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ABSTRACT

As technology advances, the need to detect and predict events in real-time or near real-
time intensifies. In this paper, we will discuss, what constitutes an event for every data
stream and how using different algorithms, future events may be predicted. These
predictions are feasible, due to the correlation between corresponding events and
become more frequent as the spectrum of previous events taken into account
increases. Moreover, in real-world applications, these events remain relevant as time
progresses with diminishing probability all the while, which is something that the
algorithms we developed take into account. Due to managing Big Data, a Python
implementation was considered the best approach, since both Pandas and NumPy
libraries provide ease of use and optimal run time for such problems. In order to present
as realistic results as possible, a variety of variables were differentiated so as to extract
the outcome with the best precision and recall.

SUBJECT AREA: Sensor Networks

KEYWORDS: event correlation, event forecasting, change detection



NEPIAHYH

Me tnv mpdodo TnG TEXVOAOyiag, evreiveTal n avdykn avixveuong kal TTpoBAewng
OUMBAVTWY O€ TTPAyMATIKO XPOVOo, 1 OXEDOV TTPAYHATIKO XPOVO. 2TnV TITUXIAKA auTh,
avaAUoupe TI Bewpeital cUPPBAV yIa TIG ETTINEPOUG POEG DEDOUEVWV KOl TOV TPOTTO PE TOV
oTroio kaBioTaral duvarth n €mMTUXAG TTPORBAEWN TWV ETTOPEVWY CUUPBAVTWY, MECW TNG
XPNong €10IKA KATAoKEUAOPEVWY aAyopiBuwy. O1 TTpoBAEWEIC AUTEG Eival EQIKTEG,
eCaImiag Twv METOEU TOUG OUOXETIOEwV. EmTTAov, n akpiBela Twv TTPORAEWewvV
KOPUQWVETAI, 600 CUMTTEPIAAMPBAvVETAI Eva eupUTEPO QAT aTTd TTAAQIOTEPA CUUBAVTA-
KATOOTACEIG. 2TOV TTPAYMATIKO KOOMO, Ol KATAOTAOEIS auTég dlatnpouv pia @Bivouoa
XPOVIK& TTBavoTnTa TTPAYPATOTToiNONG, KATI TTOU OI OAYOPIOPol TTOU UAOTTOINCOUE
AauBdavouv utroyiv. H diaxeipion Big Data pag wlbnoe otn xprion tnNG YAWOOOG
TTpoypauuaTtioyou Python, oe ocuvduaoud pe TIG BIBAIoBAKkeg NumPy kai Pandas,
TTPOKEINEVOU va eTTITEUXOET BEATIOTOG XpOVOog ekTEAeONG. Me 0TdXO TNV TTapoudiacn TTIo
PEOAIOTIKWYV  ATTOTEAECUATWY, dlagopoTroinBnke €éva TAABo¢  ueTaBAnTWV  TOu
TTPOYPAUUATOG WOTE va €TMAEXBOUV oI TINEG TTOU €XOUV Tn PEATIOTN OKPIBEIa Kal
IKOVOTNTA AvVAKANONG.

OEMATIKH NEPIOXH: Aiktua AiloBnTtipwv

AEZEIZ KAEIAIA: cuoxéTion cuppavtwy, TTpoRAewn cuuBavTiwy, avixveuon aAAayng



2T oOUVAOEAQPOD LOoU, YIQ TIC ATEAEIWTES WPES TTOU UE AVEXTNKE.
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Event Correlation and Forecasting over High Dimensional Streaming Sensor Data

1. INTRODUCTION

Inspired by the state-of-the-art technological advances, the impending need for real-
time responsive devices has been increasing the demand for event prediction,
depending on event succession of past recordings. That was incentive enough for the
implementation of 2 (two) algorithms that function accordingly. These algorithms,
process event dataset streams and use them to calculate probabilities of next step
events.

It is crucial to comprehend that this approach does not apply to every dataset one may
acquire. Specifically, we focused on applications where the set of past events has
predictive power over the following event succession. Our implementation, for example,
was tested using streams of data from a naval environment, provided by our
supervisors.

