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Περίληψη

Αφού πρώτα υπενθυμίσουμε βασικά στοιχεία της γεωμετρίας Riemann, θα
κάνουμε μια εισαγωγή στα βασικά της θεωρίας βέλτιστης μεταφοράς πάνω σε

πολλαπλότητες Riemann. Το κύριο αποτέλεσμα που παρουσιάζεται είναι η
ισοδυναμία ενός κάτω φράγματος για την καμπυλότητα Ricci με την
K-κυρτότητα της σχετικής εντροπίας, ένα συναρτησοειδές πάνω στο χώρο
των απόλυτα συνεχών (ως προς volg) μέτρων πιθανότητας. Αυτή η ισοδυναμία
επιτρέπει τον ορισμό ενός κάτω φράγματος για την καμπυλότητα Ricci σε
μετρικούς χώρους με μέτρο, όπου η δομή Riemann απουσιάζει.

Abstract

After reminding some basic elements of Riemannian Geometry, we will make
an introduction to the basics of optimal transport theory on Riemannian
manifolds. The main result presented is the equivalence of a lower bound for
Ricci curvature with the K-convexity of the relative entropy, a functional on
the space of absolutely continuous (w.r.t. volg) probability measures. This
equivalence allows the definition of lower Ricci bounds on metric measure
spaces, where the Riemannian structure is absent.
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Chapter 1

Introduction

The purpose of this thesis is twofold. First of all, it is to present the subject
itself and cultivate a desire for further exploration and research. Secondly,
it is to stress the fact and remind to the reader (as well as myself) that
the combination of different areas of mathematics can yield fruitful results.
Moreover, the journey itself, in doing so, is an interesting experience, since it
can give a unique point of view of these areas. To be more precise, in our case,
we will develop (to some satisfying point) the theory of Optimal Transport,
assuming that we work on a riemannian manifold, hence we can use every
tool from Riemannian Geometry, so that we can generalize a lower Ricci
curvature bound on more abstract spaces. When we say "Ricci lower bound"
we mean that there exists a K ∈ R such that Ricp(v, v) ≥ (n− 1)Kgp(v, v)
∀x ∈M, v ∈ TpM and write Ric(M) ≥ (n− 1)K.

There are various reasons to try to extend notions of curvature from
smooth Riemannian manifolds to more general spaces. Let’s consider the
sectional curvature. It naturally controls the behavior of the distance along
geodesics. For instance, the lower bound sec(M) ≥ K for K ∈ R is equivalent
to that every geodesic triangle in M is "thicker" than the triangle with
the same side lengths in the 2-dimensional space form of constant sectional
curvature K, known as Toponogov’s theorem ([9]). It turns out, that this
triangle comparison condition also makes sense in slightly more general
spaces, the geodesic spaces. These spaces are just metric spaces in which
the distance between two points equals the minimum of the lengths of curves
joining the points. Geodesic spaces with "sectional curvature ≥ K" are
called Alexandrov spaces and are deeply investigated from both geometric
and analytic viewpoints ([23], [27], [8]).

1



CHAPTER 1. INTRODUCTION 2

In view of Alexandrov’s work, it is natural to ask whether there are
metric space versions of other types of Riemannian curvature, such as Ricci
curvature. Since Ricci curvature is just the trace of sectional curvature, it
holds less information and controls only the behaviour of the measure volg.
For example, one of the most important theorems in comparison Riemannian
geometry, Bishop-Gromov volume comparison theorem, asserts that a lower
Ricci curvature bound implies an upper bound of the volume growth. Also,
positive lower Ricci bounds provide upper bounds on the diameter of M , due
to Bonnet-Myers theorem. These two theorems give nice intuition of how
spaces with lower Ricci curvature bounds look like and will be proved in the
sequence, using Jacobi fields, just to capture the idea that Jacobi fields are
controlled by Ricci curvature. Although bounding Ricci curvature from below
is essential in many analytic applications, how to characterize such spaces
without using differentiable structure had been a long standing important
problem.

Our ultimate goal is to present a way to define a notion of Ricci curvature
on metric spaces, which will be independent of the Riemannian setting and
the dimension of the manifold, in the same fashion as with Alexandrov spaces.
But, in order to talk about volumes, a measure has to be included, therefore
introducing metric measure spaces. A first approach would be to "reverse"
the Bishop-Gromov theorem, or something slightly more general. The Bishop-
Gromov volume comparison theorem can be regarded as a concavity estimate
of vol1/ng along the contraction of a ball to its center, thus it is a special case
of the well known, Brunn-Minkowski inequality (BMI).

Moreover, this contraction can be seen as the transportation of the
measure of a ball to that of balls of smaller radii. This interpretation indicates
that the tools of Optimal Transport theory, whose object of study is the
optimal transportation of measures on metric measure spaces, should play a
key role in understanding Ricci curvature. This approach was pioneered by
Lott - Villani [22], von Renesse - Sturm [17] and Sturm [14], eventually leading
to the definition of the so-called CD(K,N) and RCD(K,N) (N ∈ [0,+∞])
spaces, which should be understood as metric measure spaces that satisfy
a lower Ricci curvature bound and upper dimension bound, in a measure-
theoretic sense. These spaces have been the object of intense research activity
over the last 10 years, leading to generalizations of many classical results in
Riemannian geometry involving lower Ricci curvature bounds, for instance
the theorem of Bonnet-Myers [15], the Splitting Theorem [16] and many more.

Our approach will follow Ohta’s ([21]) observation that we can prove BMI
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in the Euclidean case, using optimal transport between uniform distributions.
So it would be logical if we study optimal transport between probability
measures, in the general case. Since BMI and Ricci curvature both depend
on the dimension of the manifold, we must find an infinitesimal version of
BMI. After developing the main theory of optimal transport on Riemannian
manifolds, according to [30], we follow very closely the work of [31] in which
they prove an infinitesimal version of the BMI, called Jacobian inequality,
through the differentiation of the optimal transport map.

If the reader has never heard of optimal transport, they can visualize
the following problem: let’s say that we’re given a pile of sand with which we
must fill up a hole of the same volume (which we will assume it’s 1). Moving
the sand around requires some effort, which we wish to minimize overall.
It’s, literally, a problem of optimal transportation of sand. We will model
the sand and the hole by Borel probability measures µ, ν defined on some
complete and separable metric measure spaces X and Y , respectively. We
denote these relations by µ ∈P(X) and ν ∈P(Y ). The effort is modeled by
some measurable cost function c : X×Y → R∪{+∞}. We shall model the
transport plan to be a measure π ∈P(X × Y ), so that dπ(x, y) denotes
the mass transferred from location x to location y, with the natural constraint
that all the mass taken from point x coincide with dµ(x) and all the mass
transferred to point y coincides with dν(y). This is described by∫

Y

dπ(x, y) = dµ(x),

∫
X

dπ(x, y) = dν(y)

or, more rigorously,

π(A× Y ) = µ(A), π(X ×B) = ν(B)

for all Borel sets A ⊆ X, B ⊆ Y . Equivalently, we require that∫
X×Y

ϕ(x) + ψ(y)dπ(x, y) =

∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

for every ϕ ∈ L1(µ), ψ ∈ L1(ν). We denote the set of measures π as above
by Π(µ, ν), which is always a non-empty set, since µ⊗ ν ∈ Π(µ, ν), which
amount for the most inefficient transportation of sand, since any piece of sand
is distributed over the entire hole, proportionally to the depth, regardless of
its location. Kantorovich’s problem asks for minimization of the total
transportation cost:

I (π) :=

∫
X×Y

c(x, y)dπ(x, y)
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over π ∈ Π(µ, ν). If a π̃ ∈ Π(µ, ν) exists such that

I (π̃) = inf
π∈Π(µ, ν)

I (π)

we will be calling it optimal transference plan.

Kantorovich’s problem is a relaxed version of the original optimal
transport problem, proposed by Monge in the 18th century, which is the same
as Kantorovich’s, except one thing: it is additionally required that no mass
be split. In terms of transference plans, it means that we ask for π to have
the special form:

dπ(x, y) = dπF (x, y) = dµ(x)δF (x)(y)

where F : X → Y is a measurable map and δx0 denotes the Dirac measure
on x0. The measure πF is characterized by the property∫

X×Y
c(x, y)dπF (x, y) =

∫
X

c(x, F (x))dµ(x)

so that the total transportation cost takes the form

I (F ) := I (πF ) =

∫
X

c(x, F (x))dµ(x).

Furthermore, the condition πF ∈ Π(µ, ν) translates into:∫
X

(ϕ(x) + ψ ◦ F (x))dµ(x) =

∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

which turns into ∫
X

ψ ◦ F (x)dµ(x) =

∫
Y

ψ(y)dν(y)

for every ψ ∈ L1(ν) such that ψ ◦ F ∈ L1(ν). In terms of Borel sets, this
condition can be written as

ν(A) = µ(F−1(A)) := F#µ(A)

for any Borel set B ⊆ Y . When

F#µ = ν

is satisfied we will abusively write F ∈ Π(µ, ν) and say that F pushes
forward μ to ν. Eventually, Monge’s problem asks for minimization of

I (F ) =

∫
X

c(x, F (x))dµ(x)
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over all Borel maps F ∈ Π(µ, ν).

These problems have been solved through the development of very
interesting and sophisticated tools in measure theory and convex analysis
and we redirect the reader to sources like [1], [2], [29] and [5] to learn more
about the classical approach. Here we will explore the topic in the case where
X and Y are compact subsets of a complete Riemannian manifold and µ and
ν are absolutely continuous with respect to volg and compactly supported in
X and Y , respectively. We will solve Monge’s problem through a duality
technique, which is a common move in these types of problems. Moreover, we
will give an explicit form of the transport map F and find a way to
differentiate it. Its Jacobian will satisfy a change of variable formula and the
infinitesimal BMI we talked about earlier. Note that this inequality reflects
the relationship of optimal maps with volumes. It’s more or less obvious why
the Riemannian setting is beneficial. We need to find a way to "move in an
optimal way" but this is exactly what geodesics describe. Thus, it’s no
surprise that the map F has something to do with the exponential map. In
fact, we shall find a special type of good function ϕ, a c-concave function,
such that its gradient ∇ϕ(x) at x dictates in what direction and how much
we should move point x. As to why these functions are important as well as
do the job is based in the duality technique and will become clear later.

It turns out that this Jacobian inequality isn’t something that can be
generalized into a metric measure space. And that’s where relative entropy
comes into play, a functional on probability measures. In many areas of
science, entropy is considered to be a measure of information. In our case,
entropy holds information about the volumes. In particular, we will prove
that in case we have a uniform probability distribution µ on A we will also
have

Ent(µ) = − log volg(A)

which shows that as the volume of A tends to 0 Ent blows up to +∞ but
as we get larger sets Ent becomes more and more negative. Also, we will
show that the more a measure is concentrated the bigger its entropy, i.e.
supp(µ) ⊆ supp(ν) ⇒ Ent(µ) ≥ Ent(ν). From there, we will follow closely
the work in [17] and find an equivalent condition of lower Ricci bound,
without involving Riemannian structure. Our approach is in terms of a
geodesic space W2 := (P2(M), dW2) canonically associated to our manifold
M . Here, P2(M) is the set of Borel probability measures that have finite
second moment: ∫

M

d2(x, y)dµ(y) < +∞
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while dW2 is the so-called Wasserstein distance, which is defined to be

dW2(µ0, µ1) :=

√
inf

π∈Π(µ0, µ1)

∫
M×M

d(x, y)dπ(x, y).

These spaces are called Wasserstein spaces and are well studied
([1], [2], [5], [29]), so we won’t get into details, as we will drift off our main
subject. We will just mention, right now, that they are geodesic spaces
whenever M is a geodesic space (not even a manifold) and that its geodesics
are completely determined by the optimal transport along the geodesics of
M . We urge the reader to keep the last claim in mind while reading the
proof of the main theorem. If the reader wants to see a proof of this claim,
they can check any of the above references.

The key ingredient is the relation between entropy and the Jacobian
of the optimal transport map. If the Ricci curvature is bounded below by
(n − 1)K Bishop-Gromov volume comparison controls the Jacobian in a
way that produces the Jacobian inequality. This concavity estimate for the
Jacobian implies K-convexity for entropy. Let (X, d) be a geodesic space,
K ∈ R a number and U : X → R a function. We say that U is K -convex
iff for every geodesic γ : [0, 1]→ X with U(γ(0)), U(γ(1)) <∞ we have for
every t ∈ [0, 1]:

U(γ(t)) ≤ (1− t)U(γ(0)) + tU(γ(1))− K

2
(1− t)td2(γ(0), γ(1)).

Here, we would like to make a convention. K-convexity on our space, W2, will
have the additional requirement that the geodesic γ has compactly supported
endpoints. On the other hand, we will perform optimal transport between two
uniform probability distributions to produce a geodesic on the Wasserstein
space between them. Then the K-convexity of entropy on this geodesic will
recover the lower Ricci bound (n− 1)K.

Since the very definitions of entropy and K-convexity are formulated
on (geodesic) metric measure spaces, with the absence of any Riemannian
structure we can have a definition for lower "Ricci curvature" bounds on such
spaces, called, more generally the curvature-dimension condition. We
persuade the reader to check [21], [28], [22] to see how much further one can
go with this condition.



Chapter 2

Riemannian Geometry

In this section we will recall the theory of Riemannian manifolds to some
extent, omitting the too well known facts or some proofs, but proving facts
that we use in our main work, which appear less frequently in standard
courses. The very last part is the most important, regarding the rest of the
text, and we pursue the reader to skip the in between, if they feel comfortable
with Riemannian geometry. We will use Einstein’s summation convention.
Namely, if in a term the same index appears twice, both as upper and a lower
index, that term is assumed to be summed over all possible values of that
index (usually from 1 to the dimension). For example,

aib
i :=

∑
i

aib
i, aijklbilcj :=

∑
i,j,l

aijklbilcj

2.1 Manifolds

A topological manifold is a second countable, Hausdorff topological space
such that each point in the space is contained in an open set which is
homeomorphic to some open set in Rn. These homeomorphisms are called
(local) charts. A smooth manifold is a topological manifold equipped
with a collection of local charts (which is called an atlas), denoted by (U, ϕ),
where U ⊆ M is an open set and ϕ is a homeomorphism to an open set in
Rn and the union of all U is M , such that the transition maps ϕi ◦ ϕ−1

j :
ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) are C∞ for every pair of charts and the atlas is
maximal with the above properties.

7
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2.2 Vectors & Bundles

In every point x ∈ M we define the tangent space, a linear space over R,
which consists of tangent vectors to the manifold, arising as velocities of
curves that pass from the point x, interpreted as directions for directional
differentiation. If (U, ϕ) is a chart around x, then the canonical basis of
TxM is denoted by {∂i : i = 1, 2, . . . , n} and its action is defined by

∂if =
∂(f ◦ ϕ−1)

∂xi

∣∣∣
ϕ(x)

for f ∈ C∞(U). The disjoint union of all the tangent spaces is called
tangent bundle, denoted by TM on which the manifold induces a smooth
structure, making it a 2n-dimensional manifold. Each tangent space has a dual
space, denoted by T ∗xM and called cotangent space, with canonical basis
{dxi : i = 1, 2, . . . , n} with the following action:

dxi(∂j) = δij

and their disjoint union, denoted by T ∗M , is called cotangent bundle.

More generally, a (p, q) tensor is a linear form (bounded linear

functional) on
p∏
1

TxM ×
q∏
1

T ∗xM and their set is denoted by T qp (TxM) with

canonical basis {dxi1 ⊗ · · · ⊗ dxip ⊗ ∂j1 ⊗ · · · ⊗ ∂jq}i1, ..., ip, j1, ..., jq where
u⊗ v(x, y) = u(x)v(y). The disjoint union of all T qp (TxM), x ∈M is denoted
by T qpM , for short, and is called a tensor bundle, which is, of course, a
generalization of the (co)tangent bundle. Moreover, a smooth section (a
smooth right inverse of the projection function TxM 7→ x) of T qpM is called a
tensor field. In particular, if p = 0, q = 1 we call it a vector field and if
p = 1, q = 0 we call it a covector field, a 1-form or, simply, a form.

2.3 Push forward & Pull back

The differential at x of a smooth function ϕ : M → N is the linear map
(Dϕ)x : TxM → Tϕ(x)N which is defined by

(Dϕ)x(v)f = v(f ◦ ϕ), f ∈ C∞(N)

Sometimes, (Dϕ)x(v) is called the push forward of v by φ.
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The pull back by φ on (p, 0) tensors is the linear map
ϕ∗ : T 0

p (Tϕ(x)N)→ T 0
p (TxM) which is defined by

(ϕ∗T )(X1, . . . , Xp) = T ((Dϕ)x(X1), . . . , (Dϕ)x(Xp))

If ϕ is a diffeomorphism, then ϕ∗ : Tϕ(x)N → TxM is defined to be
(Dϕ)−1

x , so that the pull back by φ on (p, q) tensors, ϕ∗ : T qp (Tϕ(x)N)→
T qp (TxM), is defined from the above alongside with the rule ϕ∗(T ⊗ S) =
ϕ∗(T )⊗ ϕ∗(S).

2.4 Differential Forms & Integration

In order to define a convenient and coordinate-free way to integrate on
manifolds we need to introduce the concept of differential forms, i.e. anti-
symmetric, covariant tensors and their exterior derivatives. Every (p, 0)
tensor T comes with an anti-symmetric multilinear functional:

A(T )(v1, . . . , vp) :=
1

k!

∑
σ

sign(σ)T (vσ(1), . . . , vσ(p))

where σ runs over all permutations of {v1, . . . , vp} ⊂ TxM (for x ∈ M).
Taking all the stationary points of A, i.e. the anti-symmetric (p, 0) tensors,
we construct the fiber bundle of anti-symmetric p-linear functionals on TM :

∧pT ∗M := {T ∈ T 0
pM : A(T ) = T}

with canonical basis {dxi1 ∧ · · · ∧ dxip : i1 < · · · < ip}, where

T ∧ S :=
(i+ j)!

i!j!
A(T ⊗ S)

is the exterior product of T ∈ ∧iT ∗M and S ∈ ∧jT ∗M . A section of
the above bundle is called a p-form, with the convention that the 0-forms
are smooth functions on M , C∞(M). Also, this is why a covector is also
called a 1-form. Another operation, remaining to be defined, is the exterior
differentiation, which is a map d : ∧pT ∗M → ∧p+1T ∗M defined, in local
coordinates, by

df = ∂ifdx
i
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if f ∈ C∞(M) and by

dω =
∑

i1<···<ip

dωi1...ip ∧ dxi1 ∧ · · · ∧ dxip

if ω =
∑

i1<···<ip ωi1...ipdx
i1 ∧ · · · ∧ dxip .

We are now ready to define integration (of differential forms) on a smooth
orientable manifold, i.e. all transition maps have positive definite Jacobian.
Let (U, ϕ) be a chart and ω a n-form on M such that ω|U = fdx1 ∧ · · · ∧ dxn
for f ∈ C∞(U). We define∫

U

ω :=

∫
ϕ(U)

f ◦ ϕ−1dx1 . . . dxn

Now, let {(Ui, ϕi)} be a family of local charts for M such that {(Ui, ηi)} is a
partition of unity. Then, as one expects, we define∫

M

ω =
∑
i

∫
Ui

ηiω

Observe that, at this moment, integration is regarded as a linear functional
on the space of smooth functions. Once we provide the manifold with a
Riemannian metric, we shall choose a special form, the volume form, so that
the resulting integration will be compatible with the metric.

2.5 Riemannian Manifolds

Now let’s turn our focus on the Riemannian setting. On each tangent space
TpM , we assign a smooth (as a function of p), symmetric, positive definite
(0, 2) tensor field gp : TpM×TxM → R. The smoothness can be interpreted as
follows: if X, Y are two smooth vector fields on an open subset U ⊆M then
f(p) = gp(Xp, Yp) is a smooth function on U . This assignment of an inner
product 〈·, ·〉p := gp(·, ·) on each TpM is called a Riemannian metric. If
(U, (x1, . . . , xn)) is a chart, we can represent the Riemannian metric locally as
follows: Let gij(p) := 〈∂i, ∂j〉p. Then for any smooth vector fields X = X i∂i
and Y = Y j∂j on U , 〈Xp, Yp〉p = gij(p)X

i(p)Y j(p), so we can write, locally,
g = gijdx

i⊗ dxj . It is clear that the matrix (gij), which constitutes of smooth
functions, is symmetric and positive definite at any p. We denote its inverse
by (gij), so that gijgjk = δi

k. If such metric exists we say that (M, g) is a
Riemannian manifold. It turns out that many metrics exist for a smooth
manifold.
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2.6 Lengths & Distance

We must give focus to the fact that g is not a distance metric, but it induces a
natural distance function on M . In order to define this distance, we first need
to define the length of a curve. Let γ : [a, b] → M be a smooth immersed
parametric curve in M . Then, for any t ∈ [a, b], γ̇(t) := (dγ)t(

d
dt

∣∣
t
) is a

tangent vector in Tγ(t)M . We shall always assume that the parametrization
is regular, i.e. γ̇(t) 6= 0 for all t. We define the length of γ as

L(γ) =

∫ b

a

√
〈γ̇(t), γ̇(t)〉γ(t)dt

and sometimes we’ll refer to it as the length functional. Due to the
well-known change of variable formula one easily checks that the length of
curve is independent of the choice of regular parametriazations, so that it is
well defined. Especially, the length remains the same through isometries,
which tells us that any regular curve can be reparametrized so that
|γ̇(t)|γ(t) :=

√
〈γ̇(t), γ̇(t)〉γ(t) = 1, through the inverse of the arc-length

function s(t) =

∫ t

a

√
〈γ̇(τ), γ̇(τ)〉γ(τ)dτ . This parametrization is called the

arc-length parametrization. All of the above can be easily extended to
piecewise smooth curves in M .

