
National and Kapodistrian University of Athens
School of Science

Department of Informatics and Telecommunications

Postgraduate Studies

Computer Systems: Software and Hardware

MASTER THESIS

A Study on Superlight Blockchain Clients under Velvet

Fork

Andrianna I. Polydouri

Supervisors: Aggelos Kiayias, Associate Professor NKUA

Dionysis Zindros, PhD NKUA

ATHENS

JUNE 2020

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Σχολή Θετικών Επιστημών

Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Μεταπτυχιακές Σπουδές
Υπολογιστικά Συστήματα: Λογισμικό και Υλικό

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Υπερελαφρείς Πελάτες Αλυσίδας υπό “Βελούδινη”
Αναβάθμιση Πρωτοκόλλου

Ανδριάννα I. Πολυδούρη

Επιβλέποντες: Άγγελος Κιαγιάς, Αναπληρωτής Καθηγητής ΕΚΠΑ

Διονύσης Ζήνδρος, Διδάκτωρ ΕΚΠΑ

ΑΘHΝΑ

ΙΟYΝΙΟΣ 2020

MASTER THESIS

A Study on Superlight Blockchain Clients under Velvet Fork

Andrianna I. Polydouri

Reg.Nr.: M1598

Supervisors:

Aggelos Kiayias, Associate Professor NKUA

Dionysis Zindros, PhD NKUA

Thesis Committee:

Aggelos Kiayias, Associate Professor NKUA

Mema Roussopoulos, Associate Professor NKUA

Yannis Smaragdakis, Professor NKUA

ΔΙΠΛΩΜΑΤΙΚH ΕΡΓΑΣIΑ

Υπερελαφρείς Πελάτες Αλυσίδας υπό

“Βελούδινη” Αναβάθμιση Πρωτοκόλλου

Ανδριάννα I. Πολυδούρη

Αρ. Μητρώου: M1598

Επιβλέποντες:

Άγγελος Κιαγιάς, Αναπληρωτής Καθηγητής ΕΚΠΑ

Διονύσης Ζήνδρος, Διδάκτωρ ΕΚΠΑ

Εξεταστική Επιτροπή:

Άγγελος Κιαγιάς, Αναπληρωτής Καθηγητής ΕΚΠΑ

Μέμα Ρουσσοπούλου, Αναπληρώτρια Καθηγήτρια ΕΚΠΑ

Γιάννης Σμαραγδάκης, Καθηγητής ΕΚΠΑ

ABSTRACT

Superlight blockchain clients learn facts about the blockchain state while requiring only

polylogarithmic communication in the total number of blocks. For proof-of-work blockchains

two known constructions exist: Superblock and FlyClient.

Unfortunately, none of them can be deployed to existing blockchains as they require

changes at the consensus layer and at least a soft fork to implement.

In this work, we investigate how a blockchain can be upgraded to support superblock

clients without a soft fork. We show that it is possible to implement the needed changes

without modifying the consensus protocol and by requiring only a minority of miners to up-

grade, a process termed a “velvet fork” in the literature. While previous work conjectured

that Superblock and FlyClient clients can be safely deployed using velvet forks as-is, we

show that previous constructions are insecure. We describe a novel class of attacks,

called “chain-sewing”, which arise in the velvet fork setting: an adversary can cut-and-

paste portions of various chains from independent forks, sewing them together to fool

a superlight client into accepting a false claim. We show how previous velvet fork con-

structions can be attacked via chain-sewing. Next we put forth the first provably secure

velvet superblock client construction which we show secure against adversaries that are

bounded by 1/3 of the upgraded honest miner population.

SUBJECT AREA: distributed systems, security, blockchains

KEYWORDS: superlight clients, NIPoPoW protocol, velvet fork

ΠΕΡIΛΗΨΗ

Οι υπερ-ελαφρείς πελάτες αλυσίδων λαμβάνουν ενημερώσεις για την τρέχουσα κατάσταση

της αλυσίδας απαιτώντας ανταλλαγή πληροφοριών λογαριθμικού μήκους σε σχέση με

το συνολικό μέγεθος της αλυσίδας. Για τις αλυσίδες “απόδειξης-εργασίας” υπάρχουν δύο

τέτοιες γνωστές κατασκευές που αναφέρονται στη βιβλιογραφία ως “Superblock” και “Fly-

Client”. Δυστυχώς καμία από τις δύο αυτές κατασκευές δεν μπορεί να ενσωματωθεί

άμεσα σε υπάρχουσες αλυσίδες, διότι απαιτούν αλλαγές στο πρωτόκολλο συναίνεσης

και, για αυτό, την αναβάθμιση της συντριπτικής πλειόνοτητας των συμμετεχόντων στο

κατανεμημένο δίκτυο.

Σε αυτήν την εργασία εξετάζουμε την δυνατότητα αναβάθμισης του πρωτοκόλλου συναίνεσης

της αλυσίδας για τη λειτουργία υπερλαφρών πελατών από ένα μικρό μόνο μέρος των

συμμετεχόντων παικτών, κάτι που στη βιβλιογραφία αναφέρεται ως “βελούδινο σχίσμα”

(velvet fork). Προηγούμενες εργασίες υπέθεταν ότι υπερλαφείς πελάτες Superblock και

FlyClient μπορούν να υποστηριχθούν με ασφάλεια μέσω velvet fork χωρίς περαιτέρω

αλλαγές στις κατασκευές τους και υπό τις ίδιες προϋποθέσεις ασφαλείας. Δείχνουμε

ότι αυτή η υπόθεση είναι εσφαλμένη. Περιγράφουμε ένα νέο είδος επίθεσης, υπό το

όνομα “ράψιμο της αλυσίδας” (chainsewing), που εμφανίζεται σε περιβάλλον ενός vel-

vet fork: ένας κακόβουλος χρήστης μπορεί να “κόψει” τμήματα διαφόρων ανεξάρτητων

αλυσιδών και να τα “ράψει” μαζί ώστε να ξεγελάσει έναν υπερλαφρύ πελάτη να δεχτεί

έναν λανθασμένο ισχυρισμό για την έγκυρη αλυσίδα. Δείχνουμε πώς οι προαναφερθείσες

κατασκευές είναι ευάλωτες σε τέτοιου είδους επιθέσεις. Επιπλέον παρουσιάζουμε την

πρώτη αποδεδειγμένα ασφαλή “βελούδινη” κατασκευή βασισμένη στα superblocks, για

την οποία δίνουμε απόδειξη ασφάλειας για κακόβουλο πληθυσμό που φράσσεται άνω

από το 1/3 του αναβαθμισμένου τίμιου πληθυσμού.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: κατανεμημένα συστήματα, ασφάλεια, blockchains

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: υπερλαφείς πελάτες, πρωτόκολλο NIPoPow, “βελούδινη” αναβάθμιση

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα αρχικά να ευχαριστήσω τον καθηγητή κ. Άγγελο Κιαγιά για την ευκαιρία που

μου έδωσε να εργαστώ πάνω σε ένα τόσο ενδιαφέρον θέμα αλλά και για τη διορατικότητα

που μου μετέδωσε συνολικά για το επιστημονικό πεδίο των blockchains μέσα από τη

διδασκαλία του. Πολλά θερμά “ευχαριστώ” στον - διδάκτωρ πλέον - Διονύση Ζήνδρο, για

την εμπιστοσύνη που μου έδειξε ήδη από την αρχή του κοινού μας αυτού ταξιδιού, για τις

πολλές ώρες συζητήσεων που μου αφιέρωσε, για τους τόσους πίνακες που γεμίσαμε, για

τα ειλικρινή “μπράβο” που μου έδινε κάθε φορά που, αυτοαναιρούμενοι, γκρεμίσαμε τις

κατασκευές μας και ξεκινήσαμε από την αρχή.

Θέλω ακόμα να ευχαριστήσω τον συνάδελφο, συμφοιτητή και φίλο Στέλιο Νταβέα, συνολικά

για τις κοινές μας αναζητήσεις τα τελευταία δύο χρόνια μέσα από το μεταπτυχιακό αλλά

και συγκεκριμένα για την υπομονή του να με ακούει σε κάθε καινούργια ανακάλυψη ή

αποτυχία κατά τη διάρκεια της εργασίας αυτής. Ευχαριστώ θερμά τον φίλο Κωστή Καραντία

για το ενδιαφέρον που έδειξε για αυτή την εργασία και συγκερκιμένα για την καθοριστική

συμβολή του στο κομμάτι των velvet NIPoPoWs infix proofs.

Τέλος, θέλω να ευχαριστήσω τον πολύ καλό μου φίλο μαθηματικό Παναγιώτη Χρήστου

για την υποστήριξή του κατά τη διάρκεια αυτής της εργασίας και για όλες τις διαφωτιστικές

μας συζητήσεις σε θέματα επιστήμης.

CONTENTS

1 INTRODUCTION 15

1.1 Motivation . 15

1.2 Current approaches . 15

1.3 Related work . 17

2 BACKGROUND 19

2.1 Cryptographic Primitives . 19

2.1.1 Digital Signatures . 19

2.1.2 Collision-Resistant Hash Functions . 21

2.1.3 The Random Oracle Model . 22

2.2 Blockchain Basics . 23

2.2.1 The notion of block . 23

2.2.2 The notion of blockchain . 24

2.2.3 Transactions . 25

2.2.4 The SPV model . 25

2.3 The Backbone Model . 26

2.3.1 The protocol . 26

2.3.2 Basic properties . 28

2.4 Hard, Soft and Velvet Forks . 28

3 SUPERBLOCKS UNDER SOFT FORK 31

3.1 Introduction . 31

3.2 Interlinking the chain . 33

3.3 Suffix Proofs . 34

3.3.1 The Prover . 34

3.3.2 The Verifier . 35

3.4 Security Analysis of Suffix Proofs . 37

3.4.1 Superchain Quality & Suppression Attacks . 37

3.4.2 Security of Suffix Proofs . 38

3.5 Infix Proofs . 46

3.6 Succinctness . 48

4 SUPERBLOCKS UNDER VELVET FORK 51

4.1 Velvet Interlinks . 51

4.1.1 A naïve velvet scheme. 52

4.2 The Chainsewing Attack . 54

4.3 Protocol Update . 58

4.4 Analysis of Velvet Protocol Patch . 65

4.5 Infix Proofs . 72

5 FLYCLIENT UNDER VELVET FORK 75

5.1 The FlyClient Protocol . 75

5.2 Velvet MMRs . 76

5.3 The Attack . 77

Bibliography 81

LIST OF FIGURES

2.1 A high-level representation of a blockchain. 24

2.2 Transactions as a chain of digital signatures in Bitcoin [25] 25

2.3 High level representation of blockchain data kept by a lightweight client and

an inclusion proof for a transaction Tx3.[25] 26

3.1 Graphical representation of PoW domain. I. valid blocks ids lie in the green

section. II. blocks of higher level are generated with lower probability. . . . 31

3.2 Ideal superblock distribution. Higher levels have achieved higher difficulty

during mining [18]. 32

3.3 The hierarchical blockchain. Each block has a pointer to its nearest µ−level
ancestor. 33

3.4 Superblock NIPoPoW proof prefix π for m = 3 [18]. 35

3.5 Superquality attack. The adversary performs a selfisj mining [7] attack

(black blocks) whenever an honest µ-superblock (grey) is mined. The at-

tack affects the distribution of µ-superblocks in the honest chain [18]. 37

3.6 Two competing proofs at different levels. At the bottom the corresponding

0-level chains are represented. 44

3.7 The three round sets in two competing proofs at different levels. The ver-

tical dashed lines denote the area of interest, across proofs and chains,

corresponding to each round set. At the bottom the corresponding 0-level

chains are represented. 45

3.8 An infix proof descend. Only blue blocks are included in the proof.Blue

blocks of level 4 are part of π, while the blue blocks of level 1 to 3 are

produced by the followDown to get to the block of level 0, which is part of C′. 47

4.1 A thorny pointer of an adversarial block, colored black, in an honest party’s

chain. The thorny block points to a 1-superboock which is an ancestor 1-
superblock, but not the most recent ancestor 1-superblock. 53

4.2 A thorny block, colored black, in an honest party’s chain, uses its interlink

to point to a fork chain. 54

4.3 A thorny block appended to an honest party’s chain. The dashed arrows

are interlink pointers. 54

4.4 Generic Chainsewing Attack. CB is the chain of an honest party and CA
the adversary’s chain. Adversarially generated blocks are colored black.

Dashed arrows represent interlink pointers included in the adversary’s suffix

proof. Wavy lines imply one or more blocks. 55

4.5 A portion of the concrete Chainsewing Attack. The adversary’s blocks are

shown in black, while the honestly generated blocks are shown in white.

Block b′ contains a double spend, while block a′ sews it in place. The blue

block c is a block included in the honest NIPoPoW, but it is bypassed by

the adversary by introducing block d which, while part of the honest chain,

points to c’s parent. After a point, the adversary forks off and creates k = 3
of their own blocks. 56

4.6 The measured probability of success of the Chainsewing attack mounted

under our parameters for varying values of the security parameterm. Con-

fidence intervals at 95%. 57

4.7 The adversarial fork chain CA and chain CB of an honest party. Thorny

blocks are colored black. Dashed arrows represent interlink pointers. Wavy

lines imply one or more blocks. After the protocol update, when an adver-

sarially generated block is sewed from CB into the adversary’s suffix proof

the verifier conceives CA as longer and CB as shorter. I: The real picture of

the chains. II: Equivalent picture from the verifier’s perspective considering

the blocks included in the corresponding suffix proof for each chain. 59

4.8 General case of the adversarial velvet suffix proof PA = (πA, χA) consisting
of an initial part of smooth blocks followed by thorny blocks. 60

4.9 Pie chart of adversarial (black) and honest (white) blocks in the chain ac-

cording to their corresponding hashing power. I. With t = n/3, 50% of the

total blocks are adversarially generated in the worst case scenario. II.With

t > n/3, more than half of the total blocks are adversarially generated in the

worst case scenario. 63

4.10 The adversary suppresses honestly generated blocks and chainsews thorny

blocks in CB. Blue blocks are honestly generated blocks of some level of

attack. The adversary tries to suppress them. If the suppression is not suc-

cessful, the adversary can still use the block she mined in her proof. 65

4.11 I. The three round sets in two competing proofs at different levels, II. the

corresponding 0-level blocks implied by the two proofs, III: blocks in CB and

block set C̃A from the verifier’s perspective. 70

4.12 Adversarial fork chain CA and an adversarial infix proof based on the chain

adopted by an honest player. Wavy lines imply one or more blocks. Blocks

generated by the adversary are colored black. Dashed arrows represent

interlink pointers included in the proof as part of the followDown procedure.

The adversary provides infix proof for a transaction in block b’. 72

5.1 A thorny block colored black containing invalid MMR commitment to a block

of a fork chain illustrated as a dashed arrow. With respect to the MMR

commitments the black block along with the grey ones form a chain. 78

5.2 Chainsewing attack. Two thorny blocks a, a′ are used to chainsew a portion

of honest chain CB to adversarial fork CA. Black blocks imply adversarially

generated blocks. Grey blocks are used in the adversarial proof along with

the black ones. Wavy lines imply one or more blocks. Dashed arrows imply

an MMR commitment for the destination block in the block of origin. 79

5.3 Chainsewing along with suppression attack. Black blocks imply adversari-

ally generated blocks. Blue blocks imply honest upgraded blocks,which the

adversary tries to suppress. Wavy lines imply one ore more blocks. Dashed

arrows imply an MMR commitmens. 79

A Study on Superlight Clients under Velvet Fork

1. INTRODUCTION

1.1 Motivation

Blockchain systems such as Bitcoin [25] and Ethereum [2, 29] have a predetermined ex-

pected rate of block production and maintain chains of blocks that are growing linearly

with time. A node synchronizing with the rest of the blockchain network for the first time

therefore has to download and validate the whole chain, if it does not wish to rely on a

trusted third party. While a lightweight node (SPV) can avoid downloading and validating

transactions beyond their interest, it must still download the block headers that contain

the proof-of-work [6] of each block in order to determine which chain contains the most

proof-of-work. The block header data, while smaller by a significant constant factor, still

grow linearly with time. An Ethereum node synchronizing for the first time must download

more than 4 GB of block header data for the purpose of proof-of-work verification, even

if it elects not to download any transactions. This has become a central problem to the

usability of blockchain systems, especially for vendors who are using mobile phones to

accept payments or sit behind limited internet bandwidth. They are forced to make a diffi-

cult choice between decentralization and the ability to start accepting payments in a timely

manner.

1.2 Current approaches

Towards the goal of alleviating the burden of this download for SPV clients, a number

of superlight clients has emerged. These protocols give rise to Non-Interactive Proofs

of Proof-of-Work (NIPoPoW) [18], which are short strings that “compress” the proof-of-

work information of the underlying chain. The necessary security property of such proofs

is that a minority adversary can only convince a NIPoPoW client that a certain transaction

is confirmed, only if they can convince an SPV client, too.

There are two general directions for superlight client implementations: In the superblock [18,

12] approach, the client relies on superblocks, blocks that have achieved much better

proof-of-work than required for block validity. In the FlyClient [1] approach, blocks are

sampled and committed at random as in a Σ-protocol (e.g. Schnorr’s discrete-log proto-

col [27]) and then using the Fiat–Shamir heuristic [8] a non-interactive proof is calculated.

The number of block headers that need to be sent then grows only logarithmically with

time. The NIPoPoW client, which is the proof verifier in this context, still relies on a con-

A. Polydouri 15

A Study on Superlight Clients under Velvet Fork

nection to full nodes, who, acting as provers, perform the sampling of blocks from the full

blockchain. No trust assumptions are made for these provers, as the verifier can check

the veracity of their claims. As long as the verifier is connected to at least one honest

prover (an assumption also made in the SPV protocol [10, 30]), they are able to arrive at

the correct claim.

In both approaches, it is essential for the verifier to check that the blocks sampled one

way or another have been generated in the same order as they have been presented

by the prover. As such, each block in the proof must contain a pointer to the previous

block in the proof. As blocks in these proofs are far apart in the underlying blockchain,

the legacy previous block pointer, which typically appears within block headers, does not

suffice. Both approaches require modifications to the consensus layer of the underlying

blockchain to work. In the case of superblock NIPoPoWs, the block header must be mod-

ified to include, in addition to a pointer to the previous block, pointers to a small amount

of recent high-proof-of-work blocks. In the case of FlyClient, each block must additionally

contain pointers to all previous blocks in the chain. Both of these modifications can be

made efficiently by organizing these pointers into Merkle Trees [24] or Merkle Mountain

Ranges [21, 28] whose root is stored in the block header. The inclusion of extra pointers

within blocks is termed interlinking the chain [17].

