θ∥

+ (∥η′β∥∞∥ξ∥+ ∥ηb∥∞∥ξx∥)∥θ∥
≤ C(hr−1 + ∥ξ∥1 + ∥θ∥)∥θ∥,

(2.19)
for some constant C independent of h.

In addition, with χ = ξ in (2.18) we obtain for t ≤ th

1
2
d
dtA(ξ, ξ) =− (ηbρx + ηbθx, ξ)− ε(ηb(uσ)x, ξ)− ε(ηb(uξ)x, ξ) + ε(ηb(uξ)x, ξ)

+ ε(ηbσσx, ξ) + ε(ηbξξx, ξ)

=(ρ, η′bξ + ηbξx) + (θ, η′bξ + ηbξx) + ε(uσ, η′bξ + ηbξx)− ε(ηb(uξ)x, ξ)

− ε(σξ, η′bξ + ηbξx)− ε
2(σ

2, η′bξ + ηbξx)− ε
3η

′
bξ

2, ξ).

With estimates analogous to those used in (2.19) we get
1
2
d
dtA(ξ, ξ) ≤ (∥η′b∥∞∥ξ∥+ ∥ηb∥∞∥ξx∥)(∥ρ∥+ ∥θ∥) + ε∥uη′b∥∞∥σ∥∥ξ∥

+ ε∥uηb∥∞∥σ∥∥ξx∥+ ε∥ηbux∥∞∥ξ∥2 + ε∥ηbu∥∞∥ξx∥∥ξ∥
+ ε∥ση′b∥∞∥ξ∥2 + ε∥σηb∥∞∥ξ∥∥ξx∥+ ε

2∥ση
′
b∥∞∥σ∥∥ξ∥

+ ε
2∥σηb∥∞∥σ∥∥ξx∥+ ε

3∥η
′
b∥∞∥ξ∥∞∥ξ∥2

≤ C(hr + ∥ξ∥1 + ∥θ∥)∥ξ∥1,
(2.20)

where C is independent of h. From (2.19) and (2.20) we see that
d
dt
(
∥θ∥2 +A(ξ, ξ)

)
≤ C1h

2r−2 + C2

(
∥θ∥2 + ∥ξ∥21

)
,

where C1, C2 are independent of h. From this inequality and (2.9) it follows that
d
dt
(
∥θ∥2 +A(ξ, ξ)

)
≤ C1h

2r−2 + Cµ

(
∥θ∥2 +A(ξ, ξ)

)
,

for t ≤ th, where Cµ = C2max(1, 1/cµ). Using Gronwall’s lemma in the above
we obtain for t ≤ th,

∥θ(t)∥2 +A(ξ(t), ξ(t)) ≤ eCµT
(
∥θ(0)∥2 +A(ξ(0), ξ(0)

)
+ C1

Cµ
eCµTh2r−2,

from which, in view of (2.9) and since θ(0) = ξ(0) = 0, we see that

∥θ(t)∥+ ∥ξ(t)∥1 ≤

(
2C1

CµC̃µ

eCµT

)1/2

hr−1, (2.21)
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for t ≤ th, where C̃µ = min(1, cµ). Now, since (2.3) gives ∥θ∥∞ ≤ Ch−1/2∥θ∥
and ∥ξ∥∞ ≤ ∥ξ∥1, if h is taken sufficiently small, we have that ∥θ∥∞+ ∥ξ∥∞ < 1
for 0 ≤ t ≤ th, and therefore we may take th = T . The result follows from (2.20)
and the approximation properties of the finite element spaces.

As suggested by numerical experiments for the (CB) on a horizontal bottom,
shown in [AD13], the convergence rates in the error estimate (2.16) are sharp in the
case of a horizontal bottom; they are sharp in the case of variable­bottom models
as well. The H1 convergence rate of the error of uh is optimal, while the L2 rate
for ηh suboptimal, as expected, since the first pde in (2.4) is of hyperbolic type and
we are using the standard Galerkin method on a nonuniform mesh. (For r = 2 the
numerical experiments in [AD13] also suggest the improved estimate ∥u− uh∥ =
O(h2).) In the case of uniform mesh, better results were proved in [AD13] in the
case of horizontal bottom. The numerical experiments in Section 2.3 in the sequel
suggest that such improved rates of convergence for uniform mesh persist in the
presence of a variable bottom as well.

2.2.3 Semidiscretization in the case of a weakly varying bottom

In the case of a weakly varying bottom, following the remarks in Chapter 1, we
consider the following ibvp for the system (CBw). For T > 0 we seek ζ = ζ(x, t),
u = u(x, t), for (x, t) ∈ [0, 1]× [0, T ], such that

ζt + (ηu)x = 0,

ut + ζx + εuux −
µ

3
uxxt = 0,

0 ≤ x ≤ 1, 0 ≤ t ≤ T,

ζ(x, 0) = ζ0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t), 0 ≤ t ≤ T,

(2.22)

where
η = εζ + ηb > 0, ηb(x) = 1− βb(x) > 0,

and ε, µ, β, are positive constants with ε = O(µ), β = O(µ), µ ≪ 1, and b =
C2[0, 1]. All the variables above are nondimensional and scaled. We assume that
(2.22) has a unique solution, smooth enough for the purposes of the error estimate
below.

Let a : H1
0 × H1

0 → R denote the weighted H1­inner product defined by
a(v, w) = (v, w) + µ

3 (v
′, w′) and consider the weighted H1 (‘elliptic’) projection

associated with a(·, ·), defined as the map R̃h :
0

H1 → Sh,0 such that

a(R̃hv, χ) = a(v, χ), ∀χ ∈ Sh. (2.23)

Obviously, R̃h satisfies the properties (2.11) and (2.12).
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The standard Galerkin finite element semidiscretization of the ibvp (2.22) is the
following. We seek ζh : [0, T ] → Sh, uh : [0, T ] → Sh,0, such that

(ζht, ϕ) + ε
(
(ζhuh)x, ϕ

)
+
(
(ηbuh)x, ϕ

)
= 0, ∀ϕ ∈ Sh, (2.24)

a(uht, χ) + (ζhx, χ) + ε(uhuhx, χ) = 0, ∀χ ∈ Sh,0, (2.25)

with initial conditions

ζh(0) = P ζ0, uh(0) = R̃hu0. (2.26)

In analogywith Theorem 2.1, the following error estimate holds for the semidiscrete
scheme (2.24)–(2.26).

Theorem 2.2. Suppose that the solution (ζ, u) of (2.22) is sufficiently smooth.
Then, if h is sufficiently small, there exists a constant C independent of h such that
the semidiscrete problem (2.24)–(2.26) has a unique solution (ζh, uh) for 0 ≤ t ≤
T , that satisfies

max
0≤t≤T

(∥ζ(t)− ζh(t)∥+ ∥u(t)− uh(t)∥1) ≤ Chr−1. (2.27)

Proof. Let ρ = ζ − P ζ, θ = P ζ − ζh, σ = u− R̃hu, ξ = R̃hu− uh. Using (CB)
and (2.24), (2.25), we have

(θt, ϕ) + ε
(
(ζu− ζhuh)x, ϕ

)
+
(
(hbσ + hbξ)x, ϕ

)
= 0, ∀ϕ ∈ Sh, (2.28)

a(ξt, χ) + (ρx + θx, χ) + ε(uux − uhuhx, χ) = 0, ∀χ ∈ Sh,0, (2.29)

until the time for which the semidiscrete problem has unique solution. Is holds that

ζu− ζuuh = ζ(σ + ξ) + u(ρ+ θ)− (ρ+ θ)(σ + ξ),

uux + uhuhx = (uσ)x + (uξ)x − (σξ)x − σσx − ξξx.

Let th ≤ T be the largest time for which ∥θ(t)∥∞ ≤ 1, for t ≤ th. Setting ϕ = θ
in (2.28), using (2.1), (2.2b), (2.11), (2.12), (2.3), and integrating by parts, we get
for t ≤ th

1
2
d
dt∥θ∥

2 =− ε((ζσ)x, θ)− ε((ζξ)xθ)− ε((uρ)x, θ)− ε((uθ)x, θ) + ε((ρσ)x, θ)

+ ε((ρξ)x, θ) + ε((σθ)x, θ) + ε((θξ)x, θ)− ((hbσ)x, θ)− ((hbξ)x, θ)

≤ε(∥ζx∥∞∥σ∥+ ∥ζ∥∞∥σx∥)∥θ∥+ ε(∥ζx∥∞∥ξ∥+ ∥ζ∥∞∥ξx∥)∥θ∥
+ ε(∥ux∥∞∥ρ∥+ ∥u∥∞∥ρx∥)∥θ∥+ ε

2∥ux∥∞∥θ∥2

+ ε(∥σ∥∞∥ρx∥+ ∥ρ∥∞∥σx∥)∥θ∥+ ε(∥ξ∥∞∥ρx∥+ ∥ρ∥∞∥ξx∥)∥θ∥
+ ε

2∥θ∥∞∥σx∥∥θ∥+ ε
2∥θ∥∞∥ξx∥∥θ∥+ (∥h′b∥∞∥σ∥+ ∥hb∥∞∥σx∥)∥θ∥

+ (∥h′b∥∞∥ξ∥+ ∥hb∥∞∥ξx∥)∥θ∥
≤C(hr−1 + ∥ξ∥1 + ∥θ∥)∥θ∥,

(2.30)
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for some constant C which depends on ε, µ, β. Furthermore, setting χ = ξ in
(2.29) we have, for 0 ≤ t ≤ th

1
2
d
dta(ξ, ξ) =− (ρx + θx, ξ)− ε((uσ)x, ξ)− ε((uξ)x, ξ) + ε((σξ)x, ξ)

+ ε(σσx, ξ) + ε(ξξx, ξ)

=(ρ+ θ, ξx) + ε(uσ, ξx)− ε((uξ)x, ξ)− ε(σξ, ξx)− ε
2(σ

2, ξx)

therefore
1
2
d
dta(ξ, ξ) ≤(∥ρ∥+ ∥θ∥)∥ξx∥+ ε∥u∥∞∥σ∥∥ξx∥+ ε∥ux∥∞∥ξ∥2 + ε∥u∥∞∥ξx∥∥ξ∥

+ ε∥σ∥∞∥ξ∥∥ξx∥+ ε
2∥σ∥∞∥σ∥∥ξx∥

≤ C(hr + ∥ξ∥+ ∥θ∥)∥ξ∥1,
(2.31)

where the constant C depends on ε, µ, β. From (2.30) and (2.31) we can see that

d
dt
(
∥θ∥2 + a(ξ, ξ)

)
≤ C1h

2r−2 + C2(∥θ∥2 + ∥ξ∥21)

where the constantsC1,C2 depend on ε, µ, β. From this relationship, since a(v, v) =
∥v∥2 + µ

3∥u
′∥2 ≥ µ

3∥v∥
2
1, we get

d
dt
(
∥θ∥2 + a(ξ, ξ)

)
≤ C1h

2r−2 + Cµ

(
∥θ∥2 + a(ξ, ξ)

)
,

for t ≤ th, where Cµ = C2 · 3/µ. From this inequality and Gronwall’s lemma we
have, for t ≤ th,

∥θ(t)∥2 + a(ξ(t), ξ(t)) ≤ eCµT
(
∥θ(0)∥2 +A(ξ(0), ξ(0))

)
+ C1

Cµ
eCµTh2r−2,

which results, taking into consideration that a(v, v) ≥ µ
3∥v∥

2
1 and that θ(0) =

ξ(0) = 0,

∥θ(t)∥+ ∥ξ(t)∥1 ≤

(
2C1

CµC̃µ

eCµT

)1/2

hr−1 =

(
2C1

C2
eCµT

)1/2

hr−1, (2.32)

for t ≤ th and C̃µ = µ/3. Since, from (2.3) ∥θ∥∞ ≤ Ch−1/2∥θ∥, if h is small
enough, we have ∥θ∥∞ < 1 and consequently we can take th = T , therefore from
the relation (2.32) the proof of the Theorem is complete.

2.3 Numerical experiments

In this section we present results of numerical experiments that we performed using
the two models (CBs) and (CBw) of the classical Bousinesq system with variable
bottom. We discretized the two systems in space using the Galerkin finite element
method analyzed in the previous section. For the temporal discretization we used
the ‘classical’, explicit, 4­stage, 4th order Runge­Kutta scheme (RK4). The con­
vergence of this fully discrete scheme was analyzed, in the case of the ibvp for the
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(CB) with horizontal bottom and u = 0 at the endpoints in [AD13], where it was
shown that under a Courant number stability restriction of the form k

h ≤ α the
scheme is stable, is fourth­order accurate in time, and preserves the spatial order of
convergence of the semidiscrete problem; here k denotes the (uniform) time step.

2.3.1 Convergence rates

The spatial convergence rates proved in Theorems 2.1 and 2.2 in the case of a gen­
eral quasiuniform mesh are sharp as is suggested by numerical experiments (not
shown here). In the case of a uniform spatial mesh better convergence rates may be
achieved. This was proved in [AD13] for the (CB) (horizontal bottom and u = 0
at the endpoints of the spatial interval) in the case of piecewise linear continuous
functions (r = 2) and cubic splines (r = 4). The numerical results to be presented
in the sequel suggest that the improved rates persist in the case of a variable bot­
tom as well for both CB models. (We do not show the optimal­order results for the
piecewise linear case (r = 2) but concentrate instead in the case of cubic splines
(r = 4).)

The exact solution of the test problem used for the error rate computations is
ζ(x, t) = e2t(cos(πx)+x+2), u(x, t) = ext(sin(πx)+x3−x2) for (x, t) ∈ [0, 1]×
[0, 1/4]; the bottom topography was given by the function ηb(x) = 1 − β sinπx.
The scaling parameters (not important for the convergence rate computations) were
taken as ε = 1, µ = 1/10, β = 1/10. Appropriate right­hand sides and initial con­
ditions were found from the above data. We solved numerically the ibvp’s (2.6)
and (2.22) with the above exact solution and bottom profile using the spatial dis­
cretizations (2.13)–(2.15) and (2.24)–(2.26), respectively, with cubic splines with
uniform mesh of meshlength h = 1/N . The temporal discretization was realized
by the RK4 scheme with stability restriction k

h ≤ 1
4 ; the resulting time steps were

small enough so that the temporal errors were much smaller than the spatial ones.
We used 3­point Gauss quadrature to evaluate the finite element integrals in every
mesh interval. (Since we wished to obtain detailed information about the spatial
convergence rates, we computed throughout with quadruple precision and evalu­
ated he L2­errors using 5­point Gauss quadrature and the L∞ errors by taking the
maximum value of the error on all these quadrature points.)

In Table 2.1 we show theL2,L∞, andH1 (seminorm) spatial errors and conver­
gence rates in the case of the (CBw) model. The numerical results suggest strongly
that the L2 rates for ζ and u are equal to 3.5 and 4, respectively, the L∞ rates equal
to 3 and 4, while theH1 ones 2.5 and 3, respectively. The same rates are observed
(cf. Table 2.2) in the numerical integration by the same method of the analogous
ibvp for the (CBs) model.

As a remark of theoretical interest we point out that in the case of the analo­
gous ibvp for (CB) on a horizontal bottom L2 error estimates on a uniform mesh
were proved in [AD13]. The error estimates were ∥ζ − ζh∥ ≤ ch3.5

√
| lnh|,

∥u − uh∥ ≤ ch4
√
| lnh|. The increased accuracy of our present code affords in­

vestigating computationally if the logarithmic factors are actually present in these
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N L2 error rate L∞ error rate H1 semi­nrm rate
8 1.1154e-04 - 3.4102e-04 - 4.9273e-03 -
16 9.5884e-06 3.5401 3.5426e-05 3.2670 7.5831e-04 2.6999
32 8.1075e-07 3.5640 3.9539e-06 3.1635 1.2300e-04 2.6241
64 6.9606e-08 3.5420 4.6509e-07 3.0877 2.0801e-05 2.5640
128 6.0526e-09 3.5236 5.6333e-08 3.0455 3.5964e-06 2.5320
256 5.3006e-10 3.5133 6.9294e-09 3.0232 6.2857e-07 2.5164
512 4.6605e-11 3.5076 8.5918e-10 3.0117 1.1046e-07 2.5086
1024 4.1074e-12 3.5042 1.0696e-10 3.0059 1.9466e-08 2.5045
2048 3.6250e-13 3.5022 1.3343e-11 3.0029 3.4357e-09 2.5023
4096 3.2016e-14 3.5011 1.6662e-12 3.0015 6.0686e-10 2.5012
8192 2.8287e-15 3.5006 2.0816e-13 3.0007 1.0724e-10 2.5006

(a) ζ

N L2 error rate L∞ error rate H1 semi­nrm rate
8 2.1716e-05 - 5.1473e-05 - 1.0232e-03 -
16 1.2560e-06 4.1119 2.7324e-06 4.2356 1.2429e-04 3.0413
32 7.6917e-08 4.0294 1.5843e-07 4.1083 1.5438e-05 3.0092
64 4.7794e-09 4.0084 9.6737e-09 4.0336 1.9270e-06 3.0020
128 2.9812e-10 4.0029 6.0043e-10 4.0100 2.4080e-07 3.0004
256 1.8618e-11 4.0011 3.7468e-11 4.0023 3.0098e-08 3.0001
512 1.1632e-12 4.0005 2.3407e-12 4.0006 3.7623e-09 3.0000
1024 7.2689e-14 4.0002 1.4628e-13 4.0002 4.7029e-10 3.0000
2048 4.5427e-15 4.0001 9.1419e-15 4.0001 5.8786e-11 3.0000
4096 2.8391e-16 4.0001 5.7136e-16 4.0000 7.3483e-12 3.0000
8192 1.7744e-17 4.0000 3.5710e-17 4.0000 9.1853e-13 3.0000

(b) u
Table 2.1: Spatial errors and rates of convergence, t = 1/4, (CBw), cubic splines
on uniform mesh, h = 1/N , (a): ζ, (b): u.
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N L2 error rate L∞ error rate H1 semi­nrm rate
8 1.0080e-04 - 2.5352e-04 - 4.1903e-03 -
16 9.1376e-06 3.4635 3.0130e-05 3.0728 6.9419e-04 2.5936
32 7.9145e-07 3.5292 3.6312e-06 3.0527 1.1747e-04 2.5631
64 6.8773e-08 3.5246 4.4523e-07 3.0278 2.0318e-05 2.5314
128 6.0165e-09 3.5149 5.5101e-08 3.0144 3.5538e-06 2.5153
256 5.2848e-10 3.5090 6.8528e-09 3.0073 6.2481e-07 2.5079
512 4.6535e-11 3.5054 8.5440e-10 3.0037 1.1012e-07 2.5043
1024 4.1044e-12 3.5031 1.0666e-10 3.0019 1.9436e-08 2.5023
2048 3.6236e-13 3.5017 1.3324e-11 3.0009 3.4331e-09 2.5012
4096 3.2010e-14 3.5009 1.6650e-12 3.0005 6.0663e-10 2.5006
8192 2.8284e-15 3.5004 2.0809e-13 3.0002 1.0721e-10 2.5003

(a) ζ

N L2 error rate L∞ error rate H1 semi­nrm rate
8 2.1831e-05 - 5.2866e-05 - 1.0249e-03 -
16 1.2603e-06 4.1146 2.7930e-06 4.2425 1.2441e-04 3.0423
32 7.7005e-08 4.0326 1.5971e-07 4.1283 1.5442e-05 3.0102
64 4.7813e-09 4.0095 9.6939e-09 4.0422 1.9271e-06 3.0023
128 2.9818e-10 4.0032 6.0086e-10 4.0120 2.4081e-07 3.0005
256 1.8621e-11 4.0012 3.7476e-11 4.0030 3.0099e-08 3.0001
512 1.1634e-12 4.0005 2.3411e-12 4.0007 3.7623e-09 3.0000
1024 7.2699e-14 4.0002 1.4630e-13 4.0002 4.7029e-10 3.0000
2048 4.5433e-15 4.0001 9.1432e-15 4.0001 5.8786e-11 3.0000
4096 2.8395e-16 4.0001 5.7144e-16 4.0000 7.3483e-12 3.0000
8192 1.7746e-17 4.0000 3.5714e-17 4.0000 9.1853e-13 3.0000

(b) u
Table 2.2: Spatial errors and rates of convergence, t = 1/4, (CBs), cubic splines
on uniform mesh, h = 1/N , (a): ζ, (b): u.
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estimates. To this end we considered the ibvp for (CB) with the exact solution
given previously, but now in the case of the horizontal bottom ηb = 1, and found
that the rates ∥ζ−ζh∥

h3.5 stabilized to the value 0.124 (the values of h used went down
to 1/4096 and the errors ∥ζ − ζh∥ were very small,) while the ratio ∥ζ−ζh∥

h3.5
√

| lnh|
did

not stabilize for the same range of h’s (see Table 2.3 and Figure 2.1). Similar ob­

N ∥ζ − ζh∥
∥ζ − ζh∥

h3.5
∥ζ − ζh∥

h3.5
√
| ln(h)|

8 1.017830463352483e-04 0.1473975957 0.1022155669
16 8.652711027620317e-06 0.1417660175 0.0851391702
32 7.239701695841898e-07 0.1341978618 0.0720854914
64 6.180357192069458e-08 0.1296114845 0.0635557911
128 5.361327720539382e-09 0.1272058982 0.0577491370
256 4.690111486140556e-10 0.1258992215 0.0534644767
512 4.121623437941200e-11 0.1251737244 0.0501163218
1024 3.631637661581006e-12 0.1247821199 0.0473957750
2048 3.204686496602256e-13 0.1245777215 0.0451160750
4096 2.830196188452161e-14 0.1244733447 0.0431591622

Table 2.3
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j ln(h)j

Figure 2.1: Graphs of ∥ζ − ζh∥/h3.5, ∥ζ − ζh∥/(h3.5
√

| lnh|) as h diminishes.
(Horizontal axis is logN , for N = 1/h.)

servations were made for the u component of the error. Therefore these increased
accuracy experiments suggest that the logarithmic factors are not actually present
in these error estimates of [AD13].
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2.3.2 Approximate absorbing boundary conditions

In the case of the shallow water (SW) equations on a horizontal bottom, obtained
if we set µ = 0 in the (CB) system, i.e. for the equations

ζt + ux + ε(ζu)x = 0,

ut + ζx + εuux = 0,
(SW)

(written here in nondimensional, scaled variables, and where it is assumed that
1+εζ > 0), it is well known that using Riemann invariants and the theory of charac­
teristics. [Whi74], one may derive transparent, characteristic boundary conditions
at the endpoints of a finite spatial interval, say [0, 1]. These boundary conditions
allow an initial pulse that is generated in the interior of (0, 1) and travels in both
directions to exit the interval cleanly. In the case of a subcritical flow, which will
be of interest here, i.e. when the solution of (SW) satisfies u2 < (1 + εζ)/ε2, the
characteristic boundary conditions are of the form

εu(0, t) + 2
√

1 + εζ(0, t) = εu0 + 2
√
1 + εζ0,

εu(1, t)− 2
√

1 + εζ(1, t) = εu0 − 2
√
1 + εζ0.

(2.33)

Here it is assumed that outside the interval [0, 1] the flow is uniform and satisfies
ζ(x, t) = ζ0, u(x, t) = u0, where η0, u0 are constants such that u20 < (1+εζ0)/ε

2.
In addition, the initial conditions ζ(x, 0), u(x, 0), of (SW) should satisfy the sub­
criticality conditions and be compatible at x = 0 and x = 1 with the uniform flow
outside [0, 1]. In [AD17] the authors analyzed the space discretization of (SW)
with characteristic boundary conditions (both in the subcritical and supercritical
case) using Galerkin finite element methods. Analytical and computational evi­
dence in [AD17] suggests that the discretized characteristic boundary conditions,
although not exactly transparent, are nevertheless highly absorbent. We note that
the same type of characterisic absorbing conditions may be used for the (SW) over
a variable bottom, at least in the case where the bottom is locally horizontal at the
endpoints cf. e.g. Chapter 3 and its references.

Finding (exact) transparent boundary conditions for the (CB) is not easy, as
a nonlocal problem should be solved for this nonlinear system. In practice, for
small µ, it is reasonable to assume that the Riemann invariants do not change much
over short distances along the characteristics, and, consequently, to pose the b.c.
(2.33) as approximate, absorbing b.c.’s for (CB) as well. This has been widely
done in practice, for example in numerical simulations of the Serre equations cf.
e.g. [CBB07], [Bon+11]; in [DM10] the related problem of deriving one­way ap­
proximations of the Serre equations is discussed. Our aim in this subsection is to
assess, by numerical experiment, the accuracy of (2.33) as approximate absorb­
ing boundary conditions for the (CB), paying special attentions to their efficacy in
simulating outgoing solitary­wave solutions of the (CB).