We are ready to define the Riemannian distance function:

d(p, q) = inf{L(γ) | γ ∈ Γpq}

where Γpq := {γ : [a, b] → M | γ is piecewise smooth and γ(a) = p, γ(b) = q}.
Note that if M = Rn and g(·, ·) = 〈·, ·〉 is the standard inner product, we are
talking about the Euclidean distance.

Theorem. The Riemannian distance function makes M into a metric space.

Proof. It is easy to check that all of the conditions for a distance function are
met, except for that we must have d(p, q) > 0 for p 6= q. For this purpose we
take a chart (U, ϕ) around q with p /∈ U . We can apply a linear transform so
that ϕ(q) = 0 and ϕ(U) = B1(0). Let λ > 0 (because of positive definiteness)
be the smallest eigenvalue of

g := (ϕ−1)∗gU

at all points in B1/2(0) (in the sense that g(v, v) = λ〈v, v〉). Let γ be an
arbitrary curve starting from 0 = ϕ(q) and ending at some point on ∂B1/2(0)
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and γ̃ be the first piece of γ that sits totally in B1/2(0) (except the endpoint),
reparametrized in [0, 1]. Then

Lg(γ) ≥ Lg(γ̃) =

∫ 1

0

√
g( ˙̃γ(t), ˙̃γ(t))dt ≥

≥
√
λ

∫ 1

0

√
〈 ˙̃γ(t), ˙̃γ(t)〉dt =

√
λL(γ̃) ≥

√
λ

2

Since any curve from p to q must intersect ϕ−1(∂B1/2(0)) at some point, we
conclude that

d(p, q) ≥
√
λ

2
> 0

as desired.

From the above proof we can deduce that any open set in a manifold
contains a metric open ball. If we show that the function f(·) := d(p, ·) is
continuous in the manifold topology we have that:

Theorem. The metric topology on M coincides with the manifold topology
on M .

Proof. We shall prove that the above function f is continuous on M . Let
qn be a sequence of points that converges to q, in the sense that for any k
there exists N = N(k) such that for all n ≥ N , ϕ(qn) ∈ B1/k(0). By triangle
inequality, we have

|f(qn)− f(q)| ≤ d(q, qn)

So it suffices to prove that d(q, qn) −−−→
n→∞

0. To this end, let (U, ϕ) and g be
exactly as in the previous proof and Λ be the greatest eigenvalue of g at all
points in B1/2(0). Let

γ̃n : [0, 1]→ B1(0), γ̃n(t) = tϕ(qn)

be the line segment from 0 = ϕ(q) to ϕ(qn). Then for n ≥ N we have

Lg(γ̃n) =

∫ 1

0

√
g( ˙̃γn, ˙̃γn)dt ≤

√
Λ

∫ 1

0

√
〈 ˙̃γn, ˙̃γn〉dt =

√
ΛL(γ̃n) ≤

√
Λ

k

Since (U, gU) is isometric to (B1(0), g), we conclude that

LgU (γn) = Lg(γ̃n) ≤
√

Λ

k

where γn := ϕ−1(γ̃n) is a curve from q to qn. It follows that d(q, qn) ≤
√

Λ
k

for
all n ≥ N . Thus f is continuous and the theorem is proved.
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2.7 The Riemannian Measure

Using partitions of unity we can define the regular Borel measure on M

dvolg =
√

det(gij)dm

where m is the Lebesgue measure on Rn. This definition is inspired by the
fact that for K a compact subset in some coordinate patch (U, ϕ) such that
ϕ(K) is measurable, the quantity∫

ϕ(K)

√
det(gij) ◦ ϕ−1dm

is independent of the choice of local charts and represents the volume of the
set K. We will integrate functions on M with respect to dvolg and every
widely known norm, such as Lp norms will be defined by the obvious formula

||f ||pp :=

∫
M

|f |pdvolg .

2.8 Connections & Curvatures

In order to differentiate vector fields we must "connect" nearby tangent spaces.
Therefore we define a connection as a bilinear map

∇ : T 1
0M × T 1

0M → T 1
0M

denoted by (X, Y ) 7→ ∇XY which satisfies the following properties:

1. ∇fX+gYZ = f∇XZ + g∇YZ

2. ∇X(Y + Z) = ∇XY +∇XZ

3. ∇X(fY ) = f∇XY +X(f)Y

for every X, Y, Z ∈ T 1
0M and f, g ∈ C∞M . It can be proved that there

exists a unique correspondance which associates to a vector field X along a
smooth curve γ : I →M another vector field along γ, denoted by DX

dt
or more

frequently by X ′, called the covariant derivative of X along γ, such that:
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• D
dt

(X + Y ) = DX
dt

+ DY
dt

• D
dt

(fX) = df
dt
X + f DX

dt

• If X(t) = X̃(γ(t)), for X̃ ∈ T 1
0M , then DX

dt
= ∇γ̇X̃

where X, Y are vector fields along γ and f ∈ C∞(I). The third bullet makes
sense, since ∇XY (p) depends on the value of X(p) and the values of X̃ along
a curve, tangent to X at p, since part (3) of the definition allow us to show
that the notion of connection is actually a local notion. In articular, ∇XY (p)
depends only on X i(p), Y j(p) and the derivatives X(Y j)(p) of Y j by X.
A well known theorem states that any Riemannian manifold has a unique
connection satisfying two more (good) properties:

(1) Symmetric: ∇XY −∇YX = [X, Y ]

(2) Metric compatible: d
dt
〈X, Y 〉 = 〈X ′, Y 〉+ 〈X, Y ′〉

where [·, ·] : T 1
0M × T 1

0M → T 1
0M is the Lie bracket, defined by

[X, Y ](f) := X(Y (f))− Y (X(f))

for every f ∈ C∞M . This connection is called the Levi-Civita connection
and we shall always use this by default.

The notion of connection is equivalent to the notion of parallel
transport along curves. Let’s call a vector field X along a curve
γ : I →M parallel if X ′ ≡ 0. Let V0 ∈ Tγ(t0)M for some t0 ∈ I. Then there
exists a unique parallel field V along γ, such that V (t0) = V0. This field is
what we call parallel transport along γ. It turns out that if we define a map

P : Tγ(t)M → Tγ(t0)M

where P (v) = parallel transported v from γ(t) to γ(t0), then it is a linear
isometry. Also, if γ is an integral curve, of a smooth vector field X, through
p, i.e. γ(t0) = p and γ̇(t) = X(γ(t)) and Y is another smooth vector field
then one has

∇XY (p) =
d

dt

∣∣∣
t=t0

P (Y (γ(t))).

For a 1-form ω define its covariant derivative with respect to a vector
field X as

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY ).
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Now, the connection can be extended on any (p, q)-tensor field as follows:
let X1, . . . , Xp be vector fields and ω1, . . . , ωq be 1-forms and T be a (p, q)-
tensor field. The covariant derivative of T with respect to X is defined
by

(∇XT )(X1, . . . , Xp, ω1, . . . , ωq) = X(T (X1, . . . , Xp, ω1, . . . , ωq))

−
p∑
i=1

T (X1, . . . , ∇XXi, . . . , Xp, ω1, . . . , ωq)

−
q∑
j=1

T (X1, . . . , Xp, ω1, . . . , ∇Xωj, . . . , ωq)

If T is a smooth function f then ∇Xf = df(X), but when we write ∇f we
mean the vector field that satisfies df(X) = 〈∇f, X〉.

Now, we can define the second covariant derivative. Let X, Y, Z be
smooth vector fields on M . by definition ∇Z is a (1, 1)-tensor field satisfying

(∇Z)(Y ) = ∇YZ.

Hence
∇X

[
(∇Z)(Y )

]
= ∇X(∇YZ).

A differentiation should follow the Leibniz rule, so that we would get:

(∇X(∇Z))(Y ) + (∇Z)(∇XY ) = ∇X(∇YZ)

⇒ (∇X(∇Z))(Y ) = ∇X(∇YZ)− (∇Z)(∇XY ) = ∇X(∇YZ)−∇∇XYZ

and we define the second covariant derivative of a smooth vector field Z as a
(2, 1)-tensor field, denoted by ∇2Z and defined by

∇2
X,YZ = (∇X(∇Z))(Y ) = ∇X(∇YZ)−∇∇XYZ.

If T is a smooth function f , then ∇2
X,Y f := Hess f(X, Y ) is called the

Hessian of f.

The Riemann curvature tensor is a (3, 1) tensor field defined by

R(X, Y )Z = ∇2
X,YZ −∇2

Y,XZ

= ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z
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for all vector fields X, Y, Z. It can also be written as a (4, 0) tensor field as
R(X, Y, Z, W ) = g(R(X, Y )Z, W ). The (2, 0) Ricci curvature tensor is
the trace of the curvature tensor:

Ric(X, Y ) =
n∑
i=1

R(X, ei, ei, Y )

for X, Y ∈ TpM , where {ei | i = 1, . . . , n} is an orthonormal basis for TpM .
The scalar curvature is just the trace of the Ricci curvature tensor:

scal(M) =
n∑
j=1

Ric(ej, ej)

and last, but not least, the sectional curvature of the plane Π ⊆ TpM
spanned by X, Y ∈ TpM is defined as

sec(Π) = sec(X, Y ) =
R(X, Y, Y, X)

g(X, X)g(Y, Y )− g(X, Y )2
.

Observe that if {e1, . . . , en} is an orthonormal basis for TpM one has

Ric(ej, ej) =
n∑
i=1

sec(ej, ei)

for j = 1, . . . , n. So Ricci curvature is like a mean of sectional curvatures in
every direction, so it has to have some relationship with volume. We will see
that this is the case through the Bishop-Gromov volume comparison theorem
and its consequences on optimal mass transport. Lastly, sectional curvature
is closely related to the curvature tensor since it holds most of its information
as one can see from the following:

Proposition. For all vector fields X, Y, Z, W on M

R(X, Y, Z, W ) = K
(
〈X, W 〉〈Y, Z〉 − 〈Y, W 〉〈X, Z〉

)
⇔ sec(M) ≡ K

where sec(M) ≡ K means secp ≡ K for every p ∈M .

2.9 Geodesics & Exponential map

As usual a geodesic is a curve γ on M which satisfies ∇γ̇ γ̇ = 0. This is
expressed in local coordinates as

d2xi

dt2
+ Γijk(c(t))

dxj

dt

dxk

dt
= 0
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where Γijk denote the Christoffel symbols, defined by ∇Ej
Ek = Γijk Ei. This is

a system of second order, quadratic, nonlinear ordinary differential equations
and by standard theory of O.D.E., for any point p ∈M and v ∈ TxM , there
exists a unique geodesic γ : [0, t0]→M for some t0 > 0, such that γ(0) = p
and γ̇(0) = v. If t0 < ∞, we consider the curve γ0(t) := γ(t0t). Clearly
γ0(0) = p and γ̇0(0) = t0v, while the curve is defined for t ∈ [0, 1] and
∇γ̇0 γ̇0 = t20∇γ̇ γ̇ = 0. Since v is an arbitrary vector, the theory of O.D.E. an
prove that there exists a maximal open set Dp ⊆ TpM such that 0 ∈ Dp and
for each v ∈ Dp, there exists a unique geodesic γ0 : [0, 1] → M , such that
γ0(0) = p and γ̇0(0) = v.

This fact enables us to define the exponential map at p ∈M as a
map expp : Dp →M , defined by

expp(v) = γ(1)

where γ : [0, 1] → M is the geodesic with γ(0) = p and γ̇(0) = v. It
is obvious that expp(tv) = γ(t) holds that gives the well known fact that
(D expp)0 = IdTpM for the linear map (D expp)v : Tv(TpM)→ Texpp vM . Now,
the inverse function theorem states that expp is a local diffeomorphism.

At each p ∈ M find an open set Dp ⊆ TpM such that expp : Dp →
expp(Dp) := Up is a diffeomorphism and call Up a normal neighbourhood
of p. If Bp

ε (0) ⊆ Vp then we call exppB
p
ε (0) = Bε(p) the normal (or

geodesic) ball with center p and radius ε>0. Now, let {e1, . . . , en} be
an orthonormal basis for TpM , i.e. gp(ei, ej) = δij. Then the local chart
(Up, exp−1

p ) is called local normal coordinates around p. It can be proved
that for any p ∈M there exists a neighbourhood W of p so that it is a normal
neighbourhood of each of its points, such neighbourhood is called totally
normal neighbourhood. If we consider a geodesic γ : [0, 1] → B where
B is a geodesic ball with center γ(0) = p. Then any other smooth curve δ
that joins γ(0) to γ(1) has the same or greater length, while equality holds
if and only if γ([0, 1]) = δ([0, 1]). So geodesics minimize locally the length
functional. This property is not global, for example on the 2-dimensional
sphere any geodesic from the north pole stops being minimizing once it passes
the south pole. Later, using some variational calculus, we will talk about how
minimizing curves must be geodesics and that for every geodesic is minimizing
if we restrict their domain. It is a well known fact that in these coordinates
one has at p ∈M that gij(p) = δij and Γijk(p) = 0. In particular the Taylor
expansion at x = p gives

gij(x) = δij +
1

3
Riklj(p)x

kxl +O(|x|3)
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and
Rijkl(p) =

1

2
(∂i∂lgjk + ∂j∂kgil − ∂i∂kgjl − ∂j∂lgik)

which has as a consequence an estimate for the volume element√
det(gij) = 1− 1

6
Rickl(p)x

kxl +O(|x|3)

which is a sign that Ricci controls more than just volumes, since

volg(Br(p)) = ωnr
n
(

1− scal(p)

6(n+ 2)
r2 +O(|r|3)

)
where Br(p) := {q ∈M | d(p, q) < r} and ωn denotes the euclidean volume
of the unit n-ball. These two equations provide a geometric interpretation for
Ricci and scalar curvatures, while for the sectional curvature it can be proven
that, for unit vectors v, w ∈ TxM with (non-oriented) angle θ one has

d(expx(tv), expx(tw)) =
√

2(1− cos θ)t

(
1− cos2(θ/2)

6
sec(v, w)t2 +O(t4)

)
which tells us that the sectional curvatures infinitesimally measure the
tendency of geodesics to converge (>0) or diverge (<0).

2.10 Hopf-Rinow Theorem & Gauss’ Lemma

The manifolds of our work need to be complete as a metric space with respect
to the distance in order to exploit some useful properties of theirs, arising
from the well-known Hopf Rinow theorem:

Theorem (Hopf-Rinow). Let (M, g) be a Riemannian manifold with geodesic
distance d. The following are equivalent:

(i) M is a complete metric space

(ii) M is geodesically complete (i.e. geodesics ar defined on all of R)

(iii) ∃p ∈M such that expp is defined on all of TpM

(iv) ∀p ∈M the expp is defined on all of TpM

(v) Closed and bounded subsets of M are compact
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while any of the above implies that any two points can be joined by a minimizing
geodesic.

We will not prove the above theorem since its proof is enormous, out of our
focus field and anyone who’s interested can find it in multiple introductory
coursebooks, though we will refer to one extremely important tool that not
only is needed for the discussed proof but it is of separate interest at any rate.

Lemma (Gauss’ Lemma). Let u, v ∈ TpM and γ(t) = expp tv. Then

〈(D expp)sv(v), (D expp)sv(u)〉γ(t) = 〈v, u〉p.

In particular, γ̇(t) is orthogonal to a smooth geodesic sphere centered at p
with radius d(p, γ(t)).

An immediate corollary of this lemma is that there exists ε > 0 such that
expp is a diffeomorphism from the ball Bp

ε (0) ⊆ TpM onto the normal ball
Bε(p), while for any q /∈ Bε(p) there exists z ∈ ∂Bε(p) such that

d(p, q) = d(p, z) + d(z, q) = ε+ d(z, q).

Moreover, for any v ∈ TpM the geodesic γ : [0, ε] → M , defined by γ(t) =
expp tv, is minimizing. From now on, we will assume that any manifold M is
complete.

2.11 Conjugate Points & Cut Locus

In order to measure how broad is the region where expp is a diffeomorphism we
define the injectivity radius at p ∈M, denoted by inj(p), as the supremum
of the radii of balls centered at 0 ∈ TpM on which expp is a diffeomorphism.
It can be proved, that inj as a function M → R is continuous. The infimum
of inj(p) over all p ∈ M is called the injectivity radius of M. A kind of
element that exists beyond the injectivity radius at p is a conjugate point
of p: if there exists v ∈ TpM such that q = expp v and the linear map
(D expp)v : Tv(TpM)→ TqM has non-zero kernel, then q is called a conjugate
point of p. If we consider the geodesic γ(t) = expp tv, t ≥ 0. If q = expp t0v
is a conjugate point of p then γ is not distance minimizing for t ∈ [0, t0 + ε]
for every ε > 0. That inspires the definition of the cut locus of p:

cut(p) := {expp v ∈M | expp tv is minimizing for t ∈ [0, 1]

but stops being for t ∈ [0, 1 + ε] ∀ε > 0}
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Every point in q ∈ cut(p) is called a cut point of p. There is a
characterization of the cut locus which makes use of conjugate points:

Theorem. Suppose that γ(t0) is the cut point of p = γ(0) along γ. Then at
least one of the following holds:

(1) γ(t0) is the first conjugate point of γ(0) along γ

(2) there exists a geodesic δ 6= γ from p to γ(t0) such that L(δ) = L(γ)

Conversely, if one of the above is satisfied, then there exists τ ∈ (0, t0] such
that γ(τ) is the cut point of p along γ.

We have three important corollaries produced by this theorem:

• q ∈ cut(p)⇔ p ∈ cut(q)

• q /∈ cut(p)⇒ there exists a unique minimizing geodesic joining p to q

• ∀p ∈M cut(p) is closed

It is immediate that
inj(p) = d(p, cut(p))

but what about the points that realize this distance? Suppose q ∈ cut(p)
such that d(p, q) = inj(p). Then at least one of the following is true:

(1) q is a conjugate point of p along a minimizing geodesic joining p to q

(2) There exist exactly two minimizing geodesics γ1, γ2 joining p to q. In
addition, γ̇1(l) = γ̇2(l) and l = d(p, q)

2.12 Variations & Jacobi Fields

A variation of a smooth curve γ is a smooth map f : (−ε, ε)× [0, 1]→M
so that f(0, t) = γ(t) (we use 0 and 1 instead of a and b for simplicity).
Sometimes we write γs(t) = f(s, t). Observe that ∂f

∂t
(s, t) = γ̇s(t). We

will call V (t) := ∂f
∂s

(0, t) the variational field of f along γ. A proper
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variation is a variation that doesn’t move endpoints, while a variation is
called geodesic if γs is a geodesic for every s ∈ (−ε, ε). It is an immediate
consequence of the definitions that

D

ds

∂f

∂t
=
D

dt

∂f

∂s

where D
ds
, D
dt

denote the covariant differentiation along curves. From the
energy functional

E(γ) =
1

2

∫ 1

0

|γ̇(t)|2γ(t)dt

we get the first variation of energy formula:

dE(γs)

ds
(0) := −

∫ 1

0

〈V (t), ∇γ̇ γ̇〉dt+ 〈V (1), γ̇(1)〉 − 〈V (0), γ̇(0)〉

which proves that the functional’s critical points are exactly the geodesics
and from the second variation of energy formula:

d2E(γs)

ds2
(0) := −

∫ 1

0

〈V (t), V ′′(t) +R(V, γ̇)γ̇(t)〉dt

+
[
〈V (t), V ′(t)〉+ 〈∇V (t)V (t), γ̇(t)〉

]t=1

t=0

we get that for a sufficiently small interval a geodesic will be a minimizing one,
i.e. it minimizes the distance between its endpoints. That’s why sometimes
we will refer to the distance function as geodesic distance. Note that this
is the case because a curve minimizes the length functional if and only if it
minimizes the energy functional and it has constant speed. It can be proved
that an alternative form of the second formula is the following

d2E(γs)

ds2
(0) =

∫ 1

0

〈V ′(t), V ′(t)〉 − 〈V (t), R(V, γ̇)γ̇(t)〉dt

+
[
〈∇V (t)V (t), γ̇(t)〉

]t=1

t=0

from which, the definition of the index form of a geodesic is inspired:

I(X, Y ) : =

∫ 1

0

〈X ′(t), Y ′(t)〉 −R(X, γ̇, γ̇, Y )(t)dt

=
[
〈X ′(t), Y (t)〉

]t=1

t=0
−
∫ 1

0

〈X ′′(t) +R(X, γ̇)γ̇(t), Y (t)〉dt
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where X, Y are smooth vector fields along γ. Note that I is symmetric and
bilinear and if the variation is proper the last terms in the first two formulas
vanish and in particular

d2E(γs)

ds2
(0) = I(V, V ) = −

∫ 1

0

〈V (t), V ′′(t) +R(V, γ̇)γ̇(t)〉dt

which inspires, in turn, the definition of the Jacobi fields along geodesics.
These are smooth vector fields J along a curve γ satisfying

J ′′(t) +R(J(t), γ̇(t))γ̇(t) = 0.

