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ΠΕΡΙΛΗΨΗ

Στην παρούσα εργασία αντιμετωπίζουμε το πρόβλημα του “zero-shot domain adaptation”
μεταξύ των πεδίων των εικόνων και σκίτσων. Τον όρο ”zero-shot” τον εννοούμεως προς τα
σκίτσα. Ο όρος ”domain adaptation” υπονοεί ότι πρόκειται να μάθουμε χρησιμοποιώντας
εικόνες ως παραδείγματα και θα χρησιμοποιήσουμε αυτή τη γνώση για να προβλέψουμε
σκίτσα.

Για να το κάνουμε αυτό, θα κάνουμε έναν μετασχηματισμό στις παρατηρούμενες εικόνας
και έναν μετασχηματισμό στα παρατηρούμενα σκίτσα έτσι ώστε τα μετασχηματισμένα
δεδομένα να μπορεί να θεωρηθεί ότι παράχθηκαν από την ίδια τυχαία μεταβλητή. Μετά
από αυτό, η στρατηγική μας είναι να προσαρμόσουμε μια συνάρτηση στις εικονες που
έχουν μετασχηματιστεί και να προβλέψουμε με αυτή τα σκίτσα κανονικά.

Οι μετασχηματισμοί που πρόκειται να χρησιμοποιήσουμε έχουν ως βασικότερο στόχο να
αναπαραστήσουν και τους δύο τομείς ως δυαδικές ακμές πάχους ενός εικονοστοιχείου,
κωδικοποιώντας με 1 την ύπαρξη ακμής και με 0 την απουσία της. Για τον τομέα της
εικόνας θα χρησιμοποιηθεί ένας συνδυασμός διαδικασιών ανίχνευσης ακμών, αυτόματης
κατωφλίωσης και λέπτυνσης σε μια φιλοσοφία επαύξησης δεδομένων. Για τον τομέα του
σκίτσου θα χρησιμοποιήσουμε έναν ντετερμινιστικό κανόνα κατωφλίωσης σε συνδυασμό
με μια διαδικασία λέπτυνσης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Όραση Υπολογιστών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Zero-Shot Learning, Domain Adaptation, Sketch Recognition





ABSTRACT

In this thesis we are tackling the zero-shot domain adaptation problem between the image
and the sketch domains. By ”zero-shot” we mean in term of sketches. The term ”domain
adaptation” suggests that we are going to learn with images as examples and we will use
that knowledge to predict sketches.

In order to do this we are going to make one transformation to the image realizations and
one transformation to the sketch realizations such that the transformed realizations can
be seen as they were sampled from the same random variable. After that our strategy is
to learn a function on the transformed realizations of the image domain and predict our
sketches normally.

The transformations we are going to use have as an objective to represent both domains
as one-pixel thick binary edge maps, encoding with 1 the existence of an edge and with 0
the absence of it. For the image domain a combination of edge detection, thresholding and
thinning procedures is going to be used in a data augmentation philosophy. For the sketch
domain we will use a deterministic thresholding rule followed by a thinning procedure.

SUBJECT AREA: Computer Vision

KEYWORDS: Zero-Shot Learning, Domain Adaptation, Sketch Recognition
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Zero-Shot Domain Adaptation for Sketch Recognition

1. INTRODUCTION

1.1 Problem Discription and Motivation

In this thesis we are tackling the sketch recognition, or sketch classification problem, but
in the case that there are no actual sketches available. In that sense our problem is a
zero-shot learning problem in terms of sketches. Furthermore, we will use images of the
objects we want to classify, which are the corresponding elements of another domain. In
that sense our problem is also a domain adaptation problem.

The motivation behind the use of images instead of sketches is firstly practical. Sketches
are more expensive and harder to obtain than images. Although the situation would be
reversed for most of the previous century, the fact that there is a camera in every smart-
phone -and every smartphone is able to connect to the internet- made images trivially
obtainable, while sketches continue to need effort to be created.

A secondmotivation is the self value that the domain adaptation task has in a philosophical
manner. Specifically the elements of the real-object subset of the sketch domain have a
causal relationship with the elements of the image domain because they are created as
abstract representations of them.

Although the sketches are created in order to be understood by humans usually in an
obvious, non-cryptic way, the chosen level of abstraction, the personal style and the skill
gap between the artists are factors that add variety to the sketch domain even on rep-
resentations of the same ontological entities. For example, a stick-figure, a sketch of an
amateur cartoonist, a draft sketch of a cubist painter and a draft sketch of a statue from a
Renaissance sculptor can all represent ontologically a person. In Figure 1.1 we can see
an example of two non-professional sketches from the TU-Berlin dataset [17] with differ-
ent level of abstraction, a draft sketch from an expressionist painter and a drawing from
a neoclassical painter. This variety is making the sketch recognition problem challenging
even in the classical supervised setting.

In the rest of the chapter 1 we will relate our setting with other settings and frameworks.
We will also define our problem formally. In chapter 2 we will discuss the approaches we
found the closest to ours in the literature. In chapter 3 we will present some theoretical
background for the learning procedure. In chapter 4 we will analyze our whole approach
for the problem. In chapter 5 we will set a baseline in order to have a reference point to
evaluate our approach. Finally in chapter 6 we will present our results and final conclu-
sions.

1.2 Domain Adaptation

In the supervised setting we assume that the examples of our train and validation sets are
drawn from the same distribution with the examples of the test set. This is not true in our

17 N. Efthymiadis
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(a) (b) (c) (d)

Figure 1.1: In (a) we can see a stick-figure style sketch from the class ”person walking” from
TU-Berlin [17]. In (b) we can see a less minimal sketch from the class ”person walking” from

TU-Berlin. In (c) we can see ”Krishna playing the flute” by Theo van Doesburg. And in (d) we can
see a portret of Niccolo Paganini by Jean Auguste Dominique Ingres. In this work we will focus

mainly to the first two cases of sketches

case because our available data are supposed to be only images, while the actual testing
must be done on sketches. So the goal is to take any useful information from one domain
and use it to do classification on the other domain. That practice falls under the definition
of domain adaptation, but in order to define it formally, we need to define transfer learning
first.

We will follow [12, 47, 70]. A domain D is defined as a feature space X ⊂ Rd with a
marginal probability distribution P (X). So we can write D = {X , P (X)}. We also define
a task as a label space Y with the conditional probability distribution P (Y |X), so we can
write T = {Y , P (Y |X)}. X and Y are random variables. If we take N realizations of
them in a datasetD, such as xD = {x1, x2, ... , xN} with xi ∈ X and yD = {y1, y2, ... , yN}
with yi ∈ Y respectively, the P (Y |X) can be estimated from the pairs {xi, yi}.

Now, let’s say we have two domains. A source domain DS = {XS, P (XS)} with it’s
corresponding task TS = {YS, P (Y S|XS)} and a target domain DT = {XT , P (XT )}
with it’s corresponding task TT = {YT , P (Y T |XT )}. The setting in which we want to use
knowledge fromDS and TS in order to improve the TT ofDT is called transfer learning. As
we can easily see, transfer learning is a generalization of the supervised learning, because
in the trivial case of DS = DT and TS = TT the transfer learning setting collapses into the
standard supervised.

The special case of transfer learning in which the label space is common, that isYS = YT =
Y is called domain adaptation. This is a relaxed definition. According to [12], ideally, the
definition of domain adaptation should also have the P (Y |XS) = P (Y |XT ) = P (Y |X)
condition. So the stricter TS = TT = T = {Y , P (Y |X)} condition should hold, but it was
rejected as unrealistic in practice. If the source feature space is the same with the target
feature space, XS = XT while P (XS) ̸= P (XT ), the problem is called homogeneous
transfer learning. Finally, if the labeled data are only available in the source domain then
we are in the unsupervised domain adaptation setting.

Our problem is of course homogeneous but although we technically don’t have labeled

N. Efthymiadis 18
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data from the target domain, it would be triviality to classify it as unsupervised domain
adaptation because it’s not only the labels that we are missing, but the whole target
dataset. This forces us to make decisions mainly qualitatively because we are not al-
lowed to study examples from both domains to make any estimation. So we must decide
using reason and our so far experience with the domains gained from our every-day life.
That reasoning is closely related with zero-shot learning practices.

1.3 Zero-Shot Learning

According to [53], while today it is not hard to find images for thousands of basic categories
and build models from them, it is quite hard to find enough images of other, infrequent or
very specific categories. For example, while it is easy to find plenty of data for the object
”car”, it is quite hard to find enough data in order to recognize specific car models. As long
as we are creating models from the categories we have plenty of data, new needs will be
created for more specialized computer vision. Zero-shot learning is the setting in which
there are no examples of the categories we want to predict. The definition of zero-shot
learning according to [34] is the following:

Let (x1, y1), ... , (xm, ym) ⊂ X × Y be training samples where X is an arbi-
trary feature space ant Y consists of z discrete classes. The task is to learn a
classifier f : X −→ Y ′ for a label set Y ′ of z′ classes, that is disjoint from Y.

In order to solve this problem, a very popular strategy was proposed by [54]. We assume
that we have as extra information the attributes of all classes, such that every class has
a signature combination of a attributes, coded in a matrix S ∈ [0, 1]a×z and the values
can be Boolean or in the range of [0, 1]. Now, instead of learning the parameters of a
matrix W in order to do the class estimation ŷ = X⊤W , we are learning the parameters
of a matrix V such that ŷ = X⊤V S, where V ∈ Rd×a. That way the parameters learned a
relationship between images and attributes. In order to do the prediction, we assume that
we are provided with the attributes of the new z′ classes S ′ ∈ [0, 1]a×z′ and our estimator
would be ŷ = x⊤V S ′.

Observing the setting of zero-shot learning we just described, we can see it as a special
case of transfer learning. The feature spaces are the same, but not the distributions, so
DS = {X , P (XS)} and DT = {X , P (XT )}. Also the label spaces are different YS ̸= YT

and consequently are the tasks TS ̸= TT . Finally, we have data only from the source
domain and task.

