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Abstract 
 

The unrest period in Santorini's caldera during 2011-2012, led several studies to raise 

the important question of whether seismicity is associated with an impending and 

potential volcanic eruption or if it solely relieves the accumulated tectonic energy. In the 

present work, we study seismic coda waves, generated by local earthquake events prior, 

during and after the Santorini’s unrest period (volcanic and seismic crisis) that occurred 

within the caldera area. Coda waves are interpreted as scattered seismic waves 

generated by heterogeneities within the Earth, i.e. by faults, fractures, fissure 

structures, microcracks, velocity and/or density boundaries/anomalies, etc. In particular, 

we utilize all three components of the seismograms recorded by three seismological 

stations on the Santorini island and estimate the duration of the coda waves by 

implementing a five-step procedure that includes the signal-to-noise ratio, the STA/LTA 

like method, in time domain and upon analytic signal obtained after implementing 

Hilbert transformation, and the short time Fourier transform, using gaussian windowing 

as a window function. The final estimation was verified or re-estimated manually due to 

the existent ambient seismic noise. Because of the nature and the path complexity of 

the coda waves and towards achieving a unified framework for the study of the 

immerse geo-structural seismotectonic complexity of the Santorini volcanic complex, we 

use Non-Extensive Statistical Physics (NESP) to study the probability density functions 

(pdfs) of the increments of seismic coda waves. NESP, forms a generalization of the 

Boltzmann-Gibbs statistical mechanics that has been extensively used for the analysis of 

semi-chaotic systems that exhibit long-range interactions, memory effects and multi-

fractality. The analysis and results demonstrate that the seismic coda waves increments, 

deviate from the Gaussian shape and their respective pdfs could adequately be 

described and processed by the q-Gaussian distribution. Furthermore and in order to 

investigate the dynamical evolution of the volcanic-tectonic activity, we estimate the qs-

indices derived from the pdfs of the coda wave time series increments, and present 

their variations as a function of time, of space (spaciotemporal variation), of local 

magnitude (ML) and epicentral distance (measured in km) prior, during and after the 

caldera unrest period from 2009 to 2014 [1]. 
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Περίληψη 
 

Η περίοδος της ηφαιστειακής κρίσης στο νησί της Σαντορίνης κατά τη περίοδο 2011-
2012, οδήγησε αρκετές επιστημονικές μελέτες να εγείρουν το κρίσιμο ερώτημα, εάν η 
σεισμικότητα της ευρύτερης περιοχής της καλντέρας, σχετίζεται με μια επικείμενη και 
πιθανή ηφαιστειακή έκρηξη ή αν εκφορτίζει τη συσσωρευμένη τεκτονική ενέργεια. 
Στην παρούσα μεταπτυχιακή διατριβή, μελετήσαμε τα σεισμικά κύματα ουράς (Coda 
waves), από τα τοπικά σεισμικά γεγονότα πριν, κατά τη διάρκεια και μετά την περίοδο 
της ηφαιστειακή και σεισμικής κρίσης της Σαντορίνης. Τα σεισμικά κύματα ουράς, 
οφείλουν την παρουσία τους σε φαινόμενα σκέδασης και στην πολυπλοκότητα της 
κατανομής των σκεδαστών του υπεδάφους, στις ανομοιογένειες του εσωτερικού της 
Γης, όπως είναι οι ρωγμές και η σχιστότητα των πετρωμάτων, τα ρήγματα, στα όρια 
μετάβασης υλικών διαφορετικής πυκνότητας, και στις πάσης φύσεως γεωφυσικές 
ανομοιογένειες ως προς τις ιδιότητες των υλικών στα ανώτερα στρώματα του φλοιού 
της Γης. Πιο συγκεκριμένα, λάβαμε υπόψη και τις τρεις συνιστώσες των σεισμολογικών 
σταθμών στο νησί της Σαντορίνης και εκτιμήσαμε τη διάρκεια των σεισμικών κυμάτων 
ουράς, εφαρμόζοντας μια διαδικασία πέντε επιπέδων, η οποία περιλαμβάνει την 
αναλογία σεισμικού σήματος προς θόρυβο (SNR), τη μέθοδο τύπου βραχέως μέσου 
χρόνου προς μακροπρόθεσμο μέσο χρόνο (STA/LTA) στο πεδίο του χρόνου αλλά και 
στο  αναλυτικό σήμα, όπως αυτό προκύπτει από την εφαρμογή του μετασχηματισμού 
Hilbert, καθώς και τον μετασχηματισμό Fourier βραχέως χρόνου (STFT), εφαρμόζοντας 
παράθυρο Γκαουσιανής συνάρτησης (window function). Η τελική εκτίμηση της 
διάρκειας των κυμάτων ουράς, επαληθεύτηκε ή και επανεκτιμήθηκε αναλογικά από 
τον χρήστη, εξαιτίας της ύπαρξης ισχυρού σεισμικού θορύβου. Λόγω της 
πολυπλοκότητας των κυμάτων ουράς, για τη μελέτη του ηφαιστειακού συμπλέγματος 
της Σαντορίνης, εφαρμόσαμε την θεωρία της μη εκτατικής στατιστικής φυσικής (NESP). 
Η προσέγγιση NESP εκφράζει την γενίκευση της στατιστικής μηχανικής των Boltzmann-
Gibbs και έχει χρησιμοποιηθεί εκτενώς για την ανάλυση πολύπλοκων συστημάτων, με 
εμφανή χαρακτηριστικά και ιδιότητες αλληλεπίδρασης μακράς εμβέλειας, μνήμης και 
μορφοκλασματικότητας. Η ανάλυση και τα αποτελέσματα της παρούσας διατριβής 
δείχνουν ότι οι διαφορές πλάτους των διαδοχικών σημείων των σεισμικών κυμάτων 
ουράς (στο πεδίο του χρόνου), αποκλίνουν από το στατιστικό πρότυπο τύπου Gauss, 
καθώς οι αντίστοιχες συναρτήσεις πυκνότητας πιθανότητας (PDFs), μπορούν να 
περιγραφούν επαρκώς από κατανομές πιθανότητας που προκύπτουν από τον μη 
εκτατικό φορμαλισμό και πιο συγκεκριμένα από την κατανομή q-Gaussian. Επιπλέον, 
για να διερευνήσουμε τη δυναμική εξέλιξη της ηφαιστειακής-σεισμοτεκτονικής 
δραστηριότητας, εκτιμήσαμε τους εντροπικούς δείκτες σκέδασης qs όπως αυτοί 
προκύπτουν από την μη γραμμική ανάλυση των PDFs, παρουσιάζοντας τις μεταβολές 
τους ως συνάρτηση του χρόνου, του χώρου (χωροχρονική μεταβολή), του τοπικού 
μεγέθους (ML) καθώς και της επικεντρικής απόστασης (km) πριν, κατά τη διάρκεια και 
μετά την περίοδο ηφαιστειακής κρίσης της καλντέρας, από το 2009 έως το 2014. 
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1 Area of Interest 
 

1.1 Physical Interest of Santorini’s unrest period of 2011 – 2012 
 

The inflation of Santorini’s volcano alongside with the immense local seismicity and the 
GPS spatio-temporal fluctuations, following a not expected deflation behavior, had led 
to the hypothesis of a potential volcanic eruption.  
Numerous scientific studies from different disciplines, have suggested a complex and 
unstable magma intrusion(s) within Kameni and Columbo tectonovolcanic lineaments, 
gaining the interest of the global scientific community. 
We investigated the Santorini volcanic complex from a geophysical perspective, in order 
to have an insight of the local sub-surface physical properties prior during and after the 
unrest period. 
 

1.2 Tectonic regime of Eastern Mediterranean and the Hellenic Volcanic Arc. 
 

The Hellenic Arc is characterized as one of the most multiphase deformed and complex 
geotectonic environments throughout the world. The geological history of the wider 
area started approximately 250 million years ago, when the ocean of Tethys was formed 
from Pangea’s super continental fragmentation [2]. This period is extended at the end of 
the Triassic, through the Mesozoic and Cenozoic era. Tethys ocean was the natural 
boundary between the archaic continents of Gondwana and Laurasia. The majority of 
the rock materials found in Greece has been formed from Tethys ocean and deposited 
as sediments and volcanic rocks. The geological evolution of Greece can be divided into 
two main periods. The Alpic period, placed in approximately 250 million to 20 million 
years ago, and the fore-Alpic period extended for the last 20 million years. The neo-
tectonic period in which the Hellenic Arc was formed, is stretched during the last 10 
million years.  
The Hellenic trench, as given in Figure 1.1, is a typical convergent geological boundary 

between two major tectonic plates (Eurasian and African), forming the east 

Mediterranean subduction zone. 
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Figure 1.1 The volcanic arc and position of Santorini’s island in the Hellenic arc [3]. 

 

The main feature of the Hellenic trench is the long (relatively continuous) and steep 
seaward slope, consisted of a multi-system trenches, troughs, deep seas and sea basins, 
extended from Rhodes (East) to Kefalonia (West).  
The structure of the island arc involves a series of islands and islets, covering the 
southern part of the Greece (Rhodes, Crete, Kithira etc.).  
The back arc is a sea basin north of Crete, characterized by shallow depth.  Following, to 
the north, the volcanic arc consists of the active and inactive volcanoes of Sousaki, 
Methana, Milos, Santorini and Nisiros.  
The Hellenic continental volcanic arc is the aftermath of the Africa-East Mediterranean 
tectonic plate collision with the Aegean-Anatolian micro plate. As the subducted slab 
descends, it is subjected to higher amount of pressure and temperature, causing the 
volatile constituents, as well as the water inside hydrate minerals (lattice structure), to 
evaporate, contributing to magma production. This procedure is continuously supplying 
the volcanic arc with new magma material, contributing to its spatial expansion and 
potentially causing violent and disastrous phenomena, such as landslides, eruptions etc. 
The differentiations in magmatism, as a consequence to changes in tectonics and 
minerals/rocks throughout the arc evolution, indicate a uniformly continuous subducted 
slab beneath the volcanic center, at depths of 130~150 km [4]. 
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Santorini island and the whole volcanic arc is part of the Aegean micro-plate which is 
part of the major Eurasian tectonic plate.  Contrariwise, the lithosphere of the eastern 
Mediterranean is part of the African plate.  
In more details, the Aegean plate involves its surrounding large tectonic plates 
consisting of the Arabian to the east, the Eurasian to the north, north-west and the 
African to the south. The northern boundary of the Aegean plate is located at the 
western appearance of the North Anatolia strike-slip fault and its western margin is 
located at Ambracian gulf.  
The northwest boundary of the Aegean plate is well-defined by the Cephalonia 
Transform Fault (CTF), whereas the eastern boundary is not clearly defined and it is 
approximately considered to be south of the Northern Anatolian Fault, in a wide area 
dominated by extensional regime and normal faulting, close to the 30o E meridian [5]. 
The southern boundary of the Aegean micro-plate is considered to cover the area along 
the Hellenic Trench, setting the interface between the African and the Eurasian plates. 
This geological boundary is dominated and bounded by thrust fault structures. The 
seismotectonic regime across the boundary is congruent with the uplifting sedimentary 
fore-arc zone at the northern subduction zone, in the transition between the two plates. 
Consequently, the subduction along the Hellenic trench, resulted from the displacement 
of the Aegean plate, is estimated at a mean displacement rate of 4-6 cm/year [6] to the 
southwest and from the relative northern movement of the African plate [7] [8] [9]. 
The two lithospheric plates are converging with relative displacement of approximately 
3 cm/year, considering the relative horizontal velocities with respect to Eurasia [10], 
resulting to the subduction of the oceanic plate of the east Mediterranean, due to its 
higher density, under the continental plate of the Aegean. 
The complex nature of the Hellenic subduction zone can be further analyzed via the 
subducted area of the Adriatic (which is mainly characterized as continental lithosphere) 
reaching its sliding annual rate between 5-10 mm/year and the subducted area of the 
Ionian, which is considered an oceanic lithosphere, approaching the kinematic velocity 
of ~35 mm/year [11]. 
Therefore, the Hellenic arc structure consists of the Hellenic trench, the island arc, the 
back-arc and the volcanic arc. A lithospheric scale cross-section extended from Balkan 
foreland to the passive margin of African plate, is given in Figure 1.2. 
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The relative motion between the Aegean and its neighboring lithospheric plates, can be 
kinematically explained via complex models, mainly introduced by GPS observations, as 
shown in Figure 1.3. The North Anatolian fault started to penetrate into the Aegean 
domain approximately 5Ma years ago, resulting to an external force to the constant 
sliding of the Aegean to the south and contributing to the neo-tectonic active 
deformation [12].   

Figure 1.2 Schematic lithospheric scale illustration of the east Mediterranean subduction 
zone and location of the Santorini island within the Hellenic arc [13]. 
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Figure 1.3 Kinematic motion in the wider area of Hellenides.  CHSZ represents the central 
Hellenic shear zone while WASZ stands for the western Anatolian shear zone [10]. 

 

Today’s slab geometry is defined by shallow dip in high depths (~40o-45o) and of 
approximately ~30o dip in the upper mantle. Geological and tectonic observations have 
shown that the slab’s dip has decreased since the Cretaceous-Tertiary era [13].  
Subduction rates have also decreased since the late Eocene, reaching 5-12mm/year by 
the late Miocene, due to the continuous changes of geodynamic environments 
(subduction of Pindos oceanic lithosphere, subduction of Hellenic carbonate platform, 
subduction of Ionian lithosphere). As a consequence, the evolution of the slab has 
continuously changed the localization of the arc geometry into several configurations. 
These configurations, set the volcanic arc in a shifting special displacement with a 
relatively constant direction from North to South. During Eocene, the volcanic arc 
occupied the region of northern Greece, especially the region of Thrace. At Oligocene 
and at the early Miocene the arc was located in the northeastern Aegean region 
(Lemnos, Agios Efstratios, Lesbos etc.). At late Miocene the volcanic arc extended from 
the northern Greece to Aegean (Ikaria and Samos islands). The current state of the 
volcanic arc, began to take shape after the epoch era of Pliocene. 
 The spatial transition of the Hellenic volcanic arc, throughout Paleogene and Neogene 
epoch, is given in the Figure 1.4. 
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Figure 1.4 Schematic representation of the Hellenic volcanic arc spatial shifting, over the 
past approximately 40 Million years, from Eocene era until today [14]. 

1.3 Santorini Volcanic Complex 
 

The Santorini Volcanic Complex is a part of the NE-SW oriented graben of the Anydros 
basin that extends from the Amorgos Island to the Christiana submarine islets 
volcanoes. The wider area of the Anydros basin is predominated by normal faults, a 
conclusion risen by the fault plane solutions of the major earthquake events.  
 
