
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Assessing the URxD 3D Face Recognition
Algorithm on Synthetic Facial Data

Panteleimon D. Kanellis

Supervisors: Theoharis Theoharis, Professor
Antonios Danelakis, Dr

ATHENS
OCTOBER 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αξιολόγηση του 3Δ Αλγορίθμου Αναγνώρισης
Προσώπων URxD σε Συνθετικά Δεδομένα

Προσώπου

Παντελεήμων Δ. Κανέλλης

Επιβλέποντες: Θεοχάρης Θεοχάρης, Καθηγητής
Αντώνιος Δανελάκης, Δρ

ΑΘΗΝΑ
ΟΚΤΩΒΡΙΟΣ 2020

BSc THESIS

Assessing the URxD 3D Face Recognition Algorithm
on Synthetic Facial Data

Panteleimon D.Kanellis

S.N.: 1115201600055

Supervisors: Theoharis Theoharis, Professor
Antonios Danelakis, Dr

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Αξιολόγηση του 3Δ Αλγορίθμου Αναγνώρισης Προσώπων URxD σε
Συνθετικά Δεδομένα Προσώπου

Παντελεήμων Δ. Κανέλλης

Α.Μ.: 1115201600055

Επιβλέποντες: Θεοχάρης Θεοχάρης, Καθηγητής
Αντώνιος Δανελάκης, Δρ

ABSTRACT

Real-time face recognition on real faces has been an extensive research
topic in computer science in the last three decades. One of the most suc-
cessful face recognition techniques, that has dominated performance eval-
uations for almost 15 years, is URxD. This thesis examines the perfor-
mance of URxD in computer generated faces, and compares the results
with real human faces. More specifically, a 3D database containing 100
synthetic faces is generated. Each face has a neutral and a random ex-
pression with random intensity. The source code of URxD is recompiled
and edited in order to run in modern machines. Later on, the synthetic 3D
database is used as input for URxD in order to compute the success rate,
that is how many faces were recognised correctly. The result of URxD is
considered successful for one face, if the program correlates the neutral
expression of the face with the random expression of the same face. Fi-
nally, URxD was tested on 100 real faces, solely for comparison purposes.

SUBJECT AREA: Face Recognition

KEYWORDS: synthetic faces, 3D database, facial expressions,
face recognition algorithm, recognition rate

ΠΕΡΙΛΗΨΗ

Η αναγνώριση ανθρωπίνων προσώπων σε πραγματικό χρόνο έχει αποτε-
λέσει ένα εκτεταμένο θέμα έρευνας στην επιστήμη των υπολογιστών τις τε-
λευταίες τρεις δεκαετίες. Μια από τις πιο επιτυχημένες τεχνικές αναγνώρι-
σης προσώπων που έχει κυριεύσει τις επιδόσεις αξιολόγησης για περίπου
15 χρόνια, είναι το URxD. Η συγκεκριμένη πτυχιακή εξετάζει την απόδοση
του URxD σε πρόσωπα παραγόμενα από υπολογιστή, και συγκρίνει τα
αποτελέσματα με πραγματικά ανθρώπινα πρόσωπα. Πιο συγκεκριμένα,
παράγεται μια 3Δ βάση δεδομένων, η οποία περιέχει 100 συνθετικά πρό-
σωπα. Κάθε πρόσωπο έχει μια ουδέτερη και μια τυχαία έκφραση με τυχαία
ένταση. Ο πηγαίος κώδικας του URxD μεταγλωττίστηκε εκ νέου και τρο-
ποποιήθηκε, έτσι ώστε να μπορεί να τρέξει σε μοντέρνα μηχανήματα. Στην
συνέχεια, η συνθετική 3Δ βάση δεδομένων χρησιμοποιείται σαν είσοδο για
το URxD με σκοπό να υπολογιστεί το ποσοστό επιτυχίας, δηλαδή πόσα
πρόσωπα αναγνωρίστηκαν σωστά. Ένα αποτέλεσμα του URxD θεωρείται
επιτυχές για ένα πρόσωπο, αν το πρόγραμμα συσχετίζει την ουδέτερη έκ-
φραση του προσώπου με την τυχαία έκφραση του ίδιου προσώπου. Τέλος,
το URxD ελέγθηκε σε 100 πραγματικά πρόσωπα, για σκοπούς σύγκρισης
και μόνο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναγνώριση Προσώπων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: συνθετικά πρόσωπα, 3Δ βάση δεδομένων,
εκφράσεις προσώπων, αλγόριθμος αναγνώρισης
προσώπων, ποσοστό αναγνώρισης

CONTENTS

1 INTRODUCTION 1

2 RELATED WORK & BACKGROUND 2

3 SYNTHETIC 3DFACEGENERATIONANDRECONSTRUCTION
SYSTEMS 5

3.1 EOS Worklflow . 5
3.2 FaceGen workflow . 8
3.3 The Winner . 10

4 CREATING A SYNTHETIC DATABASE FOR FACE RECOGNI-
TION 11

4.1 Random Face Generator . 12

5 FACE RECOGNITION WITH URxD 15
5.1 Workflow . 15
5.2 Performance Evaluation . 19

5.2.1 CMC Curve Definitions . 19

6 DISCUSSION AND FUTURE WORK 22

APPENDIX 25
EOS Installation . 25
Batch Script Decomposition . 26
URxD Project Restoration . 28

Visual Studio Project Configuration . 28
Compiler Errors . 30
Linker Errors . 32

Creating URxD Experiments . 35

ABBREVIATIONS 38

REFERENCES 39

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

1. INTRODUCTION

Face recognition is an important task that solves many real life problems.
From criminal identification to identity verification, a good face recogni-
tion algorithm must be able to confront all these problems. This thesis
challenges the ability of URxD to produce stable results for a synthetic
database. The following questions are posed:

1. Are there any criteria to choose among the different synthetic face
generators? How are these random faces generated?

2. Since randomly computer generated faces might be strongly related
(some faces might look alike), can the algorithm score a high recog-
nition rate?

