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ABSTRACT 

 

As technology advances, the need to detect and predict events in real-time or near real-
time intensifies. In this paper, we will discuss, what constitutes an event for every data 
stream and how using different algorithms, future events may be predicted. These 
predictions are feasible, due to the correlation between corresponding events and 
become more frequent as the spectrum of previous events taken into account 
increases. Moreover, in real-world applications, these events remain relevant as time 
progresses with diminishing probability all the while, which is something that the 
algorithms we developed take into account. Due to managing Big Data, a Python 
implementation was considered the best approach, since both Pandas and NumPy 
libraries provide ease of use and optimal run time for such problems. In order to present 
as realistic results as possible, a variety of variables were differentiated so as to extract 
the outcome with the best precision and recall. 
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ΠΕΡΙΛΗΨΗ 

 

Με την πρόοδο της τεχνολογίας, εντείνεται η ανάγκη ανίχνευσης και πρόβλεψης 
συμβάντων σε πραγματικό χρόνο, ή σχεδόν πραγματικό χρόνο. Στην πτυχιακή αυτή, 
αναλύουμε τι θεωρείται συμβάν για τις επιμέρους ροές δεδομένων και τον τρόπο με τον 
οποίο καθίσταται δυνατή η επιτυχής πρόβλεψη των επόμενων συμβάντων, μέσω της 
χρήσης ειδικά κατασκευασμένων αλγορίθμων. Οι προβλέψεις αυτές είναι εφικτές, 
εξαιτίας των μεταξύ τους συσχετίσεων. Επιπλέον, η ακρίβεια των προβλέψεων 
κορυφώνεται, όσο συμπεριλαμβάνεται ένα ευρύτερο φάσμα από παλαιότερα συμβάντα-
καταστάσεις. Στον πραγματικό κόσμο, οι καταστάσεις αυτές διατηρούν μία φθίνουσα 
χρονικά πιθανότητα πραγματοποίησης, κάτι που οι αλγόριθμοι που υλοποιήσαμε 
λαμβάνουν υπόψιν. Η διαχείριση Big Data μας ώθησε στη χρήση της γλώσσας 
προγραμματισμού Python, σε συνδυασμό με τις βιβλιοθήκες NumPy και Pandas, 
προκειμένου να επιτευχθεί βέλτιστος χρόνος εκτέλεσης. Με στόχο την παρουσίαση πιο 
ρεαλιστικών αποτελεσμάτων, διαφοροποιήθηκε ένα πλήθος μεταβλητών του 
προγράμματος ώστε να επιλεχθούν οι τιμές που έχουν τη βέλτιστη ακρίβεια και 
ικανότητα ανάκλησης. 
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1. INTRODUCTION 

Inspired by the state-of-the-art technological advances, the impending need for real-
time responsive devices has been increasing the demand for event prediction, 
depending on event succession of past recordings. That was incentive enough for the 
implementation of 2 (two) algorithms that function accordingly. These algorithms, 
process event dataset streams and use them to calculate probabilities of next step 
events. 

It is crucial to comprehend that this approach does not apply to every dataset one may 
acquire. Specifically, we focused on applications where the set of past events has 
predictive power over the following event succession. Our implementation, for example, 
was tested using streams of data from a naval environment, provided by our 
supervisors. 

An effectively fathomable model would utilize a relatively primitive dataset presenting 5 
(five) data streams: Humidity, Temperature, Light, Smoke, and Fire. If on a specific 
moment, the first four events occur simultaneously -humidity drops, temperature rises, 
light increases, smoke increases- then a well-executed and trained algorithm could 
predict that in a time span of a few moments, it is highly possible that the event Fire will 
occur. The details of said implementation, along with the detection of occurring events, 
are examined further on. 

An event constitutes an abrupt change of behavior of a specific stream, on a specific 
time step. It becomes apparent that an intermediate “translator” of stream values is 
necessary to create the event vectors used in the example above. That is accomplished 
by executing a set of different algorithms to convert data streams into event vectors. 

Real-time data processing is the execution of data in a short period, providing near-
instantaneous output. Stream processing is a technology that allows users to query 
continuous data streams and detect conditions quickly, near instantaneously, after 
receiving the data. Both concepts adhere to our implementation and depict its 
importance while allowing predictions for larger systems and variable sets than already 
existent. 

The purpose of this thesis is to contribute to the vast spectrum of Sensor Network Data 
Processing by acknowledging and adapting to patterns that occur in real-world 
applications. Through this process, we wish to contribute to this sector by creating 
algorithms that automate significant processes and achieve more precise results. 
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2. EVENT MANAGEMENT OVER MULTIVARIATE NUMERICAL DATA 

When a prediction of a future event is crucial, the first step to understanding the way the 
data streams function as real-world conditions is to detect abrupt changes in their 
respective functionalities. To make our implementation as efficient as possible, we used 
already existent algorithms that have proven to be lucrative in time and space 
complexity, namely the Cumulative Sum (CUSUM) and Shewhart controllers.  