To derive (classical) solitary­wave solutions of (CB) on the real line, we let
ζ = ζs(x − cst), u = us(x − cst), where cs is the speed of the solitary wave and
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ζs(ξ), us(ξ) are smooth functions that tend to zero, along with their derivatives,
as |ξ| → ∞. Inserting these expressions in (CB) and integrating we see that the
equations for ηs and us decouple and give

ζs =
us

cs − εus
,

csµ

3
u′′s +

ε

2
u2s − csus +

us
cs − εus

= 0, (2.34)

A further integration yields that us satisfies the ode

csµ

6
(u′s)

2 +
ε

6
u3s −

cs
2
u2s −

1

ε
us −

cs
ε2

ln
cs − εus

cs
= 0. (2.35)

It is straightforward to see that ζs and us have a single positive maximum at some
point ξ0 (we assume that ξ0 = 0). Denoting A = max ζs, B = maxus, we get

A =
B

cs − εB
, εB3 − cs

2
B2 − 1

ε
B − cs

ε2
ln
(
cs − εB

cs

)
= 0, (2.36)

from which one may compute the speed­amplitude relation

cs =

√
6(1 + εA)√
3 + 2εA

√
(1 + εA) ln(1 + εA)− εA

εA
. (2.37)

For fixed ε, cs is monotonically increasing with A but stays below the straight line
cs = 1 + εA

2 , which is the speed­amplitude relation of the solitary waves of the
Serre equations. (The formulas (2.34)–(2.37) were derived in [AD12] in the case
of the unscaled (CB). Note that there are some typographical errors in [AD12]: In
equation (1.58) of [AD12] the last term in the left­hand side of the equation should
have the sign +, while in the equation preceding (2.34) in [AD12] the third term
in the left­hand side should have the sign + and the last term the sign −. However
formulae (3.1) and (3.2) of [AD12], which are the analogous of (2.37) and (2.36)
above, are correct.)

When εA is not large, i.e. when (CB) is a valid model for surface waves, it may
be seen by (2.37) and also by numerical simulations that the solitary­wave solutions
of (CB) satisfy the subcriticality condition. (Since there is no closed­form formula
for the solitary waves we generate them numerically by solving for given cs the
nonlinear o.d.e. (2.34) that us satisfies, taking zero boundary conditions for us and
u′s at the endpoints of a large enough spatial interval using the routine bvp4c of
[MAT18].)

In the numerical experiments to be described in the sequel we solved the (SW)
and the (CB), unless otherwise specified, by the standard Galerkin­finite element
method on the spatial interval [0, 50] using cubic splines on a uniform mesh with
h = 0.025, coupled with RK4 time stepping with time step satisfying k

h = 1
2 , up to

T = 50.
We set the stage by solving numerically the (SW) with ε = 1 with the b.c.

(2.33), posed now at the endpoints of x = 0 and x = 50. As initial condition we
take the solitary wave of (CB) with µ = ε = 1 of speed cs = 1.18112, centered
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at x = 25, which we multiply by a factor 0.1 (thus it is no longer a solitary wave),
so that no discontinuities develop in its evolution under (SW) for the duration of
the experiment. As expected, the initial single­hump wave is split in two pulses: a
larger one of amplitude of about 0.04 traveling to the right with a speed of about
1.057 and starts exiting the computational interval at x = 50 at about t = 22.5,
(the exit is completed by about t = 30), and a smaller one of amplitude of about
0.0035 that travels to the left with speed 1.005 and exits the interval at x = 0 at
about t = 24.5 (see Figure 2.2).
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Figure 2.2: Two­way propagation and exit of pulses, (SW) with b.c. (2.33).

In Figure 2.3 we present some graphs that are relevant for assessing the accu­
racy of the absorbing b.c.’s for this example. (All graphs refer to ζ.) In Fig. 2.3(a)
we observe the temporal variation of the wavefield at x = 40. The pulse that travels
to the right passes this gauge and exits the interval. What remains after t ≃ 30 is a
small residual consisting of small­amplitude oscillations reflected from the bound­
ary due to the inexactness of the discretized b.c.’s and shown in the magnification
of 2.3(a) to be of O(10−9). In 2.3(b) we show the maximum amplitude of ζ with
respect to x over the whole interval as a function of t, while 2.3(c) shows the small
oscillations still present in the computational interval at the end of the experiment
(t = 50). The are all of magnitude at most 10−9 and consist of a main wavepacket
of high frequency and amplitude of about 4 × 10−10 centered at about x = 40
and moving to the right, and three larger amplitude ‘thin’ wavetrains of small sup­
port centered at about x = 5 (moving to the right), x = 20 (moving to the left)
and x = 37.5 (moving to the left), respectively. The main oscillatory wavepacket
is produced when the right­traveling pulse exits the boundary at x = 50. This
wavepacket moves to the left with speed equal to about 7 and has undergone three
reflections at the boundary by T = 50. The thinner wavetrains (of speed about 1)
are generated by the interaction of this wavepacket with the boundaries (The left­
traveling pulse produced by the splitting of the initial condition produces, when it
hits the boundary at x = 0, artificial reflections with amplitude well below 10−10.)
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Figure 2.3: Accuracy of the numerical characteristic b.c.’s for the (SW), ε = 1,
(a): ζ(40, t) with magnification underneath, (b): maxx ζ(x, t) with magnification
underneath, (c): Magnification of ζ(x, 50)
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In Figure 2.4, resp. 2.5, we show analogous graphs in the case of the (CB) sys­
tem in the cases ε = µ = 0.1, resp. ε = µ = 0.01. As initial condition we took
now the exact solitary­wave profile of (CB) for these values of ε, µ, and of speed
cs = 1.18112. As a consequence, the wave moves to the right without changing
its shape. The fact that the characteristic b.c.’s are no longer exactly transparent
for the continuous system is manifested by the larger magnitudes of the residual
artificial oscillations, which are now of O(10−3), resp. O(10−4). (Note their dis­
persive character in the larger µ case, Fig. 2.3(c).) The main pulse in graph (c)
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Figure 2.4: Accuracy of the numerical characteristic b.c.’s for the (CB), ε = µ =
0.1, (a): ζ(40, t) with magnification underneath, (b): maxx ζ(x, t) with magnifi­
cation underneath, (c): Magnification of ζ(x, 50), (d): ∥ζ(·, 50)∥∞ for ε = 0.1
versus µ.

of Figures 2.4 and 2.5 is due to the modelling, i.e. the approximate character of
the characteristic b.c.’s, while the superimposed noise in Fig. 2.5(c) disappears as
h is decreased. The amplitude of the residual was equal to about 2.1 × 10−3 for
ε = µ = 0.1 and fell to 3.2 × 10−4 for ε = µ = 0.01, and to 3.3 × 10−5 for
ε = µ = 0.001 (figure not shown). We thus observe that it decreases linearly with
µ when ε = µ. As expected, for fixed ε we observed that this amplitude decreased
with µ. For example, for ε = 0.01 and µ = 10−3 it was equal to about 3.6× 10−5,
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Figure 2.5: Accuracy of the numerical characteristic b.c.’s for the (CB), ε = µ =
0.01, (a): ζ(40, t) with magnification underneath, (b): maxx ζ(x, t) with magnifi­
cation underneath, (c): Magnification of ζ(x, 50), (d): ∥ζ(·, 50)∥∞ for ε = 0.01
versus µ.
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for µ = 10−4 it was of O(10−6), cf. Figures 2.4, 2.5, (d).
Our conclusion is that for small ε = µ, i.e. when the (CB) is a valid model,

the (approximate) characteristic b.c.’s for the (CB) are satisfactorily absorbing. We
extended these b.c.’s in the case of the variable bottom models (CBw) and (CBs)
and used them in numerical experiments that will be reported in the next subsection.

2.3.3 Propagation of solitary waves over a variable bottom

In this subsection we present the results of several numerical experiments we per­
formed with the variable­bottom models (CBw) and (CBs) in order to validate the
numerical methods used for their solution, compare the two models, and compare
the results of (CBs) with those obtained by the Serre­Green­Naghdi system and
with experimental measurements. We mainly use test problems already considered
in the literature, whose main theme is the study of the changes that solitary­wave
pulses undergo when propagating over an uneven bottom.

2.3.3.1 Solitary waves on a sloping beach

We first consider the problem of a solitary wave climbing a sloping beach of mild
slope that was studied by Peregrine in his pioneering study [Per67], in which he
derived the (CBs) system and solved it numerically by a finite differene scheme.
In our experiments we used the (CBs) in unscaled, nondimensional variables (i.e.
setting ε = µ = 1) and solved it with our fully discrete scheme using cubic splines
on a uniform mesh with N = 2000 spatial intervals and M = 2N temporal steps.
Following [Per67] we consider, using out notation, a bottom of uniform slopeα > 0
given by ηb(x) = αx on a spatial interval of the form [0, Lα]. As initial condition
we take as in [Per67] a solitary wave of the form

ζ0(x) = a0 sech2
[
1
2

√
3a0(x− x0)

]
, (2.38)

where x0 = 1/α. This is a solitary wave of the KdV type equation ζt+ζx+
3
2ζζx+

1
6ζxxx = 0 with speed cs = 1 + a0/2. The KdV equation in this form is obtained
as a one­way approximation of the (CB) with ε = µ = 1 in the standard manner,
cf. [Whi74]. The particular solitary wave (2.38) is centered at x0 = 1/α, where the
(undisturbed) water depth is equal to one. The initial velocity of the pulse, found
by inserting (2.38) in the continuity equation, is given by

u0(x) =
−
(
1 + 1

2a0
)
ζ0(x)

αx+ ζ0(x)
. (2.39)

Thus the initial condition (2.38)–(2.39) is not an exact solitary­wave solution of
(CB) but a close approximation thereof. We took an interval of length Lα =
1/α + 20 to ensure that the support of the initial pulse was well within the spa­
tial interval of integration. At x = 0 we used the b.c. u = 0 (which produced no
reflections as the wave did not reach the left boundary within the temporal range of
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the experiment), posed absorbing (characteristic) boundary conditions at x = Lα,
and ran the experiment up to t = 25.

During this temporal interval the wave moves to the left, steepens (wave ‘shoal­
ing’) and grows in amplitude, cf. Figure 2.6; its evolution resembles that of Fig. 1
of [Per67], which corresponds to α = 1/30, a0 = 0.1. We compared our numer­
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Figure 2.6: (CBs) system. Solitary wave (2.38)–(2.39) climbing a sloping beach,
α = 1/30, a0 = 0.1.

ical results with those of the finite­difference scheme of Peregrine (given in the
Appendix of [Per67]) that we implemented. (Note that there is a misprint in the
last equation of this scheme in [Per67]: In the discretization of the term ηbux, the
denominator should be 4∆x.) We observed that the maximum discrepancy in the
amplitude of ζ approximated by the two methods occurred at t = 25 where the
values were 0.14100 for our scheme and 0.13634 for the scheme of [Per67] (imple­
mented with ∆x = ∆t = 0.1), which corresponds to a difference of about 3.4%
(Fig. 1 of [Per67] shows a ζ­amplitude of about 0.15 at t = 25 which does not
correspond to the actual numerical results that the scheme of [Per67] gives and is
probably due to some inaccuracy in the graphics.)

We also repeated with our scheme the numerical experiments leading to Fig.
2 of [Per67] that depicts the change of amplitude of the solitary wave with depth
for various values of a0 in the case of a beach of slope α = 1/20. We show our
results in Figure 2.7. There was good agreement for low values of a0; however the
values given in [Per67] for a0 = 0.2 seem too high as the depth approaches 0.4.
(All the amplitudes computed by our scheme stay below the curve of Green’s law
for depths larger than 0.5.)

As the solitary wave climbs the sloping beach a small­amplitude flat wave of
elevation is reflected backwards due to the presence of the sloping bed. The results
of our computations, cf. Figure 2.8, agree with those of Fig. 3 in [Per67]. Peregrine,
op. cit., derives an approximate expression for the amplitude of the reflected wave
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Figure 2.7: Change of amplitude with depth. (CBs), solitary wave, α = 1/20,
various initial amplitudes.

of the form

ζmax,refl ≃
1

2
α

(
1

3
a0

) 1
2

, (2.40)

using characteristic variables for the linearized shallow water equations. We found
quite a good agreement between our numerical results and the values computed by
(2.40). For example, for α = 1/40, a0 = 0.1, our computations gave ζmax,refl =
0.0023, while (2.40) gives 0.0025. We will return to the reflections due to the
uneven bottom in subsection 2.3.3.3 in the sequel.

As was previously mentioned, we used the approximate characteristic bound­
ary conditions discussed in subsection 2.3.2 at the right­hand boundary x = Lα.
We found that this b.c. also works for a sloping bottom provided the length of the
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Figure 2.8: (CBs): Reflexion, due to the sloping bottom, from a solitary wave.
α = 1/40, a0 = 0.1, t = 25.
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domain is taken sufficiently large so that the artificial oscillations created at the
boundary do not interfere as they travel to the left with the reflected wave due to
the slope. As an example we consider a beach of slope α = 1/40 on the spatial
interval [0, 70]. As initial condition we took ζ(x, 0) = ζ0(x) given by (2.38) with
x0 = 40, a0 = 0.1, and u(x, 0) = 0, i.e. a ‘heap’ of water, so that sizeable pulses
are generated and propagate in both directions. The two­way propagation is shown
in Figure 2.9. Figure 2.10 shows a magnified profile of the surface elevation ζ as
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Figure 2.9: Two­way propagation of a ‘heap’ of water, (CBs), solitary wave, a0 =
0.1, x0 = 40, beach slope = 1/40. Bottom is depicted in the lower graph.
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Figure 2.10: Magnification of ζ reflections near the right boundary, t = 50

a function of x in the interval [20, 70] at t = 50, by which time the right­travelling
pulse has left the domain. In the interval [20, 45] we observe the small­amplitude
(of height approximately 5×10−4) reflection due to interaction of the left­travelling
pulse with the sloping bottom. In the interval [45, 60] we observe the artificial os­
cillations reflected from the right­hand boundary at x = 70 due to the approximate
absorbing b.c. after the exit of the main right­travelling pulse. The ratio of the am­
plitude of the artificial reflection to that of the main pulse is about 4%. Finally, one
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may also observe on the extreme right the dispersive­tail oscillations that follow
the main right­travelling pulse as they exit the domain.

2.3.3.2 Transformation of a solitary wave propagating onto a shelf

We next consider in detail an example of the transformation that a solitary wave
undergoes as it propagates over a bottom of shelf type like the one shown in Figure
2.11. This test problem was considered by Madsen and Mei in [MM69]. In this
subsection we work in dimensionless, unscaled variables with ε = µ = 1.

xB

h0

a0

h1

1

α

Figure 2.11: Solitary wave propagating onto a shelf

The initial elevation of the solitary wave is given again by (2.38), in which x0
is taken far enough from the toe of the sloping part of the bottom at x = xB, so that
ζ0(xB)/a0 ≪ 1. The initial velocity is found again from the continuity equation
but is now computed for a bottom of constant depth h0 = 1, i.e. as

u0(x) =

(
1 + 1

2a0
)
ζ0(x)

1 + ζ0(x)
. (2.41)

The solitary wave travels to the right, changes in amplitude and shape as it climbs
the slope, and resolves itself into a sequence of solitary­wave pulses as it travels on
the shelf of uniform depth h1 < 1, cf. Figures 2.12, 2.15.

In [MM69] the pde model used was a Boussinesq system of KdV­BBM type
with variable­bottom terms originally derived in [ML66], and which, in the case
of horizontal bottom, is locally well­posed, cf. [BCS04]. The initial­value problem
was integrated with a type of a method of ‘characteristics’. In order to form some
idea of the proximity of the model used in [MM69] to (CBs) we integrated both
systems using our fully discrete scheme with cubic splines and RK4 time stepping
over a variable bottom domain like that of Figure 2.11 with 0 ≤ x ≤ 150, xB = 60,
h1 = 0.5, α = 1/20. As initial values we took solitary waves of the respective
systems of the same amplitude a0 = 0.12 and centered at x0 = 30. (Their speeds
are very close but the wavelength of the solitary wave of the system of [MM69]
was about 22% larger. The difference of the two­solitary waves in L2 was about
4.37 × 10−2.) The evolution of both systems is shown in Figure 2.12 At the end
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Figure 2.12: Comparison between Madsen & Mei system (red, the one with the
larger wavelength) and (CBs) (blue). Propagation onto a shelf. Bottom is shown in
the lower graph.

of the computational domain at t = 22.5, when both waves had climbed well onto
the shelf and resolved themselves into two solitary waves plus dispersive tail, the
two wavetrains had an L2 distance of 5.53×10−2, while the leading solitary waves
had a difference in amplitude of about 3 × 10−3 and a phase difference (distance
of positions of the crest) of 0.15. We conclude that in the time scales of this and
similar experiments typical solutions of the two systems stay close to each other,
so that it is fair to compare in a general way the results of numerical experiments
in [MM69] with similar ones that we performed with (CBs) to be described in the
sequel.

We first make some quantitative remarks on the transformation of the solitary
wave as it climbs on the sloping part of the bottom in Figure 2.11. As observed
in subsection 2.3.3.1, the amplitude of the solitary wave increases as the depth of
the water decreases. In order to quantify this increase in the case of (CBs) and our
numerical method, and motivated by analogous experiments in [MM69], we took
h1 = 0.1, α = 1/20, 0 ≤ x ≤ 150, xB = 60, and computed with cubic splines,
N = 3000, M = 2N , the evolution (according to (CBs)) of a solitary wave of
(CB) centered at x = 30. We recorded the variation of the normalized amplitude
ζmax/a0 of the solitary wave as a function of the water depth ηb for various values
of the initial amplitude a0. In Figure 2.13 we show the outcome of these numerical
experiments corresponding to solitary waves of initial amplitudes a0 = 0.1, 0.15
and 0.2. (The graph starts when the crest of the solitary wave is at x = xB. At
that point ζb = 1, but the forward point of the solitary wave is already travelling
on the sloping bed; hence, the corresponding value of ζmax/a0 is about 1.034 and
not 1. For ηb larger than about 0.6 the three curves corresponding to the three
amplitudes chosen are quite close to each other with the lowest initial amplitude
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Figure 2.13: Amplitude variation with depth for beach slope α = 1/20 for a0 =
0.2, 0.15, 0.1. Computation stopping criteria: solid lines, maxx(ζ(x, t)/ηb(x)) <
0.4; dotted lines, max(ζ(x, t)/ηb(x)) < 0.6.

a0 = 0.10 giving the highest values of ζmax/a0. For ηb smaller than about 0.5 the
sequence is reversed with the highest a0 = 0.2 giving the highest ζmax/a0 values.
The initial solid­line part of the three curves represents the values of ζmax/a0 up
to the point where maxx

(
ζ(x,t)
ηb(x)

)
= 0.4, which is probably a large upper bound of

the range of validity of (CBs), while the dotted­line extensions of the curves go up
to maxx

(
ζ(x,t)
ηb(x)

)
= 0.6, which is probably beyond that range. We also show the

curve of Green’s law given by ζmax/a0 = η
−1/4
b for comparison purposes. It is to be

noted that our results are in satisfactory agreement with those of the corresponding
Fig. 3 of [MM69] for values of ηb in the range 1 to 0.75.

These results are supplemented by those of Figure 2.14 in which we record the
variation of ζmax/a0 as a function of ηb for a solitary wave of fixed a0 = 0.1 and
slopes equal to 0.023, 0.05, and 0.065. For ηb larger than about 0.65 all curves are
fairly close to each other with the steeper slopes giving slightly higher values of
ζmax/a0. For values of ηb less than about 0.65 the smaller slope gives the highest
ratio ζmax/a0 while the two other curves remain close together (stopping criteria
as in Figure 2.11). A qualitatively similar behavior is observed in the analogous
Figure 4 of [MM69].

The distortion the solitary wave suffers as it travels upslope causes the wave,
when it reenters a horizontal­bottom region reaching the shelf, to resolve itself into
a sequence of solitary waves followed by dispersive oscillations. This phenomenon
was noticed in [MM69] for the model used in that paper, and is also present in our
case of the (CBs) system as well. In Figure 2.15 we show this phenomenon, which
may be viewed as a manifestation of the stability of solitary waves of (CB). We
took a spatial interval [0, 150], h1 = 0.5, xB = 60, α = 1/20, and considered
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Figure 2.14: Amplitude variation with depth for initial amplitude a0 = 0.1 for
slopes α = 0.065, 0.05, 0.023. Computation stopping criteria: solid lines,
maxx(ζ(x, t)/ηb(x)) < 0.4; dotted lines, maxx(ζ(x, t)/ηb(x)) < 0.6.
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Figure 2.15: Transformation of a CB solitary wave (a0 = 0.12) propagating up a
slope of α = 1/20, onto a shelf of smaller depth, h1 = 0.5h0. (CBs) computation.
Bottom is shown in the lower graph.
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the evolution of a solitary wave of initial amplitude a0 = 0.12. The graphs in
Figure 2.15 show the temporal evolution every 25 temporal units (“seconds”). The
solitary wave distorts as it climbs the sloping part of the bottom (depicted in the
lower part of he graph), increases in amplitude, and by t = 125 it has resolved
itself into two solitary waves (a third is also possibly forming) plus a dispersive
tail. The first solitary wave has an amplitude of about 0.2099 and travels at a speed
of about 0.84. (We checked that it is indeed a CB­solitary wave.) This wavetrain is
followed by the usual for upsloping environments flat reflection wave that travels to
the left. The results of a similar experiment in [MM69] are qualitatively the same.

2.3.3.3 Reflection and dispersion from various types of variable bottom

As already mentioned in subsection 2.3.3.1, when a solitary wave propagates up a
sloping bottom, a small­amplitude, flat wave of elevation is generated by reflection
from the uneven bottom and travels in the opposite direction. This phenomenon has
been shown e.g. in Figs 2.10 and 2.15. (In this subsection we work again in dimen­
sionless, unscaled variables with ε = µ = 1.) Using characteristic variables theory
for the linearized shallow water equations, in addition to the approximate formula
(2.40) for the reflected wave, Peregrine predicted in [Per67] that the reflected wave
will have a wavelength of about 2L if the slope occurs over a horizontal interval
of length L. In order to check these results we integrated the (CBs) over the vari­
able bottom shown in the lower graph of Figure 2.15 with an initial solitary wave
of (CB), varying the slope and the initial amplitude a0 of the wave; we present
the results in Table 2.4 that shows the amplitudes and wavelengths of the reflected
wave predicted in [Per67] and the numerical results given by our code. (Due to
the shape of the reflected wave we measured its length by the formula 1

|I|
∫
I ζ dx,

where I = {x : ζ > 0.8 ζmax}, at a short time after the full reflected wave had
formed. In the case α = 1/40, a0 = 0.18, we took I = {x : ζ > 0.6 ζmax}.) We
conclude that the predictions of [Per67] underestimate by a small amount the actual

α a0 L
refl. ampl.
by (2.40)

reflected
amplitude

reflected
wavelength

1/20 .12 10 5.000e­3 5.578e­3 22.35
1/40 .12 20 2.500e­3 2.875e­3 43.00
1/20 .18 10 6.124e­3 6.880e­3 21.25
1/40 .18 20 3.062e­3 3.451e­3 41.65

Table 2.4: Predicted and numerical values of amplitude and wavelength of reflected
wave.

numerical results.
In [Per67] Peregrine also made some qualitative comments about the type of re­

flected waves generated by various kinds of uneven bottoms. We verified his gen­
eral statements by performing various numerical experiments, the results of some of
which appear in Figure 2.16. In each case an initial wave, originally on a horizontal
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Figure 2.16: Reflection due to sloping bottom, various topographies. ζ(x, t) as
a function of x at various t. (a): solitary wave travelling into deeper water, (b):
solitary wave passing over a hump, (c): wave of depression travelling into shallower
water. The various bottom topographies are shown in the lower graphs.
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bottom, is let to evolve under (CBs) and travel over uneven bottoms of various sim­
ple topographies shown in the lower graphs in Figure 2.16. Fig. 2.16(a) shows a CB
solitary wave of amplitude a0 = 0.12 passing into shallower water. The resulting
reflected wave is a wave of depression; this solitary wave seems to be dispersing
as a result of its interaction with the bottom. In the case of a hump (Fig. 2.16(b))
the same initial wave gives rise first to a reflected wave of elevation followed by a
reflected wave of depression as one would expect. This particular perturbation due
to this bottom topography seems to lead to a solitary wave very close to the initial
one plus a trailing dispersive tail. Finally, an initial wave of depression climbing
upslope gives rise to a reflected wave of depression and large­amplitude dispersive
oscillations as it travels on the shelf.