3. Is there a guarantee that the algorithm will produce satisfying results
for any 3D database, even for faces that ”don’t exist”?

4. Are there any methods that could potentially improve the algorithm’s
success rate for synthetic faces?

Chapter 3 answers the first part of the first question, by comparing two
face reconstruction programs. The usability of the programs, the quality of
the generated faces, and the variety of facial expressions are three of the
most important choosing factors. The second part of the first question is
answered in chapter 4, where the workflow of the chosen reconstruction
program is thoroughly analysed in a top level approach. For a more techni-
cal description of the random face generator, see Appendix. The questions
3 and 4 are examined in chapter 5, where URxD is tested on the synthetic
3D database and the performance results are extracted. Since the random
face generator can produce some faces with slightly exaggerated features
(with a certain probability), the 3D database serves as a stress test for
URxD. Finally, chapter 6 examines the last question, by introducing the
obstacles that were faced by URxD, and proposing a few techniques that
might improve the performance of the algorithm.

P.Kanellis 1

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

2. RELATED WORK & BACKGROUND

Blanz et al. [1], introduced the 3D Morphable Model (3DMM) concept. As-
suming there is full correspondence between all the faces of the database,
the algorithm creates four segments for each face as seen in Figure 2.1 .
Every other face and expression can be generated as a linear combination
of these four segments. One year later, the same authors [2] proposed
a method of face recognition using the 3DMM, where a 2D image (either
frontal or side view, with different poses and illumination) is used to com-
pute the 3D shape and texture of the face. A 3DMM is fitted in the 2D image
by combining and altering facial features of an existing 3D database. Af-
ter creating a 3D representation of each face, the algorithm compares two
faces by taking into account the coefficients obtained from images of the
same face.
Georgios Passalis et al.[3] introduced a 3D face recognition method, using
the Annotated Face Model (AFM), which is a 3D geometry with distinctly
marked facial features, as seen in Figure 2.2. For example, the forehead
has a different colour (annotated area) than the mouth or the eyes.
URxD operates in two phases: Enrollment and Authentication. The Enroll-
ment stage described in Figure 2.3, consists of 4 steps:

1. Acquisition : The data are collected in point cloud form, derived
by laser scans. The point cloud representation (also referred as raw
data), is transformed into a 3D polygonal representation through a
Preprocessing pipeline.

2. Alignment : The 3D data are aligned into a unified coordinate sys-
tem, so that metadata can be extracted in the next steps.

3. Geometry Image Analysis : The AFM is created once and it is used
for the fitting process of the face.

4. Fitting : The fitting process deforms the shape of the AFM so that it
can wrap around the 3D face. Later, the geometry image of the fitted
model is derived and used as a unique signature for the face.

P.Kanellis 2

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 2.1: The prototype and the average face are used to generate new faces.
The amount of deformation for each segment can influence the end result.[1]

Figure 2.2: The Annotated Face Model. Each facial feature is marked as a distinct
area. [3]

The Authentication phase produces the recognition rates. Using the signa-
tures from the Enrollment phase, the algorithm computes distances from
one face to another, creating a distance matrix. This matrix (often referred
as similarity matrix), is processed by the algorithm and recognition results
are derived in Cumulative Matching Curve (CMC) or Receiver Operating
Curve (ROC) form. The URxD project was tested on the Full FRGC v2
Database containing real faces, and it scored over 97% as seen in Figure
2.4, the biggest score at the time.

P.Kanellis 3

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 2.3: Enrollment phase of the URxD workflow[3]

Figure 2.4: URxD performance on the FRGC v2 Database.[3]
(a) ROC I, (b) ROC II, and (c) ROC III.

P.Kanellis 4

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

3. SYNTHETIC 3D FACE GENERATION AND
RECONSTRUCTION SYSTEMS

This chapter introduces two of the most prevalent face reconstruction and
synthetic face generation systems : EOS and FaceGen. The differences
between these two technologies are thoroughly examined, in order to choose
the technology that produces the best results and is the easiest to use. The
categories in which EOS and FaceGen will be compared, are the interface
(how user friendly the API is), the inclusion or not of facial expressions, the
number of landmarks, the quality of both the texture and the .obj , and the
different input parameters. In order to understand the differences, let us
study the workflow for each technology first.

3.1. EOS Worklflow

EOS[4] is a library written in C++11/14, offering basic functionalities such
as face reconstruction from a 2D image using a 3DMM and camera ma-
nipulation. The usage of EOS requires additional dependencies before a
face can be generated. In Windows systems, these dependencies can be
installed via a package downloader called vcpkg, while Linux users can
simply install the additional programs using the apt install command. The
Appendix describes the complete installation and usage of EOS step by
step.
Example : Suppose we have the following image in Figure 3.1.
Implementing the workflow, EOS will give the following result in Figure 3.2
A few observations about the derived results are listed below :

• EOS does not provide facial expressions. The program can be com-
bined with 4dface, a software made by the same creator of EOS, in
order to use blendshapes.

• Almost all test images had texture streching and incomplete texture
maps (see Figure 3.3)

• The total amount of polygons for each face is 6,736. This means
that EOS produces low resolution facial meshes and subsequently
the facial expressions will be less accurate.

P.Kanellis 5

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 3.1: Face image reference

Figure 3.2: 3D Face reconstructed by EOS

P.Kanellis 6

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 3.3: EOS produces texture stretching and incomplete texture maps.