Once a clear understanding of event occurrences is established, it becomes apparent 
that these occurrences represent correlations in real-world applications and, therefore, 
should be approached accordingly.  

The understanding that their sequence stems from their in-between succession is what 
makes the development of an algorithm for their correlation plausible.  

We developed two algorithms that differ on the way they correlated events, and we 
evaluated them based on their precision and recall percentages. These algorithms are 
Stepwise Correlation and Sliding Window algorithms. 

2.1 Event Detection 

2.1.1 CUSUM Algorithm 

The first algorithm we implemented to detect events between time series is CUSUM or 
Cumulative Sum algorithm [1]. CUSUM evaluates the change between the data values 
collected and a target value. It calculates both positive and negative changes and, over 
time, adds them up until they reach a certain threshold, positive and negative, 
respectively. If the sum exceeds the threshold, an event is detected, and the cumulative 
sums reset. For slow changes to remain unreported as events, CUSUM also proposes a 
positive and a negative tolerance parameter. Below, we provide the variables as well as 
the algorithm for CUSUM. As input variables, we consider those mentioned above: 

• 𝜇, the target value 

• 𝑘+, the positive tolerance value 

• 𝑘−, the negative tolerance value 

• 𝑡ℎ𝑟𝑒𝑠+, the positive threshold value 

• 𝑡ℎ𝑟𝑒𝑠−, the negative threshold value 

As output variables, we have the positive and negative detection of an event; 
occurrence signaled by 1 and absence by 0: 

• 𝑠+, the positive detection signal 

• 𝑠−, the negative detection signal 

 

 

 

 

 

 

 

 



Event Correlation and Forecasting over High Dimensional Streaming Sensor Data 

T. Vasilopoulou - S. Kostakonti   14 

ALGORITHM 1: CUSUM Algorithm 

Input: univariate time series 𝑥𝑡 , target value  , above-tolerance 𝑘+ , below-
tolerance 𝑘−, above-threshold 𝑡ℎ𝑟𝑒𝑠+ , below-threshold 𝑡ℎ𝑟𝑒𝑠− 
Output: above detection signal 𝑠+ , below detection signal 𝑠− 

1. 𝑃  0 ;  
2. 𝑁  0 ;  
3. 𝑡 1 ;  
4. 𝒘𝒉𝒊𝒍𝒆 ( 𝑡𝑟𝑢𝑒 ) 
5. 𝑠+  0;  
6. 𝑠−  0;  
7. 𝑃  𝐦𝐚𝐱 (0, 𝑥𝑡 − (𝜇 + 𝑘+) + 𝑃) ; 
8. 𝑁  𝐦𝐢𝐧(0, 𝑥𝑡 − (𝜇 − 𝑘−) + 𝑁) ; 
9. 𝒊𝒇 ( 𝑃 > 𝑡ℎ𝑟𝑒𝑠+ ) 𝒕𝒉𝒆𝒏  

10. 𝑠+  1;  
11.     𝑃  0 ; 
12.     𝑁  0 ;  
13. 𝒆𝒏𝒅  
14. 𝒊𝒇 ( 𝑁 < −𝑡ℎ𝑟𝑒𝑠− ) 𝒕𝒉𝒆𝒏  
15.     𝑠−  1;  
16.     𝑃  0 ;  
17.     𝑁  0 ; 
18. 𝒆𝒏𝒅  
19. 𝑡   𝑡 + 1 ;  
20. 𝒆𝒏𝒅 

 

This algorithm considers a given that our data follow a normal distribution, therefore all 
the parameters must be set according to the specific dataset and what is considered a 
change for a unique stream. In case of multivariate event streams [1], such as ours, 
CUSUM must be applied separately for each variable [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Event detection using CUSUM 
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As presented in Figure 1, the thresholds that CUSUM selects are very close to 0. Due to 
this, the algorithm detects changes of incoming data even for very slight fluctuations, 
and in turn proceeds to consider almost every stream as an event.  

2.1.2 Shewhart Algorithm 

Shewhart Controller algorithm consists of a recurring comparison between a function’s 
mean value and two envelopes, labeled UCL (Upper Control Limit) and LCL (Lower 
Control Level), representing the statistical process’s xt ∈ ℝ distance from said mean 
value.  

In order to understand what aggregates a change, we define a parameter k, which 
represents the limit to xt’s fluctuation. Additionally, the standard deviation in every time 
step is symbolized as σ.  

The detection of any event is based on a trigger that is activated every time the value of 
xt fluctuates outside the two bounds, UCL and LCL. We consider these fluctuations as 
events, since what is considered “normal” behavior for the function is exceeded during 
the current time step. 

To explain in mathematical terms, we define UCL and LCL as follows: 

 

 

where  𝑥𝑡̅ represents the function’s mean value in the current time step. 