The comparison of this setting with our problem is done because both lack of target domain
data. While both our distributions over our feature spaces are different, our source-target
distributions aremuch further away andmethodologies like the one described abovewould
be difficult to be implemented directly. In the attribute based zero-shot learning problem,
some basic features that are indicated from the attributes are following the same distribu-
tion in both domains. For example let’s say that the source domain has images of horses

19 N. Efthymiadis
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and the target domain has the images of zebras. The attribute ”eye” is pointing at cues
from almost the same distribution, the one of the images of the eyes of mammals. On the
other hand, a sketch of an eye is following a very different distribution from an image of
an eye, even if they both represent eyes of subjects of the same species.

1.4 Our Problem

Aswementioned in a previous section, our problem is considered a homogeneous transfer
learning problem. That is because we are working on the feature space of images and
after some minor adjustments a sketch and an image can be represented with the same
mathematical objects: Either a 3d tensor, by upgrading the sketches to RGB, or a matrix,
by downgrading the images to grayscale. Also, the dimensions of them can be trivially
modified to be the same with rescaling, padding or cropping. So we can treat this problem
like the condition XS = XT holds. But of course the marginal probability distributions of the
elements of those spaces are not the same. A stick-person-like cue is not equally frequent
in an image and in a sketch, so P (XS) ̸= P (XT ).

Furthermore, we are in the setting of the relaxed domain adaptation because the YS = YT

condition holds. The labels of our source domain are the same with the labels of our
target domain because we want to estimate the classes of the same ontological entities
from different representations of them. But we cannot assume that the conditional prob-
abilities of the label random variables given the feature random variables are equal for
both domains, so P (Y |XS) ̸= P (Y |XT ). That is because the distributions of the random
variablesXS, XT could be chaotically different and this assumption seems unreasonable
to be made at this step.

In terms of transfer learning our problem can be summarized as follows:

Our source domain is the image domain, and our target domain is the sketch domain. We
have training and validation data only from the source domain and our target domain data
are only for testing. We work under the conditions XS = XT = X and YS = YT = Y.
So formally we have the domains DS = {X , P (XS)} and DT = {X , P (XT )}. We also
have the tasks TS = {Y , P (Y |XS)} and TT = {Y , P (Y |XT )}. The goal is to estimate the
P (Y |XT ).

In order to tackle this problem we must transform it into a problem that the equality of
the conditional probabilities can hold. This leaves us only with the choice of searching for
transformations for our realizations f1(xDS

) and f2(xDT
) that define new random variables

X ′
S andX ′

T respectively that follow closer marginal distributions P (X ′
S), P (X ′

T ) and also
conditional distributions P (Y |X ′

S), P (Y |X ′
T ). Then we will make the nessecery assump-

tion P (Y |X ′
S) ≈ P (Y |X ′

T ) and learn the P (Y |X ′
S) and use it in the place of P (Y |X ′

T ). As
mentioned in a previous section, we will choose those transformations qualitatively and
by using reasonable arguments and empirical knowledge.

N. Efthymiadis 20
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2. RELATED WORK

2.1 Sketch Recognition

A quite recent dataset that comes with an application for sketch recognition is google’s
Quick, Draw!12 which marks the upcoming popularity of the field. This poppularity though
could not be achieved without the publication of [17], in which the TU-Berlin -a large scale
dataset of free-hand sketches- was released to the community and gave to the researchers
the means to change the direction of the sketch recognition task from a mainly hand-
crafted practice to a more data driven one. The dataset consisted of 20,000 free-hand
sketches from non-experts in 250 categories of real objects. Two benchmarks were set
in the same publication: The first one is the human accuracy for the dataset, which is
73%. The second one is a multi-class support vector machine using representations from
a bag-of-features approach which achieves 56% accuracy.

Of course in the post AlexNet [32] era, the first instinct was to try some known convolu-
tional neural network (CNN) architectures designed for the image domain, but sketches
are textureless and really sparser objects than the images, and their success is not ob-
vious at all. The first model that surpassed the human benchmark was the sketch-a-net
[51] which used an AlexNet-like architecture but with bigger filter size in the first layer in
order to solve the sparsity issue of the domain. Furthermore, sketch-a-net exploited the
sequential nature of the sketch domain by training with multi-channeled sketches with ev-
ery channel being a snapshot of the sketching procedure. It also used different scaling of
the sketches combined with Bayesian fusion [8] in order to deal with the different levels
of abstraction. This network achieved 74.9% accuracy on the TU-Berlin dataset. They
also achieved an even better 77.95% accuracy with the sketch-a-net, two years later, in
[50] mostly by designing augmentations such as stroke removal strategies and local and
global deformations.

The idea of exploiting the sequential nature of the sketch domain is very popular in the
sketch recognition field. In [58] a recurrent neural network (RNN) architecture with gated
recurrent units (GRU) [9] is used. The argument is that although the sketch-a-net can
handle the sequence of the strokes up to some degree, the convolutional neural networks
are not created to handle sequential data by design equally well with an architecture that
deals with sequential data inherently. The results of this work are not comparable with the
sketch-a-net because they used a 160-category subset of the TU-Berlin.

Another method that is focusing on the sequence of the strokes is the sketch RNN Raster-
ization CNN (Sketch-R2CNN) [39]. This architecture takes as input the sketch as a vector
with grouped sequences of points. Then it uses a bidirectional long short-term memory
(LSTM) [60] unit with two layers to calculate the per-point stroke attention. After that,
they introduced a novel neural line rasterization module (NLR) that takes the initial vector

1https://quickdraw.withgoogle.com/
2https://github.com/googlecreativelab/quickdraw-dataset

21 N. Efthymiadis
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sketch and the calculated attention and it converts them to a rasterized pixel sketch in a
differentiable way. After that the procedure continues with a CNN and a classifier. This
combination is motivated from the extra information that the temporal ordering has in the
vector representation of a sketch and the effectiveness of the current CNN architectures
on the rasterized representation of an image. So they unified the two representations in
that manner. The Sketch-R2CNN achieves 83.25% accuracy on the TU-Berlin dataset by
using the ResNet50 [25] as the last CNN.

A different approach can be seen in [76], which is focused on two kinds of sketch-specific
augmentations. The first one is called Bezer pivot-based deformation (BPD), which aims
to generate more sketches in order to add variation to the dataset. This is done by par-
titioning the sketches in small patches and fitting cubic Bezier curves using the largest
connected component of each patch. The second augmentation is called mean stroke
reconstruction (MSR) and it aims to improve the quality of the sketches by reducing the
intra-class variance. Both augmentations can be used on sketches without temporal cues.
Those two augmentations used with a fused DenseNet-161 [29] and ResNet-152 archi-
tecture, achieved 84.27% accuracy on the TU-Berlin dataset.

2.2 Domain Bridging

The previous section was only about the standard supervised setting for the sketch do-
main. Bridging the domains of sketches and images is a highly motivated objective be-
cause of the instant applications in the sketch-based image retrieval (SBIR) task. If we
can represent the images and the sketches in the same space with a consistent and class-
aware way, then we could use sketches to search for images. Model-wise, the most
common architecture for this is either the Siamese network [10], trained with couples of
sketches and photos or the Triplet network [69], trained with triplets of sketches, positive
photos and negative photos [73, 57, 74].

According to [41] we are going through the forth era of SBIR since 2014 and its most
important characteristics are the use of deep learning models and the extension of the
task to the fine-grained SBIR (FG-SBIR), which aims to also distinguish intra-class varia-
tions. According to [41], this concept was raised by [40]. Examples of FG-SBIR are the
aforementioned [73, 57].

Of course the above approaches are not zero-shot in terms of sketches. A concept closer
to ours can be found in [3] where the GoogLeNet [62] and the AlexNet architectures trained
on ImageNet [13] are used directly to recognize sketches from the same class. Although
the networks performed better than random guessing, the authors concluded that:

”The test networks are not useful to perform sketch classification and their
classifications are different from the classifications offered by humans”

While the above setting is the same with ours, there was no intention to close the do-
main gap but rather to verify it. In [52] we can see an approach even closer to ours in
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the domain of landmark retrieval. The task is a sketch-based image retrieval and the
training sketches were substituted with edgemaps of images extracted from a structure-
from-motion pipeline.
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3. BACKGROUND

3.1 Background Motivation

As we stated in a previous chapter, our strategy is to transform our problem in another one
that P (Y |X ′

S) ≈ P (Y |X ′
T ) ≈ P (Y |X) can be a reasonable assumption and we will learn

P (Y |X ′
S) and treat it like it was P (Y |X ′

T ). After that we will use only learning theory and
from now on we will use P (Y |X) to describe our learning problem. The necessary steps
we are making in the image processing part of this work are based on logical assumptions
and techniques without the use of any strict or specialized theory. The most suitable topic
for in-depth presentation is the learning part, which will be presented in a continuous way
through the perspective of the bias-variance trade-off.

3.2 Forming a Loss Function for Classification

The first thing that we can say with certainty is that Y follows a categorical distribution with
P (Y = yk|X = x) as parameters, for k = 1, 2, ..., K while K is the number of classes. We
could say that the parameters are the P (Y = yk) but having the insight from our dataset,
P (Y = yk|X = x) can be seen as an improvement. The categorical distribution is a
special case of the multinomial distribution with the number of sampled items fixed to 1.
Its probability mass function is:

F (α|p) =
C∏
i=1

pαi
i , with

C∑
i=1

pi = 1 (3.1)

A reasonable approach to this problem is to assume a function form f : X → Y specified
by some weights W that would approximate P (Y = yk|X = x). After that, the W can be
estimated by maximizing the likelihood function of Y . This is generally a good approach
because the maximum likelihood estimators (MLE) are guaranteed to be asymptotically
unbiased and they asymptotically reach the Crammer-Rao bound, which means that out
of all the unbiased estimators, they have asymptotically the minimum possible variance
[63]. The function f is also an estimator of the parameters P (Y = yk|X = xi), so let’s
assume it’s form and say fik = fk(xi) = P̂ (Y = yk|X = xi). Its specific form will be
discussed in a later section but for now it will be left abstract. Starting from maximizing
the likelihood of the categorical distribution:

argmax
W

L(W ) = argmax
W

N∏
i=1

K∏
k=1

fik
yik (3.2)

= argmax
W

N∑
i=1

K∑
k=1

yiklogfik (3.3)
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= argmin
W

− 1

N

N∑
i=1

K∑
k=1

yiklogfik (3.4)

= argmin
W

1

N

N∑
i=1

[
K∑
k=1

−yiklogfik +
K∑
k=1

yiklogyik

]
(3.5)

= argmin
W

1

N

N∑
i=1

K∑
k=1

yiklog
yik
fik

(3.6)

For the above equalities [4] and then [64] were followed. In order for some of the math-
ematical representations to make sense, the following conventions found in [64] were
accepted: 0 log 0

0
= 0, 0 log 0

q
= 0 and p log p

0
= ∞.

