

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

A Web-Based Survey Manager for Building Dynamic Surveys
with Nested Visualizations

Evangelos A. Garaganis

ATHENS

11/2020

SUPERVISORS: Yannis Smaragdakis
Professor at National & Kapodistrian University of Athens

Kostas Saidis
Visiting Lecturer at National & Kapodistrian University of Athens

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

A Web-Based Survey Manager for Building Dynamic Surveys
with Nested Visualizations

Ευάγγελος Α. Γκαραγκάνης

 Κώστας Σαΐδης
 Λέκτορας στο Καποδιστριακό Πανεπιστήμιο Αθηνών

ΑΘΗΝΑ

11/2020

E. Garaganis 2

Επιβλέποντες: Γιάννης Σμαραγδάκης
Καθηγητής στο Καποδιστριακό Πανεπιστήμιο Αθηνών

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

BSc THESIS

A Web-Based Survey Manager for Building Dynamic Surveys with Nested
Visualizations

Evangelos A. Garaganis
S.N.: 1115201400033

E. Garaganis 3

SUPERVISORS: Yannis Smaragdakis
Professor at National & Kapodistrian University of Athens

Kostas Saidis
Visiting Lecturer at National & Kapodistrian University of Athens

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

A Web-Based Survey Manager for Building Dynamic Surveys with Nested
Visualizations

Ευάγγελος Α. Γκαραγκάνης
Α.Μ.: 1115201400033

E. Garaganis 4

ΕΠΙΒΛΕΠΟΝΤΕΣ: Γιάννης Σμαραγδάκης
Καθηγητής στο Καποδιστριακό Πανεπιστήμιο Αθηνών

Κώστας Σαΐδης
Λέκτορας στο Καποδιστριακό Πανεπιστήμιο Αθηνών

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ABSTRACT

During this thesis, we combined UI/UX disciplines, WWW technologies and data analytics

techniques and tools, to create a web-based survey manager SaaS (Software as a

service) for building dynamic surveys with nested visualizations.

With our service, users will be able:

● To create different types of questions.
● Build surveys with the questions created.

● Visualize the surveys’ answers to the questions.

● Experiment with the results by combining a number of questions.
● Share surveys and results with the public.

The platform was created with the usage of cutting-edge technologies and reached the

full-stack spectrum of developing. The whole implementation is written purely on JS, by

using the frameworks React and Material UI for the front-end and Express NodeJs’
framework for the back-end. The data-storing and data-analyzing is being handled by the

Elasticsearch engine, while the data-visualization is made by the ReCharts charting library.
Finally, we used the RESTful architecture for the data exchange and NPM for the package

management of the application.

SUBJECT AREA : Web Development

KEYWORDS: Data Analytics, Data Visualization, React, NodeJS, Elasticsearch,

E. Garaganis 5

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ΠΕΡΙΛΗΨΗ

Κατά την διάρκεια αυτής της πτυχιακής, συνδυάσαμε αρχές ευχρηστίας, τεχνολογίες του

παγκόσμιου ιστού και εργαλεία και τεχνικές ανάλυσης και οπτικοποίησης δεδομένων, για

να δημιουργήσουμε μια πλατφόρμα δημιουργίας ερωτηματολογίων και ανάλυσης
αποτελεσμάτων. Με αυτή την πλατφόρμα οι χρήστες θα μπορούν:

● Να δημιουργούν ερωτήσεις διαφόρων τύπων.

● Να κατασκευάζουν ερωτηματολόγια με τις ερωτήσεις που έχουν δημιουργήσει.

● Να οπτικοποιήσουν τις απαντήσεις του ερωτηματολογίου.
● Να πειραματιστούν με τα αποτελέσματα, συνδυάζοντας τις απαντήσεις πολλών

ερωτήσεων.
● Να δημοσιεύσουν τα ερωτηματολόγια τους και τα αποτελέσματα αυτών στο ευρύ

κοινό.

Το λογισμικό αυτό δημιουργήθηκε με την χρήση κορυφαίων τεχνολογιών που

χρησιμοποιούνται σε όλο το φάσμα ανάπτυξης λογισμικού για τον παγκόσμιο ιστό.
Ολόκληρη η υλοποίηση έχει γραφτεί σε Javascript, χρησιμοποιώντας React και Material UI

για τον front-end και Express για το back-end. Η αποθήκευση και ανάλυση των δεδομένων

γίνεται με την μηχανή αναζήτησης του Elasticsearch, ενώ η οπτικοποίηση των δεδομένων
γίνεται με την βιβλιοθήκη Recharts. Τέλος, η εφαρμογή έχει δομηθεί με RESTful

αρχιτεκτονική για την ανταλλαγή των δεδομένων και το NPM για την διαχείριση των
packages που χρησιμοποιούνται.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανάπτυξη Εφαρμογής Διαδικτύου

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ανάλυση Δεδομένων, Οπτικοποίηση Δεδομένων, React,

 NodeJS, Elasticsearch

E. Garaganis 6

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ACKNOWLEDGEMENTS

For this thesis completion, I would like to deeply thank my instructor and supervisor Mr.
Kostas Saidis for his guidance during my academic years . He is an example of a scientist

and professional that I will live by. I also want to thank Mr. Yannis Smaragdakis and

lecturers like him that inspired us to follow and commit to the path of Computer Science.

Last but not least, I am grateful to my family for giving me the opportunity to attend a
university and for standing by my side throughout this journey.

E. Garaganis 7

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ΕΥΧΑΡΙΣΤΙΕΣ

Για την εκπόνηση της παρούσας πτυχιακής εργασίας, θα ήθελα να ευχαριστήσω τον
καθηγητή μου και επιβλέπων αυτης της πτυχιακής, τον κ. Σαίδη, οποίος υπήρξε οδηγός
κατά την διάρκεια των σπουδών μου και ο οποίος θα αποτελεί πρότυπο επιστήμονα και
επαγγελματία για το μέλλον μου. Επίσης, θέλω να ευχαριστήσω τον κ.Σμαραγδάκη και
καθηγητές σαν αυτόν, που μας ενέπνευσαν να ακολουθήσουμε τον δρόμο της επιστήμης
της πληροφορικής.

Τέλος και κυριότερο, θα ήθελα να ευχαριστήσω την οικογένεια μου, που μου έδωσε την
δυνατότητα να σπουδάσω και με στήριξε σε όλη αυτή την διαδρομή.

E. Garaganis 8

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Στον παππού μου

E. Garaganis 9

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

To my grandfather

E. Garaganis 10

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

CONTENTS

ABSTRACT 5

ACKNOWLEDGEMENTS 7

CONTENTS 11

LIST OF FIGURES 14

LIST OF CODE EXAMPLES 17

LIST OF DIAGRAMS 19

LIST OF TABLES 21

PREFACE 22

1. INTRODUCTION 23

2. SYSTEM OVERVIEW 24
2.1 Question Creation 24
2.2 Questions Management 25
2.3 Survey Creation 25

2.4 Survey Form 27
2.5 Surveys management 28
2.6 Results Reporting 28

2.7 Visualization Wizard 30
2.8 Use Cases 31

3. SYSTEM DESIGN 32
3.1 Questions 32
 3.1.1 Design 32

 3.1.2 Modeling 34

 3.1.3 Rendering 37

3.2 Surveys 42

 3.2.1 Design 42

 3.2.1.1 Storage Format 42

 3.2.1.2 Runtime Format 43

 3.2.1.3 Difference between the two survey formats 44

 3.2.1.4 Conversion between the two formats and outline 45

 3.2.2 Modeling 46

 3.2.3 Rendering 48
3.3 Answered Surveys 52
 3.3.1 Design 52

E. Garaganis 11

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

 3.3.2 Exportation and Storage 54
3.4 Results Visualization 57

 3.4.1 General 57

 3.4.2 Results Reporting 58

 3.4.2.1 Results Rendering 59

 A. Terms Questions 60

 B. Stats Questions 62

 3.4.2.2 Statistics Provider 64

 3.4.2.3 Summing up 66

 3.4.3 Visualization Wizard 67

 3.4.3.1 General 67

 3.4.3.2 Analysis 73

 I. Statistics Provider 74

 i) Questions Selected Data to Query process 75

 ii) Aggregations Results to Wizard Statistics process 89

 II. Visualization Wizard Renderer 97
 i) Questions Selected Data Building 98

 ii) Wizard Stats Visualization 107

 III. Summing up 111

3.5 UX and UI decisions 112

 3.5.1 Usability Evaluation 112

 3.5.2 Theming 114

 3.5.3 Accessibility 115

3.6 Design Challenges 115
 3.6.1 Architectural Decisions 115

 3.6.2 Design Principles 118

4. SYSTEM IMPLEMENTATION 119
4.1 The technology stack used 119

4.2 System Architecture 120
 4.2.1 Front-End 120

 4.2.1.1 React 120

 4.2.1.2 Material UI 121

 4.2.1.3 Recharts 121

 4.2.1.4 React Router 122

 4.2.1.5 Local Storage 123

 4.2.1.6 Axios and Data Fetching 124

 4.2.1.7 React Context 124

 4.2.2 Back-End 126

 4.2.2.1 Rest API & Endpoints 126

 4.2.2.2 ExpressJS 128

 i) Routes 129

E. Garaganis 12

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

 ii) Controllers 130

 4.2.2.3 Elasticsearch 131

 I. Index Organization 131

 II. Queries 131

 III. Elasticsearch JS Client 132

 IV. Kibana 134

 V. How Aggregations Work 134

 VI. Full-Text Search 139

4.3 Summing Up 141
4.4 Technical Challenges 142

5. CONCLUSION 143

TABLE OF TERMINOLOGY 144

ABBREVIATIONS 145

REFERENCES 146

E. Garaganis 13

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

LIST OF FIGURES

Figure 1: Question Creation 24

Figure 2: Question Pool 25

Figure 3: Survey Creation 26

Figure 4: Survey Form 27

Figure 5: Surveys Management 28

Figure 6: RR Overview 29

Figure 7: RR Stats Question 29

Figure 8: RR Terms Question 29

Figure 9: Visualization Wizard 30

Figure 10: Dev-Study Use Case 31

Figure 11: Question Format 33

Figure 12: Text Input Question 41

Figure 13: Slider Question 41

Figure 14: Radio Button Question 41

Figure 15: Checkbox Question 41

Figure 16: Storage Format Structure 42

Figure 17: Example of Storage Format 43

Figure 18: Run Time Format 44

Figure 19: Rendered Survey 50

Figure 20: 3 Document Types 52

Figure 21: Answered Survey Example 53

Figure 22: Term Questions Statistics Format 60

Figure 23: Rendered Terms Question Graph 61

Figure 24: Stats Question Data Format 62

Figure 25: Rendered Stats Question Graph 63

E. Garaganis 14

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 26: Visualization Wizard Example 1 68