To implement the aforementioned algorithm with Python, the desideratum is to translate 
a dataset into a vector of 0’s and 1’s. Those values represent whether, on that particular 
time step, an event occurred or not. Loading the selected dataset as a Pandas’ 
dataframe and converting it to a NumPy array, we can now compare the incoming 
values, draw the function and decide whether the current stream constitutes an event or 
not.  

For every incoming stream in the given dataset, we evaluate the mean value of the 
function and calculate the standard deviation and using a fixed k (event assessment 
threshold) to find the asymptotes. A simple conditional statement on whether UCL or 
LCL are exceeded is enough to decide whether the current stream constitutes an event.  

The algorithm described above is: 

 

ALGORITHM 2: Shewhart Algorithm 

Input: univariate series 𝑥𝑡, tightness 𝑘 
Output: detections signal 𝑠 

1. 𝑥0̅̅ ̅  0 ;  
2. 𝜎0  0 ;  
3. 𝑡 1 ;  
4. 𝒘𝒉𝒊𝒍𝒆 ( 𝑡𝑟𝑢𝑒 ) 
5.     𝑥𝑡̅   𝑥𝑡−1̅̅ ̅̅ ̅̅  +  

𝑥𝑡̅̅ ̅−𝑥𝑡−1̅̅ ̅̅ ̅̅ ̅

𝑡
;  

6. 
    𝜎𝑡   √

1

𝑡
((𝑡 − 1)𝜎𝑡−1

2 +  (𝑥𝑡 − 𝑥𝑡̅) ∙ (𝑥𝑡 − 𝑥𝑡−1̅̅ ̅̅ ̅̅ ));  

𝑈𝐶𝐿 = 𝑥𝑡̅ + 𝑘 ∙ 𝜎𝑡  

(1) 
𝐿𝐶𝐿 = 𝑥𝑡̅ − 𝑘 ∙ 𝜎𝑡  
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7.    𝑈𝐶𝐿  𝑥𝑡 ̅̅̅̅ +  𝑘 ∙ 𝜎𝑡  ; 
8.    𝐿𝐶𝐿  𝑥𝑡 ̅̅̅̅ −  𝑘 ∙ 𝜎𝑡   ; 
9.    𝒊𝒇 (( 𝑥𝑡 > 𝑈𝐶𝐿 ) 𝑜𝑟 (𝑥𝑡 < 𝐿𝐶𝐿)) 𝒕𝒉𝒆𝒏  

10.            𝑠    1;  
11.    𝒆𝒍𝒔𝒆   
12.             𝑠    0;     
13.    𝒆𝒏𝒅  
14.    𝑡   𝑡 + 1 ; 
15. 𝒆𝒏𝒅 

This controller [2] for Shewhart is less populated than CUSUM’s respective one. 
Interestingly, upper and lower limits are now more distinguishable, allowing for more 
realistic representation of occurring events, since now slight fluctuations are considered 
normal under real circumstances rather than detecting some new similar event. 

 

 

2.2 Event Correlation 

2.2.1 Stepwise Algorithm 

The basis of the Stepwise Correlation Algorithm [3] lies in the creation of a directed 
graph of the occurring events. In case the event detected in this current time step has 
already been added to the graph, then with a set probability, we can predict what the 
next occurring event will be.  

To facilitate the algorithm’s functionality, let’s present an example [3]; suppose we have 
3 streams of events A, B, C.  

Figure 2: Event Detection using Shewhart 
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Figure 3: Example of stepwise correlation algorithm for multivariate event data 

The Python routine we implemented imports a dataset as an event vector and using the 
first few data to train our model. Training, in this case, means that we do not make 
predictions but append these events to create a directed graph. This step could be 
omitted, but with minimal loss, we increase the precision and recall by a significant 
percentage. 

Once the training period is over, our model is ready to start making predictions. After 
detecting the next event, an examination could indicate that perhaps it is already 
located inside the graph. Thus, we have already encountered it during the training 
phase and are now capable of making a prediction. 
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2.2.2 Sliding-window Algorithm 

Although the Stepwise Correlation algorithm connects events that take place 
consecutively, it disregards all the cases where an event B takes place several time 
steps after event A, despite it having been triggered by A. In order to be able to 
correlate those types of connections, we introduce a time window of size w. At each 
step, all probabilities within this “sliding” window are recalculated, considering the newly 
reported event vector. In the Sliding Window algorithm [3], we consider each event 
vector stream to be related to any of the others or none at all. We present a set that 
contains every occurring event inside the window. Therefore, for every event vector 
stream, we calculate its powerset and a set of conditional probabilities within the given 
window. For a large number of event streams, these calculations can become quite 
complex. To avoid that, we can consider the combinations of up to K simultaneous 
event streams at most. 
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Figure 4: Sliding Window Correlation algorithm example [3], where w=3 
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3. IMPLEMENTATION DETAILS 