Note that if X is a Jacobi field then

I(X, Y ) =
[
〈X ′(t), Y (t)〉

]t=1

t=0

which means that the index form is determined by the information on the
endpoints. Actually one sees easily that X is a Jacobi field if and only if
I(X, Y ) = 0 for all Y that are zero on their endpoints. Consider the set of all
smooth fields along a geodesic γ that vanish at their endpoints and denote it
by V . The index form is closely related to conjugate points in the sense that

(1) γ(0) has no conjugate point along γ ⇔ I > 0 on V

(2) γ(1) is the first conjugate of γ(0) along γ ⇔ I ≥ 0 on V and I(X, X) = 0
for some X ∈ V

(3) γ(0) has a conjugate point midway along γ ⇔ I(X, X) < 0 for some
X ∈ V

The index form can help us see that Ricci curvature controls more than
just volumes:

Theorem (Bonnet-Myers Theorem). Let (M, g) be a geodesically complete
Riemannian manifold whose Ricci curvature satisfies Ric(M) ≥ (n− 1)K for
a K > 0. Then M is compact and its diameter is bounded by

diamM ≤ π√
K

Proof. Let p, q ∈M and γ : [0, 1]→M a minimizing geodesic joining p to q.
Suppose that

l := L(γ) ≥ π√
K
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where L is the length functional. Complete e1 := γ̇(0)
l

into an orthonormal
basis {e1, . . . , en} of TpM and consider their parallel translation {ei(t)} along
γ. For i = 2, . . . , n define

Vi(t) := sin(πt)ei(t)

which has the property that Vi(0) = Vi(1) = 0. Then

I(Vi, Vi) = −
∫ 1

0

〈Vi, V ′′i +R(Vi, γ̇)γ̇〉dt =

∫ 1

0

sin2(πt)(π2−l2R(e1, ei, ei, e1))dt

and by summing over i we get
n∑
i=2

I(Vi, Vi) =

∫ 1

0

sin2(πt)((n− 1)π2 − l2 Ricp(e1, e1))dt

< (n− 1)

∫ 1

0

sin2(πt)dt(π2 − l2K) < 0

so that I(Vj, Vj) < 0 for some j ≥ 2. Thus, there exists t0 ∈ (0, 1) such that
γ(t0) is conjugate to p along γ. Therefore γ is not minimizing, which is a
contradiction.

Let’s turn our focus on Jacobi fields that are important since they describe
the derivative of the exponential map:

Proposition. Let p ∈ M and u, v ∈ TpM . Consider the geodesic γ(t) =
expp tv and V the Jacobi field along γ such that V (0) = 0 and V ′(0) = u.
Then

(D expp)tv(tu) = V (t).

We say "the" with confidence because of the lifesaving theory of O.D.E., once
again. Note that γ̇(t) and tγ̇(t) are Jacobi fields along γ. The first one has
derivative zero but vanishes nowhere, while the second one is zero if and only
if t = 0. For this reason we mainly consider Jacobi fields that are normal to
γ̇.

Jacobi fields contribute to the search of conjugate points. If γ is a
geodesic whose endpoints are conjugate, then a non trivial Jacobi field along
γ exists such that it vanishes at its endpoints. Also, if γ : [0, 1] → M is a
geodesic joining p to q which are not conjugate then for v0 ∈ TpM, v1 ∈ TqM
we can find a unique Jacobi field J along γ such that J(0) = v0 and J(1) = v1.
This leads to the following
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Corollary. Let γ : [0, 1]→M be a geodesic in Mn and let J ⊥ be the space
of Jacobi fields with J(0) = 0 and J ′(0) ⊥ γ̇(0). Let {J1, . . . , Jn−1} be a basis
of J ⊥. If γ(t), t ∈ (0, 1] is not conjugate to γ(0), then {J1(t), . . . , Jn−1(t)}
is a basis for the orthogonal complement 〈γ̇(t)〉⊥ ⊆ Tγ(t)M of γ̇(t).

We shall close this paragraph by producing a useful formula for computing
volume of a manifold. When a geodesic ball does not intersect the cut-locus
of its center, we can use the exponential map and associated Jacobi fields to
construct such a formula. The formula below seems to make the matter wors
by getting Jacobi fields involved. Howevr, the differential equations satisfied
by Jacobi fields make the formula useful.

Proposition. Let M be a complete Riemann manifold. Suppose the ball
Br(p) does not intersect the cut-locus of p. For each unit vector v ∈ TpM , let
{e1, . . . , en−1, v} be an orthonormal basis of TpM . Then

volg(Br(p)) =

∫
Sn−1

∫ r

0

√
detA(t)dtdv

where
A(t) :=

(
〈Ji(t), Jj(t)〉γ(t)

)n−1

i,j=1

and Ji is the Jacobi field along γ(t) = expp(tv) with Ji(0) = 0 and J ′i(0) = ei,
i = 1, . . . , n− 1 and dv is the canonical volume element of Sn−1, regarded as
the unit sphere of TpM .

Proof. Since the ball Br(p) does not intersect the cut-locus, we will use the
inverse exponential map exp−1

p as the local chart ϕ in the definition of the
volume form. Let {e1, . . . , en−1, v} be an orthonormal basis of TpM . Every
point q ∈ Br(p) is represented in this chart by the coordinates (x1, . . . , xn)
such that q = expp(x

1e1 + x2e2 + · · · + xnv). For any fixed t ∈ [0, r], let
q = expp(tv), which s not a conjugate point of p. Hence (D expp)tv is
nonsingular and

{(D expp)tve1, . . . , (D expp)tven−1, (D expp)tvv}

is a basis of TqM . In fact it is the local basis {∂1, . . . , ∂n}, since for any
smooth function f ∈ C∞(Br(p)), one has

∂i|qf =

[
d

ds

∣∣∣∣
s=0

expp(tv + sei)

]
f =

[
(D expp)tvei

]
f
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by definition. But, along the geodesic γ(t) = expp(tv), the Jacobi field Ji
with Ji(0) = 0 and J ′i(0) = ei, i = 1, . . . , n− 1, has the form

Ji(t) = (D expp)tvei

while, by the chain rule, we have (D expp)tvv = γ′(t). Hence

{∂1|p, . . . , ∂n|p} =

{
1

t
J1(t), . . . ,

1

t
Jn−1(t), γ′(t)

}
is the canonical basis of TqM . In the local chart henerated by exp−1

p , the
coordinates of q in the spherical system are (v, s), where v is regarded as an
element in Sn−1. Therefore the volume element of q, under this local chart is

dvolg =
√

det(〈∂i, ∂j〉)dx1 . . . dxn =
√

det(〈Ji(t), Jj(t)〉)dtdv

where dv is the canonical volume element of Sn−1, regarded as the unit sphere
of TpM . After integration, we obtain

volg(Br(p)) =

∫
Sn−1

∫ r

0

√
det(〈Ji(t), Jj(t)〉)dtdv.

Let’s see an example. Denote by MK
n the space of constant sectional

curvature equal to K and let J be a Jacobi field along γ that is normal to γ̇.
Then, the Jacobian equation becomes

J ′′(t) +KJ(t) = 0

which has as a solution, with initial conditions J(0) = 0, J ′(0) = w(0):

J(t) = t snK(t)w(t)

where

snK(r) :=



sin(
√
Kr)√
Kr

, K > 0 , 0 < r < π√
K

1 , K = 0 , r > 0

sinh
(√
−Kr

)
√
−Kr

, K < 0 , r > 0

with
snK(0) := 1
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and w(t) is a parallel field along γ which has unit length and is normal to
γ̇. Note that the upper bound is natural and no generality is lost, due to
Bonnet-Myers theorem. Moreover, denoting by VK,n(r) the volume of a ball
of any center and radius r, we have

VK,n(r) =

∫
Sn−1

∫ r

0

tn−1 snn−1
K (t)dtdv = an−1

∫ r

0

tn−1 snn−1
K (t)dt

where an−1 is the area of Sn−1.

2.13 Bishop-Gromov Volume Comparison
Theorem

In this section we will formulate and prove the well-known Bishop-Gromov
volume comparison theorem. Given a unit vector v ∈ TxM , we fix a unit
speed minimal geodesic γ : [0, l] → M with γ̇(0) = v and an orthonormal
basis {e1, . . . , en−1, v} of TxM . Now, we consider the geodesic variations
fi : (−ε, ε)× [0, l]→M of γ, defined by

fi(s, t) := expx
(
t(v + sei)

)
for i = 1, . . . , n− 1. Next, we introduce their respective Jacobi fields along
γ:

Ji(t) :=
∂fi
∂s

(0, t) = (D expx)tv(tei) ∈ Tγ(t)

for i = 1, . . . , n − 1. Note that Ji(0) = 0 and J ′i(0) = ei while the Gauss
lemma asserts that gγ(Ji, γ̇) ≡ 0 and, hence, gγ(J ′i , γ̇) ≡ 0, since Ji are Jacobi
fields along the geodesic γ. Since γ is minimal, γ(t) isn’t conjugate to x,
for t ∈ (0, l), and thus {1

t
J1(t), . . . , 1

t
Jn−1(t), γ̇(t)} is the canonical basis of

Tγ(t)M . We define an (n− 1)× (n− 1) matrix U (t) = (uij(t))
n−1
i,j=1 such that

J ′i(t) =
∑n−1

j=1 uijJj(t), for t ∈ (0, l). Also, define two more (n− 1)× (n− 1)
matrices, which happen to be symmetric:

A(t) :=
(
〈Ji(t), Jj(t)〉γ(t)

)n−1

i,j=1
, R(t) :=

(
〈R(Ji(t), γ̇(t))γ̇(t), Jj(t)〉γ(t)

)n−1

i,j=1
.

Lemma. Let U , A, R be the above matrices. Then

(i) Ricγ(t)(γ̇(t)) = tr(R(t)A−1(t))
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(ii) UA = AUT and 2U = A′A−1

(iii) U is also symmetric and tr(U 2) ≥ (trU)2

n−1

Proof. (i) Let C = (cij)
n−1
i,j=1 be a matrix such that

{∑n−1
j=1 cij(t)Jj(t)

}n−1

i=1
is

an orthonormal basis of 〈γ̇(t)〉⊥. Then

Ricγ(t)(γ̇(t)) =
n−1∑
i,j,k=1

〈R(cijJj(t), γ̇(t))γ̇(t), cikJk(t)〉γ(t)

= tr(C(t)R(t)CT (t))

= tr(R(t)A−1(t)C(t)A(t)CT (t))

= tr(R(t)A−1(t))

since CACT = I, by construction.

(ii) Observe that

UA =

(
n−1∑
k=1

uik〈Jk, Jj〉γ

)n−1

i,j=1

=

(〈 n−1∑
k=1

uikJk, Jj

〉
γ

)n−1

i,j=1

=
(
〈J ′i , Jj〉γ

)n−1

i,j=1

and similarly AUT =
(
〈Ji, J ′j〉γ

)n−1

i,j=1
, so that

A′ = UA +AUT .

Differentiating along the geodesic γ gives

D

dt

(
〈J ′i , Jj〉γ − 〈Ji, J ′j〉γ

)
= 〈J ′′i , Jj〉γ − 〈Ji, J ′′j 〉γ

= −〈R(Ji, γ̇)γ̇, Jj〉γ + 〈Ji, R(Jj, γ̇)γ̇〉γ = 0

and, since Ji(0) = 0, J ′i(0) = ei we have that 〈J ′i , Jj〉γ = 〈Ji, J ′j〉γ. Thus
UA = AUT and A′ = 2UA, which proves our claim.
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(iii) Define a map

ϕ : expx

({
t

(
v +

n−1∑
i=1

siei

) ∣∣∣∣∣ t ∈ [0, l], |si| < ε

})
→ R

so that ϕ(expx(t(v +
∑n−1

i=1 siei))) = t. Hence

∇ϕ(fi(s, t)) =
∂fi
∂t

(s, t)

and since D
dt
, D
ds

commute we have that

J ′i(t) =
D

ds

∂fi
∂t

(0, t) =
D

ds
∇ϕ(γ(t)) = ∇Ji(t)∇ϕ(γ(t)) = Hessγ(t) ϕ(Ji(t))

so that U(t) is the matrix representation of the symmetric (1, 1)-tensor
Hessγ(t) ϕ with respect to the basis {J1, . . . , Jn−1} of 〈γ̇〉⊥. Therefore, U is
also symmetric and if λ1, . . . , λn−1 are its eigenvalues, the Causchy-Schwartz
inequality shows that

(trU )2 =

( n−1∑
i=1

λi

)2

≤ (n− 1)
n−1∑
i=1

λ2
i = (n− 1) tr(U 2)

which is what we wanted to show.

A lower Ricci bound yields an important differential inequality which
plays a crucial role in proving the Bishop-Gromov comparison theorem

Proposition. If Ric(M) ≥ (n− 1)K for a K ∈ R then[
(detA)1/2(n−1)

]′′ ≤ −K(detA)1/2(n−1)

and thus
√

detA(t)/tn−1 snn−1
K (t) is a non-increasing function of t.

Proof. Using Jacobi’s formula for the derivative of the determinant and the
second part of the previous lemma the chain rule yields[

(detA)1/2(n−1)
]′

=
1

2(n− 1)
(detA)1/2(n−1)−1 · detA tr(A′A−1)

=
1

n− 1
(detA)1/2(n−1) trU .
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Differentiating once more, the third part of the lemma gives[
(detA)1/2(n−1)

]′′
=

1

(n− 1)2
(detA)1/2(n−1)(trU )2 +

1

n− 1
(detA)1/2(n−1) trU ′

≤ 1

n− 1
(detA)1/2(n−1)(trU 2 + trU ′).

Making use of 2U = A′A−1 once again and taking into account that

J ′′i = −R(Ji, γ̇)γ̇

we deduce that

U ′ = 1

2
A′′A−1 − 1

2
(A′A−1)2

=
1

2
(−2R + 2UAUT )A−1 − 2U 2

= −RA−1 + U 2AA−1 − 2U 2

= −RA−1 − U 2

Taking trace on U 2 +U ′ = −RA−1 the first part of the previous lemma yields

trU 2 + trU ′ = −Ricγ(γ̇)

and thus [
(detA)1/2(n−1)

]′′ ≤ 1

n− 1
(detA)1/2(n−1)(trU 2 + trU ′)

= −Ricγ(γ̇)

n− 1
(detA)1/2(n−1)

≤ −K(detA)1/2(n−1).

Recall that snK are such that the function y(t) := t snK(t) is the solution
of the differential equation y′′ + Ky = 0, y(0) = 0, y′(0) = 1. Taking into
account that y, detA > 0, this means that[

(detA)1/2(n−1)
]′′

(detA)1/2(n−1)
≤ y′′

y

⇒
[
(detA)1/2(n−1)

]′′
y − (detA)1/2(n−1)y′′ ≤ 0

⇒
{[

(detA)1/2(n−1)
]′
y − (detA)1/2(n−1)y′

}′
≤ 0
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⇒
[
(detA)1/2(n−1)

]′
y − (detA)1/2(n−1)y′ ≤ −(detA(0))1/2(n−1) ≤ 0

⇒

(
(detA)1/2(n−1)

y

)′
≤ 0

which means that (detA)1/2(n−1)/y is non increasing. But, since the operation
x 7→ xn−1 preserves ordering we have that√

detA(t)/tn−1 snn−1
K (t)

is a non-increasing function of t

Now we can formulate and prove the Bishop-Gromov comparison theorem:

Theorem (Bishop-Gromov). Assume that Ric(M) ≥ (n−1)K holds for some
K ∈ R. Then we have, for any x ∈M and 0 < r < R

(
≤ π√

K
if K > 0

)
,

volg(Br(x))

volg(BR(x))
≥ VK,n(r)

VK,n(R)

where VK,n(r) = an−1

∫ r
0

snn−1
K (t)dt is the volume of a ball of radius r in the

space form of constant sectional curvature equal to K. Thus the function
volg(Br(x))/VK,n(r) is non-increasing in r. Moreover, it tends to 1, as r → 0.

Proof. Following our previous conversation, setting
A (t) =

∫
Sn−1

√
detA(t)dv and S(t) = tn−1 snn−1

K (t) we have

volg(Br(x))

∫ R

0

tn−1 snn−1
K (t)dt =

∫ r

0

A (t)dt

∫ R

r

S(t)dt+

∫ r

0

A (t)dt

∫ r

0

S(t)dt

≥ A (r)

S(r)

∫ r

0

S(t)dt

∫ R

r

S(t)dt+

∫ r

0

A (t)dt

∫ r

0

S(t)dt

≥
∫ r

0

S(t)dt

∫ R

r

A (t)dt+

∫ r

0

A (t)dt

∫ r

0

S(t)dt

= volg(BR(x))

∫ r

0

tn−1 snn−1
K (t)dt

Multiplying with the volume of the unit ball an−1 we get

volg(Br(x))VK,n(R) ≥ volg(BR(x))VK,n(r)
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so that the function volg(Br(x))/VK,n(r) is non-increasing in r. Lastly, in
normal coordinates we have

lim
r→0

volg(Br(x))

VK,n(r)
= lim

r→0

ωnr
n
(

1− scal(p)
6(n+2)

r2 +O(|r|3)
)

ωnrn
(

1− K
6(n+2)

r2 +O(|r|3)
) = 1

and the theorem is proved.

2.14 Volume Distortion Coefficients

We would like to measure how much the volume of a ball changes as we
transport it along geodesics. To this end, we define a notion of barycenter to
play the role of (1− t)x + ty. For fixed t ∈ [0, 1] define the locus of points
lying partway between x and y ∈M :

Zt(x, y) := {z ∈M | d(x, z) = td(x, y) & d(z, y) = (1− t)d(x, y)}

If we’re given a unique minimizing geodesic γ : [0, 1]→M , then Zt(x, y) =
{γ(t)}, as one can see. The above definition extends to sets X, Y ⊆ M by
taking the union for each point. Namely:

Zt(x, Y ) :=
⋃
y∈Y

Zt(x, y), Zt(X, y) :=
⋃
x∈X

Zt(x, y)

Zt(X, Y ) :=
⋃
x∈X
y∈Y

Zt(x, y)

Now, for a ball Br(y) ⊆M and t ∈ (0, 1], we define the volume distortion
coefficients

vt(x, y) := lim
r→0

volg(Zt(x, Br(y)))

volg(Btr(y))

for which we shall prove that exists and is positive, when y /∈ cut(x), by
linking it with the differential of the exponential map Y (t) = (D expx)tv
and the Hessian of the distance function H(t) = Hessx d

2
γ(t)/2 where γ is the

minimal geodesic joining x to y:

Proposition. Fix x, y ∈M with y /∈ cut(x) and let γ(t) := expx(tv) be the
minimal geodesic joining x to y. Τhen, for t ∈ (0, 1]

vt(x, y) =
detY (t)

detY (1)
= detY (t)Y (1)−1 > 0
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and for t ∈ [0, 1)

v1−t(y, x) = det
Y (t)

(
H(t)− tH(1)

)
1− t

Proof. Observe that since expx is a local diffeomorphism for small enough r
the set Dr := exp−1

x (Br(y)), for y /∈ cut(x), is open and contains v thus we
can find a small neighbourhood of v inside it that we can scale proportionally
to r in order to put Dr inside. Thus Dr shrinks nicely to v ∈ TxM . The
map Gt(u) := expx(tu) is a local diffeomorphism between a neighbourhood
of v and a neighbourhood of γ(t) and maps Dr onto Zt(x, Br(y)), as long
as Br(y) ∩ cut(x) = ∅. Also, note that (DGt)v = tY (t) and so, a change
of variables, along with Lebesque’s differentiation theorem ([7]) (since Dr

shrinks nicely to v) gives:

det(tY (t)) = det(DGt)v = lim
r→0

volg(Zt(x, Br(y)))

volg(Dr)

since detY (t) > 0 (changes continuously, while Y (0) = I). Thus, for t = 1
one has

detY (1) = lim
r→0

volg(Br(y))

volg(Dr)

hence
detY (t)

detY (1)
= lim

r→0

volg(Zt(x, Br(y)))

tn volg(Br(y))
= vt(x, y)

since lim
r→0

volg(Btr(y))

tn volg(Br(y))
= 1.

