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by Anastasios Dionysopoulos

In this dissertation, we are tying to model Causality inference so as to identify and extract her
from empirical data. In statistics, when we find two random variables to be dependent, doesn’t
mean that they have also causal relation,Cause-Effect. As a result, if we want to model Causality
between random variables, we need to model the direction of this dependency, from the Causes to
Effects, except from how depended or correlated are these variables. In order to do that we use the
Directed Acyclic Graphs, DAGs. As a result, in the First,Second and Third Chapter we illustrate
how capable the DAGs are as tool to store Probabilistic dependence-independence Knowledge.
Also, we illustrate two basic assumptions: the Markov and the Faithfulness. These two play a
significant role in that procedure. At the Forth chapter, we propose the Structural Causal Models,
SCMs, as a way to model Causal information. The SCMs can induce distribution Functions and
compatible DAGs to that distribution at the same time. In statistics, we use Distribution Functions as
a data generation process. In Causality inference we use the SCMs the same way with the exception
that these can give us much more information about the data than classical Distribution Functions.
The main reason that we use the SCMs as a modelling tool is their additional ability to produce
information about randomized-trial or their ability to induce Intervention distributions. One way
to identify that one variable has causal influence in the outcome of an other variable is by keeping
all the factors that influence the outcome variable static except the one we are interested in. This
is very difficult in practice. However, the SCMs give us the solution. In the Fifth Chapter of this
dissertation, assuming a known SCM which generate the data, we give a brief illustration about
how we can compute the Causal influence of a variable in a system based on the randomize trial
or precisely, the knowledge of intervention distributions. Finally, in the Sixth Chapter we illustrate
algorithms which extract the correct SCM from empirical data, and in the last Seventh chapter we
compare these algorithms under their ability to predict a correct SCM.
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ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Περίληψη

Τμήμα Μαθηματικών

Μεταπτυχιακό στην Στατιστική και Επιχειρησιακή ’Έρευνα

Βιβλιογραφική Ανασκόπηση της αιτιώδους συμπερασματολογίας με την Χρήση των
Δομικών Αιτιώδων Μοντέλων

Αναστάσιος Διονυσόπουλος

Σκοπός αυτής της διπλωματικής είναι η μοντελοποίηση της αιτιώδους συμπερασματολογίας, καθώς
και η μελέτη της σε εμπειρικά δεδομένα. Στην στατιστική, όταν βρίσκουμε δυο μεταβλητές εξαρτημένες
δεν συνεπάγεται ότι η εξάρτηση αυτή είναι αιτιακή, δηλαδή ότι η μια είναι η αιτία και η άλλη
το αποτέλεσμα. Δηλαδή, για την μοντελοποίηση της αιτιώδους συμπερασματολογίας εκτός απο
μέτρα συσχέτισης χρειαζόμαστε και μέτρα που να δείχνουν την κατεύθυνση της πληροφορίας.
Για αυτό τον σκοπό χρησιμοποιούμε τους κατευθυνόμενουν άκυκλους γράφους (ΚΑΓ). Στα πρώτα
τρία κεφάλαια, γίνεται μελέτη των ΚΑΓ ως προς την ικανότητα τους να αποθηκεύουν πληροφορία
που σχετίζεται με την εξάρτηση και ανεξαρτησία τυχαίων μεταβητών. Επίσης, διατυπόνονται και
δύο βασικές υποθέσεις 1) η Μαρκοβιανή και 2) η πιστότητα που παίζουν καθοριστικό ρόλο σε
αυτη την διαδικασία. Στην συνέχεια, στο τέταρτο κεφάλαιο παρουσιάζονται τα Αιτιώδη Δομικα
Μοντέλα (ΑΔΜ), τα οποία είναι ο τρόπος που χρησιμοποιήσαμε στην διπλωματική αυτή για την
μοντελοποίηση την αιτιακής συμπερασματολογίας. ΤαΑΔΜεχουν την ικανότητα να μοντελοποιούν
κατανομές πιθανότητας αλλα και συμβατους γράφους με την κατανομή την ίδια στιγμή. ’Οπως η
κατανομές στην στατιστική θεωρούμε οτι δημιουργούν τα δεδόμενα, έτσι και τα ΑΔΜστην αιτιώδη
συμπερασματολογία εχουν τον ίδιο ρόλο με την διαφορά οτι παρέχουν περισσότερες πληροφοριές.
Ο λόγος όμως που τα κάνει ιδιαίτερα προσιτό μέσο για την μελέτη της αιτιώδους συμπερασματολογί-
ας είναι οτι έχουν την δυνατότητα να μοντελοποιούν και κατανομές που προκύπτουν απο τυχαιοποιη-
μένες δοκιμές ή αλλιώς κατανομές που προέκυψαν μετά απο επέμβαση στο σύστημα. Ένας τρόπος
για να εξαταστεί αν μια μεταβλητή εχει αιτιώδη επίδραση σε μια άλλη είναι, κρατώντας όλες τις
παραμέτρους του συστήματος σταθερές, να μεταβάλεις μόνο την ζητούμενη και να δείς τις αλλαγές
που επιφέρει αυτή στο σύστημα. Αυτο όμως ειναι αρκετά δύσκολο να γίνει στην πραγματικότητα.
Παρόλα αυτά τα ΑΔΜ δίνουν την λύση σε αυτό το πρόβλημα. Στο πέμπτο κεφάλαιο με την
υπόθεση οτι το ΑΔΜ που δημιουργεί τα δεδομένα ειναι γνωστό, παρουσιάζεται ενδελεχώς ο τρόπος
υπολογισμού της αιτιώδους επίδρασης μιας μεταβλητής βασισμένος στις τυχαιοποιημένες δοκιμές-
κατανομές που προκύποτουν μετά απο επέμβαση. Τέλος στο έκτο κεφάλαιο παρουσιάζονται αλγόρ-
ρυθμοι εξαγωγής τωνΑΔΜαπο εμπειρικά δεδομένα και στο έβδομο και τελευταίο κεφάλαιο γίνεται
η σύγκρισή τους.
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Chapter 1

Graph Notation

1. Graph Terminology

A graph consists of vertices (or nodes),the set of all nodes in the graph is symbolized by V, and the
connecting links between them are known as edges,the set of all edges in the graph is symbolized
by E .

Figure 1.1: A graph example

A graph can be characterized as directed (Figure 1.2(a)),contains only directed edges (i → j).
Similarly, an undirected graph (Figure 1.2(b)), contains only undirected edges (i− j), and partially
oriented graph like (Figure 1.1), contains both directed and undirected edges.

7



Figure 1.2: (a) A directed graph example. (b) An undirected graph example.

Definition 1..1 (Graph). A graph G = (V, E) consists of (finetely many) nodes or vertices V and
edges E ⊆ V 2 with (v, v) 6∈ E for any v ∈ V .

The members of E are ordered pairs of vertices. For example, in figure 1.3 depicts two graphs:
G1 = (V1, E1) which V1 = {1, 2} and E1 = {(1, 2)}
G2 = (V2, E2) which V2 = {1, 2} and E2 = {(1, 2), (2, 1)}

Figure 1.3: adjacent,un-directed edges example

Let G = (V, E) be a graph with V := (1, ..., d). Then:

I Two nodes i and j are adjacent if either (i, j) ∈ E and (j, i) ∈ E .See, both graphs in Figure
1.3.

I We say that there is an undirected edge between two adjacent nodes i and j if (i, j) ∈ E and
(j, i) ∈ E .See, right graph in Figure 1.3.

I An edge between two adjacent is directed if is not undirected .We then write i→ jfor (i, j) ∈
E . See, left graph in Figure 1.3.
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Figure 1.4: Proper - Sub-graph skeleton example

I A graph G1 = (V1, E1) is called subgraph of G if V1 = V and E1 ⊆ E . If additionally E1 ⊂ E
then G1 is a proper subgraph of G. See, Figure 1.4

I Skeleton of G does not take the directions of the edges into account. It’s the graph (V, Ẽ)with
{(i, j), (j, i)}∈ Ẽ if (i,j)∈ E or (j,i)∈ E . See, Figure 1.4

We can make free use of the terminology of kinship (e.g., parents, children, descendants, an-
cestors) to denote various relationships in a graph. More precisely a node i is called a parent of j if
(i, j) ∈ E and (j, i) 6∈ E and the node i is called child of j if (i, j) 6∈ E and (j, i) ∈ E . The set of
parents of j is denoted by PAG

j and the set of its children by CHG
j in graph G. For example in graph

G of Figure 1.1 we have: PAG
5 = {2, 3, 6} , CHG

5 = {10}. We denote all the descendants of i by
DEG

i , excluding i1and all non-descendant ,excluding i, by NDG
i .

In fiure 1.1 DEG
2 = {5, 10} and NDG

10 = {5, 2, 3, 6, 4, 9}.

Figure 1.5: directed path collision example

Furthermore, we may define the following:

I A path in G is a sequence of (at least two) distinct vertices i1, ..., in such that there is an edge
between ik and ik+1∀k ∈ {1, ..., n}. For example in Figure 1.1 two possible paths are the
(9, 10, 5, 2, 1) and the (7, 8, 6, 4) .

I If ik → ik+1∀k we speak of a directed path from i1 toin and call the in a descendant of i1
see Figure 1.5(a).

1In this dissertation we assume that a node i is neither a descendant nor a non-descendant of itself.

9



I Three nodes are called an immorality or v-structure if one node is a child of two others that
themselves are not adjacent .

In figure 1.1 we can find the immoralities or v-structures : 2 → 5 ← 6 or 9 → 10 ← 5 etc ,
but if we have an arrow like 2→ 6

Figure 1.6: An alternative of figure 2.1

we lose the first immorality 2→ 5← 6.

I A graph G is fully connected if all pairs of nodes are adjacent. See, Figure 1.7.

Figure 1.7: Fully connected graph.

I A graph G is called directed if all its edges are directed.

I A graph G is called a partially directed acyclic graph PDAG if there is no directed cycle, i.e.
if there is no pair (j, k) with directed paths from j to k and from k to j.

I G is called directed and acyclic graph DAG if it is a PDAG and all the edges are directed.

In figure 1.8 there is an example of DAG left graph PDAG in right graph and cyclic directed
graph in the middle graph.
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Figure 1.8: DAG Partially-DAG and Cyclic Directed graph example

If a graph G is a DAG then easily proved that the graph has at least one node with no incoming
edges.

Proposition 1..1. If G is a DAG, then G has a node with no incoming edges.

Proof 1. We suppose that G is a DAG and every node of G has at least one incoming edge. We
pick any node v ∈ V , and follow edges backward from v, and repeat this procedure until we
visit a node, say w, twice. Let C denote the sequence of nodes encountered between successive
visits to w. C exists because |V | <∞. As a result C is a cycle but G is DAG and conclude to
contradiction. So there must be a node with no incoming edges.

Figure 1.9

We continue with the definition of d-separation generally in DAGs this graphical tool is very
important for the graphical representation of Probabilistic knowledge.

Definition 1..2 (d-sepereation). In aDAGG, a path between node i1 and node in is blocked by set of nodes S
(with neither i1 nor in in S) whenever there is a node ik such that one of the following two posibil-
ities holds:

1. ik ∈ S and ik−1 → ik → ik+1 or ik ∈ S and ik−1 ← ik ← ik+1 or ik−1 ← ik → ik+1

2. ik−1 → ik ← ik+1and neither ik nor any of its descendants is in S.

We say that two disjoint subsets of vertices A and B are d-separated by a third subset S (disjoint
too), if every path between nodes in A and B is blocked by S.
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To understand when two nodes i.e. i1, i2 are d-separated by a set of node S, we follow the
algorithm bellow.

Step 1: Find all the paths between nodes i1, i2.

Step 2: In every path, check all the paths between possible triplets of nodes, if is blocked (not active)or
not blocked (active) by S.

(a): If all the triplets of variables are active, then the path is active by S.

(b): If there is a triplet which is not active, then the path is not active by S.

Step 3: If all the paths between i1 and i2 are not active by S then i1, i2 is d-separated by S. But if
there is a path which is active, then is not d-separated by S.

Figure 1.10: d-separation algorithm

Let‘s turn algorithm into practice with the example below:

Figure 1.11

Example 1..2. (a) Given the graph of Figure 1.11 assume that we are interested in whether the
nodes A and B are d-separated from S := {D}. We start with the paths. In that case, we have two
paths A → C ← B and A → C → F ← D ← B. The first path A → C ← B is a v-structure
triplet and since C 6∈ S or any descendant of C, in our case the F, then the path become blocked by
S, so the path is not active. In the second path A → C → F ← D ← B, we start with the triplet
A, C, F which isn’t block ,so the triplet is active. Then we continue with C, F, D which is not active
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by D, so the path is not active. Thus, A,B are d-separated by S = {D}.
(b) Assume that we are interested in whether the nodes A and B are d-separated by S := {C}.
We start with the paths and we have the same paths as in the first case A → C ← B and
A → C → F ← D ← B. In the first path A → C ← B, this triplet of variables is not
blocked by C. Thus the path is active. In the second path A→ C → F ← D ← B , triplet A, C, F
is blocked by C, so the path is not active. Thus, A, B is not d-separated by S = {C}.
(c) assume that we are interested in whether the nodes A and B are d-separated by S = {C,D}.
We start with the same paths as in the first case A → C ← B and A → C → F ← D ← B. In
first path A → C ← B, the triplet of variables is not blocked by C. Thus, A, B is not d-separated
by S := {C,D}.
(d) Assume that we are interested in whether the nodes A and B are d-separated by S := {F}. We
start with the same paths, as in the first case A → C ← B and A → C → F ← D ← B. In the
first path A → C ← B, the triplet of variables is not blocked by F, since F is descendant of C and
F ∈ S. Thus, A, B is not d-separated by S := {F}.
(e) Assume that we are interested inwhether F,G are d-separated byS1 := {C}, S2 := {C,D}, S3 :=

{D,E}, S4 := {B}. Then for the S1 we have: F,G is not d-separated by {C} ,as the path
F ← D ← B → E → G is not blocked by C. For the S2: F,G is d-separated by {C,D} , as
all the paths are blocked. For the S3: F,G is d-separated by {D,E} , as all the paths are blocked.
Finally for the set S4: F,G is d-separated by {B}, as all the paths are blocked.

Definition 1..3 (Topological-Causal ordering). Given a DAG G, we say that the π ∈ Sp that is a
bijective mapping

π : {1, ..., p} → {1, ..., p}

is a topological-causal ordering of the variables if it is satisfies

π(i) < π(j) if j ∈ DEG
i

Because of the acyclic structure of theDAG, there is always a topological ordering. But this order
does not have to be unique.

Proposition 1..3. For each DAG G there is a topological ordering.

Proof 2. (by induction on n)
Base case: If n=1 (only one node), we have only one topological ordering.
Hypothesis: If G is a DAG of size ≤n, then G has topological ordering.
Step:Given DAG G with n+1 nodes, we can find a node v with no incoming edges (proposition
1.1). Then the graph G\{v} is a DAG, as we cannot create cycles by deleting v. By inductive
hypothesis, the G\{v} has a topological ordering.Now we can create topological ordering of
G by placing v first and then append topological ordering of G\{v}.This is valid since v has
no incoming edges.

Example 1..4. Figure 1.12 depicts two DAGs G1 and G2 . G1 has only one causal ordering π, while
the second graph G2 has more than one. We will show two of them π1, π2 :

In G1 π : 3 7→ 1, 1 7→ 2, 2 7→ 3, 4 7→ 4.
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In G2 π1: 1 7→ 1, 7 7→ 2, 2 7→ 3, 3 7→ 4, 5 7→ 5, 4 7→ 6, 6 7→ 7

In G2 π2: 7 7→ 1, 1 7→ 2, 2 7→ 3, 3 7→ 4, 5 7→ 5, 4 7→ 6, 6 7→ 7

Figure 1.12: G1 (left) and G2 (right)
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Graphical Representation of
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Chapter 2

Introduction to Bayesian Networks

As Pearl refers in his book (Pearl, 2009), p.13, and in paper, (Verma & Pearl, 1990a) p.2 .
“ The role of DAG in probabilistic and statistical modelling is threefold:

1. to provide convenient means of expressing substantive assumption;

2. to facilitate economical representation of joint probability function ;

3. to facilitate efficient inferences from observations. ”

In this chapter we will illustrate the second item.

Let X1, ..., Xn be n dichotomous variables characterized with joint density function P (X1 =

x1, ..., Xn = xn). To store the P (X1 = x1, ..., Xn = xn) explicitly would require a table 2n

entries. For illustration, consider the following example, alteration of (Pearl, 1988):

Example 0..1. Let that we want model the following story under a probabilistic approach: In my
city burglary and earthquakes are not uncommon and both can cause the alarm of my house. In case
of alarm, two neighbours John and Mary may call.
In this domain problem the dichotomous variables are :

I Burglary (B) with domain DB = {yes, no}

I Earthquake (E) » DE = {yes, no}

I Alarm (A) » DA = {yes, no}

I John Calls (J) » DJ = {yes, no}

I Mary Calls (M) » DM = {yes, no}

16



To solve any problem under a probabilistic approach we need the knowledge of density function:

P (B,E,A, J,M)

For example:

To store exactly the density function P (B,E,A, J,M) we need a table with 25 = 32 entries.1

The density distribution contains information of all aspects of the relationships among the vari-
ables. Thus we can compute any probability statement, for example: the probability of burglary
given that Mary called, P (B = y|M = y).
To compute the P (B = y|M = y) we need the marginal probability of B,M

P (B,M) =
∑

E,A,J

P (B,E,A, J,M)

P (B = y|M = y) =
P (B = y,M = y)

P (M = y)
=

.000115

.000115 + .00015
= 0.61

As a result, if wewant to store the density distribution of n dichotomous variables, sayX1, X2, .., Xn,
1This example will be used broadly in this chapter
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we need a matrix with 2n entries. An exponential storage! We can overcome the problem of expo-
nential storage size by exploiting conditional independence. Applying the chain Rule of Probabili-
ties we have :

P (X1 = x1, ..., Xn = xn) =

n∏
i=1

P (Xi = xi|X1 = x1, ...Xi−1 = xi−1) (2.1)

Under the above decomposition schema we don’t gain any storage. Since, if we sum the number of
parameters are required for each factor of the product we will find just the same number of entries.
However, if we suppose that the conditional probability of some variable Xi is not dependent to
all predecessors, X1, .., Xi−1, but only to a small subset of them, we could achieve a decrease in
the size of entries. In other words, for every factor P (Xi|X1, ..., Xi−1) we need to find a subset of
variables Pa(Xi) ⊆ {X1, ..., Xi−1} such that: given of Pa(Xi), Xi becoming independent of all
variables in {X1, ..., Xi−1} \ Pa(Xi) i.e.

P (Xi|X1, ..., Xi−1) = P (Xi|Pa(Xi))

So now on, instead of specifying the probability of Xi conditional to all possible realizations of its
predecessors X1, .., Xi−1 we need interest only the possible realizations of the set PA(Xi). The
set PA(Xi) is calledMarkovian-parents of Xi.

Definition 0..2. Let X = {X1, .., Xn} be an ordered set of variables, defining in the DXi
conse-

quentiality, with joint distribution PX and let p(X1, ..., Xn) be the joint probability density of these
variables. A set of variables PA(Xi) is said to be Markovian-parents ofXi if PA(Xi) is a minimal
set of predecessors of Xi that renders Xi independent of all its other predecessors. In other words
PA(Xi) ⊆ {X1, ..., Xi−1} satisfying

p(Xi = xi|X1 = x1, ..., Xi−1 = xi−1) = p(Xi = xi|Pa(Xi) = Pa(xi))

∀xi ∈ Dxi , ∀(x1, .., xi−1) ∈ Dx1 × ..×DXi−1

and such that no proper subset of PA(Xi) satisfy the above equation.

Then the Joint distribution can factorized as:

P (X1 = x1, ..., Xn = xn) =

n∏
i=1

P (Xi = xi|Pa(Xi)) (2.2)

Under this factorization maybe the number of parameters might have been substantially reduced.We
can demonstrate that in example 0..1.

Example 0..3.

P (B,E,A, J,M) = P (B)P (E|B)P (A|B,E)P (J |B,E,A)P (M |B,E,A, J)

We notice that:
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I P (E|B) = P (E)

I P (J |B,E,A) = P (J |A)

I P (M |B,E,A, J) = P (M |A)

So,

P (B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A)

Consequently Pa(B) = ∅, Pa(E) = ∅, Pa(A) = {B,E}, Pa(J) = A and Pa(M) = A

With Conditional Probabilities tables:

Under this factorization the model size is reduced .

Without making any reference in Theoretic aspect we will illustrate how possible and simple
is to represent probabilistic independencies with Directed Graphs. Maybe one naive idea for the
construction of a directed graph from a set of probabilistic independences will be drawing an arc
from Xj to Xi iff Xj ∈ PA(Xi). Under this remark in the example 0..1 we have:

Figure 2.1: DAG of example 0..1

So following this graphical criterion we can construct DAGs. In this particular DAGs each
node represent a random variable and arcs represent direct probabilistic dependences. Absence of
arc indicates conditional independence. Under the remark p(Xi|X1, ..., Xi−1) = p(Xi|Pa(Xi)),
which is the basis for the construction of this graphical representations, a variableXi is conditionally
independent of all its non descendants {X1, ..., Xi−1} given its parentsPa(Xi).
Thus, the procedure for constructing DAGs under this graphical criterion is the following. First
we choose a set of variables that describes the application domain and choose an ordering for the
variables. We start with the empty network and add variables to the network one by one according
to the ordering. Starting with the pair {X1, X2} we draw an arrow fromX1 toX2 if and only if the
variables are dependent. Continuing to X3, we draw no arrow from {X1, X2} to X3 in case X3 is
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independent of {X1, X2}; otherwise we examine if X3 is dependent on X1 and independent with
X2 or ifX3 is dependent onX2 and independent withX1. In the first case we draw an arrow from
X1 to X3 in the second case from X2 to X3, if X3 depends with X1 and X2 then we draw arrows
from both {X1, X2} to X3. In general in i-th state we find a minimal subset of Xi’s predecessor
variables, PA(Xi), which makes the Xi independent from all variables already in the network
(X1, .., Xi−1) such that :

p(Xi|X1, .., Xi−1) = p(Xi|Pa(Xi))

Then we draw an arc from Pa(Xi) toXi. The result is a DAG , called Bayesian-Network, in which
an arrow from Xi to Xj assigns Xi in the set of Markovian-Parent of Xj . In this procedure we
understand the importance of the ordering. For example:

Example 0..4. The Figures of this example is from (Yu, 2008).

In example 0..1 if we choose the ordering B, E, A, J, M we have :
Pa(B) = ∅, Pa(E) = ∅, Pa(A) = {B,E}Pa(J) = A,Pa(M) = A

We took the Bayesian Network depicted in Figure 2.2
If we choose the ordering M,J,A,B,E we have :
Pa(M) = ∅, Pa(J) = M,Pa(A) = {M,J}, Pa(B) = A,Pa(E) = {A,B}
We took the Bayesian Network depicted Figure 2.3
If we choose the ordering M,J,E,B,A we have :
Pa(M) = ∅, Pa(J) = M,Pa(E) = {M,J},
Pa(B) = {M,J,E}, Pa(E) = {M,J,E,B}
We took the Bayesian Network depicted Figure 2.4

Figure 2.2: Constructed Dag for example 0..1 under the B,E,A,J,M ordering

Figure 2.3: Constructed Dag for example 0..1 under the M,J,A,B,E ordering
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Figure 2.4: Constructed Dag for example 0..1 under the B,E,A,J,M ordering

We therefore conclude that the necessary condition for a DAG to be a Bayesian Network of a
probability distribution PX is p ,density of PX , to admit the product decomposition dictated by G,
as given in (2.2).