The equation 3.2 is the definition of the likelihood of the categorical distribution inside the
likelihood maximization procedure and the 3.3 is the maximization of the log-likelihood
function.

The form 3.4 is the minimization procedure of the negative log-likelihood divided by the
sample size. In an information theory perspective this form it the minimization of the av-
erage cross-entropy of the empirical distribution y and the model distribution f over the
sample. In 3.5 the term 1

N

∑N
i=1

∑K
k=1 yik log yik was added, which is the average Shannon

entropy of the empirical distribution over the sample. Which is of course independent from
the optimization variables W .

All the above were done in order to construct the 3.6 form which is called the Kullback–
Leibler divergence (KL-divergence) between the empirical distribution y and the model
distribution f [7]. The KL-divergence quantify the difference between the two distributions
[33] and therefore it is a reasonable strategy to minimize the empirical and the model
distribution difference.

From the above equations it is clear that no matter which optimization is chosen, the result
will be theoretically the same. For our problem, we will choose the 3.4 over the 3.6 though
because of its simpler form and the place of fik on the nominator.

3.3 Discussing the Model Form

By using the above strategy it is guaranteed to get an asymptotically unbiased estimation
with the lowest possible variance over all the unbiased estimations for the W of a given
function form. That also means that if the chosen function form is the ”right” one for the
problem, the estimation method will have those good asymptotic properties for P (Y |X)
too. According to Leo Breiman [5], the search for the actual distribution that nature crafted
for each problem and then assume it to learn its parameters is a data modeling culture ap-
proach. That culture dominated statistical theory and practices up to the 80s and quoting
from Breiman:

”Led to irrelevant theory and questionable scientific conclusions, kept statisti-
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cians from using more suitable algorithmic models and prevented statisticians
from working on exciting new problems”.

Examples of the data modeling culture are the generalized linear models. In contrast with
this culture is the algorithmic modeling culture which believes that:

”Nature produces data in a black box whose insides are complex, mysterious,
and, at least, partly unknowable.”

And its goal is to find a function or an algorithm that predicts nature well without following
exactly nature’s procedure. Examples of this culture are the decision tree methods and
neural networks.

The above rationality explains why the image recognition tasks started to achieve such
good of a performance. The acceptance that those problems are way too complicated to
look for the ”true natural” procedure that generated their data led the scientific commu-
nity to a new way to produce useful results. So the approach became data driven but
not in the data modeling culture way. In simpler problems, like -for example- an orange-
watermelon classification from their weight in kg, someone could work in a data modeling
culture approach. They would reasonably assume the distribution of Y as Bernoulli andX
as Gaussian and the only things they would need to estimate for E[Y | x] are two means
and two variances. In the image classification problem though, the distributions are not
that obvious. Someone can’t know for example the distribution of dogs represented on
a X = [0, 1]100×100 feature space, so they need to approach it in an algorithmic modeling
culture way. However, the ideal best model E[Y | x] can be used as a means to study the
problem theoretically.

By following the approach of [20], and inspired by the use of themean squared error (MSE)
of the Euclidean norm in [72], the effectiveness of a model f is measured in terms of how
close its performance is compared to the theoretical E[Y | x]. A proof of why the E[Y | x]
is the best possible theoretical model for the MSE loss can be found in [20]. The result
of any statistical model creation procedure is going to vary in respect to the dataset D,
so starting from the expected difference between a function and E[Y | x] over all possible
datasets D:

ED

[
∥f(x;D)− E[Yk | x]∥22

]
= ED

[
K∑
k=1

(fk(x;D)− E[Y | x])2
]

=
K∑
k=1

ED

[
(fk(x;D)− E[Yk | x])2

]
=

K∑
k=1

ED

[
((fk(x;D)− ED[fk(x;D)]) + (ED[fk(x;D)]− E[Yk | x]))2

]
=

K∑
k=1

ED[(fk(x;D)− ED[fk(x;D)])2] + (ED[fk(x;D)]− E[Yk | x])2
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+ 2ED[fk(x;D)− ED[fk(x;D)]] · (ED[fk(x;D)]− E[Yk | x])

=
K∑
k=1

ED[(fk(x;D)− ED[fk(x;D)])2] + (ED[fk(x;D)]− E[Yk | x])2

= ED[∥(f(x;D)− ED[f(x;D)])∥22]
′V ariance′

+ ∥ED[f(x;D)]− E[Y | x]∥22
′Bias′ (3.7)

This decomposition is called Bias-variance decomposition and it describes a principal
statement in statistics known as the bias-variance trade-off. As a principle, of course,
it exists no matter which cost function we choose to illustrate it. A similar form for the 0−1
cost function for classification can be found in [15], also for the cross-entropy loss there is
a result in [72]. The MSE of the Euclidean norm was chosen because in the probabilistic
classification setting it makes sense as a distance in terms of probabilities. Also this re-
sult shows the trade-off way more intuitively than the ones with the aforementioned loss
functions. The bias part of the decomposition:

∥ED[f(x;D)]− E[Y | x]∥22

It is the error part of the model that is caused due to the structural difference between
the theoretical expectation of Y |x and the function of choice. Specifically it is the differ-
ence between the theoretical ”true distribution” of the problem and the average function
of choice over all possible datasets. This type of error is related to the systematic error
of the physical sciences. The nearer the chosen function is to the theoretical one, the
better performance will have bias-wise. The problem is that, as we discussed earlier in
this section, the true function in the domain of image classification is too complicated and
unknowable. So what somebody can do about this is to assume a more general form that
includes the true function as a special case. The variance part of the decomposition:

ED[∥(f(x;D)− ED[f(x;D)])∥22]

It is the average error that the model has because of the use of the specific dataset and it
is related to the function’s complexity. Specifically it is the average distance of the model
from the average model trained over every possible dataset. This kind of error is related
to the random error of physical sciences. Of course, the larger the dataset, the smaller
the error due to variance because the model’s parameters W will be in a better state in
terms of convergence. In addition to the data quantity, a simpler structure of the function
helps reducing the error of this kind. That’s because in a lot of simple structural choices,
the less variables there are in a function, the less data are needed for them to start to
converge. That is not a general rule but it applies to the structures we will be interested
in.

So in order to reduce the variance error someone needs to assume simpler functions but
in order to reduce the bias error the ”true function” must be included in the model as a
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special case. In other words, for a given dataset, the whole procedure is a trade-off of
making the model simple but not too simple to include the ”true function”. This is going to
be achieved by starting from a very complex and flexible family of functions and then by
making reasonable assumptions for the nature of the problem to discard functions from
the possible solutions.

3.4 Starting from a Low Bias Architecture

In order to start from amodel with very low bias error, the fully connectedmultilayer percep-
tron (MLP) can be chosen as a baseline. This model, according to [23], is the quintessence
of the deep learning models. The idea in the neural networks framework is to create a very
complex and flexible function as a composition of a lot of simple functions. The fully con-
nected MLP function for example will have the form:

f(x) = σ
(
f
(1)
L (x), f

(2)
L (x), ..., f

(K)
L (x)

)
with σ(z)i =

ezi∑K
j=1 e

zj
and

f
(k)
L =

M
′′∑

m′′=1

bk + wkm′′f
(m

′′
)

(L−1)

(
...

M∑
m=1

b′m + wm′mf
(m)
1

(
d∑

i−1

bm + wmixi

))
(3.8)

The σ(·) function is called softmax and it is transforming the estimations to probabilities.
The vectorized image x is called input layer and f(x) is called output layer. Every f l is
called the l−layer while every layer except for the input and the output are the hidden
layers. The number of the layers are defining the depth of the network. It can be seen
from the formalism that every f l is a vector function and their dimensions can be different
for each layer. So for example the layer 1 can have dimension M such that: f 1(x) =

(f
(1)
1 (x), f

(2)
1 (x), ..., f

(M)
1 (x)) and the layer 2 can have dimension M ′ such that: f 2(x

′) =

(f
(1)
2 (x′), f

(2)
2 (x′), ..., f

(M ′)
2 (x′)). Every basic function f

(m)
l is called an activation function

and is taking the weighted sum of the outputs of the previous layer plus a weight b (which
is referred in the literature as ”bias”) and it returns a number in R.

The activation functions are offering nonlinearity to the model and therefore the ability to
describe more complex problems. Their role is crucial because a composition of linear
functions is trivialized to a single linear function. For our problem, we will choose as our
nonlinearity the rectified linear unit (ReLU), which is one of the most common activation
functions, with formula:

ReLU(x) =

{
x if x ≥ 0

0 if x < 0

This architecture is called fully connected because every activation function f
(m)
l is taking

as input a weighted sum of the output of every activation function of the previous layer
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f l−1. It also has learnable weights all the elements of W and the b. So |W | + |b| =
(d × M + M) + (M × M ′ + M ′) + ... + (M ′′ × K + K) weights have to be estimated.
The weights can become too many quite fast in terms of depth, and the functions can be
very flexible. Of course the bias error of those architectures is going to be really small,
but the variance error is going to be really high. A strategy to overcome this issue is to
imbue domain specific knowledge in order to discard some possible solutions that it is
known they will be wrong. The first approach is to find a reasonable way to remove some
weights.

