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ABSTRACT

Subspace clustering is the problem of modeling a collection of data points lying in one

or more subspaces in the presence of noise, outliers and missing data. To the best of

our knowledge, all the algorithms associated to this problem follow a hard­clustering phi­

losophy. The study presented in this thesis explores the effectiveness of the possibilistic

approach, giving rise to a novel iterative algorithm, called sparse adaptive possibilistic

K­subspaces (SAP K­subspaces). SAP K­subspaces algorithm generalizes the sparse

possibilistic c­means algorithm (SPCM) [24]. Hence, it inherits the ability to handle re­

liably data corrupted by noise and containing outliers, as well as data points near the

intersections of subspaces. In addition, the new algorithm is suitably initialized with more

clusters than those actually exist in the data set and has the ability to gradually eliminate

the unnecessary ones in order to conclude with the true clusters, formed by the data.

Moreover, it adopts the low­rank approach, introduced in [10], in order to estimate the di­

mension of the involved subspaces. Experiments on both synthetic and real data illustrate

the effectiveness of the proposed method.

SUBJECT AREA: Unsupervised Machine Learning

KEYWORDS: clustering­alternating minimization, cluster elimination, low­rank, sparsity,

subspace clustering, parameter adaptation, principal component analysis,

possibilistic clustering



ΠΕΡΙΛΗΨΗ

Ως συσταδοποίηση υποχώρων ορίζεται το πρόβλημα της μοντελοποίησης δεδομένων

που βρίσκονται σε έναν ή και περισσότερους υποχώρους υπό την παρουσία θορύβου

και περιέχουν ακραίες παρατηρήσεις και ελλιπή δεδομένα. Εξ όσων γνωρίζουμε, όλοι

οι αλγόριθμοι που επιλύουν αυτό το πρόβλημα υποθέτουν ότι μια παρατήρηση ανήκει

αυστηρά σε έναν υποχώρο. Η παρούσα διατριβή εξετάζει την περίπτωση όπου ένα σημείο

μπορεί ταυτόχρονα και ανεξάρτητα να ανήκει σε παραπάνω από έναν υποχώρο. Ως

αποτέλεσμα έχουμε την δημιουργία ενός καινούργιου αλγορίθμου, του sparse adaptive

possibilistic K­subspaces (SAP K­subspaces). Ο αλγόριθμος αυτός αποτελεί γενίκευση

του αλγορίθμου sparse possibilistic c­means algorithm (SPCM) [24], πράγμα που σημαίνει

ότι μπορεί να διαχειριστεί με αξιοπιστία δεδομένα τόσο με θόρυβο και ακραίες τιμές όσο

και δεδομένα τα οποία βρίσκονται σε τομές υποχώρων. Επίσης, ο καινούργιος αλγόριθμος

αρχικοποιείται με περισσότερες συστάδες από τις πραγματικές, έχοντας την δυνατότητα

απαλοιφής των περιττών συστάδων και τελικά την εύρεση αυτών που σχηματίζονται απο

τα δεδομένα. Επιπλέον, υιοθετεί μια προσέγγιση εύρεσης γινομένου πινάκων χαμηλής

τάξης για την εκτίμηση της διάστασης των υποχώρων [10]. Πειράματα σε συνθετικά και

αληθινά δεδομένα επιβεβαιώνουν την αποτελεσματικότητα του αλγορίθμου.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μη Επιβλεπόμενη Μηχανική Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: συσταδοποίηση­εκ περιτροπής ελαχιστοποίηση, απαλοιφή συστάδων,

χαμηλή τάξη, αραιότητα, συσταδοποίηση υποχώρων, προσαρμογή

παραμέτρων, ανάλυση κύριων συνιστωσών, συσταδοποίηση με

βάση τα ενδεχόμενα
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Subspace Clustering: A Possibilistic Approach

1. INTRODUCTION

Clustering is a well known multivariate data analysis method, which aims at grouping a set

of entities so that similar entities are assigned in the same group/cluster and less similar

entities are assigned to different clusters (provided, of course, that the entities tend to

form aggregations). It is common for the entities to be represented by a set of L proper

selected features. In this vein, each entity is associated with an L­dimensional feature

vector, while the space where these vectors live is called feature space. Assuming that

there is structure hidden on it (the data form clusters), our goal is to effectively detect it

and conclude about the nature of the entities under study.

There exist many clustering algorithms in the bibliography based on very diverse criteria.

Although a complete categorization is impossible, roughly speaking, we can distinguish

four major categories: (a) sequential algorithms, where the resulting clusters are obtained

after one or few sequencial passes on the data set, (b) cost function optimization algo­

rithms where the problem is formulated as a cost function optimization, (c) hierarchical

algorithms where a sequence of clusterings is generated and (d) all the other clustering

algorithms that do not fit (in general) the previous categories, for instance, competitive

learning algorithms, graph theory based algorithms, spectral clustering algorithms and

subspace clustering algorithms.

The definition of a cluster is an important issue a clustering algorithm has to face. Thus,

some clustering algorithms use all of its points, while others use a set of parameters as­

sociated with it. In the last case, the set of parameters define a representative structure

associated with the cluster under study, each cluster has a representative, the so called

cluster representative. There are various types of cluster representatives. The most pop­

ular is the point representative, where a a cluster is represented by a point in the feature

space (this is suitable for the case where compact clusters around a point are expected).

A point representative does not necessary belong to this set of data. In K­means for in­

stance, representatives are averages of different groups of data.

In this thesis, we study the problem of subspace clustering, that is, the problem of group­

ing high­dimensional data that lie in multiple subspaces. More specifically, the problem

here is twofold: first, the clusters themselves need to be determined and second, their

associated subspaces need also be determined. The algorithms that fall into this cate­

gory (typically) represent the clusters by a set of parameters defining the subspace where

S. Eleftheraki 13



Subspace Clustering: A Possibilistic Approach

they live. Generally, there are four types of methods for subspace clustering: (a) alge­

braic methods, which are based on linear and polynomial algebra concepts, (b) statistical

methods, which adopt approaches from the field of statistics, (c) spectral based methods,

which utilize spectral graph theory tools and (d) self­expressive methods, which rely on

properties of data points lying in a union of linear subspaces. Currently, the last type of

methods is the most effective.

A major issue in the problem of clustering is the definition of the relation of a data point

with a cluster. There are three main philosophies here namely, (a) the hard clustering

philosophy, where each data point belongs to a single cluster, (b) the fuzzy clustering

philosophy, where a point may be shared amongmore than one cluster and (c) possibilistic

clustering philosophy, where what matters is the relation of a data point with the clusters.

Note that in the frist two cases, the relation of a given data vector xwith a certain cluster Cj

is affected by the relation of x with the other clusters. On the other hand, in the third case,

the relation of the data point with a cluster is independent from its relation with another

cluster.

Oddly enough, all the existing subspace clustering methods in the literature follow a hard­

clustering philosophy. In contrast to that, in this thesis, we developped a possibilistic

clustering algorithm called sparse adaptive possibilistic K­subspaces (SAP K­subspaces).

Since the algorithm derives from the optimization of a suitably defined cost function, SAP

K­subspaces is a cost function optimization clustering algorithm. The proposed algorithm

is robust to noise and outliers as it constitutes a generalization of the sparse possibilistic

c­means algorithm (SPCM) [24]. In addition, starting with an overestimated number of

clusters, the proposed algorithm has the ability to adapt both the number of subspaces

(clusters) and their dimensions.

The rest of this thesis is organised as follows. Chapter 2 explores several dimensionality

reduction methods. Chapter 3 provides some usefull definitions and information about

prior work in subspace clustering. Chapter 4 presents the proposed sparse adaptive pos­

sibilistic K­subspaces clustering algorithm and its main components. Chapter 5 carefully

tests SAP K­subspaces algorithm on artificial data of both linear and affine subspaces, as

well as on real data of motion segmentation in video sequences. Chapter 6 summarises

the main findings of this work. Chapter 7 highlights areas for further research. Appendix

A provides the adopted notation and all the required mathematical concepts. Finally, Ap­

pendix B presents a brief review of the main concepts of spectral clustering.

S. Eleftheraki 14



Subspace Clustering: A Possibilistic Approach

2. DIMENSIONALITY REDUCTION METHODS

In this chapter, we study dimensionality reduction methods. In the concept of subspace

clustering, dimensionality reduction methods are used in order to estimate the dimension

of the involved subspaces.

2.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a well­known multivariate analysis technique that

can be used for data modeling, compression and visualization purposes. Although there

has been a long time since it was introduced [11, 19], it is still one of the most widely

techniques when it comes to dimensionality reduction. Machine learning workers that

usually have to deal with huge amount of data, often utilize PCA in order to reduce the

number of their features/variables, thus reduce complexity over a particular problem. On

the other hand, statisticians that have only a couple of variables for their cause, often

use it as a tool to introduce independence which is a desired property of many statistical

methods.

2.1.1 Statistical view of PCA

Given a set of variablesX = {x1, x2, ..., xL}we seek to find the orthonormal axes, columns

ofU = [u1,u2, ...,uL] ∈ RL×L, that explain better the variability of the data set. Those axes

are called principal axes. This procedure can be seen as a rotation of the initial axes (see

figure 1). By projecting the data onto this new coordinate system, we not only reformulate

the initial variables to new uncorrelated ones but also, we can identify the less important

of them based on their associated variance information associated (eigenvalues of ΣX).

The new produced variables are called principal components. Thus, the initial data set X

is transformed to Y = {y1, y2, ..., yL}.

In the sequel, we describe in some detail the rationale behind PCA. Letx = [x1, x2, ..., xL]
⊤ ∈

RL be a random vector that follows a multivariate normal distribution with E(x) = 0 (cen­

tered at the origin) and covariance matrix Var(x) = ΣX ∈ RL×L. Our goal is to find a new

orthonormal basis {u1,u2, ...,uL} that explains as good as possible the variability of the

data set. We consider only the case where the eigenvalues of ΣX are distinct from each

S. Eleftheraki 15
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other.

Let yc = u⊤
c ·x, where uc the c­row of the matrix U , be the projection of a data point on the

direction defined by ui. Thus, the first principal direction, û1, results through maximization

of Var(y1) = E(y21) − E(y1)2 ¬. Assuming centered data, E(y1) = E(u⊤
1 x) = u⊤

1 E(x) = 0,

¬ gives Var(y1) = E(y21) = E((u⊤
1 x)

2) = E(u⊤
1 xx

⊤u1) = u⊤
1 E(xx⊤)u1 = u⊤

1 Var(x)u1 =

u⊤
1 ΣXu1.

The optimization problem we have to solve is the following,

max
u1

u⊤
1 ΣXu1 s.t. ∥u1∥22 = u⊤

1 u1 = 1. (2.1.1)

The constraint of eq. 2.1.1 prohibits us from having û1 = +∞. For ease, we set squared

euclidean norm equal to one.

From Lagrange multipliers, we reformulate the problem to that of obtaining

{û1} = argmax
u1

u⊤
1 ΣXu1 + λ1(1− u⊤

1 u1). (2.1.2)

Figure 1: Principal axes over a 2­dimensional data set

Source: [23]

By taking the partial derivative of eq. 2.1.2 and setting equal to zero, we have that

ΣXu1 = λ1u1. (2.1.3)

Therefore, the direction along which the data exhibit the maximum spreadness is the

eigenvector of ΣX , û1 associated with its largest eigenvalue.

MatrixΣX is of size L×L. Thus, there are L eigenvalues and L eigenvectors to compute.

From theory we know that eigenvalues are roots of a polynomial and that they can be real

S. Eleftheraki 16
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or complex. However, since ΣX is symmetric, its eigenvalues are real and non­negative.

Moreover, its eigenvectors can be chosen to be orthogonal1.

It is desirable for the second principal component to be uncorrelated with the first that is,

Corr(y2, y1) = 0⇔ Cov(y2, y1)√
Var(y2)

√
Var(y1)

= 0⇔ E(y2y1)− E(y2)E(y1)√
Var(y2)

√
Var(y1)

= 0. (2.1.4)

The above is true for

E(y2y1) = 0

E(u⊤
2 xx

⊤u1) = 0

u⊤
2 E(xx⊤)u1 = 0

u⊤
2 ΣXu1 = 0.

(2.1.5)

Observe that Cov(y2, y1) = 0 which means that the two first principal components are

uncorrelated2.

Combining eq. 2.1.3 and 2.1.5, we have that λ1u
⊤
2 u1 = 0. We know that λ1 > 0 because

ΣX is symmetric. Therefore, u⊤
2 u1 = 0 which leads us to the conclusion that uncorrelated

principal components imply perpendicular directions.

To obtain the second principal axis, we must solve the following problem:

max
u2

u⊤
2 ΣXu2 s.t. u⊤

2 u2 = 1 and u⊤
2 u1 = 0. (2.1.6)

Using Langrange multipliers, the problem becomes that of

{û2} = argmax
u2

u⊤
2 ΣXu2 + λ2(1− u⊤

2 u2) + κu⊤
2 u1. (2.1.7)

We take the partial derivative of 2.1.7 and we set it equal to zero.

2ΣXu2 − 2λ2u2 + κu1 = 0 (2.1.8)

Multiplying from the left with u⊤
1 we have.

2u⊤
1 ΣXu2 − 2λ2u

⊤
1 u2 + κu⊤

1 u1 = 0

u⊤
1 u1=1

=====⇒
u⊤
2 u1=0

2u⊤
1 ΣXu2 + κ = 0

2.1.3
===⇒ 2λ1u

⊤
1 u2 + κ = 0

κ = 0

1In the case of distinct eigenvalues, the eigenvectors are orthogonal. In the case where some eigenval­

ues coincide, the eigenvectors can be chosen to be orthogonal.
2uncorrelated does not implie independence.
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For κ = 0, eq. 2.1.8 gives

ΣXu2 = λ2u2. (2.1.9)

Despite the fact that κ = 0, it is u⊤
2 u1 = 0 because ΣX is symmetric and λ1 ̸= λ2. Thus, λ2

and û2 are the second largest eigenvalue and eigenvector respectively. The proof contin­

ues by showing that λL and ûL are the L­largest eigenvalue and eigenvector respectively.

