NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

A Web-Based Survey Manager for Building Dynamic Surveys
with Nested Visualizations

Evangelos A. Garaganis

SUPERVISORS: Yannis Smaragdakis
Professor at National & Kapodistrian University of Athens

Kostas Saidis
Visiting Lecturer at National & Kapodistrian University of Athens

ATHENS

11/2020

EONIKO KAI KATMOAIZTPIAKO MNMANENIZTHMIO AOGHNQN

2XOAH OETIKQN ENMIZTHMQON
TMHMA NAHPO®OPIKHZ KAI THAETMIKOINQNION

NTYXIAKH EPIrAzIA

A Web-Based Survey Manager for Building Dynamic Surveys
with Nested Visualizations

EudyyeAog A. Nkapaykdvng

EmBAémovTeg: MAvvng Zpapayddkng
KaBnyntig oto KatmodioTpiakd MNavetmoTthpio ABnvwy

KwoTag Zaidng
NékTopag oto KatrodioTpiakd Mavetriotriuio ABnvwv

AOHNA

11/2020

Rectangle

Rectangle

Rectangle

BSc THESIS

A Web-Based Survey Manager for Building Dynamic Surveys with Nested
Visualizations

Evangelos A. Garaganis
S.N.: 1115201400033

SUPERVISORS: Yannis Smaragdakis
Professor at National & Kapodistrian University of Athens

Kostas Saidis
Visiting Lecturer at National & Kapodistrian University of Athens

Rectangle

Rectangle

Rectangle

NTYXIAKH EPTrAzIA

A Web-Based Survey Manager for Building Dynamic Surveys with Nested
Visualizations

EudyyeAog A. Nkapaykdvng
A.M.: 1115201400033

EMIBAEMONTEZ: Tidvvng Zpapayddakng
KaBnyntig oto KatrodioTpiako MNavemoTtiuio ABnvwy

KwoTag Zaidng
NékTopag oTto KatrodioTpiakd Mavetmiotriuio ABnvwy

Rectangle

Rectangle

Rectangle

ABSTRACT

During this thesis, we combined UI/UX disciplines, WWW technologies and data analytics

techniques and tools, to create a web-based survey manager SaaS (Software as a

service) for building dynamic surveys with nested visualizations.

With our service, users will be able:

To create different types of questions.

Build surveys with the questions created.

Visualize the surveys’ answers to the questions.

Experiment with the results by combining a number of questions.

Share surveys and results with the public.

The platform was created with the usage of cutting-edge technologies and reached the

full-stack spectrum of developing. The whole implementation is written purely on JS, by

using the frameworks React and Material Ul for the front-end and Express NodedJs’

framework for the back-end. The data-storing and data-analyzing is being handled by the

Elasticsearch engine, while the data-visualization is made by the ReCharts charting library.

Finally, we used the RESTful architecture for the data exchange and NPM for the package

management of the application.

SUBJECT AREA: Web Development

KEYWORDS: Data Analytics, Data Visualization, React, NodeJS, Elasticsearch,

Rectangle

Rectangle

Rectangle

NEPIAHWYH

Katd tnv OI1dpKeEIa QUTAG TNG TITUXIOKAG, OUVOUACOUE QPXEG EUXPNOTIAG, TEXVOAOYIEG TOU
TTAYKOOWIOU 10TOU Kal EpyaAgia Kal TEXVIKEG avAAuoNG Kal OTITIKOTToINoNG O€dOPEVWY, VIO
va ONUIOUPYACOUME HIa TTAATQOpUa dnuioupyiag epwTtnuatoloyiwv kal availuong

atmmoteAeopdTwy. Me autr TNV TTAAT@OPPA Ol XPrOoTEG Ba JTTOPOUV:

e Na dnuioupyolv epWTACEIS BIAPOPWY TUTTWV.

e Na karaokeudlouv epwWTNUATOASYIA UE TIG EPWTAOEIG TTOU £XOUV dNUIOUPYHOEL.

e Na OTITIKOTTOINOOUV TIG ATTAVTAOEIG TOU EPWTNUATOAOYIOU.

e Na TTEIpaPATIOTOUV PE TA ATTOTEAEOPATA, OUVOUALOVTOG TIG QTTAVTIOEIG TTOAAWV
EPWTACEWV.

e Na dnuooieloouv Ta EPWTNPATOAOYIO TOUG KOl TA ATTOTEAEOUATA QUTWV OTO E£UPU

KOIVO.

To AoyiopiKO autd dnuioupynBnke pE TNV XPHON KOPUQPAiwv TEXVOAOYIWV TTOU
Xpnoigotrolouvtal o€ OAo 170 @QACPA AVATITUENG AOYIOWIKOU yia TOV TTayKOOMIO 10TO.
OAGKANpPN n vAotroinon €xel ypa@Ttei og Javascript, xpnoigotroiwvTtag React kai Material Ul
yia Tov front-end ka1 Express yia 1o back-end. H ammobrikeuon kal avaAuon Twv 0ed0NEVWV
yivetal ue Tnv pnxavr avadnrnong tou Elasticsearch, evw n otrTikoTroinon Twv 0£dopévwv
yivetal pe v BiIBAI0BAKN Recharts. TéAog, n epappoyr €xel doundei pe RESTfuI
QPXITEKTOVIKN] yia TNV aviaAAayr Twv dedouévwy kai 1o NPM yia tnv diaxeipion Twv

packages TTou XpnoIJoTToloUvVTal.

OEMATIKH NMEPIOXH: AvdarmTtu¢n E@apuoyng AiadikTtuou
AEZEIZ KAEIAIA: Avahuon Agdopévwy, OTrTikoTroinon Asdopévwy, React,

NodedS, Elasticsearch

Rectangle

Rectangle

Rectangle

ACKNOWLEDGEMENTS

For this thesis completion, | would like to deeply thank my instructor and supervisor Mr.
Kostas Saidis for his guidance during my academic years . He is an example of a scientist
and professional that | will live by. | also want to thank Mr. Yannis Smaragdakis and

lecturers like him that inspired us to follow and commit to the path of Computer Science.

Last but not least, | am grateful to my family for giving me the opportunity to attend a
university and for standing by my side throughout this journey.

Rectangle

Rectangle

Rectangle

EYXAPIZTIEZ

MNa Tnv ekTévnon TnG TTapoucag TITUXIOKAG e€pyaciag, Ba rnBeAa va euxapioTHow Tov
KaBnynT pou Kai MPRAETTWY AuTNG TNG TITUXIOKAG, TOV K. 2aidr, OTroiog uTrpée 0dnyog
KAT& TNV OIAPKEIQ TWV OTTOUdWYV HOU Kal O OTToiog Ba atroTeAEl TTPOTUTTO ETTIOTAUOVA KAl
emayyeAparia yia 1o péAov pou. ETtriong, BEAW va guxapioTAow Tov K.Zpapayddkn Kai
KaBnynTég oav autdv, TTOU PAG EVETTVEUCAV VO AKOAOUBNOOUPE ToV dPOUO TNG ETTIOTAKNG
NG TTANPOPOPIKAG.

TEéNOG Kkal KupldTEPO, Ba ABEAA va €uXaPIOTACW TNV OIKOYEVEIA UOU, TTOU Pou £DWOE ThV
duvatoéTtnTa va oTrouddow Kal he oTAPILE o€ OAN auTr) TV d1Iadpoun.

Rectangle

Rectangle

Rectangle

2TOV TTaTrTou Jou

Rectangle

Rectangle

Rectangle

To my grandfather

Rectangle

Rectangle

Rectangle

ABSTRACT
ACKNOWLEDGEMENTS
CONTENTS

LIST OF FIGURES

LIST OF CODE EXAMPLES

LIST OF DIAGRAMS
LIST OF TABLES
PREFACE

1. INTRODUCTION

2. SYSTEM OVERVIEW

2.1 Question Creation

2.2 Questions Management
2.3 Survey Creation

2.4 Survey Form

2.5 Surveys management
2.6 Results Reporting

2.7 Visualization Wizard

2.8 Use Cases

3. SYSTEM DESIGN
3.1 Questions
3.1.1 Design
3.1.2 Modeling
3.1.3 Rendering
3.2 Surveys
3.2.1 Design
3.2.1.1 Storage Format
3.2.1.2 Runtime Format

3.2.1.3 Difference between the two survey formats

3.2.1.4 Conversion between the two formats and outline

3.2.2 Modeling
3.2.3 Rendering

3.3 Answered Surveys
3.3.1 Design

CONTENTS

11
14
17
19
21
22
23

24
24
25
25
27
28
28
30
31

32
32
32
34
37
42
42
42
43
44
45
46

48

52
52

Rectangle

Rectangle

Rectangle

3.3.2 Exportation and Storage
3.4 Results Visualization
3.4.1 General
3.4.2 Results Reporting
3.4.2.1 Results Rendering
A. Terms Questions
B. Stats Questions
3.4.2.2 Statistics Provider
3.4.2.3 Summing up
3.4.3 Visualization Wizard
3.4.3.1 General
3.4.3.2 Analysis
|. Statistics Provider
i) Questions Selected Data to Query process
ii) Aggregations Results to Wizard Statistics process
. Visualization Wizard Renderer
i) Questions Selected Data Building
i) Wizard Stats Visualization
[ll. Summing up
3.5 UX and Ul decisions
3.5.1 Usability Evaluation
3.5.2 Theming
3.5.3 Accessibility
3.6 Design Challenges
3.6.1 Architectural Decisions

3.6.2 Design Principles

4. SYSTEM IMPLEMENTATION
4.1 The technology stack used
4.2 System Architecture
4.2.1 Front-End
4.2.1.1 React
4.2.1.2 Material Ul
4.2.1.3 Recharts
4.2.1.4 React Router
4.2.1.5 Local Storage
4.2.1.6 Axios and Data Fetching
4.2.1.7 React Context
4.2.2 Back-End
4.2.2.1 Rest API & Endpoints
4.2.2.2 ExpressJS

i) Routes

54
57
57
58
59
60
62
64
66
67
67
73
74
75
89
97
98
107
111
112
112
114
115
115
115
118

119
119
120
120
120
121
121
122
123
124
124
126
126
128
129

Rectangle

Rectangle

Rectangle

ii) Controllers 130

4.2.2.3 Elasticsearch 131

I. Index Organization 131

II. Queries 131

Ill. Elasticsearch JS Client 132

IV. Kibana 134

V. How Aggregations Work 134

VI. Full-Text Search 139

4.3 Summing Up 141
4.4 Technical Challenges 142
5. CONCLUSION 143
TABLE OF TERMINOLOGY 144
ABBREVIATIONS 145

REFERENCES 146

Rectangle

Rectangle

Rectangle

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Figure 8:

LIST OF FIGURES

Question Creation
Question Pool
Survey Creation
Survey Form

Surveys Management
RR Overview

RR Stats Question

RR Terms Question

Figure 9: Visualization Wizard

Figure 10
Figure 11:
Figure 12:

Figure 13:

Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:

Figure 25:

: Dev-Study Use Case

Question Format

Text Input Question

Slider Question

Radio Button Question
Checkbox Question

Storage Format Structure
Example of Storage Format

Run Time Format

Rendered Survey

3 Document Types

Answered Survey Example

Term Questions Statistics Format
Rendered Terms Question Graph
Stats Question Data Format

Rendered Stats Question Graph

24
25
26
27
28
29
29
29
30
31
33
41
41
41
41
42
43
44
50
52
53
60
61
62

63

Rectangle

Rectangle

Rectangle

Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:

Figure 52:

Visualization Wizard Example 1

Visualization Wizard Example 1 - Parameterized

Visualization Wizard Example 2
Visualization Wizard Example 3
Question Selected Data Format
DataStore Query Format - Example 1
DataStore Query Format - Example 2
Digested Questions Selected Data
Before and After Aggregations Composition
Query Building Components
DataStore Query Built

Aggregation Results

Wizard Statistics

Questions Selected Data Building
Questions Selected Rendering Cards
Questions Selected Cards

Questions Card Parameters

Terms Questions Form Parameters
Stats Questions Form Parameters
VW Another Example

Theming and Color Palettes

Error Prevention Options

Graphic Designs

Light And Dark Theme

Wireframes

Component Architecture Logic

Continue Survey

68
69
70
71
76
79
80
83
85
86
87
89
92
98
100
101
102
105
105
108
112
112
113
114
115
116

123

Rectangle

Rectangle

Rectangle

Figure 52: Kibana 134

Figure 53: Full-Text Search 140

Rectangle

Rectangle

Rectangle

Code 1:
Code 2:
Code 3:
Code 4:
Code 5:
Code 6:
Code 7:
Code 8:
Code 9:
Code 10
Code 11
Code 12

Code 13

Code 14:
Code 15:
Code 16:
Code 17:
Code 18:
Code 19:
Code 20:
Code 21:
Code 22:
Code 23:
Code 24:

Code 25:

LIST OF CODE EXAMPLES

Question Creation Code

Question Class Code

Material Checkbox Form Component
Question Renderer Code

Survey Creation

Survey Class

Survey Rendering - Survey Creation
Survey Rendering - Methods

Input Changed Handler

: Survey Submission

: Export Survey Method

: Visualization Renderer

: Terms Question Graph

Stats Question Graph

Results Reporting Statistics Provider
Arguments To Aggregations Transforming
Aggregations Composition

Data Store Query Building

Wizard Statistics Building

Form Aggregation Parameters Renderer
Visualization Wizard Stats Visualizer
React Router

Continue Survey

Axios Data Fetching

Update Questions Aggregation Data Method

35
36
39
40
47
47
48
48
49
55
56
60
62
63
65
84
86
87
93
104
109
122
123
124

125

Rectangle

Rectangle

Rectangle

Code 26:

Code 27:

Code 28:

Code 29:

Code 30:

Code 31:

Server Implementation

Routes

Controllers

Elastic JS Client getQuestions Method
Elastic JS Client Methods

Full-Text Search

128

129

130

132

133
140

Rectangle

Rectangle

Rectangle

Diagram 1 :

Diagram 2:
Diagram 3:
Diagram 4.
Diagram 5:
Diagram 6:
Diagram 7:
Diagram 8:

Diagram 9:

LIST OF DIAGRAMS
Question Modeling
Question Rendering
Question Rendering
Conversion Between Survey Formats
Survey Class Model
Survey Rendering Abstract
Survey Exportation and Storage
RR - Server Client Interaction

Visualization Renderer

Diagram 10: RR Statistics Provider

Diagram 11: RR Complete Process

Diagram 12: VW Process Abstract

Diagram 13: VW Statistics Provider Abstract

Diagram 14: Data Transformation Process Abstract

Diagram 15: VW Statistics Provider - Phase 1

Diagram 16: Data Transformation Process - Phase 1

Diagram 17: VW Statistics Provider - Phase 2

Diagram 18: Data Transformation Process - Phase 2

Diagram 19: VW Statistics Provider - Phase 3

Diagram 20: Data Transformation Process - Phase 3

Diagram 21: Forward Transformation Process Abstract

Diagram 22: Data Transformation Process - Forward Complete

Diagram 23: Data Transformation Process - Phase 4

Diagram 24: VW Statistics Provider - Phase 4

Diagram 25: VW Statistics Provider - Phase 5

34
37
38
45
46
51
54
58
59
64
66
73
74
75
75
76
77
78
81
81
82
86
90
90

91

Rectangle

Rectangle

Rectangle

Rectangle

Diagram 26:
Diagram 27:
Diagram 28:
Diagram 29:
Diagram 30:
Diagram 31:
Diagram 32:
Diagram 33:
Diagram 35:
Diagram 36:
Diagram 37:
Diagram 38:
Diagram 39:
Diagram 40:
Diagram 41:
Diagram 42:
Diagram 43:
Diagram 44
Diagram 45:
Diagram 46:
Diagram 47:
Diagram 48:
Diagram 49:

Diagram 50:

Data Transformation Process - Phase 5
Data Transformation Process - Backward Complete
VW Statistics Provider - Phase 6

Data Transformation Process - Phase 6
VW Statistics Providing Complete

VW Renderer Abstract

BW Renderer Component Tree
Passing Question Data

VW Front-End Detailed

VW Front-End Complete

VW Complete

Back-End Abstract Structure

Back-End Structure Detailed

Question Rendering Abstract

Back-End Structure Detailed

React Context

Routes And Controllers

Elasticsearch JS Client

Documents In Index Without Aggregations
Survey ID Match Aggregation
Documents After Aggregation 0
Documents After Aggregation 1
Documents In Index Last Aggregation

Full-Stack Abstract Architecture

91
94
94
95
97
97
99
103
106
110
111
117
117
118
119
125
129
132
138
136
137
138
139

141

Rectangle

Rectangle

Rectangle

Rectangle

LIST OF TABLES

Table 1: REST API Endpoints 125

Rectangle

Rectangle

Rectangle

PREFACE

This thesis was written within my undergraduate studies in the Department of Informatics
and Telecommunications of the National and Kapodistrian University of Athens, Greece,
under the supervision and guidance of Prof. Yannis Smaragdakis and Dr. Kostas Saidis.

Rectangle

Rectangle

Rectangle

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

1. INTRODUCTION

In this thesis we created a web-based survey manager for building dynamic surveys
with nested visualizations platform that helps users build and conduct simple, performant
and customizable surveys. Individuals or corporations are given the option to create their
own question pool, by selecting a broad range of question types and parameters, and then
build their surveys based on those questions, by flexibly designing the sections and
questions sequence. After building the surveys, users can publish them to the public, for a
period specified, and let our platform gather the results. For each survey, the user has the
option to get the report containing questions’ answers, each one visualized with a different
graph based on the question type. The platform also provides a way to experiment with the
survey results, by allowing users to combine question answers with the help of our

visualization wizard.

The major question considering our implementation is, why not use an already existing
service for the survey building and reporting? The answer resides in the initial goal of this
thesis. We wanted an all-in-one platform to handle our series of surveys, starting from the
survey creation and concluding to the results visualization. Our top priority was an
automated and flexible way to create different kinds of surveys that shared the same
questions and a powerful method to visualize and experiment with the results. In that
manner, we have the ability to analyze the results and extract our conclusions or grant the
public access to the answers of those surveys, so that individuals can extract their own.
The above all-in-one solution, given the fact that it was built with the help of cutting-edge
technologies and the suitable architectural and design patterns, leads us to create a
usable and performant survey building and analyzing platform that fits our needs
end-to-end and enables us to add our own functionality, however we wish to. And of

course, people that like our approach can do the same to fulfil their own needs.

E. Garaganis 23

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2. SYSTEM OVERVIEW

2.1 Question Creation

| will start the tool showcase with the building stone of the surveys, the questions. Each
question that can be used in a survey, has different types considering the question’s tenor,
and a set of rules that users can apply, to restrict the answers given. The user decides the
question text and type, while also providing the essential information for the question.The
platform live-renders the question results, helping him reach the desirable result. There is
also some metadata about the question, like the estimated completion time or the surveys
that the question exists in. Let's see some screenshots from our platform to understand

the question management process.

Edit Question

— Build the question — Preview result

1. Narti okoneveTe va aoxohnBeite enayyeApatika pe Ty
avanTugn Aoyipikou;

SetOfStrings -
[Owovopka Kivntpa

O Efwtepikéc Méoeig
MNarti ckoneleTe va aoxoAnBeiTe snayyeApaTika ye Tnv

avdanTugn AoyLuLkou; [0 Ecwtepwka Kivntea

O Aev eixa GAheg eTuhoyég

Mnopeite va emAé€e Te Tapandvw and pla ETAoYEC

@ Estimated completion time: 30 sec

Values:

Question resides in the following:

Owkovopikd Kivntpa (]
STUD Survey

Efwtepikég Migoele (]

EowTepika Kivntpa (]

Acv sixa AAAeg eTUAOYES (]

&

Rules:

Figure 1: Question Creation

E. Garaganis 24

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.2 Questions Management

MNa TV diaxeipion Twv EPWTACEWY TTOU €XEI PTIALEI O XPROTNG, Tou diveTal n duvaroTnTa
va trAonynBei oe autég, T600 PEOW TNG PNXavhg avalAtnong n otroia A&IToupyei yia
oTrolodATToTE TMEdIO TNG epwTtnong (pe Tnv xprion full-text search), 6co kai pye TNV AioTa
TWV EPWTHOEWV Ol OTTOIEG PTTOPOUV Va TagivounBouv Bdaoel diagopwv TTediwv. ATTO auTn
TNV 0€Aida O XPrioTNG UTTOPEI va dNUIOUPYEI EPWTACEIG, va TTECEPYAZETAI TIG RON UTTAPYXWV

N va Tig dlaypaEl.