(a) A strawberry (b) Shuffle 1 (c) Shuffle 2 (d) Shuffle 3

Figure 3.1: In (a) we can see a strawberry from ImageNet [13]. In (b), (c) and (d) we can see three
different shuffles of its pixels. The fully connected MLP can learn each representation of the image
equally well if it was trained on a dataset with the same shuffling rule. This kind of visualization for

the MNIST handwritten digit database [36] can be found in [2]

3.5 Adding Reasonable Bias to Fight Variance Error

3.5.1 Adding Architectural Bias

The rationality of [2] will be followed. The fully connected MLP is not taking into account
any sense of neighboring between pixels. Let’s discuss an image recognition problem in
the feature space X = [0, 1]100×100. Then, for a given image there are going to be 10, 000!
ways to shuffle its pixels. Let’s define the operator Shufflei : X → X with the identity
ShuffleI(X) = X and for i from 1 to 10, 000! that takes as input an image and applies the
ith shuffling.

Let’s also define the datasets Di = Shufflei(D) as the datasets that their every element
was applied the same ith shuffling rule. Also, DI = ShuffleI(D) = D. Then, the fully
connected multilayer perceptron can learn equally well all of those datasets. That is, if
an MLP1 was trained on D1 and an MLP2 was trained on D2 with the same conditions,
the only difference between them would be a variance declination due to the stochastic
nature of non-convex optimization. Also, with MLP1, somebody can achieve the exact
same performance on theD2 without train on it, but only by rearrange the weights of MLP1.
Of course the only useful problem is the one with DI as dataset and the rest capabilities
of the MLP are useless.

The fact that the fully connected MLP is capable of also solving that enormous number of
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useless problems is making it having high variance error in practice. The slower conver-
gence of MLP in terms of data is its side effect for its capability of solving all those extra
problems. By observing that, somebody is able to deny it that capability by fixating some
of the weights to 0. More specifically, in each layer l, lets have one activation function
for every single output of the layer l − 1. Now every activation function has an anchor
pixel. For every activation function, lets fix to 0 every weight that corresponds to a pixel
that is further from the anchor pixel more than an number of n pixels straight or diagonally.
That would create 2n + 1 by 2n + 1 blocks of weights corresponding to neighboring pixel
representations.

Up to here the number of weights were reduced dramatically by fixating to 0 every weight
that was going to create a relationship for its corresponding pixel with a pixel that is not
near. That is an assumption for the image domain which implies that structure is created
strictly locally, which is a reasonable statement. That’s why it is hoped that no potential
was lost in terms of solving the problem using DI . An even stricter assumption can be
made now. Instead of leaving those 2n + 1 by 2n + 1 blocks of weights free for every
activation function, it can be demanded that it is going to be the shame block of weights
for the whole layer. That means that the weight w1 corresponding to the top right block of
weight of the the activation function f

(m)
l is going to be the same variable w1 with the one

corresponding to the top right block of weights of the activation function f
(m+1)
l and so on.

That new jointly defined block of weights is called a convolution.

This assumption is useful not only because it minimizes the number of weights even more,
but also because by creating this structure, it is the equivalent of shifting the weights over
the previous layer, letting them search for features. Practically, the convolutions are filters
like the hand-crafted ones used in classical image processing methods, but instead of
searching manually for a filter that works for the specific task, here the weights are going
to be learned to do the classification job optimally.

In the majority of the classical CNN architectures there is also a down-sampling procedure
after most convolutions and activation functions that takes the representation and lowers
its dimension by either returning the maximum or the average of a grid of its pixels. This
procedure is called max pooling or average pooling respectively and its main goal is to
make the representation on each layer more abstract and therefore to lower even more
the variance related error. That’s because it is making each representation robust to small
translations and deformations.

3.5.2 Adding Dataset Bias

Even after making the architecture that stricter from the starting MLP, it is still way more
flexible than the most of the traditional machine learning models partially because vision
problems are way more complicated than most of the traditional problems in classical
statistics. As mentioned in a previous section, one way to battle variance error is by
using more data. So, the appearance of large scale datasets like the [13] played a very
important role for deep neural networks architectures to be feasible. In addition to that,
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Figure 3.2: This is the architecture of a convolutional neural network. As we can see we do not
have only one convolution per layer, but every convolution applied to the l layer is creating an

additional channel to the l + 1 layer. Also, for the creation of the dense layer we can either use one
weight for each input pixel, or to use a global pooling method to minimize the weights. This

diagram was created with the tool of [37] with the visualization style of [35].

some techniques were developed in order to make the datasets effectively even larger
and those techniques are called data augmentations.

Data augmentations are procedures that use specific domain knowledge in order to en-
large the dataset, so in essence they add bias to the procedure. Which means that it is the
same idea applied to the architecture but now it is applied to the dataset. It is the same
principle: By adding bias, the variance error is shortened, but with the risk of raising the
bias error. If the added bias is the ”right bias” then the bias error is not raising. Some of
the most common augmentations are the inclusion of rotations of the images, translations
of the images by random cropping and horizontal flips of the images. The last two aug-
mentations were used in [32] and they achieved to increase the training set by a factor of
2048.

Of course those augmentations are the right ones because they were training on the Im-
ageNet and a horizontal flip of a ”dog” is still a ”dog”. This couldn’t be done for the MNIST
handwritten digit database because a horizontal flip of the digit ”3” is not a ”3” anymore.
So in the first example it is expected that the bias inclusion is not going to raise the bias
error, while in the second example it is expected that it will. In both cases though, it is
expected for the variance error to shorten.

3.5.3 Adding Bias to the Weights

Another way to add bias to the procedure, for a given architecture and a given augmented
dataset, is to add prior knowledge directly to the weights. There are a lot of techniques
in the literature that display random initializations in order for the model to be optimized
easily and without technical issues. Some of them, indicatively are in [22, 26]. Those

N. Efthymiadis 32



Zero-Shot Domain Adaptation for Sketch Recognition

techniques are adding some bias in order to decrease the variance due to initialization,
which is one of the sources of variance error in neural networks according to [44].

Another way to do this is by using the weights of a pre-trained network as initialization. Of
course this pre-trained network must have been trained on a domain that is relevant. This
is adding bias because it is assumed that the solution is closer between models of close
domains than a model of one domain and a random model. So it is expected that a model
initialized closer to its solution is going to converge faster.

Another approach for adding bias to the weights is to tackle the problem in the Bayesian
framework. That is done by treating the weights W as random variables and assume
prior distributions for them. Then instead of learning them point-wise, their distribution is
estimated. In the Bayesian framework somebody want to calculate the densities:

g(W |D) =
g(D|W )g(W )∫

W

g(D|W )g(W )dW
=

L(W )g(W )∫
W

L(W )g(W )dW
(3.9)

The density g(W |D) is called the posterior or a posteriori distribution because, as the
conditional symbol implies, it is the idea someone has for the distribution of W given that
the datasetD is observed. The density g(W ) is called prior or a priori distribution because
it is the idea of the distribution ofW before the dataset is observed. Finally, g(D|W ) is the
likelihood function. Estimating this density can be really hard and usually the assumption
of independence of the wi is made. But even then, in a lot of situations the likelihood
function multiplied with the prior is not returning a known distribution. In those cases,
the integral of the denominator, which is the normalization constant of the density of the
nominator, cannot be calculated analytically. If the posterior follows the same distribution
with the prior, it is said that the likelihood is conjugate with the prior.

A way to bypass those problems is to follow a semi-Bayesian procedure by maximizing the
posterior. The estimators resulting from this procedure are called maximum a posteriori
(MAP) estimators. So instead of the MLE somebody can optimize:

argmax
W

g(W |D) = argmax
W

L(W )g(W )∫
W

L(W )g(W )dW
= argmax

W

L(W )g(W ) (3.10)

= argmax
W

N∏
i=1

K∏
k=1

fik
yikg(W ) (3.11)

= argmax
W

N∑
i=1

K∑
k=1

yiklogfik + log(g(W )) (3.12)

= argmin
W

− 1

N

[
N∑
i=1

K∑
k=1

yiklogfik + log(g(W ))

]
(3.13)
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= argmin
W

1

N

N∑
i=1

[
K∑
k=1

−yiklogfik +
K∑
k=1

yiklogyik −
K∑
k=1

log(g(W ))

]
(3.14)

= argmin
W

1

N

N∑
i=1

K∑
k=1

yiklog
yik
fik

− log(g(W )) (3.15)

The above procedure is equivalent with adding a regularization term in MLE. Regulariza-
tion can be seen as adding the concept of Occam’s razor to the problem, which, according
to [23], as a principle states that:

”Among competing hypotheses that explain known observations equally well,
we should choose the simplest one”

So, regularization’s essence is adding to the model -in the form of bias- the belief that a
simpler solution in terms of the valuesW is going to be a more general one, and therefore
it will generalize better on unseen data.

The most common regularization technique is the weight decay, which is done by adding
the term λ ∥W ∥22 to the minimization procedure. This way the model is constrained not
only to perform well but to do it closer to the origin. This regularization is also known as
L2 regularization or ridge regression [28]. According to [45], this regularization can also
be constructed by making the Gaussian assumption to the MAP estimator, because:

−log(g(W )) =
1

2b2
∥W ∥22 + constant

For λ = 1
2b2

and the constant is irrelevant to the optimization procedure.

A second way to penaltize the weights is to add the sum of the absolute values of the
weights λ ∥W ∥1 to the minimization procedure. Which causes some of the weights to
become 0 and therefore it is playing a role of feature selection in the procedure. This
regularizer is also known as L1 regularization or least absolute shrinkage and selection
operator (LASSO) [65]. This can be seen as a special case of MAP too, by using inde-
pendent mean zero Laplace priors [48].

A combination of the L1 and L2 regularizations is called elastic net [77] and it is done by
adding λ2 ∥W ∥22 + λ1 ∥W ∥1 to the minimization procedure.