P.Kanellis 7

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

3.2. FaceGen workflow

There are two versions of FaceGen [5], each with different functionalities.
The Demo version has a friendlier interface (sliders control different pa-
rameters of the face in real time as seen in Figure 3.4), but it has less
functionalities than the Full version. The Full version consists of an SDK
that extends the demo version, by allowing the user to select the export for-
mat (obj,fbx,3ds,etc.) , create renders of 3D faces, batch create randomly
generated faces and many more. For now, we will present the workflow
for the demo version. The correspondent workflow for the full version will
be examined in the next chapter. The core ideas remain the same for the
two versions.

Figure 3.4: The interface of the Demo version of FaceGen.

The setup is much more simple this time. FaceGen requires no third party
software or usage of VS. The demo version can be installed with a regular
installer, while the Full version comes as a zipped format that can be ex-
tracted with any suitable software (WinZip for example). The user can pro-
vide up to three images to reconstruct a face (one frontal and two optional
side images). The frontal image must be passport type (neutral facial ex-
pression, direct light). It is recommended that the input image has as high
resolution as possible (at least 500 pixels for the height). The higher the
resolution, the better the results.

P.Kanellis 8

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Once an image (or images) is provided, the user is prompted to manually
place the landmarks. The number of landmarks is 11 minimum (only one
image as seen in Figure 3.5), and 29 maximum (three images). Typically,
the more landmarks, the more accurate the final result will be.

Figure 3.5: Manual placement of landmarks in a 2D face image.

FaceGen will calculate the 3D face based on the landmarks and the in-
put image(s). The total time needed for the face in Figure 3.1 was 35.2
seconds. The result is seen in Figure 3.6.

Figure 3.6: 3D face reconstruction using FaceGen.

P.Kanellis 9

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

3.3. The Winner

Both technologies were tested on the same training set of 11 images. Be-
low is a summary of the basic differences between EOS and FaceGen,
based on the training set.

EOS FG
Non user friendly interface.
Requires the installation of
3rd party libraries and com-
pilation of the project in Vi-
sual Studio.

User friendly interface. Re-
quires only the installa-
tion/extraction of the pro-
gram.

No blendshapes. There
is another program for this
feauture called 4dface

A wide range of blend-
shapes that change the
shape of the face in real
time.

Requires image + a collec-
tion of 2D data points (usu-
ally a .pts file)

Requires at least one
frontal face image and
two optional side images.
The landmarks are placed
manually.

The number of landmarks
are not limited (typically 68
points are enough).

11 landmarks minimum 29
landmarks maximum

The texture has the same
resolution as the input im-
age.

The texture has often low
resolution (as seen in Fig-
ure 3.6). It produces better
results with a high resolu-
tion image.

There is often severe tex-
ture stretching and untex-
tured spaces (see 3.3)

No significant texture
stretching No untextured
space

6,736 polygons 11,438 polygons

It is only natural to choose the most efficient and user friendly software,
and that is FaceGen.

P.Kanellis 10

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

4. CREATING A SYNTHETIC DATABASE FOR FACE
RECOGNITION

In this chapter, a database of 100 random faces will be created with the
FaceGen SDK. Other 3D databases that are worth mentioning, are :

• Face Recognition Grand Challenge (FRGC)[6]: The FRGC data
set consists of 50,000 records, where 4,003 of them are used for
validation and the rest of the subjects are used for training the 3D
face recognition algorithm.

• Bosphorus[7]: The Bosphorus database includes 4666 3D faces,
derived by 105 subjects. The database stores up to 35 expressions
for each subject. Some 3D faces have a physical obstacle covering
the face (hands, hair, eyeglasses), making the recognition process
more challenging.

• Binghamton University 3D Facial Expression(BU-3DFE)
database[8]: TheBU-3DFE database contains 100 subjects (44males
and 56 females) from different age groups and ethnicities. Each sub-
ject has 7 expressions, and each expression has 4 levels of intensity.
BU-3DFE was chosen to compete with the database created in this
thesis. The expressions and their intensities were chosen in a round
robin order.

The structure of the DB that will be created in the current thesis is as fol-
lows:
Each face has its own unique number from 1 to 100. The ”Data” folder
contains the texture and obj file of the face , a frontal and side render. The
”Query” folder contains the texture , obj file and a frontal image of the same
face with different facial expression (one of the 22 provided by FG). Each
expression and its intensity will be randomly selected. An example of the
DB’s structure is seen in Figure 4.1.

P.Kanellis 11

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 4.1: The structure of the database for an arbitrary number.

FG provides random values for the following parameters :

• Gender, Hypermale , Male , Female, Hyperfemale

• Age, 10 - 65 years

• Ethnicity, African, European, East Asian or South Asian

• Asymmetry, how asymmetrical is the shape of the face

• Caricature Shape, the degree of deformation

• Caricature Color, how ”normal” the color of the face is

Note that a person generated by FG might have intermediate values for
age and gender. For example, a random person’s gender can be between
Male and Female.

4.1. Random Face Generator

The database consists of 100 random faces, produced by aWindows batch
script (.bat) file using commands from the FG SDK (see Appendix for more
details). This chapter examines how the SDK builds a random face.
FaceGen comes with 5 different model sets (csam) :

• 3DPrint, used for 3D printing applications with a high poly model

P.Kanellis 12

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

• Animate, used to create morphs (facial expressions)

• MakeHuman, creates a face that can be easily used with MakeHu-
man software

• Preview, creates an 11K poly face without expressions

• Real Time, low poly cutout of a face with no facial expressions

Since we want facial expressions, we will use the Animate csam. Each
csam contains the average face and texture. Every other face will be gen-
erated by adjusting the coefficients of the average face. The Statistical
Shape Model (SSM), represents a polygonal model of fixed mesh topology.
The SSM is stored as a file with .EGM extension, which saves information
about the shape of the mean face and there is 1-1 vertex-feature corre-
spondence (for example, the vertex at the corner of the eye will remain the
same for both the average and the generated face). The Statistical Color
Model (SCM), stored as a file with .EGT extension, describes the mean
texture map (as a 24-bit RGB color image). In order to use a csam set,
we need facial coordinates (described with a .fg file). These coordinates
combined with the EGM and EGT will transform the average face and will
output the base geometry corresponding to the new face (.tri file). Our new
face is generated, but we want a widely recognised format (.obj) instead of
.tri. FG provides tools to convert tri format to obj. The process is described
briefly in Figure 4.2. The Figure 4.3 visualises two random faces created
by Facegen. The two left images represent the neutral expression of the
face and the right image represents the random expression for the partic-
ular face.

