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Introduction

Knots are smooth embeddings of S1 in the interior of a 3-manifold. We
usually regard equivalence classes of knots up to isotopy. Isotopy is a
homotopy from one embedding of S1 to another such that, at every time it is
an embedding in the 3-manifold. A generic projection of a representative of
an isotopy class of a knot into a plane is called a knot diagram. The isotopy
of knots has been discretified by Reidemeister, proving that isotopy is a
combination of locally planar isotopy and the three Reidemeister moves. The
classification of knots up to isotopy is still an open problem, yet there are
strong invariants that classify large families of knots, such as the classical
polynomial invariants, Vassiliev invariants, general quantum invariants,
Khovanov homology etc.

The Vassiliev invariants are extensions of knot invariants to knots which
fail to be embeddings in finitely many transversal double points. The
extension is possible using the relation called the Vassiliev skein relation:
v( ) = v( )− v( ). A finite type invariant of type k is a knot invariant
whose extension vanishes in all diagrams with n > k singularities. In the
original work of V. Vassiliev [26], finite type invariants correspond to the
zero-dimensional classes of a special spectral sequence. In fact, the space
of knots is understood as the complement of the space of mappings of S1 in
R3 that fail in some way to be an embedding (the so-called discriminant).
Knot invariants are just locally constant functions in the space of knots
and Vassiliev’s formalism was trying to show that there exists such a
spectral sequence that converges to the cohomology of the space of knots.
These definitions and calculations have been very much simplified by the
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works of Bar-Natan[1], Birman & Lin[3], Stanford[23],and Polyak & Viro[22],
as we are interested only in the zero-class, and as the use of the chord
diagrams made a large part of the theory combinatorial, avoiding heavy
technical issues of singularity theory. It is indeed a very strong family of
knot invariants, as shown by the proof of the Vassiliev-Kontsevich Theorem.
Nevertheless,it is not yet known whether Vassiliev invariants, or finite type
invariants, can classify knots or even if they detect the unknot. Vassiliev
invariants can be seen as building blocks to other known knot invariants,
such as the classical Jones polynomial whose coefficients in the Taylor
expansion are Vassiliev invariants.

The theory of knotoids was introduced by V. Turaev in 2011 [25]. A
knotoid diagram is a generic immersion of the interval in the interior of a
connected orientable surface Σ. An isotopy class of knotoid diagrams is
called a knotoid. We will usually refer to spherical or planar knotoids. As
Turaev showed, the theory of spherical knotoids is a faithful extension of the
classical knot theory. Remarkably, and unlike classical knot theory, in the
theory of knotoids, spherical knotoids that are isotopic can be in different
isotopy classes of planar knotoids. Knotoids have caught the attention of
the mathematical community the last years with many different results and
applications to other aspects of science, such as the topological study of
proteins.

In this work we introduce the theory of finite type invariants for knotoids.
The main results are: a classification of knotoids with exactly one singu-
larity, up to singular equivalence, as representatives of different homotopy
classes of the annulus. We then construct the corresponding linear chord
diagrams, and with that in hand we give an explicit formula for the uni-
versal invariant of type-1, and we prove that, indeed, we can generate a
knotoid invariant given a real function on linear chord diagrams. We then
give some examples of non-trivial v1 invariants, such as the affine index
polynomial and invariants which arise from the Taylor expansion of the
Turaev extended bracket polynomial.

In Chapter 1 we give the basic definitions and results from the theory
of knotoids and we give examples of some strong knotoid invariants. In
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Chapter 2 we summarize the theory of Vassiliev invariants and chord
diagrams. We give a proof that the chord diagrams have a rich algebraic
structure and we state the Vassiliev-Kontsevich Theorem, as well as the
insufficiency of this classical theory to provide a proof of the Theorem. In
Chapter 3 we give the proof of the Vassiliev-Kontsevich Theorem using
the Kontsevich integral and by claiming some basic facts about Knizhnik-
Zamolodchikov connections. Chapters 4,5,6 are the chapters containing
new results, which are joint work with S. Lambropoulou and L.H. Kauffman.
In Chapter 4 we introduce the theory of singular knotoids, we give examples
of Vassiliev invariants obtained by different closures and we construct the
linear chord diagrams. In Chapter 5 we give some technical lemmas about a
rail representation of spherical knotoids, which will be useful for proving the
Classification Theorem for spherical knotoids with exactly one singularity.
In Chapter 6 we prove the Classification Theorem using the results from
Chapters 4 and 5, and we construct the universal Vassiliev invariant of
type 1.

Acknowledgements

I would like to thank my family and friends for their support, as well as
my professors:

S. Lambropoulou for introducing me the special aspects of knot theory
and low dimensional topology, for her mentoring.

L.H. Kauffman from University of Illinois in Chicago for his interest in
our project which led to join our group and have a great collaboration.

A. Kontogeorgis and P. Gianniotis for their teaching was crucial for my
integration and their comments on my thesis.



8



Εισαγωγή

Οι κόµβοι είναι λείες εµφυτεύσεις της S1 στο εσωτερικό µιας 3-πολλαπλότητας.
Συνήθως µελετάµε κλάσεις ισοδυναµίας κόµβων ως προς την έννοια της ισο-
τοπίας. Ισοτοπία είναι µια οµοτοπία από µία εµφύτευση της S1 σε µια άλλη,
τέτοια ώστε σε κάθε χρονικό σηµείο να είναι εµφύτευση στην 3-πολλαπλότητα.
Μια τυπική προβολή ενός αντιπροσώπου µιας κλάσης ισοτοπίας ενός κόµβου
σε ένα επίπεδο ονοµάζεται διάγραµµα του κόµβου. Η ισοτοπία των κόµβων
έχει διακριτοποιηθεί από τον Reidemeister, αποδεικνύοντας ότι µια ισοτοπία
είναι ένας πεπερασµένος συνδυασµός τοπικών ισοτοπιών επιπέδου και των
τριών κινήσεων Reidemeister. Η ταξινόµηση των κόµβων ως προς την έννοια
της ισοτοπίας είναι ακόµα ένα ανοικτό πρόβληµα των Μαθηµατικών. ΄Οµως
υπάρχουν ισχυρές αναλλοίωτες που ταξινοµούν µεγάλες οικογένειες κόµβων,
όπως οι κλασικές πολυωνυµικές αναλλοίωτες, οι αναλλοίωτες Vassiliev, οι
κβαντικές αναλλοίωτες γενικά και η οµολογία Khovanov.

Οι αναλλοίωτες Vassiliev είναι επεκτάσεις των αναλλοίωτων κόµβων σε
κόµβους που αποτυγχάνουν να είναι εµφυτεύσεις σε πεπερασµένα τω πλήθος
εγκάρσια διπλά σηµεία. Η επέκαση είναι δυνατή χρησιµοποιώντας τη σχέση
που ονοµάζεται Vassiliev skein relation v( ) = v( ) − v( ). Μια α-
ναλλοίωτη πεπερασµένου τύπου k, είναι µια αναλλοίτη κόµβων της οποίας η
επέκταση µηδενίζεται σε όλα τα διαγράµµατα µε n > k ιδιοµορφίες. Στην αρ-
χική δουλειά του V. Vassiliev, οι αναλλοίωτες πεπερασµένου τύπου αντιστοι-
χούν στη µηδενικής διάστασης κλάση συνοµολογίας µιας ειδικής ϕασµατικής
ακολουθίας. Ο χώρος των κόµβων γίνεται αντιληπτός ως το συµπλήρωµα του
χώρου των απεικονίσεων του S1 στον R3 που αποτυγχάνουν µε κάποιο τρόπο
να είναι εµφύτευση, και ο οποίος αποκαλείται `διακρίνουσα΄. Οι αναλλοίωτες
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κόµβων είναι απλά τοπικά σταθερές συναρτήσεις στο χώρο των κόµβων. Ο
ϕρορµαλισµός αυτός προσπαθεί να δείξει ότι υπάρχει µια τέτοια ϕασµατικής
ακολουθία που να συγκλίνει στη συνοµολογία του χώρου των κόµβων. Αυτοί
οι ορισµοί και οι υπολογισµοί έχουν απλοποιηθεί από τη δουλειά των Bar-
Natan, Birman & Lin, T. Stanford και Polyak & Viro. Αφού µας ενδιαφέρει
µόνο η µηδενική κλάση, η χρήση των `διαγραµµάτων χορδών΄ µετέφερε αυτή
τη ϑεωρία στο πεδίο της συνδυαστικής ϑεωρίας, αποφεύγοντας µεγάλα τε-
χνικά προβλήµατα της ϑεωρίας ιδιοµορφιών. Είναι όντως µια πολύ δυνατή
οικογένεια από αναλλοίωτες κόµβων, όπως ϕαίνεται από την απόδειξη του
Θεωρήµατος Vassiliev-Kontsevich. Φυσικά, δεν είναι ακόµα γνωστό αν οι
αναλλοίωτες Vassiliev ταξινοµούν τους κόµβους, ούτε καν αν αναγνωρίζουν
τον τετριµµένο κόµβο. Μπορούµε να δούµε τις αναλλοίωτες Vassiliev ως ϐα-
σικά κοµµάτια κατασκευής άλλων αναλλοίωτων κόµβων, όπως το πολυώνυµο
Jones, του οποίου οι συντελεστές στο ανάπτυγµα Taylor είναι αναλλοίωτες
Vassiliev.

Η ϑεωρία των `κοµβοειδών΄ (knotoids) εισήχθη από τον V. Turaev. ΄Ενα δι-
άγραµµα κοµβοειδούς είναι µία τυπική εµβάπτυση ενός κλειστού διαστήµα-
τος στο εσωτερικό µιας συνεκτικής προσανατολίσιµης επιφάνειας Σ. Μια
κλάση ισοτοπίας από διαγράµµατα κοµβοειδών ονοµάζεται κοµβοειδές. Α-
ξίζει να σηµειωθεί ότι, αντίθετα µε την κλασική ϑεωρία κόµβων, στη ϑεωρία
των κοµβοειδών, διαγράµµατα σφαιρικών κοµβοειδών που είναι ισοτοπικά
µπορεί να ανήκουν σε διαφορετικές κλάσεις ισοτοπίας ως επίπεδα κοµβοει-
δή. Τα κοµβοειδή έχουν τραβήξει την προσοχή της µαθηµατικής κοινότητας
τα τελευταία χρόνια, µε πολλά αποτελέσµατα, αλλά και χρήσιµες εφαρµογές
σε άλλες πτυχές της επιστήµης, όπως στην τοπολογική µελέτη των πρωτεϊνών.

Σε αυτήν την εργασία εισάγουµε τη ϑεωρία των αναλλοίωτων πεπερασµένου
τύπου για κοµβοειδή. Τα ϐασικά αποτελέσµατα είναι µια ταξινόµηση, ως
προς την ισοδυναµία ιδιοµορφίας, των κοµβοειδών µε ακριβώς µία διαστα-
ύρωση ιδιοµορφίας, εφόσον αντιστοιχούν σε αντιπροσώπους διαφορετικών
κλάσεων οµοτοπίας του κύκλου. Στη συνέχεια κατασκευάζουµε τα αντίστοιχα
`γραµµικά διαγράµµατα χορδών΄ µε τα οποία µπορούµε να κατασκευάσου-
µε την καθολική αναλλοίωτη τύπου 1 για κοµβοειδή, και αποδεικνύουµε ότι
πράγµατι µπορούµε να παράγουµε αναλλοίωτες κοµβοειδών µε δεδοµένη µια
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πραγµατική συνάρτηση στα γραµµικά διαγράµµατα χορδών. Τέλος δίνουµε
µερικά παραδείγµατα από µη-τετριµµένες v1 αναλλοίωτες, όπως το πολυώνυ-
µο affine index, και αναλλοίωτες που προκύπτουν από το ανάπτυγµα Taylor
του πολυωνύµου Turaev.

Στο πρώτο κεφάλαιο δίνουµε τους ϐασικούς ορισµούς και τα ϐασικά απο-
τελέσµατα από τη ϑεωρία των κοµβοειδών, και δίνουµε παραδείγµατα από
κάποιες ισχυρές αναλλοίωτες κοµβοειδών. Στο δεύτερο κεφάλαιο παρουσι-
άζουµε τα ϐασικά αποτελέσµατα των αναλλοίωτων Vassiliev και των διαγραµ-
µάτων χορδών. ∆ίνουµε απόδειξη ότι τα διαγράµµατα χορδών έχουν πλούσια
αλγεβρική δοµή και διατυπώνουµε το Θεώρηµα Vassiliev-Kontsevich, το ο-
ποίο αποδεικνύουµε στο Κεφάλαιο 3 εισάγοντας την Θεωρία των συνοχών
Khnizhnik-Zamolodchikov και τη χρήση του ολοκληρώµατος Kontsevich. Τα
κεφάλαια 4,5,6 περιέχουν νέα αποτελέσµατα, τα οποία είναι κοινή δουλειά
µε τη Σ. Λαµπροπούλου και τον L.H. Kauffman. Στο Κεφάλοιο 4 εισάγουµε τη
Θεωρία των ιδιοµορφικών κοµβοειδών, δίνουµε παραδείγµατα από αναλλοίω-
τες Vassiliev που παίρνουµε από διαφορετικά κλεισίµατα των κοµβοειδών, και
κατασκευάζουµε τα γραµµικά διαγράµµατα χορδών. Στο Κεφάλαιο 5 δίνου-
µε κάποια τεχνικά λήµµατα για µια ὰναπαράσταση σε ϱάγες΄ των σφαιρικών
κοµβοειδών, τα οποία ϑα είναι χρήσιµα για να αποδείξουµε το Θεώρηµα Τα-
ξινόµησης των σφαιρικών κοµβοειδών µε ακριβώς ένα σηµείο ιδιοµορφίας.
Στο κεφάλαιο 6 αποδεικνύουµε το Θεώρηµα Ταξινόµησης χρησιµοποιώντας
τα κεφάλαια 4,5, και κατασκευάζουµε την καθολική αναλλοίωτη τύπου ένα.
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Chapter 1

Knotoids

1.1 Definition

Definition 1.1.1. Let Σ be a path connected, oriented 2-manifold without
boundary, smoothly embedded in R3. A knotoid diagram is an immersion γ
of the interval in Σ, whose singularities are only finitely many transversal
double points, which are endowed with over- or undercrossing data. These
double points are called crossings. γ(0) is called the leg and γ(1) is called
the head of the knotoid diagram, while both comprise the endpoints of the
knotoid. We will actually call a knotoid diagram its image in Σ rather than
the immersion itself. Similarly, a multi-knotoid diagram is an immersion of
a disjoint union of the interval and some copies of the circle, and an isotopy
class of a multi-knotoid diagram is a multi-knotoid.