In case where the data are not centered, we estimate the actual µ with E(x) and we

subtract it from every data point xi. We continue by factorizing ΣX . Bear in mind that if

the different variables are measured in different units instead ofΣX we use the correlation

matrix of X which is nothing but the scaled version ΣX .

2.1.2 Geometric view of PCA

Any point of an affine subspace S can be written as a linear combination of its associated

linear subspace basis U plus a fixed vector µ:

S = {x ∈ RL : x = µ+Uy,µ ∈ RL,U ∈ RL×d,y ∈ Rd}. (2.1.10)

Note that for µ = 0 the subspace is linear.

In real world applications the data do not lie perfectly in subspaces due to noise. Thus,

for one data point we have that xi = µ+Uyi + ηi, where ηi ∈ RL the associated noise.

Given a set of data points X = {xi ∈ RL}Ni=1, our goal is to find the subspace (affine or

linear) that fits the data best. This can be carried out by minimizing the sum of squares

error,

min
µ,U ,{yi}Ni=1

N∑
i=1

∥xi − µ−Uyi∥22, (2.1.11)

where µ ∈ S.

Nonetheless, this problem has not a unique solution. Firstly, there are infinitely many µ

vectors that satisfy the above equation. Suppose that yi is shifted. Then,

∥xi − µ−Uyi∥22 = ∥xi − µ−Uyi +Uy0 −Uy0∥22 = ∥xi − µ∗ −U(yi + y0)∥22 (2.1.12)

where µ∗ = µ−Uy0 ∈ S.

To avoid this ambiguity, we set E(y1) = E(y2) = ... = E(yL) =
∑N

i=1 yi

N
= 0.

Secondly, there is an infinitely number of possible bases for S. For ease, we search for

the orthonormal solution to the problem such U⊤U = Id.
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In the light of the above, we reformulate the optimization problem as,

min
µ,U ,{yi}Ni=1

N∑
i=1

∥xi − µ−Uyi∥22 s.t.
N∑
i=1

yi = 0 and U⊤U = Id. (2.1.13)

From Langrange multipliers it is

min
µ,U ,{yi}Ni=1

N∑
i=1

∥xi − µ−Uyi∥22 + κ
N∑
i=1

yi + trace((Id −U⊤U)Λ), (2.1.14)

where κ ∈ Rd and Λ = Λ⊤ ∈ Rd×d.

By taking the derivative of 2.1.14 w.r.t. µ and setting it equal to zero, it is easy to show

that

µ̂ =

∑N
i=1 xi

N
. (2.1.15)

For yi to be an extremum it should hold that

−2U⊤(xi − µ−Uyi) + κ = 0

−2U⊤(xi − µ) + 2U⊤Uyi + κ = 0.
(2.1.16)

Summing over i eq. 2.1.16, we get that κ = 0. Thus, it is

ŷi = U⊤(xi − µ). (2.1.17)

Combining 2.1.11 and 2.1.17 and setting x∗
i = xi − µ, yields to

min
U

N∑
i=1

∥x∗
i −UU⊤x∗

i ∥22 = min
U

N∑
i=1

∥(IL −UU⊤)x∗
i ∥22

= min
U

N∑
i=1

x∗
i
⊤(IL −UU⊤)⊤(IL −UU⊤)x∗

i

= min
U

N∑
i=1

x∗
i
⊤(IL −UU⊤)(IL −UU⊤)x∗

i

U⊤U=Id= min
U

N∑
i=1

x∗
i
⊤(IL −UU⊤)x∗

i

= min
U

trace((IL −UU⊤)X∗X∗⊤)

= min
U

trace(ILX
∗X∗⊤ −UU⊤X∗X∗⊤),

(2.1.18)

where x∗
i = xi − µ and X∗ the centered data matrix with columns the x∗

i vectors.

Observe that the first term inside trace is independent of U . Additionaly, from theory

trace(UU⊤X∗X∗⊤) = trace(U⊤X∗X∗⊤U). Thus, our new optimization problem be­

comes the following,

max
U

trace(U⊤X∗X∗⊤U) s.t. U⊤U = Id. (2.1.19)
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The Langrangian is given by the formula

max
U

trace(U⊤X∗X∗⊤U) + trace((Id −U⊤U)Λ), (2.1.20)

where Λ = Λ⊤ ∈ Rd×d.

Taking the derivative of 2.1.20 w.r.t. U and set it equal to zero.

X∗X∗⊤U + (X∗X∗⊤)⊤U −UΛ⊤ −UΛ = 0

X∗X∗⊤U = UΛ.
(2.1.21)

Muliplying from the right with U⊤ yields to X∗X∗⊤ = UΛU⊤.

Muliplying from the left with U⊤ yields to U⊤X∗X∗⊤U = Λ.

Therefore, the objective function can be written as,

trace(U⊤X∗X∗⊤U ) = trace(Λ). (2.1.22)

Because bothX∗X∗⊤ and Λ are symmetric, matrix U is the orthogonal matrix ofX∗X∗⊤

with columns its d­eigenvectors and Λ is the diagonal matrix with the corresponding d­

eigenvalues of X∗X∗⊤ on the main diagonal. From eq. 2.1.22, we conclude that the

objective function takes its maximum value for the matrix Û , whose columns are the eigen­

vectors that correspond to the d­largest eigenvalues of X∗X∗⊤. Those eigenvectors are

the top d left singular vectors ofX∗ which are equivalent to those obtained by the classical

PCA approach in the section 2.1.1.
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2.2 Alternating Iteratively Reweighted Least Squares (AIRLS)

In the previous section (2.1.2), we show that the problem of dimensionality reduction can

be seen as that of fitting a lower dimensional subspace S to the data set.

In [10] a new algorithm, called Alternating Iteratively Reweighted Least Squares (AIRLS)

is proposed, whose aim is to reduce the dimension of a data set X = {xi ∈ RL}Ni=1

corrupted by noise. Specifically, the algorithm tries to express a low­rankmatrixX ∈ RL×N

(with columns the data vectors) as a product of two low­rank matrices U ∈ RL×L and

Y ∈ RL×N (X = UY ), where U will contain the basis vectors of a lower dimensional

space (subspace) and Y the projections of the data points on this subspace.

On every iteration, we try to fit a subspace S of dimension lower than that of the ambient

space (regularizer effect), subject to the constraint that the distance of the points from that

subspace is less or equal to the variance associated with that subspace by reducing this

way the number of possible solutions to the problem.

In mathematical terms, it is

min
U ,Y

∥∥∥∥∥∥∥
[
U

Y ⊤

]
(L+N)×L

∥∥∥∥∥∥∥
r,2

s.t. ∥X −UY ∥2F ≤ η, (2.2.1)

where η a small constant defining the variance of S,X , [x1−µ,x2−µ, ...,xN−µ] ∈ RL×N

the matrix with columns the centered data vectors and Y , [y1,y2, ...,ym] ∈ RL×N the

matrix with columns the projections of those vectors onto the subspace S.

The previous optimization problem can be equivalently written as,

min
U ,Y

L∑
c=1

(∥uc∥22 + ∥yc∥22)
r
2 s.t. ∥X −UY ∥2F ≤ η, (2.2.2)

where uc ∈ RL×1 and yc ∈ RN×1 the column parts of the concatenated matrix, parameter

r defines the ℓrr,2 norm (see Appendix A).

By Langrange theorem, we reformulate the problem to the following

{Û , Ŷ } = argmin
U ,Y

1

2
∥X −UY ∥2F + λ2

L∑
c=1

(∥uc∥22 + ∥yc∥22 + z2)
r
2 , (2.2.3)

where λ2 denotes the Langrange multiplier and z2 a small positive constant that alleviates

singular points i.e., points where the gradient is not continuous.

S. Eleftheraki 21



Subspace Clustering: A Possibilistic Approach

Regularizer λ2 ≥ 0 tries to “vanish” ­ shrink to zero ­ the columns of the concatenated

matrix
[

U
Y ⊤

]
reducing thus their rank. Therefore, the data matrix X will be expressed as

a product of two low­rank matrices.

The solution of the previous optimization problem will give the basis U of the subspace

(that is not orthonormal), as well as the matrix of the projections of the N data points, Y .

Unfortunately, the non­separable nature of the regularizing term prohibits us from obtaining

a closed form solution. To tackle the above problem, the authors created an algorithm

that follows the Block Successive Upperbound Minimization (BSUM) framework in order

to alternatingly minimize 2.2.3.

Algorithm 1 Alternating Iteratively Reweighted Least Squares (AIRLS) Denoising Algo­

rithm

Input: Data matrix X ∈ RL×N , initial basis U 0 ∈ RL×L, initial projections Y 0 ∈ RL×N ,

regularizer λ2, norm’s parameter r, smoothing parameter z.

1: D(U0,Y 0) = diag
(
(∥u1∥22 + ∥y1∥22)

r
2 , (∥u2∥22 + ∥y2∥22)

r
2 , ..., (∥uL∥22 + ∥yL∥22)

r
2

)
2: repeat

3: U k+1 = XY ⊤
k

(
Y kY

⊤
k + λ2D(Uk,Y k)

)−1

4: Y k+1 = (X⊤U k+1

(
U⊤

k+1U k+1 + λ2D(Uk+1,Y k)

)−1
)⊤

5: (optional) Pruning

6: k = k + 1

7: until Convergence

Output: U = U k+1, Y = Y k+1.

Optionally, a pruning procedure can be placed to take action in step 5 of AIRLS (see

algorithm 1). By this way we remove the columns of the concatenated matrix that their

elements are approximately zero. This step is crucial for the adaptation of the subspace

dimension. Moreover, it reduces the per iteration complexity of the algorithm. Hopefully,

the cardinality of the remaining columns will be equal to true dimension of the subspace.

In the case where the dimension of the subspace is equal to that of the ambient space L,

a good choice of λ2 maintains the initial dimension of the fitting subspace L.
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3. SUBSPACE CLUSTERING: DEFINITIONS AND METHODS

This chapter contextualizes the subspace clustering problem and focuses explicitly on the

methods used in the experiments. For theorems and proofs check [23] and the respective

cited papers.

3.1 Problem and challenges

Subspace clustering refers to the problem of clustering where the data are spread along

various subspaces of the ambient space1. It constitutes a generalization of the problem

that Principal Components Analysis ­ PCA and Alternating Iteratively Reweighted Least

Squares ­ AIRLS (see chapter 2) solve. More specifically, in those methods, the goal is to

estimate the subspace where all the data points live. In contrast, in subspace clustering

the aim is to fit one subspace for each cluster of data points.

Assume that we want to partitioning a set of points X = {xi ∈ RL}Ni=1 into K clusters

{Cj}Kj=1 each one associated with a subspace Sj, defined as subspaces

{Sj}Kj=1 = {xi ∈ RL : xi = µj +U jyij,µj ∈ RL,U j ∈ RL×dj ,yij ∈ Rdj}Kj=1 (3.1.1)

of dimension {dj}Kj=1 ≡ {dim(Sj)}Kj=1.

The displacement vectors {µj}Kj=1, the bases {U j}Kj=1 that define the subspaces, the pro­

jections {yij}Ni=1j = 1, ..., K, of the data points to the subspaces, the dimensions of the

associated subspaces {dj}Kj=1, as well as the data segmentation (the assignment of the

data points to the clusters) are to be determined. Moreover, notice that for K = 1, equa­

tion 3.1.1 describes the (single) subspace where all the points of the data set lie and can

be estimated by PCA or AIRLS approach presented in chapter 2.

The degree of association of a point xi with a cluster Cj is quantified via a compatibility

degree wij. Actually, compatibility degrees define the segmentation of the data set. As

mentioned earlier, all the existing subspace clustering algorithms adopt the hard philoso­

phy for belongness (each point belongs exclusively to a single cluster); in mathematical

term that is, wij ∈ {0, 1}.
1If S is a subspace of a vector space V , we call V the parent space or ambient space of S. Informally,

when our data form subspaces their corresponding data space is called ambient space.
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Focusing on one cluster Cj, it holds that

dj ≤
N∑
i=1

wij < N. (3.1.2)

To put it differently, a subspace Sj is compatible with at least dj points (or dj + 1 for affine

subspaces), but it can not be highly compatible with the entire data set.

For the hard membership function, the full set of constraints for wij ’s is as follows

wij ∈ {0, 1}, i = 1, ..., N, j = 1, ..., K.

K∑
j=1

wij = 1, i = 1, ..., N.
(3.1.3)

In this case it is wij ∈ {0, 1}; that is, a point strictly belongs exclusively to a single cluster.

On the other hand, in the possibilistic setting, the only constraint for wij ’s is:

wij ∈ (0, 1]. (3.1.4)

Observe that in the possibilistic case there is no restriction about the sum of the compat­

ibility degrees associated to a certain data point. This means that a point can be simul­

taneously highly or almost no compatible with several clusters. This property makes the

possibilistic clustering algorithms highly robust to outliers. Note that wij ’s can be arranged

so that they form an N ×K matrix W , that is W = [wij]i=1,...,N,j=1,...,k.

As discussed in [22], in subspace clustering we face the following challenges:

1. Both the parameters of the subspaces and the segmentation of the data are con­

sidered unknown. If the segmentation were known, we would simply apply PCA to

each group of points to estimate the associated subspaces. On the other hand, if the

subspaces were known, we would associate each point with its closest subspace 2.

2. The distribution of the data around the subspaces is unknown. For instance, in SSC

algorithm [8] we have theoritical guarantees about its effectiveness, when the data

are uniformly distributed and the clusters are sufficiently separated. Nevertheless,

in some cases the subspaces are degenerate with points in their intersections.
2In the rest of this work, we assume each subspace corresponds to a single cluster. Thus, knowledge of

the subspace implicitly defines the associated cluster.
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3. Subspaces can be joint ­ disjoint or dependent ­ independent (see definitions A.2.5,A.2.6

and A.2.12­A.2.14). In general, the easiest case in subspace clustering is when the

subspaces are considered disjoint or independent, since the subspaces in those

cases do not have points in the intersection (see figure 2).

4. Data can be corrupted by noise, outliers, and may exhibit missing entries. This calls

for robust algorithms under the concept of subspace clustering.