2.3.3.4 Comparison of (CBs) and (CBw) as the variation of the bottom in­
creases

As was mentioned in Chapter 1 (CBs) is valid as a model for bottoms where to­
pography, described by ηb(x) = 1− βb(x), may vary arbitrarily (so that ηb > 0 of
course), i.e. where the parameter β can be taken as an O(1) quantity, while (CBw)
was derived under the assumption that β = O(ε). In this subsection we suppose
that the systems are written in scaled, dimensionless variables with µ = ε and we
compare computationally the behavior of an initial CB solitary wave as it evolves
according to each of the two systems travelling over a bottom of smooth topogra­
phy with a fixed shelf­like function b(x) and a parameter β that varies from O(ε)
to O(1), so that the bottom becomes steeper.

For this purpose we solve both systems with our fully discrete scheme using
cubic splines with uniform mesh, N = 2000 and the RK4 with M = 2N on
a spatial interval of [0, 140] with a CB solitary wave of amplitude 0.5 as initial
condition. (We experimented with several values of ε = µ but the results were
qualitatively similar, so we show in Figure 2.17 below only the case ε = µ = 0.05.)

As b(x) we took a fixed profile given by

b(x) =


0, x ∈

[
0, L− 3

2

]
,

1
2

(
1 + sin

(
π
3 (x− L)

))
, x ∈

[
L− 3

2 , L+ 3
2

]
,

1, x ∈
[
L+ 3

2 , 140
]
,

(2.42)

with L = 70. Thus b is a C1 nonnegative function that bridges 0 and 1 over an
interval of length 3. As a result, the undisturbed water depth ηb will vary from
1 to a shelf of depth 1 − β smoothly over this interval. We consider three cases:
β = ε = 0.05, β = 0.4, β = 0.6, and present the results of the evolution for
0 ≤ t ≤ 89 in Figure 2.17. In Fig. 2.17(a), where β = ε = 0.05, there is, as
expected, practically no difference between the two solitary waves that suffer only
a very small perturbation due to the bottom. But for β = O(1), i.e. when the
bottom is steeper, we observe in Figure 2.17(b) (β = 0.4) and 2.17(c) (β = 0.6)
large differences in the solutions of the two systems. As it travels on the shelf the
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solitary wave evolves under (CBs) into a sequence of solitary waves as expected,
whilst no such resolution is discernible in the case of the evolution under (CBw) at
least for the time frame of this experiment. Both systems produce he same small­
amplitude reflection waves. Our conclusion is that for β = O(1) (CBw) does not
seem to give the correct longer­time behaviour of solutions in the case of strongly
varying bottoms.

2.3.3.5 Comparison of (CBs) with the Serre­Green­Naghdi system

Finally, we compare by means of numerical experiment, the evolution of an initial
solitary wave as it climbs a sloping bed, and as it is reflected by a vertical wall at
the end of a slope. Recall from Chapter 1 that the system of Serre­Green­Naghdi
(SGN) equations models two­way propagation of long dispersive waves (i.e. for
which µ ≪ 1) without the assumption of small amplitude, i.e. with no restriction of
ε, and that (CBs) is obtained from the (SGN) system with variable bottom under the
Boussinesq scaling ε = O(µ), [LB09]. The SGN system has been used in many
computations, cf. e.g. [CBB07], [Bon+11], [MSM17], and their references, that
agree quite well with experimental results of long­wave propagation over variable
bottoms. In [ADM17], the authors analyzed Galerkin­finite element methods for
(SGN) on a horizontal bottom (i.e. for the Serre equations) and shown optimal­
order, L2­error estimates in the case of periodic splines (r ≥ 3) on uniformmeshes.

Our aim in this subsection is to compare the results of numerical simulations of
two test problems with (CBs), computed with our code, with numerical results for
(SGN) obtained by Mitsotakis et al. in [MSM17]. The spatial semidiscretization
used in [MSM17] is based on a modified Galerkin finite element scheme that uses a
projection of a term containing a second­order derivative in SGN so that the scheme
is also well defined for piecewise linear continuous elements (i.e. for r = 2) as well.
In what follows we will solve numerically (CBs) using cubic splines on a uniform
mesh withN = 2000 and RK4 time stepping withM = 2N . All variables for this
experiment are nondimensional and unscaled with ε = µ = 1.

In the first experiment (shoaling of a solitary wave) we consider the variable­
bottom example in §4.1 of [MSM17]. The geometry, in our notation, consists of a
channel in the interval [0, 84]. The bottom is horizontal at a depth equal to −1 for
0 ≤ x ≤ xB = 50, and upsloping with slope α = 1/35 up to x = 84 where the
water depth is equal to 1/35. The initial condition is a solitary wave of the form
(2.38), (2.41) of amplitude a0 = 0.2 with crest at x0 = 29.8829. The evolution
of the numerical solution is monitored at ten gauges numbered 0, 1, …, 9, and
located, respectively, at x = 45, 70.96, 72.55, 73.68, 74.68, and 76.91. In this
experiment the variables are dimensionless and unscaled with ε = µ = 1. In the
experimental data and the (SGN) computations g was equal to 1. The temporal
evolution under (CBs) is shown in Figure 2.18. Beyond gauge No. 9 the water
becomes very shallow and the (CBs) model is certainly invalid. In Figure 2.19 we
show the elevation of the wave at gauge 0 (at x = xB − 5 = 45, i.e. on the left of
the toe of the slope), as a function of t. The three graphs shown correspond to the
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Figure 2.17: Comparison of evolution of a solitary wave under (CBw) and (CBs)
over a bottom of varying steepness: ηb = 1 − βb(x), b(x) given by (2.42), ε =
µ = 0.05.
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Figure 2.18: Initial condition and evolution of the solitary wave on a plain beach
of slope 1 : 35. Vertical lines depict the location of gauges 0, 1, 3, 5, 7, 9. Bottom
is shown in the lower graph.

numerical solutions of (CBs) and (SGN), and to experimental data for this problem
due to Grilli et al. [Gri+94], and are all in satisfactory agreement. Figure 2.20
shows the corresponding graphs of the elevation of the wave as a function of time
recorded at gauges 1, 3, 5, 7, and 9 on the sloping bed. The numerical solution of
(SGN) is in good agreement with the experimental data of [Gri+94]. As the wave
climbs up the slope the (CBs) solution grows to a higher amplitude, whose ratio to
the amplitude of the (SGN) wave increases monotonically from 1.14 for gauge 1 to
1.49 for gauge 9.
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Figure 2.19: Elevation of wave at x = xB− 5 = 45 as a function of time. Markers
show the experimental data, [Gri+94], dotted lines the numerical solution of (SGN),
[MSM17], and solid lines the numerical solution of (CBs).
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Figure 2.20: Elevation of wave at various gauges as a function of time for the
shoaling on a beach of slope 1 : 35 of a solitary wave with a0 = 0.12. Markers
show experimental data, [Gri+94], dotted lines the numerical solution of (SGN),
[MSM17], and solid lines the numerical solution of (CBs).

For the second numerical experiment (shoaling and reflection of a solitary wave
from a vertical wall at the end of the sloping beach), we consider a benchmark
problem, cf. e.g. [MSM17], [WB99], [Dod98], [CBB07], [Bon+11], among other,
that we solve numerically with our code of (CBs) and compare the results with
those found by the numerical integration of (SGN) in Section 4.3 of [MSM17], and
with experimental data due to Dodd, [Dod98]. The setup consists of a channel of
length [0, 70], initially horizontal at a depth of h0 = 0.7, a sloping bed of uniform
slope 1 : 50 that starts rising at xB = 50 and ends at x = 70, where a vertical wall is
placed. (This is shown in the lower graph of Figure 2.21.) We consider two solitary
waves of the form (2.38), (2.41) (suitably modified so that the horizontal part of the
waveguide has now a depth of h0 = 0.7) with amplitudes 0.07 and 0.12 and crest
initially located at x = 20. We solve the problem numerically with our code for
(CBs) with a wall boundary condition u = 0 using cubic splines, N = 2000,
M = 2N . All variables for this experiment are dimensional, x and η are measured
in meters and t in seconds. The parameters ε and µ are equal to 1. The value of the
gravitational acceleration constant is g = 9.80665m/s2 (standard gravity).

In Figure 2.21 we show snapshots every 3 secs of the (CBs)­free surface ele­
vation as a function of x as the wave (of initial amplitude a0 = 0.07) climbs up
the slope and is reflected by the wall at x = 70 between t = 15 and t = 18. The
reflected pulse apparently consists of a leading pulse followed by a dispersive tail.
This wave travels downslope, and by t = 30 the leading pulse is located well within
the horizontal­bottom region. The maximum runup at the wall was recorded to be
equal to .1899.

In the (related) Figure 2.22we show the temporal histories of the wave elevation
ζ(x, t), generated by the solitary wave of amplitude a0 = 0.07, at three gauges g1,
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Figure 2.21: Evolution of the solitary wave of amplitude a0 = 0.07 according to
(CBs) on a beach of slope 1 : 50, reflected on a vertical wall at x = 70. Vertical
lines depict the location of gauges 1, 2 and 3. Bottom is shown in the lower graph.

g2, g3, located at x = 50, x = 66.25, and x = 67.75 (very close to the wall),
respectively, computed by (CBs) and (SGN) (code of [MSM17]), in comparison
with the experimental data of [Dod98] for this problem.

We observe that there is quite a good agreement between the three curves. The
maximum amplitude of the reflected wave at gauge g3 is found to be equal to .11080
for (CBs) and to .10280 for (SGN), giving a ratio of about 1.08.

Figure 2.23 depicts the analogous graphs in the case of the initial solitary wave
of amplitude a0 = 0.12. (Note the different scale of the ζ­axis.) This wave becomes
steeper as it climbs up the slope; the reflected wave is of higher amplitude as well.
The incident waves computed by the twomodels are quite close to each other and to
the experimental data but the short­time behavior of the reflected pulse is somewhat
different. For example, at g3 the amplitude of the reflected (CBs) pulse is now
equal to .2285 while the amplitude of the (SGN) reflected pulse is .1838 (giving a
ratio of about 1.24), and there are phase and amplitude differences in the leading
trailing oscillations. When the reflected wave has returned to the horizontal part
of the channel (i.e. at g1 in Figure 2.23 for t ≥ 25) the agreement is much better
and the ratio is now 0.98. The leading reflected pulse of the (SGN) solution is in
satisfactory agreement with the data at all three gauges. The maximum runup at the
wall of (CBs) for this amplitude was equal to .4012.

Our conclusion from the two numerical experiments in this subsection is that
when the elevation wave steepens either while climbing up a sloping beach or after
reflection from a vertical wall and close to the wall, the (CBs) solution overesti­
mates that of the (SGN); the latter stays quite close to the available experimental
data in the cases that we tried.
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Figure 2.22: Reflection at a vertical wall located at x = 70 of a shoaling wave
over a beach of slope 1 : 50, with toe at xB = 50. Initial solitary wave amplitude
a0 = 0.07.
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Figure 2.23: Reflection at a vertical wall located at x = 70 of a shoaling wave
over a beach of slope 1 : 50, with toe at xB = 50. Initial solitary wave amplitude
a0 = 0.12.
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Chapter 3

Standard Galerkin finite element
methods for the numerical
solution of the Shallow Water
equations over variable bottom

3.1 Introduction

In this chapter we will consider standard Galerkin finite element approximations of
the one­dimensional system of shallow water equations over a variable bottom that
we write following [Per72], as

ηt + (ηu)x + (βu)x = 0,

ut + ηx + uux = 0.
(SW)

As we saw in Chapter 1 the system (SW) approximates the two­dimensional Euler
equations of water wave theory and models two­way propagation of long waves of
finite amplitude on the surface of an ideal fluid in a channel with a variable bottom.
The variables in (SW) are nondimensional and unscaled; x ∈ R and t ≥ 0 are
proportional to position along the channel and time, respectively. With the depth
variable z taken to be positive upwards, the function η = η(x, t) is proportional to
the elevation of the free surface from a level of rest corresponding to z = 0 and
u = u(x, t) is proportional to the horizontal velocity of the fluid at the free surface.
The bottom of the channel is defined by the function z = −β(x); it will be assumed
that β(x) > 0, x ∈ R, and that the water depth η(x, t) + β(x) is positive for all
x, t. It should be noted that there are several equivalent formulations of the system
represented by (SW), some of which will be considered in section 3.3.

It is well known that given smooth initial conditions η(x, 0) = η0(x), u(x, 0) =
u0(x), x ∈ R, and smooth bottom topography, the Cauchy problem for (SW) has
smooth solutions, in general only locally in t. Here we will be concerned with
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numerical approximations of (SW) and suppose that its solution is sufficiently
smooth so that the error estimates of section 3.2 hold. We will specifically con­
sider three initial­boundary­value problems (ibvp’s) for (SW), posed on the spatial
interval [0, 1]: A simple ibvp with vanishing fluid velocity at the endpoints and
two ibvp’s with transparent (characteristic) boundary conditions, in the supercriti­
cal and subcritical flow cases, respectively. For these types of ibvp’s there exists a
well­posedness theory locally in t, cf. e.g. [PT11], [HPT11], [PT13]. For the for­
mulation and numerical solution of ibvp’s with transparent boundary conditions see
also [Shi+11], [NHF08]. In section 3.2 we will specify in detail these ibvp’s and
summarize their well­posedness theory.

The literature on the numerical solution of the shallow water equations is vast.
In recent years there has been considerable interest in solving them numerically by
Discontinuous Galerkin finite element methods and refer the reader to chapter 4 of
this thesis and [XZS10] and the recent surveys [QZ16], [Xin17], for an overview
of issues related to the implementation of such methods in the presence of discon­
tinuities.

In section 3.2 we consider the ibvp’s previously mentioned, discretize them in
space by the standard Galerkin finite element method, and proveL2­error estimates
for the semidiscrete approximations assuming smooth solutions of the equations
and extending results of [AD16], [AD17], to the variable bottom case. In section
3.3 we discretize the semidiscrete problem in the temporal variable using the clas­
sical fourth­order accurate, four­stage explicit Runge­Kutta method. The result­
ing fully discrete scheme is stable under a Courant number stability condition and
its convergence has been analyzed for (SW) in the case of a horizontal bottom in
[ADK19]. We use this scheme in a series of numerical experiments simulating shal­
low water wave propagation over variable bottom topography and in the presence
of absorbing (characteristic) boundary conditions up to the attainment of steady­
state solutions. We also discuss issues of good balance, cf. [BV94], [XZS10], of
the standard Galerkin method applied to the shallow water equations written in
balance­law form.

A revised version of this chapter has appeared in the paper [KD19] written
jointly with V. Dougalis. In this chapter we denote, for integer m ≥ 0, by Hm =
Hm(0, 1) the usual L2­based real Sobolev spaces of order m, and by ∥ · ∥m their
norm. The space H1

0 = H1
0 (0, 1) will consist of the H1 functions that vanish

at x = 0, 1. The inner product and norm on L2 = L2(0, 1) will be denoted by
(·, ·), ∥ · ∥, respectively, while Cm will be them times continuously differentiable
functions on [0, 1]. The norms of L∞ and of the L∞­based Sobolev space W 1,∞

on (0, 1) will be denoted by ∥ · ∥∞, ∥ · ∥1,∞, respectively. Pr will be the space of
polynomials of degree at most r.
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3.2 Initial­boundary­value problems and error estimates

In this section we will specify the initial­boundary­value problems (ibvp’s) for the
shallow water equations to be analyzed numerically, their Galerkin­finite element
space discretizations and the properties of the attendant finite element spaces. We
will then prove L2­error estimates for these discretizations assuming that the data
and the solutions of the ibvp’s are smooth enough for the purposes of the error
estimation.

3.2.1 Semidiscretization of a simple ibvp with vanishing fluid velocity
at the endpoints

We consider first a simple ibvp for (SW) posed in the finite channel [0, 1]. Let
T > 0 be given. We seek η = η(x, t), u = u(x, t), for 0 ≤ x ≤ 1, 0 ≤ t ≤ T ,
satisfying

ηt + (ηu)x + (βu)x = 0,

ut + ηx + uux = 0,
0 ≤ x ≤ 1, 0 ≤ t ≤ T, (3.1)

η(x, 0) = η0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T.

In [PT11] Petcu and Temam, using an equivalent form of (3.1), established
the existence­uniqueness of solutions (η, u) of (3.1) in H2 × H2 ∩ H1

0 for some
T = T (∥η0∥2, ∥u0∥2) under the hypotheses that η0 ∈ H2, and, say, β ∈ H2, such
that η0(x) + β(x) > 0, x ∈ [0, 1], and u0 ∈ H2 ∩ H1

0 . Moreover, they proved
that η(x, t) + β(x) > 0 for (x, t) ∈ [0, 1] × [0, T ], i.e. that the water depth is
always positive. (This property will be assumed in all the error estimates to follow
in addition to the sufficient smoothness of η and u.)

In order to solve (3.1) numerically let 0 = x1 < x2 < . . . < xN+1 = 1 be a
quasiuniform partition of [0, 1] with h := maxi(xi+1 − xi), and for integers k, r
such that r ≥ 2, 0 ≤ k ≤ r − 2, consider the finite element spaces Sh = {φ ∈
Ck : φ

∣∣
[xj ,xj+1]

∈ Pr−1, 1 ≤ j ≤ N} and Sh,0 = {φ ∈ Sh : φ(0) = φ(1) = 0}.
It is well known, see [Cia78], that given w ∈ Hr, there exists χ ∈ Sh such that

∥w − χ∥+ h∥w′ − χ′∥ ≤ Chr∥w(r)∥, (3.2a)

and, in addition, if r ≥ 3, such that

∥w − χ∥2 ≤ Chr−2∥w(r)∥, (3.2b)

where C is a constant independent of h and w; a similar property holds in Sh,0

provided w ∈ Hr ∩ H1
0 . It follows from (3.2a), cf. [DDW75], that if P is the

L2­projection operator onto Sh, then

∥Pw∥1 ≤ C∥w∥1, ∀w ∈ H1, (3.3a)
∥Pw∥∞ ≤ C∥w∥∞, ∀w ∈ C0, (3.3b)

∥Pw − w∥L∞ ≤ Chr∥w(r)∥∞, ∀w ∈ Cr, (3.3c)
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and that the analogous properties also hold for P0, the L2­projection operator onto
Sh,0. In addition, as a consequence of the quasiuniformity of the mesh, cf. [Cia78],
the inverse properties

∥χ∥1 ≤ Ch−1∥χ∥, ∥χ∥j,∞ ≤ Ch−(j+1/2)∥χ∥, j = 0, 1, (3.4)

hold for χ ∈ Sh or χ ∈ Sh,0.
The standard Galerkin semidiscretization of (3.1) is defined as follows: Seek

ηh : [0, T ] → Sh, uh : [0, T ] → Sh,0, such that for t ∈ [0, T ]

(ηht, φ) + ((ηhuh)x, φ) + ((βuh)x, φ) = 0, ∀φ ∈ Sh,

(uht, χ) + (ηhx, χ) + (uhuhx, χ) = 0, ∀χ ∈ Sh,0,
(3.5)

with initial conditions

ηh(0) = P η0, uh(0) = P0 u0. (3.6)

We will prove below that the semidiscrete approximations (ηh, uh) satisfy an
L2­error bound of O(hr−1). It is well known that this order of accuracy cannot
be improved in the case of the standard Galerkin finite element method for first­
order hyperbolic problems in the presence of general nonuniformmeshes, [Dup73],
[AD16]; for uniform meshes better results are possible, cf. [AD16] and the numer­
ical experiments of section 3.3.

Proposition 3.1. Let (η, u) be the solution of (3.1), assumed to be sufficiently
smooth and satisfying β + η > 0 in [0, 1] × [0, T ], where β ∈ C1, β > 0. Let
r ≥ 3 and h be sufficiently small. Then, the semidiscrete ivp (3.5)–(3.6) has a
unique solution (ηh, uh) for t ∈ [0, T ], such that

max
0≤t≤T

(∥η − ηh∥+ ∥u− uh∥) ≤ Chr−1, (3.7)

where, here and in the sequel, C will denote a generic constant independent of h.

Proof. As the proof is similar to that of Proposition 2.2 in [AD16], which is valid in
the case of horizontal bottom (β(x) = 1), we will only indicate the steps where the
two proofs differ. We let ρ := η−P η, θ := P η−ηh, σ := u−P0 u, ξ := P0 u−uh.
While the solution exists we have

(θt, ϕ) + (β(ξx + σx), ϕ) + (βx(ξ + σ), ϕ) + ((ηu)x − (ηhuh)x, ϕ) = 0,

∀ϕ ∈ Sh,
(3.8)

(ξt, χ) + (θx + ρx, χ) + (uux − uhuhx, χ) = 0, ∀χ ∈ Sh,0. (3.9)

Taking ϕ = θ in (3.8) and integrating by parts we have

1
2
d
dt∥θ∥

2 + ([(β + η)ξ]x, θ) = −(βσx, θ)− (βxσ, θ)− ((ησ)x, θ)− ((uρ)x, θ)

− ((uθ)x, θ) + ((ρσ)x, θ) + ((θσ)x, θ) + ((ρξ)x, θ) + ((θξ)x, θ). (3.10)
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In view of (3.6), we conclude by continuity that there exists a maximal temporal
instance th > 0 such that (ηh, uh) exist and ∥ξx∥∞ ≤ 1 for t ≤ th. Suppose that
th < T . Using the approximation and inverse properties of Sh and Sh,0, we may
then estimate the various terms on the r.h.s. of (3.10) for t ∈ [0, th] in a similar way
as in [AD16], since β ∈ C1, and conclude that for t ∈ [0, th]

1
2
d
dt∥θ∥

2 − (γ, θx) ≤ C(hr−1∥θ∥+ ∥θ∥2 + ∥ξ∥2), (3.11)

where we have put γ := (β + η)ξ.
We turn now to (3.9) in which we takeχ = P0 γ = P0[(β+η)ξ]. For 0 ≤ t ≤ th

it follows that

(ξt, γ) + (θx,P0 γ) = −(ρx,P0 γ)− ((uξ)x,P0 γ)− ((uσ)x,P0 γ)
+ ((σξ)x,P0 γ) + (σσx,P0 γ) + (ξξx,P0 γ). (3.12)

Arguing now as in [AD16], since β ∈ C1, noting that

((uξ)x,P0 γ) = ((uξ)x,P0 γ − γ) + (ux(β + η), ξ2)− 1
2([(β + η)u]x, ξ

2),

and using a well­known superapproximation property of Sh,0 to estimate the term
P0 γ − γ:

∥P0 γ − γ∥ = ∥P0[(β + η)ξ]− (β + η)ξ∥ ≤ Ch∥ξ∥,

we get
|((uξ)x,P0 γ)| ≤ Ch∥ξ∥1∥ξ∥+ C∥ξ∥2 ≤ C∥ξ∥2.

With similar estimates as in [AD16], using the hypothesis that ∥ξx∥∞ ≤ 1 for
0 ≤ t ≤ th, we conclude from this inequality and (3.12) that for 0 ≤ t ≤ th

(ξt, (β + η)ξ) + (θx,P0 γ) ≤ C(hr−1∥ξ∥+ ∥ξ∥2). (3.13)

Adding now (3.12) and (3.13) we obtain
1
2
d
dt∥θ∥

2 + (ξt, (β + η)ξ) + (θx,P0 γ − γ) ≤ C[hr−1(∥θ∥+ ∥ξ∥) + ∥θ∥2 + ∥ξ∥2].

But, since β = β(x), we have (ξt, (β + η)ξ) = 1
2
d
dt((β + η)ξ, ξ) − 1

2(ηtξ, ξ).
Therefore, for 0 ≤ t ≤ th

1
2
d
dt [∥θ∥

2 + ((β + η)ξ, ξ)] ≤ C[hr−1(∥θ∥+ ∥ξ∥) + ∥θ∥2 + ∥ξ∥2],

for a constantC independent of h and th. Since β+η > 0, the norm ((β+η) ·, ·)1/2
is equivalent to that of L2 uniformly for t ∈ [0, T ]. Hence, Gronwall’s inequality
and (3.6) yield for a constant C = C(T )

∥θ∥+ ∥ξ∥ ≤ Chr−1 for 0 ≤ t ≤ th. (3.14)

We conclude from (3.14), using inverse properties, that ∥ξx∥∞ ≤ Chr−5/2 for
0 ≤ t ≤ th, and, since r ≥ 3, if h is taken sufficiently small, we see that th is not
maximal. Hence we may take th = T and (3.7) follows from (3.14).