An effectively fathomable model would utilize a relatively primitive dataset presenting 5
(five) data streams: Humidity, Temperature, Light, Smoke, and Fire. If on a specific
moment, the first four events occur simultaneously -humidity drops, temperature rises,
light increases, smoke increases- then a well-executed and trained algorithm could
predict that in a time span of a few moments, it is highly possible that the event Fire will
occur. The details of said implementation, along with the detection of occurring events,
are examined further on.

An event constitutes an abrupt change of behavior of a specific stream, on a specific
time step. It becomes apparent that an intermediate “translator’ of stream values is
necessary to create the event vectors used in the example above. That is accomplished
by executing a set of different algorithms to convert data streams into event vectors.

Real-time data processing is the execution of data in a short period, providing near-
instantaneous output. Stream processing is a technology that allows users to query
continuous data streams and detect conditions quickly, near instantaneously, after
receiving the data. Both concepts adhere to our implementation and depict its
importance while allowing predictions for larger systems and variable sets than already
existent.

The purpose of this thesis is to contribute to the vast spectrum of Sensor Network Data
Processing by acknowledging and adapting to patterns that occur in real-world
applications. Through this process, we wish to contribute to this sector by creating
algorithms that automate significant processes and achieve more precise results.

T. Vasilopoulou - S. Kostakonti 12



Event Correlation and Forecasting over High Dimensional Streaming Sensor Data

2. EVENT MANAGEMENT OVER MULTIVARIATE NUMERICAL DATA

When a prediction of a future event is crucial, the first step to understanding the way the
data streams function as real-world conditions is to detect abrupt changes in their
respective functionalities. To make our implementation as efficient as possible, we used
already existent algorithms that have proven to be lucrative in time and space
complexity, namely the Cumulative Sum (CUSUM) and Shewhart controllers.

Once a clear understanding of event occurrences is established, it becomes apparent
that these occurrences represent correlations in real-world applications and, therefore,
should be approached accordingly.

The understanding that their sequence stems from their in-between succession is what
makes the development of an algorithm for their correlation plausible.

We developed two algorithms that differ on the way they correlated events, and we
evaluated them based on their precision and recall percentages. These algorithms are
Stepwise Correlation and Sliding Window algorithms.

2.1 Event Detection
2.1.1 CUSUM Algorithm

The first algorithm we implemented to detect events between time series is CUSUM or
Cumulative Sum algorithm [1]. CUSUM evaluates the change between the data values
collected and a target value. It calculates both positive and negative changes and, over
time, adds them up until they reach a certain threshold, positive and negative,
respectively. If the sum exceeds the threshold, an event is detected, and the cumulative
sums reset. For slow changes to remain unreported as events, CUSUM also proposes a
positive and a negative tolerance parameter. Below, we provide the variables as well as
the algorithm for CUSUM. As input variables, we consider those mentioned above:

u, the target value

k*, the positive tolerance value

k~, the negative tolerance value
thres*, the positive threshold value
thres™—, the negative threshold value

As output variables, we have the positive and negative detection of an event;
occurrence signaled by 1 and absence by O:

e s*, the positive detection signal

e s, the negative detection signal

T. Vasilopoulou - S. Kostakonti 13



Event Correlation and Forecasting over High Dimensional Streaming Sensor Data

ALGORITHM 1: CUSUM Algorithm

Input: univariate time series x, , target value x , above-tolerance k* , below-
tolerance k~, above-threshold thres* , below-threshold thres~
Output: above detection signal s* , below detection signal s~

1. P «0;

2. N «O0;

3. t«l1;

4. while (true)

5. st «0;

6. ST «0;

7. P« max (0,x; — (u+ k™) + P);
8. N «min(0,x;, —(u—k™) + N);
9. if (P> thres™) then

10. st «1;

11. P «0;

12. N «0;

13. end

14. if (N < —thres™ ) then

15. ST «1;

16. P «0;

17. N «0;

18. end

19. t«—t+1;

20. end

This algorithm considers a given that our data follow a normal distribution, therefore all
the parameters must be set according to the specific dataset and what is considered a
change for a unique stream. In case of multivariate event streams [1], such as ours,

CUSUM must be applied separately for each variable [2].
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Event Correlation and Forecasting over High Dimensional Streaming Sensor Data

As presented in Figure 1, the thresholds that CUSUM selects are very close to 0. Due to
this, the algorithm detects changes of incoming data even for very slight fluctuations,
and in turn proceeds to consider almost every stream as an event.