In [27] dropout was introduced. The goal of this regularization is to prevent complex co-
adaptations between activation functions. That means that it tackles the problem of some
activations being useful only because of the existence of other activations. This is done by
setting to zero the output of each activation for a single optimization step with probability
0.5. That way the network can be seen as a set of networks that all of them can do the
classification job separately, while in the end the whole architecture normalized with 0.5
will be used. Doing this also forces the network to use all neurons to do the classification
task instead of being based to a subset of them.
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3.6 Adam Optimizer

The use of very flexible functions in order to solve more and more complicated problems
led to non convex loss functions, and therefore the convex optimization guarantees for
the global optimum solutions are abandoned. Of course, those problems can be tack-
led only with iterative optimization techniques. Additionally, the dimensionality of those
problems is so high that the approaches are limited to the first-order methods. Even for
those though, the calculation of the first derivative is not trivial and a dynamic procedure
based on the chain rule had to be used in order for the neural networks to be commonly
accepted as feasible methods. This procedure is called backpropagation, invented or
improved independently by [42, 31, 6, 16] and popularized for the specific task by [56].
Another limitation is caused by the huge volume of the data needed in the deep learning
practice, which makes it impossible for the iterative methods to take the whole dataset into
account in every iteration. Following [55], the simpler optimization method that is feasible
is the mini-batch gradient descent with batch size n:

θt+1 = θt − η∇θtJ(θt;x
(i:i+n); y(i:i+n)) = θt − η∇θtJ(θt) = θt − ηgt (3.16)

There are cases where the gradient descent is affected by dimensions that are contributing
way more to the gradient than others, making the procedure to follow a reciprocating
trajectory. Also, in the case of the mini-batch version there is an additional difficulty: Each
batch is creating an approximation of the loss function in every step of the procedure, so
there is a need for robustness across the iterations. Finally a strategy to surpass saddle
points is important. For those reasonsmomentumwas introduced in the learning problems
[56]. The updating formula for the stochastic gradient descent with momentum is:

ut+1 = γut + ηgt

θt = θt−1 − ut (3.17)

It is also useful to adapt the learning rate to each dimension separately, giving bigger
learning rates to dimensions that are contributing less to the gradient. That is because it
is a good idea to learn faster a dimension that is not going to converge soon. The methods
using this idea are called adaptive methods and one of the most famous is the root mean
square propagation (RMSprop) [66], with the updating formula:

E[g2]t = γE[g2]t−1 + (1− γ)g2t

θt+1 = θt −
η√

E[g2]t + ϵ
gt (3.18)

A method that combines the adaptive and the momentum idea is Adam, which derives
from ”adaptive moments”. According to [23], in Adam, the momentum is resulting directly
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from the first-order method of moments of the expectation of the gradient. It also keeps
the second-order method of moments by averaging the squared gradient like RMSProp:

mt = β1mt + (1− β1)gt

ut = β2ut−1 + (1− β2)g
2
t

θt+1 = θt −
η√

ût + ϵ
m̂t (3.19)

With m̂t, ût the corrected unbiased estimators corresponding to mt, ut:

m̂t =
mt

1− βt
1

, ût =
ut

1− βt
2

3.7 The ResNet Architectures

According to [25], the deep neural networks, when they are upgraded to a deeper archi-
tecture, have the ability to collapse to their shallower versions if needed. That is, if the
shallow architecture was the ”right” one for the problem, the newly added layers can the-
oretically converge to be the identities and therefore the architecture can be transformed
to the shallow one. The problem in practice is that it is hard for a model to converge to
such an ideal solution. This problem is tackled by the residual block [25]. A residual block
consists of a number of sequential convolutional layers and activation functions, but the
input is added to the output in the end. So if those sequential layers are a mapping F(x),
now the output of this block is going to be F(x) + x. That way, if the identity function is
the optimum for those layers, it is going to be easier for the procedure to fit the F(x) = 0
instead if fitting an identity function using a stack of nonlinear layers.

Figure 3.3: On this figures we can see two kinds of residual blocks. The first one (left) is used
when F(x), x are having the same dimensions and the second one (right) is using a 1x1

convolution as a dimension corrector.
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Figure 3.4: The ResNet-50 architecture introduced in [25]. It is composed of 50 layers: 16 residual
blocks with three layers each, a 7x7 convolution and a fully connected layer.

For our problem we used the ResNet-50 architecture which consists of 16 residual blocks
as we can see in the Figure 3.4. It starts with a 7x7 convolution and after the residual
blocks it is flattening the results for the classifier with global average pooling (GAP). GAP
is giving us the convenience not to be very strict with the input size and also it gives our
model translation invariance properties.

37 N. Efthymiadis



Zero-Shot Domain Adaptation for Sketch Recognition

N. Efthymiadis 38



Zero-Shot Domain Adaptation for Sketch Recognition

4. METHOD

4.1 Overview

As we described in the introduction, our approach is to apply a function f1(xDS
) ∼ X ′

S to
our realizations from the image domain and a function f2(xDT

) ∼ X ′
T to our realizations

from the sketch domain such that the assumption P (Y |X ′
S) ≈ P (Y |X ′

T ) is reasonable.
We chose for the f1, f2 to be a composition of the following functions:

f 1(xDS
) = FThin

(
F̃ Thresh (F Edge (xDS

))
)

f2(xDT
) = FThin (FThresh (1− xDT

)) (4.1)

In contrast to f2, f 1 and some of its components are in bold. That’s because, even for
a given constant realization xDS

, f 1 is a random variable. So, in addition to the domain
bridging, f 1 is also a data augmentation in nature. The corresponding components of f2
on the other hand are all normal functions, because wewant our testing to be deterministic.

The function F Edge is a random variable and it is calculating a randomized edge map for
a given image. More formally, it is defined as:

F Edge : [0, 1]
w×h×3 → [0, 1]w×h

F Edge(x) = 1[α=i]FEdge(i)(x), i = 1, 2, ..., A

a ∼ Cat(A,p), with pi =
1

A

The function F̃ Thresh is also a random variable. It is taking an edgemap and it calculates its
binarized equivalent by applying a random thresholding method. For data augmentation
reasons we used a Gaussian perturbation to the values of each thresholder. Formally,
F̃ Thresh is defined as:

F̃ Thresh : [0, 1]w×h → {0, 1}w×h

F̃ Thresh(x) = 1[α=i]

[
FThresh(i)(x, b)

]
, i = 1, 2, ..., A′

a ∼ Cat(A′,p), with pi =
1

A′ and b ∼ N(0, σ2)

FThresh and FThin on the other hand are normal functions:

FThresh : [0, 1]w×h → {0, 1}w×h

FThin : {0, 1}w×h → {0, 1}w×h
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4.1.1 Edge Detection

As we can understand from the components of 4.1, the first level of functions applied to
our data is about edge detection. That is because in most of the sketch domain every line
drawn, and therefore every information of the sketch, is an effort to describe an edge of
the object. This step is essential because it brings our two domains closer by representing
their elements using the edges as the main visual cue. In this step we are abandoning the
color, the shape and the texture of the image domain as unreliable sources of information
regarding the sketch domain.

Edge Detection for Training

We are applying the edge detection function in the f1. We symbolized the F Edge(xDS
)

with bold because, -as we already mentioned- even for a given realization xDS
, it is still

a random variable with five possible outcomes: It applies to the input image with equal
probabilities (a) the structured forests for fast edge detection or Dollar edge detection
[14], (b) the holistically-nested edge detection (HED) [71], (c) the bi-directional cascade
network edge detection (BDCN) [24], (d) the pixel-wise minimum operation of the results
of the three edge detectors or (e) the pixel-wise multiplication of the results of the three
edge detectors.

We chose to use three different edge detectors because each detector is possible to detect
different features and therefore to provide to the problem with new information. It is worth
mentioning that all three edge detectors were trained in the Berkeley segmentation data
set and benchmarks 500 (BSDS500) [1], which is a segmentation dataset with only 300
images for training and 200 for testing. The fact that all three edge detectors were trained in
the same dataset and also the extremely low volume of the specific dataset is keeping the
involved non image-domain data of our procedure to the minimum. Both HED and BDCN
edge detectors are using a pre-trained visual geometry group network (VGG16) [61] on
ImageNet but that is not increasing the data usage because we are anyway using a pre-
trained ResNet-50 on ImageNet as an initialization for our learning procedure. The indirect
use of the BSDS500 dataset can cause ambiguity in terms of the zero-shot nature of our
work, because it is a segmentation dataset and therefore not plain images were used.
Our argument is that the segmentation labels are not sketches and also the BSDS500
dataset is class agnostic, so its use is not affecting the generality of use of our approach.
Specifically, for the three edge detectors:

(a) The structured forests edge detector was one of the best in terms of performance in
the pre deep learning era. It is using the random forests ensemble and achieved an
optimal dataset score (ODS) F-measure of 0.75 on BSDS500. We used the official
GitHub implementation1.

1https://github.com/pdollar/edges
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(b) The HED is using a deep architecture with multiple stages using different strides in
order to take into account the scaling of the edge map. The chosen architecture was
the VGG16 without its last stage, including the fifth pooling and also they connected
a side output layer to the last convolutional layer of each stage so the network will
have supervision on every stage. HED achieved an ODS F-measure of 0.782 on
BSDS500. We used a PyTorch re-implementation2.

(c) The BDCN is introducing the idea to use supervision to the representations in each
layer at the scale of the representation in order to learn the data in multiple scales.
Also they introduce a scale enhancement module (SEM) with dilated convolutions
to improve the multi-scale learning. The most general blocks in this architecture are
called incremental detection blocks and every one of them is trained with supervision
of different scale by a cascade structure. The 3x3 convolutions in the incremental
detection blocks are the pre-trained convolutions on ImageNet of the VGG16. This
architecture achieved an ODS F-measure of 0.828 on BSDS500, which surpasses
the human benchmark with ODS F-measure of 0.803. We used the official GitHub
implementation3.