The hypothesis that r ≥ 3 seems to be technical, as numerical experiments
indicate that (3.7) apparently holds for r = 2 as well, cf. [AD16].



58 CHAPTER 3. SHALLOW WATER EQUATIONS OVER VARIABLE BOTTOM

3.2.2 Semidiscretization of an ibvpwith absorbing (characteristic) bound­
ary conditions in the supercritical case

We consider now the shallowwater equations with variable bottomwith transparent
(characteristic) boundary conditions. First we examine the supercritical case: For
(x, t) ∈ [0, 1]× [0, T ] we seek η = η(x, t) and u = u(x, t) satisfying the ibvp

ηt + (βu)x + (ηu)x = 0,

ut + ηx + uux = 0,
0 ≤ x ≤ 1, 0 ≤ t ≤ T, (3.15)

η(x, 0) = η0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1,

η(0, t) = η0, u(0, t) = u0, 0 ≤ t ≤ T,

where β ∈ C1, η0, u0 are given functions on [0, 1] and η0, u0 constants such that
β(x) + η0 > 0, u0 > 0, u0 >

√
β(x) + η0, x ∈ [0, 1].

The ibvp (3.15) was studied by Huang et al., [HPT11], in the more general case
of the presence of a lateral component of the horizontal velocity depending on x
only (nonzero Coriolis parameter). In the simpler case of (3.15), we assume that
(η0, u0) is a suitable constant solution of (3.15) and that η0(x), u0(x) are suffi­
ciently smooth initial conditions close to (η0, u0) and satisfying appropriate com­
patibility relations atx = 0. Then, as is proved in [HPT11], given positive constants
c0, α0, ζ0, and ζ0, there exist a T > 0 and a sufficiently smooth solution (η, u) of
(3.15) satisfying for (x, t) ∈ [0, 1]× [0, T ] the strong supercriticality properties

u2 − (β + η) ≥ c20, (3.16a)
u ≥ α0, (3.16b)
ζ
0
≤ (β + η) ≤ ζ0. (3.16c)

For the purposes of the error estimation to follow we will assume in addition
that the solution of (3.15) satisfies a strengthened supercriticality condition of the
following form: There exist positive constants a, and b, such that for (x, t) ∈
[0, 1]× [0, T ]

β + η ≥ b, (3.17a)
u ≥ 2a, (3.17b)
β + η ≤ (u− a)(u− 2a

3 ). (3.17c)

Obviously (3.17a), (3.17b) and (3.17c) imply that u ≥
√
β + η. It is not hard

to see that (3.17c) follows from (3.16a)–(3.16c) if e.g. α0 is taken sufficiently small
and c0 sufficiently large. We also remark here that in the error estimates to follow,
(3.17c) will be needed only at x = 1 for t ∈ [0, T ].

We will approximate the solution of (3.15) in a slightly transformed form. We
let η̃ = η − η0, ũ = u − u0 and rewrite (3.15) as an ibvp for η̃ and ũ with homo­



3.2. INITIAL­BOUNDARY­VALUE PROBLEMS AND ERROR ESTIMATES 59

geneous boundary conditions. Dropping the tildes we obtain the system

ηt + u0ηx + (β + η0)ux + (ηu)x + (u+ u0)βx = 0,

ut + ηx + u0ux + uux = 0,
0 ≤ x ≤ 1, 0 ≤ t ≤ T,

(3.18)
η(x, 0) = η0(x)− η0, u(x, 0) = u0(x)− u0, 0 ≤ x ≤ 1,

η(0, t) = 0, u(0, t) = 0, 0 ≤ t ≤ T.

In terms of the new variables (3.17a)–(3.17c) become

β + η + η0 ≥ b, (3.19a)
u+ u0 ≥ 2a, (3.19b)
β + η + η0 ≤ (u+ u0 − a)(u+ u0 − 2a

3 ). (3.19c)

In the rest of this subsection, for integer k ≥ 0, let
0

Ck = {v ∈ Ck[0, 1] :
v(0) = 0}, and

0

Hk+1 = {v ∈ Hk+1(0, 1) : v(0) = 0}. Using the hypotheses
of section 3.2.1 on the finite element space discretization we define

0

Sh = {ϕ ∈
0

Cr−2 : ϕ
∣∣
[xj ,xj+1]

∈ Pr−1, 1 ≤ j ≤ N} and P0 the L2 projection operator onto
0

Sh.
Note that (3.2)–(3.4) also hold on

0

Sh mutatis mutandis.
The standard Galerkin semidiscretization of (3.18) is defined as follows: We

seek ηh, uh, : [0, T ] →
0

Sh such that for 0 ≤ t ≤ T

(ηht, ϕ) + (u0ηhx, ϕ) + ((β + η0)uhx, ϕ) + ((ηhuh)x, ϕ) + ((uh + u0)βx, ϕ) = 0,

∀ϕ ∈
0

Sh,

(3.20)
(uht, ϕ) + (ηhx, ϕ) + (u0uhx, ϕ) + (uhuhx, ϕ) = 0, ∀ϕ ∈

0

Sh,
(3.21)

with
ηh(0) = P0(η0(·)− η0), uh(0) = P0(u0(·)− u0). (3.22)

The boundary conditions implied by the choice of
0

Sh are no longer exactly
transparent, but they are highly absorbing as will be seen in the numerical experi­
ments of Section 3.3.

Proposition 3.2. Let (η, u) be the solution of (3.18), and assume that the hypothe­
ses (3.19a)–(3.19c) hold, that r ≥ 3, and h is sufficiently small. Then the semidis­
crete ivp (3.20)–(3.22) has a unique solution (ηh, uh) for 0 ≤ t ≤ T satisfying

max
0≤t≤T

(∥η(t)− ηh(t)∥+ ∥u(t)− uh(t)∥) ≤ Chr−1. (3.23)

Proof. Let ρ = η − P0 η, θ = P0 η − ηh, σ = u − P0 u, ξ = P0 u − uh. After
choosing a basis for

0

Sh, it is straightforward to see that the semidiscrete problem
represents an ivp for an ode system which has a unique solution locally in time.
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While this solution exists, it follows from (3.20)–(3.22) and the pde’s in (3.18),
that

(θt, ϕ) + (u0(ρx + θx), ϕ) + ((β + η0)(σx + ξx), ϕ) + ((ηu− ηhuh)x, ϕ)+

((σ + ξ)βx, ϕ) = 0, ∀ϕ ∈
0

Sh,

(ξt, ϕ) + (ρx + θx, ϕ) + (u0(σx + ξx), ϕ) + (uux − uhuhx, ϕ) = 0, ∀ϕ ∈
0

Sh

Proceeding as in the proof of Proposition 2.1 of [AD17], which is valid for a hori­
zontal bottom, we obtain from the above in the case of variable bottom that

(θt, ϕ) + (u0θx, ϕ) + (γx, ϕ) + ((uθ)x, ϕ)− ((θξ)x, ϕ) = −(R1, ϕ), ∀ϕ ∈
0

Sh,
(3.24)

(ξt, ϕ) + (θx, ϕ) + (u0ξx, ϕ) + ((uξ)x, ϕ)− (ξξx, ϕ) = −(R2, ϕ), ∀ϕ ∈
0

Sh,
(3.25)

where γ = (β + η0 + η)ξ and

R1 = u0ρx + (β + η0)σx + σβx + (ησ)x + (uρ)x − (ρσ)x − (ρξ)x − (θσ)x,
(3.26)

R2 = ρx + u0σx + (uσ)x − (σξ)x − σσx. (3.27)

Putting ϕ = θ in (3.24), using integration by parts, and suppressing the dependence
on t we have

1
2
d
dt∥θ∥

2 − (γ, θx) +
1
2(u0 + u(1))θ2(1) + (β(1) + η0 + η(1))ξ(1)θ(1)

− 1
2ξ(1)θ

2(1) = −1
2(uxθ, θ) +

1
2(ξxθ, θ)− (R1, θ). (3.28)

Take now ϕ = P0 γ = P0[(β + η0 + η)ξ] in (3.25) and get

(ξt, γ)+(θx, γ)+(u0ξx, γ)+((uξ)x, γ)−(ξξx, γ) = −(R3,P0 γ−γ)−(R2,P0 γ),
(3.29)

where
R3 = θx + u0ξx + (uξ)x − ξξx. (3.30)

Integration by parts in various terms in (3.29) gives

(ξt, γ)+(θx, γ)+
1
2(u0+u(1))(β(1)+η0+η(1))ξ2(1)− 1

3(β(1)+η0+η(1))ξ3(1)

= (R4, ξ)− (R3,P0 γ − γ)− (R2,P0 γ), (3.31)

where

R4 =
1
2u0(βx+ηx)ξ− 1

2ux(β+η0+η)ξ+ 1
2u(βx+ηx)ξ− 1

3(βx+ηx)ξ
2. (3.32)

Adding now (3.28) and (3.31) we obtain

1
2
d
dt
[
∥θ∥2 + ((β + η0 + η)ξ, ξ)

]
+ ω = 1

2(ηtξ, ξ)−
1
2(uxθ, θ)

+ 1
2(ξxθ, θ)− (R1, θ) + (R4, ξ)− (R3,P0 γ − γ)− (R2,P0 γ), (3.33)
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where

ω = 1
2(u0 + u(1))θ2(1) + 1

2(u0 + u(1))(β(1) + η0 + η(1))ξ2(1)

+ (β(1) + η0 + η(1))ξ(1)θ(1)− 1
2ξ(1)θ

2(1)− 1
3(β(1) + η0 + η(1))ξ3(1).

(3.34)

In view of (3.22), by continuity we conclude that there exists a maximal temporal
instance th > 0 such that (ηh, uh) exist and ∥ξx∥∞ ≤ a for t ≤ th. Suppose that
th < T . Then, since ∥ξ∥∞ ≤ ∥ξx∥∞, it follows from (3.34) that for t ∈ [0, th]

ω ≥ 1
2(u0 + u(1)− a)θ2(1) + 1

2(β(1) + η0 + η(1))
(
u0 + u(1)− 2a

3

)
ξ2(1)

+ (β(1) + η0 + η(1))ξ(1)θ(1) = 1
2(θ(1), ξ(1))

T

(
µ λ
λ λν

)(
θ(1)
ξ(1)

)
, (3.35)

where µ = u0 + u(1) − a, λ = β(1) + η0 + η(1), ν = u0 + u(1) − 2a
3 . The

hypotheses (3.19a)–(3.19b) give that 0 < µ < ν, λ > 0. It is easy to see then
that the matrix in (3.35) will be positive semidefinite precisely when (3.19c) holds.
Hence, (3.35) implies that ω ≥ 0.

We now estimate the various terms on the right­hand side of (3.33) for 0 ≤ t ≤
th. As in the proof of Proposition 2.1 of [AD17] adapted in the case of a variable
β(x) ∈ C1 and using an appropriate variable­β superapproximation property to
estimate ∥P0 γ− γ∥, we finally obtain from (3.33) and the fact that ω ≥ 0, that for
0 ≤ t ≤ th it holds that

d
dt
[
∥θ∥2 + ((β + η0 + η)ξ, ξ)

]
≤ Chr−1(∥θ∥+ ∥ξ∥) + C(∥θ∥2 + ∥ξ∥2),

where C is a constant independent of h and th. By (3.19a) the norm ((β + η0 +
η) ·, ·)1/2 is equivalent to that of L2 uniformly for t ∈ [0, T ]. Hence, Gronwall’s
inequality and the fact that θ(0) = ξ(0) = 0 yield for a constant C = C(T )

∥θ∥+ ∥ξ∥ ≤ Chr−1 for 0 ≤ t ≤ th. (3.36)

We conclude from the inverse properties that ∥ξx∥∞ ≤ Chr−5/2 for 0 ≤ t ≤ th,
and, since r ≥ 3, if h is taken sufficiently small, th is not maximal. Hence we may
take th = T and (3.23) follows from (3.36).

3.2.3 Semidiscretization in the case of absorbing (characteristic) bound­
ary conditions in the subcritical case

We finally consider the shallow water equations with variable bottom in the pres­
ence of transparent (characteristic) boundary conditions in the subcritical case.
In this case, instead of the variable η, we will use the total height of the water,
H = β + η. For (x, t) ∈ [0, 1] × [0, T ] we seek H = H(x, t) and u = u(x, t)
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satisfying the ibvp

Ht + (Hu)x = 0,

ut +Hx + uux = βx,
0 ≤ x ≤ 1, 0 ≤ t ≤ T, (3.37)

H(x, 0) = H0(x), u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) + 2
√
H(0, t) = u0 + 2

√
H0, 0 ≤ t ≤ T,

u(1, t)− 2
√

H(1, t) = u0 − 2
√
H0, 0 ≤ t ≤ T,

where H0, u0 are given functions on [0, 1] and H0, u0 constants such that H0 > 0
and u20 < H0.

Implicit in the formulation of the boundary conditions in (3.37) is that outside
the spatial domain [0, 1] u and H are equal to constants u0, H0, respectively. The
ibvp (3.37) in a slightly different but equivalent form was studied by Petcu and
Temam, [PT13], under the hypotheses that for some constant c0 > 0 it holds that
u20 − H0 ≤ −c20 and that the initial conditions H0(x) and u0(x) are sufficiently
smooth and satisfy the condition (u0(x))2 −H0(x) ≤ −c20 and suitable compati­
bility relations at x = 0 and x = 1. Under these assumptions one may infer from
the theory of [PT13] that there exists a T > 0 such that a sufficiently smooth solu­
tion (H,u) of (3.37) exists for (x, t) ∈ [0, 1]× [0, T ] with the properties thatH is
positive and the strong supercriticality condition

u2 −H ≤ −c20, (3.38)

holds for (x, t) ∈ [0, 1] × [0, T ]. Here we will assume that the solution satisfies a
stronger subcriticality solution; specifically that for some constant c0 > 0 it holds
that

u0 +
√
H0 ≥ c0, u0 −

√
H0 ≤ −c0, (3.39a)

and for (x, t) ∈ [0, 1]× [0, T ] that

u+
√
H ≥ c0, u−

√
H ≤ −c0. (3.39b)

In this section we will approximate the solution of (3.37) after transforming the
system in diagonal form. We write the system of pde’s in (3.37) as(

Ht

ut

)
+A

(
Hx

ux

)
=

(
0
βx

)
(3.40)

whereA =

(
u H
1 u

)
. The matrixA has eigenvalues λ1 = u+

√
H , λ2 = u−

√
H ,

(note that (3.39b) implies that λ1 ≥ c0 and λ2 ≤ −c0 in [0, 1] × [0, T ]), with
associated eigenvectors X1 =

(√
H, 1

)T, X2 =
(
−

√
H, 1

)T. If S is the matrix
with columns X1, X2 it follows from (3.40) that

S−1

(
Ht

ut

)
+

(
λ1 0
0 λ2

)
S−1

(
Hx

ux

)
= S−1

(
0
βx

)
. (3.41)
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If we try to define now functions v, w on [0, 1]×[0, T ] by the equationsS−1

(
Ht

ut

)
=(

vt
wt

)
, S−1

(
Hx

ux

)
=

(
vx
wx

)
, we see that these equations are consistent and their

solutions are given by v = 1
2u +

√
H + cv, w = 1

2u −
√
H + cw, for arbitrary

constants cv, cw. Choosing the constants cv, cw so that v(0, t) = 0, w(1, t) = 0,
and using the boundary conditions in (3.37) we get

v = 1
2

[
u− u0 + 2

(√
H − δ0

)]
, w = 1

2

[
u− u0 − 2

(√
H − δ0

)]
(3.42)

where δ0 =
√
H0. The original variables H, u are given in terms of v and w by

the formulas
H = (12(v − w) + δ0)

2, u = v + w + u0 (3.43)

Since

λ1 = u+
√
H = u0+δ0+

3v + w

2
, λ2 = u−

√
H = u0−δ0+

v + 3w

2
(3.44)

we see that the ibvp (3.37) becomes(
vt
wt

)
+

(
u0 + δ0 +

3v+w
2 0

0 u0 − δ0 +
v+3w

2

)(
vx
wx

)
= 1

2βx

(
1
1

)
,

0 ≤ x ≤ 1, 0 ≤ t ≤ T.

v(x, 0) = v0(x), w(x, 0) = w0(x), 0 ≤ x ≤ 1,

v(0, t) = 0, w(1, t) = 0, 0 ≤ t ≤ T,

(3.45)

where v0(x) = 1
2 [u

0(x) − u0 + 2(
√

H0(x) − δ0)], w0(x) = 1
2 [u

0(x) − u0 −
2(
√

H0(x) − δ0)]. Under our hypotheses (3.45) has a unique solution in [0, 1] ×
[0, T ] which will be assumed to be smooth enough for the purposes of the error
estimation that follows.
Given a quasiuniform partition of [0, 1] as in section 3.2.1, in addition to the spaces
defined there, let for integer k ≥ 0

0

Ck = {f ∈ Ck[0, 1] : f(1) = 0},
0

Hk+1 =
{f ∈ Hk+1(0, 1), f(1) = 0}, and, for integer r ≥ 2,

0

S0h = {ϕ ∈
0

Cr−2 :
ϕ
∣∣
[xj ,xj+1]

∈ Pr−1, 1 ≤ j ≤ N}. Note that the analogs of the approximation
and inverse properties (3.2), (3.4) hold for

0

Sh as well, and that the estimates in
(3.3) are also valid for the L2 projection P1 onto

0

Sh, mutatis mutandis. The (stan­
dard) Galerkin semidiscretization of (3.45) is then defined as follows: Seek vh :
[0, T ] →

0

Sh, wh : [0, T ] →
0

Sh, such that for t ∈ [0, T ]

(vht, ϕ) + ((u0 + δ0)vhx, ϕ) +
3
2(vhvhx, ϕ) +

1
2(whvhx, ϕ) =

1
2(βx, ϕ), ∀ϕ ∈

0

Sh,
(3.46)

(wht, χ) + ((u0−δ0)whx, χ) +
3
2(whwhx, χ) +

1
2(vhwhx, χ) =

1
2(βx, χ), ∀χ ∈

0

Sh,
(3.47)

with
vh(0) = P0(v0), wh(0) = P1(w0). (3.48)
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The boundary conditions induced by the finite element spaces and the discrete vari­
ational formulation (3.46)–(3.48) are no longer exactly transparent; they are highly
absorbent nevertheless as will be checked in numerical experiments in Section 3.3.
The main result of this section is

Proposition 3.3. Let (v, w) be the solution of (3.45) and assume that the hypothe­
ses (3.39a)–(3.39b) hold, that r ≥ 3, and that h is sufficiently small. Then the
semidiscrete ivp (3.46)–(3.48) has a unique solution (vh, wh) for 0 ≤ t ≤ T that
satisfies

max
0≤t≤T

(∥v − vh∥+ ∥w − wh∥) ≤ Chr−1. (3.49)

If (H,u) is the solution of (3.39) and we define

Hh = [12(vh − wh) + δ0]
2, uh = vh + wh + u0, (3.50)

then
max
0≤t≤T

(∥H −Hh∥+ ∥u− uh∥) ≤ Chr−1. (3.51)

Proof. Let ρ = v − P0 v, θ = P0 v − vh, σ = w − P1w, ξ = P1w − wh. After
choosing bases for

0

Sh and
0

Sh we see that the ode ivp (3.46)–(3.48) has a unique
solution locally in time. From (3.45) and (3.46), (3.47) we obtain, as long as the
solution exists,

(θt, ϕ) + ((u0 + δ0)(θx + ρx), ϕ) +
3
2(vvx − vhvhx, ϕ)

+ 1
2(wvx − whvhx, ϕ) = 0, ∀ϕ ∈

0

Sh,
(3.52)

(ξt, χ) + ((u0 − δ0)(σx + ξx), χ) +
3
2(wwx − whwhx, χ)

+ 1
2(vwx − vhwhx, χ) = 0, ∀χ ∈

0

Sh,
(3.53)

Now, since

vvx − vhvhx = (vρ)x + (vθ)x − (ρθ)x − ρρx − θθx,

wvx − whvhx = w(ρx + θx) + vx(σ + ξ)− (ρx + θx)(σ + ξ),

wwx − whwhx = (wσ)x + (wξ)x − σσx − ξξx,

vwx − vhwhx = v(σx − ξx) + wx(ρ+ θ)− (σx + ξx)(ρ+ θ).

it follows that

vvx − vhvhx = (vθ)x − (θθ)x +R11, wvx − whvhx = −θxξ +R12, (3.54)
wwx − whwhx = (wξ)x − ξξx +R21, vwx − vhwhx = −ξxθ +R22, (3.55)

where

R11 = (vρ)x − (ρθ)x − ρρx, R12 = wρx + wθx + vxσ + vxξ − ρxσ − ρxξ − θxσ,
(3.56)

R21 = (wσ)x − (σξ)x − σσx, R22 = vσx + vξx + wxρ+ wxθ − σxρ− σxθ − ξxρ.
(3.57)
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Putting now ϕ = θ in (3.52) and χ = ξ in (3.53) we obtain
1
2
d
dt∥θ∥

2 + ((u0 + δ0)θx, θ) +
3
2((vθ)x, θ)−

3
2(θθx, θ)

= −((u0 + δ0)ρx, θ)− 3
2(R11, θ) +

1
2(θxξ, θ)−

1
2(R12, θ)

(3.58)

1
2
d
dt∥ξ∥

2 + ((u0 − δ0)ξx, ξ) +
3
2((wξ)x, ξ)−

3
2(ξξx, ξ),

= −((u0 − δ0)σx, ξ)− 3
2(R21, ξ) +

1
2(ξxθ, ξ)−

1
2(R22, θ).

(3.59)

Integration by parts yields (we suppress the t­dependence)

((u0 + δ0)θx, θ) =
u0 + δ0

2
θ2(1), ((uθ)x, θ) =

1

2
(vxθ, θ) +

1

2
v(1)θ2(1),

(θθx, θ) =
1

3
θ2(1), ((u0 − δ0)ξx, ξ) = −u0 − δ0

2
ξ2(0),

((wξ)x, ξ) =
1

2
(wxξ, ξ)−

1

2
w(0)ξ2(0), (ξξx, ξ) = −1

3
ξ3(0).

Hence, (3.58) becomes

1
2
d
dt∥θ∥

2 + 1
2θ

2(1)(u0 + δ0 +
3
2v(1)− θ(1)) =

− ((u0 + δ0)ρx, θ)− 3
4(vxθ, θ) +

1
2(θxξ, θ)−

3
2(R11, θ)− 1

2(R12, θ).

By (3.39b) and (3.44) we see that u0 + δ0 +
3
2v(1) ≥ c0 > 0. Therefore the above

equation gives

1
2
d
dt∥θ∥

2 + 1
2(c0 − θ(1))θ2(1) ≤ −((u0 + δ0)ρx, θ)

− 3
4(vxθ, θ) +

1
2(θxξ, θ)−

3
2(R11, θ)− 1

2(R12, θ). (3.60)

Similarly, for (3.59) we obtain

1
2
d
dt∥ξ∥

2 + 1
2ξ

2(0)(−(u0 − δ0 +
3
2w(0)) + ξ(0)) =

− ((u0 − δ0)σx, ξ) +
1
2(ξxθ, ξ)−

3
4(wxξ, ξ)− 3

2(R21, ξ)− 1
2(R22, ξ).