Definition 0..5. If a probability density p, of a distribution PX , admits the factorization of (2.2)
relative to a DAG G, we say that G represents PX , that G and PX are compatible, or that PX is
Markov relative to G.2

In example 0..4 we have illustrated the importance of the ordering of the variables. Given differ-
ent orderings we can create different compatible DAGs with PX ,called “Bayesian Networks”. The
ordering can be used to give us an intuitive interpretation about the meaning of time. The chronolog-
ical ordering is very important in Causality inference since the causes took place before the effects.
Thus given the chronological ordering into the variables we can construct a causal Bayesian network
and thus to infer causal relations.

Example 0..6. The density P (E,B,A,M, J) of the example 0..1 admit the factorization 2.2 rela-
tive to the below graphs.

Figure 2.5: Compatible graphs with the distribution PE,B,A,M,J

Thus the graphs G1,G2,G3 are compatible with the distribution PE,B,A,M,J of the example 0..1.

Until nowwe havementioned a graphical criterion which transform Probabilistic independences
into graphs. Under the opposite way of thinking, someone should have asked that given a DAG G
is possible to define a list of (conditional) independences ,“graphical independences”. Firstly we
need the definition of graphical independences in DAGs.For example in Undirected graphs some-
one could claim that if in the graph two nodes aren’t linked through path this nodes are graphical
independent. Secondly we need to examine if this induced graphical independences are the same
with the Probabilistic independences of the the compatible distributions PX with G.

2In the appendix of this chapter we use the terminology “G is an I-map of PX .”
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Example 0..7. In example 0..1 under the representation procedure we take the DAG, depicted in
Figure 2.1, which is constructed by the following conditional independence relationships of the
distribution PE,B,A,M,J :

E ⊥⊥ B, J ⊥⊥ B|A, J ⊥⊥ E|A,M ⊥⊥ B|A,M ⊥⊥ E|A,M ⊥⊥ J |A

What we need is a procedure to induce independences from the DAG of Figure 2.1 and to examine
if the induced graphical independences are satisfied in PE,B,A,M,J . Finally we need to examine if
there are other distributions P̃E,B,A,M,J which are compatible with G. Can we model them?

Graphical independences can read from the DAG by using the d-separation criterion.

Interpretation of d-separation

The definition of d-separation can be motivated by regarding DAGs as a representation of causal
relationships. Designated a node for every variable and assigning a link between every cause to each
of its direct consequences defines a graphical representation of a causal hierarchy, we can think it
like a chronological ordering. For example:

Example 0..8. a) To understand the first case of d-separation i.e. what means the nodes A, C
in the path: A → B → C are d-separated by the C, it’s wise to see the following example. If
“Variable(A)=it’s raining”, “Variable(B)=The pavement is wet”, “Variable(C)=John is slipped on
the pavement ”. It can be represented by a tree node chain as seen in the Figure 2.6. This means that
either rain or wet pavement could cause slipping, however wet pavement is designated as the direct
cause; rain could cause someone to slip but not if the pavement is covered. Moreover, knowing the
condition of the pavement renders “slipping” and “raining” independent.

Figure 2.6

b.) We can use the same example to understand the interpretation of the third case of d-separation:
What means A and D are not d-separated in the path: A → B ← D by B or any descendant of
B. Assume that a “broken pipe” (D) is considered to be another direct cause for wet pavement, as
seen in the Figure 2.7. In this case when we know the condition of the pavement i.e. “Wet=Yes”
an induced dependency is generated between the two variables that cause the pavement to get wet:
“rain” and “broken pipe”. Precisely, when the pavement is wet and the “Broken Pipe=Yes” then this
information makes the ”it’s raining” =yes less possible to exist. Although they appear connected in
Figure below3 these propositions are marginally independent and become dependent once we learn
that the pavement is wet or that someone broke his leg.

3connected means there are a path connecting them.
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Figure 2.7

c.) Finally for the third case of d-separation e.g. A and D become d-separated in the path
D ← E → A by E, is better to examine an other example. If “Variable(E)= Season” “Variable
(A)=Crime rate” and “Variable(D)=Ice-cream sales”. In Figure 2.8 present a hypothetical example
in which the Seasonal variation causally contribute to Ice-cream sales and in Crime-rate. In “sea-
son=summer” the Ice-cream sales and the Crime rate are increasing , and the opposite happened
when “Season=Winter”. So if we haven’t any idea about the season variation and we take just
data from Ice cream sales and Crime rates per month maybe we find a dependency. However this
dependency disappeared when we know the season.

Figure 2.8

From now on we will follow the following notation for the nodes which are d-separated: if A
andB are d-separated byC in the graph G we will denote them as (A,C,B)G orA ⊥⊥ GB|C. If two
nodes are d-separated by a third we will call them graphical conditional-independent by the third.
Also for the Probabilistic conditional independences ifX1 andX2 are conditional independent given
X3 in the PX we will denote them as (X1, X3, X2)PX or X1 ⊥⊥ PXX2|X3. Examining the graph
of the example 0..1:

we take the graphical independences

(B, ∅, E)G , (B,A,M)G , (B,A, J)G , (B,A,MJ)G , (E,A,M)G , (E,A, J)G ,
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(E,A,MJ)G , (M,A, J)G , (M,AB, J)G , (M,AE, J)G , (M,ABE, J)G

This graphical independences we want to include in the compatible distribution PB,E,A,J,M

which is used for the construction of the DAG i.e. in our case the distribution of example 0..1.

Theorem 0..9. If sets X and Y are d-separated by Z in a DAG G then X and Y are independent by
Z in every distribution compatible with G. Conversely, if sets X and Y are not d-separated by Z in
a DAG G then there exist at least one distribution compatible with G which X and Y are dependent.

Thus, starting with a distribution PX and construct the compatible DAG G then every graphical
independence in the DAG can be verified by the distribution PX . Moreover the Theorem 0..9
reveals that for a specific DAG G is possible to find more than one compatible distribution PX e.g.
is possible that we could find more than one different distribution P̃X that can construct the G.
A directed consequence of Theorem 0..9 is the following:

Theorem 0..10. For every three disjoint subset of nodes X,Y,Z in a DAG and for all probability
distribution PX we have:

1. (X,Z,Y)G =⇒ (X,Z,Y)PX whenever the G and PX are compatible

2. if (X,Z,Y)PX holds in all distributions compatible of G, this follows that (X,Z,Y)G .

For example:

Example 0..11. As we see from the graph of the Figure 2.2 is induced the above graphical inde-
pendences:

(B, ∅, E)G , (B,A,M)G , (B,A, J)G , (B,A,MJ)G , (E,A,M)G , (E,A, J)G ,

(E,A,MJ)G , (M,A, J)G , (M,AB, J)G , (M,AE, J)G , (M,ABE, J)G

Thus every Distribution PB,E,A,J,M (set X = {B,E,A, J,M}) is compatible with the graph, Fig-
ure 2.2, only if satisfy the above independences i.e. if satisfy:

(B, ∅, E)PX , (B,A,M)PX , (B,A, J)PX , (B,A,MJ)PX , (E,A,M)PX , (E,A, J)PX ,

(E,A,MJ)PX , (M,A, J)PX , (M,AB, J)PX , (M,AE, J)PX , (M,ABE, J)PX

The connection between d-separation and conditional independence is established through the
Theorem 0..9 and become clear the importance of d-separation criterion. A convenient way of
characterizing the set of distributions compatible with a DAG G is to list the set of (conditional)
independences that must be satisfied by each compatible distribution.
Now I want to mention two basic points:
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I Firstly from the Theorem 0..10 and the example 0..11 each compatible distribution PX with
the graph G can satisfy more independences than those induced from the graph i.e.

{set of triplets (X,Z,Y)PX } ⊇ {set of triplets (X,Z,Y)G}

I Secondly the ordering which the DAG is constructed does not enter into the definition cri-
terion of the Theorem 0..10; it is only the topology 4 of the resulting graph that determines
the set of independences that the probability PX must satisfy. Under that note the above
Theorem following normally.

Theorem0..12. Anecessary and sufficient condition for a probability distributionPX to be compat-
ible or Markov relative to a DAG G is that every variable be independent (probabilistic independent
in PX ) of all its non-descendants in G, conditional on its parents(excluding herself).

As we mention at the beginning of this chapter DAGs facilitate economical representation of
joint probability function. This idea is a result of graphical representation of independences. Pre-
cisely given a distribution function PX we generate a DAG G which is compatible to PX . Using the
d separation in this graph we can induce graphical independences which are part of the Probabilistic
independences in the compatible PX . i.e.

{set of triplets (X,Z,Y)PX } ⊇ {set of triplets (X,Z,Y)G}

Now the question which is raised normally is that in which cases the opposite way of the above
inequality holds?

{set of triplets (X,Z,Y)PX } ⊆ {set of triplets (X,Z,Y)G}

and thus

{set of triplets (X,Z,Y)PX } = {set of triplets (X,Z,Y)G}

In the next chapter we will see that this equation can verified only under two basic assumptions the
Markov Property and the Faithfulness.

4The shape of the graph i.e. his directed arrows and his skeleton
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Chapter 3

Markov
Property-Faithfulness-Causal
Minimality

In the previous chapter we gave a brief introduction about the Bayesian Networks and how these are
associated with distribution functions PX . The aim of this chapter is to answer the question when
the equation:

{set of triplets (X,Z,Y)PX } = {set of triplets (X,Z,Y)G} (3.1)

holds. For that reasonwewill illustrate two basic assumption, theMarkov property and Faithfulness.
If both assumptions hold, then every independence in the Distribution function PX can be validated
from the graph G and vice verse.

Thus, if the equation (3.1) holds for a PX and a graph G then every graphical independence in
the graph is also probabilistic independence in PX . This result is very important since we can use
the graph G to extract independences for PX with out any mathematical calculation.
As a result Pearl used that assumptions to develop his Theory about Causal inference. More pre-
cisely, Pearl used Direct graphs under that assumptions to develop transparent and clear justifica-
tions for the three basic methods1 for estimating causal effects that we will present in this disser-
tation: 1.) conditioning on variables to eliminate non causal associations by blocking all relevant

1We will see them in Chapter Calculating Interventions.
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back-door paths from the causal variable, 2.) conditioning on variables that allow for estimation
by a mechanism, 3.) and using an instrumental variable that is an exogenous shock to the causal
variable in order to consistently estimate its effect.

1. Markov Property

The Markov property is a commonly used assumption that forms the basis for graphical mod-
els.2 When a distribution is Markovian with respect to a graph, this graph encodes certain inde-
pendences in the distribution that we can exploit for efficient computation or data storage. The
Markov property exists for both directed and undirected graphs and it is well known that these
two classes encode different sets of independencies (see chapters Graphical Representation part (I
& II) ). In causal inference,however, we are mainly interested in directed graphs. While many
introductions to causal inference start with the Markov property as the underlying assumption,
we will derive it as a property of the graphs.

Definition 1..1. [Markov property]
LetX = {X1, .., Xn} set of variables with a joint distribution functionPX and a DAG G = {X , E}
. This distribution is said to satisfy

I the global Markov property with respect to the DAG G if

A,B, d-separated by C,A ⊥⊥ GB|C ⇒ A ⊥⊥ PXB|C

for all disjoint sets A , B , C .

I the local Markov property with respect to the DAG G if each variable is independent of its
non-descendants given its parents, and

I the Markov factorization property with respect to the DAG G if

p(x) = p(x1, ..., xn) =

n∏
j=1

p(xj |xpaG
j
)

Let assume thatPX has a density p . In this Dissertation, we always consider densities with
respect to a product measure.

Theorem 1..2. If PX has a density p with respect to product measure ,then all Markov properties
in Definition 1..1 are equivalent .

Proof 3. The proof can be found in [Lauritzen, 1996] Theorem 3.27 .

Example 1..3. A distribution PX with X = {X1, .., X5} is Markov with respect to the graph
G = (X, E) :

2Generally we illustrate the Markov Property in the previous example when we examine the compatible distributions in
DAGs.

27



if, according to global and local Markov properties,

X1 and X4 d-sep by {X2, X3} ⇒ X4 ⊥⊥ PXX1|X2, X3

X2 and X3 d-sep by X1 ⇒ X2 ⊥⊥ PXX3|X1

X5 and X2, X3 d-sep by X4 ⇒ X5 ⊥⊥ PXX2, X3|X4

X5 and X1 d-sep by X4 ⇒ X5 ⊥⊥ PXX1|X4

X5 and X1, X2, X3 d-sep by X4 ⇒ X5 ⊥⊥ PXX1, X2, X3|X4

or, according to Markov factorization property if p is the density of PX

p(x1, ..., x5) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x4)

Generally speaking, if a distribution PX satisfies one of the the above Markov properties with
respect to a graph G then the graph encodes some of the independences of the distribution PX i.e.

{set of triplets (X,Z,Y)PX } ⊇ {set of triplets (X,Z,Y)G}

TheMarkov condition relates statements about graph separation to conditional independences. Now
it’s possible to ask the question: Can different graphs encode exact the same set of conditional in-
dependences? The answer is given in the examples 1..4, 1..5 . Each of the following two examples
contains two graphs. The graphs share exactly the same set of d-separations. Under Markov as-
sumption in these graphs are encoded the same conditional independences :

Example 1..4. .
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These two graphs induce the same following graphical independences
X1 and X4 d-sep by ∅

X1 and X5 d-sep by {∅}, {X4}

X3 and X5 d-sep by X4

Example 1..5. .



X1 and X4 d-sep by ∅, X2

X1 and X5 d-sep by ∅, X4

X2 and X4 d-sep by ∅, X1

X2 and X5 d-sep by ∅, X4, X1, {X1, X4}

X3 and X5 d-sep by X4

These graphs share the same conditional independences however these graphs shares some ad-
ditional properties. As we have mentioned in the previous chapter given a graph we can find more
than one, Markovian, distribution which verify the induced list of d-separations. In the following
definition we will see that these graphs share the same Markovian distributions too.

Definition 1..6. [Markov equivalence of graphs]
We denote byM(G)the set of distributions PX that are Markovian with respect to G i.e.:

M(G) := {PX : PX satisfies the global (or local) Markov property with respect to G}

Two DAGs G1 and G2 are Markov equivalent ifM(G1) =M(G2). This is the case if and only
if G1 and G2 satisfy the same set of d-separations, which means the Markov condition entails the
same set of (conditional) independence conditions. The set of all DAGs that are Markov equivalent
to some DAG is called Markov equivalence class of G. It can be represented by a PDAG that is
denoted by CPDAG(G)=(V,E). It contains the (directed) edge (i, j) ∈ E if and only if one member
of the Markov equivalence class does.

From the above definition we understand that it is not a trivial procedure to determine when two
DAGs are equivalent. Since doing something like that we need to specify precisely all the classes
of distributions of theM(G) which is very difficult. However (Verma & Pearl, 1991) provide a
simpler graphical characterization.
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Lemma 1..7. [Graphical criteria for Markov equivalence] Two DAGs G1 and G2 are Markov
equivalent if and only if they have the same skeleton and the same immoralities.

Proof 4. (Verma & Pearl, 1991) provide a concise characterization, see also (Frydenberg,
1990).

Example 1..4 shows two Markov equivalent graphs .The graphs share the same skeleton and
both of them have only one immorality

X1 → X3 ← X4

and then the corresponding CPDAG

Example 1..5 shows two Markov equivalent graphs. The graphs share the same skeleton and both
of them have two immoralities.

X1 → X3 ← X4

X2 → X3 ← X4

But in the next example we must be very careful :

Example 1..8. Two Markov equivalent DAGs (a), (b) in Figure 3.1 are the only two DAGs in the
correspondingMarkov equivalence class that can be represented by the CPDAG (c) Figure 3.1. The
graphs share the same skeleton and both of them have only one immorality:

X1 → X3 ← X4

But in the CPDAG is required to add some extra arrows for example the arrowX2 ← X3 is required
to avoid a new v-structure, the X2 → X3 ← X4. Furthermore, X1 → X2 prevents the existence
of a directed cycle.
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Figure 3.1

Markov property has been proven to be a very useful tool. If we focus in the second Markov
property (local), each variable is independent of its non descendants, given its parents. Keeping that
in our mind we introduce the graphical concept of a Markov blanket (Pearl, 1988). That becomes
relevant when one tries to predict the value of a variable Y from the observed values of all the other
variables. One may then wonder what would be the smallest set of variables whose knowledge
renders the remaining ones irrelevant for the prediction task.

Definition 1..9. [Markov blanket]

Consider a DAG G = (X , E) and a node Y. The Markov blanket of Y is the smallest set of
variables,M ⊆ X , such that :

Y and X\(Y ∪M) d− seterated by M or Y ⊥⊥ GX\(Y ∪M)|M

If PX is Markovian with respect to G,then

Y ⊥⊥ PXX\(Y ∪M)|M

Thus, this tool gives us a very powerful technique in regression. In an idealized regression
setting we would only need to include the variables in M for predicting Y. In other words, if we
know the variables in Markov blanketM, the other variables do not provide any further information
when we predicting the variable Y.

Proposition 1..10. [Markov blanket II]
Consider a DAG G and a target node Y . Then, the Markov blanketM of Y includes its parents, its
children, and the parents of its children

M = PAY ∪ CHY ∪ PACHY

Until now in the dissertation we have examined and illustrated how to store Probabilistic Knowl-
edge in DAGs i.e. we use graphs as tool for storage Probabilistic independences. Nonetheless, we
haven’t done any reference to causation. As we will see in the next remark, the graphical repre-
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sentation of Probabilistic knowledge is a very useful tool for the illustration of Causality Inference.
In 1956 Reichenbach formulated the Reinchenbach common cause principle. This principle estab-
lished a link between statistical properties and causal structures.

Remark 1..11. When the random variables X and Y are dependent, there must be a causal expla-
nation for this dependence:

1. X is (possibly indirectly) causing Y, or

2. Y is (possibly indirectly) causing X, or

3. there is a (possibly unobserved) common cause T that (possibly indirectly) causes both X
andY.

Reichenbach common cause principle can be clearly confirmed with the theory of Markov prop-
erty.

Proposition 1..12. Assume that any pair of variables X and Y can be embedded into a larger system
in the following sense: there exists a DAG G over the collectionX of random variables that contains
X and Y. Then the Reichenbach’s common cause principle derives from the Markov property: If X
and Y are dependent in PX , then there is

I either a directed path from X to Y

I or from Y to X

I or there is a node T with directed path from T to X and from T to Y .

Proof 5. Due to the Markov property, the dependence implies that G contains a path between
X and Y. Otherwise, X,Y would be d-separated by ∅ and thus X,Y would be independent .
Also, the path between X and Y cannot contain a collider, otherwise it would be blocked by
the empty set again. The statement can be assumed since any path between X and Y without
collider must be of the form

X → ...→ Y

X ← ...← Y
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X ← ...← T → ...→ Y

The dependence between two variables may also arise for a reason different from the ones men-
tioned in the common cause principle. In real applications, we must be very careful because in
Reichenbach’s principle, we start with two dependent random variables and obtain a valid state-
ment, but in real statistical experiments, the dependence can appeared in many ways. For example,
conditioning in third variables, is something that in literature is called selection bias. This can lead
to Paradoxes like Berkson’s paradox (Berkson, 1947). In this case the dependence between X and
Y arise from none of the three conditions of Reichenbach common cause.

Example 1..13. Let X,Y, Z three variables with joint distribution PX,Y,Z and if we assume:
X = NX

Y = NY

Z = min(X,Y )

where NX , NY ∼ Ber(0.4). and the graph G

The distribution PX,Y,Z is Markov with respect to graph G because

X ⊥⊥ GY ⇒ X ⊥⊥ PX,Y,ZY

As we can see from the model above, X and Y are independent

P (X = 0|Y = 0) = P (X = 0|Y = 1) = 0.6 and

P (X = 1|Y = 0) = P (X = 1|Y = 1) = 0.4

However if we condition on Z=1

P (X = 1, Y = 1|Z = 1) = P (X = 1, Y = 1|min(X,Y ) = 1) =

P (X = 1, Y = 1|Y = 1, X = 1) = 1 6=

6= P (X = 1, Y = 1) = P (X = 1)P (Y = 1) = 0.16
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X 6⊥⊥ Y |Z = 1⇒ X 6⊥⊥ Y |Z

As a result X is not independent of Y given Z and non of the three cases of the Reichenbach holds.

2. Faithfulness and causal minimality

In the previous subsection, we discussed the Markov property, which help us when we read off
independences from a graph structure. More precisely :

{set of triplets (X,Z,Y)PX } ⊇ {set of triplets (X,Z,Y)G} (3.2)

In this section we will examine in which cases the other direction of the inequality (3.2) holds. This
can be achieved if we assume a further assumption the “Faithfulness”. As a result if we assume the
faithfulness and the Markov assumptions we achieve the equality:

{set of triplets (X,Z,Y)PX } = {set of triplets (X,Z,Y)G}

then everynon graphical independence in theDAGwillmean Probabilistic Dependency inPX .Thus
with “Faithfulness” assumption we can infer dependences from the graph structure.

Definition 2..1. Let X = {X1, ..., Xn} set of variables with joint distribution PX and a DAG
G = (X , E).

I PX is faithful to the DAG G if

A ⊥⊥ PXB|C ⇒ A and B d− separated by C or A ⊥⊥ GB

for all disjoint vertex sets A , B , C.

I A distribution PX satisfies causal minimality with respect to G if it is Markov with respect
to G , but not to any proper subgraph of G .

Faithfulness gives us exactly the opposite side of global Markov property

A and B d-separated in G by C ⇒ A ⊥⊥ B|C in PX

In the following examples, we start with two joint distributions PX1 , PX2 inducing the same in-
dependences. The distributions in both examples satisfy Markov condition and causal minimality
with respect to corresponding graph, but not the faithfulness in the first example.

Example 2..2. Consider the joint distribution PX,Y,Z
1 which is generated if:
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
X := NX

Y := aX +NY

Z := bY + cX +NZ

Where Ni ∼ N(0, σi), i ∈ {X,Y, Z} jointly independent,
and the graph:

Figure 3.2

For simplicity reasons let X := {X,Y, Z} G1 is Markov relative to PX
1 since from the graph

don’t induce any graphical independences. Also the graph satisfies the causal minimality property
since if we delete any arrowwe lose theMarkov property for example if we delete the arrowX → Y

then is generated the X ⊥⊥ GY so it violates the Markov property. Additionally, the Faithfulness is
satisfied too.
Now, we tune the parameters of the PX

1 like

ab+ c = 0

With the tuning, we make two paths that cancel each other and create an independence that is not
implied by the graph structure. Spirtes et al. [2000, Theorem 3.2] .

Z = bY + cX +Nz = bY − abX +Nz = b(Y − aX) +Nz = NY +NZ

Then we have : 
X := NX

Y = aX +NY

Z = bNY +NZ

Cov(X,Z) = Cov(NX , bNY +NZ) = Cov(NX , bNY ) + Cov(NX , NZ) = 0

X ⊥⊥ Z

The tuning distribution PX
1 is not faithful with respect to G1 (figure 3.2 )since we obtain X⊥⊥ Z,

but satisfies the Markov property since from the graph isn’t induced any d-separation requirement.
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So if we assume faithfulness in PX
1 with respect to graph G1 then the tuning ab = c is prohibited

because it generates a new independence in PX
1 . Under this way of thinking ,if we assume faithful-

ness then it is forbidden to have a = 0 , b = 0 or c = 0. As a result the PX
1 is faithful with respect

to G1 if and only if a, b, c, 6= 0, ab 6= −c.