Question Pool

Manage & Organize your questions

Q

d = Type = Text Actions

Qo1 SetOfStrings lati okomebeTe va acxoAnBelTe EMAyyEAUATIKA PE TNV aVATITUEN AOYILIKOU; I‘ i
Qo2 String KplVETE TOV EQUTO 0AG EMAPKWIC TIPOETOILACNEVO Yia T peTABacn ano Tig onoubég atnv ayopd epyaciac; I‘ i
Qo3 SetOfStrings Motot eival o1 peyahiTepol poPol nov viwBeTe KATA TN peTAPaocn autr; /‘ i
Qo4 String OewpelTe OTL oL oTIOLHEC OO 0OC £XOUV IPOGPEPEL TA ANAPAITNTA £podLA yia TN PETABAON auTH; I‘ i
Qo5 SetOfStrings TiBa aAAGZaTe OXETIKA PJE TOV TPOMO MOU QVTIPETWITICATE E0E(G TI¢ onovdéq oag kat ylati; /‘ i
Qo0& String EioTe (kavoToLnpévol anod Ty notoTnta Twy oroubwy oag /‘ i
Qo7 String ‘ExeTe epyaotei 0To avTikeipevo otn Sidpkela Twv onoubwy oag; /. i

Figure 2: Question Pool

2.3 Survey Creation

Now that the user has a range of questions to choose by, they can create a survey.
Starting with the survey basic information, like the title, description, the time period that the
survey will be accessible, and then deciding the survey sectioning and question selection,

users can build their survey how they wish to.

The builder strives for usability, providing drag & drop capabilities to reorder and reindex
the survey’s sections and questions, while also giving the option to real-time render and

preview the result of the final survey.

Finally, the survey builder also contains extra information for the survey, like the estimated

completion time, that is calculated with our algorithms.

E. Garaganis 25

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

!l Questions: 35 @ Takes around: 1/.5 min

PREVIEW RESULT

Survey's Basic Info ~
More Options:
Survey lcon
STUD i
™= Print
T Publish
08/18/2014 [9
O Restore
Epwtnpatohoyio Poitntwy B Delete

MNa gpottntég Erolpous va Pyodv oTnv ayopa epyasiag

To epwInUateAoyLlo ansuBOvETal 08 TEAELGQOLTOUS THNHATWY TANPOPOpLKNG,
ot onoiol evBilapepovTal va aoxoAnBolv enayyeApatikd e T avantugn
hoyiopko (Software Engineering and Development).

Section 1/ Zxokf) km MetdBaon otnv ayopd epyasiag Hoow

Section 2/ To well-being Tou npoypappatiat HH

Section 3/ Baowkég MAnpowopieg i ~
Baoikeg MAnpoyopieg
Baolka aTolxeia OXETIKA g Tov epwTnBEVTa Tou EpwTnuatohoyion
Questions In Section
1D: Q33 X 1D: 034 X ID: Q35 x
Text: Text: Text:
T now tpfpa Te nowd £10¢ Woitnong Tpéxov BaBpdg nruxiou;
MANPORPOPLKNG Bplokeats;
onovbdieTe;
1D: Q36 X
Text:
To pukho vag;

El Manage questions

Add section

SAVE CHANGES Ca

Figure 3: Survey Creation

E. Garaganis

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.4 Survey Form

Whenever the user feels satisfied with the resulting survey or wants to preview its current
state, they can click Preview Result, to inspect the resulting survey form. An example of

the survey form can be:

EpwtnuatoAoyio Poltntwy

To epwtnuatohoyto aneuBuveTal GE TEAELOPOITOUG TPNPATWY TANPOPOPIKIG, OL omoiol evbiapeépovtal va aoxoAnBolv enayyeApatikd ge v
avanTtuén Aoyiopwou (Software Engineering and Development).

To well-being Tou mpoypappatiotn [2/3]

OL EpWTACELC OTO MAPAKATW KOPPATI EXOUV VA KAVOUV LIE TIC CUVNELEG KAt
TNV uyEeia ToU TpoypauUaTLeTA

1. BaBpoAoyAoTe TNV MOLGTATA TWV ouvnBeLwy oag (Slatpoyn, AoKnon, moleTnTa UTvou...).
S —
01 2 3 4 5
2. Eiote euxaploTnUEVOL ano THV KOWWVIKT oag Jwi;
O ——-1

01 2 3 4 5

3. H emayyeApatiki evacxoAnon Kpivete nwg Ba Tov emBapivel;

QO Nat O o

4. 01 onoubéc oag nooco Tov akhaay;

O Kagorov O Aiyo O Apketa O Moki

{ MNponyoupevo Emopevo)

Figure 4: Survey Form

The rendered survey contains the questions that the builder decided, with the
sectioning and order specified, while also having the Survey Helper on the bottom right
corner of the screen that informs the user about questions containing errors or that

haven’t been answered yet, auto-navigating to them.

E. Garaganis 27

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.5 Surveys management

The surveys created are listed in the admin page of the platform. From this page, the user
can navigate to edit the survey, to the page for the survey completion (if the user has
decided to publish the survey) or the survey results for the published surveys that contain
results. Each survey card contains indicators specifying if the survey or its results are live
or not, and information of the survey date created etc. From the admin page it is also

possible to go to the question management page or create a new survey.

Admin Page
Manage your surveys & questions

Manage Questions Create a Survey

Your Surveys:

EpwTtnuatoloyio
DoITNTWY

() 210919

Figure 5: Surveys Management

2.6 Results Reporting

For the surveys that are published, the public can take and submit the surveys. Each
completed survey is stored within our systems in the appropriate format and ready for our
service to analyze it and produce the results. The Results Reporting page contains the
table of contents with the survey’s sections and questions, the question results given with
the graph for each data type and the option to share the results or download the full report

in a pdf form. Let us see some screens to visualize what we are saying.

E. Garaganis 28

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

[

L

L]

E. Garaganis

Epwtnpatohdyio Gortntwv

To epwTNUATOAGYLO aNeUBUVETAL OE TEAELOYOLTOUG THNUATWY TANPOPOPIKIS, OL omoiol evblape povTal va acxoAnBoly EnayyeAPATIKA PE TNV

avantuén Aoylopikou (Software Engineering and Development).

S

1 minutes 7 answers 45 days

DE There are 3 sections in this survey:

. ZxoAn kat Metapaon otnv ayopd epyaciag

2. To well-being Tov MpoYpAPPATLOTH

-

3. Baotkeg MAnpowpopieg

?

35 questions

Figure 6: Results Reporting Overview

BOewpw ToV £AUTO PoU KAAJITEPO MPOYPANHATLOTH ATO TO MAPAKATW TIOCOTTO TWV

POLTNTWV pou.

807

60+

40+

20+

0- T '
Minimum Average

M Minimum [Average Maximum

Total Answers: 7

T
Maximum

Figure 7: Results Reporting Stats Question

lati okomeveTe va aoxoAnfzite emayyeApatikd pe Ty avantuén Aoyipikou;

Okovopika Kivntpa-

E€wtepikéc MiEceLg -

Aev eixo ahheg |
emhoyeg §

I|

Eocwtepika Kivitpa-

]

i

2

o-

m Answers

Total Answers: 7

o
o

Figure 8: Results Reporting Terms Question

29

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.7 Visualization Wizard

Given the same answers for the surveys, users can navigate from the Report Page to
Visualization Wizard. The Visualization Wizard is a powerful feature that allows
individuals to parameterize the question answers based on their fields or ranges, combine
an arbitrary number of questions and plot the resulting statistics in an appealing and easy

to digest visual way.

Visualization Wizard

Play with the survey results

Based on: Question 1

[SELECT QUESTIONS
Based on: Question 2
For the questions:
Nai:3 ~
Quest 1 X
To @UAAo 0ag; Calculate: Question 3
¥ v

‘EXETE EpYAOTEL 08 AAND QVTIKELUEVD
ot Sidpkeia Twv onovdwy oag;

W Answers

Calculate:

Question 3 X Oxt:2 ~

Kpivete Tov eautd oag enapkuwg
TIPCETOIUACPEVO Yia TN peTaBaon ano Calculate: Question 3
TG OTIOUdES oTNv ayopd epyaciac;

¥

|
- _

0 0.5 1 15 2

I Answers
Tuvaika : 2 ~
i on: € tior
Oxi:1 v
Nai:1 v

Total answers: 7

Figure 9: Visualization Wizard

E. Garaganis 30

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2.8 Use Cases

The whole process of the survey building, publishing and results visualization and
experimentation can happen for any kind of survey and can be integrated in any platform.
We are using our service to conduct our series of surveys that concerns only developers
and the computer science spectrum. We will showcase the use case, but any corporation

can integrate our solution for their own purposes.

WE SPENT MOST OF QUR TIME TRYING T0 UNDERSTAND THE
TECH WORLD AROUND US....

WE MIGHT AS WELL TRY TO UNDERSTAND QURSELVES, T00.

TAKE THE SURVEY - UR = SEE THE RESULTS

@ Dev Study Goals ? You may also see :

Trying to understand programmers' practices, +» About conductors

principles and notions in the workspace, and
how people from different backgrounds transit
and adapt on it.

* More about our surveys

* Terms and Conditions

© 2020 Copyrighted Survey

Figure 10: Dev-Study Use Case

E. Garaganis 31

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3. SYSTEM DESIGN

In this chapter we will delve into the designs of the survey building and answer
visualization. We will try to understand how every one of the core components of the
survey is built and designed, what the patterns are and techniques selected, in order to
clarify how the whole process is being functional and performant. Design phase was the
first phase of this project life-cycle. It took approximately 1 month until it was
well-established as how the different components will communicate and composite. The
top priority was to design a tool that minimizes the repetition of the different kinds of
processes, like questions that are being shared among many surveys and need to get
edited, and also be as simple to understand and comprehend as possible. The Design
Analysis chapter abstracts away the coding and technology details as much as possible,
trying to structure our service in a language-agnostic way (Of course there are plenty of
coding examples so that readers can fully grasp and embody the designs into a practical
manner). The questions, surveys, survey answers follow the specifications and the format
that we decided and the different procedures, too. We will guide you throughout the design
phase of the implementation, starting with the cornerstone of the survey building, the

questions.

3.1 Questions

3.1.1 Design

Questions are the building stone of the survey building. Surveys consist of questions that
are dynamic throughout the survey life-cycle and that can be shared among different
surveys. Different types of questions serve different kinds of meanings and each question
targets a specific target group. For these reasons, the question creator should be able to
select the appropriate question type for their intentions, to have a way to provide help to
the user with different kinds of hints or restrict the user answers by applying a different set
of rules. All these should be flexible and clearly described in a language-agnostic manner,
so that any kind of developing environment can handle them. So, we came up with the

following question specification, that we will see step by step.

E. Garaganis 32

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

'id Q_ID=

type <5tring

text =5tring-

values <Array of Strings=
hint <String

rules” Array of Strings
answer String=

Figure 11: Question Format

Each question is represented in JSON format. We picked that format, because it is widely

accepted in the development community, especially when writing in a full Javascript

environment. Let’s analyze each one of question keys:

1. id: It is the unique question identifier that distincts it from the others.

. type: Defines the question type, that suits the creators intentions. Possible types:
i) SetOfStrings: When the question can have multiple answers.
ii) Number. When the question answers is a numeric value.

iii) String: When the question answer is a single string.

3. text: This attribute contains the question text.

4. values: In this attribute, the user can add an array of values, for e.g. the

SetOfStrings questions.

. hint: The user can add a hint to a question, helping them to give more accurate
answers.

. rules: The question rules define the possible restrictions that can be applied to the

question, like:
i) Float: Restricting number question answers to float values only.
ii) Integer. Restricting number question answers to integers values only.
iii) Scale-n: The <0-n> scale so a user can choose to number questions

iv) Min-n: The minimum number of answers that a person can choose

7. answers: The answer to the question

E. Garaganis 33

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

As it can be seen, the above attributes depict the essence of a question and can be scaled

to more question types, rules or other kinds of attributes.

Questions are bought and stored in our front and back-end systems with the above JSON

format described.

3.1.2 Modeling

Questions usually remain with the above json format for the different needs of our app, like
the question edit etc. But there are specific use cases, that questions need to be modeled
to a class-like structure, in order to contain a set of functionality and properties. For
example, the front-end needs a question class object to be instantiated in order to render a
question, or the survey building process stores the questions class objects within each
structure and not the JSON format. It is important to describe how the questions are
modeled on our systems in an Object Oriented Manner. Let us start with a Class UML

diagram:

Question Number Question
: . Inherits -
id: String ceil: Number
text: String
hint: String
type: String Siring Question
Inherits i
values: Array of Strings « checkValidity

rules: Array of Strings

answer: String

check\Validity SetDfStrings Question
Inherits

setAnswer Answer: Array

getAnswer sethnswer

Diagram 1: Question Modeling

As seen on the above class diagram, we have the base question class that contains the
information designed in the specification file. The base question fills each property on the

constructor from question data given to it (a filled question spec file), along with the

E. Garaganis 34

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

setter/getters for the question answer and extra methods like checkValidity that validates
whether the question’s answer abides the set of rules or the type specified. From the
question base class, the different types of questions derive their properties and methods
by inheriting from it. Each question class of type X, that is the child of the question class,
overloads functions like check validity, properties like set answer and answer (for example
the set of strings question contains an array of answers given by the user), or adds more
properties to the base class like a ceil prop for the number class. In the sequel of our
previous statement, the scalability of the question designs extends to the data modeling of
the question. The programmers can add more question types and their functionality by
inheriting the question base class, taking advantage of the object oriented characteristics
that the appropriate OOP languages provide. Our implementation follows the above
diagram in Javascript. Let’s start by showcasing how the developer invokes the creation of
a new question based on the class model described, and we will then proceed in showing

the code base for the question data modeling with oop possibilities of JS.

let questionCreated new NumberQuestion(questionData)

let questionCreated new StringQuestion(questionData)

let questionCreated = new SetO0fStringsQuestion(questionData)

let questionCreated new Question(questionData)

Code 1: Question Creation Code

E. Garaganis 35

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

E. Garaganis

return

r {const ri

if (ru

class St
constr

str =

const n

if (n

return
Iy

if (this.r
if (!
return

Iy

return

F
class Set0
construc

super(¢
this.a

const an

if (answe
else this.

) {

5.3

str) return

Code 2: Question Class Code

)

return

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.1.3 Rendering

Each question can be rendered on our application, by first creating a question class object,
as seen on the above examples. Each front-end framework that wants to render the
question to the browser requires a question renderer, that based on the question type,
renders the right type of question. For each question type, a different form should be
displayed, for example SetOfStrings questions is a checkbox, String questions with
multiple values should be represented by a set of radio buttons etc. Each question form for
the different question types is a front-end component and can be based on any framework.
Developers can create their own Uls for the questions that will be rendered. The only
critical part is to connect the onlnputChaged functionality. Whenever a rendered question
changes its input value, which happens when a user selects an input or types an answer,
should call the innate way of question component to handle on input changed events and
call the question’s class object setAnswer, in order to update the answer within our
question objects. Let’s start by showcasing a pseudo code and design example of how our

survey renderer works:

AT
- guestionData:
My UI form components W“":T is a i‘_—'ES[“U“
Class oed
| MySlider | Question Renderer
| MyCheckboxes | Based on question type:
| My Textinput | case of Number question:
render a numeric slider{guestionData,setAnswerToQuestionClass)
| MyRadioButtons |

case of String question:
» if question has no values given:

render a text input{guestionData, setAnswerToQuestionClass)
else if gquestion has more than zero values

render a radio buttons(questionData, setAnswerToQuestionClass)

case of SetOfStrings:
render a checkboxes{guestionData,setAnswerToQuestionClass)

Diagram 2: Question Rendering

E. Garaganis 37

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The question renderer contains the conditional logic described. For the different question
types, render the right form components, that are implemented in a different directory. By

that way, developers can add different directories with their own Ul as already mentioned.

Before showing real code examples from our implementation, we will sum up the question

rendering process. Let’s see another design, outlining the process:

Question
id: String
text: String X
hint: String ' Question Renderer Rendered
7 Question
type: String

[
values: Array of Strings

e SHy. OF S 1. The rendered question gets the

answer: String answer from the guestion class

checkValidity

[

setdnswer
2. The Rendered Question whenever
getAnswer its input value changes, call setfnswer
to update the guestion class answer prop.

Diagram 3: Question Rendering Abstract

The Question is the object class that is passed to the question renderer. The question
renderer produces the rendered question. It is important, for once again, to highlight that
the rendered question gets its answer from the question class, and connects its
innate event handler with the question’s setAnswer method, to update it whenever
the anwer changes from the form input. A question component can be implemented by the
following way, which is a real-code example from our implementation. Take a look on the
onChange property, which is the event listener that will call the setAnswer. (The code is
written in Reactds and imports the MaterialUl for the checkbox. More about the technical

details can be found on the 3rd chapter: Technical Analysis).

E. Garaganis 38

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

XX

import React from "react"
import Checkbox from "@material-ui/core/Checkbox"
export default function MaterialChe

const questionConfig = p
return (

(boxes(props) {

<div className="myStyle>
{c g.values.map((option, index) => (
<div>
<FormLabel
label={option}
control={
<Checkbox
className={classes.checkbox}
g.id + index}
.id + index}

"i1g.answerAlreadySelected()

s.changed}

=
</div>
))}

</div>

Code 3: Material Checkbox Form Component

The question form components look like the above implementation and the question
renderer that imports and uses them looks like the following image.

E. Garaganis

39

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

import React from "react";

import {
RadioButton,
TextInput,
Dropdown,

} from "../../../FormComponents/MaterialUI/MaterialUI";

const question = (props) ==
let inputElement = g
const questionConfig = props.questi

switch (questionConfig.type) {

case "Number"

inputElement = (
<Slider questionData={props.questionData} changed={props.changed} />

);
break;

case "String":
if (question

u ement
<TextInput
questionData={props.questionData}
changed={props.changed}
/>
)s
else if (que
inputEl t
<RadioButton
questionData={props.questionData}
changed={props.cl

else
inputElement = (
<Dropdown
questionData={props.questionData}
changed={props.ch
/=
%
break;
case "Set0fStrings":
inputElement
<Chec X
qu Le ta={pro tionData}

/=
)s
break;

default:
inputElement = <p> No Valid Question Type </p>;
}
return (
=div className="surveyQuestion"=
<p className="questionLabel">
{questionConfig.text}
<fpb
{inputElement}
=div className="questionErrorText"=>
<p> {questionConfig.error} </p>
</div>

</div=
export default question;
Code 4: Question Renderer Code

E. Garaganis

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Examples

For the last part of the Question Rendering, let us present some rendered questions and
see how they look on our webpage:

2. I molo £toc poitnong PpiokeoTte;

Figure 12: Text Input Question

15. BaBpohoynoTe Tov £auTH oac oTic 62£10TNTEC Mow emAEEaTe

Figure 13: Slider Question

4. OewpeiTE OTL 0L OMIOVSEC OOC OO EXOUV TIPOTWPEPEL Ta anapaitnTa e@obdia yia ™ petapaocn avtn;

O Nai O ox

Figure 14: Radio Button Question
1. Nari okoneleTe va acxohnBeite emayyeApatika ge TNV avantu€n AoyLpikow;
[] Owovopwka Kivntpa
[[] E€wtepikéc Miéoeic
[] Eowtepika Kivntpa

[] Aev eixa d\kec etuhoyéc

Figure 15: Checkbox Question

E. Garaganis 41

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.2 Surveys

We will now move on to the core component of our service, the survey. We will follow the
question analysis structure, starting with the Survey design and later move on Survey
modeling and rendering for the platform usage.