3.1 General 

For the implementation of the algorithms outlined above, we decided to use Python, 
given that the program would need to be able to handle large datasets, as well as that, 
from all other options (Matlab, Java), we were most comfortable working in Python. To 
work with the dataset, we used the NumPy and Pandas libraries, and we also utilized 
multi-threading to speed up the execution time, which was imperative for the 
experimentation stage. We based our implementation around a maritime domain 
dataset that contains around 22.000 logs from 29 different sensor streams. First, both 
CUSUM and Shewhart algorithms were applied to our data to get the event vectors, 
while noting which streams contained occurring events at a given time step. These 
vectors function as input in the implementation of the Stepwise and Sliding Window 
correlation algorithms, and after a short training period, produce the event prediction for 
the next time step and its probability. Furthermore, for the experimental stage, we 
created several scripts that tested the programs with different parameters and, 
therefore, have created several files. Their format explanation is as follows: 
shewhartRandomKevents*.data and cusumRandomKevents*.data are different event 
vector files, stemming from the same two original files shewartEventVector.data and 
cusumEventVector.data. Those files, each, have K random bits active if there are more 
than K events detected at any given time step, to reduce time complexity. The results 
files are all in the folder “results” separated according to algorithms and other 
parameters. 

 

3.2  Stepwise Correlation 

In the Stepwise correlation algorithm, the detection of an event in one data stream is 
indissolubly connected with the detection, or lack thereof, of an event in all other data 
streams at this given time, and, therefore, cannot be considered separately. Using the 
first thousand data vectors as training data, all appearance frequencies of events 
populate a graph G, implemented as a dictionary of dictionaries. The frequency of an 
event B following an event A increments each time event B occurs immediately after 
event A.  

Predictions begin right after the training set, and for every step thereafter, each current 
prediction is compared to the actual event vector and a new prediction is made for the 
next time step. In case the current event vector is not previously found in G, a possible 
outcome in the next time step cannot be determined. 

Once the selected dataset is parsed and all predictions are accounted for, the precision 
and recall rates are calculated as such: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑒𝑥𝑎𝑐𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑒𝑥𝑎𝑐𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 − 𝑡𝑟𝑎𝑖𝑛 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒
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The algorithm that we developed and implemented is presented below: 

 

ALGORITHM 3: Stepwise Correlation Algorithm 

Input: train event vectors 𝒕𝒓𝒕, test event vectors 𝒕𝒔𝒕 
Output: predictions 𝒑𝒓𝒆𝒅𝒌  

1. 𝑔𝑟𝑎𝑝ℎ ← { };  
2. 𝑒𝑣𝑒𝑛𝑡 ← 𝑡𝑟0;  
3. 𝑔𝑟𝑎𝑝ℎ[𝑒𝑣𝑒𝑛𝑡] ← { } ;  
4. 𝑘 ← 1 ;  
5. 𝒘𝒉𝒊𝒍𝒆 ( 𝑡𝑟𝑢𝑒 )  

6. prevState ← event ;  
7. event ← tr𝑘 ;  
8. updateGraph( prevSate, event, graph );   

9. k ← k + 1 ;   
10. 𝐞𝐧𝐝   
11. t ← 0 ;   
12. 𝒊𝒇 𝑔𝑟𝑎𝑝ℎ[𝑒𝑣𝑒𝑛𝑡] ≠ 0 𝒕𝒉𝒆𝒏   

13. 𝑝𝑟𝑒𝑑𝑡  ← max( 𝑔𝑟𝑎𝑝ℎ[𝑒𝑣𝑒𝑛𝑡] ) ;   
14. 𝒆𝒍𝒔𝒆   
15. 𝑝𝑟𝑒𝑑𝑡 ←  ∅ ;   
16. 𝒆𝒏𝒅   
17. 𝒘𝒉𝒊𝒍𝒆 ( 𝑡𝑟𝑢𝑒 )   

18. 𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑡𝑒 ← 𝑒𝑣𝑒𝑛𝑡;   
19. 𝑒𝑣𝑒𝑛𝑡 ← 𝑡𝑠𝑡  ;   
20. 𝑢𝑝𝑑𝑎𝑡𝑒𝐺𝑟𝑎𝑝ℎ( 𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑡𝑒, 𝑒𝑣𝑒𝑛𝑡, 𝑔𝑟𝑎𝑝ℎ ) ;   
21. 𝒊𝒇 𝑔𝑟𝑎𝑝ℎ[𝑒𝑣𝑒𝑛𝑡] ≠ { } 𝒕𝒉𝒆𝒏   

22. 𝑝𝑟𝑒𝑑𝑡+1  ←  max( 𝑔𝑟𝑎𝑝ℎ[𝑒𝑣𝑒𝑛𝑡] ) ;   
23. 𝒆𝒍𝒔𝒆   
24. 𝑝𝑟𝑒𝑑𝑡+1  ←  ∅ ;   
25. 𝒆𝒏𝒅   

26. 𝑡 ← 𝑡 + 1 ;   
27. 𝒆𝒏𝒅   

 

3.3 Sliding Window 

The Sliding Window algorithm treats event streams both as separate and as 
simultaneous events. To elaborate, from a 3-column dataset A, B, C, an event AC is an 
event A, an event C, and an event AC all at the same time. In addition to this, it is more 
realistic to use aging functions to maintain events that are likely to happen in a few time 
steps with diminishing probability. For that purpose, we implemented two(2) aging 
functions, a linear, and an exponential one. 