Again, by (3.39b) and (3.44) we get u0 − δ0 +
3
2w(0) ≤ −c0 < 0. We conclude

that

1
2
d
dt∥ξ∥

2 + 1
2(c0 + ξ(0))ξ2(0) ≤ −((u0 − δ0)σx, ξ)

+ 1
2(ξxθ, ξ)−

3
4(wxξ, ξ)− 3

2(R21, ξ)− 1
2(R22, ξ). (3.61)

Finally, adding (3.60) and (3.61) we get, as long as the solution of (3.46)–(3.48)
exists, that

1
2
d
dt(∥θ∥

2 + ∥ξ∥2) + 1
2(c0 − θ(1))θ2(1) + 1

2(c0 + ξ(0))ξ2(0)

≤ −((u0 + δ0)ρx, θ)− ((u0 − δ0)σx, ξ)− 3
4(vxθ, θ)−

3
4(wxξ, ξ)

+ 1
2(θxξ, ξ) +

1
2(ξxθ, ξ)−

3
2(R11, θ)− 1

2(R12, θ)− 3
2(R21, ξ)− 1

2(R22, ξ).
(3.62)
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In view of (3.48), by continuity we conclude that there exists a maximal temporal
instance th > 0 such that vh, wh exist for t ≤ th and

∥θ(t)∥1,∞ + ∥ξ(t)∥1,∞ ≤ c0, t ∈ [0, th]. (3.63)

Suppose that th < T . For t ∈ [0, th] we have by (3.63)

1
2(c0 − θ(1))θ2(1) + 1

2(c0 + ξ(0))ξ2(0) ≥ 0, (3.64)

and
1
2 |(θxξ, θ)|+

1
2 |(ξxθ, ξ)| ≤

1
2c0∥θ∥∥ξ∥. (3.65)

We obviously have

|(vxθ, θ)|+ |(wxξ, ξ)| ≤ C(∥θ∥2 + ∥ξ∥2). (3.66)

Using now the approximation and inverse properties (3.2)–(3.4) for
0

Sh (and also
for

0

Sh) we estimate the rest of the terms in the right­hand side of (3.62) as follows.
We first clearly have

|((u0 + δ0)ρx, θ)|+ |((u0 − δ0)σx, ξ)| ≤ Chr−1(∥θ∥+ ∥ξ∥). (3.67)

Integrating by parts we see by (3.56) that

(R11, θ) = ((vρ)x, θ)− ((ρθ)x, θ)− (ρρx, θ)

= v(1)ρ(1)θ(1)− (vρ, θx)− ρ(1)θ2(1) + (ρθ, θx)− (ρρx, θ).

Therefore

|(R11, θ)| ≤ C∥ρ∥∞∥θ∥∞ + C∥ρ∥∞∥θx∥
+ ∥ρ∥∞∥θ∥2∞ + ∥ρ∥∞∥θ∥∥θx∥+ ∥ρ∥∞∥ρx∥∥θ∥

≤ Chr∥θ∥∞ + Chr∥θx∥+ Chr∥θ∥2∞ + Chr∥θ∥∥θx∥+ Ch2r−1∥θ∥
≤ Chr−1(∥θ∥+ ∥θ∥2).

(3.68)
Integration by parts and (3.56) yield for the R12 term that

(R12, θ) = (wρx, θ)−1
2(wxθ, θ)+(vxσ, θ)+(vxξ, θ)−(ρxσ, θ)−(ρxξ, θ)−(θxσ, θ).

Hence, similarly as above

|(R12, θ)| ≤ Chr−1∥θ∥+ C∥θ∥2 + Chr∥θ∥+ C∥ξ∥∥θ∥
+ Ch2r−1∥θ∥+ Chr−1∥ξ∥∞∥θ∥+ Chr∥θ∥∞∥θx∥

≤ Chr−1∥θ∥+ C∥θ∥2 + C∥ξ∥∥θ∥.
(3.69)

Again, using integration by parts and (3.56) for the R21 term, we obtain

(R21, ξ) = −(wσ, ξx)− w(0)σ(0)ξ(0) + (σξ, ξx) + σ(0)ξ2(0)− (σσx, ξ).
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Therefore

|(R21, ξ)| ≤ C∥σ∥∥ξx∥+ C∥σ∥∞∥ξ∥∞
+ ∥σ∥∞∥ξ∥∥ξx∥+ ∥σ∥∞∥ξ∥2∞ + ∥σ∥∞∥σx∥∥ξ∥

≤ Chr∥ξx∥+ Chr∥ξ∥∞ + Chr∥ξ∥∥ξx∥+ Chr∥ξ∥2∞ + Ch2r−1∥ξ∥
≤ Chr−1(∥ξ∥+ ∥ξ∥2).

(3.70)
Finally, by (3.56) and integration by parts we have for the R22 term

(R22, ξ) = (vσx, ξ)−1
2(vxξ, ξ)+(wxρ, ξ)+(wxθ, ξ)−(σxρ, ξ)−(σxθ, ξ)−(ρξx, ξ).

Hence,

|(R22, ξ)| ≤ C∥σx∥∥ξ∥+ C∥ξ∥2 + C∥ρ∥∥ξ∥+ C∥θ∥∥ξ∥
+ ∥σx∥∥ρ∥∞∥ξ∥+ ∥σx∥∥θ∥∞∥ξ∥+ ∥ρ∥∞∥ξx∥∥ξ∥

≤ Chr−1∥ξ∥+ C∥ξ∥2 + Chr∥ξ∥+ C∥θ∥∥ξ∥+ Ch2r−1∥ξ∥
+ Chr−1∥θ∥∞∥ξ∥+ Chr∥ξx∥∥ξ∥

≤ Chr−1∥ξ∥+ C∥ξ∥2 + C∥θ∥∥ξ∥.

(3.71)

By (3.62), taking into account (3.64)–(3.71) we see that

1
2
d
dt(∥θ∥

2 + ∥ξ∥2) ≤ Chr−1(∥θ∥+ ∥ξ∥) + C(∥θ∥2 + ∥ξ∥2), t ∈ [0, th].

An application of Gronwall’s Lemma and (3.48) yield

∥θ(t)∥+ ∥ξ(t)∥ ≤ Chr−1, t ∈ [0, th], (3.72)

from which by inverse assumptions it follows that ∥θ∥1,∞ + ∥ξ∥1,∞ ≤ Chr−5/2

for t ∈ [0, th]. Since it was assumed that r ≥ 3 this contradicts the maximality
of th and (3.72) holds for 0 ≤ t ≤ T . The estimate (3.49) follows. Since now
∥v − vh∥∞ ≤ ∥ρ∥∞ + ∥θ∥∞ ≤ Chr−3/2 and similarly ∥w − wh∥∞ ≤ Chr−3/2,
and since

H −Hh = [δ0 +
1
4((v − w) + (vh − wh))][(v − w)− (vh − wh)],

we conclude that ∥H − Hh∥ ≤ C(∥v − vh∥ + ∥w − wh∥) ≤ Chr−1. Similarly
∥u− uh∥ ≤ ∥v − vh∥+ ∥w − wh∥ ≤ Chr−1, and the proof of Proposition 3.3 is
now complete.

3.3 Numerical experiments

In this section we present results of numerical experiments that we performed solv­
ing numerically the shallow water equations using standard Galerkin finite element
space discretizations like the ones analyzed in the previous section. The semidis­
crete schemes were discretized in the temporal variable by the ‘classical’, explicit,
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4­stage, 4th­order Runge­Kutta scheme (RK4), unless otherwise indicated. The re­
sulting fully discrete scheme is stable and fourth­order accurate in time provided
a Courant­number stability condition of the form k

h ≤ α is imposed; here k de­
notes the (uniform) time step. In the case of a horizontal bottom the convergence
of this scheme for the ibvp (3.1) was analyzed in [ADK19] and used in numerical
experiments for the absorbing b.c. ibvp’s (3.15) and (3.37) in [AD17].

In section 3.3.1 below we use this fully discrete scheme to study computation­
ally various issues related to the discretization of the ibvp’s with absorbing (char­
acteristic) b.c.’s considered in sections 3.2.2 and 3.2.3. In section 3.3.2 we write
the shallow water equations in the form of a balance law and study various issues
of the numerical solution of this model with Galerkin­finite element methods, in­
cluding questions of ‘good balance’ of the schemes. Since the numerical method
simulates only smooth solutions, initial conditions and bottom topographies were
taken to be of small amplitude to ensure that no discontinuities developed within
the time frame of the experiments.

3.3.1 Absorbing (characteristic) boundary conditions

In the numerical experiments of this section we use the standard Galerkin finite el­
ement method with continuous, piecewise linear functions for the space discretiza­
tion of the numerical solution of the ibvp’s with absorbing (characteristic) boundary
conditions considered in sections 3.2.2 and 3.2.3. The theoretical error estimates in
Propositions 3.2 and 3.3 require at least piecewise quadratic elements, i.e. r ≥ 3,
and predict L2­error bounds of O(hr−1) for quasiuniform meshes. The results of
numerical experiments shown in the sequel suggest that the method works with
piecewise linear functions (i.e. r = 2) as well, and in this case the L2 errors for a
uniform mesh are of O(h2).

In the supercritical case, in order to find the numerical convergence rates of
the scheme (3.20)–(3.21) we consider an ibvp with η0 = 1, u0 = 3 and a bottom
function and exact solution given for x ∈ (0, 1) by

β(x) = 1− 0.04 exp(−100(x− 0.5)2),

η(x, t) = x exp(−xt) + η0, u(x, t) = (1− x− cos(πx)) exp(2t) + u0.
(3.73)

(The initial conditions and an appropriate right­hand sidewere computed from these
formulas.) The problem was solved with a uniform mesh with h = 1/N and k =
h/10. The L2 errors and rates of convergence at T = 1 are shown in Table 3.1.

In the case of a subcritical flow we consider an ibvp with η0 = 1, u0 = 1, and
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η u

N L2 error rate L2 error rate
40 1.3202e-03 - 6.1375e-03 -
80 3.2932e-04 2.003 1.5334e-03 2.001
160 8.2245e-05 2.001 3.8335e-04 2.000
320 2.0550e-05 2.001 9.5918e-05 1.999
640 5.1361e-06 2.000 2.4070e-05 1.995

Table 3.1: L2 errors and rates of convergence at T = 1, r = 2, supercritical case,
(3.73), h = 1/N , k/h = 1/10.

bottom function and exact solution given for x ∈ (0, 1) by

β(x) = 1− 0.04 exp(−100(x− 0.5)2),

η(x, t) = (x+ 1) exp(−xt),

u(x, t) = (2x+ cos(πx)− 1) exp(t) + xA(t) + (1− x)B(t),

(3.74)

where

A(t) = 2
√
1 + η(1, t) + u0 − 2

√
1 + η0,

B(t) = −2
√
1 + η(0, t) + u0 + 2

√
1 + η0.

(The initial conditions and an appropriate right­hand side were computed by these
formulas). The problem was solved by the scheme (3.46)–(3.48), (3.50), with h =
1/N and k = h/10. The L2 errors and rates of convergence for the variables η and
u at T = 1 are shown in Table 3.2.

η u

N L2 error rate L2 error rate
40 7.8451e-03 - 4.7238e-03 -
80 1.9602e-03 2.001 1.2154e-03 1.959
160 4.8955e-04 2.001 3.0717e-04 1.984
320 1.2229e-04 2.001 7.7169e-05 1.993
640 3.0560e-05 2.001 1.9349e-05 1.996

Table 3.2: L2 errors and rates of convergence at T = 1, r = 2, subcritical case,
(3.74), h = 1/N , k/h = 1/10.

It is clear that Tables 3.1 and 3.2 suggest that the L2 convergence rates are
optimal in the case of piecewise linear elements on a uniform mesh.

In order to check further the accuracy of the numerical schemes we consider in
the supercritical case a problem with a variable bottom having a single hump, and
constant initial conditions on (0, 1) given by

β(x) = 1− 0.4 exp(−100(x− 0.5)2),

η0(x) = η0 = 1, u0(x) = u0 = 3,
(3.75)
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that we integrate numerically using h = 1/400, k = h/3. In Figure 3.1 we show
some profiles of the temporal evolution of the numerical solution up to t = 0.5.
The data given by (3.75) and the boundary conditions generate a wave moving to
the right and sensing the effect of the variable bottom which is centered at x = 0.5.
There are no spurious oscillations reflected from the boundary x = 1 as the wave
exits. By t = 0.5 the solution has attained a steady state shown in (3.1(d)).

The steady state of such flows is straightforward to determine analytically. Its
profile η = η(x), u = u(x) satisfies the equations

((β + η)u)x = 0,(
η + 1

2u
2
)
x
= 0,

(3.76)

from which using the boundary conditions at x = 0, we see that u is given in terms
of η by

u =
u0 (η0 + β(0))

η + β
, (3.77a)

where η is the physically acceptable solution of the cubic equation

(η + β)2
(
η − η0 − 1

2u
2
0

)
+ 1

2u
2
0 (η0 + β(0))2 = 0. (3.77b)

(For the analysis of the solutions of the steady­state problem, cf. [HK68]). We
checked the ability of the code to preserve steady­state solutions by taking the pro­
file computed analytically from (3.77) for this problem as initial condition and inte­
grating up to t = 0.6. The difference between the final profile and theL2 projection
of the analytical initial condition was ofO(10−9) in L2 for both components when
h = 1/400, k = h/10.

In Figure 3.2 we show instances of the temporal evolution up to the attainment
of steady state (in (3.2(d))) of the supercritical flow generated with h = 1/400,
k = h/3, by η0 = 1, u0 = 3 and bottom topography and initial conditions given
on [0, 1] by

β(x) = 1− 0.04 exp(−1000(x− 0.75)2),

η0(x) = 0.05 exp(−400(x− 0.25)2) + η0,

u0(x) = 0.1 exp(−400(x− 0.25)2) + u0.

(3.78)

The variable initial profile gives rise to a wavetrain that moves to the right, interacts
with the bottom and exits without spurious oscillations leaving behind the steady
state that depends only on η0, u0 and β.

We now present some analogous results in the subcritical case . We used the
fully discrete scheme with spatial discretization given by (3.46)–(3.48), (3.50); the
variables depicted in the figures are the approximations of η and u. The spatial
discretization was effected on [0, 1] with piecewise linear functions on a uniform
mesh with h = 1/2000; the time­stepping procedure was RK4 as usual with k =
h/10. In the first example we took η0 = 1, u0 = 1 and

β(x) = 1− 0.04 exp(−100(x− 0.5)2),

η0(x) = η0, u0(x) = u0.
(3.79)
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Figure 3.1: Evolution with data (3.75), supercritical case, r = 2, h = 1/400,
k = h/3.
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Figure 3.2: Evolution with data (3.78), supercritical case, r = 2, h = 1/400,
k = h/3.
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The ensuing evolution of the solution is shown in Figure 3.3. The generated wave
interacts with the bottom and forms pulses that exit without artificial oscillations at
both ends of the boundary; the steady­state solution may be found analytically as
before. When used as initial condition, itsL2 projection differed from the numerical
solution at t = 2 by an L2­error of O(10−8) for this example.

An example of subcritical flow with variable initial conditions is shown in Fig­
ure 3.4, where we took η0 = u0 = 1, and

β(x) = 1− 0.04 exp(−100(x− 0.75)2),

η0(x) = 0.05 exp(−400(x− 0.5)2) + η0,

u0(x) = 0.1 exp(−400(x− 0.5)2) + u0

(3.80)

and integrated with h = 1/2000, k = h/10. A two­way wavetrain emerges and
attains steady­state by t = 3.

We also tested the code in a few examples of the shallow water equations with
absorbing (characteristic) boundary conditions, written in dimensional form, i.e. as

ηt + ((β + η)u)x = 0,

ut + gηx + uux = 0,
0 ≤ x ≤ L, 0 ≤ t ≤ T, (3.81)

with initial conditions η(x, 0) = η0(x), u(x, 0) = u0(x), 0 ≤ x ≤ L, and anal­
ogous characteristic boundary conditions in the super­ and subcritical cases. (The
Riemann invariants are now u±

√
g(β + η), g is the acceleration of gravity taken

as 9.812m/s2, and the bottom is at z = −β(x). If the bottom is horizontal it is
located at z = −h0; in the general case h0 will be a typical depth.)

As an example of supercritical flow we considered a numerical experiment
similar to the one described in Section 8.2 of [Shi+11]. Let β̃ be the trapezoidal
profile given by

β̃(x) =



δ0
cκ− κ/2

(
x− L

2
+ cκ

)
, if − cκ ≤ x− L/2 ≤ −κ/2,

δ0, if − κ/2 ≤ x− L/2 ≤ κ/2,

− δ0
cκ− κ/2

(
x− L

2
− cκ

)
, if κ/2 ≤ x− L/2 ≤ cκ,

0, otherwise,

(3.82)

where L = 106m, δ0 = 500m, k = L/10. The bottom was located at z =
−β(x), where β(x) = h0− β̃(x), h0 = 1000m, and the problem (3.81) was solved
with characteristic boundary conditions and initial conditions η0(x) = η0 = 0
and u0(x) = u0, where the constant u0 was varied in order to give flows with
different Froude numbers Fr = u0/

√
gh0. We solved (3.81)–(3.82) numerically

with piecewise linear elements and RK4 on a uniform mesh with h = 1000m,
k = 1 s. Some profiles of the steady state of the free surface η and the associated
bottom function β(x) for various Froude numbers and values of the parameter c are
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Figure 3.3: Evolution with data (3.79), subcritical case, r = 2, h = 1/2000, k =
h/10.
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Figure 3.4: Evolution with data (3.80), subcritical case, r = 2, h = 1/2000, k =
h/10.
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Figure 3.5: Supercritical flows over a trapezoidal bottom, (3.81)–(3.82), r = 2,
h = 1000m, k = 1 s. (Upper figures: steady­state η(x); lower figures: β(x).)

shown in Figure 3.5. As expected the eventual maximum value of η decreases as
Fr increases; the results are consistent with those of [Shi+11].

In an example of a dimensional subcritical flow we modified the profile given
in §5.1 of [Shi+11] in order to avoid discontinuity formation. Thus, the initial η­
profile was rounded and its amplitude decreased. Let β̃ be defined by

β̃(x) =


δ

2
+

δ

2
cos
[
π(x− L/2)

κ

]
, if

∣∣∣∣x− L

2

∣∣∣∣ < κ,

0, otherwise,
(3.83)

where L = 106m, δ = 5000m, k = L/10. The bottom was taken at z =
−β(x), where β(x) = h0 − β̃(x), h0 = 104m, and the problem (3.81) was
solved with characteristic boundary conditions with η0 = u0 = 0 and η0(x) =

0.2 ε h0 exp
[
−5·10−8 ((x− 3L/20)/10)2

]
, 0 ≤ x ≤ L, where ε = 0.2.

The evolution of the η­profiles is shown in Figure 3.6 up to the attainment of
the steady state η = u = 0. The results resemble qualitatively those of [Shi+11].

3.3.2 Shallow water equations in balance­law form

In this section we consider the numerical solution by the standard Galerkin finite
element method of the shallow water equations written in balance­law form (i.e. in
conservation­law form with a source term), as

dt + (du)x = 0,

(du)t +
(
du2 + 1

2d
2
)
x
= β′(x)d,

(3.84)
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Figure 3.6: Subcritical flow over a hump, (3.81), (3.83), r = 2, h = 1000m,
k = 1 s, η profiles.
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where d = η+β is the water depth assumed as always to be positive; the variables
in (3.84) are nondimensional. It is straightforward to see that the system (3.84) is
equivalent to (SW) since d ̸= 0. In the sequel we will consider the periodic initial­
value problem for (3.84) on the spatial interval [0, 1] and assume that it has suffi­
ciently smooth solutions for t ∈ [0, T ], provided that β is smooth and 1­periodic.
We will discretize the problem in space on a uniform or quasiuniform mesh {xi}
in [0, 1] and seek approximations dh, uh of d, u, respectively, in the finite element
space Sh,p = {ϕ ∈ Ck

p : ϕ
∣∣
[xj ,xj+1]

∈ Pr−1, all j}, where as usual r, k are integers
such that r ≥ 2, 0 ≤ k ≤ r−2, andCk

p are the k times continuously differentiable,
periodic functions on [0, 1]. The semidiscrete approximations satisfy

(dht, ϕ) + (dhuh, ϕ) = 0,

((dhuh)t, ϕ) + ((dhu
2
h +

1
2d

2
h)x, ϕ) = (β′dh, ϕ),

∀ϕ ∈ Sh,p, 0 ≤ t ≤ T, (3.85)

dh(0) = P d0, uh(0) = Pu0, (3.86)

where d0, u0 are the initial conditions of d and u, and P is now the L2 projection
operator onto Sh,p. (The second equation in (3.85) is advanced in time for the
variable vh = dhuh and uh is recovered as vh/dh.) In the case of a uniform mesh it
is expected that theL2 errors of the semidiscrete solutionwill be ofO(hr)while, for
a quasiuniform mesh, ofO(hr−1), cf. [AD16]. We verified these rates of accuracy
in numerical experiments using C0 linear, C2 cubic and C4 quintic splines (i.e.
spaces Sh,p with r = 2, 4, and 6, respectively) on uniform and nonuniform spatial
meshes, coupled with explicit Runge­Kutta schemes of third, fourth, and sixth order
of accuracy, respectively. The fully discrete methods were stable under Courant
number restrictions. We note that in order to preserve the optimal order of accuracy,
say in the case of a uniform mesh, one has to compute the integrals that occur in
the finite element equations using, on each subinterval [xi, xi+1], an s­point Gauss
quadrature rule with s ≥ r − 1. For example, in the case of a cubic spline spatial
discretization, a 3­point Gauss rule is sufficient.

It is interesting to examine whether the method (3.85)–(3.86) preserves the still
water solution η = 0, u = 0, e.g. of the periodic ivp for the shallow water equations
in the form (3.84). Discretizations that approximate accurately this solution are
called ‘well balanced’, cf. e.g. [BV94], and [XZS10] and its references. (It is easy
to check that the standard Galerkin semidiscretization of the periodic ivp for (SW),
i.e. for the shallowwater equations in their ‘nonconservative’ form, is trivially well­
balanced, since it satisfies ηh(x, t) = α, α constant, uh(x, t) = 0 for all t ≥ 0 and
x ∈ [0, 1], provided ηh(x, 0) = α, uh(x, 0) = 0. So, our attention is turned to the
periodic ivp for (3.84) and its standard Galerkin semidiscretization (3.85)–(3.86).)

For this purpose, since d = η + β, assume that (suppressing the x­dependence
in the variables), dh(0) = Pβ, uh(0) = 0 in (3.86), and ask whether there exist
time­independent solutions of (3.85)–(3.86) that approximate well the steady state
solution d = β, u = 0 of the continuous problem. Taking uh = 0 in (3.85)
we see that a steady­state solution dh must satisfy (dhdhx, ϕ) = (dhβ

′, ϕ), for all
ϕ in Sh,p, from which it is evident that the source term β should be replaced by
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some approximation βh ∈ Sh,p thereof. Moreover for the equation (dhdh,x, ϕ) =
(dhβ

′
h, ϕ) to hold for ϕ ∈ Sh,p, (this will imply that dh = βh, i.e. good balance), it is

necessary that the integrals on each subinterval [xi, xi+1] that contribute to theseL2

inner products should be evaluated exactly. Since both integrands are polynomials
of degree at most 3r − 4 on each subinterval, if an s­point Gauss quadrature rule
is used (recall that such a rule is exact for polynomials of degree at most 2s − 1),
then it should hold that s ≥ 3

2(r − 1). For example, in the case of cubic splines
(r = 4), a 5­point Gauss rule must be used. Therefore, although a 3­point Gauss
is enough to preserve the optimal­order O(h4) L2­error estimate, good balance of
the solution with cubic splines requires that a 5­point Gauss rule be used. This is
confirmed by the results of the following experiment. We solve the periodic ivp for
(3.84) on [0, 1] by (3.85)–(3.86) using cubic splines for the spatial discretization
on a uniform mesh and taking β(x) = 1 − 0.3 exp(−1000(x − 0.5)2), h = 0.02,
k = 0.01, uh(0) = 0, dh(0) = Pβ. Table 3.3 shows the error dh(1) − dh(0)
(where dh(1) = dh

∣∣
T=1

) in the L2 and L∞ norms when the analytical formula of
β or βh = Pβ is taken in the source term, and a 3­ or a 5­point Gauss rule is used.
It is evident that when bh = Pβ and a 5­point Gauss quadrature rule is used, the

dh(0) β in source term s (­point
Gauss rule) ∥dh(1)− dh(0)∥ ∥dh(1)− dh(0)∥∞

Pβ analytical formula 3 1.8191e-4 8.3845e-4
Pβ βh = Pβ 3 1.2204e-6 4.7085e-6
Pβ βh = Pβ 5 3.7458e-15 1.0214e-14

Table 3.3: Treatment of source terms and effect of quadrature in (3.85)–(3.86),
cubic splines and RK4, h = 0.02, k = 0.01, T = 1.

scheme is well balanced to roundoff and there is no influence of the time­stepping
error. It should be noted that similar results were found when dh(0) and βh were
taken as the cubic spline interpolant of β at the nodes, and when piecewise smooth
bottom profiles, e.g. like a parabolic perturbation of β = 1 supported in the interval
of [0, 1], were considered.
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Chapter 4

Discontinuous Galerkin Finite
Element methods for the
numerical solution of the Shallow
Water equations over variable
bottom

4.1 Introduction

In this Chapter we will consider high­order discontinuous Galerkin Finite Elements
methods coupledwith Runge­Kutta time­stepping (RKDG) for the solution of (SW)
in conservation­law form. In the introductory section, 4.1, we will give a brief
overview of RKDG methods for a general system of hyperbolic conservation laws.
In section 4.2wewill focus in the system of the ShallowWater equations in balance­
law form, that is, a system in conservation­law form with a source term. We will
discuss some specific issues of implementation, such as the well­balancing (4.2.1),
the positivity preservation (4.2.2), and the application of a slope limiter to achieve
TVB discretization (4.2.3). Finally in the last section, 4.3, we will show the results
of numerical experiments with our code intended to test the convergence rates and
to simulate some standard test problems from the literature.