 

 

Figure 1.5 Seismotectonic map of the wider area of Santorini and its complex fault 
structure [15]. 
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Seismicity in that area of the volcanic arc is mainly confined between the two major 
tectonovolcanic strike slip features of the Santorini’s volcanic complex, i.e. the Columbo 
and Kameni lineaments. The position and orientation of these structures, as seen in 
Figure 1.5, have been responsible for the most violent eruptive episodes, as they 
provide a passageway to fluid and magma migration. The Columbo and Kameni 
lineaments, can be considered as strike slip faults, with normal-sinistral characteristics 
for Columbo [16], in an area (Anydros basin) dominated by pure normal faulting. The 
stress field of the wider area is distinct, having a northwest to southeast orientation. 
The active volcanic island of Santorini is located at the center of the arc, being the most 
active volcano in the sea of Aegean. The volcanic activity of Santorini, initiated during 
Pliocene and continues up to day. The current geomorphological state of the island 
contains the remnants of the collapsed volcanic shield, forming the steep-walled caldera 
rim. It is mainly composed upon Mesozoic metamorphic rocks with congruent Pliocene 
submarine lavas, known as pillow lavas, and sediments that are exposed at the Akrotiri 
Peninsula, located at the southern part of the island. These terrain materials are part of 
the Hellenide-Anatolide orogenic belt, deformed during the Cenozoic period of closure 
the of European and African plates [17] [7] [18]. 
The most significant violent and recent eruption was the so-called Minoan volcanic 
eruption, which took place during the Bronze age in approximately 1600 B.C. That 
period has been characterized by immense seismicity [19] [20]. According to the analysis 
of the carbon isotope C14, the mega-eruption has been well-defined between 1627 and 
1600 B.C. with probability of 95% [21]. 
The post-Minoan eruptions started approximately 2200 years before. Since then, a 
number of minor and middle sized volcanic activity, expressed by effusive eruptions and 
lava flows, have occurred, marked by the recent eruptions of 1925 and 1950 [22] [23] 
[24], as shown in Figure 1.6. 
 

 

Figure 1.6 (a) The first instrumental observable volcanic eruption of Nea Kameni in 1926 
and (b) the 1950 phreatic eruption of Palea Kameni [25]. 
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There have been 12 major volcanic events until today [26], as presented in Table 1.1.  

 

 

Table 1.1 Post Minoan major volcanic activities of Santorini’s volcano. 

 

Evidence from historical data indicates that at least five volcanic eruptions have 
occurred within the Kameni lineament, while the Columbo tectono-volcanic feature is 
responsible for two eruptive events, dike swarms, tuff rings and cinder cones [27]. 
As seen in Table 1.1, the wider area of Santorini’s volcanic system, remained relatively 
inactive during the period from 1950 to 2011. A small-scale volcanic activation, with 
aseismic and slow inflation in the northern part of Thera’s caldera, occurred between 
1994 and 2000 [28]. 
The next indication of volcanic activity, following the calm inflation of 1994 to 2000, was 
observed during the years 2011-12, showing signs of unrest behavior (volcanic crisis) 
accompanied with significant seismic activity and crustal deformation [15] [29] [30] [31]. 
During the unrest period, the earthquake epicenters were distributed along a 
subvertical surface, correlated to the Kameni line, a tectonic feature responsible for 
many major eruptions [15] [32] [33] [34]. Concurrently, GPS observations showed 
spatial deformation with cumulative concentric displacement of about 10 cm [35]. 
The hypothesis of a potential volcanic eruption was enhanced by the fact that the 
majority of the post-Minoan eruption events has been strongly associated with seismic 
activity within the Kameni tectonovolcanic lineament – zone. 
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Figure 1.7 A schematic approach, demonstrating the sub-surface tectono-volcanic 
structure of Santorini’s island [25]. 
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2 Coda waves  
 

2.1 A general introduction of Coda waves 
 

When distributed heterogeneities interact with anisotropy and nonlinearity, a great 
geophysical entanglement procedure is risen, the so-called wave scattering 
phenomenon. 
Due to the subsurface inhomogeneities [36] [37] [38], discontinuities, three dimensional 
variations of physical and chemical properties such as λ and μ parameters (where μ 
refers to the shear modulus or rigidity, and λ is defined with respect to μ by using the 
bulk modulus), site conditions (porosity, permeability, impedance variation etc.) and 
chaotically distributed fractal-scale scatterers, ground recording signatures with decay 
behavior are always presented in seismic stream records, following the direct body and 
surface waves. These waves have been introduced and established as coda waves and 
the main physical reason of their existence is associated to scattering effects, of primary 
body and surface waves and to the mode converted phases of one to another [36] [39] 
[40].  The term “coda” was first used in order to refer to the ground motion, after the 
last surface wave onset [41]. Another meaning of coda is associated with the tail of 
surface waves following the S phase arrival. In the first studies of local earthquake 
events [36] [42], coda waves corresponded to the recorded energy following the 
primary waves and were used in order to retrieve information of the seismic source and 
properties of the medium. Later, coda waves were extensively used as a measure of 
seismic magnitude (coda duration) [43] [44] [45] [46] [47] [48].  
 

 

2.2 The decay rate of Codas attenuation  
 

From observable characteristics, there was strong evidence that the origin of coda 
waves is associated with the lateral heterogeneities [36] [38] of the Earth’s interior, as 
the scatterers have high density close to the surface, which decreases with depth, as 
well as to the repercussions of the overall tectonic dynamics [49]. 
The physical processes of attenuation refer to the decay rate of seismic amplitude and 
energy content and are strongly correlated with multiple scattering and intrinsic 
phenomena (intrinsic attenuation due to the transversion of elastic energy into heat and 
other forms of energy [50]). Scattering of a seismic wavefront is a physical procedure, 
occurred due to the fluctuations of the elastic properties of the Earth’s materials and 
the existence of irregularities, discontinuities, fractures, faults, fissures, microcracks and 
a variety of randomly distributed scatterers, within the rigid layer of the lithosphere. On 
the contrary, the absorption effect, also contributing to the attenuation mechanism, 
reflects the anelastic properties of the Earth’s interior. Phenomena contributing to the 
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absorption of seismic energy are fluid migrations and energy viscous dissipation in a 
wider area of fissile materials and crack like structures [50].  
Coda attenuation can be quantitative determined via the non-dimensional Q parameter, 
as a function of scattering and intrinsic absorption [37]. According to LS GAO et. al. [51] 
and AM DAINTY et. al. [52], this approach is described by the equation: 
 

 1

𝑄
=
1

𝑄𝑖
+
1

𝑄𝑠
 

(2.1) 

 

where the Q quantity represents the quality factor, associated to the decay rate of 
seismic waves, 1/Qi is the intrinsic absorption of the energy and 1/Qs represents the 
attenuation factor due to scattering effects 
A more complex form of this relation (2.1) was given by Dainty in 1981 [52]:  
 

  
 

1

𝑄
=
1

𝑄𝑖
+
𝑔𝑣

𝜔
 

(2.2) 

 

In this formula, g represents the turbidity coefficient, v the velocity and ω the frequency 
of the observed wave. Taking into account the above-mentioned formulas, it becomes 
clear that the site conditions-characteristics and the propagation path are responsible 
for the coda waves behavior. Consequently, geological materials with minor absorption 
of seismic energy but with strong scattering effects can produce long lasting seismic 
coda waves, such as the observed Lunar quakes, recorded from the Apollo missions [53].  
The recent (2018) NASA’s mission with the name InSight, through the successive 
deployment of the first Martian seismometer in Elysium Planitia area, called SEIS, 
revealed the similarity between Moonquakes and Marsquakes records [54] [55].   
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Figure 2.1 a) Diffusivity versus absorption for different seismic sources. b)  Impact of 
geological regimes upon Lunar and Earth seismograms. c) Mars seismograms and ray 
paths [55]. 

 

2.3 Physical origin of Coda waves 
 

In 1969, Aki [36] proposed the first explanation for the seismic attenuated tail waves, 
based upon the observation that diffraction phenomena can generate long lasting coda 
waves due to the heterogeneity of the upper lithosphere.  
Further research showed that the diffusion approach was not the right one, as initially 
thought, to explain the origin and behavior of Coda waves. In the early stages, the 
diffusion theory was widely recognizable and acceptable especially in explosion cases 
[56]. The very next years, following the Nasa’s Apollo project and analyzing the 
seismograms from the successful passive seismic experiment, deployed by the Apollo 11 
mission, it became clear that Lunar seismic records, could reach the characteristic 
duration of almost one hour, without a specific seismic phase being noticeable. Another 
characteristic is that Lunar earthquake records presented slow amplitude growth, 
reaching the duration of 600 seconds. These observations suggested intense scattering 
effects and less absorption of the Lunar rock materials. The research of Dainty and 
Toksoz [57] [58] proposed a more like diffusion model. Although the successful utility, 
especially for Lunar data, this approach was taken into oblivion, as it became clear that 
the diffusion theory was inapplicable for the Earth’s seismic records.  
Later, in the study of Aki & Chouet that was published in 1975 [39], a quantitative 
approach was suggested for the exponential decay behavior of coda waves. 
In order to overcome the problem on how the content of a high frequency seismic 
record can give insight information about the in-situ conditions of any local regime (local 
at the site of recording), Aki and Chouet proposed a small number of parameters, 
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capable of characterizing the average properties of the complex heterogeneous 
medium. 
The two advanced models that were proposed were the single scattering and multiple 
scattering models. According to the single scattering theory, the main idea was based 
upon the assumption that coda waves are mainly comprised of backscattered waves 
that are propagating in an isotropic and homogenous medium within a weak scattering 
wavefield, without the potential of producing secondary scattering waves. Moreover, a 
single backscattering model is responsible for the generated coda waves, elucidate them 
as a superposition of reflected primary waves by two dimensional randomly distributed 
heterogeneities-scatterers.  
 For weak scattering observations the single approach was sufficient, instead of strong 
scattering cases that required the consideration of a multiple approach. 
In a research presented by Hedlin and Shearer [59], an approach, using the Rayleigh-
Born scattering theory, based on the single-scattering model, showed that for specific 
seismic wave phases, coda wave amplitudes are not sensitive to the vertical scatterers.  
Despite the simplicity of the theory and some fundamental limitations, as the single 
scattering approach violates the energy conservation, and despite some minor additions 
on the theory [60] [61], this model was considered acceptable for a long time period. 
The mathematical analysis of this theory indicates that the radial component of energy 
should always be larger than the transverse and that the attenuation rate of energy is 
decreased as a function of time. 
In addition, the single scattering model is valid in cases for mean free paths (waves 
between scatterers) greater that the ray path from scatterers to the receiver. This 
hypothesis rarely occurs in real conditions and the scatterers distribution does not 
satisfy the wavelength comparison size condition. 
Another model that seemed to correspond well to coda wave properties, was 
considered the one that exhibits the multiple scattering approach introduced by Aki and 
Chouet, 1975 [39] Gao et al., 1983a [62]. This model described the random propagation 
of the seismic energy within the scattered earth’s interior.   
 A further development of a robust model was presented by Kopnichev 1977b [63] 
proposed a uniform and isotropic medium, in which occurring double, triple (or higher 
order) of scattering phenomena, where the travel distance of the scattered waves was 
assumed to be larger than the epicentral distance.  
This model had been further developed, in the studies of GAO et al. (1983a, b) [62]. 
These approaches proved to be insufficient in modeling the spatiotemporal distribution 
of codas energy. This problem, was about to be solved when Wu 1985 [64] [65] 
proposed the well-known radiative transfer equation. Mode converted waves were later 
introduced, as an addon in the theory [66] [67]. This theory has been extensively tested 
for acoustic and elastic full wave simulations by Wegler et al. 2006 and Przybilla et al. 
2006 respectively [68] [69].  
According to Gusev A. et. al. [70] further theoretical approach of multiple scattering 
process was conducted by using numerical Monte-Carlo simulation. 
Contributing to this theory, the first model in history that had taken into account the 
energy conservation, by implementing the Monte-Carlo simulation in the three 
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dimensional space, verified the observed space and time distributed energy density of 
the high order scattered coda waves from the specification of isotropic scattering 
without intrinsic absorption, as a function of lapse time [71].  
The radiative transfer equation (RTE) was furthermore extended for polarized waves 
within a potential inhomogeneous medium [72]. Weaver [73] introduced the 
equipartition property, as an attempt to explain the behavior of diffuse waves.  
According to this, despite the exponential energy attenuation of P and S waves, the ratio 
between them is stabilized. This property was also exhibited by the RTE equation, as the 
RTE predicted that between the elastic -S- waves and the primary -P- waves, the energy 
ratio for large lapse times (independent of the scatterers properties) is preserved.  
For long lapse times, the attenuation of coda amplitude was modeled based on the 
theory of multiple scattering processes [71]. 
The difficulties to ascertain the origin of the seismic coda waves, has motivated further 
scientific researches in order to gain a, relatively, profound understanding of the 
physical procedures, on how the nature of coda waves are associated with the medium 
composition and tectonic structure. The dependence of the coda behavior, as a function 
of local site conditions, has led to the characterization of the propagation medium in 
terms of stochastic heterogeneities [74]. 
A more comprehensive approach based on observations has shown that their complex 
nature and behavior should be considered as a combination among scattering, 
absorption and site effect. Kin’ ya Nishigami, suggested a relationship between the 
observable variation of coda wave envelope with the spatial fluctuations of scattering 
coefficient [75]. 
In conclusion, coda waves are independent of earthquake magnitude and source 
radiation pattern [76]. Hence, their content is mainly defined by scattering effects [49].   
During the past years, more advanced, complex and hybrid approaches have been 
conducted to investigate and simulate the role of inhomogeneities and how they affect 
coda waves  [77] [78].    
 

 

2.4 Multi scale scatterers  
 

According to Wu et al. [79], in order to obtain an intuitive perspective of the real 
complex nature of coda wave procedures, proposed the analysis of scattering 
phenomena in terms of source to site regimes. In this approach, considering the scale of 
heterogeneities as -α- and the perturbation index as  ν͠, the wave propagation regime 
can be elaborated as a function of three dimensionless numbers: 
 

1. 𝑘𝑎 =
2𝜋𝑎

𝜆
 

2. 
𝐿

𝑎
 

3.   ͠ν   
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where the variable k represents the wavenumber, λ the wavelength within the 
propagation material and L the propagation length. The term kα is the normalized wave 
number k, and L/α the normalized propagation length. In accordance to the relatively 
well defined inhomogeneities, by analyzing well-log data [49], scattering phenomena 
can occur in one of the following regimes, as given in Table 2.1. 
 
 

 

Table 2.1 Source to site regimes and scattering occurrences. 

 

 

2.5 Frequency characteristics of coda waves 
  

The frequency range of coda waves, for a broad band seismometer, can potentially 
cover the whole bandwidth, limited defined by the Nyquist frequency.   
In the example of station CMBO, E-W component, for simplicity reasons the coda wave 
window has set as red line object and its associate frequency content as given in Figure 
2.2 depicts the single side amplitude spectrum.  
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Figure 2.2 Frequency content of coda waves after the implementation of Fourier 
transform (CMBO station, E component). 