The modified block format, which includes the extra pointers, must be respected and vali-

dated by all full nodes and thus requires either a hard fork or at least a soft fork. However,

even soft forks require the approval of a supermajority of miners, and new features that are

considered non-essential by the community have taken years to receive approval [22]. To-

wards the goal of implementing superlight clients sooner, we study the question of whether

it is possible to deploy superlight clients without a soft fork. We propose a series of modi-

fications to blocks that are helpful but untrusted. These modifications mandate that some

extra data is included in each block. The extra data is placed inside the block by upgraded

miners only, while the rest of the network does not include the additional data into the

blocks and does not verify its inclusion, treating them merely as comments. To maintain

backwards compatibility, contrary to a soft fork, upgraded miners must accept blocks that

do not contain this extra data that have been produced by unupgraded miners, or even

blocks that contain invalid or malicious such extra data produced by a mining adversary.

This acceptance is necessary in order to avoid causing a chain split with the unupgraded

part of the network. Such amodification to the consensus layer is termed a velvet fork [32].

In this context the contributions resulting from this work come as follows:

• We revise the security proof for superblock suffix proof protocol and compute a con-

crete value for the security parameter m

• We illustrate that, contrary to claims of previous works, superlight clients designed

to work in a soft fork cannot be readily plugged into a velvet fork and expected to

work. We present a novel attack termed the chain-sewing attack which thwarts the

defenses of previous proposals and allows even aminority adversary to cause catas-

trophic failures.

A. Polydouri 16

A Study on Superlight Clients under Velvet Fork

• We propose the first backwards-compatible superlight client. We put forth an in-

terlinking mechanism implementable through a velvet fork. We then construct a

superblock NIPoPoW protocol on top of the velvet forked chain and show it allows

to build superlight clients for various statements regarding the blockchain state via

both “suffix” and “infix” proofs.

• We prove our construction secure in the synchronous static difficulty model against

adversaries bounded to 1/4 of the mining power of the honest upgraded nodes. As

such, our protocol works even if a constant minority of miners adopts it.

1.3 Related work

Proofs of Proof-of-Work have been proposed in the context of superlight clients [6, 18, 1],

cross-chain communication [19, 13, 31], as well as local data consumption by smart con-

tracts [14]. Superblock NIPoPoWs have been deployed in production using hard forks [5]

and have been conjectured to work in velvet fork conditions [18] (we show here that these

conjectures are ill-informed in the light of our chain-sewing attack). Velvet forks [32] have

been studied for a variety of other applications and have been deployed in practice, e.g.,

see [11]. In this work, we focus on consensus state compression. Such compression has

been explored in the hard-fork setting using zk-SNARKS [23] as well as in the Proof-of-

Stake setting [16]. Complementary to consensus state compression (i.e., the compres-

sion of block headers and their ancestry) is compression of application state (namely the

State Trie, the UTXO, or transaction history). There is a series of works complementary

and composable with ours that discusses the compression of application state [3, 20].

A. Polydouri 17

A Study on Superlight Clients under Velvet Fork

A. Polydouri 18

A Study on Superlight Clients under Velvet Fork

2. BACKGROUND

2.1 Cryptographic Primitives

In this section we define some fundamental cryptographic primitives which are parts of the

blockchain technology. The definitions of correctness and security of these primitives are

in most cases defined using the notion of negligible functions. We therefore first provide

the definition of a negligible function in Definition .

Definition 1 (Negligible function). A function f is negligible if for all c ∈ R there exists

n0 ∈ N such that f(n) ≤ 1

nc
for all n ≥ n0.

Note that in the following we may often refer to polynomial-probalistic-time (PPT) adver-

sary simply as “adversary”.

2.1.1 Digital Signatures

Digital signature schemes allow a signer S who has established a public key pk to sign a

message m in such a way that any other party who knows pk (and knows that this public

key was established by S) can verify that m originated from S and has not been modified

in any way [15]. The syntax of a digital signature scheme is formally defined in Definition 1.

Definition 1 (Signature scheme syntax [15]). We call a signature scheme is a tuple of prob-
abilistic polynomial-time algorithms Π = (Gen, Sign, V er) satisfying the following:

1. The key-generation algorithm Gen takes as input a security parameter 1κ and outputs

a pair of keys (pk, sk). These are called the public key and the private key, respectively.

(sk, pk)← Gen(1κ)

2. The signing algorithm Sign takes as input a private key sk and a message m from

some underlying message space. It outputs a signature σ.

σ ← Signsk(m)

A. Polydouri 19

A Study on Superlight Clients under Velvet Fork

3. The deterministic verification algorithm Ver takes as input a publock key pk, amessage

m and a signature σ. It outputs a bit b, with b = 1meaning VALID and b = 0meaning

INVALID.

Verpk(m,σ) = 0 or 1

We require that for every κ, every (pk, sk) output by Gen(1κ) and every message m

in the appropriate underlying plaintext space, it holds that

Verpk(m, Signsk(m)) = 1

Correctness of signature schemes. We say that σ is a valid signature on a message m

with respect to public key pk if Verpk(m,σ) = 1. We formally define the correctness of a

signature scheme Π = (Gen, Sign, Ver) using the Sig-correctΠ(κ,m) experiment for security

paramerter κ and every message m given in Algorithm 1.

Algorithm 1 The Sig-correct signature experiment

1: function Sig-correctΠ(κ,m)

2: (pk, sk)← Gen(1κ)
3: (σ)← Signsk(m)
4: if Verpk(m,σ) = 1 then
5: return 1

6: end if

7: return 0

8: end function

Definition 2 (Correctness of signature scheme). A signature scheme Π = (Gen, Sign, Ver)
is correct if for everym from the underlying message space there exists a negligible func-

tion negl(·) such that:

Pr[Sig-correctΠ(κ,m) = 0] ≤ negl(κ)

Security of signature schemes. Given a public key pk generated by a signer S, we
say that an adversary outputs a forgery if she outputs a message m along with a valid

signature σ on m and m was not previously signed by S, since in this case the adversary

could simply copy the originally signed message. Security of a digital signature scheme

means that an adversary cannot output forgery even if she is allowed to obtain Signatures

on many other messages of her choice.

We formally define the security of a signature scheme Π = (Gen, Sign, Ver) using the

Sig-forgeA,Π(κ) experiment for adversaryA and security paramerter κ given in Algorithm 2.

In this experiment we consider that the adversary is given pk and oracle access to Signsk(·).
This oracle returns a valid signature Signsk(m) for any message m of the adversary’s

choice. Let Q denote the set of messages whose signatures were requested by A.

Definition 3 (Security of signature scheme [15]). A signature schemeΠ = (Gen, Sign, Ver)
is existentially unforgeable under an adaptive chosen-message attack if for all PPT adversaries

A, there exists a negligible function negl(·) such that:

Pr[Sig-forgecma
A,Π(κ) = 1] ≤ negl(κ)

A. Polydouri 20

A Study on Superlight Clients under Velvet Fork

Algorithm 2 The Sig-forge signature experiment

1: function Sig-forgecma
A,Π(κ)

2: (pk, sk)← Gen(1κ)
3: (m,σ)← A(pk)
4: if Verpk(m,σ) = 1 ∧m /∈ Q then

5: return 1

6: end if

7: return 0

8: end function

2.1.2 Collision-Resistant Hash Functions

In general, hash functions are just functions that take arbitrary-length strings and compress

then into shorte strings. The classic use of hash functions is in data structures as a way to

achieve O(1) lookup time for retrieving an element. Specifically, if the size of the range of

hte hash function H is N , then a table is first allocated with N entries. Then, the element

x is stored in cell H(x) in the table. In order to retrieve x, it suffices to compute H(x) and
probe that table entry. Observe that since the output range of H equals the size of the

table, the output length must be rather short or else the table will be too large. A “good”

hash function for this purpose is one that yields as few collisions as possible, where a

collision is a pair of distinct data items x and x′ for which H(x) = H(x′). Notice that when

a collision occurs, two elements end up being stored in the same cell. Therefore, many

collisions may result in a higher than desired retrieval complexity. In short, what is desired

is that the hash function spreads the elements well in the table, thereby minimizing the

number of collisions[15].

Collision-resistant or cryptographic hash functions are similar in principle to those used in

data structures. In particular, they are also functions that compress their input by trans-

forming arbitrary-length input strings into output strings of a fixed shorter length. Further-

more, collisions are a problem. However, the desire in data structures to have few colli-

sions is now a mandatory requirement in cryptography. That is, a collision-resistant hash

function must have the property that no polynomial-time adversary can find a collision in

it. Stated differently, no polynomial-time adversary should be able to find a distinct pair

of values x and x′ such that H(x) = H(x′). We stress that in data structures some col-

lisions may be tolerated, whereas in cryptography no collisions whatsoever are allowed.

Furthermore,the adversary in cryptography specically searches for a collision, whereas in

data structures,the “data items” do not attempt to collide intentionally. This means that the

requirements on hash functions in cryptography are much more stringent than the analo-

gous requirements in data structures.It also means that cryptographic hash functions are

harder to construct[15].

Defining collision-resistance. A collision in a function H is a pair of distinct inputs x, x′

such that H(x) = H(x′). H is collison-resistant if it is infeasible for any PPT algorithm to

find a collision in H. Typically, we are interested in functions that have an infinite domain

A. Polydouri 21

A Study on Superlight Clients under Velvet Fork

(i.e. they accept all strings of all input lengths) and a finite range. Note that in a such a

case collisions will necessarily exist, due to the pigeon-hole principle. The requirement is

therefore only that such collisions should be hard to find.

We need a family of hash functions in order to define what a collision-resistant hash func-

tion is. That is because the adversary can have hardwired a collision pair in his code and

output it every time we ask him. Note that this is not a problem for the security of the

one-way function, since in that case we ask the adversary for the inversion of a random

element in the range of the function.

For the definition of the collision resistance property we use the experiment Hash-collison
described in Algorithm 3.

Algorithm 3 The Hash-collision experiment

1: function Hash-collisionF ,A(κ)
2: (i)← Gen(1κ)
3: (x, x′)← Hi

4: if x 6= x′ ∧Hi(x) 6= Hi(x
′) then

5: return 1

6: end if

7: return 0

8: end function

Definition 4 (Collision-Resistant Hash Function). A family of hash functions F = {Hi :
Di → Ri}i∈I is collision resistant if it satisfies the following:

• Easy to sample: There exists a PPT algorithm Gen, such that for all κ ∈ N, Gen(1κ) ∈
I.

• Easy to compute: There exeists PPT algorithm that in input i ∈ I, x ∈ Di returns

Hi(x).

• Compressing: For all i ∈ N, |Ri| < |Di|.

• Collision resistant: For every PPT adversary A, for all κ ∈ N:

Pr[Hash-collisionF ,A(κ) = 1] ≤ negl(κ)

2.1.3 The Random Oracle Model

In many cases there is the need to find a “middle-ground” between a fully-rigorous proof

of security on the one hand and no proof whatsoever on the other. This may be achieved

by introducing an idealized model in which to prove security of cryptographic schemes.

Though the idealization may not be an accurate reflection of reality, we can at least derive

some measure of confidence in the soundness of a scheme’s design from a proof within

A. Polydouri 22

A Study on Superlight Clients under Velvet Fork

the idealized model. Al long as the model is reasonable, such proofs are cenrtainly better

than no proofs at all.

Towards this end, the random oracle model posits the existence of a public, randomly-

chosen function H that can be evaluated only by querying the oracle - which can be

thought of as a “magic box” - that returns H(x) when given input x. Now, the idealized

model of random oracle can be used to design and validate cryptographic schemes via

the following two-step approach:

1. First, a scheme is designed and proven secure in the random oracle (RO) model

2. When we want to implement the scheme in the real world, a RO is not available.

Instead, the RO H in the scheme is instantiated with a cryptographic hash function

H̃.

The hope is that the cryptographic hash function H̃ is “sufficiently good” at simulating a

random oracle, so that the security proof given in the first step will carry over to the real-

world instantiation of the scheme.

Defining the ROmodel. A good way to think about a ROmodel is as follows. The “oracle”

is simply a box that takes a binary string x as input and returns a binary string y as output.
We refer to such interactions with the box as querying the oracle on x and call x itself a

query made to the oracle. The internal workings of the box are unknown and inscrutable.

It is guaranteed that the box is consistent: that is, if the box ever outputs y for a particular
input x, then it always outputs the same output y when given the same input x again. So,

we can view the box as implementing a hash function H.

Thus we can now provide a formal definition of RO as in Definition 5.

Definition 5 (Random Oracle). The Random Oracle is an idealized model for crypto-

graphic hash functions which operates as follows:

• given x /∈ History, choose y
r←− Y and add (x, y) to History. Return y.

• given x such that (x, y) ∈ History for some y, return y.

2.2 Blockchain Basics

2.2.1 The notion of block

A blockchain is a timely ordered sequence of logical units called blocks. In a cryptocur-

recny blockchain, like Bitcoin, a block is a Proof-of-Work-verified set of information contain-

ing a number of transactions that are hashed and encoded in a Merkle Tree data structure.

Each block includes the cryptographic hash of the prior block in the block sequence, link-

ing the two. Thus the linked blocks form a chain. It additionally contains a nonce value

A. Polydouri 23

A Study on Superlight Clients under Velvet Fork

which is related to the Proof-of-Work (PoW) process. The PoW involves a computation

over a cryptographic puzzle. More specifically, it involves scanning for a value, ctr, such
that when included in the block, the block hashes to a value lower than a certain thresh-

old T . The hash of a block is the block’s id. The formal definition of a block is given in

Definition 2.

Definition 2 (Block). Let G(·), H(·) be cryptographic hash functions and T ∈ range(H). A
block is a triple of the form B = 〈s, x, ctr〉, where s is the previous block id, x is the trans-

actions information and ctr ∈ N, such that satisfy the predicate validBlockT (B) defined as

H(ctr,G(s, x)) < T (2.1)

The inverse of the threshold parameter T ∈ N is called the block’s difficulty level. Through-

out this work we consider a constant value for the threshold T, although this is not the case

in a real PoW blockchain.

2.2.2 The notion of blockchain

A blockchain, or simply chain, is a timely ordered sequence of blocks. The rightmost

block is the head the chain and is called the Genesis block often denoted G, while the

whole chain is denoted C. So a chain C with G = 〈s, x, ctr〉 can be extended by appending
a block B = 〈s′, x′, ctr′〉 as long as it holds that s′ = H(ctr,G(s, x)). In effect every block is
connected to the previous block in the chain by containing its hash. This is called the prevId

relationship. Figure 2.1 provides a high level representation of a blockchain including

the bootstrap step of the very first block in the chain, where instead of the prevId, arbitrary

data may be included in s.

Block

Previous	Hash Nonce

Transactions

Block

Previous	Hash Nonce

Transactions

Block
Block	Gen

Nonce

Transactions

...

Figure 2.1: A high-level representation of a blockchain.

A cryptocurrency blockchain is essentially a distributed ledger containing the history of the

transactions made between the participating parties. The blockchain ledger has the fol-

lowing two fundamental properties: i) it is immutable and, ii) it is append-only. Sometimes

separate blocks can be produced concurrently, creating a temporary fork. In addition to a

secure hash-based history, any blockchain has a specified algorithm for scoring different

versions of the history so that one with a higher score can be selected over others. Bitcoin

uses a proof-of-work system, where the chain with the most cumulative proof-of-work is

considered the valid one by the network. Peers supporting the ledger may have different

versions of the history from time to time. They keep only the highest-scoring version of the

database known to them. Whenever a peer receives a higher-scoring version (usually the

A. Polydouri 24

A Study on Superlight Clients under Velvet Fork

old version with a single new block added) they extend or overwrite their own database

and retransmit the improvement to their peers. There is never an absolute guarantee that

any particular entry will remain in the best version of the history forever. Blockchains are

typically built to add the score of new blocks onto old blocks and are given incentives to

extend with new blocks rather than overwrite old blocks. Therefore, the probability of an

entry becoming superseded decreases exponentially as more blocks are built on top of it,

eventually becoming very low.

2.2.3 Transactions

The transactions in an electronic coin are defined as a chain of digital signatures. Each

owner transfers coin value to the next owner by digitally signing a hash of the previous

transaction and the public key of the next owner and adding these two to the end of the

transaction script, which is publicly announced to the network. A payee can verify the

signatures to verify the chain of ownership. Of course the payee should somehow verify

that the value transferred is not double-spent by the owner without the trust of a third party

authority. In the Bitcoin’s Unspent-Transaction-Output (UTXO) model each unspent coin

value is included in the so-called UTXO set. Every peer inspecting the transactions in

the network validates that the value transferred in a transaction tx belongs in the current

UTXO set before including tx in a block. Each time that a peer updates its blockchain,

he updates the UTXO set according to the new transaction history too. By agreeing on a

single blockchain history according to the highest score (highest PoW score for Bitcoin)

among the all the existing chains in the network, the peers can also agree on a single

history as for the sequence of the transactions made so far.

Figure 2.2: Transactions as a chain of digital signatures in Bitcoin [25]

2.2.4 The SPV model

In the Bitcoin blockchain network each peer may have one of the following three roles:

clients, full nodes andminers. Miners maintain an updated copy of the chain locally, while

providing computational power, also called hashpower, to extend it. In order to extend

A. Polydouri 25

A Study on Superlight Clients under Velvet Fork

the chain by one block, the miner has to perform a proof-of-work as already described.

Full nodes can be thought of as miners with zero hashpower. Full nodes are also called

provers, since they provide proofs answering the queries for specific chain information

made by clients.

In order to make the client functionality more efficient the Simple Payment Verification was

proposed [25]. Based on the SPV scheme, there can be lightweight clients, meaning

clients that need to store only the block headers of the chain. A block header includes

only a Merkle Tree Root of the Merkle Tree comprised by the transactions included in

that specific block. In order to validate that a transaction is finalized, a client needs to

query the nodes until he is convinced that he has the longest valid chain, search for the

block containing that transaction and finally verify an inclusion proof of the transaction in

the block of interest.

Figure 2.3: High level representation of blockchain data kept by a lightweight client and an

inclusion proof for a transaction Tx3.[25]

In the SPV scheme a client needs to store blockchain data of linear size to the whole chain.

By the time of writing Bitcoin’s blockchain counts to almost 264GB and is estimated to

grow more than 50GB per year. Since the growth of the chain is constantly increasing in

a linear fashion, there is a need to construct more efficient protocols serving the needs of

lightweight clients.

2.3 The Backbone Model

2.3.1 The protocol

The Backbone protocol is executed by an arbitrary number of parties over an unauthenti-

cated network. We consider n parties in total, t of whichmay be controlled by an adversary.

Table 2.1 contains all the parameters of the Backbone protocol and will be a point of

reference throughout this work.

A. Polydouri 26

A Study on Superlight Clients under Velvet Fork

Table 2.1: The parameters of backbone model analysis. Positive integers n, t, L, s, l, T, k, κ, positive
reals f, ε, δ, µQ, τ, λ where f, ε, δ, µQ ∈ (0, 1).