4.1.1 Overview of RKDG methods for a system of conservation laws

For this introduction we refer to [CS89], [CLS89] and to Cockburn’s lecture notes
[Coc99].
We consider the hyperbolic system

ut + f(u)x = 0, x ∈ [0, 1], t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [0, 1],
(4.1)

81
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where u = (u1, . . . , um)T ∈ Rm, under periodic boundary conditions. Here
f : Rm → Rm is a sufficiently smooth map. We assume that (4.1) has a lo­
cal in time smooth solution, which may possibly develop discontinuities eventu­
ally. Let {xj−1/2}N+1

j=1 be a partition of [0, 1] with x1/2 = 0, xN+1/2 = 1, and
Ij =

[
xj−1/2, xj+1/2

]
, 1 ≤ j ≤ N , with length hj . Due to the periodic conditions

we shall identify x+N+1/2 with x+1/2 and x−N+1/2 with x−1/2. We will accordingly
identify the values of 1­periodic functions at x+N+1/2 with their values at x

+
1/2 and

similarly at x−N+1/2, x
−
1/2. We seek an approximation uh = (u1,h, . . . , um,h)

T to
u such that ui,h belongs to the finite element space

Vh =
{
v ∈ L2(0, 1) : v

∣∣
Ij
∈ Pr(Ij), j = 1, . . . , N

}
.

and such that∫ 1

0
uhtv dx−

N∑
j=1

∫
Ij

f(uh)vx dx

+

N∑
j=1

(
f(uh(x

−
j+1/2, t))v(x

−
j+1/2)− f(uh(x

+
j−1/2, t))v(x

+
j−1/2)

)
= 0,∫

Ij

uh(x, 0)v(x) dx =

∫
Ij

u0(x)v(x) dx, ∀v ∈ Vh, 1 ≤ j ≤ N.

(4.2)
Since we have not made any assumptions about the continuity of uh at the points
xj+1/2, it is necessary to replace the flux f(uh(x

±
j+1/2, t)) by a numerical flux

f̂(uj+1/2, t) that depends on the two values of uh at the point xj+1/2. The numer­
ical fluxes that we will mainly consider, see also [CLS89], (suppressing t) are:
(i) the local Lax­Friedrichs flux (LLF)

f̂LLF(u−
j+1/2,u

+
j+1/2) =

1
2 [f(u

−
j+1/2) + f(u−

j+1/2)− αj+1/2(u
+
j+1/2 −u−

j+1/2)]
(4.3)

where αj+1/2 = max1≤p≤m(|λ(p)+
j+1/2|, |λ

(p)−
j+1/2|), and λ

(p)±
j+1/2, p = 1, . . . ,m are the

m (real) eigenvalues of the Jacobian ∂f/∂u
∣∣
u=u±

j+1/2

,

(ii) the Lax­Friedrichs flux, f̂LF, which is the same as (4.3) but with αj+1/2 = α =

max1≤p≤m,1≤j≤N (|λ(p)+
j+1/2|, |λ

(p)−
j+1/2|)

We will choose the basis functions of Vh as follows. Let Pℓ be the shifted
Legendre polynomials of degree ℓ in [0, 1] where 0 ≤ ℓ ≤ r. We note that the
Legendre polynomials are orthogonal in L2(0, 1); specifically, with respect to the
L2(0, 1) norm we have (Pℓ, Pℓ′) =

(
1

2ℓ+1

)
δℓℓ′ , leading to a diagonal mass matrix.

Furthermore it holds that Pℓ(0) = (−1)ℓ, Pℓ(1) = 1. If we express the solution uh

of (4.2) as
uh(x, t) =

∑
ℓ=0...r
j=1...N

uℓ
j(t)ϕ

ℓ
j(x),
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where ϕℓ
j are the local basis functions, ϕℓ

j(x) = Pℓ

(
x−xj−1/2

hj

)
, from (4.2) we

arrive to the semidiscrete form

∂tu
ℓ
j(t)−

2ℓ+ 1

hj

∫
Ij

f(uh(x, t))∂xϕ
ℓ
j(x) dx

+
2ℓ+ 1

hj

{
f̂(u(xj+1/2, t))− (−1)ℓf̂(u(xj−1/2, t))

}
= 0,

uℓ
j(0) =

2ℓ+ 1

hj

∫
Ij

u0(x)ϕ
ℓ
j(x) dx,

(4.4)

for j = 1 . . . N, ℓ = 0 . . . r.
Concerning the temporal discretization, notice that the semidiscretization may

be be written as

d
dt
uℓ
j(t) = Lj,ℓ(uh(x, t)), j = 1 . . . N, ℓ = 0 . . . r. (4.5)

Unless stated otherwise, we will use for time stepping the 3rd order Shu­Osher
Runge­Kutta method, [SO88], given by the Butcher tableau

0 0 0 0

1 0 0 1
1
4

1
4 0 1

2
1
6

1
6

2
3

The scheme has been used in many computations with fully discrete DG methods
for conservation laws due to its relatively high order and TVD property, cf. [SO88].
For the actual implementation we follow [SO88], i.e. for an explicit RK scheme
with k steps we compute the intermediate steps uℓ,i

j by

uℓ,i
j =

i−1∑
q=0

αiqu
ℓ,q
j + βq∆tL(uℓ,q

j ), i = 0 . . . k + 1,

and uℓ
j at the next time step is given by u

ℓ,k+1
j . Using this algorithm the aforemen­

tioned RK scheme can be written as a two­stage method with coefficients

αiq βq

1 1
2
4

1
4

1
4

1
3 0

2
3

2
3

Another feature of the RKDGmethods is the slope limiter. Since no smoothness
is imposed at the boundary of each element, the numerical solution might achieve
arbitrarily large values within a cell containing a discontinuity, which will result in
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oscillations that will inevitably propagate to neighboring cells. To handle such is­
sues, a slope­limiting procedure based on the values of the solution in neighbouring
cells is applied. Limiting the solution while maintaining high­order accuracy is not
trivial, but many such slope­limiters exist, cf. [CS89], [BDF94] among other.

Wewill use the simpleΛΠk
h limiter (sometimes referred to as “minmod limiter”)

as described in [CS89]. The procedure for piecewise linear polynomials, (limiter
ΛΠ1

h), is as follows. Since ϕℓ
j(x

−
j+1/2) = 1 and ϕℓ

j(x
+
j−1/2) = (−1)ℓ we can easily

write the solution at these nodes as

u−
j+1/2 = u

(0)
j + ũj , u+

j−1/2 = u
(0)
j − ˜̃uj , (4.6)

where u(0)
j are the coefficients of the constant terms. To limit the solution, all we

have to do is to modify ũj , ˜̃uj by

ũ
(mod)
j = m(ũj ,u

(0)
j+1−u

(0)
j ,u

(0)
j −u

(0)
j−1),

˜̃u
(mod)
j = m(˜̃uj ,u

(0)
j+1−u

(0)
j ,u

(0)
j −u

(0)
j−1)

wherem is the component­wise applied modified minmod function, that is

m̃(a1,a2,a3) =

 m̃((a1)1, (a2)1, (a3)1)
...

m̃((a1)m, (a2)m, (a3)m)


where

m̃(a1, a2, a3) =


a1, if |a1| ≤ Mh2,

s·min(|a1|, |a2|, |a3|), if |a1| > Mh2, and
sign(a1) = sign(a2) = sign(a3) = s,

0, otherwise,

where M is an estimate of the value of the second derivatives of the solution near
smooth critical points of u0. Finally we reconstruct the linear terms, u(1)

j , from
either of the two relations in (4.6). In the case of higher order polynomials, (limiter
ΛΠk

h), we repeat the procedure described above, and if either of ũj or ˜̃uj is actually
modified, we restrict the solution to linear and apply the ΛΠ1

h limiter. Note that the
limiter has to be applied in each stage of the Runge Kutta method.

Observe that this limiter is applied not only in cells that may contain a discon­
tinuity, but near local extrema as well. When applied it reduces the solution to
linear, which is not really an issue for cells containing a discontinuity. However
near smooth extrema it tends to flatten the solution.

Actually the slope limiter, as well as the numerical flux, have to be applied in
the local characteristic variables that we will define in the next section in the case
of the Shallow Water equations.
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4.2 RKDGmethods for ShallowWater equations over vari­
able bottom

The system in which we are particularly interested in this Chapter is the Shallow
Water equations in balance law form, see also subsection 3.3.2. In this section we
mainly follow, with additions and modifications the paper [XZS10] by Zing, Zhang
and Shu. We rewrite the system here for the convenience of the reader:

dt + (du)x = 0,

(du)t +
(
du2 + 1

2d
2
)
x
= −β′(x) d.

(4.7)

Here u denotes the fluid velocity, β represents the bottom topography, and d is the
water height, assumed to be non­negative. Handling of dry areas, where d = 0,
introduces an important difficulty in numerical methods. As we saw in Chapter 3
this system has still­water steady­state solutions, wherein the flux gradients are
nonzero and are exactly balanced by the source terms. Another issue that arises in
numerical schemes for (4.7) is the conservation of mass, especially in the presence
of dry areas.

If we set u = (d, du)T, f = (du, (du)
2

d + d2

2 )
T, and s = (0,−β′d)T, then the

system may be written in short as

ut + f(u)x = s(d, β),

and the semidiscretization, following Section 4.1.1, is for v ∈ Vh, t > 0∫
Ij

uh,tv dx−
∫
Ij

f(uh)∂xv dx

+ f̂(u±
h,j+1/2)v(x

−
j+1/2)− f̂(u±

h,j−1/2)v(x
+
j−1/2) =

∫
Ij

s(dh, βh)v dx,

(4.8)

where f̂ is the numerical flux. It is important to note that in the fully discrete form
we will use theL2­projection of the bottom topography function, βh, onto Vh rather
than the original function β.

4.2.1 Well­balancing

A method is said to be well balanced if it preserves exactly the still­water steady­
state solution, that is

d+ β = const. and u = 0. (4.9)

As we saw in section 3.3.2 continuous Galerkin methods are inherently well bal­
anced; however this is not true in the discontinuous case. By substituting dh =
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−βh, uh = 0 in (4.8), we see that the first equation vanishes, while the second
equation, since βh ∈ Vh, becomes∫
Ij

1
2d

2
hvx dx+f̂ (2)(u±

h,j+1/2)v(x
−
j+1/2)−f̂ (2)(u±

h,j−1/2)v(x
+
j−1/2) =

∫
Ij

(12d
2
h)xv dx.

(4.10)
Given a suitable quadrature rule both integrals in (4.10) are computed exactly, how­
ever, since the bottom βh is in general discontinuous, the numerical flux does not
reduce to the system’s flux and the integration by parts is not exact. (Notice that if
βh were to be continuous then dh is continuous too, since dh = −βh + const..)

An idea that is due to [Aud+04], see also [XS06, §3], is to modify slightly (that
is by terms of O(hr+1)) the numerical flux so that in the case of the still­water
solution it matches the system’s flux.

If we set f̂j+1/2 := f̂(u±
h,j+1/2), the method can be written as∫

Ij

∂tuhv dx−
∫
Ij

f(uh)∂xv dx+ f̂j+ 1
2
v
(
x−
j+ 1

2

)
− f̂j− 1

2
v
(
x+
j− 1

2

)
=∫

Ij

s(dh, βh)v dx+
(
f̂j+ 1

2
− f̂ l

j+ 1
2

)
v
(
x−
j+ 1

2

)
−
(
f̂j− 1

2
− f̂ r

j− 1
2

)
v
(
x+
j− 1

2

)
,

where f̂j+ 1
2
− f̂ l

j+ 1
2

and f̂j− 1
2
− f̂ r

j− 1
2

are correction terms of O(hr+1) and are

calculated as follows. After computing the cell boundary values u±
h,j+ 1

2

, we set

d∗,±
h,j+ 1

2

= max
(
0, d±

h,j+ 1
2

+ β±
h,j+ 1

2

−max(β+
h,j+ 1

2

, β−
h,j+ 1

2

)

)
,

and redefine the left and right values of u as

u∗,±
h,j+ 1

2

=

 d∗,±
h,j+ 1

2

d∗,±
h,j+ 1

2

u±
h,j+ 1

2

 .

Then the left and right modified fluxes f̂ l
j+ 1

2

and f̂ r
j+ 1

2

are given by

f̂ l
j+ 1

2

= f̂

(
u∗,±
h,j+ 1

2

)
+

 0

1
2

(
d−
h,j+ 1

2

)2

− 1
2

(
d∗,−
h,j+ 1

2

)2

 ,

f̂ r
j− 1

2

= f̂

(
u∗,±
h,j− 1

2

)
+

 0

1
2

(
d+
h,j− 1

2

)2

− 1
2

(
d∗,+
h,j− 1

2

)2

 .

It is easy to see that since f̂ if a monotone flux and assuming β is smooth
enough, f̂ l

j+ 1
2

and f̂ r
j+ 1

2

, are indeedO(hk+1). Also under the still­water stationary



4.2. RKDGMETHODS FOR SHALLOWWATER EQS. OVER VARIABLE BOT.87

state (4.9), u∗,−
h,j+1/2 = u∗,+

h,j+1/2 and the modified numerical flux is equal to the
original flux,

f̂ l
j+ 1

2

=

 0

1
2

(
d∗,−
h,j+ 1

2

)2

+

 0

1
2

(
d−
h,j+ 1

2

)2

− 1
2

(
d∗,−
h,j+ 1

2

)2


=

 0

1
2

(
d−
h,j+ 1

2

)2

 = f̂(u−
h,j+1/2),

and similarly
f̂ r
j− 1

2

= f̂(u+
h,j−1/2).

In order to verify the well­balanced property we perform a simulation. We let
the bottom topography to be β(x) = 0.5 exp(−100(x − 4.5)2), the water height
ζ0 = 1, the velocity u0 = 0, and the computational domain x ∈ [0, 8], N =
1000. (Note that the bottom does not reach the free surface.) The exact solution
is d(x, t) = 1 − β(x), u(x, t) = 0. We will use Gauss­Legendre quadrature with
enough nodes so that all integrals will be computed exactly.

The errors for various polynomial orders r of the standard RKDG scheme (with­
out the well­balanced modification) at T = 1 can be see in Table 4.1. Note that
all norms are computed exactly and the quadrature rule is accurate enough. We ob­
serve that the errors are O(10−4) and diminish as r grows. (The errors seem to be
independent of the grid, and depend only on the smoothness of β, in this example
maxx |β′| ≃ 4.3 and maxx |β′′| = 100.)

r quadrature ∥dh + βh − 1∥∞ ∥dh + βh − 1∥ ∥dh + βh − 1∥L1

1 G­Leg­3 4.2657e-04 1.6003e-04 1.5597e-04
2 G­Leg­3 1.0650e-04 3.9976e-05 3.8980e-05
3 G­Leg­5 1.3000e-07 4.8095e-08 4.5363e-08

Table 4.1: Still­water steady­state solution errors of the standard RKDG scheme
for β(x) = .5 exp(−100(x − 4.5)2), and ζ(x) = 1. Simulation run up to T = 1
(assume d positive).

Errors of the well­balanced scheme can be seen in Table 4.2 and are of the order
of machine precision. (The errors depend on h in this case. AsN gets larger, since
more computations are made, the errors increase slowly due to roundoff.)

4.2.1.1 Non­negative water height

Special attention has to be given to the case where the bottom rises above the free
surface. We will define the still­water steady­state solution for such bottoms, ustill,



88 CHAPTER 4. DG METHODS FOR SW EQS. OVER VARIABLE BOTTOM

r quadrature ∥dh + βh − 1∥∞ ∥dh + βh − 1∥ ∥dh + βh − 1∥L1

1 G­Leg­3 1.3434e-14 1.5145e-14 2.4021e-14
2 G­Leg­3 2.5202e-14 3.2691e-14 5.4322e-14
3 G­Leg­5 4.3077e-14 7.9845e-14 1.7335e-13

Table 4.2: Still­water steady­state solution errors of the well­balanced RKDG
scheme for β(x) = .5 exp(−100(x − 4.5)2), and ζ(x) = 1. Simulation run up
to T = 1 (assume d positive).

by

ustill = 0 and

{
dstill + β = const. =: c, if β ≤ c

dstill = 0, if β > c.

For simplicity we assume that the bottom is strictly increasing and let the wet­dry
interface be located at x∗, where β(x∗) = c. We can easily see that if x∗ lies in the
interior of some cell, dstill no longer belongs to Vh, even if β = βh ∈ Vh (due to
the added assumption that d ≥ 0 for x > x∗), for any polynomial of order r ≥ 1;
see for example Figure 4.1. Furthermore, since we require that dh(x) > 0 for all x,

d

β = βh

x∗
dh

Figure 4.1: L2­projection of d onto Vh when x∗ /∈ {xi}N+1
i=1 , c = 0, r = 1. Solid

black line: bottom β(x), solid gray line: d, dotted line: dh.

a positivity­preserving limiter will be applied (see section 4.3) making the solution
dh even larger for x > x∗, cf. Figure 4.2. Observe now that dh is far from the

d

β = βh

x∗
dh

Figure 4.2: dh after positivity­preserving limiter is applied, c = 0, r = 1. Solid
black line: bottom β(x), solid gray line: d, dotted line: dh.
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steady­state solution and as time evolves, an artificial reflection (initially of the
form of a left­traveling pulse) will be generated.

To handle this issue without additional computational cost, we may include the
wet­dry interface point in the spatial grid. A simple way of achieving this is to
include x∗ itself in the computational grid. But doing so will introduce additional
(coding) complexity and might result to arbitrarily small cells in the case of an
adaptive grid. A second way is to modify the projection of the bottom βh, so that
the wet­dry interface moves to the boundary of the corresponding cell. Since the
bottom topography is given, if we assume that it is smooth and varies slowly, we see
that this modification will not introduce large perturbations. (In the case of adaptive
grids we can always introduce an additional penalty term in the estimator near the
wet­dry interface, ensuring that the cell length is satisfactory small.) The procedure
of bottom modification is similar to that of the positivity­preserving limiter, see
section 4.2.3, i.e.

a) Project β and ζ0 into Vh (notice that the projection of ζ0 = d0 − β is trivial
since ζ0 = c).

b) In the cell I∗ containing x∗ modify βh as follows: If βh is the cell average of
βh in this particular cell, βh = 1

h

∫
I∗
βh, let

m =

{
minx∈I∗ βh(x), if βh > c,

maxx∈I∗ βh(x), if βh ≤ c,

and set βmod
h =

(
βh−c

βh−m

) (
βh − βh

)
+βh. Observe now that I∗ will be either

completely dry, if βh > c, or completely wet, if βh ≤ c.

c) Set dh,0 = ζh,0 + βmod
h for all cells where βh < c.

The resulting bottom and water height can be seen in Figure 4.3. Note that this

d

βmodh

x∗
dh

Figure 4.3: βh, dh after the bottom modification, c = 0, r = 1. Solid black line:
bottom β(x), solid gray line: d, dotted line: dh.

procedure can be applied to polynomials of arbitrary order r ≥ 1.
In order to verify the well­balanced property for the case where the bottom

rises above the free surface, as previously, we perform a simulation. We now let
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the bottom topography to be given by β(x) = 1.1 exp(−100(x − 4.5)2), and as
before we take the water height ζ0 = 1, the velocity u0 = 0, and the computational
domain x ∈ [0, 8]. Notice now that the bottom rises above the free surface. The
exact solution will be u(x, t) = 0 and d(x, t) = 1−β(x) if β(x) < 1, d(x, t) = 0,
otherwise. The errors for various polynomial orders r at T = 1 can be seen in
Table 4.3 and are of the order of machine precision as expected.

r quadrature ∥dh + βmod
h − 1∥∞ ∥dh + βmod

h − 1∥ ∥dh + βmod
h − 1∥L1

1 G­Leg­3 1.5432e-14 1.5501e-14 2.4681e-14
2 G­Leg­3 3.0753e-14 3.2321e-14 5.3523e-14
3 G­Leg­5 5.6399e-14 8.0099e-14 1.7330e-13

Table 4.3: Still­water steady­state solution errors for β(x) = 1.1 exp(−100(x −
4.5)2), and ζ(x) = 1. Simulation run up to T = 1.

4.2.2 Slope limiting

An important procedure, in the presence of discontinuities, is slope limiting. We
will use the usual minmod limiter, see section 4.1.1. As described in [CLS89],
in order to get qualitatively better results (i.e. avoid “wriggle” formation near dis­
continuities) at the cost of more complicated computations, the slope limiting (and
the numerical flux calculation in general) has to be done in the local characteristic
variables.

We briefly describe the procedure; see also [CLS89, §2]. LetAj+1/2 = ∂f/∂u
∣∣
u=uj+1/2

be some “average” Jacobian, where uj+1/2 = (u
(0)
j + u

(0)
j+1)/2, and let λ(p)

j+1/2,

l
(p)
j+1/2, r

(p)
j+1/2, p = 1, . . . ,m, be the eigenvalues and left and right normalized

eigenvectors of Aj+1/2 respectively. To apply the slope limiter, we project all the
required quantities onto the left eigenspace of Aj+1/2 using

a(p) = l
(p)
j+1/2 · a, (4.11)

for a = ũj , ˜̃uj , u
(0)
j , (u(0)

j − u
(0)
j−1), (u

(0)
j+1 − u

(0)
j ), and apply the minmod slope

limiter as described in subsection 4.1.1. After the application of the slope limiter in
the two adjacent cells, Ij , Ij+1, in order to calculate the numerical flux, f̂(u±

j+1/2),
we need to return to the component space using the formula

u±
j+1/2 =

m∑
p=1

u
±(p)
j+1/2r

(p)
j+1/2,

compute f(u±
j+1/2) := f±

j+1/2, project the flux again onto the eigenspace using
(4.11), (f±

j+1/2)
(p), p = 1, . . . ,m, and then compute the numerical flux as described

in subsection 4.1.1 in each characteristic field f̂ (p)
j+1/2, where now in the case of the
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local Lax­Friedrichs flux αj+1/2 = a
(p)
j+1/2 = max(|λ(p)

j |, |λ(p)
j+1|). Finally in order

to find f̂j+1/2, we need to return to the component space by

f̂j+1/2 =
m∑
p=1

f̂
(p)
j+1/2r

(p)
j+1/2.

Similarly we return to component space for the actual solution u
(i)
j , i = 0, . . . , r,

i.e. û(i)
j+1/2 =

∑m
p=1 u

(i)(p)
j+1/2r

(p)
j+1/2, i = 0, . . . , r.

For the particular system of interest, the Shallow Water equations in balance
law form, the Jacobian of f is

Jf =

[
0 1

d− u2 2u

]
,

the eigenvalues are

λ =

[
du
d +

√
d

du
d −

√
d

]
,

and the left and right normalized eigenvectors are given by

Vr =

[
1

2
√
d

−1
2
√
d

du+d3/2

2d3/2
−(du−d3/2)

2d3/2

]
, Vl =

[
−(du−d3/2)

d 1
−(du+d3/2)

d 1

]
.

The need for a slope limiter can be seen in the following experiment. We use
a flat bottom β(x) = 0, and a heap of water centered at x = 4 with zero veloc­
ity as initial condition. Specifically we define d0(x) = 1 + exp(−100(x − 4)2),
u0(x) = 0. Using quadratic polynomials, r = 2, and the aforementioned minmod
slope limiter, we obtain the numerical solution at time T = 1whose right­travelling
component is shown in Figure 4.4. The initial pulse resolves itself into two pulses

5.2 5.25 5.3 5.35 5.4 5.45 5.5
0.9

1

1.1

1.2

1.3

1.4

1.5

(a) no slope limiter
5.2 5.25 5.3 5.35 5.4 5.45 5.5

0.9

1

1.1

1.2

1.3

1.4

1.5

(b) minmod slope limiter

Figure 4.4: Demonstration of minmod slope limiter in the presence of shocks.

that travel in opposite direction and which quickly form a shock. Without the slope
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limiting procedure, oscillations in the cells near the shock are formed. These os­
cillations disappear when the minmod limiter is applied. (Observe also that in the
presence of the slope limiter the solution tends to become flat right before the shock,
and decays smoothly just after, indicating perhaps that this limiter is not ideal for
describing such solutions. There is however a large selection of slope limiters that
are able to better describe the shape of the solution.)