 

For local events, the spectral content is strongly related with the epicentral distance. 
This dependence decreases as a function of time and finally it vanishes at the onset 
partition of coda waves [36].  
From observational data analysis it was found that for spectral ratios of P 
(compressional), S (shear) and S-Coda, the S-Coda waves have similar spectrum to those 
of S-waves. In the study of Rautian and Khalturin (1978) [80] it became clear that after a 
well-defined duration setting by two times the S travel time, temporal decay of the 
energy of coda waves was found to be independent of the source and station locations, 
for the frequency band extended from 0.027 Hz to 40 Hz [49]. 
In addition, the spectrum of coda waves is decaying as a function of time without having 
any dependency of the source to site (station) distance and from the earthquake 
magnitude, at least for low magnitude earthquake events, ML<6 [39]. 
Therefore, the coda excitation and attenuation depend on the local site conditions as if, 
for the same earthquake event, coda duration may vary up to 800% from sedimentary 
basins, to regions dominated by igneous and metamorphic rock materials. 
The verification of coda frequencies below the frequency threshold of 1 Hz, has been 
found to be a very difficult procedure. In this bandwidth, alongside with scattering 
effects, arise a numerous of different physical phenomena, setting the isolation of these 
complex processes, practically impossible. Frequencies lower than 0.05 Hz are assumed 
to correspond to long period surface (Love and Rayleigh) wave attenuation. 
For frequencies that lie above 10 Hz, coda waves are characterized by strong 
attenuation. This behavior of coda waves, is considered to be associated with the 
backscattered body waves in the deep highly Q lithosphere and are independent to the 
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backscattering effects of surface waves, presented from the wavefronts propagation 
within the inhomogeneous earth’s materials [81].  
The frequency band in which lithospheric scattering effects become dominant ranges 
from 1 Hz to 25 Hz [52]. 
Beyond the frequency limit of 25 Hz, the content of coda is less contaminated by surface 
energy [82]. 
The spatial distribution of a fractal-like size scatterers in the earth’s interior, causes the 
attenuation of coda waves to follow a power law form. The attenuation of seismic 
waveforms as a function of frequency, expressed by the power-law form, is given by the 
equation: 
 

𝑄(𝑓) = 𝑄0 (
𝑓

𝑓0
)
𝑛

 
(2.3) 

 

where f0 represents a reference frequency (usually f0=1 Hz) and Q0 is the Q (quality 
factor) value in the case of f=f0 [83]. In a more recent work [37], coda waves attenuation 
Qc

-1, analyzing the decay of coda power envelope at frequency f, based on the single 
scattering model, can be given by the formulation: 
 

 
𝑃(𝑟, 𝑡) ∝

1

𝑡2
𝑒−𝑄𝑐

−12𝜋𝑓𝑡 
(2.4) 

 

 

2.6 Effects of seismic source and focal depth 
 

To understand the relation between the seismic source and the recorded waveforms, a 
series of parameters should be defined. The rupture velocity of the fault surface, the 
variation of spectral and pulse shape, the energy flux around the focal sphere, the 
dynamic stress drop, the source to site distance and path, the local conditions - site 
effect, are all strong correlated on how the seismic waveforms will be recorded [84]. 
In the research presented by RAUTIAN, T. G., et al. [85], it became clear that as the 
source dimension increases, the characteristic wavelength of the generated seismic 
waves also increases, leading to a lower peak frequency of the spectrum, while the 
content of coda waves remains unaffected from the seismic moment. Coda waves have 
also been found to reduce the attenuation rate as the depth increases [86]. This is also 
an indicator that homogeneity is increasing as a function of depth. 
This behavior indicates a more homogeneous media at the lower part of the earth’s 
crust, suggesting a gradually descending correlation among the more structural complex 
layers of the upper brittle zone, to brittle-ductile transition zone down to crystal-plastic 
zone, and codas scattering effects.  
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Recently, in the study of Obermann et.al. [78], the impulse response was calculated by 
implementing parametric analysis via numerical 2D wavefield simulations upon the 
apparent relative velocity variation, before and after a minor velocity change, within a 
thin layer. The coda decay analysis verified the dependency of codas to the different 
degrees of heterogeneity and depth [87].  
 

 

2.7 Codas index as an Earth’s interior property 
 

The spatial and temporal variations of coda waves attenuation is being identified in a 
variety of scientific researches, having a close relation with the occurrences of major 
earthquake events and volcanic eruptions [88].   
The attenuation and duration of coda waves for a specific station and under specific 
earthquake event conditions should not deviate in time. Stress accumulation, often 
leads to temporal variations of many physical properties, such as fluctuations of the 
vp/vs ratio [89], density of materials, anisotropy [90], lithosphere-atmosphere coupling 
phenomena [91] etc. In the case that the accumulated energy is not expressed by 
aseismic fault slip (creep), the probability of the genesis of an earthquake event should 
be considered possible, as the physical outcome provided by the elastic rebound stress 
theory [92] [93]. Further investigation of coda waves decay variation was introduced by 
Morozov  [88], as he proposed the use of the coefficient γ instead of Qc in order to 
eliminate the sensitivity of the quality factor, to the inaccurate relations between the 
geometrical spreading as well as the anelastic dissipation and finally due to the 
scattering effects. During the last decades, observations have also shown uncertainties 
between the frequency depending quality factor Qc with subsurface physical properties, 
as the two parts are not straightforward. 
Nowadays, coda wave attenuation fluctuations can be considered as an index of 
physical and/or chemical properties variations, within a subsurface volume in a variety 
of tectonic regimes.  According to Mak et al., 2004  [94], in active tectonic areas the Qc 
value ranges below 200 (QC<200), while in non-active tectonic regions the Qc value is 
estimated above the limit of 600. These values are in full agreement with the semi-
active (moderate) tectonic regimes, in which Qc values vary within the above limits. For 
active tectonic regions, Qc values are reduced for frequencies between 0.1 Hz and 25 Hz 
[39]. 
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Figure 2.3 Analytic procedure of Qc evaluation. The left column depicts filtered 
seismograms. The middle column consists of time segments of filtered coda in time 
windows of 60 sec. The grey line object represents the time domain waveform, while the 
black line object represents the envelope based on peak amplitudes. Coda wave 
amplitudes versus time and fitting regression line for Qc calculation is given in the right 
column [95].   

 

The temporal fluctuations of coda waves quality factor have attracted a variety of 
different approaches, in an effort of emerging an integrated and unified theory of 
understanding the Earth’s interior physical properties. Towards this direction, a 
significant contribution has been made via the statistical mechanics approach by 
implementing the generalized framework, as it was proposed by Tsallis [96], known as 
non-extensive statistical mechanics.  In a series of work   [97] [98] [1] and by analyzing 
coda wave increments and seismic noise increments, it became clear that coda waves as 
well as seismic noise, contain the required information to study changes in the 
scatterers density-orientation-distribution, as the physical properties of the earth's 
interior medium, are dynamically developing. 
As a result, monitoring coda wave tails by analyzing its frequency content, as well as the 
decay rate and the standardized increments, can also be used as a precursor index of 
physical properties variation or even for a potential genesis of a major earthquake event 
or volcanic eruption [99]. 
 

2.8 Coda wave duration 
 

The determination of the coda wave’s duration was first associated with the sample 
point (in time domain), where the amplitude decay starts to behave non-exponentially. 
On a later stage, a more quantitative approach was introduced, by measuring the travel 
time between the origin time and the S-phase onset. This duration, after being 
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multiplied by a factor of two and in some cases by a factor of three, is considered to be 
the start point of the coda wave [80]. The end of the coda wave duration is assumed to 
be placed when the signal to noise ratio, SNR, reaches a specific value, set by the user. 
Usually this factor is set between 1 and 3. This value can be set after taking into 
consideration the local geotectonic regime, the background noise and any kind of in-situ 
physical site properties.  
The coda wave’s duration for volcano-tectonic type, short period (high frequency) 
seismic events, has also been found to be related with the earthquake magnitude (ML) 
[100]. In such cases, empirical laws can be applied in order to retrieve information, both 
in earthquake magnitude and coda wave duration. 
For small earthquake magnitudes, coda wave lengths cannot be considered as a stable 
estimation, due to the fact that it is not possible to measure backscattered energy from 
large distances, as discussed in the research of Aki and Chouet 1975 [39].  
In other approaches, coda-length, considered as the range between the P-wave arrival 
and the point, in time, in which the coda peak-to-peak amplitude, reached a specific 
value [101]. 
For ideal cases, where the coda waves envelope is characterized with monotonic decay, 
and seismic stations are located upon bedrock with little to none sedimentary cap, an 
empirical relation can be produced as an index of the coda waves duration. 
 
 

 

Figure 2.4 An empirical relation for codas duration as a function of local magnitude. The 
threshold of 40 sec is considered as the point that slope changes. (data retrieved from 
OKAT station of USGS) [46]. 
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In the empirical relation, resulting by linear regression as seen in Figure 2.4, there is no 
biased variation between the coda waves duration and local magnitude for different 
epicentral distances and focal depths. 
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3 Introduction to statistics 
 

In this dissertation we tried to evaluate the dynamical evolution through the natural 
processes that govern the wider area of the Santorini’s caldera, by investigating the 
systems’ entropy, risen by pure instrumental seismological observations. For that 
purpose, a profound understanding of how the basic concepts of statistics are 
associated with the wider study of seismology is mandatory, as well as the transition 
from statistical mechanics to the generalized framework of non-extensive statistical 
mechanics-physics (NESM theory). 
 

3.1 Statistical analysis parameters 
 

In the field of statistics, there are two different approaches while working with 
population and sample data. When the whole population is given, each data point is 
well determined, but when we investigate a sample of the whole population, it is 
interpreted as an approximation of the population parameter. For that reason, all 
formulas are algebraically adjusted to reflect this statistical issue. 
The most fundamental parameters in statistics are the mode, median, mean, range, 
variance and standard deviation. These parameters provide us numerical information 
about the distribution of any given dataset. The three first parameters (mode, median 
and mean) refer to the center or central tendency, while the range, variance and 
standard deviation are measures of spread. More specifically, the mode refers to the 
data value that is presented most frequently, the median refers to the value that is 
positioned in the middle of the given ordered dataset and mean is referred to the 
arithmetic average, while the range can be calculated as the difference between the 
maximum and the minimum value [102].  
The variance measures the dispersion around the mean value. Population variance, 
denoted as σ2, is given by the equation: 
 

 
𝜎2 =

∑ (𝑥𝜄 − 𝜇)
2𝛮

𝜄=1

𝑁
 

(3.1) 

 

In addition, sample variance is denoted as S2 and is given by the formulation  
 

 
𝑠2 =

∑ (𝑥𝜄 − 𝑥̅)
2𝑛

𝜄=1

𝑛 − 1
 

(3.2) 
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where N and μ refer to the total number of observations, while n and 𝑥̅ to sample 
observations. Consequently, there are population and sample standard deviation. These 
formulas are the square root of the population variance and square root of the sample 
variance respectively. 
The standard deviation is given by the relation: 

 

 

𝑠 = √
∑(𝑥𝑖 − 𝑥̅)2

𝑛 − 1
 

(3.3) 

 

In the scenario of two different datasets, the comparison between them cannot be 
determined by standard deviation, since it is the measure of variability for a single data 
set. This statistical problem can be overcome with the utility of the coefficient variation, 
as an indicator of how close the values are to the mean, in any given dataset. 
 

 𝑐𝑣̂ =
𝑠

𝑥̅
 (3.4) 

 

 

3.2 Gaussian (Normal) distribution 
 

The Gaussian distribution is also known as the ‘bell shaped curve’ due to its symmetric 
curve (symmetrical about the mean). 
In this type of distribution, the y-axis represents the relative probability of an 
independent variable that is always centered on the average value. 
The width of any curve is defined by the standard deviation. Small values of standard 
deviation lead to narrow curve bell shapes (Figure 3.1 right). There is a vast number of 
physical phenomena whose behavior follow the normal distribution. This happens 
because of the central limit theorem and due to the fact that no matter how many 
measurements are being conducted, the mean values are always normally distributed. 
In addition, means calculated from samples taken from a specific uniform distribution 
(like exponential) are normally distributed. The Cauchy distribution does not need a 
sample mean; hence it is not limited to a large sample size for the central limit theorem 
to be valid. 
 We can use the mean’s normal distribution to make confidence intervals, conduct t-
student’s tests to find a potential difference between the means between two samples 
and ANOVA (analysis of variance) if we want to find differences among three or more 
samples. 
 



32 
 

 

Figure 3.1 Three different normal distributions depicted with different colors. The green 
line object refers to gaussian distribution with mean value equal to -4 and standard 
deviation 2 (left). The blue (central) line object refers to normal distribution with mean 
value 0 and standard deviation 1. Lastly, the red line object (right) has a mean value of 4 
and standard deviation equal to 0.5. 

 

In the probability theory, the Gaussian distribution (also known as normal or Laplace-
Gauss distribution) is a type of a continuous probability distribution and it is expressed 
as: 

 

 
𝑓(𝑥) =

1

𝜎√2𝜋
𝑒−

1
2
(
𝑥−𝜇
𝜎
)
2

 
(3.5) 

 

where μ represents the mean, median and mode of the distribution and σ the standard 
deviation. 
The probability of a random variable having a specific value xi or exists within an interval 
of dx, in case of discrete and continuous case respectively, is given by the functions of 
the random variable X. For the discrete case, the function is known as probability mass 
function and is given by the relation: 

 

 𝑓
𝑥
(𝑥𝑖) = 𝑃(𝑋 = 𝑥𝑖) (3.6) 

 

that meets the requirements: 
 

 𝑓
𝑥
(𝑥𝑖) ≥ 0 (3.7) 
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and 
 

∑𝑓
𝑥
(𝑥𝑖) = 1

𝑚

𝑖=1

 
(3.8) 

 

In case of a continuous random variable X, the function is known as probability density 
function, and follows the conditions 

 

 𝑓
𝑥
(𝑥) ≥ 0 (3.9) 

 

and 

 
∫ 𝑓

𝑥
(𝑥)𝑑𝑥 = 1

+∞

−∞
 

(3.10) 

 

The probability distribution of the random variable X can be determined by the 
cumulative distribution function Fx(x), indicating the probability of the random variable 
X of getting values smaller than or equal to a specific x value. For a discrete variable X, 
we have: 
 

 𝐹𝑋(𝑥𝑖) = 𝑃(𝑋 ≤ 𝑥𝑖) = ∑ 𝑓
𝑥
(𝑥)

𝑥≤𝑥𝑖

 (3.11) 

 

and for continuous random variable X, the formulation is transposed into: 
 

 
𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓

𝑥
(𝑢)𝑑𝑢

+∞

−∞
 

(3.12) 

 

The normal distribution is universally unimodal. Its curve is symmetric about the mean 
value and can be fully characterized by the μ and σ parameters. The notation that is 
given to a population that follows a normal distribution can be written as: 
 

 𝑋~𝑁(𝜇, 𝜎) (3.13) 

  

Another universal characteristic is that within one standard deviation away from the 
mean value, the covered area is approximately about 68%. Within the range of two 
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standard deviations the area reaches the amount of 95%. Furthermore, in the interval of 
three standard deviations away from the mean, the occupied area is being increased to 
the percentage of 99.7%. Consequently, we can continue the range of standard 
deviation with a reciprocal covered area. Since it is never touching the x-axis, the normal 
distribution will continue to infinity with an arbitrary standard deviation, but in such a 
case, the probability of an outlier data point will end up close to zero, which is 
inherently absurd in many natural systems.  
 

3.3 Skewness and Kurtosis 
 

The most common tool, used to measure the asymmetry of any unimodal curve is the 
skewness which is given by the relation 
 

 

𝑆𝑘 =  

1
𝑛
∑ (𝑥𝑖 − 𝑥̅
𝑛
𝑖=1 )^3   

√ 1
𝑛 − 1

∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1

3 

(3.14) 

 

The direction of the skew might be abstract and counterintuitive due to the fact that it 
does not reflect on which side the line is leaning to, but to where the tails are leaning to. 
 