In classical knot theory, ambient isotopy is generated combinatorially
by three local moves on diagrams, the Reidemeister moves, see Fig. 1.1,
together with planar or disc isotopy. Note that in the knotoid theory an
isotopy may displace the endpoints, but may not pull a strand adjacent to
an endpoint over or under a transversal strand. This justifies the notion of
the forbidden moves Ω+,Ω−, illustrated in Fig. 1.2.

Definition 1.1.2. Two knotoid diagrams K1, K2 in a surface Σ are called
isotopic if they differ by disc isotopies of Σ and the Reidemeister moves
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away from the endpoints. An equivalence class of a knotoid diagram (up to
isotopy) is called a knotoid.

Figure 1.1: The Reidemeister moves I, II and III

Ω+Ω−

Figure 1.2: The forbidden moves for knotoids

The height (or complexity) of a knotoid K is the minimum number of
crossings over all diagrams of K that are created when joining the leg and
the head of K by a simple unknotted arc. The knotoids of zero height are
the knot-type knotoids and their isotopy classes correspond bĳectively to
the classical knot types. The knotoids of height greater than zero are called
proper knotoids.
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Definition 1.1.3. LetM be a category of mathematical structures (e.g.Laurent
polynomials, abelian groups, commutative rings). An invariant of knotoids
is as usual a mapping I : Knotoids→M such that equivalent knotoids map
to equivalent structures inM.

Knotoids in R2 and S2 are called planar and spherical knotoids respec-
tively and are denoted K(R2) and K(S2). Writing S2 � R2 ∪ {∞} we get the
well-defined surjective map ι : K(R2) → K(S2). On the other hand, any
knotoid in S2 can be represented by a knotoid diagram in R2 by pushing a
representative diagram in S2 away from the point at infinity. The knotoid
represented by an embedding [0,1] ↪→ Σ is called trivial in Σ. There exist
examples of non-trivial planar knotoids which are trivial in K(S2). The
simplest such example is the unifoil. See Fig 1.3

Figure 1.3: Two non-equivalent planar knotoids which are equivalent as
spherical

In [25] and [8] several invariants for knotoids have been defined, mainly
for spherical ones. One of them is the bracket polynomial.

In a knotoid diagram we can take an arc joining the leg and the head
without passing through any other existing crossing but only creating new
ones. Such an arc will be called a shortcut and there are various ways to
declare the new crossings to obtain a knot diagram in an invariant manner.
We will later deal with the different type of closures for singular knotoids.
So we will postpone for the moment the proofs concerning the under, over
or virtual closure of a knotoid.
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If K is a knotoid diagram with n crossings and for the moment ignore the
over/under extra data, then we get a graph in S2 with n 4-valent vertices
and 2 1-valent vertices which correspond to the endpoints.This graph is
called the underlying graph of the knotoid diagram K, and straightforwardly
from the Euler’s formula it divides S2 into n + 1 regions, which we will call
regions of the knotoid. The same hold identically for R2 instead of S2.

1.2 The Kauffman bracket polynomial and the

Jones polynomial

We first introduce the Kauffman bracket polynomial in an inductive way,
exactly as for classical knots.

Definition 1.2.1. Let K be a knotoid or a multi-knotoid diagram. Let < K >
be the element of the ring Z [A, B, d] defined by means of the rules:

1.
〈 〉

= 1 meaning that the Kauffman bracket of the trivial knotoid is

trivial but since the trivial knotoid is knot type of course also
〈 〉

= 1

2.
〈
L t

〉
= d〈L〉

3.
〈 〉

= A
〈 〉

+ B
〈 〉

We must determine A, B, d in order to have knotoid isotopy invariance
or invariance under Reidemeister moves. Rule (1) says that < K > takes
the value 1 on a single unknotted linear or circular diagram. Rule (2) says
that < K > is multiplied by d when the knotoid diagram K̃ is a disjoint
union of K with a circular or linear (unknoted) component. This component,
if circular, can surround other parts of the diagram. Rule (3) applies to
diagrams that differ locally at a neighbourhood of a crossing. Applying
rule (3) several times we expand the formulas until we reach diagrams
consisting of disjoint unions of circles (or generally Jordan curves), and one
unknotted arc embedded in the surface (i.e. the trivial knotoid). Rule (2)
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then implies that the value of <> on a disjoint collection of n − 1 circles
and one arc is dn−1. And of course rule (3) implies the formula〈 〉

= B
〈 〉

+ A
〈 〉

Definition 1.2.2. We define a state on a knotoid diagram K ⊂ Σ, when Σ is
an orientable surface, a mapping from the set of crossings of K to the set
{−1,1}.

If G is the underlying planar graph for K, then a state of G is a choice of
splitting marker for every vertex of G. We can choose between the A-splitting,
which is , and the B-splitting, which is . We call the underlying planar
graph for a diagram K the universe for K. This terminology distinguishes
the underlying planar graph from the link projection and from other graphs
that can arise. Thus we speak of the states of a universe.

Since splitting all the vertices of a state results in a configuration of
disjoint circles and an embedded segment, we see that the states are in
one-to-one correspondence with final configurations in the expansion of the
bracket. Accordingly, we define for a diagram K and a state S the bracket
〈K |S〉, given by the formula 〈K |S〉 = AmBl, where m is the number of state
markers that correspond to the A-splitting and l is the number of state
markers that correspond to the B-splitting. The total contribution of a given
state to the polynomial 〈K〉 is then given by the formula 〈K |S〉d |S|−1, where
|S| is the number of the connected components of the 1-manifold formed
when all the splittings are done. Then we have:

Proposition 1.2.3. 〈K〉 is uniquely determined from the rules (1), (2), (3)

and is given by the formula

〈K〉 =
∑
S:state

〈K |S〉d |S|−1

Lemma 1.2.4. 〈 〉
= AB

〈 〉
+ (ABd + A2 + B2)

〈 〉
where the three diagrams represent the same projection except in the area
indicated. And hence

〈 〉
=

〈 〉
iff AB = 1 and d = −A2 − A−2.



18

The rules of the Kauffman bracket are now deformed to the following

1.
〈 〉

= 1 (
〈 〉

= 1)

2.
〈
L ∪

〉
= (−A2 − A−2)〈L〉

3.
〈 〉

= A
〈 〉

+ A−1
〈 〉

and the formula for the bracket becomes

〈K〉 =
∑
S:state

〈K |S〉 (−A2 − A−2)|S|−1 =
∑
S:state

Aσs(−A2 − A−2)|S|−1

where σs ∈ Z is the sum of the values ±1 of the states over all crossings
of K.

Proof.
〈 〉

= A
〈 〉

+B
〈 〉

= A(B
〈 〉

+A
〈 〉

)+B(B
〈 〉

+A
〈 〉

) =

(ABd + A2 + B2)
〈 〉

+ AB
〈 〉

,
where the first and the second equality follow by rule (3) and then we use
rule (2) to deduce that

〈 〉
= d

〈 〉
, and again rule (3). �

One can easily show that the bracket polynomial (〈K〉 ∈ Z[A±1]) is a
Laurent polynomial which is regular isotopy invariant (i.e. invariant under
Reidemeister II and III moves). Indeed, it is only left to check the Reide-
meister III move, which is a straightforward calculation. So 〈K〉 is a regular
isotopy invariant for knotoids and an isotopy invariant when consider up to
multiplication of integer powers of −A3.

Furthermore, 〈K〉 is multiplied by −A±3 under the Reidemeister I moves.
We call writhe wr(K) = n+ − n− where n+ is the number of positive crossings

and n− is the number of positive crossings . The writhe is clearly a
regular isotopy invariant and changes by ±1 under Reidemeister I moves.

From the above we have:

Proposition 1.2.5. 〈K〉 is a regular isotopy invariant for knotoids. More-
over,

fK = (−A3)−wr(K)
∑
s:state

Aσs(−A2 − A−2)|s|−1
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is an isotopy invariant for knotoids, which is called the normalized bracket

polynomial for knotoids (and which is the analogue of the Jones polynomial

by an appropriate change of variable).

1.3 The Turaev extended bracket polynomial

The Turaev extended bracket polynomial is a generalisation of the Kauffman
bracket polynomial for knotoids, introduced by V. Turaev. In the original
paper [25] it is denoted by 〈〈K〉〉o, we will denote it by TK . It is a two-variable
Laurent polynomial TK ∈ Z[A±1, u±1]. TK is defined as follows: Let K be a
knotoid diagram in S2. Pick a shortcut α for K, meaning a generic arc in S2

which joins the leg with the head of the knotoid, creating the least number
of extra crossings. Then, take a state s and the smoothed 1-manifold Ks
described in the bracket polynomial. Let ks be the segment component of
Ks. Note that ks coincides with K in a small neighborhood of the endpoints
of K. In particular, both ks and α have the same endpoints as K. We orient
K, ks and α, from the leg of K to the head of K. Let ks · α be the number of
times ks crosses α from right to left minus the number of times ks crosses
α from left to right (the common endpoints are not counted). Similarly, let
K · α be the algebraic number of intersections of K with α. We then define

TK(A, u) := (−A3)−wr(K)u−K ·α
∑
s:state

Aσsuks·α(−A2 − A−2)|s|−1.

Clearly T (A, u) is an isotopy invariant for knotoids.

1.4 The affine index polynomial

The affine index polynomial was defined for virtual knots and links by L.H.
Kauffman [13] and then for knotoids, virtual or classical, by N. Gügümcü
and L.H. Kauffman [8]. It is based on an integer labeling assigned to flat
knotoid diagrams (i.e. diagrams with the information ‘under’ or ‘over’ on
classical crossings omitted) in the following way. A flat knotoid diagram,
classical or virtual, is associated with a graph where the flat classical
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crossings and the endpoints are regarded as the vertices of the graph. An
arc of an oriented flat knotoid diagram is an edge of the graph it represents,
that extends from one vertex to the next vertex.

We start labeling the edges as exemplified in Fig. 1.4. At each flat crossing,
the labels of the arcs change by one. If the incoming arc labeled by a ∈ Z
crosses another arc which goes to the right then the next arc is labeled by
a + 1; if the incoming arc b ∈ Z crosses another arc which goes to the left
then it is labeled by b − 1. There is no change of labels at virtual crossings.
Note that it is convenient to label the first arc from the leg to the first
crossing by 0.

a

a+1b

b-1

Figure 1.4: Integer labeling

Let c be a classical crossing of the knotoid diagram K. We denote
w+(c), w−(c) the following integers deriving from the labels at the flat cross-
ing corresponding to c:

w+(c) := b − (a + 1)

w−(c) := a − (b − 1)

where a and b are the labels for the left and the right incoming arcs,
respectively. The numbers w+(c) and w−(c) are called positive and negative
weights of c, respectively. Define, now, the weight of c to be:

wK(c) := wsgn(c)(c)
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Definition 1.4.1. The affine index polynomial of K is defined as

PK(t) :=
∑

c∈Cr(K)

sgn(c)(twK (c) − 1)

where Cr(K) is the set of all classical crossings of K.

The affine index polynomial is an isotopy invariant and has some very
interesting properties, as shown in [8], including that its higher degree is
smaller than or equal to the height of the knotoid. Furthermore it is very
easy to calculate by hand, as in the following example which will be very
useful in what follows.

Example 1.4.2. We will calculate the affine index polynomial of the knotoid
below:

Figure 1.5: Labeling the knotoid

w+ = b − (a + 1) w− = a − (b − 1)

A 2 −2

B 1 −1

C −2 2

D −1 1

Table 1.1: Weights for the affine index polynomial
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With the labeling of Fig. 1.5 and of Table 1.1 we have all we need for
calculating the polynomial. Namely:

PK =
∑
c∈cr(K)

sgn(c)(tωk (c) − 1) = −(t−2 − 1) − (t−1 − 1) − (t2 − 1) + (t−1 − 1) =

= −(t2 + t−2 − 2).

This calculation will be used afterwards, but for now note that we have a
simple proof that K, as illustrated in Fig. 1.5, has height 2.



Chapter 2

Finite type invariants for knots

and chord diagrams

In the original work of V. Vassiliev [26], finite type invariants correspond to
the zero-dimensional classes of a special spectral sequence. In the theory,
the space of knots is the complement of the so-called discriminant. Knot
invariants are just locally constant functions in the space of knots and
Vassiliev’s formalism was trying to show that there exists such a spectral
sequence that converges to the cohomology of the space of knots. The
sequel works of Bar-Natan[1], Birman & Lin[3], Stanford[23, 23] and Polyak
& Viro[22] simplified greatly Vassiliev’s theory, making it combinatorial,
especially by the use of the chord diagrams. In this work we are mainly
interested in this combinatorial approach.