2.1.2 Shewhart Algorithm

Shewhart Controller algorithm consists of a recurring comparison between a function’s
mean value and two envelopes, labeled UCL (Upper Control Limit) and LCL (Lower
Control Level), representing the statistical process’s xt € R distance from said mean
value.

In order to understand what aggregates a change, we define a parameter k, which
represents the limit to x¢'s fluctuation. Additionally, the standard deviation in every time
step is symbolized as o.

The detection of any event is based on a trigger that is activated every time the value of
xt fluctuates outside the two bounds, UCL and LCL. We consider these fluctuations as
events, since what is considered “normal” behavior for the function is exceeded during
the current time step.

To explain in mathematical terms, we define UCL and LCL as follows:

UCL=x, +k-o,

LCL=% —k-o, (1)

where x; represents the function’s mean value in the current time step.

To implement the aforementioned algorithm with Python, the desideratum is to translate
a dataset into a vector of 0’s and 1’s. Those values represent whether, on that particular
time step, an event occurred or not. Loading the selected dataset as a Pandas’
dataframe and converting it to a NumPy array, we can now compare the incoming
values, draw the function and decide whether the current stream constitutes an event or
not.

For every incoming stream in the given dataset, we evaluate the mean value of the
function and calculate the standard deviation and using a fixed k (event assessment
threshold) to find the asymptotes. A simple conditional statement on whether UCL or
LCL are exceeded is enough to decide whether the current stream constitutes an event.

The algorithm described above is:

ALGORITHM 2: Shewhart Algorithm

Input: univariate series x;, tightness k
Output: detections signal s

Xo «0;

0o «0;
t«1;
while ( true)

X_t —Xiq +

Xt—Xt—1 |
t

o (H((E = Doy + (e = 7) - (e~ D)

)

o akrwppE

T. Vasilopoulou - S. Kostakonti 15
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7. UCL <% + k-oy;
8. LCL <% — k-0, ;
9. if ((x; >UCL)or (x; <LCL)) then
10. s «1;
11. else
12. s «0;
13. end
14. te—t+1;
15. end
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Figure 2: Event Detection using Shewhart

This controller [2] for Shewhart is less populated than CUSUM’s respective one.
Interestingly, upper and lower limits are now more distinguishable, allowing for more
realistic representation of occurring events, since now slight fluctuations are considered
normal under real circumstances rather than detecting some new similar event.

2.2 Event Correlation
2.2.1 Stepwise Algorithm

The basis of the Stepwise Correlation Algorithm [3] lies in the creation of a directed
graph of the occurring events. In case the event detected in this current time step has
already been added to the graph, then with a set probability, we can predict what the
next occurring event will be.

To facilitate the algorithm’s functionality, let’'s present an example [3]; suppose we have
3 streams of events A, B, C.

T. Vasilopoulou - S. Kostakonti 16
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Figure 3: Example of stepwise correlation algorithm for multivariate event data

The Python routine we implemented imports a dataset as an event vector and using the
first few data to train our model. Training, in this case, means that we do not make
predictions but append these events to create a directed graph. This step could be
omitted, but with minimal loss, we increase the precision and recall by a significant
percentage.

Once the training period is over, our model is ready to start making predictions. After
detecting the next event, an examination could indicate that perhaps it is already
located inside the graph. Thus, we have already encountered it during the training
phase and are now capable of making a prediction.