3.2.1 Design

The survey designs exists in 2 formats:

1) The storage format.

2) The run-time format.

3.2.1.1 Storage Format
We will start off with the storage format. How the survey is stored in our systems.

id <String=

title =5tring>

shortDescription <String-=

longDescription -String

icon” <String=

dateCreated": <String:

sections" =Array of Sections
Section

id" -S{ring=

title’ <Siring:

description <String=

questions <Array of Strings=

Figure 16: Storage Format Structure

The survey is structured in a JSON format. It contains the basic fields, like id, title, short
and long description, the survey icon and date created, that describe the survey. The
section field, nests a json object which is the section format. The section contains the id,
titte and description of the section along with the questions field. The question field is an
array of strings, which are basically the ids of the questions contained in the survey. The

section and question order follows the indexing within the structure.

E. Garaganis 42

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

An example of a stored survey within our systems looks like:

id "STUD'

title EpwtnuatoAioyio ®oLintav'
icon

longDescriptio

"id": "TRNST"

"title' FX0AN Kol Metafaon otnv ayopd epyaoiog’
"description” "O1L MOpOKATW EPWINCELC. .
"questions’ ne1","aez2", 083

Figure 17: Example of Storage Format

We decided the above format, as it is the minimal possible way to represent survey
contents and structure, while retaining its scalability.

3.2.1.2 Runtime Format

The above format is useful for describing the survey and storing it in the data storing
technologies but on run-time it is not so performant. Let us see how the run-time format
of the survey looks like and we will justify why we made 2 versions for the survey

depiction, along with the outline of their conversions.

E. Garaganis 43

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 18: Runtime Format

This survey format is almost identical to the previous one. The difference is that instead of
storing an array of question ids in each section, we store the whole question data. That

creates a bigger survey format but really helps the survey creation process. Let us see
how.

3.2.1.3 Difference between the two survey formats

The question is, why don’t we use one and only survey format? Here are the reasons:

e The storage format, where the section questions are represented by a set of survey
ids, is a compact and minimal way to describe the survey. Also, when a question is
updated, the survey will always contain the updated version, as it only stores the id

of the question and not all of its data.

E. Garaganis 44

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

e The run-time format, where the section questions are represented by their whole
specifications, is better for performance reasons. As we already stated, in order to
render a question, the question renderer needs a question object that requires all of
the questions data. If we stored the survey the storage way, then for each question
we would need to search the question pool to find its data, because we would only
have the id. In contrast, the run-time format provides all the question information
when the survey is about to be created, without having to search for the questions

data.

3.2.1.4 Conversion between the two formats and outline

The last thing that needs to be clarified is how the whole process integrates and functions
together. Descriptively, we start off by building the survey in the storage-format. When
adding a question, the question id is being pushed in the section questions array, and step
by step, the survey is completed. The question and section order is being handled by the
survey builder that we showcased in the first chapter. Upon survey creation, the survey
specification file is stored on the back-end. Whenever a question is being edited or the
survey updated, the spec. file changes on the backend and stays there with the same
format. The conversion of the survey specification file to the run-time format happens
when the survey needs to be rendered. The backend gets a request to render the survey
with a specific id, get the specification file of the storage format and convert to the
run-time. From then, it passes it to survey creation and rendering for it to happen. Let’s

project an outline of the survey format conversion to understand it.

1. Creates or Edits a survey

Stores it in the
storage format

. 2. Requests to render a survey
Client > Server

Returns the run time format
for the survey to be created

Diagram 4: Conversion Between Survey Formats

E. Garaganis 45

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.2.2 Modeling

Like the questions, we need to model the survey, in order to use it on our services. A
survey with the above specification needs to be translated to a class object, so that it can
be rendered and take usage of the OOP possibilities. For once again, let us start with a

class diagram for the survey and we will explain it thoroughly.

+5ections *
Survey
id h 4
Section
title
title
shortDescription
o description
longDescription
dateCreated
+Questions *
icon
¥
dateCreated - -
Question Number Question
populateSurvey ") Inherits -
id: String Firo o T ceill: Mumber
’ i
getCompletionRate) '
text: String !
updatelnvalidQuestions i) i
hint: String '
- i
checkAllQuestions type: String i String Question
setAnswerToQjueston i Inherits -
Q values: Array of Strings e checkValidity
i
rules: Array of Strings E
i
i
answer: String i
)
i
checkValidity | SetOfStrings Question
' Inherits
setAnswer ' answer: Array
| Bt Sty
getAnswer setAnswer

Diagram 5: Survey Class Model

The survey object contains all the required functionality. It's scalable, easy to understand
and maintain and provides all the important information for the survey life-cycle. The class
includes methods like populateSurvey from an already answered survey,
getCompletionRate for the completion percentage of the survey, check the survey for
questions with errors and update the invalid question list, setAnswer to a question of the

survey etc. Each survey contains an array of section objects, and that array of sections

E. Garaganis 46

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

contain an array of question objects. The survey class is instantiated given a survey in

run-time format, and keeps track of the survey state while this is being “alive”.

A survey object can be created, in code-level, like this:

000

// Create the survey class where we render quetions and save answers
let surveyCreated = new Survey(survey_specification_file);

Code 5: Survey Creation

And the survey class, looks like this:

import { questionFactory } from "./QuestionCl

const k
const n

rvey(submissionTime, su lonDate) {

teSurvey(filledSurvey) {

Code 6: Survey Class

E. Garaganis 47

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.2.3 Rendering

The final phase of the survey design analysis is to lay out the rendering process. The
survey form is actually the survey in a web form, that contains all the questions and gets
the user answers. It gets as a parameter the survey specification file, in a run-time format,
creates a survey object with it and starts to construct the survey. Let’s analyze this step by

step:

. N N

constructor(props) {
super();

this.surve ed = new DataModel.Survey(props.qt

Code 7: Survey Rendering - Survey Creation

First, create the survey object based on the specification file, as explained. Let us explain

the rendering process now.

o0 @

renderQuestion = (question) => {
return (
<SurveyFormQuestion
questionData={question}
changed={(event) => this.inputCh andler(event, question)}
/>
)5
b

renderSection = (section) => {
return (
<div className="surveySection">
<header>
{section.title}
</header>
<p>
{section.description}
</p>
{section map((question) =>
this.re estion(question)
)}
</div>
s
b

const Survey = (
<div>
{thtis.
this.) ed[firstSection]

)}

</div>

Code 8: Survey Rendering - Methods

E. Garaganis 48

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The survey rendering starts off by selecting a section to render. We will begin with the first
section. The renderSection function gets a section object as a parameter and renders the
Section info along with the questions that belong to it. For each question the renderSection
function calls the renderQuestion that we described in the 2.1.3 Question Rendering
chapter. Here, it is important to mention again that to the renderQuestion it is passed the
inputChangedHanler that connects the question events handler to setAnswer, in order to

keep the survey updated.

= (event, question) => {
// set new answer in survey class
this.surveyCreated.setAnswerToQuestion(.target.value);

};

Code 9: Input Changed Handler

There are also extra components that improve the user experience, like the survey helper
and section navigation. They are implemented in react, too, and care for the user's
navigation between sections and questions. These and the whole question and section
indexing is the sequence of the carefully designed survey structure, following the section

and question order, making it easy to be searched.

All of the previous analysis will result in the following survey form which users can fill and
submit. It guides them through the erroneous questions and stores a set of metadata
about the survey process (like half-completed surveys, the time it took for the user to

answer the survey, etc.).

Let us see an example of a rendered survey to visualize the results.

E. Garaganis 49

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

EpwtnuatoAoyio Goltntwy

To epwTnUAToAdylo aNEVBUVETAL OE TEAELOPOITOUC TUNPATWY TTANPOPOPIKNG, oL omoiot evilagepovTal va acxoAnBolv ENayyeAPATIKA Pe TV
avanTtuén Aoyiopwou (Software Engineering and Development).

To well-being Tou npoypappatiotn [2/3]
0L EPWTACELC OTO MAPAKATW KOPPATI EXOUV VA KAVOUV LE TIC OUVNELEG KL

TNV UYELD TOU TIpOYPaUUATLeTA

1. BaBpoAoyioTE TNV MOLOTATA TWV ouvnBeLWwv oag (Slatpogr), AoKNon, ToLeTNTa UTIVOU...).

e o
01 2 3 4 5

2. EioTe EUXapLoTNPEVOL ano THY KoWwViKT oag Twi;

A R I G
0 1 2 3 4 5

3. H emayyeApatiki evaoxohnon Kpivete nwg Ba tov empapive;

QO Nat O ox

4. 01 onoudéc oog mooo Tov ahhafav;

O KaBorov O Aiyo O Apketa O Moko

{ MNponyoupevo Emopevo)

Figure 19: Rendered Survey

Now, that we have finished the question and survey analysis and how the whole process
results in a rendered survey, we will summarize the whole process with a big and detailed

diagram.

E. Garaganis 50

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Survey Rendering Summary

1.Sends a request to render
& survey with specific id

2. Gets the survey from stored format
and comverts it to runtime format

Client

F

3. Returns the survey specification

file, in run-time format

4. Create the survey object
based on the run time spec file

A Question gets its value
from the question object
answer value and when

input changes updates
that answer value

B. The question and
section and generally
the survey rendering
process is being descrbed
on the Question and
Survey Analysis chapters

Sernver

Survey Object

-1»go1| |Qoz| [Qo3

Section 1

Qui| |Q12| |Q13

Section 2

Survey Title
survey description.

Section Title
section description.

Question 1

Question 2

Question 3

Diagram 6: Survey Rendering Abstract

With survey analysis finished, we can now move to the next analysis phase. The

Answered Surveys analysis. Each survey, when completed, should store the survey

answers in a digestible format for the visualization and data analysis to happen. In the

following chapter we will describe the answered survey format and design, and why we

decided on this format, while also explaining the whole process of an answered survey

export from the survey object, storing to our back-end systems and retrieval to our client

side.

E. Garaganis

51

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.3 Answered Surveys

We now proceed to the Answered Survey analysis, which are actually the answers of the

surveys.

3.3.1 Design

The three building blocks of any survey are questions, the survey and the answers. In this
chapter we will explain the last document structure that the survey building and report

page is using, the answered surveys.

Answered

Question Survey Survey

Figure 20: 3 Document Types

It is important to define a good format for the answered surveys. An answered survey

format should let the system:

e Easily read the answers to any question
e Visualize the answers to any plot or graph
e Allow question combinations and aggregations

e Contain metadata about each survey

For all these reasons, we tried to approach how we handle an answered survey in
real-word, with documents. Each answered survey is actually a document that contains the
answers for each question, along with some metadata about it. Of course each answered
survey contains the survey ID that it corresponds to and information like the time it took an
individual to complete it, the date it was submitted and other kinds of fields that we will
showcase. The last thing to mention is that each survey’s answers are represented by
one document, so that it can be unique and distinctable from other answered surveys and
let analysts combine answers given by the same person. Of course in our systems we do
not hold information and data about the participants. Each answered survey has only the
answers to the question and other meta information, but there is no way to identify a

person from an answered survey, making it fully anonymous.

Now, let us see how an answered survey looks like.

E. Garaganis 52

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Figure 21: Answered Survey Example

So, given that a participant completes a survey, then it is stored in our systems with the
above format. Once again, it is a JSON file that contains the basic fields about the
completion information, like the time it took the user to complete the survey, the ID of the
survey that the participant answered and the date that it was submitted. The answers field
is an object that contains for each question the answer to it. This question is represented
by its id and the answer is the value or values that the user gave, when submitting the

form.

E. Garaganis 53

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.3.2 Exportation and Storage

Now that we have described the answered survey structure and format, let us delineate

how the system produces the above document/spec. file and how it is stored within our
systems.

2. Gets the survey from stored format
and converts it to runtime format

1.5ends a request to render
a survey with specific id

Client » Senver

[y

3. Retumns the survey specification
file, in run-time format -"~

4. Create the survey object & WHan igar dnlimlete S
based an the run time spec file h < CNIENLIEY: SUaies; e Spees

export the answers in the answered
survey format and store them to
Survey Object oUur SErvers
e o Q01| (QD2) Q03
A Question gets its value Section 1
from the guestion object !
answer value and when]
input changes updates
that answer value 1 Qﬂ le Q13
Section 2

BE. The question and :
section and generally J Survey Title
the survey rendering :
process is being described
on the CQruestion and J 3 i
Survey Analysis chapters | Section Title

section description.

survey description.

Question 1

S |

Question 2

Question 3

Diagram 7: Survey Exportation and Storage

In order to store the answered survey, we need to export the answers from the Survey

Object that we explained in the Survey Rendering chapter.

E. Garaganis 54

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The answers export to the answered survey format with the following sequence. When a
user has requested to take a survey, our service renders the survey with the rendering
process that we have already clarified. When they have completed the whole survey, they
submit the survey and if that contains no errors, then the survey class object takes over in

order to export the survey and store it in our systems. This happens in the following way:

Surv = (event)
1t.preven fault();

1st formIsValid =
ate({ formIsV
f (1 1) {

const stopTime = perfo
const elapsedTime

const dateObj W
st month = dateC
const day = date0!
const year = d:
const currentDa

Cc

.post(
"/answered_surveys/"
this.sur ted.

)

.then((res

bl

Code 10: Survey Submission

As it can be seen in the above React implementation, when the user clicks the submit
button, the submitSurveyHanlder comes and checks all questions for their validity and if
the whole survey is valid then gets the last metadata and exports the survey answers with

the survey object method. The exportSurvey method looks like this:

E. Garaganis 55

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

. pletedSurvey =1}

audi=nitihiis 2id

.answers =

Code 11: Export Survey Method

In a JS manner, the method for each section that exists in the survey, gets all of its
question answers and creates the key-value pair, with the key the question id and value
the answer. So the whole answered survey object is created by the above method, and is
ready to be stored in our systems. The answered survey is sent to the backend with a
POST method, but the technical details about the storage methods and communication

between client and server will be explained in the Technical Analysis chapter.

We can now move to the next phase, that of Survey Reporting and Answers Visualization

and Aggregation.

E. Garaganis 56

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4 Results Visualization

3.4.1 General

The end-goal of each survey is to extract results about a central idea that you aim for or
explore the data to see what else can be found. For these reasons, it is crucial to provide a
way for the conductors to visualize the results and the answers given to them, while also

offering an option to aggregate the questions, in order to reach new kinds of conclusions.

Now that we have explained the whole process of survey creation and storage to our
systems, imagine that we have a whole load of answered surveys concerning a survey.
The direct information that we can provide is the number of surveys completed, the
average time it took users to submit them and the period the survey was more active. But

an answered survey contains the critical part of our initial intentions, the answers.

Questions do have different types, meaning that the answers given to them are also of
different types. Number questions are of number types, MutualExclusive types of
questions contain distinct types of answers, while SetOfStrings also contains a different
set of answers. This means that each question type requires a different kind of

visualization and handling when it comes to presenting the results or processing them.

Furthermore, having different kinds of questions and a number of answered surveys,
there should be a way to aggregate two or more questions, combine the results given and

conclude new findings.

A survey can have a lot of questions. Easily navigating through them should be a priority to
the user experience. Enhancing the user experience the graphs should be easy to
understand. Also, our services give the option for anyone to download the whole survey

reporting or specific question results, depending on their needs.

Last but not least, there are times that results and data are for anyone. Our platform gives
the opportunity for the conductors to share the results with the public, allowing them to
preview the results or have access to the Visual Wizard, so that they too can ‘play around’

with them.

All of the above statements are covered by the Results Visualization Analysis, where we
unveil the underlying mechanisms of the visualization process along with the design

artifacts that will help demystify how things work.

E. Garaganis 57

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.2 Results Reporting

For every question that we want to display, we need a simple piece of information about it.
Based on the different kinds of questions, this simple piece of information changes. So far
our Results Reporting services handle 2 kinds of questions when it comes to rendering

(not to be confused with the question types) :
i) Questions that we select a value based on a set of values, the terms questions.
i) Questions that we choose a specific numeric type, the stats questions.

Each kind of question needs a different type of handling when it comes to its visualization,
in order for the results to be meaningful. Before analyzing these pieces of information and

how the front-end renders them, | will lay out how the whole answer visualization happens.

1. Client request statistics
for a question's answer

Y

Client Server

[

2. Server responds with
the guestion answer statistics

/.

Visualization Renderer
3. Pass the statistics 7

to the visualization
renderer

4. Visualize the guestion
statistics about its answers

-.--"""'—_.-’-j

-_— R
C

Diagram 8: Results Reporting - Server Client Interaction

The whole process of visualizing the question’s answers can be summed up in 4 steps.
The client requests the statistics for a question from the server, the server responds with
the statistics and the client handles their visualization. The part of the process that handles
the result rendering concerns the front-end, while the statistics provided happens to
our back-end. Let us analyze this separation of concerns of these two parts and lastly

integrate the whole solution for the question’s answers visualization.

E. Garaganis 58

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.2.1 Results Rendering

Let us start from the front-end, which is responsible for the answer visualization. As
mentioned , different question types are represented by different types of graphs. The
piece of code that is responsible for rendering the right type of graph for the different
question types is the Visualization Renderer. It applies the same conditional logic that
the Question Renderer uses, keeping the implementation clean and simple. Let us see

how the Visualization Renderer looks like theoretically:

Visualization Library #1

BarGraph Question Statistics Question Data
StatsGraph
o Visualization
"= & @& L3
Visualization Renderer selects Renderer
the preffered library i
Other Question type
Visualization Library #2 of graph Stats Question
Question. Type
BarGraph
StatsGraph Terms Questions
" aa L4
— Label Label

Diagram 9: Visualization Renderer

The visualization renderer needs 2 types of input. The statistics and data of the questions.
Based on the question type, it renders the proper graph. The graphs that render those
questions statistics, can be selected from the different visualization libraries that our code

handles. The code logic and design will be explained in the Design Challenges chapter.