2.1 Vassiliev invariants of finite type

Definition 2.1.1. A singular knot is a mapping of S1 in R3 that fails to be an
embedding only in finitely many points where we have only transversal self-
intersections, the singular crossings. If f : S1 → R3 is an almost everywhere
smooth mapping, then a simple transversal double point p ∈ im(f ) is a point
in which f −1(p) = {t1, t2} such that f ′(t1), f ′(t2) are linearly independent.

Definition 2.1.2. Two singular knots are said to be rigid vertex isotopic if

23
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any two diagrams of theirs differ by a fine sequence of disc isotopies, the
Reidemeister moves for classical knots, and the rigid vertex isotopy moves
involving singular crossings, some variations of which are illustrated in
Figs. 1.1 and 2.1.

Figure 2.1: Rigid vertex isotopy moves for singular crossings

Any knot invariant v can be extended to an invariant of singular knots
using the Vassiliev skein relation[26]:

v( ) = v( ) − v( ) (2.1.1)

The small diagrams in the relation denote diagrams that are identical except
for the regions in which they differ only as indicated in the small diagrams.
Using this relation successively, one can extend v to singular knots with an
arbitrary number of singular crossings. Such an invariant is said to be a
Vassiliev invariant.

On the other hand, given a singular knot K, there are many choices
when resolving a sequence of singular crossings of K; in fact the complete
resolution yields the alternating sum∑

ε1=±1,...,εn=±1

(−1)|ε|v(Kε1ε2...εn )

where |ε| is the number of −1’s in the sequence of εi and Kε1ε2...εn is the knot
obtained by a positive/negative resolution of each singular crossing of K.
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Definition 2.1.3. A knot invariant v is said to be of finite type 6 k if there
exists a k ∈ N such that v vanishes on every singular knot with more than
k singular crossings. We say that v is of type k if it is of type 6 k and not of
type 6 k − 1 .

Symbolically, the set of all C-valued Vassiliev invariants of finite type 6 k
is VK and it has a natural grading

V0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ V :=
∞⋃
k=0

Vk

It follows from the definition that each Vk and V are complex vector
spaces of finite and infinite dimension respectively. We could, if needed,
replace C by any commutative ring R; thus each Vk is an R-module and so
is its graded completion.

Definition 2.1.4. The closure of V , denoted V̄ , is defined as:
v ∈ V̄ ⇐⇒ ∀K1, K2 with v(K1) , v(K2) there exists an n ∈ N and a

Vassiliev invariant of finite type 6 n, vn, such that vn(K1) , vn(K2).

2.2 Chord diagrams

Definition 2.2.1. A chord diagram of order n is an oriented circle with a
distinguished set of n disjoint pairs of distinct points, considered up to
orientation preserving diffeomorphisms of the circle. The set of all chord
diagrams of order n will be denoted by An. This means that only the relative
combinatorial positions of the ends of the chords are important. Their
precise geometrical locations on the circle are irrelevant.

By a chord diagram of a singular knot K we mean a circle parametrising
K with the two preimages of each singular crossing connected by a chord.
Furthermore, a top row diagram is a knot with precisely n singular crossings.

Lemma 2.2.2. The value of a Vassiliev invariant, v, of order ≤ n on a top
row diagram depends only on the chord diagram and not on the graph
embedding in the space.
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Proof. Let K1, K2 be singular knots with n singularities, which have diffeo-
morphic chord diagrams. Then there is a bĳection between the chords of
the two chord diagrams and hence between the singularities. Place K1, K2

in R3 so that the corresponding singularities coincide together with both
branches of the knot in a neighbourhood of each singular crossing. Now,
K1, K2 are two embeddings of the same abstract graph, and we know that we
can obtain one from the other by a finite sequence of crossing switches. Now
we can deform K1 into K2 in such a way that some small neighbourhoods
of the singular crossings do not move (rigid-vertex isotopy). By a general
position argument, we may assume that the only new singularities created
in the process of this deformation, that is, of the crossing switches, are
a finite number of transversal double points, all at distinct values of the
deformation parameter. By the Vassiliev skein relation, in each of these
switching events the value of v does not change, and this implies that
v(K1) = v(K2). �

Remark 2.2.3. The technique of (classical) crossing switches can be applied
to any finite type invariant of order k when applied to a top row diagram.
Namely, one can use Eq. 2.1.1 for switching any real crossing at will. As a
result, the value of a finite type invariant of order k depends only on the
nodal structure (the underlying 4-valent graph) and not on the embedding
of the graph in space.

2.3 1-term and 4-term relations

Definition 2.3.1. The symbol of a Vassiliev invariant of finite type 6 n is
the restriction of v to the set of singular knots with precisely n singular
crossings, considered as a function on the set of chord diagrams.

It would be a question whether the symbol of an invariant is an arbitrary
function on chord diagrams. We shall explore this question by following
the story of the Vassiliev-Kontsevich theorem. In fact, it satisfies certain
relations. The so-called one-term relation (1T) is very easy to see. Namely,
the symbol of an invariant v always vanishes on a chord diagram with an
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isolated chord (not intersecting other chords). This follows from the fact that
we can choose a singular knot representing such a chord diagram as having
a small kink parameterized by the arc between the endpoints of the isolated
chord. Then the Vassiliev skein relation 2.1.1 and the Reidemeister I move
gives what is illustrated in fig. 2.2. In the following relations, for reasons
of simplicity, when summing diagrams we mean the evaluations of the
Vassiliev invariant v on the relevant diagrams.

Figure 2.2: One-term relation

The second topological property of v is the so-called four-term relation
(4T), see Fig. 2.3.

Figure 2.3: Four-term relation

The proof is topological and pure skein theoretic, as it uses consecutively
the Vassiliev skein relation to get the result, see Fig 2.4.
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Figure 2.4: Proof of the four-term relation

Summing over these four relations by parts, the left hand side vanishes
and hence we derive the desired formula.

So the four-term relation holds for all singular knots with more than two
singularities, as well as for the corresponding chord diagrams.

Remark 2.3.2. Every knot invariant of type 1 is trivial.

Indeed, let v be an invariant of type 1 and let K be a singular knot with
exactly 1 singular crossing (v vanishes on knots with more singularities).
The singular crossing divides the knot into two disjoint closed curves. After
appropriate classical crossing switches, using the Vassiliev skein relation,
the two closed curves can turn into simple unknotted closed curves with
no self-crossings or shared crossings between them. Now, these crossing
switches cost nothing, because each use of Eq. 2.1.1 will add a singular
crossing to the one of the two resulting diagrams and, by definition, v will
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vanish on this diagram. Hence, we derive the relation:

v(K := ) = v( )

which, again, using Eq. 2.1.1, is clearly equal to zero, by the Reidemeister I
move.

Proposition 2.3.3. There exists an injection ān : Vn \ Vn−1 → RAn where
RAn, the dual space of An modulo (1T) and (4T).

Proof. Let {e1, e2, . . . , ek} be a set of representatives of non-equivalent chord
diagrams of order n. Then every symbol of type n depends only on the
values on {e1, e2, . . . , ek}. Thus, for every vn ∈ Vn \ Vn−1 we have the values
{vn(e1), vn(e2), . . . , vn(ek)} which define a linear function in Rk. So, we have
the 1 − 1 operator T : Vn/Vn−1 → (Rk)∗ which is not an epimorphism. One
can see that easily, since, for example, every non-trivial element of V1/V0

cannot correspond to a linear function which does not vanish in the unique
chord diagram with one chord.

Let, now, U be a vector space with basis (e1, . . . , ek), U ∗ its dual space
and F ⊆ U ∗ such that ∀f ∈ F

k∑
i=1

λ1if (ei) = 0, . . . ,
k∑
i=1

λpif (ei) = 0,

for λji fixed. Let, further, U1 ⊆ U subspace generated by

w1 =

k∑
i=1

λ1iei , . . . , wp =

k∑
i=1

λpiei

Then every f ∈ F vanishes in U1, thus F is can be thought of as a subset of
(U/U1)∗.

We return to Rk with basis (e1, . . . , ek) that corresponds to chord diagrams
of order n. In this basis we want to express the equations that come from
(1T) and (4T), such that:

• v(es) = 0, for some indices s.

• v(ea) − v(eb) + v(ec) − v(ed) = 0, for appropriate indices.
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Then the symbol of a Vassiliev invariant of type 6 n can be thought of as a
linear function in Rk/U1, where U1 is spanned by the expressions

es, ea − eb + ec − ed.

On the other hand, the space An modulo (1T) and (4T) could be presented
by {e1, . . . , ek} such that

• es = 0

• ea − eb + ec − ed = 0

Hence, we have shown that there exists a monomorphism of Vn/Vn−1 in
RAn.

�

2.4 Examples of Vassiliev invariants of knots

2.4.1 The Conway polynomial

The Conway polynomial may be defined by the skein relation and its initial
condition on the unknot:

∇
( )

− ∇
( )

= z∇
( )

∇
( )

= 1.

Its coefficients are Vassiliev invariants. Indeed, comparing the Conway
skein relation with the Vassiliev skein relation (2.1.1) we conclude that the
Conway polynomial of a knot with a singular crossing is divisible by z:

∇
( )

= ∇
( )

− ∇
( )

= z∇
( )

.

Consequently, the Conway polynomial of a knot with k > n singular
crossings is divisible by zk. Thus, its coefficient cn(K) at zn vanishes on
singular knots with > n singular crossings. Therefore, it is a Vassiliev
invariant of order 6 n.
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2.4.2 Finite type invariants and the Jones polynomial

Recall the definition of the normalized bracket for a knot K:

fK(A) := (−A−3)−w(K) 〈K〉 (A)

where w(K) = n+ −n− the writhe of K for n± the number of positive/negative
crossings of K.

Making the substitution t1/4 = A−1 we obtain the classical Jones polyno-
mial. The skein relation for the Jones polynomial together with an initial
condition for the unknot is

t−1J( ) − tJ( ) = (t1/2 − t−1/2)J( ) ; J( ) = 1.

Making a further substitution t = ex and then taking the Taylor expansion
into a formal power series in x, we can represent the Jones polynomial of a
knot K as a power series:

J(K) =

∞∑
n=0

jn(K)xn.

We claim that the coefficient jn(K) is a Vassiliev invariant of order 6 n.
Indeed, substituting t = ex into the skein relation gives:

(1 − x + . . . ) · J
( )

− (1 + x + . . . ) · J
( )

= (x +
x2

4
+ . . . ) · J

( )
From which we obtain:

J( ) = J
( )

− J
( )

= x
(
j0

( )
+ j0

( )
+ j0

( ))
+ . . .

This means that the value of the Jones polynomial on a knot with a single
singular crossing is divisible by x. Therefore, the Jones polynomial of a
singular knot with k > n singular crossings is divisible by xk, and thus its
nth coefficient vanishes on such a singular knot.

2.4.3 The HOMFLYPT polynomial

The skein relation and the initial condition for the HOMFLYPT polynomial is

aP
( )

− a−1P
( )

= zP
( )

; P
( )

= 1 .
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Making a substitution a = ex and taking the Taylor expansion in x, we
represent P(K) as a Laurent polynomial in z and a power series in x,
P(K) =

∑
pk,l(K) xkzl. Similarly to the case of the Jones polynomial, one

can show that pk,l(K) is a Vassiliev invariant of order 6 k + l.

Remark 2.4.1. Despite the fact that the coefficients of the Conway, the
Jones and the HOMFLYPT polynomials are finite type invariants, the degrees
of these polynomials are not of finite type. Nevertheless, they belong to the
closure V̄.

2.5 Lie algebras

Definition 2.5.1. A Lie algebra g over C is a vector space equipped with
a bilinear operation (x, y) → [x, y], the so-called Lie bracket, which also
satisfies the identities

[x, y] = −[y, x]

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

We will call g abelian if [x, y] = 0 ∀x, y ∈ g. Obviously, any vector space
V endowed with the trivial bracket is an abelian Lie algebra.

We usually consider the bilinear operation of Lie bracket as a product,
and hence one can speak about rings, homomorphisms, ideals etc. An ideal
in a Lie algebra g is a vector subspace I so that [a, x] ∈ I ∀a ∈ g, x ∈ I.

Definition 2.5.2. A Lie algebra is called simple if it is not abelian and does
not contain any proper ideals. It is called semi-simple if it is isomorphic to
a direct sum of simple Lie algebras.

For x ∈ g we write adx for the linear map adx : g → g defined by
adx(y) = [x, y]. The Killing form on a Lie algebra g is defined by

< x, y >K := Tr(adxady)

Note that this bilinear form is non-degenerate iff g is semi-simple.
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Definition 2.5.3. A bilinear form <,>: g ⊗ g → C is ad-invariant iff

< adz(x), y > + < x, adz(y) >= 0 ∀x, y, z ∈ g

A Lie algebra equipped with an ad-invariant metric is said to be metrized.

If (ei) is a basis of the vector space (Lie algebra) g we have

[ei , ej] =

d∑
k=1

cijkek

and the coefficients cijk are called the structure constants of g with respect to
the given basis. Note that, in a metrized Lie algebra if (ei) is an orthonormal
basis with respect to the ad-invariant metric, the structure constants are
anti-symmetric with respect to permutations of the indices, which is obvious
by the definition of ad-invariance.