T. Vasilopoulou - S. Kostakonti 17
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2.2.2 Sliding-window Algorithm

Although the Stepwise Correlation algorithm connects events that take place
consecutively, it disregards all the cases where an event B takes place several time
steps after event A, despite it having been triggered by A. In order to be able to
correlate those types of connections, we introduce a time window of size w. At each
step, all probabilities within this “sliding” window are recalculated, considering the newly
reported event vector. In the Sliding Window algorithm [3], we consider each event
vector stream to be related to any of the others or none at all. We present a set that
contains every occurring event inside the window. Therefore, for every event vector
stream, we calculate its powerset and a set of conditional probabilities within the given
window. For a large number of event streams, these calculations can become quite
complex. To avoid that, we can consider the combinations of up to K simultaneous
event streams at most.

Figure 4: Sliding Window Correlation algorithm example [3], where w=3

T. Vasilopoulou - S. Kostakonti 18
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3. IMPLEMENTATION DETAILS

3.1 General

For the implementation of the algorithms outlined above, we decided to use Python,
given that the program would need to be able to handle large datasets, as well as that,
from all other options (Matlab, Java), we were most comfortable working in Python. To
work with the dataset, we used the NumPy and Pandas libraries, and we also utilized
multi-threading to speed up the execution time, which was imperative for the
experimentation stage. We based our implementation around a maritime domain
dataset that contains around 22.000 logs from 29 different sensor streams. First, both
CUSUM and Shewhart algorithms were applied to our data to get the event vectors,
while noting which streams contained occurring events at a given time step. These
vectors function as input in the implementation of the Stepwise and Sliding Window
correlation algorithms, and after a short training period, produce the event prediction for
the next time step and its probability. Furthermore, for the experimental stage, we
created several scripts that tested the programs with different parameters and,
therefore, have created several files. Their format explanation is as follows:
shewhartRandomKevents*.data and cusumRandomKevents*.data are different event
vector files, stemming from the same two original files shewartEventVector.data and
cusumEventVector.data. Those files, each, have K random bits active if there are more
than K events detected at any given time step, to reduce time complexity. The results
files are all in the folder “results” separated according to algorithms and other
parameters.

3.2 Stepwise Correlation

In the Stepwise correlation algorithm, the detection of an event in one data stream is
indissolubly connected with the detection, or lack thereof, of an event in all other data
streams at this given time, and, therefore, cannot be considered separately. Using the
first thousand data vectors as training data, all appearance frequencies of events
populate a graph G, implemented as a dictionary of dictionaries. The frequency of an
event B following an event A increments each time event B occurs immediately after
event A.

Predictions begin right after the training set, and for every step thereafter, each current
prediction is compared to the actual event vector and a new prediction is made for the
next time step. In case the current event vector is not previously found in G, a possible
outcome in the next time step cannot be determined.

Once the selected dataset is parsed and all predictions are accounted for, the precision
and recall rates are calculated as such:

exact correct predictions

precision = —
number of predictions

exact correct predictions

recall = - - -
dataset size — train set size

T. Vasilopoulou - S. Kostakonti 19
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The algorithm that we developed and implemented is presented below:

ALGORITHM 3: Stepwise Correlation Algorithm

Input: train event vectors tr,, test event vectors ts,
Output: predictions pred,,

1 graph < {};

2 event « try;

3 graphlevent] « { };

4, k «1;

5. while ( true)

6 prevState « event;

7 event « try ;

8 updateGraph( prevSate, event, graph );
9

. k «k+1;
10. end
11. t «<0;
12. if graph[event] # 0 then
13. pred, < max( graph[event]);
14. else
15. pred; <« @;
16. end
17. while (true)
18. prevState < event;
19. event <« ts;;
20. updateGraph( prevState, event, graph) ;
21. if graphlevent] # { } then
22. pred;,; < max( graphlevent]) ;
23. else
24. predis, < O;
25. end
26. t «<t+1;
27. end

3.3 Sliding Window

The Sliding Window algorithm treats event streams both as separate and as
simultaneous events. To elaborate, from a 3-column dataset A, B, C, an event AC is an
event A, an event C, and an event AC all at the same time. In addition to this, it is more
realistic to use aging functions to maintain events that are likely to happen in a few time
steps with diminishing probability. For that purpose, we implemented two(2) aging
functions, a linear, and an exponential one.