Figure 27: Visualization Wizard Example 1 - Parameterized 69

Figure 28: Visualization Wizard Example 2 70

Figure 29: Visualization Wizard Example 3 71

Figure 30: Question Selected Data Format 76

Figure 31: DataStore Query Format - Example 1 79

Figure 32: DataStore Query Format - Example 2 80

Figure 33: Digested Questions Selected Data 83

Figure 34: Before and After Aggregations Composition 85

Figure 35: Query Building Components 86

Figure 36: DataStore Query Built 87

Figure 37: Aggregation Results 89

Figure 38: Wizard Statistics 92

Figure 39: Questions Selected Data Building 98

Figure 40: Questions Selected Rendering Cards 100

Figure 41: Questions Selected Cards 101

Figure 42: Questions Card Parameters 102

Figure 43: Terms Questions Form Parameters 105

Figure 44: Stats Questions Form Parameters 105

Figure 45: VW Another Example 108

Figure 46: Theming and Color Palettes 112

Figure 47: Error Prevention Options 112

Figure 48: Graphic Designs 113

Figure 49: Light And Dark Theme 114

Figure 50: Wireframes 115

Figure 51: Component Architecture Logic 116

Figure 52: Continue Survey 123

E. Garaganis 15

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 52: Kibana 134

Figure 53: Full-Text Search 140

E. Garaganis 16

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

LIST OF CODE EXAMPLES

Code 1: Question Creation Code 35

Code 2: Question Class Code 36

Code 3: Material Checkbox Form Component 39

Code 4: Question Renderer Code 40

Code 5: Survey Creation 47

Code 6: Survey Class 47

Code 7: Survey Rendering - Survey Creation 48

Code 8: Survey Rendering - Methods 48

Code 9: Input Changed Handler 49

Code 10: Survey Submission 55

Code 11: Export Survey Method 56

Code 12: Visualization Renderer 60

Code 13: Terms Question Graph 62

Code 14: Stats Question Graph 63

Code 15: Results Reporting Statistics Provider 65

Code 16: Arguments To Aggregations Transforming 84

Code 17: Aggregations Composition 86

Code 18: Data Store Query Building 87

Code 19: Wizard Statistics Building 93

Code 20: Form Aggregation Parameters Renderer 104

Code 21: Visualization Wizard Stats Visualizer 109

Code 22: React Router 122

Code 23: Continue Survey 123

Code 24: Axios Data Fetching 124

Code 25: Update Questions Aggregation Data Method 125

E. Garaganis 17

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Code 26: Server Implementation 128

Code 27: Routes 129

Code 28: Controllers 130

Code 29: Elastic JS Client getQuestions Method 132

Code 30: Elastic JS Client Methods 133

Code 31: Full-Text Search 140

E. Garaganis 18

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

LIST OF DIAGRAMS

Diagram 1 : Question Modeling 34

Diagram 2: Question Rendering 37

Diagram 3: Question Rendering 38

Diagram 4: Conversion Between Survey Formats 45

Diagram 5: Survey Class Model 46

Diagram 6: Survey Rendering Abstract 51

Diagram 7: Survey Exportation and Storage 54

Diagram 8: RR - Server Client Interaction 58

Diagram 9: Visualization Renderer 59

Diagram 10: RR Statistics Provider 64

Diagram 11: RR Complete Process 66

Diagram 12: VW Process Abstract 73

Diagram 13: VW Statistics Provider Abstract 74

Diagram 14: Data Transformation Process Abstract 75

Diagram 15: VW Statistics Provider - Phase 1 75

Diagram 16: Data Transformation Process - Phase 1 76

Diagram 17: VW Statistics Provider - Phase 2 77

Diagram 18: Data Transformation Process - Phase 2 78

Diagram 19: VW Statistics Provider - Phase 3 81

Diagram 20: Data Transformation Process - Phase 3 81

Diagram 21: Forward Transformation Process Abstract 82

Diagram 22: Data Transformation Process - Forward Complete 86

Diagram 23: Data Transformation Process - Phase 4 90

Diagram 24: VW Statistics Provider - Phase 4 90

Diagram 25: VW Statistics Provider - Phase 5 91

E. Garaganis 19

Rectangle

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 26: Data Transformation Process - Phase 5 91

Diagram 27: Data Transformation Process - Backward Complete 94

Diagram 28: VW Statistics Provider - Phase 6 94

Diagram 29: Data Transformation Process - Phase 6 95

Diagram 30: VW Statistics Providing Complete 97

Diagram 31: VW Renderer Abstract 97

Diagram 32: BW Renderer Component Tree 99

Diagram 33: Passing Question Data 103

Diagram 35: VW Front-End Detailed 106

Diagram 36: VW Front-End Complete 110

Diagram 37: VW Complete 111

Diagram 38: Back-End Abstract Structure 117

Diagram 39: Back-End Structure Detailed 117

Diagram 40: Question Rendering Abstract 118

Diagram 41: Back-End Structure Detailed 119

Diagram 42: React Context 125

Diagram 43: Routes And Controllers 129

Diagram 44: Elasticsearch JS Client 132

Diagram 45: Documents In Index Without Aggregations 138

Diagram 46: Survey ID Match Aggregation 136

Diagram 47: Documents After Aggregation 0 137

Diagram 48: Documents After Aggregation 1 138

Diagram 49: Documents In Index Last Aggregation 139

Diagram 50: Full-Stack Abstract Architecture 141

E. Garaganis 20

Rectangle

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

LIST OF TABLES

Table 1: REST API Endpoints 125

E. Garaganis 21

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

PREFACE

This thesis was written within my undergraduate studies in the Department of Informatics
and Telecommunications of the National and Kapodistrian University of Athens, Greece,
under the supervision and guidance of Prof. Yannis Smaragdakis and Dr. Kostas Saidis.

E. Garaganis 22

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

1. INTRODUCTION

In this thesis we created a web-based survey manager for building dynamic surveys

with nested visualizations platform that helps users build and conduct simple, performant

and customizable surveys. Individuals or corporations are given the option to create their

own question pool, by selecting a broad range of question types and parameters, and then
build their surveys based on those questions, by flexibly designing the sections and

questions sequence. After building the surveys, users can publish them to the public, for a
period specified, and let our platform gather the results. For each survey, the user has the

option to get the report containing questions’ answers, each one visualized with a different

graph based on the question type. The platform also provides a way to experiment with the
survey results, by allowing users to combine question answers with the help of our

visualization wizard.

The major question considering our implementation is, why not use an already existing

service for the survey building and reporting? The answer resides in the initial goal of this

thesis. We wanted an all-in-one platform to handle our series of surveys, starting from the
survey creation and concluding to the results visualization. Our top priority was an

automated and flexible way to create different kinds of surveys that shared the same
questions and a powerful method to visualize and experiment with the results. In that

manner, we have the ability to analyze the results and extract our conclusions or grant the

public access to the answers of those surveys, so that individuals can extract their own.
The above all-in-one solution, given the fact that it was built with the help of cutting-edge

technologies and the suitable architectural and design patterns, leads us to create a
usable and performant survey building and analyzing platform that fits our needs

end-to-end and enables us to add our own functionality, however we wish to. And of

course, people that like our approach can do the same to fulfil their own needs.

E. Garaganis 23

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2. SYSTEM OVERVIEW
2.1 Question Creation

I will start the tool showcase with the building stone of the surveys, the questions. Each
question that can be used in a survey, has different types considering the question’s tenor,

and a set of rules that users can apply, to restrict the answers given. The user decides the

question text and type, while also providing the essential information for the question.The
platform live-renders the question results, helping him reach the desirable result. There is

also some metadata about the question, like the estimated completion time or the surveys
that the question exists in. Let’s see some screenshots from our platform to understand

the question management process.

Figure 1: Question Creation

E. Garaganis 24

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.2 Questions Management

Για την διαχείριση των ερωτήσεων που έχει φτιάξει ο χρήστης, του δίνεται η δυνατότητα

να πλοηγηθεί σε αυτές, τόσο μέσω της μηχανής αναζήτησης η οποία λειτουργεί για
οποιοδήποτε πεδίο της ερώτησης (με την χρήση full-text search), όσο και με την λίστα

των ερωτήσεων οι οποίες μπορούν να ταξινομηθούν βάσει διαφόρων πεδίων. Από αυτή

την σελίδα ο χρήστης μπορεί να δημιουργεί ερωτήσεις, να επεξεργάζεται τις ήδη υπάρχων
ή να τις διαγράφει.

Figure 2: Question Pool

2.3 Survey Creation

Now that the user has a range of questions to choose by, they can create a survey.

Starting with the survey basic information, like the title, description, the time period that the
survey will be accessible, and then deciding the survey sectioning and question selection,

users can build their survey how they wish to.

The builder strives for usability, providing drag & drop capabilities to reorder and reindex
the survey’s sections and questions, while also giving the option to real-time render and

preview the result of the final survey.

Finally, the survey builder also contains extra information for the survey, like the estimated

completion time, that is calculated with our algorithms.

E. Garaganis 25

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 3: Survey Creation

E. Garaganis 26

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.4 Survey Form

Whenever the user feels satisfied with the resulting survey or wants to preview its current

state, they can click Preview Result, to inspect the resulting survey form. An example of
the survey form can be:

Figure 4: Survey Form

The rendered survey contains the questions that the builder decided, with the
sectioning and order specified, while also having the Survey Helper on the bottom right

corner of the screen that informs the user about questions containing errors or that

haven’t been answered yet, auto-navigating to them.

E. Garaganis 27

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.5 Surveys management

The surveys created are listed in the admin page of the platform. From this page, the user

can navigate to edit the survey, to the page for the survey completion (if the user has
decided to publish the survey) or the survey results for the published surveys that contain

results. Each survey card contains indicators specifying if the survey or its results are live

or not, and information of the survey date created etc. From the admin page it is also
possible to go to the question management page or create a new survey.

Figure 5: Surveys Management

2.6 Results Reporting

For the surveys that are published, the public can take and submit the surveys. Each
completed survey is stored within our systems in the appropriate format and ready for our

service to analyze it and produce the results. The Results Reporting page contains the

table of contents with the survey’s sections and questions, the question results given with
the graph for each data type and the option to share the results or download the full report

in a pdf form. Let us see some screens to visualize what we are saying.

E. Garaganis 28

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 6: Results Reporting Overview

Figure 7: Results Reporting Stats Question

Figure 8: Results Reporting Terms Question

E. Garaganis 29

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.7 Visualization Wizard

Given the same answers for the surveys, users can navigate from the Report Page to

Visualization Wizard. The Visualization Wizard is a powerful feature that allows
individuals to parameterize the question answers based on their fields or ranges, combine

an arbitrary number of questions and plot the resulting statistics in an appealing and easy

to digest visual way.

Figure 9: Visualization Wizard

E. Garaganis 30

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.8 Use Cases

The whole process of the survey building, publishing and results visualization and

experimentation can happen for any kind of survey and can be integrated in any platform.
We are using our service to conduct our series of surveys that concerns only developers

and the computer science spectrum. We will showcase the use case, but any corporation

can integrate our solution for their own purposes.

Figure 10: Dev-Study Use Case

E. Garaganis 31

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3. SYSTEM DESIGN

In this chapter we will delve into the designs of the survey building and answer

visualization. We will try to understand how every one of the core components of the

survey is built and designed, what the patterns are and techniques selected, in order to
clarify how the whole process is being functional and performant. Design phase was the

first phase of this project life-cycle. It took approximately 1 month until it was
well-established as how the different components will communicate and composite. The

top priority was to design a tool that minimizes the repetition of the different kinds of

processes, like questions that are being shared among many surveys and need to get
edited, and also be as simple to understand and comprehend as possible. The Design

Analysis chapter abstracts away the coding and technology details as much as possible,
trying to structure our service in a language-agnostic way (Of course there are plenty of

coding examples so that readers can fully grasp and embody the designs into a practical

manner). The questions, surveys, survey answers follow the specifications and the format
that we decided and the different procedures, too. We will guide you throughout the design

phase of the implementation, starting with the cornerstone of the survey building, the
questions.

3.1 Questions

3.1.1 Design

Questions are the building stone of the survey building. Surveys consist of questions that

are dynamic throughout the survey life-cycle and that can be shared among different
surveys. Different types of questions serve different kinds of meanings and each question

targets a specific target group. For these reasons, the question creator should be able to
select the appropriate question type for their intentions, to have a way to provide help to

the user with different kinds of hints or restrict the user answers by applying a different set

of rules. All these should be flexible and clearly described in a language-agnostic manner,
so that any kind of developing environment can handle them. So, we came up with the

following question specification, that we will see step by step.

E. Garaganis 32

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 11: Question Format

Each question is represented in JSON format. We picked that format, because it is widely
accepted in the development community, especially when writing in a full Javascript

environment. Let’s analyze each one of question keys:

1. id: It is the unique question identifier that distincts it from the others.