Given an associative algebra A one can think of it as a Lie algebra
equipped with the commutator [a, b] = ab − ba. The converse is not true
since not every Lie algebra can be thought to be in this context, but in fact
every Lie algebra g is a subspace of an associative algebra closed under the
commutator.

Definition 2.5.4. A representation of a Lie algebra g in a vector space V is
a Lie algebra homomorphism ρ : g → gl(V ), where gl(V ) is the Lie algebra
of linear operators of V .

This means that ρ maps g to gl(V ) so that,

ρ([x, y]) = ρ(x)ρ(y) − ρ(y)ρ(x).

Equivalently, one could say that ρ is a g-action on V and V is a g-module.
The invariants of the action are the elements of V that lie in the kernel of ρ
for all x ∈ g. Symbolically V g is the space of all invariants in V .

Definition 2.5.5. The Universal Enveloping Algebra of g, which is denoted
by U (g), is the quotient of the tensor algebra T (g) by the two-sided ideal
generated by all expressions of the form:

x ⊗ y − y ⊗ x − [x, y]

One could understand that what we did here was to force the commutator
of two elements of g ⊂ T (g) to be equal to their Lie bracket in g.
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2.6 Quantum knot invariants

Let g be a semisimple Lie algebra and V a finite dimensional representation
of g. One can view V as a representation of the universal enveloping algebra
U (g). This representation can be also deformed with parameter q to a
representation of the quantum group Uq(g). The vector space V remains
the same, but the action now depends on q. For a generic value of q all
irreducible representations of Uq(g) can be obtained in this way. Using
representation theory we can go through the technicalities also for non-
generic values of q and obtain compact results on 3-manifold invariants,
but the generic values are enough for our purposes.

Remark 2.6.1. An important property of quantum groups is that every
representation gives rise to a linear transformation R : V ⊗V → V ⊗V which
is a solution of the quantum Yang-Baxter equation:

(R ⊗ idV )(idV ⊗ R)(R ⊗ idV ) = (idV ⊗ R)(R ⊗ idV )(idV ⊗ R) (2.6.1)

The general construction of the matrix corresponding to the linear trans-
formation R from a representation of a semi-simple Lie algebra g is the
following. Consider a knot diagram in the plane and take a generic horizon-
tal line. To each intersection point of the line with the diagram assign either
the representation space V or its dual V ∗, depending on whether the orien-
tation of the knot at this intersection is directed upwards or downwards.
See left-hand illustration of Fig. 2.5. Then take the tensor product of all
such spaces over the whole horizontal line. If the knot diagram does not
intersect the line, then the corresponding vector space is the ground field C.
A portion of a knot diagram between two such horizontal lines represents a
tangle T . We assume that this tangle is framed by the blackboard framing.
Consecutive tangles can be viewed to be multiplied by concatenation.

To T we associate a linear transformation θfr(T ) from the vector space
corresponding to the bottom of T to the vector space corresponding to
the top of T . See right-hand illustration of Fig. 2.5. The following three
properties hold for the linear transformation θfr(T ):



35

• θfr(T ) is an invariant of the isotopy class of the framed tangle T .

• θfr(T1 · T2) = θfr(T1) ◦ θfr(T2)

• θfr(T1 ⊗ T2) = θfr(T1) ⊗ θfr(T2)

Figure 2.5: Multiplicity of quantum invariants of tangles

Because of the multiplicativity property, it is enough to define the in-
variant only for elementary tangles such as a crossing, a minimum and a
maximum point (a cup and a cap). So, given a quantum group Uq(g) and
a finite-dimensional representation, V , one can associate certain linear
transformations with elementary tangles in a consistent way. Of course,
for a trivial tangle consisting of a single string connecting top to bottom,
the corresponding linear operator should be the identity transformation.
The R-matrix appears here as the linear transformation corresponding to
a positive crossing, while R−1 corresponds to a negative crossing. So, the
validity of the Reidemeister II move is straightforward. We are ready to check
the validity of the Reidemeister III move which is the most complicated
one. Fig. 2.6 shows clearly that it is the same as the quantum Yang-Baxter
equation.
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Figure 2.6: Reidemeister III move for quantum invariants

This process is valid for all quantum groups. Since we are not interested
to go in deep with the quantum invariants, we will conclude the chapter with
the construction for g = sl2 and its standard 2-dimensional representation.

R :



e1 ⊗ e1 7→ q
1
4e1 ⊗ e1

e1 ⊗ e2 7→ q−
1
4e2 ⊗ e1

e2 ⊗ e1 7→ q−
1
4e1 ⊗ e2 + (−q

3
4 + q−

1
4 )e2 ⊗ e1

e2 ⊗ e2 7→ q−
1
4e2 ⊗ e2

One could see in a typical way that the quantum invariant corresponding
to sl2 is a substitution of the Jones polynomial. Generally, the known
polynomial invariants have quantum invariant descriptions. This fact is
crucial for studying categorifications, homology theories for knots and links
and, of course, Topological Quantum Field Theory.

J. Birman and X.-S. Lin in [3] proved that all quantum invariants produce
Vassiliev invariants in the way similar to the previous examples. Namely,
making a substitution q = ex , one can show that the coefficient of xn in the
Taylor expansion of a quantum invariant is a finite type invariant of type
6 n. Thus all quantum invariants belong to the closure V̄.
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2.7 The graded algebra of circular (knot) chord

diagrams

Recall that a chord diagram encodes the order of singular crossings along a
singular knot. A Vassiliev invariant of order k gives rise to a function on
chord diagrams with k chords. The conditions that a function on chord
diagrams should satisfy in order to come from a Vassiliev invariant are the
so-called one-term and four-term relations (as adapted to chord diagrams).
Indeed, for the chord diagrams we can reinterpret the (4T) relation to what
Fig. 2.7 illustrates, using the injection ān.

Figure 2.7: Four-term relation on chord diagrams

The vector space spanned by chord diagrams, An, modulo the (4T) rela-
tions is denoted by Afr

n , and, as we will see, it has the structure of a Hopf
algebra.

Definition 2.7.1. We call a function f : An → R which satisfies the (4T)
relations a (framed) weight system. Here R is a commutative ring, but we
usually think of R = C. We will call a weight system that also satisfies the
(1T) relations an unframed weight system.

Our goal is to define an algebra structure on Afr =

∞⊕
n=0

Afr
n .

Definition 2.7.2. We define the product of two chord diagrams D1, D2 to be
their connected sum along the two circles, in a way that the cutting and
gluing take place in regions of the circles that do not involve any endpoint
of any chord.

The product of chord diagrams is extended linearly to a map µ : Afr
n ⊗A

fr
m → A

fr
n+m .

Lemma 2.7.3. The product of chord diagrams is well-defined modulo the
(4T) relations.
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Proof. It is enough to prove that if one of the two diagrams, say D2, is turned
inside the product diagram by as much as it is required for the cutting to
happen in the region that was next to it without moving D1, then the result
is the same modulo (4T) relations.

Let n be the order of D1 and a chord of D2 with endpoints a, b adjacent to
D1. What we shall prove is that the chord diagram is stable when moving a
across an endpoint of a chord while fixing b. In this process we obtain 2n+1
chord diagrams, say P0, P1, . . . , P2n. We must prove that P0 is equivalent to
P2n modulo (4T) relations. But summing over all (4T) relations we get every
Pk, k ∈ {1, . . . ,2n − 1} an even number of times, with opposite signs, and
only once P0 and the last −P2n. Hence P0 − P2n = 0 which was the desired
result. �

Definition 2.7.4. We define the co-product in the algebra Afr
n as

δ : Afr
n →

⊗
k+l=n

A
fr
k ⊗A

fr
l

with value on a chord diagram D ∈ Afr
n

δ(D) =
∑
J⊆[D]

DJ ⊗ DJ̄

where the summation is taken over all subsets J of [D], the set of chords
of D. Here DJ is the diagram consisting of the chords that belong to J and
J̄ = [D] \ J is the complementary subset of chords.

Lemma 2.7.5. The co-product inAfr
n is well-defined modulo the (4T) relations.

Proof. Let D1 − D2 + D3 − D4 = 0 be a (4T) relation. We must show that the
sum δ(D1) − δ(D2) + δ(D3) − δ(D4) can be written as a combination of (4T)
relations. Recall that a specific (4T) relation is determined by the choice of
a moving chord m and a fixed chord α. Now, take a chord diagram and the
splitting A ∪ B of the set of chords in the diagrams Di, the same for each i,
and denote by Ai, Bi the resulting chord diagrams giving the contributions
Ai ⊗ Bi to δ(Di), i = {1, 2, 3, 4}. Suppose, without loss of generality, that the
moving chord m belongs to the subset A. Then B1 = B2 = B3 = B4 and
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A1 ⊗ B1 − A2 ⊗ B2 + A3 ⊗ B3 − A4 ⊗ B4 = (A1 − A2 + A3 − A4) ⊗ B1. If the fixed
chord α also belongs to A, then A1 − A2 + A3 − A4 is a (4T) relation. If α
belongs to B then it is A1 = A2 and A3 = A4. �

In Fig. 2.8 we compute an example of a co-product.

Figure 2.8: Example of co-product

The unit, ι, and the co-unit, ε, in the algebra Afr are:

ι : R → Afr , ι(x) = x

ε : Afr → R , ε(x + . . . ) = x

Remark 2.7.6. Note that we could end up with the same construction of
Hopf algebra structure if in the chord diagrams we allowed two types of
trivalent vertices:

• Internal vertices in which three segments, which start from the circle,
meet. These vertices are oriented by specifying one of the two possible
cyclic orderings of the arcs emanating from such a vertex.

• External vertices in which a chord ends on the circle.

Then we would take the set of all such new diagrams, symb. Dt, and
consider it modulo the so-called STU relation, as illustrated in Fig. 2.9,
which is a purely algebraic construction. Indeed: take a (matrix) Lie algebra



40

with generators Ta. Then, a natural equation expresses the closure of the
Lie algebra under commutators, namely: T aT b − T bT a = fabcT c, which is
diagrammatically equivalent to the STU relation. Denote At = Dt/{STU },
which is isomorphic to the algebra of chord diagrams that we defined earlier,
as the STU relation implies the (4T) relation easily. Hence, another approach
to the theory could be purely algebraic and, so, one would pay attention
to the properties obtained by the Lie-algebra structures. This approach is
used for proving the flatness of the KZ-connection.

Figure 2.9: The STU relation

2.8 The Vassiliev-Kontsevich Theorem

Recall that the map ān : Vn/Vn−1 −→ RAn is injective. For R = C the
map ān identifies Vn/Vn−1 with the subspace of unframed weight systems
Wn ⊂ RAn. In other words, the space of unframed weight systems is
isomorphic to the graded space associated with the filtered space of Vassiliev
invariants:

W =

∞⊕
n=0

Wn �
∞⊕
n=0

Vn/Vn−1

Theorem 2.8.1. The theorem consists of two parts:

1. (V. Vassiliev) The symbol of every Vassiliev invariant is an unframed
weight system.

2. (M. Kontsevich) Every unframed weight system is the symbol of a
certain Vassiliev invariant.
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With the technology we developed so far we can prove for the moment the
first and easy part of the Vassiliev-Kontsevich theorem and wait to develop
some analytic and geometric tools for proving the converse.

Proof. The idea is to prove that given a function f ∈ RAn coming from the
symbol of an invariant v, it satisfies the (1T) and (4T) relations.

Let K be a singular knot whose chord diagram contains an isolated chord.
The double point p that corresponds to the preimage of the isolated chord
divides the knot into two disjoint parts K1, K2. The fact that the chord is
isolated means that K1 and K2 do not have common double points. There
may, however, be crossings involving branches from both parts, which can
be ruled out by crossing switches using the Vassiliev skein relation. So
we can untangle K1 from K2 and obtain a singular knot K ′ with the same
chord diagram as K and with the property that the two parts lie on either
side of some plane in R3 that passes through the singular crossing p. Thus,
easily by the Vassiliev skein relation: v(K) = v(K ′) = v(K ′+) − v(K ′−) = 0

The (4T) relation, as already said, is purely topological property, so the
proof that any function f ∈ RAn coming from the symbol of an invariant v
satisfies the (4T) relation is illustrated in Figs. 2.3, 2.4.

�
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Chapter 3

The Kontsevich integral

The space An of unframed chord diagrams of order n is the quotient of Afr
n

by the subspace spanned by all diagrams with an isolated chord, i.e. an (1T)

relation. Let A =

∞⊕
n=0

An. Then, roughly speaking, an idea of the proof of

the Kontsevich theorem is to construct an element Z (K) ∈ A of the algebra
of chord diagrams for every knot K. Having a weight system w we can apply
it to Z (K) and prove that w(Z (K)) is a Vassiliev invariant whose symbol is
w. However, when we try to realize this idea, several complications occur.
The first one is that Z (K) is going to be an element of the graded completion
Â of the algebra A, or in other words, it is going to be an infinite sum of
elements of An for all values of n, like a formal power series. The second
one is that Z (K) is not quite an invariant of knots. We will have to correct it
before applying the weight system to it.

3.1 The construction

Let z ∈ C and t ∈ R be coordinates (z, t) in R3. The planes t = const are
thought of being horizontal. We define the Kontsevich integral for strict
Morse knots, i.e. knots with the property that the coordinate t restricted
to the knot has only non-degenerate critical points with distinct critical
values.

43
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Definition 3.1.1. The Kontsevich integral Z (K) of a strict Morse knot K is
given by the following formula

Z (K) :=
∞∑
m=0

1
(2πi)m

∫
tmin<t1<···<tm<tmax

tj are noncritical

∑
P={(zj ,z′j )}

(−1)↓PDP
m∧
j=1

dzj − dz′j
zj − z′j

,

where

• the numbers tmin and tmax are the minimum and the maximum of the
function t on K.