The routine uses an event vector to begin implementing the algorithm. Every w steps,
where w is the time window inside which we operate, the graph is renewed, and new
probabilities are calculated. Thus, the first w steps are considered the training data for
this graph. Furthermore, two(2) lists are used, one containing lists of the powersets
mentioned above (prevPSets), and one containing every item of the first list
autonomously (powerList).

T. Vasilopoulou - S. Kostakonti 20
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Our next goal is to predict what will happen in the next time step. To do that, we define
a combined probability between every event inside powerList and the current event.
That probability is computed as such:

true occurences of a powerlList event given the current

P ideal number occurences given the current

Let’s illustrate how this probability is calculated with an example. Suppose the dataset
used, consists of 3 streams A, B and C. Presented below is the window of size 3:

Table 1: Sliding Window: Probability Calculation Example

WINDOW

B

L O - >
R O = 0O

0
1
i 0

For the calculations, we add up all occurrences for every given. This means that:
1 1

PeA= 3717 4

This becomes even more interesting when we compute py, :
2+1 3

Pas =377 1

When calculating that probability, one must realize that even if the event predicted does
not occur in the exact next time step it is quite likely to happen in a span of a few
moments. Hence an aging function is of importance, while these probabilities are stored
for every w.

When an aging function is implemented, an array of predictions, along with their
probabilities and their active time, are stored for a specific amount of time steps. For
every prediction thereafter, one must decide between the maximum calculated
probability from within the time window and those stored, choosing the maximum value
in each case.

One should note, that to produce results in a viable way, an implementation based on
threads was considered the best approach. For the duration of every prediction, a
mutex was acquired and then released to speed up every process.

T. Vasilopoulou - S. Kostakonti 21
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The algorithm for the Sliding-Window Correlation is presented below:

ALGORITHM 4: Sliding-Window Algorithm

Input: event vectors V;, window size w
Output: predictions pred;

1. prevPSets « [];

2. t «<0;

3. while(t <w-1)

4, event < V;;

5. pSet <« powerset( event);

6 prevPSets.append( pSet ) ;

7 t <t+1;

8. end

9. k< 0;

10. while (true)

11. predictions; < (None,0);

12. currentPS « powerset(V; );

13. prevPSets.append( currentPS ) ;

14. powerlList « all items in prevPSets;

15. for all combinations of sets in powerlList
16. idealCount < all possible appearences of setA in w;
17. itemCount « all appearences of setB after setA inw;
18. prob « itemCount/idealCount;

19. if prob > prediction,[1] then
20. predictions; < (setB,prob);
21. end
22. end
23. prevPSets.remove(0);
24. t <t+1;
25. k «k+1;
26. end

T. Vasilopoulou - S. Kostakonti
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4. EXPERIMENTAL EVALUATION

The experimental portion of this thesis consisted of testing the aforementioned code
with real world scenarios and more specifically, a set of values extracted from an
infrastructure of three (moving) ships, whose data was collected in real-time. This
dataset contains 29 sensor streams, measuring 29 different environmental parameters,
including ship acceleration, direction, humidity, water inclination, depth levels, etc. All
results yielded and analyzed through our implementation were produced using this
particular dataset, by differentiating multiple variables.

For both Stepwise Correlation and Sliding Window algorithms, to be able to produce
comprehensible output sets, the need arose to set an upper limit to all possible
outcomes. Hence, a k variable was defined to represent the varying number of
considered events at the same timestep, ranging from k =1 to k = 7. Additionally, it
was quite interesting to observe the way these two algorithms behaved, when a
threshold was set, that disallowed predictions of lesser probability to be accounted for.
However, through experimentation, it became obvious that those percentages could
skyrocket when the time horizon expanded, considering a prediction accurate even if it
occurred up to 3 timesteps forward. For all these cases, one should take into account
that both Shewhart and CUSUM were applied so that a larger amount of results could
be retrieved.

4.1 Stepwise Correlation Algorithm

The 4 variables that diversified our result sets were:
k, random simultaneous stream events,

p, probability,

h, time horizon,

detection algorithm, i.e. Shewhart, CUSUM.