So for the training, for every image, we randomly apply the Dollar, the HED, the BDCN,
the element-wise multiplication of the three or the element-wise minimum of the three,
multiplying our data volume by a factor of 5.

Edge Detection for Testing

The reason the edge detection function is missing from f2 is that we assumed that each
sketch is an edge map already. The only thing we need to say about f2 in this step, is that
we inverted the meaning of the pixels of the sketches, because we wanted to encode with
0 -and therefore black- the absence of information and with 1 -and therefore white- the
presence of information in terms of edges drawn. This conversion is already effective in
almost every edge detector so the function F Edge(xDS

) implies it. This semantic inversion
of the pixels of the sketch domain can be seen as a trivial edge map conversion.

4.1.2 Thresholding

With the thresholding functions we want to find the optimum way for the binarization of the
image. So, the threshold is the procedure with which we are going to replace every ”small”
value with 0 and every ”big” with 1. We want to do this because the majority of sketches
have no tones. Even if some of them had though, by downgrade them we are sacrificing
some information in order to build a more general procedure. In this step we are restricting
our two domains to have the same stricter (binarized) feature space but without changing

2https://github.com/sniklaus/pytorch-hed
3https://github.com/pkuCactus/BDCN

41 N. Efthymiadis

https://github.com/sniklaus/pytorch-hed
https://github.com/pkuCactus/BDCN


Zero-Shot Domain Adaptation for Sketch Recognition

(a) ImageNet (b) BDCN (c) HED (d) Dollar

Figure 4.1: In this figure in (a) we can see an image of a bee from ImageNet. In (b), (c) and (d) we
can see the three edge maps as calculated from BDCN, HED and Dollar edge detectors respectively.

the sketch domain that much. In this step we are abandoning the tone cues of the edge
map domain as unreliable source of information regarding the sketch domain, making the
edge our sole visual cue.

Thresholding for Training

For the f 1(x), like with the case of F Edge, even for a fixed realization x the F̃ Thresh is also
a random variable that takes an edge map and applies randomly with equal probabilities
one of the seven following thresholding techniques implemented in [68]: (a) The Otsu
thresholder [46], (b) the Yen thresholder [30], (c) the Mean thresholder [21], (d) the Li
thresholder [38], (e) the IsoData thresholder [67], (f) the Sauvola thresholder [59] or (g)
the Local Mean thresholder [11].

The (a) − (e) are global thresholders, which means that they calculate one threshold for
each image and they replace every element that is smaller than this threshold with 0 and
all others with 1. More specifically:

(a) The Otsu thresholder is trying exhaustively all possible threshold values and then it
calculates for all of them their intra-class variance (or equivalently their inter-class
variance). Then it choose the threshold that minimizes the intra-class variance (or
equivalently the one that maximizes the inter-class variance). This method is the
one dimensional discrete -in terms of feature space- and binary -in terms of classes-
analog of the Fisher’s linear discriminant analysis (LDA) [18].

(b) The Yen thresholder is defining a criterion that takes into account two things. The first
one is the number of bits needed to describe the resulted image. The second one is
the discrepancy between the thresholded and original image, which is defined based
on a maximum correlation criterion from [19]. Then it combines those two factors in
a single loss function which is minimized.

(c) The Mean thresholder is setting as threshold the mean value of the elements of the
image.
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(d) The Li thresholder is calculating the threshold as the number that minimizes the
cross-entropy of the input image from the thresholded image. Also in [38], where the
Li thresholder is proposed, it is also shown that the Otsu thresholder is minimizing
the mean square error of the two.

(e) The IsoData method, also known as Ridler-Calvard or inter-means method, is ex-
haustively looking for the threshold that divides the foreground (values that are going
to be replaced with 1) and the background (values that are going to be replaced with
zero) such that the threshold value is equidistant from their means.

The (f)− (g) are called local or adaptive thresholders. Those methods are deciding about
the value of each pixel by using information from its neighborhood. The neighborhood is
defined by using a filter of predetermined size. Those methods are preferred in cases of
uneven lighting in an image.

(f) The Sauvola thresholder is calculating the threshold in each filter with the formula

T = m(x, y)

[
1 + k

(
s(x, y)

R
− 1

)]
where the m(x, y) is the mean and the s(x, y) is

the standard deviation of the pixels in the filter. The k is a hyperparameter and the
R is the maximum standard deviation of the image.

(g) The Local Mean thresholder is the local version of the mean thresholder. It sets the
threshold in each filter to be the mean value of the pixels of the filter.

We used all those different thresholders in order to augment our data believing, in the same
time, that every thresholder can provide to our problem with extra information. Up to now,
by combining the different thresholders with the different edge detectors we enlarged our
dataset effectively 35 times.

In order to augment our data more we chose to add a Gaussian perturbation on the values
of the thresholders. The choice of the variance of the Gaussian was made qualitatively
by studying the distributions of the values of each thresholder when applied to our whole
dataset. As we can see in Figure 4.3 we visualized the total distribution by adding the
distributions of every global thresholder and then we applied a perturbation that is pow-
erful enough to augment our data but not too powerful to change completely the form of
the distribution. The preservation of the distribution’s shape has value because in the
threshold of 75 for example we have a very small likelihood. That means that almost all
thresholders agree that there is no additional useful information between the thresholds
55-85. The information peaks are around 40 and then around 100. If we destroyed the form
of the distribution and we randomly used thresholds around the value of 75 we would just
have added noise without gaining additional information.

Thresholding for Testing

The FThresh function in f2 is written for completeness because, specifically the TU-Berlin
dataset is already binary. If it was not we would choose strictly one of the aforementioned
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(a) DBCN (None) (b) Otsu (c) Yen (d) Mean

(e) IsoData (f) Li (g) Sauvola (h) Local Mean

Figure 4.2: In this figure we can see the seven thresholders applied to the same DBCN edge map.

thresholding procedures we described for the f 1 function but as we can see from the 4.1
we would not apply the corresponding perturbation.

4.1.3 Thinning

With the Fthin function we want to eliminate the differences in terms of thickness between
our binarized edge maps and our sketches. To do this we will set the thickness of each
edge to one pixel with a morphological procedure called thinning or skeletonization. By
doing this we did not only set up the edge as the sole cue, but also we ensured that every
edge is represented in equal terms.

We are applying the same algorithm of [75] both in training and testing. This method is
iteratively removing pixels from the borders of an object with the rule that their removal
cannot break the connectivity of the object. This is possible by using a 3× 3 filter and on
each step the pixel in the middle is studied in terms of its role according to its neighbors.
Every iteration in this method is divided into two subiterations. In the first subiteration
considers to remove only the pixels located on the bottom or right of the filter, while in the
second subiteration only the pixels located on the top or left of the filter are considered
for removal. That way, if the first subiteration leaves only the skeleton of the image, the
second subiteration will not delete it. This is repeated until there are no more pixels to be
removed. We used the skeletonization function implemented in [68].

N. Efthymiadis 44



Zero-Shot Domain Adaptation for Sketch Recognition

Figure 4.3: In this figure we can see the distributions of the values of all the global thresholders
when they were applied to the entire BDCN edge maps of our training data. We can also see the
cumulative distribution and the perturbation of our choice that is powerful enough to make an

impact but keeps the structure of the total distribution.

4.2 Datasets

In our work we used two datasets: The TU-Berlin [17] sketch dataset with over 20, 000 non-
professional sketches partitioned in 250 classes and the ILSVRC2012 version of ImageNet
[13] with 1.2 million training images and 150, 000 validation images partitioned in 1, 000
classes. In order to make our datasets comparable and therefore to relate them, we kept
only the classes that belong simultaneously to the lexical and the ontological intersection
of the two datasets. That way we concluded to the 47 classes shown in the Figure A.1.
From now on we will call those subsets of the datasets as ImageNet47 and TU−Berlin47.

We used the train set of the ImageNet47 for training, the validation set of the ImageNet47

for validation and the whole TU −Berlin47 for testing.

In contrast with the thinning, thresholding and perturbation procedures of 4.1 that we im-
plemented them as augmentations, the edge detection is too computationally expensive
to be included this way, so we run all three edge detectors for the whole ImageNet47.
We saved for every image each edge map in one of the RGB channels and this way we
created the ImageNet47Edge dataset. That way we achieved two things: First, each image
from ImageNet47Edge is a visualization of the differences of the three edge detectors and
second, we have a very convenient way to read the data. To save some extra computa-
tional time we saved and we will call TU − Berlin47

Edge the thinned version of the inverted
TU −Berlin47 as described in the edge detection section.

Finally, in order to see the potential of the domain bridging, we manually chose six subsets
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(a) DBCN (None) (b) Otsu (c) Yen (d) Mean

(e) IsoData (f) Li (g) Sauvola (h) Local Mean

Figure 4.4: In this figure we can see the thinned version of the seven thresholders applied to the
same DBCN edge map.

of the ImageNet47Edge dataset in terms of cleanliness. We selected the 4, 8, 12, 16, 20
and 24 subjectively best images per class and we created the Cleaned04ImageNet47Edge -
Cleaned24ImageNet47Edge datasets respectively.
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(a) ImageNet47 (b) ImageNet47Edge (c) HED Edge Map

(d) Otsu Thresholder (e) Thinned

(f) TU −Berlin47 (g) TU −Berlin47
Edge

(h) ResNet-50

Figure 4.5: In this figure we can see our whole approach. In (a) we can see an image from
ImageNet47. In (b) we can see the corresponding image of ImageNet47Edge. In (c) we randomly
selected the second channel of (b), which is the HED edge map. In (d) we randomly selected the
Otsu thresholder of (c). In (e) we skeletonized. In (f) we can see a sketch from the TU − Berlin47

dataset. In (g) we can see a sketch from the TU − Berlin47
Edge dataset. As we can see it is quite

close to the (e) representation. In (e) and (g) we can see elements from f1(xDS) and f2(xDT )
respectively. Finally in (h) the ResNet-50 will learn the (e) and predict the (g).
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4.3 Learning

In terms of the learning procedure, we used the PyTorch framework [49] in which we
trained the ImageNet pre-trained ResNet-50 architecture from the Torchvision library [43]
with a modified output layer to fit our 47 classes.