The Visualization Renderer implementation is the following:

E. Garaganis 59

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

import React from "react";
import { BarGraph, StatsGraph } from "./VisualizationComponents/RechartsUI/RechartsUI";
import "./VisualizationRenderer.css";

const visualization = (props) => {
const questionData = props.questionData;
const questionStats = props.questionStats;
if (!questionData) return 2
if (!questionStats) return
var inputElement;

bl

switch (questionData.type) {
case "Number":
inputElement = <StatsGraph questionStats={questionStats.stats} />;
break;

case "SetOfStrings":
inputElement = <BarGraph questionStats={questionStats.stats} />;

break;
default:
inputElement = <BarGraph questionStats={questionStats.stats} />;
b
return <div>{inputElement}</div>;
};

export default visualization;

Code 12: Visualization Renderer

As we have already mentioned , there are two kinds of questions when it comes to
rendering. The terms questions and stats questions. The question type Number is
considered a stat question and all the other types of questions are considered term
questions. For those two types of questions we have two different statistic formats and

graphs. Let us see them:

A. Terms Questions

The terms questions statistics look like the following:

questionStatistics
total_answers: 7
stats
key: "Answer #1", doc_count
key: "Answer #2°, doc_count: 3

Figure 22: Term Questions Statistics Format
The terms questions consist of a set of possible answers to questions, in a string
format. For the different answers the participants have given , we hold the label as
the label/key value for the graph and doc_count represents the number of

participants selected in that answer. These stats for the question’s answers, along

E. Garaganis 60

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

with the total number of answered surveys, are sufficient for our implementation to
draw this kind of graph:

EioTe ikavomoinpévol amo TNy MoLeTNTa TWY oNoudwy oag

MNai

1 2

[T
Ll
P

M Answers

Total Answers: 7
Figure 23: Rendered Terms Question Graph
The key in stats aray represents the label of the graph, and doc-count the bar graph

value. The above and the the following graphs are provided by the RechartsUI

library, which we will go through in the technical analysis chapter. The above code

implementation, written in React and using the library, is:

E. Garaganis 61

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

import React from "react";
import "recharts";
import "./BarGraph.css";

export default function BarGraph(props) {

const questionStats = props.questionStats;
const data = [];

questionStats.map((questionStat) => {
let graph_stat = {};
graph_stat["name"] = questionStat.key;
graph_stat["Answers"] = questionStat.doc_count;
data.push(graph_stat);

3

return (
<BarChart width={600} height={300} data={data}
barGap={3} layout="vertical" barCategoryGap="30%"

3

<CartesianGrid strokeDasharray="3 3" />

<XAxis type="number" />

<YAxis width={150} dataKey="name" type="category" />

<Tooltip />

<Legend />

<Bar maxBarSize={40} dataKey="Answers" fill="#ff6e40" />
</BarChart>

);

Code 13: Terms Questions Graph

B. Stats Questions

The Stats question format concerns actually only the Number questions. Because the

answer to those questions is a numeric type, we would only need the core information

which would allow us to depict the question essence:

guestionStatistics
total_answers: 7
stats:
avg: 4
count: 7
max; 7
min: 4
sum: 28

Figure 24: Stats Question Data Format

E. Garaganis 62

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The statistics provider that will soon be explained, returns the above basic stats. We select
to visualize only the avg that stands for the numeric average of the answers and the

min/max values. The Stats Graph looks like this:

BaBpoAoyrioTe Tov eauTo oag oTig Se£10TNTEG Iow EMAEEaTE

L] T
Minimum Average Maximum

M Minimum Average Maximum

Total Answers: 7

Figure 25: Rendered Stats Question Graph

import React from "react";
import "recharts";

export default function BarGraph(props) {
const questionStats = props.questionStats;

const data = [

{
name: "Minimum",
Minimum: questionStats.min,
b
{
name: "Average",
Average: questionStats.avg,
}7
{
name: "Maximum",
Maximum: questionStats.max,
s
15
return (

<BarChart width={600} height={300} data={data}>
<CartesianGrid strokeDasharray="3 3" />
<XAxis dataKey="name" />
<YAxis />
<Tooltip />
<Legend />
<Bar barSize={45} dataKey="Minimum" fill="#379683" />
<Bar barSize={45} dataKey="Average" fill="#5cdb95" />
<Bar barSize={45} dataKey="Maximum" fill="#8eedaf" />
</BarChart>

)3

Code 14: Stats Question Graph

E. Garaganis 63

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Given the Stats type of questions we have finished the Results Rendering documentation.
Of course given the code scalability, it is easy to add different kinds of graphs for different
question types. For whatever statistics and information we have, the front-end can handle

it, allowing the developer the freedom to visualize the survey answers however wished to.

3.4.2.2 Statistics Provider
Now that we know how the front-end acts when needing to visualize the questions, we

should demystify who provides the front-end of the statistics. The statistics for the term,
stats or other kinds of questions are provided by the back-end. Because the back-end
handles all the data store and data processing, | have decided to call the part of the
back-end that is responsible for the statistics as ‘Statistics Provider’. The whole backend
will be interpreted in technical analysis. For the time being, it is important to understand
that the whole platform communicates through REST endpoints, with a client-server
architecture. There is a specific endpoint in our backend, which is responsible for
providing the caller with the statistics for any question that was requested. It requires the
question id, type and the survey that we are interested in and provides the stats in the
format that we have already discussed, in Results Rendering. Let us visualize the process

and then follow up with the code.

3. Depending on the

2. Pass Question 1D, question fype request 4. Client does the
1. Client Requests Statistics 1vPe and the survey a.ns-f-?e?e'gdgrs?:rt: t:eesuits aggregation on the
For A Question beloning ¥ data store
"‘("‘L—P » Data Processing > Answered
* " Stats Provider and Analysis Surveys
8. Client gets the server - Client - Data Store
response from the 7. Stats Provider returns -
: = 6. Client Forwards the
endpoint the stats required for the aggregation results on 5. Data store responses the
front-end rendering the stats provider the aggregation data
of the graph

Diagram 10: Results Reporting Statistics Provider

Each one of the above steps, along with their design and technical details will be clarified
in the technical analysis. What is important here is to make a firm introduction to the
architecture of our service. More about the Data Processing and Analysis Client and our
Data store will be described in the following chapter, that of Visualization Wizard. Our

focus here is the Stats provider. It is the intermediate between the front-end and the data

E. Garaganis 64

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

store and analysis. The Data Processing and Analysis client queries the data store
however it is ordered by the Stats Provider. So, let us shift to the Stats Provider inner
logic, starting by its code:

getQuestionStats = async (req, res) => {
console.log("» [getQuestionStats] controller will handle the request");
const survey = req.query.survey;
const questionID = req.query.questionId;
const questionType = req.query.questionType;
var answers_field;
switch (questionType) {
case "Number":
answers_field = "answers.${questionID} ;
elastic
.statsAggregation(indexName, survey, answers_field)
.then((result) => {
let response_data = {
total_answers: result.hits.total.value,
stats: result.aggregations.aggs_result,

ks
res.send(response_data);
hi A
break;
default:
answers_field = "answers.${questionID}.keyword" ;
elastic

.termsAggregation(indexName, survey, answers_field)
.then((result) => {
let response_data = {
total_answers: result.hits.total.value,
stats: result.aggregations.aggs_result.buckets,
b
res.send(response_data);

s

Code 15: Results Reporting Statistics Provider

The Stats provider contains once again the same conditional logic of the Question and
Visualization Rendering. Based on the question type, asks the client that handles the data
storing to do a stats or terms aggregation. Then, gets the responses and packs up the

statistics for the front-end rendering to occur, in the format that we showed in the Results
Rendering section.

E. Garaganis 65

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.2.3 Summing up

To sum up the whole Results Rendering Process. Throughout the whole code and design

process the number one priority was to keep a tight and strict separation of concerns. The

front-end asks for the question stats. The backend manages its systems to return those

stats. Then the front-end decides to render them. Let us do a last visualization of the

whole process and more details will follow in the rest of this thesis.

Visualization Library #1

StatsGraph

Visualization Library #2

BarGraph

StatsGraph

Question Statistics

el

Front-End

1. Client request question statistics

Question Results

€

¥ A 4

Question Data

Visualization Renderer selects
the preffered library

Other Question type
of graph

Visualization
Renderer

Question. Type

Label (S

Terms Questions

Stats Question

e
B. Client gets the guestion statistics

Label

Label

Back-End

2. Pass Question |10,
Question Type and
the Survey belonging

7. Return the stats
required for the rendering

6. Forward the all statistics
got from the data store

Stats Provider

A

L.

3. Based on the question type
stats provide will ask for an
aggregation in order to
get the statistics from data store

Data Pre q
and Analysis

|Terms Aggregation | | Stats Aggregation

Client

5. Get the statistics

from data store

Diagram 11: Results Reporting Complete Process

A

4, Execute the
aggregation

Answered
Surveys
Data Store

The complete visualization of how the question’s answers are getting graphed on the user

screen. We are now ready to move on to the Visualization Wizard.

E. Garaganis

66

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.3 Visualization Wizard

It is now time to proceed to the explanation of the last feature which our survey tool
offers. The Visualization Wizard. Given a number of answered surveys, it's of course
important to have a way to visualize the answers to specific questions. But it would be
great if we could combine and aggregate different questions in different orders and
contrasting fields. Our platform offers a way to experiment with the results, allowing the
user to explore and elicit their own deductions. The whole process of the Question
aggregation and visualization is called Visualization Wizard, because it abstracts away
from the user a lot of complexity and it offers a wide variety of options to choose and ‘play’
with. The Visualization Wizard was the most difficult part of this thesis. It required a
deepening on the technology stack used, designing many discrete and unalike systems,
form multiple layers of communication and applying different programming techniques. In
the Visualization Wizard there will be a comprehensive introduction to the technical
analysis of the implementation, in order to understand the building process. The whole

process will be explained step by step, so that it can be fully grasped and interpreted.

3.4.3.1 General

Before advancing to the design and technical details of the implementation, for once more,
let us showcase how the Visualization Wizard works from the user’s perspective. The user
gets an Ul, in which they can choose which questions to combine, in the desirable order.
Then they can adjust and tune the different parameters and filters that each question
offers for the data analysis to happen. Different question types offer different types of

parameterization .

After deciding which questions will aggregate, along with their order and parameters, they
can send the request to get the results. The server will respond with the results, given in a
nested format, depending on the question order. This will be ascertained soon but it is

important to clarify the logic with which the whole system processes the questions.

Having different types of questions, and with each one having different possible answers,
there should be a way to represent the results. For each question that the user decided
upon, the code will analyze the answers and split them into different buckets, with each
bucket containing the answered surveys with the specific answer to the question specified.
Then for each bucket, continue to aggregate with the following questions, resulting in a set

of buckets with nested buckets. Then it calculates the last statistics based on the last

E. Garaganis 67

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

question. Sounds confusing? All the ‘how’ details will be described in the following

chapters. For the time being, let us focus on what the Wizard does.

Let us start off by giving 3 examples. We will use the Visualization Wizard for the Students
survey that we have created, which concerns their fears about the transition to the

workforce and how the university contributed in that direction.

1) | will begin with the simplest possible example. Let us ask the wizard to extract

the students who are ready for the workforce, or not, based on their gender.

@ DEV STUDY) :

sults / EpwrtnpatoAdyio dortntwv

Visualization Wizard

Play with the survey results

Based on: Question 1

Avtpag: 5 ~

Calculate: Question 2

For the questions:

[

|

Nai

To poAko gag; |
|

Filter answers 5 P e == 3
- General Aggregation m Answers

This will return results for each value in

question .
questior Tuvaika: 2 ~

Calculate: Question 2
Calculate:

[
O~

Kpivete Tov EQuT6 cag enapkuig
TIPOETOIYAOYEVO Yia T PETaRaon and
Tig onoubéc atnv ayopd epyasiac;

' il Nai

0.25 05 0.75

o-

W Answers

Total answers: 7

Figure 26: Visualization Wizard Example 1

E. Garaganis 68

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

In the above example, the wizard based on the gender question, will split the
answered surveys to those of the participants which answered Male and to those
which answered Female. Then for each set of answered surveys, it will retrieve the
statistics for the people that are ready for the workforce and those not ready for it,
and visualizes it. But what if we wanted only the male participants ? Let us see how

this can be done:

SELECT QUESTIONS

. GETRESULTS

For the questions:

To @uAko oag;

General Aggregation

Avtpag

O Tuvaika

(O should Match

® Must Match

Calculate:

Kpivete Tov EQUTO 0ag EMAPKLIG

TpoETOLPAcPEVO Yia Tr JETARach and

11 onoubéc atnv ayopa epyaciag;

¥ i

Question 1 is no longer a General Aggregation, which produces results for all
answers in the survey, but rather more specialized. Here we only target the male

participants, so we choose only that Answer and select the Must match parameter.

Visualization Wizard

Answers on Question 1 must match Avtpag

W Answers

Total answers: 5

Figure 27: Visualization Wizard Example 1 - Parameterized

(We will explain all the possible parameters in the design phase).

E. Garaganis

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

2) Let us try that on a number of types of questions. | will ask the Wizard to extract
the participants that rated their well being (diet, sleep quality etc) above average

and rate the university for its contribution to their personal growth.

L

@ DEV STUDY

EpwtnuatoAdyio dorntwy

Visualization Wizard

Play with the survey results

SELECT QUESTIONS

5.0-80:1
1
For the questions: g8
X %1
BaBpokoynoTe TNV MoOLOTNTA TWY ad
ouvnBewwy oac (Batpoyn, doknon,
noLeTnTa HnNvou...)
® i ~
0 = o T
Minimum Average Maximum
e [= Minimum Average Maximum
i 5 6 7 8 9 10 8.0-100:6 i
Calculate:

X

EmAEETE To Babpo (kavomoinong oag
ano Ty avantugn twy Seflotitwy
0aC KATA T HLApKELa TWV oTioudwy

K .
gd

¥ 1 — -
' Minimum Average fa’lmilmur"

= Minimum Average Maximum

Total answers: 7

Figure 28: Visualization Wizard Example 2

Observe now that the filters are not tied to a set of answers but rather to the scale
of the numeric possible answers. Individuals can specify the range of answers they
wish to aggregate data on and then select the question on which we do the

calculations on , either that being a stats question or a terms question.

E. Garaganis 70

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3) For the final step, let us try aggregating 3 questions. The first question that we want
to aggregate is the students motives for pursuing computer science, then split them
up based on their gender and project the above answered survey sets to whether

those people consider themselves ready for the workforce.

Based on: Question 1

Owovopikd Kiverpa : 5 ~

For the questions:

EEwrtemkeés Meoeig -4 ~

Based on: Question 2

on 1 X
g ’ Avipac:3 ~
lNari oxenelete va amxohndeite
enayyehpartika pe 1y avantuln

Ao ol; -
IS Caleulate: Question 3
¥ ~
Mai
Question 2 X
To pidho cag;
Ot
L J ih ~
il 0 1 A 2
Filter answers: W Answers
- General Aggregation
T I return results for each value in Fovatka:] ~

Caleulate: Question 3

Calculate:
Question 3 X
KpiveETE TOV EQUTO 0OC EMOPKLIG
MPOETOLPAoPEVD IO TN pETARAON and Nai
Tic omoudE g ayopd Epyagiag;

0.25 05 0.5

B Answers

Azv eixa dhhec emhoyéc: 2 ~

Based on: Question 2

Avtpag:1 w
luvaixo ; 1 w
Ecwrepixd Kivntpa - 2 w

Total answers: 7

Figure 29: Visualization Wizard Example 3

E. Garaganis 71

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The Visualization Wizard now splits the answers based on the participants motives.
Then for each motive divides answered surveys based on the gender and last does

the calculation by rendering the question statistics provided.

Of course the list of examples can be infinite. People that would like to explore the survey
results, can select all the possible combinations, and an arbitrary number of questions and
get their results. Of course the visualization wizard tool does not guarantee any
connection between the data and answers. It only displays the answers based on user
preferences. Fundamentally, each question answered is just a counter. Itis up to the

individual's discretion to extract results that correspond to reality.

And now that we have cleared up what the Visualization Wizard does, let us move on to
How it does it. Once again we incept with the design decisions and progress with the
technical details.

E. Garaganis 72

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.4.3.2 Analysis

There are alot of questions emerging about the implementation. How do we describe all
those questions and their parameters in a way that the data store can process? What does
the data store respond to? How does the visualization render the combined results? All
those questions concern separate entities in the code implementation. And these entities
communicate in different ways in a specific sequence. Let us outline the whole process

and get into detail about each entity next.

6. Wizard Controller
transforms the guestions
selected data to a query

ready for the client

Front End Back End

to execute
4. Question selected 5. Wizard Cont_loller
data are fovaanded gets the guestions
to the back-end, . selected data
Visualization Wizard requesting for statistics ”
Page < > e " wizard Controller
12; Weunkzatio . 11. Controller transforms and Query Building
A Wizard gets the the data store respanse for
wizard stats

the front end agoregations A
wisualization rendering

13. Visualization 3. The visualization wizard

Wizard initializes
the wizard stats

page gathers all question data
and parameters in one place

10. Client forwards
the data store's
respond to the wizard

7. Wizard Controller
forwards the querny
to the client

controller

Question Selected

‘Wizard Stats Data

h 4

Data Store and
Analysis Client

A
1. User selects the
questions he wants
to aggregate i [

9. Data Store responds with
the query results, which are
basically the guestions
aggregations data

2. User parameterize
the guestions based
0N ENSWETS

14. Passes the data
on the aggregated
results rendering section
that renders all the nested
graphs

8. The client executes
the query on the data store

and gets the results
h 4

h 4

Visualization Wizard Questions Selected Select Questions

Result Rendering Form Modal Data Store

Diagram 12: Visualization Wizard Process Abstract

The take-away from this outline is to understand that the front-end summarizes the
question data and their parameters into a central place. Then passes it on to the back-end.
The back-end controllers get those questions selected data, apply some levels of
transformation and build the query for the data store. The client executes the query and
gets the results passing them to the Wizard controller. The wizard gets the data store
response which contains all the information about the aggregations occurred and packs
up the crucial information into a json file that the front-end requires for rendering. All the
wizard statistics that the wizard controller just created, aRE passed from the visualization
wizard page to the Rendering process that paints the nested graphs based on each

question, on the client.

Let us now start analyzing each entity, while presenting the whole process step by step.

E. Garaganis 73

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

I._Statistics Provider

Unlike the Results Reporting, for the Visualization Wizard documentation we will start off
with the Statistics Provider of the Visualization Wizard and then we will resume with the

Wizard Results rendering process.

The Statics Provider is part of the whole outline:

Back End 6. Wizard Controller
transforms the questions
selected data to a query

ready for the client

to execute
5. Wizard Controller

gets the questions
selected data

Wizard Controller

11. Controller ransforms and QUEW B“”ding

the data store response for
the front end aggregations A
visualization rendering

10. Client forwmards
the data store's
respond to the wizard
controller

7. Wizard Controller
forwards the query
to the client

h 4

Data Store and
Analysis Client

A

9. Data Store responds with
the query results, which are
basically the questions
aggregations data

B. The client executes
the query on the data store
and gets the results

Data Store

+++OIIF-----

Diagram 13: Visualization Wizard Statistics Provider Abstract

The Statistics Provider job for the Visualization Wizard tool is to provide the front-end of
the statistics required for it to render the aggregated results. The whole process makes a
full-circle with a set of intermediate ‘stations’ where the data format changes. The
transformations states and flow is shown in the diagram below. In this introduction phase
we will only put the 4 basic data states and by the end of this chapter we will preview the

whole process.

E. Garaganis 74

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Wisualization
Wizard

—

Data

Front-End

 —
Questions Selected

Back-end

i Data Store

S —

Visualization .

v

r Y

" Query 1
. 000 J

Wizard Statistics
.~/

i ™
Data Store "
Response

S

Diagram 13: Data Transformation Process Abstract

Data Store

The data starts off with the Questions Selected Data format, after a set of transformations,

it is converted to a data store query that will be executed on the data store. Then the

statistics provider will get the data store response and after applying a transformation

process, it will provide the Visualization Wizard with the wizard statistics needed , in order

to visualize the results.

i) Questions Selected Data to Query process

The data-flow starts from the Questions Selected Data format and is converted to the

Query for the datastore.

backwards will follow.

A. Questions Selected Data

Before explaining the Questions Selected Data format, let us see where we are:

Back End

6. Wizard Controller
transforms the questions
selected data to a query

ready for the client

o execute

£

E. Garaganis

11. Controller fransforms
the data store response for
the front end aggregations

visualization rendering

Wizard Controller
and Query Building

Diagram 15: Visualization Wizard Statistics Provider - Phase 1

75

The forward data flow will be showcased, and then the

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Front-End i Back-end

e
Questions Selected . - Data Store
Data T a - Query
—_— “ J
Visualization
Wizard

Data Store

= - ~,
Visualization P Data Store "
Wizard Statistics [~ + LR Response k
. \ /

'y

Diagram 16: Data Transformation Process - Phase 1

We are at the beginning of the Statistics Providing process, before we head to the wizard

controller that converts the Questions Selected Data.

All the questions data, along with their parameters and filters applied, should be described
in a data format, special for the back-end controllers to understand and process. The
Questions Selected Data format looks like the following (We will use the first example of

the Visualization Wizard).