»wnN e

To identify whether a prediction was accurate, a general rule for distinction needs to be
set. What constitutes a valid prediction is an event predicted on this current timestep
occurring within the next h timesteps. Hence, the precision for each case is calculated
as such:

Precision = r 1
recision = TP T FP (1)

, Where TP represents True Positives (i.e. every valid prediction) and FP False Positives
(i.e. every unsatisfied prediction made). It becomes apparent, that the denominator is
the sum of predictions made during runtime.

A full algorithm assessment is also influenced by its recall, calculated as:

TP

Recall = ——
et = TP Y FN

where, again, TP represents True Positives (i.e. every valid prediction) and now FN
False Negatives (i.e. every prediction that should have been made but was not). For this
case, the denominator is the size of the dataset, as, theoretically, a prediction should
exist for every event present in a dataset.
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At each step, the prediction recommended by the algorithm was the one with the
highest probability value as it was indicated by the event correlation scheme. Based on
these results, the precision and recall values were updated accordingly in each step and
the average values for each experiment are presented in the figures below.

During implementation, major obstacles concerning the amount of results were
encountered. In order to be able to analyze the output data, few event streams in each
case were activated. These k random activated bits of event streams ranged from 1 to 7
as mentioned above.

For a variety of different k values, different results were observed. Specifically, both
lower and higher values led to better precision and recall, whereas intermediate k’s
seemed to yield relatively worse outcomes. Regarding the better performing values, a
smaller k alludes to isolated events, unrelated to the rest of the data streams, which,
due to occurring rarely, conclude to a higher amount of correct predictions, thus
increasing both precision and recall. Respectively, a higher k allowed for predictions for
a large set of simultaneous events. Those sparse system states have a clear correlation
between the monitored variables and therefore, predictions were mostly accurate,
resulting in better precision and recall. On the other hand, k values fluctuating in the
middle, most of the times appear less successful, since they are neither low enough to
appear as individual nor high enough to capture all simultaneously occurring events.
This triggers a random selection of which streams are activated in each case, which
causes a drop in performance.

A different task would be to observe how these algorithms behaved when restricted to
probabilities with a threshold. Specifically, for Stepwise Correlation algorithm, the
interest focused on predicting both without a lower limit but also with a probability set to
1.

Finally, the last parameter taken into account was the event detection algorithm.
Considering the fact that Shewhart and CUSUM translate abrupt changes in continuous
streams of data differently, it is safe to assume that they would produce different results.
In most cases, Shewhart performed better due to our data not following a normal
distribution. Graphs that present these algorithms’ performance are depicted below.

Comparison of Precision of Stepwise Correlation
60usirll:_:| Shewhart and CUSUM detection algorithms

—=— Shewhart
—=— CUSUM

Comparison of Recall of Stepwise Correlation
using Shewhart and CUSUM detection algorithms

—=— Shewhart
F|—=— Cusum

Precision (%)
w
==}

20

10

1 2 3 4 5 5] 7 1 2 3 4 5 6 7
k-fixed Combinations k-fixed Combinations

Figure 5:Comparison of Shewhart and CUSUM algorithms on Stepwise Correlation

As mentioned above, even though Shewhart exhibits a drop of middle k values, it still
performs better than CUSUM for all results.
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An extension of the Stepwise Correlation algorithm for this thesis concerned the lifetime
of a prediction — thus changing the meaning of stepwise. It was proven during the
experimentation phase that expanding the time horizon inside which a prediction is
considered valid without any aging penalty, increases both precision and recall values
for CUSUM and Shewhart detection algorithms by an approximate maximum of 5%.
This is normal, considering that a prediction has more chances to be added to the True
Positives set, which would in turn increase the algorithm’s accuracy.
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Figure 6: Precision and Recall Percentages
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4.2 Sliding-window Algorithm
The case for Sliding Window algorithm consists of 6 different parameters:

k, random simultaneous stream events,

w, time window,

p, probability,

h, time horizon,

aging function, i.e. Linear, Exponential,
detection algorithm, i.e. Shewhart, CUSUM.

o gk~ wbdhE

Precision and recall are calculated in the same way as Stepwise. In this case, though,
True Positives are determined differently. Provided that change has occurred in m
sensor streams in a particular timestep, a prediction is considered precise even if the
algorithm only predicts n changes, where n € m. This applies both to precision and
recall, differentiating only their respective denominators.