Example 2..3. Let three variables X,Y,Z with joint distribution PX,Y,Z
2 which is determined by :

X := ÑX

Y = ãX + b̃Z + ÑY

Z = ÑZ

with Ñi ∼ N(0, t2i ) jointly independent.
If

ti :=


tX := σ2

X

tY = σ2
Y −

b2σ4
Y

b2σ2
Y +σ2

Z

tZ = b2σ2
Y + σ2

Z

and

 ã = a

b̃ =
bσ2

Y

b2σ2
Y +σ2

Z

and let the graph G2:

The joint distribution is multi-normal Nk(µ,Σ) .To describe a multi-normal distribution we need:

Mean = µ,Covariance-matrix = Σ, Dimension = k

In our case

36



µ = (0, 0, 0) and k=3

and

Σ :=


V ar(X) Cov(X,Y ) Cov(X,Z)

Cov(Y,X) V ar(Y ) Cov(Y, Z)

Cov(Z,X) Cov(Z, Y ) V ar(Z)



V ar(X) = V ar(ÑX) = σ2
X

V ar(Z) = V ar(ÑZ) = b2σ2
Y + σ2

Z

V ar(Y ) = V ar(ãX + b̃Z + ÑY ) = ã2σ2
X + b̃2V ar(Z) + σ2

Y −
b2σ4

Y

b2σ2
Y + σ2

Z

= ã2σ2
X + b̃2(b2σ2

Y + σ2
Z) + σ2

Y −
b2σ4

Y

b2σ2
Y + σ2

Z

=

= a2σ2
X +

b2σ4
Y

(b2σ2
Y + σ2

Z)
+ σ2

Y −
b2σ4

Y

b2σ2
Y + σ2

Z

= a2σ2
X + σ2

Y

Cov(X,Y ) = Cov(ÑX , ãX + b̃Z + ÑY ) = Cov(ÑX , ãX + b̃ÑZ + ÑY ) = ãV ar(ÑX)

= aσ2
X

Cov(X,Z) = Cov(ÑX , ÑZ) = 0

Cov(Y, Z) = Cov(ãX + b̃Z + ÑY , ÑZ) = Cov(ãÑX + b̃ÑZ + ÑY , ÑZ) =

= b̃V ar(ÑZ) =
bσ2

Y

b2σ2
Y + σ2

Z

(b2σ2
Y + σ2

Z) = bσ2
Y
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Σ :=


σ2
X aσ2

X 0

aσ2
X a2σ2

X + σ2
Y bσ2

Y

0 bσ2
Y b2σ2

Y + σ2
Z


After all these calculations, we can conclude that the joint distributions after tuning PX

1 example
2..2 and PX

2 example 2..3 are just the same (multi-normal with the same µ and Σ).
It can be checked that the distributions is faithful with respect to G2 if ã, b̃ 6= 0 and t 6= 0. The joint
distribution PX

2 is faithful with respect to G2 but not with respect to G1 ,the graph in example 2..2.
Nevertheless, for both models, causal minimality is satistisfied if none of the parameters vanished:
the distribution is not Markov to any proper subgraph of G1 or G2 since, removing an arrow , would
correspond to a new (conditional) independence that does not hold in the distribution.

Proposition 2..4. If PX is faithful and Markovian with respect to G , then causal minimality is
satisfied

Proof 6. If PX is Markovian with respect to a proper subgraph G̃ of G , there are two nodes
that are directly connected in G but not in G̃ ofG. Thus, these nodes are d-separeted by ∅ in new
G̃ and (from Markov condition) imply the corresponding conditional independence statement
in PX , but now PX cannot be faithful with respect to G.

Proposition 2..5. Consider the random vectorX = (X1, ..., Xp) and assume that the joint distribu-
tion PX has a density with respect to a product measure. Suppose that PX is Markov with respect
to G.Then PX satisfies causal minimality with respect to G if and only if ∀Xj∀Y ∈ PAG

j we have
that

Xj 6⊥⊥ Y |PAG
j /{Y }

Proof 7. [⇐]If Xj 6⊥⊥ Y |PAG
j .Assume that causal minimality is not satisfied, then we can

find a pair of variables Xj , Y ∈ PAG
j : PX Markov with respect to proper sub graph G̃, G

without the link Y → Xj , then Xj , Y d-separated by PAj in G̃ ⇒ Xj ⊥⊥ Y |PAG
j

[⇒] Let PX satisfy causal minimality with respect to G and assumeXj ⊥⊥ Y |PAG
j .Under the

assumpion Xj ⊥⊥ Y |PAG
j ⇒ p(Xj |PAj) = p(Xj |PAj\{Y }) .

If PX has a density, the Markov condition is equivalent to the Markov factorization .

p(x) = p(xj |paj\{y})
∏
i̸=j

p(xi|pai)

which implies that PX is markovian with respect to G, without the link Y → Xj thus causal
minimality is not satisfing.
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Part II

Causality Inference with Structural
Causal Models
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Chapter 4

Structural causal models

In order to deal rigorously with questions of causality, we must have a way to formally set down our
assumptions about the causal story behind a data set. To do so ,we introduce Structural causal mod-
els (SCMs), also known as (non-parametric) structural equation models (SEMs). In the literature,
SEMs have been used for a long time before causality inference in fields like genetics (S. Wright,
1921), econometrics (Haavelmo, 1943), electrical engineering (Mason, 1956); (Mason, 1953) and
social sciences (Goldberger & Duncan, 1973); (Duncan, 1975). In this dissertation , we deal with
Acyclic SCMs, a special well studied class of SCMs that is closely related to causal Bayesian net-
works (Pearl, Glymour, & Jewell, 2016). A structural causal model is the attempt to describe the
mechanism which nature assigns values to variables of interest.

As we will see in this chapter the purpose of causal inference is to connect graphs that represent
causal relations among variables with their joint probability distribution. (S. Wright, 1921) attempt
to illustrate this idea using the following example.
He tried to formulate the question how someone can express mathematically the common under-
standing that symptoms do not cause diseases. Wright for that pusrope used a combination of equa-
tions and graphs. For example, if X stands for the desiease and Y stands for a certain symptom of
the disease, Wright would write a linear equation

y = βx+ uY (4.1)

where x stands for the level (or severity) of the disease, y stands for the level (or severity) of the
symptom, and uY stands for all factors, other than the disease in question, that could possibly affect
Y when X is held constant,X = x. In interpreting this equation one should think of a physical
process whereby Nature examines the values of x and uY and, accordingly, assigns variable Y the
value y = βx + uY . Similarly, to “explain” the occurrence of disease X, one could write x = uX

where UX stands for all factors affecting X.
Equation 4.1 still does not properly express the causal relationship implied by this assignment pro-
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cess, because algebraic equations are symmetrical objects; if we rewrite 4.1 as

x =
y − uY

β
(4.2)

it might be misinterpreted to mean that the symptom influences the disease. To express the di-
rectionality of the underlying process, Wright augmented the equation with a diagram, later called
’path diagram,’ in which arrows are drawn from (perceived) causes to their (perceived) effects, and
more importantly, the absence of an arrow makes the empirical claim that Nature assigns values to
one variable irrespective of another. In Figure 4.1, for example, the absence of arrow from Y to
X represents the claim that symptom Y is not among the factors UX which affect disease X. Thus,
in our example, the complete model of a symptom and a disease would be written as in Figure 4.1
The diagram encodes the possible existence of (direct) causal influence of X on Y, and the absence
of causal influence of Y on X, while the equations encode the quantitative relationships among the
variables involved, to be determined from the data.

Figure 4.1: Path Diagram for the Wright’s example

The parameter β in the equation is called a “path coefficient” and it quantifies the (direct) causal
effect of X on Y .
In the previous example we examine the raw idea of Wright in this case where X,Y are linked with
linear connection. If we extend this idea we can model this process by writing X as a function (or
mechanism) f of Y and some independent noise UX ,X = f(Y, UX).
Formally, a structural causal model consists of two sets of variables V (X,Y in Wright’s example)
and U (UX , UY in Wright’s example) and a set of functions f that assigns each variable in V a value
based on the values of the other variables in the model.

I The variables in U are called exogenous variables , meaning, roughly, that they are external
to the model; we choose, for whatever reason, not to explain how they are caused.

I The variables in V are endogenous . Every endogenous variable in a model is a descendant
of at least one exogenous variable.

Exogenous variables cannot be descendants of any other variables, and in particular, cannot be a
descendant of an endogenous variable; they have no ancestors and are represented as root nodes in
graphs. If we know the value of every exogenous variable, then using the functions in f , we can
determine with perfect certainty the value of every endogenous variable.
In this dissertation we will assume every variable in U be jointly independent and arbitrary dis-
tributed.

∀Ui ∈ U with Ui ∼ PUi
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then PU1,...,Un
(u1, ..., un) = PU1

(u1)PU2
(u2)...PUn

(un)∀ui

Suppose now that we are interested in studying the causal relationships between a salary X and
Education Y. We might assume that Y also depends on, or is caused by, socio-economic levels as
captured by a variable Z . In this case, we would refer to X and Y as endogenous and Z as exogenous.
This is because we assume that socio-economic levels is an external factor.
From now on we will symbolize a SCM with S. As we see in the Wright’s example the SCM was
related with the DAG of the Figure 4.1. Thus every SCM is associated with a graphical causal
model, referred to informally as a graphical model or simply graph. Graphical models consist of a
set of nodes representing the variables in U and V , and a set of edges between the nodes which are
determined by the functions f.
Additionally, the graphical model G of an SCM S contains one node for each variable in S. If, in S
, the function fX for a variable X contains the variable Y so thatX = fX(Y, ..), then, there will be
a directed edge from Y to X in G. We will deal primarily with SCMs for which the graphical models
are DAGs. Due to the relationship between SCMs and graphical models , we can give a graphical
definition of causation, which states: “If, in a graphical model, a variable X is the child of another
variable Y , then Y is a direct cause of X ; if X is a descendant of Y , then Y is a potential cause of
X.”
Let’s illustrate the mathematical definition of SCM :

Definition 0..1. A Structure Causal Model (SCM) is defined as a tuple S := (S, PU ) ,where
S := (S1, ..., Sp) is a collection of p equations

Sj : Xj = fj(PAj , Uj), j = 1, ..., p (4.3)

PAj ⊆ (X1, ..., Xp)\{Xj} are called parents ofXj and PU = PU1,...,Up
is the joint distribution of

the noise variables, which we require to be jointly independent. PU is a product distribution.
The graph G of a structural causal model is obtained simply by drawing direct edges from each
parent to its direct effects, i.e., from each variable Xk ∈ PAj occurring on the right-hand side of
equation (4.3) toXj .We henceforth assume this graph to be acyclic. We sometimes call the elements
of PAj not only parents but also direct causes of Xj and we call Xj a direct effect of each of its
direct causes.
An augmented graph Ga of a structural causal model can be obtained simply by drawing direct edges
from each augmented parent(noise variables Uj and PAj) to its direct effects Xj .1

Example 0..1. LetS1 := (S1, P
U
1 ) where Ui jointly independent .

S1 =



X1 = f1(X3, U1)

X2 = f2(X1, U2)

X3 = f3(U3)

X4 = f4(X2, X3, U4)

1Generally, in acyclic SCMs in which the noise variables are independent, the augmented graph and graph do not differ
when it comes to the information they provide. For this reason, we will use whichever suits as best.
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represented in graph G1 Figure 4.2.
We can assign exact functions in S1 := (S1, P

U
1 ) and distributions in noise variables, i.e.

S1 =



X1 = 2X3 − 0.5U1

X2 = (0.5X1)
2 + U2

X3 = U3

X4 = X2 + 2sin(X3 + U4)

where Ui
P∼ N(0, 1)

Figure 4.2

SCMs are the key to formalize causal reasoning. With the next Proposition we will show that
an SCM is capable to entail observational distributions. However as we say in the previous chapter
a SCM unlike usual probabilistic models, they can additionally entail intervention distributions and
counterfactuals.

Proposition 0..2 (Entailed distributions). A SCM S defines a unique distribution over the vari-
ables (X1, ..., Xp) such that Xj = fj(PAj , Uj) in distribution, for j=1,...,d. We refer to it as the
entailed distribution PS

X .

Proof 8. The proof is in (Bongers, Peters, Schölkopf, & Mooij, 2016).
A plan of the proof, avoiding mathematical details, formalizes the procedure of sampling n
data points from a joint distribution.
i.e. Firstly, we generate U1, ..., Un ∼ PU and then subsequently use the structural assignments
f to generate i.i.d data points X1, ...Xn ∼ PX .
We recall that our definition of an SCM includes the requirement that the underlying graph is
acyclic. Thus, the graph has at least one topological ordering. Using one of the topological
ordering π , we can write each node j as a function of the noise terms Uk with π(k) < π(j).
We can substitute the structural assignments recursively into each other and can therefore write
each node Xj as a unique function of all noise terms (Uk)k∈ANj

that belong to the ancestors
of Xj .That is ,

Xj := gj((Uk)k∈ANj ) = gj((Uk)k:π(k)<π(j))
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Uk is a random variable and gj a measurable function, so Xj is a random variable .

Generally speaking, the existence of entailed distribution is a piece of a general property of
SCMs, called the solvability ,and it is not refered only to acyclic SCM , (Bongers et al., 2016).
For better comprehension, we can see example 0..1 and how this distribution generating process
works in R .

set . seed(1)
%Firstly generate from X3,\pi (1)=3 i .e . 3 is source node
X3 <− runif(100)−0.5
%continuing with X1 \pi (2)=1
X1 <− 2*X3+rnorm(100)
X2 <− (0.5*X1)^2+rnorm(100)^2
X4 <− X2+2*sin(X3+rnorm(100))

1. Interventions

1..1 Introduction to Interventions logic

A commonsensical idea about causation is that causal relationships are relationships that are poten-
tially exploitable for purposes of manipulation and control. Roughly speaking, if C is genuinely a
cause of E, then if we can manipulate C in the right way , this should be a way to manipulate or
change E. For this reason it is important to find way of representing manipulations in our causal
theory .We define this way as interventions. When we intervene to fix the value of a variable, we
curtail the natural tendency of that variable to vary in response to other variables in nature. Let’s
see some manipulation examples in practice .

1. Let us examine the correlation between ice cream sales and crime rate. One possible inter-
vention in this system is to set ice cream sales low. One way to do so is e.g. say, by shutting
down all ice cream shops. When we examine correlations in this new manipulated system
(under intervention) we find that crime rates are totally independent (i.e., uncorrelated) to ice
cream sales.

2. Assume that we have a sequence of upright Domino blocks. A possible system intervention
is to keep e.g. the second block fixed in an upright position (e.g. say, by glueing it to the
floor). Then we can conclude that each block only directly causes the next neighboring stone
to topple.

Consequentially, the ultimate aim of many statistical studies is to predict the effects of interven-
tions.
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I When we collect data on factors that are associated with air pollution in Athens, we are actu-
ally searching for something we can intervene upon in order to decrease air pollution.

I When we perform a study on a new drug , we are trying to identify how a patient’s illness
responds when we intervene upon it by medicating the patient.

I When we research how aggressive acts by youngsters is affected by violent PC-games, we are
trying to determinewhether reducing children access to violent gameswill result in aggression
reduction.

In statistics we use the randomize trials if we want to illustrate interventions .

Randomize Trials

In a properly randomized controlled experiment, all factors that influence the outcome variable
are either static, or vary at random, except for one. Any change in the outcome variable must be
due to that one input variable. For this reason, the randomized controlled experiment is considered
”the golden standard of statistics”.
(Peters, Janzing, & Schölkopf, 2017), an early example of a randomized trial was performed by
James Lind. During the eighteenth century, Great Britain lost more soldiers from scurvy than from
enemy action; vitamin C and its relation to scurvy was still unknown. The Scottish physician James
Lind (1716-1794) worked as a surgeon on a ship and reports the trial as follows [cited after Bhatt,
2010]:

On the 20th of May 1747, I selected twelve patients in the scurvy, on board the Salisbury at sea.
Their cases were as similar as I couldhave them. They all in general had putrid gums, the spots
and lassi- tude, with weakness of the knees.... Two were ordered each a quart of cyder a day. Two
others took twenty-five drops of elixir vitriol three times a day.... Two others took two spoonfuls of
vinegar three times a day.... Two of the worst patients were put on a course of sea-water.... Two
others had each two oranges and one lemon given them every day.... The two remaining patients,
took ... an electary recommended by a hospital surgeon.... The consequence was, that the most
sudden and visible good effects were perceived from the use of oranges and lemons; one of those

who had taken them, being at the end of six days fit for duty.

Unfortunately,many questions do not lend themselves to randomized controlled experiments.
We cannot control the weather, so we cannot randomize the variables that affect wildfires. Even
randomized drug trials can run into problems when participants drop out, fail to take their medica-
tion, or misreport their usage. Precisely (Rubin, 1974) in the preface of his paper mentions :
“(a) the cost of performing the equivalent randomized experiment to test all treatments is prohibitive
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(e.g., 100 reading programs under study); (b) there are ethical reasons why the treatments cannot
be randomly assigned (e.g., estimating the effects of heroin addiction on intellectual functioning);
or (c) estimates based on results of experiments would be delayed many years (e.g., effect of child-
hood intake of cholesterol on longevity).”
In cases where randomized controlled experiments are not practical, researchers instead perform ob-
servational studies, in which they merely record data, rather than controlling it. The problem of such
studies is that it is difficult to distinguish the genuine association “causal” from false associations
“not causal”.

1..2 Interventions with SCM

SCM give us the opportunity to model interventions in the system even if those interventions are
very difficult or impossible to happen when we record the data . Hence, we construct intervention
distributions from an SCM S. They are obtained by making modifications to S and considering the
new entailed distribution P̃X .

As we saw in the previous section every endogenous variable Xj connects with parent variables
PAj under functional relationship Xj = fj(PAj , Uj).Moreover, the functional characterization
provides a convenient language for specifying how the resulting distribution would change in re-
sponse to external interventions. This is accomplished by encoding each intervention as an alteration
on a selected subset of functions e.g. fj → f̃j while keeping the other functions intact. For example
: Let

S =



X1 = f1(U1)

X2 = f2(X1, U2)

X3 = f3(U3)

X4 = f4(X2, X3, U4)

If we want to intervene in X2 and assign new mechanism f̃2 and keep all the other fi mechanisms
intact.

S̃ =



X = f1(U1)

X2 = f̃2(P̃A2)

X3 = f3(U3)

X4 = f4(X2, X3, U4)

We can consider this procedure as the Randomized trial where all the factors follow the original
mechanisms , except for one. The central idea is that when we intervene to one mechanism e.g.
fk → f̃k the others are not affected by this change e.g. this stay intact. 2

Once we know the identity of the mechanisms altered by the intervention and the nature of the
alteration, the overall effect of the intervention can be predicted by modifying the corresponding

2all this is results of a general principle of (physically) independent mechanisms. (Peters et al., 2017) p.19

Principle 1..1. The causal generative process of a system’s variables is composed of autonomous modules that do not inform
or influence each other.
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equations in the model and using the modified model to compute a new entailed probability function
just in the same way as before we entail the observational distribution.

Definition 1..1 (Intervention Distribution). Consider a distribution PX that has been generated
from an SCM S := (S, PU ).We can then replace one (or more) structural equation without gen-
erating cycles in the graph and obtain a new SCM S̃. We call the distribution in the new SCM
intervention distribution and we say that the variables whose structural equation have replaced
have been intervened on. We denote the new distribution by

P S̃
X = P

S;do(Xj=f̃(P̃Aj ,Ũj))
X

The set of noise variables in S̃ now contains both some “new” ˜U’s and some “old” U’s, all of which
are required to be jointly independent. Some types of interventions are:

I When f̃(P̃Aj , Ũj) = c, namely PS;do(Xj=c)
X , we call it atomic intervention .

I When the marginal distribution of the intervened variable has positive variance is called
stochastic intervention.

Example 1..2. Let SCM:

S =

 X = 2UX

Y = 3X + UY

with UX , UY ∼ N (0, 1) jointly independent

Figure 4.3

Suppose that PS
X,Y is the induced distribution of SCM S. Then the marginal distribution of Y:

PS
Y = N (0, 37)

Now if we want to intervene on X and precisely on do(X = 2), the SCM is modified to :

S̃1 =

 X = 2

Y = 3X +NY

and now the new marginal distribution of Y :

P S̃1

Y = P
S;do(X=2)
Y = N (6, 1)

Following the same concept, we have :

P
S;do(X=3)
Y = N (9, 1)
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In this example if we are interested in the conditional distribution ofY givenX=x and the comparison
with intervention marginal distribution,do(X=x):

P
S|X=2
Y = N (6, 1) = P

S;do(X=2)
Y 6=

P
S|X=3
Y = N (9, 1) = P

S;do(X=3)
Y

Intervening on X changes the distribution of Y.
But on the other hand, if we intervene on X we have:

PS
X = N (0, 4) = P

S;do(Y=1)
X = P

S;do(Y=7)
X = P

S;do(Y=123456789)
X

On the other hand:

N (0, 4) 6= P
S|Y=1
X 6= P

S|do(Y=1)
X

because

PS
X,Y = N

[(
E[X]

E[Y ]

)
,

(
V ar(X) Cov(X,Y )

Cov(X,Y ) V ar(Y )

)]
=

= N

[(
0

0

)
,

(
4 12

12 37

)]

so [µ,Σ] =

[(
0

0

)
,

(
4 12

12 37

)]
and Cor= 12

2
√
37
. Also, we can prove that:

P
S|Y=y
X = N (E[X] +

Cov(X,Y )

V ar(Y )
(y − E[Y ]), (1− Cor(X,Y )2)V ar[X]) =

Hence,

P
S|Y=1
X = N (

12

37
, (1− 122

148
)4)

As a comparison, no matter how strongly we intervene on Y, the distribution of X remains invariant.

This example motivates two basic ideas.

I Firstly, it confirms our intuition about relation cause-effect . No matter how strongly we
intervene on the effect, the distribution of cause remains invariant e.g: “The more someone
whitens its teeth will not have any effect on his smoking habits”

I and secondly, it gives us an idea about the difference of intervene on and condition on vari-
ables. Precisely the deference Seeing versus Doing

Let’s start with the difference between intervene on and condition on.
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Generally,

I P (Y = y|X = x) ) is the probability that Y = y conditional on finding X = x, and reflects
the population distribution of Y among individuals whose X value is x.

I P (Y = y|do(X = x)) is the probability that Y = y when we intervene to make X = x
represents the population distribution of Y if everyone in the population had their X value
fixed at x.

Example 1..3. Let‘s go back to the swimsuit sales - violent crimes rates example. Let X:=swimsuit
sales, Y:=temperature, Z:=violent crimes. We have mentioned that the swimming sales is associated
with the violent crime rates(X 6⊥⊥ Z). However, if we were to intervene to make swimsuit sales low
(say, by shutting down all summer clothing shops), this intervention corresponds to do(X = x),
we would have the new SCM with graph shown in Figure 4.4 (b). When we examine correlations
in this new SCM, we find that crime rates are, of course, totally independent of swimsuit sales
(X ⊥⊥ Z)since the latter is no longer associated with temperature. If we consider the corresponding
SCM without intervention on swimming suites:

S :=


X = f1(Y,N1)

Y = f2(N2)

Z = f3(Y,N3)

with graph Figure 4.4(a). On the other hand the SCM with intervention on swing suites is:

S̃ :=


X = x

Y = f2(N2)

Z = f3(Y,N3)

with graph Figure 4.4(b)

Figure 4.4: Graph of SCM S := (S, PN ) (a) and S̃ := (S̃, PN ) (b)

In the corresponding intervention distribution

P
S;do(X=x)
X,Y,Z
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we would find X ⊥⊥ Z since Z = g(N3, N2) .
This holds independently of the distribution of ÑX . In other words, even if we vary the level at
which we hold X constant, that variation will not be transmitted to variable crime rates.We say there
is no causal effect from X to Z.

Thus, motivated the last statement of the previous example we define the existence of a total
causal effect [(Pearl, 2009), total causal effect].

Definition 1..2. [Total causal effect] Given a SCM S , there is a total causal effect from X to Y if
and only if :
X 6⊥⊥ Y in PS;do(X:=ŨX)

X for some random variable ŨX .

Equivalent statements for total causal effect are:

Proposition 1..4. [Total causal effects] Given a SCM S , the following statements are equivalent:

1. There is a causal effect from X to Y .

2. There are xa and xb, such that PS;do(X:=xa)
Y 6= P

S;do(X:=xb)
Y

3. There is xa, such that PS;do(X:=xa)
Y 6= PS

Y

4. X 6⊥⊥ Y in PS;do(X:=ŨX)
X,Y for any ŨX whose distribution has full support.

In general, we have that

Proposition 1..5. (Graphical criteria for total causal effects)

I If there is no directed path from X to Y , then there is no total causal effect.