λ : security parameter

κ : length of the hash function output

n : number of parties mining, t of which are controlled by the adversary

T : the target hash value used by parties for solving POW

t : number of parties controlled by the adversary

δ : advantage of honest parties,
t

n− t
≤ 1− δ

f : probability at least one honest party succeeds in finding a POW in a round

ε : random variables’ quality of concentration in typical executions

k : number of (suffix) blocks for the common prefix property

l : number of blocks for the chain quality property

µQ : chain quality parameter

s : number of rounds for the chain growth property

τ : chain growth parameter

L : the total run-tiem of the system

We will now give a high-level description of the Backbone Protocol and its fundamental

components, namely the three supporting algorithms for chain validation, chain compari-

son and proof of work. We will also define and discuss the three properties of the protocol,

namely Common Prefix, Chain Quality and Chain Growth. For a more formal and detailed

presentation refer to the Backbone paper[9].

Consider that the protocol has already run for some rounds and a chain C has been

formed. Consider also an honest party that wishes to connect to the network, obtain

the up-to-date version of the chain and try to extend it. The honest party connects to

the network and first tries to synchronize to the current chain. The chain synchroniza-

tion takes two steps to conclude. First, the newly connected peer receives a number

of candidate chains by other peers in the network and validates them one by one as for

the structural properties of each block (Chain Validation). In particular, for each block the

chain validation algorithm checks that the proof-of-work is properly solved, that the hash

of the previous block is properly included in the block and that the the rest of the informa-

tion included satisfies a certain validity predicate V (·) depending on the application. For

example, in Bitcoin application it is checked that all the included transactions are valid ac-

cording to the UTXO set.

Afterwards, the Chain Comparison algorithm is applied, where all the valid chains are

compared to each other and the longest one, as for total number of blocks or total hashing

power included, is considered the current active chain.

At last, in order to expand the chain by appending one more block to it, the Proof Of Work

algorithm is applied, where the miner attempts to solve a proof of work as follows. The

miner constructs the contents of the block, including the hash of the previous block and

a number of new transactions published to the network. Consider that he can calculate

the value h = G(s, x) up to this point. Finally it remains to compute the ctr value so that

A. Polydouri 27

A Study on Superlight Clients under Velvet Fork

H(ctr, h) < T . The protocol is running in rounds and each party can make at most q
queries to function H(·) within a single round. If a suitable ctr is found, an honest party

quits any queries remaining and announces the new born block to the network.

2.3.2 Basic properties

We can now define the three desired properties of the backbone protocol.

Definition 3 (Common Prefix Property). The common prefix property Qcp with parameter

k ∈ N states that for any pair of honest players P1, P2 adopting the chains C1, C2 at rounds

r1 ≤ r2 respectively, it holds that C
dk
1 � C2.

Definition 4 (Chain Quality Property). The chain quality property Qcq with parameters

µcq ∈ R and l ∈ N states that for any honest party P with chain C it holds that for any l
consecutive blocks of C the ratio of honest blocks is at least µcq.

Definition 5 (Chain Growth Property). The chain growth property Qcg with parameters

τ ∈ R and s ∈ N states that for any honest party P with chain C, it holds that for any s
rounds there are at least τ · s blocks added to the chain of P.

2.4 Hard, Soft and Velvet Forks

We typically describe the two common types of a blockchain permanent fork as follows.

A hard fork is a consensus protocol upgrade which is not backwards compatible. This

means that the changes in the protocol break the old rules since the block header’s con-

tents change. After a hard fork blocks generated by upgraded players are not accepted

by the unupgraded ones. In order the protocol update to be well established, the majority

of the players must be upgraded at an early point or else the non-upgraded players may

maintain the longest chain under the old rules, resulting to a permanent fork of the chain.

A soft fork is a consensus protocol upgrade which is backwards compatible. This is usu-

ally implemented by keeping the old rules while adding additional information in a way that

unupgraded players can ignore as comments, for example, by adding data in the coin-

base transaction. In this way unupgraded players accept blocks generated by upgraded

miners as valid, while, typically, unupgraded blocks are not accepted by upgraded play-

ers. Considering that the majority of the players have upgraded to the new protocol rules,

unupgraded players will accept all blocks but see their own blocks being abandoned, thus

they are motivated to upgrade as well.

A velvet fork is also a backwards compatible consensus protocol upgrade. Similar to soft

fork additional data can be inserted in the coinbase transaction. A velvet fork requires any

block compliant to the old protocol rules only to be accepted as valid by both unupgraded

and upgraded players. By requiring upgraded miners to accept all blocks, even if they

contain false data according to the new protocol rules, we do not modify the set of accepted

A. Polydouri 28

A Study on Superlight Clients under Velvet Fork

blocks. Therefore, the upgrade is rather a recommendation and not an actual change of

the consensus protocol. In reality, the blockchain is never forked. Only the codebase is

upgraded and the data on the blockchain is interpreted differently[18].

The goal of this work is to provide amodified NIPoPoWs protocol so that it can be deployed

under a velvet fork in a provably secure manner.

A. Polydouri 29

A Study on Superlight Clients under Velvet Fork

A. Polydouri 30

A Study on Superlight Clients under Velvet Fork

3. SUPERBLOCKS UNDER SOFT FORK

3.1 Introduction

The SPV clients described in the Bitcoin paper need to process only the block headers of

the chain in order to synchronize. This is much more efficient compared to the synchro-

nization of a full node, however it still requires processing data which grow linearly with

the size of the chain.

Superblock NIPoPoWs provide synchronization and up-to-date chain information with only

polylogarithmic data to the size of the chain. Let us describe the underlying primitive and

try to provide some intuition about it.

As already explained, each block appended to the chain must contain an appropriate

nonce value, so that the hash of the whole block is a number lower than a specific thresh-

old. Assuming difficulty = 1/T then for a block’s hash id it must hold that
id

T
< 1. This is

illustrated in the part I of Figure 3.1. Remember that κ is the length of the hash function

output.

2κ

0

T

0

T

T/2

T/4

T/8

p,	μ	=	0

p/2,	μ	=	1

p/4,	μ	=	2

p/8,	μ=3

I. II.

Figure 3.1: Graphical representation of PoW domain. I. valid blocks ids lie in the green section. II.

blocks of higher level are generated with lower probability.

Note that because of the Random Oracle model for the hash function, the outputs of the

A. Polydouri 31

A Study on Superlight Clients under Velvet Fork

PoW attempts are uniformly distributed in the domain {0, 2κ}. The values regarding any

subdomain follow uniform distribution too. In essence, a block b with id < T is generated

with probability p =
T

2κ
, while a block b1 with id1 <

T

2
is generated with probability p1 =

T

2 · 2κ
or p1 =

p

2
. As you can see it seems that b1 is a “luckier” block than block b, and we

could even say that it is twice as lucky since such a block is generated half of the times that

b is, in expectation. This can be generalized to the following form: a block b′ with id′ <
T

2µ

is generated with probability p′ =
p

2µ
. We call µ the level of the block b′. It should now be

obvious that blocks of high levels appear rarely in the chain according to their level. The

higher the level µ, the more rare the blocks of that level in the chain. Part II of Figure 3.1

illustrates this result.

From all the above we can conclude to the following. All blocks in the chain are level 0.

Blocks of level µ are called µ-superblocks, while it holds that µ-superblocks for µ > 0 are
also (µ − 1)-superblocks. The level of a block is given as µ = blog(T) − log(id(B))c and
denoted level(B). By convention, for the genesis block we set id = 0 and µ =∞.

The important observation on the superblocks is that they are expected to appear in the

chain with a constant frequency according to their level. This is validated for the bitcoin

blockchain in [12]. In a blockchain protocol execution it is expected that half of the blocks

will be of level 1, 1/4 of the blocks will be of level 2, 1/8 of the blocks of level 3 and, gen-

erally, 1/2µ blocks will be of level µ. In expectation the number of superblock levels ap-

pearing in a chain C will be Θ(log(C)). Figure 3.2 illustrates the blockchain superblocks

starting from level 1 and going up to level 4 in the case that superblocks are distributed

exactly according to expectation. Each level contains half of the blocks of the level be-

low [18].

Figure 3.2: Ideal superblock distribution. Higher levels have achieved higher difficulty during

mining [18].

The main idea behind superblock lightclients should now seem straightforward. Since one

µ−superblock roughly represents 2µ 0-level blocks, why don’t we provide only these very

lucky blocks instead of communicating the headers of all blocks in the chain in order to

synchronize?

A. Polydouri 32

A Study on Superlight Clients under Velvet Fork

3.2 Interlinking the chain

In order to be able to utilize the superblocks for constructing succinct proofs of PoW it is

proposed that block headers additionally include the interlink data structure. The interlink

of a block b contains pointers to the most recent µ−level ancestor of b for every µ ≤
log(C). The interlink turns the blockchain into a skiplist-like data structure, as illustrated in
Figure 3.3.

Figure 3.3: The hierarchical blockchain. Each block has a pointer to its nearest µ−level ancestor.

Updated interlink information has to be included in each block duringmining. The algorithm

for the honest miner is given in Algorithm 4 as described in [17]. The updateInterlink

algorithm accepts a block B′, which already contains an interlink strucure, and evaluates

the interlink that has to be included as part of the next block. It copies the existing interlink

and then modifies its pointers from level 0 to level(B′), so that they point to block B′. For

every freshly mined block relayed to the network, a node has now additionally to check

the validity of the interlink data included.

Algorithm 4 updateInterlink [17]

1: function updateInterlinkVelvet(B′)

2: interlink← B′.interlink
3: for µ = 0 to level(B′) do
4: interlink[µ]← id(B′)
5: end for

6: return interlink
7: end function

For the rest of this work, we use the notation defined in the superblock NIPoPows pa-

per [18], which we rewrite here so as to serve as an easier point of reference. Blockchains

are sequences but it is more convenient to use set notation for some operations. Specif-

ically B ∈ C, C1 ⊆ C2 and ∅ have the obvious meaning. C1 ∪ C2 is the chain obtained by

sorting the blocks contained in both C1 and C2 into a sequence (this may be not always

defined). We will freely use set builder notation {B ∈ C : p(B)}. C1 ∩ C2 is the chain

{B : B ∈ C1 ∧ B ∈ C2}. The lowest common ancestor is LCA(C1,C2) = (C1 ∩ C2)[−1]. if
C1[0] = C2[0] and C1[−1] = C2[−1], we say that chains C1,C2 span the same block range.

A. Polydouri 33

A Study on Superlight Clients under Velvet Fork

It is frequently useful to construct a chain containing only the superblocks of another chain.

Given C and level µ, the upchain C↑ is defined a {B ∈ C : level(B) ≥ µ}. A chain containing

only µ−superblocks is calles a µ−superchain. It is also useful, given a µ−superchain to

go back to the regular chain C. Given chains C′ ⊂ C, the downchain C′↓ C is defined as

{C[C′[0] : C′[−1]]}. C is the underlying chain of C′. The underlying chain is often implied

by context, so we will simply write C′↓ . By the above definition, the C′ ↑ is absolute:

(C ↑µ)µ+i = C ↑µ+i. Given a set of consecutive rounds S = {r, r + 1, · · · , r + j} ⊆ N, we
define CS = {B ∈ C : B was generated during S}.

3.3 Suffix Proofs

NIPoPoWs suffix proofs are used to prove predicates that pertain to the suffix of the

blockchain as defined in Definition 6. For example, this is the case of light client syn-

chronization to the longest valid chain.

Definition 6 (Suffix Sensitivity [18]). A chain predicate Q is called k-suffix sensitive if for

all chains C, C′ with |C| ≥ k and |C′| ≥ k such that C[−k :] = C′[−k :] we have that

Q(C) = Q(C′).

3.3.1 The Prover

The suffix prover is given in Algorithm 5. The honest prover takes as input an honestly

adopted chain C and the security parameters m, k and returns a suffix proof (π, χ), which
forms a valid chain regarding the interlink pointers. Keep in mind that we currently assume

a soft fork for the protocol deployment, thus for a new block its interlink structure is checked

before the block is accepted as valid.

Parameter k roughly pertains to the number of blocks needed to bury a block so that it

remains stable in the longest valid chain, in essence that the containing transactions will

not be reverted (e.g. k = 6). m is the security parameter which sets the lower bound of

a superchain’s length participating in a NIPoPoW proof. We set m ≥ 2k + 1 and analyze

the meaning and importance of this relation in the suffix proofs’ security analysis section.

The proof suffix χ is simply the last k blocks of C. The prefix π is constructed by selecting

various blocks of every level µ ≤ log(C) from C[−k]. At the highest possible level µ′ at

which at least m exist, all these blocks are included. Then from level µ′ − 1 the blocks

spanning the same range as the last m µ′−superblocks are included. This is inductively

followed for every lower level until level 0 is reached. Thus, from this underlying superchain

2m blocks will be included in the proof in expectation and always at least m blocks.

Figure 3.4 illustrates an example proof constructed for parameters m = k = 3. The top

superchain level which contains at least m blocks is level µ = 3. For the m−sized suffix

of that level, 5 blocks of level 2 are included for support spanning the same range.

A. Polydouri 34

A Study on Superlight Clients under Velvet Fork

Figure 3.4: Superblock NIPoPoW proof prefix π for m = 3 [18].

Algorithm 5 The Suffix Prover for the superblock NIPoPoW protocol [18]

1: function Provem,k(C)
2: B ← C[0]
3: for µ = |C[−k].interlink| down to 0 do
4: α← C[:− k]{B:}↑µ
5: π ← π ∪ α
6: B ← α[−m]
7: end for

8: χ← C[−k:]
9: return πχ

10: end function

3.3.2 The Verifier

The suffix verifier is given in Algorithm 6 and consists of two functions and an operator

definition. Function Verify forms a generic verifier for any protocol-specific proof com-

parison operator ≤m. This proof comparison operator is specifically instantiated for the

superblock suffix verifier and utilizes the supporting function best-arg.
The verifier algorithm is parameterized by a chain predicateQ and the security parameters

k,m. The verifier receives several proofs from different provers which are represented

as a collection of proofs P. We consider that at least one received is constructed by an

honest prover. Iterating over P the verifier extracts the best one.

As already described, each proof is a valid chain considering the interlink pointers. For an

honest prover the proof contains a subset of blocks of the adopted chain. Proofs consist

of two parts π and χ; π is the proof prefix and χ the proof suffix. For honest provers, χ
contains the last k blocks of the adopted chain, while π contains a subset of superblocks

selected as explained in the prover algorithm.

For each proof the verifier first checks its validity by ensuring that |χ| = k and that (π, χ)
is an anchored chain (validChain(·)). The best known prefix is initialized with the genesis

block. At each loop iteration the verifier compares the next candidate proof prefix π against
the currently known best prefix π̃ and updates both π̃, χ̃ if needed.

A. Polydouri 35

A Study on Superlight Clients under Velvet Fork

The ≥m operator performs the comparison of two proofs. It takes proofs πA, πB and return

true if the first one is winning and false otherwise. It first computes the LCA block b between
the two proofs. Since the proofs are valid chains, parties A, B have common underlying

chain up to block b, so it suffices to compare the proofs for the diverging chains after b. The
verifier selects as level of comparison of each proof the best possible argument by calling

the best-arg function. In essence, the verifier selects the level containing the greatest

amount of proof-of-work for each proof. This best argument selection by the verifier is

called the principle of charity. To find the best argument the verifier parses the proof

one level at a time, weights the corresponding superblocks and selects the one resulting

to the highest total PoW. The weighting of a µ−superchain is performed by estimating the

underlying number of blocks as 2µ|π↑µ {b :}|. As discussed, the highest possible score

across all levels is returned. Once the best argument of both proofs is known, they are

directly compared and the winner returned. An advantage is given to first proof in case of a

tie by using ≥ operator favoring A. At the end of the loop the verifier will have determined

the best proof π̃, χ̃.

Note that χ might be needed for the final predicate evaluation but does not aprticipate in

any comparison since it is of constant and equal size for any valid proof. We will prove

that this proof will belong to an honest prover with high probability in the next section.

Algorithm 6 The Suffix Verifier for the superblock NIPoPoW protocol [18]

1: function VerifyQm,k(P)
2: π̃ ← (Gen)
3: for (π, χ) ∈ P do

4: if validChain(πχ) ∧ |χ| = k ∧ π ≥m π̃ then

5: π̃ ← π
6: χ̃← χ
7: end if

8: end for

9: return Q̃(χ̃)
10: end function

11: operator πA ≥m πb

12: b← (πA ∩ πB)[−1]
13: return best-argm(πA, b) ≥ best-argm(πB, b)
14: end operator

15: function best-argm(π, b)
16: M ← {µ : |π↑µ {b :}| ≥ m} ∪ {0}
17: return maxµ∈M{2µ · |π↑µ {b :}|}
18: end function

A. Polydouri 36

A Study on Superlight Clients under Velvet Fork

3.4 Security Analysis of Suffix Proofs

3.4.1 Superchain Quality & Suppression Attacks

As explained earlier, every µ−superblock represents 2µ 0-level blocks in expectation, or

µ− superblocks occur approximately once every 2µ blocks. Put in another way, each

µ−superchain C has an underlying chain of length 2µ|C| in expectation. This chain property
is referred “superchain quality” or “goodness” of the chain. A formal definition can be found

in [18].

It’s easy to see that the goodness property holds with overwhelming probability for chains

generated in optimistic environments, i.e. if no adversary tries to violate the superblock

distribution. However, an adversary can harm superchain quality by performing suppres-

sion attack to one or more superblock level. In order to see this consider an adversary

A who breaks the superchain quality of an honestly adopted chain CB at level µ as fol-

lows. A starts playing after |CB| ≥ 2 and inspects the appended blocks at every round.

If level(CB[−1]) < µ, then A remains idle. However, if level(CB[−1]) ≥ µ then A tries to

mine an adversarial block b on top of CB[−2]. If successful she tries to mine one more

block b′ on top of b. If successful again, she broadcasts b, b′. Now, with non-negligible

probability [18] the adversary generates b, b′ soon enough, so that honest party B adopts

the chain containing them. This would mean that the last µ-superblock is successfully

supressed. In any case, the adversary continues her attack by restarting her strategy, in-

specting the level of C[−1] and acting accordingly. An execution of this attack is illustrated
in Figure 3.5. It’s abvious that several honest µ-superblocks are successfully suppressed
causing harm to the superchain quality.

G b b'

Figure 3.5: Superquality attack. The adversary performs a selfisj mining [7] attack (black blocks)

whenever an honest µ-superblock (grey) is mined. The attack affects the distribution of

µ-superblocks in the honest chain [18].

In parallel to performing this attack the adversary may also maintain a fork chain. Assum-

ing honest majority, the adversary’s fork chain will be shorter than the honest parties’ chain

at 0-level. However, the adversary’s µ-superchain might be longer than that of the honest

parties’ because of the superquality attack on the honest chain. Thus the adversary may

successfully fool the verifier to favor her proof. As formally proven in [18] the adversary

can produce a winning suffix proof for her fork chain with non-negligible probability.

The modified proof construction is given in Algorithm 7 and allows the prover to take su-

perchain goodness into account. More in detail, at each step the prover checks the µ-
superblock distribution quality in the subchain α before moving on to the lower superchain

level. If goodness is indeed maintained at the current level then the prover regularly cov-

ers the span of the last m µ-level blocks with blocks of level µ− 1. Otherwise, if goodness

A. Polydouri 37

A Study on Superlight Clients under Velvet Fork

is violated for level µ then the prover completely ignores this level and tries to span the

whole range of subchain α with blocks of the lower level µ− 1.