QuestionsSelectedData
g_id; <{Q_IDe
g_type: =0_Type»
q_args: =0_Args for the Specific type of guestions

Where g_args for Terms kind of questions look like this
g_args
aggregateln
aggregatelp: "must
isAggrGeneral: true

and g_args for Stats kind of guestions look like this

q_args
range B, 5 14

Figure 30: Question Selected Data Format

E. Garaganis 76

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The front-end needs to create the above data format and give it to the back-end
controllers, in order to retrieve the wizard stats data about the aggregations on those
questions. For each question that the user selects, based on the question type, we have
different kinds of parameters and filters, so that they can have meaning. We retain the
same logic in the Visualization wizard, that of different kinds of questions when it comes to
visualization and aggregation. Each question data which belongs to the array of the
questions selected that will pass to the back-end controller, contains the basic information
like the question’s id and type and the questions arguments that the user has specified.
The Stats Questions need the range of answers we want to aggregate answers to. For the
Terms Questions we can apply a general aggregation, if we want to aggregate results
based on all possible answers, or non-general, meaning that the user should select the
answers they want to apply the aggregation on along with their in between relationship.
Should means that the possible answers should match, while the Must operations means

that the answers Must match.
B. DataStore Query

We will skip the phase of the transformation process and move on the end result, the
Query. It is wise to first understand how the end query looks like and how the initial data
information was, so that the whole transformation process can be interpreted. Let us see

where we are:

10. Client forwards
thie data store's
respond to the wizard
controller

7. Wizard Controller
forwards the query
to the client

h 4

Data Store and
Analysis Client

F Y

9. Data Store responds with
the query results, which are
basically the questions
aggregations data

Data Store

Diagram 17: Visualization Wizard Statistics Provider - Phase 2

E. Garaganis 77

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Front-End : Back-end

Questions Selected : Data Store
Data : u Ee Query

S —

Y :
Visualization e . (Data Store

Wizard Statistics [~ + LR Response
—

v
h J

Visualization

Wizard Data Store

'y

Diagram 18: Data Transformation Process - Phase 2

The query follows the format the data store indicates, so that it can be executed and yield
the aggregation results. Let us see how the end-query looks like, for two different

examples:

e Example 1:
We will ask the Visualization Wizard to extract the information regarding :

- The participants who answered “Innate motives” or “No other choices” to the
question about computer science motives .

- For the question whether they are satisfied from the university a general
aggregation, meaning that we want to analyze the end results based on all
the possible answers

- And the question that we want to calculate the answers to, is to rate their well

being.
This question sequence is a Non-general Terms Question, a General

Terms Question and Stats Question.

The query that our data store system will execute is:

E. Garaganis 78

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

endQuery

size: @
query
bool
must match id
should
match
match

aggs
agg_8

terms field : 086 . ke

aggs agg_1 stats field

Figure 31: DataStore Query Format - Example 1

Let us take this step by step. The logic behind the data store system is actually

Elasticsearch’s technology, that we will see in the Technical Analysis.

e The size argument indicates how many answered surveys should the data store
bring. We only want the statistics, so we give zero value to the argument.

e The next attribute is the query which is basically the parameters that we specify for
the aggregation to happen. The bool key contains the attributes the answered
surveys should satisfy. The must object contains all the criteria that the answered
surveys must match. As seen on the example, it must match the survey id, meaning
that we want all the answered surveys for a specific survey. The should object
contains all the answers that the answers should match. In our example, we want
the participants that answered “Innate Motives” or “No other choices”.

e The last property is the aggs property, which is basically all the aggregations that
should be applied to the answered surveys. To all the General Aggregations we
want to apply a terms aggregation, meaning that we split all the answered surveys
to different sets based on each question’s answer. In the survey management we
nest all the different aggregations, concluding in the last one, which is basically the
question we calculate our results to. In this case, it is just a stats aggregation, that

the backend knows how to handle.

E. Garaganis 79

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

e FExample 2:

Let us see another simpler example, so as to show a different type of aggregation

that happens on our data-store. Now we will see the participants that:

- Rate their well-being above average, defining the ranges from 5 to 6, from 6

to 8 and from 9 to 10.
- Calculate the above answered surveys based on the question about their

social life.

Let us see what the data-store needs for Stats kind of questions

endQuery

5ize: B
query
kool
must match id
should
aggs
agg_8
range
field
ranges from: 5, to: 6 from: 6, to: B from: 18, to: 9
agags agg_1 stats field

Figure 32: DataStore Query Format - Example 2
Here the stats question will be analyzed as a stats aggregation which the data
store will handle, and only requires the different ranges that the answered surveys
will be split into, based on the question answer. The question that we calculate our
data on is a Number question, so the last aggregation will be a stats aggregation,

as well .

The underlying data store mechanisms, like how it provides the results, how it

handles the answered surveys etc, depends on the technology stack used. In our
services we use elasticsearch as the data store and it will be explained firmly in the

technical analysis chapter.

E. Garaganis 80

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

C. Transformation Process

Now that the initial and final form of the question selected data has been clarified, let us

focus on the transformation process that happens in the wizard controller.

Back End

5. Wizard Controller
gets the questions
selected data

11. Controller fransforms
the data store response for
the front end aggregations

visualization rendering

+++++++++++++++++Oll-----

Wizard Controller
and Query Building

10. Client forwards
the data store's
respond to the wizard
controller

F'y

7. Wizard Controller
forwards the query
to the client

Diagram 19: Visualization Wizard Statistics Provider - Phase 3

Front-End

Questions Selected

S —

Visualization e

Visualization
Wizard

—»
Data E

Back-end

Data Store
L Q‘Ueﬂf
S

Data Store

Data Store

'y

Wizard Statistics

LR Response

S

Diagram 20: Data Transformation Process - Phase 3

The transformation phase from the Questions Selected Data to the Data Store Query has

3 major phases. Let us see them:

E. Garaganis

81

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Wizard Controller

Questions Selected Data Arguments ’ Data Store Query
i To 4| Aggregations >\ Query Buidin i
7 Aggregations "l Composition " Y 9 -

Transforming

Diagram 21: Forward Transformation Process Abstract

a) Arguments To Aggregations Transforming

Imagine having the following data for the questions selected from the user:

A. Received the following question parameters for the aggregations

{

g_id: 'Qe1’,

g_type: 'SetOfStrings',

g_args: { aggregateOn: [], aggregatelp: 'must', isAgagrGeneral: true }
s

{
qg_id: 'gez',
q_type: 'String',
g_args: {
aggregateOn: ['Nai', 'Ox1'],
aggregateOp: 'should',
isAggrGeneral: false
¥
1,
{ q_id: 'Q15', g_type: 'Number', q_args: { range: [@, 5, 18] } }.
{ gq_id: 'Q38', q_type: 'Mumber', g_args: { range: [@, 5, 16] } }

As we have already seen , we need to define different kinds of filters and aggregations for
the Query to be executed. That 3 basic components that the Query needs are the shoulds,
musts and the aggs. So, we must translate, we must retrieve the questions arguments
one by one and translate them to these basic components. The general aggregation
questions are translated to terms aggregations, the non-general aggregations are
translated to either musts or shoulds based on the aggregation operation and the stats

type questions are converted to a stats aggregation.

After the arguments transformation process, the different aggregations and filters

E. Garaganis 82

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

are gathered to array data structures for the Aggregations Composition to happen:

B. Processed the gquestion parameters and digested them to:

Converted the g_args to aggregations:

[
{ agg_0: { terms: { fileld: 'answers.Q@1l.keyword' } } 1},

{
agg_1: {
range: {
field: 'answers.Qi5',
ranges: [{ from: @, to: 5 }, { from: S, to: 16 }]
1
1
1.

{ agg_2: { stats: { field: 'answers.(Q38' } } }

Musts:

[{ match: { id: 'STUD" } 1} 1]

Shoulds:
[
{ match: { 'answers.Q82.keyword': 'Nai' } },
{ match: { "answers.(Q02.keyword': 'Ox1' } }
]

Figure 33: Digested Questions Selected Data

Each of the Query different components are firstly gathered two these three distinct data
structures. This happens so that we can be flexible with the Aggregations Composition

process. The code for the arguments to aggregations transforming is the following:

Code 16: Arguments To Aggregations Transforming

E. Garaganis 83

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

LEESAAA A A 2. Digest the question aggregation paramet > to the following &
let must = [{ match: { id: surveyId } }];
let should = [];
let aggs = [];
var new_agg;
let agg_indx = @;
S# For each question, Fill the different aggr props
q_params.forEach((guestion, index) == {
let isFinal = index + 1 === g_params.length;
if (!isFinal) {
L7 If it is not the last
switch (question.g_type) {
case "Number":
new_agg = {
[*agg_${agg_indx}' 1: {
range: {
Tield: "answers.${question.q_id}",
ranges: (function (ranges) {
let ranges_processed = [
{ from: ranges[®], to: ranges[1l] },

IH
for (war L = 1; 1 < ranges.length; i++) {
if (1% 2===2a){
ranges_processed.push({
from: ranges[i - 1],
to: ranges[il,
B
}
}
return ranges_processed;
})question.q_args.range),
+H
h
Y
aqgs.pushinew_agag);
agg_indx++;
break;
default:
if {questieon.qg_args.isAggrGeneral) {
new_agg = {
[Tagy_${agg_indx}]: {
terms: {
field: ‘answers.${question.q_id}.keyword",
h
+
s
aggs.push{new_agg);
agy_indx+s;
} else {
switch (question.g_args.aggregatelp) {
case "must”:
question.q_args.aggregateOn. forEach{(value) => {
let new_must = {
match: {
[answers.${question.q_1id}.keyword]: value,
+
b
must.push{new_must};
FaF
break;
default:
question.q_args.aggregateln. forEach((value) == {
let new_should = {
match: {
[answers.${gquestion.qg_id}.keyword]: wvalue,

h
HH
should.push(new_should);
ik
}
}
}
b oelse {
/7 The last question, is the ion we do the last aggr. on

switch (question.qg_type) {
case "Number":
new_agg = {
[*agg ${agg_indx}'1: {
stats: {
field: "answers.${question.q_id}",
T
h
h
agags.pushinew_agg);
break;
default:
new_agg = {
["aga_${agg_indx}"]: {

terms: {
field: “answers.${guestion.q_id}.keyword",
+H
1
hH
E. Garaganis , aggs.pushinew_agg);
}

Hi

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Briefly, the above code interprets the Questions Selected Data format and is based in a

sequence of condition logic, it manages to produce the different components of the Query.

Now, let us see how the Aggregations Composition merges the aggregations and why it

does that.

b) Aggregations Composition

In this phase all the 3 core components of the query in array-like structures are flexible to
act however we choose . The must and should aggregations are ready for the Query. But
the Aggregations are a bit more complex. Elasticsearch requires the aggs to be a nested
object, so that it can recursively apply the aggregations in the buckets created which are
created every time answers split based on the specifications of the user. So this phase
gets the aggregations that gathered and nests them in one nested aggregation format. Let

us see the aggregation result after the composition of the different aggregations.

Before the aggregations composition:

[
{ agg_6: { terms: { field: 'answers.Q81.keyword' } } },

{
agg_1: {
range: {
field: 'answers.Qi5',
ranges: [{ from: @, to: § }, { from: 5, to: 10 }]
}
1
g

{ agg_2: { stats: { field: 'answers.Q30' } } }
]

After the aggregations composition:

{
agg_0: {
terms: { field: 'answers.(81.keyword' },
aggs: 1
agg_1: {
range: {
field: 'answers.Q15',
ranges: [{ from: @&, to: 5 }, { from: 5, to: 18 }]
]
aggs: { agg_2: { stats: { fleld: 'answers.Q36' } } }
1
1

[

Figure 34: Before and After Aggregations Composition

E. Garaganis 85

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

With that successfully finished, the query building can easily be done. Before proceeding

to the final step, let us see how the code does the aggregations composition:

Object.byString = function (o, s) {
s = s.replace(/\[(\w+)\]1/g, ".$1");
s = s.replace(/™\./, "");
var a = s.split(".");
for (var 1 = 0, n = a.length; i < n; ++1) {
var k = a[l];
if (k in o) {
o = o[k];
} else {
return;
}
}
return o;
B
let aggs_processed = aggs[0];
let aggPosPath = "agg_0";
for (var 1 = 1; 1 < aggs.length; i++) {

let ref = Object.byString(aggs_processed, aggPosPath);

let new_agg = { aggs: aggs[i] };
Object.assign(ref, new_agg);

aggPosPath += ".aggs.agg_" + i;

Code 17: Aggregations Composition

¢) Query Building

So far, we have successfully managed to gather the three components for the Query

Building. Let us see them all together:

Aggs:
{
agg_0: {
terms: { field: 'answers.(81.keyword' },
aggs: {
agg_1: {
range: {
field: 'answers.Qi15',
ranges: [{ from: @, to: S }, { from: 5, to: 16 }]
1.
aggs: { agg_2: { stats: { field: 'answers.(Q36' } } }
1
1
1
1
Musts:

[{ match: { id: 'sSTUD' } } 1]

Shoulds:

{ match: { 'answers.Q02.keyword': 'Nai' } 1},
{ match: { 'answers.Q82.keyword': 'Ox1' } }

Figure 35: Query Building Components

E. Garaganis 86

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The Query Building happens by creating the Elasticsearch’s query data format and just
appending each of the components in the right position. Let us understand this by the

code example:

let elasticsearch_query = {
size: 0,
query: {
bool: o
must: must,
should: should,

}s
}s
aggs: aggs_processed,

b

Code 18: Data Store Query Building

This last command is just a variable that contains the final query. The end-query is finally

ready. Let us preview the final result before executing it on the Data Store.

C. Built the following elasticsearch query:

{
size: @,
query: {
bool: {
must: [{ match: { id: 'sSTUD'" } } 1,
should: [
{ match: { 'answers.(Q02.keyword': 'Nai' } },
{ match: { 'answers.Q02.keyword': "Ox1' } }
1
1
1.
aggs: {
agg_0: {
terms: { field: 'answers.(Q01.keyword' },
aggs: {
agg_1: {
range: {
field: 'answers.(Qi5',
ranges: [{ from: &, to: S }, { from: 5, to: 16 } 1]
}J
aggs: { agg_2: { stats: { field: 'answers.Q38' } } }
1
1
}
1
1

Figure 36: DataStore Query Built

E. Garaganis 87

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The forward data flow has ended. Let us summarize the whole Questions Selected Data

which the front-end provides to the Data Store Query process with the following diagram:

Front-End : Back-end
Wizard Controller
S —
. Arguments
Questions Selected i To || Aggregations | | Query Data Store
I Data ~ 7| | Aggregations Composition Building Query
Wizard

Data Store

%
Visualization

Wizard Statistics o
Nee

Data Store
Response

Diagram 22: Data Transformation Process - Forward Complete

It is time for us to delineate the backward data flow. The conversion from Data Store

Response to the Wizard Stats, which the Visualization Wizard Page will accumulate to
render the statistics.

E. Garaganis 88

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ii) Aggregations Results to Wizard Statistics process

The process of the Wizard Stats providing to the front-end from the Data Response that
the data store got us, is much more simpler. Let's analyze it, starting for the back-end

response:
D. Aggregations Results

The data store responds and yields a reply with the following format.

D. Received the query results from the elasticsearch:

took: 2,
timed _out: false,
_shards: { total: 1, successful: 1, skipped: 8, failed: & },
hits: { total: { value: 7, relation: 'eq' ¥, max_score: null, hits: [] },
aggregations: {
agg_0: {
doc_count_error_upper_bound: @,
sum_other_doc_count: @,
buckets: [
{
key: 'Olkovoplkd Kivnupa',
doc_count: S,

agg_1: {
buckets: [
{
key: '6.06-5.8',
from: @,
to: 5,

doc_count: @,
agg_2: { count: B, min: null, max: null, avg: null, sum: @ }

}.‘

{
key: '5.8-16.68",
from: §,
to: 10,

doc_count: S,
agg_2: { count: S, min: 7, max: B, avg: 7.4, sum: 37 }
}
1
J SR R %

Figure 37: Aggregation Results
It contains some metadata about how long it took the query to be executed, the number of
hits it acquired etc. For our statistics rendering process we do not care about those data
bits. What matters is the aggregations property that contains all the aggregation
information. So, in order for the back-end to provide the statistics, it forwards the whole

response again to the Wizard Controller, which will retain only the essential info.

E. Garaganis 89

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Front-End

Questions Selected

_5 3 Data

Wisualization _

‘Wizard
%
Visualization

Wizard Statistics

S —

Back-end
Wizard Controller
Arguments
To Aggregations Query
Aggregations Composition Building
Transforming
[P R

Diagram 23: Data Transformation Process - Phase 4

R I R

|

Data Store and
Analysis Client

F

h

Data Store
Query

Data Store
Response

8. The client executes
the query on the data store
and gets the results

Data Store

Diagram 24: Visualization Wizard Statistics Provider - Phase 4

E. Data Store Response Modifier

Data Stare

The control returns to the Wizard Controller with the Data-Stores response. In this phase,

the Wizard Controller will keep only the basic information from the response and augment

it with extra information, in order to make the rendering process the simplest possible.

E. Garaganis

90

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Back End 6. Wizard Controller
transforms the questions
selected data to a query

ready for the client

to execute
5. Wizard Controller

gets the questions
selected data

Wizard Controller
and Query Building

F)

10. Client forwmards
the data store's
respond to the wizard
controller

7. Wizard Controller
forwards the query
to the client

+++++++++++++++++++OIIF-----

Diagram 25: Visualization Wizard Statistics Provider - Phase 5

Front-End : Back-end
Ty g Ty
Questions Selected : L i Data Store
Data : Tm ae - Query
o \ J ; \ J
Wisualization .
Wizard : Data Store

e % d e ~\
Visualization c . ‘ Data Store "
Wizard Statistics . LR Response E

~_ J g Ne

Diagram 26: Data Transformation Process - Phase 5

What the Front-End needs in order to render the results is the aggregations data and
information about the question we aggregated our data to. The problem was that the data
store response contained only the aggregations data without providing any details about
the questions that aggregation was made for. So, for each aggregation we provide a set of
information for the aggregation, like the question id,type etc. This pack of aggregations
results, aggregations information and some other attributes are enough for front-end to
visualize the wizard results. Let us preview how the wizard statistics look like, but focus on

how these fields are created, and later in the last phase, we will explain what each one

means.

E. Garaganis 91

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

wizardStats
total_answers: 7
specializedAggrinfo Answers on Question 2 should mat
aggregations
agg_@
doc_count_error_upper_bound: 8
sum_other_doc_count: 8
buckets

key OLEOY

doc_count: 5

agg_1
buckets

key
from: @

to: 5
doc_count: @

agg_2 count: 8, min: null, max: null, avg: null, sum: 8

agg_info

guestion
g_id
q_type setOfStrings

g_args aggregateln aggregated must isAggrGeneral: true
g ggreg ggreg P gq

forTheQuestion uestid
isFinal: false

Figure 38: Wizard Statistics

The total answers field is the number of answered surveys we have for the specific survey,
the specializedAggrinfo concerns non-general terms questions and indicates the answer
fields that the results should or must match. The aggregations contain all the information
about the aggregations that happened to the questions. It recursively contains the set of
aggregations that were applied in the sequence of the questions. The last one, the
agg_info is actually the Questions Selected Data. Because the information is already
there, we just create a way for each aggregation to correspond to the right aggregation
data. That happens by the aggregation name (e.g. “agg_0" and the question's data index
in the Questions Selected Data array).

E. Garaganis 92

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The code that modifies the data store’s response and creates the above result:

let agg_info = [1;
let specializedAggrInfo = [];
q_params. forEach{(question, index) => {
let isFinal = index + 1 === q_params.length;
switch (question.qg_type) {
case "Number":
agg_info.push({
guestion: question,
forTheQuestion: "Question ${index + 1},
isFinal: isFinal,
¥)s
break;
default:
if (question.q_args.isAggrGeneral) {
agg_info.push({
question: guestion,
forTheQuestion: “Question ${index + 1},
isFinal: isFinal,
ol
} else .
let specilalizedParamsOnQuestion = "";
switch (question.q_args.aggregateOp) {
case "must":
specializedParamsOnQuestion += “Answers on Question ${
index + 1
} must match
question.q_args.aggregateOn.forEach((value) => {
specializedParamsOnQuestion += “${value} \n’;
ks
break;
default:
specializedParamsOnQuestion += “Answers on Question ${
index + 1
} should match "
question.q_args.aggregateOn. farEach((value) => {
specializedParamsOnQuestion += “${value} \n';

I
}

specializedAggrInfo.push({specializedParamsOnQuestion);

}

1)

response_data = {
total _answers: result.hits.total.value,
specializedAggrInfo: specializedAggrinfo,
aggregations: result.aggregations,
agg_1info: agg_info,

B

Code 19: Wizard Statistics Building

The above code follows an iterative logic of getting each question and building the

aggregation info with it.