P.Kanellis 13

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 4.2: Creating a random face with a csam

Figure 4.3: Random faces created by Facegen.
a) Neutral expressions

b) Random expression with random intensity

P.Kanellis 14

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

5. FACE RECOGNITION WITH URxD

After the executable programs are successfully produced (see Appendix),
they will be used in conjunction with the FaceGen 3D database, in order
to evaluate the performance of URxD in synthetic faces. For comparison
purposes, URxD will also be used with the BU-3DFE database, which is a
3D DB consisting of 100 real faces. The evaluation metric that will be used
for the two DBs, is CMC.

5.1. Workflow

The procedures that will be used from the URxD project, are :

• fimgen : creates the ”signature” of a 3D face

• simutil : creates similarity matrices, CMC and ROC curves

Fimgen takes as input the 3D faces of the DB, performs a registration,
alignment and fitting process, and outputs a unique signature of each face
with fixed size (121 KB).
As seen in Figure 5.1, the program is parametrized by a configuration file
(config.ini). A typical configuration file is seen in Figure 5.2. The com-
mand ”extension” defines the format of the 3D face (wrl or obj). The com-
mands ”alignmodel_file” and ”facemodel_file”, define the file that will be
used for the alignment and fitting process. These files end with the ex-
tension .sas, and describe the Annotated Face Model that will be aligned
and later wrapped around the 3D face in the alignment and fitting process
respectively, in order to create the signature. Each sas file has different
geometry and annotated areas. A cumulative depiction of all the available
sas files is seen in Figure 5.3.

P.Kanellis 15

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 5.1: Fimgen workflow : The executable program takes as input the
configuration file and the 3D database in obj or wrl format (Data + Query) and

produces the signature for each face (fwv).

After the signatures (fwv files) have been created, another procedure called
simutil, will be used to extract CMC curves.
Simutil collects all the fwv files and creates a NxN similarity matrix , where
N is the number of fwv files. In this thesis, N is 200, since 200 faces (100
query plus 100 database faces) in the FG database produce 200 signatures
with fimgen. A similarity matrix contains the names of the signatures as
rows and columns and each cell describes how similar two signatures are.
For example, suppose we have the similarity matrix of the Figure 5.4 .
The rows and columns represent the signatures (this example uses the
FG DB) and subsequently, the elements of the main diagonal are zero
(each face is 0 units away from itself) and the matrix is symmetrical. The
cell located in the first row and third column, suggests that the distance
from face 001 to face 002 is 234.296. In conclusion, the similarity matrix
computes distances from each face to another.

P.Kanellis 16

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 5.2: A typical configuration file for fimgen. The commands ”extension”,
”alignmodel_file” and ”facemodel_file” are the most important for the fimgen

executable.

P.Kanellis 17

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 5.3: From top left to bottom right : half_face , meanface , slim_face2 ,
quarter_face , slim_full_face2 , slim_full_face_bones. The alignment process

aligns the 3D face with the AFM, and the fitting process deforms the shape of the
AFM in order to fit into the 3D face.

Figure 5.4: similarity matrix

P.Kanellis 18

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

5.2. Performance Evaluation

The similarity matrix will be used to measure the performance of URxD in
synthetic faces. Taking the non zero minimum element of each row, the al-
gorithm checks if this element corresponds to the distance of the signature
with the facial expression and the signature with the neutral expression that
have the same index in the database. For example, examining the Figure
5.4 and taking the non zero minimum element of the first row (135.637),
the result is that the face number 001 is closest to the face with number
001_68 (which is a correct result).
The algorithm counts the success rate based on the aforementioned crite-
ria. Each sas file creates different signatures, because the AFM is differ-
ent (see Figure 5.3). As a result, the success rate of the algorithm differs
among the sas files. URxD was also used in a database consisting of real
faces (BU-3DFE), in order to evaluate how the project performs in real and
computer generated faces respectively. Both databases have 200 faces
in total (100 faces with neutral expression, each with an additional ran-
dom expression). The table below aggregates the success rates for each
available sas file for the two databases.

Table 5.1: URxD success rate (%) for different sas files

sas file FaceGen BU-3DFE
half_face 67 91
mean_face 43 91
quarter_face 38 91
slim_face2 40 90
slim_full_face2 42 91
slim_full_face_bones 42 91

5.2.1. CMC Curve Definitions

In machine learning, a Cumulative Match Characteristics curve is a method
of showing the performance of recognition precision for each rank, and it is
defined by the True Positive Rate (TPR), False Positive Rate (FPR), True
Negative Rate (TNR), and False Negative Rate (FNR).

P.Kanellis 19

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

True Positive Rate : Also known as sensitivity or recall, is used to mea-
sure the percentage of actual positives which are correctly identified.

False Positive Rate : Measures the percentage of data which are incor-
rectly classified as negative (false alarm).

True Negative Rate : Probability of correctly predicting the negative class.

False Negative Rate : Probability of incorrectly predicting the negative
class.