2. type: Defines the question type, that suits the creators intentions. Possible types:

i) SetOfStrings: When the question can have multiple answers.

ii) Number: When the question answers is a numeric value.

iii) String: When the question answer is a single string.

3. text: This attribute contains the question text.

4. values: In this attribute, the user can add an array of values, for e.g. the

SetOfStrings questions.
5. hint: The user can add a hint to a question, helping them to give more accurate

answers.
6. rules: The question rules define the possible restrictions that can be applied to the

question, like:

i) Float: Restricting number question answers to float values only.

ii) Integer: Restricting number question answers to integers values only.

iii) Scale-n: The <0-n> scale so a user can choose to number questions

iv) Min-n: The minimum number of answers that a person can choose

7. answers: The answer to the question

E. Garaganis 33

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

As it can be seen, the above attributes depict the essence of a question and can be scaled

to more question types, rules or other kinds of attributes.

Questions are bought and stored in our front and back-end systems with the above JSON

format described.

3.1.2 Modeling

Questions usually remain with the above json format for the different needs of our app, like

the question edit etc. But there are specific use cases, that questions need to be modeled
to a class-like structure, in order to contain a set of functionality and properties. For

example, the front-end needs a question class object to be instantiated in order to render a

question, or the survey building process stores the questions class objects within each
structure and not the JSON format. It is important to describe how the questions are

modeled on our systems in an Object Oriented Manner. Let us start with a Class UML
diagram:

Diagram 1: Question Modeling

As seen on the above class diagram, we have the base question class that contains the
information designed in the specification file. The base question fills each property on the

constructor from question data given to it (a filled question spec file), along with the

E. Garaganis 34

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

setter/getters for the question answer and extra methods like checkValidity that validates

whether the question’s answer abides the set of rules or the type specified. From the
question base class, the different types of questions derive their properties and methods

by inheriting from it. Each question class of type X, that is the child of the question class,

overloads functions like check validity, properties like set answer and answer (for example
the set of strings question contains an array of answers given by the user), or adds more

properties to the base class like a ceil prop for the number class. In the sequel of our
previous statement, the scalability of the question designs extends to the data modeling of

the question. The programmers can add more question types and their functionality by

inheriting the question base class, taking advantage of the object oriented characteristics
that the appropriate OOP languages provide. Our implementation follows the above

diagram in Javascript. Let’s start by showcasing how the developer invokes the creation of
a new question based on the class model described, and we will then proceed in showing

the code base for the question data modeling with oop possibilities of JS.

Code 1: Question Creation Code

E. Garaganis 35

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Code 2: Question Class Code

E. Garaganis 36

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.1.3 Rendering

Each question can be rendered on our application, by first creating a question class object,

as seen on the above examples. Each front-end framework that wants to render the
question to the browser requires a question renderer, that based on the question type,

renders the right type of question. For each question type, a different form should be

displayed, for example SetOfStrings questions is a checkbox, String questions with
multiple values should be represented by a set of radio buttons etc. Each question form for

the different question types is a front-end component and can be based on any framework.
Developers can create their own UIs for the questions that will be rendered. The only

critical part is to connect the onInputChaged functionality. Whenever a rendered question

changes its input value, which happens when a user selects an input or types an answer,
should call the innate way of question component to handle on input changed events and

call the question’s class object setAnswer, in order to update the answer within our
question objects. Let’s start by showcasing a pseudo code and design example of how our

survey renderer works:

Diagram 2: Question Rendering

E. Garaganis 37

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The question renderer contains the conditional logic described. For the different question

types, render the right form components, that are implemented in a different directory. By
that way, developers can add different directories with their own UI as already mentioned.

Before showing real code examples from our implementation, we will sum up the question

rendering process. Let’s see another design, outlining the process:

Diagram 3: Question Rendering Abstract

The Question is the object class that is passed to the question renderer. The question
renderer produces the rendered question. It is important, for once again, to highlight that

the rendered question gets its answer from the question class, and connects its
innate event handler with the question’s setAnswer method, to update it whenever
the anwer changes from the form input. A question component can be implemented by the

following way, which is a real-code example from our implementation. Take a look on the
onChange property, which is the event listener that will call the setAnswer. (The code is

written in ReactJs and imports the MaterialUI for the checkbox. More about the technical

details can be found on the 3rd chapter: Technical Analysis).

E. Garaganis 38

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Code 3: Material Checkbox Form Component

The question form components look like the above implementation and the question

renderer that imports and uses them looks like the following image.

E. Garaganis 39

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Code 4: Question Renderer Code

E. Garaganis 40

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Examples

For the last part of the Question Rendering, let us present some rendered questions and
see how they look on our webpage:

Figure 12: Text Input Question

Figure 13: Slider Question

Figure 14: Radio Button Question

Figure 15: Checkbox Question

E. Garaganis 41

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.2 Surveys

We will now move on to the core component of our service, the survey. We will follow the

question analysis structure, starting with the Survey design and later move on Survey
modeling and rendering for the platform usage.

3.2.1 Design

The survey designs exists in 2 formats:

1) The storage format.
2) The run-time format.

3.2.1.1 Storage Format

We will start off with the storage format. How the survey is stored in our systems.

Figure 16: Storage Format Structure

The survey is structured in a JSON format. It contains the basic fields, like id, title, short
and long description, the survey icon and date created, that describe the survey. The

section field, nests a json object which is the section format. The section contains the id,

title and description of the section along with the questions field. The question field is an
array of strings, which are basically the ids of the questions contained in the survey. The

section and question order follows the indexing within the structure.

E. Garaganis 42

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

An example of a stored survey within our systems looks like:

Figure 17: Example of Storage Format

We decided the above format, as it is the minimal possible way to represent survey
contents and structure, while retaining its scalability.

3.2.1.2 Runtime Format

The above format is useful for describing the survey and storing it in the data storing

technologies but on run-time it is not so performant. Let us see how the run-time format
of the survey looks like and we will justify why we made 2 versions for the survey

depiction, along with the outline of their conversions.

E. Garaganis 43

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 18: Runtime Format

This survey format is almost identical to the previous one. The difference is that instead of

storing an array of question ids in each section, we store the whole question data. That

creates a bigger survey format but really helps the survey creation process. Let us see
how.

3.2.1.3 Difference between the two survey formats

The question is, why don’t we use one and only survey format? Here are the reasons:

● The storage format, where the section questions are represented by a set of survey
ids, is a compact and minimal way to describe the survey. Also, when a question is

updated, the survey will always contain the updated version, as it only stores the id

of the question and not all of its data.

E. Garaganis 44

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

● The run-time format, where the section questions are represented by their whole

specifications, is better for performance reasons. As we already stated, in order to
render a question, the question renderer needs a question object that requires all of

the questions data. If we stored the survey the storage way, then for each question

we would need to search the question pool to find its data, because we would only
have the id. In contrast, the run-time format provides all the question information

when the survey is about to be created, without having to search for the questions
data.

3.2.1.4 Conversion between the two formats and outline

The last thing that needs to be clarified is how the whole process integrates and functions

together. Descriptively, we start off by building the survey in the storage-format. When
adding a question, the question id is being pushed in the section questions array, and step

by step, the survey is completed. The question and section order is being handled by the
survey builder that we showcased in the first chapter. Upon survey creation, the survey

specification file is stored on the back-end. Whenever a question is being edited or the

survey updated, the spec. file changes on the backend and stays there with the same
format. The conversion of the survey specification file to the run-time format happens

when the survey needs to be rendered. The backend gets a request to render the survey
with a specific id, get the specification file of the storage format and convert to the

run-time. From then, it passes it to survey creation and rendering for it to happen. Let’s

project an outline of the survey format conversion to understand it.

Diagram 4: Conversion Between Survey Formats

E. Garaganis 45

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.2.2 Modeling

Like the questions, we need to model the survey, in order to use it on our services. A

survey with the above specification needs to be translated to a class object, so that it can

be rendered and take usage of the OOP possibilities. For once again, let us start with a
class diagram for the survey and we will explain it thoroughly.

Diagram 5: Survey Class Model

The survey object contains all the required functionality. It’s scalable, easy to understand
and maintain and provides all the important information for the survey life-cycle. The class

includes methods like populateSurvey from an already answered survey,
getCompletionRate for the completion percentage of the survey, check the survey for

questions with errors and update the invalid question list, setAnswer to a question of the

survey etc. Each survey contains an array of section objects, and that array of sections

E. Garaganis 46

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

contain an array of question objects. The survey class is instantiated given a survey in
run-time format, and keeps track of the survey state while this is being “alive”.

A survey object can be created, in code-level, like this:

Code 5: Survey Creation

And the survey class, looks like this:

Code 6: Survey Class

E. Garaganis 47

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.2.3 Rendering

The final phase of the survey design analysis is to lay out the rendering process. The

survey form is actually the survey in a web form, that contains all the questions and gets
the user answers. It gets as a parameter the survey specification file, in a run-time format,

creates a survey object with it and starts to construct the survey. Let’s analyze this step by

step:

Code 7: Survey Rendering - Survey Creation

First, create the survey object based on the specification file, as explained. Let us explain

the rendering process now.

Code 8: Survey Rendering - Methods

E. Garaganis 48

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The survey rendering starts off by selecting a section to render. We will begin with the first

section. The renderSection function gets a section object as a parameter and renders the

Section info along with the questions that belong to it. For each question the renderSection
function calls the renderQuestion that we described in the 2.1.3 Question Rendering

chapter. Here, it is important to mention again that to the renderQuestion it is passed the
inputChangedHanler that connects the question events handler to setAnswer, in order to

keep the survey updated.

Code 9: Input Changed Handler

There are also extra components that improve the user experience, like the survey helper

and section navigation. They are implemented in react, too, and care for the user's

navigation between sections and questions. These and the whole question and section
indexing is the sequence of the carefully designed survey structure, following the section

and question order, making it easy to be searched.

All of the previous analysis will result in the following survey form which users can fill and

submit. It guides them through the erroneous questions and stores a set of metadata

about the survey process (like half-completed surveys, the time it took for the user to
answer the survey, etc.).

Let us see an example of a rendered survey to visualize the results.

E. Garaganis 49

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 19: Rendered Survey

Now, that we have finished the question and survey analysis and how the whole process

results in a rendered survey, we will summarize the whole process with a big and detailed
diagram.

E. Garaganis 50

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Survey Rendering Summary

Diagram 6: Survey Rendering Abstract

With survey analysis finished, we can now move to the next analysis phase. The

Answered Surveys analysis. Each survey, when completed, should store the survey
answers in a digestible format for the visualization and data analysis to happen. In the

following chapter we will describe the answered survey format and design, and why we
decided on this format, while also explaining the whole process of an answered survey

export from the survey object, storing to our back-end systems and retrieval to our client

side.

E. Garaganis 51

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.3 Answered Surveys

We now proceed to the Answered Survey analysis, which are actually the answers of the

surveys.

3.3.1 Design

The three building blocks of any survey are questions, the survey and the answers. In this

chapter we will explain the last document structure that the survey building and report

page is using, the answered surveys.

Figure 20: 3 Document Types

It is important to define a good format for the answered surveys. An answered survey

format should let the system:

● Easily read the answers to any question

● Visualize the answers to any plot or graph

● Allow question combinations and aggregations
● Contain metadata about each survey

For all these reasons, we tried to approach how we handle an answered survey in
real-word, with documents. Each answered survey is actually a document that contains the

answers for each question, along with some metadata about it. Of course each answered

survey contains the survey ID that it corresponds to and information like the time it took an
individual to complete it, the date it was submitted and other kinds of fields that we will

showcase. The last thing to mention is that each survey’s answers are represented by
one document, so that it can be unique and distinctable from other answered surveys and

let analysts combine answers given by the same person. Of course in our systems we do

not hold information and data about the participants. Each answered survey has only the
answers to the question and other meta information, but there is no way to identify a

person from an answered survey, making it fully anonymous.