The images before reaching the network were transformed into a square aspect ratio by
padding the smallest dimension. That’s because some classes in ImageNet47Edge had some
extreme aspect ratios and the edges of the objects were too close to the boundaries of the
image, making it hard for the convolution filters to extract useful information. After that the
images were resized to 256× 256. Then we added the literature standard augmentations:
Random rotation of [−5, 5] degrees, random resized crop to 224× 224 with random scale
in [0.8, 1] and a random horizontal flip with probability of 0.5. Then the augmentations
described in the overview section were applied.

We used the Adam optimizer with the default hyperparameters (0.9, 0.999) for the β1, β2 of
3.19. We optimized the cross entropy loss function described in 3.4. Our realistic batch
size range was 32-128. Less than 32 was too time consuming while more than 128 was
impossible due to memory limitations. After some experimentation we concluded that
there was no significant difference due to batch size and we settled for a batch size of 64.

The learning rate was tested for fixed other hyperparameters. We run some epochs start-
ing from a way too small learning rate and used a scheduler to multiply the learning rate
by 10 every 100 iterations. After that we studied the behavior of the loss, accuracy and
L2 norm of the gradient of the first convolution for each iteration and learning rate. We
wanted to see the learning rates that caused ascending accuracy, descending loss and a
reliable L2 norm of the gradient. That is an L2 norm of the gradient that shows no signs
of future exploding gradient or vanishing gradient. Then we decided to set the learning
rate with the higher acceptable value in terms of those conditions. For the training, we set
the learning rate to 10−4 to have the maximum possible learning rate for the beginning.
We set the scheduler to divide it by 10 every 140 epochs. We saw in the diagram that for
the first two learning rates we would have a learning behavior. We also run it for 20 extra
epochs with a learning rate of 10−6, for a total of 300 epochs, in order to learn the details
of the hyperspace.

Every experiment we made with the ImageNet47Edge was trained for a fixed 300 epochs,
that’s because we couldn’t trust our validation set in terms of a possible earlier stopping,
because of the domain difference from our test set. We used our validation set though
to monitor the possibility of overfitting. We kept the epoch number fixed in order to have
comparable results between different experiments with the ImageNet47Edge dataset.

In order to be consistent with the experiments between the Cleaned04ImageNet47Edge -
Cleaned24ImageNet47Edge datasets instead of keeping the the epoch fixed, we kept the itera-
tion number fixed. That’s because there would be a huge difference between the iteration
number of Cleaned04ImageNet47Edge and Cleaned24ImageNet47Edge for a given epoch num-
ber due to the data size difference. We wanted to be sure that the procedures would
converge both statistically -in terms of augmented data- and optimization-wise -in terms
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of iterations- so we chose a fixed 5.400 iterations. That corresponds to 300 epochs for the
Cleaned24ImageNet47Edge dataset, 1.805 epochs for theCleaned04ImageNet47Edge dataset and
for the rest between this range. In all cases we set the scheduler to divide the learning
rate by 10 every MaxEpoch

3
epochs.

Figure 4.6: In this figure we can see the gradient of the L2 norm of our model, the loss and a 40×
enhanced accuracy for ascending learning rates in order to find the learning rate that shows a

better learning behavior. We chose to train the model with a starting learning rate of 10−4 for 140
epochs, then with a learning rate of 10−5 for another 140 epochs and finally with a learning rate of

10−6 for 20 epochs.
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5. BASELINE

In order to be able to compare our results with a reference point, we decided to create a
baseline. We trained using the same architecture, loss function and optimizer directly to
the TU−Berlin47

edge for different sketches per class. That way a statistical convergence plot
was created and every approach of cross-domain learning that learned without observing
a sketch can be translated to an equivalent number of sketches.

We trained on 14 different versions of subsets of the TU − Berlin47
edge, each one of them

had different sketches per class. We started by training on 2, 3, 4, 5, 6, 7 and 8 sketches
per class and then we progressed in eights: 16, 24, 32, 40, 48, 56, 64 sketches per class. In
order to be precise, on every one of them we used a 5-fold cross-validation by partitioning
the whole TU − Berlin47

Edge with the rule that the union of all the five test sets of the five
folds is going to be the whole TU −Berlin47

Edge. That’s because we wanted for the results
of the baseline to be directly comparable with the results our methods. The training sets
of each fold were selected randomly.

For fairness, we run each 5-fold two times. In the first one, we divided the training sets
into training and validation subsets with a 80-20 split and with a minimum of one image
per class in the validation set. In this run we determined the epoch and scheduler state
in which the validation accuracy was maximized. Then we run the whole 5-fold from the
beginning using both the training and validation subsets and we accepted the model of
the indicated best epoch.

That way we trained for 14 different subsets a 5-fold and for two times, which results to
140 training procedures. Like in the case of the Cleaned ImageNet47Edge trainings, here we
have also differences on the data volume, so we preferred a fixed iteration number instead
of a fixed epoch. We chose to run every training for 25.000 iterations which corresponds
to 25.000 epochs for the case of the 2 sketches per class and 1.336 epochs to for the case
of 64 sketches per class. The idea was to run the training for as many epochs as possible
but use the early stopping rule determined to the first run in order to fight overfitting.

For our hyperparameter tuning we experimented on the 8 sketches per class and then we
trained for the same hyperparameters to all other cases. We also followed the same logic
for the scheduler, by setting it always to divide the learning rate by 10 every MaxEpoch

3

epochs. The starting learning rate was calculated with the same approach as in the
ImageNet47Edge training case and we set it to 10−5. In contrast with our method, here we
trained with the maximum batch size possible given our resources which is 128. That’s
because this procedure was too time consuming, taking a magnitude of weeks to finish.
The results of this baseline can be seen in the table B.1

51 N. Efthymiadis



Zero-Shot Domain Adaptation for Sketch Recognition

N. Efthymiadis 52



Zero-Shot Domain Adaptation for Sketch Recognition

6. RESULTS

6.1 Experiments

Our basic experiments are the ones that used ImageNet47Edge as the dataset. We tried 8
combinations in terms for their augmentations by experimenting with different edge detec-
tion method, thresholding method and perturbation. We trained every model five times in
order to report the expected performance of each approach and also to have an illustration
about their variation. We did that to decrease the stochastic factor of the augmentations
and non-convex optimization up to a certain degree. We started by trying for a fixed edge
detector, a fixed random threshold and without perturbation. When we chose a fixed
threshold that was derived from observing our data we had a minor improvement (less
than 1%). Also by adding the Otsu thresholder for each individual image we had another
minor improvement. By adding a Gaussian perturbation we had a third minor improve-
ment. The first major improvement was by either adding all the thresholders (+2.3%) or
all the edge detectors (+3.5%). By adding them both we achieved our top performance.

Table 6.1: The results for our methods trained on ImageNet47Edge. The threshold 127 was chosen
at random and the threshold 97 is the average Otsu threshold for the whole BDCN channel of

ImageNet47Edge. All the Gaussian perturbations are ∼ N(0, 100).

Test Accuracies for Epoch 300
Rand - Edge - Thresh Mean SD
None - BDCN - 127 0.539 0.007
None - BDCN - 971 0.547 0.012
None - BDCN - Otsu 0.554 0.007
Gaussian - BDCN - Otsu 0.561 0.007
Gaussian - BDCN - All 0.584 0.008
Gaussian - All - Otsu 0.596 0.006
None - All - All 0.605 0.015
Gaussian - All - All 0.604 0.006

As we can see from the Table 6.1 the model with the Gaussian perturbation with all edge
detectors and all thresholders has the most consistent results, being only 0.1% below the
equivalent model without the perturbation. We prefer the former though because the latter
has more than double standard deviation and therefore is a more unstable approach. An
hypothesis for this behavior is that by adding the perturbation as augmentation we added
bias that equally increased the bias error and decreased the variance error. The most
interesting part is that just by adding the same perturbation increased the performance of
the fixed edge map - fixed thresholder approach. The detailed results for all 5 models of
each experiment can be seen in the Table C.1

197 is the average Otsu threshold for the whole BDCN channel of ImageNet47Edge.
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Figure 6.1: Here we can see the model performance of our basic experiments with ImageNet47Edge

in terms of accuracy. Because we happened to run exactly 5 models for each experiment, the
minimum, 1st quantile, median, 3rd quantile and maximum values of the box-plots are the actual 5

performances of our models in ascending order.

As an additional set of experiments we trained using our chosen ”Gaussian-All-All” ap-
proach in the Cleaned ImageNet47Edge datasets in order to see the potential of domain
adaptation in a more ideal setting. We hypothesized that if we applied some human effort
to the problem that would translate to better results.

Table 6.2: The results for our methods trained on the Cleaned ImageNet47Edge datasets.

Cleaned Dataset 5400 Iterations
Images per class Mean SD

4 0.489 0.011
8 0.592 0.008
12 0.630 0.013
16 0.663 0.007
20 0.676 0.006
24 0.682 0.003

The results are collected in 6.2 and their detailed version with tha whole 5 trained models
for each experiment can be found in C.2. As we can see, the performance is ascending
with the number of images and the cleaned version models are surpassing our standard
method after the 8 images per class. We know that our standard dataset is itself trivially
the Cleaned1300 ImageNet47Edge and therefore its performance would be the last element of
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this sequence. That means that the sequence cannot be infinitely increasing and it must
have a maximum point.

Figure 6.2: In the upper left figure we can see the accuracy of each model trained on
ImageNet47Edge compared with the accuracy of each model trained on different sizes of the

cleaned version. On the upper right we can see the same model (yellow) and the
Cleaned24ImageNet47Edge which is the best cleaned model (red), compared with the baseline

(blue). As we can see, our basic model surpasses the baseline for 3 sketches per class while the
cleaned model achieves an accuracy within one standard deviation from the baseline of 6 sketches
per class. The figure at the bottom is the complete illustration of the baseline situation, showing

the baseline trained up for the maximum 64 sketches per class.