The following equations hold for the above rates :

TPR = 1− FNR

TNR = 1− FPR

Each probe sample is compared against all gallery samples, and the re-
sulting scores are sorted and ranked. A ROC curve can be extracted from
a CMC curve and vice versa. The figures below illustrate the CMC curves
for FaceGen and BU-3DFE respectively. The horizontal axis represent the
ranks and the vertical axis represent the recognition rate (TPR). The faster
the curve reaches the value 1.00 , the better the performance is for the
particular model. For an in depth analysis of the creation of the similarity
matrices and CMC curves, see Appendix.

P.Kanellis 20

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 5.5: CMC curves for the FG database for each available sas file

Figure 5.6: CMC curves for the BU-3DFE database for each available sas file

P.Kanellis 21

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

6. DISCUSSION AND FUTURE WORK

Examining the table 5.1, it is evident that URxD produces worse results
for FaceGen than BU-3DFE, by a large margin. A potential culprit for the
unsatisfying results could be the registration phase. Many faces (and that
only happened with the FaceGen DB), were extremely rotated in the reg-
istration phase and as a result, the corresponding procedure tried to fit
the AFM into the rotated face, and the algorithm produces a distorted fwv
signature. Figure 6.1 depicts this phenomenon.
It is unclear why this happens only with FaceGen, since both databases
have the same dimensions. One observation for this problem, is that if
the face (obj file) is rotated by a third party program before feeding it into
fimgen, then the amount and the axis of the rotation affects the registra-
tion phase. There is no automated process that can correctly rotate all the
faces, so that they can be registered correctly by fimgen, because each
face has its own parameters and it is unpredictable how fimgen will rotate
the faces in the registration phase. If a face is slightly rotated in the wrong
direction, it can have disastrous consequences in fimgen. Figure 6.2 de-
scribes this problem. The left picture depicts the initial 3D face produced
by FaceGen, which is rotated in the registration phase. The middle pic-
ture depicts the same face which is now manually rotated 30 degrees on
the Z axis using Blender, before using the object as input in fimgen. This
transformation seems to create satisfying results for the current face. The
right picture is the same face rotated 30 degrees on the Z axis and -12
degrees on the X axis. It is clear that the algorithm is very sensitive to 3D
transformations.
A few methods that may help improve the overall performance of URxD
are listed below :

1. Take into account the texture map. The fwv distance along with the
colour of the face can improve the recognition rate of the algorithm.
Apart from the shape of the face, the fwv signature can contain addi-
tional information about the texture of the face, which means slightly
larger signatures. If this technique increases the running time sig-
nificantly, it can only be used to clear up ambiguities regarding the
identity of the face. After the initial recognition rate is derived by
simutil (without texture information in the signature), the algorithm
can examine the failed identifications and attempt to re-match them
by comparing the texture image along with the shape of the wrongly

P.Kanellis 22

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

matched faces.

2. Higher resolution AFM. In this thesis, URxD was run in a 5 year old
moderate laptop with 30-35 seconds for each face. A modern day
computer can reduce the running time at least by half. Subsequently,
the resolution of the AFM can be increased, so that more details can
be captured. It could be a trade-off between acceptable running time
and performance. This method can be combined with the technique
proposed in [9]. This technique takes advantage of the symmetry of
the face and the half AFM mask can have a higher resolution.

Figure 6.1: Incorrect registration phase of fimgen. The 3D object is rotated and
the fitting process tries to fit the AFM into the wrongly rotated face, resulting in

wrong signatures.

P.Kanellis 23

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 6.2: Fimgen results on the same 3D face
a) produced by FaceGen without any transformations

b) manually rotated 30 degrees on the Z axis
c) manually rotated 30 degrees on the Z axis and -12 degrees on the X axis

P.Kanellis 24

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

APPENDIX

EOS Installation

This section describes the process for the installation and usage of EOS.
The program has additional dependencies that are listed below :

• Boost [10] , which provides a plethora of C++ libraries. EOS needs
the following libraries from Boost :

– filesystem , which provides facilities to manipulate files and di-
rectories

– program options , used for declaring and managing options for
a program

• OpenCV [11] , a compilation of C++ libraries used specifically in com-
puter vision applications. The libraries needed from OpenCV are :

– highgui , a high level GUI and Media Input/Output library
– imgproc , an image processing library

• CMake [12] , a number of tools designed to build, test and package
software

After all these dependencies are installed, the user must first clone the
repository using the command :

git clone --recursive https://github.com/patrikhuber/eos.git

Then, a build directory must be created, inside of which the Visual Studio
solution (.sln) files will be produced. The commands that achieve those
steps are :

creates a build directory next to the 'eos' folder
mkdir build && cd build

cmake -G "<your favorite generator>" ../eos
-DCMAKE_INSTALL_PREFIX=../install/

P.Kanellis 25

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

The next step is to either run the eos.sln in VS on a Windows system, or
execute the

make && make install

command on Linux systems. Note that Windows users must conFigure the
VS compiler and linker in order to compile the project without errors.
Inside the install/bin folder are the executable files needed to create the
face, specifically the fit-model-simple.exe. The install/data folder contains
the 2D images and landmarks corresponding to those images. The com-
mand used to generate a 3D face from a 2D image, is :

fit-model-simple -m ../share/sfm_shape_3448.bin -p
../share/ibug_to_sfm.txt -i "Image File"
-l "Landmark file"

The Landmark file is usually a .pts file which is a collection of (typically 68)
XY coordinates of an image. Each coordinate represents a facial feature. A
pts file can be produced either manually or with the help of a C++ machine
learning library like Dlib.