Now, let us see how an answered survey looks like.

E. Garaganis 52

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 21: Answered Survey Example

So, given that a participant completes a survey, then it is stored in our systems with the

above format. Once again, it is a JSON file that contains the basic fields about the
completion information, like the time it took the user to complete the survey, the ID of the

survey that the participant answered and the date that it was submitted. The answers field

is an object that contains for each question the answer to it. This question is represented
by its id and the answer is the value or values that the user gave, when submitting the

form.

E. Garaganis 53

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.3.2 Exportation and Storage

Now that we have described the answered survey structure and format, Iet us delineate

how the system produces the above document/spec. file and how it is stored within our
systems.

Diagram 7: Survey Exportation and Storage

In order to store the answered survey, we need to export the answers from the Survey

Object that we explained in the Survey Rendering chapter.

E. Garaganis 54

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The answers export to the answered survey format with the following sequence. When a

user has requested to take a survey, our service renders the survey with the rendering
process that we have already clarified. When they have completed the whole survey, they

submit the survey and if that contains no errors, then the survey class object takes over in

order to export the survey and store it in our systems. This happens in the following way:

Code 10: Survey Submission

As it can be seen in the above React implementation, when the user clicks the submit
button, the submitSurveyHanlder comes and checks all questions for their validity and if

the whole survey is valid then gets the last metadata and exports the survey answers with

the survey object method. The exportSurvey method looks like this:

E. Garaganis 55

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Code 11: Export Survey Method

In a JS manner, the method for each section that exists in the survey, gets all of its

question answers and creates the key-value pair, with the key the question id and value
the answer. So the whole answered survey object is created by the above method, and is

ready to be stored in our systems. The answered survey is sent to the backend with a

POST method, but the technical details about the storage methods and communication
between client and server will be explained in the Technical Analysis chapter.

We can now move to the next phase, that of Survey Reporting and Answers Visualization
and Aggregation.

E. Garaganis 56

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4 Results Visualization

3.4.1 General

The end-goal of each survey is to extract results about a central idea that you aim for or

explore the data to see what else can be found. For these reasons, it is crucial to provide a
way for the conductors to visualize the results and the answers given to them, while also

offering an option to aggregate the questions, in order to reach new kinds of conclusions.

Now that we have explained the whole process of survey creation and storage to our
systems, imagine that we have a whole load of answered surveys concerning a survey.

The direct information that we can provide is the number of surveys completed, the
average time it took users to submit them and the period the survey was more active. But

an answered survey contains the critical part of our initial intentions, the answers.

Questions do have different types, meaning that the answers given to them are also of
different types. Number questions are of number types, MutualExclusive types of

questions contain distinct types of answers, while SetOfStrings also contains a different
set of answers. This means that each question type requires a different kind of

visualization and handling when it comes to presenting the results or processing them.

Furthermore, having different kinds of questions and a number of answered surveys,
there should be a way to aggregate two or more questions, combine the results given and

conclude new findings.

A survey can have a lot of questions. Easily navigating through them should be a priority to

the user experience. Enhancing the user experience the graphs should be easy to

understand. Also, our services give the option for anyone to download the whole survey
reporting or specific question results, depending on their needs.

Last but not least, there are times that results and data are for anyone. Our platform gives
the opportunity for the conductors to share the results with the public, allowing them to

preview the results or have access to the Visual Wizard, so that they too can ‘play around’

with them.

All of the above statements are covered by the Results Visualization Analysis, where we

unveil the underlying mechanisms of the visualization process along with the design
artifacts that will help demystify how things work.

E. Garaganis 57

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.2 Results Reporting

For every question that we want to display, we need a simple piece of information about it.

Based on the different kinds of questions, this simple piece of information changes. So far
our Results Reporting services handle 2 kinds of questions when it comes to rendering

(not to be confused with the question types) :

i) Questions that we select a value based on a set of values, the terms questions.

ii) Questions that we choose a specific numeric type, the stats questions.

Each kind of question needs a different type of handling when it comes to its visualization,
in order for the results to be meaningful. Before analyzing these pieces of information and

how the front-end renders them, I will lay out how the whole answer visualization happens.

Diagram 8: Results Reporting - Server Client Interaction

The whole process of visualizing the question’s answers can be summed up in 4 steps.
The client requests the statistics for a question from the server, the server responds with

the statistics and the client handles their visualization. The part of the process that handles
the result rendering concerns the front-end, while the statistics provided happens to

our back-end . Let us analyze this separation of concerns of these two parts and lastly

integrate the whole solution for the question’s answers visualization.

E. Garaganis 58

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.2.1 Results Rendering

Let us start from the front-end, which is responsible for the answer visualization. As
mentioned , different question types are represented by different types of graphs. The

piece of code that is responsible for rendering the right type of graph for the different
question types is the Visualization Renderer. It applies the same conditional logic that

the Question Renderer uses, keeping the implementation clean and simple. Let us see

how the Visualization Renderer looks like theoretically:

Diagram 9: Visualization Renderer

The visualization renderer needs 2 types of input. The statistics and data of the questions.
Based on the question type, it renders the proper graph. The graphs that render those

questions statistics, can be selected from the different visualization libraries that our code
handles. The code logic and design will be explained in the Design Challenges chapter.

The Visualization Renderer implementation is the following:

E. Garaganis 59

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Code 12: Visualization Renderer

As we have already mentioned , there are two kinds of questions when it comes to
rendering. The terms questions and stats questions. The question type Number is

considered a stat question and all the other types of questions are considered term
questions. For those two types of questions we have two different statistic formats and

graphs. Let us see them:

A. Terms Questions

The terms questions statistics look like the following:

Figure 22: Term Questions Statistics Format

The terms questions consist of a set of possible answers to questions, in a string
format. For the different answers the participants have given , we hold the label as

the label/key value for the graph and doc_count represents the number of

participants selected in that answer. These stats for the question’s answers, along

E. Garaganis 60

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

with the total number of answered surveys, are sufficient for our implementation to

draw this kind of graph:

Figure 23: Rendered Terms Question Graph

The key in stats aray represents the label of the graph, and doc-count the bar graph

value. The above and the the following graphs are provided by the RechartsUI

library, which we will go through in the technical analysis chapter. The above code

implementation, written in React and using the library, is:

E. Garaganis 61

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Code 13: Terms Questions Graph

B. Stats Questions

The Stats question format concerns actually only the Number questions. Because the

answer to those questions is a numeric type, we would only need the core information
which would allow us to depict the question essence:

Figure 24: Stats Question Data Format

E. Garaganis 62

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The statistics provider that will soon be explained, returns the above basic stats. We select

to visualize only the avg that stands for the numeric average of the answers and the
min/max values. The Stats Graph looks like this:

Figure 25: Rendered Stats Question Graph

Code 14: Stats Question Graph

E. Garaganis 63

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Given the Stats type of questions we have finished the Results Rendering documentation.
Of course given the code scalability, it is easy to add different kinds of graphs for different

question types. For whatever statistics and information we have, the front-end can handle

it, allowing the developer the freedom to visualize the survey answers however wished to.

3.4.2.2 Statistics Provider

Now that we know how the front-end acts when needing to visualize the questions, we

should demystify who provides the front-end of the statistics. The statistics for the term,
stats or other kinds of questions are provided by the back-end. Because the back-end

handles all the data store and data processing, I have decided to call the part of the

back-end that is responsible for the statistics as ‘Statistics Provider’. The whole backend
will be interpreted in technical analysis. For the time being, it is important to understand

that the whole platform communicates through REST endpoints, with a client-server
architecture. There is a specific endpoint in our backend, which is responsible for

providing the caller with the statistics for any question that was requested. It requires the

question id, type and the survey that we are interested in and provides the stats in the
format that we have already discussed, in Results Rendering. Let us visualize the process

and then follow up with the code.

Diagram 10: Results Reporting Statistics Provider

Each one of the above steps, along with their design and technical details will be clarified
in the technical analysis. What is important here is to make a firm introduction to the

architecture of our service. More about the Data Processing and Analysis Client and our

Data store will be described in the following chapter, that of Visualization Wizard. Our
focus here is the Stats provider. It is the intermediate between the front-end and the data

E. Garaganis 64

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

store and analysis. The Data Processing and Analysis client queries the data store

however it is ordered by the Stats Provider. So, let us shift to the Stats Provider inner
logic, starting by its code:

Code 15: Results Reporting Statistics Provider

The Stats provider contains once again the same conditional logic of the Question and

Visualization Rendering. Based on the question type, asks the client that handles the data
storing to do a stats or terms aggregation. Then, gets the responses and packs up the

statistics for the front-end rendering to occur, in the format that we showed in the Results
Rendering section.

E. Garaganis 65

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.2.3 Summing up

To sum up the whole Results Rendering Process. Throughout the whole code and design

process the number one priority was to keep a tight and strict separation of concerns. The
front-end asks for the question stats. The backend manages its systems to return those

stats. Then the front-end decides to render them. Let us do a last visualization of the

whole process and more details will follow in the rest of this thesis.

Diagram 11: Results Reporting Complete Process

The complete visualization of how the question’s answers are getting graphed on the user
screen. We are now ready to move on to the Visualization Wizard.

E. Garaganis 66

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.3 Visualization Wizard

It is now time to proceed to the explanation of the last feature which our survey tool

offers. The Visualization Wizard. Given a number of answered surveys, it’s of course
important to have a way to visualize the answers to specific questions. But it would be

great if we could combine and aggregate different questions in different orders and

contrasting fields. Our platform offers a way to experiment with the results, allowing the
user to explore and elicit their own deductions. The whole process of the Question

aggregation and visualization is called Visualization Wizard, because it abstracts away
from the user a lot of complexity and it offers a wide variety of options to choose and ‘play’

with. The Visualization Wizard was the most difficult part of this thesis. It required a

deepening on the technology stack used, designing many discrete and unalike systems,
form multiple layers of communication and applying different programming techniques. In

the Visualization Wizard there will be a comprehensive introduction to the technical
analysis of the implementation, in order to understand the building process. The whole

process will be explained step by step, so that it can be fully grasped and interpreted.

3.4.3.1 General

Before advancing to the design and technical details of the implementation, for once more,
let us showcase how the Visualization Wizard works from the user’s perspective. The user

gets an UI, in which they can choose which questions to combine, in the desirable order.
Then they can adjust and tune the different parameters and filters that each question

offers for the data analysis to happen. Different question types offer different types of

parameterization .

After deciding which questions will aggregate, along with their order and parameters, they

can send the request to get the results. The server will respond with the results, given in a
nested format, depending on the question order. This will be ascertained soon but it is

important to clarify the logic with which the whole system processes the questions.

Having different types of questions, and with each one having different possible answers,
there should be a way to represent the results. For each question that the user decided

upon, the code will analyze the answers and split them into different buckets, with each
bucket containing the answered surveys with the specific answer to the question specified.

Then for each bucket, continue to aggregate with the following questions, resulting in a set

of buckets with nested buckets. Then it calculates the last statistics based on the last

E. Garaganis 67

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

question. Sounds confusing? All the ‘how’ details will be described in the following

chapters. For the time being, let us focus on what the Wizard does.

Let us start off by giving 3 examples. We will use the Visualization Wizard for the Students

survey that we have created, which concerns their fears about the transition to the

workforce and how the university contributed in that direction.

1) I will begin with the simplest possible example. Let us ask the wizard to extract

the students who are ready for the workforce, or not, based on their gender.