5. In PCA, which corresponds to the K = 1 case, the only parameter for estimation is

the dimension of the subspace. However, in subspace clustering, we need a model

criterion that benefits models with more than one clusters and low dimensions.

(a) (b)

Figure 2: Independent and disjoint subspaces

(a) A set of three independent 1­dimensional subspaces. (b) A set of three disjoint 1­dimensional

subspaces. Observe that the first set, in contrast with the second, spannes R3. In both images,

every pair of subspaces intersects only at the origin. Source: [23]

The following sections present some popular subspace clustering methods, which will be

used to test the performance of SAP K­subspaces clustering algorithm. Specifically, in

section 3.2 we present the K­subspaces algorithm, a cost function based clustering al­

gorithm that is similar to ours but it is non adaptive (in terms of the number of clusters)

and it follows the hard philosophy. In section 3.3 we present RANSAC, a robust to out­

liers agorithm that, as K­subspaces, has the ability to exclude outliers from the clustering

procedure. Lastly, in sections 3.4 and 3.5 two state of the art algorithms are presented:

Spectral Local Best­Fit Flats (SLBF) and Sparse Subspace Clustering (SSC). Both of them

fall into the category of spectral based methods which currently includes the most powerful

subspace clustering algorithms.
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3.2 K­Subspaces clustering

K­subspaces [1,21] is a statistical and iterative method for subspace clustering that gen­

eralizes the classical K­means algorithm [17]. The data instead of forming clusters that

spread along all dimensions of the data space, they form clusters that lie along the linear

or affine subspaces of the data space. Historically, it conducts an improved version of the

K­planes algorithm [5] which was suitable only for hyperplanes detection.

Similarly to K­means, in the K­subspaces clustering algorithm, iteratively we try to mini­

mize the sum of the distances of the data points from their closest cluster representatives.

This is carried out by solving the following optimization problem:

min
{µj},{Uj},{W }

K∑
j=1

N∑
i=1

wij dist(xi, Sj)
2

s.t. U jU
⊤
j = IL, wij ∈ {0, 1},

K∑
j=1

wij = 1 for i = 1, ..., N and j = 1, ..., K,

(3.2.1)

where U j is the matrix containing the basis vectors of the subspace Sj. The distance of a

point xi from the cluster Cj is defined as the distance of xi from the associated subspace

Sj and is given by the formula,

dist(xi, Sj)
2 = ∥xi − µj −U jyij∥22

U⊤
j (xi−µj)=yij

== ∥(IL −U jU
⊤
j )(xi − µj)∥22. (3.2.2)

The first constraint in eq. 3.2.1, means that we seek to find an orthogonal basis of the

subspace. The degree of compatibility wij is equal to 1 when xi belongs to Cj. Lastly,

the constraint about the sum of the degrees means that every point belongs only to one

cluster (hard clustering).

As its ancestor (K­means), the K­subspaces algorithm is of iterative nature. For the al­

gorithm to start, one must initialize the orthonormal bases {U j}Kj=1, their corresponding

dimension {dj}Kj=1 and the associated displacement vectors {µj}Kj=1. The main part of

the algorithm can be divided into two stages: segmentation (definition of clusters) and

estimation (of the associated subspaces ­ orthonormal basis, projections and displace­

ment vectors). More specifically, fixing {U j}Kj=1, {µj}Kj=1, we assign the data points to

their closest clusters (in terms of their distance of a point from a subspace). Then, fixing

the partition of the data, we re­estimate (update) the parameters {U j}Kj=1, {µj}Kj=1. Repeat

until a termination criterion is met.
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Algorithm 2 K­Subspaces

Input: Data matrix X ∈ RL×N , number of subspaces K, subspaces dimension {dj}Kj=1

1: Initialization: Initialize the bases {U j}Kj=1(U j ∈ RL×dj) and the displacement vectors

{µj}Kj=1(µj ∈ RL).

2: repeat

3: for j = 1 : K do

4: for i = 1 : N do ◃ Segmentation part

5: wij =


1, if j = argmin

l=1,...,K

∥(IL −U lU
⊤
l )(xi − µl)∥22

0, else
6: end for

7: µj =
∑N

i=1 wijxi∑N
i=1 wij

◃ Estimation part

8: Uj = top dj eigenvectors of
∑N

i=1wij(xi − µj)(xi − µj)
⊤

9: Y j = [U⊤
j (x1 − µj),...,U⊤

j (xN − µj)]

10: end for

11: until convergence

Output: Compatibility degree matrix W , {U j,Y j,µj}Kj=1.

Observe that forK = 1 the problem becomes that of geometric PCA, while for dj = 0, there

are no bases and projections ({U}Kj=1, Y j respectively), thus the algorithm becomes that

of K­means. The latter occurs when the data instead of enlogated flat­shaped clusters

form compact and hyperspherically­shaped clusters.

The algorithm gradually evolves as it tries to come closer to a local minimum of the cost

function in 3.2.1. Furthemore, It is proved that the algorithm will always converge to a local

minimum [23]. However, the ”quality” of the convergence depends on the initialization. In

addition, K­subspaces has the ability of performing well at small noise levels. As someone

can easily observe, the major problem with K­subspaces is that the number of the flats and

their dimension have to be known a priori, a case that is barely met in practice. Moreover,

the l2­norm makes the algorithm sensitive to outliers.
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3.3 RANdom SAmple Consensus (RANSAC)

RANSAC belongs to the category of the statistical methods of subspace clustering. It

was introduced in [9] in order to smooth and interpret data sets that contain outliers. The

algorithm is suitable for both linear and affine subspaces. In its original form, RANSAC

can be used for the identification of a single subspace associated with the whole data set.

To define a linear d­dimensional subspace, d independent vectors are needed. Subse­

quently, the algorithm iteratively picks at least d random data points and estimates the

subspace Ŝ via PCA. Based on that model, if any of the residuals of the entire data set is

less than or equal to a threshold η that particular point is considered as an inlier (consen­

sus test). The process is then repeated until the cardinality of the inliers is equal or over

a user­defined number Nmin. The rest of the data are marked as outliers.

Algorithm 3 RANdom SAmple Consensus (RANSAC)

Input: Data matrix X ∈ RL×N , subspace dimension d, maximum number of iterations k,

residuals threshold η, cardinality of inliers threshold Nmin.

1: i = 1

2: repeat

3: Xi ← d points at random

4: Ŝi ← PCA(Xi)

5: Xinliers ← {x ∈ X : dist(x, Ŝi) ≤ η}

6: if |Xinliers| ≥ Nmin then

7: i = k

8: else

9: i = i+ 1

10: end if

11: until i = k

12: Ŝ ← PCA(Xinliers)

Output: Ŝ, Xinliers ∈ RL×|inliers|.

S. Eleftheraki 28



Subspace Clustering: A Possibilistic Approach

Nonetheless, the goal in the subspace clustering is to estimate K subspaces. Thus, in

order to utilize RANSAC in this framework, we run RANSAC and we repeat until no out­

liers are remained. The procedure terminates returning the estimation of each inliers’ set

subspace (cluster) and the reassignment of every point to its closest cluster. The process

described is known as RANSAC­on­Subspaces and it prevails over RANSAC­on­Union

which estimates all the subspaces at once but with a high computational cost [25]. Notice

that by using homogeneous coordinates (definition A.2.10), the problem can be general­

ized to that of K affine subspaces.

Because of its sequential nature, RANSAC­on­Subspaces can handle both dependent and

independent subspaces (definitions A.2.5 and A.2.13). It is extremely robust to outliers

and the number of subspaces K does not have to be known a priori. However, the choice

of η and Nmin plays an important role in the determination of K. Its main disadvantage is

that the probability of getting d inliers reduces exponentially with the number of subspaces.

Consequently, the number of maximum iterations has to become larger as the number of

subspaces and their dimension increases. Lastly, the dimensions of each subspace have

to be known and equal.

In cases where the dimensions differ, one can start the estimation of the subspaces in an

increasing or decreasing dimension order. Nevertheless, as discussed in [25], this may

cause some serious problems. If one begins by estimating the subspace with the highest

dimension, it is expected that data which belong to subspaces of lower dimension will

be assigned to it (model over­fit). On the other hand, if one begins with that of the lowest

dimension, the first estimated subspace is quite possible to be assigned to data that belong

to intersections of subspaces or data that belong to the subspace of the highest dimension.

All these side effects get empowered by the algorithm’s hard logic and the fact that in each

iteration inliers are removed.
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3.4 Spectral Local Best­fit Flats (SLBF)

SLBF [26] is a spectral­based method for subspace clustering 3. The ultimate challenge

with this kind of methods is to define a good affinity matrix. In subspace clustering, two

points which belong to different clusters can be really close to each other if they both lie

near intersections of subspaces. The opposite is likely to happen as well, two points that

belong to the same group can be far from each other if that group forms an elongated flat

structure.

To cope with this problem, SLBF uses as similarity metric the Gaussian kernel function but

with point to subspace distance instead of point to point. Firstly, the algorithm estimates for

each point (center) xi a set of neighborsXi and afterwards using that it defines a subspace

Ŝi. To define a neighborhood, for a given center xi algorithm 4 gradually increases the

neighborhoods’ size till it finds the first local minimum of the average errors.

The average error of a set Xi with center the point x0, is given by the formula:

β2(Xi) =

√√√√ ∥X i −HjX i∥2F
|Xi|(max

xi∈Xi

∥xi − x0∥2)2
, (3.4.1)

whereX i the matrix with columns the elements of Xi, |Xi| the cardinality of Xi andHj =

U j(U
⊤
j U j)

−1U⊤
j the corresponding hat matrix of the model4.

For the formation of the affinity matrix A, the following equations are used:

αij = exp(−di,j/2σ2
i ) + exp(−di,j/2σ2

j ) (3.4.2)

where

di,j =

√
dist(xi, Ŝi),dist(xj, Ŝj) (3.4.3)

and

σi =

√∑
x∈Xi

dist(x, Ŝ). (3.4.4)

Parameter σi measures how well the neighborhood Xi fits its closest subspace Ŝ, where

{Ŝ} = argmin
Ŝh

dist(x, Ŝh), h = 1, ..., N . To compute the point to subspace distance, the

formula 3.2.2 is used.

3For a small introduction in spectral clustering see Appendix B.
4Here, as model we mean the subspace Si that we fit to the set Xi.
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The process continuous with the computation of the diagonal matrix and the normalization

of the affinity. Finally, the produced matrix is factorized and K­means is applied to the rows

of the matrix composed by the top k eigenvectors 5 of the normalized affinity multiplied by

the corresponding eigenvalue matrix.

Note that K­means takes as an input parameter the number of the clusters which is equal

to the cardinality of the chosen eigenvectors. Perhaps, one may overcome this issue by

using adaptive compact clustering algorithms or by using K­means combined with model

selection techniques in order to estimate more reliably the number of clusters.

SLBF is a local spectral method, because it constructs the affinity based on neighbor­

hooding information around the data points. Other methods in the literature, called global

spectral methods, like Spectral Curvature Clustering (SCC) [6], use information from the

entire data set to compute the affinity. However, the complexity of the latest rises as the

dimension and the number of clusters increases.

Algorithm 4 Neighborhood Size Selection for HLM by Randomized Local Best Fit Flats

Input: Data matrix X ∈ RL×N , a point x0 ∈ RL, start size S, step size T , mean shifts

parameters (optional): κ,m.

1: (optional) Update x0 as the center of its κ­nearest neighbors while repeating m times

2: k = −1

3: repeat

4: k = k + 1

5: Let Xk be the data matrix with the S + kT nearest neighbors of x0 as columns

6: Ŝ ← PCA(Xk) ◃ best fit flat

7: β2(k)← β2(Xk) according to 3.4.1

8: until k > 1 and β2(k − 1) < min{β2(k − 2), β2(k)} ◃ if there is no noise, k >= 1

Output: Xk−1.

5The top k eigenvectors correspond to the k largest eigenvalues.
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Algorithm 5 Spectral Local Best­Fit Flats (SLBF)

Input: Data matrix X ∈ RL×N , the parameters used in algorithm 4.

1: For all data {xi}Ni=1, run algorithm 4 and get Ŝi

2: Construct the N ×N affinity matrix A using the eq. 3.4.2, 3.4.3 and 3.4.4

3: Construct the N ×N diagonal matrix D = diag(d1, d2, ..., dN), where di =
∑N

i=1 αij

4: Normalize A by setting Ã = D−1/2AD−1/2 and factorize it

5: Construct the N × k matrix U with columns the top k eigenvectors of Ã and the k× k

diagonal matrix Λ that holds the corresponding eigenvalues on its diagonal

6: Run K­means over the rows of UΛ1/2

Output: Compatibility degree matrix W .

An advantage of the SLBF algorithm is that the adopted similarity measure (eq. 3.4.2),

allows the handling of both affine and linear subspaces, due to its angle free definition.

Another key advantage of the algorithm, is that it determines the size of the neighborhood

automatically via algorithm 4. Clearly, since the algorithm works with neighbors, outliers

are expected to be rejected, as they lie far from the region where the majority of the points

lies.

Nonetheless, the neighborhood data do not always belong to the same subspace. For

instance, the neighbors of a point in intersections of subspaces, is likely to belong to more

than one group. The number of subspaces has to be known. Additionaly, the dimension of

the subspaces has to be known a priori and equal for all subspaces, as a subspace is fitted

to each neighborhood of every point. It goes without saying that this is another drawback

of SLBF, since PCA is performed several times until the convergence of algorithm 4.
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3.5 Sparse Subspace Clustering (SSC)

Until now, we have seen iterative, statistical and spectral methods for subspace clustering.

The algorithm presented in this section belongs to the class of the self­expressive meth­

ods of subspace clustering. Those methods provide up to now one of the most effective

solution to the subspace clustering problem [23].

Self­expressive methods where developed in order to overcome the issues of both local

and global spectral methods. Furthemore, they provide theoritical guarantees that ensure

reliable results. They are divided into two categories. Those who are based on sparse rep­

resentation techniques and those who are based on low­rank representation techniques.

SSC [8] is a member of the first category.

3.5.1 Uncorrupted data

In this subsection we examine the case of the uncorrupted data.