FaceGen Batch Script Decomposition

This section examines the batch script for the creation of the 3D database.
Note that we want a front and side render of the face. When a render is
created for the first time, FG produces an XML file that stores tags about
the texture, rotation and translation of the face, the light and background
colour etc. A render places the face in frontal pose by default. We will use
the rotation tag of the XML file to rotate the face, and then take a new ren-
der with the new rotation value. A small batch script is needed to replace
tags for an XML file. This program is called JREPL and the batch script
that generates the random faces is the RandomFaces.bat .
The first lines of code declare the full paths for the SDK, JREPL and Ani-
mate csam. These values must be filled by the user.

set sdk=your_sdk_path
set JREP_PATH=your_jrepl_path\JREPL.BAT

set Animatecsam=%sdk%\data\csam\Animate
set Head=%Animatecsam%\Head\HeadHires

P.Kanellis 26

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

The next command sets the PATH environment variable to include the FG
executables

set PATH=%PATH%;%sdk%\bin\win\x64\vs17\release\;%sdk%\bin\win\x64\

A directory with name ”FaceGen_DB” is created. Inside this folder, the
DB’s structure will be created. Next, a loop is executed 100 times. In each
loop, a structure seen in Figure 4.1 is produced, where each folder has
name ”XXX”, where XXX takes values from 001 to 100. The command
below creates a random face with random gender and ethnicity.

fg3.exe create random any any %newdir%.fg

The above command produces XXX.fg. For example, in the 4th loop, FG
will produce 004.fg. Next, the head mesh is constructed with the Animate
csam, and converetd to obj format:

fg3.exe construct %Head% %newdir%.fg %newdir% -d 2.0
^^I
fg3.exe mesh convert %newdir%.tri %newdir%.obj

We want to have random expression and intensity. Batch scripts do not
support decimals, but there is a workaround, by creating a random number
for the whole and one for the decimal part. The two parts are combined to
a float number. FG provides 22 different expressions, and the batch script
chooses one randomly. Then, we create a new .fg file (with new facial
coordinates caused by the expression), and we convert it to obj.

set /a whole=(%RANDOM%*1/32768)+0
set /a decimal=(%RANDOM%*5/32768)+5
^^I
^^I
REM choose random intensity from 0.5 to 0.9
set random_intensity=%whole%.%decimal%

REM choose among 22 different expressions
set /a random_expression=(%RANDOM%*22/32768)+51

set expression=%newdir%_%random_expression%

REM create random expression and convert it into obj
fg3.exe morph apply %newdir%.tri %expression%.tri d

P.Kanellis 27

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

%random_expression% %random_intensity%

fg3.exe mesh convert %expression%.tri %expression%.obj

The final part of the script creates the renders. First, a render is created,
in order to obtain the initial XML file. JREPL is used to insert the texture
image to the imgFilename tag. Then, a frontal render is created. For the
side render, JREPL is used one more time to change the panRadians tag.
The files are moved to the appropriate folders, and any other file that will
not be used is deleted.

URxD Project Restoration

URxD is a face recognition project written in C++, based on the 3DMM con-
cept. The project offers numerous tools and procedures. It was tested on a
large database consisting of real faces, and it managed to score over 97%
success rate! URxD was last modified over ten years ago. This chapter
examines the process of restoring the code, in order to run the project in
modern x64-architecture machines.

Visual Studio Project Configuration

URxD was first built and compiled in VS. As a result, it comes with a VS
solution (sln), that consists of 73 sub-projects. Once they are compiled,
these sub-projects are either executable programs, or libraries used for
the compilation of other projects. The problem is that the provided solution
was produced in VS 2007, and the paths to the C++ files were hardcoded
within the solution. Fortunately, URxD was packed with a CMake rule,
which will be used to create a new the VS solution, this time for the VS
2019 version.

Before continuing with the creation of the solution with CMake, certain de-
pendencies must be installed (assuming Visual Studio 2019 and CMake
are already installed) :

• QtCore 4.8.4 [13]

• OpenCV [11]

• GFlags [14] (Google CommandLine Flags)

• FFTW Library [15]

P.Kanellis 28

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

• ZLIB [16]

Follow the installation instructions carefully for each dependency provided
in the links.
The image below depicts the CMake GUI program. The source code is
the CMakeLists.txt file found in the folder where the project is located. The
second path is the desired location of the CMake output. The paths for
the aforementioned dependencies should be inserted correctly, as it is de-
picted in the image.

Figure 6.3: CMake Graphical User Interface : Project parametrization

Before the ConFigure button is clicked, the CMakeLists.txt of some pro-
grams must be edited to contain the line :

cmake_policy(SET CMP0079 NEW)

The programs that need the above command in their CMakeLists.txt files,
are:
abs2wrl process3d
fimgen aem_train
fileconvert lmk_analysis
simutil get_bounding_box
megamopt xyz2uv
pyramid_transform afm_lmk_closest
UR2DOneToOne indirect_align
extract_wavelet refined_lmk_detect
svm_train export_object3d
fwv2svm projectivetexture
histFromALNWRL ASM_Train
afm_projection SI_Detect
triangle_removal crop_face_3d
3d_feature_gen lmk_fitting

P.Kanellis 29

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Click ”Configure” and then ”Generate”. CMake will create a solution named
URxD.sln with all the sub-projects compatible with VS2019.
Before continuing with the compiler and linker errors, Qt must be compat-
ible with VS. To do that, open the MSVC command line (x64 Native Tools
Command Prompt for VS2019). Change working directory to Qt/4.8.4 and
type:

configure.exe -platform win32-msvc2012 -confirm-license -debug
-opensource -nomake tools -nomake examples -nomake tests

After the above command is completed, type:

nmake

Compiler Errors

Since the code is relatively old, it must be slightly modified in order to com-
pile the project without errors. This section provides a step-by-step solution
:

• Open URxD.sln with VS2019.