E. Garaganis 93

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Finally, we can proceed to the next phase, in which we will close the circle the Wizard

Statistics providing .

Front-End : Back-end
Wizard Controller
W,
. Arguments
Questions Selected i To Ly Aggregations |5 Query Data Store
I Data - 7| | Aggregations Composition Building Query
visualization . Transforming
Wiizai Data Store
E Wizard Controller
Yy
Visualization . Data Store Response Data Store
Wizard Statistics [* Maodifier Response
-~ @@/

Diagram 27: Data Transformation Process - Backward Complete

F. Wizard Statistics

The last part of the Statistics Provider process is to demonstrate the Wizard Statistics
once again and see how each value is will be used later on the Visualization rendering
process. From this point, the Visualization Wizard page can retrieve the Wizard Statistics.
Back End 6. Wizard Controller

transforms the questions

selected data to a query
ready for the client

to execute
5. Wizard Controller
gets the questions
selected data
| :
- Wizard Controller

11. Controller fransforms and Query Building
the data store response for
the front end aggregations A

visualization rendering

10. Client forwmards
the data store's
respond to the wizard
controller

7. Wizard Controller
forwards the query
to the client

R

Diagram 28 : Visualization Wizard Statistics Provider - Phase 6

E. Garaganis 94

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Front-End H Back-end

Wizard Controller

. Arguments
Questions Selected To || Agaregations |y Query Data Store
Data : Aggregations Composition Building Query
Visualization . Transforming
Wiizaid Data Store

<

E : Wizard Controller

Visualization . Data Store Response Data Store

Wizard Statistics € Madifier Response

Diagram 29: Data Transformation Process - Phase 6

As we have already shown , the wizard statistics look like this:

wizardStats
total_answers: 7
specializedAggrinfo Answers on Question ? should match Nal \mOyt \n
aggregations
agg_8
doc_count_error_upper_bound: @
sum_other_doc_count: @

buckets
key: 'Oikovourkd Kivntpo
doc_count: 5§
agg_1
buckets
key: '8.8-5.8
from: @
to: 5
doc_count: 8
agg_2 count: @, min: null, max: null, avg: null, sum: 8
agg_info
guestion
g_id a1
q_type Set0fStrings
g_args aggregateldn aggregatelp must isAggrGeneral: true
forTheQuestion Question

isFinal: false

E. Garaganis 95

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The front-end will acquire each aggregation and the info which it accompanies , in order
to visualize each aggregation bucket. For the non-general terms aggregations we provide
from the back-end the answers that the aggregations happened for, like which answers

should match or must match, and provides the total survey answers for the statistics to be

complete.

Having clarified the Statistics Provider, the whole process is summarized with the following

diagram:
Back End
5. Wizard Controller

gets the questions
selected data

6. Wizard Controller
transforms the questions
selected data to & query

ready for the client

11. Controller fransforms
the data store response for
the front end aggregations

visualization rendering

+++OIIF-----

o execute
Wizard Controller |
Arguments
To Aggregations i
: g =
Aggregations Composition ™ Query Bullding
«| Transforming
i 3 la—!
Data Store :
e R B i Response :
Madifier :

10. Client forwards
the data store's

respond to the wizard

controller

&

7. Wizard Controller
forwards the query
to the client

Y

Data Store and
Analysis Client

9. Data Store responds with
the query results, which are
basically the questions

aggregations data

~
8. The client executes
the guery on the data store
and gets the results
h J
Data Store

Diagram 30: Visualization Wizard Statistics Providing Complete

Now we can proceed to the Visualization Wizard Rendering process and clarify this as

well.

E. Garaganis

96

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

1. Visualization Wizard Renderer

Okay, the whole Statistics Providing has occurred . There are 2 core issues concerning the
whole Visualization Wizard process. The first is how the front-end constructs the
Questions Selected Data and the second how it renders the Wizard Statistics. Before

explaining each issue, let us see how the whole rendering process in front-end is:

Front End

4. Question selected
data are forwarded
to the back-end,

Visualization Wizard requesting for statistics ‘/\'D
Page < s
+ 12 Visualization =
A Wizard gets the .
wizard stats ;
13. Visualization 3. The visualization wizard :
Wizard initializes page gathers all guestion data =
the wizard stats and parameters in ong place :
: Question Selectad :
Wizard Stats Data :
& f) :
2. User parameterize 1. User selects the =
1%, tP'hasses e ?Sdm the gquestions based guestions he wants .
S e NI EX on answers to aggregate :
resulis rendering section 2
that renders all the nested :
graphs .
¥ =
Visualization Wizard Questions Selected Select Questions :
Result Rendering Form Modal :

Diagram 31: Visualization Wizard Renderer Abstract

The front-end process starts by the user selecting the questions which they want to set to
the wizard, then parameterizes them and lastly renders the results after they have been
provided to the back-end. In this chapter we will focus on the two trivial issues. The
Questions Selected Data building from the front-end and the Wizard Stats Visualization.
How the user selects the questions is up to React logic which will be explained in the
technical analysis chapter. What is important in these phases is to understand that the

user selects questions by a modal Ul component.

E. Garaganis 97

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

i) Questions Selected Data Building

We will start off by showing another screen from the Visualization Wizard before asking

the Wizard to get the statistics.

@ DEV STUDY) ¢

EpwTnuatoroylo dorrntwy

Visualization Wizard

SELECT QUESTIONS
Nai: 4 "
<. GET RESULTS
0x:3 v

: Total answers: 7
For the questions:

FKOMEUETE Va JeTaBEiTE 6To
EWTEPIKG Yia MEPAITEPW OTIOUBEC;

¥ v

X

BaBlOROYAGTE TNV MOLOTATE TwY
cuvnBetav 0ag (SlaTpogn, doknen,
noTTa GMvou...)

¥ L v

Calculate:

X

Ot amoubéc gag mooo Tov GAAaEay;

¥

@ Dev Study Goals ? You may also see :

Trying to understand programmers' practices, principles « About conductors
and notions in the workspace, and how people from

+ More about our surveys
different backgrounds transit and adapt on it.

* Terms and Conditions

© 2020 Copyrighted Survey

Figure 39: Questions Selected Data Building

E. Garaganis 98

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The questions selected data for the above example should look like this:

[
{
g_id: 'Q2s6"',
q_type: 'String',
q_args: { aggregateOn: [], aggregateOp: 'must', isAgarGeneral: true }
1
{ g_id: 'Q29%', q_type: 'Number', q_args: { range: [@, 5, 18] } 1},
{
g_id: 'Q32'",
q_type: 'String',
gq_args: { aggregateOn: [], aggregateOp: 'must', isAggrGeneral: true }
}
1

The above data format that the front-collects happens in different levels. The whole

diagram that outlines the process is the following:

Questions Selected

1. For each guestion that
the user selected, render
the guestion card

h

Questions Selected
Card

2. Each guestion based on

its type has different ways

to collect the aggregation
parameters

h J

Question Parameter
Renderer

3. Render the right
guestion pararemers format
based on the question type

v v

Mumber Parameters String Parameters

Diagram 32: Visualization Wizard Renderer Component Tree

Each rectangle represents a component for the front-end technologies. Let us see them

one by one with an example, code and design details.

E. Garaganis 99

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Questions Selected

Questions Selected Component contains the following part of the Ul:

For the questions:

ExonMEVETE va PETABELTE OTO
eEWTEPLKO YIO MEPIITEPW OTOLDEC;

¥ i v

X

BoBpoAoynoTE TNV MOLOTNTA TWV
ouvnielwy oac [SLaTpodgpn, aoknon,
MoLGTNTA Omvou...).

Calculate:

01 onowbec oag mooco Tov adhagay;

X

Each Question here is represented by a Question
Selected Card Ul component, which we will next
see. It is important to mention here that only the

last question requires different handling, because

this is the question we plot the data for.

The Questions Selected component only needs

the questions that the user has selected.

l selectedQuestions

Questions Selected

h J

1. For each guestion that
the user selected, render
the question card

Card

Questions Selected

Figure 40: Questions Selected Rendering Cards

The Questions Selected component gets as a property the questions which the user has

selected and rendes for each one a Question Selected Ul Card. Let us see the Question

Selected Card details.

E. Garaganis

100

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Question Selected Card

Let us isolate two cards and analyze them.

X

BaBpohoynote TNV MOLOTNTA TWV
ouvnBewwy cag | Suatpopn, doknon,
Moo TN Ta UTIVOoU...).

IkomeUETE va JETAPELTE OTO
EEWTEPLKD YA MEPAITEPW OTOUVHEC;

v ~ e 5

r
T

- General Aggregation

[4=]

This will return results for each value in g1 2 3 4 5 6 7 8 9 10

Figure 41: Questions Selected Cards

Each card is divided into two parts. The Questions data part, which contains the Questions
text and Questions Parameters parts that we will soon see. The Question Selected Card

needs as an argument the question data, in order to be able to render it.

E. Garaganis 101

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

l selectedQuestions

Questions Selected

1. For each guestion that
the user selected, render

uestionData :
l q the question card

h

Questions Selected
Card

2. Each guestion based on

its type has different ways

to collect the aggregation
parameters

selectedQuestions

Diagram 33: Passing Question Data

The Question Selected Card needs the right type of parameters. We have seen how the
Question’s Selected Data looks like. The question’s aggregation parameters depend on
the question type. The above question card has different question parameters, as you can
see, and a different form of input. Let us focus on this part:

General Aggregation

(O should Match

(® Must Match

Figure 42: Questions Card Parameters

The Question Selected Card in order to render the right question parameters form uses
the Question Parameter Renderer component, by passing it the questionData which it
already has.

E. Garaganis 102

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Question Parameter Renderer

The question parameter renderer defines which Ul question parameter form to render by

conditionally rendering the right form based on the question type.

2. Each guestion based on

its type has different ways

to collect the aggregation
parameters

l guestionData

Question Parameter
Renderer

3. Render the right
guestion pararemers format
based on the question type

v v

Number Parameters String Parameters

Diagram 34: Rendering Aggregation Parameters

E. Garaganis 103

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The code of the Question Parameter Renderer is the following:

import React from "react";
import {
NumberParams,
StringsParams,
} from "./ParametersFormComponents/ParametersFormComponents";

const paramsForm = (props) => {
const questionData = props.questionData;
if (!questionData) return 8
var inputElement;

switch (questionData.type) {
case "Number":
inputElement = (
<NumberParams questionData={questionData} index={props.index} />
)3

break;

default:
inputElement = (
<StringsParams questionData={questionData} index={props.index} />
)s
}
return (
<div>
<p style={{ color: "gray" }}>Filter answers:</p>
{inputElement}
</div>
)s
b

export default paramsForm;

Code 20: Form Aggregation Parameters Renderer

Based on the question type, the component decides to render the proper question
aggregation parameter form. The same conditional logic is clearly seen through the whole
code, making the implementation logic consistent across the app. For the final part let’s
see the different Question Form Parameters that the Question Parameter Renderer

produces.

E. Garaganis 104

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Question Parameter Forms

We have now reached the last components group which is the Question Parameters Form

components. So far, we have 2 types of form components. Let us see them both:

- Terms Questions: The term questions need the following question parameters:

The question parameters are stored in the String

General Aggregation)
e Params component of our code which gathers the

Aggregate Or information to the following data structure format:

Nai
{
OxL aggregateOn: ["Nai","Ox1"],
aggregateOp: "must",
e 5
b
(O should Match
@ Must Match Figure 43: Terms Questions Form Parameters

The code which implements the above behavior is just a React component that

uses checkboxes, radio buttons and event handlers to keep the data up to date.The

same applies for the following question form parameters type.

- Stats Questions: The stats questions need the following question parameters:

And the data which this form produces are stored on
Filter answers this object format:
{

—— —e - : [0, this.ceil / 2, this.ceil],
0 B %% 5 EFE S W };

Figure 44: Stats Questions Form Parameters

Now that all the questions selected have been rendered to the end and we have a way to

update the data for each, let us see how all these are gathered to a central place.

E. Garaganis 105

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Let us see how the whole process of the Questions Selected Data rendering looks like:

Front End

4. Question selected
data are forwarded
to the back-end,

Visualization Wizard requesting for statistics _/D
Page < .
9 12. Visualization
ry Wizard gets the
wizard stats
13. Visualization 3. The visualization wizard
Wizard initializes page gathers all guestion data
the wizard stats and parameters in one place

; Question Selected
Wizard Stats Data
A
14. Passes the data
on the aggregated
results rendering section 1. User selects the
that renders all the nested questions he wants
raphs 2 to aggregate
. i selectedQuestions
e 5 h 4
Visualization Wizard | ;
Result Rendering B Select Questions
Questions Selected Modal
1. For each question that
l questionData the user selectad, render
the question card
h 4
Questions Selected
Card
2. Each question based on
: its type has different ways
i questionDaty to collect the aggregation
parameters
h 4
Question Parameter
Renderer
3. Render the right
question pararemers format
based on the question type
Number Parameters String Parameters

Diagram 35: Visualization Wizard Front-End Detailed

All of the above rendering processes create the Questions Selected Data step by step, by
taking the basic information like the questions selected id,type and adding to them the
aggregation parameters that the user defines. The Number Parameters and String
Parameters update the Questions Selected Data arguments each time a value changes,

despite the fact of these deep component-like structures. (More on Technical Analysis).

E. Garaganis 106

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ii) Wizard Stats Visualization

The last part of the whole visualization process is the rendering of the wizard statistics. We
have seen exhaustively how the front-end gathers the Questions Selected Data and how it
retrieves the wizard statistics. It is now time to see how the visualization of the Wizard
Statics works. This procedure happens in the Visualization Wizard Result Rendering
component. Before jumping into details, let us remember how the wizard statistics looks
like:

wizardStats
total_answers: 7
specializedAggrInfo Answers on Question 2 should mat
aggregations
agg_8
doc_count_error_upper_bound: 8
sum_other_doc_count: 8
buckets

key 0LKOV
doc_count: 5
agg_1
buckets
key 5
from: @
to: &

doc_count: @

agg_2 count: @, min: mull, max: null, avg: null, sum: 8
agg_info
guestion
g_id
g_type 5et0fStrings
g_args aggregateln aggregatelp must isAggrGeneral: true

forTheQuestion Question
isFinal: false

The Wizards Result rendering process will render the total number of answered surveys,

the special aggregation info that we have for the non-general questions aggregations, like

E. Garaganis 107

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

what question’s values the answers should or must match and the question aggregation

buckets along with their statistics and information. The end result given can look, for

example, like this:

Answers on Question 1 should match Nai '0xu

Based on: Question 2

Nai: 4
Calculate: Question 3
8]
|
&
4
2
01.. i '| - - - T
Minimum Average Maximum
M Minimum Average Maximum
Oxi:3
Calculate: Question 3
127
9|
i
i
61
i
3
|
0= S R —— —
Minimum Average Maximum

M Minimum Average Maximum

Total answers: 7

Figure 45: Visualization Wizard Another Example

The code which accomplishes all these nested-like visualization processes is the

following:

E. Garaganis

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

import React from "react";

import Visualization from "../../../../VisualizationRenderer/VisualizationRenderer";
import “"@material-ui/core";

import "./WizardResults.css";

// This is a recursive method that will produce
// the visualizations, based on backends response
const visualizeStats = (aggr, aggrNum, agg_info) => {
let aggbata = [];
aggData.push(
<p=Based on: {agg_info[aggrNum].forTheQuestion}</p=
1
// If bucket contains another aggregation, move towards that aggr
if ('agg_info[aggrNum].isFinal) {
for (var 1 = @; 1 < aggr.buckets.length; i++) {
aggData.push(
<Accordion=
<AccordionSummary
expandIcon={<ExpandMore /=}
aria-controls="panella-content"
id="panella-header"

{aggr.buckets[i].key} : {aqgr.buckets[1].doc_count}
</AccordionSummary=
<AccordionDetails className="alignCenter">
{visualizeStats(
aggr.buckets[1]['agg_%${aggrNum + 1}'],
aggrium + 1,
agg_info
1}
</AccordionDetails>
</Accordion>
);
+
3
/7 If bucket doesn't have a new aggregation, it means we are on
// the last answer, so, do calculate the graph
else {
let total = 0;
var stats;
switch (agg_info[aggrNum].question.q_type) {
case "Number™:
stats = aggr;

break;
default:
stats = aggr.buckets;
b
return (

=div=
<p> Calculate: {agg_info[aggrNum].forTheQuestion}</p>
<Visualization
questionData={{ type: agg_info[aggrNum].question.q_type }}
questionStats={{ total: total, stats: stats }}
/=
=/div>
}s
Iy
return aggData;

18

export default function WizardResults({props) {
var result = visualizeStats(props.stats.aggregations.agg ®, O,props.stats.agg_info);
return (
<div>
{props.stats.specializedAggrInfo.map((extraParams) == (
<hd4={extraParams}</h4>
1)}
{result}
{<p> Total answers: {props.stats.total_answers}</p=}
</div=>

};

Code 21: Visualization Wizard Stats Visualizer

E. Garaganis 109

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The code in order to render the nested aggregations implements a recursive function that
follows the same logic that the aggregations do. For each aggregation bucket it creates an
Accordion Ul component. It gets the data from the aggregation info stats structures, so it
outputs all the information for each bucket. Lastly, for the last question, that all the
aggregations happened for it passes the statistics to the Visualization Renderer that we
saw on 2.4.1.1 chapter. Then the final graph is rendered for that question. This is how the

Visualization Wizard renders the results.

Let us finalize the Visualization Wizard Renderer with the last diagram and then sum up

the whole visualization wizard process.

Front End

4. Question selected
data are forwarded

to the back-end, =
Visualization Wizard requesting for statistics /:D
Page i

12. Visualization

Wizard gets the
wizard stats
13. Visualization 3. The visualization wizard
Wizard initializes page gathers all question data
the wizard stats and parameters in one place

Question Selected
Data

Wizard Stats
on the aggreqated

results rendering section

14. Passes the data

1. User selects the

that renders all the nested questions he wants
raphs to aggregale
o l selectedQuestions
Visualization Wizard
Result Rendering Select Questions
Questions Selected Modal
1. For each question that
l questionData the user selected, render
Visualization Library #1 = uestion card
Question Statistics
Questions Selected
Card
BarGraph
tion Dat
[Quesiritial 2. Each question based on
StatsGraph its type has different ways
l QuesionDats to collect the aggregation
i i parameters
e Visualization Renderer selects Renderet
e piEnered by, Question Parameter
Renderer
St llieelonilype quesia':epnadr:etn\eanrsgmrmal
Visualization Library #2 i Stats Question Dased on the question type
uestion. Type
BarGraph
Number Parameters String Parameters
StatsGraph Terms Questions

~a gl0
—

Label Label

Diagram 36: Visualization Wizard Front End Compolete

Each of the above processes has been described in the chapters above.

E. Garaganis 110

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ll. Summing up

To sum up the whole visualization wizard process, | will | present the last diagram, which

includes all the different steps which were documented throughout this thesis chapter.

. BackEng

Visualization Library 41

‘ Terms Questians
Lane D

ol Label

Laby

Diagram 37: Visualization Wizard Complete

The Visualization Wizard has now been completed. And it was kind of huge. It required the
complete understanding of the technologies used, enacted numerous transformations from
one format to another and applied a different set of programming techniques. If the initial
goal was not clear enough, and without having fully comprehended the different
processes, the Visualization Wizard would not be able to be completed. But in the end it
was worth it, because now users will be able to explore the results and try to ‘mine’ a set of
information from the surveys.

The next steps are to add more functionality, like download results, or add more
aggregation types, new diagrams etc. Also, refactor the different code parts, optimize the
performance and furthermore .

With this , the core features that our SaaS offers has now been completed. It is time to

move on to more lightweight items and then proceed to the technical analysis.