 

Figure 3.2 (Left) In the case of right or Positive Skewness, the tail on the right is longer or 
fatter. For positive skew, the mean value is bigger than the median, while the mode is 
located at the peak of the distribution. (Center) A normal distribution with ideal 
symmetrical tails. (Right) Left or negative Skewness exhibits longer or fatter left side tail. 
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The skewness is considered as the degree of distortion, deviating from the initial 
symmetrical bell-like curve (normal distribution) as it differentiates the extreme outliers 
on the left side as a function to the right tail and vice versa.  
In addition, the behavior of flatness of any given distribution, by taking into 
consideration extreme values within the tails, can be measured via kurtosis. In the case 
of normal distribution, the kurtosis is called Mesokurtic curve. while Leptokurtic curve 
refers to a type of distribution that is peaked higher that Mesokurtic. Additionally, 
platykurtic curve shape depicts lower peak and has shorter tails due to the fact that they 
exhibit outlier’s paucity [103]. 
The mathematical approach of kurtosis is given by the relation: 
 

 

𝐾𝑢 =  

∑ (𝑌𝑖 − 𝑌̅)
4𝑁

𝑖=1
𝑁

√ 1
𝑛 − 1

∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1

4  

(3.15) 

 

  

3.4 Statistical overview in Seismology 
 

3.4.1 Power law in nature 

 

The power-law distribution is applicable in multi-discipline scientific areas of many 
physical, chemical, social as well as biological phenomena [104]. In the last decades, 
scientific research has shown an incredible similarity of statistical behavior, among 
relatively irrelevant phenomena such as city populations [105] [106] [107], normal 
immune receptors  [108], the frequency of words we use in our lifetime (oral and 
written) [109] [110] [111] [112], predator strategies and forage pattern in many 
different species [113], similarity of protein structure sequences [114], gamma-ray 
intensity of solar flares [106], road and websites traffic as well as citation number of 
academic researches [115] [106], engaging neural patterns [116], the scale (diameter) 
distribution of Lunar craters [117], the loss of souls in wars  [106], the popularity of 
opening chess strategies [118], the frequency at which our complex structured brain 
forgets [119] and of course in earthquake magnitudes and the dissipated release of 
energy [106] [120] [115] [121]. 
Whether the systems (phenomena) under investigation are natural, or human made, 
even biased, almost every time the behavior of power law emerges. This characteristic 
was first introduced by George Kingsley Zipf. The Zipf distribution is related to the 
discrete power law Pareto distribution and the Riemann zeta distribution [122] [123].  
Pareto distribution, also known as the power law distribution, is given by the formula 
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 Pr(𝑋 > 𝑥) = 𝐹̅(𝑥) = (
𝑥𝑚𝑖𝑛
𝑥
)
𝑎

 𝑓𝑜𝑟 𝑥 ≥  𝑥𝑚𝑖𝑛 (3.16) 

 

 

3.4.2 The Power Law in Seismology 

 

The empirical Gutenberg and Richter (G-R distribution) scaling relation [124] indicates a 
power law behavior in earthquake population, as seen in equation (3.17): 
 

 log𝑁(𝑁 > 𝑀) = 𝑎− 𝑏𝑀 (3.17) 

 

where N (N>M) represents the cumulative number of earthquakes with magnitude 
greater than or equal to M and the a-value represents the total seismicity rate of the 
given region under investigation. The -a- value is associated as the intersection of the 
linear regression model with y-axis (log N). The b parameter, known as the b-value, 
represents the proportion of small to large earthquake events. The maximum likelihood 
solution of the b-value is given by the relation (3.18) [125]: 
 

 𝑏 = 1/log (10)(𝑀̅ − 𝑀𝑐)  (3.18) 

 

where 𝑀̅ is the observed mean magnitude and Mc the completeness magnitude. 
The generalization form, as presented from [126], is expressed as 
 

 
𝑙𝑜𝑔𝑁>𝑚 = 𝑙𝑜𝑔𝑁 + (

2 − 𝑞

1 − 𝑞
) 𝑙𝑜𝑔 [1 − (

1 − 𝑞

2 − 𝑞
)(
102𝑚

𝑎2/3
)] 

(3.19) 

 

where -a- is a proportional constant, N remains the total number of events and q stands 
for the non-extensivity parameter (analytic of non-extensive approach within the next 
chapter). 
The equivalent power law expression of G-R distribution, can be written as 
 

 𝑁(> 𝑀) = 10𝑎−𝑏𝑀 (3.20) 

 



37 
 

As a result, the Gutenberg and Richter law implies power-law dependence between the 
number of earthquakes and magnitude. If we expand the law in terms of energy, then 
the equation can be written as: 
 

 𝑁(> 𝐸)~𝐸−𝛽−1 (3.21) 

 

In this relation, the parameter β has been found to be 2/3 of the b-value [127]. This 
form, expresses the scale invariance of the magnitude and seismic energy distribution. 
Furthermore, seismic energy in terms of the seismic moment, is related to the surface 
fault area according to the equation 
 

 𝑀0 = 𝜇𝛥𝐴 (3.22) 

 

where Mo represents the seismic moment, μ the rigidity or the shear modulus, Δ the 
average relative slip of the fault plane [128] and A the surface area of fault. The physical 
approach of these equations implies that the population of earthquake events with 
rupture surfaces greater than a specific size A, has a power law dependence of that area 
(noted as A). This kind of dependence exhibits that the Gutenberg and Richter law has a 
fractal distribution behavior [129] [121]. 
Fault structures and fault distributions depict self-similarity, indicating the scale 
invariant property.  Nevertheless, this scale invariance is confined into a narrow finite 
range of scales that are strongly correlated with the size of the volume under stressed. 
As a result, the dynamical fault-population evolution, from fractures and microcracks to 
large scale faults, indicates a transition from power law and fractal behavior, carrying 
the memory property, to exponential and memory-lessness, where the non-linearity 
arises as a function of the accumulated stress [130] [131] [132] [133]. 
This power law scaling and the exponential behavior has been observed in many 
scientific researches [134] [131], expressed by the equations (3.23) and (3.24), 
respectively [121]: 
 

 𝑁(> 𝐿) = 𝐴𝐿−𝐷 (3.23) 

 

where N represents the number of linear faults with size greater that L and D the 
power-law exponent. 
 

 
𝑁(> 𝐿) = 𝐴𝑒

(
−𝐿
𝐿0
)
 

(3.24) 
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In the exponential form, L0 represents a specific length [135]. In both forms, A 
represents a scaling constant.  
Furthermore, the coda wave amplitude attenuation also decreases as a function of 
power-law, as they exhibit time lapse dependence from the origin time [136].  
This power-law behavior of the coda amplitude decay, is inherited as the scattering 
coefficient decreasing with depth.  
The elucidation of the frequency dependence of the coda wave amplitude decay, can be 
attributed on a power-law scatterers sized distribution. 
All these properties, derived from purely observational processes, are indications of 
nonlinear dynamical procedures throughout the evolution of earthquakes phenomena. 
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4 Introduction to Statistical Mechanics and the concept of 

Entropy 
 

4.1 A general Introduction 
 

Statistical mechanics can be described as the mathematical keyhole, in order to 
understand the physical processes and the dynamical evolution of complex systems, 
from the specification of the microstate constituents to the macrostate scale. The 
common interpretation of Entropy is often associated as a measurement of disorder, 
but the true nature of entropy lies in the probability theory. For a given material, the 
distribution of the stored energy within its molecular bonds, expresses the total amount 
of entropy. According to the Statistical mechanics, for a given set of large-scale 
observable properties, every probable configuration of particles that could potentially 
result those properties, has the same probability [137] [138]. The term configuration is 
referred to determine the exact arrangement of any physical characteristic, such as 
position, velocity, momentum spin (any degree of freedom that can characterize the 
system under examination) of the microscopic constituents. Each of these possible 
distributed configurations of energy, are called microstates. On the contrary, the 
macrostate exhibits the specific combination of large-scale macroscopic properties 
which are entirely defined by the properties of thermodynamics (pressure, temperature, 
volume etc.). Consequently, the majority of every potential microstate configuration 
that statistically emerges for a specific macrostate, has the same probability to be 
observed.   
The inevitability of a system to maximize its entropy is fundamental in statistical 
mechanics and is derived from the second law of thermodynamics [139] [138]. 
The nature of entropy emerges in the second law of thermodynamics from the 
specification of how particles is distributed under the laws of motion. As a result, 
entropy can explain the thermodynamic behavior of a system, by taking into account 
the summed result of motion of individual particles, in the specification of Newton’s 
motion laws.  
According to the second law of thermodynamics, any physical system started on an 
inexorable path of increasing its entropy. This property of entropy can be considered as 
a fundamental, induced property of the forward directivity of time. This concept is not 
derived from any classical physics or quantum mechanics equations. 
Newton’s second law and the of law of universal gravitation are given by the equations 
(4.1) and (4.2), respectively:  

 

 𝐹 = 𝑚𝑎 (4.1) 
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𝐹𝐺 = −

𝐺𝑚1𝑚2
𝑟2

𝑟̂ 
(4.2) 

 

The quantum wave function is given by the linear partial differential equation, known as 

the Schrodinger equation:  

 

 
𝑖ħ
𝜕

𝜕𝑡
𝛹 =

−ħ2

2𝑚
𝛻2𝛹  

(4.3) 

 

 

where 𝛹 represents the value of the wavefunction throughout space and time. 
At each point in the 3-dimensional space, the complex number of 𝛻2𝛹  is given by: 
 

 
𝛻2𝛹 = 

𝜕2𝛹

𝜕𝑥2
+
𝜕2𝛹

𝜕𝑦2
+
𝜕2𝛹

𝜕𝑧2
 

(4.4) 

 

Even though the behavior of all subatomic particles is inherently probabilistic, the 
equation (4.3) does not lie in probabilities. The probability of every possible observation 
is determined by the wave function, but prior to the observation, the wave function is 
deterministically evolving-changing. That kind of behavior is never presented on how 
energy is dissipated and scattered in space-time. 
Consequently, entropy is a direct measure of each energy configuration’s probability 
and can be intuitively thought as a measurement of the energy distribution. Low 
entropy indicates concentrated energy. On the contrary high amount of entropy 
explains the maximum distribution of the energy. In order to understand the concept of 
entropy, a dynamical system that changes in time is mandatory. In our case, the genesis 
of an earthquake, triggers the energy distribution within the earth’s interior. The 
propagation of the seismic body waves, P and S, is responsible for the continuous 
transfer of the energy between bonds within the crystal lattice and atomic bonds, 
through the Earth’s materials. Hence, as the energy transfers, its configuration is 
constantly changing. Because of the scattered microstates, the most likely probability is 
the one where the energy distribution will be dispersed, resulting to a higher entropy 
for the system. In a large-scale system, the higher entropy is always statistically more 
likely to occur. 
Furthermore, an analogy to understand the concepts of microstate and macrostate, is to 
think about the spatial distribution of an aftershock sequence that follows a major 
earthquake event. The recorded seismic events are randomly spatially distributed, or 
following a fractal like geometry [140]. The individual events occurrences of the 
aftershock sequence represent the microstate of the system and the density of the 
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spatial cumulative number of event distribution, obtained by 2D interpolation, can be 
considered as the macrostate of the system. 
To recapitulate, if we think about all the random possible configuration of seismicity, 
the majority of the potential microstates should correspond to the same macro-state, 
while any clustered distribution, not following (pre)existing tectonic features (narrow 
scattered seismicity) should not. As a result, distributed hypocenters within the rupture 
area are characterized by high entropy. 
Our human being sensing limitations cannot determine the overall observable 
microstates of an existing system; hence we can gain a robust overview via statistics. 
As a consequence, the normal outcome of any physical system is that the vast majority 
of any possible microstate distribution will leave the system very close to a single 
macro-state, the state of thermal equilibrium. 
In many physical phenomena, instead of investigating how particles are being 
distributed within the three-dimensional space, the microstate is well defined from how 
the energy is distributed through phase space [141] [142]. Hence, the thermodynamic 
properties of a given system are defined by the average distribution of particles in phase 
space. 
Phase space is very crucial for the evolution of dynamical systems, as it can estimate the 
Lyapunov characteristic exponent, an index that quantifies the degree of sensitivity with 
respect to initial conditions [143].  
Processing records, retrieved from time series, can lead to false founding of positive 
maximal Lyapunov exponent, due to the noise content (analog to digital process, system 
noise etc.). This procedure can enhance the sensitivity to initial conditions leading to 
false trigger findings that characterize a system as chaotic, even if it is purely stochastic 
or semi-deterministic.  
 

 

 

Figure 4.1 An example of coda wave increments containing white gaussian noise, 
following a gaussian like distribution (q→1). 
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Figure 4.2 Pure coda wave increments, exhibiting fat tailed characteristics (long memory 
effects) following a q-gaussian distribution (q→2.1) (explanation of q-gaussian 
distribution within the next chapter).  Station CMBO | Time: 2011 346 22:50 (YYYY JJJ 
HH:MM). 

 

4.2 Boltzmann Gibbs Statistical Mechanics 
 

When systems under examination are large enough in size, the small-scale exact states 
are transposed into large scale average states, by assigning probabilities to the system 
being in different states.  
The once false explanation and status quo of the physical fluid known as caloric [144], 
according to which it was responsible for the heat flow, superseded by the 
thermodynamics approach and Ludwig Boltzmann, founder of the statistical mechanics.  
Entropy, based on the second law of thermodynamics, exhibits the relation between the 
microscopic and macroscopic states. This relationship is given by the formula (4.5) 
 

 𝑆 =  −𝑘∑𝑝𝑖𝑙𝑜𝑔𝑝𝑖
𝑖

 (4.5) 

 

where 0 ≤ P ≤ 1, Σ is the sum of all state probabilities marked as pi and k represents a 
positive constant, which in the field of thermodynamics expresses the Boltzmann’s 
constant (KB =1.38*10-23 J/k). This equation (4.5) is referred as the Boltzmann’s Gibb’s 
entropy SBG. 
In the case in which all probabilities are equal,  
 

 
𝑝𝑖 =

1

𝑊
   , ∀𝑖 

(4.6) 

 

the eq.  (4.5) can take the form of equation (4.7) 



43 
 

 

 𝑆 = 𝑘 𝑙𝑛 𝑊 (4.7) 

 

This formulation of entropy corresponds to the specific case, where all microstates of a 
given system have equal probability of occurrence and as the microstates increase, the 
higher the entropy will be.  
For continuous variable x, the eq (4.5) is given by:  
 

 
𝑆 = −𝑘∫ 𝑝(𝑥) ln 𝑝(𝑥) 𝑑𝑥

∞

0

 
(4.8) 

 

The most likely macroscopic state can be retrieved by the maximization of entropy, 
subject to the normalization of p(x) constraints:  
 

 
∫ 𝑝(𝑥)𝑑𝑥 = 1
∞

0
 

(4.9) 

 

The average x value is given by: 
 

 
〈𝑥〉 = ∫ 𝑥𝑝(𝑥)𝑑𝑥

∞

0
 

(4.10) 

 

In accordance to the previous defined constraints and by using the Lagrange multiplier 
method, the probability that maximizes the Boltzmann’s Gibb’s takes the form of the 
Boltzmann distribution: 
 

 
𝑝(𝑥) =

𝑒−𝛽𝑥

∫ 𝑒−𝛽𝑥𝑑𝑥
∞

0

 
(4.11) 

 

where e-βx represents the Boltzmann factor and β stands for the Lagrange multiplier. 
If we combine two independent sub-systems A and B with its states, noted as WA and 
WB respectively, in such a way that their conjugated probabilities satisfy the relation 
(4.12): 
 

 𝑝𝑖𝑗
𝐴+𝐵 = 𝑝𝑖

𝐴𝑝𝑗
𝐵(∀(𝑖, 𝑗)) (4.12) 
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then the entropy SBG is called additive. This property can be mathematically expressed 

by the following relations: 

 

 
𝑆𝐵𝐺(𝐴+ 𝐵) = −𝑘∑∑𝑃𝑖𝑗

𝐴+𝐵

𝑊𝐵

𝑗=1

𝑊𝐴

𝑖=1

ln𝑃𝑖𝑗
𝐴+𝐵 

(4.13) 

 

 