In the Figure 6.2 we can see out results collectively. Our model of choice of the standard
procedure achieved an accuracy of 60.4% on TU−Berlin47

Edge, which -as we can see from
the baseline- surpasses the performance of the same architecture trained on 3 sketches
per class. The equivalent sketch domain data volume of our model is more than 141
sketches. Also The cleaned version of our method achieved an accuracy of 68.2% on
TU −Berlin47

Edge which is within one standard deviation from the performance of the same
model trained on 6 sketches per class. The corresponding sketch data volume for this
performance is 282.

Finally, for supervisory reasons we are calculating in every model evaluation the repre-
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sentations of each image of ImageNet47Edge as well as for the TU −Berlin47
Edge by removing

the classifier of the evaluating model and saving the output. After that we can see the
nearest neighbors of each sketch in the image domain according to the model. We show
some of the best classified sketches in the Figure D.1, some of the most critical decisions
in the Figure E.1 and some of the most confidently wrong classified sketches in Figure F.1
as well as their nearest neighbors of the image domain according to our models.

6.2 Conclusion

In this thesis we showed that it is possible to learn from the image domain and use that
information to predict -at some degree- the sketch domain. Also we presented a way to
quantify the degree of the extracted information in the form of sketch volume equivalence
by creating a baseline from the TU-Berlin subset.

Even in the case of a dataset that is hard and noisy in terms of edge maps like ImageNet,
we showed that we can learn information worth as much as three actual sketches per
class. We showed this in a 47 class setting but we can assume a level of generalization
in an abstract number of classes. Of course we expect that, as the number of classes in-
crease, the volume of sketch-equivalence will increase too so the 141 substituted sketches
could increase just by adding more classes to the problem.

We also showed that by manually cleaning the dataset we can at least double our perfor-
mance in relation to the volume of substituted sketches. This shows that even untrained
-in terms of sketch related skills- extra human work can improve our approach in an crucial
level. Also, this opens a new expectation for a future approach in terms of an automated
cleaning procedure of the images.

We achieved this performance by extracting information only from the one-pixel thick bi-
narized edges of the images, bringing information from the image domain nearer to the
sketch domain. This is also making us expect that sketch domain specific augmentations
like the ones in [76] could help our procedure in the future.

Finally, like most zero-shot approaches, our results can be useful for the corresponding
few-shot setting.
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ABBREVIATIONS - ACRONYMS

CNN Convolutional Neural Network

RNN Recurrent Neural Network

GRU Gated Recurrent Unit

Sketch-R2CNN Sketch RNN Rasterization CNN

LSTM Long Short-Term Memory

NLR Neural Line Rasterization

BPD Bezer Pivot-based Deformation

MSR Mean Stroke Reconstruction

SBIR Sketch-Based Image Retrieval

FG-SBIR Fine-Grained SBIR

MLE Maximum Likelihood Estimators

KL-Divergence Kullback–Leibler Divergence

MSE Mean Square Error

MLP Multilayer Perceptron

ReLU Rectified Linear Unit

LASSO Least Absolute Shrinkage and Selection Operator

MAP Maximum a Posteriori

RMSprop Root Mean Square Propagation

GAP Global Average Pooling

HED Holistically-nested Edge Detection

BDCN Bi-Directional Cascade Network

BSDS500 Berkeley Segmentation Data Set and benchmarks 500

VGG Visual Geometry Group

SEM Scale Enchancement Module

ODS Optimal Dataset Score

LDA Linear Discriminant Analysis
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APPENDIX A. THE TU − Berlin47 AND ImageNet47 CLASSES

(a) ant (b) backpack (c) banana (d) barn (e) bathtub (f) bee (g) binoculars

(h) candle (i) cannon (j) canoe (k) castle (l) church (m) cup (n) envelope

(o) hammer (p) harp (q) hourglass (r) laptop (s) lighter (t) lion (u) loudsp.

(v) mailbox (w) microph. (x) mushroom (y) parachute (z) pineapple (aa) pizza (ab) pretzel

(ac) purse (ad) radio (ae) revolver (af) rifle (ag) scorpion (ah) screwdr. (ai) shovel

(aj) snail (ak) strawb. (al) submar. (am) syringe (an) teapot (ao) tiger (ap) tractor

(aq) trombone (ar) umbrella (as) vase (at) violin (au) zebra

Figure A.1: The classes of TU − Berlin47 and ImageNet47, with an indicative sketch from
TU − Berlin47.
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APPENDIX B. BASELINE TABLES

Table B.1: The 5-fold cross-validation of the TU − Berlin47
Edge dataset baseline.

Test accuracy TU-Berlin Baseline 5-fold ResNet-50 k=2-8
k 2 3 4 5 6 7 8
Fold 1 0.501 0.584 0.657 0.703 0.719 0.713 0.745
Fold 2 0.493 0.582 0.669 0.672 0.693 0.706 0.707
Fold 3 0.535 0.633 0.649 0.641 0.719 0.738 0.745
Fold 4 0.537 0.637 0.642 0.638 0.668 0.714 0.722
Fold 5 0.461 0.512 0.640 0.693 0.694 0.757 0.734
SD 0.031 0.051 0.012 0.030 0.022 0.021 0.016
Mean 0.506 0.590 0.651 0.669 0.699 0.726 0.731
Mean - SD 0.474 0.539 0.639 0.640 0.677 0.704 0.715
Mean + SD 0.537 0.640 0.663 0.699 0.720 0.747 0.747

Test accuracy TU-Berlin Baseline 5-fold ResNet-50 k=16-64
k 16 24 32 40 48 56 64
Fold 1 0.798 0.832 0.872 0.886 0.880 0.904 0.906
Fold 2 0.782 0.828 0.828 0.862 0.867 0.879 0.883
Fold 3 0.814 0.828 0.851 0.866 0.855 0.878 0.895
Fold 4 0.811 0.836 0.868 0.879 0.891 0.892 0.906
Fold 5 0.819 0.839 0.864 0.871 0.887 0.906 0.898
SD 0.015 0.005 0.018 0.010 0.015 0.013 0.009
Mean 0.805 0.833 0.857 0.873 0.876 0.892 0.897
Mean - SD 0.790 0.828 0.839 0.863 0.861 0.878 0.888
Mean + SD 0.820 0.838 0.875 0.882 0.891 0.905 0.907
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APPENDIX C. RESULTS

Table C.1: The detailed results for our methods trained on ImageNet47Edge.

Test Accuracies for Epoch 300
Rand-Edge-Thresh Run 1 Run 2 Run 3 Run 4 Run 5 Mean SD
None-BDCN-127 0.534 0.533 0.542 0.539 0.549 0.539 0.007
None-BDCN-97 0.547 0.549 0.558 0.526 0.553 0.547 0.012
None-BDCN-Otsu 0.546 0.561 0.559 0.554 0.548 0.554 0.007
Gauss-BDCN-Otsu 0.560 0.565 0.571 0.552 0.559 0.561 0.007
Gauss-BDCN-All 0.577 0.596 0.589 0.580 0.577 0.584 0.008
Gauss-All-Otsu 0.603 0.602 0.591 0.594 0.592 0.596 0.006
None-All-All 0.617 0.591 0.605 0.623 0.588 0.605 0.015
Gauss-All-All 0.600 0.601 0.612 0.601 0.609 0.604 0.006

Test Accuracies for Epoch 300
Rand-Edge-Thresh Min LQ Median UQ Max
None-BDCN-127 0.533 0.534 0.539 0.542 0.549
None-BDCN-97 0.526 0.547 0.549 0.553 0.558
None-BDCN-Otsu 0.546 0.548 0.554 0.559 0.561
Gauss-BDCN-Otsu 0.552 0.559 0.560 0.565 0.571
Gauss-BDCN-All 0.577 0.577 0.580 0.589 0.596
Gauss-All-Otsu 0.591 0.592 0.594 0.602 0.603
None-All-All 0.588 0.591 0.605 0.617 0.623
Gauss-All-All 0.600 0.601 0.601 0.609 0.612
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Table C.2: The detailed results for our methods trained on the Cleaned ImageNet47Edge datasets.

Cleaned Dataset 5400 Iterations
Images per class Run 1 Run 2 Run 3 Run 4 Run 5 Mean SD

4 0.483 0.486 0.479 0.508 0.488 0.489 0.011
8 0.599 0.595 0.580 0.589 0.595 0.592 0.008
12 0.626 0.633 0.612 0.649 0.631 0.630 0.013
16 0.660 0.672 0.667 0.653 0.664 0.663 0.007
20 0.677 0.670 0.676 0.673 0.686 0.676 0.006
24 0.685 0.683 0.683 0.677 0.682 0.682 0.003

Cleaned Dataset 5400 Iterations
Images per class Min LQ Median UQ Max

4 0.479 0.483 0.486 0.488 0.508
8 0.580 0.589 0.595 0.595 0.599
12 0.612 0.626 0.631 0.633 0.649
16 0.653 0.660 0.664 0.667 0.672
20 0.670 0.673 0.676 0.677 0.686
24 0.677 0.682 0.683 0.683 0.685
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APPENDIX D. GOOD EXAMPLES

(a) A correctly classified candle

(b) A correctly classified canoe

Figure D.1: Correctly classified sketches from our model with the nearest neighbors of the
photograph domain according to our model.
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APPENDIX E. CRITICAL EXAMPLES

(a) A castle classified as a barn

(b) A purse classified as a bathtub

Figure E.1: Wrongly classified sketches from our model by a close call, next to their the nearest
neighbors of the photograph domain according to our model.
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APPENDIX F. WORST EXAMPLES

(a) A lion classified as a pineapple

(b) A canoe classified as a banana

Figure F.1: Wrongly classified sketches from our model with very high confidence, next to their the
nearest neighbors of the photograph domain according to our model.
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