Observe that (DGt)v(u) = tY (t)u = (D expx)tv(tu) which is Jacobi field
along γ, so tY (t)Y (1)−1u will also be a Jacobi field along γ, as a linear
combination of Jacobi fields along γ. But, since y /∈ cut(x), Jacobi fields
along γ : x 7→ y are determined by their endpoints, which in this case are 0 and
u for t = 0 and t = 1 respectively. So the first equality can by reformulated
as: if A(t) (= tY (t)Y (1)−1) is the unique matrix with Jacobi fields as its
columns (expressed at an orthonormal frame parallel transported along γ)
such that A(0) = 0 and A(1) = I then

vt(x, y) = det
A(t)

t

for t ∈ (0, 1]. Therefore, if B(t) (= A(1− t)) is the unique matrix of Jacobi
fields along γ such that B(0) = I and B(1) = 0, then

v1−t(x, y) = det
B(t)

1− t
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for t ∈ [0, 1). Fix u ∈ TxM and consider the following geodesic variation of
γ:

f(t, s) := expx
(
−∇d2

γ(t)(x)/2 + s(H(t)− tH(1))(u)
)
.

Its variational field V (t) := ∂f
∂s

(t, s) is a Jacobi field along γ and

∂f

∂s
(t, s) = Y (t)(H(t)− tH(1))(u)

by the chain rule. Since V (0) = Y (0)H(0)u = Iu = u and V (1) = 0 we
conlude that B(t) = Y (t)(H(t)− tH(1)) and the theorem is proved.

The previous characterization of vt together with the Bishop’s comparison
theorem leads to an estimate of vt in terms of Ricci curvature:

Corollary. Assume that Ric(M) ≥ (n− 1)K throughout M for some K ∈ R.
Then for x, y ∈M with y /∈ cut(x) and t ∈ (0, 1) one has

vt(x, y) ≥
(

snK(td(x, y))

snK(d(x, y))

)n−1

and equality holds when M has constant sectional curvature equal to K.

Proof. Let γ(t) = expx(tv) be the minimal geodesic joining x to y as before.
Since γ is minimal and y /∈ cut(x) the Ricci bound yields:

Ricγ(t)(γ̇(t), γ̇(t)) ≥ K|v|2x

where |γ̇(t)|γ(t) = |v|x = d(x, y). Recall from the last section the matrix

A(t) =
(
〈Ji(t), Jj(t)〉γ(t)

)n−1

i,j=1

where 1
t
Ji(t) = (D expx)tv(ei) is the ith column of an (n − 1) × (n − 1)

matrix Y(t) with respect to the basis {e1, . . . , en−1} of 〈v〉⊥ which we parallel
transport along γ, that satisfies

Y (t) =

(
Y(t) 0
0 |v|x

)
It’s easy to see that YYT (t) = 1

t2
A(t) and thus

detY (t) = |v|x detY(t) =
|v|x
tn−1

√
detA(t).
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Now, the Bishop’s comparison theorem asserts that

t 7→ (detY (t))(snK(t|v|x))−(n−1)

is a non-increasing function of t ∈ (0, 1]. Thus

vt(x, y) =
detY (t)

detY (1)
≥
(

snK(t|v|x)
snK(|v|x)

)n−1

.

Now, ifM has constant sectional curvature then computing, as in the previous
section, the Jacobi fields that make up Y (t) we get equality.

2.15 Superdifferentiability of the Distance
Function

A function f : M → R is called Lipschitz continuous on M if there exists
a non-negative constant K such that for every x, y ∈M one has

|f(x)− f(y)| ≤ Kd(x, y)

and locally Lipschitz if it is Lipschitz continuous in every compact subset
of M . One example of a locally Lipschitz map is the distance function itself,
restricted to the one variable, with constant K = 1. An other one would be
the square of the distance function, also restricted to the one variable:

Lemma. For every y ∈M the function d2
y := d2(·, y) is locally Lipschitz on

M .

Proof. Fix y ∈M and let K ⊆M be a compact set. Compactness gives an
upper bound D for dy. Let x, z ∈ K. Then, the triangle inequality gives us:

2|d2
y(x)− d2

y(z)| = |d2(x, y)− d(x, y)d(z, y) + d(x, y)d(z, y)− d2(z, y)|
≤ |d(x, y)||d(x, y)− d(z, y)|+ |d(z, y)||d(x, y)− d(z, y)|
≤ Dd(x, z) +Dd(x, z)

= 2Dd(x, z)

which gives:

|d2
y(x)− d2

y(z)| ≤ Dd(x, z), for every x, z ∈ X

therefore, d2
y is Lipschitz on K. Since K was arbitrary we have that d2

y is
locally Lipschitz.
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In this last section we will explore when dy := d(·, y) is differentiable or
not and give a characterization of cut points in terms of its differentiability.
Firstly, we shall establish that its differentiability points are quite a few:

Theorem (Rademacher’s Theorem, Riemannian case). Let (M, g, d) be any
smooth connected Riemannian manifold with geodesic distance d. Any function
f : M → R which is locally Lipschitz, is differentiable volg-almost everywhere
and its gradient ∇f : M \Nf → TM is a Borel map, where volg(Nf ) = 0.

Proof. We will not prove the Euclidean case, which appears in many textbooks,
such as [6], which we closely follow in the second part of the proof.

Fix p ∈ M and normal coordinates η : U → Rn centered at
p = η−1(0), so that gij(p) = δij. We know, that for the largest eigenvalue of

the quadratic form gx(·, ·) we have λ(x) = max
v∈TxM

1

〈v, v〉
vT [(gij(x))i,j]v which

is continuous, since the coefficients gij(x) depend continuously on these
coordinates. So, there is a smaller neighbourhood of z, let’s say V ⊆ U , in
which we can bound λ by a finite positive number k and we can have that

gx(v, v) ≤ k〈v, v〉

for all x ∈ V and v ∈ TxM . We choose an ε > 0 small enough, so that
Bε(0) ⊂ η(V ) and set W := η−1(Bε(0)). If we show that f is differentiable
volg-almost everywhere on W then we can extend this result to M , since a
connected Riemannian manifold is locally compact and second countable,
thus it can be covered by countably many such neighbourhoods.

The geodesic distance between x, y ∈ W is bounded by the length of the
path α(t) := η−1((1− t)η(x) + tη(y)), so one has:

d(x, y) ≤
∫ 1

0

√
〈α̇(t), α̇(t)〉α(t)dt ≤

√
k|η(y)− η(x)|

after combining α̇i(t) = ηi(y)− ηi(x) with our previous bound on the metric.
So, the function ϕ := f ◦ η−1 is also locally Lipschitz, since f is assumed to
be:

|ϕ(u)− ϕ(v)| = |f ◦ η−1(u)− f ◦ η−1(v)| ≤
≤ Lfd(η−1(u), η−1(v)) ≤
≤ Lf

√
k|u− v|
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for u, v ∈ Bε(0).

By the (Euclidean) Rademacher’s theorem it follows that ϕ is
differentiable m-almost everywhere on Bε(0) (m is the Lebesgue measure).
Now, if we call

Nf := {x ∈M : f is not differentiable at x}
Nϕ := {x ∈ Rn : ϕ is not differentiable at x}

one has:

volg(Nf ∩W ) =

∫
η(Nf )∩Bε(0)

√
det(gij) ◦ η−1dm ≤

≤ Cm(η(Nf ) ∩Bε(0))

= Cm(Nϕ ∩Bε(0))

= 0

where the inequality comes from the fact that the integrated function is
continuous on Bε(0) and the quality η(Nf ) = Nϕ is a simple exercise:

v ∈ η(Nf )⇔ ∃x ∈ Nf : f is not differentiable at x = η−1(v)⇔
⇔ ϕ = f ◦ η−1 is not differentiable at v ⇔
⇔ v ∈ Nϕ

since η is a local diffeomorphism. We deduce that f is differentiable
volg-almost everywhere on W , hence volg-almost everywhere on M .

For the second part we will follow [6] very closely. After extending
ϕ = f ◦η−1 continuously to all of Rn, they observe that its upper derivative:

Dvϕ(x) := lim
k→∞

sup
|t|∈(0, 1/k)∩Q

ϕ(x+ tv)− ϕ(x)

t

in direction v ∈ Rn is expressed as a limit of suprema of continuous functions,
hence Borel. Similarly the lower derivative Dvϕ is also Borel as the only
difference is an infimum in the place of the supremum. Thus, the directional
derivativeDvϕ is a Borel function on the set of full measure whereDvϕ = Dvϕ.
In particular, the n partial derivatives ∂iϕ are Borel, as is

Fv := {x ∈ Bn
ε (0) | Dvϕ = Dvϕ = vj∂jϕ}.

In [6] they show that ϕ is differentiable on any countable intersecction ∩Fvi
over a dense set of directions vi ∈ ∂Bn

1 (0). Outside Fvi differentiability fails,
so ∇ϕ must be Borel. Clearly gkj∂jϕ is also Borel on ∩Fvi and gives the
coordinates of ∇f on U \Nf . We conclude that ∇f is a Borel map.
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As we see d2
y is differentiable almost everywhere and ∇d2

y is a Borel map.
The next step would be to check under what circumstances it is differentiable.
Consider a totally normal neighbourhood W of x. Every y ∈ W is joined to
x by a unique minimizing geodesic γ. This uniqueness is what forces d2

y to be
differentiable at x = expy γ̇(0):

Proposition. If y, x ∈M are joined by a unique minimizing geodesic, then
d2
y/2 is differentiable at x and

∇(d2
y/2)(x) = −(expx)

−1(y).

Proof. Let γ : [0, 1] → M be the minimizing geodesic connecting y = γ(0)
with x = γ(1) parametrized with consant speed. We compute d2

y’s derivative
by linearizing expx around the origin and expy around γ̇(0):

d2
y(expx v) = d2(y, expy(exp−1

y expx v))

= | exp−1
y (expx v)|2y

= |γ̇(0) + (D exp−1
y )x(D expx)0v + o(|v|x)|2

= |γ̇(0)|2y + gy(γ̇(0), (D expy)
−1
γ̇(0)Iv) + o(|v|x)|2

= d2(y, expy γ̇(0)) + 2〈γ̇(1), v〉+ o(|v|x)
= d2

y(x) + 〈2γ̇(1), v〉+ o(|v|x)

where we exploited Gauss’ Lemma along with (D expy)γ̇(0)γ̇(0) = γ̇(1). So,
dividing by 2 gives ∇(d2

y/2)(x) = γ̇(1) Taking in mind that δ(t) := γ(1− t) is
"the same" geodesic we can deduce that

γ̇(1) = −(expx)
−1(y)

and the statement is proved.

What happens if we don’t have uniqueness? We must introduce a new
notion. A function ϕ : M → R is said to be superdifferentiable at x∈M
with supergradient p ∈ TxM if

ϕ(expx v) ≤ ϕ(x) + 〈p, v〉x + o(|v|x)

holds for small v ∈ TxM where |v|x =
√
〈v, v〉x and o(λ)/λ

λ→0−−→ 0. The set
of all such pairs (p, x) ∈ TM is denoted by ∂ϕ and is called the
superdifferential of φ. Note that, when we say p ∈ ∂ϕ(x), we actually
mean the above inequality. Changing the prefix "super" with "sub" we are
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talking about the reverse inequality, which is expressed by q ∈ ∂ϕ(x), where
∂ϕ is the subgradient of φ.

Note that, if ϕ is both super- and sub-differentiable, then it is
differentiable at x and

p = q = ∇ϕ(x)

since, in this case, we have for small v ∈ TxM :

〈p− q, v〉x + o(|v|x) ≥ 0

so that, if we take v = s(q− p) for small s we have:

−|p− q|x +
o(|s|)
|s|

≥ 0
s→0
==⇒ |p− q|x = 0⇒ p = q

and, of course,

ϕ(expx v) = ϕ(x) + 〈p, v〉x + o(|v|x) = ϕ(x) + 〈∇ϕ(x), v〉x + o(|v|x).

An example, to grasp the above idea, would be ϕ : R→ R, ϕ(x) = |x|,
which is differentiable for x 6= 0 and

∂ϕ|x<0 = ∂ϕ|x<0 = {−1}

∂ϕ|x>0 = ∂ϕ|x>0 = {1}

but, at x = 0,
∂ϕ(0) = ∅ and ∂ϕ(0) = [−1, 1]

To see why this is true, observe that p ∈ ∂ϕ(0)⇔ |v| ≤ pv for v small, but
if we take vn = (−1)n

n
we see that such p doesn’t exist. On the other hand

q ∈ ∂ϕ(0)⇔ |v| ≥ pv for v small ⇔ p ∈ [−1, 1].

It’s natural to expect that a chain rule for supergradients must hold:

Lemma. Let ϕ : M → R and f : R→ R have supergradients p ∈ ∂ϕ(x) and
λ ∈ ∂ϕ(x)f , respectively, at some point x ∈M . If f is non-decreasing then

λ · p ∈ ∂f ◦ ϕ(x)

Proof. Note that the superdifferential of f is a subset of TR = R, so λ is a
real number.
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Since f is superdifferentiable at ϕ(x) with supergradient λ, definition
yields:

ϕ(expx v) ≤ ϕ(x) + 〈p, v〉x + o(|v|x)
f(ϕ(x) + ε) ≤ f(ϕ(x)) + λε+ o(ε)

for small v, ε. Since f is non-decreasing, combining the above inequalities for
ε = 〈p, v〉x + o(|v|x) (observe that ε→ 0 as |v|x → 0) we have:

f(ϕ(expx v)) ≤ f(ϕ(x) + 〈p, v〉x + o(|v|x))
≤ f(ϕ(x)) + λ〈p, v〉x + λo(|v|x) + o(〈p, v〉x + o(|v|x))
= f(ϕ(x)) + 〈λp, v〉x + o(|v|x)

since

o(〈p, v〉x + o(|v|x))
|v|x

=
o(〈p, v〉x + o(|v|x))
〈p, v〉x + o(|v|x)

· 〈p, v〉x + o(|v|x)
|v|x

=
o(ε)

ε
·
(〈

p,
v

|v|x

〉
x

+
o(|v|x)
|v|x

)
≤ o(ε)

ε
·
(
|p|x +

o(|v|x)
|v|x

)
|v|x→0−−−−→ 0

thus o(〈p, v〉x + o(|v|x)) = o(|v|x) and, since λo(|v|x) + o(|v|x) = o(|v|x), we
conclude that λp ∈ ∂f ◦ ϕ(x).

Now, we can give a general result regarding the differentiability of d2
y:

Theorem. For every y ∈M , d2
y/2 is superdifferentiable at any x ∈M , with

supergradient
γ̇(1) ∈ ∂(d2

y/2)(x)

where γ : [0, 1]→M is a minimizing geodesic from y = γ(0) to x = γ(1). In
particular, it is differentiable around any x /∈ cut(y).

Proof. Let x ∈M and γ : [0, 1]→M be a minimizing geodesic from y = γ(0)
to x = γ(1), parametrized with constant speed. Take z ∈ W to be any point
lying on γ near the endpoint x = γ(1). Applying the previous proposition to
z instead of y yields

∇dz(x) =
γ̇(1)

|γ̇(1)|x
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as the chain rule dictates, since dz(x) =
√

2(d2
z/2)(x). The triangle inequality

gives us:

d(y, expx v) ≤ d(y, z) + d(z, expx v)

= d(y, z) + d(z, x) + 〈γ̇(1)/|γ̇(1)|x, v〉+ o(|v|x)
= d(y, x) + 〈γ̇(1)/|γ̇(1)|x, v〉+ o(|v|x)

so that dy =
√

2(d2
y/2) is superdifferentiable at x. Applying the one-sided

chain rule with ϕ = dy and f(r) = r2/2, r ≥ 0 we get:

γ̇(1) = d(y, x) · γ̇(1)/|γ̇(1)|x ∈ ∂f ◦ ϕ(x) = ∂(d2
y/2)(x)

and that completes the proof, since the second part was proved earlier.

We end the section with a characterization of the cut locus of a point,
which we’ll definitely use later. The cut locus cut(y) consists of two kinds
of points: (i) those connected to y by multiple minimizing geodesics and (ii)
those which are conjugate to y but do not fall into class (i). As we’ve just
seen, in case (i), first order differentiability of d2

y/2 fails, but it doesn’t, in
case (ii). Although, case (ii), is exactly where second order differentiability
must fail:

Proposition. At every x ∈ cut(y) we must have:

inf
0<|v|x<1

d2
y(expx v)/2 + d2

y(expx(−v))/2− 2d2
y(x)/2

|v|2x
= −∞

Proof. We treat each case separately:
Case (i): There exist two distinct minimal geodesics joining x and y, thus
there also exist two distinct supergradients p1,p2 ∈ ∂(d2

y/2)(x). Let N ∈ N
and v ∈ TxM be a small vector and assume, without loss of generality, that
〈p1 − p2, v〉 < 0 (if that’s not the case, replace p1 ↔ p2).
Superdifferentiability gives:

d2
y(expx v)/2 ≤ d2

y(x)/2 + 〈p1, v〉+ o(|v|x)

and
d2
y(expx(−v))/2 ≤ d2

y(x)/2 + 〈p1, −v〉+ o(|v|x)



CHAPTER 2. RIEMANNIAN GEOMETRY 41

so that:

d2
y(expx v)/2 + d2

y(expx(−v))/2− 2d2
y(x)/2

|v|2x

≤

(〈
p1 − p2,

v

|v|x

〉
x

+
o(|v|x)
|v|x

)
1

|v|x

but the term in the brackets can be made negative, since o(|v|x)
|v|x → 0 as

|v|x → 0 and the fraction outside would blow up, so that the infimum diverges
to −∞, for small v.

Case (ii): Only one minimal geodesic joins x to y, but they’re conjugate
points, hence, some non-zero normal Jacobi field along this geodesic vanishes
at both endpoints. Assume that there exists a constant C > 0 such that:

lim inf
v→0

d2
y(expx v)/2 + d2

y(expx(−v))/2− 2d2
y(x)/2

|v|2x
≥ −C

and let γ(t) := expx(tu) be the minimal geodesic joining x = γ(0) to y = γ(1).
Let Y (t) be a non-zero normal Jacobi field along γ vanishing at 0 and 1. By
scaling the overall size of the manifold and the vector field independently, it
costs no generality to normalize the length of the geodesic so that d(x, y) =
|u|x = 1 and take v := Y ′(0) to be a unit vector. Let Z1 be a parallel vector
field along γ with Z1(0) = Y ′(0) = v and let Z(t) := (1− t)Z1(t). Fix ε > 0
small enough such that:

−2

ε
+ I(Z, Z) < −C

where I denotes the index form along γ, and for this ε consider

Yε(t) := Y (t) + εZ(t)

which is a normal field along γ, satisfying Yε(0) = εv and Yε(1) = 0. Now,
introduce the following variation of the geodesic γ:

γs(t); = f(s, t) := expγ(t)(sYε(t))

for s close to 0. The curve γs joins the point expx(sεv) to y. From H’́older’s
inequality gives:

1

2
d2(expx(sεv), y) ≤ 1

2

(∫ 1

0

|γ̇s(t)|γ(t)

)2

≤ 1

2

(∫ 1

0

|γ̇s(t)|2γ(t)

)
= E(s)
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where E is the energy functional of the curve γs. Note, that for s = 0, since
γ is a minimizing geodesic, there is equality above. So, now, our assumption
gives:

lim inf
s→0

E(s) + E(−s)− 2E(0)

(εs)2
≥ −C

while, on the other hand, since s 7→ f(s, t) is a geodesic, for fixed t, we have
∇s

∂f
∂s

(s, t) = 0 and thus:

d2E(γs)

ds2
(0) = I(Yε, Yε)

= I(Y, Y ) + 2εI(Z, Y ) + ε2I(Z, Z)

= 2εI(Z, Y ) + ε2I(Z, Z)

since Y is a Jacobi field vanishing at endpoints, hence I(Y, Y ) = 0.

Additionally, I(Z, Y ) =
[
〈Z(t), Y ′(t)〉

]1

0
= −|v|2x = −1. Thus,

d2E(γs)

ds2
(0) = −2ε+ ε2I(Z, Z) ≥ −C

⇔ −2

ε
+ I(Z, Z) ≥ −C

ε2
≥ −C

which contradicts the choice of ε. Hence, the given infimum diverges to −∞
in both cases.