Algorithm 7 The goodness aware Suffix Prover for the superblock NIPoPoW protocol [18]

1: function Provem,k(C)
2: B ← C[0]
3: for µ = |C[−k].interlink| down to 0 do
4: α← C[:− k]{B:}↑µ
5: π ← π ∪ α
6: if goodm(C, α, µ) then
7: B ← α[−m]
8: end if

9: end for

10: χ← C[−k:]
11: return πχ
12: end function

3.4.2 Security of Suffix Proofs

In this section we revise the security proof for the Superblock NIPoPoWs suffix proof pro-

tocol provided in [18]. In particular we revise Lemma 1 which lies in the heart of the secu-

rity proof, as well as the security proof itself (Theorem 2). We also repeat any additional

definition and lemma needed for the security proof, aiming to provide extended and intu-

itive explanation for each one of them. Finally, we formally calculate a lower bound for the

security parameter m as a function of k.

Assume t adversarial out of n total parties, each with q PoW random oracle queries per

round. We define p = T
2κ

the probability of a successful Random Oracle query. We will

call a query to the RO µ-successful if the RO returns a value h such that h ≤ 2−µT .

We define the boolean random variables Xµ
r , Y

µ
r , Z

µ
r . Fix some round r, query index j

and adversarial party index k (out of t). If at round r an honest party obtains a PoW with

id < 2−µT , set Xµ
r = 1, otherwise Xµ

r = 0. If at round r exactly one honest party obtains

id < 2−µT , set Y µ
r = 1, otherwise Y µ

r = 0. If at round r the j-th query of the k-th corrupted

party is µ-successful, set Zµ
rjk = 1, otherwise Zµ

rjk = 0. Let Zµ
r =

∑t
k=1

∑q
j=1 Z

µ
rjk. For a

set of rounds S, let Xµ(S) =
∑

r∈S X
µ
r and similarly define Y µ

S , Z
µ
S .

Definition 6 (Typical Execution). An execution of the protocol is (ε, η)-typical if:

Block counts don’t deviate. For all µ ≥ 0 and any set S of consecutive rounds with

|S| ≥ 2µηk, we have:

- (1− ε)E[Xµ(S)] < Xµ(S) < (1 + ε)E[Xµ(S)] and (1− ε)E[Y µ(S)] < Y µ(S)

- Zµ(S) < (1 + ε)E[Zµ(S)]

A. Polydouri 38

A Study on Superlight Clients under Velvet Fork

Round count doesn’t deviate. Let S be a set of consecutive rounds such thatXµ(S) ≥ k
for some security parameter k. Then |S| ≥ (1− ε)2µ k

pq(n−t)
with overwhelming probability.

Chain regularity. No insertions, no copies and no predictions [9] have occurred.

Theorem 1 (Typicality). Executions are (ε, η)-typical with overwhelming probability in k.

Proof. Block counts and regularity. We refer to [9] for the full proof.

Round count. First, observe that for a specific round r we have Xr ∼ Bern(p), so for the
µ-level superblocks Xµ

r ∼ Bern(2−µp) and these are independent trials. Therefore, since

for |S| rounds we have (n− t)q|S| RO queries, we have that Xµ
S ∼ Bin((n− t)q|S|, 2−µp).

So (n − t)q|S| ∼ NB(Xµ
S , 2

−µp). Negative Binomial distribution is defined as NB(r, p′)
and expresses the expected number of trials in a sequence of independent and identi-

cally distributed Bernoulli trials before a specified (r) number of successes occurs. The

expected total number of trials of a negative binomial distribution with parameters (r, p′)
is r/p′. To see this, imagine an experiment simulating the negative binomial performed

many times, that is a set of trials is performed until r successes occur. Consider you

perform n experiments of total N trials altogether. Now we would expect Np′ = nr, so
N/n = r/p′. See thatN/n is just the average number of trials per experiment. So we have

E[(n−t)q|S|] = Xµ
S

2−µp
⇒ E[|S|] = 2µ

Xµ
S

(n−t)qp
. IfXµ(S) ≥ k then we have that E[|S|] ≥ 2µ k

(n−t)qp

and we can apply a tail bound to the negative binomial distribution, so we obtain that

Pr[|S| < (1− ε)E(|S|)] ∈ Ω(ε2m).

The following lemma lies in the heart of the formal security proof (Theorem 2). The revision

of this lemma is one of our major contributions in this context, as it leads to revisions in

the security proof theorem as well.

Lemma 1. Suppose S is a set of consecutive rounds r1 · · · r2 and CB is a chain adopted

by an honest party at round r2 of a typical execution. Let CB
S = { b ∈ CB : b was generated

during S}. Let µA, µB ∈ N. Suppose CB
S ↑µB is good and suppose that |CS

B↑µB | ≥ k.
Suppose CA is a µA-superchain containing only adversarial blocks generated during S.

Then 2µA |CA| < 2µB |CB
S ↑µB |.

Proof. From |CS
B↑µB | ≥ k we have that |XµB

S | ≥ k. Applying Theorem 1, we conclude that

|S| ≥ (1− ε)2µB
|CS

B↑µB |
pq(n− t)

. (3.1)

We also know from the goodness of CS
B↑µB that

|CS
B↑µB | ≥ (1− δ)2−µB |CS

B| (3.2)

So we have

|S| ≥ (1− ε)(1− δ)
|CS

B|
pq(n− t)

(3.3)

A. Polydouri 39

A Study on Superlight Clients under Velvet Fork

For the number of µA-blocks that the adversary generated during S we know that |CA| ≤
(1 + ε)2−µAZ(S). But we know that Z(S) <

t

n− t
· f

1− f
|S|+ εf |S| so we have that

|CA| < (1 + ε)2µA(
t

n− t
· f

1− f
+ εf)|S| (3.4)

By substituting 3.3 in 3.4 we have that

|CA| < (1 + ε)2(1− δ)2−µA(
t

n− t
· f

1− f
+ εf)

|CS
B|

pq(n− t)
(3.5)

But from 3.2 we also know that |CS
B| ≤

2µB |CS
B↑µB |

1− δ
and by substituting to 3.5 we have that

2µA|CA| ≤ (1 + ε)2(
t

n− t
· f

1− f
+ εf)

2µB |CS
B↑µB |

pq(n− t)
(3.6)

So we conclude to 2µA |CA| < 2µB |CB
S ↑µB | considering that

f/(1− f)

pq(n− t)
<

1

(1− δ)(1 + ε)2

.

We will now define the adequate level of an honest suffix proof and some resulting prop-

erties, that will be used in the formal security proof.

Definition 7 (Adequate level of honest proof). Let π be an honestly generated proof con-

structed upon some adopted chain C and let b ∈ π. Then µ′ is defined as µ′ = max{µ :
|π{b :}↑µ | ≥ max(m+ 1, (1− δ)2−µ|π{b :}↑µ↓ |)}. We call µ′ the adequate level of proof π
with respect to block b with security parameters δ and m. Note that the adequate level of

a proof is a function of both the proof π and the chosen block b.

Lemma 2. Let π be some honest proof generated with security parameters δ, m. Let C

be the underlying chain, b ∈ C be any block and µ′ be the adequate level of the proof with

respect to b and the same security parameters.

Then C{b :}↑µ′
= π{b :}↑µ′

.

Proof. π{b :}↑µ′⊆ C{b :}↑µ′
is trivial. For the converse, we have that in the iteration of the

Prove for loop[18] with µ = µ∗, the block stored in variable B precedes b in C.

Note that the Prover’s for loop iterates over all levels in the interlink structure, and places

in the proof all of the blocks that are of the corresponding level and succeed B in C.

Suppose µ = µ∗ is the first for iteration during which the property is violated. This cannot

be the first iteration since B = C[0] and Genesis precedes all blocks. By induction hypoth-
esis we see that during the iteration µ = mu∗ + 1, B preceded b. From the definition of µ′

we know that µ′ is the highest level for which |π{b :}↑µ | ≥ max(m, (1− δ)2−µ|π{b :}↑µ↓ |).

Hence, this property cannot hold for µ∗ > µ and therefore |π{b :}↑µ | < m or ¬local-
goodδ(π{b :}↑ µ∗[1 :], C, µ∗).

A. Polydouri 40

A Study on Superlight Clients under Velvet Fork

In case local-good is violated, variableB remains unmodified and the induction step holds.

If local-good is not violated, then |π{b :}↑µ∗
[1 :]| < m and so π↑µ∗

[−m], which is the

updated value of B at the end of µ∗ iteration, precedes b.

The intuition behind the adequate level is the following. Adequate is the level µ′ of a

proof π with respect to block b, if this level is of good chain quality and doesn’t miss any

µ′-superblock coming after b. Because of the goodness-aware prover algorithm 7 each

proof π has an adequate level for every block b ∈ π. Note that the adequate level is used

in Claim 1a of the Security Proof (Theorem 2).

The following lemma is not used in our revised version of the security proof (Theorem 2).

However, we include it in this section since we have fixed some minor mistakes of [18].

We also believe that it provides intuition regarding the complicated notion of adequate

level.

Lemma 3. Suppose the verifier evaluates πA ≥ πB in a protocol interaction where B is

honest and assume during the comparison that the compared level of the honest party is

µB. Let b = LCA(πA, πB) and let µ′
B be the adequate level of πB with respect to b. Then

µ′
B ≥ µB.

Proof. Because µB is the compared level of the honest party, from the definition of the

≥m operator, we have 2µB |π{b :}↑µB | > 2µ
′
B |π{b :}↑µ′

B |. This is true, otherwise the

Verifier would have chosen level µ′
B as level of comparison. The proof is by contradiction.

Suppose µ′
B < µB. By definition, µ′

B is the maximum level such that |πB{b :}↑µ [1 :]| ≥
max(m, (1 − δ)2−µ|πB{b :}↑µ [1 :]↓ |), therefore µB does not satisfy this condition. But

we know that |πB{b :}↑µ [1 :]| > m because µB was selected by the Verifier. Therefore

2µB |π{b :}↑µB | < (1− δ)|C{b :}|.
But also µ′

B satisfies goodness, so 2µ
′
B |π{b :}↑µ′

B | > (1− δ)|C{b :}|.
From the last two equations we obtain 2µB |π{b :}↑µB | < 2µ

′
B |π{b :}↑µ′

B | which contradicts

the initial equation.

The intuition behind the above lemma is the following. The comparison level chosen by

the verifier can be no other than the adequate level in respect to block LCA(πA, πB), since
any other choice would be a level of non-good quality, because of the definition of the

adequate level. So, in fact, a more accurate lemma should claim that µ′
B = µB.

Theorem2 (Security of suffix proofs). Assuming honestmajority, the non-interactive proofs-

of-proof-of-work construction for computable k-stable monotonic suffix-sensitive predi-

cates is secure with overwhelming probability in k.

Proof. By contradiction. Let Q be a k−stable monotonic suffix-sensitive chain predicate.

Assume NIPoPoWs on Q is insecure. Then, during an execution at some round r3, Q(C)
is defined and the verifier V disagrees with some honest participant. Assume the exe-

cution is typical. V communicates with adversary A and honest prover B. The verifier

A. Polydouri 41

A Study on Superlight Clients under Velvet Fork

receives proofs πA, πB. Because B is honest, πB is a proof constructed based on underly-

ing blockchain CB (with πB ⊆ CB), which B has adopted during round r3 at which πB was

generated. Furthermore, πA was generated at round r′3 ≤ r3.

The verifier outputs ¬Q(CB). Thus it is necessary that πA ≥ πB. We will show that this is

a negligible event.

Let b0 = LCA(πA, πB). Let b
? be the most recently honestly generated block in CB preced-

ing b. Note that b? necessarily exists because Genesis is honestly generated. Let the levels
of comparison decided by the verifier be µA and µB respectively. Let µ′

B be the adequate

level of proof πB with respect to block b0. Call αA = πA↑µA {b0 :}, α′
B = πB↑µ

′
B {b0 :}.

Note that the proof parts succeeding block b0 are the decisive ones for the verifier’s final

choice. This is to adversary’s advantage, since the parts preceding this block demon-

strate the proof-of-work contained in the common (sub)chain, thus the adversary could

only include equal or less PoW in her proof for this part of the chain.

Our proof construction is based on the following intuition: we consider that αA consists of

three distinct parts α1
A, α

2
A, α

3
A with the following properties. Block b0 = LCA(πA, πB) is the

fork point between πA↑µA , πB↑µB , as already defined. Let block b1 = LCA(αA, α
′
B↓) be the

fork point between αA and CB as an honest prover could observe. Then part α1
A contains

the blocks between b0 exclusive and b1 inclusive, generated during the set of consecutive

rounds S1 and also |α1
A| = k1. Consider b2 the last block in αA that was generated by an

honest party. Part α2
A contains the blocks between b1 exclusive and b2 inclusive generated

during the set of consecutive rounds S2 and |α2
A| = k2. Consider b3 the next block of

b2 in αA. Then α3
A = αA[b3:] and |α3

A| = k3 consisting of adversarial blocks generated

during the set of consecutive rounds S3. Therefore |αA| = k1 + k2 + k3 and we will show

that |αA| < |αB|.

We will now show three successive claims: First, α1
A and α′

B↓ have only a few blocks

in common. Second, a2A contains only a few blocks. And third, the adversary is able to

produce this aA with negligible probability.

Claim 1: αA, α
′
B↓ have only a few blocks in common.

We show this by taking the two possible cases for the relation of µA, µ
′
B.

Claim 1a: If µ′
B ≤ µA then they are completely disjoint. In such a case of inequality, every

block in αA would also be of lower level µ′
B. Applying Lemma 2 to C{b :}↑µ′

B we see that

C{b :}↑µ′
B= π{b :}↑µ′

B . Subsequently, any block in πA↑µA {b :}[1 :] would also be included

in proof α′
B, but b = LCA(πA, πB) so there can be no succeeding block common in αA, α

′
B.

Claim 1b: If µ′
B > µA then |αA[1 :] ∩ α′

B↓ [1 :]| = k1 where k1 ≤ 2µ
′
B−µA .

Let’s call b′ the first block in α′
B after block b0. Suppose for contradiction that k1 > 2µ

′
B−µA .

Since Cµ′
B

B is of good chain quality, this would mean that block b′, of level µ′
B is also of level

µA. Since it is of level µA the adversary could include it in the proof but b′ cannot exist
in both αA, α

′
B since αA ∩ α′

B = ∅ by definition. In case that the adversary chooses not

to include b′ in the proof then she can include no other blocks of CB in her proof, since it

would not consist a valid chain. Thus wehave reached to a contradiciton in either way.

A. Polydouri 42

A Study on Superlight Clients under Velvet Fork

From Claim 1a and Claim 1b, we conclude that there are |αA| − k1 blocks after block b0 in
αA which do not exist in αB↓ .

The intuition behind Claim 1b is that the common blocks of α1
A, α

′
B↓ may only be blocks of

level µA which precede the first µ′
B block appearing in α′

B. If b
′ is included in the adversary’s

proof, then b′ would be the LCA of αA, α
′
B, which violates the minimality of b0. If it is not,

then the adversary could include no more blocks from the common part of chain CB in her

proof, since they would no longer form a valid interlinked chain in αA. The quantity 2
µ′
B−µA

should be thought as follows: in the range between two consequent µ′
B-level blocks, we

have n = 2µ
′
B 0-level blocks and, thus, 2−µAn = 2µ

′
B−µA blocks of µA-level.

Before stepping into Claim 2 remember that we have defined block b1 = LCA(α′
B↓ , αA).

This makes b1 the last block before the 0-level fork point, included in the adversary’s proof.

Claim 2: a2A contains only a few blocks.

We show this by showing that αA[k1+ k2+1 :] contains no honestly generated blocks due
to the Common Prefix property. Suppose for contradiction that the block αA[i] for some

i ≥ k1+k2+1 was honestly generated. This means that an honest party adopted the chain

αA[: i − 1]↓ at some round r2 ≤ r3. Because of the way honest parties adopt chains, the

superchain αA[: i − 1] has an underlying properly constructed 0-level anchored chain CA
such that αA[: i− 1] ⊆ CA. Let j be the index of block b1 within αA, j↓ be the index of block
b2 within CA and k2↓ = |αA[j : j+ k2]↓ |. See Figure 3.6 for a demonstration. Observe that

|CA[: {αA[i− 1]}]| ≥ |CA[: j↓ + k2↓]|, while CA[j↓ : j↓ + k2↓] � CB as proved in Claim 1. But

CA was adopted by an honest party at round r2, which is prior to round r3 during which CB

was adopted by an honest party B. This contradicts the Common Prefix[9] with parameter

k2↓. It follows that with overwhelming probability in k2↓, the k3 = |αA| − k2 − k1 last blocks
of the adversarial proof have been adversarially generated.

The intuition behond Claim 2 is that because of Common Prefix on k2↓ parameter, where

k2↓ = |αA[j : j + k2] ↓ |, and because E[k2↓] = 2µAk2, there can be no honest party adopt-

ing CA at any round i ≥ k1 + k2 + 1.

Before stepping into Claim 3 remember that we have defined block b2 the last honestly

generated block in αA. b2 is equal to b? if no such block exists in αA. Remember also that

b3 is the next block of b2 in αA, as shown in Figure 3.6.

Claim 3: AdversaryA is able to produce αA that wins against αB with negligible probability.

Let r1 the round when b3 was generated. Consider the set S3 of consecutive rounds r1..r3.
Every block in αA[−k3 :] has been adversarially generated during S3 and |αA[−k3 :]| =
|αA{b3 :}| = k3. CB is a chain adopted by an honest party at round r3 and filtering the

blocks by the rounds during which they were generated to obtain CS
B, we see that if b′

is the most recently generated block in αB in a round r ≤ r1, then CS
B = CB{b′ :}. But

CS
B↑µ

′
B is good with respect to CS

B. Applying Lemma 1, we obtain that with overwhelming

A. Polydouri 43

A Study on Superlight Clients under Velvet Fork

G

b2 b3

b0

b1
j r2

S1

S2,	k2

αΑ μΑ

α'Β μ'Β		(>=	μΑ)

G b0 b1

j

r3

b2

S2

b3 CΑ

CB

S3

S3

Figure 3.6: Two competing proofs at different levels. At the bottom the corresponding 0-level

chains are represented.

probability 2µA |αA{b3 :}| < 2µ
′
B |CS

B↑µ
′
B |, which is equal to

2µA|αA{b3 :}| < 2µ
′
B |α′

B{b′ :}| (3.7)

since α′
B contains all the µ′

B-level blocks in CS
B.

In order to complete the proof, let us now consider α1
A, α

2
A, α

3
A and α′1

B, α
′2
B, α

′3
B the parts of

the proofs containing the blocks generated during S1, S2, S3 correspondingly as illustrated

in Figure 3.7.