 
𝑆𝐵𝐺(𝐴) = −𝑘∑𝑝𝑖

𝐴

𝑊𝐴

𝑖=1

ln 𝑝𝑖
𝐴 

(4.14) 

 

 

 
𝑆𝐵𝐺(𝐵) = −𝑘∑𝑝𝑗

𝐵

𝑊𝐵

𝑗=1

ln 𝑝𝑗
𝐵 

(4.15) 

 

The Boltzmann-Gibbs entropy is the basis of the classical Boltzmann-Gibbs statistical 
mechanics, from which the Boltzmann distribution emerges for the case of thermal 
equilibrium. 
Boltzmann-Gibbs entropy and distribution are benchmarks of statistical mechanics for a 
variety of natural phenomena and procedures. 
One of the most important properties of SBG entropy is the non-negativity. If we assume 
a specific probability then we can assume that: 
 

 lim
𝑥→0

(𝑥𝑙𝑛𝑥) = 0 (4.16) 

 

 
𝑆𝐵𝐺 = −𝑘〈𝑙𝑛𝑝𝑖〉 = 𝑘 𝑙𝑛 〈

1

𝑝𝑖
〉 

(4.17) 

 

The amount of 𝑙𝑛𝑝𝑖 and ln(1/pi) represent the mean value of probabilities under 
examination. 
The entropy is always positive since: 
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ln(

1

𝑝𝑖
) > 0(∀𝑖) 

(4.18) 

 

SBG is always maximizing the entropy. For a given set of probabilities pi and pi’, 
correlated in a system of W states, the SBG will reach its maximum state in the case of:  
 

 𝑆𝐵𝐺({𝑝𝑖
′′}) > 𝜆𝑆𝐵𝐺({𝑝𝑖})+ (1 − 𝜆)𝑆𝐵𝐺({𝑝𝑖

′}) (4.19) 

 

where pi’’ probability set has the property of: 

 

 𝑝𝑖
′′ = 𝜆𝑝𝑖 + (1 − 𝜆)𝑝𝑖

′   (∀ 𝑖 0 < 𝜆 < 1) (4.20) 

 

The above property derives from the second law of thermodynamics and 
mathematically implies that when the system is under equilibrium, the entropy acquires 
its maximum value. 
The extensivity of Boltzmann Gibbs entropy is taken into consideration when the limit of 
equation (4.21) exists:  
 

 
lim
𝑁→∞

𝑋(𝑁)

𝑁
 

(4.21) 

 

With: 

 

 𝑋(𝑁) ∝ 𝑁(𝑁 → ∞) (4.22) 

 

where X (physical quantity) is proportional to the system size. In such cases and for 
systems whose elements are not correlated to each other, the entropy of Boltzmann-
Gibbs is considered as extensive: 

 

 𝑆𝐵𝐺(𝑁) ∝ 𝑁 (4.23) 

 

and 
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0 < lim

𝑁→∞

𝑆𝐵𝐺(𝑁)

𝑁
< ∞ 

(4.24) 

 

 

4.3 q - Functions 
 

On the contrary, when the elements of systems under examination are strongly 
correlated (long range interaction, long memory etc.), then the entropy cannot be 
further characterized as extensive. In addition, the Boltzmann-Gibbs entropy cannot be 
considered as a universal form, due to the fact that it is not applicable for systems 
whose elements are correlated. By expanding the area of SBG, we can assume the 
following differential equations and their solutions y [145] [146]:  
 

 𝑑𝑦

𝑑𝑥
= 0 , 𝑦(0) = 1  , y = 1 

 

(4.25) 

 

 𝑑𝑦

𝑑𝑥
= 1 , 𝑦(0) = 1 , y = 1 + x 

 

(4.26) 

 

 𝑑𝑦

𝑑𝑥
= 𝑦 , 𝑦(0) = 1 , y = ex 

 

(4.27) 

 

Combining these differential equations and by taking into consideration the concept of 
linearity, the q-parameter is produced. 

The equation (4.28) is a mathematical solution approach of the Cauchy problem [147]: 
 

 𝑑𝑦

𝑑𝑥
= 𝑦𝑞 , 𝑦(0) = 1 

(4.28) 

 

The non-linear differential equation (4.28) has an analytic solution [147] for the case of 
q≠1: 
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 𝑑𝑦

𝑑𝑥
= 𝑦𝑞 ⇔

𝑑𝑦

𝑦𝑞
= 𝑑𝑥

⇔ ∫(
1

𝑦𝑞
)𝑑𝑦

= ∫𝑑𝑥 + 𝑐 ⇔ ∫𝑦−𝑞 𝑑𝑦 = 𝑥 + 𝑐

⇔
1

1 − 𝑞
∫(1 − 𝑞)𝑦−𝑞 𝑑𝑦 = 𝑥 + 𝑐 ⇔

𝑦1−𝑞

1 − 𝑞
= 𝑥+ 𝑐

⇔ 𝑦1−𝑞 = (1 − 𝑞)(𝑥 + 𝑐)⇔ 𝑦(𝑥) = ((1 − 𝑞)(𝑥 + 𝑐))
1
1−𝑞 

(4.29) 

 

In addition, for the case of y(0) = 1 we have: 
 

 
[(1 − 𝑞)𝑐]

1
1−𝑞 = 1 ⇔ (1 − 𝑞)𝑐 = 1 ⇔ 𝑐 =

1

1 − 𝑞
 

(4.30) 

 

 

When c = 1/(1-q) the solution of (4.28) can be given by the equation: 
 

 
𝑦(𝑥) = [1 + (1 − 𝑞)𝑥]

1
1−𝑞  , 𝑦(0) = 1, 𝑞 ∈ 𝑅,   𝑞 ≠ 1 

(4.31) 

 

By analyzing the properties derived from this class of functions, we can produce an 
analytic overview of the well-known q-exponential, q-logarithmic and q-gaussian 
functions. 
For the q-exponential function we assume the relation (4.31), as given above, and that 
the limit of the q index tends to 1. Then the equation (4.28) can be analyzed into:  
 
 
 

lim
𝑞→1

𝑒𝑞
𝑥 = lim

𝑞→1
[1 + (1 − 𝑞)𝑥]

1
1−𝑞 = lim

𝑞→1
𝑒𝑙𝑛[1+(1−𝑞)𝑥]

1
1−𝑞

= lim
𝑞→1

𝑒(1−𝑞)
−1 ln(1+(1−𝑞)𝑥) = 𝑒

[lim
𝑞→1

(1−𝑞)−1ln (1+(1−𝑞)𝑥)]

= 𝑒
[lim
𝑞→1

ln (1+(1−𝑞)𝑥)
1−𝑞

]
= 𝑒

[lim
𝑞→1

d
dq
 ln (1+(1−𝑞)𝑥)

𝑑
𝑑𝑞
 1−𝑞

]

= 𝑒

[lim
𝑞→1

(
1

(1+(1−𝑞)𝑥)
) 
𝑑
𝑑𝑞
 [1+(1−𝑞)𝑥]

−1
]

= 𝑒
[lim
𝑞→𝑞

−
𝑥
−1
]
= 𝑒

[lim
𝑞→1

𝑥]

= 𝑒𝑥  
 

(4.32) 
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Therefore, for the case of q→1, we have: 

 

 𝑒𝑞
𝑥 = 𝑒1

𝑥 = 𝑒𝑥 (4.33) 

 

This category of 𝑒𝑞
𝑥 functions represents the q-exponential class and for every single 

value of q index, emerges a unique q-exponential function. 
In addition, the q-exponential distribution can be described by the probability density 
function of: 
 

 
𝑝(𝑥) = 𝑝0 [1 − (1 − 𝑞)

𝑥

𝑥0
]

1
1−𝑞

 
(4.34) 

 

 

For the case of q→1, the equation (4.34) recovers the simple form of the exponential 

distribution, as the q-exponential function recovers the exponential function in the limit 

of q→1. 

This form of q-exponential distribution can be considered as a Zipf-Mandelbrot 

generalization [148]. In the case of q>1, the q-exponential distribution displays an 

asymptotic power law, while in the case of 0<q<1 a cutoff appears [149]: 

 

 
𝑋𝑐 =

1

1 − 𝑞
𝛽𝑞 

(4.35) 

 

The inverse solution of equation (4.31) emerges the q-logarithmic functions class [147]. 
If we assume the relation: 
 

 
𝑦 = [1 + (1 − 𝑞)𝑥]

1
1−𝑞 ⇔ 𝑦1−𝑞 = 1 + (1 − 𝑞)𝑥 ⇔ 𝑥 =

𝑦(1−𝑞) − 1

1 − 𝑞
 

(4.36) 

 

then, the inverse of (4.31) is given by the equation: 
 

 
𝑦−1(𝑥) =

𝑥1−𝑞 − 1

1 − 𝑞
≡ 𝑙𝑛𝑞𝑥, 𝑥 > 0, 𝑞 ∈ 𝑅 

(4.37) 
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For the inverse of 𝑒𝑞
𝑥 and analyzing [147] the case of q→1  

 

 
lim
𝑞→1

𝑙𝑛𝑞𝑥 = lim
𝑞→1

𝑥1−𝑞 − 1

1 − 𝑞
= lim

𝑞→1

𝑒𝑙𝑛𝑥
1−𝑞

− 1

1 − 𝑞

= lim
𝑞→1

(𝑒𝑙𝑛𝑥
1−𝑞

− 1)𝑙𝑛𝑥

(1 − 𝑞) 𝑙𝑛𝑥
= 𝑙𝑛𝑥 (lim

𝑞→1

(𝑒𝑙𝑛𝑥
1−𝑞

− 1)

(1 − 𝑞) 𝑙𝑛𝑥
)

= 𝑙𝑛𝑥 (lim
𝑞→1

𝑑
𝑑𝑞
(𝑒𝑙𝑛𝑥

1−𝑞
− 1)

𝑑
𝑑𝑞
(1 − 𝑞) 𝑙𝑛𝑥

)

= 𝑙𝑛𝑥 (lim
𝑞→1

−(1 − 𝑞)𝑙𝑛𝑥 𝑒1−𝑞 𝑙𝑛𝑥

−𝑙𝑛𝑥
)

= 𝑙𝑛𝑥 (lim
𝑞→1

(1 − 𝑞)𝑒𝑙𝑛𝑥
(1−𝑞)

) = 𝑙𝑛𝑥 , 𝑥 > 0,

𝑙𝑛1𝑥 = 𝑙𝑛𝑥 

(4.38) 

 

The q-logarithm function is non-additive because of the mixing terms that appear in the 

case of summation of two independent q-logarithms of A and B terms. 

 

 𝑙𝑛𝑞𝑥𝐴𝑥𝐵 = 𝑙𝑛𝑞𝑥𝐴 + 𝑙𝑛𝑞𝑥𝐵 + [𝑙𝑛𝑞𝑥𝐴𝑙𝑛𝑞𝑥𝐵] (4.39) 

 

This property is called pseudo-additivity. 

 

4.4 Non extensive statistical mechanics 
 

Statistical mechanics and its associated concept of entropy were initially applied 
exclusively in the field of classical thermodynamics and the kinetic theory of gasses 
[121]. Later, it expanded to other scientific disciplines, in order to provide a principle for 
inferring the least biased probability distribution from limited information [139].  
Scientific research [150] [151] has shown that empirical laws with simple forms seem to 
correspond well to the collective properties of either earthquake or fault population. 
The approach of statistical mechanics in these two specific fields of earthquake and fault 
population can be considered as the link between the transition from the micro-cracking 
and fracturing within the upper rigid crust, to the genesis of a significant earthquake 
event, expressed by a fault rapture [152].  
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Toward that direction, the generalized framework of non-extensive statistical physics, 
based on the concept of entropy, has also been used to explain some of the complex 
seismological dynamic processes, such as the change of local scattering evolution, by 
analyzing coda waves and seismic noise of seismographic stream records [98] [1].  
In a more general form, it can be used in order to estimate the macroscopic 
configuration of the seismological occurrences, such as earthquakes, evolution of 
faulting, time intervals of aftershock sequences, time domain samples increment etc. 
[98] [153] [121], from the specification of the relevant microscopic components and 
their interactions [154]. 
The true nature of such complex systems implies that the occurrence of an individual 
constituent is strongly correlated with the state and the occurrence of some other 
micro-constituent.   
BG statistical mechanics corresponds well to physical systems that presents short-range 
interactions and short memory, found in Markovian chain processes [155]. However, for 
the macroscopic behavior of physical systems whose elements present weak chaotic 
dynamics, the Boltzmann-Gibbs-Shannon approach has limited applicability. These 
systems, violate essential properties of the Boltzmann’s Gibb’s distribution [156], as 
they follow distributions with asymptotic power law behavior, exhibiting long-range 
interactions, long memory and heavy tails, enhanced by multi-fractal geometries [121]. 
Heavy tailed distributions refer to distributions whose “tail” is heavier compared to an 
exponential distribution. These cases are characterized by relatively many high valued 
outliers and are categorized in fat tailed, long tailed and sub exponential distribution 
[157]. Cauchy, log normal, Pareto, Zipf and Students t-distributions exhibit heavy tails. 
 

 

Figure 4.3 Example of fat tailed distribution risen from the probability density function of 
the normalized increments, of seismic ambient noise. Data obtained from the Medicane 
(Mediterranean hurricane) occurred on 28/09/2018 at KLMT station. [153]. 
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Figure 4.4 Fat tailed probability density function of ambient seismic noise for normalized 
increments. PDF has been implemented for a 10-minute duration of seismic record [97]. 