The routine uses an event vector to begin implementing the algorithm. Every w steps, 
where w is the time window inside which we operate, the graph is renewed, and new 
probabilities are calculated. Thus, the first w steps are considered the training data for 
this graph. Furthermore, two(2) lists are used, one containing lists of the powersets 
mentioned above (prevPSets), and one containing every item of the first list 
autonomously (powerList).  
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Our next goal is to predict what will happen in the next time step. To do that, we define 
a combined probability between every event inside powerList and the current event. 
That probability is computed as such:  

 

𝑝 =  
𝑡𝑟𝑢𝑒 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑎 𝑝𝑜𝑤𝑒𝑟𝐿𝑖𝑠𝑡 𝑒𝑣𝑒𝑛𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖𝑑𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 

 

Let’s illustrate how this probability is calculated with an example. Suppose the dataset 
used, consists of 3 streams A, B and C. Presented below is the window of size 3: 

 

Table 1: Sliding Window: Probability Calculation Example 

WINDOW 
 A B C 

i 1 0 1 

ii 0 1 0 

iii 1 0 1 

 

For the calculations, we add up all occurrences for every given. This means that: 

𝑝𝐵|𝐴 =
1

3 + 1
=  

1

4
 

  

This becomes even more interesting when we compute 𝑝𝐴|𝐴 : 

𝑝𝐴|𝐴 =
2 + 1

3 + 1
=  

3

4
 

 

When calculating that probability, one must realize that even if the event predicted does 
not occur in the exact next time step it is quite likely to happen in a span of a few 
moments. Hence an aging function is of importance, while these probabilities are stored 
for every w.  

When an aging function is implemented, an array of predictions, along with their 
probabilities and their active time, are stored for a specific amount of time steps. For 
every prediction thereafter, one must decide between the maximum calculated 
probability from within the time window and those stored, choosing the maximum value 
in each case. 

One should note, that to produce results in a viable way, an implementation based on 
threads was considered the best approach. For the duration of every prediction, a 
mutex was acquired and then released to speed up every process. 
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The algorithm for the Sliding-Window Correlation is presented below: 

 

ALGORITHM 4: Sliding-Window Algorithm  

Input: event vectors 𝑉𝑡, window size 𝑤 
Output: predictions 𝑝𝑟𝑒𝑑𝑘 

1. 𝑝𝑟𝑒𝑣𝑃𝑆𝑒𝑡𝑠 ← [ ];  
2. 𝑡 ← 0 ;  
3. 𝒘𝒉𝒊𝒍𝒆 ( 𝑡 ≤  𝑤 − 1 )  
4. 𝑒𝑣𝑒𝑛𝑡 ← 𝑉𝑡 ;  
5. 𝑝𝑆𝑒𝑡 ← 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡( 𝑒𝑣𝑒𝑛𝑡 ) ;  
6. 𝑝𝑟𝑒𝑣𝑃𝑆𝑒𝑡𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑( 𝑝𝑆𝑒𝑡 ) ;  
7. 𝑡 ← 𝑡 + 1 ;  
8. 𝒆𝒏𝒅  
 9. 𝑘  ⃪  0 ;  
10. 𝒘𝒉𝒊𝒍𝒆 ( 𝑡𝑟𝑢𝑒 )  
11. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑘 ← (𝑁𝑜𝑛𝑒, 0);  
12. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑆 ← 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡( 𝑉𝑡 );  
13. 𝑝𝑟𝑒𝑣𝑃𝑆𝑒𝑡𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑( 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑆 ) ;  
14. 𝑝𝑜𝑤𝑒𝑟𝐿𝑖𝑠𝑡 ← 𝑎𝑙𝑙 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑝𝑟𝑒𝑣𝑃𝑆𝑒𝑡𝑠;  
15. 𝒇𝒐𝒓 𝑎𝑙𝑙 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑠𝑒𝑡𝑠 𝒊𝒏 𝑝𝑜𝑤𝑒𝑟𝐿𝑖𝑠𝑡  
16. 𝑖𝑑𝑒𝑎𝑙𝐶𝑜𝑢𝑛𝑡 ← 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑠𝑒𝑡𝐴 𝑖𝑛 𝑤;  
17. 𝑖𝑡𝑒𝑚𝐶𝑜𝑢𝑛𝑡 ← 𝑎𝑙𝑙 𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑠𝑒𝑡𝐵 𝑎𝑓𝑡𝑒𝑟 𝑠𝑒𝑡𝐴 𝑖𝑛 𝑤;  
18. 𝑝𝑟𝑜𝑏 ← 𝑖𝑡𝑒𝑚𝐶𝑜𝑢𝑛𝑡/𝑖𝑑𝑒𝑎𝑙𝐶𝑜𝑢𝑛𝑡;  
19. 𝒊𝒇  𝑝𝑟𝑜𝑏 > 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑘[1] 𝒕𝒉𝒆𝒏  
20. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑘 ← (𝑠𝑒𝑡𝐵, 𝑝𝑟𝑜𝑏);  
21. 𝒆𝒏𝒅  
22. 𝒆𝒏𝒅  
23. 𝑝𝑟𝑒𝑣𝑃𝑆𝑒𝑡𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒(0);  
24. 𝑡 ← 𝑡 + 1 ;  
25. 𝑘 ← 𝑘 + 1 ;  
26. 𝒆𝒏𝒅  
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4. EXPERIMENTAL EVALUATION 