Figure 26: Visualization WIzard Example 1

E. Garaganis 68

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

In the above example, the wizard based on the gender question, will split the

answered surveys to those of the participants which answered Male and to those
which answered Female. Then for each set of answered surveys, it will retrieve the

statistics for the people that are ready for the workforce and those not ready for it,

and visualizes it. But what if we wanted only the male participants ? Let us see how
this can be done:

Figure 27: Visualization WIzard Example 1 - Parameterized

Question 1 is no longer a General Aggregation, which produces results for all
answers in the survey, but rather more specialized. Here we only target the male

participants, so we choose only that Answer and select the Must match parameter.
(We will explain all the possible parameters in the design phase).

E. Garaganis 69

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2) Let us try that on a number of types of questions. I will ask the Wizard to extract

the participants that rated their well being (diet, sleep quality etc) above average
and rate the university for its contribution to their personal growth.

Figure 28: Visualization Wizard Example 2

Observe now that the filters are not tied to a set of answers but rather to the scale

of the numeric possible answers. Individuals can specify the range of answers they
wish to aggregate data on and then select the question on which we do the

calculations on , either that being a stats question or a terms question.

E. Garaganis 70

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3) For the final step, let us try aggregating 3 questions. The first question that we want

to aggregate is the students motives for pursuing computer science, then split them
up based on their gender and project the above answered survey sets to whether

those people consider themselves ready for the workforce.

Figure 29: Visualization Wizard Example 3

E. Garaganis 71

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The Visualization Wizard now splits the answers based on the participants motives.

Then for each motive divides answered surveys based on the gender and last does
the calculation by rendering the question statistics provided.

Of course the list of examples can be infinite. People that would like to explore the survey
results, can select all the possible combinations, and an arbitrary number of questions and

get their results. Of course the visualization wizard tool does not guarantee any
connection between the data and answers. It only displays the answers based on user

preferences. Fundamentally, each question answered is just a counter. It is up to the

individual's discretion to extract results that correspond to reality.

And now that we have cleared up what the Visualization Wizard does, let us move on to

How it does it. Once again we incept with the design decisions and progress with the
technical details.

E. Garaganis 72

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.3.2 Analysis

There are alot of questions emerging about the implementation. How do we describe all
those questions and their parameters in a way that the data store can process? What does

the data store respond to? How does the visualization render the combined results? All
those questions concern separate entities in the code implementation. And these entities

communicate in different ways in a specific sequence. Let us outline the whole process

and get into detail about each entity next.

Diagram 12: Visualization Wizard Process Abstract

The take-away from this outline is to understand that the front-end summarizes the
question data and their parameters into a central place. Then passes it on to the back-end.

The back-end controllers get those questions selected data, apply some levels of
transformation and build the query for the data store. The client executes the query and

gets the results passing them to the Wizard controller. The wizard gets the data store
response which contains all the information about the aggregations occurred and packs

up the crucial information into a json file that the front-end requires for rendering. All the

wizard statistics that the wizard controller just created, aRE passed from the visualization
wizard page to the Rendering process that paints the nested graphs based on each

question, on the client.

Let us now start analyzing each entity, while presenting the whole process step by step.

E. Garaganis 73

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

I. Statistics Provider

Unlike the Results Reporting, for the Visualization Wizard documentation we will start off
with the Statistics Provider of the Visualization Wizard and then we will resume with the

Wizard Results rendering process.

The Statics Provider is part of the whole outline:

Diagram 13: Visualization Wizard Statistics Provider Abstract

The Statistics Provider job for the Visualization Wizard tool is to provide the front-end of

the statistics required for it to render the aggregated results. The whole process makes a
full-circle with a set of intermediate ‘stations’ where the data format changes. The

transformations states and flow is shown in the diagram below. In this introduction phase
we will only put the 4 basic data states and by the end of this chapter we will preview the

whole process.

E. Garaganis 74

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 13: Data Transformation Process Abstract

The data starts off with the Questions Selected Data format, after a set of transformations,

it is converted to a data store query that will be executed on the data store. Then the
statistics provider will get the data store response and after applying a transformation

process, it will provide the Visualization Wizard with the wizard statistics needed , in order

to visualize the results.

i) Questions Selected Data to Query process

The data-flow starts from the Questions Selected Data format and is converted to the
Query for the datastore. The forward data flow will be showcased, and then the

backwards will follow.

A. Questions Selected Data

Before explaining the Questions Selected Data format, let us see where we are:

Diagram 15: Visualization Wizard Statistics Provider - Phase 1

E. Garaganis 75

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 16: Data Transformation Process - Phase 1

We are at the beginning of the Statistics Providing process, before we head to the wizard
controller that converts the Questions Selected Data.

All the questions data, along with their parameters and filters applied, should be described
in a data format, special for the back-end controllers to understand and process. The

Questions Selected Data format looks like the following (We will use the first example of

the Visualization Wizard).

Figure 30: Question Selected Data Format

E. Garaganis 76

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The front-end needs to create the above data format and give it to the back-end

controllers, in order to retrieve the wizard stats data about the aggregations on those
questions. For each question that the user selects, based on the question type, we have

different kinds of parameters and filters, so that they can have meaning. We retain the

same logic in the Visualization wizard, that of different kinds of questions when it comes to
visualization and aggregation. Each question data which belongs to the array of the

questions selected that will pass to the back-end controller, contains the basic information
like the question’s id and type and the questions arguments that the user has specified.

The Stats Questions need the range of answers we want to aggregate answers to. For the

Terms Questions we can apply a general aggregation, if we want to aggregate results
based on all possible answers, or non-general, meaning that the user should select the

answers they want to apply the aggregation on along with their in between relationship.
Should means that the possible answers should match, while the Must operations means

that the answers Must match.

B. DataStore Query

We will skip the phase of the transformation process and move on the end result, the
Query. It is wise to first understand how the end query looks like and how the initial data

information was, so that the whole transformation process can be interpreted. Let us see
where we are:

Diagram 17: Visualization Wizard Statistics Provider - Phase 2

E. Garaganis 77

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 18: Data Transformation Process - Phase 2

The query follows the format the data store indicates, so that it can be executed and yield
the aggregation results. Let us see how the end-query looks like, for two different

examples:

● Example 1:

We will ask the Visualization Wizard to extract the information regarding :

- The participants who answered “Innate motives” or “No other choices” to the

question about computer science motives .
- For the question whether they are satisfied from the university a general

aggregation, meaning that we want to analyze the end results based on all

the possible answers
- And the question that we want to calculate the answers to, is to rate their well

being.

This question sequence is a Non-general Terms Question, a General

Terms Question and Stats Question.

The query that our data store system will execute is:

E. Garaganis 78

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 31: DataStore Query Format - Example 1

Let us take this step by step. The logic behind the data store system is actually

Elasticsearch’s technology, that we will see in the Technical Analysis.

● The size argument indicates how many answered surveys should the data store

bring. We only want the statistics, so we give zero value to the argument.

● The next attribute is the query which is basically the parameters that we specify for
the aggregation to happen. The bool key contains the attributes the answered

surveys should satisfy. The must object contains all the criteria that the answered
surveys must match. As seen on the example, it must match the survey id, meaning

that we want all the answered surveys for a specific survey. The should object

contains all the answers that the answers should match. In our example, we want
the participants that answered “Innate Motives” or “No other choices”.

● The last property is the aggs property, which is basically all the aggregations that
should be applied to the answered surveys. To all the General Aggregations we

want to apply a terms aggregation, meaning that we split all the answered surveys

to different sets based on each question’s answer. In the survey management we
nest all the different aggregations, concluding in the last one, which is basically the

question we calculate our results to. In this case, it is just a stats aggregation, that
the backend knows how to handle.

E. Garaganis 79

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

● Example 2:

Let us see another simpler example, so as to show a different type of aggregation
that happens on our data-store. Now we will see the participants that:

- Rate their well-being above average, defining the ranges from 5 to 6, from 6

to 8 and from 9 to 10.
- Calculate the above answered surveys based on the question about their

social life.

 Let us see what the data-store needs for Stats kind of questions

Figure 32: DataStore Query Format - Example 2

Here the stats question will be analyzed as a stats aggregation which the data

store will handle, and only requires the different ranges that the answered surveys

will be split into, based on the question answer. The question that we calculate our
data on is a Number question, so the last aggregation will be a stats aggregation,

as well .

The underlying data store mechanisms, like how it provides the results, how it

handles the answered surveys etc, depends on the technology stack used. In our

services we use elasticsearch as the data store and it will be explained firmly in the
technical analysis chapter.

E. Garaganis 80

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

C. Transformation Process

Now that the initial and final form of the question selected data has been clarified, let us

focus on the transformation process that happens in the wizard controller.

Diagram 19: Visualization Wizard Statistics Provider - Phase 3

Diagram 20: Data Transformation Process - Phase 3

The transformation phase from the Questions Selected Data to the Data Store Query has

3 major phases. Let us see them:

E. Garaganis 81

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 21: Forward Transformation Process Abstract

a) Arguments To Aggregations Transforming

Imagine having the following data for the questions selected from the user:

As we have already seen , we need to define different kinds of filters and aggregations for

the Query to be executed. That 3 basic components that the Query needs are the shoulds,

musts and the aggs. So, we must translate, we must retrieve the questions arguments
one by one and translate them to these basic components. The general aggregation

questions are translated to terms aggregations, the non-general aggregations are
translated to either musts or shoulds based on the aggregation operation and the stats

type questions are converted to a stats aggregation.

After the arguments transformation process, the different aggregations and filters

E. Garaganis 82

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

are gathered to array data structures for the Aggregations Composition to happen:

Figure 33: Digested Questions Selected Data

Each of the Query different components are firstly gathered two these three distinct data
structures. This happens so that we can be flexible with the Aggregations Composition

process. The code for the arguments to aggregations transforming is the following:

Code 16: Arguments To Aggregations Transforming

E. Garaganis 83

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

E. Garaganis 84

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Briefly, the above code interprets the Questions Selected Data format and is based in a

sequence of condition logic, it manages to produce the different components of the Query.

Now, let us see how the Aggregations Composition merges the aggregations and why it

does that.

b) Aggregations Composition

In this phase all the 3 core components of the query in array-like structures are flexible to

act however we choose . The must and should aggregations are ready for the Query. But
the Aggregations are a bit more complex. Elasticsearch requires the aggs to be a nested

object, so that it can recursively apply the aggregations in the buckets created which are

created every time answers split based on the specifications of the user. So this phase
gets the aggregations that gathered and nests them in one nested aggregation format. Let

us see the aggregation result after the composition of the different aggregations.

Before the aggregations composition:

After the aggregations composition:

Figure 34: Before and After Aggregations Composition

E. Garaganis 85

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

With that successfully finished, the query building can easily be done. Before proceeding

to the final step, let us see how the code does the aggregations composition:

Code 17: Aggregations Composition

c) Query Building

So far, we have successfully managed to gather the three components for the Query

Building. Let us see them all together:

Figure 35: Query Building Components

E. Garaganis 86

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The Query Building happens by creating the Elasticsearch’s query data format and just

appending each of the components in the right position. Let us understand this by the
code example:

Code 18: Data Store Query Building

This last command is just a variable that contains the final query. The end-query is finally

ready. Let us preview the final result before executing it on the Data Store.

Figure 36: DataStore Query Built

E. Garaganis 87

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The forward data flow has ended. Let us summarize the whole Questions Selected Data

which the front-end provides to the Data Store Query process with the following diagram:

Diagram 22: Data Transformation Process - Forward Complete

It is time for us to delineate the backward data flow. The conversion from Data Store

Response to the Wizard Stats, which the Visualization Wizard Page will accumulate to
render the statistics.

E. Garaganis 88

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ii) Aggregations Results to Wizard Statistics process

The process of the Wizard Stats providing to the front-end from the Data Response that

the data store got us, is much more simpler. Let’s analyze it, starting for the back-end
response:

D. Aggregations Results

The data store responds and yields a reply with the following format.