 

The statistical mechanics description of such systems can be achieved by a generalized 
framework proposed by Tsallis, known as non-extensive statistical mechanics (NESM) 
[96].  
 The main advantage of NESM is that it takes into account all scale correlation between 
the elements of a system. To quantify the nonextensivity, the concept of entropy is used 
to infer the least biased distribution via the concept of maximum entropy principle 
[158]. 
Central to NESM is the non-additive entropy Sq. For discrete cases. Sq is given by the 
equation: 
 

 
𝑆𝑞 = 𝑘

1 − ∑ 𝑝
𝑖
𝑞𝑊

𝑖=1

𝑞 − 1
 

(4.40) 

 

where q∈ 𝑅). 
Here, k represents a positive constant assumed to be the Boltzmann’s constant, W 
represents the number of microscopic configurations and q the entropic index.   
Taking into account the entropy:   
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𝑆𝑞 = 𝑘𝑙𝑛𝑞(

1

𝑝𝑖
) 

 

(4.41) 

 

and the q-logarithmic as presented in (4.37): 

 

 
𝑦−1(𝑥) =

𝑥1−𝑞 − 1

1 − 𝑞
≡ 𝑙𝑛𝑞𝑥, 𝑥 > 0, 𝑞 ∈ 𝑅 

(4.42) 

 

 

we get the form of: 

 

𝑙𝑛𝑞𝑝𝑖 =
𝑝
𝑖
1−𝑞 − 1

1 − 𝑞
⇔ 𝑙𝑛𝑞(1/𝑝𝑖) =

(
1
𝑝𝑖
)
1−𝑞

− 1

1 − 𝑞
=

(
1

𝑝
𝑖

1−𝑞 − 1)

1 − 𝑞

=

(
1 − 𝑝

𝑖
1−𝑞

𝑝
𝑖

1−𝑞 )

1 − 𝑞
 

(4.43) 

 

and finally, [147] get: 

   

 
𝑙𝑛𝑞(1/𝑝𝑖) =

1 − 𝑝
𝑖
1−𝑞

(1 − 𝑞)𝑝
𝑖

1−𝑞
 

(4.44) 

 

We now replace the equation (4.44) in (4.41) and impose the normalization constraint 

of: 

 

 
∑𝑝𝑖 = 1

𝑊

𝑖=1

 
(4.45) 

 

In order to retrieve the equation: 
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 𝑆𝑞 = 𝑘(𝑙𝑛𝑞(1/𝑝𝑖)

= 𝑘∑
𝑙𝑛𝑞 (

1
𝑝𝑖
)

𝑝𝑖

𝑊

𝑖=1

= 𝑘∑
1

𝑝𝑖
(
1 − 𝑝

𝑖
1−𝑞

(1 − 𝑞)𝑝
𝑖

1−𝑞
)

𝑊

𝑖=1

= 𝑘∑(
1 − 𝑝

𝑖
1−𝑞

(1 − 𝑞)𝑝
𝑖

−𝑞)

𝑊

𝑖=1

= 𝑘(
1

1 − 𝑞
)∑

1 − 𝑝
𝑖
1−𝑞

𝑝
𝑖

−𝑞

𝑊

𝑖=1

= 𝑘(
1

1 − 𝑞
)∑𝑝

𝑖
𝑞
(1 − 𝑝

𝑖
1−𝑞

) = 𝑘(
1

1 − 𝑞
)∑(𝑝

𝑖
𝑞 − 𝑝𝑖)

𝑊

𝑖=1

𝑊

𝑖=1

= 𝑘(
1

1 − 𝑞
)(∑𝑝

𝑖
𝑞 −

𝑊

𝑖=1

∑𝑝𝑖

𝑊

𝑖=1

) = 𝑘(
1

1 − 𝑞
)(∑𝑝

𝑖
𝑞 − 1

𝑊

𝑖=1

) 

(4.46) 

 

 

As a result, the relation (4.41) is equivalent to the Tsallis entropy [147] [96] , as 

presented in the equation below: 

 

 
𝑆𝑞 = 𝑘

1 − ∑ 𝑝
𝑖
𝑞𝑊

𝑖=1

𝑞 − 1
 

(4.47) 

 

For continuous variables, the Sq is given via the equation: 

 

 
𝑆𝑞[𝑝] = 𝑘

1

𝑞 − 1
(1 − ∫𝑝(𝑥)

𝑞𝑑𝑥) 
(4.48) 

 

This form is considered as the generalized framework of the classical Boltzmann-Gibbs 

entropy of statistical mechanics, as it converges to ordinary SBG in the case of (limq→1). 

This association is understandable if we think about the limit of q as it approaches the 

value one in (4.47). Then we have:  
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lim
𝑞→1

𝑆𝑞 = lim
𝑞→1

𝑘
1 − ∑ 𝑝

𝑖
𝑞𝑊

𝑖=1

𝑞 − 1
=k lim

𝑞→1

1 − ∑ 𝑝
𝑖
𝑞𝑊

𝑖=1

𝑞 − 1
= 𝑘 lim

𝑞→1

1 − ∑ 𝑝𝑖𝑝𝑖
𝑞−1𝑊

𝑖=1

𝑞 − 1

= 𝑘 lim
𝑞→1

1 − ∑ 𝑝𝑖
𝑊
𝑖=1 𝑒(𝑞−1)𝑙𝑛𝑝𝑖

𝑞 − 1
 

(4.49) 

 

Furthermore, by implementing Taylor series expansion for  𝑒(𝑞−1)𝑙𝑛𝑝𝑖  we [147] get: 

 

 
𝑒(𝑞−1)𝑙𝑛𝑝𝑖 =∑

(𝑞 − 1)𝑛 ln𝑛 𝑝𝑖
𝑛!

∞

𝑛=0

 
(4.50) 

 

If we assign n = 0 we get: 

 

 
𝑒(𝑞−1)𝑙𝑛𝑝𝑖 = 

(𝑞 − 1)0 ln0 𝑝𝑖
0!

+ 
(𝑞 − 1)1 ln1 𝑝𝑖

1!
+ 0(𝑙𝑛𝑛𝑝𝑖)

=∑(
𝑞 − 1
𝑛

)

∞

𝑛=0

(𝑝𝑖 − 1)
𝑛
  

(4.51) 

 

 

 

 
∑(𝑞 − 1

𝑛
)

∞

𝑛=0

(𝑝𝑖 − 1)

𝑛

𝑒(𝑞−1)𝑙𝑛𝑝𝑖 ≈ 1+ (𝑞 − 1)𝑙𝑛𝑝𝑖}
 

 

= lim
𝑞→1

𝑆𝑞 ≈𝑘 lim
𝑞→1

1 − ∑ 𝑝𝑖[1 + (𝑞 − 1)𝑙𝑛𝑝𝑖]
𝑊
𝑖=1

𝑞 − 1

= 𝑘 lim
𝑞→1

1 − ∑ 𝑝𝑖 + ∑ (𝑞 − 1)𝑝𝑖𝑙𝑛𝑝𝑖
𝑊
𝑖=1

𝑊
𝑖=1

𝑞 − 1

=  𝑘 lim
𝑞→1

(𝑞 − 1)∑ 𝑝𝑖𝑙𝑛𝑝𝑖
𝑊
𝑖=1

𝑞 − 1
=

= 𝑘 lim
𝑞→1

∑𝑝𝑖𝑙𝑛𝑝𝑖 = 𝑘

𝑊

𝑖=1

∑𝑝𝑖𝑙𝑛𝑝𝑖 = 𝑘

𝑊

𝑖=1

𝑆𝐵𝐺
𝑘𝐵

 

(4.52) 

 

 

From the above, it is clear that the generalized form of Tsallis entropy is equivalent to 
the Boltzmann-Gibbs entropy in the case of lim q→1 and k = kB . 
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There are three potential cases for the entropic index q. The first is recovered when q<1 
and is called super-additivity. The second case emerges when q=1 and is actually the 
limit of the q index as it approaches the value 1 (lim q→1) and is called additivity. This 
case retrieves the Boltzmann-Gibbs entropy. The third one arises in the case of q>1 and 
corresponds to sub-additivity. Despite the fact that the Tsallis entropy shares the 
majority of properties with the entropy of Boltzmann-Gibbs, the Tsallis q entropy is non-
additive [96] [159], while the SBG is additive: 
 

 𝑆𝐵𝐺 = (𝐴+ 𝐵) = 𝑆𝐵𝐺(𝐴)+ 𝑆𝐵𝐺(𝐵) (4.53) 

 

This behavior introduces the non-additivity concept for the NESM theory. The main 
difference between SBG and Sq entropy is generated by the concept that instead of 
summing the entropy of the two probabilistically independent subsystems, A and b, to 
obtain the total entropy of the main system (A, B), the non-additive entropy approaches 
the main system entropy via the formula of:  
 

 𝑆𝑞(𝐴 + 𝐵)

𝑘
=
𝑆𝑞(𝐴)

𝑘
+
𝑆𝑞(𝐵)

𝑘
+ (1 − 𝑞)

𝑆𝑞(𝐴)

𝑘

𝑆𝑞(𝐵)

𝑘
 

(4.54) 

 

 

This concept, was first incorporated by Tsallis in 1998 [96], influenced by multifractality 
physics, and describes that the generalized framework of BG statistical mechanics 
initiates bias in probabilities. 
Taking into account the maximization of Sq  under the conditions of (4.55) and (4.56): 
 

 ∫ 𝑝(𝑥)𝑑𝑥 = 1 (4.55) 

 

and 

 ∫ 𝑝𝑞(𝑥)𝑈(𝑥)𝑑𝑥 = 𝑈𝑞 (4.56) 

 

The pq is given by the formula: 

 
𝑝𝑞(𝑥) =

𝑝𝑞(𝑥)

∫𝑝𝑞(𝑥)𝑑𝑥
 

(4.57) 
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and represents the escort probability [159], U(x) is the function that describes the 
system under examination and Uq is referred as the q-average. 
The escort distribution is a simple parameter deformation of the original distribution 
that emerges consequently from the maximum entropy theory, between the 
distribution under examination and the uniform distribution [160].  
For complex systems, a custom long tailed probability distribution is critical and 
mandatory. The essential role of a custom-made PDF is assigned into a generalized or 
into a sequence of escort distributions, as they are considered more useful due to the 
fact that they meet the conditions of the respective statistical analysis and are 
effectively implemented into complex and anomalous statistical physics [161].  
The escort distribution procedure can also be considered as a fundamental approach of 
giving suitable weight for individual fat tailed constituents. 
The mentioned approach is assigned to the multi-fractal attributes of nonlinear dynamic 
systems [162].    
In the case of a parabolic function, the U(x) is given by (4.58) 
 

 𝑈(𝑥) = 𝑥2 (4.58) 

 

In the case of (4.58) the Uq, as presented in (4.56), behaves as a fluctuation intensity 

index.  Implementing the Lagrange Multipliers method  to equation (4.48), we obtain 

the probability distribution function and under the constraints of (4.55) and (4.56) we 

derive the relation [146] of (4.59): 

 

 
𝑝(𝑥) =

1

𝑍𝑞(𝐵)
[1 + 𝐵(𝑞 − 1)𝑈(𝑥)]

−
1
𝑞−1 ,   𝑞 > 1 

(4.59) 

 

where Zq 

 

 
 
 

𝑍𝑞(𝐵) = [𝐵(𝑞 − 1)]−
1
2

𝛤 (
1
2) 𝛤 (

1
𝑞 − 1 ,

1
2)

𝛤 (
1

𝑞 − 1)
 

(4.60) 

 

The formulation of (4.60) is characterized as a generalized q-partition function, with Γ a 
gamma function. The above is considered as a generalized canonical distribution under 
the frame of Tsallis statistics.  For (4.58) the distribution becomes:  
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𝑝(𝑥) =

1

𝑍𝑞(𝐵)
[1 + 𝐵(𝑞 − 1)𝑞2]

−
1
𝑞−1 

(4.61) 

 

This formulation is the so-called q-Gaussian distribution and it converges into a normal 
Gaussian distribution in the specific case of (limq→1). 
The comparison of probability density functions, between Gaussian and q-Gaussian 
distributions, is given in Figure 4.5. 
 
 

 

Figure 4.5 Probability density function, P(Y), versus Y in a logarithmic linear scale. In this 
diagram the y-axis represents the sum (N) of a given independent variable X, having a q-
Gaussian distribution behavior. As the N lim→∞, P(Y) inherently approaches the form of a 
Gaussian distribution [159].  

 

The illustration for different values of q index, and the conversion to a Gaussian like 
distribution when the limit of q tends to 1, is given in Figure 4.6. It is clear that as the q 
index increasing, the outliers are also increasing, exhibiting fat tail distributions. 
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Figure 4.6 q-Gaussians in logarithmic linear scale for cases of q=1, q=3/2 and q=2, 
respectively [159]. As the q index increases, the fat tails are becoming dominant 
(memory effect). 
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5 SeisComplex 
 

5.1 Introduction to SeisComplex Software and its applications. 
 

In recent years, the development of technology has brought a tremendous 
breakthrough in computational power and in the way of data acquisition and 
processing, in all scientific disciplines.  
The concept of entropy through the theory of non-extensive statistical physics, as 
proposed by Tsallis in 1988 (see 4.3 for more details), has recently become a fast-
growing topic in Earth Science disciplines. 
In an effort to bridge the gap between statistical mechanics and its application upon 
geosciences, we developed the ‘SeisComplex V.1.0’ software. SCP V.1.0 provides both 
automatic as well as manual procedures and allows users to collect and set the desired 
structure of any available geophysical data, such as seismic waveforms, GPS time series, 
triaxial tests, etc. (for the online mode, data must be officially provided by a data 
acquisition server).  
For data processing, the signal analysis and the non-extensive statistical physics tools 
are provided to the user.   
The results are compatible with a variety of external and/or third-party programs, as 
they are available in binary and ascii structures. 
 

5.2 Seismological implementation.  
 

The dominant characteristic of the software is the simplicity and the integrated 
automatizations, both in data acquisition as well as in data processing. 
A schematic representation of SeisComplex and its plugins, is configured below. 
 

 

Figure 5.1 Flow chart of the SeisComplex software (06/2020). 
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The user can automatically login and retrieve seismological time series (seismic 
waveforms and response files) via the SeisComplex (ScP) Download data plugin (Figure 
5.2), from a variety of data acquisition servers, as listed below:  
 

1. IRIS data server. 

2. INGV data server. 

3. Northern California Earthquake data server. 

4. Istituto Nazionale di Geofisica Vulcanologia data server. 

5. Eida - National Observatory of Athens. 

 

External sources can also be available to users, by the modification of the initialization 
source file. Furthermore, waveforms via response files can be additionally processed 
through the Deconvolution graphical user interface, by setting the mandatory 
parameters of the inventories, the water level of deconvolution, the frequency domain 
bandpass filter, the zero mean and cosine taper (the three last processes take place 
before the deconvolution procedure), as presented in Figure 5.3. 
 
 

 

Figure 5.2 The graphical user interface of the ScP. Download Data plugin. 
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Figure 5.3 The deconvolution process graphical user interface for seismic waveforms. 

 

5.2.1 Signal Analysis 
 

Prior to the statistical analysis, the tool of Signal Analysis (S.A.) provides a variety of 
processing procedures.  
The plugin can import seismic catalogues as well as hypocenter solutions under IMS 1.0 
structure (one or multiple events separated by flag). For raw data without pre-
processing, the automatic procedure can generate the onsets of P and S body waves, by 
applying a combination of STA/LTA, STFT and Aki statistics (weighted solutions) 
methodology. In both cases, individual waveforms can be separated per component and 
per earthquake event with the utility of the ‘cut2mseed’ function-button, a procedure 
based on Matlab & Python. The ‘MakeEvents’ function-button generates a seismic list.  
The S.A. plugin is compatible with mseed, sac and ascii formats. The data structure can 
be as simple as two columns with extensions txt, xls, csv or dat. The filtering of time 
series can be executed, either by implementing Butterworth or Chebyshev filters with 
the options of highpass, lowpass, bandpass and bandstop configuration, at any given 
filter order.  
The order of filter is a crucial parameter, as it can enhance or eliminate ringing artifacts 
and Gibb’s effect, an inherent phenomenon in cases of finite series truncation. 
In the example presented in Figure 5.4, we design a first and a fourth order lowpass 
Butterworth filter, upon a synthetic signal, with a characteristic cutoff frequency of 
0.084 Hz, normalized to the signal Nyquist frequency. In comparison with the fourth 
ordered lowpass filter with the abrupt cutoff transition, but rippling before and after the 
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cutoff frequency, the low ordered filter, depicts a larger transition zone within the cutoff 
frequency, without showing any signs of Gibb’s effect. 
 

 

Figure 5.4 Transition from passband to stopband for first (left) and forth (right) order 
Butterworth filter. 

 

SeisComplex provides a zero-phase forward and reverse digital filtering. With this 
technique, the filter magnitude is unaffected by the reversed direction, due to the fact 
that it will always be restricted to 0 or 100% of the initial amplitude, depending on the 
frequency. 
 

 

Figure 5.5  The graphical user interface of the ScP. S.A. plugin (Signal Analysis). 
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After the implementation of the proper filter, the vectorized approach of STA/LTA 
procedure can provide an instant estimation of the potential existence of Earthquakes 
events. After extensive testing of the parameters (as given in Table 1.1) the method can 
distinguish micro-events with time buffer up to 4 seconds.  
 