Chapter 3

Optimal Transport

A classical approach to solve Kantorovich’s problem is to turn it into a
dual problem, which will be easier, hopefully. Let’s describe a little bit the
duality, without getting into details. If one’s desire is more details we redirect
the reader to [1], [2], [5], [29]. Recall that Kantorovich’s problem asks for
minimization of the total transportation cost:

I (π) :=

∫
X×Y

c(x, y)dπ(x, y)

over π ∈ Π(µ, ν). Now, for a non-negative measure π on X × Y one has

sup
ϕ,ψ∈L1

[∫
X

ϕdµ+

∫
Y

ψdν −
∫
X×Y

ϕ(x) + ψ(y)dπ

]
=

{
0, if π ∈ Π(µ, ν)

+∞, otherwise

Hence we can remove the constraints on π if we add the previous sup to
infπ∈Π(µ, n) I (π), since if they are satisfied nothing has been added and if
they are not one gets +∞ which will be avoided by the minimization. Now a
minimax theorem by Rockafella ([10]) lets us write

inf
π

{∫
cdπ + sup

ϕ,ψ

[∫
X

ϕdµ+

∫
Y

ψdν −
∫
X×Y

ϕ(x) + ψ(y)dπ

]}

= sup
ϕ,ψ

[∫
X

ϕdµ+

∫
Y

ψdν + inf
π

∫
X×Y

c(x, y)− ϕ(x)− ψ(y)dπ

]
Since π is non-negative the last term is 0 if ϕ(x) + ψ(y) ≤ c(x, y) for all
(x, y) ∈ X×Y and −∞ otherwise. This leads to the dual problem in which

43
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we need to maximize the quantity:

J(ϕ, ψ) :=

∫
X

ϕdµ+

∫
Y

ψdν

over all ϕ ∈ L1(µ), ψ ∈ L1(ν) such that ϕ ⊕ ψ ≤ c, where ϕ ⊕ ψ(x, y) :=
ϕ(x) + ψ(y).

Similarily we deduce a dual problem for Monge’s problem. We will
solve this problem in the case where X, Y ⊆ M are compact, µ, ν are
probability measures, compactly supported on X and Y , respectively and
c(x, y) = d2(x, y)/2, since it suffices for our purpose and has the advantage
of following the work of McCann ([30]). We will denote by X ⊂⊂M an open
subset of M with compact closure X.

Our test functions can be limited to continuous functions, so we define:

Lipc := {(ϕ, ψ) ∈ C(X)× C(Y ) | ϕ⊕ ψ ≤ c}

and begin our journey to maximize J over Lipc and provide a solution to
Monge’s problem. As to why this restriction works, the answer is a special
class of functions, which have many helpful properties that we will exploit.
For example, if they are not infinite, they have the same modulus of continuity
with the cost function.

3.1 c-transforms & c-concave functions

Let X, Y ⊆M be compact. The c-transform of a function ϕ : X → R is a
function ϕc : Y → R defined as:

ϕc(y) := inf
x∈X
{c(x, y)− ϕ(x)}

for every y ∈ Y . We define the c-transform, ψc : X → R, of a function
ψ : Y → R in a similar fashion as:

ψc(x) := inf
y∈Y
{c(x, y)− ψ(y)}

for every x ∈ X. Moreover, we say that a function ϕ defined on X is
c-concave if there exists ψ such that ϕ = ψc and we denote their set by
Ic(X, Y ). Similarly for functions ψ defined on Y , as for their set, it will
be denoted by Ic(Y, X). In what follows we will be omitting the proofs for
functions ψ : Y → R as the arguments will be symmetrical. Not all functions
have the property of being c-concave:
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Proposition. For any ϕ : X → R we have ϕcc ≥ ϕ and ϕcc is the smallest
c-concave function greater than ϕ. Equality holds if and only if ϕ is c-concave.

Proof. Let x ∈ X. Since

ϕc(y) = inf
z∈X
{c(z, y)− ϕ(z)} ≤ c(x, y)− ϕ(x)

one gets:

ϕcc(x) = inf
y∈Y
{c(x, y)− ϕc(y)} ≥ inf

y∈Y
{c(x, y)− c(x, y) + ϕ(x)} = ϕ(x)

hence ϕcc ≥ ϕ. Now, take a c-concave ϕ̃ = χc ≥ ϕ. Then one has

χcc = inf
y∈Y
{c(·, y)− χc(y)} ≤ inf

y∈Y
{c(·, y)− ϕ(y)} = ϕc

so that χ ≤ χcc ≤ ϕc and by the same argument ϕ̃ = χc ≥ ϕcc ≥ ϕ.

Now, if ϕ = ϕcc = (ϕc)c, then ϕ(x) = infy∈Y {c(x, y)− ϕc(y)}, thus ϕ is
c-concave. Conversely, let ϕ = ζc for some function ζ : Y → R. Then one has
ϕc = ζcc ≥ ζ so that ϕcc ≤ ζc = ϕ by the same argument used before twice
and since the reverse inequality always holds we have established equality.

This repeated technique used in the above proof, that c-transforms reverse
the inequality, when combined with the result itself gives us a

Corollary. For any ϕ : X → R

ϕccc = ϕc

Proof. On the one hand

ϕcc ≥ ϕ⇒ (ϕcc)c ≤ ϕc ⇒ ϕccc ≤ ϕc

while on the other hand

(ϕc)cc ≥ ϕc ⇒ ϕccc ≥ ϕc

so that ϕccc = ϕc.
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For ϕ ∈ Ic(X, Y ) there exists some ψ : Y → R such that

ϕ(x) = ψc(x) = inf
y∈Y
{c(x, y)− ψ(y)}.

If ψ is not bounded from above, then we will be taking infimum on arbitrarily
large negative numbers, so that ϕ = −∞. If it is and at least one y ∈ M
exists such that ψ(y) ∈ R then ϕ(x) would be finite. But if we have ψ = −∞,
then ϕ(x) = +∞ for every x ∈M , so that ϕ = +∞.

If we focus on functions who are bounded from above and not identically
−∞ the modulus of continuity of their c-transform will be completely
determined by the cost function:

Proposition. Any c-concave ϕ ∈ Ic(X, Y ), not identically infinite, is
Lipschitz continuous on X.

Proof. Let ε > 0 and x, z ∈ X. By definition, there exists a y ∈ Y such
that ϕ(z) + ε ≥ c(z, y)− ϕc(y), while ϕ(x) ≤ c(x, y)− ϕc(y) holds trivially.
Subtracting these two inequalities, the Lipschitz continuity of c with constant
D, yields:

|ϕ(x)− ϕ(z)| ≤ |c(x, y)− c(z, y)|+ ε ≤ Dd(x, z) + ε

where D is the upper bound of dy on X. As ε > 0 and x, z ∈ X was arbitrarily
chosen we have that ψ is Lipschitz, with Lipschitz constant ≤ D.

From now on, we will be talking only for not identically infinite c-concave
functions.

Corollary. In view of Rademacher’s Theorem, any c-concave function ϕ ∈
Ic(X, Y ), where X ⊂⊂ M , is differentiable volg-almost everywhere on X
and its gradient is a Borel map.

Observe that, from the definition of c-transform one has:

ϕ(x) + ϕc(y) ≤ ϕ(x) + c(x, y)− ϕ(x) ≤ c(x, y)

for every x ∈ X and y ∈ Y . We can get a criterion for equality:

Theorem. Let X ⊂⊂ M open and Y compact as always. Let x ∈ X such
that ϕ ∈ Ic(X, Y ) is differentiable at. Then

ϕ(x) + ϕc(y) = c(x, y) ⇐⇒ y = expx(−∇ϕ(x))

Moreover ∇ϕ(x) = ∇(d2
y/2)(x).
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Proof. (⇒) Suppose that a y ∈ Y is given such that equality holds. Then,
one has

c(z, y)− ϕ(z)− ϕc(y) ≥ 0 = c(x, y)− ϕ(x)− ϕc(y)

for every z ∈ X. For d2
y(z)/2 = c(z, y) one has

d2
y(expx v)/2 = c(expx v, y) ≥ c(x, y)− ϕ(x)− ϕc(y) + ϕ(expx v) + ϕc(y)

= c(x, y)− ϕ(x) + ϕ(expx v)

= c(x, y)− ϕ(x) + ϕ(x) + gx(∇ϕ(x), v) + o(|v|x)
= d2

y(x)/2 + gx(∇ϕ(x), v) + o(|v|x)

since ϕ is differentiable at x. It follows that d2
y/2 has subgradient

∇ϕ(x) ∈ ∂(d2
y/2)(x) at x. On the other hand, we’ve already shown that d2

y/2

has supergradient γ̇(1) ∈ ∂(d2
y/2)(x), for a minimizing geodesic γ connecting

y = γ(0) with x = γ(1). Thus d2
y/2 is differentiable at x and

∇ϕ(x) = γ̇(1) = ∇(d2
y/2)(x) = −(expx)

−1(y)

⇒ y = expx(−∇ϕ(x))

and we’re done.

(⇐) We have now established that, for our fixed x ∈ X, there exists at
most one point y ∈ Y such that the equality holds. We have to show that
there exists at least one such y. The c-concavity hasn’t played its role yet.
From compactness, the infimum

ϕcc(x) = inf
y∈Y
{c(x, y)− ϕc(y)}

is attained at some point y ∈ Y . Since ϕ = ϕcc, the same point produces the
equality in question. But our previous argument shows y = expx(−∇ϕ(x))
and the statement is proved.

3.2 Duality

If (ϕ, ψ) ∈ Lipc, since ϕ is continuous and X is compact, its c-transform ϕc

is finite-valued, hence Lipschitz continuous. Additionally, the definition of
c-transform gives ϕ⊕ ϕc ≤ c so that (ϕ, ϕc) ∈ Lipc. On the other hand, for
every x ∈M one has

(ϕ, ψ) ∈ Lipc ⇒ ψ(y) ≤ c(x, y)− ϕ(x)

⇒ ψ(y) ≤ inf
x∈M
{c(x, y)− ϕ(x)} = ϕc(y)
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hence

J(ϕ, ψ) =

∫
M

ϕ(x)dµ(x) +

∫
M

ψ(y)dν(y)

≤
∫
M

ϕ(x)dµ(x) +

∫
M

ϕc(y)dν(y) = J(ϕ, ϕc)

We’ve just proven:

Lemma. If (ϕ, ψ) ∈ Lipc, then (ϕ, ϕc) ∈ Lipc and J(ϕ, ψ) ≤ J(ϕ, ϕc).

Observe that the symmetry ϕ ↔ ψ lets us apply the same arguments
and get that (ψc, ψ) ∈ Lipc and J(ϕ, ψ) ≤ J(ψc, ψ). Applying them once
more with respect to ψc, as before, we conclude that (ψc, ψcc) ∈ Lipc and
J(ϕ, ψ) ≤ J(ψc, ψ) ≤ J(ψc, ψcc).

We will prove that the duality problem admits a solution among the
c-concave functions:

Proposition. If µ, ν are Borel probability measures on M such that X and
Y contain their support, respectively, then there exists some ϕ ∈ Ic(X, Y ),
such that

J(ϕ, ϕc) = max
(u, v)∈Lipc

J(u, v).

Proof. Choose a sequence (ϕn, ψn) ∈ Lipc such that

J(ϕn, ψn)→ sup
(u, v)∈Lipc

J(u, v).

According to the previous proposition, J(ψcn, ψ
cc
n ) also tends to

sup
(u, v)∈Lipc

J(u, v) in Lipc. Observe that, because µ(X) = ν(Y ) = 1, the

sequence
(un, vn) := (ψcn − ψn(z), ψccn + ψn(z))

for some fixed z ∈ M , is in Lipc and has J tend to its supremum. From
before, we know that un and vn will have the same modulus of continuity.
Also, for every n ∈ N,

|un(x)| = |un(x)− un(z)| ≤ Dd(x, z) ≤ D2

and

|vn(y)| = | inf
x∈M
{c(x, y)− un(x)}| ≤ |c(x, y)|+D2

≤ D2

2
+D2 =

3

2
D2
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because the c-transform of any constant is just its negative. As the above
equicontinuous families of functions are uniformly bounded though X and Y
respectively, the Ascoli-Arzela theorem ([4]) extracts a subsequence (ukn , vkn)
that converges pointwise to some (u0, v0) ∈ Lipc. Since the measures are
finite we can apply the Dominated Convergence theorem ([7]) and get

J(ukn , vkn)→ J(u0, v0)

so that
J(u0, v0) = sup

(u, v)∈Lipc

J(u, v) = max
(u, v)∈Lipc

J(u, v)

and, hence, J(vc0, v
cc
0 ) = J(u0, v0), by maximality. Setting ϕ := vc0 completes

the proof, as vccc0 = vc0.

3.3 Monge’s problem & McCann’s Theorem

Now we can choose a c-concave ϕ such that (ϕ, ψ) = (ϕcc, ϕc) ∈ Lipc
maximizes J(ϕ, ψ) =

∫
M
ϕdµ+

∫
M
ψdν. We have shown that such functions

are both Lipschitz, so ∇ϕ : X → R is defined µ-almost everywhere on X and
is a Borel map, as Rademacher’s Theorem shows. For Monge’s problem, we
obviously have:

J(u, v) =

∫
M

u(x)dµ(x) +

∫
M

v(T (x))dµ(x)

≤
∫
M

c(x, T (x))dµ(x)

= I (T )

for any (u, v) ∈ Lipc and T ∈ Π(µ, ν). Since both sides are finite one has:

sup
(u, v)∈Lipc

J(u, v) = J(ϕ, ϕc) ≤ inf
T∈Π(µ, v)

∫
M

c(x, T (x))dµ(x)

for some ϕ ∈ Ic(X, Y ). As one can see the only obstacle is the inequality

ϕ(x) + ϕc(T (x)) ≤ c(x, T (x))

but we have shown that ϕ(x) + ϕc(y) = c(x, y) ⇐⇒ y = expx(−∇ϕ(x))
which proposes an idea for the minimizer. In particular, if we set
F (x) := expx(−∇ϕ(x)) for every x at which ϕ is differentiable we get from
Rademacher’s Theorem that it is a Borel map. All we need to show is that
F ∈ Π(µ, ν) since then, the almost-everywhere equality will turn all the
above inequalities into equalities. We can see that this is exactly the case:
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Proposition. The map F (x) = expx(−∇ϕ(x)) pushes µ forward to ν, i.e.
F ∈ Π(µ, ν). As a consequence, Monge’s problem admits a solution.

Proof. In order to show that F ∈ Π(µ, ν) it suffices to check that, for every
f ∈ C(M),

∫
M
fdν =

∫
M
fd(F#µ) . For this purpose, let f ∈ C(M), x0 ∈ X

where ϕ is differentiable and define perturbations

ψε(y) := ϕc(y) + εf(y)

ϕε(x) := ψcε(x) = inf
y∈Y
{c(x, y)− ϕc(y)− εf(y)}

for x, y ∈M and |ε| < 1. Since the above are continuous, the compactness of
Y assures us that the infimum is attained. For ε = 0 it is attained uniquely
at y = expx0(−∇ϕ(x0)) = F (x0), according to our previous theorem, so for
small enough ε, it must be attained at some nearby point yε = F (x0) + δ(ε)

where δ(ε) ε→0−−→ 0. To see why this is true, set g(y) := c(T (x0), y)−ϕc(y) and
g1/n(y) := c(T (x0), y)−ϕc(y)− 1

n
f(y) and take a sequence y1/n ∈ argmin g1/n.

Because of compactness, there exists a subsequence which converges to some
point y0. But, this point must be T (x0) because g1/n(y1/n) ≤ g1/n(y) for every
y ∈ Y and, since f is continuous and Y is compact, the uniform convergence
of g1/n to g will give us g(y0) ≤ g(y) for every y ∈ Y . Thus

c(x0, F (x0))− ϕc(F (x0))− εf(yε) ≤ ϕε(x0) ≤ c(x0, y)− ϕc(y)− εf(y)

for all y ∈M . Setting y = F (x0) the continuity of f gives us

ϕε(x) = ϕ(x)− εf(F (x)) + o(ε)

for µ-almost every x ∈ X. Since J(ϕε, ψε) attains its maximum at ε = 0, a
simple application of the dominated convergence theorem yields:

0 =
d

dε

∣∣∣∣
ε=0

J(ϕε, ψε) = lim
ε→0

J(ϕε, ψε)− J(ϕ, ψ)

ε

= lim
ε→0

∫
M

ϕε − ϕ
ε

dµ+

∫
M

fdν

=

∫
M

−f ◦ Fdµ+

∫
M

fdν

= −
∫
M

fd(F#µ) +

∫
M

fdν

so that F#µ = ν is established by the Riesz representation theorem ([6]),
since f ∈ C(M) was arbitrary.
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We will now gather these results and prove this map’s uniqueness. As
we’ve already said this whole work is by McCann ([30]) in which he generalized
Brenier’s theorem ([18], [19], [20]). In order to make it easier for us to refer
to the following theorem, we will name it "McCann’s Theorem".

Theorem (McCann’s Theorem). Let (M, g) be a Riemannian manifold with
two Borel probability measures µ << volg and ν on M such that X and
Y contain their support, respectively. Then, there exists a c-concave ϕ ∈
Ic(X, Y ), such that the map

F (x) := expx(−∇ϕ(x))

is the unique minimizer of the Monge’s transportation problem, among all
Borel maps that push µ forward to ν (modulo discrepancies on sets of zero
µ-measure).

Proof. Our previous conversation is enough proof of existence. We will prove
uniqueness in two steps:

• First, suppose that G ∈ Π(µ, ν) is also a minimizer of Monge’s problem,
so it satisfies O(G) = J(ϕ, ϕc), hence∫

M

c(x, G(x))− ϕ(x)− ϕc(G(x))dµ(x) = 0.

Since (ϕ, ϕc) ∈ Lipc the integrand is non-negative, thus
ϕ(x) +ϕc(G(x)) = c(x, G(x)) holds µ-almost everywhere on X and the
criterion for this equality yields G(x) = F (x) µ-almost everywhere on
X.

• Now, if u = ucc is another c-concave function maximizing J for which
the map G(x) = expx(−∇u(x)) is in Π(µ, ν), then G is also a minimizer
of Monge’s problem and our previous argument shows that G and F
must be equal µ-almost everywhere on X.

Corollary. In view of the previous theorem with the extra demand that
ν << volg, one has:

F̃ ∈ Π(ν, µ) where F̃ (y) := expy(−∇ϕc(y))

and satisfies F̃ (F (x)) = x µ-a.e. on X and F (F̃ (y)) = y ν-a.e. on Y .
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Proof. Denoting ψ := ϕc we shall exploit the symmetry µ↔ ν and (ϕ, ϕc)↔
(ψ, ψc). We know that ψ is differentiable on dom∇ψ where ν(dom∇ψ) = 1,
so F#µ = ν implies U := dom∇ϕ∩F−1(dom∇ψ) is a Borel set of full measure
µ(U) = 1. For x ∈ U we have that

c(F (x), x)− ψ(F (x))− ψc(x) = c(x, F (x))− ϕc(F (x))− ϕ(x) = 0

Since F (x) ∈ dom∇ψ we must have

x = expF (x)(−∇ψ(F (x)))

thus x = F̃ (F (x)) on U , which means µ-a.e. on X. It follows that given any
continuous function f ∈ C(M) we have∫
M

fd(F̃#ν) =

∫
M

f(F̃ (y)))dν(y) =

∫
M

f(F̃ (F (x))))dµ(x) =

∫
M

f(x)dµ(x)

so that F̃ ∈ Π(ν, µ). By a symmetric argument we have that

V := dom∇ψ ∩ F̃−1(dom∇ϕ)

is a Borel set of full measure ν(V ) = 1 and similarly F (F̃ (y)) = y ν-a.e. on
Y .

3.4 c-superdifferential of a c-concave function

A c-concave function is not necessarily differentiable everywhere and thus the
mass transport map F is not defined everyhwere. However for fixed x ∈ X,
the Lipschitz continuity of ϕc on the compact set Y ⊆ M guarantees that
some y ∈ Y provides equality in ϕ(x) + ϕc(y) ≤ c(x, y). This motivates a,
possibly multivalued, extension of F to all of X:

Definition. Let X, Y ⊆M be compact sets. For Ic(X, Y ) and x ∈ X, the
c-superdifferential of ϕ at x is the non-empty set

∂cϕ(x) :={y ∈ Y | ϕ(x) + ϕc(y) = c(x, y)}
={y ∈ Y | ∀z ∈ X ϕ(z) ≤ ϕ(x) + c(y, z)− c(x, y)}

It is an extension of F in the following sense: if ϕ ∈ Ic(X, Y ) is differentiable
at x ∈ X ⊂⊂M , then ∂cϕ(x) = {F (x)} = {expx(−∇ϕ(x))}.
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Recall the definition of the superdifferential at x:

∂ϕ(x) = {p ∈ TxM | ϕ(expx v) ≤ ϕ(x) + gx(p, v) + o(|v|x), v ∈ TxM small}

and observe their relationship:

Proposition. Let (x, y) ∈ X×Y where X ⊂⊂M open and Y ⊂M compact
and ϕ ∈ Ic(X, Y ). If p ∈ TxM satisfies expx(−p) = y and |p| = d(x, y),
then

y ∈ ∂cϕ(x)⇒ p ∈ ∂ϕ(x).

Proof. Let (x, y) ∈ X × Y such that y ∈ ∂cϕ(x). Then

ϕ(z) ≤ ϕ(x) + c(z, y)− c(x, y)

holds for every z ∈ X. We know that p ∈ ∂(d2
y/2)(x), thus for z = expx v we

have:
c(expx v, y)− c(x, y) ≤ gx(p, v) + o(|v|x)

for small v ∈ TxM . Combining the above we get

ϕ(expx v) ≤ ϕ(x) + gx(p, v) + o(|v|x)

which means p ∈ ∂ϕ(x).