The experimental portion of this thesis consisted of testing the aforementioned code 
with real world scenarios and more specifically, a set of values extracted from an 
infrastructure of three (moving) ships, whose data was collected in real-time. This 
dataset contains 29 sensor streams, measuring 29 different environmental parameters, 
including ship acceleration, direction, humidity, water inclination, depth levels, etc. All 
results yielded and analyzed through our implementation were produced using this 
particular dataset, by differentiating multiple variables.  

For both Stepwise Correlation and Sliding Window algorithms, to be able to produce 
comprehensible output sets, the need arose to set an upper limit to all possible 
outcomes. Hence, a k variable was defined to represent the varying number of 
considered events at the same timestep, ranging from 𝑘 = 1 to 𝑘 = 7. Additionally, it 
was quite interesting to observe the way these two algorithms behaved, when a 
threshold was set, that disallowed predictions of lesser probability to be accounted for. 
However, through experimentation, it became obvious that those percentages could 
skyrocket when the time horizon expanded, considering a prediction accurate even if it 
occurred up to 3 timesteps forward. For all these cases, one should take into account 
that both Shewhart and CUSUM were applied so that a larger amount of results could 
be retrieved.  

 

4.1 Stepwise Correlation Algorithm 

The 4 variables that diversified our result sets were:  

1. 𝒌, random simultaneous stream events, 

2. 𝒑, probability, 

3. 𝒉, time horizon, 

4. detection algorithm, i.e. 𝑆ℎ𝑒𝑤ℎ𝑎𝑟𝑡, 𝐶𝑈𝑆𝑈𝑀. 

 

To identify whether a prediction was accurate, a general rule for distinction needs to be 
set. What constitutes a valid prediction is an event predicted on this current timestep 
occurring within the next ℎ timesteps. Hence, the precision for each case is calculated 
as such: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

, where 𝑇𝑃 represents True Positives (i.e. every valid prediction) and 𝐹𝑃 False Positives 
(i.e. every unsatisfied prediction made). It becomes apparent, that the denominator is 
the sum of predictions made during runtime.  

 A full algorithm assessment is also influenced by its recall, calculated as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where, again,  𝑇𝑃 represents True Positives (i.e. every valid prediction) and now 𝐹𝑁 
False Negatives (i.e. every prediction that should have been made but was not). For this 
case, the denominator is the size of the dataset, as, theoretically, a prediction should 
exist for every event present in a dataset. 

(1) 
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At each step, the prediction recommended by the algorithm was the one with the 
highest probability value as it was indicated by the event correlation scheme. Based on 
these results, the precision and recall values were updated accordingly in each step and 
the average values for each experiment are presented in the figures below. 

During implementation, major obstacles concerning the amount of results were 
encountered. In order to be able to analyze the output data, few event streams in each 
case were activated. These 𝑘 random activated bits of event streams ranged from 1 to 7 
as mentioned above.  

For a variety of different k values, different results were observed. Specifically, both 
lower and higher values led to better precision and recall, whereas intermediate k’s 
seemed to yield relatively worse outcomes. Regarding the better performing values, a 
smaller k alludes to isolated events, unrelated to the rest of the data streams, which, 
due to occurring rarely, conclude to a higher amount of correct predictions, thus 
increasing both precision and recall. Respectively, a higher k allowed for predictions for 
a large set of simultaneous events. Those sparse system states have a clear correlation 
between the monitored variables and therefore, predictions were mostly accurate, 
resulting in better precision and recall. On the other hand, k values fluctuating in the 
middle, most of the times appear less successful, since they are neither low enough to 
appear as individual nor high enough to capture all simultaneously occurring events. 
This triggers a random selection of which streams are activated in each case, which 
causes a drop in performance.  

A different task would be to observe how these algorithms behaved when restricted to 
probabilities with a threshold. Specifically, for Stepwise Correlation algorithm, the 
interest focused on predicting both without a lower limit but also with a probability set to 
1. 

Finally, the last parameter taken into account was the event detection algorithm. 
Considering the fact that Shewhart and CUSUM translate abrupt changes in continuous 
streams of data differently, it is safe to assume that they would produce different results. 
In most cases, Shewhart performed better due to our data not following a normal 
distribution. Graphs that present these algorithms’ performance are depicted below.  