Subsequently to the above Claims we have that:

Because of the common underlying chain during the first round set S1:

2µA|α1
A| ≤ 2µ

′
B |α′1

B| (3.8)

Because of the adoption by an honest party of chain CB at a later round r3, we have for

the second round set S2:

2µA|α2
A| ≤ 2µ

′
B |α′2

B| (3.9)

Because of Equation (1), we have for the third round set S3:

2µA |α3
A| < 2µ

′
B |α′3

B| (3.10)

Subsequently we have

A. Polydouri 44

A Study on Superlight Clients under Velvet Fork

G b

α1

αA μA

α'Β μ'Β

α2 α3

G b

CΑ

CB

Figure 3.7: The three round sets in two competing proofs at different levels. The vertical dashed

lines denote the area of interest, across proofs and chains, corresponding to each round set. At

the bottom the corresponding 0-level chains are represented.

2µA(|α1
A|+ |α2

A|+ |α3
A|) < 2µ

′
B(|α′1

B|+ |α′2
B|+ |α′3

B|)

and finally

2µA |αA| < 2µ
′
B |α′

B| (3.11)

Therefore we have proven that 2µ
′
B |πB↑µ

′
B | > 2µA |πµA

A |. From the definition of µB, we know

that 2µB |πB↑µB | > 2µ
′
B |πB↑µ

′
B | because it was chosen µB as level of comparison by the

Verifier. So we conclude that 2µB |πB↑µB | > 2µA |πA↑µA |.

It remains to calculate the security parameterm that guarantee that all the above hold true

in every implementation. It suffices to compute a security parameter value for each set

of rounds S1, S2, S3, so that the proof equations 3.8, 3.9, 3.10 hold and then sum these

values to obtain parameter m.

In the first set of rounds S1 we need one block to be included in αB to “cover” the blocks

included in α1
A in order to assure Equation 3.8. In the second set of rounds, S2, we need

2−µBk blocks in αB to cover the blocks included in α2
A in order to assure Equation 3.9. This

is a direct result of the Common Prefix property. However, in order to makem independent

of any specific level it suffices to require k blocks for S2. In the last set of rounds, S3, we

need at least k adversarially generated blocks in αB so that Lemma 1 is applicable.

By adding these together we finally conclude to the following lower bound for the value of

the security parameter:

m = 2k + 1 (3.12)

A. Polydouri 45

A Study on Superlight Clients under Velvet Fork

3.5 Infix Proofs

Since we do not provide any new contribution to the infix proofs under soft fork condi-

tions, we provide the algorithms for the full infix proofs construction as well as a high level

description of the construction. These are needed in order to keep up with the novelties

described later in the velvet infix proofs section. For a more detailed presentation of this

construction, the reader should refer to [18]. Most of this section’s content is borrowed

from [18].

By requesting a suffix proof a client can synchronize to the latest valid chain or learn about

information that can be extracted by the last k block of the chain. Nevertheless, suffix

proofs act as the stepping stone for the construction of another useful class of proofs,

which answer to more general predicates that can depend on multiple blocks buried deep

within the blockchain.

More specifically, an infix proof allows proving any predicate Q(C) that depends on a

number of blocks that may appear anywhere within the chain (excpet for the last k block

for stability reasons). These blocks consitute a subset C′ of blocks, thewitness, which may

not necesserily form a stand-alone subchain. This allows proving useful queries such as,

whether a transaction is confirmed.

The following definition formally states the notion of an infix-sensitive predicate.

Definition 7 (Infix Sensitivity). A chain predicate Qd, k is infix sensitiveif it can be written

in the form

Qd,k(C) =
{
true, if ∃C′ ⊆ C[: −k] : |C′| ≤ d ∧D(C′)

false, otherwise

Where D is an arbitrary computable predicate.

The construction of infix proofs is given in Algorithms 8, 9. The infix prover accepts as

parameters the full blockchain C and the subset C′ which contains the blocks of interest

fro answering a specific predicate in question. the prover calls the suffix prover algorithm

to produce a proof (π, χ) for C. Then, the infix prover adds some auxiliary blocks to the

poof prefix π, ensuring that these auxiliary blocks form a chain with the rest of the blocks

in π. Such auxiliary blocks are collected as follows. For every block of interest B of the

subset C′, the immediate previous (E ′) and immediate next (E) superblocks in π are found.
Then, a chain R which connects E back to B′ is found by the algorithm followDown. B′

contains a pointer to E ′ in its interlink completing the chain. Observe that B′ necessarily

includes a pointer to E ′ because of the choice of E ′.

The followDown algorithm proceeds as follows. Starting from block hi = E, it tries to follow
a pointer to as far as possible without surpassing the block of interest B′. Any pointer that

surpasses B′ is aborted and a pointer of lower is tried, which causes a smaller step within

the skiplist. If a pointer was folllowed without surpassing B′, the operation continues from

A. Polydouri 46

A Study on Superlight Clients under Velvet Fork

Algorithm 8 The Infix Prover for the superblock NIPoPoW protocol [18]

1: function ProveInfixm,k(C,C′,depth)
2: (π, χ)← Prove(m, k)(C)
3: for B′ ∈ C′ do

4: for E ∈ π do

5: if depth(E) ≥ depth(B′) then
6: R← followDown(E,B′, depth)
7: aux← aux ∪R break

8: end if

9: E ′ ← E
10: end for

11: end for

12: return (aux ∪ π, χ)
13: end function

the new pointed block, until eventually B′ is reached. An example execution is illustrated

in Figure 3.8.

Figure 3.8: An infix proof descend. Only blue blocks are included in the proof.Blue blocks of level

4 are part of π, while the blue blocks of level 1 to 3 are produced by the followDown to get to the

block of level 0, which is part of C′.

The verification algorithm is given in Algorithm 10. The algorithm calls the suffix verifier. It

maintains a block-DAG collecting blocks from all proofs received, i.e. all proofs in P. This
DAG is maintained in the blockById hashmap. Using it, ancestors uses simple graph search

to extract the set of ancestor blocks of a block of interest. In the final predicate evaluation

the set of ancestors of the best chain tip’s is passed to the predicate. The ancestors are

included to avoid an adversary who presents an honest chain but skips the block of interest

from the auxiliary blocks in the infix proof.

A. Polydouri 47

A Study on Superlight Clients under Velvet Fork

Algorithm 9 The followDown function which produces the necessary blocks to connect a

superblock hi to a preceding regular block lo [18]

1: function ProveInfixm,k(C,C′,depth)
2: B ← hi

3: aux← []

4: µ← level(hi)
5: while B 6= lo do

6: B′ ← blockById[B.interlink[µ]]
7: if depth[B′] < depth[lo] then
8: µ← µ− 1
9: else

10: aux← aux ∪B
11: B ← B′

12: end if

13: end while

14: return aux
15: end function

Algorithm 10 The verify algorithm for the superblock NIPoPoW infix protocol [18]

1: function ancestors(B, blockById)
2: if B = Gen then

3: return {B}
4: end if

5: C← ∅
6: for B′ ∈ B.interlink do
7: C← C ∪ ancestors(B′)
8: end for

9: return C ∪B
10: end function

11: function verify-infixD
l,m,k(P)

12: blockById← ∅
13: for (π, χ) ∈ P do

14: for B ∈ π do

15: blockById[B.id]← B
16: end for

17: end for

18: π̃ ← best π ∈ P according to suffix verifier

19: return D(ancestors(π̃[−1], blockById))
20: end function

3.6 Succinctness

As background knowledge and in order to show the final contribution of the presented

construction we will now refer to the succinctness of the produced proofs. We will explain

A. Polydouri 48

A Study on Superlight Clients under Velvet Fork

the major shortcomings of superblock NIPoPoWs and an estimation for the proofs’ length

in average case scenarios. The reader should refer to [18] for a detailed analysis. The

content of this section is also mostly borrowed by [18].

The basic weakness of the superblock NIPoPow construction results from the importance

of the rare “lucky” blocks in the chain and the suppression attacks that the adversary can

perform on them, as described in a previous section. In essence, the adversary could

perform such an attack on a target level µ rather easy, since µ-superblock appear rarely
in the chain and the adversary can suppress them with only one or two blocks of any lower

level. Thus, by generating less lucky blocks the adversary has the chance to abort a very

lucky honestly generated block.

Therefore, full succinctness in the standard honest majority model is impossible to prove

for superblock NIPoPoWs. Recall that by reducing superquality through suppression at-

tacks for a sufficiently low level µ the adversary can cause the honest prover to digress in

their proofs from high level superchains down to low-level superchains, causing a linear

proofs to be produced. For instance, if superquality is harmed at µ = 3, the prover will

need to digress down to level µ = 2 and include the whole 2-superchain, which will be of

size |C|/2 in expectation.

The following theorem gives the succinctness estimation for the particular “optimistic” case

where the adversary does not use their (minority) computational power or network power.

Theorem 1 (Optimistic succinctness). If all players are honest and the network schedul-

ing is random, superblock NIPoPoWs produced by honest provers are succinct with the

number of blocks bounded by 4mlog(|C|), with overwhelming probability in m.

A. Polydouri 49

A Study on Superlight Clients under Velvet Fork

A. Polydouri 50

A Study on Superlight Clients under Velvet Fork

4. SUPERBLOCKS UNDER VELVET FORK

4.1 Velvet Interlinks

More recently, velvet forks have been introduced [32]. In a velvet fork, blocks created by

upgraded miners (called velvet blocks) are accepted by unupgraded miners as in a soft

fork. Additionally, blocks created by unupgraded miners are also accepted by upgraded

miners. This allows the protocol to upgrade even if only a minority of miners chooses to

upgrade. To maintain backwards compatibility and to avoid causing forks, the additional

data included in a block is advisory and must be accepted whether it exists or not. Even

if the additional data is invalid or malicious, upgraded nodes (in this context also called

velvet nodes) are forced to accept the blocks. The simplest approach to velvet fork the

chain for interlinking purposes is to have upgraded miners include the interlink pointer in

the blocks they produce, but accept blocks with missing or incorrect interlinks. As we

show in the next section, this approach is flawed and susceptible to unexpected attacks.

A surgical change in the way velvet blocks are produced is necessary to achieve proper

security.

In a velvet fork, only a minority of honest parties needs to support the protocol changes.

We refer to this percentage as the “velvet parameter”.

Definition 8 (Velvet Parameter). The velvet parameter g is defined as the percentage of

honest parties that have upgraded to the new protocol. The absolute number of honest

upgraded parties is denoted nh and it holds that nh = g(n− t).

Velvet forks maintain backwards and forwards compatibility. This requires any block pro-

duced by upgraded miners to be accepted by unupgraded nodes (as in a soft fork), but

also blocks produced by unupgraded miners to be accepted by upgraded nodes. For the

particular case of superblock NIPoPoWs under velvet forks, upgradedminers must include

the interlink data structure within their blocks, but must also accept blocksmissing the inter-

link structure or Velvet forks maintain backwards and forwards compatibility. This requires

any block produced by upgraded miners to be accepted by unupgraded nodes (as in a

soft fork), but also blocks produced by unupgraded miners to be accepted by upgraded

nodes. containing an invalid interlink. Unupgraded honest nodes will produce blocks that

contain no interlink, while upgraded honest nodes will produce blocks that contain truth-

ful interlinks. Therefore, any block with invalid interlinks will be adversarially generated.

However, such blocks cannot be rejected by the upgraded nodes, as that would give the

adversary an opportunity to cause a hard fork.

A. Polydouri 51

A Study on Superlight Clients under Velvet Fork

A block generated by the adversary can thus contain arbitrary data in the interlink and yet

be adopted by an honest party. Because the honest prover is an upgraded full node, it can

determine what the correct interlink pointers are by examining the whole previous chain,

and can thus deduce whether a block contains invalid interlink data. In that case, the

prover can simply treat such blocks as unupgraded. In the context of the attack that will

be presented in the following section, we examine the case where the adversary includes

false interlink pointers.

In any velvet protocol, a specific portion within a block, which is treated as a comment by

unupgraded nodes, is reused to contain auxiliary data by upgraded miners. Because

these auxiliary data can be deterministically calculated, upgraded full nodes can verify

the authenticity of the data in a new block they receive. We distinguish blocks based on

whether they follow the velvet protocol rules or they deviate from them.

Definition 9 (Smooth and Thorny blocks). A block in a velvet protocol upgrade is called

smooth if it contains auxiliary data and the data corresponds to the honest upgraded pro-

tocol. A block is called thorny if it contains auxiliary data, but the data differs from the

honest upgraded protocol. A block can be neither smooth nor thorny if it does not contain

auxiliary data.

In the case of velvet forks for interlink purposes, the auxiliary data consists of the Merkle

Tree containing the interlink pointers to the most recent superblock ancestor at every level

µ.

4.1.1 A naïve velvet scheme.

In previous work [18], it was conjectured that superblock NIPoPoWs remain secure under

a velvet fork. We call this scheme the Naïve Velvet NIPoPoW protocol, because it is not

dissimilar from the NIPoPoW protocol in the soft fork case. In particular, the naïve velvet

NIPoPoW protocol that was put forth works as follows. Each upgraded honest miner

attempts to mine a block b that includes interlink pointers in the form of a Merkle Tree

included in its coinbase transaction. For each level µ, the interlink contains a pointer to the
most recent among all the ancestors of b that have achieved at least level µ, regardless of
whether the referenced block is upgraded or not and regardless of whether its interlinks are

valid. Unupgraded honest nodes will keep mining blocks on the chain as usual; because

the status of a block as superblock does not require it to be mined by an upgraded miner,

the unupgraded miners contribute mining power to the creation of superblocks as desired.

The prover in the naïve velvet NIPoPoWs then worked as follows. The honest prover

constructed the NIPoPoW proof πχ as usual by selecting certain superblocks from his

chain C as representatives in π and by setting χ = C[−k:]. The outstanding issue in this

case, however, is that these blocks in π do not form a chain because, while superblocks,

some of them may not be upgraded and they may not contain any pointers (or they may

contain invalid pointers). The honest prover needs to provide a connection between two

consecutive blocks π[i+1] and π[i] in the superchain, and suppose π[i] is the most recent

µ-superblock preceding π[i + 1]. The block π[i + 1] is a superblock and exists at some

A. Polydouri 52

A Study on Superlight Clients under Velvet Fork

position j in the underlying chain C of the prover, i.e., at π[i + 1] = C[j]. If C[j] is a

smooth block, then the interlink pointer at level µ within it can be used directly. Otherwise,

the prover used the previd pointer of π[i+1] = C[j] to repeatedly reach the parents of C[j],
namely C[j − 1],C[j − 2], · · · until a smooth block b between π[i] and π[i+ 1] was found in

C. The block b then contains a pointer to π[i], as π[i] is also the most recent µ-superblock
ancestor of b. The blocks C[j− 1],C[j− 2], · · · , b are then included in the proof to illustrate
that π[i] is an ancestor of π[i+ 1].

The argument for why the above scheme work is as follows. First of all, the scheme does

not add many new blocks to the proof. In expectation, if a fully honestly generated chain

is processed, after in expectation 1
g
blocks have been traversed, a smooth block will be

found and the connection to π[i] will be made. Thus, the number of blocks needed in

the proof increases by a factor of 1
g
. Security was argued as follows: An honest party

includes in their proof as many blocks as in a soft forked NIPoPoW, albeit by using an

indirect connection. The crucial feature is that it is not missing any superblocks. Even

if the adversary creates interlinks that skip over some honest superblocks, the honest

prover will not utilize these interlinks, but will use the “slow route” of level 0 instead. The
adversarial prover, on the other hand, can only use honest interlinks as before, but may

also use false interlinks in blocks mined by the adversary. However, these false interlinks

cannot point to blocks that are of incorrect level. The reason is that the verifier can look at

the hash of each block to verify its level and therefore cannot be lied to. The only problem

a fake interlink can cause is that it can point to a µ-superblock which is not the most recent

ancestor, but some other block. It was then argued that the only other possibility was to

point to blocks that are older µ-superblock ancestors in the same chain, as illustrated in

Figure 4.1. However, the adversarial prover can only harm herself by making use of these

pointers, as the result will simply by a superchain with fewer blocks.

0 0 0 0 0 00

22
1 1 1 1

3G 3

Figure 4.1: A thorny pointer of an adversarial block, colored black, in an honest party’s chain. The

thorny block points to a 1-superboock which is an ancestor 1-superblock, but not the most recent

ancestor 1-superblock.

As such, we conclude that the honest verifier comparing the honest superchain against

the adversarial superchain will reach the same conclusion in the velvet case as he would

have reached in the soft fork case: Because the honest superchain in the velvet case

contains the same amount of blocks as the honest superchain in the soft fork case, but

the adversarial superchain in the velvet case contains fewer blocks than in the soft fork

A. Polydouri 53

A Study on Superlight Clients under Velvet Fork

case, the comparison will remain in favor of the honest party. As we will see in the next

section, this conclusion is far from straightforward.

4.2 The Chainsewing Attack

We now make the critical observation that a thorny block can include interlink pointers

to blocks that are not its own ancestors in the 0-level chain. Because it must contain a

pointer to the hash of the block it points to, they must be blocks that have been generated

previously, but they may belong to a different 0-level chain. This is shown in Figure 4.2.

G

A

A'

Figure 4.2: A thorny block, colored black, in an honest party’s chain, uses its interlink to point to a

fork chain.

In fact, as the interlink vector contains multiple pointers, each pointer may belong to a

different fork. This is illustrated in Figure 4.3. The interlink pointing to arbitrary directions

resembles a thorny bush.

G

A

A'

Figure 4.3: A thorny block appended to an honest party’s chain. The dashed arrows are interlink

pointers.

We now present the chain-sewing attack against the naïve velvet NIPoPoW protocol. The

attack leverages thorny blocks in order to enable the adversary to usurp blocks belonging

to a different chain and claim it as their own. Taking advantage of thorny blocks, the

adversary can produce suffix proofs containing an arbitrary number of blocks belonging

to several fork chains. The attack works as follows.

A. Polydouri 54

A Study on Superlight Clients under Velvet Fork

Assume chain CB was adopted by an honest party B and chain CA, a fork of CB at some

point, is maintained by the adversary A. After the fork point b = (CB ∩ CA)[−1], the hon-

est party produces a block extending b in CB containing a transaction tx. The adversary

includes a conflicting (double spending) transaction tx′ in a block extending b in CA. The

adversary wants to produce a suffix proof convincing a light client that CA is the longer

chain. In order to achieve this, the adversary needs to include a greater amount of total

proof-of-work in her suffix proof, πA, in comparison to that included in the honest party’s

proof, πB, so as to achieve πA ≥m πB. Towards this purpose, she miners intermittently

on both CB and CA. She produces some thorny blocks in both chains CA and CB which

will allow her to usurp selected blocks of CB and present them to the light client as if they

belonged to CA in her suffix proof.

The general form of this attack for an adversary sewing blocks to one forked chain is

illustrated in Figure 4.4. Dashed arrows represent interlink pointers of some level µA.