3.5 Semi-concavity

It turns out that c-concave functions are only a part of a much more general
class of functions admitting non-empty superdifferentials. Moreover, these
functions admit a Hessian almost everywhere, known as Alexandrov’s Theorem
in the Euclidean case and Bangert’s Theorem in the Riemannian case. These
are the semi-concave functions:

Definition. Let U ⊆ M open. A function ϕ : U → R is semi-concave
at x ∈ U if there exists a convex normal neighbourhood Br(x) ∈ M and
a smooth function h : Br(x) → R such that ϕ + h is geodesically concave
thoughout Br(x), i.e. (ϕ+h)◦γ is concave for any geodesic γ : [0, 1]→ Br(x).
Obviously, ϕ is said to be semi-concave on U if it is semi-concave at each
point x ∈ U .
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3.6 Hessian of semi-concave functions

Definition. Let ϕ : U → R be semi-concave on an open set U ⊆M . We say
that ϕ admits a Hessian Hessx ϕ := H at x ∈ U if ϕ is differentiable at x
and there exists a self-adjoint operator H : TxM → TxM satisfying

sup
u∈∂ϕ(expx v)

|Px, vu−∇ϕ(x)−Hv| = o(|v|x)

for small v ∈ TxM , where Px, v : Texpx vM → TxM denotes the parallel
transport on γ(t) := expx tv.

This definition coincides with the usual one for smooth functions. To
understand intuitively the existence of Hessian note that it is equivalent to
the existence of a second order Taylor expansion for ϕ around x:

ϕ(expx v) = ϕ(x) + gx(∇ϕ(x), v) +
1

2
gx(Hv, v) + o(|v|2x)

Let us formulate Alexandrov-Bengert Theorem where its proof is omitted
because of computational complexity and divergency of our subject, but
we redirect the reader to [24] for the Euclidean case and to [26] for the
Riemannian case.

Theorem (Alexandrov-Bengert). Every semi-concave function ϕ : U →M
on an open set U ⊆M admits a Hessian almost everywhere on U .

The observation enabling us to exploit the theory of semi-concave
functions is that every c-concave function is also semi-concave, which we will
prove only after establishing uniform semi-concavity for the squared distance
function as a special case. In order to do so, we need a local characterization
of semi-concavity :

Proposition. Let ϕ : U → R be a continuous function and fix x0 ∈ U .
Assume that there exists a neighbourhood V of x0 and a positive constant C
such that for every x ∈ V and v ∈ TxM one has

lim sup
r→0

ϕ(expx(rv)) + ϕ(expx(−rv))− 2ϕ(x)

r2
≤ C

Then ϕ is semi-concave at x0.
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Proof. The function h := d2
x0

is smooth around x0 and has Hessx0 h = 2I. So
there exists a neighbourhood W of x0 such that H = Hessx h > I for every
x ∈ W . Set ψ := ϕ − Ch and take a convex neighbourhood B ⊂ V ∩W
centered at x0. Now, every x ∈ B and v ∈ TxM satisfy

lim sup
r→0

ψ(expx(rv)) + ψ(expx(−rv))− 2ψ(x)

r2
< 0

To see why this is true we can take |v|x = 1, since C ′ := |v|xC is also a
positive constant that bounds hypothesis’ lim sup from above, so we could
work with that. Now, since −H < −I the Taylor expansion of h gives us

lim sup
r→0

ψ(expx(rv)) + ψ(expx(−rv))− 2ψ(x)

r2
≤

≤ lim sup
r→0

ϕ(expx(rv)) + ϕ(expx(−rv))− 2ϕ(x)

r2
− Cgx(Hv, v) ≤

≤C − Cgx(Hv, v) < C − Cgx(v, v) = C − C|v|x = 0

Now let γ : [0, 1] → M be a geodesic contained in B and set f(t) :=
ψ(γ(t)). The function f : [0, 1] → R is continuous. Applying the previous
inequality to x = γ(t) with v = γ̇(t) we get

lim sup
r→0

f(t+ r) + f(t− r)− 2f(t)

r2
< 0

for every t ∈ (0, 1), which implies concavity for f : let t0, t1 ∈ [0, 1] and
s ∈ (0, 1). Translating f by the affine function g(s) = (f(t1)− f(t0)s+ f(t0)
we can assume f(t0) = f(t1) = 0 without affecting the above inequality, at
all. So the problem is reduced at showing that f |(t0, t1) ≥ 0. To the contrary,
suppose that f has a negative minimum f(t) > 0 at t ∈ (t0, t1), so for small
enough r one has

2f(t) ≤ f(t+ r) + f(t− r)⇒ lim sup
r→0

f(t+ r) + f(t− r)− 2f(t)

r2
≥ 0

which is a contradiction. Since t0, t1 ∈ [0, 1] were arbitrary, f is concave
on [0, 1]. Therefore ψ is geodesically concave on B, which tells us that ϕ is
semi-concave at x0.

Taking advantage of this charaterization we can prove:

Corollary. For every x ∈ X, y ∈ Y , where X, Y ⊂M are compact sets, d2
y

is semi-concave at x.
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Proof. Since M is complete, every point x ∈ X is linked to every point y ∈ Y
be a minimizing geodesic. Since X and Y are compact, the union of all such
minimizing segments is a closed and bounded, therefore compact. Thus, one
can find a uniform lower bound −k < 0 for sectional curvatures on this set.

As before we can take an arbitrary unit vector v ∈ TxM . Now, let
x ∈ X, y ∈ Y linked by a minimizing geodesic γ, parametrized by arc-length,
with |γ̇(t)| = 1 for every t ∈ [0, l]. Denoting l := d(x, y) and letting v(t) to
be the parallel transport of v along γ we introduce the vector field along γ:

X(t) := a(t)v(t), a(t) :=
sinh(

√
k(l − t))

sinh(
√
kl)

that satisfies X(0) = v and X(l) = 0. Take a variation of the geodesic γ:

γr(t) := expγ(t)(rX(t))

that satisfies γr(0) = expx(rv) and γr(l) = y. Now Hölder’s inequality gives
us:

d2
y(expx(rv)) ≤

(∫ l

0

|∂tγr(t)|γ(t)dt

)2

≤ l

∫ l

0

|∂tγr(t)|2γ(t)dt =: lE(γr)

where E is the energy functional of the variation. For r = 0 we have equality
d2
y(x) = E(γ0), since γ = γ0 is a constant-speed minimizing geodesic, thus:

d2
y(expx(rv)) + d2

y(expx(−rv))− 2d2
y(x)

r2
≤ l

E(γr) + E(γ−r)− 2E(γ0)

r2

Since r 7→ γr(t) is a geodesic for each t, the second variation formula gives us:

1

2

d2E(γr)

dr2

∣∣∣∣
r=0

=

∫ l

0

|X ′(t)|2 −R(X(t), ˙γ(t), X(t), γ̇(t))dt

=

∫ l

0

(a′(t))2 − (a(t))2R(P γ
x, v(t),

˙γ(t), P γ
x, v(t), γ̇(t))dt

≤
∫ l

0

(a′(t))2 + k(a(t))2dt

= sinh−2(
√
kl)k

∫ l

0

cosh(2
√
k(t− l)))dt

= sinh−2(
√
kl)

√
k

2
sinh(2

√
kl)

=

√
k cosh(

√
kl)

sinh(
√
kl)

=
√
k coth(

√
kl)
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after some calculations with our usual trigonometric identities, where the
inequality came from the bound on sectional curvature. Remember that
l = d(x, y) and by denoting h(t) := 2

√
kt coth(

√
kt) we have proven that:

lim sup
r→0

d2
y(expx(rv)) + d2

y(expx(−rv))− 2d2
y(x)

r2
≤ h(d(x, y)) ≤ C

for some positive constant C which exists as an upper bound of h ◦ d(x, y)
since it is a continuous function on a compact set and d ≥ 0. Now, the
previous proposition gives us what we want: d2

y is semi-concave at x.

Now, we are in a position to prove that c-concavity implies semi-concavity:

Theorem. Let X ⊂⊂M be open and Y ⊂M be compact. Every c-concave
function ϕ ∈ Ic(X, Y ) is semi-concave on X. Hence, it admits a Hessian
almost everywhere on X.

Proof. Fix x ∈ X. The continuity of ϕc on the compact Y ⊆M provides us
with a y ∈ ∂cϕ(x), such that

ϕ(expx v) ≤ ϕ(x) + d2
y(expx v)/2− d2

y(x)/2

for every small v ∈ TxM which implies

lim sup
r→0

ϕ(expx(rv)) + ϕ(expx(−rv))− 2ϕ(x)

r2
≤

≤ 1

2
lim sup
r→0

d2
y(expx(rv)) + d2

y(expx(−rv))− 2d2
y(x)

r2

Uniform semi-concavity of the squared distance function together with the
characterization of semi-concavity yields the result. Then the Alexandrov-
Bangert theorem provides ϕ with a Hessian almost everywhere on X.

3.7 Differentiating the Optimal Transport Map

Let’s turn our focus again on the c-superdifferential ∂cϕ ⊆ X × Y of a ϕ ∈
Ic(X, Y ), which provides a multivalued extension of F (x) = expx(−∇ϕ(x))
to points x ∈ X where ϕ is not differentiable. The next proposition uses this
to define a differential dFx for such optimal maps F . From the chain rule for
smooth fucntions, it is much expected that this differential should involve the
derivative of the exponential map and the Hessian of ϕ.
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Proposition. Fix X ⊂⊂ M open and Y ⊆ M compact. Let ϕ ∈ Ic(X, Y )
and set F (z) := expz(−∇ϕ(z)). Fix a point x ∈ X where ϕ admits a
Hessian and set Y := (D expx)−∇ϕ(x) and H := Hessx d

2
y/2. Also, define

dFx : TxM → TyM by dFx := Y (H − Hessx ϕ). Then:

(i) y := F (x) /∈ cut(x) and H − Hessx ϕ ≥ 0

(ii) As u→ 0 in TxM : sup
expy v∈∂cϕ(expx u)

|v|y=d(y, expy v)

|v − dFx(u)|y = o(|u|x)

Proof. (i) Since ϕ admits a Hessian at x ∈ X, it is differentiable there and
∂cϕ(x) = {F (x)} = {y}. Thus, for every z ∈ X one has:

ϕ(z) ≤ ϕ(x) + d2
y(z)/2− d2

y(x)/2

which, for z = expx(±u), gives:

ϕ(expx(rv)) + ϕ(expx(−rv))− 2ϕ(x)

r2

≤
d2
y(expx(rv))/2 + d2

y(expx(−rv))/2− 2(d2
y(x)/2)

r2

which provides a lower bound of the right hand side, as |u|x → 0, since the
left hand side tends to gx(Hessx ϕ(u), u). We have shown that if x ∈ cut(y)
the right hand side is unbouded from below, so it must be the case that
x /∈ cut(y), or equivalently y /∈ cut(x).

For the positive definiteness, set

h(z) := d2
y(z)/2− ϕ(z)

and observe that ∇h(x) = 0 at x /∈ cut(y) and that it has a minimum at
z = x:

ϕ(z) ≤ ϕ(x) + d2
y(z)/2− d2

y(x)/2

⇔ d2
y(x)/2− ϕ(x) ≤ d2

y(z)/2− ϕ(z)

⇔ h(x) ≤ h(z)

Since x /∈ cut(y) the Taylor expansion at x gives

gx(Hessx h(u), u) ≥ 0

hence H − Hessx ϕ ≥ 0.
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(ii) Fix a unit tangent vector u ∈ TxM and set xs := expx(su), which for
small s doesn’t belong to cut(y). Since ϕc is continuous and X is compact,
there exists a ys ∈ ∂cϕ(xs). Let us ∈ TxsM such that ys = expxs us, with
us = d(xs, ys) and set ws := us +∇d2

y(xs)/2 so that

ys = expxs(−∇d
2
y(xs)/2 + ws)

From the relationship between c-superdifferential and superdifferential we get
that −us ∈ ∂ϕ(xs), since ys ∈ ∂cϕ(xs). This means that −ws ∈ ∂(−h)(xs),
where h = d2

y/2− ϕ as before, which implies

Px,suws = sHessx h(u) + o(s)

by Hessian’s definition, since Px,su and Hessx are linear and ∇h(x) = 0. We
define three geodesic variations:

f1(t, s) := expxs
(
t(−∇d2

y(xs)/2)
)

f2(t, s) := expxs
(
t(−∇d2

y(xs)/2 + ws)
)

g(t, s) := expx
(
t(−∇d2

y(x)/2 + Px,suws)
)

and let

J1(t) :=
∂f1

∂s
(t, 0), J2(t) :=

∂f2

∂s
(t, 0)

V (t) :=
∂g

∂s
(t, 0) = (D expx)t(−∇d2y(x)/2)

(
t
d

ds

∣∣∣
s=0

Px,suws

)
= t(D expx)t(−∇d2y(x)/2)(Hessx h(u))

be their respective variational fields. The fields V and J := J2−J1 are Jacobi
fields along the geodesic joining x to y, since J1 and J2 are such Jacobi fields
and the Jacobi equation is linear. For their respective initial values we have
that J(0) = dxs

ds
|0 − dxs

ds
|0 = 0 and obviously V (0) = 0, since g doesn’t move

the initial point. Also, V ′(0) = Hessx h(u), while

J ′(0) =
D

ds

∣∣∣∣
s=0

(
∂f2

∂t
− ∂f1

∂t

)
(0, s)

=
D

ds

∣∣∣∣
s=0

(D expxs)0(−∇d2
y(xs)/2 + ws +∇d2

y(xs)/2)

=
D

ds

∣∣∣∣
s=0

ws

where D
ds

denotes the covariant differentiation along a curve. Let ei(0), i =
1, . . . , n be an orthonormal basis for TxM and let ei(s), i = 1, . . . , n be its
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parallel transport to TxsM , hence D
ds
ei = 0. Then we can write ws = wi(s)ei(s)

and Px,suws = wi(s)ei(0) for some smooth functions wi. Computing gives:

J ′(0) =
D

ds

∣∣∣∣
s=0

ws =
D

ds

∣∣∣∣
s=0

(wi(s)ei(s)) =
dwi

ds
(0)ei(0)

=
d

ds

∣∣∣∣
s=0

(wi(s)ei(0)) =
d

ds

∣∣∣∣
s=0

Px,suws

= Hessx h(u)

Thus V ≡ J . In particular V (1) = J(1) which means

d

ds

∣∣∣
s=0

ys = (D expx)−∇d2y(x)/2(Hessx h(u))

since f1(1, s) is constant and equal to y (xs /∈ cut(y)). Now, since ∇h(x) = 0
we, eventually, get

d

ds

∣∣∣
s=0

ys = (D expx)−∇ϕ(x)(Hessx h(u)) = Y (H − Hessx ϕ)(u) = dFx(u)

and by computing the Taylor expansion of exp−1
y (ys) at s = 0 we have:

ys = expy

(
s
d

ds

∣∣∣
s=0

ys + o(s)
)

= expy(sdFx(u) + o(s))

where the error term is independent of u as we have already shown. Therefore,
if vs ∈ TyM is the shortest vector such that ys = expy(vs) we must have

|vs − dFx(su)|y = o(s)

since expy is a local diffeomorphism and the proof is complete.

Having established an almost everywhere notion for the differential dFx
of an optimal map F : M →M , we can deduce some useful properties that
we expect a differential to behold. For this purpose, let µ, ν << volg be two
compactly supported measures on X, Y ⊂⊂M , respectively, and denote their
densities by f and g, respectively. Fix ϕ ∈ Ic(X, Y ) that induces F : X → Y
defined by F (x) = expx(−∇ϕ(x)) which pushes µ forward to ν. Recall that,
since ϕc ∈ Ic(Y , X) and ν is absolutely continuous, we can define an almost
everywhere inverse of the optimal map F , that pushes ν forward to µ, by
F̃ (y) = expy(−∇ϕc(y)). Introduce the sets of full measure

Eϕ := {x ∈ X | Hessx ϕ exists}
Eϕc := {y ∈ Y | Hessy ϕ

c exists}
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and note that the maps F and F̃ are well-defined on them, respectively. For
x ∈ Eϕ we set, as before, Yx = (D expx)−∇ϕ(x) and Hx = Hessx d

2
F (x) and

dFx = Yx(Hx − Hessx ϕ). Similarly, for y ∈ Eϕc , define Yy = (D expy)−∇ϕc(y)

and Hy = Hessy d
2
F̃ (y)

and dF̃y = Yy(Hy − Hessy ϕ
c). The first part of the

previous proposition states that F (x) /∈ cut(x) and Hx − Hessx ϕ ≥ 0 and
we can say the same thing for F̃ and y in the place of F and x, respectively.
Now, define the following sets:

Ẽϕ := {x ∈ Eϕ | Hx − Hessx ϕ > 0}
Ẽϕc := {y ∈ Eϕc | Hy − Hessy ϕ

c > 0}

and
Ω := {x ∈ Ẽϕ | F (x) ∈ Ẽϕc}

For x ∈ Ẽϕ, the linear map dFx : TxM → TF (x)M is a bijection, since Y is
injective when expx(−∇ϕ(x)) /∈ cut(x). The same is true for y ∈ Ẽϕ and
the map dF̃y. We are in a position to derive an inverse function theorem for
optimal maps :

Theorem. Let x ∈ Eϕ such that F (x) ∈ Eϕc. Then

(a) (dFx)
−1 = dF̃F (x)

(b) x ∈ Ω

(c) det dFx > 0

(d) µ(Ẽϕ) = µ(Ω) = 1

Proof. Fix u ∈ TxM . Let xs = expx(su) for small s and ys ∈ M such that
ys ∈ ∂cϕ(xs). If vs is the smallest vector of TyM such tht ys = expy vs, the
second part of the previous proposition gives vs = sdFx(u)+o(s). Applying the
same argument for ϕc at F (x) we get su = dF̃F (x)vs+o(s) = sdF̃F (x)dFxu+o(s)
which gives

dF̃F (x)dFxu = u+
o(s)

s

for small s. Taking s → 0 shows that dF̃F (x) is a left inverse to dFx and,
similarly, one can show that it is also a right inverse. Thus (dFx)

−1 = dF̃F (x)

and x ∈ Ẽϕ, F (x) ∈ Ẽϕc , so that x ∈ Ω. Also, since dFx is invertible,
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we also have that det dFx > 0, since Y has positive determinant (it varies
continuously; at zero is 1) and H − Hessx ϕ > 0. We can now write

Ω = {x ∈ Eϕ | F (x) ∈ Eϕc}

and so
µ(Ω) = µ

(
Eϕ ∩ F−1(Eϕc)

)
= 1

since µ(F−1(Eϕc)) = ν(Eϕc) = 1 = µ(Eϕ) which results from the absolute
continuity of the measures.

A second property would be the equivalence of algebraic and geometric
Jacobians :

Theorem. Let x ∈ Ω. Then ∂cϕ(Br(x)) shrinks nicely to F (x) when r → 0
and

lim
r→0

volg[∂cϕ(Br(x))]

volg[Br(x)]
= det dFx

Here, shrinks nicely to y means that there exist R(r)
r→0−−→ 0 and α ∈ R

independent of r such that (i) ∂cϕ(Br(x)) ⊆ BR(r)(y) and (ii)
volg[∂cϕ(Br(x))] > α volg[BR(r)(y)].

Proof. Fix x ∈ Ω and set y = F (x). For z ∈ M let Bz
r (0) denote the

ball of radius r centered at the origin 0 ∈ TzM and set c1 := ||dFx|| and
c2 := ||dF−1

x || where || · || is the operator norm. We shall prove that for every
ε > 0 there exists δ > 0 such that for every r < δ one has

expy
(
(1 + εc1)−1dFxB

x
r (0)

)
⊆ ∂cϕ(Br(x)) ⊆ expy

(
(1 + εc2)dFxB

x
r (0)

)
thus, for

S(r) := (c2(1 + εc1))−1r
( r→0−−→ 0

)
and

R(r) := c1(1 + εc2)r
( r→0−−→ 0

)
one has, for small enough r, in normal coordinates:

BS(r)(y) = expy
(
By
S(r)(0)

)
⊆ expy

(
(1 + εc1)−1dFxB

x
r (0)

)
⊆ ∂cϕ(Br(x))

⊆ expy
(
(1 + εc2)dFxB

x
r (0)

)
⊆ expy

(
By
R(r)(0)

)
= BR(r)(y)



CHAPTER 3. OPTIMAL TRANSPORT 63

where the first inclusion is due to the fact that for w ∈ By
S(r)(0) one has

|dF−1
x ((1 + εc1)w)|x ≤ ||dF−1

x ||(1 + εc1)|w|y < c2(1 + εc1)S(r) = r

while the last inclusion is due to the fact that for v ∈ Bx
r (0) one has

|dFxv|y ≤ ||dFx|| · |v|x < c1r

Observe that
BS(r)(y) ⊆ ∂cϕ(Br(x)) ⊆ BR(r)(y)

is exactly what we need in order to show that ∂cϕ(Br(x)) shrinks nicely to y.
In particular, the rightmost inclusion indicates that we’re halfway there. For
the other half, the leftmost inclusion gives us:

lim
r→0

volg[∂cϕ(Br(x))]

volg[BR(r)(y)]
≥ lim

r→0

volg[BS(r)(y)]

volg[BR(r)(y)]
=

(
S(r)

R(r)

)n
=

1

(1 + εc1)n(1 + εc2)n
ε→0−−→ 1

which means that for every α ∈ (0, 1) one has

volg[∂cϕ(Br(x))] > α volg[BR(r)(y)]

thus ∂cϕ(Br(x)) shrinks nicely to y = F (x). Moreover, the inclusions to be
proven allow us to calculate the Jacobian of F , since letting ε→ 0, in normal
coordinates, one gets

lim
r→0

volg
(
∂cϕ(Br(x))

)
volg(Br(x))

= lim
r→0

VolRn [exp−1
y (∂cϕ(Br(x)))]

VolRn(Bx
r (0))

= lim
r→0

VolRn(dFxB
x
r (0))

VolRn(Bx
r (0))

= det dFx

since det dFx > 0 as we’ve shown at the previous theorem. Thus, it only
remains to prove the inclusions.