 

 

Figure 5:Comparison of Shewhart and CUSUM algorithms on Stepwise Correlation 

 

As mentioned above, even though Shewhart exhibits a drop of middle k values, it still 
performs better than CUSUM for all results.  
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An extension of the Stepwise Correlation algorithm for this thesis concerned the lifetime 
of a prediction – thus changing the meaning of stepwise. It was proven during the 
experimentation phase that expanding the time horizon inside which a prediction is 
considered valid without any aging penalty, increases both precision and recall values 
for CUSUM and Shewhart detection algorithms by an approximate maximum of 5%. 
This is normal, considering that a prediction has more chances to be added to the True 
Positives set, which would in turn increase the algorithm’s accuracy.  

 

 

Figure 6: Precision and Recall Percentages on Stepwise Correlation using CUSUM 

 

 

 

Figure 7: Precision and Recall Percentages on Stepwise Correlation using Shewhart 
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4.2 Sliding-window Algorithm 

The case for Sliding Window algorithm consists of 6 different parameters: 

1. 𝒌, random simultaneous stream events, 

2. 𝒘, time window, 

3. 𝒑, probability, 

4. 𝒉, time horizon, 

5. aging function, i.e. 𝐿𝑖𝑛𝑒𝑎𝑟, 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙, 

6. detection algorithm, i.e. 𝑆ℎ𝑒𝑤ℎ𝑎𝑟𝑡, 𝐶𝑈𝑆𝑈𝑀. 

 

Precision and recall are calculated in the same way as Stepwise. In this case, though, 
True Positives are determined differently. Provided that change has occurred in 𝑚 
sensor streams in a particular timestep, a prediction is considered precise even if the 
algorithm only predicts 𝑛 changes, where 𝑛 ⊆ 𝑚. This applies both to precision and 
recall, differentiating only their respective denominators. 

The time window 𝒘 represents a fixed graph size, one that contains any events that 
have occurred up to 𝒘 time steps ago.  

Since this implementation follows an approach of retaining probabilities inside the 
spectrum of a time window, it makes sense to store an array of extra values 𝒂, 
representing the highest probability of past events for a specific time period, greater 
than 𝒘. This probability decreases over time by an aging function that may be either 
linear or exponential.  

In Sliding Window, it is of greater significance to acknowledge what happens when a 
lower limit is set on accepted predictions’ probability. Therefore, 𝒑 is differentiated by 
receiving more, intermediate values, incremented by 0.1 in each loop, starting at 0.4 up 
to 0.9.  

For the remaining variables, each definition applies as in Stepwise Correlation algorithm 
documentation. To illustrate this further, below is a presentation of how CUSUM and 
Shewhart algorithms behave for Sliding Window algorithm: 

 

 

Figure 8: Comparison of Shewhart and CUSUM algorithms on Sliding Window 
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Again, due to the data not following a normal distribution, Shewhart’s algorithm renders 
better results, in this case almost twice as accurate as CUSUM.  

Moving on, testing probability acceptance over a set threshold yields an interesting 
inference. Precision and recall seem to stabilize for all different probability thresholds, 
when, for the k randomly selected bits, 𝑘 ≥ 2 𝑜𝑟 𝑘 ≥ 3. As mentioned in the Stepwise 
Correlation’s experimentation segment, a higher k alludes to more specific events that 
represent real occurrences, hence the probability of these actually happening increases 
and surpasses all monitored thresholds. 

 

 

Figure 9: Precision and Recall Percentages over different probability thresholds 

 

As expected, a differentiation of probability thresholds produces the same results 
(overlapping plots) over a higher k choice. 

In the same manner as with Stepwise, a larger horizon of maintaining probabilities 
increases the algorithm’s accuracy. However, for bigger k values, the gap is now much 
smaller (~3%) and does not constitute a good tradeoff. 

 

 

Figure 10: Precision and Recall Percentages over different horizon values 
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In this case, using an horizon of ℎ = 3, for smaller k values, procures an increase in 
precision and recall of 30%, which would be considered a very smart tradeoff. We 
conclude that only for lower k values, an extension of the algorithm that would allow 
probability maintenance over a set horizon is advised. 
 
When developing the Sliding Window algorithm, we were presented with the opportunity 
to use aging functions. The utility of an aging function is the ability to keep the best 
probability for each set of predicted events for a limited time window. After calculating 
the highest probability from inside the sliding window, if a past prediction has better 
chances at forecasting the next event correctly, then that prediction is chosen. The way 
this is achieved includes storing a constant number of events with their respective 
probability, along with how many time steps have passed since their last occurrence. 
That probability has been decreasing in relation to the chosen aging function and the 
time elapsed. 
 