Figure 37: Aggregation Results

It contains some metadata about how long it took the query to be executed, the number of
hits it acquired etc. For our statistics rendering process we do not care about those data

bits. What matters is the aggregations property that contains all the aggregation
information. So, in order for the back-end to provide the statistics, it forwards the whole

response again to the Wizard Controller, which will retain only the essential info.

E. Garaganis 89

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 23: Data Transformation Process - Phase 4

Diagram 24: Visualization Wizard Statistics Provider - Phase 4

E. Data Store Response Modifier

The control returns to the Wizard Controller with the Data-Stores response. In this phase,

the Wizard Controller will keep only the basic information from the response and augment

it with extra information, in order to make the rendering process the simplest possible.

E. Garaganis 90

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 25: Visualization Wizard Statistics Provider - Phase 5

Diagram 26: Data Transformation Process - Phase 5

What the Front-End needs in order to render the results is the aggregations data and

information about the question we aggregated our data to. The problem was that the data

store response contained only the aggregations data without providing any details about
the questions that aggregation was made for. So, for each aggregation we provide a set of

information for the aggregation, like the question id,type etc. This pack of aggregations
results, aggregations information and some other attributes are enough for front-end to

visualize the wizard results. Let us preview how the wizard statistics look like, but focus on

how these fields are created, and later in the last phase, we will explain what each one
means.

E. Garaganis 91

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 38: Wizard Statistics

The total answers field is the number of answered surveys we have for the specific survey,
the specializedAggrInfo concerns non-general terms questions and indicates the answer

fields that the results should or must match. The aggregations contain all the information
about the aggregations that happened to the questions. It recursively contains the set of

aggregations that were applied in the sequence of the questions. The last one, the

agg_info is actually the Questions Selected Data. Because the information is already
there, we just create a way for each aggregation to correspond to the right aggregation

data. That happens by the aggregation name (e.g. “agg_0” and the question's data index
in the Questions Selected Data array).

E. Garaganis 92

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The code that modifies the data store’s response and creates the above result:

Code 19: Wizard Statistics Building

The above code follows an iterative logic of getting each question and building the

aggregation info with it.

E. Garaganis 93

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Finally, we can proceed to the next phase, in which we will close the circle the Wizard

Statistics providing .

Diagram 27: Data Transformation Process - Backward Complete

F. Wizard Statistics

The last part of the Statistics Provider process is to demonstrate the Wizard Statistics
once again and see how each value is will be used later on the Visualization rendering

process. From this point, the Visualization Wizard page can retrieve the Wizard Statistics.

Diagram 28 : Visualization Wizard Statistics Provider - Phase 6

E. Garaganis 94

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 29: Data Transformation Process - Phase 6

As we have already shown , the wizard statistics look like this:

E. Garaganis 95

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The front-end will acquire each aggregation and the info which it accompanies , in order

to visualize each aggregation bucket. For the non-general terms aggregations we provide
from the back-end the answers that the aggregations happened for, like which answers

should match or must match, and provides the total survey answers for the statistics to be

complete.

Having clarified the Statistics Provider, the whole process is summarized with the following

diagram:

Diagram 30: Visualization Wizard Statistics Providing Complete

Now we can proceed to the Visualization Wizard Rendering process and clarify this as

well.

E. Garaganis 96

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

II. Visualization Wizard Renderer

Okay, the whole Statistics Providing has occurred . There are 2 core issues concerning the
whole Visualization Wizard process. The first is how the front-end constructs the

Questions Selected Data and the second how it renders the Wizard Statistics. Before

explaining each issue, let us see how the whole rendering process in front-end is:

Diagram 31: Visualization Wizard Renderer Abstract

The front-end process starts by the user selecting the questions which they want to set to

the wizard, then parameterizes them and lastly renders the results after they have been
provided to the back-end. In this chapter we will focus on the two trivial issues. The

Questions Selected Data building from the front-end and the Wizard Stats Visualization.

How the user selects the questions is up to React logic which will be explained in the
technical analysis chapter. What is important in these phases is to understand that the

user selects questions by a modal UI component.

E. Garaganis 97

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

i) Questions Selected Data Building

We will start off by showing another screen from the Visualization Wizard before asking
the Wizard to get the statistics.

Figure 39: Questions Selected Data Building

E. Garaganis 98

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The questions selected data for the above example should look like this:

The above data format that the front-collects happens in different levels. The whole

diagram that outlines the process is the following:

Diagram 32: Visualization Wizard Renderer Component Tree

Each rectangle represents a component for the front-end technologies. Let us see them
one by one with an example, code and design details.

E. Garaganis 99

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Questions Selected

Questions Selected Component contains the following part of the UI:

Each Question here is represented by a Question

Selected Card UI component, which we will next
see. It is important to mention here that only the

last question requires different handling, because

this is the question we plot the data for.

The Questions Selected component only needs

the questions that the user has selected.

Figure 40: Questions Selected Rendering Cards

The Questions Selected component gets as a property the questions which the user has

selected and rendes for each one a Question Selected UI Card. Let us see the Question
Selected Card details.

E. Garaganis 100

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Question Selected Card

Let us isolate two cards and analyze them.

Figure 41: Questions Selected Cards

Each card is divided into two parts. The Questions data part, which contains the Questions

text and Questions Parameters parts that we will soon see. The Question Selected Card

needs as an argument the question data, in order to be able to render it.

E. Garaganis 101

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 33: Passing Question Data

The Question Selected Card needs the right type of parameters. We have seen how the
Question’s Selected Data looks like. The question’s aggregation parameters depend on

the question type. The above question card has different question parameters, as you can
see, and a different form of input. Let us focus on this part:

Figure 42: Questions Card Parameters

The Question Selected Card in order to render the right question parameters form uses

the Question Parameter Renderer component, by passing it the questionData which it
already has.

E. Garaganis 102

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Question Parameter Renderer

The question parameter renderer defines which UI question parameter form to render by
conditionally rendering the right form based on the question type.

Diagram 34: Rendering Aggregation Parameters

E. Garaganis 103

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The code of the Question Parameter Renderer is the following:

Code 20: Form Aggregation Parameters Renderer

Based on the question type, the component decides to render the proper question
aggregation parameter form. The same conditional logic is clearly seen through the whole

code, making the implementation logic consistent across the app. For the final part let’s

see the different Question Form Parameters that the Question Parameter Renderer
produces.

E. Garaganis 104

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Question Parameter Forms

We have now reached the last components group which is the Question Parameters Form
components. So far, we have 2 types of form components. Let us see them both:

- Terms Questions: The term questions need the following question parameters:

The question parameters are stored in the String

Params component of our code which gathers the
information to the following data structure format:

Figure 43: Terms Questions Form Parameters

The code which implements the above behavior is just a React component that

uses checkboxes, radio buttons and event handlers to keep the data up to date.The
same applies for the following question form parameters type.

- Stats Questions: The stats questions need the following question parameters:

And the data which this form produces are stored on

this object format:

Figure 44: Stats Questions Form Parameters

Now that all the questions selected have been rendered to the end and we have a way to
update the data for each, let us see how all these are gathered to a central place.

E. Garaganis 105

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Let us see how the whole process of the Questions Selected Data rendering looks like:

Diagram 35: Visualization Wizard Front-End Detailed

All of the above rendering processes create the Questions Selected Data step by step, by

taking the basic information like the questions selected id,type and adding to them the

aggregation parameters that the user defines. The Number Parameters and String
Parameters update the Questions Selected Data arguments each time a value changes,

despite the fact of these deep component-like structures. (More on Technical Analysis).

E. Garaganis 106

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ii) Wizard Stats Visualization

The last part of the whole visualization process is the rendering of the wizard statistics. We
have seen exhaustively how the front-end gathers the Questions Selected Data and how it

retrieves the wizard statistics. It is now time to see how the visualization of the Wizard
Statics works. This procedure happens in the Visualization Wizard Result Rendering

component. Before jumping into details, let us remember how the wizard statistics looks

like:

The Wizards Result rendering process will render the total number of answered surveys,

the special aggregation info that we have for the non-general questions aggregations, like

E. Garaganis 107

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

what question’s values the answers should or must match and the question aggregation

buckets along with their statistics and information. The end result given can look, for
example, like this:

Figure 45: Visualization Wizard Another Example

The code which accomplishes all these nested-like visualization processes is the

following:

E. Garaganis 108

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Code 21: Visualization Wizard Stats Visualizer

E. Garaganis 109

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The code in order to render the nested aggregations implements a recursive function that

follows the same logic that the aggregations do. For each aggregation bucket it creates an
Accordion UI component. It gets the data from the aggregation info stats structures, so it

outputs all the information for each bucket. Lastly, for the last question, that all the

aggregations happened for it passes the statistics to the Visualization Renderer that we
saw on 2.4.1.1 chapter. Then the final graph is rendered for that question. This is how the

Visualization Wizard renders the results.

Let us finalize the Visualization Wizard Renderer with the last diagram and then sum up

the whole visualization wizard process.

Diagram 36: Visualization Wizard Front End Compolete

Each of the above processes has been described in the chapters above.

E. Garaganis 110

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

III. Summing up

To sum up the whole visualization wizard process, I will l present the last diagram, which
includes all the different steps which were documented throughout this thesis chapter.

Diagram 37: Visualization Wizard Complete

The Visualization Wizard has now been completed. And it was kind of huge. It required the
complete understanding of the technologies used, enacted numerous transformations from

one format to another and applied a different set of programming techniques. If the initial

goal was not clear enough, and without having fully comprehended the different
processes, the Visualization Wizard would not be able to be completed. But in the end it

was worth it, because now users will be able to explore the results and try to ‘mine’ a set of
information from the surveys.

The next steps are to add more functionality, like download results, or add more

aggregation types, new diagrams etc. Also, refactor the different code parts, optimize the
performance and furthermore .

With this , the core features that our SaaS offers has now been completed. It is time to
move on to more lightweight items and then proceed to the technical analysis.

E. Garaganis 111

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.5 UX and UI decisions

In this chapter we will take a look at the User Experience and Interface design decisions

and how the general platforms aesthetic was created.

3.5.1 Usability Evaluation

Designing a simple, usable and minimal user interface and a pleasing user experience is

of top priority in any computer system. Our platform follows an intuitive design that

provides ease of learning and efficiency of use. Each design approach follows the 10
usability rules of Nielsen, like the visibility of system status, indicating each time when a

service is loading. It matches the real world, when it comes to intuition, as each survey
contains questions that we try to represent in the real world, like order etc. The general

aesthetics of the platform follows specific palettes and design behavior, in order for it to be

consistent across the different pages.

Figure 46: Theming and Color Palettes

It also offers Error Prevention and Recovery,

Figure 47: Error Prevention Options

E. Garaganis 112

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

While also applying a different set of methods and rules, like the time to acquire a target is

a function of the distance to and size of the target (Fitts Law) or the time it takes to make a
decision increases with the number and complexity of choices (Hick’s Law) and another

set of fundamental UX rules that aim for the maximum platform learnability and user

satisfaction interacting with our product.

The platform also uses eye-candy icons and graphical resources reinforcing the user’s
experience and making the platform more appealing. Graphical assets used:

Figure 48: Graphic Designs

And icons provided from Flaticon and Material Icons.

Finally, the whole UX and UI character is based upon Material Design. The majority of web
platforms use Material design, as it is widely accepted and fits the general platform

intentions and initial purpose.

E. Garaganis 113

https://www.flaticon.com/
https://material-ui.com/components/material-icons/#material-icons
https://lawsofux.com/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.5.2 Theming

The platform provides 2 themes for the use to choose from. The Light theme and the Night

theme. Both themes were created with the help of the Material library that we will explain
in the Technical Analysis. The user can switch between the two themes in the navbar.

The two theme outcomes are the following:

Figure 49: Light And Dark Theme

It is also important to mention that it is easy for the devs to create a wide range of themes

for the users to choose from.