For a given ε > 0, there exists δ > 0 such that for every u ∈ TxM with
|u|x < δ, if v ∈ TyM such that |v|y = dy(expy v) and expy v ∈ ∂cϕ(expx u),
then

|v − dFx(u)|y ≤ ε|u|x
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. So, for r < δ, pick u ∈ Bx
r (0) and, if v is as above, then

|v − dFx(u)|y ≤ ε|u|x < εr ⇒ v − dFx(u) ∈ εBy
r (0)

⇒ v ∈ dFx(u) + εBy
r (0)

⇒ v ∈ dFx(u+ εdF−1
x By

r (0))

⇒ v ∈ (1 + εc2)dFxB
x
r (0)

where the last conclusion came from the fact that for w ∈ By
r (0) one has

|u+ εdF−1
x w|x ≤ |u|x + ε||dF−1

x || · |w|y ≤ (1 + εc2)r

and that dFx is linear. Now, since u ∈ Bx
r (0) and expy v ∈ ∂cϕ(expx u) were

arbitrary, exponentiation yields the second desired inclusion:

∂cϕ(Br(x)) ⊆ expy
(
(1 + εc2)dFxB

x
r (0)

)
On the other hand, taking u ∈ dF−1

x By
r (0) and r small enough such

that |u|x < c2r < δ then the shortest vector v ∈ TyM : expy v ∈ ∂cϕ(expx u)
satisfies

|v − dFx(u)|y ≤ ε|u|x < εc2r ⇒ v − dFx(u) ∈ εc2B
y
r (0)

⇒ v ∈ dFx(u) + εc2B
y
r (0)

⇒ v ∈ (1 + εc2)By
r (0)

since dFx(u) ∈ By
r (0). Again, exponentiation yields:

∂cϕ
(

expx
(
dF−1

x By
r (0)

))
⊆ expy

(
(1 + εc2)By

r (0)
)

while, applying the same argument to ϕc at y = F (x), yields, for small enough
r:

∂cϕc
(

expy
(
dFxB

x
r (0)

))
⊆ expx

(
(1 + εc1)Bx

r (0)
)

since (dF̃F (x))
−1 = dFx as we’ve shown at the previous theorem. Replacing r

with (1 + εc1)r we get

∂cϕc
(

expy
(
(1 + εc1)−1dFxB

x
r (0)

))
⊆ expx

(
Bx
r (0)

)
= Br(x)

and, since A ⊆ ∂cϕ(∂cϕc(A)), we get:

expy
(
(1 + εc1)−1dFxB

x
r (0)

)
⊆ ∂cϕ(Br(x))

which is the first desired inclusion.
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A third property would be the Jacobian identity :
Theorem. There exists a Borel set K ⊆ X of full µ-measure such that, at
each x ∈ K, ϕ admits a Hessian, thus F (x) /∈ cut(x), and

f(x) = g(F (x)) det dFx 6= 0

Proof. We set

K := Ω ∩ {f 6= 0} ∩ Leb(f) ∩ F−1(Leb(g))

where Leb(h) denotes the set of Lebesgue points of the function h. The set Ω
was put in the definition of K to ensure that a Hessian of ϕ exists. The other
three sets are needed for proviing the identity. However, every single one of
them has µ-full measure. We have already checked that µ(Ω) = 1 and since
f, g ∈ L1(M, volg) are density functions they are non-zero volg-a.e. and have
Lebesgue points volg-a.e.. Now, absolute continuity of measures and that fact
that µ(F−1(Leb(g))) = ν(Leb(g)) gives us µ(K) = 1.

In order to prove the Jacobian identity, fix x ∈ K. Since x is a Lebesgue
point of f , F (x) is a Lebesgue point of g and ∂cϕ(Br(x)) shrinks nicely to
F (x) we have that

f(x) = lim
r→0

µ(Br(x))

volg(Br(x))
and g(F (x)) = lim

r→0

ν(∂cϕ(Br(x)))

volg(∂cϕ(Br(x)))

invoking the Lebesgue differentiation theorem ([7]). Fix z ∈ Br(x) at which ϕ
is differentiable. Then F (z) ∈ ∂cϕ(z) and since z was (almost) arbitrary we
have that F (Br(x)) ⊆ ∂cϕ(Br(x)) and their difference consists of points on
which ϕ is not differentiable. Since ϕ is differentiable volg-a.e. the absolute
continuity of ν gives

ν(∂cϕ(Br(x))) = ν(F (Br(x))) = ν(F̃−1(Br(x)))) = µ(Br(x))

where F̃ is the almost everywhere inverse of F , that pushes ν forward to µ.
Thus

g(F (x)) = lim
r→0

µ(Br(x))

volg(∂cϕ(Br(x)))

and by taking into account the previous theorem we get:

f(x) = lim
r→0

µ(Br(x))

volg(Br(x))

= lim
r→0

µ(Br(x))

volg(∂cϕ(Br(x)))

volg(∂cϕ(Br(x)))

volg(Br(x))

= g(F (x)) det dFx

and the identity is proved.
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From now on, we will be denoting by J(x) the quantity det dFx and we
will be calling it the Jacobian of F at x. As a byproduct of the previous
theorem we derive the fourth and last property, a change of variables formula:

Corollary. If U : [0, +∞)→ R∪ {+∞} is a Borel map with U(0) = 0, then∫
M

U(g(y))dvolg(y) =

∫
K

U

(
f(x)

J(x)

)
J(x)dvolg(x)

where either both integrals are undefined or both take the same value in R.

Proof. Since U(0) = 0 and F#µ = ν << volg we have that:∫
M

U(g(y))dvolg =

∫
{g>0}

U(g(y))

g(y)
dν(y)

=

∫
F−1({g>0})

U(g(F (x)))

g(F (x))
dµ(x)

=

∫
K

U

(
f(x)

J(x)

)
J(x)

f(x)
dµ(x)

=

∫
K

U

(
f(x)

J(x)

)
J(x)dvolg(x)

since K ⊆ F−1({g > 0}) and µ(K) = 1.

3.8 Optimal interpolating maps

In what follows we shall investigate the family of maps

Ft(x) = expx(−t∇ϕ(x))

which interpolate along geodesics from the identity map x = F0(x) to the
optimal map y = F1(x) = F (x). Ultimately, we wish to extend the properties
of F for every t ∈ (0, 1) and this is accomplished after proving that the
set of c-concave functions is star shaped in some sense. Then, McCann’s
theorem implies that Ft is the optimal map pushing µ << volg forward to
µt := (Ft)#µ. However, if we want the preceding results to hold we shall
also show that µt << volg. We begin with the star-shapedness of c-concave
functions:
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Lemma. Fix t ∈ [0, 1] and compact sets X, Y ⊆M . If ϕ ∈ Ic(X, Y ) then
tϕ ∈ Ic(X, Zt(X, Y )).

Proof. The lemma is trivial for t = 0 and t = 1, since 0 ∈ Ic(X, X) and
tϕ ∈ Ic(X, Y ). Therefore, fix t ∈ (0, 1) and y ∈ Y . We’ll treat a spacial
case first, that of d2

y/2. Let x ∈ X and z ∈ Zt(x, y). The triangle inequality
alongside the arithmetic-geometric mean inequality gives, for every m ∈M
and any ε > 0:

d2(m, y) ≤ (d(m, z) + d(z, y))2

= d2(m, z) + d2(z, y) + 2d(m, z)d(z, y)

= d2(m, z) + d2(z, y) + 2
√

(ε−1d2(m, z))(εd2(z, y))

≤ d2(m, z) + d2(z, y) + ε−1d2(m, z) + εd2(z, y)

= (1 + ε−1)d2(m, z) + (1 + ε)d2(z, y)

and by choosing ε = t/(1− t) we get:

d2(m, y) ≤ 1

t
d2(m, z) +

1

1− t
d2(z, y)

=
1

t
d2(m, z) +

1

1− t
(1− t)2d2(x, y)

=
1

t
d2(m, z) + (1− t)d2(x, y)

⇒ td2(m, y)/2 ≤ d2(m, z)/2 + t(1− t)d2(x, y)/2

since z ∈ Zt(x, y). Note that m = x produces equality, since d(x, z) =
td(x, y). We define ψy : Zt(X, y)→ R as follows: if z ∈ Zt(X, y) then there
exists x ∈ X such that z ∈ Zt(x, y), so the function

ψy(z) := −t(1− t) inf
x∈X:

z∈Zt(x, y)

{d2
y(x)/2}

is well defined. Since the above inequality is true for every x ∈ X we have,
for every z ∈ Zt(X, y):

td2(m, y)/2 ≤ d2(m, z)/2− ψy(z)

⇒ td2
y(m)/2 ≤ c(m, z)− ψy(z)

⇒ td2
y(m)/2 ≤ inf

z∈Zt(X, y)
{c(m, z)− ψy(z)}

but, since equality is achieved if m ∈ X, we must have:

td2
y(x)/2 = inf

z∈Zt(X, y)
{c(x, z)− ψy(z)}
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for x ∈ X, so that td2
y/2 ∈ Ic(X, Zt(X, y)).

Now take a ϕ ∈ Ic(X, Y ). Then ϕ = ϕcc gives:

ϕ(x) = inf
y∈Y
{c(x, y)− ϕc(y)}

⇒ tϕ(x) = inf
y∈Y
{tc(x, y)− tϕc(y)}

= inf
y∈Y

inf
z∈Zt(X, y)

{c(x, z)− ψy(z)− tϕc(y)}

= inf
z∈Zt(X,Y )

{
c(x, z)− inf

y∈Y :
z∈Zt(X, y)

{ψy(z) + tϕc(y)}

}

and define ζ : Zt(X, Y )→ R as follows: for z ∈ Zt(X, Y ) there exists y ∈ Y
such that z ∈ Zt(X, y). Define ψy as before and set:

ζ(z) := inf
y∈Y :

z∈Zt(X, y)

{ψy(z) + tϕc(y)}

which is well defined. We have found a function ζ : Zt(X, Y )→ R such that

tϕ(x) = inf
z∈Zt(X,Y )

{c(x, z)− ζ(z)}

which means tϕ ∈ Ic(X, Zt(X, Y )).

We establish two immediate corollaries. One is about Hessian semi-
positivity relating distance functions:

Corollary. Let γ(t) = expx(tv) be the minimal geodesic joining x ∈ M to
γ(1) /∈ cut(x). The self-adjoined operator H(t)− tH(1), defined on TxM by
H(t) := Hessx d

2
γ(t)/2, is positive semi-definite.

Proof. Since γ(t) ∈ Zt(x, y) we get:

td2(m, y)/2 ≤ d2(m, γ(t))/2 + t(1− t)d2(x, y)/2

⇔ ϕ(m) :=d2
γ(t)(m)/2− td2

y(m)/2 + t(1− t)d2
y(x)/2 ≥ 0

for every m ∈M , with equality being achieved at m = x. So ϕ is non-negative
and attains the minimum value 0 = ϕ(x). From the Taylor expansion of ϕ at
m = x we get that gx(Hessx ϕ(v), v) ≥ 0 for every v ∈ TxM .

While the other one is about the optimality of the interpolant map:
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Corollary. Let µ << volg be a Borel probability measure which is compactly
supported in X ⊂⊂ M and Y ⊆ M compact. Fix ϕ ∈ Ic(X, Y ), t ∈ [0, 1]
and set

Ft(x) := expx(−t∇ϕ(x))

for x ∈ X. The map Ft coincides with the optimal map pushing µ forward to
µt := (Ft)#µ.

Proof. We saw that tϕ is c-concave, since tϕ ∈ Ic(X, Zt(X, Y )). From
Rademacher’s Theorem, we have that Ft(x) is defined µ-almost everywhere
(µ << volg) on X and Ft(x) ∈ Zt(X, Y ) which is a compact set, since X
and Y are and distance function is continuous. The map pushes µ to µt by
construction, so that we also have that µt is compactly supported in Zt(X, Y ).
McCann’s Theorem uniqueness gives the desired optimality among all maps
pushing µ forward to µt.

In order to show µt << volg we need the interpolant map to be injective:

Lemma. Let X ⊂⊂ M be open and Y ⊆ M compact. Fix ϕ ∈ Ic(X, Y )
and t ∈ (0, 1). If Ft(x1) = Ft(x2) at two points x1, x2 ∈ X, at which ϕ is
differentiable, then x1 = x2.

Proof. If x1, x2 ∈ X are two points of differentiability for ϕ, with Ft(x1) =
Ft(x2) := z, then z ∈ Zt(x1, y1) ∩ Zt(x2, y2), where yi := F1(xi), i ∈ {1, 2},
for simplicity. This is true, since, for i ∈ {1, 2}, xi, z, yi all lie on the
minimizing geodesic t 7→ Ft(xi). For the distance between x1, y2 and x2, y1

the triangle inequalities gives us:

d(x1, y2) ≤ d(x1, z) + d(z, y2)

d(x2, y1) ≤ d(x2, z) + d(z, y1)
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which we square and sum, to get a parallelogram inequality:

d2(x1, y2) + d2(x2, y1) ≤ d2(x1, z) + d2(z, y2) + d2(x2, z) + d2(z, y1)

+ 2d(x1, z)d(z, y2) + 2d(x2, z)d(z, y1)

= (d2(x1, z) + d2(z, y1)) + (d2(x2, z) + d2(z, y2))

+ 2dx1dy2(z) + 2dx2dy1(z)

= (d(x1, z) + d(z, y1))2 + (d(x2, z) + d(z, y2))2

+ 2(dx1dy2 + dx2dy1 − dx1dy1 − dx2dy2)(z)

= (d(x1, y1))2 + (d(x2, y2))2

− 2(dx1 − dx2)(dy1 − dy2)(z)

= d2(x1, y1) + d2(x2, y2)

− 2(d(x1, z)− d(x2, z))(d(y1, z)− d(y2, z))

= d2(x1, y1) + d2(x2, y2)

− 2t(1− t)(d(x1, y1)− d(x2, y2))2

≤ d2(x1, y1) + d2(x2, y2)

where in the equalities we used the fact that z ∈ Zt(x1, y1) ∩ Zt(x2, y2).

On the other hand, since y1 ∈ ∂cϕ(x1) and y2 ∈ ∂cϕ(x2), we have that:

ϕ(x2) ≤ ϕ(x1) + c(x2, y1)− c(x1, y1)

ϕ(x1) ≤ ϕ(x2) + c(x1, y2)− c(x2, y2)

respectively. Adding them and multiplying by 2, gives:

d2(x1, y2) + d2(x2, y1) ≥ d2(x1, y1) + d2(x2, y2)

which contradicts the parallelogram inequality, unless equalities hold
everywhere. The equalities concerning the triangle inequalities tell us that z
separates x1, x2 from y1, y2, while all five points are lying on the same
geodesic. The equality concerning the last inequality tells us that
d(x1, y1) = d(x2, y2), so that:

d(x1, x2) = d(x1, z)− d(x2, z) = td(x1, y1)− td(x2, y2) = 0

d(y1, y2) = d(z, y1)− d(z, y2) = (1− t)d(x1, y1)− (1− t)d(x2, y2) = 0

concluding that x1 = x2 and y1 = y2.

Now, fix µ, ν << volg compactly supported, in fixed open sets X, Y ⊂⊂
M , and choose ϕ ∈ Ic(X, Y ) such that F := F1 ∈ Π(µ, ν), where Ft(x) =
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expx(−t∇ϕ(x)). Recall the sets

Eϕ = {x ∈ X | Hessx ϕ exists}

Ẽϕ := {x ∈ Eϕ | Hessx
(
d2
F (x)/2− ϕ

)
> 0}

where the latter has full measure (since µ, ν << volg) and the maps F and
Ft are well defined on both of them. Also, for x ∈ Eϕ one has F (x) /∈ cut(x),
therefore Ft(x) /∈ cut(x). Now, consider the following set:

Ẽt := {x ∈ Eϕ | Hessx
(
d2
Ft(x) − tϕ

)
> 0}

which has, also, full measure, since Ẽϕ ⊆ Ẽt. Indeed, observe that

Hessx
(
d2
Ft(x)/2− tϕ

)
= Hessx

(
d2
Ft(x)/2− td2

F (x)/2 + td2
F (x)/2− tϕ

)
= H(t)− tH(1) + tHessx h

where H(t) = Hessx d
2
Ft(x)/2 and since H(t) − tH(1) ≥ 0, Hessx h ≥ 0, we

conclude that

Ẽϕ ⊆ Ẽt ⇒ 1 = µ(Ẽϕ) ≤ µ(Ẽt)⇒ µ(Ẽt) = 1

Let K ⊆ Ẽt be a compact set and denote by K ′ := Ft(K) its image though
Ft. The injectivity of interpolant tells us that the map Ft : K → K ′ is
a bijection. The star-shapedness of c-concave functions yields a first order
Taylor expansion for Ft at each x ∈ K ⊆ Ẽt, hence Ft is continuous. Therefore,
Ft : K → K ′ is a homeomorphism as a continuous bijection from a compact
to a Hausdorff space. Moreover, setting Y (t) := (D expx)−t∇ϕ(x), the fact that
K ⊆ Ẽt tells us that the derivative

(dFt)x := Y (t)(H(t)− tHessx ϕ)

has positive Jacobian det(dFt)x, thus it’s invertible, for every x ∈ K.

It will prove helpful to impose a Lipschitz control of the inverse
interpolant :

Lemma. For every x ∈ K, there exists a constant kx > 0 such that

d(Ft(x), Ft(z)) ≥ kxd(x, z)

for every z ∈ K.
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Proof. Assume that there exists a sequence xk such that

d(Ft(x), Ft(xk)) <
1

k
d(x, xk)

which we can assume, by taking a subsequence, that converges to some z ∈ K.
By continuouity and injectivity of Ft we must have z = x and so xk → x. Let
uk ∈ TxM and wk ∈ TFt(x)M be the smallest vectors for which xk = expx uk
and Ft(xk) = expFt(x) wk, so that

dFt(x)(expFt(x) wk) <
1

k
dx(expx uk)

which means that |wk|Ft(x) = o(|uk|x) (we will omit the subscripts for clarity).
Now, the first order Taylor expansion asserts

|wk − (dFt)x(uk)| = o(|uk|)

but, on the other hand, since (dFt)x is invertible, we have that

||(dFt)−1
x || · |uk| ≤ |(dFt)x(uk)|

which gives

0 < ||(dFt)−1
x || ≤

|wk|
|uk|

+
o(|uk|)
|uk|

→ 0

which is a contradiction.

Finally, we are in a position to prove the absolute continuity of the
interpolant measure:

Theorem. If µ, ν << volg are as above, then for each t ∈ (0, 1):

µt << volg

where µt = (Ft)#µ.

Proof. Let t ∈ (0, 1) and A ⊆ M a Borel set. Invoking the regularity of
measure µ we can find an increasing sequence of compact sets Ki ⊆ Ẽt, such
that

µ

(
∞⋃
i=1

Ki

)
= lim

i→+∞
µ(Ki) = µ(Ẽt) = 1
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so that, for any Borel set A one has

µt(A) = µ(F−1
t (A)) = µ

(
∞⋃
i=1

(F−1
t (A) ∩Ki)

)
≤

∞∑
i=1

µ(F−1
t (A) ∩Ki).