• Choose the Solution Configuration and Solution Platform. In this the-
sis, URxD was built with the options : Debug x64.

• Open the file ”general/common/include/object3d.h” and add the line
”#include <opencv2/flann.hpp>”

• In projects : filemanlib , crop_face3d , libsvm , software_z :
Go to Properties → C/C++ → General → Additonal Include Directo-
ries
click Edit and add 2 paths :

1. The first path is where the file cv.h is located
yourOpenCVpath/build/include/opencv

2. The second path is
yourOpenCVpath/build/include

• Add the lines:
#include <GL/gl.h>
#include <GL/glut.h>

P.Kanellis 30

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

in files:
general/meshlib/GLMesh.cpp
general/meshlib/glviewer.cpp
programs/PDMVisualizer/glUtils.cpp

• Add the line:
#include <opencv2/opencv.hpp>
in file : /sdk/mkdetectlib/LandmarkDetectorL2.cpp

• In file : /general/auxlib/src/applyaln.cpp
Change : return Mat(mat).clone();
to : return cv::cvarrToMat(mat).clone();

• Add the line:
#include <algorithm>
in files:
/general/meshlib/TPS.cpp
/general/meshlib/linearAlgebra.cpp

• In files:
viewfimseq.cpp
alignfeaturestats.cpp
histfromanwrl/main.cpp
/programs/view3d/main.cpp

Find all instances of ”Object3D* data” and change it to
”Object3D* data1”.

• In files :
InputByteMatrix.cpp
OutputByteMatrix.cpp
InputFloatMatrix.cpp

Change : if (simStream == NULL)
to : if (!simStream)

• In directory : /sdk/lmkdetectlib :
Open all header files and delete the line : using namespace cv;
Add cv:: before the identifiers : Mat , Point3f , Scalar

• In project view3dvideo , right click in solution explorer and go to :
Properties→ C/C++→ General→ Additional Include Directories (as

P.Kanellis 31

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

seen in Figure 6.4)
Click Edit and add : yourGflagsPath/Binaries/include

• In file /sdk/facedetectlib/src/facedetection.cpp :
In lines 21-28 delete the extra brackets.
For example :
{{0,0,255}}
will be changed to :
{0,0,255}

Linker Errors

URxD needs libraries to produce the executables. Many of these libraries
are part of the solution, and theymust be linkedwith the appropriate project.
If the desired configuration is Release, change the directories below to
”/Release” instead of ”/Debug”

• In projects :

1. abs2wrl
2. viewfimseq
3. PDMVizualizer
4. view3d
5. view3dvideo
6. Spin_Train
7. test_curvature
8. gmmr
9. surfacefittinglib
10. spin_image_gen
11. SI_Detect
12. spin_gen_takis
13. MeshViewer
14. pca
15. object3d_trimming
16. projectivetexture
17. 3dviewer_projection

P.Kanellis 32

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

18. megamopt
19. lmk_analysis
20. landmark_dist
21. Spin_Train_lm2e
22. fimgen
23. histFromALNWRL
24. fileconvert
25. ffs
26. failurestats
27. extract_wavelet
28. face_profile_line
29. exgen
30. afm_projection
31. afm_edit
32. assign_color
33. simutil
34. lda
35. lmk_verify

Go to Linker→General→Additional Library Directories
Add your Opencv path/BUILDS/lib/Debug
Go to Linker→Input→Additional Dependencies
Add opencv_world343d.lib

• In project crop_face_3d :

1. Go to Linker→General→Additional Library Directories (as seen
in Figure 6.5)
Add the following paths :
your BUILD PATH/general/ndiolib/Debug
your BUILD PATH/general/common/Debug
your BUILD PATH/general/auxlib/Debug
your BUILD PATH/general/deformlib/Debug
your BUILD PATH/general/filemanlib/Debug

P.Kanellis 33

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

2. Go to Linker→Input→Additional Dependencies
Add the libraries :
ndiolib.lib
common.lib
auxlib.lib
deformlib.lib
filemanlib.lib

Right click the solution in the explorer and choose ”Build Solution”. All the
executables should now be located in the desired build path, inside the
folder ”programs”.
The full restoration of the code took 1 month of total work.

Figure 6.4: VS 2019 Compiler Options

P.Kanellis 34

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

Figure 6.5: VS 2019 Linker Options

Creating URxD Experiments

In order to run fimgen, open a command line prompt and type:

fimgen.exe -your working directory-

where ”-your working directory-” is a directory with the following files :

1. All the 3D data files (faces) in obj or wrl format

2. The ”matrix” directory, which can be found in ”cluster/req” in the URxD
directory (the non compiled version)

3. All the available .sas files located in ”cluster/req”

4. ”area_map.bmp” found in ”cluster/req”

5. A configuration file named config.ini containing the desired commands
for fimgen

6. freeglut.dll

7. libfftw3-3.dll

8. Qt 4.8.4, OpenCV and VS2019 installed. Alternatively, the files:

• QtCored4.dll
• opencv_world343.dll

P.Kanellis 35

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

• opencv_world343d.dll

must be present in the directory. Since the project needs many dll
files from VS, it is recommended that VS2019 is fully installed in the
target machine.