The main idea behind the algorithm is that every point xi in a union of K subspaces

S1∪S2∪ ...∪SK can be written as a linear or affine combination of other points in the data

set. This is called self­expressiveness property. For now, assume that those subspaces

are linear. To express each point as a linear combination of other points, one has to solve

for every point the following linear system:

xi
L×1

= X
L×N

ci
N×1

= x1ci1+x2ci2+...+xNciN , where ci , [ci1, ci2, ..., ciN ]
⊤ s.t. cii = 0, i = 1, ..., N.

(3.5.1)

Vector ci holds values that allow us, multiplied with the data matrixX, to produce a linear

combination that constructs xi. The constraint cii = 0 prohibits us from writing xi as a

linear combination of itself. Matrix X can be seen as a dictionary used to construct the

data from the data themselves.

Assume the case where all the data come from one subspace of dimension d. We need to

have at least d data points to define that subspace. Most of the times, it is true that N > d.

Thus, we have that rank(X) = rank(X|xi) and N − rank(X) ̸= 0, where rank(X) = d. By

generalizing this to the problem of multiple subspaces, we have infinitely many solutions

for the eq. 3.5.1.
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Among all the solutions of 3.5.1, there exist one sparse solution ci, whose nonzero entries

correspond to data coming from the same subspace as xi. Ideally, the cardinality of those

nonzero entries is equal to the dimension of the corresponding subspace. In that case, ci
is said to be subspace preserving or the subspace­sparse solution of 3.5.1. Nevertheless,

any sparse solution is not necessarily subspace preserving.

Consequently, we search for a solution ci with restriction over the number of its nonzero

entries. Thus, the problem becomes that of

min ∥ci∥0 s.t. xi = Xci, cii = 0. (3.5.2)

However, this problem is in general NP­hard [2]. Therefore, to restrict the number of

the possible solutions and impose sparsity, the authors in [8] propose the solution of the

following convex relaxation optimization problem:

min ∥ci∥1 s.t. xi = Xci, cii = 0. (3.5.3)

Considering simultaneously the problem 3.5.3 for all data points, we have in matrix nota­

tion the following,

min ∥C∥1 s.t. X = XC, diag(C) = 0, (3.5.4)

where C , [c1, c2, ..., cN ] ∈ RN×N is the matrix with columns the sparse vectors that

reconstruct each column of X respectively. The last constraint, where diag(C) ∈ RN , is

analogous to cii = 0 in 3.5.3 but for every point­column of X.

Solving 3.5.4 is the first step of SSC. Remember that the data in subspace clustering

form (in general) enlogated flat­shaped clusters. Hence, optionally, the columns of C are

normalized. This eliminates scale differences between the largest edge weights since

spectral clustering tends to focuse on the largest connections of the graph. Large edge

weights are created when a point with small euclidean norm is matched with other points

that have way larger euclidean norms and vice versa (euclidean norms of data vectors).

The algorithm proceeds by creating the similarity graph of the data set. The affinity matrix

is given by the formula A = |C| + |C|⊤, to ensure that A is symmetric and positive,

where |C| is C with normalized columns. By this, we eliminate cases where a point xi

can be chosen among others to reconstruct a point xq but the opposite does not hold.

Ideally, it is expected that a point would be similar only to points from the same subspace.

Likewise, it is expected that vertices corresponding to points from different subspaces are

not connected by any edge.

S. Eleftheraki 34



Subspace Clustering: A Possibilistic Approach

Finally, the normalized Laplacian matrix is computed (eq. 3.1.2). It follows, its factoriza­

tion and the application of K­means to the rows of the matrix composed by the bottom k

normalized eigenvectors which correspond to the k smallest eigenvalues of the Laplacian.

Let as now consider the affine case. Using the homogeneous coordinates of a data

set (definition A.2.10), we are able to tackle the problem of affine subspace clustering.

Roughly, one can describe the homogeneous coordinates as a mathematical tool that al­

lows us to handle the projective space, the space that any parallel affine subspaces can

meet at one point in infinity. Based on this, any d­dimensional affine subspace S in RL

can be described as a (d + 1)­dimensional linear subspace in RL+1 that includes S and

the origin (see figure 3). Thus, to fit an affine subspace d+ 1 points are needed, where d

the dimension of the affine subspace.

Figure 3: Homogeneous representation

Three affine 1­dimensional subspaces represented by three linear 2­dimensional subspaces.

Source: [23]

Nonetheless, this way of representing affine subspaces may lead to indistinguishability

between the subspaces as their in­between dimension may increase. To illustrate this, as

written in [23], imagine the linear subspaces that correspond to the affine lines x = 1 and

x = −1. They fall into one single subspace.

We have that any point xi of an affine subspace S ⊂ RL with d < L can be written as,

xi = x0ci0 + x1ci1 + ...+ xdcid,
d∑

j=0, j ̸=i

cij = 1, (3.5.5)

where {xi}di=0 an affinely independent set (definition A.2.12).
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Equivalently with 3.5.1, to express each entry as an affine combination of other points,

one has to solve for every point the following linear system:

xi
L×1

= X
L×N

ci
N×1

s.t. 1⊤

1×N

ci
N×1

= 1, cii = 0. (3.5.6)

After reformulating the problem, one observes two differences. Firstly, here the subspace­

sparse solution has d + 1 nonzero entries and secondly, there is an additional constraint

about the scalars that forces their sum to be equal to one.

Finally, the optimization problem becomes,

min ∥C∥1 s.t. X = XC, 1⊤C = 1⊤, diag(C) = 0. (3.5.7)

Convex programming tools that solve this optimization program can be found in [3,4,12].

Algorithm 6 Sparse Subspace Clustering (SSC) for Uncorrupted Data

Input: Data matrix X ∈ RL×N .

1: Solve the optimization program 3.5.4 or 3.5.7 for linear or affine subspaces accordingly

and get C

2: (Optional) Normalize the columns of C as ci ← ci
∥ci∥∞

3: Create a weighted similarity graph of the data set with affinity matrix A = |C|+ |C|⊤

4: Construct the N ×N normalized Laplacian matrix via eq. B.0.1 and factorize it

5: Construct the N × k matrix U with columns the bottom k normalized eigenvectors

6: Run K­means over the rows of U

Output: Compatibility degree matrix W .

A significant advantage of SSC is that it guarantees a subspace preserving solution when

uniformly distributed subspaces are: independent, disjoint or even random (for the rele­

vant theorems see [23]). Under those conditions, there will be no connections between

the points­edges of different subspaces. Thus, the number of the subspaces is equal to

that of the connected components in the similarity graph. However, note that those condi­

tions are not always met in practice. Furthemore, the algorithm is suitable for both affine

and linear subspaces and most importantly their dimension does not have to be known a

priori.
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Unlike SLBF and other local spectral methods, SSC does not need to take points around

the neighborhood of an entry to construct the affinity matrix. Assuming dependency be­

tween the clusters, in most of the cases it is likely to get a closer to the truth result, since

the points that lie near intersections of subspaces are likely to be assigned to points of the

same subspace­group.

The SSC rationale is extended to the concept of corrupted data as well (outliers, noise,

large errors and missing data).

3.5.2 Corrupted data

In this subsection we study SSC in the precence of outliers and noise.

Typically, when the data contain outliers the first step is to separate outliers from inliers

and continue by grouping the inliers set. The data set can be described as,

X = [X inliers,Xoutliers]Γ, (3.5.8)

where Γ a permutation matrix. Our goal is to detect the points­columns of Xoutliers.

To do that a similar philosophy to that of RANSAC (presented in 3.3) is considered [20].

After solving the optimization program 3.5.4 or 3.5.7 and given a threshold the algorithm

tests if a point xi is an outlier or not. In the former case, that point is removed from the data

set. This can be done by checking the sparseness of its corresponding sparset solution

ci. Iteratively, for each point the following test is applied,

∥ci∥1 > θ(γ)
√
L, (3.5.9)

where γ = N−1
L

the density of the data inside the ambient space RL and θ a threshold ratio

function with

θ(γ) =


√

2
π

1√
γ
, 1 ≤ γ ≤ e√

2
πe

1
log γ , γ ≥ e.

(3.5.10)

With e we denote the base of natural logarithms. If xi satisfies 3.5.9, it is considered an

outlier. Reliable results are guaranteed in case of uniformly distributed data. Apart from

the density, no other assumption about the nature of the subspaces has to be made.
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Assume now that the data points are corrupted by additive noise. Then, each point can

be written as,

xi = x∗
i + η∗

i , (3.5.11)

where x∗
i the noiseless version of xi and η∗

i the noise.

However, using the self­expressiveness property given in 3.5.1, we have that

x∗
i =

N∑
j=1

x∗
jcij. (3.5.12)

By combining 3.5.11 with 3.5.12, each point can be written as,

xi = Xci + ηi, where ηi , η∗
i −

N∑
j=1

η∗
jcij ∈ RL. (3.5.13)

Hence, the problem is reformulated to that of finding the sparsest solutions of

min ∥C∥1 +
λ

2
∥H∥2F s.t. diag(C) = 0, (3.5.14)

whereH , [η1,η2, ...,ηN ] = X−XC ∈ RL×N ,X the data matrix whose columns are the

noiseless versions of xi’s, ∥∥F the Frobenius norm and λ the regularization parameter.

The Frobenius norm forces the entries ofH to small values. Keep in mind that if the data

come from affine subspaces, we should add to the problem the constraint 1⊤C = 1⊤.

Observe that in contrast with eq. 3.5.4, here the constraintX = XC is not valid. Actually,

it has been replaced by the request to minimize the quantity ∥H∥2F . Thus, for a small

enough λ one may get C = 0. According to the authors in [8] to avoid this, λ should be

chosen as λ = α
κ
, where κ = min

i
max
i ̸=j
|x⊤

i xj| and α > 1. Lastly, the optimization problem

is convex, thus it can be solved via any convex programming tool referenced before.
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Algorithm 7 Sparse Subspace Clustering (SSC) with Outliers

Input: Data matrix X ∈ RL×N .

1: Solve the optimization program 3.5.4 or 3.5.7 for linear or affine subspaces accordingly

and get C

2: For each point xi test if 3.5.9 holds and get X inliers

3: Repeat step 1 by setting X = X inliers

4: (optional) Normalize the columns of C as ci ← ci
∥ci∥∞

5: Create a weighted similarity graph of the data set with affinity matrix A = |C|+ |C|⊤

6: Construct and factorize the N ×N normalized Laplacian matrix Ã (see B.0.1)

7: Construct theN×kmatrixU with columns the normalized eigenvectors corresponding

to the k smallest eigenvalues of Ã

8: Run K­means over the rows of U

Output: Compatibility degree matrix W .

Algorithm 8 Sparse Subspace Clustering (SSC) for Noisy Data

Input: Data matrix X ∈ RL×N .

1: Solve the optimization program 3.5.14 and get C

2: (optional) Normalize the columns of C as ci ← ci
∥ci∥∞

3: Create a weighted similarity graph of the data set with affinity matrix A = |C|+ |C|⊤

4: Construct and factorize the N ×N normalized Laplacian matrix Ã (see B.0.1)

5: Construct theN×kmatrixU with columns the normalized eigenvectors corresponding

to the k smallest eigenvalues of Ã

6: Run K­means over the rows of U

Output: Compatibility degree matrix W .
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4. SPARSE ADAPTIVE POSSIBILISTIC K­SUBSPACES

Sparse Adaptive Possibilistic (SAP) K­subspaces belong to the same family of methods

with K­subspaces (section 3.2). Both algorithms are cost function optimization­based

which means that they result from the minimization of a suitably defined cost functions. In

the framework of subspace clustering that cost involves the distance of the points from a

subspace. However, those two methods show fundamental differences.

Surprisingly, although an extended bibliography about subspace clustering that follows

the hard philosophy exists, the application of a possibilistic’s nature algorithm has not yet

been investigated. In this vein, we propose a subspace clustering algorithm based on the

possibilistic philosophy. This means that we define the weights wij as shown in 3.1.4.

By introducing a possibilistic approach to the problem of subspace clustering, we allow

the data to contribute to the definition of more than one subspace/cluster. It is expected

that this way the resulting clusterings will be better than those obtained from a hard algo­

rithm. This is because points that belong to intersections of subspaces contribute to the

formation of all relatives subspaces and not to a single one of them, as it happens in the

hard clustering case.

Many subspace clustering algorithms require a priori knowledge of the number of clusters

K, the dimensions of the associated subspaces {dj}Kj=1 and their variances {ηj}Kj=1. The

introduced algorithm adapts all of them during its execution. In what follows, K̂ is the

initial number of clusters and d̂ is the initial dimension of the associated subspaces, where

d̂ ≥ maxj dj, j = 1, 2, ..., K̂.

As K­subspaces conducts a generalization of the K­means algorithm, SAP K­subspaces

constitutes a generalization of the SPCM algorithm proposed by [24]. More specificaly,

SAP K­subspaces results from the minimization of the following cost function:

C({µj}K̂j=1, {U j}K̂j=1, {Y j}K̂j=1,W ) ≡
K̂∑
j=1

[
N∑
i=1

wijdist(xi, Sj)
2 + ηj

N∑
i=1

(wij lnwij − wij) +

+ λ1

N∑
i=1

∥wi∥pp

]
s.t. wij ∈ (0, 1],

(4.0.1)

where ∥wi∥pp =
∑K

j=1w
p
ij with p ∈ (0, 1) and λ1 ≥ 0 the regularization parameter that

controls the degree of the imposed sparsity.
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In practice, ηj is an unknown rather small number, estimated by the algorithm. It is a

measure of variance of the data points of the cluster Cj around its associated subspace

Sj.

The distance of a point from the subspace Sj is given by the formula

dist(xi, Sj)
2 = ∥xi − µj −U jyij∥22, (4.0.2)

where U j ∈ RL×d̂ the basis of Sj with initial dimension d̂.

A rational assumption that is adopted in this framework is that a point xi is compatible with

only a few subspaces Sj. This is reflected to the entries ofwi with those (few) correspond­

ing (to some degree) to those subspaces being positive, while the rest are zero. Sparsity

refers to the fact that only a few entries of wi are non­zero. In the present framework,

when dist(xi, Sj)
2 is higher than the variance ηj of Sj, we want wij to be zero. By this way,

the only points that contribute to the estimation of a subspace are those lie very close to

it.