• the integration domain is the set of all points of the m-dimensional
simplex tmin < t1 < · · · < tm < tmax none of whose coordinates ti is a
critical value of t; the m-simplex is divided by the critical values into
several connected components.

• the number of summands in the integrand is constant in each con-
nected component of the integration domain, but can be different for
different components. in each plane {t = tj} ⊂ R3 choose an unordered
pair of distinct points (zj, tj) and (z′j , tj) on K, so that zj(tj) and z′j (tj)
are continuous functions; we denote by P = {(zj, z′j )} the set of such
pairs for j = 1, . . . , m and call it a pairing; the integrand is the sum
over all choices of the pairing P.

• for a pairing P, the symbol ‘↓P ’ denotes the number of points (zj, tj) or
(z′j , tj) in P where the coordinate t decreases as one goes along K;

• for a pairing P, consider the knot K as an oriented circle and connect
the points (zj, tj) and (z′j , tj) by a chord; we obtain a chord diagram
with m chords (thus, intuitively, one can think of a pairing as a way of
inscribing a chord diagram into a knot in such a way that all chords
are horizontal and are placed on different levels).

• over each connected component, zj and z′j are smooth functions in tj;

by
m∧
j=1

dzj − dz′j
zj − z′j

we mean the pullback of this form to the integration
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domain of the variables t1, . . . , tm ; the integration domain is considered
with the orientation of the space Rm defined by the natural order of
the coordinates t1, . . . , tm.

• by convention, the term in the Kontsevich integral corresponding to
m = 0 is the (only) chord diagram of order 0 taken with coefficient
one, which is the unit of the algebra Â.

Example 3.1.2. (see [5])

We exemplify the integration domain for a strict Morse knot with two
local maxima and two local minima for the case of m = 2 chords.

t

tmax

tc2
tc1

tmin

z

t2

tmax

tc2

tc1

tmin

t1
tmaxtc2tc1tmin

For each connected component of the integration domain, the number
of summands corresponding to different choices of the pairing, a typical
pairing P, and the corresponding chord diagram (−1)↓PDP are shown in the
picture.

36 summands

(−1)
2

1 summand

(−1)

6 summands

1

(−1)
2

1 summand

(−1)
2

6 summands

(−1)
2

1 summand

(−1)
1
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Now let us calculate the coefficient of the chord diagram in Z
( )

.

Out of the 51 pairings, the following 16 contribute to the coefficient:

All of them appear on the middle triangular component, tc1 < t1 < t2 < tc1
of the integration domain. To handle the integral which appears as the

coefficient at , we denote the z-coordinates of the four points in the
pairings on the level {t = t1} by a1, a2, a3, a4. Correspondingly, we denote
the z-coordinates of the four points in the pairings on the level {t = t2} by
b1, b2, b3, b4:

t

2

3 4

c2

c
3

2

4

t

1
1

1 2

t

1

b

a aaa

b

z

bb

Then each of the four possible pairings z1 − z′1 on the level {t = t1} will look
like ajk := ak − aj for (jk) ∈ A := {(12), (13), (24), (34)}. Similarly, each of the
four possible pairings z2 − z′2 on the level {t = t2} will look like blm := bm − bl

for (lm) ∈ B := {(13), (23), (14), (24)}. The integral we are interested in now
can be written as

1
(2πi)2

∫
∆

∑
(jk)∈A

∑
(lm)∈B

(−1)j+k+l+md lnajk ∧ d ln blm

= −
1

4π2

∫
∆

( ∑
(jk)∈A

(−1)j+k+1d lnajk

)
∧

( ∑
(lm)∈B

(−1)l+m−1d ln blm

)

= −
1

4π2

∫
∆

d ln
a12a34

a13a24
∧ d ln

b14b23

b13b24
.
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The change of variables

u :=
a12a34

a13a24
, v :=

b14b23

b13b24

transforms the component ∆ of the integration domain into the standard
triangle ∆′

11 c2

c1

c2

t

t2

1

1

v

u

0c

Since it changes the orientation of the triangle (has a negative Jacobian),
our integral becomes

1
4π2

∫
∆′

d lnu ∧ d ln v =
1

4π2

1∫
0

( 1∫
1−u

d ln v
)
du

u

= −
1

4π2

1∫
0

ln(1 − u)
du

u
=

1
4π2

∞∑
k=1

1∫
0

uk

k

du

u

=
1

4π2

∞∑
k=1

1
k2 =

ζ (2)
4π2 =

1
24

.

Therefore,

where the free term 1 stands for the unit in the algebraA of chord diagrams,

1 = ∈ A.

The following terms of this integral are of degree 4:
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3.2 The universal Vassiliev invariant

Here we deal with the second complication in the proof of the Kontsevich
theorem. The Kontsevich integral possesses several basic properties:

• Z (K) converges for any strict Morse knot K.

• It is invariant under the deformations of the knot in the class of Morse
knots with the same number of critical points.

• It behaves in a predictable way under the deformations that add a
pair of new critical points to a Morse knot.

We will only sketch the proof of these properties here referring the reader to
[1], [5]. The last property may be specified as follows. Let H stand for the
unknot from Example 3.1.2:

.

If a knot isotopy creates one extra local minimum and one local maximum,
the Kontsevich integral is multiplied by Z (H):

where the multiplication is understood in sense of the formal infinite series
from the graded completion of the algebra of chord diagrams Â.

Definition 3.2.1. With the help of this formula, we can define the universal

Vassiliev invariant by either

I(K) :=
Z (K)
Z (H)c/2

or I ′(K) :=
Z (K)

Z (H)c/2−1
,

where c denotes the number of critical points of K in an arbitrary strict
Morse representation, and the quotient means division in the algebra Â
following the law: (1 + a)−1 = 1 − a + a2 − a3 + . . . .
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Both I(K) and I ′(K) are invariants of topological knots with values in Â.
The version I ′(K) has the advantage of being multiplicative with respect
to the connected sum of knots; in particular, it vanishes (more precisely,
takes the value 1) on the unknot. However, the version I(K) is also used as
it has a direct relationship with the quantum invariants. In particular,

Proposition 3.2.2. The Kontsevich integral is multiplicative for any Morse
knot K.

Z (K1 · K2) = Z (K1) · Z (K2)

Actually the whole discussion of the Kontsevich integral applies in any
morse tangle just by replacing the algebra Â of chord diagrams by the
graded completion of the vector space of tangle chord diagrams on the
skeleton of T ,and take tmin and tmax to correspond to the bottom and the top
of T . So what we mean with the dot product is a multiplication of tangles.
So we rewrite the proposition as Z (T1 ·T2) = Z (T1) ·Z (T2) for any strict Morse
tangles T1, T2

Proof. Let tmin and tmax correspond to the bottom and the top of T1 · T2,
respectively, and let tmid be the level of the top of T2 (or the bottom of T1,
which is the same). In the expression for the Kontsevich integral of the
tangle T1 · T2 let us remove from the domain of integration all points with at
least one coordinate t equal to tmid. This set is of codimension one, so the
value of integral remains unchanged. On the other hand, the connected
components of the new domain of integration are precisely all products of
the connected components for T1 and T2, and the integrand for T1 · T2 is the
exterior product of the integrands for T1 and T2. From which we take the
desired result using the Fubini theorem. �
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3.3 Convergence of the Kontsevich integral

Proposition 3.3.1. For any strict Morse tangle T the Kontsevich integral
Z (T ) converges.

Proof

A ”short chord” is a chord whose endpoints are adjacent, that is, one of
the arcs that it bounds contains no endpoints of other chords. In particular,
short chords are isolated. The linear span of all diagrams with a short chord
and all four-term relation contains all diagrams with an isolated chord.

The integration domain may have many connected components, in the
boundary of whom the integrand may have singularities. This happens
near a critical point of a tangle when a pairing includes a "short chord" i.e.
its ends are on the branches of the knot that come together at a critical
point. In this case the integrand could have a problem as the denominator
zj − z′j may explode.

First of all, from the multiplicity of the Kontsevich integral for tangles we
have that the Kontsevich integral of a product converges iff the integral of
the factors do so. With this in hand and the fact that we can decompose a
strict Morse tangle to simpler ones i.e. with at most one critical point. So
it is sufficient to prove the convergence only for tangles with at most one
critical point.

So suppose that T has only one critical point with value tc.Then for any
pairing, its coefficients in the integral of T is factors through a product of
one integral which corresponds to the chords over tc and one to the chords
under tc. The integral which corresponds to the chords over tc converges
since the integrand has no singularities. Hence we consider the chords
under tc. We take two seperate cases.

• There exists an isolated chord (z1, z1
′) under tc which tends to 0. In

this case the isolated chord contributes nothing to the integrand due
to the 1-term relation since the corresponding chord diagram Dp has
an isolated chord.
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• There exists a chord (zi , zi ′) that tends to zero near tc but the chord is
not isolated, and exists at least one chord that seperates it.

Let for the second case (z1, z1
′) the chord that tends to zero near the

critical point and (z2, z2
′) the chord that seperate it which does not tend to

zero near tc.
We have then∣∣∣∣∣∣
∫ tc

t1

dz2 − dz′2
z2 − z′2

∣∣∣∣∣∣ ≤ C
∣∣∣∣∣∣
∫ tc

t1

d(z2 − z
′
2)

∣∣∣∣∣∣ = C
∣∣∣(zc − z1) − (z′c − z

′′
1 )

∣∣∣ ≤ C′ ∣∣∣z1 − z
′
1

∣∣∣
So this integral is of the same "order" as z1 − z′1 and this compensates the
denominator corresponding to the chord (z2, z′2). Hence by induction one
sees that this could happen for every k chords which separate (z1, z′1). The
preceeding imply the convergence of the Kontsevich integral.

3.4 The Knizhnik–Zamolodchikov connection

The Knizhnik-Zamolodchikov equation appears in Wess-Zumino-Witten
model of conformal field theory.

Let M be a smooth manifold and Â an assosciative algebra. The intuition
behind that is that we will use the algebra of chord diagrams but the
definitions hold in general so for the moment we let Â to be arbitrary or
better the graded completion of a graded algebra A. We will assume also
that it is an algebra over C with unit 1.

A connection is a 1-form whose values are in the algebra of endomor-
phisms of the fiber. Some results rising from the thory of connections have
application to 1-forms of an arbitrary Â as we discussed. So, an Â-valued
connection is a Â-valued 1-form Ω on M.

Its curvature is a 2-form given in an arbitrary form FΩ = dΩ + Ω ∧Ω The
definition of the exterior differentiation and the wedge product for Â-valued
forms is the same as in matrix-valued forms.

Let also, γ : I → M a piecewise-smooth curve in M, where I = [a, b].
The holonomy hγ,Ω along γ is a function hγ,Ω : I → Â such that hγ,Ω(a) = 1
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as initial condition and satisfies the equation

∂

∂t
hγ,Ω(t) = Ω(γ̇(t))hγ,Ω(a), (t ∈ I)

In many interesting cases hγ,Ω exists and is given by the iterated integral
formula. (Note that if it exists it is unique).

hγ,Ω = 1 +

∞∑
k=1

∫
a6t16...6tk6t

(γ∗Ω)(tk) . . . (γ∗Ω)(t1)

since we take h takes values in the graded algebra Â and so we can write
h = h1 + h2 + . . .

and then
h′0(t) = 0 h0(0) = 1

h′1(t) = Ω(t)h0(t) h1(0) = 0

where Ω(t) is actually the pullback of Ω under γ. We continue inductively
to take the desired formula and h1(t) =

∫ t

0 Ω(t1)dt1, and respectively h2(t) =∫ t

0 Ω(t2)h1(t2) =
∫

0<t1<t2<t
Ω(t2) ∧Ω(t1) . . . .

Furthermore, just like in the standard theory of connections, if FΩ = 0
,so Ω is flat, then the holonomy is invariant under homotopies of γ that
preserve its endpoints. In the case of interest for us, The connection will
be homogeneous of degree 1. Note that, in this case the kth term hk,γ,Ω is
homogeneous of degree k, and there is no problem with the convergence of
the sum there. Also, as each term lives in a different degree, Chen’s theory
[4] implies that each term is invariant under homotopies of γ that preserve
its endpoints.

Let DKZn be the collection of all diagrams made of n ordered upward
pointing arrows, and dashed arcs and oriented vertices as in the definition
of At, with the standard conventions about higher than trivalent vertices
and about the orientation of vertices:

DKZn =
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Let AKZn be the quotient of DKZn /{STUrelations} Then AKZn is a graded
algebra with the composition as a product operator.

For 1 6 i 6 j 6 n define Ωij ∈ AKZn by

Ωij =


i j


Let Xn = {(z1, z2, . . . zn) ∈ Cn |zi = zj ⇒ i = j} and let the complex 1-form

on Xn defined by

ωij = dlog(zi − zj) =
dzi − dzj
zi − zj

The formal Knizhnik-Zamolodchikov connection is the AKZn -valued con-
nection

Ωn =
∑

16i<j6n

Ωijωij

on Xn.
The Formal Knizhnik-Zamolodchikov Ωn by a straightforward calculation

can be proven to be flat, which leads to the invariance of the Kontsevich
integral under horizontal deformations, small removings of needles and
critical points. These are proven in detail in [1] and in [5] but are beyond
the scope of this text.

3.5 Proof of the Vassiliev-Kontsevich Theorem

The first part of the theorem is already proven. We are now get ready to
prove the second and difficult part of the theorem using the Kontsevich
integral.