Fimgen was executed in a mid/low end laptop with specs :

• Intel i5 5200U

• Nvidia GT 920M 2GB

• 8GB RAM DDR3

Each face took roughly 30 seconds for the registration and fitting process.
The table below describes the total elapsed time for each sas file for the
two databases:

Table 6.1: Fimgen running time in seconds for different sas files

sas file FaceGen BU-3DFE
half_face 5471 6588
mean_face 3915 4838
quarter_face 4358 5683
slim_face2 6263 6639
slim_full_face2 6246 5473
slim_full_face_bones 5997 6930

After fimgen is completed, a new folder with the name ”fwv” will be created,
in which all the .fwv files are located. Inside this folder, the following files
must be present in order to run simutil :

1. uv_wavelet.bmp found in ”cluster/req”

2. The compiled ”simutil.exe”

The simutil program has several commands for the creation of full and sub
similarity matrices and operations on them (conversion from full to sub,
combining two similarity matrices together, finding the minimum of two sim-
ilarity matrices etc.), as well as the creation of ROC and CMC curves. Only
two commands will be needed to create the similarity matrix and the CMC
curve. The first command is :

P.Kanellis 36

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

simutil.exe c newmatrix

The above command produces a similarity matrix with the name newmatrix,
and outputs ”newmatrix.sim”. Before producing the CMC curve, simutil
needs a tab file that differentiates the galleries from the probes. Along with
”newmatrix.sim” , simutil produces a header file that contains the names of
all the fwv files present in the directory. The header file can be modified in
order to create the tab file. At each row of the header file, if the fwv name
represents a gallery name, the number 1 will be inserted after a space.
Else, the number 0 will be inserted. Then, the file must be renamed to
contain the .tab extension. A brief example is shown below.

Figure 6.6: A typical tab file for simutil. The number 1 represents a gallery name (a
face without expression) and the number 0 represents a probe name (a face with a

random expression).

After the tab file is created, simutil will be used to create the CMC curve.
The command is :

simutil.exe gp newmatrix tabfile.tab

The program creates a text file containing 50 ranks and the recognition
score for each rank, along with a file that lists the failures (if any).

P.Kanellis 37

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

ABBREVIATIONS

3DMM 3D Morphable Model
DB Database
FG FaceGen
SDK Software Development Kit
VS Visual Studio
GUI Graphical User Interface
CMC Cumulative Match Curve
AFM Annotated Face Model
API Application Programming Interface
FRGC Face Recognition Grand Challenge
ROC Receiver Operating Curve
SSM Statistical Shape Models
SCM Statistical Color Models
TPR True Positive Rate
FPR False Positive Rate
TNR True Negative Rate
FNR False Negative Rate
TNR True Negative Rate
TNR True Negative Rate

BU-3DFE Binghamton University 3D Facial Ex-
pression

P.Kanellis 38

Assessing the URxD 3D Face Recognition Algorithm on Synthetic Facial Data

REFERENCES

[1] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces.
SIGGRAPH’99 Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, 09 2002.

[2] V. Blanz and T. Vetter. Face recognition based on fitting a 3d morphable model. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(9):1063–1074, 2003.

[3] Ioannis Kakadiaris, Georgios Passalis, George Toderici, Mohammed Murtuza, Yun-
liang Lu, Nikos Karampatziakis, and Theoharis Theoharis. Three-dimensional face
recognition in the presence of facial expressions: An annotated deformable model
approach. IEEE transactions on pattern analysis and machine intelligence, 29:640–
9, 05 2007.

[4] EOS GitHub Repository. https://github.com/patrikhuber/eos.

[5] FaceGen Official Website. https://facegen.com/.

[6] FRGC 3D databse. https://www.nist.gov/programs-projects/face-recognition-grand-
challenge-frgc.

[7] Bosphorus 3D databse. http://bosphorus.ee.boun.edu.tr/Home.aspx.

[8] BU-3DFE 3D database. https://www.cs.binghamton.edu/~lijun/Research/3DFE/
3DFE_Analysis.html.

[9] T. Theoharis, P. Perakis, G. Passalis, and I. A. Kakadiaris. Using facial symmetry
to handle pose variations in real-world 3d face recognition. IEEE Transactions on
Pattern Analysis & Machine Intelligence, 33(10):1938–1951, oct 2011.

[10] Boost C++ Libraries. https://www.boost.org/.

[11] OpenCV Version 3.4.3. https://opencv.org/releases/page/3/.

[12] CMake latest official release. https://cmake.org/download/.

[13] Qt 4.8.4 Open Source Library for Visual Studio. https://download.qt.io/archive/qt/4.
8/4.8.4/.

[14] Google Commandline Flags GitHub Repository. https://github.com/gflags/gflags.

[15] FFTW Library for Windows OS. http://www.fftw.org/install/windows.html.

[16] ZLIB Official Website. https://zlib.net/.

P.Kanellis 39

https://github.com/patrikhuber/eos
https://facegen.com/
https://www.nist.gov/programs-projects/face-recognition-grand-challenge-frgc
https://www.nist.gov/programs-projects/face-recognition-grand-challenge-frgc
http://bosphorus.ee.boun.edu.tr/Home.aspx
https://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
https://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
https://www.boost.org/
https://opencv.org/releases/page/3/
https://cmake.org/download/
https://download.qt.io/archive/qt/4.8/4.8.4/
https://download.qt.io/archive/qt/4.8/4.8.4/
https://github.com/gflags/gflags
http://www.fftw.org/install/windows.html
https://zlib.net/

	 INTRODUCTION
	RELATED WORK & BACKGROUND
	SYNTHETIC 3D FACE GENERATION AND RECONSTRUCTION SYSTEMS
	EOS Worklflow
	FaceGen workflow
	The Winner

	CREATING A SYNTHETIC DATABASE FOR FACE RECOGNITION
	Random Face Generator

	FACE RECOGNITION WITH URxD
	Workflow
	Performance Evaluation
	CMC Curve Definitions

	DISCUSSION AND FUTURE WORK
	APPENDIX
	EOS Installation
	Batch Script Decomposition
	URxD Project Restoration
	Visual Studio Project Configuration
	Compiler Errors
	Linker Errors

	Creating URxD Experiments

	ABBREVIATIONS
	REFERENCES