In the case of variable bottom, applying the slope limiter in (d, du)T variables
might affect the preservation of the still­water steady­state solution. This can be
prevented by applying the slope limiter to (d+β, du)T instead, as can be verified in
the following experiment. We set β(x) = 0.5 exp(−100(x− 4.5)2), ζ(x) = 1 and
u(x) = 0. The exact solution is of course d(x, t) = 1−β(x). The errors can be seen
in Table 4.4: When no slope limiter is applied, as we have seen before, the errors are
of the order of machine precision; when slope limiter is applied to (d, du)T, since
dh is not constant, the errors are significant. Finally, when the limiter is applied to
(d+ β, du)T, the errors are again negligible.

slope limiter ∥dh + βh − 1∥∞ ∥dh + βh − 1∥ ∥dh + βh − 1∥L1

none 2.6090e-14 3.4205e-14 5.6736e-14
(d, du)T 2.4059e-03 2.1749e-04 4.9506e-05

(d+ β, du)T 2.5202e-14 3.2691e-14 5.4322e-14

Table 4.4: Still­water steady­state solution errors after the application of slope lim­
iter. β(x) = 0.5 exp(−100(x− 4.5)2), ζ(x) = 1, and r = 2. Simulation run up to
T = 1 (assume d positive).

4.2.3 Positivity­preserving limiter

Preservation of the non­negativity of dh in the case of DG polynomials needs spe­
cial attention. Recall from section 4.2.1 that the well­balanced RKDG semidis­
cretization is∫

Ij

∂tuhv dx−
∫
Ij

f(uh)∂xv dx+ f̂ l
j+ 1

2

v
(
x−
j+ 1

2

)
− f̂ r

j− 1
2

v
(
x+
j− 1

2

)
=∫

Ij

s(dh, βh)v dx (4.12)

Let {xqj}
nq

q=1, {wq}
nq

q=1 be the nodes and weights of the nq­point Gauss­Lobatto
quadrature rule on Ij = [xj−1/2, xj+1/2], and d

n
j be the average water height in

cell Ij at time step n, d
n
h = 1

h

∫
Ij
dnh dx. From Proposition 3.2 in combination with

Remark 3.3 of [XZS10] we have

Proposition 4.1 ([XZS10, Proposition 3.2, Remark 3.3]). Let (4.12) be satisfied
by the cell averages of the water height. Let dnj (x) be the DG polynomial for the
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water height in the cell Ij . If d−j−1/2, d
+
j+1/2, and dnj (x

q
j), q = 1, . . . , nq are all

non­negative, then dn+1
j is also non­negative under the CFL condition

α
k

h
≤ w1

where α = max(|u|+
√
d) and w1 the first quadrature weight.

This proposition ensures the non­negativity of the average water height at the
next time step given the non­negativity of the height for allx ∈ Ij at the current time
step, which is not guaranteed. To enforce this requirement we apply an additional
positivity­preserving limiter to the solution un

j , which is a linear scaling around its
cell average. In particular we set(

d̃nj
(d̃u)nj

)
=: ũn

j = θj(u
n
j − un

j ) + un
j , θj = min

{
1,

d
n
j

d
n
j −mj

}
, (4.13)

with
mj = min

x∈Ij
dnj (x) = min

q=1,...,nq

dnj (x
q
j).

It is easy to see that the limiter will modify the solution only if dnj (x) < 0 for some
x ∈ Ij .

It is worth noting that this limiter preserves the conservation of height, since
only higher than constant terms are modified for d̃j (given that the basis functions
are Legendre polynomials), and the conservation of momentum d̃juj since ũj ≡ uj
is not modified. Also it maintains the well­balanced property, since in the case of
still­water solutions dnj (x) = const. − βj(x) ≥ 0, so that the limiter will not be
applied.

4.3 Numerical experiments

We will first mention some additional issues concerning the practical implementa­
tion of themethod. Asmentioned in [XZS10, §4] regarding the well­balanced prop­
erty, there may be a conflict between the slope limiter, when applied to (d+β, du)T,
and the positivity­preserving limiter (in the absence of the bottom modification de­
scribed in section 4.2.1.1). In particular it is observed that the numerical step be­
comes smaller and smaller as time increases and the code eventually stops. This is
issue is not present if we apply the slope limiter to (d, du)T, which is not actually
well balanced as demonstrated in section 4.2.2. Although we will use the proce­
dure described in 4.2.1.1, we will also implement the slope limiter as suggested in
[XZS10], i.e. in two steps. For each cell we check first if limiting is actually re­
quired based on (d + β, du)T if the cell is in the wet region (θ = 1 in (4.13)), or
based on (d, du)T if it is in the dry or nearly dry region (θ < 1 in (4.13)). Then, if



94 CHAPTER 4. DG METHODS FOR SW EQS. OVER VARIABLE BOTTOM

limiting is required, we preform the slope limiting on (d, du)T. Notice that this pro­
cedure will not destroy the well­balanced property since when we have a still­water
solution, d+ β = const., the slope limiter is not actually applied.

Another issue is the estimation of the velocity, u, which is not a variable of the
system but is given ‘implicitly’ by u = (du)/d. In the dry or nearly dry regions,
where the water height is close to zero, a small error in d will result in a large error
in u. Since u is required (for example) for the calculation of the eigenvalues of Jf
used in the CFL condition, this will result in very small time steps. To combat this
issue we will set u = 0 when d ≤ 1e−6.

Finally another modification that improves the stability of the method in some
experiments is a more precise estimation of the CFL condition. For this purpose,
after each intermediate Runge­Kutta step q, we estimate again the CFL number,
CFLn,q, based on the intermediate solution un,q

h . If it is much smaller than the one
for the current time step, CFLn, (say CFLn,q < 1

10CFL
n), we reduce the time step

and restart the RK method for the current time step.
The complete algorithm for the q­th intermediate Runge­Kutta step of the n­th

time step is as follows. (We assume that the positivity preserving process and the
slope limiter have already been applied at the first time step.) Also note that for a
k­step RK method we assume that un+1

h = un,k+1
h ).

• Calculate CFLn,q and if it is much smaller than CFLn restart the RK for the
current time step using smaller k.

• Calculate un,q+1
h using (4.12).

• For each cell j, evaluate θj by (4.13).

• For each cell check whether a slope limiter is required based on (d+β, du)T

if the cell is in the wet region (θj = 1), or based on (d, du)T if it is in the
dry or nearly dry region (θj < 1). If a limiter is required, then apply it to
(d, du)T.

• Apply the positivity­preserving limiter.

The numerical setup in the experiments to follow, unless otherwise indicated,
will be the following. For the spatial discretization we will use a uniform grid with
N = 1000 elements (h = 8e−3) on the spatial interval [0, 8] and use piecewise
linear polynomials, r = 1. We will employ an accurate enough nq­point Gauss­
Legendre quardature so that all integrals are computed exactly. The nodes of a
nq­point Gauss­Lobatto rule will also be used for the positivity preserving limiter.
For the temporal discretization we will use the third­order Shu­Osher Runge­Kutta
method, as described in section 4.1.1, with CFL condition

k

h
=

0.9

2r + 1

1

max 1≤i≤N
1≤q≤nq

|λn
i,q|

(4.14)
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where λn
i,q is the maximum eigenvalue of the Jf and is evaluated using quadrature

points in each element, and 0.9/(2r + 1) is an empirical term. Finally we use the
minmod slope limiter as described in section 4.1.1.

4.3.1 Convergence rates

To verify the accuracy of the scheme we use periodic b.c., a smooth variable bottom
given by

β(x) = 0.1 sin(2πx),

for x, t ∈ [0, 1], and the smooth exact solution

d(x, t) = 1− exp(−t)(sin(2πx) + sin(4πx))/4,
(du)(x, t) = exp(t2) cos(2πx)/10,

for which we calculate the appropriate source terms. Notice that maxx,t |d(x, t)| =
maxx |d(x, 0)| ≃ 46.605 and maxx,t |(du)(x, t)| = maxx |(du)(x, 1)| ≃ 10.731
and d, du ∈ C2

per([0, 1]). We we will use a (nq+2)Gauss­Legendre quadrature rule
for the computation of the norms of the error. Since the minmod slope limiter, when
applied, will degrade the accuracy of the scheme, it is interesting to distinguish two
cases.

No slope limiter: Errors and rates for r = 0, 1, 2 can be seen in Tables 4.5–4.7
and the rates are equal to r + 1 as expected.

Minmod slope limiter: As mentioned in section 4.1.1,M has to be proportional
to the size of the second derivatives of the solution near the smooth extrema. For
this example we chooseM = 2/3 · 52 and r ≥ 1 of course. As expected, since the
solution is smooth, the slope limiter is inactive and order of accuracy is maintained.
The errors and rates of convergence are very close to those of Tables 4.6 and 4.7.

Another interesting test is to see what happens when the slope limiter is applied
unconditionally. If we set M = 2/3 · M2 = 0 the resulting errors can be seen in
Tables 4.8 and 4.9. The slope limiter is applied to 4 regions near the critical points
of d, du and rates are degraded for r = 2.

Similar results hold for non­uniform grids too.

4.3.2 Riemann problems over a flat bottom

In this subsection we will consider two Riemann test problems that demonstrate
the ability of the method to maintain the water height positive. The experiments,
originally presented in [Bok05, §6.1], can be also found in [XZS10, §6.3]. To
compare with the original simulations we now take gravity into account; therefore
the second equation of (4.7) becomes

(du)t +
(
du2 + 1

2gd
2
)
x
= −gβ′d,
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N L1 rate L2 rate L∞ rate
8 7.170e-2 - 7.648e-2 - 1.473e-1 -
16 3.571e-2 1.006 4.005e-2 0.933 8.230e-2 0.840
32 1.694e-2 1.076 1.964e-2 1.028 4.185e-2 0.976
64 7.759e-3 1.126 9.331e-3 1.074 1.942e-2 1.108
128 3.778e-3 1.038 4.617e-3 1.015 1.023e-2 0.925
256 1.945e-3 0.958 2.437e-3 0.922 5.859e-3 0.804
512 1.004e-3 0.954 1.290e-3 0.918 3.156e-3 0.893

(a) d
N L1 rate L2 rate L∞ rate
8 7.180e-2 - 8.387e-2 - 1.651e-1 -
16 3.607e-2 0.993 4.193e-2 1.000 9.574e-2 0.786
32 1.636e-2 1.140 2.000e-2 1.068 5.061e-2 0.920
64 6.533e-3 1.325 8.573e-3 1.222 2.310e-2 1.131
128 3.573e-3 0.871 4.247e-3 1.013 8.982e-3 1.363
256 2.264e-3 0.658 2.603e-3 0.706 5.756e-3 0.642
512 1.331e-3 0.766 1.557e-3 0.742 3.377e-3 0.770

(b) du

Table 4.5: Errors and convergence rates, no slope limiter, r = 0.

N L1 rate L2 rate L∞ rate
8 7.314e-3 - 8.636e-3 - 2.111e-2 -
16 1.639e-3 2.158 2.102e-3 2.039 6.482e-3 1.704
32 3.960e-4 2.049 5.080e-4 2.049 1.604e-3 2.015
64 9.785e-5 2.017 1.253e-4 2.019 3.849e-4 2.059
128 2.429e-5 2.010 3.117e-5 2.008 9.380e-5 2.037
256 6.051e-6 2.005 7.774e-6 2.003 2.317e-5 2.018

(a) d
N L1 rate L2 rate L∞ rate
8 7.221e-3 - 9.010e-3 - 2.334e-2 -
16 1.756e-3 2.040 2.200e-3 2.034 6.289e-3 1.892
32 4.140e-4 2.085 5.281e-4 2.059 1.601e-3 1.974
64 1.004e-4 2.044 1.287e-4 2.036 4.007e-4 1.998
128 2.473e-5 2.021 3.181e-5 2.017 9.948e-5 2.010
256 6.141e-6 2.010 7.907e-6 2.008 2.473e-5 2.008

(b) du

Table 4.6: Errors and convergence rates, no slope limiter, r = 1.
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N L1 rate L2 rate L∞ rate
8 9.115e-4 - 1.035e-3 - 3.101e-3 -
16 1.113e-4 3.034 1.308e-4 2.984 3.686e-4 3.073
32 1.353e-5 3.040 1.631e-5 3.004 4.430e-5 3.057
64 1.698e-6 2.994 2.038e-6 3.000 5.373e-6 3.044
128 2.125e-7 2.999 2.546e-7 3.001 6.599e-7 3.025
256 2.656e-8 3.000 3.181e-8 3.001 8.179e-8 3.012

(a) d
N L1 rate L2 rate L∞ rate
8 9.709e-4 - 1.149e-3 - 2.757e-3 -
16 1.342e-4 2.855 1.658e-4 2.793 4.078e-4 2.757
32 1.732e-5 2.954 2.150e-5 2.947 5.460e-5 2.901
64 2.151e-6 3.010 2.696e-6 2.995 7.015e-6 2.960
128 2.670e-7 3.010 3.360e-7 3.005 8.865e-7 2.984
256 3.320e-8 3.007 4.187e-8 3.004 1.113e-7 2.993

(b) du

Table 4.7: Errors and convergence rates, no slope limiter, r = 2.

N L1 rate L2 rate L∞ rate
8 3.581e-2 - 4.850e-2 - 1.508e-1 -
16 9.025e-3 1.988 1.085e-2 2.160 2.809e-2 2.424
32 9.523e-4 3.245 1.208e-3 3.167 4.072e-3 2.786
64 2.061e-4 2.208 2.934e-4 2.042 1.897e-3 1.102
128 7.352e-5 1.487 9.349e-5 1.650 5.255e-4 1.852
256 1.464e-5 2.329 1.823e-5 2.358 7.667e-5 2.777

(a) d
N L1 rate L2 rate L∞ rate
8 2.528e-2 - 3.673e-2 - 1.223e-1 -
16 9.280e-3 1.446 1.119e-2 1.716 2.492e-2 2.294
32 1.200e-3 2.951 1.526e-3 2.874 5.876e-3 2.085
64 3.066e-4 1.969 3.843e-4 1.989 1.129e-3 2.380
128 6.795e-5 2.174 8.516e-5 2.174 4.098e-4 1.462
256 1.178e-5 2.528 1.553e-5 2.455 1.216e-4 1.753

(b) du

Table 4.8: Errors and convergence rates, minmod slope limiter,M = 0, r = 1.
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N L1 rate L2 rate L∞ rate
8 2.562e-2 - 3.568e-2 - 1.181e-1 -
16 9.650e-3 1.409 1.458e-2 1.290 4.251e-2 1.475
32 2.362e-3 2.031 3.217e-3 2.181 1.152e-2 1.883
64 4.840e-4 2.287 6.569e-4 2.292 2.902e-3 1.989
128 1.036e-4 2.225 1.408e-4 2.222 9.505e-4 1.611
256 2.490e-5 2.056 3.289e-5 2.098 1.875e-4 2.342

(a) d
N L1 rate L2 rate L∞ rate
8 4.458e-2 - 5.881e-2 - 1.398e-1 -
16 8.366e-3 2.414 1.265e-2 2.217 4.392e-2 1.670
32 2.255e-3 1.891 3.076e-3 2.040 1.051e-2 2.062
64 4.528e-4 2.317 6.621e-4 2.216 3.253e-3 1.693
128 1.037e-4 2.127 1.392e-4 2.250 7.749e-4 2.070
256 2.351e-5 2.141 3.164e-5 2.137 2.028e-4 1.934

(b) du

Table 4.9: Errors and convergence rates, minmod limiter,M = 0, r = 2.

where we set g = 9.812m/s2. For both numerical simulations we will use the local
Lax­Friedrichs flux.

Dam Break
For the dam break problem the initial condition will be

d(x, 0) =

{
D0, if x ≤ 0,

0, otherwise
and du(x, 0) = 0.

The water front, initially located at x = 0, will move to the right with speed u+ c,
where c = 2a0 and a0 =

√
gD0. The exact solution, see [Bok05], is given by

d(x, t) =


1
ga

2
0, if x < −a0t,

1
9g (2a0 − x/t)2 , if − a0t ≤ x < 2a0t,

0, if x ≥ 2a0t,

u(x, t) =


0, if x < −a0t,
2
3 (a0 + x/t) , if − a0t ≤ x < 2a0t,

0, if x ≥ 2a0t.

For the numerical experiment we setD0 = 10, x ∈ [−300, 300], t ∈ [0, 12] and we
useN = 300 elements. CFL condition is given by (4.14), and for this experiment is
bounded below by 1.59e−2. Since no water perturbation will reach the boundary
we may simply use Dirichlet boundary conditions for both ends of the domain.
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For the minmod slope limiter we set M = 0 (notice that the application of the
slope limiter is mandatory). The solution at various time instances, as well as the
location of the water front for piecewise linear polynomials, r = 1, can be seen
in Figure 4.5. A magnification near the front, along with the numerical and exact
locations of the front, can be seen in Figure 4.6. We observe that the numerical
solution is satisfactorily close to the exact one.
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(b) du
Figure 4.5: Numerical and exact solution for the dam break problem at times t ≃
4, 8, 12, N = 300, r = 1. Solid lines with markers: numerical solution, dashed
lines: exact solution.
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Figure 4.6: Magnification of Figure 4.5 near the wet/dry front and front location.
Solid lines with markers: numerical solution, dashed lines: exact solution, vertical
lines: numerical and exact front location.

To assess the dispersion that is due to the slope limiter for higher order poly­
nomials, we repeat the experiment using quadratic polynomials (r = 2). A mag­
nification of the numerical and exact solution as well as the numerical and exact
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front location can be seen in Figure 4.7. We see that the numerical solution is again
close to the exact one, but now more dispersion is observed near the water front,
effectively affecting the front location.

For both polynomial orders, the numerical solution converges to the exact asN
grows, as expected.
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Figure 4.7: Magnification of numerical and exact solution for the dam break prob­
lem at time t ≃ 4, 8, 12, N = 300, r = 2. Solid lines with markers: numerical
solution, dashed lines: exact solution, vertical lines: numerical and exact front lo­
cation.

Drying
The initial conditions for the second Riemann test problem will be chosen such that
a small dry patch is generated as the solution evolves. They are given by

d(x, 0) =

{
dl, if x ≤ 0,

dr, otherwise
and u(x, 0) =

{
ul, if x ≤ 0,

ur, otherwise
.
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The solution is explicitly given by

h(x, t) =



dl, if x ≤ (ul − al)t,
1
9g (ul + cl − x/t)2 , if (ul − al)t < x ≤ Slt,

0, if Slt < x ≤ Srt,
1
9g (x/t− ur + cr)

2 , if Srt < x ≤ (ur + ar)t,

dr, if x > (ur + ar)t,

u(x, t) =



ul, if x ≤ (ul − al)t,
1
3 (ul + cl + 2x/t)2 , if (ul − al)t < x ≤ Slt,

0, if Slt < x ≤ Srt,
1
3 (2x/t+ ur − cr)

2 , if Srt < x ≤ (ur + ar)t,

ur, if x > (ur + ar)t,

where al,r =
√

g dl,r, cl,r = 2 al,r, Sl = ul + cl, and Sr = ur − cr. As time
increases a dry region is (immediately) formed at x = 0 and two opposing travelling
expansion waves are generated and travel away from and dry region. Drying occurs
when cl + cr − ur + ul < 0.

For the numerical simulation we took dl = 5, dr = 10, ul = 0, ur = 40,
x ∈ [−200, 400], t ∈ [0, 6] and N = 300 elements. As in the previous simulation,
the solution remains constant near the boundary and wemay use Dirichlet boundary
conditions; we also set the minmod slope limiter thresholdM = 0. CFL condition
varies between 3e−3 and 6e−3 for almost all of the time steps. The solution at
various time instances for linear polynomials, r = 1 can be seen in Figure 4.8,
while a magnification near the dry region can be seen in Figure 4.9. We observe that
the numerical solution is close to the exact, and that there is noticeable dispersion
due to the minmod slope limiter especially near the dry­wet interface.

In Figure 4.10 we repeat the experiment using quadratic polynomials. At first,
the numerical solution seems to be closer to the exact near the dry­wet interface.
However, due to the dispersion introduced by the slope limiter, the actual height in
the supposedly dry region is only O(10−2), which is worse than that for the linear
polynomials (which was O(10−4)).

Finally we repeat the experiment using linear polynomials andM = 2/3 · 1 in
the minmod slope limiter. The solution can be seen in Figure 4.11. The numerical
solution now actually becomes dry in the region of interest (that is d < 10−6 which
is the dry region threshold of our scheme). Also the dispersion of the numerical
solution is smaller near the dry­wet front, since the slope limiter is applied fewer
times. Notice however that in this case the CFL condition has to be chosen carefully,
as described in the beginning of this section, for the scheme to be stable.

We have verified that the numerical solution converges to the exact asN grows
for all the simulations printed in this section.
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Figure 4.8: Numerical and exact solution for the drying problem at times t ≃ 2, 4, 6,
N = 300, r = 1. Solid lines with markers: numerical solution, dashed lines: exact
solution.
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Figure 4.9: Magnification of Firure 4.8 near the dry region



4.3. NUMERICAL EXPERIMENTS 103

0 50 100 150 200

0

1

2

3

4

5

6

(a) d

0 50 100 150 200

0

20

40

60

80

100

(b) du
Figure 4.10: Numerical and exact solution for the drying problem using quadratic
polynomials. t ≃ 2, 4, 6, N = 300.
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Figure 4.11: Numerical and exact solution for the drying problem using linear poly­
nomials and minmod slope limiter threshold M = 2/3 · 1. t ≃ 2, 4, 6, N = 300,
r = 1. Solid lines with markers: numerical solution, dashed lines: exact solution,
bottom vertical lines: location of the wet­dry front, top vertical lines: location of
the dry­wet front.
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4.3.3 Parabolic bowl

In this section we consider an experiment with a periodic in time solution which
has a moving wet/dry front. We consider a parabolic bottom of the form

β(x) = h0(x/α)
2,

where h0 and α are constants. Analytical solutions, assuming frictional bottom,
have been derived by Sampson et. al., [SES06]. Sampson assumed that the velocity
u is a function of time only. By dropping the friction term we have

d(x, t) + β(x) = h0 −
B2

4g
cos(2ωt)− B2

4g
− B

2α

√
8h0
g

cos(ωt)x,

u(x, t) = B sin(ωt),

xl ≤ x ≤ xr,

t > 0,

(4.15)
where ω =

√
2gh0/α andB is a given constant. Initial conditions are given by the

formulas (4.15) for t = 0 and can be seen in Figure 4.12. The exact location of the
wet/dry front is given by

xl,r = −Bωα2

2gh0
cos(ωt)∓ α.

Observe that the water height d(x, t) + β(x) is a linear function of x for every t.
Also, due to the absence of friction, d and u are periodic in time with period 2π/ω.
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Figure 4.12: Initial conditions and bottom for the parabolic bowl problem

We perform the following numerical simulation, originally found in [LM09,
§4.3] for frictional bottom, and later in [XZS10, §6.5] for the frictionless case. We
let x ∈ [−5000, 5000] and set h0 = 10, α = 3000, B = 5. Since the water
does not reach the boundary we may again use Dirichlet boundary conditions. The
simulation run up to t = 6000 using N = 300 cells and can be seen for various
time instances in Figures 4.13 and 4.14. We observe that the numerical solution is
close to the exact.
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Figure 4.13: Numerical and exact solution for the parabolic bowl problem using
linear polynomials and minmod slope limiter. t ≃ 1/4π/ω, 2/4π/ω, 3/4π/ω,
N = 300. Solid lines with markers: numerical solution, dashed lines: exact solu­
tion (indistinguishable).

4.3.4 An experiment with complex bottom topography

In the final section we will perform a novel experiment on a complex bottom to­
pography that presents several computational difficulties. The bottom, seen in Fig­
ure 4.15(a), consist of two hills of different height (H1,H2) that are separated by a
valley (V ), it is smooth (C∞) and is given by

β(x) = 1.33 exp(−50x2)− 0.28 exp(−400(x− 0.005)2).

The initial conditions will be chosen such that no slope limiting will be required
and consist of a Gaussian pulse centered at x = 0 for d and zero for u:

d(x, 0) = 0.1 exp(−100x2), (du)(x, 0) = 0.