Starting from a thorny block in the adversary’s forked chain and following the interlink

pointers, jumping between CA and CB, a chain of blocks crossing forks is formed, which

the adversary claims as part of her suffix proof. Blocks of both chains are included in this

proof and a verifier cannot distinguish the non-smooth pointers participating in this proof

chain and, as a result, considers it a valid proof. Importantly, the adversary must ensure

that any blocks usurped from the honest chain are not included in the honest NIPoPoW

to force the NIPoPoW verifier to consider an earlier LCA block b; otherwise, the adversary
will compete after a later fork point, negating any sewing benefits.

Text

CA

CB

G

Figure 4.4: Generic Chainsewing Attack. CB is the chain of an honest party and CA the adversary’s

chain. Adversarially generated blocks are colored black. Dashed arrows represent interlink

pointers included in the adversary’s suffix proof. Wavy lines imply one or more blocks.

This generic attack can be made concrete as follows. The adversary chooses to attack at

some level µA ∈ N (ideally, if the honest verifier does not impose any succinctness limits,

the adversary sets µA = 0). As shown in Figure 4.5, she first generates a block b′ in her

forked chain CA containing the double spend, and a block a′ in the honest chain CB which

thorny-points to b′. Block a′ will be accepted as valid in the honest chain CB despite the

invalid interlink pointers. The adversary also chooses a desired superblock level µB ∈ N
that she wishes the honest party to attain. Subsequently, the adversary waits for the

A. Polydouri 55

A Study on Superlight Clients under Velvet Fork

honest party to mine and sews any blocks mined on the honest chain that are of level

below µB. However, she must bypass blocks that she thinks the honest party will include

in their final NIPoPoW, which are of level µB (the blue block designated c in Figure 4.5).

To bypass a block, the adversary mines her own thorny block d on top of the current

honest tip (which could be equal to the block to be bypassed, or have progressed further),

containing a thorny pointer to the block preceding the block to be bypassed and hoping

that it will not exceed level µB (if it exceeds that level, she discards her d block). Once

m blocks of level µB have been bypassed in this manner, the adversary starts bypassing

blocks of level µB−1, because the honest NIPoPoW will start including lower-level blocks.

The adversary continues descending in levels until a sufficiently low level minµB has been

reached at which point it becomes uneconomical for the adversary to continue bypassing

blocks (typically for a 1/4 adversary, minµB = 2). At this point, the adversary forks off of

the last sewed honest block. This last honest block will be used as the last portion of the

adversarial π part of the NIPoPoW proof. She then independently mines a k-long suffix

for the χ portion and creates her NIPoPoW πχ. Lastly, she waits for enough time to pass

so that the honest party’s chain progresses sufficiently to make the previous bypassing

guesses correct and so that no blocks in the honest NIPoPoWs coincide with blocks that

have not been bypassed. This requires to wait for the following blocks to appear in the

honest chain: 2m blocks of level µB; after the mth first µB-level block, a further 2m blocks

of level µB − 1; after themth such block, a further 2m blocks of the preceding level, and so

on until level 0 is reached.

b
b’

a’ c d

Figure 4.5: A portion of the concrete Chainsewing Attack. The adversary’s blocks are shown in

black, while the honestly generated blocks are shown in white. Block b′ contains a double spend,
while block a′ sews it in place. The blue block c is a block included in the honest NIPoPoW, but it is

bypassed by the adversary by introducing block d which, while part of the honest chain, points to
c’s parent. After a point, the adversary forks off and creates k = 3 of their own blocks.

In this attack the adversary uses thorny blocks to “sew” portions of the honestly adopted

chain to her own forked chain. This justifies the name given to the attack. Note that in

order to make this attack successful, the adversary needs only produce few superblocks,

but she can arrogate an arbitrarily large number of honestly produced blocks. Thus the

attack succeeds with non-negligible probability.

Chainsewing Attack Simulation

To measure the success rate of the chainsewing attack against the naïve NIPoPoW con-

struction, we implemented a simulation to estimate the probability of the adversary gener-

ating a winning NIPoPoW against the honest party. Our experimental setting is as follows.

A. Polydouri 56

A Study on Superlight Clients under Velvet Fork

We fix µA = 0 and µB = 10 as well as the required length of the suffix k = 15. We fix the

adversarial mining power to t = 1 and n = 5 which gives a 20% adversary. We then vary

the NIPoPoW security parameter for the π portion fromm = 3 tom = 30. We then run 100
Monte Carlo simulations and measure whether the adversary was successful in generat-

ing a competing NIPoPoW which compares favourably against the adversarial NIPoPoW.

For performance reasons, our model for the simulation slightly deviates from the Backbone

model on which our theoretical analysis is based and instead follows the simpler model of

Ren [26]. This model favours the honest parties, and so provides a lower bound for prob-

ability of adversarial success, strengthening our results. Here, block arrival is modelled

as a Poisson process and blocks are deemed to belong to the adversary with probabil-

ity t/n, while they are deemed to belong to the honest parties with probability (n − t)/n.
Block propagation is assumed instant and every party learns about a block as soon as it

is mined. As such, the honest parties are assumed to work on one common chain and the

problem of non-uniquely successful rounds does not occur.

5 10 15 20 25 30

security parameter m

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
at

ta
ck

su
cc

es
s

Chainsewing attack success

Figure 4.6: The measured probability of success of the Chainsewing attack mounted under our

parameters for varying values of the security parameter m. Confidence intervals at 95%.

We consistently find a success rate of approximately 0.26 which remains more or less

constant independent of the security parameter, as expected. We plot our results with 95%
confidence intervals in Figure 4.6. This is in contrast with the best previously known attack

in which, for all examined values of the security parameter, the probability of success

remains below 1%.

A. Polydouri 57

A Study on Superlight Clients under Velvet Fork

4.3 Protocol Update

In order to eliminate the Chainsewing Attack we propose an update to the velvet NIPoPoW

protocol. The core problem is that, in her suffix proof, the adversary was able to claim not

only blocks of shorter forked chains, but also arbitrarily long parts of the chain generated by

an honest party. Since thorny blocks are accepted as valid, the verifier cannot distinguish

blocks that actually belong in a chain from blocks that only seem to belong in the same

chain because they are pointed to from a thorny block.

The idea for a secure protocol is to distinguish the smooth from the thorny blocks, so that

smooth blocks can never point to thorny blocks. In this way we can make sure that thorny

blocks acting as passing points to fork chains, as block a′ does in Figure 4.5, cannot be

pointed to by honestly generated blocks. Therefore, the adversary cannot utilize honest

mining power to construct a stronger suffix proof for her fork chain. Our velvet construc-

tion mandates that honest miners create blocks that contain interlink pointers pointing

only to previous smooth blocks. As such, newly created smooth blocks can only point

to previously created smooth blocks and not thorny blocks. Following the terminology of

Section ??, the smoothness of a blocks in this new construction is a stricter notion than

smoothness in the naïve construction.

In order to formally describe the suggested protocol patch, redefine the notion of a smooth

block recursively by introducing the notion of a smooth interlink pointer.

Definition 10 (Smooth Pointer). A smooth pointer of a block b for a specific level µ is the

interlink pointer to the most recent µ-level smooth ancestor of b.

We describe a protocol patch that operates as follows. The superblock NIPoPoW protocol

works as usual but each honest miner constructs smooth blocks whose interlink contains

only smooth pointers; thus it is constructed excluding thorny blocks. In this way, although

thorny blocks are accepted in the chain, they are not taken into consideration when up-

dating the interlink structure for the next block to be mined. No honest block could now

point to a thorny superblock that may act as the passing point to the fork chain in an ad-

versarial suffix proof. Thus, after this protocol update the adversary is only able to inject

adversarially generated blocks from an honestly adopted chain to her own fork. At the

same time, thorny blocks cannot participate in an honestly generated suffix proof except

for some blocks in the proof’s suffix (χ). This argument holds because thorny blocks do

not form a valid chain along with honestly mined blocks anymore. Consequently, as far

as the blocks included in a suffix proof are concerned, we can think of thorny blocks as

belonging in the adversary’s fork chain for the π part of the proof, which is the comparing

part between proofs. Figure 4.7 illustrates this remark. The velvet NIPoPoW verifier is

also modified to only follow interlink pointers, and never previd pointers (which could be

pointing to thorny blocks, even if honestly generated).

With this protocol patch we conclude that the adversary cannot usurp honest mining power

to her fork chain. This comes with the cost that the honest prover cannot utilize thorny

blocks despite belonging in the honest chain. Due to this fact we define the Velvet Honest

A. Polydouri 58

A Study on Superlight Clients under Velvet Fork

b

CA

G

I.

CΒ bG

II.

CΒ

CA

Figure 4.7: The adversarial fork chain CA and chain CB of an honest party. Thorny blocks are

colored black. Dashed arrows represent interlink pointers. Wavy lines imply one or more blocks.

After the protocol update, when an adversarially generated block is sewed from CB into the

adversary’s suffix proof the verifier conceives CA as longer and CB as shorter. I: The real picture of

the chains. II: Equivalent picture from the verifier’s perspective considering the blocks included in

the corresponding suffix proof for each chain.

Majority Assumption for (1/4)-bounded adversary under which the security of the protocol

is guaranteed.

Definition 11 (Velvet Honest Majority). Let nh be the number of upgraded honest miners.

Then t out of total n parties are corrupted such that
t

nh

<
1− δv

3
.

The number of upgraded honest miners can be calculated via the “velvet parameter”.

Definition 8 (Velvet Parameter). Let g be the velvet parameter for NIPoPoW protocols.

Then if nh the upgraded honest miners and n the total number of miners t out of which are
corrupted, it holds that nh = g(n− t).

The following Lemmas come as immediate results from the suggested protocol update.

Lemma 4. A velvet suffix proof constructed by an honest party cannot contain any thorny

block.

Lemma 5. Let PA = (πA, χA) be a velvet suffix proof constructed by the adversary and

block bs, generated at round rs, be the most recent smooth block in the proof. Then

∀r : r < rs no thorny blocks generated at round r can be included in PA.

Proof. By contradiction. Let bt be a thorny block generated at some round rt < rs. Sup-
pose for contradiction that bt is included in the proof. Then, because PA is a valid chain

as for interlink pointers, there exist a block path made by interlink pointers starting from

bs and resulting to bt. Let b
′ be the most recently generated thorny block after bt and be-

fore bs included in PA. Then b′ has been generated at a round r′ such that rt ≤ r′ < rs.
Then the block right after block b′ in PA must be a thorny block since it points to b′ which
is thorny. But b′ is the most recent thorny block after bt, thus we have reached a contra-

diction.

A. Polydouri 59

A Study on Superlight Clients under Velvet Fork

Lemma 6. Let PA = (πA, χA) be a velvet suffix proof constructed by the adversary. Let bt
be the oldest thorny bock included in PA which is generated at round rt. Then any block

b = {b : b ∈ PA ∧ b generated at r ≥ rt} is thorny.

Proof. By contradiction. Suppose for contradiciton that bs is a smooth block generated at

round rs > rt. Then from Lemma 5 any block generated at round r < rs is smooth. But bt
is generated at round rt < rs and is thorny, thus we have reached a contradiction.

The following corollary emerges immediately from Lemmas 5, 6. This result is illustrated

in Figure 4.8.

Corollary 1. Any adversarial proof PA = (πA, χA) containing both smooth and thorny

blocks consists of a prefix smooth subchain followed by a suffix thorny subchain.

G

smooth prefix thorny suffix

Figure 4.8: General case of the adversarial velvet suffix proof PA = (πA, χA) consisting of an initial

part of smooth blocks followed by thorny blocks.

We now describe the algorithms needed by the upgraded miner, prover and verifier. The

upgraded miner acts as usual except for including the interlink of the newborn block in the

coinbase transaction. In order to construct an interlink containing only the smooth blocks,

the miner keeps a copy of the “smooth chain” (CS) which consists of the smooth blocks

existing in the original chain C. The algorithm for extracting the smooth chain out of C is

given in Algorithm 11. Function isSmoothBlock(B) checks whether a block B is smooth

by calling isSmoothPointer(B,p) for every pointer p in B’s interlink. Function isSmooth-

Pointer(B,p) returns true if p is a valid pointer, in essence a pointer to the most recent

smooth velvet for the level denoted by the pointer itself. The updateInterlink algorithm is

given in Algorithm 12. It is the same as in the case of a soft fork, but works on the smooth

chain CS instead of C.
The construction of the velvet suffix prover is given in Algorithm 13. Again it deviates

from the soft fork case by working on the smooth chain CS instead of C. Lastly, the Verify

algorithm for the NIPoPoW suffix protocol remains the same as in the case of hard or soft

fork, keeping in mind that no previd links can be followed when verifying the ancestry of

the chain to avoid hitting any thorny blocks.

Impossibility of a secure protocol for (1/2)-bounded adversary

During our study on the problem we failed to prove the security of a protocol construction

under the hypothesis (1
2
)-bounded adversary, though we tried for a number of them. We

A. Polydouri 60

A Study on Superlight Clients under Velvet Fork

Algorithm 11 Smooth chain for suffix proofs

1: function smoothChain(C)
2: CS ← {G}
3: k ← 1
4: while C[−k] 6= G do
5: if isSmoothBlock(C[−k]) then
6: CS ← CS ∪ C[−k]
7: end if

8: k ← k + 1
9: end while

10: return CS

11: end function

12: function isSmoothBlock(B)
13: if B = G then
14: return true
15: end if

16: for p ∈ B.interlink do
17: if ¬isSmoothPointer(B, p) then
18: return false
19: end if

20: end for

21: return true
22: end function

23: function isSmoothPointer(B, p)
24: b← Block(B.prevId)
25: while b 6= p do
26: if level(b) ≥ level(p) ∧ isSmoothBlock(b) then
27: return false
28: end if

29: if b = G then
30: return false
31: end if

32: b← Block(b.prevId)
33: end while

34: return isSmoothBlock(b)
35: end function

finally concluded that such a secure NIPoPoW construction is impossible under velvet

fork conditions. Though it is hard to provide a typical proof for this claim, as one should

consider any possible construction, we try to argue for it in this section. Our hope is that

this discussion will help the reader to obtain a deeper understanding on the problem, as it

resembles our own research journey.

Claim: Assume t adversarial out of n total parties and nh = g(n − t) the number of up-

A. Polydouri 61

A Study on Superlight Clients under Velvet Fork

Algorithm 12 Velvet updateInterlink

1: function updateInterlinkVelvet(CS)

2: B′ ← CS[−1]
3: interlink← B′.interlink
4: for µ = 0 to level(B′) do
5: interlink[µ]← id(B′)
6: end for

7: return interlink
8: end function

Algorithm 13 Velvet Suffix Prover

function ProveVelvetm,k(CS)

B ← CS[0]
for µ = |CS[−k].interlink| down to 0 do

α← CS[:− k]{B:}↑µ
π ← π ∪ α
B ← α[−m]

end for

χ← CS[−k:]
return πχ

end function

graded honest parties. There is no construction for superblock NIPoPoW suffix proofs

under velvet fork conditions which is both succinct and secure for every adversary, such

that
t

nh

< (1− δ).

Discussion. As explained earlier, since the adversary may use the interlink structure so

as to include pointers to arbitrary blocks, she may construct her own chain history utilizing

the non-smooth pointers included in the thorny blocks she generates. Such an example is

given in Figure 4.4. Let us consider a protocol construction p which allows for superblock

NIPoPoW velvet suffix proofs and is secure for 1/2-bounded adversary. Our main goals

are p to be both secure and succinct. We are even willing to loose our non-interactivity

limitations to make it possible to challenge the submitted proofs, so that an honest player

can contest against an inconsistent proof, if this would be of needed. However, note that

in such a case the same power to challenge any submitted proof is also provided to the

adversary.

Now assume an adversary of
1− δ

2
<

t

nh

< 1 − δ, meaning that the adversarial parties

count more than 1/3 but less than the 1/2 of the upgraded honest parties. Then, by follow-

ing a selfish mining strategy [9][7] it is possible for the adversary to maintain more than

50% of the blocks in the longest valid chain. In particular, consider that the adversary

mines selfish, meaning that for every block that she mines, she does not immediately

announce it to the network. Instead, she waits until an honestly generated block is an-

A. Polydouri 62

A Study on Superlight Clients under Velvet Fork

nounced and at this time she announces her block too. In the worst case, consider that

the adversary has a network advantage regarding the relay of her blocks. Thus in case of

two competing blocks in a round the adversarial one will be appended to the chain, while

the honest block is discarded as a temporary fork. Because of this attack the block distri-

bution in the chain between adversarial and honest parties can be as illustrated in Figure

4.9 in the worst case scenario. For (1/3) adversary half of the blocks in the chain are ex-

pected to be adversarial, while for (1/2) adversary no honest blocks are included in the

chain.

1/2

1/3
2/3

hashing	power #blocks	in	chain

I.	t	=	n/3

>1/3
< 2/3

II.	t	>	n/3

1/2

hashing	power #blocks	in	chain

Figure 4.9: Pie chart of adversarial (black) and honest (white) blocks in the chain according to their

corresponding hashing power. I. With t = n/3, 50% of the total blocks are adversarially generated

in the worst case scenario. II. With t > n/3, more than half of the total blocks are adversarially

generated in the worst case scenario.

Now observe that in the chainsewing attack the prevId block property between two se-

quential blocks is violated while constructing an attacking proof. Therefore, an initial naive

approach would be to resort to the prevId pointers which have been validated with the

proof-of-work, in order to contest and unveil an invalid proof chain. However, since the

main purpose of our work is to achieve succinctness, the prevId relations could not be uti-
lized in a viable manner in order to contest adversarial proofs, as it would require data of

linear length to that of the whole chain. We thus conclude that we should mostly rely on the

information given by the interlink pointers as far as the validity of any proof is concerned,

or else we have no chance in keeping our protocol construction efficient.

Now assume, to honest parties’ favor, that given a block b we have the means to efficiently

A. Polydouri 63

A Study on Superlight Clients under Velvet Fork

inspect all the blocks in the intelrinked chain where b belongs. This could be implemented

by adding an appropriate Merkle-Mountain-Range root in each block header. Now one

should consider the following choices regarding the next step in the protocol construction:

1. either require proofs that additionally contain consistency sub-proofs as for the in-

terlinked chain history of each block included or

2. permit inconsistencies in the interlinked chain history of the included blocks in order

to avoid excluding adversarially generated blocks from honest proofs, with the hope

that an honest prover will be able to unveil a submitted proof that utilizes invalid

interlink pointers by using the history commited in the MMRs.

Observe that neither of these approaches can provide a secure protocol.

In the first case, the requirement for consistency sub-proofs essentially compels the ad-

versary to comply to the honest chain history, if she means to utilize honeslty generated

blocks in her proof. However, observe that the adversary can even maintain a consistent

interlink chain by using only her own mined blocks and these blocks may overwhelm the

honestly generated ones, as shown in Figure 4.9. At the same time, the honest provers

are obliged to exclude the inconsistent adversarially generated blocks from their proofs,

thus being doomed to utilize only a minority of blocks resulting to non-winning proofs with

non-negligible probability.