Note that for the point representative case, where instead of Sj we have a point, the cost

function is the same with that of SPCM. Ιf in addition to that we set λ1 = 0, the cost function

becomes that of PCM [13]. The second term of the cost function alone, holds the values

of wij in the interval (0, 1]. Nevertheless, here we have a third term of wij ’s that needs to

be investigated further.

Due to the fact that the parameters wij for a certain xi are not interrelated, the problem

breaks down into K independent subproblems, one for each cluster. Thus, we have to

solve one optimization problem for each cluster Cj:

C(µj,U j,Y j, {wij}Ni=1) ≡
N∑
i=1

wijdist(xi, Sj)
2 + ηj

N∑
i=1

(wij ln(wij)− wij) + λ1

N∑
i=1

∥wij∥pp

s.t. wij ∈ (0, 1].

(4.0.3)

In what follows, we extensively explain the main components of the algorithm and their

characterestics. More precisely, we start by presenting appropriate initialization tech­

niques. Subsequently, SAP K­subspaces ability of estimating the dimension, the variance

and the number of subspaces is examined. We continue by considering the update of the

main parameters and the selection of the regularization parameters. Note that the updat­

ing of wij ’s is the same as in SPCM [24], while for the updating ofU j ’s and Y j ’s a low­rank

approach for dimensionality reduction is adopted, introduced in [10] (see section 2.2).
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More specifically, the main processing steps of the proposed algorithm are summarized

below.

• Initialization

• Main processing part (iterative)

– Segmentation part (estimation of degrees of compatibility, wij ’s)

– Parameter estimation

* µj ’s (displacement vectors)

* U j ’s and Y j ’s (bases and projections)

* cluster elimination/ ηj ’s update

* λ1 selection

• model selection/ λ2 selection
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4.1 Initialization

As in K­means and K­subspaces, we optimize our cost function by following the Lloyd

iterative alternating minimization algorithm [15]: the algorithm alternates between (a) the

computation of the compatibility degrees of the data points with the clusters and (b) the

computation of the parameters associated with each cluster (they define the corresponding

subspace). The K­subspaces objective 3.2.1, which is also part of our objective 4.0.1,

is non­convex and is known that suffers from many poor local minima. Hence, SAP K­

subspaces is extremely sensitive to initialization.

The most dominant method for subspaces initialization is that of Probabilistic Farthest

Insertion (PFI) 1. According to PFI we select randomly a point to serve as cluster center.

For this center we find a neighborhood and we estimate the subspace of the associated

cluster. Usually, this is done by applying PCA in the neighborhood. Having define this

subspace, the next point to be selected is the one that lies farthest from the subspaces that

have already been generated and its associated subspace is estimated. This procedure

continues until K̂ initial subspaces are defined. Undoubtedly, the method is suitable only

when there are no outliers. Therefore, we decided to take K̂ randomly selected points

from the data set to serve as cluster centers.

In the case of independent clusters, the SPCM algorithm is preferred over PFI. SPCM

finds dense groups of data inside the ambient space. It exhibits immunity to noise/outliers

and it is able to detect clusters of different densities. The representatives of the groups

serve as neighborhood centers to estimate the corresponding subspaces. Nonetheless,

clusters which are not dense enough for the algorithm to find them may exist.

The size of the neighbor sets of points plays an important role in the determination of the

subspaces. Small neighborhoods may contain noisy data and large neighborhoods may

include points from different subspaces. Both cases can result in bad initialization. To

avoid this, we determine a neighborhood using the neighborhood size selection algorithm

presented in [26].

1The method is called probabilistic because the probability of getting a point from the same subspace is

small. Actually, the more distinct the clusters are, the smaller it the probability of selecting points from the

same subspace becomes.
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4.2 Main processing part

In this section the cost function 4.0.3 is studied with respect to the parameters it involves.

4.2.1 Segmentation (update of wij’s)

In the frame of SAP k­subspaces possibistic clustering algorithm, the wij ’s are updating

as in [24], provided that U j ’s, Y j ’s and µj ’s are fixed.

From the compatibility degrees we get the segmentation of the data set. By taking the

derivate of the cost function 4.0.3 w.r.t. wij we have that

F (wij) ≡
∂C(µj,U j,Y j, wij)

∂wij

= dij + ηj ln(wij) + λ1pw
p−1
ij , (4.2.1)

where dij ≡ dist(xi, Sj)
2, p ∈ (0, 1), λ1 ≥ 0 and ηj > 0 are all fixed. We search to find those

wij that satisfy the equation F (wij) = 0. The last two terms of eq. 4.2.1 are continuous

and differentiable functions of wij. Therefore, F (wij) is continuous and differentiable as

well.

Proposition 4.2.1. F (wij) ̸= 0 for wij ̸∈ (0, 1).

Proof. For wij ∈ (1,∞) all the terms of F (wij) are positive. Note that if wij ∈ (−∞, 0),

F (wij) is not defined.

Proposition 4.2.2. F (wij) has two stationary points, w∗
ij =

(
λ1p(1−p)

ηj

) 1
1−p and w∗∗

ij = +∞.

Proof.

∂F (wij)

∂wij

=
∂(dij + ηj ln(wij) + λ1pw

p−1
ij )

∂wij

=

= ηjw
−1
ij + λ1p(p− 1)wp−2

ij =

= w−1
ij [ηj − λ1p(1− p)wp−1

ij ], wij > 0.

If we set ∂F (wij)

∂wij
= 0, then ηj − λ1p(1− p)wp−1

ij = 0 or w−1
ij = 0. By solving these equations

respectively, we get w∗
ij =

(
λ1p(1−p)

ηj

) 1
1−p ≥ 0 and w∗∗

ij = +∞.

The question that arises is if F (wij) take its minimum at w∗
ij.

Proposition 4.2.3. F (wij) has a unique minimum for w∗
ij =

(
λ1p(1−p)

ηj

) 1
1−p .
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Proof. Assume that wij ∈ (0,+∞). It suffices to show that ∂F (wij)

∂wij
≤ 0 for wij ∈ (0, w∗

ij)

and ∂F (wij)

∂wij
> 0 for wij ∈ (w∗

ij,+∞).

The first derivative of F (wij) is

∂F (wij)

∂wij

= ηjw
−1
ij − λ1p(1− p)wp−2

ij .

Clearly, for wij ∈ (0, w∗
ij] it is true that

wij ≤ w∗
ij ⇔

wij ≤
(
λ1p(1− p)

ηj

) 1
1−p

⇔

w1−p
ij ≤ λ1p(1− p)

ηj
⇔

...

1− λ1p(1− p)

ηj
wp−1

ij ≤ 0⇔

ηjw
−1
ij − λ1p(1− p)wp−2

ij ≤ 0.

Thus, for wij ∈ (0, w∗
ij], it holds that ∂F (wij)

∂wij
≤ 0. Working in a similar manner, it turns

out that, for wij ∈ (w∗
ij,+∞) it holds that, ∂F (wij)

∂wij
> 0. Consequently, since F (wij) ↗ in

(w∗
ij,+∞), w∗

ij is the unique minimum of F (wij).

A summary table is provided below.

wij

F ′(wij)

F (wij)

0 w∗
ij +∞

− +

00

w∗
ijw∗
ij

+∞+∞

Proposition 4.2.4. If F (w∗
ij) < 0, equation F (wij) = 0 has exactly two solutions w1

ij, w
2
ij ∈

(0, 1) with w1
ij < w2

ij.

Proof. Because F (w∗
ij) < 0 (from assumption), F (1) = dij+ηj ln(1)+λ1p1

p−1 = dij+λ1p >

0, F (wij) ↗ and continuous in (w∗
ij,+∞), from Bolzano’s theorem there is exactly one

w2
ij ∈ (w∗

ij, 1) such that F (w2
ij) = 0.
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Moreover, since the logarithm is not defined for wij = 0, we have that

F (0) = lim
wij→0+

F (wij) =

= lim
wij→0+

(dij + ηj ln(wij) + λ1pw
p−1
ij ) =

= dij + lim
wij→0+

[
1

w1−p
ij

(ηjw
1−p
ij ln(wij) + λ1p)

]
¬

lim
wij→0+

1

w1−p
ij

= +∞ ­

λ1p+ lim
wij→0+

(ηjw
1−p
ij ln(wij)) = λ1p+ ηj lim

wij→0+

ln(wij)

wp−1
ij

H
= λ1p+ ηj lim

wij→0+

1
x

(p− 1)xp−2
= λ1p ®

Hence, combining ¬, ­ and ®, it is F (0) = +∞.

Since, F (0) > 0, F (w∗
ij) < 0 (from assumption), F (wij)↘ and continuous in (0, w∗

ij], from

Bolzano’s theorem there is exactly one w1
ij ∈ (0, w∗

ij] such that F (w1
ij) = 0. For the two

solutions it clearly holds that w1
ij < w2

ij.

Proposition 4.2.5. If F (wij) = 0 has two solutions w1
ij, w

2
ij ∈ (0, 1) with w1

ij < w2
ij,

C(µj,U j,Y j, wij) exhibits a local minimum (w.r.t. wij) at the largest of them, w2
ij.

Proof. From proposition 4.2.4, we know that if F (w∗
ij) < 0 holds, w1

ij and w2
ij are two

solutions of F (wij) = 0 with w1
ij < w∗

ij < w2
ij.

On the other hand, from proposition 4.2.3 it turns out that F (wij) ↗ in (w∗
ij,+∞) and

F (wij)↘ in (0, w∗
ij]. By definition F (wij) is continuous to those intervals.

Additionaly to F (0) > 0,

F (+∞) = lim
wij→+∞

F (wij) =

= lim
wij→+∞

(dij + ηj ln(wij) + λ1pw
p−1
ij ) =

= dij + ηj(+∞) + λ1p lim
wij→+∞

1

w1−p
ij

= +∞ > 0 as well.
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Furthermore,

C(µj,U j,Y j, 0) = lim
wij→0+

(dijwij + ηj(wij ln(wij)− wij) + λ1w
p
ij) =

= lim
wij→0+

ηj(wij ln(wij)− wij) =

= ηj

[
lim

wij→0+

ln(wij)
1

wij

− lim
wij→0+

wij

]
H
=

H
= ηj lim

wij→0+

1
wij

− 1
w2

ij

= lim
wij→0+

−wij = 0.

Summing up, we have the following table.

wij

F (wij)

C

0 w1
ij w∗

ij w2
ij +∞

+ 0 − 0 +

00

w1
ijw1
ij

w2
ijw2
ij

+∞+∞

0

Consequently, C(µj,U j,Y j, wij) exhibits a local minimum for w2
ij, the largest solution

among the two that F (wij) = 0.

Proposition 4.2.6. C(µj,U j,Y j, wij) exhibits its global minimum (w.r.t wij) at ŵij, where

ŵij =

w2
ij, if F (w∗

ij) < 0 and w2
ij > (λ1(1−p)

ηj
)

1
1−p

0, otherwise.
(4.2.2)

Proof. From the table of proposition 4.2.5, it follows that if C(µj,U j,Y j, w
2
ij) < C(µj,U j,Y j, 0)

then C(µj,U j,Y j, wij) has a global minimum at w2
ij. This means that, w2

ij[dij + ηj ln(w2
ij)−

ηj + λ1(w
2
ij)

p−1] < 0. However, having in mind that F (w2
ij) = 0, the latter becomes

w2
ij[−λ1pw

p−1
ij − ηj + λ1(w

2
ij)

p−1] < 0. Since w2
ij > 0, it is −λ1pw

p−1
ij − ηj + λ1(w

2
ij)

p−1 < 0.

Solving w.r.t. w2
ij, we get w2

ij > (λ1(1−p)
ηj

)
1

1−p .

In the case where F (w∗
ij) > 0, observe that C(µj,U j,Y j, wij) ↗ in (0,+∞). Therefore,

the minimum is achieved for wij = 0. The table below illustrates that particular case.
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wij

F (wij)

C

0 w∗
ij +∞

+ +

00

+∞+∞

0

All of that being said, for the computation of wij we proceed as follows. Firstly, we deter­

mine the w∗
ij and the value of F (w∗

ij). Bear in mind that by definition wij ∈ (0, 1] (see 3.1.4).

We continue by comparing F (w∗
ij) with zero. If F (w∗

ij) > 0, then from propositions 4.2.5

and 4.2.6 we know that C(µj,U j,Y j, 0) = 0 and C(µj,U j,Y j, wij) ↗ in (0, 1]. Thus, we

impose sparsity by setting manually wij = 0. In the rare case of proposition 4.2.3, where

F (w∗
ij) = 0, we set again wij = 0 since C(µj,U j,Y j, 0) = 0 and C(µj,U j,Y j, wij) ↗

in (0, w∗
ij) ∪ (w∗

ij, 1]. If F (w∗
ij) < 0, we know from proposition 4.2.5 that C(µj,U j,Y j, wij)

exhibits a local minimum at the largest solution of F (wij) = 0, denoted by w2
ij. For the

estimation of w2
ij, we use the bisection method as in [24]. Lastly, we use the eq. 4.2.2 to

get the global minimum of C(µj,U j,Y j, wij) w.r.t. wij.
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4.2.2 Update of µj’s

To update the displacement vector µj of a subspace Sj, we use the formula deduced from

the derivation of the cost function 4.0.3 w.r.t. µj.

Eq. 4.0.2 can be written as,

dist(xi, Sj)
2 = ∥xi − (µj +U jyij)∥22 =

= x⊤
i xi − 2x⊤

i (µj +U jyij) + (µj +U jyij)
⊤(µj +U jyij) =

= x⊤
i xi − 2x⊤

i µj − 2x⊤
i U jyij + µ⊤

j µj + 2µ⊤
j Uyij + (U jyij)

⊤(U jyij).

(4.2.3)

From 4.0.3 and 4.2.3, we have that

C(µj,U j,Y j, {wij}Ni=1) =
N∑
i=1

wij[−2µ⊤
j xi+µ⊤

j µj+2µ⊤
j U jyij] + terms independent of µj.