For the numerical simulation we let x ∈ [−4, 4], T = 3 and use N = 4000 ele­
ments. The water is not disturbed near the boundary of the domain in our time of
interest, so we simply use Dirichlet boundary conditions. In order to test the stabil­
ity of the method near the dry region we will not utilize slope limiting. Notice that,
despite the bottom being continuous, after its projection onto Vh and the procedure
described in the well­balancing section, 4.2.1.1, the bottom becomes discontinu­
ous at the cells adjacent to the wet­dry interface at H1. (The same happens to H2,
though the discontinuity is too small to be noticeable in the figures.)

The exact solution is not known for this experiment. Some significant instances
of the simulation can be seen in Figure 4.16, in particular:

4.16(a) At t = 0.400 the main pulse reaches and starts climbingH1.

4.16(b) At t = 0.480 the main pulse goes overH1.
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Figure 4.14: Numerical and exact solution for the parabolic bowl problem using
linear polynomials and minmod slope limiter. t ≃ 5000, 5719 (8.5π/ω), 6000,
N = 300. Solid lines with markers: numerical solution, dashed lines: exact solu­
tion (indistinguishable).

4.16(c) At t = 0.625 the main pulse goes overH2.

4.16(d) At t = 0.800 the bottom is completely flooded. A part of the water continues
to travel to the right, while the other part is reflected (fromH2) to the left.

4.16(e) At t = 1.135 the reflected (left­traveling) pulse fromH2 overtakesH1 (since
H2 is taller thanH1, the reflected mass is large enough for this purpose). Part
of this pulse will continue traveling to the left, while the other part will be
reflected to the right.

4.16(f) At t = 1.675 the right­traveling pulse reflected from H1 (4.16(e)) reaches
the maximum height on H2 (runup), and is reflected to the left. The top and
the right­hand parts ofH2 are now dry.

4.16(g) At t = 2.115 the left­hand part of H1 is dry. The left­traveling pulse re­
flected from H2 (4.16(f)) overtakes H1 (since the reflected discharge from
the instance of 4.16(e) happened to be large enough), and part of it will con­
tinue traveling to the left, while the other part will be reflected to the right.
This procedure (of figures 4.16(e)–4.16(g)) will be repeated until the water
height at the instance of figure 4.16(g) at the top of H1 becomes less than
10−6. Then the top ofH1 will be considered as dry and we will transition to
an “oscillating lake” case.

4.16(h) At t = 2.285 the left­hand part of H1 is wet again. Part of the water can be
seen traveling leftwards.

The numerical solution at the final time, t = 3, can be seen in figure 4.15(b).
Many properties of the numerical method can be tested in this experiment. First we
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Figure 4.15: Bottom and solution at final time step

observe that the water height, d, is horizontal at the wet­dry interface left ofH1 and
right of H2, indicating that the scheme is indeed well balanced. Many regions of
the domain change between dry and wet during the simulation, testing the ability
of the method to maintain the water height positive.

Finally, despite the initial conditions being chosen such that no shocks will be
formed if the water propagated over a flat bottom (within our spatial domain of
interest), we observe various type of discontinuities that are generated during the
runup/rundown process. In particular: (a) After the reflection of the main pulse
on H2 at t = 1 a left­traveling shock is formed (the water is very shallow in this
region). (b) During the draining of V two (almost) static shocks are formed near
the feet ofH1 andH2, where the water draining from V has a significant discharge
when it enters the region of zero or negative velocity.
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(b) t = 0.480
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(c) t = 0.625
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(d) t = 0.800
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(e) t = 1.135
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(f) t = 1.675
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(g) t = 2.115
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(h) t = 2.285

Figure 4.16: Flow over a complex bottom. Numerical solution (d + β: solid line,
du+1: dashed lines, β: dotted lines, shore location: small circles) at various times.



Bibliography

[Ada11] K. Adamy, “Existence of solutions for a Boussinesq system on the half
line and on a finite interval”, Discrete & Continuous Dynamical Sys­
tems ­ A 29 (2011), 25–49, DOI: 10.3934/dcds.2011.29.25.

[Ami84] C. J. Amick, “Regularity and uniqueness of solutions to the Boussinesq
system of equations”, Journal of Differential Equations 54 (1984),
231–247, DOI: 10.1016/0022-0396(84)90160-8.

[AD12] D. C. Antonopoulos and V. A. Dougalis, “Numerical solution of the
‘classical’ Boussinesq system”,Mathematics and Computers in Simu­
lation 82 (2012), NonlinearWaves: Computation and Theory­IX,WAVES
2009, 984–1007, DOI: 10.1016/j.matcom.2011.09.006.

[AD13] D. C. Antonopoulos and V. A. Dougalis, “Error estimates for Galerkin
approximations of the “classical” Boussinesq system”, Mathematics
of Computation 82 (2013), 689–717, DOI: 10.1090/S0025-5718-
2012-02663-9.

[AD16] D. C. Antonopoulos and V. A. Dougalis, “Error estimates for the stan­
dard Galerkin­finite element method for the shallow water equations”,
Mathematics of Computation 85 (2016), 1143–1182, DOI: 10.1090/
mcom3040.

[AD17] D. C.Antonopoulos andV.A.Dougalis, “Galerkin­finite elementmeth­
ods for the shallow water equations with characteristic boundary con­
ditions”, IMA Journal of Numerical Analysis 37 (2017), 266–295, DOI:
10.1093/imanum/drw017.

[ADK19] D. C. Antonopoulos, V. A. Dougalis, and G. Kounadis, “On the stan­
dard Galerkin method with explicit RK4 time stepping for the Shal­
lowWater equations”, IMA Journal of Numerical Analysis (2019), DOI:
10.1093/imanum/drz033.

[ADM10] D. C. Antonopoulos, V. A. Dougalis, and D. E. Mitsotakis, “Galerkin
approximations of periodic solutions of Boussinesq systems”, Bull.
Greek Math. Soc 57 (2010), 13–30.

109

https://doi.org/10.3934/dcds.2011.29.25
https://doi.org/10.1016/0022-0396(84)90160-8
https://doi.org/10.1016/j.matcom.2011.09.006
https://doi.org/10.1090/S0025-5718-2012-02663-9
https://doi.org/10.1090/S0025-5718-2012-02663-9
https://doi.org/10.1090/mcom3040
https://doi.org/10.1090/mcom3040
https://doi.org/10.1093/imanum/drw017
https://doi.org/10.1093/imanum/drz033


110 BIBLIOGRAPHY

[ADM17] D. C. Antonopoulos, V. A. Dougalis, and D. E. Mitsotakis, “Error es­
timates for Galerkin approximations of the Serre equations”, SIAM
Journal on Numerical Analysis 55 (2017), 841–868, DOI: 10.1137/
16M1078355.

[ADM] D. C. Antonopoulos, V. A. Dougalis, and D. E. Mitsotakis, “Numerical
methods for the Serre­Green­Naghdi equations over variable bottom”,
(to appear).

[Aud+04] E. Audusse, F. Bouchut, M.­O. Bristeau, R. Klein, and B. t. Perthame,
“A fast and stable well­balanced scheme with hydrostatic reconstruc­
tion for shallow water flows”, SIAM Journal on Scientific Computing
25 (2004), 2050–2065, DOI: 10.1137/S1064827503431090.

[Bar04] E. Barthélemy, “Nonlinear shallow water theories for coastal waves”,
Surveys in Geophysics 25 (2004), 315–337, DOI: 10.1007/s10712-
003-1281-7.

[BV94] A. Bermudez and M. E. Vázquez, “Upwind methods for hyperbolic
conservation laws with source terms”, Computers & Fluids 23 (1994),
1049–1071, DOI: 10.1016/0045-7930(94)90004-3.

[BDF94] R. Biswas, K. D. Devine, and J. E. Flaherty, “Parallel, adaptive finite
element methods for conservation laws”, Applied Numerical Mathe­
matics 14 (1994), 255–283, DOI: 10.1016/0168-9274(94)90029-
9.

[Bok05] O. Bokhove, “Flooding and Drying in Discontinuous Galerkin Finite­
Element Discretizations of Shallow­Water Equations. Part 1: One Di­
mension”, Journal of Scientific Computing 22 (2005), 47–82, DOI: 10.
1007/s10915-004-4136-6.

[BCS04] J. L. Bona, M. Chen, and J.­C. Saut, “Boussinesq equations and other
systems for small­amplitude longwaves in nonlinear dispersivemedia:
II. The nonlinear theory”, Nonlinearity 17 (2004), 925–952, DOI: 10.
1088/0951-7715/17/3/010.

[Bon+11] P. Bonneton, F. Chazel, D. Lannes, F. Marche, andM. Tissier, “A split­
ting approach for the fully nonlinear and weakly dispersive Green–
Naghdi model”, Journal of Computational Physics 230 (2011), 1479–
1498, DOI: 10.1016/j.jcp.2010.11.015.

[Cha07] F. Chazel, “Influence of bottom topography on long water waves”,
ESAIM: Mathematical Modelling and Numerical Analysis 41 (2007),
771–799, DOI: 10.1051/m2an:2007041.

[Cia78] P. G. Ciarlet, The Finite ElementMethod for Elliptic Problems, (Reprinted
SIAM, 2002), North Holland, 1978.

https://doi.org/10.1137/16M1078355
https://doi.org/10.1137/16M1078355
https://doi.org/10.1137/S1064827503431090
https://doi.org/10.1007/s10712-003-1281-7
https://doi.org/10.1007/s10712-003-1281-7
https://doi.org/10.1016/0045-7930(94)90004-3
https://doi.org/10.1016/0168-9274(94)90029-9
https://doi.org/10.1016/0168-9274(94)90029-9
https://doi.org/10.1007/s10915-004-4136-6
https://doi.org/10.1007/s10915-004-4136-6
https://doi.org/10.1088/0951-7715/17/3/010
https://doi.org/10.1088/0951-7715/17/3/010
https://doi.org/10.1016/j.jcp.2010.11.015
https://doi.org/10.1051/m2an:2007041


BIBLIOGRAPHY 111

[CBB07] R. Cienfuegos, E. Barthélemy, and P. Bonneton, “A fourth­order com­
pact finite volume scheme for fully nonlinear and weakly dispersive
Boussinesq­type equations. Part II: boundary conditions and valida­
tion”, International Journal for NumericalMethods in Fluids 53 (2007),
1423–1455, DOI: 10.1002/fld.1359.

[Coc99] B. Cockburn,DiscontinuousGalerkinmethods for convection­dominated
problems, 1999, URL: http://www-users.math.umn.edu/~cockburn/
lecture_notes/DG-2.pdf (visited on 11/01/2019).

[CLS89] B. Cockburn, S.­Y. Lin, and C.­W. Shu, “TVB Runge­Kutta local pro­
jection discontinuous Galerkin finite element method for conservation
laws III: one­dimensional systems”, Journal of Computational Physics
84 (1989), 90–113, DOI: 10.1016/0021-9991(89)90183-6.

[CS89] B. Cockburn and C.­W. Shu, “TVB Runge­Kutta local projection dis­
continuous Galerkin finite element method for conservation laws. II.
General framework”, Mathematics of Computation 52 (1989), 411–
435, DOI: 10.1090/S0025-5718-1989-0983311-4.

[DM10] F. Dias and P. Milewski, “On the fully­nonlinear shallow­water gen­
eralized Serre equations”, Physics Letters A 374 (2010), 1049–1053,
DOI: 10.1016/j.physleta.2009.12.043.

[Dod98] N. Dodd, “Numerical model of wave run­up, overtopping, and regen­
eration”, Journal of Waterway, Port, Coastal, and Ocean Engineering
124 (1998), 73–81, DOI: 10.1061/(ASCE)0733-950X(1998)124:
2(73).

[Dou14] V. A. Dougalis, Surface Water Waves: Mathematical Models, Solitary
Waves, Notes for a graduate course, Hellenic Open University, Patras,
2014 (in Greek).

[DDW75] J. Douglas, T. Dupont, and L. Wahlbin, “Optimal L∞ error estimates
for Galerkin approximations to solutions of two­point boundary value
problems”,Mathematics of Computation 29 (1975), 475–483, DOI: 10.
1090/S0025-5718-1975-0371077-0.

[Dup73] T. Dupont, “Galerkinmethods for first order hyperbolics: an example”,
SIAM Journal on Numerical Analysis 10 (1973), 890–899, DOI: 10.
1137/0710074.

[GN76] A. E. Green and P. M. Naghdi, “A derivation of equations for wave
propagation in water of variable depth”, Journal of Fluid Mechanics
78 (1976), 237–246, DOI: 10.1017/s0022112076002425.

[GLN74] A. E. Green, N. Laws, and P. M. Naghdi, “On the theory of water
waves”, Proceedings of the Royal Society of London. A. Mathemati­
cal and Physical Sciences 338 (1974), 43–55, DOI: 10.1098/rspa.
1974.0072.

https://doi.org/10.1002/fld.1359
http://www-users.math.umn.edu/~cockburn/lecture_notes/DG-2.pdf
http://www-users.math.umn.edu/~cockburn/lecture_notes/DG-2.pdf
https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.1090/S0025-5718-1989-0983311-4
https://doi.org/10.1016/j.physleta.2009.12.043
https://doi.org/10.1061/(ASCE)0733-950X(1998)124:2(73)
https://doi.org/10.1061/(ASCE)0733-950X(1998)124:2(73)
https://doi.org/10.1090/S0025-5718-1975-0371077-0
https://doi.org/10.1090/S0025-5718-1975-0371077-0
https://doi.org/10.1137/0710074
https://doi.org/10.1137/0710074
https://doi.org/10.1017/s0022112076002425
https://doi.org/10.1098/rspa.1974.0072
https://doi.org/10.1098/rspa.1974.0072


112 BIBLIOGRAPHY

[Gri+94] S. Grilli, R. Subramanya, I. Svendsen, and J. Veeramony, “Shoaling of
solitary waves on plane beaches”, Journal of Waterway, Port, Coastal,
and Ocean Engineering 120 (1994), 609–628, DOI: 10.1061/(ASCE)
0733-950X(1994)120:6(609).

[HK68] D. D. Houghton and A. Kasahara, “Nonlinear shallow fluid flow over
an isolated ridge”,Communications on Pure and Applied Mathematics
21 (1968), 1–23, DOI: 10.1002/cpa.3160210103.

[HPT11] A. Huang, M. Petcu, and R. Temam, “The one­dimensional supercrit­
ical shallow­water equations with topography”, Annals of the Univer­
sity of Bucharest (Mathematical Series) 2 (LX) (2011), 63–82.

[Isr11] S. Israwi, “Large time existence for 1DGreen­Naghdi equations”,Non­
linear Analysis: Theory, Methods & Applications 74 (2011), 81–93,
DOI: 10.1016/j.na.2010.08.019.

[KD19] G. Kounadis and V. A. Dougalis, Galerkin finite element methods for
the Shallow Water equations over variable bottom, (to appear in J.
Comput. Appl. Math), 2019, arXiv: 1901.04230.

[Lan13] D. Lannes, The Water Waves Problem: Mathematical Analysis and
Asymptotics, vol. 188, American Mathematical Society, Providence,
RI, 2013, DOI: 10.1090/surv/188.

[LB09] D. Lannes and P. Bonneton, “Derivation of asymptotic two­dimensional
time­dependent equations for surfacewater wave propagation”,Physics
of Fluids 21 (2009), 016601, DOI: 10.1063/1.3053183.

[LM09] Q. Liang and F. Marche, “Numerical resolution of well­balanced shal­
low water equations with complex source terms”, Advances in Water
Resources 32 (2009), 873–884, DOI: 10.1016/j.advwatres.2009.
02.010.

[MM69] O. S. Madsen and C. C. Mei, “The transformation of a solitary wave
over an uneven bottom”, Journal of Fluid Mechanics 39 (1969), 781–
791, DOI: 10.1017/S0022112069002461.

[MAT18] MATLAB, version 9.4.0 (R2018a), TheMathWorks Inc., Natick, Mas­
sachusetts, 2018.

[ML66] C. C. Mei and B. Le Méhauté, “Note on the equations of long waves
over an uneven bottom”, Journal of Geophysical Research 71 (1966),
393–400, DOI: 10.1029/JZ071i002p00393.

[MSM17] D. E.Mitsotakis, C. Synolakis, andM.McGuinness, “AmodifiedGalerkin/finite
element method for the numerical solution of the Serre­Green­Naghdi
system”, International Journal for Numerical Methods in Fluids 83
(2017), 755–778, DOI: 10.1002/fld.4293.

https://doi.org/10.1061/(ASCE)0733-950X(1994)120:6(609)
https://doi.org/10.1061/(ASCE)0733-950X(1994)120:6(609)
https://doi.org/10.1002/cpa.3160210103
https://doi.org/10.1016/j.na.2010.08.019
https://arxiv.org/abs/1901.04230
https://doi.org/10.1090/surv/188
https://doi.org/10.1063/1.3053183
https://doi.org/10.1016/j.advwatres.2009.02.010
https://doi.org/10.1016/j.advwatres.2009.02.010
https://doi.org/10.1017/S0022112069002461
https://doi.org/10.1029/JZ071i002p00393
https://doi.org/10.1002/fld.4293


BIBLIOGRAPHY 113

[NHF08] J. Nycander, A. M. Hogg, and L. M. Frankcombe, “Open boundary
conditions for nonlinear channel flow”, Ocean Modelling 24 (2008),
108–121, DOI: 10.1016/j.ocemod.2008.06.003.

[Per67] D. H. Peregrine, “Longwaves on a beach”, Journal of FluidMechanics
27 (1967), 815–827, DOI: 10.1017/S0022112067002605.

[Per72] D. H. Peregrine, “Equations for water waves and the approximations
behind them”, inWaves on Beaches and Resulting Sediment Transport,
ed. by R. E. Meyer, New York: Academic Press, 1972, 95–121, DOI:
10.1016/B978-0-12-493250-0.50007-2.

[PT11] M. Petcu and R. Temam, “The one dimensional Shallow Water equa­
tions with Dirichlet boundary conditions on the velocity”, Discrete &
Continuous Dynamical Systems ­ Series S 4 (2011), 209–222, DOI: 10.
3934/dcdss.2011.4.209.

[PT13] M. Petcu and R. Temam, “The one­dimensional shallow water equa­
tions with transparent boundary conditions”, Mathematical Methods
in the Applied Sciences 36 (2013), 1979–1994, DOI: 10.1002/mma.
1482.

[QZ16] J. Qiu and Q. Zhang, “Stability, error estimate and limiters of discon­
tinuous Galerkin methods”, in Handbook of Numerical Methods for
Hyperbolic Problems, ed. by R. Abgrall and C.­W. Shu, vol. 17, Hand­
book of Numerical Analysis, Elsevier, 2016, 147–171, DOI: 10.1016/
bs.hna.2016.06.001.

[SES06] J. Sampson, A. Easton, and M. Singh, “Moving boundary shallow
water flow above parabolic bottom topography”, Proceedings of the
7th Biennial Engineering Mathematics and Applications Conference,
EMAC­2005, ed. byA. Stacey, B. Blyth, J. Shepherd, andA. J. Roberts,
vol. 47, 2006, C373–C387, DOI: 10.21914/anziamj.v47i0.1050,
(visited on 10/16/2006).

[Sch81] M. E. Schonbek, “Existence of solutions for the Boussinesq system
of equations”, Journal of Differential Equations 42 (1981), 325–352,
DOI: 10.1016/0022-0396(81)90108-X.

[Ser53a] F. Serre, “Contribution à l’étude des écoulements permanents et vari­
ables dans les canaux”, La Houille Blanche (1953), 374–388, DOI: 10.
1051/lhb/1953034.

[Ser53b] F. Serre, “Contribution à l’étude des écoulements permanents et vari­
ables dans les canaux”, La Houille Blanche (1953), 830–872, DOI: 10.
1051/lhb/1953058.

[Shi+11] M.­C. Shiue, J. Laminie, R. Temam, and J. Tribbia, “Boundary value
problems for the shallow water equations with topography”, Journal
of Geophysical Research: Oceans 116 (2011), 1–22, DOI: 10.1029/
2010JC006315.

https://doi.org/10.1016/j.ocemod.2008.06.003
https://doi.org/10.1017/S0022112067002605
https://doi.org/10.1016/B978-0-12-493250-0.50007-2
https://doi.org/10.3934/dcdss.2011.4.209
https://doi.org/10.3934/dcdss.2011.4.209
https://doi.org/10.1002/mma.1482
https://doi.org/10.1002/mma.1482
https://doi.org/10.1016/bs.hna.2016.06.001
https://doi.org/10.1016/bs.hna.2016.06.001
https://doi.org/10.21914/anziamj.v47i0.1050
https://doi.org/10.1016/0022-0396(81)90108-X
https://doi.org/10.1051/lhb/1953034
https://doi.org/10.1051/lhb/1953034
https://doi.org/10.1051/lhb/1953058
https://doi.org/10.1051/lhb/1953058
https://doi.org/10.1029/2010JC006315
https://doi.org/10.1029/2010JC006315


114 BIBLIOGRAPHY

[SO88] C.­W. Shu and S. Osher, “Efficient implementation of essentially non­
oscillatory shock­capturing schemes”, Journal of computational physics
77 (1988), 439–471, DOI: 10.1016/0021-9991(88)90177-5.

[SG69] C. H. Su and C. S. Gardner, “Korteweg­de Vries equation and general­
izations. III. Derivation of theKorteweg­deVries equation andBurgers
equation”, Journal of Mathematical Physics 10 (1969), 536–539, DOI:
10.1063/1.1664873.

[WB99] M. Walkley and M. Berzins, “A finite element method for the one­
dimensional extended Boussinesq equations”, International Journal
for Numerical Methods in Fluids 29 (1999), 143–157, DOI: 10.1002/
(SICI)1097-0363(19990130)29:2<143::AID-FLD779>3.0.
CO;2-5.

[Whi74] G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.
[Xin17] Y. Xing, “Numerical Methods for the Nonlinear Shallow Water Equa­

tions”, in Handbook of Numerical Methods for Hyperbolic Problems,
ed. by R. Abgrall and C.­W. Shu, vol. 18, Handbook of Numerical
Analysis, Elsevier, 2017, 361–384, DOI: 10.1016/bs.hna.2016.
09.003.

[XS06] Y.Xing andC.­W. Shu, “High orderwell­balanced finite volumeWENO
schemes and discontinuous Galerkin methods for a class of hyperbolic
systems with source terms”, Journal of Computational Physics 214
(2006), 567–598, DOI: 10.1016/j.jcp.2005.10.005.

[XZS10] Y. Xing, X. Zhang, and C.­W. Shu, “Positivity­preserving high order
well­balanced discontinuous Galerkin methods for the shallow water
equations”, Advances in Water Resources 33 (2010), 1476–1493, DOI:
10.1016/j.advwatres.2010.08.005.

https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1063/1.1664873
https://doi.org/10.1002/(SICI)1097-0363(19990130)29:2<143::AID-FLD779>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1097-0363(19990130)29:2<143::AID-FLD779>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1097-0363(19990130)29:2<143::AID-FLD779>3.0.CO;2-5
https://doi.org/10.1016/bs.hna.2016.09.003
https://doi.org/10.1016/bs.hna.2016.09.003
https://doi.org/10.1016/j.jcp.2005.10.005
https://doi.org/10.1016/j.advwatres.2010.08.005

	Preface
	Περίληψη Διατριβής
	Introduction
	Derivation of the SGN system
	Two `classical' Boussinesq type systems with variable bot.

	Standard Galerkin Finite Element methods for the numerical solution of two classical-Boussinesq type systems over variable bottom
	Introduction
	Error analysis of the Galekin semidiscretization
	The finite element spaces
	Semidiscretization in the case of a strongly varying bottom
	Semidiscretization in the case of a weakly varying bottom

	Numerical experiments
	Convergence rates
	Approximate absorbing boundary conditions
	Propagation of solitary waves over a variable bottom


	Standard Galerkin finite element methods for the numerical solution of the Shallow Water equations over variable bottom
	Introduction
	Initial-boundary-value problems and error estimates
	Semidiscretization of a simple ibvp with vanishing fluid velocity at the endpoints
	Semidiscretization of an ibvp with absorbing (characteristic) boundary conditions in the supercritical case
	Semidiscretization in the case of absorbing (characteristic) boundary conditions in the subcritical case

	Numerical experiments
	Absorbing (characteristic) boundary conditions
	Shallow water equations in balance-law form


	Discontinuous Galerkin Finite Element methods for the numerical solution of the Shallow Water equations over variable bottom
	Introduction
	Overview of RKDG methods for a system of conservation laws

	RKDG methods for Shallow Water eqs. over variable bot.
	Well-balancing
	Slope limiting
	Positivity-preserving limiter

	Numerical experiments
	Convergence rates
	Riemann problems over a flat bottom
	Parabolic bowl
	An experiment with complex bottom topography


	Bibliography