The time window w represents a fixed graph size, one that contains any events that
have occurred up to w time steps ago.

Since this implementation follows an approach of retaining probabilities inside the
spectrum of a time window, it makes sense to store an array of extra values a,
representing the highest probability of past events for a specific time period, greater
than w. This probability decreases over time by an aging function that may be either
linear or exponential.

In Sliding Window, it is of greater significance to acknowledge what happens when a
lower limit is set on accepted predictions’ probability. Therefore, p is differentiated by
receiving more, intermediate values, incremented by 0.1 in each loop, starting at 0.4 up
to 0.9.

For the remaining variables, each definition applies as in Stepwise Correlation algorithm
documentation. To illustrate this further, below is a presentation of how CUSUM and
Shewhart algorithms behave for Sliding Window algorithm:

Precision of Sliding Window Recall of Sliding Window
90 for different detection algorithms 90 for different detection algorithms
—e— sliding Window, Shewhart —©—35liding Window, Shewhart

L |—=— Sliding Window, CUSUM
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(== (=] (=] (== o
T T T T T
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1 2 3 4 5 6 7 1 2 3 4 5 6 i
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Figure 8: Comparison of Shewhart and CUSUM algorithms on Sliding Window
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Again, due to the data not following a normal distribution, Shewhart’s algorithm renders
better results, in this case almost twice as accurate as CUSUM.

Moving on, testing probability acceptance over a set threshold yields an interesting
inference. Precision and recall seem to stabilize for all different probability thresholds,
when, for the k randomly selected bits, k > 2 or k = 3. As mentioned in the Stepwise
Correlation’s experimentation segment, a higher k alludes to more specific events that

represent real occurrences, hence the probability of these actually happening increases
and surpasses all monitored thresholds.
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Figure 9: Precision and Recall Percentages over different probability thresholds

As expected, a differentiation of probability thresholds produces the same results
(overlapping plots) over a higher k choice.

In the same manner as with Stepwise, a larger horizon of maintaining probabilities
increases the algorithm’s accuracy. However, for bigger k values, the gap is now much
smaller (~3%) and does not constitute a good tradeoff.
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Figure 10: Precision and Recall Percentages over different horizon values
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In this case, using an horizon of h = 3, for smaller k values, procures an increase in
precision and recall of 30%, which would be considered a very smart tradeoff. We
conclude that only for lower k values, an extension of the algorithm that would allow
probability maintenance over a set horizon is advised.

When developing the Sliding Window algorithm, we were presented with the opportunity
to use aging functions. The utility of an aging function is the ability to keep the best
probability for each set of predicted events for a limited time window. After calculating
the highest probability from inside the sliding window, if a past prediction has better
chances at forecasting the next event correctly, then that prediction is chosen. The way
this is achieved includes storing a constant number of events with their respective
probability, along with how many time steps have passed since their last occurrence.
That probability has been decreasing in relation to the chosen aging function and the
time elapsed.

To further elaborate how this aging matrix functions, we present the following example.

Let us suppose that in a 3-stream event dataset, A, B and C the aging matrix of size 3
contains the following:

Table 2: Sliding Window: Aging Matrix Example (a)

AGING MATRIX

EVENT PROBABILITY STEPS PASSED
AC 0.7 2
B 0.2 1
BC 0.3 0

Now, assuming that the next event is again AC, with a probability of 0.2 and every
probability available inside the window is less than 0.7, the choice is obviously AC from
inside the aging matrix. The aging matrix is now:

Table 3: Sliding Window: Aging Matrix Example (b)