The central importance of I(K) (as well as I ′(K)) in the theory of finite-type
invariants is that it is a universal Vassiliev invariant in the following sense.
Consider a weight systemw of order n (that is, a function on the set of chord
diagrams with n chords satisfying one- and four-term relations). Applying
w to the n-homogeneous part of the series I(K), we get a numerical knot
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invariant v := w(I(K)). This invariant is a Vassiliev invariant of order 6 n
and symb(v) = w. Moreover, any Vassiliev invariant is a sum of Vassiliev
invariants obtained in this way. Indeed, any Vassiliev invariant v has a
symbol symb(v) which is a weight system. So v(K) and symb(v)(I(K)) are
two Vassiliev invariants with the same symbol. Their difference is of order
6 (n − 1) and we can repeat the same process by induction. This argument
proves the Kontsevich theorem.

To prove that v : K 7−→ w(I(K)) is a Vassiliev invariant with symbol w, it
is enough to show that I(KD) = D + (terms of order > n) for a singular knot
KD representing a chord diagram D of order n. Let p1, . . . pn be the singular
crossings of KD.

Since the denominator of I(K) starts with the unit of the algebra Â, it is
sufficient to prove that

Z (KD) = D + (terms of order > n) .

By definition, Z (KD) is the alternating sum of 2n values of Z on the
complete resolutions of the singular knot KD at all its singular crossings
p1, . . . pn. To see what happens at a single singular crossing pj, let us look
at the difference of Z on two knots Kj,+ and Kj,− where an overpassing in Kj,+
is changed to an underpassing in Kj,−. By an isotopy we have:

These two knots differ only in that the first knot has one string that makes
a small curl around another string. We assume that this curl is very thin
and enclose it in a box of height δ to consider it as a tangle Tj,+. Let Tj,− be
the similar tangle for Kj,− consisting of two parallel vertical strings:

The difference Z (Kj,+) − Z (Kj,−) comes only from the difference of the Kontse-
vich integrals of tangles Z (Tj,+) − Z (Tj,−). For the tangle Tj,−, both functions



55

z(t) and z′(t) are constant, hence Z (Tj,−) consists of only one summand: the
trivial chord diagram D(0)

− on Tj,− (here ‘trivial’ means with an empty set of
chords) with coefficient one. The zero degree term D(0)

+ of Z (Tj,+) is also the
trivial chord diagram on Tj,+ with coefficient one. So D(0)

− = D(0)
+ as chord

diagrams. Thus the difference Z (Tj,+)− Z (Tj,−) starts with a first degree term
which comes from the chord connecting the two strings of Tj,+.

Hence, Z (KD) starts from degree n. Moreover, the term of degree n is
proportional to a chord diagram whose j-th chord connects the two strings
of the tangle Tj,+ corresponding to the jth singular crossing pj in KD. This
chord diagram is precisely D. Now to calculate the order n part of Z (KD) we
must compute the coefficient of D. It is equal to the product of coefficients
of one chord terms in Z (Tj,+) over all j. We will show that all of them are
equal to 1. Indeed, it is possible to choose the coordinates z and t is such a
way that z′(t) ≡ 0 for one string, and for another one, the point z(t) makes
one complete turn around zero when t varies from 0 to δ:

So we have
1

2πi

δ∫
0

dz − dz′

z − z′
=

1
2πi

∮
|z|=1

dz

z
= 1

by the Cauchy theorem. �
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Chapter 4

Finite type invariants for

spherical knotoids

In this chapter we first introduce the notion of singular knotoid in any
connected, oriented surface Σ. Then we introduce the notion of a linear
chord diagram and we define finite type invariants for knotoids.

4.1 Singular knotoid diagrams and rigid vertex

isotopy

Definition 4.1.1. A singular knotoid diagram is a knotoid diagram with
some (finite) undeclared double points which are transversal, the singular
crossings. See Fig. 4.1 for some examples.

Figure 4.1: Singular knotoids

Definition 4.1.2. A rigid vertex isotopy for singular knotoid diagrams is
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generated by locally planar isotopy and the Reidemeister moves for classical
knotoids (recall Fig. 1.1), extended by the rigid vertex isotopy moves involving
singular crossings (recall Fig. 2.1). An isotopy class of singular knotoid
diagrams is called singular knotoid.

Note that in the theory of singular knotoids we still have the restrictions
of the forbidden moves (recall Fig. 1.2).

4.2 Types of closures

Definition 4.2.1. We call classical closure for (classical or singular) knotoids

of type ‘o’ (resp. ‘u’) a mapping co (resp. cu) from the set of (classical or
singular) knotoid diagrams in a surface Σ to the set of singular knot diagrams
in Σ, induced by the over- (resp. under-) closure on knotoid diagrams.

co(K) := Ko and cu(K) := Ku

where Ko, Ku denote the singular knots in Σ obtained via the over- resp.
under-closure of a knotoid K. For examples, see the top row of Fig. 4.2.
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Figure 4.2: Types of closures: over- and under-closures (top row), virtual
closure (bottom left), and singular closure (bottom right)

Lemma 4.2.2. Any classical closure (over or under) for spherical or planar
(singular) knotoids is well-defined up to isotopy.

Proof. We want to show that a singular knotoid K ⊂ S2 determines, via the
under-closure, a unique singular knot Ku ⊂ S3 up to isotopy.

Indeed, pick an embedded arc α ⊂ S2 connecting the endpoints of K and
otherwise meeting K transversely at a finite set of points distinct from the
crossings of K (a shortcut for K) K ∪ α is a knot diagram declaring that α
passes everywhere under K. The orientation of K from leg to head defines
an orientation on K ∪ α The knot in S3 represented by K ∪ α is denoted by
Ku. We say that K represents Ku.
Ku does not depend on the choice of the shortcut α because, by the

Reidemeister moves, any two shortcuts for K are isotopic in the class of
embedded arcs in S2 connecting the endpoints of K.

�

Remark 4.2.3. Intuitively, one might consider taking all possible closures
by taking a diagram that realizes the height and an arc connecting leg
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to head and not passing through any other crossing, but creating c new
crossings. Then one would declare with 2c options which crossing is under
and which over. Given two isotopic knotoid diagrams K1,K2 with the same
height, say 2, there is no way to prove that the knot K1

o,u is knot-isotopic
with the knot K2

o,u or K2
u,o, where Kno,u is the knot that we obtain if, starting

from the leg of Kn and following the arc α, we declare the first extra crossing
to be over-crossing and the second one to be under-crossing. Respectively,
we denote Kni1,i2,...,ic to be the closure of the knotoid Kn with height c, such
that i1, ..., ic ∈ {o, u} and if ik = o this means that the kth extra crossing is
declared to be over, while if ik = u this means that the kth extra crossing
is declared to be under, k = 1, . . . , c. The above mean that Kni1,i2,...,ic is not
well-defined, as different shortcuts will possibly give non isotopic knots.
For example if we take two distinct shortcuts in the knotoid illustrated in
Fig. 4.3 , we will end up with different normalized bracket polynomials with
the (u, o)-closure.

Figure 4.3: A knotoid that attains two distinct (u,o)-closures

We will now introduce the virtual closure. Virtual knot theory was
introduced by L.H. Kauffman in 1998 [13]. We recall that a virtual knot

diagram is an immersion of S1 in the plane, containing finitely many
double points, some of which are classical crossings and some are virtual
crossings, which can be viewed as permutation crossings with no ‘under’
or ‘over’ specification. Virtual isotopy comprises the planar isotopy, the
Reidemeister moves and the extra isotopy moves involving also virtual
crossings, illustrated in Fig. 4.4. A virtual knot is a virtual isotopy class of
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virtual knot diagrams.

Definition 4.2.4. We call virtual closure for knotoids (classical, singular or
virtual) a mapping cv from the set of (classical, singular or virtual) knotoid
diagrams in a surface Σ to the set of virtual knot diagrams in Σ, induced
by the virtual closure on knotoid diagrams, whereby all extra crossings
are declared to be virtual when taking a shortcut for the knotoid diagram.
Namely,

cv(K) := Kv

where Kv denotes the virtual knot in Σ obtained via the virtual closure of a
knotoid K. See bottom left of Fig. 4.2.

For singular virtual knotoid diagrams we further have:

Definition 4.2.5. Two singular virtual knotoid diagrams differ by singular

virtual isotopy if they differ by (a finite sequence of) planar isotopy, the
Reidemeister moves, extended by the local moves involving virtual crossings,
and by rigid vertex isotopy.

Lemma 4.2.6. Virtual closure is well-defined up to virtual isotopy.

Proof. Clearly, the closing arc may move freely, by the detour move, so
the definition does not depend on the choice of shortcut. Moreover, any
virtual/rigid vertex isotopy move between knotoid diagrams is also a valid
isotopy move for their virtual closures. �

For (singular) knotoids of height one, we can also define a singular
closure, as follows. We say that a knotoid is prime if it is not a product of
two knotoids. Equivalently, a prime knotoid has no local knotting.

Definition 4.2.7. We call singular closure for prime knotoids of height one

(classical, singular or virtual) a mapping cs from the set of prime knotoid
diagrams (classical, singular or virtual) in a surface Σ to the set of singular
knot diagrams in Σ, induced by the singular closure on knotoid diagrams
which realize the height, whereby the extra crossing is declared to be
singular when taking a shortcut for the knotoid diagram. Namely,

cs(K) := Ks
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Figure 4.4: Isotopy moves involving virtual crossings. The last one is the
so-called detour move. It generalizes the local detour move just above, and
it is derived by the local virtual moves.
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where Ks denotes the singular knot diagram in Σ obtained via the singular
closure of the knotoid K. For an example, see the bottom right of Fig. 4.2.

Lemma 4.2.8. Singular closure for prime knotoids of height one is well-
defined up to rigid vertex isotopy.

Proof. We will first argue that the definition of singular closure does not
depend on the choice of shortcut. Indeed, since our diagram realizes the
height one, there is at least one place where the leg is separated by the
head by just one boundary arc. If there is only one such place, we are done.
Suppose there are more places. We consider two neighbouring. Then the
union of the associated shortcuts makes a simple closed curve. This closed
curve bounds a disc,and this disc does not contain any knotting, since
it would be by definition local so the two shortcuts differ by rigid vertex
isotopy.

Moreover, any virtual/rigid vertex isotopy move between knotoid diagrams
is also a valid isotopy move for their virtual closures. �

Remark 4.2.9. Singular closure is well-defined only for height-one prime
knotoids and, moreover, on diagrams that realize the height of the knotoid
they represent. The requirement for prime knotoids becomes apparent in
the proof of Lemma 4.2.8. For bigger height, take, for instance, the following
counterexample of height two, shown in Fig. 4.5.

Figure 4.5: A knotoid diagram that admits two distinct singular closures

Indeed, calculating its affine polynomial we obtain

PK = t2 + t1 + t−1 + t−2 − 4
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so the knotoid is indeed of height 2. Yet, it admits two distinct singular
closures, as indicated in Fig. 4.6: the closure s1 illustrated by the blue
arc corresponds via an oriented smoothing of the singular crossings to a
non-trivial link of 3 components. However, the closure s2 illustrated by
the red arc corresponds to the trefoil knot via an oriented smoothing of the
singular crossings. So, the two singular closures are not isotopic.

Figure 4.6: Two distinct singular closures

For the rest of the text we mainly focus on knotoids (classical, singular,
virtual, etc) in S2. Occasionally we will be making more general definitions
and comments, stating explicitly the generalization.

4.3 Finite type invariants obtained by closures

Definition 4.3.1. Let v be any finite type invariant for classical knots. We
call classical closure finite type invariant for (classical) knotoids related to v

a mapping vc from the set of (classical) knotoid diagrams to R2, where R is
a commutative ring, defined in the following way:

vc(K) := (v(Ku), v(Ko))

where Ku , Ko are respectively the knot diagrams obtained via under- and
over-closure, respectively, of a knotoid diagram K.

What we want to prove is that given a finite type invariant for knots v
induces an isotopy invariant for knotoids using the classical closure. For
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isotopic knotoids K1, K2, and for any (knot) finite type invariant v, we want
vc(K1) = vc(K2), or equivalently we want v(Ku1 ) = v(Ku2 ) and v(Ko1) = v(Ko2) but
this is true because v is an isotopy invariant for knots and a knotoid K ⊂ S2

determines (via the under-closure) a unique knot Ku ⊂ S3 (resp. Ko ⊂ S3)
up to isotopy from Lemma 4.2.2.

Definition 4.3.2. Let v be any finite type invariant for virtual knots. We
call virtual closure finite type invariant for knotoids related to v a mapping
vv from the set of (virtual) knotoid diagrams to a commutative ring R, by
computing the invariant on the resulting virtual knot. Namely,

vv(K) := v(Kv)

where K is a (virtual) knotoid diagram and Kv is the virtual knot diagram
obtained by the virtual closure.

For finite type invariants of virtual knots, see for example [13],[10], [7].

Definition 4.3.3. Let v be any finite type invariant for singular knots. We
call singular closure finite type invariant for prime knotoids of height one

related to v a mapping vs from the set of (singular) prime knotoid diagrams
realizing the height to a commutative ring R, by computing the invariant
on the resulting singular knot. Namely,

vs(K) := v(Ks)

where K is a (singular) knotoid diagram realizing the height and Ks is the
singular knot diagram obtained by the singular closure. One could then
say that this knotoid invariant is of order (or type) 6 n if it vanishes on all
singular knotoids with more than n − 1 singular crossings.