(4.2.4)

Thus,

∂C(µj,U j,Y j, {wij}Ni=1)

∂µj

= −2
N∑
i=1

wijxi + 2µj

N∑
i=1

wij + 2
N∑
i=1

wijU jyij. (4.2.5)

By setting the derivative 4.2.5 equal to zero, we can prove that

µj =

∑N
i=1wijxi −

∑N
i=1wijU jyij∑N

i=1 wij

. (4.2.6)

Assuming that all the parameters in C(µj,U j,Y j, {wij}Ni=1) are kept fixed exceptµj, squared

euclidean norm is convex. Therefore, 4.2.6 is the global minimum of 4.2.4.
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4.2.3 Update of U j’s and Y j’s

In the sequel, we show how themethod expressed in [10] (see section 2.2) can be adapted

in the framework of the present problem in order to tackle the problem of the unknown

subspace dimension. Note that in this section, we consider the wij ’s and µj ’s fixed.

Letmj = |xi ∈ X : wij > α| the estimated number of points that lie on the subspace Sj, for

α ∈ [0, 1). High values of α let us consider only the most compatible points to the cluster

Cj in order to estimate their corresponding subspace Sj.

Therefore, minimizing C(µj,U j,Y j, {wij}Ni=1) w.r.t. U j and Y j is equivalent to

min
Uj ,Ẏ j

mj∑
i=1

∥√wij(xi − µj)−
√
wijU jyij∥22. (4.2.7)

In matrix form the above problem can be rewritten as,

min
Uj ,Ẏ j

∥Ẋj −U jẎ j∥2F , (4.2.8)

where Ẋj , [
√
w1j(x1 − µj),

√
w2j(x2 − µj), ...,

√
wmjj(xmj

− µj)] ∈ RL×mj and Ẏ j ,
[
√
w1jy1,

√
w2jy2, ...,

√
wmjjym] ∈ Rd̂×mj . With Xj, we denote the matrix with columns the

elements of {xi ∈ X : wij > α, i = 1, ..., N}.

For the adaptation of dj a low­rank approach is adopted. The authors of [10] propose a

regularizer that imposes column­sparsity jointly on two matrix factors (see section 2.2).

In our problem those matrices are U j and Ẏ j. More specifically, the regularizer imposes

sparsity on the columns of the concatenated matrix
[

Uj

Ẏ
⊤
j

]
using the ℓrr,2 norm, where 0 <

r ≤ 1. By adopting this technique, the updating problem we have to solve becomes

{Û , Ŷ } = argmin
Uj ,Ẏ j

1

2
∥Ẋj −U jẎ j∥2F + λ2

d̂∑
c=1

(∥uc∥22 + ∥ẏc∥22 + z2)
r
2 , (4.2.9)

where uc ∈ RL×1 and ẏc ∈ Rm×1 are the column parts of the concatenated matrix and z2 a

small positive constant that alleviates singular points i.e., points where the gradient is not

continuous.

To tackle the above non­convex problem, we use the AIRLS ­ Denoising algorithm (algo­

rithm 1) that follows the block successive upper­bound minimization (BSUM) framework

in order to alternatingly minimize eq. 4.2.9.

After convergence, Ŷ has to be unweighted. This is done by dividing each i­column of Ŷ

by √wij.
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The producedmatrix does not hold the projections of the entire data set onto Sj. Therefore,

the other (N −mj)­projections are estimated by the formula produced by minimizing eq.

4.0.2.

More specifically, eq. 4.0.2 can be equivalently written as,

dist(xi, Sj)
2 = (xi − µj −U jyij)

⊤(xi − µj −U jyij) =

= (x∗
i −U jyij)

⊤(x∗
i −U jyij) =

= x∗⊤
i x∗

i − x∗⊤
i U jyij − y⊤

ijU
⊤
j x

∗
i + y⊤

ijU
⊤
j U jyij,

(4.2.10)

where x∗
i = xi − µj.

Since the projection of a point onto a subspace is the point for which dist(xi, Sj)
2 is mini­

mized, we take the derivative of the above w.r.t. yi,

∂dist(xi, Sj)
2

∂yi

= −U⊤
j x

∗
i −U⊤

j x
∗
i + 2U⊤

j U jyi (4.2.11)

and we set it equal to zero.

This yields to the least squares formula

yi = (U⊤
j U j)

−1U⊤
j x

∗
i , (4.2.12)

which is used for the computation of the other (N −mj)­projections.
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4.2.4 Cluster elimination and update of ηj’s

An intrinsic feature of the PCM algorithms is the so called mode­seeking property. That is,

its cluster representative converges to its closest physical cluster. This means that if two

representatives initialize close to the same cluster, they converge independently towards

it, giving thus rise to the ”coincident clusters” phenomenon. This is the principle upon

which the elimination clusters mechanism is based.

Possibilistic by nature, SAP K­subspaces inherits the mode­seeking property. More pre­

cisely, it turned out that given an overestimation of the actual number of clusters, K̂, and

by selecting properly the value of the parameter Ξ, the algorithm is able to uncover the

true structure of the data set by eliminating clusters.

Although we follow a possibilistic approach of subspaces estimation, currently all the ap­

plications of subspace clustering are of a hard logic (a point strictly belongs only to one

cluster). Therefore, in order to find the membership of the clusters, we assign each point

with its closest cluster. More precisely, each of the points is assigned to the cluster for

which it exhibits the maximum compatibility degree with. In case of outliers, those xi’s

with wij = 0,∀j = 1, 2, ..., K are left unassigned. By this way, only a portion of the initial

subspaces will be moved closer to the clusters (those that fit best), the rest are going to

fit small groups of points that either approximately lie on the same subspace (coincide) or

form noise clouds2.

After assigning points to clusters, the cluster elimination phase takes place. Specifically,

a cluster is eliminated if either its cardinality is less than the dimension of the associated

subspace dj or if the dimension of subspace dj is zero. The latter occurs when λ2 shrinks

toward zero all the columns of the concateneted matrix by showing that this particular

group of points does not spread along any subspace.

Next, the variances ηj ’s of the remaining clusters are updated. More precisely, we estimate

the ηj of a cluster Cj, as the variance around its associated subspace Sj, i.e.,

ηj =

∑
xi∈Cj

dist(xi, Sj)
2

|Cj|
, (4.2.13)

where Cj = {xi ∈ X : wij = maxr=1,...,K wir}.
2Points that lie (mainly) on different subspaces, also conduct noise clouds.
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4.2.5 λ1 selection

From propositions 4.2.1 to 4.2.6, it is obvious that for F (wij) = 0 to hold, it should be

F (w∗
ij) < 0, which means that

F (w∗
ij) < 0

dij + ηj ln
(
λ1p(1− p)

ηj

) 1
1−p

+ λ1p

[(
λ1p(1− p)

ηj

) 1
1−p

]p−1

< 0

dij +
ηj

1− p
ln
(
λ1p(1− p)

ηj

)
+ λ1p

(
λ1p(1− p)

ηj

)−1

< 0

dij +
ηj

1− p
ln
(
λ1p(1− p)

ηj

)
+

ηj
1− p

< 0

(1− p)dij
ηj

+ ln
(
λ1p(1− p)

ηj

)
+ 1 < 0

(1− p)dij + ηj
ηj

+ ln
(
λ1p(1− p)

ηj

)
< 0

exp
(
−(1− p)dij + ηj

ηj

)
>

λ1p(1− p)

ηj
ηj

p(1− p)
exp

(
−1− (1− p)dij

ηj

)
> λ1.

(4.2.14)

Therefore, choices of λ1 ≤ (≥) ηj
p(1−p)

exp
(
−1− (1−p)dij

ηj

)
result to wij > 0 (= 0), imposing

(not imposing) sparsity.

By setting dij = ηj, it is easy to show that eq. 4.2.14 becomes

λ1 ≤
ηj

p(1− p)exp (2− p)
. (4.2.15)

Inequality 4.2.14, is equivalent to

λ1 = Ξ
ηj

p(1− p)exp (2− p)
, for Ξ ∈ (0, 1). (4.2.16)

For each cluster Cj we have a different λ1 parameter.

The algorithm’s performance is strictly linked to the choice of Ξ. Choices of Ξ around 1

force wij ’s of points with dij & ηj to become zero. Generally, it is better to avoid using

a high value of Ξ since it prohibits badly initialized subspaces from moving around the

euclidean space and eventually minimize the cost function 4.0.3.

Note that the variances ηj ’s together with the parameter Ξ implicitly determine the cardi­

nality of the clusters through eq. 4.2.16.
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4.3 Model selection (λ2 selection)

The low­rank promoting parameter λ2 of AIRLS is selected from a set of values based on

the model which achieves the lowest penalized Root Mean Squared Error (RMSE). As

model we imply the union of subspaces S1 ∪ S2 ∪ ... ∪ SK which fits a particular data set.

Since the optimization problem we solve in 4.2.9 is weighted, the values in this set do not

have to vary a lot.

The penalized RMSE is combuted using the formula

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2 +
K

K̂
+

δ

d̂
, (4.3.1)

where K̂ and d̂ the initial number of subspaces and their initial dimension respectively, K

the estimated number of clusters and δ the median of a set which includes all the estimated

dimensions {dj}Kj=1. For the computation of x̂i’s it holds x̂i = Hjxi, where xi ∈ Cj and

Hj = U j(U
⊤
j U j)

−1U⊤
j the hat matrix.

The second term helps to avoid selecting overfitted models. Typically, this is the case

when the data set is corrupted by noise. The third one encourages the selection of mod­

els which correspond to subspaces of reduced dimension. Without the last term, the

model which achieves the lowest RMSE has (usually) subspaces of dimension d̂ (no di­

mensionality reduction applied). The reason is that a subspace of dimension d̂ is closer to

its corresponding group of points than the associated subspace with reduced dimension.

Assuming one subspace, the value of λ2 depends on L, |Cj| and ηj. Therefore, for λ2 to

be the same to all clusters, we assume that |Cj| and ηj are the same ∀j = 1, 2, ..., K.
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4.4 SAP K­subspaces algorithm

In the following, combining all the individual stages described below, we give the SAP

k­subspaces in its algorithmic form.

Algorithm 9 Sparse Adaptive Possibilistic K­Subspaces (SAP K­Subspaces)

Input: Data matrixX ∈ RL×N , number of initial subspaces K̂, norm’s parameter p ∈ (0, 1)

to handle outliers, parameter Ξ ∈ (0, 1), the compatibilities cut­off α, the parameters used

in algorithm 1.

1: Initialization: Initialize the bases {U j}K̂j=1(U j ∈ RL×d̂), the projections {Y j}K̂j=1(Y j ∈

Rd̂×N), the displacement vectors {µj}K̂j=1(µj ∈ RL) and the variances {ηj}K̂j=1.

2: repeat

3: K = K̂

4: for j = 1 : K do

5: λ1 = Ξ
ηj

p(1−p) exp(2−p)

6: for i = 1 : N do ◃ Segmentation part

7: dist(xi, Sj)
2 = ∥xi − µj −U jyij∥22

8: Use the distance to update wij ’s, j=1,...,K as described in 4.2.1

9: end for

10: µj =
∑N

i=1 wijxi−
∑N

i=1 wijUjyij∑N
i=1 wij

◃ Estimation part

11: Update U j and Y j as described in 4.2.3

12: end for

13: Perform cluster elimination and re­estimate K as described in 4.2.4

14: Update ηj ’s using the eq. 4.2.13

15: until convergence

Output: Compatibility degree matrix W , {U j,Y j,µj, dj}Kj=1.
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Example 1: In the example illustrated in figure 4, we have a 3­dimensional data set that

comes from three linear subspaces: two 1­dimensional and one 2­dimensional. Each

group consists of 200 points generated as follows: We generate first 200 points uniformly

distributed in a ball of radius one in subspace associated with this group. Then, we add

zero mean Gaussian noise with covariance matrix 0.022IL.

Subspaces are initialized based on the neighborhoods of the most distant points of the

data set (those with the largest euclidean norm).

In AIRLS and SAP K­subspaces, we set r = 1, z = 0.1, p = 0.3 and α = 0. Parameter λ2

is fine­tuned by searching which value of the set {0.01, 0.1, 0.3, 0.5, 0.7, 0.9} achieves the

lowest RMSE score of the model.

The initial subspaces of (a)­(b) lie close to the actual ones. Thus, with Ξ = 0.7 we suc­

cessfully impose sparsity to the compatibility degrees which correspond to data that come

from different clusters. For comparison reasons, we keep the value of λ2 obtained from

the experiment depicted in (a)­(b). Looking at (c)­(d), it is apparent that even for a small

overestimation, K̂ = K + 1, the algorithm fails to detect the underlying structure of the

data set as it estimates four clusters. Specifically, it finds three 1­dimensional subspaces

instead of two. This is due to the high value of Ξ that prevents the badly initialized sub­

space (marked with cyan) from moving. On the other hand, in (e)­(f) the small value of Ξ

allows multiple subspaces to (approximately) fall into one single subspace. The subspace

that best fits the data is kept and the clusters with cardinality less than the dimension of

the corresponding subspace are eliminated. As a result, we have three subspaces.

With all that being said, parameter Ξ should be chosen considering how confident we are

that the initialization worked in terms of Sj. Assuming good (unknown) initialization and

no overestimated (overestimated) K, high (small) values of Ξ are preferred.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: The mode­seeking property of SAP K­subspaces in linear subspaces

Green points are the initialization centers and the blue ones are their neighbors. (a) Three

2­dimensional initial subspaces. (b) The obtained clustering result for Ξ = 0.7 and λ2 = 0.9. (c) Four

2­dimensional initial subspaces. (d) The obtained clustering result for Ξ = 0.7 and λ2 = 0.9. (e) Six

2­dimensional initial subspaces. (f) The obtained clustering result for Ξ = 0.01 and λ2 = 0.9.
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Example 2: In this example, we generate subspaces of the same dimension and group

size as before. However, this time the data lie on affine subspaces which correspond to

three independent clusters (there are no points shared between them). The results are

depicted in figure 5.

Starting from (a)­(b) clustering, we see that the initial subspaces lie close to the real ones.