In the second case, in an attempt to overcome the shortcomings of the previous approach,

no chain consistency proofs are required. The idea is that an honest prover inspecting the

submitted proofs can detect an invalid proof and try to efficiently prove the broken prevId
property. Remember that he cannot just send the prevId pointers, as this would destroy

the succinctness of our protocol as discussed before. He should use the interlink chain

history commintments instead. Consider that after inspecting an invalid proof the honest

prover observes a block b pointing to a superblock b′ of level µb′ , but b, b
′ are not connected

with prevId pointers. This means that b′ belongs to a fork chain. In consequence, any

honest block generated after b contains a commitment for the correct µb′ superblock that

should be pointed by the adversarial block b. Now consider that the honest prover can

submit a merkle proof denoting the inconsistency in order to make the adversarial proof

fail. However, this power of calling into question the consistency of a block in the proof is

also a power for the adversary, who can question the consistency of honest blocks in an

honest proof based on any adversarial block included in the proof. The problem is, that

the verifier has no way to distinguish the chain history commitments between honest and

adversarial parties. Consequently, this approach would fail to construct a secure protocol

too.

We conclude that such a protocol p, both succinct and secure, could not exist for (1/2)-

bounded adversary.

A. Polydouri 64

A Study on Superlight Clients under Velvet Fork

4.4 Analysis of Velvet Protocol Patch

In this section, we prove the security of our scheme. Before we delve in detail into the

formal details of the proof, let us first observe why the 1/4 bound is necessary through a

combined attack on our construction.

After the suggested protocol update the honest prover cannot include any thorny blocks

in his suffix NIPoPoW even if these blocks are part of his chain CB. The adversary may

exploit this fact as follows. She tries to suppress high-level honestly generated blocks in

CB, in order to reduce the blocks that can represent the honest chain in a proof. This can be

done by mining a suppressive block on the parent of an honest superblock on the honest

chain and hoping that she will be faster than the honest parties. In parallel, while shemines

suppressive thorny blocks on CB she can still use her blocks in her NIPoPoW proofs,

by chainsewing them. Consequently, even if a suppression attempt does not succeed, in

case for example a second honestly generated block is published soon enough, she does

not lose the mining power spent but can still utilize it by including the block in her proof.

More in detail, consider the adversary who wishes to attack a specific block level µB and

generates a NIPoPoW proof containing a block b of a fork chain which contains a double

spending transaction. Then she acts as follows. She mines on her fork chain CA but when

she observes a µB-level block in CB she tries to mine a thorny block on CB in order to

suppress this µB block. This thorny block contains an interlink pointer which jumps onto

her fork chain, but a previd pointer to the honest chain. If the suppression succeeds she

has managed to damage the distribution of µB-superblocks within the honest chain, at the

same time, to mine a block that she can afterwards use in her proof. If the suppression

does not succeed she can still use the thorny block in her proof. The above are illustrated

in Figure 4.10.

b

G

double spending

Figure 4.10: The adversary suppresses honestly generated blocks and chainsews thorny blocks in

CB . Blue blocks are honestly generated blocks of some level of attack. The adversary tries to

suppress them. If the suppression is not successful, the adversary can still use the block she

mined in her proof.

The described attack is a combined attack which combines both superblock suppression

and chainsewing. This combined attack forces us to consider the Velvet Honest Majority

A. Polydouri 65

A Study on Superlight Clients under Velvet Fork

Assumption of (1/4)-bounded adversary, so as to guarantee that the unsuppressed blocks

in CB suffice for constructing winning NIPoPoW proofs against the adversarial ones.

For the analysis, we use the techniques developed in the Backbone line of work [9]. To-

wards that end, we follow their definitions and call a round successful if at least one honest

party made a successful random oracle query during the round, i.e., a query b such that

H(b) ≤ T . A round in which exactly one honest party made a successful query is called

uniquely successful (the adversary could have also made successful queries during a

uniquely successful round). Let Xr ∈ {0, 1} and Yr ∈ {0, 1} denote the indicator random

variables signifying that r was a successful or uniquely successful round respectively, and
let Zr ∈ N be the random variable counting the number of successful queries of the ad-

versary during round r. For a set of consecutive rounds U , we define Y (U) =
∑

r∈U Yr

and similarly define X and Z. We denote f = E[Xr] < 0.3 the probability that a round is

successful.

Let λ denote the security parameter (the output size κ of the random oracle is taken to

be some polynomial of λ). We make use of the following known [9] results. It holds that

pq(n− t) <
f

1− f
. For the Common Prefix parameter, it holds that k ≥ 2λf . Additionally,

for any set of consecutive rounds U , it holds that E[Z(U)] < t
n−t
· f
1−f
|U |, E[X(U)] < pq(n−

t)|U |, E[Y (U)] > f(1−f)|U |. An execution is called typical if the random variablesX,Y, Z
do not deviate significantly (more than some error term ε < 0.3) from their expectations. It

is known that executions are typical with overwhelming probability in λ. Typicality ensures
that for any set of consecutive rounds U with |U | > λ it holds that Z(U) < E[Z(U)] −
εE[X(U)] and Y (U) > (1 − ε)E[Y (U)]. From the above we can conclude to Y (U) >

(1−ε)f(1−f)|U | and Z(U) <
t

n− t
· f

1− f
|U |+εf |U | which will be used in our proofs. We

consider f <
1

20
a typical bound for parameter f . This is because in our (1/4)-bounded

adversary assumption we need to reach about 75% of the network, which requires about

20 seconds [4]. Considering also that in Bitcoin the block generation time is in expectation

600 seconds, we conclude to an estimate f =
18

600
or f = 0.03.

The following definition and lemma are known [33] results and will allow us to argue that

some smooth superblocks will survive in all honestly adopted chains. With foresight, we

remark that we will take Q to be the property of a block being both smooth and having

attained some superblock level µ ∈ N.

Definition 9 (Q-block). A block property is a predicate Q defined on a hash output h ∈
{0, 1}κ. Given a block propertyQ, a valid block with hash h is called aQ-block ifQ(h) holds.

Lemma 7 (Unsuppressibility). Consider a collection of polynomially many block properties

Q. In a typical execution every set of consecutive rounds U has a subset S of uniquely

successful rounds such that

• |S| ≥ Y (U)− 2Z(U)− 2λf(
t

n− t
· 1

1− f
+ ε)

A. Polydouri 66

A Study on Superlight Clients under Velvet Fork

• for any Q ∈ Q, Q-blocks generated during S follow the distribution as in an unsup-

pressed chain

• after the last round in S the blocks corresponding to S belong to the chain of any

honest party.

We now apply the above lemma to our velvet construction. The following results lie at the

heart of our security proof and allows us to formally argue that an honestly adopted chain

will have a better superblock score than an adversarially generated chain.

Lemma 8. Consider Algorithm 12 under velvet fork with parameter g and (1/4)-bounded

velvet honest majority. Let U be a set of consecutive rounds r1 · · · r2 and C the chain

of an honest party at round r2 of a typical execution. Let CS
U = {b ∈ C : b is smooth ∧

b was generated during U}. Let µ, µ′ ∈ N. Let C′ be a µ′ superchain containing only

adversarial blocks generated during U and suppose |CS
U↑µ| > k. Then for any δ3 ≤

3λf

5
it

holds that 2µ
′|C′| < 2µ(|CS

U↑µ|+ δ3).

Proof. From the Unsuppressibility Lemma we have that there is a set of uniquely success-

ful rounds S ⊆ U , such that |S| ≥ Y (U)−2Z(U)−δ′, where δ′ = 2λf(
t

n− t
· 1

1− f
+ε). We

also know that Q-blocks generated during S are distributed as in an unsuppressed chain.

Therefore considering the property Q for blocks of level µ that contain smooth interlinks

we have that |CS
U↑µ| ≥ (1− ε)g2−µ|S|. We also know that for the total number of µ′-blocks

the adversary generated during U that |C′| ≤ (1 + ε)2−µ′
Z(U). Then we have to show that

(1−ε)g(Y (U)−2Z(U)−δ′) > (1+ε)Z(U) or ((1+ε)+2g(1−ε))Z(U) < g(1−ε)(Y (U)+δ′).
But it holds that (1 + ε) + 2g(1− ε) < 3, therefore it suffices to show that

3Z(U) < g(1− ε)(Y (U) + δ′)− 2µδ3 (4.1)

Substituting in Equation ?? the bounds of X, Y , Z discussed above, it suffices to show

that

3[
t

n− t
· f

1− f
|U |+ εf |U |] < (1− ε)g[(1− ε)f(1− f)|U | − δ′]− 2µδ3

or

3f |U | f

1− f
· t

n− t
+ 3εf |U | < (1− ε)g[(1− ε)f(1− f)|U | − δ′]− 2µδ3

or
t

n− t
<

(1− ε)g[(1− ε)f(1− f)|U | − δ′]− 3εf |U | − 2µδ3

3
f

1− f
|U |

or

t

n− t
<

(1− ε)g[(1− ε)f(1− f)− δ′

|U |
]− 3εf − 2µδ3

|U |

3
f

1− f

A. Polydouri 67

A Study on Superlight Clients under Velvet Fork

But ε(1− f)� 1 thus we have to show that

t

n− t
<

(1− ε)g[(1− ε)f(1− f)− δ′

|U |
]− 2µδ3
|U |

3
f

1− f

− ε′

or

t

n− t
<

g

3
·
(1− ε)2f(1− f)− (1− ε)δ′

|U |
− 2µδ3
|U |

f

1− f

− ε′ (4.2)

In order to show Equation 4.2 we use f ≤ 1

20
which is a typical bound for our setting as

discussed above. Because all blocks in Cwere generated during U and |C| > k, |U | follows
negative binomial distribution with probability 2−µpq(n − t) and number of successes k.

Applying a Chernoff bound we have that |U | > (1− ε)
k

2−µpq(n− t)
. Using the inequalities

k ≥ 2λf and pq(n− t) <
f

1− f
, we deduce that |U | > (1− ε)2µ2λ(1− f). So we have that

δ′

|U |
<

2λf(
t

n− t

1

1− f
+ ε)

(1− ε)2µ2λ(1− f)

or
δ′

|U |
<

t

n− t
· f

(1− ε)(1− f)2
+ ε < 0.01 + ε

We also know that δ3 ≤
3λf

5
, so

2µδ3
|U |

<
2µ

3λf

5
2µ2λ(1− f)

or
2µδ3
|U |

<
3f

10(1− f)
< 0.01 + ε

By substituting the above and the typical f parameter bound in Equation (4.2) we conclude

that it suffices to show that
t

n− t
<

1− ε′′

3
g which is equivalent to

t

n− t
<

1− δv
3

g for

ε′′ = δv, which is the (1/4) velvet honest majority assumption, so the claim is proven.

Lemma 9. Consider Algorithm 12 under velvet fork with parameter g and (1/4)-bounded

velvet honest majority. Consider the property Q for blocks of level µ. Let U be a set of

consecutive rounds and C the chain of an honest party at the end ofU of a typical execution

and CU = {b ∈ C : b was generated during U}. Suppose that no block in CU is of level µ.

Then |U | ≤ δ1 where δ1 =
(2 + ε)2µ + δ′

(1− ε)f(1− f)− 2
t

n− t

f

1− f
− 3εf

.

A. Polydouri 68

A Study on Superlight Clients under Velvet Fork

Proof. The statement results immediately form the Unsuppressibility Lemma. Suppose

for contradiciton that |U | > δ1. Then from the Unsuppressibility Lemma we have that there

is a subset of consecutive rounds S of U for which it holds that |S| ≥ Y (U) − 2Z(U) − δ′

where δ′ = 2λf(
t

n− t
· 1

1− f
+ ε). By substituting Y (U) > (1− ε)f(1− f)|U | and Z(U) <

t

n− t

f

1− f
+εf |U | we have that |S| > (2+ε)2µ butQ-blocks generated during S follow the

distribution as in a chain where no suppression attacks occur. Therefore at least one block

of level µ would appear in CU , thus we have reached a contradiction and the statement is

proven.

Theorem 2 (Suffix Proofs Security under velvet fork). Assuming honest majority under

velvet fork conditions (8) such that t ≤ (1−δv)
nh

3
where nh the number of upgraded honest

parties, the Non-Interactive Proofs of Proof-of-Work construction for computable k-stable
monotonic suffix-sensitive predicates under velvet fork conditions in a typical execution is

secure.

Proof. By contradiction. Let Q be a k-stable monotonic suffix-sensitive chain predicate.

Assume for contradiction that NIPoPoWs under velvet fork on Q is insecure. Then, during

an execution at some round r3, Q(C) is defined and the verifier V disagrees with some

honest participant. V communicates with adversary A and honest prover B. The verifier

receives proofs πA, πB which are of valid structure. Because B is honest, πB is a proof

constructed based on underlying blockchain CB (with πB ⊆ CB), which B has adopted

during round r3 at which πB was generated. Consider C̃A the set of blocks defined as

C̃A = πA ∪ {
⋃
{Cr

h{:bA} : bA ∈ πA,∃h, r : bA ∈ Cr
h}} where Cr

h the chain that the honest

party h has at round r. Consider also CS
B the set of smooth blocks of honest chain CB. We

apply security parameter

m = 2k +
2 + ε+ δ′

t

n− t

f

1− f
[f(1− f)− 2

3

f

1− f
]

Suppose for contradiction that the verifier outputs ¬Q(CB). Thus it is necessary that

πA≥mπB. We show that πA≥mπB is a negligible event. Let the levels of comparison de-

cided by the verifier be µA and µB respectively. Let b0 = LCA(πA, πB). Call αA = πA↑µA

{b0:}, αB = πB↑µB {b0:}.

FromCorollary 1 we have that the adversarial proof consists of a smooth interlink subchain

followed by a thorny interlink subchain. We refer to the smooth part of αA as αS
A and to

the thorny part as αT
A.

Our proof construction is based on the following intuition: we consider that αA consists of

three distinct parts α1
A, α

2
A, α

3
A with the following properties. Block b0 = LCA(πA, πB) is the

fork point between πA↑µA , πB↑µB . Let block b1 = LCA(αS
A,CS

B) be the fork point between

πS
A↑µA ,CB as an honest prover could observe. Part α1

A contains the blocks between b0
exclusive and b1 inclusive generated during the set of consecutive rounds S1 and |α1

A| =

A. Polydouri 69

A Study on Superlight Clients under Velvet Fork

k1. Consider b2 the last block in αA generated by an honest party. Part α2
A contains

the blocks between b1 exclusive and b2 inclusive generated during the set of consecutive

rounds S2 and |α2
A| = k2. Consider b3 the next block of b2 in αA. Then α3

A = αA[b3:] and
|α3

A| = k3 consisting of adversarial blocks generated during the set of consecutive rounds

S3. Therefore |αA| = k1 + k2 + k3 and we will show that |αA| < |αB|.

The above are illustrated, among other, in Parts I, II of Figure 4.11.

G

b2 b3

b

b0

b1
r2

S1

αA μA

αB μB	

G b0 b1 b

r3

b2

S2

b0:	LCA(πΑ,	πΒ)

b1:	LCA(α
S,	CS) S3

G b0 b1 b

b2 b3 CA

CB

Ι.

ΙΙ.

ΙΙΙ.

A

S1

S2 S3

S1

S2 S3

b3 CA

CB

B

Figure 4.11: I. The three round sets in two competing proofs at different levels, II. the

corresponding 0-level blocks implied by the two proofs, III: blocks in CB and block set C̃A from the

verifier’s perspective.

We now show three successive claims: First that α1
A contains few blocks. Second, α2

A
contains few blocks. And third, the adversary can produce a winning aA with negligible

A. Polydouri 70

A Study on Superlight Clients under Velvet Fork

probability.

Claim 1: α1
A = (αA{b0 : b1} ∪ b1) contains only a few blocks. Let |α1

A| = k1. We have

defined the blocks b0 = LCA(πA, πB) and b1 = LCA(αS
A,CS

B). First observe that because

of the Corollary 1 there are no thorny blocks in α1
A since α1

A[−1] = b1 is a smooth block.

This means that if b1 was generated at round rb1 and αS
A[−1] in round r then r ≥ rb1.

Therefore, α1
A contains smooth blocks of CB. We show the claim by considering the two

possible cases for the relation of µA, µB.

Claim 1a: If µB ≤ µA then k1 = 0. In order to see this, first observe that every block in

αA would also be of lower level µB. Subsequently, any block in αA{b0:} would also be

included in proof αB but this contradicts the minimality of block b0.

Claim 1b: If µB > µA then k1 ≤
δ12

−µA

(1 + ε)
t

n− t

f

1− f

. In order to show this we consider block

b the first block in αB. Now suppose for contradiction that k1 >
δ12

−µA

(1 + ε)
t

n− t

f

1− f

. Then

from lemma 9 we have that block b is generated during S1. But b is of lower level µA and

α1
A contains smooth blocks of CB. Therefore b is also included in α1

A, which contradicts

the minimality of block b0.

Consequently, there are at least |αA| − k1 blocks in αA which are not honestly generated

blocks existing in CB. In other words, these are blocks which are either thorny blocks

existing in CB either don’t belong in CB.

Claim 2. Part α2
A = (αA{b1 : b2}∪b2) consists of only a few blocks. Let |α2

A| = k2. We have

defined b2 = α2
A[−1] to be the last block generated by an honest party in αA. Consequently

no thorny block exists in α2
A, so all blocks in this part belong in a proper zero-level chain

C2
A. Let rb1 be the round at which b1 was generated. Since b1 is the last block in αA which

belongs in CB, then C2
A is a fork chain to CB at some block b′ generated at round r′ ≥ rb1.

Let r2 be the round when b2 was generated by an honest party. Because an honest party

has adopted chain CB at a later round r3 when the proof πB is constructed and because

of the Common Prefix property on parameter k2, we conclude that k2 ≤ 2−µAk.

Claim 3. The adversary may submit a suffix proof such that |αA| ≥ |αB| with negligible

probability. Let |α3
A| = k3. As explained earlier part α3

A consists only of adversarially

generated blocks. Let S3 be the set of consecutive rounds r2...r3. Then all k3 blocks of

this part of the proof are generated during S3. Let α
3
B be the last part of the honest proof

containing the interlinked µB superblocks generated during S3. Then by applying Lemma

8
m

k
times we have that 2µA |α3

A| < 2µB(|αS3
B ↑µB |+mδ3

k
). By substituting the values from all

the above Claims and because every block of level µB in aαB is of equal hashing power

to 2µB−µA blocks of level µA in the adversary’s proof we have that: 2µB |α3
B| − 2µA |α3

A| >
2µA(k1 + k2) or 2

µB |α3
B| > 2µA |α1

A + α2
A + α3

A| or 2µB |αB| > 2µA |αA| Therefore we have

proven that 2µB |πB↑µB | > 2µA|πµA
A |.

A. Polydouri 71

A Study on Superlight Clients under Velvet Fork

4.5 Infix Proofs

The security of the original NIPoPoWs protocol suffers under velvet fork conditions for the

case of infix proofs as well. Again, since blocks containing incorrect interlink pointers are

accepted in the chain, the adversary may create an infix proof for a transaction included

in a block mined on a different chain. This attack is presented in detail in the following.