I Sometimes there is a directed path but no total causal effect.

Remark 1..6. [Correct SCM] Formally, we say that a SCM S over X = (X1, ..., Xp) is a correct
model (the correct SCM) for the underlying data generating process if the observational distribu-
tion is correct and all interventional distributions PS;do(X:=ŨX)

X correspond to distributions that we
obtain from randomized experiments . Importantly, a SCM is therefore falsifiable (if we can do the
randomized experiments).

.

2. Counterfactuals

Before giving the definition of counterfactuals, let‘s see some examples of counterafactual state-
ments :
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I While driving home last night, I came to a fork in the road, where I had to make a choice:
to take the freeway (X = 1) or go on a surface street (X = 0) . I took surface street , only to
find out that the traffic was touch and go. As I arrived home, an hour later, I said to myself , I
should have taken the freeway. i.e If I had taken the freeway, I would have gotten home earlier.

I We assume playing football-bets and there is the football match AEK-OFI. We bet the exact
score 0-1. 4 minutes before the finish of the match, AEK scored to go up 1-0 . We make the
hypothesis : If I had reversed the betting score in betting slip, my chances would have been
good to win.

I Finally , If he had eaten more at breakfast, he would not have been hungry at 11 am.

These reactions are typical counterfactual statements. The above statements called Counterfactuals
because follow the same logic3. This statement incorporates the observed data (e.g. my bet was 0-1
and the score 4 minutes before the finish was 1-0)into the model , and then analyses an intervention
distribution (e.g. I had reversed the bet), in which the rest of the environment remains unchanged (
score 4 minutes before finish the match 0-1).
We use counterfactuals to emphasize our wish to compare two outcomes (e.g., driving times,betting
outcomes) under the exact same conditions, differing only in one aspect.
We saw in the previous subsection how structural causal models can be used to induce distributions
e.g. observational or interventional which correspond to the new observed distribution if we manip-
ulate the system. In this section, we show that, by using the same operation in a slightly different
context, we can use SCMs to define what counterfactuals stand for and how to read counterfactuals
from a given model.

Definition 2..1. [Counterfactuals] Consider a SCM S = (S, PU ) over nodes X. We define a
counterfactual SCM by replacing the distribution of noise variables:

SX=x = (S, P
S|X=x
U )

where PS,X=x
U := PU |X=x

4 The new set of noise variables does not need to be mutually indepen-
dent anymore. Counterfactual statements can now be seen as do-statements in the new counterfac-
tual SCM.

We demonstrate this definition on a simple causal model:

Example 2..1.

S :=

 X = 7UX

Y = 9X + UY

with graph:
3To illustrate the logic behind the counterfactual statement I use the 2nd counterfactual statement
4(Peters et al., 2017) In the continuous case, this definition comes with measure theoretic problems since usually the

conditional distribution is only defined up to nullsets. To make our life easier, we restrict counterfactuals to the discrete
case, that is, when the noise distribution has a probability mass function. In the case of continuous variables with density,
we condition not on X=x but onX ∈ A with P (X ∈ A) > 0 instead.
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withUX , UY ∼Discrete-uniform in (-10,10).Nowwe assume observing (X,Y ) = (14, 122). Then
P

S|X=14,Y=122
U = PU |X=14,Y=122puts a point of mass on (UX , UY ) = (2,−4). We therefore,

have the counterfactual statement(in the context of (X,Y ) = (14, 122):

I “Y would have been 3 had X been 2. This sentence is interpreted as :Y would have been 3
had X been set to 2,do(X = 2). Or:
P

S|X=(14,122);do(X=2)
Y has a point mass on 3⇔ PS|X=(14,122);do(X=2)(Y = 3) > 0 ”

Example 2..2.

S :=


X = UX

Y = X2 + UY

Z = 2Y + UZ

with graph

with UX , UY , UZ ∼ U(−2, 2).Now we assume observing (X,Y, Z) = (1, 2, 4) and then
(UX , UY , UZ) = (1, 1,−1) we therefore have the counterfactual statement:

I Y would have been 4, had X been 4 ,namely PS|(X,Y,Z)=(1,2,4);do(X=4)
Y=4 > 0

I Z would have been 2, had X been 10 namely PS|(X,Y,Z)=(1,2,4);do(X=10)
Z=2 > 0

Pearl [2009](Pearl, 2009) uses the somewhat simpler notation Zx(u) , where the subscript x
denotes the intervention do ( X : = x ) and u represents the additional information about the error
terms, which he calls u , under X = x .
The following example illustrates the following idea : counterfactuals cannot provide any informa-
tion about our decisions before the outcome becomes true.
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Example 2..3. A patient with blocked heart arteries goes to the hospital and dies(B=1) after the
doctor suggests the treatment (T=1). Let‘s assume that the correct SCM has the form

S :=

 T = UT

B = TUB + (1− T )(1− UB)

with UB = Ber(0.03) .The question: What did have happened if the doctor had decided to give
the treatment T = 0? Doctor act optimally?
We notice that if (B,T)=(1,1) then (UB , UT ) = (1, 1).We ,therefore, have the counterfactual state-
ment T = 0 then :

P
S|(B,T )=(1,1);do(T=0)
B=1 = PS|(B,T )=(1,1)(B = 1|do(T = 0)) = 0

and

P
S|(B,T )=(1,1);do(T=0)
B=0 = PS|(B,T )=(1,1)(B = 0|do(T = 0)) = 1

P
S|(B,T )=(1,1);do(T=0)
B = Ber(0)

As a result if the doctor had change the treatment the patient will live. However he act optimally ?
We can answer this question if we compare the two above intervention probabilities:

P (B = 0|do(T = 0)) = 0.03

P (B = 0|do(T = 1)) = 0.97

As a result, the doctor acted optimally with the decision T = 1 since P (B = 0|do(T = 1)) >

P (B = 0|do(T = 0)) . However, if he knew the outcome of his decision, B = 1, then he would
change his opinion to T = 0 because PS|(B,T )=(1,1)(B = 0|do(T = 0)) = 1 . For that reason,
we say that we cannot provide details about the role of counterfactuals in our law system. The
counterfactual statement requires knowledge which we do not have. For counterfactual statements,
there is no apparent correspondence in the real world. But if there is none, these statements may be
considered as being not falsifiable and therefore as non-scientific according to Popper [e.g. Popper,
2002].
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Can we have two SCMs with the same observational distribution, same interventional distributions
, same graphs but different counterfactual statemens?
The answer is yes :

Example 2..4. We define two different SCMs.

S1 :=


X1 := U1

X2 := U2

X3 := (IU3>0X1 + IU3=0X2)IX1 ̸=X2
+ U3IX1=X2

Where IU3>0 = 1 if U3 > 0 and U1, U2 ∼ Ber(0.5), U3 ∼ U({0, 1, 2}) and graph:

S2 :=


X1 := U1

X2 := U2

X3 := (IU3>0X1 + IU3=0X2)IX1 ̸=X2
+ (2− U3)IX1=X2

With graph:

Both of two SCMs generate the same observational distribution X1, X2 ∼ Ber(0.5) and in X3

irrespective the (IU3>0X1 + IU3=0X2)IX1 ̸=X2
we have U3 ∼ (2− U3) ∼ U({ 0,1,2 }). The last

statement ,thatX3 follows the same marginal distribution in S1 and S2, can be validated also if we
simulate same data from that marginal distribution in every SCM:

Also its easy to validate that for any possible intervention they entail the same intervention
distributions. But the two models differ in a counterfactual statement. We suppose having observed
(X1, X2, X3) = (1, 0, 0) and we are interested in the counterfactual question: what wouldX3 have
been if X1 had been 0? Under (X1, X2, X3) = (1, 0, 0) we have (U1, U2, U3) = (1, 0, 0) ,but we
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can prove different ”predict” values forX3 under a counterfactual change ofX1 in the S1 we have
X3 = 0 and in the S2 X3 = 2.

Counterfactual statements depend strongly on the structure of the SCM.Both SCMs correspond
to the same causal graphical model , and in this sense, causal graphical models are not rich enough to
predict counterfactuals. This the resson we use SCM and not just graphs is causal research .Also this
example shows that we require assumptions that let us distinguish between SCMwith this problems.

3. SCM and Causal Assumptions

In chapter 3 we described the Markov Property, Causal minimality and faithfulness assumption .
In this section we will examine how the induced graph and observed distribution from a SCM is
related with some of the above assumptions.

Proposition 3..1. Assume that PX is generated by an acyclic SCM with graph G. Then, PX is
Markov with respect to G.

Proof. The proof is in (Pearl, 2009).

As we mention in the Chapter ?? given a joint distribution function PX we can generate several
SCM. How rich is the class of that SCM? The answer is given in the above Proposition.

Proposition 3..2. Consider X1, .., Xp and let PX have a strictly positive density with respect to
Lebesgue measure and assume it is Markov with respect to G. Then there exists a SCM(S,PN ) with
graph G that generates the distribution PX .

So given a distribution PX over random variables X = X1, ..., Xp. We can find more than
one graphs which are markov equivalent w.r.t a distribution and from proposition 3..2 this leads to
more than one SCM which induce the distribution and the graphs respectively. This can answer the
question how many different SCMs entail a distribution.
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Chapter 5

Calculating Intervention
Distributions

In this chapter we will assume that we know the true causal structure. Hence using the underly-
ing causal structure we will examine methods calculating Intervention distributions. Thus an other
possible title for this chapter could have been: “Using the known underlying causal structure cal-
culating Intervention Distribution”.

1. Calculating intervention distribution from SCM

In chapter 1..2 we saw how to generate,“induce”, an intervention distribution from a SCM. Given a
SCM S if we are interested in intervening onXk we transform the structure equation Sk ofXk i.e.
:

Xk := f(PAk, Uk)→ Xk := f̃( ˜PAk, Ũk)

and the other structure equations remain invariant. Thus we obtain to a new SCM S̃. In the new
SCM the other equations remain invariant thus the parents for every variableXj 6= Xk are the same
i.e. ∀j 6= k PAS̃

j = PAS
j

1. Now if we are interested about the density of Xj 6= Xk condition on
PAG

j in the new intervention SCM we have :

pS̃(xj |paGj ) = pS(xj |paGj ) (5.1)

The above result is one of the most useful and appealing results of the SCM. Specifically if we inter-
vene on a variable, then the other mechanisms2 remain invariant. Precisely consider the following

1If G is the induced graph from the S then PAS
j = PAG

j . Thus in our case we have PAG̃
j = PAG

j
2the other functions fk e.g. the other structural equations Sk
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SCM 
X := f1(UX)

Y := f2(X,UY )

Z := f3(Y,X,UZ)

Now if we intervene on Y i.e. do(Y=y) the resulting SCM will be:
X := f1(UX)

Y := y

Z := f3(Y = y,X,UZ)

Aswe see the intervention changes only the equation assignmentSY (more precisely the mechanism
which generates the variable Y ) but this change will not affect the other causal mechanisms SX , SZ

because the functional forms f1, f3 remain invariant. Only the inputs of the structure assignments
of Z will change. Thus the condition density of X and Z in the new SCM will be just the same i.e.

pS̃(x|paGX) = pS(x|paGX), pS̃(z|paGZ) = pS(z|paGZ) (5.2)

The equation 5.1 is very important for the computation of intervention distributions even though we
have never seen data from them.
Consider a SCM S with structural assignments Sj

Xj := fj(XPAj , Uj) j = 1, .., p

and density pS . Because of the Markov property ,we have :

pS(x1, ..., xp) =

d∏
j=1

pS(xj |xpaj
)

Now consider the SCM S̃ is evolved from S after do(Xk := Ñk) , where Ñk allows for the
density p̃. Again, from the Markov assumption we conclude that :

pS:do(Xk=Ñk)(x1, ..., xp) =
∏
j ̸=k

pS:do(Xk:=Ñk)(xj |xpaj
)pS:do(Xk:=Ñk)(xk) =

=
∏
j ̸=k

pS:do(Xk:=Ñk)(xj |xpaj )p̃(xk) =

=
∏
j ̸=k

pS(xj |xpaj
)p̃(xk)

In the last step, we use the equation 5.1. Hence:

pS:do(Xk=Ñk)(x1, ..., xp) =
∏
j ̸=k

pS(xj |xpaj )p̃(xk) (5.3)
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The equation 5.3 allows us to compute an interventional statement (left-hand side) from observa-
tional quantities (right-hand side). As a special case if we define an deterministic function for the
Ñk i.e Ñk = a with probability 1, we obtain:

pS:do(Xk=a)(x1, ..., xp) :=


∏

j ̸=k p
S(xj |xpaj

) if xk = a

0 otherwise

In practice the equation 5.3 are widely applicable but sometimes a bit cumbersome to use. Hence
we will learn about some practical alternatives. We motivate our perspective with the following
example.

Example 1..1 (Kidney stone). We record the recovery rates of 700 patients. The first half was
treated with open surgery (treatment T= a , 78% recovery rate) and the other half with percutaneous
nephrolithotomy ( T = b , 83 % recovery rate), a surgical procedure to remove kidney stones by a
small puncture wound. Also observing the data in more detail, we can categorize kidney stones of
the patients into small and large stones.
We don’t know the correct SCM but let’s assume to be known with graph is depicted in the Figure
5.1:

Figure 5.1: Kidney stone Graph

where

.


T=treatment

Z=size of the stone

R=recovery

Note that, all the variables are binary.
Generally if we want to describe this clinical trial under a structural-causal perspective we can do
it, using the following the sense. Firstly let assume that the observed data come from a SCM S3.
We consider now two other SCMs SA which depicts the correct SCM after intervention on T=A,
do(T=A), and SB which depicts the system after intervention on T=B, do(T=B). In practice, the
intervention SCMs SA is obtained if all the patients take the treatment A and SCMs SB is obtained
if all the patients take the treatment B. In real life having these experiments the same time is obvious
impossible. However the SCM solve that issue using the equation 5.3 and the observed data. Let
us call the corresponding resulting probability distributions PSA and PSB from the SCM SA,SB

3we we give the treatment A in the half-population and treatment B in the other half. As a result the process can be
described as if we took data from from a SCM S being produced if we intervene into the starting correct SCM on the
Treatment under a randomize way.
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respectively andPS the probability distributions from the observed SCMS. If a patient is diagnosed
with Kidney Stone without any reference about their size, then the doctor should base his choice
about the treatment on the comparison between ESA [R]andESB [R]:

ESA [R] = 1PSA(R = 1) + 0PSA(R = 0) = PSA(R = 1) = PS:do(T=A)(R = 1)

ESB [R] = 1PSB (R = 1) + 0PSB (R = 0) = PSB (R = 1) = PS:do(T=B)(R = 1)

But how we can estimate this quantities only with observational data from S.

PSA(R = 1) = PSA(R = 1, T = A) =

1∑
z=0

PSA(R = 1, T = A,Z = z)

The first equation is applied because PSA(T = A) = PS(T = A|do(T := A)) = 1

=

1∑
z=0

PSA(R = 1|T = A,Z = z)PSA(T = A,Z = z) (5.4)

SincePSA(T = A,Z = z) = PSA(Z = z|T = A)PSA(T = A) = PSA(Z = z|T = A) =

PSA(Z = z) Hence the 5.4 equals:

=

1∑
z=0

PS(R = 1|T = A,Z = z)PS(Z = z)

=

1∑
z=0

PSA(R = 1|T = A,Z = z)︸ ︷︷ ︸
pSA (r|par)=pS(r|par)

PSA(Z = z)︸ ︷︷ ︸
pSA (z|paz)=pS(z|paz)

So,

PSA(R = 1) =

1∑
z=0

PS(R = 1|T = A,Z = z)PS(Z = z)

analogously

PSB (R = 1) =

1∑
z=0

PS(R = 1|T = B,Z = z)PS(Z = z)

Now we can estimate PSA(R = 1) and PSB (R = 1) from the empirical data.
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PSA(R = 1) = PS(R = 1|T = A,Z = 0)PS(Z = 0) + PS(R = 1|T = A,Z = 1)PS(Z = 1)

= 0, 93
(81 + 234)

700
+ 0, 73

343

700
= 0, 832

Respectively

PSB (R = 1) = 0.87
(81 + 234)

700
+ 0.69

343

700
= 0, 782

The difference :

PSA(R = 1)− PSB (R = 1) = 0.83− 0.78

Is called the average causal effect (ACE) for binary treatments.

In this example, the difference between intervene on and condition on gets clear:

PS(R = 1|S = A)− PS(R = 1|S = B) = 0.78− 0.83

In the previous example, when we compute the PSA(R = 1) we choose the variable Z to
condition on. We will see later that this procedure is not a random choice because it lead us to the
truncated factorization :

pS:do(Xk=a)(x1, ..., xp) :=


∏

j ̸=k p
S(xj |xpaj

) if xk = a

0 otherwise

This procedure is called “adjusting” on Z. But in the previous example, this choice was not a very
complicated thing ,we have only three variables, in comparison with other complicated problems
such as those with one hundred variables .

Definition 1..1 (Valid adjustment set). Consider a SCM S over a set of Variables X and let Y 6∈
PAX . We call a set Z ⊆ X\{X,Y } a valid adjustment set for the ordered pair (X,Y) if

pS;do(X=x)(y) =
∑
z

pS(y|x, z)pS(z) (5.5)

Here, the sum (could also be an integral) is over the range of Z, that is, over all values z that Z can
take.
In the case Y ∈ PAX pS;do(X=x)(y) = pS(y) 4

In the Example 1..1 as it mentioned we use the variable Z=“Size of the stone” as a valid adjust-
4To understand the restriction Y ̸∈ PAX we can assume that we have only two Variables the X and Y and Y ∈

PAX ,Y → X , Y is the cause and X is the effect. As we mention before if we intervene on the effect the cause are not
affected. Using this perspective we can generalize it into models with more variables.
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ment set for the (T,R). Since with this set we transform unknown intervention densities distribu-
tions like, pSA and pSB , into observed densities distributions pS . Also this valid adjustment set was
helped us to compute the Average Causal Effect. An appealing result of the Definition 5.5 is that,
if the valid adjustment set is the empty set, so Z = ∅, then the Equation 5.5 transforms into:

pS;do(X=x)(y) = pS(y|x) (5.6)

As a result conditioning on is the same procedure as adjusting with empty set. But we have seen
that simple conditioning led to false conclusions like the Example 1..1. The reason why we have
that is because the empty set isn’t a valid adjustment set. In such a case, we say that the causal effect
are in confounded .

Definition 1..2 (confounding). Consider an SCM S over Variables X where in the induced graph
there is a directed path from X to Y ,X,Y ∈ X. The causal effect from X to Y is called confounded
if

pS;do(X=x)(y) 6= pS(y)

Otherwise, the causal effect is called ”unconfounded.”

The previous discussion shows that not all sets are valid adjustment sets. But how can we find
this valid adjustment sets? We can answer if we understand the properties which we require to have
this set. i.e.

pS;do(X=x)(y) =
∑
z

pS;do(X=x)(y|x, z)pS;do(X=x)(z) =

=
∑
z

pS(y|x, z)pS(z)

So we require

pS,do(X=x)(y|x, z) = pS(y|x, z) and pS,do(X=x)(z) = pS(z) (5.7)

Thus we need to address the question which conditionals distributions remain invariant under the
intervention do(X := x). The answer is given in the following proposition

Proposition 1..2 (Valid adjustment sets). Consider an SCM over variables X with X,Y ∈ X and
Y 6∈ PAX . Then, the following three statements are true.

I “parent adjustment”

Z := PAX
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is a valid adjustment set for(X,Y).

I “backdoor criterion”: Any Z ⊆ X\{X,Y } with

• Z contains no descendant of X and

• Z blocks all paths from X to Y entering X through the back-door (as a result all the paths
from X to Y that has an direct arrow into X i.eX ← ...)

is a valid adjustment set for (X,Y).

I “toward necessity ”: Any Z ⊆ X\{X,Y } with

• Z contains no descendant of any node on a directed path from X to Y (except for de-
scendants of X that are not on a directed path from X to Y )

• Z blocks all non-directed paths from X to Y

is a valid adjustment set for(X,Y).

The proof of this proposition are in the appendix 8.D.
In the following example we are searching for valid adjustment sets using the theory of Proposition
1..2.

Example 1..3. Let the graph of the figure 5.2.

Figure 5.2: Example in valid adjustment sets

Back-door-criterion: Examining the adjustment sets for (X, Y) using the back door criterion. As-
sume thatZ is the valid adjustment set thenZ can’t contain the descendants of X so {E,D,F,G, Y } 6∈
Z. Additionally theZmust blocks all the paths from X to Y entering X.We have only one back door
path the X ← B → C → Y . Using the d-separation theory the sets {B}, {C}, {B,C} blocks the
back door path. Also if we add the A in any of these sets nothing change since the two hypothesis of
the back-door criterion is satisfied. Hence the sets {B}, {C}, {B,C}, {A,B}, {A,C}, {A,B,C}
are valid adjustment sets under the back door criterion.
Toward-necessity: Examining the valid adjustment set using the toward necessity criterion. Again
Z can’t contain any descendant of X except the descendants of X that are not on the the directed paths
from X to Y, in our example the node E. Thus {D,F,G, Y } 6∈ Z. Additionally the Z must blocks
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all the non-directed paths. The sets {B}, {C}, {B,C} has this property. Again if we add any of the
nodes E or A in these sets the two hypothesis of the toward necessity is not violated. As a result the
valid adjustment set under the towards necessity is: {B}, {C}, {B,C}, {A,B}, {A,C}, {A,B,C},
{E,B}, {E,C}, {E,B,C}, {A,E,B}, {A,E,C}, {A,E,B,C}

1..1 Do-calculus

This subsection generally is very technical and also is out of the general framework of this disser-
tation. But it is mentioned only for intuition reasons. As a result I will focus on the basic theory on
headlines and I will try to avoid proofs and examples and technical details.
With the Proposition 1..2 we saw how intervention distribution pS,do(X:=x) is computed from the
observational distribution and the graph structure with the valid adjustment formula but we can
compute intervention distributions pS,do(X:=x) in other ways than the adjustment formula. Let us
therefore call an intervention distribution pS,do(X:=x) identifiable if it can be computed from the
observational distribution and the graph structure. For example if there is a valid adjustment set
for (X,Y) then the pS,do(X:=x) is certainly identifiable. Consider a SCM over variables X. (Pearl,
2009) in [ Theorem 3.4.1] has developed the so-called do-calculus that consists of three rules.
Given a graph G and disjoint subsets X,Y,Z, andW, we have :

1. “Insertion/deletion of observations”:

pS,do(X=x)(y|z,w) = pS,do(X=x)(y|w)

if Y d-separates Z given X,W in a graph where incoming edges in X have been removed.

2. “Action/observation exchange”:

pS,do(X=x,Z=z)(y|w) = pS,do(X=x)(y|z,w)

if Y d-separatesZ givenX,W in a graph where incoming edges inX and outgoing edges from
Z have been removed.

3. “Insertion/deletion of actions”:

pS,do(X=x,Z=z)(y|w) = pS,do(X=x)(y|w)

if Y d-separates Z given X,W in a graph where incoming edges in X and Z(W) have been
removed. Here, Z(W) is the subset of nodes in Z that are not ancestors of any node inW in
a graph that is obtained from G after removing all edges into X.

Theorem 1..4. The following statements can be proved

1. The rules are complete (Shpitser & Pearl, 2006), that is all identifiable intervention distribu-
tions can be computed by an iterative application of these three rules.
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2. In fact, there is an algorithm, proposed by(Tian & Pearl, 2002) that is guaranteed (Huang
& Valtorta, 2012), (Shpitser & Pearl, 2006) to find all identifiable intervention distributions.
distributions.