Thus, we take Ξ = 0.7. By setting in addition α = 0.6, we do not only impose high

sparsity, but also we prohibit points with wij <= 0.6 from contributing to the estimation of

Sj. The algorithm successfully detects the clusters. In (c)­(d) and (e)­(f), the number of

initial subspaces is increased by one. As we see, this new subspace (marked with cyan)

passes through all the clusters. For small values of Ξ and α the algorithm fails to uncover

the true data structure. Specifically, the tiny value of Ξ allows the subspaces to move far

from the initialized ones, while the zero value of α does not limit the number of points used

during subspace estimation. Therefore, the subspace which lies more close to the entire

data set gets the majority of the points assigned to it. On the other hand, when Ξ = 0.7

and α = 0.6, the cluster associated with this new subspace is eliminated as it runs out of

points.

Apparently, in the case where the clusters are independent, values of α around 0.5 seem

to work properly. In this way, we force the algorithm to find a ”less possibilistic” solution

to the problem, in the sense that points with high enough compatibility with a cluster (but

less that 0.5) are excluded from the process of estimating the associated subspace.

From both examples, we conclude that the right choice of Ξ is of high importance for SAP

K­subspaces, otherwise the mode­seeking property of the algorithm is undermined. In the

case of linear subspaces the values of Ξ which achieve the highest accuracy are usually

smaller than those used in affine subspaces.
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(a) (b)

(c) (d)

(e)
(f)

Figure 5: The mode­seeking property of SAP K­subspaces in affine subspaces

Green points are the initialization centers and the blue ones are their neighbors. (a) Three

2­dimensional initial subspaces. (b) The obtained clustering result for Ξ = 0.7, α = 0.6 and λ2 = 0.9.

(c) Four 2­dimensional initial subspaces. (d) The obtained clustering result for Ξ = 0.7, α = 0.6 and

λ2 = 0.9. (e) Four 2­dimensional initial subspaces. (f) The obtained clustering result for Ξ = 0.01,

α = 0 and λ2 = 0.9.
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5. EXPERIMENTAL RESULTS

In this Chapter, we conduct experiments on both synthetic and real data sets to illustrate

the effectiveness of the proposed algorithm. The adopted performance metric is the rate

of misclassified data points:

misclassification error% =
|misclassified data|

|data|
× 100%. (5.0.1)

A point is assigned to the cluster for which it exhibits the highest compatibility degree. If

that degree is the same for more than one subspace, the choice is made at random.

To match the true labels with the cluster labels, we use a modification of the classical

Hungarian algorithm that is suitable for both square and rectangular cost matrices [7]. In

order to form pairs, the algorithm creates a m × m̂ cost matrix C, where m the number

of true clusters and m̂ the number of estimated clusters. In the context of clustering, cij
denotes the number of points which simultaneously belong to the i­real and j­estimated

cluster respectively. When the rectangular case occurs (m ̸= m̂), the algorithm matches

the min{m, m̂} cluster labels with the true ones and all the other data points are marked

as misclassified.

In the following experiments, dK in RL means that in this specific experiment we have K

subspaces of dimension d inside the L­dimensional Euclidean space. Also, (d1, ..., dK) in

RL means that we have K subspaces of dimension d1, ..., dK respectively.

SAP K­subspaces is compared with the algorithms introduced in Chapter 3: K­subspaces,

RANSAC, SLBF and SSC.

We use the code of K­subspaces from http://www.math.sjsu.edu/ gchen/scc.html, the code

of SLBF from https://sciences.ucf.edu/math/tengz/lbf/ and the codes of RANSAC and SSC

from http://www.vision.jhu.edu/code.htm. For the SSC algorithm we use the implementa­

tion which adopts the alternating direction method of multipliers (ADMM) and we perform

clustering using the projections of the data set onto a subspace of dimension (maxj dj+1).

Following [8], in SSC we set α = 800. RANSAC and SLBF do not support the case where

the dimensions of the subspaces differ. Thus, for those algorithms we assume that the

dimension of each subspace equals to the maximum among all subspace dimensions

(maxj dj + 1 for affine subspaces). Especially, for the K­affine case in RANSAC we as­

sume that each subspace has the maximum dimension plus 1. The inliers threshold for

RANSAC is η = Mean({ηj}Kj=1) × 0.8. In SLBF algorithm, we take the clustering that
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achieves the lowest average RMSE score. In AIRLS, it is z = 0.1, d̂ = maxj dj and r = 1.

Parameter λ2 is fine­tuned as described in section 4.3. The AIRLS algorithm converges

when either the relative decrease of the reconstructed data between two successive itera­

tions i.e., ∥UkY k−Uk+1Y k+1∥F
∥UkY k∥F

, becomes less than 10−5 or 500 iterations have been executed.

For the comparison to be valid, we initialize K­subspaces and SAP K­subspaces by the

same methods, that is: PFI for the K­linear subspaces problem and SPCM for the K­

affine subspaces problem. However, in SAP K­subspaces we overestimate the number

of the true clusters. Generally, it is K̂ = 3∗K, otherwise K̂ is given as comment above the

tables with the results. In both K­subspaces and SAP K­subspaces, as well in SLBF, the

determination of the neighborhoods’ size is carried out via algorithm 4. More precisely,

we set S = 2 × d̂ and T = 2. In SPCM initialization, the estimated cluster centers serve

as neighborhood centers. For SPCM, it is p = 0.5 and Ξ = 0.9. After estimating the

neighborhoods, we perform PCA and initialize the parameters: {µj}K̂j=1, {U j}K̂j=1, {yi}Ni=1

and {ηj}K̂j=1.

For the update of the wij ’s in SAP K­subspaces we set p = 0.3. Parameter Ξ varies

per experiment. The algorithm stops when either the average penalized RMSE score of

the model between two successive iterations (concluded to the same number of clusters)

becomes less than 10−6 or 250 iterations are reached. At the end of the procedure, all the

unassigned points are assigned to their closest cluster.

The experiments were taken in an Intel Core i5, 5200 CPU at 2.20GHz and 6 GB memory,

using MATLAB version 2016a.
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5.1 Clustering results on simulated data

Synthetic experiments are divided into two parts. In the first part we study the case of the

K­linear subspaces and in the second part the case of the K­affine subspaces. For each

subspace Sj of dimension dj in RL, 200 samples are generated according to the model

described below. The data are further corrupted with 5% or 30% uniformly distributed

outliers in a cube with edge length the euclidean norm of the most distant point in the data

set. The experiments in both cases will be repeated for 30 random trials and the mean,

as well as the median misclassification error will be reported.

The data set is formulated by points that follow the noisy Gaussian model:

xi = µj +U juij + ηi, U
⊤
j U j = Id

uij ∼ N (0, Id), ηi ∼ N (0, σ2IL).
(5.1.1)

For the linear case (µj = 0), in SAP K­subspaces we take Ξ = 0.1 and α = 0. This is due

to the nature of the model that produces the data. Note that in the Gaussian model the

majority of the data lie in the intersection of the subspaces. Consequently, we encourage

the algorithm to take points from the intersection of the subspaces in order to estimate

each subspace.

On the other hand, the clusters in the affine case (µj ̸= 0) are usually well separated.

Therefore, we take Ξ = 0.3 and α = 0.5 to prohibit a subspace from fitting more than one

cluster.

S. Eleftheraki 62



Subspace Clustering: A Possibilistic Approach

Table 1: Mean and median percentage of misclassified points that follow the noisy degenerate

spherical Gaussian model with σ = 0.05 and 5% outliers (Linear subspaces)

Algorithms K­subspaces RANSAC SLBF SSC SAP K­subspaces

22 in R4

Mean 10.2 1.7 3.7 27.5 1.7

Median 1.5 1.0 2.6 21.6 1.0

42 in R6

Mean 9.2 0.4 1.9 37.1 1.1

Median 2.2 0.2 1.4 39.6 0.5

102 in R15

Mean 8.0 6.4 1.1 46.8 1.7

Median 1.9 0.4 0.7 47.2 0.0

(4, 5, 6) in R10

Mean 24.0 0.4 1.4 52.9 9.0

Median 25.3 0.3 1.3 54.2 0.2

Table 2: Mean and median percentage of misclassified points that follow the noisy degenerate

spherical Gaussian model with σ = 0.05 and 30% outliers (Linear subspaces)

Algorithms K­subspaces RANSAC SLBF SSC SAP K­subspaces

22 in R4

Mean 26.5 1.2 3.8 33.4 5.1

Median 27.1 1.0 1.5 38.0 1.0

42 in R6

Mean 27.6 0.5 4.6 37.4 1.4

Median 28.2 0.5 2.4 37.9 0.6

102 in R15

Mean 31.1 20.4 1.3 43.5 13.3

Median 33.5 11.6 1.0 44.6 0.0

(4, 5, 6) in R10

Mean 41.2 7.6 2.3 51.3 36.8

Median 42.5 0.3 1.8 51.6 33.5

(4, 5, 6) in R10 *

Mean 39.6 5.9 1.6 50.0 11.6

Median 39.7 0.4 1.4 50.3 0.7

* the score from the experiments with K̂ = 250 (generally K̂ = 3 ∗K)
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Table 3: Mean and median percentage of misclassified points that follow the uniform ball model

with σ = 0.05 and 5% outliers (Affine subspaces)

Algorithms K­subspaces RANSAC SLBF SSC SAP K­subspaces

22 in R4

Mean 14.13 3.0 0.3 3.5 8.7

Median 0.4 2.7 0.0 1.4 0.0

42 in R6

Mean 15.8 2.6 0.2 2.7 9.6

Median 2.9 2.5 0.0 0.7 0.1

102 in R15

Mean 21.6 13.7 0.0 0.1 8.7

Median 2.5 3.7 0.0 0.0 0.0

(4, 5, 6) in R10

Mean 24.5 0.9 0.0 0.1 10.6

Median 33.3 0.8 0.0 0.0 0.0

Table 4: Mean and median percentage of misclassified points that follow the uniform ball model

with σ = 0.05 and 30% outliers (Affine subspaces)

Algorithms K­subspaces RANSAC SLBF SSC SAP K­subspaces

22 in R4

Mean 13.4 1.7 0.0 2.4 11.7

Median 10.0 1.5 0.0 1.7 5.0

42 in R6

Mean 28.3 2.1 0.1 1.3 30.5

Median 31.0 2.0 0.0 0.6 32.7

102 in R15

Mean 46.6 14.6 0.0 0.0 47.9

Median 50.0 8.9 0.0 0.0 50.0

(4, 5, 6) in R10

Mean 35.0 7.1 0.0 0.5 37.9

Median 33.4 0.5 0.0 0.2 33.3
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Τhe tables above show the average and the median misclassification error per experiment

with fixed number of outliers. At first glance, it is apparent that the problem of theK­affine

subspaces is easier than that of the K­linear subspaces for all algorithms except for SAP

K­subspaces which is a possibilistic one.

As we increase the number of outliers (Tables 2 and 4), K­subspaces struggles to uncover

the underline structure of the data set. This is due to the lack of a mechanism that ignores

outliers. In contrast, SAP K­subspaces achieves far better performance owing to the way

it updates the compatility degrees. From the experiments of Table 4, we conclude that in

affine subspaces RANSAC is more robust than SAP K­subspaces. Nonetheless, as the

number of the subspaces and their corresponding dimension increase, RANSAC fails to

detect the clusters since the probability of getting d inliers becomes smaller.

Both K­subspaces and SAP K­subspaces are sensitive to initialization. However, SAP K­

subspaces is even more sensitive due to the parameters Ξ and ηj. Many badly initialized

subspaces are eliminated either because of zero dimension error or because their cardi­

nality becomes less than their dimension. As a result, SAP K­subspaces is not always

able to estimate all the clusters. Nevertheless, it manages to find at least one group of

points and it marks the rest of the data set as unassigned. Hence, in the experiments we

expect to have lower median than average misclassification error.

Increasing the number of the initial (linear) subspaces using the PFI method, helps the

algorithm to detect the true number of clusters. In the last experiment of Table 2 we have

a data set of 600 observations that we further corrupt it with 180 outliers. What stands

out in this experiment is that when we increase the number of the initial subspaces from

6 to 250, the misclassification error falls under the half of its previous value. It is worth

mentioning that from the very first update of the clusters, there have been left under 20

of them. This is due to the way we eliminate the clusters. A point is assigned only to one

cluster. Therefore, many groups are left empty and the best subspaces are kept from the

algorithm for further improvement.

An increasement of K̂ in the experiments of Tables 1 and 2, would bring even better

results. On the contrary, this is not the case for the experiments of Tables 3 and 4. In

those experiments, we initialize the subspaces via SPCM. We know that in the affine case

the clusters are well separated. Therefore, if SPCM succeeds to detect the dense areas­

parts of the subspaces, SAP K­subspaces will uncover the true structure of the data set.
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Unfortunately in Table 4, we see that for an increased number of outliers the results are

not satisfactory.

SLBF and SSC achieve a remarkable result in theK­affine subspaces problem. However,

SSC does not perform that well in the K­linear subspaces problem. That is because of

the clusters as a desired condition for SSC is that the subspaces are uniformly distributed,

independent and disjoint.

5.2 Clustering results on motion segmentation data

Motion Segmentation (MS) refers to the task of extracting and clustering point trajecto­

ries (pixels) of a video sequence. In MS, different clusters represent different rigit­body

motions. Those point trajectories can be described using the corresponding camera pro­

jection model. One of the most known camera projection models is the affine camera

model in which each single rigit­body motion lives in an affine subspace of dimension at

most three.

The proposed algorithm is tested on the Hopkins 155 database of motion segmentation,

available in http://www.vision.jhu.edu/data/hopkins155. The database contains 155 data

sets with two to three noisy clusters (motions). Data sets are devided into three main cate­

gories: (a) checkerboard sequences (104 data sets) containing objects where their motion

tranjectories lie on independent 3­dimensional affine subspaces, (b) traffic sequences (38

data sets) containing moving cars where their respected trajectories lie on independent

2­dimensional subspaces and (c) articulated sequences (13 data sets) containing tranjec­

tories of objects which lie on dependent affine subspaces.

In contrast to the synthetic experiments, the clusters do not have the same cardinality.

Especially in the case of three motions, all the data sets form clusters whose cardinalities

differ significantly (except for the data set articulated in articulated sequences). Another

challenge is the existence of clusters with extremely small cardinality. As a result, SPCM

is not able to find all the clusters during initialization. Therefore, we decided to test SAP

K­subspaces only with the two motions data sets.