E. Garaganis 114

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.5.3 Accessibility

The tools which are used throughout our application ensure that the surveys and the

results will be accessible for everyone. MaterialUI provides Accessibility Features that
follow the WCAG guidelines, the app is passed through accessibility evaluation phases

and the color scheme complies with the accessibility guidelines. It will be one of the top

priorities to apply the Design for All principles, so that anyone can have access and be a
survey participant or explore the survey results.

3.6 Design Challenges

Designing was the most important part for the whole implementation to be completed. We

needed to design how the front-end will look like and the whole user interface layout and

behavior, how the back-end will be architectured in order to serve requests, how the extra
tools and frameworks will comply with the whole base architecture, how the data will be

stored in our systems and many others. All that for the distinct entities to communicate
harmoniously and be as stable as possible. Each one of the above designing phases

came along with a set of challenges that were faced and each one required clean and

concrete design.

3.6.1 Architectural Decisions

The architectural decisions that were suggested were made after a series of design

challenges. The most important of them were:

- What would be the layout of each page:

Each page layout and structure was defined after creating wireframes, from low to

high fidelity, so that it would be clear for the later coding phase.

Figure 50: Wireframes

- What is the front-end structure ?

E. Garaganis 115

https://material-ui.com/components/data-grid/accessibility/#data-grid-accessibility

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The front-end structure is component-based and follows a hierarchical tree-like

logic.

Figure 51: Component Architecture Logic

Each page belongs to a higher order component. The data is passed to the

components below through props and the events are handlers that are passed from

the parent components.

- What is the back-end structure

The back-end structure contains 4 base parts. The routes part that assigns specific

actions to the routes that the client requests data from. The controllers part that

are the actions that should be executed when a request arrives at the route. The
client part the controllers use when needing to query the data store for data. And

lastly the data store part that contains all of the data (surveys, answers, questions,
etc) and executes queries which the client asks for.

E. Garaganis 116

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagrams 38: Back-End Abstract Structure

- How do the different entities communicate ?

The front-end communicates with the back-end through API endpoints and calls
upon them, in REST architecture environments. The same goes for the Data Store

Client with the Data Store, they communicate through REST endpoints.

Diagrams 39: Back-End Structure Detailed

- How is the data stored within the data store ?

The questions, surveys and answered surveys are stored within our data store

systems with a document-oriented format. Our database is non-relational and data
is processed and aggregated through the Elasticsearch search-engine system that

we will see in the technical analysis phase.

E. Garaganis 117

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Now that we have covered the basic architectural decisions on the different

implementation phases, we will move to the end of the Design Analysis chapter and
explain the design principles that our system follows.

3.6.2 Design Principles

The design of our service aims to create a system that is:

● Scalable & Highly decoupled:

Developers can add a different set of question types, choose different visualization
libraries or form question libraries, apply different themes and all that without

messing or breaking the initial code structure and logic. The most widely used
technique that we used to justify this is the conditional logic that is being used

throughout the app. To remember it:

Diagram 40: Question Rendering Abstract

Each library rests in a different directory and code selects the selected UI on the run-time,
allowing to remove or add libraries without changing the question rendering logic.

● Stable and Sturdy:

The front-end can be easily changed. The data store and its client can be changed
with little effort. The individual parts can easily be detached, in a language-agnostic

way, in order to produce timeless systems that are affected the least possible by the
constant changes.

E. Garaganis 118

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4. SYSTEM IMPLEMENTATION

In the previous chapter, that of Design Analysis, we focused on the design of the systems
in a rather language-agnostic way. Although we saw many code examples, it is now time

to proceed onto the technical explanation of each component, starting off with the

technology stack which was used across our implementation.

4.1 The technology stack used

 Once again, the whole platform abstract architecture is as follows :

Diagram 41: Back-End Structure Detailed

In the front-end we used:

- The React javascript framework, along with the Material-UI for the UI building and
Recharts for the results visualization.

In the back-end we used:

- The Node.js and the ExpressJS javascript framework for the server implementation

along with the routing and controllers

And the data store is:

- Elasticsearch search engine, that stores the data and aggregates the results.

It also uses:

- NPM for the package management that our app uses

- Babel as the javascript compiler

- ESLint for the code formatting and optimization

 Each of the above tools and frameworks will be explained in the following chapters.

E. Garaganis 119

https://reactjs.org/
https://material-ui.com/
https://recharts.org/
https://nodejs.org/
https://www.expressjs.com/
https://www.elastic.co/
https://www.npmjs.com/
https://babeljs.io/
https://eslint.org/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The question that soon emerged before implementing this SaaS survey building platform

was which technology stack was appropriate for our goal. We aimed for a full javascript
implementation. The technology stack used consists of cutting edge technologies that

most corporations use and have a rich community to resort to. We chose React for the

front-end because it provides multiple libraries and it is the most popular js framework for
web-development. NodeJS along with ExpressJs helps you set up a server easily in the

same js manner and Elasticsearch is a very very powerful engine that has really fast
indexing options and huge aggregation capabilities for the result analysis. Each of the

above frameworks and services has its unique sense which we shall see.

4.2 System Architecture

The stack will be explained starting from the front-end and then moving backwards to the

back-end.

4.2.1 Front-End

The Front-End is fully implemented with the React javascript framework, but within we use

a set of packages for the different functionality that is required and that we downloaded

from the NPM package manager. In this chapter we will explain only the key packages that
the front-end widely uses for its purposes, along with the core technologies.

4.2.1.1 React

React is a javascript library that creates component based user
interfaces. Starting from simple and small components it can scale

to complex and big components that have various functionalities.

For the front-end implementation the version 16.13 was used. React
allowed us to create all app components easily, by letting us divide

the complex pages to its core parts, enhancing the code
maintainability and scalability. More information about React can be

found on their site, that can be found on the references page.

E. Garaganis 120

https://reactjs.org/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.1.2 Material UI

Material UI is a UI library for faster and easier web development in
React. It provides a huge variety of aesthetic and minimal UI

components. It has rich documentation, the components are highly

customizable and it is the most popular UI react library, meaning it
has a big community to help the programmers who make use of

its services.

4.2.1.3 Recharts

Recharts is a composable charting library built on React

components, that offers a diversity of charts, graphs and plots

while being widely customizable.

The whole implementation widely uses the above frameworks and libraries. The code can

be found within our repos. In the chapters below we will showcase some programming
techniques that React offers that had a significant impact on our implementation.

E. Garaganis 121

https://material-ui.com/
https://recharts.org/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.1.4 React Router

It is a collection of navigational components that compose declaratively with your
application. Users get the content of pages by typing in their browsers urls. The React

Router defines which component is going to be used for the different kinds of urls that
exist. The routing that happens within the front-end is as follows :

Code 22: React Router

This navigates the user to the right page, according to what they ask for, while also giving

the option to add URL parameters for the components that will get rendered. Also, if the
router does not find a URL that corresponds to a component, then it will render the

NotFound page.

E. Garaganis 122

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.1.5 Local Storage

The platform offers a way for users to store some data in the browsers local and session
storage. Options like remembering user preferences about light or dark themes or

continuing a survey if the user closed the window by mistake improves the user
experience and adds many conveniences to the process.

For example, if a user has completed more than 10% of the survey and by mistake closes

the window, then when returning to the survey page they will get a message asking them
if they want to continue the survey.

Figure 52: Continue Survey

And the code that uses the local storage is as follows :

Code 23: Continue Survey

Every time a survey is going to be closed from the screen, then the survey is stored to
local storage. And everytime the user goes to take the survey again and wants to continue

the survey, the Survey Class Method populateSurveyForm will be invoked with the

parameter the stored survey which resides in the local storage.

E. Garaganis 123

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.1.6 Axios and Data Fetching

Front-end constantly gets data from the back-end for the different needs. The data is
fetched from the backend endpoints with the help of the Axios HTTP client. An example

usage that is invoked whenever a user wants to edit a question:

Code 24: Axios Data Fetching

4.2.1.7 React Context

In case there are multiple nested components and the component tree goes into a big

depth, it is wise to have a way for the component-tree leaf nodes to communicate with
the root. The React’s usual way to pass data to children as props, but in this case these

props would need to traverse multiple levels, making the code harder to maintain and
scale. This is where React Context Provider comes into play. It provides a way for data

and methods to be accessible wherever in the component tree. A real use-case of the

React Context Provider is shown in the example below , where the Questions Selected
Data needs to get the aggregation parameters for a specific question from the rendered

question parameters forms.

The problem that we faced when building the Questions Selected Data was that the

Visualization Wizard should somehow be able to get the aggregation parameters data

whenever those changed. The Visualization Wizard will use the React Context in order to
provide the Question Parameters Forms the method that will call whenever the user

E. Garaganis 124

https://github.com/axios/axios

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

changes the aggregation filters. This method is just an update Visualization Wizard

Questions selected data.

The method is as follows :

Code 25: Update Questions Aggregation Data Method

And the whole context providing logic is showcased below:

Diagram 42: React Context

E. Garaganis 125

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.2 Back-End

The backend consists of the servers that contain the routes and the controllers, the data

store client and the data store.

Code 25: Back-End Abstract Strute

Before proceeding to explain one by one the technologies that are used in the back-end,
we will first explain the REST APIs that the back-end handles.

4.2.2.1 Rest API & Endpoints

The implementation is a RESTful application, meaning it uses the REST

(Representational State Transfer) architecture style for the front-end and back-end

in-between communication.

Code 25: Update Questions Aggregation Data Method

Here is a table with all the possible rest endpoints that clients can use and what the server
does when a client requests from them.

E. Garaganis 126

https://en.wikipedia.org/wiki/Representational_state_transfer

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Table 1: REST API Endpoints

E. Garaganis 127

API Route API
Method

Server Behavior

/questions/:sortBy&:order GET Returns all the questions on the
order specified

/questions POST Adds a question on the data store

/questions/new_id GET Get a new id for a newly created
question

/questions/search GET Return a number of questions based
on a search term

/questions/:qid GET Return the question specified by the
route parameter

/questions/:qid PUT Update the question specified by the
route parameter

/questions/:qid DELETE Delete the question specified by the
route parameter

/surveys/ GET Gets all the surveys from the
data-store

/surveys/questions_existis_in/:qid GET Get all the surveys that the question
with the specific id resides in

/surveys POST Adds a survey on the datas-store

/surveys/:sid GET Get the survey with the specified id
from the data-store

/surveys/:sid PUT Update a survey from the data-store

/surveys/:sid DELETE Deletes a survey from the data-store

/answered_surveys/:sid GET Get all the answered surveys of a
specific survey

/answered_surveys POST Add an answered survey to the
data-store

/aswered_surveys/question_stats GET Get the statistics a about a question
based on the answered surveys

/answered_surveys/survey_stats GET Get survey statistics about its
answers

/answered_surveys/wizard_stats GET Get wizard statistics for the
Visualization Wizard

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.2.2 ExpressJS

Express is a minimal and flexible Node.js web application
framework that provides a robust set of features for web and

mobile applications. We used Express to create our server:

Code 26: Server Implementation

E. Garaganis 128

https://expressjs.com/
https://nodejs.org/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The express implements the back-end logic serving the routes that we described with the

corresponding controllers.

Diagram 43: Routes And Controllers

Following are some examples regarding each implementation:

i) Routes

Routes are endpoints that the backend serves. Let us see how the surveys routing works
with a code example:

Code 27: Routes

E. Garaganis 129

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Each route is binded with a specific controller which t contains the logic for each route.

ii) Controllers

A controllers example is as follows :

Code 28: Controllers p.128

It actually contains all the code logic that is required in order for the system to operate with

the data-store for the desirable action, like getting the survey with a specific id etc.