An infix proof attack when applying the original protocol under a velvet fork should be

obvious after our previous discussion. So consider the updated protocol for secure suffix

proofs as described in the previous section. A problem here is that in the updated protocol

some blocks are excluded from the interlink, while we should still be able to provide proofs

for transactions included in any block of the chain.

For this reason, let us naively consider an additional protocol patch suggesting to include

a second interlink data structure in each block, which will be updated without any block

exclusion, just as described in the original protocol and will be used for constructing infix

proofs only. In order to be secure we could think of allowing using pointers of the second

interlink only for the followDown part of the algorithm. But still, the adversary may use an

invalid pointer of a block visited during the followDown procedure and jump to a block of

another chain providing a transaction inclusion proof concerning that block. This attack is

illustrated in Figure 4.12.

G b

CA

πΑ, CB

b: LCA(αΑ, αΒ)

E' E

b'

followDown blocks

Figure 4.12: Adversarial fork chain CA and an adversarial infix proof based on the chain adopted

by an honest player. Wavy lines imply one or more blocks. Blocks generated by the adversary are

colored black. Dashed arrows represent interlink pointers included in the proof as part of the

followDown procedure. The adversary provides infix proof for a transaction in block b’.

Thus giving the ability to utilize invalid pointers even in a narrow block window can break

the security of our protocol.

A. Polydouri 72

A Study on Superlight Clients under Velvet Fork

Protocol patch for NIPoPoWs infix proofs under velvet fork

In order to construct secure infix proofs under velvet fork conditions, we suggest the fol-

lowing additional protocol patch: each upgraded miner constructs and updates an authen-

ticated data structure for all the blocks in the chain. We suggest Merkle Mountain Ranges

(MMR) for this structure. Now a velvet block’s header additionally includes the root of this

MMR.

After this additional protocol change the notion of a smooth block changes as well. Smooth

blocks are now considered the blocks that contain truthful interlinks and valid MMR root

too. A valid MMR root denotes the MMR that contains all the blocks in the chain of an hon-

est full node. Note that a valid MMR contains all the blocks of the longest valid chain,

meaning both smooth and thorny. An invalid MMR constructed by the adversary may

contain a block of a fork chain. Consequently an upgraded prover has to maintain a lo-

cal copy of this MMR locally, in order to construct correct proofs. This is crucial for the

security of infix proofs, since keeping the notion of a smooth block as before would allow

an adversary to produce a block b in an honest party’s chain, with b containing a smooth

interlink but invalid MMR, so she could succeed in providing an infix proof about a block

of a fork chain.

The velvet infix prover and verifier

Considering this addtional patch we can now define the final algorithms for the honest

miner, infix and suffix prover, as well as for the infix verifier. Because of the new notion of

smooth block, the function isSmoothBlock() of Algorithm 11 needs to be updated, so that

the validity of the included MMR root is also checked. The updated function is given in

Algorithm 14. Considering that input CS is computed using Algorithm 11 with the updated

isSmoothBlock’() function, Velvet updateInterlink and Velvet Suffix Prover algorithms re-

main the same as described in Algorithms 12, 13 repsectively. The velvet infix prover given

in Algorithms 15, 16 respectively. In order to keep the algorithm generic enough for any

infix-sensitive predicate, we provide the steps needed until the verification of the block of

interest and consider that the specific predicate can be answered by a known algorithm

given the block of interest. Given that the verifier is already synchronized to the longest

valid chain, the infix verification algorithm only has to confirm the Merkle-Tree inclusion

proof πb′ for the block of interest b′.

Details about the construction and verification of an MMR and the respective inclusion

proofs can be found in [21]. Note that equivalent solution could be formed by using any

authenticated data structure that provides inclusion proofs of size logarithmic to the length

of the chain. We suggest MMRs because of they come with efficient update operations.

A. Polydouri 73

A Study on Superlight Clients under Velvet Fork

Algorithm 14 Function isSmoothBlock’() for infix proof support

1: function isSmoothBlock’(B)
2: if B = G then
3: return true
4: end if

5: for p ∈ B.interlink do
6: if ¬isSmoothPointer(B, p) then
7: return false
8: end if

9: end for

10: return containsValidMMR(B)
11: end function

Algorithm 15 Velvet Infix Prover

1: function ProveInfixVelvet(CS, b)
2: (π, χ)← ProveVelvet(CS)
3: tip← π[−1]
4: πb ← MMRinclusionProof(tip, b)
5: return (πb, (π, χ))
6: end function

Algorithm 16 Velvet Infix Verifier

1: function VerifyInfixVelvet(b, (πb, (π, χ)))
2: tip← π[−1]
3: return VerifyInclProof(tip.rootMMR, πb, b)
4: end function

A. Polydouri 74

A Study on Superlight Clients under Velvet Fork

5. FLYCLIENT UNDER VELVET FORK

In the FlyClient paper [1] a velvet fork is suggested for the deployment of the protocol as-

is, followed by a short argument for its respective security. In this document we describe

an explicit attack against the FlyClient protocol under velvet fork deployment. This is es-

sentially a kind of “Chainsewing Attack”, a class of attacks that we have already described

in our work on NIPoPoWs under velvet fork conditions.

5.1 The FlyClient Protocol

The FlyClient protocol suggests that block headers additionaly include an MMR root of all

the blocks in the chain. The protocol uses this root hash in multiple ways, both for chain

synchronization and specific block queries. Consider a block b which is appended to the

chain C at height hb:

• the prover generates a merkle inclusion proof Πb for the existence of b at height hb

in C with respect to the MMR root included in the head or tip of the chain C[−1]

• the verifier receives the merkle root of the chain from a prover and an inclusion proof

Πb for block b. He also generates from Πb the root of the MMR subtree of all blocks in

C from genesis up to C[hb− 1] and verifies that it is equal to the merkle root included

in the header of block b.

The above proofs are produced with respect to the MMR root included in C[−1].

A high level description of the FlyClient is as follows. Suppose that the verifier, a superlight

client, asks to synchronize to the current longest valid chain. Suppose that he receives

different proofs from two provers. Each prover sends (the header) of the last block in the

chain, C[−1], and a claim for the number of blocks in his chain, |C|. If both proofs are valid,
then the one claiming the greater block count is selected. The validity check of a proof

goes as follows. The verifier has received C[−1], |C| and queries k random block headers

from each prover based on a specific probabilistic sampling algorithm. For each queried

block Bi the prover sends the header of Bi along with an MMR subtree inclusion proof ΠBi

that Bi is the ith block in the chain. The verifier also checks that Bi is normally mined on

the same chain as C[−1] by verifying that the root included in Bi is the MMR root of the first

(|C| − 1) blocks’ subtree. If the k random sampled blocks successfully pass through this

A. Polydouri 75

A Study on Superlight Clients under Velvet Fork

verification procedure then the proof is considered valid, otherwise the proof is rejected

by the verifier. The chain synchronization protocol is given in Algorithm 17.

Algorithm 17 FlyClient protocol [1]

A client (i.e the Verifier) performs the following steps speaking with two provers who want

to convince him that they hold a valid chain of length n + 1. At least one of the provers

is honest. If the provers claim different length for their claims then the longer chain is

checked first.

1. The provers send to the verifier the last block header in their chain. Each header

includes the root of an MMR created over the first n blocks of the corresponding

chain.

2. The verifier queries k random block headers from each prover based on the de-

scribed optimal probabilistic sampling algorithm.

3. For each queried block, Bi, te prover sends the header of Bi along with an MMR

proof ΠBi∈C that Bi is the i−th block in the chain.

4. The client performs the following checks for each block Bi according to Algorithm

and rejects the proof if any checks fail

5. The client rejects the proof if any checks fail

6. Otherwise, the client accepts C as the valid chain

For a single block query the protocol can be described as follows. The verifier is synchro-

nized to a chain C and already has the tip of the chain C[−1]. He then queries the prover

and receives the header of the specific block of interest B in C and the inclusion proof

ΠB∈C. Then the verifier checks the validity of B in the same way as already described

for the random sampled blocks in the synchronization protocol. The prover/verifier single

query protocol is given in Algorithm 18.

5.2 Velvet MMRs

A velvet fork suggests that any protocol changes are deployed in a backwards-compatible

manner so that unupgraded players accept upgraded blocks and upgraded players accept

unupgraded blocks too. In practice, the protocol changes are applied via some auxil-

iary data included in each block, which make sense and are used only by upgraded par-

ties,while being omitted as comments by unupgraded parties.

In the context of FlyClient, velvet fork deployment implies that upgraded miners addition-

ally include an MMR root in each block’s header. The claim made in the paper is that con-

sidering a constant fraction α of upgraded blocks in the chain, an honest prover could pro-

duce proofs by utilizing only these blocks and by joining the intermediary blocks together.

A. Polydouri 76

A Study on Superlight Clients under Velvet Fork

Algorithm 18 Prover/Verifier protocol for a single query [1]

The verifier queries the prover for the header and MMR proof for a single block k in the

prover’s chain of n+ 1 blocks.

Verifier

1. Has the root of the MMR of n blocks stored in the n+ 1 block’s header

2. Queries prover for the header of block k and for Πk∈n

3. Verifies that the hashes of Πk∈n hash up to the root of MMRn

4. Calculates the root of the MMR of the k − 1 blocks from Πk∈n

5. Compares the calculated root with the root in the header of block k

6. If everything checks out, accepts the block proof

Prover

1. Has chain of n+ 1 blocks and the MMR of the first n blocks

2. Receives query for block k from verifier

3. Calculates Πk∈n from MMRn

4. Sends header of k and Πk∈n to verifier

This should result to less efficient proofs, bacause in order to random sample a sufficient

number of upgraded blocks you need a larger underlying chain than in a hard or soft fork,

since only a portion of the blocks are upgraded. The claim is that the velvet proofs remain

secure. We show that this claim does no hold by presenting a specific attack.

Velvet fork requires any block to be accepted in the chain regardless the validity of the

auxiliary data coming with the protocol update. In the case of FlyClient, an adversary

may produce blocks which are compatible to the basic consensus rules but contain in-

valid MMR information. As an example, an invalid MMR may omit blocks existing in C
or contain blocks which belong in temporary forks of C. We call adversarially generated

blocks containing invalid MMRs thorny blocks. A specific case of thorny is illustrated in

Figure 5.1.

5.3 The Attack

The velvet FlyClient description does not deal with thorny blocks, meaning blocks that con-

tain only seemingly valid auxiliary data. More specifically, it remains unspecified whether

blocks containing an MMR root but not the correct one are considered valid upgraded

A. Polydouri 77

A Study on Superlight Clients under Velvet Fork

G
A'

Figure 5.1: A thorny block colored black containing invalid MMR commitment to a block of a fork

chain illustrated as a dashed arrow. With respect to the MMR commitments the black block along

with the grey ones form a chain.

blocks or unpupgraded blocks. We work on the hypothesis that honest miners validate

the MMR root of the blocks and blocks containing invalid MMR roots are treated as un-

upgraded. This seems to be the only reasonable option. In the opposite case any block

containing trash data in the place where the MMR root should be would completely de-

stroy the protocol making it impossible to deliver a valid proof. We will now describe the

chainsewing attack against the velvet FlyClient protocol.

Consider that the adversary utilizes more than one thorny blocks in order to cut-and-paste

portions from the chain adopted by honest parties to his fork chain. Consider the attack

illustrated in Figure 5.2. The adversary acts as follows. She first mines upgraded blocks

on a fork chain CA until she generates block b′ containing a double spending attack. After-
wards she mines block a′ in the honest chain CB, which includes an MMR root for her fork

chain, thus including the blocks from genesis and up to b′. After that she keeps mining

blocks on CB, which contain MMR root that builds on top of the root included in a′, includ-
ing only the following adversarially generated blocks in CB and ignoring any intermediary

honestly generated blocks while constructing the MMRs of her blocks. Additionally, dur-

ing this period when she mines on CB she tries to suppress any honest upgraded block in

CB. Towards this end she acts as follows. She regularly mines block on CB as described

ignoring honestly unupgraded blocks. When an honest upgraded block C[i] is appended
she mines on top of block C[i − 1]. If she mines a block and the suppression fails she

can still use her fresh block in her proof by continuing to construct consistent MMRs in the

following blocks as described before. Figure 5.3 illustrates an example of the underlying

suppression attack. From the verifier’s perspective the ignored honest blocks are simply

perceived as unupgraded blocks. At some later point, the adversary generates block a in
the fork chain, which also contains an MMR root for all the grey and black blocks up to

block b. Right afterwards the adversary produces a proof as described in the velvet Fly-

Client protocol giving block a as C[1] and the count number of all the grey and black blocks.

From the verifier’s perspective the black and grey colored blocks form a valid chain, since

the head of the chain a contains consistent MMR commitments with all these blocks. In

addition, the random sampling performed by the FlyClient protocol will succeed because

there are no invalid blocks in this chain.

A. Polydouri 78

A Study on Superlight Clients under Velvet Fork

G b

b'

A'

a

a'

blocks	sewed	from	CB	in	CA

CA

CB

Figure 5.2: Chainsewing attack. Two thorny blocks a, a′ are used to chainsew a portion of honest

chain CB to adversarial fork CA. Black blocks imply adversarially generated blocks. Grey blocks

are used in the adversarial proof along with the black ones. Wavy lines imply one or more blocks.

Dashed arrows imply an MMR commitment for the destination block in the block of origin.

b'

G CB

Figure 5.3: Chainsewing along with suppression attack. Black blocks imply adversarially

generated blocks. Blue blocks imply honest upgraded blocks,which the adversary tries to

suppress. Wavy lines imply one ore more blocks. Dashed arrows imply an MMR commitmens.

A. Polydouri 79

A Study on Superlight Clients under Velvet Fork

A. Polydouri 80

A Study on Superlight Clients under Velvet Fork

BIBLIOGRAPHY

[1] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light clients for cryp-

tocurrencies. 2020.

[2] Vitalik Buterin et al. A next-generation smart contract and decentralized application platform. white

paper, 2014.

[3] Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. Edrax: A cryptocurrency with

stateless transaction validation. IACR Cryptology ePrint Archive, 2018:968, 2018.

[4] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In IEEE P2P 2013

Proceedings, pages 1–10, 2013.

[5] ERGODevelopers. Ergo: A Resilient Platform For Contractual Money, 2019. https://ergoplatform.
org/docs/whitepaper.pdf.

[6] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Annual International

Cryptology Conference, pages 139–147. Springer, 1992.

[7] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In International

conference on financial cryptography and data security, pages 436–454. Springer, 2014.

[8] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature

problems. In Conference on the theory and application of cryptographic techniques, pages 186–194.

Springer, 1986.

[9] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and

applications. Annual International Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 281–310, 2015.

[10] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on bitcoin’s peer-

to-peer network. In USENIX Security Symposium, pages 129–144, 2015.

[11] Kostis Karantias. Enabling NIPoPoW Applications on Bitcoin Cash. Master’s thesis, University of

Ioannina, Ioannina, Greece, 2019.

[12] Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Compact storage of superblocks for nipopow

applications. In The 1st International Conference on Mathematical Research for Blockchain Economy.

Springer Nature, 2019.

[13] Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Proof-of-burn. In International Conference

on Financial Cryptography and Data Security, 2019.

[14] Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Smart contract derivatives, 2020.

[15] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc Cryp-

tography and Network Security Series). Chapman & Hall/CRC, 2007.

[16] Aggelos Kiayias, Peter Gaži, and Dionysis Zindros. Proof-of-stake sidechains. In IEEE Symposium on

Security and Privacy. IEEE, IEEE, 2019.

A. Polydouri 81

https://ergoplatform.org/docs/whitepaper.pdf
https://ergoplatform.org/docs/whitepaper.pdf

A Study on Superlight Clients under Velvet Fork

[17] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of proofs of work with

sublinear complexity. In International Conference on Financial Cryptography and Data Security, pages

61–78. Springer, 2016.

[18] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-Interactive Proofs of Proof-of-Work. In

International Conference on Financial Cryptography and Data Security. Springer, 2020.

[19] Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In International Conference on Fi-

nancial Cryptography and Data Security. Springer, Springer, 2019.

[20] Jae-Yun Kim, Jun-Mo Lee, Yeon-Jae Koo, Sang-Hyeon Park, and Soo-Mook Moon. Ethanos:

Lightweight bootstrapping for ethereum. arXiv preprint arXiv:1911.05953, 2019.

[21] Ben Laurie, Adam Langley, and Emilia Kasper. Rfc6962: Certificate transparency. Request for Com-

ments. IETF, 2013.

[22] Eric Lombrozo, Johnson Lau, and Pieter Wuille. BIP 0141: Segregated witness (consensus layer).

Available at: https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki, 2015.

[23] Izaak Meckler and Evan Shapiro. CODA: Decentralized Cryptocurrency at Scale. 2018.

[24] Ralph C Merkle. A digital signature based on a conventional encryption function. In Conference on the

Theory and Application of Cryptographic Techniques, pages 369–378. Springer, 1987.

[25] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[26] Ling Ren. Analysis of nakamoto consensus, 2019.

[27] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Conference on the

Theory and Application of Cryptology, pages 239–252. Springer, 1989.

[28] Peter Todd. Merkle mountain ranges, October 2012. https://github.com/opentimestamps/
opentimestamps-server/blob/master/doc/merkle-mountain-range.md.

[29] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project

Yellow Paper, 151:1–32, 2014.

[30] Karl Wüst and Arthur Gervais. Ethereum eclipse attacks. Technical report, ETH Zurich, 2016.

[31] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro Moreno-

Sanchez, Aggelos Kiayias, andWilliam J Knottenbelt. SoK: Communication across distributed ledgers,

2019.

[32] Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar Weippl, William Knot-

tenbelt, and Alexei Zamyatin. A wild velvet fork appears! inclusive blockchain protocol changes in

practice. In International Conference on Financial Cryptography and Data Security. Springer, 2018.

[33] Dionysis Zindros. Decentralized Blockchain Interoperability. PhD thesis, Apr 2020.

A. Polydouri 82

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md

	INTRODUCTION
	Motivation
	Current approaches
	Related work

	BACKGROUND
	Cryptographic Primitives
	Digital Signatures
	Collision-Resistant Hash Functions
	The Random Oracle Model

	Blockchain Basics
	The notion of block
	The notion of blockchain
	Transactions
	The SPV model

	The Backbone Model
	The protocol
	Basic properties

	Hard, Soft and Velvet Forks

	SUPERBLOCKS UNDER SOFT FORK
	Introduction
	Interlinking the chain
	Suffix Proofs
	The Prover
	The Verifier

	Security Analysis of Suffix Proofs
	Superchain Quality & Suppression Attacks
	Security of Suffix Proofs

	Infix Proofs
	Succinctness

	SUPERBLOCKS UNDER VELVET FORK
	Velvet Interlinks
	A naïve velvet scheme.

	The Chainsewing Attack
	Protocol Update
	Analysis of Velvet Protocol Patch
	Infix Proofs

	FLYCLIENT UNDER VELVET FORK
	The FlyClient Protocol
	Velvet MMRs
	The Attack

	Bibliography