In order to show that µt << volg we must consider a Borel set A satisfying
volg(A) = 0 and show that µt(A) = 0, but, according to the above, we only
need to show that µ(F−1

t (A) ∩Ki) = 0 for every i. However, we know that
µ << volg, therefore it suffices to show that volg(F−1

t (A) ∩Ki) = 0 for every
i. To sum up, we need to prove:

volg(A) = 0⇒ (Ft)# volg |K(A) = 0

where A is a Borel set and K ⊆ Ẽt is compact. In other words, we need to
show that if K ⊆ Ẽt is compact, then the restriction (Ft)# volg |K is absolutely
continuous on K ′ := Ft(K), with respect to volg. The previous lemma asserts
that K =

⋃
k>0

Kk where

Kk := {x ∈ K | ∀z ∈ K, d(Ft(x), Ft(z)) ≥ 1

k
d(x, z)}.

which are closed sets, since Ft is continuous, hence compact. But, the map
Ft : Kk → K ′k := Ft(Kk) has Lipschitz continuous inverse F−1

t , by the
definition of Kk, hence K ′k is compact as well. Recall that the injectivity
radius inj : M → [0, ∞) is a continuous function ([3], Prop. 10.37). Hence, it
attains a minimum on the compact Kk ∪K ′k, let’s call it r0 > 0. Now, since

Kk ∪K ′k ⊆
⋃

z∈Kk∪K′k

B r0
2

(z)

we can use compactness to find m ∈ N and z1, . . . , zm ∈ Kk ∪K ′k such that

Kk ∪K ′k ⊆
m⋃
i=1

B r0
2

(zi).

The continuity of the metric tensor g implies the continuity of the functions
gij on every normal neighbourhood Br0(zi) (the reader must not be confused
by the fact that i is used abusively as indexes of sums, unions and their terms
and is different from the index of gij). Hence, the function

√
det(gij) is also

continuous on every normal neighbourhood Br0(zi) and consequentially on
the compact sets (Kk ∪K ′k) ∩B r0

2
(zi) ⊆ Br0(zi) attaining a minimum ai > 0

and a maximum bi. Hence

a := max
i=1, ...,m

ai ≤
√

det(gij) ≤ min
i=1, ...,m

bi =: b
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on all of Kk ∪K ′k. If we take λ > 0, z ∈ Kk ∪K ′k and 0 < r < r0
λ
such that

Br(z) ⊆ Kk ∪K ′k we have

am(Bz
r (0)) ≤ volg(Br(z)) ≤ bm(Bz

r (0))

so that
aλnm(Bz

r (0)) ≤ volg(Bλr(z)) ≤ bλnm(Bz
r (0)).

Combining the above we deduce, that for any λ > 0, z ∈ Kk ∪ K ′k and
0 < r < r0

λ
such that Br(z) ⊆ Kk ∪K ′k, one has

volg(Bλr(z)) ≤ Cgλ
n volg(Br(z))

where Cg := b
a
. The Lipschitzian character of F−1

t implies, immediately, that
for every 0 < r < r0

k
and x ∈ K ′k,

F−1
t (Br(x)) ⊆ Bkr(F

−1
t (x))

so that

volg(F−1
t (Br(x))) ≤ volg(Bkr(F

−1
t (x)))

≤ Cgk
n volg(Br(F

−1
t (x)))

≤ C2
gk

n volg(Br(x))

where the last inequality is a product of the previous calculations and the
fact that the Lebesgue measure is invariant under translation.

If U ⊆ K ′k is open, for any x ∈ U consider an rx ≤ min{ r0
5
, r0
k
} such that

Brx(x) ⊆ U . Now, we can write U as

U =
⋃
x∈U

Brx(x)

and the well-known Vitali’s covering lemma ([25], [7], [6]) provides us with
countable many points xi ∈ U such that

∞⋃
i=1

Bri(xi) ⊆ U ⊆
∞⋃
i=1

B5ri(xi)

where the balls are chosen from the family above and are disjoint, which, in



CHAPTER 3. OPTIMAL TRANSPORT 75

turn, gives

volg(F−1
t (U)) ≤

∞∑
i=1

volg(F−1
t (B5ri(xi)))

≤ Cgk
n

∞∑
i=1

volg(B5ri(xi))

= C2
g (5k)n

∞∑
i=1

volg(Bri(xi))

= C2
g (5k)n volg

(
∞⋃
i=1

Bri(xi)

)
≤ C2

g (5k)n volg(U).

Now, let ε > 0 and A ⊆ K ′k be any Borel set. The regularity of measure
provides us with an open A ⊆ U ⊆ K ′k such that volg(U) ≤ volg(A) + ε.
Combining the above we have

volg(F−1
t (A)) ≤ volg(F−1

t (U))

≤ C2
g (5k)n volg(U)

≤ C2
g (5k)n(volg(A) + ε)

and letting ε→ 0+ we conclude

volg(F−1
t (A)) ≤ Cg,k,n volg(A)

for any Borel set A ⊆ K ′k, where Cg,k,n > 0 is some constant independent of
the choice of A.

Now, let A ⊆ M be any Borel set of zero measure, i.e. volg(A) = 0.
Observe that

(Ft)# volg |K(A) = volg(F−1
t (A) ∩K)

= volg

(⋃
k∈N

(F−1
t (A) ∩Kk)

)
≤
∑
k∈N

volg(F−1
t (A ∩K ′k))

≤
∑
k∈N

Cg,n,k volg(A ∩K ′k)

≤
∑
k∈N

Cg,n,k volg(A) = 0.
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Hence, (Ft)# volg |K is absolutely continuous with respect to volg, which
implies, as we argued before, that µt << volg and the proof is complete.

Since, now, µt is absolutely continuous and tϕ ∈ Ic(X, Zt(X, Y )) for any
t ∈ [0, 1] and ϕ ∈ Ic(X, Y ) there exists a set of full measure for µ, Kt ⊆ X,
such that ϕ has a Hessian at each x ∈ Kt, f(x) 6= 0 and the Jacobian identity
holds:

ft = f0 ◦ Ft · Jt
where Jt(x) := det(dFt)x = detY (t)(H(t) − tHessx ϕ) as above and
dµt = ftdvolg (note that µ0 = µ). A change of variables formula is just an
immediate...

Corollary. If U : [0, +∞)→ R∪ {+∞} is a Borel map with U(0) = 0, then∫
M

U(ft(z))dvolg(z) =

∫
Kt

U

(
f(x)

Jt(x)

)
Jt(x)dvolg(x)

where either both integrals are undefined or both take the same value in R.

3.9 Convexity of the Jacobian

Now, we can prove some sort of convexity for J
1/n
t , known as the Jacobian

inequality, which will prove very useful as it projects the fact that Ricci
curvature controls the optimal mass transport.

Proposition. Fix X ⊂⊂M open, Y ⊆M compact and a c-concave function
ϕ ∈ Ic(X, Y ) so that for each t ∈ [0, 1] the map Ft : X → Zt(X, Y ) is
defined by Ft(z) = expz(−t∇ϕ(z)). If ϕ admits a Hessian at x ∈ X, then
Y (t), H(t) exist and the Jacobian Jt(x) at x satisfies:

J
1/n
t (x) ≥ (1− t)v1/n

1−t(F (x), x) + tv
1/n
t (x, F (x)) J1/n(x)

where F = F1, J = J1.

Proof. Let x ∈ X be the point at which ϕ admits a Hessian. Then F (x) /∈
cut(x) and since ∇d2

F (x)(x)/2 = ∇ϕ(x) we have d(x, F (x)) = |∇ϕ(x)|x
so that Ft(x) /∈ cut(x) for t ∈ [0, 1]. Thus Y (t) = (D expx)−t∇ϕ(x) and
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H(t) = Hessx d
2
Ft(x)/2 are both well defined. The inequality is trivial for t = 1,

so fix t ∈ [0, 1) and write

Jt(x) = detY (t) det
[
(1− t)H(t)− tH(1)

1− t
+ t(H(1)− Hessx ϕ)

]
.

The matrices H(t)− tH(1) and H(1)− Hessx ϕ are symmetric, while their
positive definiteness has been established by the "triangle inequality" for d2/2
and the c-concavity of ϕ, respectively. Moreover, differentiating the Jacobi’s
formula for the derivative of the determinant on the set of symmetric positive
definite matrices yields

HessA det1/n(X, X) =
1

n2
det1/n(A)

(
tr2(A−1X)− n tr(A−2X2)

)
≤ 0

due to the Cauchy-Schwartz inequality, after we diagonalize A−1X, which we
can do since both matrices are symmetric and one of them is positive definite.
Now, the concavity of det1/n yields

J
1/n
t (x) ≥ (1− t) det1/n Y (t)(H(t)− tH(1))

1− t
+ t det1/n Y (t)(H(1)− Hessx ϕ)

≥ (1− t) det1/n Y (t)(H(t)− tH(1))

1− t
+ t det1/n Y (t)Y (1)−1 J

1/n
t (x)

= (1− t)v1/n
1−t(F (x), x) + tv

1/n
t (x, F (x)) J1/n(x)

since t 7→ Ft(x) is the minimal geodesic linking x to F (x).



Chapter 4

Ricci Curvature vs. Entropy

In this last chapter we will define the entropy functional, explore it a bit and
use it to characterize lower Ricci bounds.

4.1 Entropy

The relative entropy is defined as a functional on P2(M) by

Ent(ν) :=


∫
M

dν

dvolg
log

dν

dvolg
dvolg , if ν << volg & Ent+(ν) <∞

+∞ , otherwise

where by Ent+(ν) <∞ we mean
∫
M

[
dν
dvolg

log dν
dvolg

]
+
dvolg <∞.

We will prove the two properties of entropy we talked about in the
introduction. It gives us a nice picture of how entropy behaves.

Lemma. Let A ⊆M be a Borel set and µ, ν << volg be probability measures
such that

ν :=
χA

volg(A)
volg

is the normalized uniform distribution on A and supp(µ) ⊆ A. Then

(i) Ent(ν) = − log volg(A)

(ii) Ent(µ) ≥ Ent(ν)

78
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Proof. (i) A simple calculation yields:

Ent(ν) =

∫
M

χA
volg(A)

log
χA

volg(A)
dvolg =

=
1

volg(A)

∫
A

0− log volg(A)dvolg =

= − log volg(A).

(ii) Since log t ≤ t− 1, for t > 0, plugging in t = x
y
, for x, y > 0, yields

y − y log y ≤ x− y log x.

Since dµ
dvolg

, dν
dvolg

are probability densities, putting them in the place of y and
x, respectively, and integrating on A gives:

Ent(µ) ≥
∫
A

dµ

dvolg
log

χA
volg(A)

dvolg

= − log volg(A)

∫
A

dµ

dvolg
dvolg

= Ent(ν) · µ(A)

= Ent(ν).

4.2 Main Theorem

In this last section we will gather all our knowledge and tools developed in
the previous sections and finally prove an equivalence of lower Ricci bounds
with entropy’s K-convexity. We urge the reader to read the introduction (or
at least the last parts of it) to recall the definition of K-convexity and some
conventions made about it. Before we state and prove the main theorem we
will stress the fact that the functions snK , defined as

snK(r) =



sin(
√
Kr)√
Kr

, K > 0 , 0 < r < π√
K

1 , K = 0 , r > 0

sinh
(√
−Kr

)
√
−Kr

, K < 0 , r > 0
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with
snK(0) = 1

are playing an important role in our transition from the infinitesimal BMI,
the Jacobian inequality, to the K-convexity of entropy, by proving convexity
for a function related to snK , that will come up later:

Lemma. Let r ∈
(
0, π√

K

)
if K > 0 and r > 0 otherwise. The function

λ(r) := log snK(r) +
K

6
r2

satisfies
λ(r) ≤ (1− t)λ((1− t)r) + tλ(tr)

for every t ∈ [0, 1].

Proof. Since, for t = 0, 1 is obvious, let t ∈ (0, 1). We observe that, since
(1− t)t > 0, the inequality in question is equaivalent to

λ((1− t)r)− λ(r)

(1− t)− 1
+
λ(tr)− λ(r)

t− 1
≤ 0

which we can achieve through calculus’ mean value theorem, if we show that
λ′(r) ≤ 0 for every r. We will check that this is true for different values of
K. However, if we define the function λ̃(r) := λ

(
r√
±K

)
one easily sees that

λ̃′(r) ≤ 0⇔ λ′(r) ≤ 0. So we might assume that K = 0, 1, −1, without loss
of generality.

• If K = 0, then λ′(r) = 0 ≤ 0.

• If K = 1, then for r ∈ (0, π) we have

λ(r) = log sin(r)− log r +
r2

6

and
λ′(r) =

cos r

sin r
− 1

r
+
r

3

Then λ′(r) ≤ 0 ⇔ 3r cos r − 3 sin r + r2 sin r ≤ 0. We define two new
functions:

f(r) = 3r cos r − 3 sin r + r2 sin r

g(r) = r cos r − sin r
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and with basic calculus we see that:

λ′(r) ≤ 0⇔ f(r) ≤ 0 = f(0)⇔
⇔ f ′(r) ≤ 0⇔

⇔ r(r cos r − sin r) ≤ 0
r>0⇐⇒

⇔ g(r) ≤ 0 = g(0)⇔
⇔ g′(r) ≤ 0⇔
⇔ −r sin r ≤ 0

which is true for r ∈ (0, π) (the second and fifth equivalence is due to
the fact that f ′(r) = 0⇔ r = 0⇔ g′(r) = 0).

• If K = −1 the calculations are somewhat similar:

λ′(r) ≤ 0⇔ 3r cosh r − 3 sinh r − r2 sinh r ≤ 0⇔

⇔ r(sinh r − r cosh r) ≤ 0
r>0⇐⇒

⇔ sinh r − r cosh r ≤ 0⇔
⇔ −r sinh r ≤ 0

which is, again, true for r > 0.

This last theorem would signify the end of our journey. We follow the proof
of [17]:

Theorem. For any smooth complete Riemannian manifold M and K̃ ∈ R we
have the following equivalence:

Ric(M) ≥ K̃ ⇐⇒ Ent(·) is K̃-convex on W2.

Proof. First assume that Ric(M) ≥ (n − 1)K, where K ∈ R is such that
K̃ = (n− 1)K, and let t 7→ µt : [0, 1]→P2(M) be a geodesic. We observe
that if Ent(µ0) = +∞ or Ent(µ1) = +∞ then Ent(µt) ≤ +∞ and the
statement will be true. So we can assume that Ent(µ0), Ent(µ1) < ∞ and
consequentially µ0, µ1 << volg. Thus µt is the unique geodesic connecting µ0

and µ1 given by µt = (Ft)#µ0 where Ft(x) = expx(−t∇ϕ(x)) and ϕ c-concave.
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The change of variables formula yields

Ent(µt) =

∫
M

dµt
dvolg

log
dµt
dvolg

dvolg

=

∫
M

dµ0

dvolg

(
log

dµ0

dvolg
− log Jt

)
dvolg

= Ent(µ0)−
∫
M

log Jt dµ0

and from this we can deduce:

(1− t) Ent(µ0) + tEnt(µ1)− Ent(µt)

=(Ent(µ0)− Ent(µt))− t(Ent(µ0)− Ent(µ1))

=

∫
M

log Jt dµ0 − t
∫
M

log J1 dµ0

=

∫
M

log Jt−t log J1 dµ0

Due to the fact that logarithm is an increasing concave function, the Jacobian
inequality yields:

log Jt(x) ≥ n log
[
(1− t)v1/n

1−t(F1(x), x) + tv
1/n
t (x, F1(x)) J

1/n
1 (x)

]
≥ n

[
(1− t) log v

1/n
1−t(F1(x), x) + t log

(
vt(x, F1(x)) J1(x)

)1/n]
= (1− t) log v1−t(F1(x), x) + t log vt(x, F1(x)) + t log J1(x)

Since Ricci curvature is bounded from below by K we can bound the volume
coefficients from below, too. Thus

log Jt(x)− t log J1(x)

≥ (1− t) log v1−t(F1(x), x) + t log vt(x, F1(x))

≥ (1− t) log

(
snK((1− t)d(F1(x), x))

snK(d(F1(x), x))

)n−1

+ t log

(
snK(td(x, F1(x)))

snK(d(x, F1(x)))

)n−1

≥ (n− 1)
[
(1− t) log snK((1− t)dx) + t log snK(tdx)− log snK(dx)

]
≥ (n− 1)K

2
t(1− t)d2(x, F1(x))

≥ K̃

2
t(1− t)d2(x, F1(x))

where dx := d(x, F1(x)) and the last inequality followed from the fact that

(1− t) log snK((1− t)r) + t log snK(tr)− log snK(r)− K

2
t(1− t)r2

= (1− t)λ((1− t)r) + tλ(tr)− λ(r) ≥ 0
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for all t ∈ [0, 1] and r ∈
(
0, π√

K

)
(no generality is lost due to the Bonnet-Myers

theorem and the fact that sinh r ≥ 0 for r ≥ 0), where λ(r) = log snK(r)+K
6
r2,

as we showed earlier. Thus

(1− t) Ent(µ0) + tEnt(µ1)− Ent(µt) =

∫
M

log Jt(x)− t log J1(x)dµ0(x)

≥
∫
M

K̃

2
t(1− t)d2(x, F1(x))dµ0(x)

=
K̃

2
t(1− t)d2

W2
(µ0, µ1)

hence the K̃-convexity of Ent(·) is proved.

Now, let’s attack the converse statement. For this purpose suppose, on
the contrary, that there exist p ∈M , a unit vector e1 ∈ TpM and some ε > 0
such that Ricp(e1, e1) ≤ K̃ − ε. Complete e1 to an orthonormal basis of TpM ,
{e1, . . . , en}, such that

R(ei, e1)e1 = kiei

where ki = sec(e1, ei), i = 1, . . . , n. Thus

n∑
i=1

ki = Ricp(e1, e1) ≤ K̃ − ε.

Consider a large normal ball around p and take δ, r > 0 so that it includes
A0 := Bδ(expp(−re1)) and A1 := Bδ(expp(re1)). Define n numbers:

δi := δ

[
1 +

r2

2

(
ki +

ε

2n

)]
, i = 1, . . . , n

and choose small enough r and δ so that the ellipsoid

A1/2 := expp

({
v ∈ TpM :

n∑
i=1

(
vi
δi

)2

≤ 1

})
will also be included in the large normal ball. Now since the geodesic that
connects the centers of A0 and A1 passes through p we have that γ

(
1
2

)
∈ A1/2

for each minimizing geodesic γ : [0, 1] → M with γ(0) ∈ A0, γ(1) ∈ A1. In
order to check that, parallel translate the basis {e1, . . . , en} along the geodesic
joining the centers of A0, A1 and Taylor expand γ at p. Let µ0, µ1, ν be
the normalized uniform distributions in A0, A1 and A1/2 respectively. From
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the first property we proved for entropy and a local calculation on normal
coordinates we have

Ent(µ0) = − log volg(A0) = − logωn − n log δ +O(δ2)

Ent(µ1) = − log volg(A1) = − logωn − n log δ +O(δ2)

Ent(ν) = − log volg(A1/2) = − logωn −
n∑
i=1

log δi +O(δ2)

where ωn = VolRn(B1(0)). From the definition of δi one has
n∑
i=1

log δi =
n∑
i=1

{
log δ + log

(
1 +

r2

2

(
ki +

ε

2n

))}
≤

n∑
i=1

{
log δ +

r2

2

(
ki +

ε

2n

)}

= n log δ +
r2

2

(
n∑
i=1

ki +
ε

2

)

≤ n log δ +
r2

2

(
K̃ − ε

2

)
hence

Ent(ν) ≥ − logωn − n log δ − r2

2

(
K̃ − ε

2

)
+O(δ2).

Since the optimal mass transport from µ0 to µ1 (with respect to dW2) is along
geodesics ofM , we must have that supp(µ1/2) ⊆ A1/2 and the second property
we proved for entropy yields

Ent(µ1/2) ≥ Ent(ν).

Combining the above we have:

Ent(µ1/2)− 1

2
Ent(µ0)− 1

2
Ent(µ1)

≥− r2

2

(
K̃ − ε

2

)
+O(δ2)

=− r2

2
K̃ +

ε

4
r2 +O(δ2)

=− r2

2
K̃ +

ε

4
r2 − δ2

2
K̃ +O(δ2)

since δ2

2
K̃ = O(δ2) and O(δ2) + O(δ2) = O(δ2). Choosing δ << r small

enough such that

O(δ2) > −ε
8
r2 & r >

8|K̃|
ε

δ
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we get

Ent(µ1/2)− 1

2
Ent(µ0)− 1

2
Ent(µ1)

≥− r2

2
K̃ +

ε

4
r2 − δ2

2
K̃ +O(δ2)

>− r2

2
K̃ +

ε

8
r2 − δ2

2
K̃

>− r2

2
K̃ + |K̃|rδ − δ2

2
K̃

We observe that for small enough δ << r << 1 such that we’re working on
normal coordinates we have

0 < 2r − 2δ ≤ dW2(µ0, µ1) ≤ 2r + 2δ

since we have probability measures. Now, we distinguish two cases:

• If K̃ ≥ 0 we have

− r2

2
K̃ + |K̃|rδ − δ2

2
K̃

=− K̃

8
(2r − 2δ)2

≥− K̃

8
d2
W2

(µ0, µ1)

since − K̃
8
≤ 0.

• If K̃ < 0 we have

− r2

2
K̃ + |K̃|rδ − δ2

2
K̃

=− K̃

8
(2r + 2δ)2

≥− K̃

8
d2
W2

(µ0, µ1)

since − K̃
8
> 0.

Thus

Ent(µ1/2) >
1

2
Ent(µ0) +

1

2
Ent(µ1)− K̃

8
d2
W2

(µ0, µ1)

which is a contradiction, since entropy is K̃-convex.
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