 

Input function parameters Assigned variable details 

SIGNAL Vector of raw or filtered signal (component) 

SAMRA Sampling rate 

TDIF Sampling interval (time domain) 

STA Short time average window 

LTA Long time average window 

ENGA Engaging the triggering process 

DISE Disengaging the triggering 

TIME_LAPSE_1 Time before triggering 

TIME_LAPSE_2 Time after triggering 

TIMEA Duration threshold of potential event 
 

Table 5.1 The multi-parameter assignment of STA/LTA procedure. 

 

 

 

Figure 5.6 Automatic determination of earthquake event and micro-events after the 
implementation of the SeisComplex STA/LTA procedure. Station THT1, E-W Component, 
date 2012023145806 (YYYYJJJHHMMSS). 
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5.2.2 Coda Determination 
 

The signal to Noise Ratio is widely used as an indicator of a general approximation for 
the coda wave duration. In the framework of this dissertation and in order to dump out 
earthquake events with “hidden” frequencies or local overlapping micro-events, as well 
as volcanic tremors, spasmodic bursts and low frequency events, along with the effort 
not to minimize the site amplification signatures (scattering effects) in all the recorded 
seismic waveforms throughout the unrest period of Santorini’s Volcano, a five-step 
procedure was implemented.  
Standardization directives of coda wave determination include the signal to noise ratio 
(SNR), the short time average over long time average (STA/LTA) in time domain 
waveforms (Figure 5.6), the novel STA/LTA procedure implemented upon Hilbert 
transformation signal, the short time Fourier transform (frequency domain) in order to 
reveal unwanted ‘’hidden’’ micro-events within codas and finally, a manual verification 
and/or re-estimation step,  as shown in Figure 5.7. 
 

 

Figure 5.7 Coda wave duration determination procedure (flow chart of SeisComplex 
software). 
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Figure 5.8 The Signal to Noise Ratio (SNR) process as a part of the five-step coda wave 
length determination.  

 

The exponential attenuation of the signal to noise ratio, as seen in Figure 5.9, can give 
valuable information about the intrinsic absorption and the scattering attenuation 
factor of the medium and the propagation path (following the ray tracing), leading to 
the Q quality factor.  
 

 

Figure 5.9 Determination of coda waves. Station CMBO, Comp. HHE, (14 March 2011). 
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Our novel procedure of coda wave length-duration determination, includes the STA/LTA 
like method, implemented upon the deconvolved time domain waveforms. In order to 
enhance the micro-event detection analysis, the computation of the cross product 
between the real and the imaginary part of the Hilbert transformed signal was 
performed, as shown in Figure 5.10 and Figure 5.11. 
 

 

Figure 5.10 The helical wavefunction after implementing Hilbert transformation. The 2D 
surface (colored surface and red arrow) represents the cross product between the real 
and the imaginary part of the seismic Hilbert transformed waveform. 

 

Figure 5.11 Presentation of the STA/LTA procedure, based on the cross product vector of 
the helical wavefunction, as presented in Figure 5.10. 
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The Hilbert transformation formula is given by the relations (5.1) and (5.2) [163]: 

 

 
𝐻(𝑢)(𝑡) =

1

𝜋
∫

𝑢(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

 
(5.1) 

 

where the H(u)(t) represents the time domain signal. The inverse is given by the 

equation (5.3) [163]: 

 

 
𝑔(𝑦) = 𝐻[𝑓(𝑥)] =

1

𝜋
𝑃𝑉∫

𝑓(𝑥)𝑑𝑥

𝑥 − 𝑦

∞

−∞

 
(5.2) 

 

 
𝑓(𝑥) = 𝐻−1[𝑔(𝑦)] = −

1

𝜋
𝑃𝑉∫

𝑔(𝑦)𝑑𝑦

𝑦 − 𝑥

∞

−∞

 
(5.3) 

 

 

where PV represents the Cauchy value, known as the principal value integral (Henrici 

1988) and is given in equation (5.4): 

 

 
𝑃𝑉∫ 𝑓(𝑥)𝑑𝑥 = lim

𝜀→0+
[∫ 𝑓(𝑥)𝑑𝑥

𝑐−𝜀

𝑎

+∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐+𝜀

]
𝑏

𝑎

 
(5.4) 

 

Our enhanced automatic detector is taking into account the vectors of ex.1 and ex.2 as 

shown below and computes the cross product as given in (5.5). 

 

• ImHilbert = [ IHz, IHz+1, IHz+2 ]  ex.1  

• TDomain = [ TDz, TDz+1, TDz+2 ] ex.2 
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𝐼𝑚𝐻𝑖𝑙𝑏𝑒𝑟𝑡 × 𝑇𝐷𝑜𝑚𝑎𝑖𝑛 =  |

𝑖 𝑗 𝑘
𝐼𝐻𝑧 𝐼𝐻𝑧+1 𝐼𝐻𝑧+2
𝑇𝐷𝑧 𝑇𝐷𝑧+1 𝑇𝐷𝑧+2

|

= |
𝐼𝐻𝑧+1 𝐼𝐻𝑧+2
𝑇𝐷𝑧+1 𝑇𝐷𝑧+2

| 𝑖 − |
𝐼𝐻𝑧 𝐼𝐻𝑧+2
𝑇𝐷𝑧 𝑇𝐷𝑧+2

| 𝑗

+ |
𝐼𝐻𝑧 𝐼𝐻𝑧+1
𝑇𝐷𝑧 𝑇𝐷𝑧+1

| 𝑘 

(5.5) 

 

where ImHilbert represents the linear 3 samples moving window of the imaginary part 
wave vector and TDomain represents the 3 samples moving window of the real part 
wave vector, which in our case is the Hilbert’s transformed signal of the time domain 
velocity. 
Furthermore, to eliminate the probability of getting into account poor quality coda 
records, Fourier and Gabor transformation, a short time Fourier transform by using 
gaussian windowing as a window function, was applied, as presented in Figure 5.12. 

 

 
𝐺𝑥(𝑡, 𝑓) = ∫ 𝑥(𝜏)𝜑(𝜏 − 𝑡)𝑒

𝑗2𝜋𝑓𝜏
𝑑𝜏

∞

−∞

 
(5.6) 

 

where the φ(τ) is the Gabor analysis window and t represents the location of the 
window center. In this case the window is considered to be a Gaussian function. It is 
clear from (5.6) that the Gabor transform is a special case of short time Fourier 
transformation by implementing a Gaussian window.  The selection of Gaussian window 
was chosen, due to its low leakage factor (0.01%) and low relative sidelobe attenuation 
(-44.1 dB). 
In the cases of finite series x[i], the discrete Gabor transformation is given by the 
equation: 
 

 
𝑮𝒙(𝒎, 𝒏) =∑𝒙[𝒊]𝜸[𝒊 −𝒎𝜟𝑴]𝑾𝑳

−𝒏𝜟𝑵𝒊

𝑳−𝟏

𝒊

 
(5.7) 

 

where ΔM represents the time sampling interval and ΔΝ the frequency sampling 
interval. Finally, the variables M and N indicate the length of sampling in time and 
frequency domain, respectively [164]. 
 

 𝛾[𝑘] = 𝑒𝜋𝑘
2
 (5.8) 

 

 
𝑊𝐿

𝜋𝑘2 = 𝑒𝑗(
2𝜋
𝐿
)
𝑘𝑖

 
(5.9) 
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Figure 5.12 Seismic time domain waveform (up), STA/LTA process (middle) and 
implementation of Short Time Fourier Transform (down), as a part of the integrated 
coda determination procedure. 

 

Last, all waveforms were manually checked for the final evaluation and/or re-estimation 

of ‘coda duration’, as a prerequisite quality procedure step. 

 

5.2.3 q-Gaussian  
 

The concept of the entropic index via the theory of NESM (paragraphs 4.3 and 4.4) has 

led many researchers, to investigate a variety of natural phenomena, from the micro-

scale [165] up to the macro-scale of galaxies [166] [167]. In between, for planetary 

applications, the entropic index, under specific considerations and procedures (as 

presented in this dissertation), can be considered as a scattering entropic index. 
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Figure 5.13 Flow chart of the entropic scattering index, qs, analysis procedure. 

 

The qs (scattering entropic index) can be processed and analyzed via the q-Gaussian 

plugin named ‘Entropic Index Analysis’, as shown in Figure 5.14. 

 

 

Figure 5.14 q-Gaussian procedure and its graphical user interface of the SeisComplex ScP 
S.A. plugin. 
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In order to obtain the qs of codas, the differences of continuous ground velocity, 

acceleration or displacement samples, is configured. In case of velocity, we have: 

 

 𝑋(𝑡) = 𝑉(𝑡 + 1) − 𝑉(𝑡) (5.10) 

 

Then, the vector of X(t) is standardized as given below: 

 

 
𝑥 =

𝑋 − 〈𝑋̅〉

𝜎𝑥
 

(5.11) 

   

where <X> represents the observed mean value and σx the standard deviation of X(t). 
Furthermore, the entropic index for discrete series, as presented in (4.47): 
 

𝑆𝑞 = 𝑘
1 − ∑ 𝑝

𝑖
𝑞𝑊

𝑖=1

𝑞 − 1
 

 

after the maximization, under the conditions of (4.55) and (4.56) and after applying the 

Lagrange multipliers method, in the case of U(x)=x2, led to the generalized q-Gaussian 

distribution, as presented in (4.59): 

 

𝑝(𝑥) =
1

𝑍𝑞(𝐵)
[1 + 𝐵(𝑞 − 1)𝑞2]

−
1
𝑞−1 

 

which is the mandatory probability density function (PDF). 
If we assume that: 
 

 1

𝑍𝑞(𝐵)
= 𝐴1 

(5.12) 

 

and 

 
𝐵 =

1

𝑏(2)
 , 𝑞 = 𝑏(1) 

(5.13) 
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Then, the p(x) takes the form of (5.14): 

𝑃(𝑥) = 𝐴1 [1 +
1

𝑏2
(𝑞 − 1)𝑥2]

−
1

𝑏1−1
 

 

 

𝑏(1) − 1 = −(1 − (𝑏(1)))  𝑎𝑛𝑑 −
1

𝑏(1) − 1
=

1

1 − 𝑏(1)
 

 

 

𝑃(𝑥) = 𝐴1 [1 −
1

𝑏2
(1 − 𝑏1)𝑥2]

−
1

1−𝑏1
 

 

(5.14) 

 

This formulation depicts the fat tailed q-Gaussian function, which is the nonlinear 
solution of the entropic index qs, since seismic coda waves present long-term memory 
effects. 
The qs is a very sensitive index and it must be analyzed under restricted frequency 
examination. In the Figure (5.14), the frequency sensitivity becomes clear. 
 

 

Figure 5.15 The qs index before and after the implementation of two narrow notch 
filters. The nonlinear solution for coda increments ranges from 1.07 to 1.6. 
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A second and more robust procedure of cutting out unwanted and parasitic frequencies, 
can be achieved via the ‘FilterOnDemand’ function, by implementing inverse fast Fourier 
transform: 
 

 

 
𝑔:𝑅 → ∁ , 𝑔(𝜔) =

1

2𝜋
∫ 𝑔(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡

∞

−∞

 
(5.15) 

 

 

5.3 Results processing 
 

The abbreviation of ScP. R.P. (as given in Figure 5.1) represents the SeisComplex results 
processing tool. The main utility of R.P. tool, is the instantly manipulation of data, by 
applying a variety of spatio-temporal and seismic catalogue filters, as well as quality 
evaluation.  
This tool is suitable for a variety of scientific data, as it can manipulate both ascii and 
binary protocol. As far, it has been extensively used with seismic catalogues data, 
seismic array data, GPS time series and triaxial material strength tests, analyzing the 
statistics of the microcracks occurrence. The structure of individual data is changeable, 
as it can be manipulated via a graphical user interface, setting specific forms of input.  
The processing of the respective data, is carried out through a collection of Matlab 
functions, which for a large volume of data sets, can operate in parallel processing 
(parallel computing), depending on the computational power of each terminal. In 
addition, time consuming functions, such as those appearing in the application of 
transformations, can be handled by using the GPUArray method. 
The graphical user interface of the result processing plugin, is given in Figure 5.16.  All 
results, are compatible with G.I.S. ArcMap for further analysis. 
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Figure 5.16 The graphical user interface of ScP R.P. (result processing) plugin. 
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6 Data selection 
 

6.1 Seismological stations and seismic events. 
 

The data that were used for the purposes of this dissertation had been downloaded via 
the SeisComplex D.D. plugin using the EIDA data center of the National Observatory of 
Athens (http://eida.gein.noa.gr/). The response files were obtained by EIDA node and 
Geofon gfz Potsdam data center. 
 

NETWORK STATION COMPONENT Selected Duration 
 

GE, HL 
 

SANT 
HHE  

2009 - 2014 HHN 

HHZ 

 
HT 

 
CMBO 

HHE  
2011 - 2014 HHN 

HHZ 

 
HT 

 
THT1 

HHE  
2011 - 2014 HHN 

HHZ 

 
HA 

 
SNT1 

HHE  
2012 - 2014 HHN 

HHZ 
 

HA 
 

SNT2 

HHE  
2012 - 2014 HHN 

HHZ 
 

HA 
 

SNT3 

HHE  
2012 - 2014 HHN 

HHZ 
 

HA 
 

SNT5 

HHE  
2014 HHN 

HHZ 
 

Table 6.1 The seismic database of SANT, CMBO, SNT1, SNT2, SNT3, SNT5 and THT1 
stations. 

 

The selection of the SANT, CMBO and THT1 seismological stations to obtain the final 
results was based upon the data availability during the volcanic unrest period. SANT 
station was the only local station in operation, before during and after the Santorini’s 
unrest period of 2011-2012. CMBO and THT1 have recorded many events during the 
intense seismicity period, in comparison with SNT1, SNT2, SNT3 and SNT5. The 
azimuthal distribution was also a mandatory criterion of selection, in order to 

http://eida.gein.noa.gr/
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investigate the scattering procedures within the caldera’s volume. As a result, SNTx 
stations due to the lack of the necessary amount of earthquake events, were excluded 
from results.  
Seismic networks of Table 6.1, correspond to the Hellenic Seismic Network, HL, 
doi:10.7914/SN/HL, the Seismological Network of Aristotle University of Thessaloniki, 
HT, doi:10.7914/SN/HT, the Seismological Network of University of Patras, HP, 
doi:10.7914/SN/HP, and the Seismological Network of National and Kapodistrian 
University of Athens HA,  doi:10.7914/SN/HA. 
 
 

 

Figure 6.1 Spatial and azimuthal distribution of the three selected seismic stations and 
the main seismotectonic features of the wider area. 

 

The official seismic catalogue of the National observatory of Athens, Geodynamic 
Institute [168] consists of 908 seismic events for the period from 2009 to 2014, as seen 
in Figure 6.2 and Figure 6.3. 
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Figure 6.2 Seismicity of Santorini’s wider area from 2009 to 2014 (GEIN-NOA). 

 

 

Figure 6.3 Statistical overview of the NOA, Geodynamic institute seismic catalogue. 
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6.2 Data processing 
 

All seismic waveforms were transformed from counts into velocity [169].  
 
 

 
 

Figure 6.4 Data spectrum, taper fraction of raw data and the relative seismic waveform 
(up line). Instrument response, data spectrum under the implementation of a given filter 
and the relative time domain waveform. 