1..2 Adjusting in linear Gaussian System

In the example 1..1 we saw how to summarize the causal effect from variable X to Y into a single
real number called average causal effect (ACE). But in that example the data was binary, what can
be done in the case of continuous random variables? As a first approximation we may look at the
expectation of this distribution and then take the derivative with respect to x:

∂ES;do(X=x)[Y ]

∂x
(5.8)

In this section we will define and deal with Linear-Gaussian SCM. Since using the approximation
5.8 it can be proved that this models have some appealing properties. Consider an SCM S over
variables X with Gaussian distributed error terms Ui and linear functions fi this SCM called linear
Gaussian systems. For example:

Example 1..5. let the following linear Gaussian SCM :

S :=



X = aZ + Ux

Z = UZ

Y = bX + eK + UY

K = cX + dZ + UK

where Ui ∼ N(0, 1).

Hence let a linear Gaussian SCM S over X Variables. Now for Z, X, Y ⊆ X assuming that
Z is a valid adjustment set for (X,Y). As we mention Ui is Gaussian distributed thus X follows a
Gaussian distribution then the conditional Y|X=x,Z=z follows a Gaussian distribution too; its means
is

ES [Y |X = x,Z = z] = ax+ btz

for some a and b.Proof in the appendix 8.E. For example:

Example 1..6. in the linear Gaussian SCM of 1..5 example.

ES [K|Y = y, Z = z] = ES [cX + dZ + UK |Y = y, Z = z] =
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= ES [c(aY + Ux) + dZ + UK |Y = y, Z = z]

= ES [caY + dZ + cUx + Uk|Y = y, Z = z] =

= cay + dz

Generally the linear Gaussian SCM have some appealing properties if we use the approximation
∂ES;do(X=x)[Y ]

∂x as a measure of the causal effect between two variables X and Y. We will prove that
the value of ∂ES;do(X=x)[Y ]

∂x is constant. Precisely:
If S linear-Gaussian SCM, with zero mean for every error term, over the variablesX and X,Y,Z⊂ X.
Assume that Z is a valid adjustment set for the causal effect from X to Y Then if X|Y=y,Z=z follows
Gaussian distribution with mean:

E[Y |X = x,Z = z] = ax+ btZ

Then:

∂ES;do(X=x)[Y ]

∂x
= α (5.9)

Proof 9. From the adjustment formula

pS,do(X=x)(y) =

∫
Z

pS(y|x, z)pS(z)dz

∫
Y

ypS,do(X=x)(y)dy =

∫
Y

y

∫
Z

pS(y|x, z)pS(z)dzdy

ES;do(X=x)[Y ] =

∫
Z

∫
Y

ypS(y|x, z)pS(z)dydz (5.10)

ES;do(X=x)[Y ] =

∫
Z

pS(z)

∫
Y

ypS(y|x, z)pS(z)dydz
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ES;do(X=x)[Y ] =

∫
Z

pS(z)ES [Y |X = x,Z = z]dz

ES;do(X=x)[Y ] =

∫
Z

pS(z)(ax+ bz)dz

ES;do(X=x)[Y ] = ax

∫
Z

pS(z)dz + b

∫
Z

zpS(z)dz

ES;do(X=x)[Y ] = ax+ bES [Z]

The equation 5.10 holds because:∫
Z

∫
Y

|ypS(y|x, z)pS(z)|dydz <∞

and

∂ES,do(X=x)[Y ]

∂x
=

∂(ax+ bES [z])

∂x
= a

So using the formula

E[Y |X = x,Z = z] = ax+ btz

we can estimate the value of causal effect just regressing Y on X and Z and then reading off the
regression coefficient for X. For example:

Example 1..7. Let the following Linear-Gaussian SCM:

S :=



A = 0.1UA

B = 0.3UB

X = 2A+ 3B + 0.4UX

E = 10X + 0.2UE

D = 4X + 0.5UD

F = 5D + 0.6UF

C = 6B + 0.7UC

Y = 7D + 8C + 0.8UY

G = 9Y + 0.9UG

with graph depicted in Figure 5.2. In this example we will simulate an i.i.d. sample of size n=1000
in R. Then we will estimate the value of equation 5.9 by regressing Y on X and an adjustment set
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Z. If Z is a valid adjustment set, we obtain an unbiased estimator. In the example 5.2 we calculate
all the valid adjustment sets we choose randomly some of them them. Hence in the following code,
the adjustment set Z = ∅ leads to a biased estimator ; however the all the correct adjustment give us
the same, approximately, estimator, the regression coefficient of X.

> set . seed(1) ; n <− 1000
> A <− 0.1*rnorm(n)
> B <− 0.3*rnorm(n)
> X <− 2*A + 3*B + 0.4*rnorm(n)
> E <− 10*X+0.2*rnorm(n)
> D <− 4*X + 0.5*rnorm(n)
> F <− 5*D + 0.6*rnorm(n)
> C <− 6*B + 0.7*rnorm(n)
> Y <− 7*D + 8*C + 0.8*rnorm(n)
> G <− 9*Y + 0.9*rnorm(n)
> #Biased estimator
> lm(Y~X)$coefficients
( Intercept ) X
−0.2866196 40.6366330
> #Unbiased estimator
> lm(Y~X+B)$coefficients
( Intercept ) X B
−0.182269 26.933440 51.842398

> lm(Y~X+E+C)$coefficients
( Intercept ) X E C
−0.0706424 25.7778289 0.1796941 8.1865134
> lm(Y~X+A+B)$coefficients
( Intercept ) X A B
−0.1812445 26.8643103 0.6503057 52.0507571
> lm(Y~X+E+C+B)$coefficients
( Intercept ) X E C B
−0.07159035 25.39788082 0.19634634 8.01064772 1.86867165
> lm(Y~X+E+C+B+A)$coefficients
( Intercept ) X E C B
−0.07128965 25.39088911 0.19503153 8.01048766 1.93036023

A
0.18948257

Someone maybe notice that the unbiased estimator of example 1..7 took values between 28-29
and also notice that if we multiply the coefficients of the direct path between X to Y has the same
value. As a result the coefficients of the path X → D → Y , 4*7=28. This is not a random result,
the approximation 5.9 has an very interesting second physical interpretation. Specifically if there
is exactly one directed path from X to Y, then the approximation 5.9 equals with the product of the
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path coefficients. If there is no directed path, then a = 0 and if there are different direct paths, if
n:=size of the different direct paths, and ai is the product of the path coefficients in the i path then
equals with

∑n
i=1 ai, . This is a result of the Wright’s formula (S. Wright, 1934). For example:

Example 1..8. In this example we illustrate different cases of the above result in different Linear-
Gaussian SCM and estimate the unbiased estimators for the value 5.9 using R. In the first two cases
the coefficient of the direct path between X to Y is equal with 2.

S1 :=

 X = 0.1UX

Y = 2X + 0.3UY

S2 :=


A = 0.2UA

X = 5A+ 0.1UX

Y = 2 ∗X + 3Z0.3UY

with Ui ∼ N (0, 1) and graphs depicted in the Figure 5.3 (a) for S1 and (b) for S2.

Figure 5.3

We calculate the approximation 5.9 using the appropriate valid adjustment sets for the (X,Y).
As a result following the Proposition 1..2 in the first case the valid adjustment set Z is the empty
set and in the second Z = {A}. In the next code we observe that the regression coefficient of X is
very close to 2, hence is equals with the path coefficient.

> # physical interpretation of Causal−Effect coefficient in linear Gaussian SCM
> X <− 0.1*rnorm(n)
> Y <−2*X + 0.3*rnorm(n)
> lm(Y~X)$coefficients
( Intercept ) X
1.301087e−05 1.918806e+00
> # add an node but the coefficient of the direct path remains the same
> A<− 0.2*rnorm(n)
> X <− 5*Y+0.1*rnorm(n)
> Y <−2*X + 3*A + 0.3*rnorm(n)
> lm(Y~X+Z)$coefficients
( Intercept ) X A
0.001704358 1.998656072 3.022121130

The next SCM has a little more complex structure. However we can calculate again the coefficient
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of the equation 5.9.

S3 :=



X = 0.1UX

D = 6X + 0.2UD

B = 2X + 0.3UB

Y = 7D + 3B + 0.4UY

C = 4X + 5Y + 0.5UC

with Ui ∼ N (0, 1) and graphs depicted in the Figure 5.4.

Figure 5.4

The coefficient of the equation 5.9 must be equal with 2 ∗ 3 + 6 ∗ 7 = 48. We can validate this
result simulates some data from these structure and compute the coefficient of X in the regression
of Y on Z and X, where Z is the valid adjustment set. In this case the valid adjustment set is the
empty set. Since the nodes X, B, D, Y is in nodes of the direct paths of X to Y and C is descendant
of Y as a result the valid adjustment set Z=∅.

> X<− 0.1*rnorm(n)
> D<−6*X +0.2*rnorm(n)
> B<−2*X +0.3*rnorm(n)
> Y<−7*D + 3*B +0.4*rnorm(n)
> C<−4*X +5*Y + 0.5*rnorm(n)
> #unbiased estimator
> lm(Y~X)$coefficients
( Intercept ) X
0.06191674 47.57132224
> lm(Y~X+B)$coefficients
( Intercept ) X B
0.01219116 42.15274757 2.96985795
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1..3 Instrumental Variables

An other very useful application in the Linear Gaussian SCM is the theory of Instrumental variables
(P. Wright, 1928) are widely used in practice (Imbens & Angrist, 1994), (Bowden & Turkington,
1990).
Consider a linear-Gaussian SCM with the following corresponding graph :

Assuming that we want to estimate the causal effect of X on Y. Here, the coefficient ‘a’ is the
quantity of interest (because the SCM is linear-Gaussian and as we discuss in section 1..2 this coef-
ficient equals with the causal effect of X on Y). However we will assume also that U is unobserved
variable, called hidden common cause, hence the coefficient is not directly accessible. However
(U,UX ) is independent of Z5, so we can regard the value bU +UX in equation 5.11 as a noise term.

X = dZ + bU + UX (5.11)

is the same with:

X = dZ + ŨX (5.12)

So, therefore we can consistently estimate the coefficient d, also we have access to Z̃ = dZ. Thus:

Y = aX + cU + UY = adZ + (ab+ c)U +NY = aZ̃ + ŨY

it is clear that we can then consistently estimate a. Thus, we first regress X on Z and then regress
Y on the predicted values of X (predicted from the first regression). This method is commonly
referred to as ”two-stage-least-squares”. It makes heavy use of the following assumptions

I linear SCMs

I non zero d

I the independence between U and Z.

I the absence of a direct influence from Z to Y.

5(U,UX ) is d-separated from Z given ∅ using the Markov property (U,UX ) is independent of Z
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Chapter 6

Identifiability

1. Introduction In Structure Identification

The analysis which took place in the previous chapters is based on a known “correct” SCM. In this
chapter we will focus on methods and algorithms which estimate the correct SCM. Precisely, this
estimation process is called (“structure identification”). However, this identification procedure is
impossible to work without some basic assumptions.
The process of “structure identification” is an extremely difficult problem, and there is not direct
answer to that if we don’t assume some basic assumptions. Until now, we have seen some of these
assumptions like the Markov Property and the Faithfulness. As a result, the following question
might arise. If these two assumptions are sufficient to the structure identification, or alternatively,
given a distribution PX over random variablesX = {X1, ..., Xp}, how many SCMs can be entailed
from this distribution if we assume faithfulness and Markov property. If the answer is “one”, then
our task is to find this one SCM. But if the answer is more than one, the problem becomes harder,
since we need to answer one additional question: how we can specify the true SCM from the class
of equivalent structures. Unlike, the answer is more than one. In Proposition 3..2 we saw that if we
find a DAG G Markov with the distribution PX , then we can find a corresponding SCM that entails
the distribution PX and the graph G at hand. Also, in example 2..2-2..3 it is mentioned that we can
find more than one graph Markov with respect to the distribution PX . As a result, a distribution
could have been generated from many SCMs with different graphs.
In the beginning of this chapter, we will describe how big the class of equivalent structures is, if
we have assumed the Markov property and the Faithfulness. Then, we will describe techniques to
identify this class of equivalent structures. Finally, we will add some further assumptions about the
functional and the distributional structure of the model, for example the linearity of the functions
assignments or Gaussian error terms, to obtain a precise identifiable result.
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2. Structure Identification using Faithfulness

If the distribution PX is Markovian and faithful with respect to the underlying DAG G, we have
an one-to-one correspondence between d-separation statements in the graph and the corresponding
conditional independence statements in the distribution. Thus, we could stay focus on the class of
graphs which induces a set of d-separations that is equal to the set of conditional independence of
PX . As it has been mentioned that this class of graphs is the Markov equivalent class of G. Thus,
this gives the answer to the previous question of how big the class which we will try to identify
is. However, the following problem is generated: are we able to distinguish any two different
graphs from this “Markov equivalent class” only using a data set? We are not, without further
assumptions about the structural and the distributional form of the models. However, there are a
lot of algorithms which identify the Markov-equivalent class CPDAG(G). This class of algorithms
called Independence-based methods or Constraint-based methods.

Lemma 2..1. Assume that PX is Markov and faithful with respect to G. Then, for each graph G1 ∈
CPDAG(G), we find an SCM that generates the distribution PX . Furthermore, the distribution
PX is not Markov and faithful to any graph G̃ 6∈ CPDAG(G).

The Lemma 2..1 is the key of Constraint -based-methods. Precisely, in this algorithmic category
we assume faithfulness and try to estimate the correct Markov equivalence class of graphs with
respect to PX .

2..1 Constraint-based methods

These methods, algorithms, will return an equivalent class of graphs, usually in the form of a
CPDAG. The searching process for the equivalent class is called learning process. In this cate-
gory of the algorithms, the learning process has two phases. In the first phase, the algorithm looks
for conditional-independences using independence-tests and it outputs the skeleton of the Markov-
equivalent class1. In the second phase, it tries to orient as many edges as many possible by following
a set of rules. The most common algorithms are:

I IC (inductive causality)

I SGS(Spirtes, Glymour and Scheines),

I PC(Peter and Clark)
1All the members of the class have the same skeleton
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I IA or IAMB,TPDA,RAI.

In this dissertation, we will focus on the first three algorithms. Before we analyse the algorithms,
we should mention some important lemmas and statements for the algorithmic processes. In the
first phase the algorithm searches for the skeleton. The following lemma plays a significant role in
this procedure:

Lemma 2..2. The following two statements hold.

I Two nodes X,Y in a DAG G = (X, E) are adjacent if and only if they cannot be d-separated
by any subset S ⊆ X \ {X,Y }.

I If two nodes X,Y in a DAG G = (X, E) are not adjacent, then they are d-separated by either
PAX or PAY .

Proof 10. (Pearl & Verma, 1991)

In the second phase, the algorithm continues with the “orientation”. As we have mentioned in
Lemma 1..7, the graphs of the Markov Equivalent class have the same skeleton and the same v-
structures. This statement has great importance in that part. Specifically:
Orientation of Edges: As it is mentioned, the first phase of the algorithm outputs a graph-skeleton.
For every two nodes which are not directly connected in the obtained skeleton, we can find a set
that d-separates these nodes. Let S be the set that d-separates X and Y. We further suppose that the
skeleton contains the structure X − Z − Y with no direct edge between X and Y. The structure
X − Z − Y is a possible v-structure and can therefore be oriented as X → Z ← Y if and only if
Z 6∈ S. After the orientation of v-structures, we may be able to orient some further edges in order
to avoid cycles, for example. There is a set of such orientation rules that has been shown to be
complete and is known as Meek’s orientation rules (Meek, 2013).

2..2 SGS-Algorithm

SGS algorithm (Spirtes, Glymour, & Scheines, 1993):

1. Form the complete undirected graph G0 on the vertex set X.

2. For each pair of vertices X and Y, if there exist a subset S ⊆ X \ {X,Y } such that X and Y
are d-separated given S, remove the edge between X and Y from G0.

3. Let G(1)0 be the undirected graph resulting from step 2. For each triple of vertices X, Y, Z such
that the pair X and Y and the pair Y and Z are each adjacent in G(1)0 but the pair X and Y are
not adjacent in G(1)0 (i.e. X-Y-Z), orient
X - Y - Z as X → Y ← Z if and only if there is no subset S of {Y } ∪ X \ {X,Z} that
d-separates X and Z.

4. repeat
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I If X → Y , Y and Z are adjacent, X and Z are not adjacent, and there is no arrowhead
at Y, then orient Y -Z as Y → Z.

I If there is a directed path from X to Y, and an edge between X and Y, then orient X - Y
as X → Y .

until no more edges can be oriented.

Verma and Pearl (1990) have suggested a variation of the SGS algorithm the IC-algorithm.

2..3 IC-Algorithm

1. We starts with the empty graph G∅.

2. For each pair of variables X,Y searches for a subset of nodes SX,Y such that they are con-
ditionally independent given on SX,Y . If no such subset exists it adds an undirected edge
between X,Y.

3. Continuing with the 3rd step of SGS algorithm.
Let G(1)0 be the undirected graph resulting from step 2 .For each triple of vertices X,Y,Z such
that the pair X and Y and the pair Y and Z are each adjacent in G(1)0 (written as X-Y-Z) but
the pair X and Y are not adjacent in G(1)0 , orient
X - Y - Z as X → Y ← Z if and only if there is no subset S of {Y } ∪ X \ {X,Z} that
d-separates X and Z.

4. repeat

I If X → Y , Y and Z are adjacent, X and Z are not adjacent, and there is no arrowhead
at Y, then orient Y -Z as Y → Z.

I If there is a directed path from X to Y, and an edge between X and Y, then orient X - Y
as X → Y .

until no more edges can be oriented.

Complexity-Problem: In the Step 2 of the SGS algorithm for each pair of adjacent variables
we have to check all the possible subsets of the remaining variables. However, that has exponential
growth with respect to the number of variables. Also, we can’t decrease the size of this search
because we will lose the effectiveness of the algorithm. Two variables X,Y can be conditional
dependent on a set S but independent on a superset or subset of S.

2..4 PC-Algorithm

Algorithm

1. Form the complete undirected graph G(n) on the vertex set X.
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2. set n=0
repeat

repeat

Select an ordered pair of variables X and Y that are adjacent in G(n) such that
|AdjG(n)(X)\{Y }| ≥n 2, i.e. this set has cardinality greater than or equal to n ,
and a subset S of AdjG(n)(X)\{Y } of cardinality n,|S| = n, and if X and Y are
d-separated given S delete edge X-Y from G(n) and record S inSepset(X,Y) and
Sepset(Y,X);
We continue until all ordered pairs of adjacent variablesX andY such thatAdjG(n)(X)\
{Y } has cardinality greater than or equal to n and all subsets S of AdjG(n)(X)\{Y }
of cardinality n have been tested from d-separations.;
n=n+1;

We finishwhen each ordered pair of adjacent vertices X, Y theAdjĜ(X)\{Y } is of cardinality
less than n i.e. |AdjĜ(X)\{Y }| ≤ n.

3. For each triple of vertices X,Y,Z such that the pair X and Y and the pair Y and Z are each
adjacent in Ĝ but the pair X and Z are not adjacent in Ĝ, orient
X - Y - Z as X → Y ← Z if and only if Y is in Sepset(X,Y).

4. repeat

If X → Y , Y and Z are adjacent, X and Z are not adjacent, and there is no arrowhead
at Y, then orient Y -Z as Y → Z.

If there is a directed path from X to Y, and an edge between X and Y, then orient X - Y
as X → Y .

until no more edges can be oriented.

The second part of the PC algorithm ismuchmore complicated that the IC, SGS. Hence, we illustrate
an example:

Example 2..3. In the Figure 6.1 the true graph G is depicted with (a). The PC algorithm starts with
an complete undirected graph G0, (b)-graph in the Figure 6.1.

Figure 6.1

2The set AdjG(n) (X) includes all the adjacent vertices with X in the graph G(n).
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For n=0, all the pairs in the complete graph are adjacent. Hence, we select any possible random
pair of variables, i.e. Xi, Xj , with |AdjG(0)(Xi) \ {Xj}| ≥ 0. We search for an appropriate subset
S ⊆ AdjG(0)(Xi) \ {Xj} with cardinality |S| = 0. However, we can’t find such S with the ability
to d-separate any Xi, Xj . Thus, we continue with n=1.
Set n=1. As previously, all the pairs of variables in the complete graph are adjacent. Hence we
select a pair at random, i.e. Xi, Xj , with |AdjG(0)(Xi) \ {Xj}| ≥ 1. However, when we search for
S with |S| = 1 we take:

1. X1 ⊥⊥ GX3|X2

2. X1 ⊥⊥ GX4|X2

3. X1 ⊥⊥ GX5|X2

As a result, we take the G(1):

We have tested each pair Xi, Xj and S for d-separations. Hence we continue with n=2.
Set n=2
In this case we have only

1. X2 ⊥⊥ GX5|{X4, X3}

As a result we take the graph G(2)

For n=3. We can’t find in the G(2) any pair Xi, Xj with |AdjG(0)(Xi) \ {Xj}| ≥ 3,the max is
2. As a result this part of the algorithm get finished.

Complexity: PC starts with a fully connected undirected graph and step-by-step increases the
size of the conditioning set S, starting with #S = 03. At iteration k, it considers sets S of size #S =

3#S:=Size of the set S
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k, using the following neat trick: If someone had to test whether X and Y is d-separated by S, then
he has only to check sets S that are subsets either of the neighbours of X or of the neighbours of Y;
this idea is based on Lemma 2..2−(ii) and clearly improves the computation time, especially for
sparse graphs.
More precisely, the complexity of the algorithm in the worst case i.e the number of conditional
independence tests required by the algorithm is:

2

(
n

2

) k∑
i=0

(
n− 1

k

)
≤ n2(n− 1)k−1

(k − 1)!

which k=max(|AdjG(Xi)|)∀i so k is the maximal number of adjacent vertexes in the true DAG G
and n the number of all variables. Then the bound is given in the (Spirtes et al., 1993).

3. Score-Based Methods

Until now, we have described how to use independent statements with the aim of constructing an
appropriate class of graphs. In this section, we will illustrate algorithms under a different per-
spective. In this methods instead of trying to construct a graph from independent-statements, we
will test how different graphs fit the data. The rationale behind this algorithms is that graph-
structures encoding the wrong conditional independences will yield bad model fits. The roots of
Score based methods in causality start with (Geiger & Heckerman, 1994), (Heckerman, Meek, &
Cooper, 1999), (Chickering, 2002). Also there are algorithms which combine Score based Methods
and Independence-based methods called Max-Min Hill-Climbing algorithm (Tsamardinos, Brown,
& Aliferis, 2006).
Best Scoring Graph: Give data D = (X1, ...,Xn) from a vector X of variables, that is, a sample
containing n i.i.d. observations, the idea is to assign a score S(D,G) to each graph G and search
over the space of DAGs to find the graph with the highest score:

G̃ := argmax
GDAG over X

S(D,G) (6.1)

There are several possibilities to define such a scoring function S. Often a parametric model is
assumed (e.g., linear Gaussian equations or multinomial distributions), which introduces a set of
parameters θ ∈ Θ. Now we present some of them: (Penalized) likelihood: For each graph we may
consider the maximum likelihood estimator θ̃ for θ. We may then define a score function by the
Bayesian Information Criterion (BIC)

S(D,G) = log p(D|θ̃,G)− |parameters|
2

log(n) (6.2)

where n is the sample size and the log p(D|θ̃,G) is the log-likelihood.

We can understand how difficult it is to search the space of all DAGs from the Figure 6.2 since
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the size of different graphs is growing super-exponentially with respect of the number of variables :

Figure 6.2

For that reason Greedy-search algorithms can be applied with in order to solve the equation 6.1.
At each step there is a candidate graph and a set of neighbouring graphs. For all these neighbour
graphs, we compute their score and consider the best-scoring graph as the new candidate. If none
of the neighbours obtain better score, the search procedure get terminated. But how this neighbour
graphs are produced ? Starting from a graph G, we define all the neighbour graphs as those which
can be obtained by removing, adding or reversing one edge. So the new graphs defer just to one
edge with the starting graph G. The problem in this methods is that we don’t know whether we have
captured a local maximum or the total maximum.