To all the experiments Ξ = 0.7 and α = 0.5 except for the articulated sequences of which

Ξ = 0.1, since the subspaces are dependent.
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(a) 2R3RTCRT (b) cars1 (c) arm

Figure 6: Sample images from some sequences of the Hopkins 155 database with tracked points

superimposed

Figure (a) corresponds to checkerboard sequences, figure (b) corresponds to traffic sequences

and figure (c) corresponds to articulated sequences. Source: [23]

Table 5: Mean and median percentage of misclassified points in Hopkins 155 data set (two motions)

Checkerboard Traffic Articulated

Mean Median Mean Median Mean Median

K­subspaces(3,­) 11.51 2.0 8.1 2.6 10.6 5.4

RANSAC(4,5) 15.0 6.9 12.5 7.5 12.3 7.5

SLBF(3,­) 1.3 0.0 0.2 0.0 0.4 0.0

SSC(­,4) 3.9 0.0 0.1 0.0 0.5 0.0

SAP K­subspaces(3,­) 17.3 18.2 5.3 0.0 6.7 3.9

Table 6: Total computation time in Hopkins 155 data set (two motions)

K­subspaces(3,­) RANSAC(4,5) SLBF(3,­) SSC(­,4) SAP K­subspaces(3,­)

3.7311s 9.3018s 329.2515s 102.4807s 237.3102s
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In the tables above, the parameters (d,p) next to the name of the algorithm indicate the

dimension of the subspace (initial for SAP K­subspaces) d and the dimension of the pro­

jection p.

Considering Table 5, it is apparent that SAP K­subspaces struggles to detect the clus­

ters of the checkerboard sequences. The reason is that the checkerboard sequences of

two motions include the data sets with the most diversed in terms of population groups.

K­subspaces does not require the same size of groups. Therefore, its performance in

checkerboard sequences is superior than that of SAP K­subspaces. The results of both

SLBF and SSC are outstanding. It appears that the inliers threshold, estimated as η =

Mean({ηj}Kj=1)× 0.8, is not a proper choice for RANSAC as it has the worst performance.

K­subspaces is the fastest among all the considered algorithms (Table 6). SAPK­subspaces,

although an iterative algorithm as K­subspaces, in each iteration has to run AIRLS to es­

timate the dimension of the subspaces. Thus, it needs more time to converge. However,

it is faster than SLBF that is the most time consuming algorithm of all.
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6. CONCLUSION

In the present thesis, a novel possibilistic subspace clustering algorithm, called SAP K­

subspaces, is proposed. The algorithm is able to estimate the true number of equally

populated clusters, as well as the variance and the dimension of the corresponding sub­

spaces. SAP K­subspaces can also be viewed as the subspace extension of SPCM [24].

The proposed algorithm imposes a sparsity constraint on the degrees of compatibility of

each point with a cluster exactly as SPCM does. As a result, SAP K­subspaces exhibits

immunity to noise and outliers. To adapt the subspaces dimensions {dj}Kj=1’s, the algo­

rithm adopts a low­rank dimensionality reduction technique presented in [10]. The algo­

rithm is initialized through PFI in case of dependent clusters and through SPCM in case

of independent clusters. It turned out, that the ability of SAP K­subspaces to estimate

the number of clusters highly depends on a parameter Ξ that controls the degree of the

imposed sparsity on the degrees of compatibility of a data point with the clusters. When

clustering dependent groups of points, the values of Ξ which unveil the data structure are

usually smaller than those used in independent ones. The same appears to hold for pa­

rameter α (the threshold which specifies which points will contribute to the estimation of

the subspace of a cluster). To fine­tune the regularizer λ2 (the parameter that reduces the

dimension of the subspace associated with a certain cluster), we use a penalized version

of the model’s RMSE which encourages the choice of dimensionality reduced subspaces

and discourages that of overfitted models (models with more subspaces than the actual

ones). The algorithm can effectively detect subspaces that intersect with each other and

correspond to non­uniformly distributed groups of points. However, those groups have to

be of the same size, since the same λ2 parameter is used for each cluster. When this

criterion is met, SAP K­subspaces exhibits in most cases state­of­the­art performance.
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7. FUTURE WORK

Interesting avenues of research, include the creation of a scalable possibilistic subspace

clustering algorithm which reduces the dimension of the subspaces without imposing con­

straints on the cardinality of their associated clusters. Lastly, there is a demand for creating

reliable model selection criteria which take into account models produced by algorithms

which adapt both the number of subspaces and their dimensions.
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ABBREVIATIONS ­ ACRONYMS

ADMM Alternating Direction Method of Multipliers

AIRLS Alternating Iteratively Reweighted Least Squares

BSUM Block Successive Upper­bound Minimization

eq. equation

i.e. from the latin phrase ”id est”, that is

MS Motion Segmentation

NRE Normalized Reconstruction Error

PCA Principal Components Analysis

PFI Probabilistic Farthest Insertion

RANSAC RANdom SAmple Consensus

RMSE Root Mean Square Error

SLBF Spectral Local Best­Fit Flats

SPCM Sparse Possibilistic C­Means

SSC Sparse Subspace Clustering

w.r.t. with respect to
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APPENDIX A. DEFINITIONS AND NOTATION

In this appendix, definitions and notations used in the thesis are presented. More of them

will be introduced in the relevant chapters as necessary.

A.1 Notation

A.1.1 Sets

X Data set

C Cluster, set of data points

S Subspace, set of data points

A.1.2 Scalars

L Ambient space dimension

dj Dimension of the subspace Sj

N The cardinality of the data set

Nj The cardinality of Sj

K Number of clusters

wij Degree of compatibility of a data point xi with the j­cluster

ηj Variance of the noise associated with the subspace Sj

A.1.3 Vectors

Vectors are represented as boldface lowercase letters.

xi ∈ RL, denotes the i data point

ηi ∈ RL, denotes the noise of xi

yij ∈ Rd, denotes the orthogonal projection of xi onto Sj

µj ∈ RL, denotes the displacement vector of Sj

1 All­ones vector of any size

0 All­zeros vector of any size
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A.1.4 Matrices

Matrices are denoted as boldface uppercase letters.

X ∈ RL×N , whose columns are the data vectors xi

Xj ∈ RL×Nj , whose columns are the data vectors xi ∈ Cj

W ∈ RN×K , whose (i, j) element is the degree of compatibility wij

U j ∈ RL×d, with columns d vectors that form a basis for Sj

Y j ∈ Rd×N , with columns the orthogonal projections of the data onto Sj

Im The m×m identity matrix

0m The m×m zero matrix

A.1.5 Norms

Let αj a 1×m vector.

• ∥αj∥r = (
∑m

i=1 |αij|r)1/r (ℓr norm of a vector)

• ∥αj∥pr = (
∑m

i=1 |αij|r)p/r (ℓpr norm of a vector)

Let A a m× n matrix.

• ∥A∥F =
√∑n

j=1

∑m
i=1 α

2
ij =

√∑n
j=1∥αj∥22 (Forbenious norm of a matrix)

• ∥A∥r,p = (
∑n

j=1∥αj∥pr)1/p (ℓr,p norm of a matrix)

• ∥A∥rr,p = (
∑n

j=1∥αj∥pr)r/p (ℓrr,p norm of a matrix)

A.2 Definitions

A.2.1 Linear Algebra

Definition A.2.1. Let V a non­empty set on which addition and scalar multiplication is

defined. In addition, let the field of scalars to be that of the real numbers. Then (V,+, ·)

or simply V is called a (real) vector space. The elements of V are called vectors if the

following conditions are satisfied:

1. If x1,x2 ∈ V then x1 + x2 ∈ V (closure +)
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2. x1 + x2 = x2 + x1,∀x1,x2 ∈ V (commutative law)

3. x1 + (x2 + x3) = (x1 + x2) + x3,∀x1,x2,x3 ∈ V (associative law)

4. There exists one element, denoted by 0V , such that x1+0V = x1,∀x1 ∈ V (additive

identity)

5. ∀x1 ∈ V , there exists an inversed such that x1 + (−x1) = 0V (additive inversed)

6. For κ ∈ R,x1 ∈ V , it is κx1 ∈ V (closure ·)

7. κ(x1 + x2) = κx1 + κx2,∀κ ∈ R,∀x1,x2 ∈ V (distributive law)

8. (κ+ λ)x1 = κx1 + λx1, ∀κ, λ ∈ R,∀x1 ∈ V (distributive law)

9. κ(λx1) = (κλ)x1∀λ, κ ∈ R,∀x1 ∈ V (associative law)

10. 1x1 = x1, ∀x1 ∈ V (unitary law)

Definition A.2.2. If x1,x2, ...,xN are vectors of a vector space V and κ1, κ2, ..., κN scalars,

then
∑N

i=1 κixi is called a linear combination of xi’s.

Definition A.2.3. A set of points {xi}Ni=1 is said to be linearly dependent if there exist

scalars κ0, ..., κN not all zero such that
∑N

i=0 κixi = 0V . If the scalars are all zero, the set

is said to be linearly independent.

Definition A.2.4. Let S be a subset of a vector space V (S ⊆ V ). If S has identical

definitions of vector addition and scalar multiplication with that of V , then S is called a

subspace of V .

Definition A.2.5. K linear subspaces of a vector space V are said to be independent if

the dimension of their sum is equal to the sum of their dimensions,

dim(S1 ⊕ S2 ⊕ ...⊕ SK) = dim(S1) + dim(S2) + ...+ dim(SK).

Definition A.2.6. K linear subspaces of a vector space V are said to be disjoint if every

pair of subspaces intersect only at the origin,

Si ∩ Sj = {0V }, where i, j = 1, 2..., K and i ̸= j.

Remark. If Si ∩ Sj = {0V } then dim(Si ⊕ Sj) = dim(Si) + dim(Sj).
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Remark. Independent subspaces are disjoint too but the opposite is not always true (see

figure 2).

Definition A.2.7. Let U = {ui}κi=1 a non­empty finite subset of a vector space V . In

addition, let S be a subspace of V composed by the linear combinations of U . Then, S is

said to be spanned by U , span {U} = S.

Definition A.2.8. Let U be a subset of a subspace S. Then, U is said to be a basis of S

if the following conditions are satisfied:

1. span {U} = S

2. The elements of U are linearly independent

Remark. 0V /∈ U , otherwise the elements of U are linearly dependent.

Remark. There can be more than one bases of S.

A.2.2 Affine Geometry

Definition A.2.9. A subset A of a vector space V is called an affine subspace if either

A = ∅ or A = µ+ L, where µ ∈ V and L a linear subspace of V .

Definition A.2.10. The homogeneous coordinates of a point x = [x11, x12, ..., x1L]
⊤ ∈ RL

are defined as [x11, x12, ..., x1L, 1]
⊤.

Definition A.2.11. If x1,x2, ...,xN are vectors of a vector space V and κ1, κ2, ..., κN scalars

with
∑N

i=1 κi = 1, then
∑N

i=1 κixi is called an affine combination of xi’s.

Definition A.2.12. A set of points {xi}Ni=1 is said to be affinely dependent if there exist

scalars κ0, ..., κN with
∑N

i=1 κi = 1 not all zero such that
∑N

i=0 κixi = 0V . If the scalars are

all zero, the set is said to be affinely independent.

Remark. Linear independence implies affine independence and affine dependence im­

plies linear dependence, but not vice versa.

Definition A.2.13. K affine subspaces are said to be independent if the correspondingK

linear subspaces using the homogeneous coordinates are.

Definition A.2.14. K affine subspaces are said to be disjoint if the correspondingK linear

subspaces using the homogeneous coordinates are.
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APPENDIX B. SPECTRAL CLUSTERING

The aim of this subsection is to provide background information about the technique used

by the algorithms presented in 3.4 and 3.5. For a complete theoritical review see [16].

Spectral clustering is a technique suitable for high dimensional data and they can reveal

clusters of any shape, provided that they are not intersected. Basically, what we do with

spectral clustering is that wemap the data into a new space (usually of a lower dimension),

where the clusters (hopefully) become compact and hyperspherically­shaped. Then, we

apply suitable clustering techniques, such as the K­means [17].

(a) (b) (c)

Figure 7: Spectral vs Compact Clustering

2­dimensional data set that forms two clusters. (a) K­means’ clustering results when applied to the

original data set. (b) The data K­means is applied. (c) The spectral clustering results in the original

space. Source: [18]

More precisely, the first step, is to build a similarity graph of the data. A similarity graph can

be weighted or unweighted. It is common to use a weighted graph, denoted byG = (V,E),

where V is a set of N nodes corresponding to N data points and E ⊆ V × V is a set of

edges that connect a subset of those nodes (see figure 8).

From the weights of the graph, the matrixA ∈ RN×N called the weighted adjacency matrix

of the graph or simply the affinity matrix is created. Each element of the affinity matrix,

measures the similarity between two data points. For instance, αij measures the similarity

degree between point i and point j. In other words, is an indication of whether those two

points should be assigned to the same group or not. An αij = 0, indicates that the points

should be assigned to different groups. The matrix A is symmetric (αij = αji) and the

range of its values depends on the similarity measure. A typical similarity measure is
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the Gaussian kernel function, αij = exp(−dist(xi,xj)
2

2σ2 ) where σ determines the width of the

kernel.

(a) (b)

Figure 8: Similarity graph and affinity matrix

(a) The similarity graph of a 2­dimensional data set that forms two clusters. (b) The associated

affinity matrix. Source: [18]

Given the affinity matrix, the Laplacian matrix or graph Laplacian L ∈ RN×N is created.

There are many different definitions in the literature about what kind of matrices should be

called like this. However, one may think of the graph Laplacian as a matrix that allows us

to perform clustering based on its properties. A popular choise is the normalized Laplacian

matrix. Defined as,

L = D−1/2(D −A)D−1/2, where D = diag(d1, d2, ..., dN), di =
N∑
i=1

αij. (B.0.1)

To continue, k ≪ N eigenvectors of L are chosen and stacked into a matrix U ∈ RN×k.

For the normalized Laplacian, those are the first k eigenvectors from the bottom which cor­

respond to the k smallest eigenvalues. Finally, a compact clustering technique is applied

to the rows of U (each row corresponds to a data point).
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