4.4 Finite type invariants defined directly on

knotoids

As in the case of knots, the principal idea of the combinatorial approach
to the theory of finite type invariants is to extend a knotoid invariant v to
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singular knotoids with finitely many singular crossings, by making use of
the Vassiliev skein relation:

v( ) = v( ) − v( )

So we define:

Definition 4.4.1. A knotoid invariant, v, is said to be a finite type invariant

of type 6 n if its extension on singular knotoids vanishes on all singular
knotoids with more than n singular crossings. Furthermore, v is said to be
of type n if it is of type 6 n and not of type 6 n − 1.

Definition 4.4.2. Two singular knotoid diagrams K1, K2 in a connected,
oriented surface Σ are said to be singular equivalent if one can be deformed
to the other by rigid vertex isotopy moves (recall Figs. 1.1 and 2.1) and real
crossing switches.

For any finite type invariant v for knotoids we consider the top row
singular knotoid diagrams up to singular equivalence. Now, as in the
classical case, any finite type invariant remains unchanged under crossing
switches on top row diagrams, due to the Vassiliev skein relation. Indeed,
if K is a top row diagram and has a positive (resp. negative) crossing we
can switch this crossing by invoking the relation

v( ) = v( ) + v( ).

But v( ) = 0 because this diagram has n + 1 singular crossings, since K

is a top row diagram. Hence v( ) = v( ). From the above, a top row
singular knotoid may be represented by an appropriately chosen ‘regular’
representative of its singular equivalence class.

4.5 Linear chord diagrams

Since a spherical knotoid diagram is an immersion from [0,1] to S2 we
must think of chord diagrams as ‘chords’ joining points of an open-ended
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smooth curve in the sphere, that is, a connected, oriented 1-manifold
with boundary two endpoints, which correspond to the two endpoints of
the singular knotoid diagram. Each chord corresponds to precisely one
singular crossing of the singular knotoid diagram, and the chords respect
the forbidden moves.

Definition 4.5.1. A linear chord diagram of order n is an oriented closed
interval with a distinguished set of n disjoint pairs of distinct points being
connected with an immersed unknotted curve, a ‘chord’, in S2, considered
up to orientation preserving diffeomorphisms of the interval, and up to
isotopy of the immersed curve which fixes the endpoints. The set of all
chord diagrams of order n will be denoted by Ln.

Figure 4.7: Linear chord diagrams

It is clear that there are many ways that two points can be connected
by a chord, even being considered up to diffeomorphisms of the interval.
Namely, a chord may wrap around the leg or/and the head a number of
times, in the clockwise or counterclockwise orientation. Fig. 4.7 shows
two examples in L1, where s denotes the singular crossing in the knotoid
diagram. So, contrary to the classical chord diagrams, even the set L1 is far
from being trivial.

Note that there are two trivial chord diagrams, in which the chord does
not wind around the leg or the head: the one that the chord lies under
the interval and the one that the chord lies over the interval, denoted by
1u ,1o respectively. Of course they both correspond to knot-type singular
knotoids and hence they can be identified with the classical chord diagram
with one chord. So, 1u = 1o. Furthermore, thinking of finite type invariants,



68

the one-term relation applies on such a trivial chord diagram, yielding zero
evaluation of the invariant.

For the rest of this work we will restrict ourselves to the case n = 1. Our
goal is to classify all different chord diagrams of order 1. With this in mind,
we first consider two generators a, b: The generator a means a wrapping
of the chord once around the leg with the counterclockwise orientation,
starting from the point in the interval closer to the leg with destination the
point closer to the head. The generator b means a wrapping of the chord
around the head with the counterclockwise orientation, starting from the
point in the interval closer to the leg with destination the point closer to the
head.

We will now define an operation between two chords. Multiplication
x · y means that we locate all four points in the interval such that the two
involving x are both before the ones involving y, with respect to the natural
orientation of the interval. Then we apply the following procedure in order
to obtain a new chord out of the chords x and y. All the intersections of
x and y are declared to be flat (of no importance), so we take a tubular
neighbourhood of the sub-interval starting from the destination of x and
ending at the start of y. Inside there we connect the destination of x with
the start of y by a simple ‘concatenating’ arc, which is unique up to planar
isotopy, so that it is transversal to the interval at both points. The result
is a new chord. Note that the trivial chord diagram plays the role of the
unit: 1o · x = x · 1o = x = x · 1u = 1u · x, as it only extends the chord x by a
small arc. We also have inverses with respect to the product. Indeed, for
the clockwise orientations we will use the symbol a−1( respectively b−1) for
the following reason.

Lemma 4.5.2. a · a−1 = 1 b · b−1 = 1.

Proof. The idea of the proof is clearly illustrated in Fig. 4.8, and the result
is an immediate consequence of the definition of the multiplication, where
with x = a and y = a−1 it is clear that a · a−1 is flat isotopic to the trivial
chord diagram.
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Figure 4.8: a · a−1 = 1

�

Lemma 4.5.3. a · b = 1 = b · a in S2.

Proof. Now the idea is this. Take x = a and y = b. Connect the endpoints
as the definition suggests, such as both arcs cross the interval transversely.
Then Fig. 4.9 shows that in S2 a · b is trivial.

Figure 4.9: a · b = 1

�

Corollary 4.5.4. This leaves us with only one generator in our construction,
say a, and so we can assume that every chord diagram, when speaking
about spherical knotoids, has its head in the outer region.

From the above, it is clear that we can rethink of a linear chord diagram
with one chord, representing a singular knotoid with exactly one singularity,
as a closed interval with a loop winding (only) around the leg w times.
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So, the two points s can collapse into a single point and the loop can be
abstracted to a circle. See Fig. 4.10.

h l ws

Figure 4.10: The abstraction of a chord diagram with winding number
w ∈ Z.

Hence, we have proven the following proposition:

Proposition 4.5.5. In S2 for any linear chord diagram C ∈ L1 there exists
a w ∈ Z such that C = aw. In other words, as a group, L1 is infinite cyclic.

Note that in R2 this technique wouldn’t work, since, for example, the
second diagram in Fig. 4.9 is locked and non-isotopic to the third one. So,
if one tries to extend this theory to R2 or a surface Σ, one would have to
deal with more complexities.

4.6 From a singular knotoid to its chord dia-

gram

In knot theoretical finite type invariants there is a natural way to encode
the order of the singularities in a circular diagram and then join the two
points of the circle with a simple interior arc. There are many non-pairwise
isotopic ways to join two points of the interval with a simple arc. This
is not a technicality but a first attempt to understand the complexity of
the problem since chord diagrams are closely connected with singular
equivalence classes of knotoids.
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For example if we tried to have a convention which allows us to join
two points without winding around l or h we would have the same chord
diagram for the knotoids showed in Fig. 4.11

h

l
s

h l

s

Figure 4.11: Two non singular equivalent knotoid diagram

The first attempt to overpass this obstacle is to observe that joining the
points winding once around the leg counter-clockwisely would correspond
to a knotoid diagram which winds once around the leg from the first time
that passes form the singular crossing until the second time.

Figure 4.12: A knotoid diagram with its corresponding chord diagram

So, we end up with the following construction. First of all there is no
point on considering paths that wind around the head since we know
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that this would correspond to a path winding around the leg the same
amount of times but with reserved orientations. Take a knotoid diagram
K. Split the knotoid into 3 paths. The path joining leg to singular point
(l → s), the singular loop, and the path joining the singular loop with the
head(s → h). Erase l → s and s → h, but keep track of the points l, h.
What remains is a loop that winds some integer number of times around
l. The integer is conventionally positive if the winding is counterclockwise.
We now construct a chord diagram of class aw with w being the winding
number we just discussed. One can compute directly w by the usual
isomorphism π1(D2 \ {l}, s) � Z and so w ∈ Z corresponds to the class of
γ(s) ∈ π1(D2 \ {l}, s)

Figure 4.13: The singular loop and the corresponding chord diagram

4.7 From a chord diagram to a singular knotoid

It is a natural question to ask whether the construction of a chord diagram
corresponds to a representative of a singular equivalence class and here
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we will follow the classical construction of surgery along the two endpoints.
The intuition behind the technique is that a chord diagram illustrates the
nodal structure of the singularities, and specially in pure knotoids every
chord illustrates the winding number around the leg as you traverse in a
singular loop.

Given a linear chord diagram D with precisely one chord c which has
endpoints a, b with a being closer to l and b closer to h. The technique
is simple but yet accurate. Take two small open subintervals each one
containing an endpoint and cut it out from the interval, say (a − ε, a +

ε), (b − δ, b + δ). The chord c now has a new initial point from a + ε. (That
is a convention, we can follow the same procedure if the new initial point is
a − ε.

Take a new arc with initial point a − ε, say γ which crosses transversely
c in an ε′ neighbourhood of a, and has no other common points in the
neighbourhood with c. Then γ traverses next to c (in a small thickened
band following c without crossing it, (except of course the cases that c has
self-intersections but these cases can be excluded in spherical knotoids),
until the thickened band enters a small δ′ neighbourhood of b, where either
γ should be linked with b − δ and c with b + δ or the other way, so we are
forced to choose the only connectivity pattern that leads to a knotoid and
not a multi-knotoid. This construction may or may not create an extra flat
crossing in the δ′ neighbourhood of b. Actually, in spherical knotoids the
pattern is always the same, and it always create an extra flat crossing, but
this generality could solve some future ambiguities.

Note, again, that all the self crossings of c, the crossings of c with γ and
c, γ with the interval are flat since we are trivially in a top row diagram so
we regard singular-equivalence classes of knotoids with one singularity or
equivalently isotopy classes of flat knotoids with one singularity.
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Figure 4.14: Recovering a singular knotoid from a chord diagram



Chapter 5

Rail representations for knotoids

5.1 The rail representation for planar knotoids

One thing that is worth mentioning now for our purpose is a special way to
represent planar knotoids. Intuitively speaking, one could take a knot in
the thickened surface Σ × F out of knotoid diagram that lives in a surface Σ.
For K(R2) there is something more specific. Identify the plane of the planar
knotoid K with R2 × {0} ⊂ R3. K can be embedded into R3 by pushing the
overpasses of the diagram into the upper half-space and the underpasses
into the lower half-space in the vertical direction. This creates an embedding
of [0, 1] in R3. The leg and the head of the diagram are attached to the two
lines, {l}×R and {h}×R that pass through the leg and the head, respectively
and are perpendicular to the plane of the diagram. Moving the endpoints
of K along these lines gives rise to open oriented curves embedded in R3

with two endpoints lying on each line. Such a curve is said to be the rail
representation of a knotoid diagram. An example of a knotoid K2 and its
rail representation K1 is illustrated in Fig.5.1.

75
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Figure 5.1: Example of a knotoid and its rail representation

Definition 5.1.1. Two smooth open oriented curves embedded in R3 with
the endpoints that are attached to two special lines, are said to be line

isotopic if there is a smooth ambient isotopy of the pair (R3/{t ×R, h ×R}, t ×

R ∪ h × R), taking one curve to the other curve in the complement of the
lines, taking endpoints to endpoints, and lines to lines.

In [8] N.Gügümcü and L.H. Kauffman prove the following:

Theorem 5.1.2. There is a one-to-one correspondence between the set of
knotoids in R2 and the set of line-isotopy classes of smooth open oriented
curves in R3 with two endpoints attached to lines that pass through the
endpoints and perpendicular to the xy-plane, and generally Two open
oriented curves embedded in R3 that are both generic to a given plane, are
line isotopic (with respect to the lines determined by the endpoints of the
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curves and the plane) if and only if the projections of the curves to that
plane are equivalent knotoid diagrams in the plane.

Furthermore, in [18] D. Kodokostas and S. Lambropoulou develop the
theory of rail knotoids.

5.2 A rail representation for spherical knotoids

Definition 5.2.1. The spherical knotoid diagrams which have the head
in the point at infinity are called semi-special. The semi-special knotoid
diagrams which have the leg in the point 0 are called special.

Lemma 5.2.2. Every spherical knotoid K ∈ K(S2) is isotopic to another
K̃ ∈ K(S2) such that there is a path joining the head of the knotoid with
the point at infinity ∞ and does not intersect any other part of the knotoid,
or K̃ is semi-special.

Proof. Take a point p , h in the connected component of h and by the
fact that S2 is rotationally symmetric p can be thought as the point at
infinity via isometry. One could also think that given h and ∞, we are not
allowed by the forbidden moves to pass branches of the knotoid K through
h, but we can pass them through ∞ and so if in the initial position we
had k intersection points when joining h,∞, by passing k branches to the
other side of ∞ we have the desired semi-special diagram only by using
locally-planar isotopy. �

Lemma 5.2.3. The spherical knotoidsK(S2) are in bĳection with the planar
knotoids whose head is in the non-bounded connected component of R2 \K

if K is the planar knotoid (K ′(R2)).

K(S2) −→ K ′(R2)

We could equivalently think of these knotoids as "long knots in one
direction", meaning that the leg is trapped but following the knotoid diagram
we can approach the head with a straight line outside a compact region.
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Proof. Let K ∈ K(S2).From Lemma 5.2.2 we can assume without loss of
generality that K is semi-special. Technically we need the head to be "very
close" to ∞.

By the decompactification of S2 using the usual stereographic projection
the initial diagram corresponds uniquely to a K̃ ∈ K(R2) since

Then the knotoid diagram K except a neighbourhood of h, is in a compact
subset B which does not contain ∞.