4. Additive Noise Models with Continues-Variables

Until now we saw how we can identify the unknown Markov equivalent graph just having assume
Markov property and the faithfulness. But as it’s mentioned if we don’t assume further assumptions
we can’t identify the correct, unknown, SCM. Generally, we didn’t impose any restriction in the
functions assignments fj appearing in the SCM. In this section we will be restricted in a special
SCM classes the Additive Noise Models Definition 4..1. Hence, we will examine if we can take
identifiability results in this cases. Let’s start with the first category of this restricted models with
the ANMs SCM.

Definition 4..1 (ANMs). We call a SCM S ANM if the structural assignments are of the form :

Xj = fj(PAj) + Uj for j = 1, ..., p

that is, if the noise is additive. For simplicity, we further assume that the functions fj are differen-
tiable and the noise variables Uj have a strictly positive density. In this dissertation we will focus,
also, on continuous densities

78



Although, if we are restricted in the additive noise models then, what can we say about identifi-
ability? Again the identifiability is not resulted in all ANMs. As we can see in (Peters et al., 2017)
the linear Gaussian SCMs, for example, is not identifiable. But fortunately this is just an exception.
For almost all other combinations of functions and distributions, we obtain identifiability. All the
non identifiable cases have been characterized in(Zhang & Hyvarinen, 2012) and (Peters, 2015).

4..1 Linear Additive Noise Models

Let’s start from the identifiability in linear Gaussian models with two variables (cause-effect). As
we mention before in this special cases of ANMs we can not achieve identifiability. For example:

Example 4..1. Consider two SCMs

S1

 X := UX

Y := 0.8X + UY

whereUX , UY are independent with var(UX) = 1, V ar(UY ) = 0.62 so thatV ar(X) = 1, V ar(Y ) =

1 and zero means with graph is depicted in Figure 6.3-(a). And the 2nd model:

S2

 X := 0.8X + UX

Y := UY

whereUX , UY are independent with var(UY ) = 1, V ar(UX) = 0.36 so thatV ar(X) = 1, V ar(Y ) =

1 and zero means and graph is depicted in Figure 6.3-(b).

Figure 6.3

If Ui are further-more assumed to be Gaussian, the two models provide the same joint-Gaussian

distribution density of the observed variables X and Y with mean

(
0

0

)
, and covariance matrix(

1 0.8

0.8 1

)
. In Figure 6.4 we can verify that since it’s depicted the join-density-distributions

p(X,Y ) ,by scatterplots. As a result when we observe data from that distribution like the Figure
6.4 it is impossible to identify the SCM which generate that data.
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Figure 6.4

However if we assume the same SCM with the only difference the error terms, Ui, to be non
Gaussian distributed i.e Uniform or the exponential distribution. Then can we identify the correct
SCM from the joint density distribution p(X,Y)? Figures depicts the scatter plots like before give an
intuition about the answer. Precisely in Figure 6.5 we assumed uniform distributed error terms. As
we can see the sampled-p(X,Y) is different in these two cases. So we have more chances to identify
the SCM.

Figure 6.5

Also assuming exponentially distributed error terms as in the Figure 6.6 again the sampled-
p(X,Y) have differences.
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Figure 6.6

But why we have so different results? The answer is simple If we have a SCM over the variables
X,Y with functional assignments X = UX and Y = aX + UY with UY ⊥⊥ X then if we can find
a1 such as X = a1Y + ŨX , Y = ŨY and ŨX ⊥⊥ Y then is impossible to identify the true SCM.
Generally the example 4..2, from (Peters, 2008), can confirm this claim for the linear Gaussian
bivariate models:

Example 4..2. Let,

Y = ϕX + U, U ⊥⊥ X

where X and U are normally distributed with mean zero and σ2 be the variance of noise variable.
(Peters, 2008) proves that:

X = ϕ̃Y + Ũ , Ũ ⊥⊥ Y

with ϕ̃ = ϕV ar[X]
ϕ2V ar[X]+σ2 6= 1

ϕ and Ũ = X − ϕ̃Y

Hence from this example becomes clear that, is impossible to distinguish data from this two
models. Thus the linear Gaussian SCMs is not identifiable.
However if we consider non-Gaussian noise the structural equation model becomes identifiable.

Theorem 4..3. Identifiability of linear non-Gaussian models Assume that PX,Y admits the linear
model

Y = aX +NY UY ⊥⊥ X

with continuous random variables X,NY , and Y . Then there exist b∈ R and a random variableNX

such that

X = bY +NX UX ⊥⊥ Y

if and only if UY and X are Gaussian distributed.
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The proof of the previous Theorem is based on on a characterization of the Gaussian distribution
that was proved independently by (SKITOV, 1962), (Darmois, 1953).

Theorem 4..4 (Darmois-Skitovic). Let X1, ..., Xp be independent, non-degenerate random vari-
ables. If there are non-vanishing coefficients a1, .., ap and b1, ..., bp (ai, bi 6= 0)such that the two
linear combinations

l1 = a1X1, ..., apXp

l2 = b1X1, ..., bpXp

are independent, each Xi is normally distributed.

This result holds in the multivariate case, too. (Shimizu, Hoyer, Hyvärinen, & Kerminen, 2006)
prove it using the theorem 4..4.

Theorem 4..5. [(Shimizu et al., 2006)] Assume an SCM with graph G0.

Xj =
∑

k∈PA
G0
j

bj,kXk + Uj , j = 1, ..., p

where all Uj are jointly independent and non-Gaussian distributed with strictly positive density.
Additionally, for each j ∈ {1...p} we require bjk 6= 0 for all k∈ PAG

j . Then, the graph G is
identifiable from the joint distribution.

(Shimizu et al., 2006) called this special class of SCM a linear non-Gaussian acyclic model
(LiNGAM)and provide a practical method based on Independent Component Analysis, ICA, that
can be applied to a finite amount of data.
We saw in the theorem 4..3 that, is impossible to distinguish two linear Gaussian SCM. However
in (Peters, Bühlmann, & Meinshausen, 2016) show that restricting the noise variables to have the
same variance is sufficient to recover the graph structure.

Proposition 4..6. Consider an SCM with graph G and assignments

Xj :=
∑

k∈PAG
j

bj,kXk + Uj , j = 1, ..., d

where all Uj are i.i.d. and follow a Gaussian distribution. In particular, the noise variance σ2does
not depend on j. Additionally, for each j ∈ {1...p} we require bj,k 6= 0 for all k∈ PAG

j . Then, the
graph G is identifiable from the joint distribution.

4..2 Non-linear Additive Noise Models

Until now we have considered only the linear Gaussian and non-Gaussian additive noise SCM. We
now describe non-linear Gaussian additive noise models (ANMs). As we can see we have similar
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results like before. However since it is out of the main framework of this dissertation I will illustrate
only the Basic Theorems and the References for the readers who want to take deeper knowledge in
that domain.

Theorem 4..7 (Identifiability of nonlinear Gaussian ANMs ). 1. Let PX = PX1,...,Xd
be in-

duced by an SCM with

Xj := f(PAj) +Nj

with normally distributed noise variablesNj ∼ N(0, σ2
j ) and three times differentiable func-

tions fj that are not linear in any component in the following sense. Denote the parents
PAj of Xj by Xk1 , .., Xkl

, then the function fj(xk1 , .., xa−1, ·, xa+1, .., xkl
) is assumed to

be non-linear for all a and some xk1
, .., xa−1, xa+1, .., xkl

∈ Rl−1

2. As a special case, let PX = PX1,...Xd be induced by an SCM with

Xj :=
∑

k∈PAj

fj,k(Xk) +Nj

with normally distributed noise variablesNj ∼ N(0, σ2
j ) and three times differentiable, non-

linear functions fj,k. This model is known as a causal additive model (CAM).

In both cases (1) and (2), we can identify the corresponding graph G from the distribution PX .
The statements remain true if the noise distributions for source nodes, that is, nodes without parents,
are allowed to have a non-Gaussian density with full support on the real line R .

The proof can be found in [(Peters, Mooij, Janzing, & Schölkopf, 2014), Corollary 31].

4..3 Additive Noise Models-Methods

We will start with the bivariate case of this type of algorithms. This method tests the independence
of residuals and is a special case of the regression with subsequent independence test (RESIT)
algorithm.

1. Regress Y on X; that is, use some regression technique to write Y as a function f̃Y of X plus
some noise.

2. Test if Y − f̃Y (X) is independent of X.

3. Repeat the procedure with exchanging the roles of X and Y.

4. If the independence is accepted for one direction and rejected for the other, infer the former
one as the causal direction.

This procedure has two major problems: First we need regression methods for general cases linear,
non-linear models. Second independence techniques for general cases non just Gaussian terms. For
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the first problem if the function is linear we can use regression techniques which minimize the least
square error. For the Second problem (Mooij, Janzing, Peters, & Schölkopf, 2009) use the Hilbert-
Schmidt Independence Criterion (HSIC) ,which proved by (Gretton et al., 2008) as an method for
searching independences. We can apply this algorithm in the following example:

Example 4..8. Consider a joint density-distribution pX,Y induced by the following SCM:

S

 X = UX

Y = 2X + Uy

with X ∼ U(−1, 1), UY ∼ U(−0.4, 0.4)

Figure 6.7

If the SCM is unknown then our task is to identify the SCM from the pX,Y . In Figure 6.7 is depicted
a sample of this pX,Y so given this sample we must identify the SCM. Theorem 4..3 states that we
can identify the SCM since the distribution of (UX , Uy) is non-Gaussian. We can confirm that with
the following procedure: Firstly we apply regression of Y on X using the least square estimator and
take Y = β̂1X + γ̂1 + ÛY . Secondly we apply the regression of X on Y using the least square
estimator again and take X = β̂2Y + γ̂2 + ÛX . However in the first case the resulting noise
ÛY would not be independent of Xand in the second cases the resulting noise ÛX would not be
independent of Y. In Figure 6.8 this result is verified. In the (a) plot of the Figure 6.8 is depicted
in x-axis the Residuals of estimation of X on Y and in the y axis the Y and in (b) plot depicted in
x-axis the Residuals of the estimation of Y on X and in the y axis the X.Clearly as we can see in the
second case the X is independent with UY , X ⊥⊥ UY , but in the first the Y is dependent with UX

Y 6⊥⊥ UX :
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Figure 6.8

Until now we saw the bivariate case but what happens in the multivariate case. In the multivari-
ate case the ANMs can be learned with score-based methods that are combined with a greedy search
technique. This methods first proposed for searching Linear Gaussian models with same Variances
for the error terms or Non linear Gaussian models. The procedure is same with the bivariate case.
Given data D = {X1, ..., Xn} from a vector X = {X1, ..., Xd} of variables, that is, a sample con-
taining n i.i.d. observations. For a given graph structure G, we regress each variable on its parents
and obtain the score

log(p(D|G)) =
d∑

j=1

−log( ˜var[Rj ])

where ˜var[Rj ] is the empirical Variance of the residualRj obtained from the regression of variable
Xj on its parents.
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Chapter 7

Simulation Study

In this section we will compare the algorithms of the previous chapter in Linear Gaussian models , is
called LIGAM, with same variance in the Error terms. We will concentrate only in this type of SCM
for two basic reasons. First is the regression techniques. The LIGAM is linear model with Gaussian
distributed error terms we can apply least square regression techniques. Second is the independence
tests since we didn’t illustrate non linear independence test in this dissertation,like Hilbert-Schmidt
Independence criterion (HSIC), we need the Gaussian distributed error terms to apply χ2 − test.

1. Simulate LIGAMs with same Variance for the error terms

In this section we will apply the algorithms of the previous chapter in simulated data. Hence we
will estimate DAGs from the data. The simulated data from a linear Gaussian models is based on
the approach of (Colombo & Maathuis, 2014). Firstly we will generate a random weighted DAG
with a given number of vertices p and an expected neighborhood size E[N ]. For that purpose we
first construct an adjacent matrix A as follows:

I Fix the ordering of variables

I Fill the adjacent matrix A with zeros .

I Replace every matrix entry below the diagonal by independent realizations of Bernoulli ran-
dom variables with success probability s where 0 < s < 1. We will call s the sparseness of
model.

I Replace each entrywith 1 in the adjacencymatrix by independent realizations of aUniform[(0.1, 1)]random
variable.

Finally all the entries of matrix A are zero or in the range [0.1,1]. The corresponding DAG
draws a directed edge from node i to node j if i < j and Aji 6= 0. DAGs that are created in this way
have the following property: E[Ni] = s(p − 1)where Ni is the number of neighbors of a node i.
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The matrix A will be used to generate the data as follows. The value of the random variable X1 ,
corresponding to the first node, is given by

X1 = U1 , ϵ1 ∼ N(0, 1)

and the values of the next random variables (corresponding to the next nodes) can be computed
recursively as

Xi =

i−1∑
k=1

AikXk + Ui, for i = 2, .., p Ui ∼ N(0, 1)

where all Ui are mutually independent random variables.

1..1 PC-Algorythm

An other very important thing in PC algorithm is the choice of the significant level α. In (Kalisch
& Bühlmann, 2007) provide a significant level for Consistency in High-Dimensional Data. Unfor-
tunately , this value is not constructive, since it depends on the unknown lower bound of partial
correlations between the variables.For that reason we fitted a wide range of parameter settings and
compared the quality of fit for different significance levels.
To test how well the algorithms works in each significant level we follow an approach suggested by
(Tsamardinos et al., 2006) the Structural Hamming Distance (SHD). Roughly speaking, this counts
the number of edge insertions, deletions and flips in order to transfer the estimated CPDAG into the
correct CPDAG. Thus, a large SHD indicates a poor fit, while a small SHD indicates a good fit.

We fitted 80 replicates to all combinations of

I 1α ∈ {0, 00005, 0, 0001, 0, 0005, 0, 001, 0, 005, 0, 01, 0, 05, 0, 1}

I p ∈ {7, 15, 40, 70, 100}

I E[N ] ∈ {2, 5}
1α:= significant level
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Figure 7.1: SHD for p ∈ {7, 15, 40, 70, 100}respectively for E[N ] = 2

Figure 7.2: SHD for p ∈ {7, 15, 40, 70, 100}respectively for E[N ] = 5
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We can see that the average SHD achieves a minimum in the region around α = 0, 01 and
α = 0, 05. For higher or lower significance levels, the average SHD increases. Hence we will
be concentrated in cases where the significant level took minimum score in SHD. Lets see same
examples of PC-algorithm for p=7 p=15,p=40 ,p=100 in case where E[N ] = 2 and E[N ] = 5

respectively.
Lets start with :

p = 7, E[N ] = 2,

In this case we can see in figure 7.1 the minimum are catches in a = 0.05.
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p = 15, E[N ] = 2, a = 0.05

p = 40, E[N ] = 2, a = 0.05
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p = 70, E[N ] = 2, a = 0.05

p = 100, E[N ] = 2, a = 0.05
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For simplicity reasons because the DAG be very complicated inE[N ] = 5 we mention only the
cases p ∈ {7, 15, 40}

p = 7, E[N ] = 5, a = 0.05

p = 15, E[N ] = 5, a = 0.05
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p = 40, E[N ] = 2, a = 0.05

2. Estimating the Size of the Causal Effect When The Causal Struc-
ture Is Known

Until now we have assumed the following, the observational data are multivariate Gaussian also
are faithful to the true (but unknown) underlying causal DAG and finally we know all the variables
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in the model, since there aren’t hidden variables. Under these assumptions we will use algorithms
to estimate the total causal effect of a variable x on y, total causal effect is defined via Pearl’s do-
calculus as ∂E[Y |do(X=x)]

∂x (this value does not depend on x, since under Gaussianity assumption the
conditional expectations E[Y |do(X = x)] is linear).
The algorithm IDA(pcalg-package in R) perform this procedure.

IDA

We have data from four Gaussian variables X1, X2, X3, X4
2. Assuming that the causal structure

is unknown and we want to infer the causal effect of node 1 to 2. First, we estimate the equivalence
class of DAGs ,or CPDAG, using pc-algorithm.
For example:

Comparing the true DAG with the CPDAG in figure above. The CPDAG and the true DAG
have the same skeleton. Two edges in the CPDAG are bi-directed as a result we can generate sev-
eral graphs Markov equivalent with the CPDAG. Consequently, since we have 2 bi-directed edges
we can generate 22 = 4 possible DAGs but we search the markov equivalent DAGs so it’s three
since the directionality 1→ 2← is rejected because is generated a new d-separation.
For each DAG G in the equivalence class, we apply the theory of do-calculus to estimate the total
causal effect of X on Y. This can be done via a simple linear regression: if Y is not a parent of X ,
we take the regression coefficient of X in the regression lm(y ∼ x+ pa(x)) , where pa(x) denotes
the parents of x in the DAG G; if Y is a parent of X in G, we set the estimated causal effect to zero.

If the PC-algo estimates correct the CPDAG, as in this case, one of the DAGs in the Markov
2In the graph denoteX1 = 1, X2 = 2, X3 = 3, X4 = 4
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Equivalent class is the true. Since we do not know which is, we can’t estimate the true total causal
effect of X on Y. However, we can return the entire multiset of k estimated effects, k=the size of
different DAGs in Markov equivalent class 3 ,i.e. in the above example we have only 3 Markov
equivalent DAGs the DAG with 1→ 2← 4 is rejected since is generated a new v-structure.
Therefore, the function ida (with option method = ”global”) will produce 3 possible values of causal
effects (one for each DAG). As we can see in the figure above in two cases the VariableX2 is in the
Parent set of X1 hence the causal effect is zero. i.e.

> ida (1,2, cov(d) , pcfitIDA@graph , method = ”global” , verbose = FALSE)
[1] 0.0000000 0.0000000 0.3633399

We can verify using linear regression of X1 and X2 in the estimated data from the true DAG.

Call :
lm(formula = data$X2 ~ data$X1)

Residuals :
Min 1Q Median 3Q Max

−2.67604 −0.69420 0.03133 0.73969 3.06729

Coefficients :
Estimate Std . Error t value Pr (>| t |)

( Intercept ) 0.06930 0.03194 2.17 0.0303 *
data$X1 0.36334 0.03042 11.94 <2e−16 ***
−−−
Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’ . 0.1 ‘’ 1

Residual standard error : 1.009 on 998 degrees of freedom
Multiple R−squared: 0.125, Adjusted R−squared: 0.1242
F− statistic : 142.6 on 1 and 998 DF, p−value: < 2.2e−16

3Markov equivalent graph have the same skeleton and the same v-structures hence we be careful
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3. Benchmarks

4. Code

Evaluating the PC algorithm using different significant levels in different levels of changing

install .packages(”BiocManager”)
BiocManager:: install (”Rgraphviz”)
BiocManager:: install (”RBGL”)
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library (pcalg)
library (Rgraphviz)
library (RBGL)

library (dHSIC)
library (mgcv)

set . seed(42)
# sparsness
s1 =c(2,6)
# number of random variables
p1 =c(7, 15 , 40 , 70 , 100)
# sparsness of the graph
a1 =c(0.00005,0.0001 ,0.0005,0.001,0.005,0.01,0.05,0.1)

shd.PC_sign<−numeric(24)

#sumpe size
n <− 1000
set . seed(42)

i=1
for (s2 in s1)
{
for (p2 in p1)
{

for (a2 in a1)
{
s3 = s2/ (p2−1)
# # # # # # # # # # # # # # #
# generate the random graph #
# # # # # # # # # # # # # # #

g <− randomDAG(p2,s3)
# generate random samples
d <− rmvDAG(n,g)

# # # # # # # # # # # # # # # # # # # # # #
# estimate of the CPDAG with PC−algorythm #
# # # # # # # # # # # # # # # # # # # # # #
suffStat <− list (C = cor(d) , n = nrow(d))
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pcfit <− pc( suffStat , indepTest=gaussCItest , p=p2, alpha =a2)

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Calculate the Hamming distance for each method #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

shd.PC_sign[i] <− shd(g, pcfit )

i=i+1

}
}

}

library (ggplot2)

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Calculate the average Hamming Distance for all values of sparsness
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

AvSHD=numeric(length(a1))
for (k in 1: length (a1)){
for ( j in 1: length (PC_sign$number_of_variables)){
if (PC_sign$sign_level [ j]==a1[k]){AvSHD[k]=AvSHD[k]+PC_sign$PC[j]}

}
}
AvSHD=AvSHD/(length(s1)*length(p1))

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Calculate the average Hamming Distance for the different values of sparsness
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

AvSHDspr=matrix(0,2,length(a1))
for ( t in 1:2){
for ( l in s1){
for (k in 1: length (a1)){
for ( j in 1: length (PC_sign$number_of_variables)){

if (PC_sign$sparness[ j]==s1[t ]&PC_sign$sign_level[j]==a1[k])
{AvSHDspr[t,k]=AvSHDspr[t,k]+PC_sign$PC[j]}
}

}
}

}
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AvSHDspr=AvSHDspr/length(p1)

PC_sign <− data.frame(PC=shd.PC_sign,
number_of_variables=rep(p1,each=length(a1)) ,
sign_ level=rep(a1) ,
sparness=rep(s1 ,each=length(a1)*length(p1)) ,
Aver_SHD=rep(AvSHD),
AverSHD_spr=c(rep(AvSHDspr[1,],length(p1)),rep(AvSHDspr[2,],length(p1)) ) )

PC_sign

#use log( significant levels ) for better visual representation
plot_logsig_PC <− ggplot(PC_sign,aes(x=log(sign_ level ) , y=AverSHD_spr,

group=sparness) ) +
geom_line(aes( color=sparness) )+
geom_point(aes( color=sparness) )
plot_logsig_PC

IDA

set . seed(42)
#size of the sample
n=1000
# fix the sparsness and the number of variables at 2 and at 4.
s=2
s3 = 2/(4−1)
# # # # # # # # # # # # # # # # # # # # # # # # # #
# generate the random graph and simulate the data #
# # # # # # # # # # # # # # # # # # # # # # # # # #

g <− randomDAG(4,s3)
# generate random sample
d <− rmvDAG(n,g)

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# estimate of the CPDAG using PC−algorythm with significant level a=0.05 #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
suffStat <− list (C = cor(d) , n = nrow(d))
pcfitIDA <− pc( suffStat , indepTest=gaussCItest , p=4, alpha =0.05)
par(mfrow=c(1,2))
plot (pcfitIDA,main = ”Estimated Graph”)
plot (g,main = ”True DAG”)

99



# # # # # # # # # # # # # # # # # # # # # # # # #
# Estimate the causal effect of random X2 in X1 #
# # # # # # # # # # # # # # # # # # # # # # # # #
ida (1,2, cov(d) , pcfitIDA@graph , method = ”global” , verbose = FALSE)

data<− data.frame(d)
regression <− lm(data$X2~data$X1)
summary(regression)

Benchmarks

library (pcalg)
library (Rgraphviz)
library (RBGL)

library (dHSIC)
library (mgcv)

set . seed(42)
# sample size
n <− 1000
# sparsness of the graph
s2=c (2,3,4,5,6,7)
# number ofRandom Variables
p1 =c(7, 15 , 40 , 70 , 100)
# significant levels
a1 =c(0.00005,0.0001 ,0.0005,0.001,0.005,0.01,0.05,0.1)

#Evaluation Vectors with the Hamming Distance
shd. val_SB_BIC<−numeric(30)
shd. val_SB_AIC<−numeric(30)
shd. val_PC<−numeric(30)
shd. val_RND<−numeric(30)

set . seed(42)

i=1
# We chech
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for (s2 in s2)
{
for (p2 in p1)
{
s3 = s2/ (p2−1)
# # # # # # # # # # # # # # #
# generate the random graph #
# # # # # # # # # # # # # # #

g <− randomDAG(p2,s3)
# generate random samples
d <− rmvDAG(n,g)

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# estimate of the CPDAG with Score based methods based on BIC #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
score <− new(”GaussL0penObsScore”, data = d)
ges . fit .BIC <− ges(score)
ges . fit .BIC.graph<−as(ges. fit .BIC$essgraph,”graphNEL”)

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# estimate of the CPDAG with Score based methods based on AIC #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
score <− new(”GaussL0penObsScore”, data = d, lambda =1)
ges . fit .AIC <− ges(score)
ges . fit .AIC.graph<−as(ges. fit .AIC$essgraph,”graphNEL”)

# # # # # # # # # # # # # # # # # # # # # #
# estimate of the CPDAG with PC−algorythm #
# # # # # # # # # # # # # # # # # # # # # #
suffStat <− list (C = cor(d) , n = nrow(d))
pcfit <− pc( suffStat , indepTest=gaussCItest , p=p2, alpha =0.005)

# # # # # # # # # # # # # # # # # # # # # #
# Random Choice For appropriate DAG #
# # # # # # # # # # # # # # # # # # # # # #
RDAG <− randomDAG(p2,s3)

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Calculate the Hamming distance for each method #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
ges . fit .BIC$essgraph<−as(ges.fit .BIC$essgraph,”graphNEL”)
shd. val_RND[i]<−shd(g,RDAG )
shd. val_PC[i] <− shd(g, pcfit )
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shd. val_SB_BIC[i] <− shd(g,ges. fit .BIC.graph)
shd. val_SB_AIC[i] <− shd(g,ges. fit .AIC.graph)
i=i+1

}
}

shd. val_SB_AIC=shd.val_SB_AIC[−c(26:30)]
shd. val_SB_BIC=shd.val_SB_BIC[−c(26:30)]
shd. val_PC=shd.val_PC[−c(26:30)]
shd. val_RND=shd.val_RND[−c(26:30)]

df2 <−
data.frame(SHD=c(c(shd.val_SB_AIC),c(shd.val_SB_BIC),c(shd.val_PC),c(shd.val_RND)),

method=rep(c(”AIC”, ”BIC”,”PC”,”Random”),
each=length(shd.val_SB_BIC)),

Number_Of_Variables=p1,
sparsness=c(rep(c (2,3,4,5,6) ,each=length(p1)) ) )

df2

library (ggplot2)

graph_benchmarks1 <− ggplot(df2,
aes(x=Number_Of_Variables,y=SHD,group=interaction(method,sparsness)))+

geom_line(aes( color= interaction (method,sparsness ) ) )+
geom_point(aes(color= interaction (method,sparsness ) ,shape=method))+
theme(legend. position =”top”)+
ggtitle (”Comparison of PC−AIC−BIC−Random algorithms”)

graph_benchmarks1

box_plot_benchmarks <− ggplot(df2, aes(x=method, y=SHD, color=method,fill=sparsness ,
group= interaction (method,sparsness ) ) )+

geom_ jitter ()+
geom_boxplot()

box_plot_benchmarks
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Chapter 8

Appendix

8.A Conditional-Independences

IfX,Y, Z are random variables with a joint distribution P ,we say that X is conditional independent
of Y under P , and write (X ⊥⊥ Y |Z)P , if, for any measurable set A in the sample space ofX , there
exists a version of conditional probability P (A|Y, Z) which is a function of Z alone. Usually P

will fixed and omitted from the notion.
Formally:

Definition 8.A.1 (Conditional Independence.). LetX,Y, Z be random variables on (Ω,A, P ). We
say that X is (Conditional) independent of Y given Z ,(X ⊥⊥ Y |Z)P if for all AX ∈ σ(X) and all
AY ∈ σ(Y ),

E(1AX∩AY
|Z) = E(1AX

|Z)E(1AY
|Z) a.s.