 
 

To eliminate signal artifacts, all filtering processes were conducted upon detrended and 
cosine tapered signals, with a buffer of 100 samples/sec, since all instruments hold a 
sampling rate of 100, before and after the coda wave duration.  
A high pass filter of 0.6 Hz was applied upon all deconvolved waveforms to eliminate 
unwanted long periods.  
Different values of water level and the outcome in a deconvolved waveform is given in 
Figure 6.5. 
The meaning of the water level is to produce an acceptable noise level for the 
associated receiver function. The threshold of water level can play the important role of 
a filter, since it sets the amplitude spectrum level, in which specific frequencies can 
vanish. 
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Figure 6.5 Deconvolution process upon coda waves for different values of water level, 
ranging from 0.001 to 1000. 

 

 

 

Figure 6.6 Frequency content for the seismic event of 2011.073.21.52.28 for CMBO 
station (HHE component), prior and after the deconvolution process. 
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After extensive manual analysis process, all seismic events were assigned with a quality 
index, with a proportional increase of importance. 
 
 

Conf. Intervals Quality Factor Events  

 
C

o
n

fi
d

en
ce

 
in

te
rv

al
s 

9
5

%
 

Quality 1 127  
Error <0.1 

Earthquake 
Events 350 Quality 2 223 

Quality 3 81  

Quality 4 210  

Quality 5 267 
 

Table 6.2 Analytic details of quality factor for all earthquake events, listed in the seismic 
catalogue of GEIN-NOA. 

 

 

 

Figure 6.7 Earthquake events with quality factor 1 & 2. 
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7 Results 
 

7.1 Temporal variation of qs index 
 

In order to have a physical insight of the scattering entropic index qs throughout the 
unrest period of Santorini, we analyzed individual earthquake events from NOA’s 
seismic catalogue in all three components, HHE, HHN and HHZ (for analytic explanation, 
see chapter 5.2). 
The values of qs are depicted with different colors (as seen in y-axis and legends) and the 
linear objects above and below individual solutions represent the errors, covering the 
area for the 95% of confidence interval, of the entropic scattering indices. 
The error model that was used was constant, using a standard zero-mean and unit-
variance ‘C’ as given below: 
  

 𝑦 = 𝑓 + 𝑎𝐶 (7.1) 

 

The confidence intervals were computed for 95% by using the estimated coefficients, 
retrieved from the nonlinear fitting procedure via Jacobian matrix. 
In the following figures (Figure 7.1 to Figure 7.9) the temporal variation of the entropic 
scattering index qs is presented. 
 
 

 

Figure 7.1 Temporal variation of qs index for station SANT and for HHE component, prior, 
during and after the unrest period. 
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Figure 7.2 Temporal variation of qs index for station SANT, for HHN component. 

 

 

Figure 7.3 Temporal variation of qs index for station SANT, for HHZ component. 
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Figure 7.4 Temporal variation of qs index for station CMBO, for HHE component. 

 

 

Figure 7.5 Temporal variation of qs index for station CMBO, for HHN component. 
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Figure 7.6 Temporal variation of qs index for station CMBO, for HHZ component. 

 

 

 

Figure 7.7 Temporal variation of qs index for station THT1, for HHE component. 
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Figure 7.8 Temporal variation of qs index for station THT1, for HHN component. 

 

 

Figure 7.9 Temporal variation of qs index for station THT1, for HHZ component. 

 

 

7.2 Spatiotemporal variation of qs index 
 

Santorini’s volcanic complex is an area with high tectonic activity. Especially in the case of 

volcanic activity, it can produce immense seismicity, mostly confined within the Kameni and 
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Columbo tectono-volcanic lineaments. These major tectonic features can be seen in the 

presented maps, as two linear black objects with NE to SW orientation, following the stress-field 

of the wider area.  In order to retrieve information of the dynamically changing entropic index, a 

physical property of the medium, we investigate the qs variations both in space and time. 

 

 

Figure 7.10 The qs variation for CMBO station during the unrest period.  Component E-W 
(left), N-S (middle), Z (right). 

 

 

Figure 7.11 Spatial distribution for different values of the qs index for station CMBO and 
E-W component, before and after the critical point of 02/2012 where the seismicity 
reduced dramatically. 
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Figure 7.12 Spatial distribution for different values of the qs index for station CMBO and 
N-S component, before and after the critical point of 02/2012 where the seismicity 
reduced dramatically. 

 

 

Figure 7.13 Spatial distribution for different values of the qs index for station CMBO and 
Z component, before and after the critical point of 02/2012 where the seismicity reduced 
dramatically. 
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Figure 7.14 The qs variation for SANT station.  Component E-W (left), N-S (middle), Z 
(right). 

 

 

 

 

Figure 7.15 Spatial distribution for different values of the qs index for station SANT and E-
W component, before and after the critical point of 02/2012 where the seismicity 
reduced dramatically. 
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Figure 7.16 Spatial distribution for different values of the qs index for station SANT and 
N-S component, before and after the critical point of 02/2012 where the seismicity 
reduced dramatically. 

 

 

Figure 7.17 Spatial distribution for different values of the qs index for station SANT and Z 
component, before and after the critical point of 02/2012 where the seismicity reduced 
dramatically. 
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Figure 7.18 The qs variation for THT1 station.  Component E-W (left), N-S (middle), Z 
(right). 

 

 

 

 

Figure 7.19 Spatial distribution for different values of the qs index for station THT1 and E-
W component, before and after the critical point of 02/2012 where the seismicity 
reduced dramatically. 
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Figure 7.20 Spatial distribution for different values of the qs index for station THT1 and 
N-S component, before and after the critical point of 02/2012 where the seismicity 
reduced dramatically. 

 

 

Figure 7.21 Spatial distribution for different values of the qs index for station THT1 and Z 
component, before and after the critical point of 02/2012 where the seismicity reduced 
dramatically. 
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Figure 7.22 Spatial distribution of qs along the Columbo tectonovolcanic lineament 
throughout the unrest period for station SANT. Component E-W (right), N-S (middle) and 
Z (left). 

 

 

Figure 7.23 Spatial distribution of qs along the Columbo tectonovolcanic lineament 
throughout the unrest period for station CMBO. Component E-W (right), N-S (middle) 
and Z (left). 
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Figure 7.24 Spatial distribution of qs along the Columbo tectonovolcanic lineament 
throughout the unrest period for station THT1. Component E-W (right), N-S (middle) and 
Z (left). 

 

 

Figure 7.25 Spatial distribution of qs along the Kameni tectonovolcanic lineament 
throughout the unrest period for station CMBO. Component E-W (right), N-S (middle) 
and Z (left). 
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Figure 7.26 Spatial distribution of qs along the Kameni tectonovolcanic lineament 
throughout the unrest period for station SANT. Component E-W (right), N-S (middle) and 
Z (left). 

 

 

Figure 7.27 Spatial distribution of qs along the Kameni tectonovolcanic lineament 
throughout the unrest period for station THT1. Component E-W (right), N-S (middle) and 
Z (left). 
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7.3 Statistical overview of qs index 
 

The statistical analysis of the entropic scattering index, revealed a relation with the 
observed local magnitude (ML) and epicentral distance (measured in km.). The statistical 
overview of the qs was conducted via the boxplot procedure. This approach manifests 
information from a seven-number summary. It is not presenting a distribution, as a 
histogram does, but it gives useful information about the spread of a distribution and if 
this distribution is skewed about the range of its values away from median, as well as 
individual outliers. In more details, rectangle boxes, as given in the following figures, 
represent the upper and the lower quartiles of the observed data (qs indices).  
The interquartile box area contains the range between the 25th and 75th percentiles. The 
second quartile index, depicted with a red parallel line with the x axis within the box, 
represents the median value. The line black objects, extended above and below the 
boxes, are called whiskers and represent extreme data, not considered to be outlier 
values.  The outlier values are given individually at the edges of each whisker diagram 
(box plot) as red crosses.  
 
 
 

 

Figure 7.28  Whisker plot statistical analysis of qs as a function of local magnitude (ML) 
for station CMBO and E-W component. 
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Figure 7.29 Whisker plot statistical analysis of qs as a function of local magnitude (ML) 
for station CMBO and N-S component. 

 

 

 

Figure 7.30 Whisker plot statistical analysis of qs as a function of local magnitude (ML) 
for station CMBO and Z component. 
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Figure 7.31 Whisker plot statistical analysis of qs as a function of local magnitude (ML) 
for station SANT and E-W component. 

 

 

 

Figure 7.32 Whisker plot statistical analysis of qs as a function of local magnitude (ML) 
for station SANT and N-S component. 
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Figure 7.33 Whisker plot statistical analysis of qs as a function of local magnitude (ML) 
for station SANT and Z component. 

 

 

Figure 7.34 Whisker plot statistical analysis of qs as a function of local magnitude (ML) 
for station THT1 and E-W component. 
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Figure 7.35 Whisker plot statistical analysis of qs as a function of local magnitude (ML) 
for station THT1 and N-S component. 

 

 

 

Figure 7.36 Whisker plot statistical analysis of qs as a function of local magnitude (ML) 
for station THT1 and Z component. 
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Figure 7.37 Whisker plot statistical analysis of qs as a function of epicentral distance 
(measured in km) for station CMBO and E-W component. 

 

 

 

Figure 7.38 Whisker plot statistical analysis of qs as a function of epicentral distance 
(measured in km) for station CMBO and N-S component. 
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Figure 7.39 Whisker plot statistical analysis of qs as a function of epicentral distance 
(measured in km) for station CMBO and Z component. 

 

 

 

Figure 7.40 Whisker plot statistical analysis of qs as a function of epicentral distance 
(measured in km) for station SANT and E-W component. 
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Figure 7.41 Whisker plot statistical analysis of qs as a function of epicentral distance 
(measured in km) for station SANT and N-S component. 

 

 

 

Figure 7.42 Whisker plot statistical analysis of qs as a function of epicentral distance 
(measured in km) for station SANT and Z component. 
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Figure 7.43 Whisker plot statistical analysis of qs as a function of epicentral distance 
(measured in km) for station THT1 and E-W component. 

 

 

 

Figure 7.44 Whisker plot statistical analysis of qs as a function of epicentral distance 
(measured in km) for station THT1 and N-S component. 



104 
 

 

Figure 7.45 Whisker plot statistical analysis of qs as a function of epicentral distance 
(measured in km) for station THT1 and Z component. 

 

 

Table 7.1  Summarized results of linear regression models. 

 

7.4 qs index variation per station pair. Outliers and extreme values. 
 

The dynamic change of the scatterers distribution within the wider area of Santorini’s 
caldera, can be evaluated as the temporal variation of the differences between the qs 
indices, for same earthquake events, observed on different seismological stations. These 
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values are essential, since they depict individual regimes and unique sub-surface 
processes, with divergent physical properties. 
Energy contribution outside the volcanic system or any ambient geo-physical change 
within Santorini’s caldera, that can potentially lead to the change of any physical 
subsurface property, implies variations of the entropic scattering index. The observed 
temporal qs variations, are in agreement with the GPS displacement observation of 
NOMI station, as presented in Figure 7.49. 
The extremes values, generated from the differences of the entropic scattering index 
between the station pairs of:  
 

• SANT – CMBO 

• SANT – THT1 

• CMBO – THT1  

are presented in the following figures (Figure 7.46 to Figure 7.48). The extreme values 
are strictly confined within the caldera’s area, covering the period from 10/2011 to 
03/2012 (mm/yyyy). 
 
 
 

 

Figure 7.46 Extreme values of the qs index, obtained from the pair-station difference for 
individual earthquake events procedure. Component E-W. 
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Figure 7.47 Extreme values of the qs index, obtained from the pair-station difference for 
individual earthquake events procedure. Component N-S. 

 

 

 

Figure 7.48 Extreme values of the qs index, obtained from the pair-station difference for 
individual earthquake events procedure. Component Z. 
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Figure 7.49  Monthly and cumulative rates of the vertical displacement of GPS station 
NOMI [35]. 

 

 

 

7.5 Discussion and Conclusions 
 

For all earthquake events, coda wave increments, as presented in 5.2.3 section, deviate 
from the Gaussian distribution, carrying long-term memory effects. The non-extensive 
statistical physics approach is now considered as a sufficient and necessary condition, 
for the study of volcanic systems via instrumental observations. 
The temporal variation of qs index, indicates dependence between the volcanic activity 
and the observed seismicity, as both phenomena contributed to the increase of the 
amount of qs during the unrest period.  
As seen from Figure 7.1 to Figure 7.9, the scattering entropic index for all seismological 
stations and for the three components, showed an increasing trend and high values 
during the volcanic crisis, following a declining trend towards the background level. The 
reduction behavior coincides with the decrease of seismicity.  
For the seismological station ‘SANT’, before and after the volcanic unrest period, the 
maximum qs values were estimated at 1.75 in comparison with the volcanic crisis period, 
where the entropic index reached the amount of 2.14. This change indicates an increase 
of 22.3%. The same behavior was observed at both CMBO and THT1 stations. In the case 
of CMBO, after the well-defined unrest period, the entropic index has set its upper limit 
to the value of 2, while during the crisis it reached the value of 2.4, showing an increase 
of 20%. Last, the raise of the entropic scattering index for THT1 station, reached 21.1% 
(from 1.9 to 2.3). 
The spatiotemporal variation of the qs index, as observed after the analysis procedure, 
presents strong correlation with the observed seismicity alongside the Kameni 
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tectonovolcanic lineament. On the contrary, as seen in Figure 7.22Figure 7.23Figure 
7.24, seismic events along the Columbo tectonovolcanic lineament did not indicate any 
affect signs upon codas increments properties, keeping the qs index to the background 
level. This behavior is in agreement with the hypothesis that all major volcanic events-
eruptions of Santorini’s Volcano are associated with seismicity, accompanied with fluids 
and magma migrations within the Kameni tectonovolcanic lineament. As might be 
expected, the threshold, at which the entropic scattering index of the system must be 
found, in order to indicate an underlying volcanic high intense volcanic activity, is still 
unknown, since the Santorini’s volcanic complex hasn’t shown an adequate number of 
low frequency seismic events, spasmodic bursts and continuous tremors, all indications 
of a potential volcanic eruption. 
As showed in Figure 7.1 to Figure 7.9, the qs indices present higher values at CMBO and 
THT1 stations. The lower values of qs at SANT station, indicates lower scatterers 
distribution at the southeast part of Santorini. This contrast, corresponds to the 
dominant geological feature of Santorini’s island, expressed by the geophysical 
difference between the intra-caldera volcanic rocks with the surface expression, dense 
bedrock of the Profitis Ilias mountain.   
These observations strengthen the hypothesis that scatterers are magnifying the 
entropic parameter qs at the Caldera’s vicinity, as seismic wavefronts encounter more 
obstacles in their ray-paths, due to a constant dynamical change regime. 
After extensive statistical process and analysis of the entropic scattering index, we came 
to the conclusion that there is a slight relation of the entropic index qs with the local 
magnitude (ML). For all stations and for all three components, as the magnitude 
increases the qs increases too.  
Furthermore, the correlation of qs as a function of epicentral distance, measured in 
kilometers, showed a decreased behavior for SANT and THT1 stations, while for CMBO 
station, this relation is expressed by a positive slope.  
An important finding, regarding the dynamical evolution of the Santorini’s Volcano, is 
the correlation between the vertical ground displacement, as observed by the GPS 
station of NOMI (see Figure 7.49), and the extreme values and outliers of the entropic 
scattering index differences, as calculated per pair of stations. 
This indication is considered an additional verification of Tsalli’s non-extensive statistical 
physics implementation, upon complex natural-physical systems, being under dynamic 
evolution.   
Fluctuations of the entropic scattering index among the three components (HHE, HHN 
and HHZ) are constant and, in some cases, this difference exceeds the permissible 
deviation in order for a solution to be acceptable. This phenomenon is crucial and has to 
be considered in further research studies. 
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