Let

π : S2 \ {∞} −→ R2

be the stereographic projection.
Then we have that π(B) is compact and π(h) ∈ π(S2 \ B) is not non-

bounded and has no common point with the knotoid other than the small
path near π(h). Correspondingly we can assume that outside a compact
F ⊇ B the knotoid reaches the head with a straight line, and from our
hypothesis that h is "very close" to the ∞, we get π(h) is "very far" from the
non-linear part of the knotoid. One could determine exactly the metrics
that make clear this "very close" situation but this is easy and irrelevant to
our goal.

The converse is easy the same since we begin with a knotoid K ∈ K(R2)

which is inside a compact F except a straight line from the boundary of
F to h, which has a "big length". Applying π−1 we will get a semi-special
knotoid which is what we want.

�
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Figure 5.2: Transformation to a semi-special knotoid diagram and then to
a planar

Lemma 5.2.4. Every descending classical spherical knotoid diagram is
isotopic to the trivial knotoid.

Proof. Since in any isotopy class of spherical knotoids there is a semi-special
representative, we choose without loss of generality K to be a descending
semi-special spherical knotoid diagram. In S2 take a disc D1 centered at ∞
which intersects the diagram only at a single segment, starts with the head
and intersecting the disc at exactly one point.

Take now the disc D2, possibly with application of some planar isotopies
centered at leg such that D1 is tangent to D2. This disc encloses the rest of
the knotoid diagram except for a segment a which links the head with the
tangential point.
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Applying the stereographic projection of lemma 5.2.3 yields in the plane
the knotoid in which the head is outside a compact containing all the rest
of the knotoid except a small neighbourhood of h.

Then take the rail lifting in R3. This gives rise to a solid cylinder with
central axis the rail of l, denoted by L. Denote also the rail of h, by H. H
is allowed to move in the boundary of the solid cylinder. Our knotoid now
corresponds to a curve c in R3 for which if two points p1 = c(t1), p2 = c(t2)

with t1 < t2 with p1 = (x, y, z1), p2 = (x, y, z2), then z1 > z2. Here we use the
convention that L,H are perpendicular to the x, y plane.

if the leg at the point (x, y,1) on L. The head is pulled down until K
becomes a helical curve. The curve c does not wind around H since K
is a semi-special knotoid diagram. Then the curve c is line isotopic to a
curve with h fixed on the boundary after winding around L, where l is
fixed. The part of the c that winds around the L together with L, both
oriented downwards, is a 2-braid. The parts that correspond to a braid
word σiσ−1

i are cancelled so we have a braid word of the form σni . Now we
can unwind c from the bottom to the top by consecutive rotation of π in the
counterclockwise direction around L for n-times. Then the projection of c
to the plane is the trivial knotoid diagram. �



Chapter 6

Type-1 invariants for spherical

knotoids

What is of crucial importance here is the notion of the regular diagrams
which gives rise to our main result for the v1

6.1 Regular diagrams and the classification the-

orem

Definition 6.1.1. A regular diagram is a knotoid diagram K with 1 singular
crossing which has the minimal crossing number , is descending and the
singularity is located "next to" the the leg of the knotoid i.e. There exist no
other crossings between the leg and the singular crossing. Finally, there
exists no local knotting and the real crossing number is odd.

81
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Figure 6.1: Two regular diagrams

Our goal is to prove the following theorem

Theorem 6.1.2. Every knotoid diagram with 1 singularity is singular equiv-
alent to one and only one regular diagram.

With this in hand we will be ready to show that we can handle the com-
plexity occurring by the forbidden moves and the rigidity of the singularity
just by the winding number of the so-called singular loop.

Definition 6.1.3. The singular loop is the oriented closed path that starts
from the singular crossing, as it is first encountered from the leg, follows
the knotoid diagram and ends at the singular crossing.

Lemma 6.1.4. In a spherical singular knotoid that has 1 exactly singular
point, the singular loop contains all the knotedness up to singular knotoid
isotopy. This means that the path joining the head with the singularity
contains only crossings that get involved in the singular loop and all others
can be excluded. The same for the path joining the leg with the singularity.

Proof. We can consider the knotoid to be descending as crossing switches
do not change the singular equivalence class of the knotoid.

We consider the rail representation for the spherical knotoid using the
isomorphism of Lemma 5.2.3. The knotoid can be thought to live in the
interior of CR \ C1 where Cn is the solid cylinder of radius n centered at l
except a small unknotted segment that links l with the boundary of C1 and
the head h lives in the boundary of CR.
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First of all because the knotoid is descending, the subpath joining l with
s is a classical spherical descending knotoid and hence a trivial that lays
over the rest of the diagram, with the technique that we described earlier
by unwinding the arc around the L rail.

The same argument will show that the subpath joining s to h is trivial
and underpasses all the rest of the diagram.

So every crossing that is not involved in the singular loop can be excluded
via singular equivalence.

�

Figure 6.2: Rail representation of a regular knotoid
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Proof of the Classification Theorem

Since the only thing that matters is the singular loop we have the following
considerations.

1. The cylindrical anulus CR \ C1 deformation retracts to a disc without
a point D2 \ {l}.

2. Two regular diagrams have two singular loops in a bĳection as we
saw, so they are classified by π1(D2 \ {l}, s). so the regular diagrams
are different among each other.

3. There is a singular equivalence making the singular loop wrap around
the point grading the radii of the winding from the bigger to the smaller.
We then have w − 1 self intersections i.e crossings where w is this
winding number.

4. We then must join s with h with an underarc. This will create w extra
under crossings projecting again the knotoid to the plane, applying w
times the Jordan curve theorem.

This constructive proof gives us the result that any knotoid diagram is
singular equivalent to exactly one regular diagram.

Q.E.D.

6.2 The singular height

Definition 6.2.1. We define the singular height of a knotoid diagram K to be
the minimal height of its singular equivalence class. sh(K) = min{h(K ′)|K ′ ∼

K}, where ∼ means singular equivalence.

Obviously sh(K) 6 h(K) and there exists a regular diagram in the singular
equivalence class of K which realizes singular height. Of course every
regular diagram realizes singular height.

Thus, it is natural to say that since a regular diagram realizes height and
a linear chord diagram corresponds to exactly one regular diagram, chord
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diagrams realize singular height. The question here is simple: In planar
knotoids where the construction of regular singular knotoids is not so easy
can we detect singular height, just by seeing the chord diagram.

The farther we can reach for the moment is conjecture the formula that
holds in this occasion and search it further in the future. First of all recall
that in planar knotoids b is a free generator as well as a. We don;t have
that ab = 1 as in Lemma 4.5.3 so we should think linear chord diagrams
fro planar knotoids as words of F2[a, b].

So let c ∈ F2[a, b], then c = an1bm1 . . . ankbmk , k < ∞, ni , mi ∈ Z

• mi , 0 ∀i 6 k − 1

• ni , 0 ∀i > 2

• if m1 = 0⇒ mi = 0 for every i and then c = ar for some r ∈ Z

We search the first two consecutive exponents which have the same sign.

1. If the first such pair is nj > 0, mj > 0 for some j, then let d be the
number of (consecutive) pairs ni , mi where ni > 0, mi > 0 added by the
number of (consecutive) pairs mi , ni+1 where mi < 0, mi+1 < 0

2. If it is mj < 0, mj+1 < 0 let d be the same as in (1).

3. If the first such pair is nj < 0, mj < 0 for some j, then let d be the
number of (consecutive) pairs ni , mi where ni < 0, mi < 0 added by the
number of (consecutive) pairs mi , ni+1 where mi > 0, mi+1 > 0

4. If it is mj > 0, mj+1 > 0 let d be the same as in (3)

Conjecture 6.2.2. Given a linear chord diagram for planar knotoids D, with

one chord, then the singular height of the corresponding knotoid diagram is

given by the formula

sh(K) =

 k∑
i=1

(|ni | + |mi |)

 − 2d
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6.3 The integration theorem

With the proof of the classification theorem, some natural questions arise.
First of all, we have the following algorithm. Given a weight system W i.e.:
a function W : LCD → R where R is a commutative ring, we can construct
an invariant on knotoids by this way. Starting from the leg of a knotoid
diagram K, and the first time that we see a crossing that under-passes
the first time, or the first crossing that the knotoid fails to be descending.
Call that crossing c. Change c using the Vassiliev skein relation so we get
the under crossing ± the evaluation of the weight system in the regular
diagram which is singular equivalent to Kc. Kc is the given knotoid with c
nodified, and ± corresponds to the sign of c. In the end, continuing with
the same process we will have a descending diagram which will be trivial
and so contributes nothing to our sum.

So this algorithm says that

v1(K) =
∑

c∈CR(K)

δcsgn(c)W (Kc)

where

δc =

0, c is an over crossing the first time

1, otherwise

sgn(c) is the sign of the crossing c and W (Kc) is the value of W in the
knotoid diagram K with c nodified.

Theorem 6.3.1. Every function W : LCD → R that has zero evaluation in

the trivial linear chord diagram, using the Vassiliev skein relation gives rise

to a knotoid invariant where LCD is the set of equivalence classes of linear

chord diagrams, or equivalently the sum that we defined is stable in the

isotopy class of the knotoid diagram.

Proof. First of all, any Reidemeister I move would create a trivial curl and a
crossing in which the weight system with the crossing nodified would be 0
so Reidemeister I moves contribute nothing to our sum.

The Reidemeister III move does not create any crossings and it does not
hide any crossings involved. Furthermore, performing the Reidemeister III
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move there are some possible ways because of the orientations. In any such
choice, we will see the contribution of this change is equal 0. An interesting
case is when all three arcs as illustrated below are oriented from left to right
and so both crossings change signs.The central crossing contributes to the
sum the same as it contributes after the Reidemeister III move. Let A the
left crossing and B the right one. Then their corresponding crossings after
the Reidemeister move are A′, B′ respectively, and the knotoid diagram has
initial point O. But then W (KA) = W (KB′),W (B) = W (KA′),since we regard
singular equivalence classes of singular (flat) knotoids and course neither
the leg nor the head are in the closed region between the arcs, or else we
performed a forbidden move. Moreover, δA = δB′ , δB = δA′ since the same
arcs are involved and of course sgn(A) = sgn(B′), sgn(B) = sgn(A′). Hence
again no contribution to our sum. What we describe here is illustrated in
the following picture

O

A B

A’ B’

O

The last thing we must check is the Reidemeister II move. The idea is
again to perform such a move and show that it contributes nothing to
the sum.We will sum over diagrams for simplicity and of course mean
the evaluations on such diagrams. Choose in the diagrams following the
orientation from the top to the bottom and the understrand appears first
in the knotoid diagram, with initial point O as described in the following
picture.

O

=

O

+

O

=
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O

−

O

+

O

=

O

which contributes nothing more than the two parallel lines to the sum
since both crossings are first overcrossings. The proof for all other choices
is identical except possibly some opposite signs. �

6.4 Examples of non-trivial v1

6.4.1 The affine index polynomial

Proposition 6.4.1. The affine index polynomial is a Vassiliev invariant for
knotoids of type 1.

Proof. We have to prove that if we extend the affine index polynomial by the
Vassiliev skein relation to singular knotoids. We have that

PK(t) =
∑

c∈Cr(K)

sgn(c)(tωk (c) − 1)

So for every singularity inserted in a knot diagram we have the following
contribution to the sum

P
( )

= P
( )

− P
( )

= tω+(c) − 1 + (tω−(c) − 1) = tω+ + tω− − 2

The −2 is also justified by the change of writhe by 2 when one changes a
positive crossing to a negative.

Take a knotoid diagram with two singularities .c, d with corresponding
ω+ and ω′+ This yields the following contributions.
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P
[

c
,

d

]
= P++ − P+− − P−+ + P−− =

(tω+−1)+(tω
′
+−1)−(−tω−+1)−(tω

′
+−1)−(tω+−1)−(−tω

′
−+1)+(−tω−+1)+(−tω

′
−+1) = 0

So PK is a Vassiliev invariant of knotoids of type 1. �

Now recall the calculation in 1.4.2 where we calculated the affine index
polynomial of this knotoid

It was PK = −(t2 + t−2 − 2). We also have that (omitting the PK(t))

So the regular diagram of order 2 has an affine index polynomial PK =

t2 + t−2 − 2 which of course was what we expected due to the calculation
of the affine index polynomial on an abstract knotoid diagram with one
singularity.

6.4.2 The invariants coming from Turaev extended bracket

Proposition 6.4.2. Recall the Turaev’s extended bracket TK(A, u). Making

the substitution A = ex . We hence represent the Turaev polynomial of a
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knotoid K as a power series

T (K) =

∞∑
k=0

m1∑
l=−n1

tk,lu
lxk

Then each tk,l is a Vassiliev invariant of type k for all l = {−n1,−n1+1, . . . , m1}

Proof. We got the skein realation

−A4T
( )

+ A−4T
( )

= (A2 − A−2)T
( )

=

−

(
1 + 4x +

16x2

2
+ . . .

)
T

( )
+

(
1 − 4x +

16x2

2
− . . .

)
T

( )
=

= ((1 + 2x + . . . ) − (1 − 2x + . . . )) T
( )

Hence, by the Vassiliev skein relation

T
( )

= T
( )

− T
( )

= 4x(some mess)

So T
( )

is divisible by x.
Hence, if a knotoid has n > k singularities then the coefficient of xk

vanishes.
So we have the following results:

1.
m1∑

l=−n1

tk,lu
l is a Vassiliev invariant of type k

2. The coefficient of xk vanishes means that in the knotoids with n > k

singularities
m1∑

l=−n1

tk,lu
l = 0 ∀u means that tk,l = 0 ∀l. So every tk,l is

a Vassiliev invariant of type 6 k

�
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