To further elaborate how this aging matrix functions, we present the following example. 
Let us suppose that in a 3-stream event dataset, A, B and C the aging matrix of size 3 
contains the following: 
 
 

Table 2: Sliding Window: Aging Matrix Example (a) 

AGING MATRIX 

EVENT PROBABILITY STEPS PASSED 

AC 0.7 2 

B 0.2 1 

BC 0.3 0 

 
 
Now, assuming that the next event is again AC, with a probability of 0.2 and every 
probability available inside the window is less than 0.7, the choice is obviously AC from 
inside the aging matrix. The aging matrix is now: 
 
 

Table 3: Sliding Window: Aging Matrix Example (b) 

AGING MATRIX 

EVENT PROBABILITY STEPS PASSED 

B 0.2 2 

BC 0.3 1 

AC 0.7 0 

 
 
If none of those probabilities are utilized during their lifetime, they are popped from the 
matrix and replaced by new sets. During experimentation, the aging matrix capacity was 
set to 𝑛 = 20 after testing various other sizes.  
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Aging could appear in 2 ways: (a) linear, reducing every probability by a constant 
percentage on each step (5% in this case), (b) exponential [4], by a predefined factor 
(set to 𝑘 = 0.3), and function 𝜆 = exp (−𝑘𝑖). Those factors were also set after tests to 
decide on the ones that procure the best accuracy metrics. 
 
 

 

Figure 11: Precision and Recall Percentages for different Aging Formulas 

 
Even though the use of aging functions was implemented to increase the algorithm’s 
precision and recall, these graphs show that the acquired results are actually worse. 
Even though aging provides with a wider variety of probabilities for future events to 
choose from, it also causes more predictions, which, when not accurate, trigger a drop 
of these metrics.  
 
For all figures regarding Sliding window, where fixed values for the parameters are 
needeed, the following are applied: window size is set to 5, as a value that renders high 
precision scores but does not require high time complexity and an horizon of 1 step 
lookahead is utilized as the default algorithm. A good tradeoff so as to include most 
predictions would be to consider a probability threshold of 0.6, and excluding those that 
are less likely to happen. As detection algorithm, Shewhart performs better than 
CUSUM and no aging function was applied as default parameter of the algorithm. 
 
 

 

Figure 12:Precision and Recall Percentages for different Time Window Spans 
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It makes sense that a larger window would create more combinations and assign more 
chances to an event of occurring again. That would in turn increase its probability and 
assign its value to next steps’ predictions, hence the highest accuracy scores. 
 
Final experimentation stage should be a comparison between the two developed 
implementations of Stepwise Correlation and Sliding Window algorithms.  
 
 
 

 

Figure 13: Comparison of Precision and Recall for Stepwise Correlation and Sliding Window 

algorithm 

 
Apparently, Sliding Window performs better than Stepwise. This could be attributed to a 
variety of reasons. Most importantly, the algorithms differ on what they consider an 
accurate prediction, with Sliding accepting all possible combinations of the potentially 
isolated, simultaneously occurring events. The fixed probability case for Sliding also 
only allows predictions over a certain threshold, which reduces the number of 
predictions, thus increasing precision. Note that for Sliding Window the drop in middle k 
values does not exist. This happens due to the fact that a subset prediction is also 
counted as a correct prediction. 
 
However, Stepwise provides us with the ability to skip the k parameter and use all 
streams, with a high accuracy (~62%), that presents a more realistic approach by 
including the true dataset value. That could not be implemented for Sliding, since a 
dataset containing 29 event streams would require up to 229 probable events for every 
time step. Obviously, space and time complexity forbid this test case from this 
experimentation segment.  
 
Finally, even though as mentioned, a broader horizon renders better results, it is outside 
the context of the developed algorithms, as is the use of aging functions. In order to 
achieve more realistic results, when fixing values, the defaults were used (1 event 
lookahead h=1, no use of aging function). 
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5. CONCLUSION 

In this thesis, we discussed the flow of actions concerning event forecasting over sensor 
stream data. As a first measure, it is crucial to interpret what constitutes an event and 
create algorithms that implement this interpretation efficiently. Depending on whether or 
not the incoming data follow a normal distribution, the most suitable algorithm was 
chosen to create the event vectors. As we already noted, an established 
interdependence of the provided data is advised, since it produces better and more 
realistic results. 

To produce as up-to-date results as possible, the general approach followed, assigns 
more predictive power to more recent events by using aging functions and removing 
obsolete events from the predictions’ graph. Furthermore, by adding memory to the 
prediction algorithm (e.g. Sliding Window), old predictions concerning a larger amount 
of subsequent time steps may now “win” over newer, more minimal predictions that 
exist inside the predefined time window. 

Through thorough experimentation, we managed to develop an implementation that 
produces results of high precision and recall. That implementation utilizes all available 
resources and for sets of differentiated variables, reaches up to ~80% exact matches. 

With this thesis, we aim to contribute to the vast sector that is Sensor Network Data 
Processing and create algorithms that enable devices to act according to their indicated 
behavior, defined for the following time quantum, with high probability for success. In 
the future, we aim to extend the algorithms’ applicability to unobservable system states 
that affect observable variables and thus, lead to incorrect predictions throughout the 
system. Our ultimate goal is to create a universal model that identifies all hidden states 
and assigns them to already known system states. 
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