E. Garaganis 111

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.5 UX and Ul decisions

In this chapter we will take a look at the User Experience and Interface design decisions

and how the general platforms aesthetic was created.

3.5.1 Usability Evaluation

Designing a simple, usable and minimal user interface and a pleasing user experience is
of top priority in any computer system. Our platform follows an intuitive design that
provides ease of learning and efficiency of use. Each design approach follows the 10
usability rules of Nielsen, like the visibility of system status, indicating each time when a
service is loading. It matches the real world, when it comes to intuition, as each survey
contains questions that we try to represent in the real world, like order etc. The general
aesthetics of the platform follows specific palettes and design behavior, in order for it to be

consistent across the different pages.

USER INTERFACES ACCESSIBILITY MATERIAL PALETTE CUSTOM

176 >
~ Eaniid

CURRENT SCHEME RESET ALL

Primary Secondary extonP

Laiiiing

RESET

#000000

P — Light P — Dark s —Light S— Dark
#2c2¢2¢ #000000

Figure 46: Theming and Color Palettes

It also offers Error Prevention and Recovery,

You are about to delete question Q01

Survey was just deleted
You can now:
Cancel Delete

4D Restore Survey

Figure 47: Error Prevention Options

E. Garaganis 112

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

While also applying a different set of methods and rules, like the time to acquire a target is
a function of the distance to and size of the target (Fitts Law) or the time it takes to make a
decision increases with the number and complexity of choices (Hick’s Law) and another
set of fundamental UX rules that aim for the maximum platform learnability and user

satisfaction interacting with our product.

The platform also uses eye-candy icons and graphical resources reinforcing the user’s

experience and making the platform more appealing. Graphical assets used:

W
NAVAAA 10101010

N

Figure 48: Graphic Designs

And icons provided from Flaticon and Material Icons.

Finally, the whole UX and Ul character is based upon Material Design. The majority of web

platforms use Material design, as it is widely accepted and fits the general platform

intentions and initial purpose.

E. Garaganis 113

https://www.flaticon.com/
https://material-ui.com/components/material-icons/#material-icons
https://lawsofux.com/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.5.2 Theming

The platform provides 2 themes for the use to choose from. The Light theme and the Night
theme. Both themes were created with the help of the Material library that we will explain

in the Technical Analysis. The user can switch between the two themes in the navbar.

The two theme outcomes are the following:

@ DEV STUDY)

Epwtnpatoloyio dottntwv

EpwtnuatoAdyto dortntwyv

To EpwTNPATOAGYLO QNEVBUVETAL OE TEAELOWPOLTOUC THNPATWY TANPOPOPIKIE, OL oToiol evdiapEpovtal va acxoAnBolv eNayyeAPATIKA PE TNV
avartuén hoywopikol (Software Engineering and Development).

Ixohn kat MetdBacn otnv ayopa spyaciag [1/3]

01 MapakdTw EPWTACELS EXOUV Va KAvouv PE TV akAnAenibpaan mou gixe o oitnTe P& TNV oxoAr Kal va anmoTuMWosL e ViwBEL
anévavti oTny epxOpEVn pETABaon oTnv ayopd epyaciag.

1. Marti okoneveTE va aoxoAnBELTE EMAYYEAPATIKA PE TV avamTugn hoyLpikoy;
O oOikovopka Kivntpa
O Etwtepikég Méoelg

O Eowtepikd Kivntpa

[Aev eixa dAheg emAoyég @

EpwtnuatoAoylo GoltnTwv

To gpwInuatoloylo ansuBOVETaL O TEAELOYOLTOUG TUNHATWY WANPOPOPIKNG, OL OTIOLO apépovtal va aoxoAnfolv enayyeAuatika pe v
avarntuén Aoylopikov (Software Engineering and Development).

Ixohn Kat MetdBacn otnv ayopd epyaciag [1/3]

Ot TapakaTw EPWTHOELG EXOLY VA KAVOLY PE TNV ahAnAemidpaon 0 poi NV OXOAIN Kal VQ QMOTUTIWOEL IWG ViwBEL
amEVaVTL OTNY EPXOUEVT HETABAD

1. Narti okoneveTe va aoxoAnBEITE EMAYYEAPATIKA PE TNV avamtugn Aoyipikou;
[] Owovopika Kivntpa
[Efwtepikég MEaeig
[] Eowtepika Kivntpa

[Aev eixa aA\Aeg emihoyég

Figure 49: Light And Dark Theme

It is also important to mention that it is easy for the devs to create a wide range of themes

for the users to choose from.

E. Garaganis 114

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

3.5.3 Accessibility

The tools which are used throughout our application ensure that the surveys and the

results will be accessible for everyone. MaterialUl provides Accessibility Features that

follow the WCAG guidelines, the app is passed through accessibility evaluation phases
and the color scheme complies with the accessibility guidelines. It will be one of the top
priorities to apply the Design for All principles, so that anyone can have access and be a

survey participant or explore the survey results.

3.6 Design Challenges

Designing was the most important part for the whole implementation to be completed. We
needed to design how the front-end will look like and the whole user interface layout and
behavior, how the back-end will be architectured in order to serve requests, how the extra
tools and frameworks will comply with the whole base architecture, how the data will be
stored in our systems and many others. All that for the distinct entities to communicate
harmoniously and be as stable as possible. Each one of the above designing phases
came along with a set of challenges that were faced and each one required clean and

concrete design.

3.6.1 Architectural Decisions

The architectural decisions that were suggested were made after a series of design

challenges. The most important of them were:
- What would be the layout of each page:

Each page layout and structure was defined after creating wireframes, from low to

high fidelity, so that it would be clear for the later coding phase.

Lorem ipsum dolor
Lorem ipsum dolor

Lorem ipsum dolor

Figure 50: Wireframes

- What is the front-end structure ?

E. Garaganis 115

https://material-ui.com/components/data-grid/accessibility/#data-grid-accessibility

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The front-end structure is component-based and follows a hierarchical tree-like

logic.

Figure 51: Component Architecture Logic

Each page belongs to a higher order component. The data is passed to the

components below through props and the events are handlers that are passed from

the parent components.

- What is the back-end structure

The back-end structure contains 4 base parts. The routes part that assigns specific
actions to the routes that the client requests data from. The controllers part that
are the actions that should be executed when a request arrives at the route. The
client part the controllers use when needing to query the data store for data. And
lastly the data store part that contains all of the data (surveys, answers, questions,

etc) and executes queries which the client asks for.

E. Garaganis 116

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Routes Controllers

froute_1 | -
Cotroller_1 4—|_’
Data Store Client

Data Store

Iroute_2

Cotroller_2

Diagrams 38: Back-End Abstract Structure

- How do the different entities communicate ?

The front-end communicates with the back-end through API endpoints and calls
upon them, in REST architecture environments. The same goes for the Data Store

Client with the Data Store, they communicate through REST endpoints.

Back-end
Routes Controllers

: froute_1 < » -
Caotroller_1
Front End ‘—I—r Data Store Client .

Iroute_2 4—|_‘

Data Store

Caotroller_2

Diagrams 39: Back-End Structure Detailed
- How is the data stored within the data store ?

The questions, surveys and answered surveys are stored within our data store
systems with a document-oriented format. Our database is non-relational and data

is processed and aggregated through the Elasticsearch search-engine system that

we will see in the technical analysis phase.

E. Garaganis 117

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Now that we have covered the basic architectural decisions on the different
implementation phases, we will move to the end of the Design Analysis chapter and

explain the design principles that our system follows.

3.6.2 Design Principles
The design of our service aims to create a system that is:

e Scalable & Highly decoupled:

Developers can add a different set of question types, choose different visualization
libraries or form question libraries, apply different themes and all that without
messing or breaking the initial code structure and logic. The most widely used
technique that we used to justify this is the conditional logic that is being used

throughout the app. To remember it:

—
- guesticnData:

My Ul form components which is & question

class object
MySlider Question Renderer
MyCheckboxes Based on question type:
My Textinput case of Number guestion:
render a numeric slider{guestionData,setAnswerToQuestionClass)

MyRadioButtons .)

case of String question:

» if question has no values given:

render a text input{questionData, setAnswerToQuestionClass)
else if question has more than zero values
render a radio buttons(questionData, setAnswerToQuestionClass)

case of SetOfStrings:
render a checkboxes(guestionData, setAnswerToQuestionClass)

Diagram 40: Question Rendering Abstract
Each library rests in a different directory and code selects the selected Ul on the run-time,
allowing to remove or add libraries without changing the question rendering logic.

e Stable and Sturdy:

The front-end can be easily changed. The data store and its client can be changed
with little effort. The individual parts can easily be detached, in a language-agnostic
way, in order to produce timeless systems that are affected the least possible by the

constant changes.

E. Garaganis 118

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4. SYSTEM IMPLEMENTATION

In the previous chapter, that of Design Analysis, we focused on the design of the systems
in a rather language-agnostic way. Although we saw many code examples, itis now time
to proceed onto the technical explanation of each component, starting off with the

technology stack which was used across our implementation.

4.1 The technology stack used

Once again, the whole platform abstract architecture is as follows :

Back-end
Routes Controllers

: froute_1 » -
Caotroller_1
Front End i—l—b Data Store Client .
a Data Store
" Iroute_2 !—‘
Cotroller_2

Fy
4

Diagram 41: Back-End Structure Detailed
In the front-end we used:

- The React javascript framework, along with the Material-Ul for the Ul building and

Recharts for the results visualization.

In the back-end we used:

- The Node.js and the ExpressJS javascript framework for the server implementation

along with the routing and controllers
And the data store is:
- Elasticsearch search engine, that stores the data and aggregates the results.
It also uses:

- NPM for the package management that our app uses
- Babel as the javascript compiler

- ESLint for the code formatting and optimization

Each of the above tools and frameworks will be explained in the following chapters.

E. Garaganis 119

https://reactjs.org/
https://material-ui.com/
https://recharts.org/
https://nodejs.org/
https://www.expressjs.com/
https://www.elastic.co/
https://www.npmjs.com/
https://babeljs.io/
https://eslint.org/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The question that soon emerged before implementing this SaaS survey building platform
was which technology stack was appropriate for our goal. We aimed for a full javascript
implementation. The technology stack used consists of cutting edge technologies that
most corporations use and have a rich community to resort to. We chose React for the
front-end because it provides multiple libraries and it is the most popular js framework for
web-development. NodeJS along with ExpressJs helps you set up a server easily in the
same js manner and Elasticsearch is a very very powerful engine that has really fast
indexing options and huge aggregation capabilities for the result analysis. Each of the

above frameworks and services has its unique sense which we shall see.

4.2 System Architecture

The stack will be explained starting from the front-end and then moving backwards to the

back-end.

4.2.1 Front-End

The Front-End is fully implemented with the React javascript framework, but within we use
a set of packages for the different functionality that is required and that we downloaded
from the NPM package manager. In this chapter we will explain only the key packages that

the front-end widely uses for its purposes, along with the core technologies.

4.2.1.1 React
React is a javascript library that creates component based user
interfaces. Starting from simple and small components it can scale
to complex and big components that have various functionalities.
For the front-end implementation the version 76.73 was used. React
allowed us to create all app components easily, by letting us divide
the complex pages to its core parts, enhancing the code
maintainability and scalability. More information about React can be

found on their site, that can be found on the references page.

E. Garaganis 120

https://reactjs.org/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.1.2 Material Ul

Material Ul is a Ul library for faster and easier web development in
React. It provides a huge variety of aesthetic and minimal Ul
components. It has rich documentation, the components are highly
customizable and it is the most popular Ul react library, meaning it

has a big community to help the programmers who make use of

its services.

4.2.1.3 Recharts

Recharts is a composable charting library built on React
components, that offers a diversity of charts, graphs and plots

while being widely customizable.

10007

750

The whole implementation widely uses the above frameworks and libraries. The code can
be found within our repos. In the chapters below we will showcase some programming
techniques that React offers that had a significant impact on our implementation.

E. Garaganis 121

https://material-ui.com/
https://recharts.org/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.1.4 React Router

It is a collection of navigational components that compose declaratively with your
application. Users get the content of pages by typing in their browsers urls. The React
Router defines which component is going to be used for the different kinds of urls that

exist. The routing that happens within the front-end is as follows :

changeTheme={th1is.switchTheme}

exact path="/" component={Home}
exact path="/surveys" component={Surveys}
exact path="/results" component={Results}

path="/surveys/:survey_1id/:section_indx"
component={Survey}

path="/about" component={About}
path="/adminpage" component={AdminPage}
path="/questionpool" component={QuestionPool}

path="/editsurvey/:survey_id"

component={EditSurvey}

path="/editquestion/:question_1id"
component={EditQuestion}

path="/results/:survey_1id"
component={ResultsPage}

path="/visualization_wizard/:survey_id"
component={VisualizationWizard}

path="/conductors" component={Conductors}
path="/terms" component={Terms}
path="/working" component={UnderConstruction}
component={NotFound}

Code 22: React Router

This navigates the user to the right page, according to what they ask for, while also giving
the option to add URL parameters for the components that will get rendered. Also, if the
router does not find a URL that corresponds to a component, then it will render the

NotFound page.

E. Garaganis 122

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.1.5 Local Storage

The platform offers a way for users to store some data in the browsers local and session
storage. Options like remembering user preferences about light or dark themes or
continuing a survey if the user closed the window by mistake improves the user

experience and adds many conveniences to the process.

For example, if a user has completed more than 10% of the survey and by mistake closes
the window, then when returning to the survey page they will get a message asking them

if they want to continue the survey.

Want to continue your survey 7 Yes

Figure 52: Continue Survey

And the code that uses the local storage is as follows :

00
componentWillUnmount() {

this.storeSurveyToLocalStorage();

}
storeSurveyToLocalStorage = () => {

localStorage.setItem("survey", JSON.stringify(this.surveyCreated));

localStorage.setItem(
"completionRate",
this.surveyCreated.getCompletionRate()

)
window.removeEventListener(
"beforeunload",
this.storeSurveyToLocalStorage
)3
s

Code 23: Continue Survey

Every time a survey is going to be closed from the screen, then the survey is stored to
local storage. And everytime the user goes to take the survey again and wants to continue
the survey, the Survey Class Method populateSurveyForm will be invoked with the

parameter the stored survey which resides in the local storage.

E. Garaganis 123

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.1.6 Axios and Data Fetching
Front-end constantly gets data from the back-end for the different needs. The data is
fetched from the backend endpoints with the help of the Axios HTTP client. An example

usage that is invoked whenever a user wants to edit a question:

axios.get(/questions/${questionId}).then((res) => {
if (res.data)
this.setState({
questionData: res.data,
isQuestionNew: false,
isQuestionLoading: false,

};
else
this.setState({
questionNotFound: true,
isQuestionLoading: false,

Code 24: Axios Data Fetching

4.2.1.7 React Context

In case there are multiple nested components and the component tree goes into a big
depth, it is wise to have a way for the component-tree leaf nodes to communicate with
the root. The React’s usual way to pass data to children as props, but in this case these
props would need to traverse multiple levels, making the code harder to maintain and
scale. This is where React Context Provider comes into play. It provides a way for data
and methods to be accessible wherever in the component tree. A real use-case of the
React Context Provider is shown in the example below , where the Questions Selected
Data needs to get the aggregation parameters for a specific question from the rendered

question parameters forms.

The problem that we faced when building the Questions Selected Data was that the
Visualization Wizard should somehow be able to get the aggregation parameters data
whenever those changed. The Visualization Wizard will use the React Context in order to

provide the Question Parameters Forms the method that will call whenever the user

E. Garaganis 124

https://github.com/axios/axios

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

changes the aggregation filters. This method is just an update Visualization Wizard

Questions selected data.

The method is as follows :

updateQuestionsAggrData = (questionAggrData, questionIndex) => {
const updatedQuestionsAggrData = [...this.state.questionsAggrData];

updatedQuestionsAggrData[questionIndex].q_args = questionAggrData;
this.setState({ questionAggrData: updatedQuestionsAggrData });

};

Code 25: Update Questions Aggregation Data Method

And the whole context providing logic is showcased below:

Provides the updateAggregationData method
that updates Questions Delected Data

: 3 React Context Provider
MISUBHZAINT | i e D e D S e e e e
Wizard
l selectedQuestions
) J
Questions Selected
1. For each guestion that
uestionData the user se Ie_l:ted. render
l q the question card
) J
Questions Selected
Card
2. Each question based on
: its type has different ways
l quesdionData to collect the aggregation
parameters
) J
Question Parameter
Renderer
3. Render the right
guestion pararemers format .
based on the question type The Qusetion Parameters forms
consume the method and invoke
whenever the params are changed
¢ ¢ in order to update the VW data
-

Number Parameters Sifing Parameters; | sosssmssssssessssmisisinsss e s

Diagram 42: React Context

E. Garaganis 125

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.2 Back-End

The backend consists of the servers that contain the routes and the controllers, the data

store client and the data store.

Back-end

Server

. Routes Controllers
o /—)‘ froute_1 o ¥
Cotroller_1 €
Front End <—>@: = >
3 \‘-‘ iroute_2 l—|_.
Cotroller_2 —

Code 25: Back-End Abstract Strute

Data Store Client @,

Data Store

Before proceeding to explain one by one the technologies that are used in the back-end,
we will first explain the REST APIs that the back-end handles.

4.2.2.1 Rest API & Endpoints

The implementation is a RESTful

application,

meaning it

uses the REST

(Representational State Transfer) architecture style for the front-end and back-end

in-between communication.

Back-end

Server

Routes

Front End

Iroute_1

/—b
S

.
-
.
.
.
.

Jroute_2

L

Code 25: Update Questions Aggregation Data Method

Here is a table with all the possible rest endpoints that clients can use and what the server

does when a client requests from them.

E. Garaganis

126

https://en.wikipedia.org/wiki/Representational_state_transfer

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

API Route API Server Behavior
Method

/questions/:sortBy&:order GET Returns all the questions on the
order specified

/questions POST Adds a question on the data store

/questions/new _id GET Get a new id for a newly created
question

/questions/search GET Return a number of questions based
on a search term

/questions/:qid GET Return the question specified by the
route parameter

/questions/:qid PUT Update the question specified by the
route parameter

/questions/:qid DELETE Delete the question specified by the
route parameter

/surveys/ GET Gets all the surveys from the
data-store

/surveys/questions_existis_in/:qid | GET Get all the surveys that the question
with the specific id resides in

/surveys POST Adds a survey on the datas-store

/surveys/:sid GET Get the survey with the specified id
from the data-store

/surveys/:sid PUT Update a survey from the data-store

/surveys/:sid DELETE Deletes a survey from the data-store

/answered_surveys/:sid GET Get all the answered surveys of a
specific survey

/answered_surveys POST Add an answered survey to the
data-store

/aswered_surveys/question_stats | GET Get the statistics a about a question
based on the answered surveys

/answered_surveys/survey_stats GET Get survey statistics about its
answers

/answered_surveys/wizard_stats GET Get wizard statistics for the

Visualization Wizard

Table 1: REST API Endpoints

E. Garaganis

127

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.2.2.2 ExpressJS
Express is a minimal and flexible Node.js web application
EX@V@SS J framework that provides a robust set of features for web and

mobile applications. We used Express to create our server:

express = require(

bodyParser = require(
cookieParser = require(
compression = require(
helmet = require("he
cors = require(" i)

questionsRouter = require(
surveysRouter = require(".;
answered_surveysRouter = r

PORT = process.env.PORT || 4000;
st app = express();

app.use(fu (req, res, next) {
var now w Date();
console. log(
\ ¢{now. toUTCString()}]
req.method
on ${req.originalUrl} :

app.use(cors());
app.use(helmet());

use(compression());
app.use(express.json());
app.use(express.urlencoded({ extended: false }));
app.use(cookieParser()};
app.use(bodyParser.json());

f (process.env.NODE_ENV && process.env.NODE_ENV !== "
app.get("*", (req, res) => {
res.sendFile(" ndex , 1 root: __dirname });
app.uée(”ﬁ, , guestionsRouter);

app.uﬁe(ys/", surveysRouter);

app.use(dis ", answered_surveysRouter);

app.use(({err, req, res, next) = {
console.error(err.stack);
res.status(500).send(

1)

Code 26: Server Implementation

E. Garaganis 128

https://expressjs.com/
https://nodejs.org/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The express implements the back-end logic serving the routes that we described with the

corresponding controllers.