Using standard tools from measure theory, we can deduce equivalent forms for the abovedefi-
nition.

Proposition 8.A.2. Let X,Y, Z be random variables on (Ω,A, P ). Then the following are equiv-
alent.

1. (X ⊥⊥ Y |Z)P

2. For all AX ∈ σ(X) ,E(1AX
|Y, Z) = E(1AX

|Z)

3. For all real, bounded and measurarble functions f(X),

E(f(X)|Y, Z) = E(f(X)|Z) a.s..

4. For all real, bounded and measurable functions f(X), g(Y ),

E(f(X)g(Y )|Z) = E(g(X)|Z) a.s..
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If Z is trivial we say that X is independent of Y , and write X ⊥⊥ Y .The notation is due to
(Dawid, 1979) who studied the notion of conditinal independence in a systematic fashion. (Dawid,
1980) gives a formally treatment.

When X,Y and Z are discrete random variables the condition for theX ⊥⊥ Y |Z simplifies as

P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z)

where the equation holds for z with P (Z = z) > 0.
When the three variables admit a joint density, p, with respect to product measure, we have

X ⊥⊥ Y |Z ⇐⇒ pXY |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z) (8.1)

where the equation is to hold almost surely with respect to P. If all densities are continuous ,the
equality in 8.1 must hold for all z with pZ(z) > 0. Here it is understood that all functions on a
discrete space are considered continuous functions. The condition 8.1can be rewritten as :

X ⊥⊥ Y |Z ⇐⇒ pXY Z(x, y, z) = pXZ(x, z)pY Z(y, z) (8.2)

and this equality must hold for all values of z when the densities are continuous.
The relation X ⊥⊥ Y |Z has the following properties, where h denotes an arbitrary measurable
function on the sample space of X:

1. if X ⊥⊥ Y |Z then Y ⊥⊥ X|Z

2. if X ⊥⊥ Y |Z and U = h(X) then U ⊥⊥ Y |Z

3. if X ⊥⊥ Y |Z and U = h(X), then X ⊥⊥ Y |(Z,U)

4. if X ⊥⊥ Y |Z and X ⊥⊥WY |(Y, Z),then X ⊥⊥ (W,Y )|Z

If we use p as a general symbol for the probability density of the random variables corresponding
to its arguments, the following statements are true:

X ⊥⊥ Y |Z ⇐⇒ p(x, y, z) =
p(x, z)p(y, z)

p(z)
(8.3)

X ⊥⊥ Y |Z ⇐⇒ p(x|y, z) = p(x|z) (8.4)
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X ⊥⊥ Y |Z ⇐⇒ p(x, z, y) = p(x|z)p(z|y) (8.5)

X ⊥⊥ Y |Z ⇐⇒ p(x, z, y) = h(x, z)k(y, z) for some h,k (8.6)

X ⊥⊥ Y |Z ⇐⇒ p(x, z, y) = p(x|z)p(y|z) (8.7)

The equation above hold from a set of triplets (x, y, z) with probability zero. If the densities are
continuous functions (in particular if the state spaces are discrete), the equations hold whenever the
quantities involved are well defined, i.e. when the densities of all conditioning variables are positive.

Another property of the conditional independence relation is often used:

5) if X ⊥⊥ Y |Z and X ⊥⊥ Z|Y then X ⊥⊥ (Y, Z)

However (5) does not hold universally but only under additional conditions - essentially that there
be no non-trivial logical relationship between Y and Z. A trivial counterxample appears when
X = Y = Z with P{X = 1} = P{X = 0} = 1

2 .We have however

Proposition 8.A.3. If the joint density of all variables with respect to a product measure is positive
and continuous, then the statement (5) will hold true

8.B Graphical Representation of Dependency Knowledge

If we have acquired a body of knowledge Z and we wish to assess the truth of a proposition X, it is
important to know whether it would be worthwhile to consult another proposition Y, which is not
in Z. In other words, before we consult Y it is important to know if its true value can potentially
generate new information relative to X, information not available from Z.

What logic would facilitate this type of reasoning?

A powerful formalism for relevant information is provided by probability theory, where the notion
of relevance is identified with dependence or, more specifically, conditional independence.
An other representation, more abstract, are graphs. In general, graphs offer a useful representation
for a variety of phenomena. For example: family relations, electric circles ,communication net-
works. But, what is the feature that makes this phenomenon graphical related? When we deal with
a phenomenon where the notion of neighbourhood or connectedness is explicit, as the above, we
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have no problem configuring a graph which represents the main feature of the phenomenon. How-
ever, when modelling relevancies it is hard to distinguish the direct neighbours from the undirected.
For example:

Example 8.B.1. Firstly it’s easy to understand the influence of the seasonal variation and the wet-
ness on the slipperiness of the pavement. Namely, the knowledge of season (i.e. Season=winter)
would be relevant to the slipperiness of the pavement. In addition, if we know the pavement is
wet,Wet=yes, this information is relevant too. But if we want to infer a graph which depicts this
flow of relevance information, then we may conclude that: the seasonal variation and wetness are
directed neighbours of the slipperiness of the pavement. Is this appropriate?

The next chapters examine the feasibility of devising graphical representation for the relational
structures. Precisely the next chapter examines the undirected graph as a graphical representation.
In this representations the notion of neighbourhood is not specified in advance. Rather, what is
given explicitly is the relation of “ betweenness” .In other words, we are given the theoretic back-
ground to test whether any given subset S of elements intervenes in a relation between element X
and Y.
As we discuss above given a probability Distribution P we can easily test when a Variables S in-
tervenes in the relation of Variables {X,Y }. Namely, given a distribution P and and any three
variables X,Y, Z it easy to verify whether X is independent of Y given Z. However, P does not
dictate which variables should be regarded directed neighbours. But the above remark maybe can
help us so as to formulate the notion of betweenness.

8.B.1 An Axiomatic Basis For Conditional Independence

In this chapter we will illustrate the notion of conditional independence in discrete variables. All
the theoretic aspects is from (Pearl, 1988).

We will consider a finite set U of discrete random variables, where each variable X ∈ U
may take on values from a finite domain DX . We will use capital letters for variable names, e.g.
(X,Y, Z), and lowercase letter for their specific values, e.g. (x, y, z). The sets of variables will be
denoted by boldface (X,Y,Z) and their specific values, assignments, will be denoted by boldfaced
lowercase letters (x,y,z).

Example 8.B.2. If Z stands for the set of variables {X,Y }, then z repressents the configuration
{x, y} : x ∈ DX , y ∈ Dy.

Greek letters will be used to represent individual variables. We shall repeatedly use the short
notation P (x) for the probabilities

P (X = x), x ∈ DX ,

and will write P (z) for the probabilities
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P (Z=z) = P (X = x, Y = y), x ∈ DX , y ∈ DY .

Definition 8.B.3. Let U = {α, β, ...} be a finite set of variables with discrete values. Let P (.)be a
joint probability function over the variables in U , and let X,Y and Z stands for any three subsets of
variables in U . X and Y are said to be conditionally independent given Z if

P (x|y,z) = P (x|z) whenever P (y,z) > 0

We will use the notion I(X,Z, Y )P to denote the independence of X and Y given Z, thus

I(X,Z,Y)P iff P (x|y,z) = P (x|z) (8.8)

for all values x,y,z such that P (y,z) > 0. Unconditional independence (also called marginal inde-
pendence) will be denoted by I(X, ∅,Y) i.e.

I(X, ∅,Y)P iff P (x|y) = P (x) whenever P (y) > 0 (8.9)

Note that I(X,Y,Z)P implies the conditional independence of all pairs of variables α ∈ X and
β ∈ Y but the converse is not necessarily true.

I(X,Y,Z)P ⇒ I(α,Y,β)P∀α ∈ X, β ∈ Y

I(X,Y,Z)P 6⇐ I(α,Y,β)P∀α ∈ X, β ∈ Y

This rules out some logical and functional relationships:
The conditional independence I(X,Z, Y )P satisfies the following functional properties ,as we can
see in (Lauritzen, 1996).

1. I(X,Y,Z)P ⇐⇒ P (x, y|z) = P (x|y)P (y|z)

2. I(X,Y,Z)P ⇐⇒ ∃f, g : P (x, y, z) = f(x, z)g(y, z)

3. I(X,Y,Z)P ⇐⇒ P (x, y, z) = P (x|y)P (y, z)

Generally these proofs can be derived from the numeric representation of P . We now ask that,
what logical conditions, being avoided of any reference to numerical forms, should constrain the
relationship I(X,Z,Y)P if in some probability model P it stands for the statement “X is independent
of Y,given that we know Z”

Theorem 8.B.4. Let X,Y,Z be three disjoint subsets of variables from U . Suppose we learn about
a conditional independence I(X,Y,Z)P . Can we conclude other independence properties that must
hold in the distribution?
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I Symmetry I(X,Z,Y)P ⇐⇒ I(Y,Z,X)P

I Decomposition I(X,Z,Y ∪W)P =⇒ I(X,Z,Y)P&I(X,Z,W )P

I Weak Union I(X,Z,Y ∪W)P =⇒ I(X,Z ∪W,Y)P

I Contraction I(X,Z,Y)P&I(X,Z ∪ Y ,W)P =⇒ I(X,Z,Y ∪W)P

If P is strictly positive,then a fifth condition holds:

I Intersection I(X,Z ∪W,Y)&I(X,Z ∪ Y, W) =⇒ I(X,Z,Y ∪W)

As we discuss in the introduction of this chapter Conditional independences is a very useful
formal tool to represent relevant information. This is the best way “the key” to understand the
intuition behind the above axioms.
If we give the meaning of I(X,Z,Y)P := as the information of Y is irrelevant about X given the
knowledge base of Z. More details about the interpretation can be found in (Pearl, 1988).

I Symmetry I(X,Z,Y)P ⇐⇒ I(Y,Z,X)P
The symmetry axiom states that, in any state of knowledge Z, if Y tells us nothing new about
X, then X tells us nothing new about Y.

I Decomposition I(X,Z,Y ∪W)P =⇒ I(X,Z,Y)&I(X,Z,W )P

The decomposition axiom asserts that if two combined items of information are judged irrel-
evant to X, then each separate item is irrelevant as well.

I Weak Union I(X,Z,Y ∪W)P =⇒ I(X,Z ∪W,Y)P
The weak union axiom states that learning irrelevant informationW cannot help the irrelevant
information Y become relevant to X.

I Contraction I(X,Z,Y)P&I(X,Z ∪ Y ,W)P =⇒ I(X,Z,Y ∪ X)P
The contraction axiom states that if we judge W irrelevant to X after learning some irrelevant
information Y, then W must have been irrelevant before we learned Y.

I Intersection I(X,Z ∪W,Y)P&I(X,Z ∪ Y, W)P =⇒ I(X,Z,Y ∪W)P

unless Y affects X when we knowW or if W is irrelevant to X when we know Y, then neither
W nor Y (nor their combination) is relevant to X.

Together, the weak union and contraction properties mean that irrelevant information should not
alter the relevance status of other propositions in the system; what was relevant remains relevant,
and what was irrelevant remains irrelevant.

8.B.2 On the logic of representing Dependencies by Undirected Graphs

In this section we are restricted in the undirected graphs however in the next sections we will expand
our examination into the directed too. As we mention before, maybe an alternative representation
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of relevance information is graphs. If that is true we need a graphical procedure with the ability
to depict the relevance information in graphs, working with the same logic as conditional indepen-
dences in Probabilities. Also the results about the relevance information taken from graphs must be
the same as the results taken from the Probability Independences. For that reason, we need a mecha-
nism which can match the conditional independences and the graphical conditional independences.
For that purpose we use the theory of Dependency models.

Definition 8.B.5. A dependency modelM over a set of object U = {α, β, ...} is a subset of triplets
(X,Y,Z)where the X, Y, and Z are three disjoint subset of elements of U. The triplets inM represent
independences, that is, if (X,Y,Z) ∈M asserts that X and Y interact only via Z or “X is independent
of Y given Z”. This statement is also written via I(X,Z,Y)M with the subscript to be optional
clarifying only the type of dependency.

Any Probabilistic model is a Dependency Model because every triplet (X,Y,Z) can test the va-
lidity of I(X,Y,Z)P using eq 8.1. Our task now is to characterize the dependency models cap-
tured by Undirected graphs. So, firstly we need to define the undirected graphs. Undirected Graph
G = (V,E) is characterized by the set of nodes V and the set of edges E that connect certain pair
of nodes in V. An example of undirected graph is depicted in the Figure 8.B.1.

Figure 8.B.1: Example of Undirected Graph.

As it is mentioned we need to examine if the Dependency Models can be described in terms
of undirected graphs. By a graphical representation of a Dependency modelM we mean a direct
correspondence between the elements in U , ofM, and the nodes in V , of G, such that the topology1

of G reflects some properties ofM. Ideally if a subset of nodes, Z, intercepts all paths between
nodes ofX and nodes of Y ,write (X,Z,Y)G , then this interception should correspond to a conditional
independence inM between X,Y given Z .Namely

(X,Z,Y)G ⇐⇒ (X,Z,Y)M (8.10)

Example 8.B.6. In this example we illustrate the meaning of the phrase “A subset set of nodes ,Z,
intercepts all paths between nodes of X and nodes of Y ,writes (X,Z,Y)G ”. In the graph of figure
8.B.1 if X stands for vertex α and Y stands for {δ, γ} then Z1 = {ϵ} and Z2 = {β, ϵ} intercepts all
paths between nodes ofX and nodes of Y , namely the the pathsα−ϵ−γ, α−ϵ−β−γ, α−ϵ−β−δ

This correspondence would provide a clear graphical representation for the notion X does not
effect on Y directly because the variables in Z mediated them. Unlike the requirement 8.10 is too
strong. There often is no way of using vertex separation in graphs to display all the independence
and dependencies embodied in a Dependency ModelM.

1the way which construct the graph
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Definition 8.B.7. A graph G is a dependency map (D-Map)of a dependency modelM if there is
a one to one correspondence between the elements of U and the nodes V of G, such that for every
three disjoint subset X,Y,Z of elements we have

(X,Z,Y)G ⇐= (X,Z,Y)M (8.11)

Similarly a graph G is an independency Map , I-Map, ofM if

(X,Z,Y)G =⇒ (X,Z,Y)M (8.12)

G is said to be perfect Map ofM if it is both I-Map and D-Map.

An D-map guarantees that vertices found connected are indeed dependent inM ; it may ,how-
ever,display a pair of dependent variables inM as a pair separated vertices. An I-Map guarantees
that vertices found to be separated correspond to independent variables but does not guarantee that
all those shown to be connected are in fact dependent.

Example 8.B.8. Given a graph where every node is connected with all the other nodes “complete”
is an I-Map. The graph G haven’t any requirement about any correspondence inM. For this every
M is appropriate .
Just with the same logic empty graph is trivial D-Map.

8.B.3 Markov Networks

So in the previous section we define the mechanism which examines the validity of irrelevance
information in graphs “ called Vertex separation”. If we assume as a dependency modelM any
arbitrary Probability distribution P we would like to learn if there are exist a perfect Map between
undirected graph G and the P. Unfortunately in (Pearl & Paz, 1986) is proven that there isn’t.

Lemma 8.B.9. There are probability distribution P for which no graph can be both D-map and
I-map.

Proof. Graph separation always satisfies (X,S1, Y )G =⇒ (X,S1 ∪ S2, Y )G for any two subset
S1, S2 of vertices. However this is not happened in all distributions, P . Some P’s may induce the
(X,S1, Y )P and not (X,S1 ∪ S2, Y )P . Let P which induce the (X,S1, Y )P and not (X,S1 ∪
S2, Y )P the D-mapness forces G to display S1 as a cut-set separating X and Y while I-mapness
prevent S1∪S2 from separation of X and Y. As a result the aren’t any graph which can satisfy these
two requirements simultaneously.

This can be easily explained by the flowing example:

Example 8.B.10. Consider the following experiment: We toss two Coins and a bell rings whenever
the outcomes of the coins are the same. If we haven’t any information about when the bell rings, the
outcomes of the coins are mutually independent. So if there is appropriate graph, perfect-Map, then
in the graph there aren’t any link between this two variables. However, if we know when the bell
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rings ,then the outcome of the one coin should change our opinion about the other coin, so become
dependent. As a result this dependency must be depicted in the graph with a link, this is unable.

So, being unable to provide an graphical representation for all independences. But we can make
the following compromise. Given any arbitrary distribution P, we can construct an I-map G of P that
has the minimum number of edges. But what we mean with the state minimum number of edges?

Definition 8.B.11. A graph G is a minimal I-Map of P if no one edge of G can be deleted without
destroying its I-Mapness . We call such Graph aMarkov Network.

Theorem 8.B.12. Every P has a unique minimal I-map G0 producing by connecting only pairs of
(α, β) for which :

(α,U − α− β, β)P is False

Proof. Follows directly from the proof of theorem 8.16

The above definition tell us how to construct an edge minimal Graph with the following prop-
erties :

I I-Mapness
such that each time we observe a vertex x separated from y by a subset S of vertices,we can
be guaranteed that variables x and y are independent in P given the values of variables in S.

I Minimality
such that the set of neighbors assigned by the minimal G0 to each x coincides exactly with
the smallest set of variables needed to shield x from the influence of all the other variables in
the system. This Set of variables called Markov Boundary.

Definition 8.B.13. A Markov Boundary BP (a) of a variable α is a minimal subset S that renders
α independent of all other variables i.e.

(α, S, U − S − α)P , α 6∈ S (8.13)

and simmultaneously, no propes subset S′ of S satisfies (α, S′, U − S′ − α)P . If no S satisfies the
8.13, define BP (α) = U − α

Theorem 8.B.14. Each variable α has a unique Markov boundary BP (α) that coincides with the
set of vertices BG0

(a) adjacent to α in the Markov Net G0.

Proof. The proof of theorem 8.B.14 follows immediately from the proof of Theorem 8.B.20.

8.B.4 Axiomatic Characterization of Graph Isomorph Dependencies

In the previous section we briefly illustrate the representation of Probability independences by
Graphs. We conclude that: It is impossible given any distribution P to find graph which depict
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all the probabilistic independences. As we see a probability Distributions is a specific type of De-
pendency model. The following question can be raised can we describe the family of Dependency
Models which can be represented by graphs? In this section we will examine other types of Depen-
dencymodels with special properties. Specifically we will try to formulate the class of Dependency-
Models that can be described by the graph representation. So in the following section we introduce
and establish an axiomatic characterization for the family of relations that are isomorphic with the
vertex separation.

Definition 8.B.15. A dependency modelM is said to be graph isomorfic if there exists an undi-
rected graph G = (U,E) that is perfect Map ofM i.e. for every disjoint subsetsX,Y,Z of U we
have:

(X,Z,Y)G ⇐⇒ (X,Z,Y)M

Theorem 8.B.16. A necessary and sufficient condition for a dependency modelM to be graph
isomorph is that I(X,Z, Y )M satisfies the following five independent axiom

1. Symmetry I(X,Z,Y)M ⇐⇒ I(Y,Z,X)M

2. Decomposition I(X,Z,Y ∪W)M =⇒ I(X,Z,Y)M&I(X,Z,W )M

3. Intersection I(X,Z ∪W,Y)M&I(X,Z ∪ Y, W)M =⇒ I(X,Z,Y ∪W)M

4. Strong Union I(X,Z,Y)M =⇒ I(X,Z ∪W,Y)M

5. Transitivity : I(X,Z,Y)M =⇒ I(X,Z,γ)M or I(X,Z,γ)M ∀γ 6∈ X ∪ Z ∪ Y

Proof. [⇐]The axioms are clearly satisfied for vertex separation in graphs. So we prove the “ nec-
essary” part of the theorem. The logical independence of the five axioms can be demonstrated by
letting U contain for elements and showing that is always possible to contrive a subset I of triplets
that violets one axiom and satisfies the other four.