E. Garaganis 130

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

With ExpressJS setting up the server and the routing/controlling of the back-end we move

towards the final part. The Elasticsearch’s data store and client, along with details about it.

4.2.2.3 Elasticsearch

Elasticsearch is a distributed, open source search and

analytics engine for all types of data, including textual,

numerical, geospatial, structured, and unstructured.
Elasticsearch is built on Apache Lucene. Known for its

simple REST APIs, distributed nature, speed, and
scalability, Elasticsearch is the central component of the

Elastic Stack, a set of open source tools for data

ingestion, enrichment, storage, analysis, and
visualization

We use Elasticsearch for the data-storing, the full-text search capabilities and the data
ingestion capabilities.

I. Index Organization

An Elasticsearch index is a collection of documents that are related to each other.

Elasticsearch stores data as JSON documents. To store the essential data for our

systems we used 3 indexes. One for the questions, one for the answers and one for
the answered surveys. The documents that are stored within each index follow the

same data format that we explained in the Data Analysis phase.

II. Queries

In order to operate with Elasticsearch and get, post, update, delete data from it,
apply a set of aggregations and more, we need a quering system. Elasticsearch

provides a rich set of queries that users can utilize and a domain specific language
that creates them, the Query DSL.

E. Garaganis 131

https://www.elastic.co/
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

III. Elasticsearch JS Client

Elasticsearch JS Client is our data-store client that executes the queries on the
elasticsearch indexes. It is the intermediate node between the express controllers

and elasticsearch indexes and the direct communicator with the data-base.

Diagram 44: Elasticsearch JS Client

The controllers use the Elastic JS Client for example as follows:

Code 29: Elastic JS Client getQuestions Method

Here the getQuestions controller invokes the asynchronous getDocumentsFromIndex
method that resides within the elasticClient. Upon response, it gets the questions and

forwards them towards the client.

All the functions that operate directly with the Elasticsearch are defined within the
elasticsearchClient file. Here is the code example of the elastic JS Client that contains

E. Garaganis 132

https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/index.html

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

those functions. Notice how the elasticClient uses the Query DSL in order to operate with

Elasticsearch's data store.

Code 30: Elastic JS Client Methods

E. Garaganis 133

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

IV. Kibana

Kibana is a free and open user interface that lets you visualize
your Elasticsearch data and navigate the Elastic Stack. Do

anything from tracking query load to understanding the way

requests flow through your apps. In our app we used Kibana to
query the indexes from its console and visualize the results, too.

Figure 52: Kibana

V. How Aggregations Work

For the last part of the elasticsearch explanation analysis, it is wise to understand at least

in an intuitive level how the aggregations work within elasticsearch.

Each index in elasticsearch has a specific mapping, which explains to elasticsearch what

is the document that stores structure, along with a set of fields containing metadata about
each field.

Elasticsearch does this to make the searching and aggregation capabilities as optimized

and performant as possible. We won’t analyze the mappings here, more info can be found
here .

For the time being, let’s remember how the elasticsearch stores the answered surveys
within its answered_surveys index.

E. Garaganis 134

https://www.elastic.co/kibana
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Each answered survey has a field called answers, that contains the answer for each
question. The key is the question id and the value of the answer or the set of answers for

the specific question. Given the query below let’s see how elasticsearch innate logic will

handle the request.

E. Garaganis 135

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Elasticsearch stores within its answered_survey index a set of answered_surveys with the

format above.

Diagram 45: Documents In Index Without Aggregations

The first thing that elastic will do is to apply a boolean query in order to match all the
answered surveys that must be of id ‘STUD’.

The above part of the query will yield all the STUD surveys.

Diagram 46: Survey ID Match Aggregation

E. Garaganis 136

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Then for all the STUD surveys, because we haven’t other queries, elasticsearch will start

the aggregations.

The first aggregation is the agg_0 which is a terms aggregation that happens based on the

Q02 answers. The keyword suffix in the aggregations means the answers of the Q02
question should be treated as keyword that the aggregations will happen upon. The

possible answers of the Q02 are “Yes” and “No”. Based on these answers, elasticsearch
creates two buckets. The one contains the answered surveys that had “Yes” answers to

Q02 and the other the answered surveys that had “No” answers to Q02.

Diagram 47: Documents After Aggregation 0

After the aggregation 0, the elasticsearch proceeds to apply the second aggregation to

each bucket.

E. Garaganis 137

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The agg_1 now splits the answers based on the Q11 answers, that again are “Yes” or

“No”. This aggregation happens on each bucket that the agg_0 created, producing the
following result:

Diagram 48: Documents After Aggregation 1

Given now the four distinct nested buckets, the last aggregation is applied.

This aggregation is a stats aggregation. Based on the answer of the Q29 question, the
elasticsearch for the documents that exist in the buckets above, does the stats

aggregation that computes the minimum, maximum, avg, count and other information for
the Q29 question answers that the buckets contains.

E. Garaganis 138

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Diagram 49: Documents In Index Last Aggregation

The above aggregation yields its response with the aggregation info of each bucket that

later the visualization wizard renders, with the procedure that we have explained in the
2.4.2 Chapter.

VI. Full-Text Search

The front-end utilizes the elasticsearch capabilities, providing the user full text experience.
In a full-text search, a search engine examines all of the words in every stored document

as it tries to match search criteria (for example, text specified by a user). We use

Elasticsearch for example in the Question Pool, in order to easily search surveys. The
showcase of the Full-Text Search along with the code implementation follows:

E. Garaganis 139

https://en.wikipedia.org/wiki/Search_engine
https://en.wikipedia.org/wiki/Search_engine

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 53: Full-Text Search

In the above example the user typed Q1 and the server responded with all the questions

that their id contains the 1 number. The search terms are applied to any field, applying full
text search experience. The full-text search is provided by our back-end, with an API call

to the /questions/search endpoint. The controller of that route executes the ElasticClient

that does a search query on the Elasticsearch that yields all the questions.

Code 31: Full-Text Search

E. Garaganis 140

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.3 Summing Up

Summing up the system architecture and the technology stack used to implement it, our

code base is a Client-Server Restful architecture. For the client-side or Front-End we use
React, Material-UI and Recharts frameworks and libraries for the UI building and graph

plotting. For the Back-End or server we use the NodeJS and Express framework that

builds the routes and controllers for the two ends to communicate. Our data-storing and
processing happens with the Elasticsearch search engine and its client that let javascript

to query its indexes.

An abstract diagram of the whole technology stack is the following:

Diagram 50: Full-Stack Abstract Architecture

E. Garaganis 141

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.4 Technical Challenges

During the design phase of implementation we were searching for a framework or tool in

order to build our backend. I came across a new backend as a service tool called
Firebase . It offered a lot of conventions and provided an easy way to manage the data

stored within it, like a console and variety of plugins and automations. So even before
analyzing what our project requirements and goals were I rushed to pick that data store as

a service, thinking it was the perfect solution for the problem, despite the fact that it was a

hurried decision. The end result was 1 month of coding and struggling to understand a tool
that was far from suitable for a backend with so many demands. It did not t have any

options to aggregate so much data, neither was it so performant. So, I had to remove the
whole backend and start all over. Of course my supervisor guided me by informing me that

there were better alternatives, so we decided on the right tools, that being Express and

Elasticsearch, and we built the back-end that is today and is perfect for the given problem.

Of course, it was not that Firebase was a bad tool. It just was not the right tool for the job.

What I understood was that architectural decisions can cost a lot of time and in cases
money and they do not change easily. So, never rush when it comes to the designing

phase. Explore all the possible solutions, understand the problem and its requirements
and after doing your best to brainstorm all the possible cases, then select the right tool and

make sure that it will work.

E. Garaganis 142

https://firebase.google.com/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

5. CONCLUSION

The current state of the implementation is a fully functional survey manager, that offers
users the ability to create and conduct surveys to the public, while also providing powerful

mechanisms to get reports about the results and explore the possible correlations between

questions and data with deep-nested visualizations.

For the future, the implementation will be enriched with more questions and visualization

types and capabilities. Also, the platform will be thoroughly tested in various testing
environments, optimized and get deployed in order to be ready to conduct and handle a

series of surveys.

All in all, the whole thesis experience matured me as a person and gave me the chance to
have a more well-rounded programming sophistication. It helped me sharpen a handful of

programming skills and better prepare me for the future, for the best to come. And I am
grateful to my university for giving me that opportunity.

E. Garaganis 143

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

TABLE OF TERMINOLOGY

E. Garaganis 144

Ξενόγλωσσος Όρος Ελληνικός Όρος

Back End Πίσω Μέρος

Front End Μπροστά Μέρος

Deployment Ανάπτυξη

Framework Εργαλεία / Σκελετός Ανάπτυξης

Cloud Υπολογιστικό Νέφος

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ABBREVIATIONS

E. Garaganis 145

SaaS Software as a Service

REST Representational State TRansfer

UML Unified Modeling Language

JSON JavaScript Object Notation

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

API Application Programming Interface

HTTP HyperText Transfer Protocol

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

REFERENCES
[1] Hackers & Painters, Paul Graham, May 2003 (http://www.paulgraham.com/hp.html) [Accessed 14/11/20]
[2] Worse is better, P. R. Gabriel, 1994 The Unix-Haters Handbook, part of the handbook

(https://cs.stanford.edu/people/eroberts/courses/cs181/projects/2010-11/WorseIsBetter/index43bb.html?t
itle=Main_Page&oldid=86) [Accessed 17/11/20]

[3] Knuth Turing Award Speech, 1974 recipient of the ACM Turing Award [Accessed 9/11/20]
[4] SE education SPLASH 2019, (https://2019.splashcon.org/track/splash-2019-SPLASH-E) [Acessed

10/11/20]
[5] SWEBOK v3.0 Guide to the Software Engineering Body of Knowledge

(https://www.computer.org/education/bodies-of-knowledge/software-engineering) [Accessed 8/11/20]
[6] Dynamic Visualization and Time Markku Reunanen
[7] Front-End Visualization Libraries: Recharts (https://recharts.org/) [Accessed 16/11/20]
[8] Front-End Technology React documentation (https://reactjs.org/docs/getting-started.html) [Accessed

16/11/20]
[9] Material-UI documentation (https://material-ui.com/) [Accessed 16/11/20]
[10] Elasticsearch (https://www.elastic.co/) [Accessed 16/11/20]
[11] “RESTful Web Services”, https://phppot.com/php/php-restful-web-service/ [Accessed 26/8/20]
[12] “Nielsen’s 10 Usability Heuristics”, https://uxdesign.cc/10-usability-heuristics-every-designer-should-

 know-129b9779ac53 [Accessed 24/10/20]
[13] Elasticsearch to React Connectivity (https://app.getpocket.com/read/2866109937)
[14] The Pragmatic Programmer 1rst Edition, by Andy Hunt and Dave Thomas, Year 1999 by Addison
Wesley [Accessed 18/11/20]

E. Garaganis 146

http://www.paulgraham.com/hp.html
https://en.wikipedia.org/wiki/The_Unix-Haters_Handbook
https://cs.stanford.edu/people/eroberts/courses/cs181/projects/2010-11/WorseIsBetter/index43bb.html?title=Main_Page&oldid=86
https://cs.stanford.edu/people/eroberts/courses/cs181/projects/2010-11/WorseIsBetter/index43bb.html?title=Main_Page&oldid=86
https://en.wikipedia.org/wiki/Acm_Turing_award
https://en.wikipedia.org/wiki/Acm_Turing_award
https://2019.splashcon.org/track/splash-2019-SPLASH-E
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://recharts.org/
https://reactjs.org/docs/getting-started.html
https://material-ui.com/
https://www.elastic.co/
https://app.getpocket.com/read/2866109937
https://en.wikipedia.org/wiki/Addison_Wesley
https://en.wikipedia.org/wiki/Addison_Wesley
https://en.wikipedia.org/wiki/Addison_Wesley