Server
Routes Controllers
Iroute_1 + >
Cotroller_1
Iroute_2 «
>
Cotroller_2

Diagram 43: Routes And Controllers

Following are some examples regarding each implementation:

i) Routes

Routes are endpoints that the backend serves. Let us see how the surveys routing works

with a code example:

const express = require("express");
const answered_surveysController = require("../controllers/answered_surveys-controller.js");

const router = express.Router();

router.get("/", answered_surveysController.getAnsweredSurveys);

router.post("/", answered_surveysController.postAnsweredSurvey);

router.get("/question_stats", answered_surveysController.getQuestionStats);

router.get("/survey_stats", answered_surveysController.getSurveyStats);

router.get("/wizard_stats", answered_surveysController.getWizardStats);

module.exports = router;

Code 27: Routes

E. Garaganis 129

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Each route is binded with a specific controller which t contains the logic for each route.

ii) Controllers

A controllers example is as follows :

var elastic = require("../
const util = require("util

exports.getAnsweredSurveys

}

exports.postAnsweredSurvey ync (req, res) => {
consale.log("» [postAnswe Survey] controller will handle the request");
elastic
.postDocumentToIndex(indexName, req.body, makeid(10))
.then((result) => {
let response_data = {
status: null,
message: null,

Iré
if (result.result === "created") {

response_data.status "succe .
response_data.message = "Successfully posted an answered survey ";
} else {
response_data.status = "error";
response_data.message =
"There was an error in posting the answered survey ";
}
res.send(response_data);
})s
b

exports.getQuestionStats = async (req, res) == { ...
s

exports.getSurveyStats = async (req, res) == { ...
)78
Object.byString = function (o, s) { ...

18

exports.getWizardStats = async (req, res) => { ...

I7

Code 28: Controllers p.128

It actually contains all the code logic that is required in order for the system to operate with

the data-store for the desirable action, like getting the survey with a specific id etc.

E. Garaganis 130

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

With ExpressJS setting up the server and the routing/controlling of the back-end we move

towards the final part. The Elasticsearch’s data store and client, along with details about it.

4.2.2.3 Elasticsearch
Elasticsearch is a distributed, open source search and

analytics engine for all types of data, including textual,
numerical, geospatial, structured, and unstructured.
Elasticsearch is built on Apache Lucene. Known for its
simple REST APIs, distributed nature, speed, and
scalability, Elasticsearch is the central component of the
Elastic Stack, a set of open source tools for data

ingestion, enrichment, storage, analysis, and

visualization

We use Elasticsearch for the data-storing, the full-text search capabilities and the data

ingestion capabilities.

L. Index Organization

An Elasticsearch index is a collection of documents that are related to each other.
Elasticsearch stores data as JSON documents. To store the essential data for our
systems we used 3 indexes. One for the questions, one for the answers and one for
the answered surveys. The documents that are stored within each index follow the

same data format that we explained in the Data Analysis phase.

1. Queries

In order to operate with Elasticsearch and get, post, update, delete data from it,
apply a set of aggregations and more, we need a quering system. Elasticsearch
provides a rich set of queries that users can utilize and a domain specific language
that creates them, the Query DSL.

E. Garaganis 131

https://www.elastic.co/
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

1ll. Elasticsearch JS Client

Elasticsearch JS Client is our data-store client that executes the queries on the

elasticsearch indexes. It is the intermediate node between the express controllers

and elasticsearch indexes and the direct communicator with the data-base.

Back-end
Express Server
. Routes Controllers
H P froute_1 < > -
Cotroller_1 €
FrenL e *__*<i:2::\x‘ L Bastc 35 Ciient O

Iroute_2 4—|_.

Cotroller_2 T

Diagram 44: Elasticsearch JS Client

The controllers use the Elastic JS Client for example as follows:

exports.getQuestions = async (req, res) => {
console.log("~ [getQuestions] controller will handle the request");
elastic
.getDocumentsFromIndex(
"questions",
50,
req.params.sortBy,
req.params.order
)
.then((result) => {
var questions = [];
result.hits.hits.forEach((hit) => {
questions.push(hit._source);
3

res.send(questions);

Code 29: Elastic JS Client getQuestions Method

Here the getQuestions controller invokes the asynchronous getDocumentsFromindex

method that resides within the elasticClient. Upon response, it gets the questions and

forwards them towards the client.

All the functions that operate directly with the Elasticsearch are defined within the

elasticsearchClient file. Here is the code example of the elastic JS Client that contains

E. Garaganis 132

https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/index.html

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

those functions. Notice how the elasticClient uses the Query DSL in order to operate with

Elasticsearch's data store.

var elasticsearch = require("elasticsearch");
st { search } = require("./rou rveys-route™);

var elasticClient = n elasticsearch.Client({
host: "lo st:9
log: "info

c function getDocumentsFromIndex(
indexName,
num0fDocs = 200,
sortBy,
order
) {
console.log("~ [getDocumentsFromIndex] will query el
return elasticClient
.search({
index: indexName,
sort: "${sortBy}.keyword:${order}",
body: {
size: numOfDocs,
query: { match_all: {} },
b
})
.then(
function (elasticsearch_response) {
console.log("\t... v S ful operation with elasti
return elasticsearch_response;
}}
function (err) {
console. log(
"\t... X Not-successful operation with elastics
);
console.trace(err.message);
return err.message;
}
)5
2

exports.getDocumentsFromIndex = getDocumentsFromIndex;

async function getDocumentFromIndex(indexName, docID) { ...

i

exports.getDocumentFromIndex = getDocumentFromIndex;

c function postDocumentToIndex(indexName, document, docID) {

exports.postDocumentToIndex = postDocumentToIndex;

Code 30: Elastic JS Client Methods

E. Garaganis 133

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

IV. Kibana

Kibana is a free and open user interface that lets you visualize
your Elasticsearch data and navigate the Elastic Stack. Do
anything from tracking query load to understanding the way

. requests flow through your apps. In our app we used Kibana to
k| ban ad query the indexes from its console and visualize the results, too.

n Dev Tools ® =

@ M

Console Search Profiler Grok Debugger Painless Lab = BETA

@

History Settings Help
1 GET /answered_surveys/ search >Ry 1

2 -

E

"size": 200,
4~ "guery": {
5 "match_all": {}

o)

6+

7-}

o b

Figure 52: Kibana

V. How Aggregations Work

For the last part of the elasticsearch explanation analysis, it is wise to understand at least

in an intuitive level how the aggregations work within elasticsearch.

Each index in elasticsearch has a specific mapping, which explains to elasticsearch what
is the document that stores structure, along with a set of fields containing metadata about

each field.

Elasticsearch does this to make the searching and aggregation capabilities as optimized
and performant as possible. We won’t analyze the mappings here, more info can be found

here.

For the time being, let's remember how the elasticsearch stores the answered surveys

within its answered_surveys index.

E. Garaganis 134

https://www.elastic.co/kibana
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

o Lusl

=
1

i

i
n
1

Each answered survey has a field called answers, that contains the answer for each
question. The key is the question id and the value of the answer or the set of answers for
the specific question. Given the query below let’'s see how elasticsearch innate logic will

handle the request.

size: @,
query: {
bool: {
must: [{ match: { id: 'sTuD" } 1} 1.
should: []
H
}.‘
aggs: {
agg_@: {
terms: { field: 'answers.(@2.keyword' },
aggs: {
agg_1: {
terms: { flield: 'answers.(l1l.keyword' },
aggs: { agg_2: { stats: { field: 'answers.(Q29' } } }

E. Garaganis 135

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Elasticsearch stores within its answered_survey index a set of answered_surveys with the

format above.

answered_surveys

answered answered answered answered
survey #1 survey #2 survey #3 survey #d4
answered answered answered answered
survey #5 survey #6 survey #7 survey #8
answered
survey #9

Diagram 45: Documents In Index Without Aggregations

The first thing that elastic will do is to apply a boolean query in order to match all the

answered surveys that must be of id ‘STUD'.

bool: {
must: [{ match: { id: 'STUD" } 3} 1,

The above part of the query will yield all the STUD surveys.

answered_surveys

answered answered answered answered
survey #1 survey #2 survey #3 survey #4
answered answered answered
survey #5 survey #6 survey #7

STUD Surveys

Diagram 46: Survey ID Match Aggregation

E. Garaganis 136

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Then for all the STUD surveys, because we haven'’t other queries, elasticsearch will start

the aggregations.

aggs: {
agg_@: {
terms: { field: 'answers.(@2.keyword' },
aggs: {
agg_1: {
terms: { field: 'answers.(Q11.keyword' },
aggs: { agg_2: { stats: { field: 'answers.Q23' } } }
1
H
1
}

The first aggregation is the agg 0 which is a terms aggregation that happens based on the
Q02 answers. The keyword suffix in the aggregations means the answers of the Q02
question should be treated as keyword that the aggregations will happen upon. The
possible answers of the Q02 are “Yes” and “No”. Based on these answers, elasticsearch
creates two buckets. The one contains the answered surveys that had “Yes” answers to

Q02 and the other the answered surveys that had “No” answers to Q02.

answered_surveys

answered
survey #1

answered
survey #2

answered
sUrvey #6

answered
survey #4

Surveys that has answer "Yes' on Q02

answered answered answered
survey #5 survey #3 survey #7

Surveys that has answer 'No' on Q02

STUD Surveys

Diagram 47: Documents After Aggregation 0

After the aggregation 0, the elasticsearch proceeds to apply the second aggregation to

each bucket.

agg_1: {
terms: { field: 'answers.(Ql1l.keyword' },
aggs: { agg_2: { stats: { field: 'answers.Q29' } } }
1
E. Garaganis 137

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

The agg_1 now splits the answers based on the Q11 answers, that again are “Yes” or
“‘No”. This aggregation happens on each bucket that the agg 0 created, producing the

following result:

answered_surveys

Surveys that has answer "Yes' on Q11 Surveys that has answer ‘Mo’ on Q11
answered answered answered answered
sunvey #1 survey #2 sunvey # sunvey #4

Surveys that has answer "Yes' on Q02

Surveys that has answer "Yes' on Q11 Surveys that has answer 'No’ on Q11
answered answered answerad
survey #5 survey #3 survey 7

Surveys that has answer 'Mo’ on Q02

STUD Surveys

Diagram 48: Documents After Aggregation 1

Given now the four distinct nested buckets, the last aggregation is applied.

aggs: { agg_2: { stats: { field: 'answers.Q2%' } } }

This aggregation is a stats aggregation. Based on the answer of the Q29 question, the
elasticsearch for the documents that exist in the buckets above, does the stats
aggregation that computes the minimum, maximum, avg, count and other information for

the Q29 question answers that the buckets contains.

E. Garaganis 138

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

answered_surveys

Surveys that has answer "Yes' on Q11 Surveys that has answer 'No’ on Q11

The last aggregation computes
statistics for the Q29 nubmer
fuestion, that the user asked.

answered answered answered answered e e For all the answered surveys in

surnvey #1 sunvey #2 survey #6 survey #4 buckets, gets the mininum
value the maximum value, the
average of all etc.

Surveys that has answer "Yes'on Q02

Surveys that has answer "Yes'on Q11 Surveys that has answer 'No’ on Q11
answenl_l_d answergd answered
survey #5 sunvey #3 survey #7

Surveys that has answer "Mo’ on Q02

STUD Surveys

Diagram 49: Documents In Index Last Aggregation

The above aggregation yields its response with the aggregation info of each bucket that
later the visualization wizard renders, with the procedure that we have explained in the
2.4.2 Chapter.

VI. Full-Text Search

The front-end utilizes the elasticsearch capabilities, providing the user full text experience.

In a full-text search, a search engine examines all of the words in every stored document

as it tries to match search criteria (for example, text specified by a user). We use
Elasticsearch for example in the Question Pool, in order to easily search surveys. The

showcase of the Full-Text Search along with the code implementation follows:

E. Garaganis 139

https://en.wikipedia.org/wiki/Search_engine
https://en.wikipedia.org/wiki/Search_engine

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

Question Pool

Manage & Organize your questions

Q a1
Id = Type = Text Actions
Qo1 SetOfStrings larti okoneveTe va acxohn@eite enayyehpatika pe TNV avantuén AoyIpikon; /. i
Qi1 String ‘Exete avantiget Sikd oac Aoylopiko (side-projects); /. i
Q12 String ‘Exete aoxohnBei pe v ouyypapn kwhika oe Open source; I‘ i
Q13 Number OEwpty TOV EAUTO POU KAAUTEPO TIPOYPANHATLOTI ATIO TO TIAPAKATW TMOCOGTO TWY POITNTWY HoU. /‘ i

Figure 53: Full-Text Search

In the above example the user typed Q1 and the server responded with all the questions
that their id contains the 1 number. The search terms are applied to any field, applying full
text search experience. The full-text search is provided by our back-end, with an API call

to the /questions/search endpoint. The controller of that route executes the ElasticClient

that does a search query on the Elasticsearch that yields all the questions.

async function fullTextSearchDocument(indexName, searchTerm) {
console.log("+ [fullTextSearchDocument] will query elasticsearch");
return elasticClient
.search({
index: indexName,
body: {
query: {
multi_match: {
fields: ["*"],
query: searchTerm,
fuzziness: 2,
}
1
s
})
.then(
function (elasticsearch_response) {
console.log("\t... v Successful operation with elasticsearch");
return elasticsearch_response;
s
function (err) {
console. log(
"\t... X Not-successful operation with elasticsearch: "
);
console.trace(err.message);
return err.message;

Code 31: Full-Text Search

E. Garaganis 140

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.3 Summing Up

Summing up the system architecture and the technology stack used to implement it, our
code base is a Client-Server Restful architecture. For the client-side or Front-End we use
React, Material-Ul and Recharts frameworks and libraries for the Ul building and graph
plotting. For the Back-End or server we use the NodeJS and Express framework that
builds the routes and controllers for the two ends to communicate. Our data-storing and
processing happens with the Elasticsearch search engine and its client that let javascript
to query its indexes.

An abstract diagram of the whole technology stack is the following:

NodelS

React]S
/ Express]s \

Materialll

Elasticsearch

(: Routers Controllers Elastic JS Client [« »

Recharts

. P

Diagram 50: Full-Stack Abstract Architecture

E. Garaganis 141

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

4.4 Technical Challenges

During the design phase of implementation we were searching for a framework or tool in
order to build our backend. | came across a new backend as a service tool called
Firebase. It offered a lot of conventions and provided an easy way to manage the data
stored within it, like a console and variety of plugins and automations. So even before
analyzing what our project requirements and goals were | rushed to pick that data store as
a service, thinking it was the perfect solution for the problem, despite the fact that it was a
hurried decision. The end result was 1 month of coding and struggling to understand a tool
that was far from suitable for a backend with so many demands. It did not t have any
options to aggregate so much data, neither was it so performant. So, | had to remove the
whole backend and start all over. Of course my supervisor guided me by informing me that
there were better alternatives, so we decided on the right tools, that being Express and

Elasticsearch, and we built the back-end that is today and is perfect for the given problem.

Of course, it was not that Firebase was a bad tool. It just was not the right tool for the job.
What | understood was that architectural decisions can cost a lot of time and in cases
money and they do not change easily. So, never rush when it comes to the designing
phase. Explore all the possible solutions, understand the problem and its requirements
and after doing your best to brainstorm all the possible cases, then select the right tool and

make sure that it will work.

E. Garaganis 142

https://firebase.google.com/

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

5. CONCLUSION

The current state of the implementation is a fully functional survey manager, that offers
users the ability to create and conduct surveys to the public, while also providing powerful
mechanisms to get reports about the results and explore the possible correlations between

questions and data with deep-nested visualizations.

For the future, the implementation will be enriched with more questions and visualization
types and capabilities. Also, the platform will be thoroughly tested in various testing
environments, optimized and get deployed in order to be ready to conduct and handle a

series of surveys.

All in all, the whole thesis experience matured me as a person and gave me the chance to
have a more well-rounded programming sophistication. It helped me sharpen a handful of
programming skills and better prepare me for the future, for the best to come. And | am

grateful to my university for giving me that opportunity.

E. Garaganis 143

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

TABLE OF TERMINOLOGY
ZevoyAwooog Opog EAAnviIk6g Opog
Back End Miow Mépog
Front End MTtrpooTa Mépog
Deployment Avarrtugn
Framework EpyaAcia / ZKeAeTOG AVATTITUENG
Cloud YTtrohoyioTikd NE@og

E. Garaganis 144

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

ABBREVIATIONS
SaaS Software as a Service
REST Representational State TRansfer
UML Unified Modeling Language
JSON JavaScript Object Notation
HTML Hyper Text Markup Language
CSS Cascading Style Sheets
API Application Programming Interface
HTTP HyperText Transfer Protocol

E. Garaganis 145

A Web-Based Survey Manager for Building Dynamic Surveys with Nested Visualizations

(1]
(2]

3]
(4]
(3]
(6]
[7]
(8]

9]

REFERENCES

Hackers & Painters, Paul Graham, May 2003 (http://www.paulgraham.com/hp.html) [Accessed 14/11/20]
Worse is better, P. R. Gabrlel 1994 Iauialx_ﬂaiets_ﬂaadb_o_ak part of the handbook
(https: 3) (

ill_e_Maln_Eag_e_&Q_Lcﬂd_Sﬁ) [Accessed 17/1 1/20]

Knuth Turing Award Speech, 1974 recipient of the ACM Turing Award [Accessed 9/11/20]

SE education SPLASH 2019, (https://2019.splashcon.org/track/splash-2019-SPLASH-E) [Acessed
10/11/20]

SWEBOK v3.0 Guide to the Software Englneerlng Body of Knowledge
(https: 3] . engineering) [Accessed 8/11/20]
Dynamic Vlsual|zat|on and T|me Markku Reunanen
Front-End Visualization Libraries: Recharts (hitps://recharts.org/) [Accessed 16/11/20]

Front-End Technology React documentation (https://reactjs.org/docs/getting-started.html) [Accessed
16/11/20]

Material-Ul documentation (https://material-ui.com/) [Accessed 16/11/20]

[10] Elasticsearch (https://www.elastic.co/) [Accessed 16/11/20]
[11] “RESTful Web Services”, https://phppot.com/php/php-restful-web-service/ [Accessed 26/8/20]

[12]“Nielsen’s 10 Usability Heuristics”, https://uxdesign.cc/10-usability-heuristics-every-designer-should-

know-129b9779ac53 [Accessed 24/10/20]

[13] Elasticsearch to React Connectivity (https://app.getpocket.com/read/2866109937)
[14] The Pragmatic Programmer 1rst Edition, by Andy Hunt and Dave Thomas, Year 1999 by Addison
Wesley [Accessed 18/11/20]

E. Garaganis 146

http://www.paulgraham.com/hp.html
https://en.wikipedia.org/wiki/The_Unix-Haters_Handbook
https://cs.stanford.edu/people/eroberts/courses/cs181/projects/2010-11/WorseIsBetter/index43bb.html?title=Main_Page&oldid=86
https://cs.stanford.edu/people/eroberts/courses/cs181/projects/2010-11/WorseIsBetter/index43bb.html?title=Main_Page&oldid=86
https://en.wikipedia.org/wiki/Acm_Turing_award
https://en.wikipedia.org/wiki/Acm_Turing_award
https://2019.splashcon.org/track/splash-2019-SPLASH-E
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://recharts.org/
https://reactjs.org/docs/getting-started.html
https://material-ui.com/
https://www.elastic.co/
https://app.getpocket.com/read/2866109937
https://en.wikipedia.org/wiki/Addison_Wesley
https://en.wikipedia.org/wiki/Addison_Wesley
https://en.wikipedia.org/wiki/Addison_Wesley