AGING MATRIX

EVENT PROBABILITY STEPS PASSED
B 0.2 2
BC 0.3 1
AC 0.7 0

If none of those probabilities are utilized during their lifetime, they are popped from the
matrix and replaced by new sets. During experimentation, the aging matrix capacity was
set to n = 20 after testing various other sizes.
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Aging could appear in 2 ways: (a) linear, reducing every probability by a constant
percentage on each step (5% in this case), (b) exponential [4], by a predefined factor
(setto k = 0.3), and function A = exp (—ki). Those factors were also set after tests to
decide on the ones that procure the best accuracy metrics.
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Figure 11: Precision and Recall Percentages for different Aging Formulas

Even though the use of aging functions was implemented to increase the algorithm’s
precision and recall, these graphs show that the acquired results are actually worse.
Even though aging provides with a wider variety of probabilities for future events to
choose from, it also causes more predictions, which, when not accurate, trigger a drop
of these metrics.

For all figures regarding Sliding window, where fixed values for the parameters are
needeed, the following are applied: window size is set to 5, as a value that renders high
precision scores but does not require high time complexity and an horizon of 1 step
lookahead is utilized as the default algorithm. A good tradeoff so as to include most
predictions would be to consider a probability threshold of 0.6, and excluding those that
are less likely to happen. As detection algorithm, Shewhart performs better than
CUSUM and no aging function was applied as default parameter of the algorithm.
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Figure 12:Precision and Recall Percentages for different Time Window Spans
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It makes sense that a larger window would create more combinations and assign more
chances to an event of occurring again. That would in turn increase its probability and
assign its value to next steps’ predictions, hence the highest accuracy scores.

Final experimentation stage should be a comparison between the two developed
implementations of Stepwise Correlation and Sliding Window algorithms.
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Figure 13: Comparison of Precision and Recall for Stepwise Correlation and Sliding Window

algorithm

Apparently, Sliding Window performs better than Stepwise. This could be attributed to a
variety of reasons. Most importantly, the algorithms differ on what they consider an
accurate prediction, with Sliding accepting all possible combinations of the potentially
isolated, simultaneously occurring events. The fixed probability case for Sliding also
only allows predictions over a certain threshold, which reduces the number of
predictions, thus increasing precision. Note that for Sliding Window the drop in middle k
values does not exist. This happens due to the fact that a subset prediction is also
counted as a correct prediction.

However, Stepwise provides us with the ability to skip the k parameter and use all
streams, with a high accuracy (~62%), that presents a more realistic approach by
including the true dataset value. That could not be implemented for Sliding, since a
dataset containing 29 event streams would require up to 22° probable events for every
time step. Obviously, space and time complexity forbid this test case from this
experimentation segment.

Finally, even though as mentioned, a broader horizon renders better results, it is outside
the context of the developed algorithms, as is the use of aging functions. In order to
achieve more realistic results, when fixing values, the defaults were used (1 event
lookahead h=1, no use of aging function).
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5. CONCLUSION

In this thesis, we discussed the flow of actions concerning event forecasting over sensor
stream data. As a first measure, it is crucial to interpret what constitutes an event and
create algorithms that implement this interpretation efficiently. Depending on whether or
not the incoming data follow a normal distribution, the most suitable algorithm was
chosen to create the event vectors. As we already noted, an established
interdependence of the provided data is advised, since it produces better and more
realistic results.

To produce as up-to-date results as possible, the general approach followed, assigns
more predictive power to more recent events by using aging functions and removing
obsolete events from the predictions’ graph. Furthermore, by adding memory to the
prediction algorithm (e.g. Sliding Window), old predictions concerning a larger amount
of subsequent time steps may now “win” over newer, more minimal predictions that
exist inside the predefined time window.

Through thorough experimentation, we managed to develop an implementation that
produces results of high precision and recall. That implementation utilizes all available
resources and for sets of differentiated variables, reaches up to ~80% exact matches.

With this thesis, we aim to contribute to the vast sector that is Sensor Network Data
Processing and create algorithms that enable devices to act according to their indicated
behavior, defined for the following time quantum, with high probability for success. In
the future, we aim to extend the algorithms’ applicability to unobservable system states
that affect observable variables and thus, lead to incorrect predictions throughout the
system. Our ultimate goal is to create a universal model that identifies all hidden states
and assigns them to already known system states.
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