[⇒] the equation of Intersection and Strong Union imply the converse of Decomposition. Mean-
ing I is completly defined by th set of triplets I(α,Z, β) in which α and β are individual elements
of U :

I(X,Z, Y )⇐⇒ I(α,Z, β)∀α ∈ X and β ∈ Y (8.14)

[→] If I(X,Z,Y)whereY = {y1, ..., yn} and X = {x1, ..., xn} =⇒ [Decomposition]

I(X,Z,Y− {y1}) & I(X,Z, y1) =⇒ [Decomposition]

I(X,Z, yi})∀yi ∈ Y =⇒ [Decomposition, Symetry]

I(xi,Z, yi)∀xi ∈ X&yi ∈ Y
[←] If I(xi,Z,yi)∀xi ∈ X&yi ∈ Y .
Then I(x1,Z,y1) & I(x1,Z,y2) =⇒ [StrongUnion]
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I(x1,Z ∪ {y2}, y1) & I(x1,Z ∪ {y1}, y2) =⇒ [Intersection]

I(x1,Z, {y1, y2}) =⇒ [Repeat with the other yi]

I(x1,Z,Y) =⇒ [Symetry]

I(Y,Z, x1) =⇒ [follow the same prosedure with xi]

I(X,Z,Y)

We must show for any set I of triplets (X,Y,Z) satisfing the above axioms, there exist a Graph
such that (X,Z,Y) is in I iff Z is an cutset in G that separates X from Y.We show that G0 = (U,E0)

is an such graph, where (α, β) 6∈ E iff I(α,Z, β). Under the Remark above it is sufficientto show
only:

I(α, S, β)⇐⇒ ((α, S, β))G where a,b, S ⊆ U (8.15)

The converse [⇐]follows automatically from the construction of G0. The other direction [⇒] is
proved by descending induction. For |S| = n− 2 the theorem holds automatically, because of the
contraction of G0. Assume the theorem holds for all S size |S| = k ≤ n − 2. Let S′ be any set of
size |S′| = k − 1. For k ≤ n − 2, there exist an element γ 6∈ S′ ∪ α ∪ β and using the Strong
union , we have I(α, S′, β) ⇒ I(α, S′ ∪ γ, β). By the transitivity axiom we have I(α, S′, β) ⇒
I(α, S′, γ) or I(γ, S′, β). Applying Strong union again we have , I(α, S′, γ) ⇒ I(α, S′ ∪ β, γ)

The middle argument S′ ∪ β and S′ ∪ γ are both of size k, so by the induction hypothesis we have
(α, S′ ∪ β, γ)G0

and (α, S′ ∪ γ, β)G0
. By the intersection property of vertex separation in graphs

we have (α, S′, β ∪ γ)G0
⇒ [Decomposition](α, S′, β)G0

&(α, S′, γ)G0

Having a complete characterization for vertex separation in graphs allows us to test whether
given a dependency-Model lend itself to graphical representation.In fact, it is easy to show that
probabilistic models may violate both of last two axioms. In the example 8.B.10 we can observe this
failure. Strong Union is violated ,namely (X, ∅, Y )P 6⇒ (X,Z, Y )P . Also Transitive is violated
too, namely (X, ∅, Y )P 6⇒ (X, ∅, Z)P or (Z, ∅, Y )P .

8.B.5 Graphoids and Semi-Graphoids

Aswe see, we have fail to provide isomorphic graphical representation for every Probabilistic model
, Lemma 8.B.9 and example 8.B.10. For this reason we settle the following compromise: instead of
complete graph isomorphism, we will consider only minimal I- Maps. In this chapter we will extend
this idea, not only in the Probabilistic models P but in special category of Dependency modelsM
,the Graphoids.

Definition 8.B.17. A graph G is a minimal I-Map of a dependency modelM if deleting any edge
of G would make G cease to be an I-map. We call such a graph a Markov Network ofM.

Theorem 8.B.18. Every Dependency ModelM satisfying symmetry, decomposition, and intersec-
tion has a unique minimal I-map G0 = (U,E0) produced by connecting only those pairs (α, β) for
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which I(α,U − {α, β}, β)M is false i.e.

(α, β) 6∈ E0 ⇐⇒ I(α,U − {α, β}, β)M (8.16)

Proof. This proof is in (Pearl & Paz, 1986).
First we will prove that: G0 is an I-Map using descending induction.
Let n = |U |. For |S| = n− 2 the I-mapness of G′ is guaranteed by its method of contraction 8.16.
Assume the theorem hold for every S′ = k ≤ n− 2 and let S be any set with size S = k − 1 and
(x, S, y)G . We distinguish two sub cases: x ∪ S ∪ y = U and x ∪ S ∪ y 6= U .

If x ∪ S ∪ y = U then either |x| ≥ 2 or |x| ≥ 2. Assume without loss of generality, that
|y| ≥ 2 ,y = γ ∪ y′.
From (x, S, y′ ∪ γ)G ⇒ (x, S, γ)G&(x, S, y′)G .
Then (x, S, γ)G ⇒ (x, S ∪ y′, γ)G & (x, S, y′)G ⇒ (x, S ∪ γ, y′)G

We can observe that the two separating sets above, S ∪ γ and S ∪ y′, are in size k . Therefore by
the induction hypothesis we have
(x, S ∪ γ, y′)G ⇒ I(x, S ∪ γ, y′) and (x, S ∪ y′, γ)G ⇒ I(x, S ∪ y′, γ)

If x ∪ S ∪ y 6= U then there are exist at least one element δ which is not in x ∪ S ∪ y. For
any such δ if we use Strong Union of Vertex separation and we have (x, S, y)G ⇒ (x, S ∪ δ, y)G

and if we use the transitive of vertex separation
(x, S, y)G ⇒ (x, S, δ)G or (δ, S, y)G ⇒
(x, S, δ)G ⇒ [StrongUnion](x, S ∪ y, δ)G

or
(δ, S, y)G ⇒ [StrongUnion](δ, S ∪ x, y)G

The separation sets above are at least |S|+ 1 = k in size. Therefore by the induction hypothesis :

(x, S ∪ δ, y)G&(x, S ∪ y, δ)G ⇒ I(x, S ∪ δ, y)&I(x, S ∪ y, δ) (8.17)

OR

(x, S ∪ δ, y)G&(δ, S ∪ x, y)G ⇒ I(x, S ∪ δ, y)&I(δ, S ∪ x, y) (8.18)

Applying the intersection property to eather 8.17 , 8.18 yields I(x, S, y), which establish the I-
Mapness of G0.
.
Next we show that G0 is an edge minimal and unique. Indeed if deleting an edge (α, β) 6∈ E0 leaves
α separating from β by the complementary set U −α−β, if the resulting graph is still an I-map, we
can conclude I(α,U−α−β, β). However from themethod of constructingG0 and from (α, β) ∈ E0

we know that (α,U −α− β, β) is not in I. Thus (α,U −α− β, β)G0
6⇒ I(α,U −α− β, β).Thus

no edge can deleted from G0 and its minimality and uniqueness are established.

Definition 8.B.19. A Markov Blanket BLI(α) of an element α ∈ U is any subset S of elements

115



for which

I(α, S, U − S− α) and α 6∈ S (8.19)

A set called a Markov Boundary of α, denoted BI(α), if it is a minimal Markov blanket of αi.e.not
of the proper subsets satisfy 8.19.

The Boundary BI(α) is be interpreted as the smallest set of elements that shield α from the
influence of all other elements.

Theorem 8.B.20. Every element α ∈ U in a dependency modelM satisfying symmetry, decompo-
sition, intersection and weak union,called Semi-Graphoid, has a unique Markov boundary BI(α).
Moreover, BI(α) coincides with the set of vertices BG0

(α) adjacent to α in the minimal I-Map G0.

Proof. [⇒] Let BL∗(α) stands for the set of all Markov blankets satisfing 8.19. BI(α) is unique
because every element of BL∗(α) is in the form BI(α) ∩ S for some set S.
Proof
If ∅ ∈ BL∗(α) then BI(α) = ∅ .
If ∅ 6∈ BL∗(α)and S1, S2 ∈ BL∗(α) and S1 ∩ S2 = ∅ ⇒
I(α, S1, U − S1 − α), I(α, S2, U − S2 − α)

I(α, S2, U − S2 − α)⇒ [S1 ∩ S2 = ∅]
I(α, S2, S1 ∪ (U − S2 − S1 − α))⇒ [WeakUnion]

I(α, S2 ∪ (U − S2 − S1 − α), S1)⇒ I(α,U − S1 − α, S1)

FromI(α, S1, U − S1 − α)&I(α,U − S1 − α, S1)⇒ [Intersection]

I(α, ∅, U − α)⇒ ∅ ∈ BL∗(α) Contradiction.
Moreover BI(α) equals to the intersection of all members of BLI(α).
[⇐] Conversely every Markov blanket BL ∈ BL∗

I(α) remains in BL∗
I(α) after we add to it an

arbitrary set of elements S′ ,not cantaining α,follows from the weak union property .

BL ∈ BL∗
I(α)⇒ I(α,BL,U −BL− α)⇒ I(α,BL, S′ ∪ (U − S′ −BL− α))⇒

⇒ [WeakUnion]I(α,BL ∪ S′, U −BL− α)⇒

BL ∪ S′ ∈ BL∗
I(α)

In particular if there is an element β outsideBI(α)∪α then U −α−β is inBL∗(α). From this we
conclude that for every element β outsideBI(α)we have I(α,U −α−β, β), meaning β cannot be
connected to a is G0. Thus

BG0
(α) ⊆ BI(α)

To prove the other direction ⊇ it is sufficient to show that BG0
is in BL∗(α), but this follows from

the fact that G0, as an I-Map.
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8.C Graphical Representation of DependencyKnowledge onDAGs
Part II

8.C.1 Dependence semantics for Bayesian-Networks

In this chapter we will examine Bayesian-Networks. Generally speaking Bayesian Networks are
DAGs in which their nodes represents variables, their arcs signify the existence of directed causal
influence between the linked variables, and the strengths of these influences are expressed by condi-
tional probabilities. The semantics of Bayesian-Networks demands a clear correspondence between
the topology of the DAG and the dependence relationship portrayed by it. In the previous section
we see that this correspondence in Markov-Networks, Undirected graphs, was based on a simple
separation criterion, vertex separation. More precise, if the removal of a subset Z of nodes from the
network render nodes X and Y disconnected were proclaimed to be independent given Z. However
in DAGs we use a slightly more complex separability criterion, called d-separation which takes into
consideration the directionality of the arrows in the Graph.

Definition 8.C.1. If X,Y and Z are three disjoint subsets of nodes in a DAG D, then Z is said to
d-separate X from Y,denoted (X,Z,Y)D if there is no path between a node X and a node in Y along
which the following two conditions hold:

1. every node with converging arrows is in Z or has an descendent in Z

2. every other node is outside Z

Precisely, as Judea Pearl mentions in the book (Pearl et al., 2016) p.51.
“The rule of d-separation for determining conditional independence by graphs (Definition 8.C.1)
was introduced in (Pearl, 1986) and formally proved in (Verma & Pearl, 1990b) using the theory of
graphoids (Pearl & Paz, 1986).”

Definition 8.C.2. ADAGD is said a I-map of a dependency modelM if every d-separation condi-
tion displayed byD corresponds to a valid conditional independence relationships inMif for every
three disjoint sets of vertices X,Y,Z we have

(X,Z,Y)D =⇒ I(X,Z,Y)M (8.20)

A DAG is a minimal I-map ofM if none of its arrows can be deleted without destroying its I-
mapness.

Now let’s define Bayesian-Networks:

Definition 8.C.3. Given a probability distribution P on a set of variables U , a DAG D = (U, E) is
called a Bayesian-Network of P iff D is a minimal I-Map of P.

As mentioned in (Verma & Pearl, 1990b) there is a procedure which produces a minimal I-map
of any dependency model which is a semi-graphoid. Before we illustrate this algorithm is important
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to define the notion of stratified protocol and the tail boundary. A tail boundary of a variable X is
any set of lesser variables (with respect to the ordering) rendering X independent of all other lesser
variables. A stratified protocol of a dependency model contains two things: an ordering of the
variables, and a function that assigns a tail boundary to each variable X.

Definition 8.C.4. LetM be a dependency model defined on a set U = {X1, .., Xn} of elements,
and let d an ordering (X1, ..., Xi, ..) of the elements of U . The boundary strata ofM relative
to d is an ordered set of subset of U, {B1, .., Bi, ...} such that each Bi is a Markov Boundary of
Xi w.r.t. the set of U(i) = {X1, .., Xi−1} i.e. Bi is the minimal set satisfying Bi ⊆ U(i) and
I(Xi, Bi, U(i) −Bi).
The DAG created by designated each Bi as a parents of vertex Xi is called boundary DAG ofM
relative to d.

However we have a problem in the complexity of the algorithm that examines every possible
boundary-strata so as to find the Markov Boundary in every possible ordering. If we define a par-
ticular dependency model over n variables there are n! different possible orderings and for each
ordering can be up to

∏n
i=1 2

i−1 different sets of tail boundaries. Because under some ordering
d the i-variable have

∑i−1
k=0

(
i−1
k

)
= 2i−1 different possible Boundaries strata and then multiply

to find every possible Boundary for every variable i :
∏n

i=1 2
i−1 = 2

∑n
i=1(i−1) = 2n

n−1
2 . So,

n!2n
n−1
2 different Boundary strata.

Theorem 8.C.5. LetM be any semi-graphoid (i.e. the dependency model satisfies the axioms
Symmetry, Decomposition, weak union, Contraction ). IfD is boundary DAG ofM relative to any
ordering d, then D is a minimal I-Map ofM.

Proof. (Verma & Pearl, 1990a)

As we see from the previous chapter every probability distribution P is a semi-graphoid. Even-
tually:

Corollary 8.C.6. Given a Probability Distribution P (X1, .., Xn) and any order d of the variables,
the DAG created be designating as parents ofXi any minimal setPa(Xi) of predecessors satisfying
:

P (Xi|Pa(Xi)) = P (Xi|X1, .., Xi−1), Pa(Xi) ⊆ {X1, .., Xi−1}

is a Bayesian network, minimal I-map, of P . If P is strictly positive, then all the parents sets are
unique and the Bayesian-Network is unique (given d).

Although the structure of Bayesian Network depends strongly on the node ordering d used con-
structing it, each network nevertheless is an I-Map of the underling distribution P . This means all
conditional independences is valid in P and hence are independent of the constructing ordering.

Corollary 8.C.7. Given a DAG D and a probability distribution P , a necessary and sufficient
condition forD to be a Bayesian network of P is that each variableXi be conditionally independent
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of all its non descendants, given it’s parents Pa(Xi), and that no proper subset of Pa(Xi) satisfy
the condition

Corollary 8.C.8. In a Bayesian-Network, the union of the following three types of neighbours is
sufficient for forming the Markov Blanket of node X: the direct parents of X, the direct successors
of X and all the direct parents of X’s children (direct successors).

Under the above theorems we solve the problem of finding minimals I-maps from a distribution
P. The algorithm consists of the following steps: first assign a total ordering d to the variables of
P. For each variable i of P ,identify a minimal set of predecessors Si; that renders i independent of
all its other predecessors (in the ordering of the first step). Assign a direct link from every variable
in Si; to i. The resulting DAG is an I-map of P, and is minimal in the sense that no edge can be
deleted without destroying its I-mapness. The input list L for this construction (we called it Markov
Boundary) consists of n conditional independence statements, one for each variable, all of the form
I(i, Si, U(i) − Si).

Definition 8.C.9. A conditional independence statement σ logically follows from a set Σ of such
statements if σ holds for every distribution that obeys Σ. In such case we also say that σ is a valid
consequence of Σ.

Hence we can understand how difficult is someone to conclude if some independence statement
σ is a valid consequence of a set of independences L. However d-separation is offers us an easiest
and much delicate solution. If we prove that DAG graphically verifies every conditional indepen-
dence statement that logically follows from input list L(Markov Boundary) then we can conclude if
a statement σ is a valid consequence of an input list L and then σ holds in every distribution obeys
L. Equivalently, every graphically-unverified statement in DAG is not a valid consequence of L.
We will call this completeness of d-separation criterion.

Clearly, the constructed DAG represents more independences than those listed in the input list,
namely, all those that are graphically verified by the d-separation criterion. The above analysis
guarantees that all graphically-verified statements are indeed valid in P i.e., the DAG is an I-map
of P. However, we will shows in the next section that the constructed DAG has an additional prop-
erty; it graphically-verifies every conditional independence statement that logically follows from L
(i.e. holds in every distribution that obeys L ). Hence, we cannot hope to improve the d-separation
criterion to display more independences, because all valid consequences of L (which definesD) are
already captured by d -separation.

8.C.2 Completeness of d-Separation

A Bayesian network can be viewed as an inference instrument for deducing new independence
relationships from those used in constructing network. The topology of network is assembled from
the list of independence statements that comprise the boundary strata. This input list implies a host
of additional statements, many of which can be deduced from the network by graphical criteria such
as d-separation For example the network in Figure8.C.1 :
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Figure 8.C.1

Is contracted from the Boundary-Strata

B2 = {1} , B3 = {1} , B4 = {2, 3} , B5 = {4}

Represented the input list

L = {I(2, 1, ∅), I(3, 1, ∅), I(4, 23, 1), I(5, 4, 123)}

New independence relationships all of them valid consequence of L, can be deduced from the net-
work e.g. I(5, 23, 1) or I(3, 124, 5). This raises the following questions :

1. Can be d-separation be improved ? Can a more sophisticated criterion reveal additional in-
dependences of the input information ?

2. Are there valid consequences that escape graphical representation algorithm ?

The answer of two question is no. every valid consequence of the input information L must
shown up as a d-separation condition in the DAG build from L. This follows from the next theorem

Theorem 8.C.10. For any DAG D there exists a probability distribution P such that D is a perfect
map of P relative to d-separation i.e. P embodies all the independences portrayed in D ,and no
other.

Proof. (Geiger & Pearl, 1990)

Corollary 8.C.11. Given a list L of independence relationships in the form of boundary strata,
a Bayesian Network combined with d-separation criterion constitutes a polynomially sound and
complete inference mechanism relative to the closure of L i.e. it identifies in polynomial time every
conditional independence relationship that follows logically from those in L.

120



From this corollary is makes us clear that its impossible for some valid consequence σ of input
list L to escape detection by d-separation.

8.D Valid Adjustment Set

Our goal in this chapter is to prove the proposition 1..2. To do so we must see another way to do
interventions in the system.
Concider a SCM S with structural assignments

Xj = fj(PAj , Nj)

and the intervention do(Xk = xk). Now let’s consider an alternative (but sometimesmore appealing
) account of intervention which treats the intervention as a variable within the system (Pearl, 2009).
We can construct a new SCM S̃ that equals S with the only difference S̃ has one more variable I,
which represents whether we have intervention inXk .Also I is in the set of parents ofXk and does
not have any other neighbors.The new structural assignments

I := NI

Xk :=

 fk(PAk, Nk) if I = 0

xk if I = 1

Xj = fj(PAj , Nj) j 6= k

where NI ∼ Ber(0.5), for example.
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So, if I=0

pS̃(x1, ..., xp|I = 0)︸ ︷︷ ︸
I has not parents ‘‘intervntion=condition”

= pS̃;do(I=0)(x1, ..., xp) =

= pS(x1, ..., xp)

which corresponds in observation settings .
If I=1

pS̃(x1, ..., xp|I = 1)︸ ︷︷ ︸
I has not parents ‘‘intervntion=condition”

= pS̃,do(I=1)(x1, ..., xp) =

= pS,do(Xk=xk)(x1, ..., xp)

Nowwe can use theMarkov Condition to solve the problem of the searching of valid adjustment
set .We can observe that :
if the set A and I is d-separated by a set of variables B then:

A ⊥⊥ G̃I|B⇒ pS̃(a|b, I = 0) = pS̃(a|b, I = 1)

⇒ pS(a|b) = pS;do(Xk=xk)(a|b)

and after the discussion above

pS(a|b) = pS,do(Xk=xk)(a|b)

So from equations 5.7 we searching sets Z witch satsfies :

Y d− sepG̃ I given{Z, X} and Z d− sepG̃ I (8.21)

8.D.1 Parents Adjustment

Lets see the first case :
If Z = PAX then we can see in the figure bellow all the possible graphs:
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we can see in all possible cases .

X d− sepG̃ I | PAX , Y and PAX d− sepG̃ I (8.22)

As a result once we identify the parents of X, the rest of the graph can be discarded, and the causal
effect can be evaluated from the adjustment formula. However in most practical cases, the set of
Xs parents will contain unobserved variables that would prevent us from calculating the conditional
probabilities in the adjustment formula. For that reason we have the others criteria like

8.D.2 Back Door Criterion

According to the back door condition (i) of the definition of the back-door criterion, no node in Z
is a descendant of X . So, all paths between I and each node z ∈ Z have (at least) a collider ,the
variable X(see the following figure).
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Using the Markov condition we have: Zd-separate I⇒ Z ⊥⊥ I .
Thus

pS̃,do(I=1)(z) = pS̃(z|I = 1) = pS̃(z|I = 0) = pS(z)

Assuming the case which all back-door paths from X to Y blocked, then all paths from I to Y
must go through the children of X , as a result this paths would be blocked if we condition on X.
Hence using the Markov property Y ⊥⊥ G̃I|X ⇒ Y ⊥⊥ I|X .
In the general case all back-door paths from X to Y aren’t blocked but according to the back-door
condition (ii), Z blocks every path between X and Y that contains an arrow into X. Thus the previous
thinking Y ⊥⊥ G̃I|X ⇒ Y ⊥⊥ I|X holds only if we condition and on Z ,because Z blocks every
back door path. Hence using the Markov condition: Y ⊥⊥ G̃I|(X,Z)⇒ Y ⊥⊥ I|(X,Z)

pS̃,do(I=1)(y|x, z) = pS̃(z|I = 1) = pS̃(y|x, zI = 0) = pS(y|x, z)

8.D.3 Toward Necessity

The third statement ”toward necessity ” is very important because all valid adjustment sets can be
characterized. The proof in (Shpitser, VanderWeele, & Robins, 2012).

8.E Linear-Gaussian Systems

A random vector X = {X1, .., Xn} is multivariate normal if any linear combination of that random
variables X1, X2, .., Xn is normal distributed. In other words:

a1X1 + a2X2 + ..+ anXn

has a normal distribution for any constants a1, .., an.
Let Linear-Gaussian SCM S over variablesXwith normally distributed error termsUi. Without loss
of generality we can assume zeromean in every error term . Hence the randomvector consistingwith
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all the error terms, U, follows multi-normal distribution with mean the zero-vector, 0n := (0, .., 0)

where n:=size of different variables in X, and variance-covariance matrix the diagonal 2 Σ.

Σ =


V ar[U1] 0 .. 0

0 V ar[U2] .. 0

0 0 .. V ar[Un]


Every variable Xi ∈ X can be written as linear combination of the error terms, since the SCM is
acyclic, so the random vector X follows Gaussian distribution, also every subset of X follows the
Gaussian distribution, with mean again the zero-vector, 0n := (0, .., 0), and covariance matrix Σ̃.
Let K ⊂ X since the random vector K ⊂ X we have that K ∼ N (0k1+k2 ,Σ1). Now consider
partitioning of K into two components X1 and X2 of dimension k1 and k2 respectively, that is,

K =

(
X1

X2

)

Let we want to deduce the conditional distribution ofX1 given that X2 = x2. First write

Σ1 =

(
ΣX1X1

ΣX1X2

ΣX2X1 ΣX2X2

)
(8.23)

where ΣX1X1 is k1 × k1, ΣX2X2 is k2 × k2 and ΣX1X2=Σt
X2X1

and

Σ−1
1 = V1 =

(
VX1X1

VX1X2

VX2X1 VX2X2

)

so that ΣX1X1V1 = Ik1+k2 (Ik1+k2 is the k1 + k2 × k1 + k2 identical matrix)gives:(
ΣX1X1

ΣX1X2

ΣX2X1 ΣX2X2

)(
VX1X1

VX1X2

VX2X1 VX2X2

)
=

(
Ik1

0k1

0k2 Ik2

)

giving that, and after some calculations, we can prove that

X2|X1 = x1 ∼ N (−V −1
X2X2

VX2X1x1, VX2X2)

or using the terms of Σ1 matrix we can prove that:

X2|X1 = x1 ∼ N (ΣX2X1
Σ−1

X1X1
x1,ΣX2X2

− ΣX2X1
Σ−1

X1X1
ΣX1X2

)

so the expectation mean is E[X2|X1 = x1] = ΣX2X1
Σ−1

X1X1
x1

if set A = ΣX2X1
Σ−1

X1X1
then E[X2|X1 = x1] = Ax1

2diagonal since we have assumed uncorrelated error terms
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